if_bge.c revision 1.325 1 /* $NetBSD: if_bge.c,v 1.325 2019/02/20 08:03:58 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.325 2019/02/20 08:03:58 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rndsource.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_can_use_msi(struct bge_softc *);
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static int bge_detach(device_t, int);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *m, bool);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252
253 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
254 static int bge_miibus_writereg(device_t, int, int, uint16_t);
255 static void bge_miibus_statchg(struct ifnet *);
256
257 #define BGE_RESET_SHUTDOWN 0
258 #define BGE_RESET_START 1
259 #define BGE_RESET_SUSPEND 2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x) if (bgedebug) printf x
279 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
281 int bgedebug = 0;
282 int bge_tso_debug = 0;
283 void bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289
290 #ifdef BGE_EVENT_COUNTERS
291 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
292 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
293 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
294 #else
295 #define BGE_EVCNT_INCR(ev) /* nothing */
296 #define BGE_EVCNT_ADD(ev, val) /* nothing */
297 #define BGE_EVCNT_UPD(ev, val) /* nothing */
298 #endif
299
300 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
301 /*
302 * The BCM5700 documentation seems to indicate that the hardware still has the
303 * Alteon vendor ID burned into it, though it should always be overridden by
304 * the value in the EEPROM. We'll check for it anyway.
305 */
306 static const struct bge_product {
307 pci_vendor_id_t bp_vendor;
308 pci_product_id_t bp_product;
309 const char *bp_name;
310 } bge_products[] = {
311 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
312 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
313 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
314 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
315 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
316 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
317 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
318 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
319 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
320 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
321 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
322 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
323 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
324 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
325 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
326 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
327 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
328 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
329 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
330 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
331 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
332 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
333 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
334 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
335 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
336 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
337 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
338 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
339 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
340 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
341 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
342 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
343 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
344 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
345 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
346 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
347 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
348 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
349 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
350 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
351 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
352 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
353 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
354 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
355 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
356 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
357 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
358 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
359 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
360 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
361 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
362 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
363 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
364 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
365 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
366 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
367 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
368 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
369 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
370 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
371 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
372 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
373 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
374 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
375 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
376 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
377 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
378 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
379 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
380 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
381 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
382 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
383 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
384 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
385 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
386 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
387 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
388 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
389 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
390 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
391 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
392 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
393 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
394 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
395 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
396 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
397 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
398 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
399 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
400 { 0, 0, NULL },
401 };
402
403 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
404 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
405 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
406 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
407 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
408 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
409 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
410 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
411 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
412
413 static const struct bge_revision {
414 uint32_t br_chipid;
415 const char *br_name;
416 } bge_revisions[] = {
417 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
418 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
419 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
420 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
421 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
422 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
423 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
424 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
425 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
426 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
427 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
428 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
429 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
430 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
431 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
432 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
433 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
434 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
435 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
436 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
437 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
438 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
439 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
440 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
441 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
442 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
443 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
444 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
445 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
446 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
447 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
448 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
449 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
450 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
451 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
452 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
453 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
454 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
455 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
456 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
457 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
458 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
459 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
460 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
461 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
462 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
463 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
464 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
465 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
466 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
467 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
468 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
469 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
470 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
471 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
472 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
473 /* 5754 and 5787 share the same ASIC ID */
474 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
475 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
476 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
477 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
478 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
479 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
480 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
481 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
482 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
483 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
484 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
485
486 { 0, NULL }
487 };
488
489 /*
490 * Some defaults for major revisions, so that newer steppings
491 * that we don't know about have a shot at working.
492 */
493 static const struct bge_revision bge_majorrevs[] = {
494 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
495 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
496 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
497 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
498 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
499 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
500 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
501 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
502 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
503 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
504 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
505 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
506 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
507 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
508 /* 5754 and 5787 share the same ASIC ID */
509 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
510 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
511 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
512 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
513 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
514 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
515 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
516 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
517
518 { 0, NULL }
519 };
520
521 static int bge_allow_asf = 1;
522
523 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
524 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
525
526 static uint32_t
527 bge_readmem_ind(struct bge_softc *sc, int off)
528 {
529 pcireg_t val;
530
531 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
532 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
533 return 0;
534
535 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
536 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
537 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
538 return val;
539 }
540
541 static void
542 bge_writemem_ind(struct bge_softc *sc, int off, int val)
543 {
544
545 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
546 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
547 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
548 }
549
550 /*
551 * PCI Express only
552 */
553 static void
554 bge_set_max_readrq(struct bge_softc *sc)
555 {
556 pcireg_t val;
557
558 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
559 + PCIE_DCSR);
560 val &= ~PCIE_DCSR_MAX_READ_REQ;
561 switch (sc->bge_expmrq) {
562 case 2048:
563 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
564 break;
565 case 4096:
566 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
567 break;
568 default:
569 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
570 break;
571 }
572 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
573 + PCIE_DCSR, val);
574 }
575
576 #ifdef notdef
577 static uint32_t
578 bge_readreg_ind(struct bge_softc *sc, int off)
579 {
580 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
581 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
582 }
583 #endif
584
585 static void
586 bge_writereg_ind(struct bge_softc *sc, int off, int val)
587 {
588 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
589 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
590 }
591
592 static void
593 bge_writemem_direct(struct bge_softc *sc, int off, int val)
594 {
595 CSR_WRITE_4(sc, off, val);
596 }
597
598 static void
599 bge_writembx(struct bge_softc *sc, int off, int val)
600 {
601 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
602 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
603
604 CSR_WRITE_4(sc, off, val);
605 }
606
607 static void
608 bge_writembx_flush(struct bge_softc *sc, int off, int val)
609 {
610 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
611 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
612
613 CSR_WRITE_4_FLUSH(sc, off, val);
614 }
615
616 /*
617 * Clear all stale locks and select the lock for this driver instance.
618 */
619 void
620 bge_ape_lock_init(struct bge_softc *sc)
621 {
622 struct pci_attach_args *pa = &(sc->bge_pa);
623 uint32_t bit, regbase;
624 int i;
625
626 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
627 regbase = BGE_APE_LOCK_GRANT;
628 else
629 regbase = BGE_APE_PER_LOCK_GRANT;
630
631 /* Clear any stale locks. */
632 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
633 switch (i) {
634 case BGE_APE_LOCK_PHY0:
635 case BGE_APE_LOCK_PHY1:
636 case BGE_APE_LOCK_PHY2:
637 case BGE_APE_LOCK_PHY3:
638 bit = BGE_APE_LOCK_GRANT_DRIVER0;
639 break;
640 default:
641 if (pa->pa_function == 0)
642 bit = BGE_APE_LOCK_GRANT_DRIVER0;
643 else
644 bit = (1 << pa->pa_function);
645 }
646 APE_WRITE_4(sc, regbase + 4 * i, bit);
647 }
648
649 /* Select the PHY lock based on the device's function number. */
650 switch (pa->pa_function) {
651 case 0:
652 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
653 break;
654 case 1:
655 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
656 break;
657 case 2:
658 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
659 break;
660 case 3:
661 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
662 break;
663 default:
664 printf("%s: PHY lock not supported on function\n",
665 device_xname(sc->bge_dev));
666 break;
667 }
668 }
669
670 /*
671 * Check for APE firmware, set flags, and print version info.
672 */
673 void
674 bge_ape_read_fw_ver(struct bge_softc *sc)
675 {
676 const char *fwtype;
677 uint32_t apedata, features;
678
679 /* Check for a valid APE signature in shared memory. */
680 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
681 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
682 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
683 return;
684 }
685
686 /* Check if APE firmware is running. */
687 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
688 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
689 printf("%s: APE signature found but FW status not ready! "
690 "0x%08x\n", device_xname(sc->bge_dev), apedata);
691 return;
692 }
693
694 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
695
696 /* Fetch the APE firwmare type and version. */
697 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
698 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
699 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
700 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
701 fwtype = "NCSI";
702 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
703 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
704 fwtype = "DASH";
705 } else
706 fwtype = "UNKN";
707
708 /* Print the APE firmware version. */
709 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
710 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
711 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
712 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
713 (apedata & BGE_APE_FW_VERSION_BLDMSK));
714 }
715
716 int
717 bge_ape_lock(struct bge_softc *sc, int locknum)
718 {
719 struct pci_attach_args *pa = &(sc->bge_pa);
720 uint32_t bit, gnt, req, status;
721 int i, off;
722
723 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
724 return (0);
725
726 /* Lock request/grant registers have different bases. */
727 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
728 req = BGE_APE_LOCK_REQ;
729 gnt = BGE_APE_LOCK_GRANT;
730 } else {
731 req = BGE_APE_PER_LOCK_REQ;
732 gnt = BGE_APE_PER_LOCK_GRANT;
733 }
734
735 off = 4 * locknum;
736
737 switch (locknum) {
738 case BGE_APE_LOCK_GPIO:
739 /* Lock required when using GPIO. */
740 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
741 return (0);
742 if (pa->pa_function == 0)
743 bit = BGE_APE_LOCK_REQ_DRIVER0;
744 else
745 bit = (1 << pa->pa_function);
746 break;
747 case BGE_APE_LOCK_GRC:
748 /* Lock required to reset the device. */
749 if (pa->pa_function == 0)
750 bit = BGE_APE_LOCK_REQ_DRIVER0;
751 else
752 bit = (1 << pa->pa_function);
753 break;
754 case BGE_APE_LOCK_MEM:
755 /* Lock required when accessing certain APE memory. */
756 if (pa->pa_function == 0)
757 bit = BGE_APE_LOCK_REQ_DRIVER0;
758 else
759 bit = (1 << pa->pa_function);
760 break;
761 case BGE_APE_LOCK_PHY0:
762 case BGE_APE_LOCK_PHY1:
763 case BGE_APE_LOCK_PHY2:
764 case BGE_APE_LOCK_PHY3:
765 /* Lock required when accessing PHYs. */
766 bit = BGE_APE_LOCK_REQ_DRIVER0;
767 break;
768 default:
769 return (EINVAL);
770 }
771
772 /* Request a lock. */
773 APE_WRITE_4_FLUSH(sc, req + off, bit);
774
775 /* Wait up to 1 second to acquire lock. */
776 for (i = 0; i < 20000; i++) {
777 status = APE_READ_4(sc, gnt + off);
778 if (status == bit)
779 break;
780 DELAY(50);
781 }
782
783 /* Handle any errors. */
784 if (status != bit) {
785 printf("%s: APE lock %d request failed! "
786 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
787 device_xname(sc->bge_dev),
788 locknum, req + off, bit & 0xFFFF, gnt + off,
789 status & 0xFFFF);
790 /* Revoke the lock request. */
791 APE_WRITE_4(sc, gnt + off, bit);
792 return (EBUSY);
793 }
794
795 return (0);
796 }
797
798 void
799 bge_ape_unlock(struct bge_softc *sc, int locknum)
800 {
801 struct pci_attach_args *pa = &(sc->bge_pa);
802 uint32_t bit, gnt;
803 int off;
804
805 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
806 return;
807
808 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
809 gnt = BGE_APE_LOCK_GRANT;
810 else
811 gnt = BGE_APE_PER_LOCK_GRANT;
812
813 off = 4 * locknum;
814
815 switch (locknum) {
816 case BGE_APE_LOCK_GPIO:
817 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
818 return;
819 if (pa->pa_function == 0)
820 bit = BGE_APE_LOCK_GRANT_DRIVER0;
821 else
822 bit = (1 << pa->pa_function);
823 break;
824 case BGE_APE_LOCK_GRC:
825 if (pa->pa_function == 0)
826 bit = BGE_APE_LOCK_GRANT_DRIVER0;
827 else
828 bit = (1 << pa->pa_function);
829 break;
830 case BGE_APE_LOCK_MEM:
831 if (pa->pa_function == 0)
832 bit = BGE_APE_LOCK_GRANT_DRIVER0;
833 else
834 bit = (1 << pa->pa_function);
835 break;
836 case BGE_APE_LOCK_PHY0:
837 case BGE_APE_LOCK_PHY1:
838 case BGE_APE_LOCK_PHY2:
839 case BGE_APE_LOCK_PHY3:
840 bit = BGE_APE_LOCK_GRANT_DRIVER0;
841 break;
842 default:
843 return;
844 }
845
846 /* Write and flush for consecutive bge_ape_lock() */
847 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
848 }
849
850 /*
851 * Send an event to the APE firmware.
852 */
853 void
854 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
855 {
856 uint32_t apedata;
857 int i;
858
859 /* NCSI does not support APE events. */
860 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
861 return;
862
863 /* Wait up to 1ms for APE to service previous event. */
864 for (i = 10; i > 0; i--) {
865 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
866 break;
867 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
868 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
869 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
870 BGE_APE_EVENT_STATUS_EVENT_PENDING);
871 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
872 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
873 break;
874 }
875 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
876 DELAY(100);
877 }
878 if (i == 0) {
879 printf("%s: APE event 0x%08x send timed out\n",
880 device_xname(sc->bge_dev), event);
881 }
882 }
883
884 void
885 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
886 {
887 uint32_t apedata, event;
888
889 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
890 return;
891
892 switch (kind) {
893 case BGE_RESET_START:
894 /* If this is the first load, clear the load counter. */
895 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
896 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
897 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
898 else {
899 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
900 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
901 }
902 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
903 BGE_APE_HOST_SEG_SIG_MAGIC);
904 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
905 BGE_APE_HOST_SEG_LEN_MAGIC);
906
907 /* Add some version info if bge(4) supports it. */
908 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
909 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
910 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
911 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
912 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
913 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
914 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
915 BGE_APE_HOST_DRVR_STATE_START);
916 event = BGE_APE_EVENT_STATUS_STATE_START;
917 break;
918 case BGE_RESET_SHUTDOWN:
919 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
920 BGE_APE_HOST_DRVR_STATE_UNLOAD);
921 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
922 break;
923 case BGE_RESET_SUSPEND:
924 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
925 break;
926 default:
927 return;
928 }
929
930 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
931 BGE_APE_EVENT_STATUS_STATE_CHNGE);
932 }
933
934 static uint8_t
935 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
936 {
937 uint32_t access, byte = 0;
938 int i;
939
940 /* Lock. */
941 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
942 for (i = 0; i < 8000; i++) {
943 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
944 break;
945 DELAY(20);
946 }
947 if (i == 8000)
948 return 1;
949
950 /* Enable access. */
951 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
952 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
953
954 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
955 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
956 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
957 DELAY(10);
958 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
959 DELAY(10);
960 break;
961 }
962 }
963
964 if (i == BGE_TIMEOUT * 10) {
965 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
966 return 1;
967 }
968
969 /* Get result. */
970 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
971
972 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
973
974 /* Disable access. */
975 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
976
977 /* Unlock. */
978 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
979
980 return 0;
981 }
982
983 /*
984 * Read a sequence of bytes from NVRAM.
985 */
986 static int
987 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
988 {
989 int error = 0, i;
990 uint8_t byte = 0;
991
992 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
993 return 1;
994
995 for (i = 0; i < cnt; i++) {
996 error = bge_nvram_getbyte(sc, off + i, &byte);
997 if (error)
998 break;
999 *(dest + i) = byte;
1000 }
1001
1002 return (error ? 1 : 0);
1003 }
1004
1005 /*
1006 * Read a byte of data stored in the EEPROM at address 'addr.' The
1007 * BCM570x supports both the traditional bitbang interface and an
1008 * auto access interface for reading the EEPROM. We use the auto
1009 * access method.
1010 */
1011 static uint8_t
1012 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1013 {
1014 int i;
1015 uint32_t byte = 0;
1016
1017 /*
1018 * Enable use of auto EEPROM access so we can avoid
1019 * having to use the bitbang method.
1020 */
1021 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1022
1023 /* Reset the EEPROM, load the clock period. */
1024 CSR_WRITE_4(sc, BGE_EE_ADDR,
1025 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1026 DELAY(20);
1027
1028 /* Issue the read EEPROM command. */
1029 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1030
1031 /* Wait for completion */
1032 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1033 DELAY(10);
1034 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1035 break;
1036 }
1037
1038 if (i == BGE_TIMEOUT * 10) {
1039 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1040 return 1;
1041 }
1042
1043 /* Get result. */
1044 byte = CSR_READ_4(sc, BGE_EE_DATA);
1045
1046 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1047
1048 return 0;
1049 }
1050
1051 /*
1052 * Read a sequence of bytes from the EEPROM.
1053 */
1054 static int
1055 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1056 {
1057 int error = 0, i;
1058 uint8_t byte = 0;
1059 char *dest = destv;
1060
1061 for (i = 0; i < cnt; i++) {
1062 error = bge_eeprom_getbyte(sc, off + i, &byte);
1063 if (error)
1064 break;
1065 *(dest + i) = byte;
1066 }
1067
1068 return (error ? 1 : 0);
1069 }
1070
1071 static int
1072 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1073 {
1074 struct bge_softc *sc = device_private(dev);
1075 uint32_t data;
1076 uint32_t autopoll;
1077 int rv = 0;
1078 int i;
1079
1080 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1081 return -1;
1082
1083 /* Reading with autopolling on may trigger PCI errors */
1084 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1085 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1086 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1087 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1088 DELAY(80);
1089 }
1090
1091 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1092 BGE_MIPHY(phy) | BGE_MIREG(reg));
1093
1094 for (i = 0; i < BGE_TIMEOUT; i++) {
1095 delay(10);
1096 data = CSR_READ_4(sc, BGE_MI_COMM);
1097 if (!(data & BGE_MICOMM_BUSY)) {
1098 DELAY(5);
1099 data = CSR_READ_4(sc, BGE_MI_COMM);
1100 break;
1101 }
1102 }
1103
1104 if (i == BGE_TIMEOUT) {
1105 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1106 rv = ETIMEDOUT;
1107 } else if ((data & BGE_MICOMM_READFAIL) != 0)
1108 rv = -1;
1109 else
1110 *val = data & BGE_MICOMM_DATA;
1111
1112 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1113 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1114 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1115 DELAY(80);
1116 }
1117
1118 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1119
1120 return rv;
1121 }
1122
1123 static int
1124 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1125 {
1126 struct bge_softc *sc = device_private(dev);
1127 uint32_t autopoll;
1128 int i;
1129
1130 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1131 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1132 return 0;
1133
1134 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1135 return -1;
1136
1137 /* Reading with autopolling on may trigger PCI errors */
1138 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1139 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1140 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1141 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1142 DELAY(80);
1143 }
1144
1145 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1146 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1147
1148 for (i = 0; i < BGE_TIMEOUT; i++) {
1149 delay(10);
1150 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1151 delay(5);
1152 CSR_READ_4(sc, BGE_MI_COMM);
1153 break;
1154 }
1155 }
1156
1157 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1158 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1159 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1160 delay(80);
1161 }
1162
1163 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1164
1165 if (i == BGE_TIMEOUT) {
1166 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1167 return ETIMEDOUT;
1168 }
1169
1170 return 0;
1171 }
1172
1173 static void
1174 bge_miibus_statchg(struct ifnet *ifp)
1175 {
1176 struct bge_softc *sc = ifp->if_softc;
1177 struct mii_data *mii = &sc->bge_mii;
1178 uint32_t mac_mode, rx_mode, tx_mode;
1179
1180 /*
1181 * Get flow control negotiation result.
1182 */
1183 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1184 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1185 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1186
1187 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1188 mii->mii_media_status & IFM_ACTIVE &&
1189 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1190 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1191 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1192 (!(mii->mii_media_status & IFM_ACTIVE) ||
1193 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1194 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1195
1196 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1197 return;
1198
1199 /* Set the port mode (MII/GMII) to match the link speed. */
1200 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1201 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1202 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1203 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1204 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1205 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1206 mac_mode |= BGE_PORTMODE_GMII;
1207 else
1208 mac_mode |= BGE_PORTMODE_MII;
1209
1210 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1211 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1212 if ((mii->mii_media_active & IFM_FDX) != 0) {
1213 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1214 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1215 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1216 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1217 } else
1218 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1219
1220 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1221 DELAY(40);
1222 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1223 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1224 }
1225
1226 /*
1227 * Update rx threshold levels to values in a particular slot
1228 * of the interrupt-mitigation table bge_rx_threshes.
1229 */
1230 static void
1231 bge_set_thresh(struct ifnet *ifp, int lvl)
1232 {
1233 struct bge_softc *sc = ifp->if_softc;
1234 int s;
1235
1236 /* For now, just save the new Rx-intr thresholds and record
1237 * that a threshold update is pending. Updating the hardware
1238 * registers here (even at splhigh()) is observed to
1239 * occasionaly cause glitches where Rx-interrupts are not
1240 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1241 */
1242 s = splnet();
1243 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1244 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1245 sc->bge_pending_rxintr_change = 1;
1246 splx(s);
1247 }
1248
1249
1250 /*
1251 * Update Rx thresholds of all bge devices
1252 */
1253 static void
1254 bge_update_all_threshes(int lvl)
1255 {
1256 struct ifnet *ifp;
1257 const char * const namebuf = "bge";
1258 int namelen;
1259 int s;
1260
1261 if (lvl < 0)
1262 lvl = 0;
1263 else if (lvl >= NBGE_RX_THRESH)
1264 lvl = NBGE_RX_THRESH - 1;
1265
1266 namelen = strlen(namebuf);
1267 /*
1268 * Now search all the interfaces for this name/number
1269 */
1270 s = pserialize_read_enter();
1271 IFNET_READER_FOREACH(ifp) {
1272 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1273 continue;
1274 /* We got a match: update if doing auto-threshold-tuning */
1275 if (bge_auto_thresh)
1276 bge_set_thresh(ifp, lvl);
1277 }
1278 pserialize_read_exit(s);
1279 }
1280
1281 /*
1282 * Handle events that have triggered interrupts.
1283 */
1284 static void
1285 bge_handle_events(struct bge_softc *sc)
1286 {
1287
1288 return;
1289 }
1290
1291 /*
1292 * Memory management for jumbo frames.
1293 */
1294
1295 static int
1296 bge_alloc_jumbo_mem(struct bge_softc *sc)
1297 {
1298 char *ptr, *kva;
1299 bus_dma_segment_t seg;
1300 int i, rseg, state, error;
1301 struct bge_jpool_entry *entry;
1302
1303 state = error = 0;
1304
1305 /* Grab a big chunk o' storage. */
1306 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1307 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1308 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1309 return ENOBUFS;
1310 }
1311
1312 state = 1;
1313 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1314 BUS_DMA_NOWAIT)) {
1315 aprint_error_dev(sc->bge_dev,
1316 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1317 error = ENOBUFS;
1318 goto out;
1319 }
1320
1321 state = 2;
1322 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1323 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1324 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1325 error = ENOBUFS;
1326 goto out;
1327 }
1328
1329 state = 3;
1330 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1331 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1332 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1333 error = ENOBUFS;
1334 goto out;
1335 }
1336
1337 state = 4;
1338 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1339 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1340
1341 SLIST_INIT(&sc->bge_jfree_listhead);
1342 SLIST_INIT(&sc->bge_jinuse_listhead);
1343
1344 /*
1345 * Now divide it up into 9K pieces and save the addresses
1346 * in an array.
1347 */
1348 ptr = sc->bge_cdata.bge_jumbo_buf;
1349 for (i = 0; i < BGE_JSLOTS; i++) {
1350 sc->bge_cdata.bge_jslots[i] = ptr;
1351 ptr += BGE_JLEN;
1352 entry = malloc(sizeof(struct bge_jpool_entry),
1353 M_DEVBUF, M_NOWAIT);
1354 if (entry == NULL) {
1355 aprint_error_dev(sc->bge_dev,
1356 "no memory for jumbo buffer queue!\n");
1357 error = ENOBUFS;
1358 goto out;
1359 }
1360 entry->slot = i;
1361 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1362 entry, jpool_entries);
1363 }
1364 out:
1365 if (error != 0) {
1366 switch (state) {
1367 case 4:
1368 bus_dmamap_unload(sc->bge_dmatag,
1369 sc->bge_cdata.bge_rx_jumbo_map);
1370 /* FALLTHROUGH */
1371 case 3:
1372 bus_dmamap_destroy(sc->bge_dmatag,
1373 sc->bge_cdata.bge_rx_jumbo_map);
1374 /* FALLTHROUGH */
1375 case 2:
1376 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1377 /* FALLTHROUGH */
1378 case 1:
1379 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1380 break;
1381 default:
1382 break;
1383 }
1384 }
1385
1386 return error;
1387 }
1388
1389 /*
1390 * Allocate a jumbo buffer.
1391 */
1392 static void *
1393 bge_jalloc(struct bge_softc *sc)
1394 {
1395 struct bge_jpool_entry *entry;
1396
1397 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1398
1399 if (entry == NULL) {
1400 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1401 return NULL;
1402 }
1403
1404 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1405 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1406 return (sc->bge_cdata.bge_jslots[entry->slot]);
1407 }
1408
1409 /*
1410 * Release a jumbo buffer.
1411 */
1412 static void
1413 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1414 {
1415 struct bge_jpool_entry *entry;
1416 struct bge_softc *sc;
1417 int i, s;
1418
1419 /* Extract the softc struct pointer. */
1420 sc = (struct bge_softc *)arg;
1421
1422 if (sc == NULL)
1423 panic("bge_jfree: can't find softc pointer!");
1424
1425 /* calculate the slot this buffer belongs to */
1426
1427 i = ((char *)buf
1428 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1429
1430 if ((i < 0) || (i >= BGE_JSLOTS))
1431 panic("bge_jfree: asked to free buffer that we don't manage!");
1432
1433 s = splvm();
1434 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1435 if (entry == NULL)
1436 panic("bge_jfree: buffer not in use!");
1437 entry->slot = i;
1438 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1439 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1440
1441 if (__predict_true(m != NULL))
1442 pool_cache_put(mb_cache, m);
1443 splx(s);
1444 }
1445
1446
1447 /*
1448 * Initialize a standard receive ring descriptor.
1449 */
1450 static int
1451 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1452 bus_dmamap_t dmamap)
1453 {
1454 struct mbuf *m_new = NULL;
1455 struct bge_rx_bd *r;
1456 int error;
1457
1458 if (dmamap == NULL)
1459 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1460
1461 if (dmamap == NULL) {
1462 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1463 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1464 if (error != 0)
1465 return error;
1466 }
1467
1468 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1469
1470 if (m == NULL) {
1471 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1472 if (m_new == NULL)
1473 return ENOBUFS;
1474
1475 MCLGET(m_new, M_DONTWAIT);
1476 if (!(m_new->m_flags & M_EXT)) {
1477 m_freem(m_new);
1478 return ENOBUFS;
1479 }
1480 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1481
1482 } else {
1483 m_new = m;
1484 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1485 m_new->m_data = m_new->m_ext.ext_buf;
1486 }
1487 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1488 m_adj(m_new, ETHER_ALIGN);
1489 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1490 BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1491 m_freem(m_new);
1492 return ENOBUFS;
1493 }
1494 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1495 BUS_DMASYNC_PREREAD);
1496
1497 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1498 r = &sc->bge_rdata->bge_rx_std_ring[i];
1499 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1500 r->bge_flags = BGE_RXBDFLAG_END;
1501 r->bge_len = m_new->m_len;
1502 r->bge_idx = i;
1503
1504 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1505 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1506 i * sizeof (struct bge_rx_bd),
1507 sizeof (struct bge_rx_bd),
1508 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1509
1510 return 0;
1511 }
1512
1513 /*
1514 * Initialize a jumbo receive ring descriptor. This allocates
1515 * a jumbo buffer from the pool managed internally by the driver.
1516 */
1517 static int
1518 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1519 {
1520 struct mbuf *m_new = NULL;
1521 struct bge_rx_bd *r;
1522 void *buf = NULL;
1523
1524 if (m == NULL) {
1525
1526 /* Allocate the mbuf. */
1527 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1528 if (m_new == NULL)
1529 return ENOBUFS;
1530
1531 /* Allocate the jumbo buffer */
1532 buf = bge_jalloc(sc);
1533 if (buf == NULL) {
1534 m_freem(m_new);
1535 aprint_error_dev(sc->bge_dev,
1536 "jumbo allocation failed -- packet dropped!\n");
1537 return ENOBUFS;
1538 }
1539
1540 /* Attach the buffer to the mbuf. */
1541 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1542 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1543 bge_jfree, sc);
1544 m_new->m_flags |= M_EXT_RW;
1545 } else {
1546 m_new = m;
1547 buf = m_new->m_data = m_new->m_ext.ext_buf;
1548 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1549 }
1550 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1551 m_adj(m_new, ETHER_ALIGN);
1552 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1553 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1554 BUS_DMASYNC_PREREAD);
1555 /* Set up the descriptor. */
1556 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1557 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1558 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1559 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1560 r->bge_len = m_new->m_len;
1561 r->bge_idx = i;
1562
1563 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1564 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1565 i * sizeof (struct bge_rx_bd),
1566 sizeof (struct bge_rx_bd),
1567 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1568
1569 return 0;
1570 }
1571
1572 /*
1573 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1574 * that's 1MB or memory, which is a lot. For now, we fill only the first
1575 * 256 ring entries and hope that our CPU is fast enough to keep up with
1576 * the NIC.
1577 */
1578 static int
1579 bge_init_rx_ring_std(struct bge_softc *sc)
1580 {
1581 int i;
1582
1583 if (sc->bge_flags & BGEF_RXRING_VALID)
1584 return 0;
1585
1586 for (i = 0; i < BGE_SSLOTS; i++) {
1587 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1588 return ENOBUFS;
1589 }
1590
1591 sc->bge_std = i - 1;
1592 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1593
1594 sc->bge_flags |= BGEF_RXRING_VALID;
1595
1596 return 0;
1597 }
1598
1599 static void
1600 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1601 {
1602 int i;
1603
1604 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1605 return;
1606
1607 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1608 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1609 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1610 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1611 if (disable) {
1612 bus_dmamap_destroy(sc->bge_dmatag,
1613 sc->bge_cdata.bge_rx_std_map[i]);
1614 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1615 }
1616 }
1617 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1618 sizeof(struct bge_rx_bd));
1619 }
1620
1621 sc->bge_flags &= ~BGEF_RXRING_VALID;
1622 }
1623
1624 static int
1625 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1626 {
1627 int i;
1628 volatile struct bge_rcb *rcb;
1629
1630 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1631 return 0;
1632
1633 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1634 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1635 return ENOBUFS;
1636 }
1637
1638 sc->bge_jumbo = i - 1;
1639 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1640
1641 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1642 rcb->bge_maxlen_flags = 0;
1643 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1644
1645 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1646
1647 return 0;
1648 }
1649
1650 static void
1651 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1652 {
1653 int i;
1654
1655 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1656 return;
1657
1658 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1659 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1660 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1661 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1662 }
1663 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1664 sizeof(struct bge_rx_bd));
1665 }
1666
1667 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1668 }
1669
1670 static void
1671 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1672 {
1673 int i;
1674 struct txdmamap_pool_entry *dma;
1675
1676 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1677 return;
1678
1679 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1680 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1681 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1682 sc->bge_cdata.bge_tx_chain[i] = NULL;
1683 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1684 link);
1685 sc->txdma[i] = 0;
1686 }
1687 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1688 sizeof(struct bge_tx_bd));
1689 }
1690
1691 if (disable) {
1692 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1693 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1694 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1695 if (sc->bge_dma64) {
1696 bus_dmamap_destroy(sc->bge_dmatag32,
1697 dma->dmamap32);
1698 }
1699 free(dma, M_DEVBUF);
1700 }
1701 SLIST_INIT(&sc->txdma_list);
1702 }
1703
1704 sc->bge_flags &= ~BGEF_TXRING_VALID;
1705 }
1706
1707 static int
1708 bge_init_tx_ring(struct bge_softc *sc)
1709 {
1710 struct ifnet *ifp = &sc->ethercom.ec_if;
1711 int i;
1712 bus_dmamap_t dmamap, dmamap32;
1713 bus_size_t maxsegsz;
1714 struct txdmamap_pool_entry *dma;
1715
1716 if (sc->bge_flags & BGEF_TXRING_VALID)
1717 return 0;
1718
1719 sc->bge_txcnt = 0;
1720 sc->bge_tx_saved_considx = 0;
1721
1722 /* Initialize transmit producer index for host-memory send ring. */
1723 sc->bge_tx_prodidx = 0;
1724 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1725 /* 5700 b2 errata */
1726 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1727 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1728
1729 /* NIC-memory send ring not used; initialize to zero. */
1730 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1731 /* 5700 b2 errata */
1732 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1733 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1734
1735 /* Limit DMA segment size for some chips */
1736 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1737 (ifp->if_mtu <= ETHERMTU))
1738 maxsegsz = 2048;
1739 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1740 maxsegsz = 4096;
1741 else
1742 maxsegsz = ETHER_MAX_LEN_JUMBO;
1743
1744 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1745 goto alloc_done;
1746
1747 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1748 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1749 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1750 &dmamap))
1751 return ENOBUFS;
1752 if (dmamap == NULL)
1753 panic("dmamap NULL in bge_init_tx_ring");
1754 if (sc->bge_dma64) {
1755 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1756 BGE_NTXSEG, maxsegsz, 0,
1757 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1758 &dmamap32)) {
1759 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1760 return ENOBUFS;
1761 }
1762 if (dmamap32 == NULL)
1763 panic("dmamap32 NULL in bge_init_tx_ring");
1764 } else
1765 dmamap32 = dmamap;
1766 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1767 if (dma == NULL) {
1768 aprint_error_dev(sc->bge_dev,
1769 "can't alloc txdmamap_pool_entry\n");
1770 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1771 if (sc->bge_dma64)
1772 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1773 return ENOMEM;
1774 }
1775 dma->dmamap = dmamap;
1776 dma->dmamap32 = dmamap32;
1777 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1778 }
1779 alloc_done:
1780 sc->bge_flags |= BGEF_TXRING_VALID;
1781
1782 return 0;
1783 }
1784
1785 static void
1786 bge_setmulti(struct bge_softc *sc)
1787 {
1788 struct ethercom *ac = &sc->ethercom;
1789 struct ifnet *ifp = &ac->ec_if;
1790 struct ether_multi *enm;
1791 struct ether_multistep step;
1792 uint32_t hashes[4] = { 0, 0, 0, 0 };
1793 uint32_t h;
1794 int i;
1795
1796 if (ifp->if_flags & IFF_PROMISC)
1797 goto allmulti;
1798
1799 /* Now program new ones. */
1800 ETHER_FIRST_MULTI(step, ac, enm);
1801 while (enm != NULL) {
1802 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1803 /*
1804 * We must listen to a range of multicast addresses.
1805 * For now, just accept all multicasts, rather than
1806 * trying to set only those filter bits needed to match
1807 * the range. (At this time, the only use of address
1808 * ranges is for IP multicast routing, for which the
1809 * range is big enough to require all bits set.)
1810 */
1811 goto allmulti;
1812 }
1813
1814 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1815
1816 /* Just want the 7 least-significant bits. */
1817 h &= 0x7f;
1818
1819 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1820 ETHER_NEXT_MULTI(step, enm);
1821 }
1822
1823 ifp->if_flags &= ~IFF_ALLMULTI;
1824 goto setit;
1825
1826 allmulti:
1827 ifp->if_flags |= IFF_ALLMULTI;
1828 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1829
1830 setit:
1831 for (i = 0; i < 4; i++)
1832 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1833 }
1834
1835 static void
1836 bge_sig_pre_reset(struct bge_softc *sc, int type)
1837 {
1838
1839 /*
1840 * Some chips don't like this so only do this if ASF is enabled
1841 */
1842 if (sc->bge_asf_mode)
1843 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1844
1845 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1846 switch (type) {
1847 case BGE_RESET_START:
1848 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1849 BGE_FW_DRV_STATE_START);
1850 break;
1851 case BGE_RESET_SHUTDOWN:
1852 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1853 BGE_FW_DRV_STATE_UNLOAD);
1854 break;
1855 case BGE_RESET_SUSPEND:
1856 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1857 BGE_FW_DRV_STATE_SUSPEND);
1858 break;
1859 }
1860 }
1861
1862 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1863 bge_ape_driver_state_change(sc, type);
1864 }
1865
1866 static void
1867 bge_sig_post_reset(struct bge_softc *sc, int type)
1868 {
1869
1870 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1871 switch (type) {
1872 case BGE_RESET_START:
1873 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1874 BGE_FW_DRV_STATE_START_DONE);
1875 /* START DONE */
1876 break;
1877 case BGE_RESET_SHUTDOWN:
1878 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1879 BGE_FW_DRV_STATE_UNLOAD_DONE);
1880 break;
1881 }
1882 }
1883
1884 if (type == BGE_RESET_SHUTDOWN)
1885 bge_ape_driver_state_change(sc, type);
1886 }
1887
1888 static void
1889 bge_sig_legacy(struct bge_softc *sc, int type)
1890 {
1891
1892 if (sc->bge_asf_mode) {
1893 switch (type) {
1894 case BGE_RESET_START:
1895 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1896 BGE_FW_DRV_STATE_START);
1897 break;
1898 case BGE_RESET_SHUTDOWN:
1899 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1900 BGE_FW_DRV_STATE_UNLOAD);
1901 break;
1902 }
1903 }
1904 }
1905
1906 static void
1907 bge_wait_for_event_ack(struct bge_softc *sc)
1908 {
1909 int i;
1910
1911 /* wait up to 2500usec */
1912 for (i = 0; i < 250; i++) {
1913 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1914 BGE_RX_CPU_DRV_EVENT))
1915 break;
1916 DELAY(10);
1917 }
1918 }
1919
1920 static void
1921 bge_stop_fw(struct bge_softc *sc)
1922 {
1923
1924 if (sc->bge_asf_mode) {
1925 bge_wait_for_event_ack(sc);
1926
1927 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1928 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1929 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1930
1931 bge_wait_for_event_ack(sc);
1932 }
1933 }
1934
1935 static int
1936 bge_poll_fw(struct bge_softc *sc)
1937 {
1938 uint32_t val;
1939 int i;
1940
1941 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1942 for (i = 0; i < BGE_TIMEOUT; i++) {
1943 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1944 if (val & BGE_VCPU_STATUS_INIT_DONE)
1945 break;
1946 DELAY(100);
1947 }
1948 if (i >= BGE_TIMEOUT) {
1949 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1950 return -1;
1951 }
1952 } else {
1953 /*
1954 * Poll the value location we just wrote until
1955 * we see the 1's complement of the magic number.
1956 * This indicates that the firmware initialization
1957 * is complete.
1958 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1959 */
1960 for (i = 0; i < BGE_TIMEOUT; i++) {
1961 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1962 if (val == ~BGE_SRAM_FW_MB_MAGIC)
1963 break;
1964 DELAY(10);
1965 }
1966
1967 if ((i >= BGE_TIMEOUT)
1968 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1969 aprint_error_dev(sc->bge_dev,
1970 "firmware handshake timed out, val = %x\n", val);
1971 return -1;
1972 }
1973 }
1974
1975 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1976 /* tg3 says we have to wait extra time */
1977 delay(10 * 1000);
1978 }
1979
1980 return 0;
1981 }
1982
1983 int
1984 bge_phy_addr(struct bge_softc *sc)
1985 {
1986 struct pci_attach_args *pa = &(sc->bge_pa);
1987 int phy_addr = 1;
1988
1989 /*
1990 * PHY address mapping for various devices.
1991 *
1992 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
1993 * ---------+-------+-------+-------+-------+
1994 * BCM57XX | 1 | X | X | X |
1995 * BCM5704 | 1 | X | 1 | X |
1996 * BCM5717 | 1 | 8 | 2 | 9 |
1997 * BCM5719 | 1 | 8 | 2 | 9 |
1998 * BCM5720 | 1 | 8 | 2 | 9 |
1999 *
2000 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2001 * ---------+-------+-------+-------+-------+
2002 * BCM57XX | X | X | X | X |
2003 * BCM5704 | X | X | X | X |
2004 * BCM5717 | X | X | X | X |
2005 * BCM5719 | 3 | 10 | 4 | 11 |
2006 * BCM5720 | X | X | X | X |
2007 *
2008 * Other addresses may respond but they are not
2009 * IEEE compliant PHYs and should be ignored.
2010 */
2011 switch (BGE_ASICREV(sc->bge_chipid)) {
2012 case BGE_ASICREV_BCM5717:
2013 case BGE_ASICREV_BCM5719:
2014 case BGE_ASICREV_BCM5720:
2015 phy_addr = pa->pa_function;
2016 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2017 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2018 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2019 } else {
2020 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2021 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2022 }
2023 }
2024
2025 return phy_addr;
2026 }
2027
2028 /*
2029 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2030 * self-test results.
2031 */
2032 static int
2033 bge_chipinit(struct bge_softc *sc)
2034 {
2035 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2036 int i;
2037
2038 /* Set endianness before we access any non-PCI registers. */
2039 misc_ctl = BGE_INIT;
2040 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2041 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2042 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2043 misc_ctl);
2044
2045 /*
2046 * Clear the MAC statistics block in the NIC's
2047 * internal memory.
2048 */
2049 for (i = BGE_STATS_BLOCK;
2050 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2051 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2052
2053 for (i = BGE_STATUS_BLOCK;
2054 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2055 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2056
2057 /* 5717 workaround from tg3 */
2058 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2059 /* Save */
2060 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2061
2062 /* Temporary modify MODE_CTL to control TLP */
2063 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2064 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2065
2066 /* Control TLP */
2067 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2068 BGE_TLP_PHYCTL1);
2069 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2070 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2071
2072 /* Restore */
2073 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2074 }
2075
2076 if (BGE_IS_57765_FAMILY(sc)) {
2077 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2078 /* Save */
2079 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2080
2081 /* Temporary modify MODE_CTL to control TLP */
2082 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2083 CSR_WRITE_4(sc, BGE_MODE_CTL,
2084 reg | BGE_MODECTL_PCIE_TLPADDR1);
2085
2086 /* Control TLP */
2087 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2088 BGE_TLP_PHYCTL5);
2089 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2090 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2091
2092 /* Restore */
2093 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2094 }
2095 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2096 /*
2097 * For the 57766 and non Ax versions of 57765, bootcode
2098 * needs to setup the PCIE Fast Training Sequence (FTS)
2099 * value to prevent transmit hangs.
2100 */
2101 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2102 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2103 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2104
2105 /* Save */
2106 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2107
2108 /* Temporary modify MODE_CTL to control TLP */
2109 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2110 CSR_WRITE_4(sc, BGE_MODE_CTL,
2111 reg | BGE_MODECTL_PCIE_TLPADDR0);
2112
2113 /* Control TLP */
2114 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2115 BGE_TLP_FTSMAX);
2116 reg &= ~BGE_TLP_FTSMAX_MSK;
2117 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2118 reg | BGE_TLP_FTSMAX_VAL);
2119
2120 /* Restore */
2121 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2122 }
2123
2124 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2125 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2126 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2127 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2128 }
2129
2130 /* Set up the PCI DMA control register. */
2131 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2132 if (sc->bge_flags & BGEF_PCIE) {
2133 /* Read watermark not used, 128 bytes for write. */
2134 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2135 device_xname(sc->bge_dev)));
2136 if (sc->bge_mps >= 256)
2137 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2138 else
2139 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2140 } else if (sc->bge_flags & BGEF_PCIX) {
2141 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2142 device_xname(sc->bge_dev)));
2143 /* PCI-X bus */
2144 if (BGE_IS_5714_FAMILY(sc)) {
2145 /* 256 bytes for read and write. */
2146 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2147 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2148
2149 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2150 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2151 else
2152 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2153 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2154 /*
2155 * In the BCM5703, the DMA read watermark should
2156 * be set to less than or equal to the maximum
2157 * memory read byte count of the PCI-X command
2158 * register.
2159 */
2160 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2161 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2162 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2163 /* 1536 bytes for read, 384 bytes for write. */
2164 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2165 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2166 } else {
2167 /* 384 bytes for read and write. */
2168 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2169 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2170 (0x0F);
2171 }
2172
2173 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2174 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2175 uint32_t tmp;
2176
2177 /* Set ONEDMA_ATONCE for hardware workaround. */
2178 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2179 if (tmp == 6 || tmp == 7)
2180 dma_rw_ctl |=
2181 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2182
2183 /* Set PCI-X DMA write workaround. */
2184 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2185 }
2186 } else {
2187 /* Conventional PCI bus: 256 bytes for read and write. */
2188 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2189 device_xname(sc->bge_dev)));
2190 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2191 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2192
2193 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2194 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2195 dma_rw_ctl |= 0x0F;
2196 }
2197
2198 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2199 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2200 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2201 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2202
2203 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2204 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2205 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2206
2207 if (BGE_IS_57765_PLUS(sc)) {
2208 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2209 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2210 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2211
2212 /*
2213 * Enable HW workaround for controllers that misinterpret
2214 * a status tag update and leave interrupts permanently
2215 * disabled.
2216 */
2217 if (!BGE_IS_57765_FAMILY(sc) &&
2218 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2219 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2220 }
2221
2222 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2223 dma_rw_ctl);
2224
2225 /*
2226 * Set up general mode register.
2227 */
2228 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2229 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2230 /* Retain Host-2-BMC settings written by APE firmware. */
2231 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2232 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2233 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2234 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2235 }
2236 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2237 BGE_MODECTL_TX_NO_PHDR_CSUM;
2238
2239 /*
2240 * BCM5701 B5 have a bug causing data corruption when using
2241 * 64-bit DMA reads, which can be terminated early and then
2242 * completed later as 32-bit accesses, in combination with
2243 * certain bridges.
2244 */
2245 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2246 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2247 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2248
2249 /*
2250 * Tell the firmware the driver is running
2251 */
2252 if (sc->bge_asf_mode & ASF_STACKUP)
2253 mode_ctl |= BGE_MODECTL_STACKUP;
2254
2255 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2256
2257 /*
2258 * Disable memory write invalidate. Apparently it is not supported
2259 * properly by these devices.
2260 */
2261 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2262 PCI_COMMAND_INVALIDATE_ENABLE);
2263
2264 #ifdef __brokenalpha__
2265 /*
2266 * Must insure that we do not cross an 8K (bytes) boundary
2267 * for DMA reads. Our highest limit is 1K bytes. This is a
2268 * restriction on some ALPHA platforms with early revision
2269 * 21174 PCI chipsets, such as the AlphaPC 164lx
2270 */
2271 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2272 #endif
2273
2274 /* Set the timer prescaler (always 66MHz) */
2275 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2276
2277 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2278 DELAY(40); /* XXX */
2279
2280 /* Put PHY into ready state */
2281 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2282 DELAY(40);
2283 }
2284
2285 return 0;
2286 }
2287
2288 static int
2289 bge_blockinit(struct bge_softc *sc)
2290 {
2291 volatile struct bge_rcb *rcb;
2292 bus_size_t rcb_addr;
2293 struct ifnet *ifp = &sc->ethercom.ec_if;
2294 bge_hostaddr taddr;
2295 uint32_t dmactl, mimode, val;
2296 int i, limit;
2297
2298 /*
2299 * Initialize the memory window pointer register so that
2300 * we can access the first 32K of internal NIC RAM. This will
2301 * allow us to set up the TX send ring RCBs and the RX return
2302 * ring RCBs, plus other things which live in NIC memory.
2303 */
2304 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2305
2306 if (!BGE_IS_5705_PLUS(sc)) {
2307 /* 57XX step 33 */
2308 /* Configure mbuf memory pool */
2309 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2310 BGE_BUFFPOOL_1);
2311
2312 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2313 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2314 else
2315 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2316
2317 /* 57XX step 34 */
2318 /* Configure DMA resource pool */
2319 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2320 BGE_DMA_DESCRIPTORS);
2321 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2322 }
2323
2324 /* 5718 step 11, 57XX step 35 */
2325 /*
2326 * Configure mbuf pool watermarks. New broadcom docs strongly
2327 * recommend these.
2328 */
2329 if (BGE_IS_5717_PLUS(sc)) {
2330 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2331 if (ifp->if_mtu > ETHERMTU) {
2332 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2333 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2334 } else {
2335 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2336 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2337 }
2338 } else if (BGE_IS_5705_PLUS(sc)) {
2339 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2340
2341 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2342 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2343 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2344 } else {
2345 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2346 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2347 }
2348 } else {
2349 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2350 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2351 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2352 }
2353
2354 /* 57XX step 36 */
2355 /* Configure DMA resource watermarks */
2356 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2357 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2358
2359 /* 5718 step 13, 57XX step 38 */
2360 /* Enable buffer manager */
2361 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2362 /*
2363 * Change the arbitration algorithm of TXMBUF read request to
2364 * round-robin instead of priority based for BCM5719. When
2365 * TXFIFO is almost empty, RDMA will hold its request until
2366 * TXFIFO is not almost empty.
2367 */
2368 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2369 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2370 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2371 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2372 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2373 val |= BGE_BMANMODE_LOMBUF_ATTN;
2374 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2375
2376 /* 57XX step 39 */
2377 /* Poll for buffer manager start indication */
2378 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2379 DELAY(10);
2380 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2381 break;
2382 }
2383
2384 if (i == BGE_TIMEOUT * 2) {
2385 aprint_error_dev(sc->bge_dev,
2386 "buffer manager failed to start\n");
2387 return ENXIO;
2388 }
2389
2390 /* 57XX step 40 */
2391 /* Enable flow-through queues */
2392 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2393 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2394
2395 /* Wait until queue initialization is complete */
2396 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2397 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2398 break;
2399 DELAY(10);
2400 }
2401
2402 if (i == BGE_TIMEOUT * 2) {
2403 aprint_error_dev(sc->bge_dev,
2404 "flow-through queue init failed\n");
2405 return ENXIO;
2406 }
2407
2408 /*
2409 * Summary of rings supported by the controller:
2410 *
2411 * Standard Receive Producer Ring
2412 * - This ring is used to feed receive buffers for "standard"
2413 * sized frames (typically 1536 bytes) to the controller.
2414 *
2415 * Jumbo Receive Producer Ring
2416 * - This ring is used to feed receive buffers for jumbo sized
2417 * frames (i.e. anything bigger than the "standard" frames)
2418 * to the controller.
2419 *
2420 * Mini Receive Producer Ring
2421 * - This ring is used to feed receive buffers for "mini"
2422 * sized frames to the controller.
2423 * - This feature required external memory for the controller
2424 * but was never used in a production system. Should always
2425 * be disabled.
2426 *
2427 * Receive Return Ring
2428 * - After the controller has placed an incoming frame into a
2429 * receive buffer that buffer is moved into a receive return
2430 * ring. The driver is then responsible to passing the
2431 * buffer up to the stack. Many versions of the controller
2432 * support multiple RR rings.
2433 *
2434 * Send Ring
2435 * - This ring is used for outgoing frames. Many versions of
2436 * the controller support multiple send rings.
2437 */
2438
2439 /* 5718 step 15, 57XX step 41 */
2440 /* Initialize the standard RX ring control block */
2441 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2442 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2443 /* 5718 step 16 */
2444 if (BGE_IS_57765_PLUS(sc)) {
2445 /*
2446 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2447 * Bits 15-2 : Maximum RX frame size
2448 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2449 * Bit 0 : Reserved
2450 */
2451 rcb->bge_maxlen_flags =
2452 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2453 } else if (BGE_IS_5705_PLUS(sc)) {
2454 /*
2455 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2456 * Bits 15-2 : Reserved (should be 0)
2457 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2458 * Bit 0 : Reserved
2459 */
2460 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2461 } else {
2462 /*
2463 * Ring size is always XXX entries
2464 * Bits 31-16: Maximum RX frame size
2465 * Bits 15-2 : Reserved (should be 0)
2466 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2467 * Bit 0 : Reserved
2468 */
2469 rcb->bge_maxlen_flags =
2470 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2471 }
2472 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2473 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2474 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2475 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2476 else
2477 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2478 /* Write the standard receive producer ring control block. */
2479 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2480 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2481 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2482 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2483
2484 /* Reset the standard receive producer ring producer index. */
2485 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2486
2487 /* 57XX step 42 */
2488 /*
2489 * Initialize the jumbo RX ring control block
2490 * We set the 'ring disabled' bit in the flags
2491 * field until we're actually ready to start
2492 * using this ring (i.e. once we set the MTU
2493 * high enough to require it).
2494 */
2495 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2496 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2497 BGE_HOSTADDR(rcb->bge_hostaddr,
2498 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2499 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2500 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2501 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2502 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2503 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2504 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2505 else
2506 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2507 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2508 rcb->bge_hostaddr.bge_addr_hi);
2509 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2510 rcb->bge_hostaddr.bge_addr_lo);
2511 /* Program the jumbo receive producer ring RCB parameters. */
2512 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2513 rcb->bge_maxlen_flags);
2514 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2515 /* Reset the jumbo receive producer ring producer index. */
2516 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2517 }
2518
2519 /* 57XX step 43 */
2520 /* Disable the mini receive producer ring RCB. */
2521 if (BGE_IS_5700_FAMILY(sc)) {
2522 /* Set up dummy disabled mini ring RCB */
2523 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2524 rcb->bge_maxlen_flags =
2525 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2526 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2527 rcb->bge_maxlen_flags);
2528 /* Reset the mini receive producer ring producer index. */
2529 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2530
2531 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2532 offsetof(struct bge_ring_data, bge_info),
2533 sizeof (struct bge_gib),
2534 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2535 }
2536
2537 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2538 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2539 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2540 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2541 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2542 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2543 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2544 }
2545 /* 5718 step 14, 57XX step 44 */
2546 /*
2547 * The BD ring replenish thresholds control how often the
2548 * hardware fetches new BD's from the producer rings in host
2549 * memory. Setting the value too low on a busy system can
2550 * starve the hardware and recue the throughpout.
2551 *
2552 * Set the BD ring replenish thresholds. The recommended
2553 * values are 1/8th the number of descriptors allocated to
2554 * each ring, but since we try to avoid filling the entire
2555 * ring we set these to the minimal value of 8. This needs to
2556 * be done on several of the supported chip revisions anyway,
2557 * to work around HW bugs.
2558 */
2559 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2560 if (BGE_IS_JUMBO_CAPABLE(sc))
2561 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2562
2563 /* 5718 step 18 */
2564 if (BGE_IS_5717_PLUS(sc)) {
2565 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2566 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2567 }
2568
2569 /* 57XX step 45 */
2570 /*
2571 * Disable all send rings by setting the 'ring disabled' bit
2572 * in the flags field of all the TX send ring control blocks,
2573 * located in NIC memory.
2574 */
2575 if (BGE_IS_5700_FAMILY(sc)) {
2576 /* 5700 to 5704 had 16 send rings. */
2577 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2578 } else if (BGE_IS_5717_PLUS(sc)) {
2579 limit = BGE_TX_RINGS_5717_MAX;
2580 } else if (BGE_IS_57765_FAMILY(sc)) {
2581 limit = BGE_TX_RINGS_57765_MAX;
2582 } else
2583 limit = 1;
2584 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2585 for (i = 0; i < limit; i++) {
2586 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2587 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2588 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2589 rcb_addr += sizeof(struct bge_rcb);
2590 }
2591
2592 /* 57XX step 46 and 47 */
2593 /* Configure send ring RCB 0 (we use only the first ring) */
2594 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2595 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2596 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2597 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2598 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2599 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2600 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2601 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2602 else
2603 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2604 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2605 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2606 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2607
2608 /* 57XX step 48 */
2609 /*
2610 * Disable all receive return rings by setting the
2611 * 'ring diabled' bit in the flags field of all the receive
2612 * return ring control blocks, located in NIC memory.
2613 */
2614 if (BGE_IS_5717_PLUS(sc)) {
2615 /* Should be 17, use 16 until we get an SRAM map. */
2616 limit = 16;
2617 } else if (BGE_IS_5700_FAMILY(sc))
2618 limit = BGE_RX_RINGS_MAX;
2619 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2620 BGE_IS_57765_FAMILY(sc))
2621 limit = 4;
2622 else
2623 limit = 1;
2624 /* Disable all receive return rings */
2625 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2626 for (i = 0; i < limit; i++) {
2627 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2628 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2629 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2630 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2631 BGE_RCB_FLAG_RING_DISABLED));
2632 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2633 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2634 (i * (sizeof(uint64_t))), 0);
2635 rcb_addr += sizeof(struct bge_rcb);
2636 }
2637
2638 /* 57XX step 49 */
2639 /*
2640 * Set up receive return ring 0. Note that the NIC address
2641 * for RX return rings is 0x0. The return rings live entirely
2642 * within the host, so the nicaddr field in the RCB isn't used.
2643 */
2644 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2645 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2646 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2647 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2648 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2649 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2650 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2651
2652 /* 5718 step 24, 57XX step 53 */
2653 /* Set random backoff seed for TX */
2654 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2655 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2656 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2657 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2658 BGE_TX_BACKOFF_SEED_MASK);
2659
2660 /* 5718 step 26, 57XX step 55 */
2661 /* Set inter-packet gap */
2662 val = 0x2620;
2663 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2664 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2665 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2666 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2667
2668 /* 5718 step 27, 57XX step 56 */
2669 /*
2670 * Specify which ring to use for packets that don't match
2671 * any RX rules.
2672 */
2673 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2674
2675 /* 5718 step 28, 57XX step 57 */
2676 /*
2677 * Configure number of RX lists. One interrupt distribution
2678 * list, sixteen active lists, one bad frames class.
2679 */
2680 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2681
2682 /* 5718 step 29, 57XX step 58 */
2683 /* Inialize RX list placement stats mask. */
2684 if (BGE_IS_575X_PLUS(sc)) {
2685 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2686 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2687 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2688 } else
2689 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2690
2691 /* 5718 step 30, 57XX step 59 */
2692 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2693
2694 /* 5718 step 33, 57XX step 62 */
2695 /* Disable host coalescing until we get it set up */
2696 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2697
2698 /* 5718 step 34, 57XX step 63 */
2699 /* Poll to make sure it's shut down. */
2700 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2701 DELAY(10);
2702 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2703 break;
2704 }
2705
2706 if (i == BGE_TIMEOUT * 2) {
2707 aprint_error_dev(sc->bge_dev,
2708 "host coalescing engine failed to idle\n");
2709 return ENXIO;
2710 }
2711
2712 /* 5718 step 35, 36, 37 */
2713 /* Set up host coalescing defaults */
2714 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2715 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2716 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2717 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2718 if (!(BGE_IS_5705_PLUS(sc))) {
2719 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2720 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2721 }
2722 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2723 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2724
2725 /* Set up address of statistics block */
2726 if (BGE_IS_5700_FAMILY(sc)) {
2727 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2728 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2729 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2730 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2731 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2732 }
2733
2734 /* 5718 step 38 */
2735 /* Set up address of status block */
2736 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2737 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2738 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2739 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2740 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2741 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2742
2743 /* Set up status block size. */
2744 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2745 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2746 val = BGE_STATBLKSZ_FULL;
2747 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2748 } else {
2749 val = BGE_STATBLKSZ_32BYTE;
2750 bzero(&sc->bge_rdata->bge_status_block, 32);
2751 }
2752
2753 /* 5718 step 39, 57XX step 73 */
2754 /* Turn on host coalescing state machine */
2755 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2756
2757 /* 5718 step 40, 57XX step 74 */
2758 /* Turn on RX BD completion state machine and enable attentions */
2759 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2760 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2761
2762 /* 5718 step 41, 57XX step 75 */
2763 /* Turn on RX list placement state machine */
2764 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2765
2766 /* 57XX step 76 */
2767 /* Turn on RX list selector state machine. */
2768 if (!(BGE_IS_5705_PLUS(sc)))
2769 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2770
2771 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2772 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2773 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2774 BGE_MACMODE_FRMHDR_DMA_ENB;
2775
2776 if (sc->bge_flags & BGEF_FIBER_TBI)
2777 val |= BGE_PORTMODE_TBI;
2778 else if (sc->bge_flags & BGEF_FIBER_MII)
2779 val |= BGE_PORTMODE_GMII;
2780 else
2781 val |= BGE_PORTMODE_MII;
2782
2783 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2784 /* Allow APE to send/receive frames. */
2785 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2786 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2787
2788 /* Turn on DMA, clear stats */
2789 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2790 /* 5718 step 44 */
2791 DELAY(40);
2792
2793 /* 5718 step 45, 57XX step 79 */
2794 /* Set misc. local control, enable interrupts on attentions */
2795 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2796 if (BGE_IS_5717_PLUS(sc)) {
2797 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2798 /* 5718 step 46 */
2799 DELAY(100);
2800 }
2801
2802 /* 57XX step 81 */
2803 /* Turn on DMA completion state machine */
2804 if (!(BGE_IS_5705_PLUS(sc)))
2805 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2806
2807 /* 5718 step 47, 57XX step 82 */
2808 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2809
2810 /* 5718 step 48 */
2811 /* Enable host coalescing bug fix. */
2812 if (BGE_IS_5755_PLUS(sc))
2813 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2814
2815 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2816 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2817
2818 /* Turn on write DMA state machine */
2819 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2820 /* 5718 step 49 */
2821 DELAY(40);
2822
2823 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2824
2825 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2826 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2827
2828 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2829 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2830 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2831 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2832 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2833 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2834
2835 if (sc->bge_flags & BGEF_PCIE)
2836 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2837 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2838 if (ifp->if_mtu <= ETHERMTU)
2839 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2840 }
2841 if (sc->bge_flags & BGEF_TSO) {
2842 val |= BGE_RDMAMODE_TSO4_ENABLE;
2843 if (BGE_IS_5717_PLUS(sc))
2844 val |= BGE_RDMAMODE_TSO6_ENABLE;
2845 }
2846
2847 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2848 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2849 BGE_RDMAMODE_H2BNC_VLAN_DET;
2850 /*
2851 * Allow multiple outstanding read requests from
2852 * non-LSO read DMA engine.
2853 */
2854 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2855 }
2856
2857 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2858 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2859 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2860 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2861 BGE_IS_57765_PLUS(sc)) {
2862 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2863 /*
2864 * Adjust tx margin to prevent TX data corruption and
2865 * fix internal FIFO overflow.
2866 */
2867 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2868 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2869 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2870 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2871 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2872 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2873 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2874 }
2875 /*
2876 * Enable fix for read DMA FIFO overruns.
2877 * The fix is to limit the number of RX BDs
2878 * the hardware would fetch at a fime.
2879 */
2880 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2881 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2882 }
2883
2884 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2885 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2886 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2887 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2888 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2889 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2890 /*
2891 * Allow 4KB burst length reads for non-LSO frames.
2892 * Enable 512B burst length reads for buffer descriptors.
2893 */
2894 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2895 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2896 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2897 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2898 }
2899 /* Turn on read DMA state machine */
2900 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2901 /* 5718 step 52 */
2902 delay(40);
2903
2904 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2905 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2906 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2907 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2908 if ((val & 0xFFFF) > BGE_FRAMELEN)
2909 break;
2910 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2911 break;
2912 }
2913 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2914 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2915 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2916 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2917 else
2918 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2919 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2920 }
2921 }
2922
2923 /* 5718 step 56, 57XX step 84 */
2924 /* Turn on RX data completion state machine */
2925 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2926
2927 /* Turn on RX data and RX BD initiator state machine */
2928 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2929
2930 /* 57XX step 85 */
2931 /* Turn on Mbuf cluster free state machine */
2932 if (!BGE_IS_5705_PLUS(sc))
2933 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2934
2935 /* 5718 step 57, 57XX step 86 */
2936 /* Turn on send data completion state machine */
2937 val = BGE_SDCMODE_ENABLE;
2938 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2939 val |= BGE_SDCMODE_CDELAY;
2940 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2941
2942 /* 5718 step 58 */
2943 /* Turn on send BD completion state machine */
2944 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2945
2946 /* 57XX step 88 */
2947 /* Turn on RX BD initiator state machine */
2948 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2949
2950 /* 5718 step 60, 57XX step 90 */
2951 /* Turn on send data initiator state machine */
2952 if (sc->bge_flags & BGEF_TSO) {
2953 /* XXX: magic value from Linux driver */
2954 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2955 BGE_SDIMODE_HW_LSO_PRE_DMA);
2956 } else
2957 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2958
2959 /* 5718 step 61, 57XX step 91 */
2960 /* Turn on send BD initiator state machine */
2961 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2962
2963 /* 5718 step 62, 57XX step 92 */
2964 /* Turn on send BD selector state machine */
2965 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2966
2967 /* 5718 step 31, 57XX step 60 */
2968 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2969 /* 5718 step 32, 57XX step 61 */
2970 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2971 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2972
2973 /* ack/clear link change events */
2974 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2975 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2976 BGE_MACSTAT_LINK_CHANGED);
2977 CSR_WRITE_4(sc, BGE_MI_STS, 0);
2978
2979 /*
2980 * Enable attention when the link has changed state for
2981 * devices that use auto polling.
2982 */
2983 if (sc->bge_flags & BGEF_FIBER_TBI) {
2984 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2985 } else {
2986 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
2987 mimode = BGE_MIMODE_500KHZ_CONST;
2988 else
2989 mimode = BGE_MIMODE_BASE;
2990 /* 5718 step 68. 5718 step 69 (optionally). */
2991 if (BGE_IS_5700_FAMILY(sc) ||
2992 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
2993 mimode |= BGE_MIMODE_AUTOPOLL;
2994 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2995 }
2996 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
2997 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
2998 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2999 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3000 BGE_EVTENB_MI_INTERRUPT);
3001 }
3002
3003 /*
3004 * Clear any pending link state attention.
3005 * Otherwise some link state change events may be lost until attention
3006 * is cleared by bge_intr() -> bge_link_upd() sequence.
3007 * It's not necessary on newer BCM chips - perhaps enabling link
3008 * state change attentions implies clearing pending attention.
3009 */
3010 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3011 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3012 BGE_MACSTAT_LINK_CHANGED);
3013
3014 /* Enable link state change attentions. */
3015 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3016
3017 return 0;
3018 }
3019
3020 static const struct bge_revision *
3021 bge_lookup_rev(uint32_t chipid)
3022 {
3023 const struct bge_revision *br;
3024
3025 for (br = bge_revisions; br->br_name != NULL; br++) {
3026 if (br->br_chipid == chipid)
3027 return br;
3028 }
3029
3030 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3031 if (br->br_chipid == BGE_ASICREV(chipid))
3032 return br;
3033 }
3034
3035 return NULL;
3036 }
3037
3038 static const struct bge_product *
3039 bge_lookup(const struct pci_attach_args *pa)
3040 {
3041 const struct bge_product *bp;
3042
3043 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3044 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3045 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3046 return bp;
3047 }
3048
3049 return NULL;
3050 }
3051
3052 static uint32_t
3053 bge_chipid(const struct pci_attach_args *pa)
3054 {
3055 uint32_t id;
3056
3057 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3058 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3059
3060 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3061 switch (PCI_PRODUCT(pa->pa_id)) {
3062 case PCI_PRODUCT_BROADCOM_BCM5717:
3063 case PCI_PRODUCT_BROADCOM_BCM5718:
3064 case PCI_PRODUCT_BROADCOM_BCM5719:
3065 case PCI_PRODUCT_BROADCOM_BCM5720:
3066 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3067 BGE_PCI_GEN2_PRODID_ASICREV);
3068 break;
3069 case PCI_PRODUCT_BROADCOM_BCM57761:
3070 case PCI_PRODUCT_BROADCOM_BCM57762:
3071 case PCI_PRODUCT_BROADCOM_BCM57765:
3072 case PCI_PRODUCT_BROADCOM_BCM57766:
3073 case PCI_PRODUCT_BROADCOM_BCM57781:
3074 case PCI_PRODUCT_BROADCOM_BCM57782:
3075 case PCI_PRODUCT_BROADCOM_BCM57785:
3076 case PCI_PRODUCT_BROADCOM_BCM57786:
3077 case PCI_PRODUCT_BROADCOM_BCM57791:
3078 case PCI_PRODUCT_BROADCOM_BCM57795:
3079 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3080 BGE_PCI_GEN15_PRODID_ASICREV);
3081 break;
3082 default:
3083 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3084 BGE_PCI_PRODID_ASICREV);
3085 break;
3086 }
3087 }
3088
3089 return id;
3090 }
3091
3092 /*
3093 * Return true if MSI can be used with this device.
3094 */
3095 static int
3096 bge_can_use_msi(struct bge_softc *sc)
3097 {
3098 int can_use_msi = 0;
3099
3100 switch (BGE_ASICREV(sc->bge_chipid)) {
3101 case BGE_ASICREV_BCM5714_A0:
3102 case BGE_ASICREV_BCM5714:
3103 /*
3104 * Apparently, MSI doesn't work when these chips are
3105 * configured in single-port mode.
3106 */
3107 break;
3108 case BGE_ASICREV_BCM5750:
3109 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3110 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3111 can_use_msi = 1;
3112 break;
3113 default:
3114 if (BGE_IS_575X_PLUS(sc))
3115 can_use_msi = 1;
3116 }
3117 return (can_use_msi);
3118 }
3119
3120 /*
3121 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3122 * against our list and return its name if we find a match. Note
3123 * that since the Broadcom controller contains VPD support, we
3124 * can get the device name string from the controller itself instead
3125 * of the compiled-in string. This is a little slow, but it guarantees
3126 * we'll always announce the right product name.
3127 */
3128 static int
3129 bge_probe(device_t parent, cfdata_t match, void *aux)
3130 {
3131 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3132
3133 if (bge_lookup(pa) != NULL)
3134 return 1;
3135
3136 return 0;
3137 }
3138
3139 static void
3140 bge_attach(device_t parent, device_t self, void *aux)
3141 {
3142 struct bge_softc *sc = device_private(self);
3143 struct pci_attach_args *pa = aux;
3144 prop_dictionary_t dict;
3145 const struct bge_product *bp;
3146 const struct bge_revision *br;
3147 pci_chipset_tag_t pc;
3148 const char *intrstr = NULL;
3149 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3150 uint32_t command;
3151 struct ifnet *ifp;
3152 uint32_t misccfg, mimode;
3153 void * kva;
3154 u_char eaddr[ETHER_ADDR_LEN];
3155 pcireg_t memtype, subid, reg;
3156 bus_addr_t memaddr;
3157 uint32_t pm_ctl;
3158 bool no_seeprom;
3159 int capmask;
3160 int mii_flags;
3161 int map_flags;
3162 char intrbuf[PCI_INTRSTR_LEN];
3163
3164 bp = bge_lookup(pa);
3165 KASSERT(bp != NULL);
3166
3167 sc->sc_pc = pa->pa_pc;
3168 sc->sc_pcitag = pa->pa_tag;
3169 sc->bge_dev = self;
3170
3171 sc->bge_pa = *pa;
3172 pc = sc->sc_pc;
3173 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3174
3175 aprint_naive(": Ethernet controller\n");
3176 aprint_normal(": %s Ethernet\n", bp->bp_name);
3177
3178 /*
3179 * Map control/status registers.
3180 */
3181 DPRINTFN(5, ("Map control/status regs\n"));
3182 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3183 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3184 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3185 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3186
3187 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3188 aprint_error_dev(sc->bge_dev,
3189 "failed to enable memory mapping!\n");
3190 return;
3191 }
3192
3193 DPRINTFN(5, ("pci_mem_find\n"));
3194 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3195 switch (memtype) {
3196 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3197 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3198 #if 0
3199 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3200 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3201 &memaddr, &sc->bge_bsize) == 0)
3202 break;
3203 #else
3204 /*
3205 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3206 * system get NMI on boot (PR#48451). This problem might not be
3207 * the driver's bug but our PCI common part's bug. Until we
3208 * find a real reason, we ignore the prefetchable bit.
3209 */
3210 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3211 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3212 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3213 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3214 map_flags, &sc->bge_bhandle) == 0) {
3215 sc->bge_btag = pa->pa_memt;
3216 break;
3217 }
3218 }
3219 #endif
3220 /* FALLTHROUGH */
3221 default:
3222 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3223 return;
3224 }
3225
3226 /* Save various chip information. */
3227 sc->bge_chipid = bge_chipid(pa);
3228 sc->bge_phy_addr = bge_phy_addr(sc);
3229
3230 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3231 &sc->bge_pciecap, NULL) != 0) {
3232 /* PCIe */
3233 sc->bge_flags |= BGEF_PCIE;
3234 /* Extract supported maximum payload size. */
3235 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3236 sc->bge_pciecap + PCIE_DCAP);
3237 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3238 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3239 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3240 sc->bge_expmrq = 2048;
3241 else
3242 sc->bge_expmrq = 4096;
3243 bge_set_max_readrq(sc);
3244 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3245 /* PCIe without PCIe cap */
3246 sc->bge_flags |= BGEF_PCIE;
3247 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3248 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3249 /* PCI-X */
3250 sc->bge_flags |= BGEF_PCIX;
3251 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3252 &sc->bge_pcixcap, NULL) == 0)
3253 aprint_error_dev(sc->bge_dev,
3254 "unable to find PCIX capability\n");
3255 }
3256
3257 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3258 /*
3259 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3260 * can clobber the chip's PCI config-space power control
3261 * registers, leaving the card in D3 powersave state. We do
3262 * not have memory-mapped registers in this state, so force
3263 * device into D0 state before starting initialization.
3264 */
3265 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3266 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3267 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3268 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3269 DELAY(1000); /* 27 usec is allegedly sufficent */
3270 }
3271
3272 /* Save chipset family. */
3273 switch (BGE_ASICREV(sc->bge_chipid)) {
3274 case BGE_ASICREV_BCM5717:
3275 case BGE_ASICREV_BCM5719:
3276 case BGE_ASICREV_BCM5720:
3277 sc->bge_flags |= BGEF_5717_PLUS;
3278 /* FALLTHROUGH */
3279 case BGE_ASICREV_BCM57765:
3280 case BGE_ASICREV_BCM57766:
3281 if (!BGE_IS_5717_PLUS(sc))
3282 sc->bge_flags |= BGEF_57765_FAMILY;
3283 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3284 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3285 /* Jumbo frame on BCM5719 A0 does not work. */
3286 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3287 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3288 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3289 break;
3290 case BGE_ASICREV_BCM5755:
3291 case BGE_ASICREV_BCM5761:
3292 case BGE_ASICREV_BCM5784:
3293 case BGE_ASICREV_BCM5785:
3294 case BGE_ASICREV_BCM5787:
3295 case BGE_ASICREV_BCM57780:
3296 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3297 break;
3298 case BGE_ASICREV_BCM5700:
3299 case BGE_ASICREV_BCM5701:
3300 case BGE_ASICREV_BCM5703:
3301 case BGE_ASICREV_BCM5704:
3302 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3303 break;
3304 case BGE_ASICREV_BCM5714_A0:
3305 case BGE_ASICREV_BCM5780:
3306 case BGE_ASICREV_BCM5714:
3307 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3308 /* FALLTHROUGH */
3309 case BGE_ASICREV_BCM5750:
3310 case BGE_ASICREV_BCM5752:
3311 case BGE_ASICREV_BCM5906:
3312 sc->bge_flags |= BGEF_575X_PLUS;
3313 /* FALLTHROUGH */
3314 case BGE_ASICREV_BCM5705:
3315 sc->bge_flags |= BGEF_5705_PLUS;
3316 break;
3317 }
3318
3319 /* Identify chips with APE processor. */
3320 switch (BGE_ASICREV(sc->bge_chipid)) {
3321 case BGE_ASICREV_BCM5717:
3322 case BGE_ASICREV_BCM5719:
3323 case BGE_ASICREV_BCM5720:
3324 case BGE_ASICREV_BCM5761:
3325 sc->bge_flags |= BGEF_APE;
3326 break;
3327 }
3328
3329 /*
3330 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3331 * not actually a MAC controller bug but an issue with the embedded
3332 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3333 */
3334 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3335 sc->bge_flags |= BGEF_40BIT_BUG;
3336
3337 /* Chips with APE need BAR2 access for APE registers/memory. */
3338 if ((sc->bge_flags & BGEF_APE) != 0) {
3339 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3340 #if 0
3341 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3342 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3343 &sc->bge_apesize)) {
3344 aprint_error_dev(sc->bge_dev,
3345 "couldn't map BAR2 memory\n");
3346 return;
3347 }
3348 #else
3349 /*
3350 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3351 * system get NMI on boot (PR#48451). This problem might not be
3352 * the driver's bug but our PCI common part's bug. Until we
3353 * find a real reason, we ignore the prefetchable bit.
3354 */
3355 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3356 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3357 aprint_error_dev(sc->bge_dev,
3358 "couldn't map BAR2 memory\n");
3359 return;
3360 }
3361
3362 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3363 if (bus_space_map(pa->pa_memt, memaddr,
3364 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3365 aprint_error_dev(sc->bge_dev,
3366 "couldn't map BAR2 memory\n");
3367 return;
3368 }
3369 sc->bge_apetag = pa->pa_memt;
3370 #endif
3371
3372 /* Enable APE register/memory access by host driver. */
3373 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3374 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3375 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3376 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3377 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3378
3379 bge_ape_lock_init(sc);
3380 bge_ape_read_fw_ver(sc);
3381 }
3382
3383 /* Identify the chips that use an CPMU. */
3384 if (BGE_IS_5717_PLUS(sc) ||
3385 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3386 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3387 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3388 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3389 sc->bge_flags |= BGEF_CPMU_PRESENT;
3390
3391 /* Set MI_MODE */
3392 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3393 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3394 mimode |= BGE_MIMODE_500KHZ_CONST;
3395 else
3396 mimode |= BGE_MIMODE_BASE;
3397 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3398
3399 /*
3400 * When using the BCM5701 in PCI-X mode, data corruption has
3401 * been observed in the first few bytes of some received packets.
3402 * Aligning the packet buffer in memory eliminates the corruption.
3403 * Unfortunately, this misaligns the packet payloads. On platforms
3404 * which do not support unaligned accesses, we will realign the
3405 * payloads by copying the received packets.
3406 */
3407 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3408 sc->bge_flags & BGEF_PCIX)
3409 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3410
3411 if (BGE_IS_5700_FAMILY(sc))
3412 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3413
3414 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3415 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3416
3417 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3418 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3419 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3420 sc->bge_flags |= BGEF_IS_5788;
3421
3422 /*
3423 * Some controllers seem to require a special firmware to use
3424 * TSO. But the firmware is not available to FreeBSD and Linux
3425 * claims that the TSO performed by the firmware is slower than
3426 * hardware based TSO. Moreover the firmware based TSO has one
3427 * known bug which can't handle TSO if ethernet header + IP/TCP
3428 * header is greater than 80 bytes. The workaround for the TSO
3429 * bug exist but it seems it's too expensive than not using
3430 * TSO at all. Some hardwares also have the TSO bug so limit
3431 * the TSO to the controllers that are not affected TSO issues
3432 * (e.g. 5755 or higher).
3433 */
3434 if (BGE_IS_5755_PLUS(sc)) {
3435 /*
3436 * BCM5754 and BCM5787 shares the same ASIC id so
3437 * explicit device id check is required.
3438 */
3439 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3440 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3441 sc->bge_flags |= BGEF_TSO;
3442 /* TSO on BCM5719 A0 does not work. */
3443 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3444 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3445 sc->bge_flags &= ~BGEF_TSO;
3446 }
3447
3448 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3449 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3450 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3451 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3452 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3453 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3454 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3455 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3456 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3457 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3458 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3459 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3460 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3461 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3462 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3463 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3464 /* These chips are 10/100 only. */
3465 capmask &= ~BMSR_EXTSTAT;
3466 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3467 }
3468
3469 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3470 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3471 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3472 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3473 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3474
3475 /* Set various PHY bug flags. */
3476 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3477 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3478 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3479 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3480 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3481 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3482 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3483 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3484 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3485 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3486 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3487 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3488 if (BGE_IS_5705_PLUS(sc) &&
3489 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3490 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3491 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3492 !BGE_IS_57765_PLUS(sc)) {
3493 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3494 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3495 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3496 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3497 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3498 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3499 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3500 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3501 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3502 } else
3503 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3504 }
3505
3506 /*
3507 * SEEPROM check.
3508 * First check if firmware knows we do not have SEEPROM.
3509 */
3510 if (prop_dictionary_get_bool(device_properties(self),
3511 "without-seeprom", &no_seeprom) && no_seeprom)
3512 sc->bge_flags |= BGEF_NO_EEPROM;
3513
3514 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3515 sc->bge_flags |= BGEF_NO_EEPROM;
3516
3517 /* Now check the 'ROM failed' bit on the RX CPU */
3518 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3519 sc->bge_flags |= BGEF_NO_EEPROM;
3520
3521 sc->bge_asf_mode = 0;
3522 /* No ASF if APE present. */
3523 if ((sc->bge_flags & BGEF_APE) == 0) {
3524 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3525 BGE_SRAM_DATA_SIG_MAGIC)) {
3526 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3527 BGE_HWCFG_ASF) {
3528 sc->bge_asf_mode |= ASF_ENABLE;
3529 sc->bge_asf_mode |= ASF_STACKUP;
3530 if (BGE_IS_575X_PLUS(sc))
3531 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3532 }
3533 }
3534 }
3535
3536 int counts[PCI_INTR_TYPE_SIZE] = {
3537 [PCI_INTR_TYPE_INTX] = 1,
3538 [PCI_INTR_TYPE_MSI] = 1,
3539 [PCI_INTR_TYPE_MSIX] = 1,
3540 };
3541 int max_type = PCI_INTR_TYPE_MSIX;
3542
3543 if (!bge_can_use_msi(sc)) {
3544 /* MSI broken, allow only INTx */
3545 max_type = PCI_INTR_TYPE_INTX;
3546 }
3547
3548 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3549 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3550 return;
3551 }
3552
3553 DPRINTFN(5, ("pci_intr_string\n"));
3554 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3555 sizeof(intrbuf));
3556 DPRINTFN(5, ("pci_intr_establish\n"));
3557 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3558 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3559 if (sc->bge_intrhand == NULL) {
3560 pci_intr_release(pc, sc->bge_pihp, 1);
3561 sc->bge_pihp = NULL;
3562
3563 aprint_error_dev(self, "couldn't establish interrupt");
3564 if (intrstr != NULL)
3565 aprint_error(" at %s", intrstr);
3566 aprint_error("\n");
3567 return;
3568 }
3569 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3570
3571 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3572 case PCI_INTR_TYPE_MSIX:
3573 case PCI_INTR_TYPE_MSI:
3574 KASSERT(bge_can_use_msi(sc));
3575 sc->bge_flags |= BGEF_MSI;
3576 break;
3577 default:
3578 /* nothing to do */
3579 break;
3580 }
3581
3582 /*
3583 * All controllers except BCM5700 supports tagged status but
3584 * we use tagged status only for MSI case on BCM5717. Otherwise
3585 * MSI on BCM5717 does not work.
3586 */
3587 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3588 sc->bge_flags |= BGEF_TAGGED_STATUS;
3589
3590 /*
3591 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3592 * lock in bge_reset().
3593 */
3594 CSR_WRITE_4(sc, BGE_EE_ADDR,
3595 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3596 delay(1000);
3597 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3598
3599 bge_stop_fw(sc);
3600 bge_sig_pre_reset(sc, BGE_RESET_START);
3601 if (bge_reset(sc))
3602 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3603
3604 /*
3605 * Read the hardware config word in the first 32k of NIC internal
3606 * memory, or fall back to the config word in the EEPROM.
3607 * Note: on some BCM5700 cards, this value appears to be unset.
3608 */
3609 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3610 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3611 BGE_SRAM_DATA_SIG_MAGIC) {
3612 uint32_t tmp;
3613
3614 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3615 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3616 BGE_SRAM_DATA_VER_SHIFT;
3617 if ((0 < tmp) && (tmp < 0x100))
3618 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3619 if (sc->bge_flags & BGEF_PCIE)
3620 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3621 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3622 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3623 if (BGE_IS_5717_PLUS(sc))
3624 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3625 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3626 bge_read_eeprom(sc, (void *)&hwcfg,
3627 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3628 hwcfg = be32toh(hwcfg);
3629 }
3630 aprint_normal_dev(sc->bge_dev,
3631 "HW config %08x, %08x, %08x, %08x %08x\n",
3632 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3633
3634 bge_sig_legacy(sc, BGE_RESET_START);
3635 bge_sig_post_reset(sc, BGE_RESET_START);
3636
3637 if (bge_chipinit(sc)) {
3638 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3639 bge_release_resources(sc);
3640 return;
3641 }
3642
3643 /*
3644 * Get station address from the EEPROM.
3645 */
3646 if (bge_get_eaddr(sc, eaddr)) {
3647 aprint_error_dev(sc->bge_dev,
3648 "failed to read station address\n");
3649 bge_release_resources(sc);
3650 return;
3651 }
3652
3653 br = bge_lookup_rev(sc->bge_chipid);
3654
3655 if (br == NULL) {
3656 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3657 sc->bge_chipid);
3658 } else {
3659 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3660 br->br_name, sc->bge_chipid);
3661 }
3662 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3663
3664 /* Allocate the general information block and ring buffers. */
3665 if (pci_dma64_available(pa)) {
3666 sc->bge_dmatag = pa->pa_dmat64;
3667 sc->bge_dmatag32 = pa->pa_dmat;
3668 sc->bge_dma64 = true;
3669 } else {
3670 sc->bge_dmatag = pa->pa_dmat;
3671 sc->bge_dmatag32 = pa->pa_dmat;
3672 sc->bge_dma64 = false;
3673 }
3674
3675 /* 40bit DMA workaround */
3676 if (sizeof(bus_addr_t) > 4) {
3677 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3678 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3679
3680 if (bus_dmatag_subregion(olddmatag, 0,
3681 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3682 BUS_DMA_NOWAIT) != 0) {
3683 aprint_error_dev(self,
3684 "WARNING: failed to restrict dma range,"
3685 " falling back to parent bus dma range\n");
3686 sc->bge_dmatag = olddmatag;
3687 }
3688 }
3689 }
3690 SLIST_INIT(&sc->txdma_list);
3691 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3692 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3693 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3694 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3695 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3696 return;
3697 }
3698 DPRINTFN(5, ("bus_dmamem_map\n"));
3699 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3700 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3701 BUS_DMA_NOWAIT)) {
3702 aprint_error_dev(sc->bge_dev,
3703 "can't map DMA buffers (%zu bytes)\n",
3704 sizeof(struct bge_ring_data));
3705 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3706 sc->bge_ring_rseg);
3707 return;
3708 }
3709 DPRINTFN(5, ("bus_dmamem_create\n"));
3710 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3711 sizeof(struct bge_ring_data), 0,
3712 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3713 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3714 bus_dmamem_unmap(sc->bge_dmatag, kva,
3715 sizeof(struct bge_ring_data));
3716 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3717 sc->bge_ring_rseg);
3718 return;
3719 }
3720 DPRINTFN(5, ("bus_dmamem_load\n"));
3721 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3722 sizeof(struct bge_ring_data), NULL,
3723 BUS_DMA_NOWAIT)) {
3724 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3725 bus_dmamem_unmap(sc->bge_dmatag, kva,
3726 sizeof(struct bge_ring_data));
3727 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3728 sc->bge_ring_rseg);
3729 return;
3730 }
3731
3732 DPRINTFN(5, ("bzero\n"));
3733 sc->bge_rdata = (struct bge_ring_data *)kva;
3734
3735 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3736
3737 /* Try to allocate memory for jumbo buffers. */
3738 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3739 if (bge_alloc_jumbo_mem(sc)) {
3740 aprint_error_dev(sc->bge_dev,
3741 "jumbo buffer allocation failed\n");
3742 } else
3743 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3744 }
3745
3746 /* Set default tuneable values. */
3747 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3748 sc->bge_rx_coal_ticks = 150;
3749 sc->bge_rx_max_coal_bds = 64;
3750 sc->bge_tx_coal_ticks = 300;
3751 sc->bge_tx_max_coal_bds = 400;
3752 if (BGE_IS_5705_PLUS(sc)) {
3753 sc->bge_tx_coal_ticks = (12 * 5);
3754 sc->bge_tx_max_coal_bds = (12 * 5);
3755 aprint_verbose_dev(sc->bge_dev,
3756 "setting short Tx thresholds\n");
3757 }
3758
3759 if (BGE_IS_5717_PLUS(sc))
3760 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3761 else if (BGE_IS_5705_PLUS(sc))
3762 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3763 else
3764 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3765
3766 /* Set up ifnet structure */
3767 ifp = &sc->ethercom.ec_if;
3768 ifp->if_softc = sc;
3769 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3770 ifp->if_ioctl = bge_ioctl;
3771 ifp->if_stop = bge_stop;
3772 ifp->if_start = bge_start;
3773 ifp->if_init = bge_init;
3774 ifp->if_watchdog = bge_watchdog;
3775 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3776 IFQ_SET_READY(&ifp->if_snd);
3777 DPRINTFN(5, ("strcpy if_xname\n"));
3778 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3779
3780 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3781 sc->ethercom.ec_if.if_capabilities |=
3782 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3783 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3784 sc->ethercom.ec_if.if_capabilities |=
3785 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3786 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3787 #endif
3788 sc->ethercom.ec_capabilities |=
3789 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3790
3791 if (sc->bge_flags & BGEF_TSO)
3792 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3793
3794 /*
3795 * Do MII setup.
3796 */
3797 DPRINTFN(5, ("mii setup\n"));
3798 sc->bge_mii.mii_ifp = ifp;
3799 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3800 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3801 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3802
3803 /*
3804 * Figure out what sort of media we have by checking the hardware
3805 * config word. Note: on some BCM5700 cards, this value appears to be
3806 * unset. If that's the case, we have to rely on identifying the NIC
3807 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3808 * The SysKonnect SK-9D41 is a 1000baseSX card.
3809 */
3810 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3811 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3812 if (BGE_IS_5705_PLUS(sc)) {
3813 sc->bge_flags |= BGEF_FIBER_MII;
3814 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3815 } else
3816 sc->bge_flags |= BGEF_FIBER_TBI;
3817 }
3818
3819 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3820 if (BGE_IS_JUMBO_CAPABLE(sc))
3821 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3822
3823 /* set phyflags and chipid before mii_attach() */
3824 dict = device_properties(self);
3825 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3826 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3827
3828 if (sc->bge_flags & BGEF_FIBER_TBI) {
3829 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3830 bge_ifmedia_sts);
3831 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3832 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3833 0, NULL);
3834 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3835 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3836 /* Pretend the user requested this setting */
3837 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3838 } else {
3839 /*
3840 * Do transceiver setup and tell the firmware the
3841 * driver is down so we can try to get access the
3842 * probe if ASF is running. Retry a couple of times
3843 * if we get a conflict with the ASF firmware accessing
3844 * the PHY.
3845 */
3846 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3847 bge_asf_driver_up(sc);
3848
3849 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3850 bge_ifmedia_sts);
3851 mii_flags = MIIF_DOPAUSE;
3852 if (sc->bge_flags & BGEF_FIBER_MII)
3853 mii_flags |= MIIF_HAVEFIBER;
3854 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
3855 MII_OFFSET_ANY, mii_flags);
3856
3857 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3858 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3859 ifmedia_add(&sc->bge_mii.mii_media,
3860 IFM_ETHER|IFM_MANUAL, 0, NULL);
3861 ifmedia_set(&sc->bge_mii.mii_media,
3862 IFM_ETHER|IFM_MANUAL);
3863 } else
3864 ifmedia_set(&sc->bge_mii.mii_media,
3865 IFM_ETHER|IFM_AUTO);
3866
3867 /*
3868 * Now tell the firmware we are going up after probing the PHY
3869 */
3870 if (sc->bge_asf_mode & ASF_STACKUP)
3871 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3872 }
3873
3874 /*
3875 * Call MI attach routine.
3876 */
3877 DPRINTFN(5, ("if_attach\n"));
3878 if_attach(ifp);
3879 if_deferred_start_init(ifp, NULL);
3880 DPRINTFN(5, ("ether_ifattach\n"));
3881 ether_ifattach(ifp, eaddr);
3882 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3883 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3884 RND_TYPE_NET, RND_FLAG_DEFAULT);
3885 #ifdef BGE_EVENT_COUNTERS
3886 /*
3887 * Attach event counters.
3888 */
3889 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3890 NULL, device_xname(sc->bge_dev), "intr");
3891 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3892 NULL, device_xname(sc->bge_dev), "intr_spurious");
3893 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3894 NULL, device_xname(sc->bge_dev), "intr_spurious2");
3895 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3896 NULL, device_xname(sc->bge_dev), "tx_xoff");
3897 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3898 NULL, device_xname(sc->bge_dev), "tx_xon");
3899 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3900 NULL, device_xname(sc->bge_dev), "rx_xoff");
3901 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3902 NULL, device_xname(sc->bge_dev), "rx_xon");
3903 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3904 NULL, device_xname(sc->bge_dev), "rx_macctl");
3905 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3906 NULL, device_xname(sc->bge_dev), "xoffentered");
3907 #endif /* BGE_EVENT_COUNTERS */
3908 DPRINTFN(5, ("callout_init\n"));
3909 callout_init(&sc->bge_timeout, 0);
3910
3911 if (pmf_device_register(self, NULL, NULL))
3912 pmf_class_network_register(self, ifp);
3913 else
3914 aprint_error_dev(self, "couldn't establish power handler\n");
3915
3916 bge_sysctl_init(sc);
3917
3918 #ifdef BGE_DEBUG
3919 bge_debug_info(sc);
3920 #endif
3921 }
3922
3923 /*
3924 * Stop all chip I/O so that the kernel's probe routines don't
3925 * get confused by errant DMAs when rebooting.
3926 */
3927 static int
3928 bge_detach(device_t self, int flags __unused)
3929 {
3930 struct bge_softc *sc = device_private(self);
3931 struct ifnet *ifp = &sc->ethercom.ec_if;
3932 int s;
3933
3934 s = splnet();
3935 /* Stop the interface. Callouts are stopped in it. */
3936 bge_stop(ifp, 1);
3937 splx(s);
3938
3939 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3940
3941 /* Delete all remaining media. */
3942 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3943
3944 ether_ifdetach(ifp);
3945 if_detach(ifp);
3946
3947 bge_release_resources(sc);
3948
3949 return 0;
3950 }
3951
3952 static void
3953 bge_release_resources(struct bge_softc *sc)
3954 {
3955
3956 /* Detach sysctl */
3957 if (sc->bge_log != NULL)
3958 sysctl_teardown(&sc->bge_log);
3959
3960 #ifdef BGE_EVENT_COUNTERS
3961 /* Detach event counters. */
3962 evcnt_detach(&sc->bge_ev_intr);
3963 evcnt_detach(&sc->bge_ev_intr_spurious);
3964 evcnt_detach(&sc->bge_ev_intr_spurious2);
3965 evcnt_detach(&sc->bge_ev_tx_xoff);
3966 evcnt_detach(&sc->bge_ev_tx_xon);
3967 evcnt_detach(&sc->bge_ev_rx_xoff);
3968 evcnt_detach(&sc->bge_ev_rx_xon);
3969 evcnt_detach(&sc->bge_ev_rx_macctl);
3970 evcnt_detach(&sc->bge_ev_xoffentered);
3971 #endif /* BGE_EVENT_COUNTERS */
3972
3973 /* Disestablish the interrupt handler */
3974 if (sc->bge_intrhand != NULL) {
3975 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
3976 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
3977 sc->bge_intrhand = NULL;
3978 }
3979
3980 if (sc->bge_dmatag != NULL) {
3981 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
3982 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3983 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
3984 sizeof(struct bge_ring_data));
3985 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3986 sc->bge_ring_rseg);
3987 }
3988
3989 /* Unmap the device registers */
3990 if (sc->bge_bsize != 0) {
3991 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
3992 sc->bge_bsize = 0;
3993 }
3994
3995 /* Unmap the APE registers */
3996 if (sc->bge_apesize != 0) {
3997 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
3998 sc->bge_apesize);
3999 sc->bge_apesize = 0;
4000 }
4001 }
4002
4003 static int
4004 bge_reset(struct bge_softc *sc)
4005 {
4006 uint32_t cachesize, command;
4007 uint32_t reset, mac_mode, mac_mode_mask;
4008 pcireg_t devctl, reg;
4009 int i, val;
4010 void (*write_op)(struct bge_softc *, int, int);
4011
4012 /* Make mask for BGE_MAC_MODE register. */
4013 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4014 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4015 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4016 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4017 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4018
4019 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4020 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4021 if (sc->bge_flags & BGEF_PCIE)
4022 write_op = bge_writemem_direct;
4023 else
4024 write_op = bge_writemem_ind;
4025 } else
4026 write_op = bge_writereg_ind;
4027
4028 /* 57XX step 4 */
4029 /* Acquire the NVM lock */
4030 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4031 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4032 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4033 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4034 for (i = 0; i < 8000; i++) {
4035 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4036 BGE_NVRAMSWARB_GNT1)
4037 break;
4038 DELAY(20);
4039 }
4040 if (i == 8000) {
4041 printf("%s: NVRAM lock timedout!\n",
4042 device_xname(sc->bge_dev));
4043 }
4044 }
4045
4046 /* Take APE lock when performing reset. */
4047 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4048
4049 /* 57XX step 3 */
4050 /* Save some important PCI state. */
4051 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4052 /* 5718 reset step 3 */
4053 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4054
4055 /* 5718 reset step 5, 57XX step 5b-5d */
4056 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4057 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4058 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4059
4060 /* XXX ???: Disable fastboot on controllers that support it. */
4061 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4062 BGE_IS_5755_PLUS(sc))
4063 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4064
4065 /* 5718 reset step 2, 57XX step 6 */
4066 /*
4067 * Write the magic number to SRAM at offset 0xB50.
4068 * When firmware finishes its initialization it will
4069 * write ~BGE_MAGIC_NUMBER to the same location.
4070 */
4071 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4072
4073 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4074 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4075 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4076 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4077 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4078 }
4079
4080 /* 5718 reset step 6, 57XX step 7 */
4081 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4082 /*
4083 * XXX: from FreeBSD/Linux; no documentation
4084 */
4085 if (sc->bge_flags & BGEF_PCIE) {
4086 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4087 !BGE_IS_57765_PLUS(sc) &&
4088 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4089 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4090 /* PCI Express 1.0 system */
4091 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4092 BGE_PHY_PCIE_SCRAM_MODE);
4093 }
4094 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4095 /*
4096 * Prevent PCI Express link training
4097 * during global reset.
4098 */
4099 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4100 reset |= (1 << 29);
4101 }
4102 }
4103
4104 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4105 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4106 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4107 i | BGE_VCPU_STATUS_DRV_RESET);
4108 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4109 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4110 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4111 }
4112
4113 /*
4114 * Set GPHY Power Down Override to leave GPHY
4115 * powered up in D0 uninitialized.
4116 */
4117 if (BGE_IS_5705_PLUS(sc) &&
4118 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4119 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4120
4121 /* Issue global reset */
4122 write_op(sc, BGE_MISC_CFG, reset);
4123
4124 /* 5718 reset step 7, 57XX step 8 */
4125 if (sc->bge_flags & BGEF_PCIE)
4126 delay(100*1000); /* too big */
4127 else
4128 delay(1000);
4129
4130 if (sc->bge_flags & BGEF_PCIE) {
4131 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4132 DELAY(500000);
4133 /* XXX: Magic Numbers */
4134 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4135 BGE_PCI_UNKNOWN0);
4136 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4137 BGE_PCI_UNKNOWN0,
4138 reg | (1 << 15));
4139 }
4140 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4141 sc->bge_pciecap + PCIE_DCSR);
4142 /* Clear enable no snoop and disable relaxed ordering. */
4143 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4144 PCIE_DCSR_ENA_NO_SNOOP);
4145
4146 /* Set PCIE max payload size to 128 for older PCIe devices */
4147 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4148 devctl &= ~(0x00e0);
4149 /* Clear device status register. Write 1b to clear */
4150 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4151 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4152 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4153 sc->bge_pciecap + PCIE_DCSR, devctl);
4154 bge_set_max_readrq(sc);
4155 }
4156
4157 /* From Linux: dummy read to flush PCI posted writes */
4158 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4159
4160 /*
4161 * Reset some of the PCI state that got zapped by reset
4162 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4163 * set, too.
4164 */
4165 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4166 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4167 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4168 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4169 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4170 (sc->bge_flags & BGEF_PCIX) != 0)
4171 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4172 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4173 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4174 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4175 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4176 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4177 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4178 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4179
4180 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4181 if (sc->bge_flags & BGEF_PCIX) {
4182 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4183 + PCIX_CMD);
4184 /* Set max memory read byte count to 2K */
4185 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4186 reg &= ~PCIX_CMD_BYTECNT_MASK;
4187 reg |= PCIX_CMD_BCNT_2048;
4188 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4189 /*
4190 * For 5704, set max outstanding split transaction
4191 * field to 0 (0 means it supports 1 request)
4192 */
4193 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4194 | PCIX_CMD_BYTECNT_MASK);
4195 reg |= PCIX_CMD_BCNT_2048;
4196 }
4197 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4198 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4199 }
4200
4201 /* 5718 reset step 10, 57XX step 12 */
4202 /* Enable memory arbiter. */
4203 if (BGE_IS_5714_FAMILY(sc)) {
4204 val = CSR_READ_4(sc, BGE_MARB_MODE);
4205 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4206 } else
4207 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4208
4209 /* XXX 5721, 5751 and 5752 */
4210 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4211 /* Step 19: */
4212 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4213 /* Step 20: */
4214 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4215 }
4216
4217 /* 5718 reset step 12, 57XX step 15 and 16 */
4218 /* Fix up byte swapping */
4219 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4220
4221 /* 5718 reset step 13, 57XX step 17 */
4222 /* Poll until the firmware initialization is complete */
4223 bge_poll_fw(sc);
4224
4225 /* 57XX step 21 */
4226 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4227 pcireg_t msidata;
4228
4229 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4230 BGE_PCI_MSI_DATA);
4231 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4232 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4233 msidata);
4234 }
4235
4236 /* 57XX step 18 */
4237 /* Write mac mode. */
4238 val = CSR_READ_4(sc, BGE_MAC_MODE);
4239 /* Restore mac_mode_mask's bits using mac_mode */
4240 val = (val & ~mac_mode_mask) | mac_mode;
4241 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4242 DELAY(40);
4243
4244 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4245
4246 /*
4247 * The 5704 in TBI mode apparently needs some special
4248 * adjustment to insure the SERDES drive level is set
4249 * to 1.2V.
4250 */
4251 if (sc->bge_flags & BGEF_FIBER_TBI &&
4252 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4253 uint32_t serdescfg;
4254
4255 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4256 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4257 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4258 }
4259
4260 if (sc->bge_flags & BGEF_PCIE &&
4261 !BGE_IS_57765_PLUS(sc) &&
4262 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4263 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4264 uint32_t v;
4265
4266 /* Enable PCI Express bug fix */
4267 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4268 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4269 v | BGE_TLP_DATA_FIFO_PROTECT);
4270 }
4271
4272 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4273 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4274 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4275
4276 return 0;
4277 }
4278
4279 /*
4280 * Frame reception handling. This is called if there's a frame
4281 * on the receive return list.
4282 *
4283 * Note: we have to be able to handle two possibilities here:
4284 * 1) the frame is from the jumbo receive ring
4285 * 2) the frame is from the standard receive ring
4286 */
4287
4288 static void
4289 bge_rxeof(struct bge_softc *sc)
4290 {
4291 struct ifnet *ifp;
4292 uint16_t rx_prod, rx_cons;
4293 int stdcnt = 0, jumbocnt = 0;
4294 bus_dmamap_t dmamap;
4295 bus_addr_t offset, toff;
4296 bus_size_t tlen;
4297 int tosync;
4298
4299 rx_cons = sc->bge_rx_saved_considx;
4300 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4301
4302 /* Nothing to do */
4303 if (rx_cons == rx_prod)
4304 return;
4305
4306 ifp = &sc->ethercom.ec_if;
4307
4308 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4309 offsetof(struct bge_ring_data, bge_status_block),
4310 sizeof (struct bge_status_block),
4311 BUS_DMASYNC_POSTREAD);
4312
4313 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4314 tosync = rx_prod - rx_cons;
4315
4316 if (tosync != 0)
4317 rnd_add_uint32(&sc->rnd_source, tosync);
4318
4319 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4320
4321 if (tosync < 0) {
4322 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4323 sizeof (struct bge_rx_bd);
4324 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4325 toff, tlen, BUS_DMASYNC_POSTREAD);
4326 tosync = -tosync;
4327 }
4328
4329 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4330 offset, tosync * sizeof (struct bge_rx_bd),
4331 BUS_DMASYNC_POSTREAD);
4332
4333 while (rx_cons != rx_prod) {
4334 struct bge_rx_bd *cur_rx;
4335 uint32_t rxidx;
4336 struct mbuf *m = NULL;
4337
4338 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4339
4340 rxidx = cur_rx->bge_idx;
4341 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4342
4343 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4344 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4345 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4346 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4347 jumbocnt++;
4348 bus_dmamap_sync(sc->bge_dmatag,
4349 sc->bge_cdata.bge_rx_jumbo_map,
4350 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4351 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4352 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4353 ifp->if_ierrors++;
4354 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4355 continue;
4356 }
4357 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4358 NULL)== ENOBUFS) {
4359 ifp->if_ierrors++;
4360 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4361 continue;
4362 }
4363 } else {
4364 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4365 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4366
4367 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4368 stdcnt++;
4369 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4370 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4371 if (dmamap == NULL) {
4372 ifp->if_ierrors++;
4373 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4374 continue;
4375 }
4376 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4377 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4378 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4379 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4380 ifp->if_ierrors++;
4381 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4382 continue;
4383 }
4384 if (bge_newbuf_std(sc, sc->bge_std,
4385 NULL, dmamap) == ENOBUFS) {
4386 ifp->if_ierrors++;
4387 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4388 continue;
4389 }
4390 }
4391
4392 #ifndef __NO_STRICT_ALIGNMENT
4393 /*
4394 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4395 * the Rx buffer has the layer-2 header unaligned.
4396 * If our CPU requires alignment, re-align by copying.
4397 */
4398 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4399 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4400 cur_rx->bge_len);
4401 m->m_data += ETHER_ALIGN;
4402 }
4403 #endif
4404
4405 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4406 m_set_rcvif(m, ifp);
4407
4408 bge_rxcsum(sc, cur_rx, m);
4409
4410 /*
4411 * If we received a packet with a vlan tag, pass it
4412 * to vlan_input() instead of ether_input().
4413 */
4414 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4415 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4416 }
4417
4418 if_percpuq_enqueue(ifp->if_percpuq, m);
4419 }
4420
4421 sc->bge_rx_saved_considx = rx_cons;
4422 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4423 if (stdcnt)
4424 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4425 if (jumbocnt)
4426 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4427 }
4428
4429 static void
4430 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4431 {
4432
4433 if (BGE_IS_57765_PLUS(sc)) {
4434 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4435 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4436 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4437 if ((cur_rx->bge_error_flag &
4438 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4439 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4440 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4441 m->m_pkthdr.csum_data =
4442 cur_rx->bge_tcp_udp_csum;
4443 m->m_pkthdr.csum_flags |=
4444 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4445 M_CSUM_DATA);
4446 }
4447 }
4448 } else {
4449 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4450 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4451 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4452 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4453 /*
4454 * Rx transport checksum-offload may also
4455 * have bugs with packets which, when transmitted,
4456 * were `runts' requiring padding.
4457 */
4458 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4459 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4460 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4461 m->m_pkthdr.csum_data =
4462 cur_rx->bge_tcp_udp_csum;
4463 m->m_pkthdr.csum_flags |=
4464 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4465 M_CSUM_DATA);
4466 }
4467 }
4468 }
4469
4470 static void
4471 bge_txeof(struct bge_softc *sc)
4472 {
4473 struct bge_tx_bd *cur_tx = NULL;
4474 struct ifnet *ifp;
4475 struct txdmamap_pool_entry *dma;
4476 bus_addr_t offset, toff;
4477 bus_size_t tlen;
4478 int tosync;
4479 struct mbuf *m;
4480
4481 ifp = &sc->ethercom.ec_if;
4482
4483 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4484 offsetof(struct bge_ring_data, bge_status_block),
4485 sizeof (struct bge_status_block),
4486 BUS_DMASYNC_POSTREAD);
4487
4488 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4489 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4490 sc->bge_tx_saved_considx;
4491
4492 if (tosync != 0)
4493 rnd_add_uint32(&sc->rnd_source, tosync);
4494
4495 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4496
4497 if (tosync < 0) {
4498 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4499 sizeof (struct bge_tx_bd);
4500 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4501 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4502 tosync = -tosync;
4503 }
4504
4505 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4506 offset, tosync * sizeof (struct bge_tx_bd),
4507 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4508
4509 /*
4510 * Go through our tx ring and free mbufs for those
4511 * frames that have been sent.
4512 */
4513 while (sc->bge_tx_saved_considx !=
4514 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4515 uint32_t idx = 0;
4516
4517 idx = sc->bge_tx_saved_considx;
4518 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4519 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4520 ifp->if_opackets++;
4521 m = sc->bge_cdata.bge_tx_chain[idx];
4522 if (m != NULL) {
4523 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4524 dma = sc->txdma[idx];
4525 if (dma->is_dma32) {
4526 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4527 0, dma->dmamap32->dm_mapsize,
4528 BUS_DMASYNC_POSTWRITE);
4529 bus_dmamap_unload(
4530 sc->bge_dmatag32, dma->dmamap32);
4531 } else {
4532 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4533 0, dma->dmamap->dm_mapsize,
4534 BUS_DMASYNC_POSTWRITE);
4535 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4536 }
4537 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4538 sc->txdma[idx] = NULL;
4539
4540 m_freem(m);
4541 }
4542 sc->bge_txcnt--;
4543 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4544 ifp->if_timer = 0;
4545 }
4546
4547 if (cur_tx != NULL)
4548 ifp->if_flags &= ~IFF_OACTIVE;
4549 }
4550
4551 static int
4552 bge_intr(void *xsc)
4553 {
4554 struct bge_softc *sc;
4555 struct ifnet *ifp;
4556 uint32_t pcistate, statusword, statustag;
4557 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4558
4559 sc = xsc;
4560 ifp = &sc->ethercom.ec_if;
4561
4562 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4563 if (BGE_IS_5717_PLUS(sc))
4564 intrmask = 0;
4565
4566 /* It is possible for the interrupt to arrive before
4567 * the status block is updated prior to the interrupt.
4568 * Reading the PCI State register will confirm whether the
4569 * interrupt is ours and will flush the status block.
4570 */
4571 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4572
4573 /* read status word from status block */
4574 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4575 offsetof(struct bge_ring_data, bge_status_block),
4576 sizeof (struct bge_status_block),
4577 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4578 statusword = sc->bge_rdata->bge_status_block.bge_status;
4579 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4580
4581 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4582 if (sc->bge_lasttag == statustag &&
4583 (~pcistate & intrmask)) {
4584 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4585 return (0);
4586 }
4587 sc->bge_lasttag = statustag;
4588 } else {
4589 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4590 !(~pcistate & intrmask)) {
4591 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4592 return (0);
4593 }
4594 statustag = 0;
4595 }
4596 /* Ack interrupt and stop others from occurring. */
4597 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4598 BGE_EVCNT_INCR(sc->bge_ev_intr);
4599
4600 /* clear status word */
4601 sc->bge_rdata->bge_status_block.bge_status = 0;
4602
4603 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4604 offsetof(struct bge_ring_data, bge_status_block),
4605 sizeof (struct bge_status_block),
4606 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4607
4608 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4609 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4610 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4611 bge_link_upd(sc);
4612
4613 if (ifp->if_flags & IFF_RUNNING) {
4614 /* Check RX return ring producer/consumer */
4615 bge_rxeof(sc);
4616
4617 /* Check TX ring producer/consumer */
4618 bge_txeof(sc);
4619 }
4620
4621 if (sc->bge_pending_rxintr_change) {
4622 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4623 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4624
4625 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4626 DELAY(10);
4627 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4628
4629 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4630 DELAY(10);
4631 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4632
4633 sc->bge_pending_rxintr_change = 0;
4634 }
4635 bge_handle_events(sc);
4636
4637 /* Re-enable interrupts. */
4638 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4639
4640 if (ifp->if_flags & IFF_RUNNING)
4641 if_schedule_deferred_start(ifp);
4642
4643 return 1;
4644 }
4645
4646 static void
4647 bge_asf_driver_up(struct bge_softc *sc)
4648 {
4649 if (sc->bge_asf_mode & ASF_STACKUP) {
4650 /* Send ASF heartbeat aprox. every 2s */
4651 if (sc->bge_asf_count)
4652 sc->bge_asf_count --;
4653 else {
4654 sc->bge_asf_count = 2;
4655
4656 bge_wait_for_event_ack(sc);
4657
4658 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4659 BGE_FW_CMD_DRV_ALIVE3);
4660 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4661 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4662 BGE_FW_HB_TIMEOUT_SEC);
4663 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4664 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4665 BGE_RX_CPU_DRV_EVENT);
4666 }
4667 }
4668 }
4669
4670 static void
4671 bge_tick(void *xsc)
4672 {
4673 struct bge_softc *sc = xsc;
4674 struct mii_data *mii = &sc->bge_mii;
4675 int s;
4676
4677 s = splnet();
4678
4679 if (BGE_IS_5705_PLUS(sc))
4680 bge_stats_update_regs(sc);
4681 else
4682 bge_stats_update(sc);
4683
4684 if (sc->bge_flags & BGEF_FIBER_TBI) {
4685 /*
4686 * Since in TBI mode auto-polling can't be used we should poll
4687 * link status manually. Here we register pending link event
4688 * and trigger interrupt.
4689 */
4690 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4691 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4692 } else {
4693 /*
4694 * Do not touch PHY if we have link up. This could break
4695 * IPMI/ASF mode or produce extra input errors.
4696 * (extra input errors was reported for bcm5701 & bcm5704).
4697 */
4698 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4699 mii_tick(mii);
4700 }
4701
4702 bge_asf_driver_up(sc);
4703
4704 if (!sc->bge_detaching)
4705 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4706
4707 splx(s);
4708 }
4709
4710 static void
4711 bge_stats_update_regs(struct bge_softc *sc)
4712 {
4713 struct ifnet *ifp = &sc->ethercom.ec_if;
4714
4715 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4716 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4717
4718 /*
4719 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4720 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4721 * (silicon bug). There's no reliable workaround so just
4722 * ignore the counter
4723 */
4724 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4725 BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5719_A0 &&
4726 BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5720_A0) {
4727 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4728 }
4729 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4730 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4731 }
4732
4733 static void
4734 bge_stats_update(struct bge_softc *sc)
4735 {
4736 struct ifnet *ifp = &sc->ethercom.ec_if;
4737 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4738
4739 #define READ_STAT(sc, stats, stat) \
4740 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4741
4742 ifp->if_collisions +=
4743 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4744 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4745 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4746 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4747 ifp->if_collisions;
4748
4749 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4750 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4751 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4752 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4753 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4754 READ_STAT(sc, stats,
4755 xoffPauseFramesReceived.bge_addr_lo));
4756 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4757 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4758 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4759 READ_STAT(sc, stats,
4760 macControlFramesReceived.bge_addr_lo));
4761 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4762 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4763
4764 #undef READ_STAT
4765
4766 #ifdef notdef
4767 ifp->if_collisions +=
4768 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4769 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4770 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4771 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4772 ifp->if_collisions;
4773 #endif
4774 }
4775
4776 /*
4777 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4778 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4779 * but when such padded frames employ the bge IP/TCP checksum offload,
4780 * the hardware checksum assist gives incorrect results (possibly
4781 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4782 * If we pad such runts with zeros, the onboard checksum comes out correct.
4783 */
4784 static inline int
4785 bge_cksum_pad(struct mbuf *pkt)
4786 {
4787 struct mbuf *last = NULL;
4788 int padlen;
4789
4790 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4791
4792 /* if there's only the packet-header and we can pad there, use it. */
4793 if (pkt->m_pkthdr.len == pkt->m_len &&
4794 M_TRAILINGSPACE(pkt) >= padlen) {
4795 last = pkt;
4796 } else {
4797 /*
4798 * Walk packet chain to find last mbuf. We will either
4799 * pad there, or append a new mbuf and pad it
4800 * (thus perhaps avoiding the bcm5700 dma-min bug).
4801 */
4802 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4803 continue; /* do nothing */
4804 }
4805
4806 /* `last' now points to last in chain. */
4807 if (M_TRAILINGSPACE(last) < padlen) {
4808 /* Allocate new empty mbuf, pad it. Compact later. */
4809 struct mbuf *n;
4810 MGET(n, M_DONTWAIT, MT_DATA);
4811 if (n == NULL)
4812 return ENOBUFS;
4813 n->m_len = 0;
4814 last->m_next = n;
4815 last = n;
4816 }
4817 }
4818
4819 KDASSERT(!M_READONLY(last));
4820 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4821
4822 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4823 memset(mtod(last, char *) + last->m_len, 0, padlen);
4824 last->m_len += padlen;
4825 pkt->m_pkthdr.len += padlen;
4826 return 0;
4827 }
4828
4829 /*
4830 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4831 */
4832 static inline int
4833 bge_compact_dma_runt(struct mbuf *pkt)
4834 {
4835 struct mbuf *m, *prev;
4836 int totlen;
4837
4838 prev = NULL;
4839 totlen = 0;
4840
4841 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4842 int mlen = m->m_len;
4843 int shortfall = 8 - mlen ;
4844
4845 totlen += mlen;
4846 if (mlen == 0)
4847 continue;
4848 if (mlen >= 8)
4849 continue;
4850
4851 /* If we get here, mbuf data is too small for DMA engine.
4852 * Try to fix by shuffling data to prev or next in chain.
4853 * If that fails, do a compacting deep-copy of the whole chain.
4854 */
4855
4856 /* Internal frag. If fits in prev, copy it there. */
4857 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4858 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4859 prev->m_len += mlen;
4860 m->m_len = 0;
4861 /* XXX stitch chain */
4862 prev->m_next = m_free(m);
4863 m = prev;
4864 continue;
4865 }
4866 else if (m->m_next != NULL &&
4867 M_TRAILINGSPACE(m) >= shortfall &&
4868 m->m_next->m_len >= (8 + shortfall)) {
4869 /* m is writable and have enough data in next, pull up. */
4870
4871 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4872 shortfall);
4873 m->m_len += shortfall;
4874 m->m_next->m_len -= shortfall;
4875 m->m_next->m_data += shortfall;
4876 }
4877 else if (m->m_next == NULL || 1) {
4878 /* Got a runt at the very end of the packet.
4879 * borrow data from the tail of the preceding mbuf and
4880 * update its length in-place. (The original data is still
4881 * valid, so we can do this even if prev is not writable.)
4882 */
4883
4884 /* if we'd make prev a runt, just move all of its data. */
4885 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4886 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4887
4888 if ((prev->m_len - shortfall) < 8)
4889 shortfall = prev->m_len;
4890
4891 #ifdef notyet /* just do the safe slow thing for now */
4892 if (!M_READONLY(m)) {
4893 if (M_LEADINGSPACE(m) < shorfall) {
4894 void *m_dat;
4895 m_dat = (m->m_flags & M_PKTHDR) ?
4896 m->m_pktdat : m->dat;
4897 memmove(m_dat, mtod(m, void*), m->m_len);
4898 m->m_data = m_dat;
4899 }
4900 } else
4901 #endif /* just do the safe slow thing */
4902 {
4903 struct mbuf * n = NULL;
4904 int newprevlen = prev->m_len - shortfall;
4905
4906 MGET(n, M_NOWAIT, MT_DATA);
4907 if (n == NULL)
4908 return ENOBUFS;
4909 KASSERT(m->m_len + shortfall < MLEN
4910 /*,
4911 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4912
4913 /* first copy the data we're stealing from prev */
4914 memcpy(n->m_data, prev->m_data + newprevlen,
4915 shortfall);
4916
4917 /* update prev->m_len accordingly */
4918 prev->m_len -= shortfall;
4919
4920 /* copy data from runt m */
4921 memcpy(n->m_data + shortfall, m->m_data,
4922 m->m_len);
4923
4924 /* n holds what we stole from prev, plus m */
4925 n->m_len = shortfall + m->m_len;
4926
4927 /* stitch n into chain and free m */
4928 n->m_next = m->m_next;
4929 prev->m_next = n;
4930 /* KASSERT(m->m_next == NULL); */
4931 m->m_next = NULL;
4932 m_free(m);
4933 m = n; /* for continuing loop */
4934 }
4935 }
4936 }
4937 return 0;
4938 }
4939
4940 /*
4941 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4942 * pointers to descriptors.
4943 */
4944 static int
4945 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4946 {
4947 struct ifnet *ifp = &sc->ethercom.ec_if;
4948 struct bge_tx_bd *f, *prev_f;
4949 uint32_t frag, cur;
4950 uint16_t csum_flags = 0;
4951 uint16_t txbd_tso_flags = 0;
4952 struct txdmamap_pool_entry *dma;
4953 bus_dmamap_t dmamap;
4954 bus_dma_tag_t dmatag;
4955 int i = 0;
4956 int use_tso, maxsegsize, error;
4957 bool have_vtag;
4958 uint16_t vtag;
4959 bool remap;
4960
4961 if (m_head->m_pkthdr.csum_flags) {
4962 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4963 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4964 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4965 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4966 }
4967
4968 /*
4969 * If we were asked to do an outboard checksum, and the NIC
4970 * has the bug where it sometimes adds in the Ethernet padding,
4971 * explicitly pad with zeros so the cksum will be correct either way.
4972 * (For now, do this for all chip versions, until newer
4973 * are confirmed to not require the workaround.)
4974 */
4975 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4976 #ifdef notyet
4977 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4978 #endif
4979 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4980 goto check_dma_bug;
4981
4982 if (bge_cksum_pad(m_head) != 0)
4983 return ENOBUFS;
4984
4985 check_dma_bug:
4986 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4987 goto doit;
4988
4989 /*
4990 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4991 * less than eight bytes. If we encounter a teeny mbuf
4992 * at the end of a chain, we can pad. Otherwise, copy.
4993 */
4994 if (bge_compact_dma_runt(m_head) != 0)
4995 return ENOBUFS;
4996
4997 doit:
4998 dma = SLIST_FIRST(&sc->txdma_list);
4999 if (dma == NULL) {
5000 ifp->if_flags |= IFF_OACTIVE;
5001 return ENOBUFS;
5002 }
5003 dmamap = dma->dmamap;
5004 dmatag = sc->bge_dmatag;
5005 dma->is_dma32 = false;
5006
5007 /*
5008 * Set up any necessary TSO state before we start packing...
5009 */
5010 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5011 if (!use_tso) {
5012 maxsegsize = 0;
5013 } else { /* TSO setup */
5014 unsigned mss;
5015 struct ether_header *eh;
5016 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5017 unsigned bge_hlen;
5018 struct mbuf * m0 = m_head;
5019 struct ip *ip;
5020 struct tcphdr *th;
5021 int iphl, hlen;
5022
5023 /*
5024 * XXX It would be nice if the mbuf pkthdr had offset
5025 * fields for the protocol headers.
5026 */
5027
5028 eh = mtod(m0, struct ether_header *);
5029 switch (htons(eh->ether_type)) {
5030 case ETHERTYPE_IP:
5031 offset = ETHER_HDR_LEN;
5032 break;
5033
5034 case ETHERTYPE_VLAN:
5035 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5036 break;
5037
5038 default:
5039 /*
5040 * Don't support this protocol or encapsulation.
5041 */
5042 return ENOBUFS;
5043 }
5044
5045 /*
5046 * TCP/IP headers are in the first mbuf; we can do
5047 * this the easy way.
5048 */
5049 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5050 hlen = iphl + offset;
5051 if (__predict_false(m0->m_len <
5052 (hlen + sizeof(struct tcphdr)))) {
5053
5054 aprint_error_dev(sc->bge_dev,
5055 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5056 "not handled yet\n",
5057 m0->m_len, hlen+ sizeof(struct tcphdr));
5058 #ifdef NOTYET
5059 /*
5060 * XXX jonathan (at) NetBSD.org: untested.
5061 * how to force this branch to be taken?
5062 */
5063 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5064
5065 m_copydata(m0, offset, sizeof(ip), &ip);
5066 m_copydata(m0, hlen, sizeof(th), &th);
5067
5068 ip.ip_len = 0;
5069
5070 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5071 sizeof(ip.ip_len), &ip.ip_len);
5072
5073 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5074 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5075
5076 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5077 sizeof(th.th_sum), &th.th_sum);
5078
5079 hlen += th.th_off << 2;
5080 iptcp_opt_words = hlen;
5081 #else
5082 /*
5083 * if_wm "hard" case not yet supported, can we not
5084 * mandate it out of existence?
5085 */
5086 (void) ip; (void)th; (void) ip_tcp_hlen;
5087
5088 return ENOBUFS;
5089 #endif
5090 } else {
5091 ip = (struct ip *) (mtod(m0, char *) + offset);
5092 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5093 ip_tcp_hlen = iphl + (th->th_off << 2);
5094
5095 /* Total IP/TCP options, in 32-bit words */
5096 iptcp_opt_words = (ip_tcp_hlen
5097 - sizeof(struct tcphdr)
5098 - sizeof(struct ip)) >> 2;
5099 }
5100 if (BGE_IS_575X_PLUS(sc)) {
5101 th->th_sum = 0;
5102 csum_flags = 0;
5103 } else {
5104 /*
5105 * XXX jonathan (at) NetBSD.org: 5705 untested.
5106 * Requires TSO firmware patch for 5701/5703/5704.
5107 */
5108 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5109 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5110 }
5111
5112 mss = m_head->m_pkthdr.segsz;
5113 txbd_tso_flags |=
5114 BGE_TXBDFLAG_CPU_PRE_DMA |
5115 BGE_TXBDFLAG_CPU_POST_DMA;
5116
5117 /*
5118 * Our NIC TSO-assist assumes TSO has standard, optionless
5119 * IPv4 and TCP headers, which total 40 bytes. By default,
5120 * the NIC copies 40 bytes of IP/TCP header from the
5121 * supplied header into the IP/TCP header portion of
5122 * each post-TSO-segment. If the supplied packet has IP or
5123 * TCP options, we need to tell the NIC to copy those extra
5124 * bytes into each post-TSO header, in addition to the normal
5125 * 40-byte IP/TCP header (and to leave space accordingly).
5126 * Unfortunately, the driver encoding of option length
5127 * varies across different ASIC families.
5128 */
5129 tcp_seg_flags = 0;
5130 bge_hlen = ip_tcp_hlen >> 2;
5131 if (BGE_IS_5717_PLUS(sc)) {
5132 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5133 txbd_tso_flags |=
5134 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5135 } else if (BGE_IS_5705_PLUS(sc)) {
5136 tcp_seg_flags =
5137 bge_hlen << 11;
5138 } else {
5139 /* XXX iptcp_opt_words or bge_hlen ? */
5140 txbd_tso_flags |=
5141 iptcp_opt_words << 12;
5142 }
5143 maxsegsize = mss | tcp_seg_flags;
5144 ip->ip_len = htons(mss + ip_tcp_hlen);
5145 ip->ip_sum = 0;
5146
5147 } /* TSO setup */
5148
5149 have_vtag = vlan_has_tag(m_head);
5150 if (have_vtag)
5151 vtag = vlan_get_tag(m_head);
5152
5153 /*
5154 * Start packing the mbufs in this chain into
5155 * the fragment pointers. Stop when we run out
5156 * of fragments or hit the end of the mbuf chain.
5157 */
5158 remap = true;
5159 load_again:
5160 error = bus_dmamap_load_mbuf(dmatag, dmamap,
5161 m_head, BUS_DMA_NOWAIT);
5162 if (__predict_false(error)) {
5163 if (error == EFBIG && remap) {
5164 struct mbuf *m;
5165 remap = false;
5166 m = m_defrag(m_head, M_NOWAIT);
5167 if (m != NULL) {
5168 KASSERT(m == m_head);
5169 goto load_again;
5170 }
5171 }
5172 return error;
5173 }
5174 /*
5175 * Sanity check: avoid coming within 16 descriptors
5176 * of the end of the ring.
5177 */
5178 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5179 BGE_TSO_PRINTF(("%s: "
5180 " dmamap_load_mbuf too close to ring wrap\n",
5181 device_xname(sc->bge_dev)));
5182 goto fail_unload;
5183 }
5184
5185 /* Iterate over dmap-map fragments. */
5186 f = prev_f = NULL;
5187 cur = frag = *txidx;
5188
5189 for (i = 0; i < dmamap->dm_nsegs; i++) {
5190 f = &sc->bge_rdata->bge_tx_ring[frag];
5191 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5192 break;
5193
5194 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5195 f->bge_len = dmamap->dm_segs[i].ds_len;
5196 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5197 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5198 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5199 (prev_f != NULL &&
5200 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5201 ) {
5202 /*
5203 * watchdog timeout issue was observed with TSO,
5204 * limiting DMA address space to 32bits seems to
5205 * address the issue.
5206 */
5207 bus_dmamap_unload(dmatag, dmamap);
5208 dmatag = sc->bge_dmatag32;
5209 dmamap = dma->dmamap32;
5210 dma->is_dma32 = true;
5211 remap = true;
5212 goto load_again;
5213 }
5214
5215 /*
5216 * For 5751 and follow-ons, for TSO we must turn
5217 * off checksum-assist flag in the tx-descr, and
5218 * supply the ASIC-revision-specific encoding
5219 * of TSO flags and segsize.
5220 */
5221 if (use_tso) {
5222 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5223 f->bge_rsvd = maxsegsize;
5224 f->bge_flags = csum_flags | txbd_tso_flags;
5225 } else {
5226 f->bge_rsvd = 0;
5227 f->bge_flags =
5228 (csum_flags | txbd_tso_flags) & 0x0fff;
5229 }
5230 } else {
5231 f->bge_rsvd = 0;
5232 f->bge_flags = csum_flags;
5233 }
5234
5235 if (have_vtag) {
5236 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5237 f->bge_vlan_tag = vtag;
5238 } else {
5239 f->bge_vlan_tag = 0;
5240 }
5241 prev_f = f;
5242 cur = frag;
5243 BGE_INC(frag, BGE_TX_RING_CNT);
5244 }
5245
5246 if (i < dmamap->dm_nsegs) {
5247 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5248 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5249 goto fail_unload;
5250 }
5251
5252 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5253 BUS_DMASYNC_PREWRITE);
5254
5255 if (frag == sc->bge_tx_saved_considx) {
5256 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5257 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5258
5259 goto fail_unload;
5260 }
5261
5262 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5263 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5264 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5265 sc->txdma[cur] = dma;
5266 sc->bge_txcnt += dmamap->dm_nsegs;
5267
5268 *txidx = frag;
5269
5270 return 0;
5271
5272 fail_unload:
5273 bus_dmamap_unload(dmatag, dmamap);
5274 ifp->if_flags |= IFF_OACTIVE;
5275
5276 return ENOBUFS;
5277 }
5278
5279 /*
5280 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5281 * to the mbuf data regions directly in the transmit descriptors.
5282 */
5283 static void
5284 bge_start(struct ifnet *ifp)
5285 {
5286 struct bge_softc *sc;
5287 struct mbuf *m_head = NULL;
5288 struct mbuf *m;
5289 uint32_t prodidx;
5290 int pkts = 0;
5291 int error;
5292
5293 sc = ifp->if_softc;
5294
5295 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5296 return;
5297
5298 prodidx = sc->bge_tx_prodidx;
5299
5300 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5301 IFQ_POLL(&ifp->if_snd, m_head);
5302 if (m_head == NULL)
5303 break;
5304
5305 #if 0
5306 /*
5307 * XXX
5308 * safety overkill. If this is a fragmented packet chain
5309 * with delayed TCP/UDP checksums, then only encapsulate
5310 * it if we have enough descriptors to handle the entire
5311 * chain at once.
5312 * (paranoia -- may not actually be needed)
5313 */
5314 if (m_head->m_flags & M_FIRSTFRAG &&
5315 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5316 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5317 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5318 ifp->if_flags |= IFF_OACTIVE;
5319 break;
5320 }
5321 }
5322 #endif
5323
5324 /*
5325 * Pack the data into the transmit ring. If we
5326 * don't have room, set the OACTIVE flag and wait
5327 * for the NIC to drain the ring.
5328 */
5329 error = bge_encap(sc, m_head, &prodidx);
5330 if (__predict_false(error)) {
5331 if (ifp->if_flags & IFF_OACTIVE) {
5332 /* just wait for the transmit ring to drain */
5333 break;
5334 }
5335 IFQ_DEQUEUE(&ifp->if_snd, m);
5336 KASSERT(m == m_head);
5337 m_freem(m_head);
5338 continue;
5339 }
5340
5341 /* now we are committed to transmit the packet */
5342 IFQ_DEQUEUE(&ifp->if_snd, m);
5343 KASSERT(m == m_head);
5344 pkts++;
5345
5346 /*
5347 * If there's a BPF listener, bounce a copy of this frame
5348 * to him.
5349 */
5350 bpf_mtap(ifp, m_head, BPF_D_OUT);
5351 }
5352 if (pkts == 0)
5353 return;
5354
5355 /* Transmit */
5356 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5357 /* 5700 b2 errata */
5358 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5359 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5360
5361 sc->bge_tx_prodidx = prodidx;
5362
5363 /*
5364 * Set a timeout in case the chip goes out to lunch.
5365 */
5366 ifp->if_timer = 5;
5367 }
5368
5369 static int
5370 bge_init(struct ifnet *ifp)
5371 {
5372 struct bge_softc *sc = ifp->if_softc;
5373 const uint16_t *m;
5374 uint32_t mode, reg;
5375 int s, error = 0;
5376
5377 s = splnet();
5378
5379 ifp = &sc->ethercom.ec_if;
5380
5381 /* Cancel pending I/O and flush buffers. */
5382 bge_stop(ifp, 0);
5383
5384 bge_stop_fw(sc);
5385 bge_sig_pre_reset(sc, BGE_RESET_START);
5386 bge_reset(sc);
5387 bge_sig_legacy(sc, BGE_RESET_START);
5388
5389 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5390 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5391 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5392 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5393 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5394
5395 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5396 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5397 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5398 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5399
5400 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5401 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5402 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5403 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5404
5405 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5406 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5407 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5408 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5409 }
5410
5411 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5412 pcireg_t aercap;
5413
5414 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5415 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5416 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5417 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5418 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5419
5420 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5421 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5422 | BGE_PCIE_EIDLE_DELAY_13CLK;
5423 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5424
5425 /* Clear correctable error */
5426 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5427 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5428 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5429 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5430
5431 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5432 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5433 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5434 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5435 }
5436
5437 bge_sig_post_reset(sc, BGE_RESET_START);
5438
5439 bge_chipinit(sc);
5440
5441 /*
5442 * Init the various state machines, ring
5443 * control blocks and firmware.
5444 */
5445 error = bge_blockinit(sc);
5446 if (error != 0) {
5447 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5448 error);
5449 splx(s);
5450 return error;
5451 }
5452
5453 ifp = &sc->ethercom.ec_if;
5454
5455 /* 5718 step 25, 57XX step 54 */
5456 /* Specify MTU. */
5457 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5458 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5459
5460 /* 5718 step 23 */
5461 /* Load our MAC address. */
5462 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5463 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5464 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5465
5466 /* Enable or disable promiscuous mode as needed. */
5467 if (ifp->if_flags & IFF_PROMISC)
5468 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5469 else
5470 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5471
5472 /* Program multicast filter. */
5473 bge_setmulti(sc);
5474
5475 /* Init RX ring. */
5476 bge_init_rx_ring_std(sc);
5477
5478 /*
5479 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5480 * memory to insure that the chip has in fact read the first
5481 * entry of the ring.
5482 */
5483 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5484 uint32_t v, i;
5485 for (i = 0; i < 10; i++) {
5486 DELAY(20);
5487 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5488 if (v == (MCLBYTES - ETHER_ALIGN))
5489 break;
5490 }
5491 if (i == 10)
5492 aprint_error_dev(sc->bge_dev,
5493 "5705 A0 chip failed to load RX ring\n");
5494 }
5495
5496 /* Init jumbo RX ring. */
5497 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5498 bge_init_rx_ring_jumbo(sc);
5499
5500 /* Init our RX return ring index */
5501 sc->bge_rx_saved_considx = 0;
5502
5503 /* Init TX ring. */
5504 bge_init_tx_ring(sc);
5505
5506 /* 5718 step 63, 57XX step 94 */
5507 /* Enable TX MAC state machine lockup fix. */
5508 mode = CSR_READ_4(sc, BGE_TX_MODE);
5509 if (BGE_IS_5755_PLUS(sc) ||
5510 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5511 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5512 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5513 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5514 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5515 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5516 }
5517
5518 /* Turn on transmitter */
5519 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5520 /* 5718 step 64 */
5521 DELAY(100);
5522
5523 /* 5718 step 65, 57XX step 95 */
5524 /* Turn on receiver */
5525 mode = CSR_READ_4(sc, BGE_RX_MODE);
5526 if (BGE_IS_5755_PLUS(sc))
5527 mode |= BGE_RXMODE_IPV6_ENABLE;
5528 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5529 /* 5718 step 66 */
5530 DELAY(10);
5531
5532 /* 5718 step 12, 57XX step 37 */
5533 /*
5534 * XXX Doucments of 5718 series and 577xx say the recommended value
5535 * is 1, but tg3 set 1 only on 57765 series.
5536 */
5537 if (BGE_IS_57765_PLUS(sc))
5538 reg = 1;
5539 else
5540 reg = 2;
5541 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5542
5543 /* Tell firmware we're alive. */
5544 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5545
5546 /* Enable host interrupts. */
5547 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5548 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5549 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5550
5551 if ((error = bge_ifmedia_upd(ifp)) != 0)
5552 goto out;
5553
5554 ifp->if_flags |= IFF_RUNNING;
5555 ifp->if_flags &= ~IFF_OACTIVE;
5556
5557 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5558
5559 out:
5560 sc->bge_if_flags = ifp->if_flags;
5561 splx(s);
5562
5563 return error;
5564 }
5565
5566 /*
5567 * Set media options.
5568 */
5569 static int
5570 bge_ifmedia_upd(struct ifnet *ifp)
5571 {
5572 struct bge_softc *sc = ifp->if_softc;
5573 struct mii_data *mii = &sc->bge_mii;
5574 struct ifmedia *ifm = &sc->bge_ifmedia;
5575 int rc;
5576
5577 /* If this is a 1000baseX NIC, enable the TBI port. */
5578 if (sc->bge_flags & BGEF_FIBER_TBI) {
5579 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5580 return EINVAL;
5581 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5582 case IFM_AUTO:
5583 /*
5584 * The BCM5704 ASIC appears to have a special
5585 * mechanism for programming the autoneg
5586 * advertisement registers in TBI mode.
5587 */
5588 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5589 uint32_t sgdig;
5590 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5591 if (sgdig & BGE_SGDIGSTS_DONE) {
5592 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5593 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5594 sgdig |= BGE_SGDIGCFG_AUTO |
5595 BGE_SGDIGCFG_PAUSE_CAP |
5596 BGE_SGDIGCFG_ASYM_PAUSE;
5597 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5598 sgdig | BGE_SGDIGCFG_SEND);
5599 DELAY(5);
5600 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5601 sgdig);
5602 }
5603 }
5604 break;
5605 case IFM_1000_SX:
5606 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5607 BGE_CLRBIT(sc, BGE_MAC_MODE,
5608 BGE_MACMODE_HALF_DUPLEX);
5609 } else {
5610 BGE_SETBIT(sc, BGE_MAC_MODE,
5611 BGE_MACMODE_HALF_DUPLEX);
5612 }
5613 DELAY(40);
5614 break;
5615 default:
5616 return EINVAL;
5617 }
5618 /* XXX 802.3x flow control for 1000BASE-SX */
5619 return 0;
5620 }
5621
5622 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5623 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5624 uint32_t reg;
5625
5626 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5627 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5628 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5629 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5630 }
5631 }
5632
5633 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5634 if ((rc = mii_mediachg(mii)) == ENXIO)
5635 return 0;
5636
5637 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5638 uint32_t reg;
5639
5640 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5641 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5642 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5643 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5644 delay(40);
5645 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5646 }
5647 }
5648
5649 /*
5650 * Force an interrupt so that we will call bge_link_upd
5651 * if needed and clear any pending link state attention.
5652 * Without this we are not getting any further interrupts
5653 * for link state changes and thus will not UP the link and
5654 * not be able to send in bge_start. The only way to get
5655 * things working was to receive a packet and get a RX intr.
5656 */
5657 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5658 sc->bge_flags & BGEF_IS_5788)
5659 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5660 else
5661 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5662
5663 return rc;
5664 }
5665
5666 /*
5667 * Report current media status.
5668 */
5669 static void
5670 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5671 {
5672 struct bge_softc *sc = ifp->if_softc;
5673 struct mii_data *mii = &sc->bge_mii;
5674
5675 if (sc->bge_flags & BGEF_FIBER_TBI) {
5676 ifmr->ifm_status = IFM_AVALID;
5677 ifmr->ifm_active = IFM_ETHER;
5678 if (CSR_READ_4(sc, BGE_MAC_STS) &
5679 BGE_MACSTAT_TBI_PCS_SYNCHED)
5680 ifmr->ifm_status |= IFM_ACTIVE;
5681 ifmr->ifm_active |= IFM_1000_SX;
5682 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5683 ifmr->ifm_active |= IFM_HDX;
5684 else
5685 ifmr->ifm_active |= IFM_FDX;
5686 return;
5687 }
5688
5689 mii_pollstat(mii);
5690 ifmr->ifm_status = mii->mii_media_status;
5691 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5692 sc->bge_flowflags;
5693 }
5694
5695 static int
5696 bge_ifflags_cb(struct ethercom *ec)
5697 {
5698 struct ifnet *ifp = &ec->ec_if;
5699 struct bge_softc *sc = ifp->if_softc;
5700 int change = ifp->if_flags ^ sc->bge_if_flags;
5701
5702 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5703 return ENETRESET;
5704 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5705 return 0;
5706
5707 if ((ifp->if_flags & IFF_PROMISC) == 0)
5708 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5709 else
5710 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5711
5712 bge_setmulti(sc);
5713
5714 sc->bge_if_flags = ifp->if_flags;
5715 return 0;
5716 }
5717
5718 static int
5719 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5720 {
5721 struct bge_softc *sc = ifp->if_softc;
5722 struct ifreq *ifr = (struct ifreq *) data;
5723 int s, error = 0;
5724 struct mii_data *mii;
5725
5726 s = splnet();
5727
5728 switch (command) {
5729 case SIOCSIFMEDIA:
5730 /* XXX Flow control is not supported for 1000BASE-SX */
5731 if (sc->bge_flags & BGEF_FIBER_TBI) {
5732 ifr->ifr_media &= ~IFM_ETH_FMASK;
5733 sc->bge_flowflags = 0;
5734 }
5735
5736 /* Flow control requires full-duplex mode. */
5737 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5738 (ifr->ifr_media & IFM_FDX) == 0) {
5739 ifr->ifr_media &= ~IFM_ETH_FMASK;
5740 }
5741 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5742 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5743 /* We can do both TXPAUSE and RXPAUSE. */
5744 ifr->ifr_media |=
5745 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5746 }
5747 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5748 }
5749 /* FALLTHROUGH */
5750 case SIOCGIFMEDIA:
5751 if (sc->bge_flags & BGEF_FIBER_TBI) {
5752 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5753 command);
5754 } else {
5755 mii = &sc->bge_mii;
5756 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5757 command);
5758 }
5759 break;
5760 default:
5761 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5762 break;
5763
5764 error = 0;
5765
5766 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5767 ;
5768 else if (ifp->if_flags & IFF_RUNNING)
5769 bge_setmulti(sc);
5770 break;
5771 }
5772
5773 splx(s);
5774
5775 return error;
5776 }
5777
5778 static void
5779 bge_watchdog(struct ifnet *ifp)
5780 {
5781 struct bge_softc *sc;
5782 uint32_t status;
5783
5784 sc = ifp->if_softc;
5785
5786 /* If pause frames are active then don't reset the hardware. */
5787 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5788 status = CSR_READ_4(sc, BGE_RX_STS);
5789 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5790 /*
5791 * If link partner has us in XOFF state then wait for
5792 * the condition to clear.
5793 */
5794 CSR_WRITE_4(sc, BGE_RX_STS, status);
5795 ifp->if_timer = 5;
5796 return;
5797 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5798 (status & BGE_RXSTAT_RCVD_XON) != 0) {
5799 /*
5800 * If link partner has us in XOFF state then wait for
5801 * the condition to clear.
5802 */
5803 CSR_WRITE_4(sc, BGE_RX_STS, status);
5804 ifp->if_timer = 5;
5805 return;
5806 }
5807 /*
5808 * Any other condition is unexpected and the controller
5809 * should be reset.
5810 */
5811 }
5812
5813 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5814
5815 ifp->if_flags &= ~IFF_RUNNING;
5816 bge_init(ifp);
5817
5818 ifp->if_oerrors++;
5819 }
5820
5821 static void
5822 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5823 {
5824 int i;
5825
5826 BGE_CLRBIT_FLUSH(sc, reg, bit);
5827
5828 for (i = 0; i < 1000; i++) {
5829 delay(100);
5830 if ((CSR_READ_4(sc, reg) & bit) == 0)
5831 return;
5832 }
5833
5834 /*
5835 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5836 * on some environment (and once after boot?)
5837 */
5838 if (reg != BGE_SRS_MODE)
5839 aprint_error_dev(sc->bge_dev,
5840 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5841 (u_long)reg, bit);
5842 }
5843
5844 /*
5845 * Stop the adapter and free any mbufs allocated to the
5846 * RX and TX lists.
5847 */
5848 static void
5849 bge_stop(struct ifnet *ifp, int disable)
5850 {
5851 struct bge_softc *sc = ifp->if_softc;
5852
5853 if (disable) {
5854 sc->bge_detaching = 1;
5855 callout_halt(&sc->bge_timeout, NULL);
5856 } else
5857 callout_stop(&sc->bge_timeout);
5858
5859 /* Disable host interrupts. */
5860 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5861 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5862
5863 /*
5864 * Tell firmware we're shutting down.
5865 */
5866 bge_stop_fw(sc);
5867 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5868
5869 /*
5870 * Disable all of the receiver blocks.
5871 */
5872 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5873 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5874 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5875 if (BGE_IS_5700_FAMILY(sc))
5876 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5877 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5878 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5879 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5880
5881 /*
5882 * Disable all of the transmit blocks.
5883 */
5884 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5885 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5886 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5887 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5888 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5889 if (BGE_IS_5700_FAMILY(sc))
5890 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5891 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5892
5893 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5894 delay(40);
5895
5896 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5897
5898 /*
5899 * Shut down all of the memory managers and related
5900 * state machines.
5901 */
5902 /* 5718 step 5a,5b */
5903 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5904 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5905 if (BGE_IS_5700_FAMILY(sc))
5906 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5907
5908 /* 5718 step 5c,5d */
5909 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5910 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5911
5912 if (BGE_IS_5700_FAMILY(sc)) {
5913 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5914 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5915 }
5916
5917 bge_reset(sc);
5918 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5919 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5920
5921 /*
5922 * Keep the ASF firmware running if up.
5923 */
5924 if (sc->bge_asf_mode & ASF_STACKUP)
5925 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5926 else
5927 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5928
5929 /* Free the RX lists. */
5930 bge_free_rx_ring_std(sc, disable);
5931
5932 /* Free jumbo RX list. */
5933 if (BGE_IS_JUMBO_CAPABLE(sc))
5934 bge_free_rx_ring_jumbo(sc);
5935
5936 /* Free TX buffers. */
5937 bge_free_tx_ring(sc, disable);
5938
5939 /*
5940 * Isolate/power down the PHY.
5941 */
5942 if (!(sc->bge_flags & BGEF_FIBER_TBI))
5943 mii_down(&sc->bge_mii);
5944
5945 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5946
5947 /* Clear MAC's link state (PHY may still have link UP). */
5948 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5949
5950 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5951 }
5952
5953 static void
5954 bge_link_upd(struct bge_softc *sc)
5955 {
5956 struct ifnet *ifp = &sc->ethercom.ec_if;
5957 struct mii_data *mii = &sc->bge_mii;
5958 uint32_t status;
5959 uint16_t phyval;
5960 int link;
5961
5962 /* Clear 'pending link event' flag */
5963 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5964
5965 /*
5966 * Process link state changes.
5967 * Grrr. The link status word in the status block does
5968 * not work correctly on the BCM5700 rev AX and BX chips,
5969 * according to all available information. Hence, we have
5970 * to enable MII interrupts in order to properly obtain
5971 * async link changes. Unfortunately, this also means that
5972 * we have to read the MAC status register to detect link
5973 * changes, thereby adding an additional register access to
5974 * the interrupt handler.
5975 */
5976
5977 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5978 status = CSR_READ_4(sc, BGE_MAC_STS);
5979 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5980 mii_pollstat(mii);
5981
5982 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5983 mii->mii_media_status & IFM_ACTIVE &&
5984 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5985 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5986 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5987 (!(mii->mii_media_status & IFM_ACTIVE) ||
5988 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5989 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5990
5991 /* Clear the interrupt */
5992 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5993 BGE_EVTENB_MI_INTERRUPT);
5994 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5995 BRGPHY_MII_ISR, &phyval);
5996 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5997 BRGPHY_MII_IMR, BRGPHY_INTRS);
5998 }
5999 return;
6000 }
6001
6002 if (sc->bge_flags & BGEF_FIBER_TBI) {
6003 status = CSR_READ_4(sc, BGE_MAC_STS);
6004 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6005 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6006 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6007 if (BGE_ASICREV(sc->bge_chipid)
6008 == BGE_ASICREV_BCM5704) {
6009 BGE_CLRBIT(sc, BGE_MAC_MODE,
6010 BGE_MACMODE_TBI_SEND_CFGS);
6011 DELAY(40);
6012 }
6013 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6014 if_link_state_change(ifp, LINK_STATE_UP);
6015 }
6016 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6017 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6018 if_link_state_change(ifp, LINK_STATE_DOWN);
6019 }
6020 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6021 /*
6022 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6023 * bit in status word always set. Workaround this bug by
6024 * reading PHY link status directly.
6025 */
6026 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6027 BGE_STS_LINK : 0;
6028
6029 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6030 mii_pollstat(mii);
6031
6032 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6033 mii->mii_media_status & IFM_ACTIVE &&
6034 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6035 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6036 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6037 (!(mii->mii_media_status & IFM_ACTIVE) ||
6038 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6039 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6040 }
6041 } else {
6042 /*
6043 * For controllers that call mii_tick, we have to poll
6044 * link status.
6045 */
6046 mii_pollstat(mii);
6047 }
6048
6049 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6050 uint32_t reg, scale;
6051
6052 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6053 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6054 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6055 scale = 65;
6056 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6057 scale = 6;
6058 else
6059 scale = 12;
6060
6061 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6062 ~BGE_MISCCFG_TIMER_PRESCALER;
6063 reg |= scale << 1;
6064 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6065 }
6066 /* Clear the attention */
6067 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
6068 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
6069 BGE_MACSTAT_LINK_CHANGED);
6070 }
6071
6072 static int
6073 bge_sysctl_verify(SYSCTLFN_ARGS)
6074 {
6075 int error, t;
6076 struct sysctlnode node;
6077
6078 node = *rnode;
6079 t = *(int*)rnode->sysctl_data;
6080 node.sysctl_data = &t;
6081 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6082 if (error || newp == NULL)
6083 return error;
6084
6085 #if 0
6086 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6087 node.sysctl_num, rnode->sysctl_num));
6088 #endif
6089
6090 if (node.sysctl_num == bge_rxthresh_nodenum) {
6091 if (t < 0 || t >= NBGE_RX_THRESH)
6092 return EINVAL;
6093 bge_update_all_threshes(t);
6094 } else
6095 return EINVAL;
6096
6097 *(int*)rnode->sysctl_data = t;
6098
6099 return 0;
6100 }
6101
6102 /*
6103 * Set up sysctl(3) MIB, hw.bge.*.
6104 */
6105 static void
6106 bge_sysctl_init(struct bge_softc *sc)
6107 {
6108 int rc, bge_root_num;
6109 const struct sysctlnode *node;
6110
6111 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6112 0, CTLTYPE_NODE, "bge",
6113 SYSCTL_DESCR("BGE interface controls"),
6114 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6115 goto out;
6116 }
6117
6118 bge_root_num = node->sysctl_num;
6119
6120 /* BGE Rx interrupt mitigation level */
6121 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6122 CTLFLAG_READWRITE,
6123 CTLTYPE_INT, "rx_lvl",
6124 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6125 bge_sysctl_verify, 0,
6126 &bge_rx_thresh_lvl,
6127 0, CTL_HW, bge_root_num, CTL_CREATE,
6128 CTL_EOL)) != 0) {
6129 goto out;
6130 }
6131
6132 bge_rxthresh_nodenum = node->sysctl_num;
6133
6134 return;
6135
6136 out:
6137 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6138 }
6139
6140 #ifdef BGE_DEBUG
6141 void
6142 bge_debug_info(struct bge_softc *sc)
6143 {
6144
6145 printf("Hardware Flags:\n");
6146 if (BGE_IS_57765_PLUS(sc))
6147 printf(" - 57765 Plus\n");
6148 if (BGE_IS_5717_PLUS(sc))
6149 printf(" - 5717 Plus\n");
6150 if (BGE_IS_5755_PLUS(sc))
6151 printf(" - 5755 Plus\n");
6152 if (BGE_IS_575X_PLUS(sc))
6153 printf(" - 575X Plus\n");
6154 if (BGE_IS_5705_PLUS(sc))
6155 printf(" - 5705 Plus\n");
6156 if (BGE_IS_5714_FAMILY(sc))
6157 printf(" - 5714 Family\n");
6158 if (BGE_IS_5700_FAMILY(sc))
6159 printf(" - 5700 Family\n");
6160 if (sc->bge_flags & BGEF_IS_5788)
6161 printf(" - 5788\n");
6162 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6163 printf(" - Supports Jumbo Frames\n");
6164 if (sc->bge_flags & BGEF_NO_EEPROM)
6165 printf(" - No EEPROM\n");
6166 if (sc->bge_flags & BGEF_PCIX)
6167 printf(" - PCI-X Bus\n");
6168 if (sc->bge_flags & BGEF_PCIE)
6169 printf(" - PCI Express Bus\n");
6170 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6171 printf(" - RX Alignment Bug\n");
6172 if (sc->bge_flags & BGEF_APE)
6173 printf(" - APE\n");
6174 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6175 printf(" - CPMU\n");
6176 if (sc->bge_flags & BGEF_TSO)
6177 printf(" - TSO\n");
6178 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6179 printf(" - TAGGED_STATUS\n");
6180
6181 /* PHY related */
6182 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6183 printf(" - No 3 LEDs\n");
6184 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6185 printf(" - CRC bug\n");
6186 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6187 printf(" - ADC bug\n");
6188 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6189 printf(" - 5704 A0 bug\n");
6190 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6191 printf(" - jitter bug\n");
6192 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6193 printf(" - BER bug\n");
6194 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6195 printf(" - adjust trim\n");
6196 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6197 printf(" - no wirespeed\n");
6198
6199 /* ASF related */
6200 if (sc->bge_asf_mode & ASF_ENABLE)
6201 printf(" - ASF enable\n");
6202 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6203 printf(" - ASF new handshake\n");
6204 if (sc->bge_asf_mode & ASF_STACKUP)
6205 printf(" - ASF stackup\n");
6206 }
6207 #endif /* BGE_DEBUG */
6208
6209 static int
6210 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6211 {
6212 prop_dictionary_t dict;
6213 prop_data_t ea;
6214
6215 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6216 return 1;
6217
6218 dict = device_properties(sc->bge_dev);
6219 ea = prop_dictionary_get(dict, "mac-address");
6220 if (ea != NULL) {
6221 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6222 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6223 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6224 return 0;
6225 }
6226
6227 return 1;
6228 }
6229
6230 static int
6231 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6232 {
6233 uint32_t mac_addr;
6234
6235 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6236 if ((mac_addr >> 16) == 0x484b) {
6237 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6238 ether_addr[1] = (uint8_t)mac_addr;
6239 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6240 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6241 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6242 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6243 ether_addr[5] = (uint8_t)mac_addr;
6244 return 0;
6245 }
6246 return 1;
6247 }
6248
6249 static int
6250 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6251 {
6252 int mac_offset = BGE_EE_MAC_OFFSET;
6253
6254 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6255 mac_offset = BGE_EE_MAC_OFFSET_5906;
6256
6257 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6258 ETHER_ADDR_LEN));
6259 }
6260
6261 static int
6262 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6263 {
6264
6265 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6266 return 1;
6267
6268 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6269 ETHER_ADDR_LEN));
6270 }
6271
6272 static int
6273 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6274 {
6275 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6276 /* NOTE: Order is critical */
6277 bge_get_eaddr_fw,
6278 bge_get_eaddr_mem,
6279 bge_get_eaddr_nvram,
6280 bge_get_eaddr_eeprom,
6281 NULL
6282 };
6283 const bge_eaddr_fcn_t *func;
6284
6285 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6286 if ((*func)(sc, eaddr) == 0)
6287 break;
6288 }
6289 return (*func == NULL ? ENXIO : 0);
6290 }
6291