Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.325
      1 /*	$NetBSD: if_bge.c,v 1.325 2019/02/20 08:03:58 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.325 2019/02/20 08:03:58 msaitoh Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/systm.h>
     86 #include <sys/callout.h>
     87 #include <sys/sockio.h>
     88 #include <sys/mbuf.h>
     89 #include <sys/malloc.h>
     90 #include <sys/kernel.h>
     91 #include <sys/device.h>
     92 #include <sys/socket.h>
     93 #include <sys/sysctl.h>
     94 
     95 #include <net/if.h>
     96 #include <net/if_dl.h>
     97 #include <net/if_media.h>
     98 #include <net/if_ether.h>
     99 
    100 #include <sys/rndsource.h>
    101 
    102 #ifdef INET
    103 #include <netinet/in.h>
    104 #include <netinet/in_systm.h>
    105 #include <netinet/in_var.h>
    106 #include <netinet/ip.h>
    107 #endif
    108 
    109 /* Headers for TCP Segmentation Offload (TSO) */
    110 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    111 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    112 #include <netinet/ip.h>			/* for struct ip */
    113 #include <netinet/tcp.h>		/* for struct tcphdr */
    114 
    115 
    116 #include <net/bpf.h>
    117 
    118 #include <dev/pci/pcireg.h>
    119 #include <dev/pci/pcivar.h>
    120 #include <dev/pci/pcidevs.h>
    121 
    122 #include <dev/mii/mii.h>
    123 #include <dev/mii/miivar.h>
    124 #include <dev/mii/miidevs.h>
    125 #include <dev/mii/brgphyreg.h>
    126 
    127 #include <dev/pci/if_bgereg.h>
    128 #include <dev/pci/if_bgevar.h>
    129 
    130 #include <prop/proplib.h>
    131 
    132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    133 
    134 
    135 /*
    136  * Tunable thresholds for rx-side bge interrupt mitigation.
    137  */
    138 
    139 /*
    140  * The pairs of values below were obtained from empirical measurement
    141  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    142  * interrupt for every N packets received, where N is, approximately,
    143  * the second value (rx_max_bds) in each pair.  The values are chosen
    144  * such that moving from one pair to the succeeding pair was observed
    145  * to roughly halve interrupt rate under sustained input packet load.
    146  * The values were empirically chosen to avoid overflowing internal
    147  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    148  * results in internal wrapping and higher interrupt rates.
    149  * The limit of 46 frames was chosen to match NFS workloads.
    150  *
    151  * These values also work well on bcm5701, bcm5704C, and (less
    152  * tested) bcm5703.  On other chipsets, (including the Altima chip
    153  * family), the larger values may overflow internal chip limits,
    154  * leading to increasing interrupt rates rather than lower interrupt
    155  * rates.
    156  *
    157  * Applications using heavy interrupt mitigation (interrupting every
    158  * 32 or 46 frames) in both directions may need to increase the TCP
    159  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    160  * full link bandwidth, due to ACKs and window updates lingering
    161  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    162  */
    163 static const struct bge_load_rx_thresh {
    164 	int rx_ticks;
    165 	int rx_max_bds; }
    166 bge_rx_threshes[] = {
    167 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    168 	{ 32,   2 },
    169 	{ 50,   4 },
    170 	{ 100,  8 },
    171 	{ 192, 16 },
    172 	{ 416, 32 },
    173 	{ 598, 46 }
    174 };
    175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    176 
    177 /* XXX patchable; should be sysctl'able */
    178 static int bge_auto_thresh = 1;
    179 static int bge_rx_thresh_lvl;
    180 
    181 static int bge_rxthresh_nodenum;
    182 
    183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    184 
    185 static uint32_t bge_chipid(const struct pci_attach_args *);
    186 static int bge_can_use_msi(struct bge_softc *);
    187 static int bge_probe(device_t, cfdata_t, void *);
    188 static void bge_attach(device_t, device_t, void *);
    189 static int bge_detach(device_t, int);
    190 static void bge_release_resources(struct bge_softc *);
    191 
    192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    197 
    198 static void bge_txeof(struct bge_softc *);
    199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    200 static void bge_rxeof(struct bge_softc *);
    201 
    202 static void bge_asf_driver_up (struct bge_softc *);
    203 static void bge_tick(void *);
    204 static void bge_stats_update(struct bge_softc *);
    205 static void bge_stats_update_regs(struct bge_softc *);
    206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    207 
    208 static int bge_intr(void *);
    209 static void bge_start(struct ifnet *);
    210 static int bge_ifflags_cb(struct ethercom *);
    211 static int bge_ioctl(struct ifnet *, u_long, void *);
    212 static int bge_init(struct ifnet *);
    213 static void bge_stop(struct ifnet *, int);
    214 static void bge_watchdog(struct ifnet *);
    215 static int bge_ifmedia_upd(struct ifnet *);
    216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    217 
    218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    220 
    221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    223 static void bge_setmulti(struct bge_softc *);
    224 
    225 static void bge_handle_events(struct bge_softc *);
    226 static int bge_alloc_jumbo_mem(struct bge_softc *);
    227 #if 0 /* XXX */
    228 static void bge_free_jumbo_mem(struct bge_softc *);
    229 #endif
    230 static void *bge_jalloc(struct bge_softc *);
    231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    233 			       bus_dmamap_t);
    234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    235 static int bge_init_rx_ring_std(struct bge_softc *);
    236 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
    237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    239 static void bge_free_tx_ring(struct bge_softc *m, bool);
    240 static int bge_init_tx_ring(struct bge_softc *);
    241 
    242 static int bge_chipinit(struct bge_softc *);
    243 static int bge_blockinit(struct bge_softc *);
    244 static int bge_phy_addr(struct bge_softc *);
    245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    246 static void bge_writemem_ind(struct bge_softc *, int, int);
    247 static void bge_writembx(struct bge_softc *, int, int);
    248 static void bge_writembx_flush(struct bge_softc *, int, int);
    249 static void bge_writemem_direct(struct bge_softc *, int, int);
    250 static void bge_writereg_ind(struct bge_softc *, int, int);
    251 static void bge_set_max_readrq(struct bge_softc *);
    252 
    253 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
    254 static int bge_miibus_writereg(device_t, int, int, uint16_t);
    255 static void bge_miibus_statchg(struct ifnet *);
    256 
    257 #define BGE_RESET_SHUTDOWN	0
    258 #define	BGE_RESET_START		1
    259 #define	BGE_RESET_SUSPEND	2
    260 static void bge_sig_post_reset(struct bge_softc *, int);
    261 static void bge_sig_legacy(struct bge_softc *, int);
    262 static void bge_sig_pre_reset(struct bge_softc *, int);
    263 static void bge_wait_for_event_ack(struct bge_softc *);
    264 static void bge_stop_fw(struct bge_softc *);
    265 static int bge_reset(struct bge_softc *);
    266 static void bge_link_upd(struct bge_softc *);
    267 static void bge_sysctl_init(struct bge_softc *);
    268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    269 
    270 static void bge_ape_lock_init(struct bge_softc *);
    271 static void bge_ape_read_fw_ver(struct bge_softc *);
    272 static int bge_ape_lock(struct bge_softc *, int);
    273 static void bge_ape_unlock(struct bge_softc *, int);
    274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    275 static void bge_ape_driver_state_change(struct bge_softc *, int);
    276 
    277 #ifdef BGE_DEBUG
    278 #define DPRINTF(x)	if (bgedebug) printf x
    279 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    280 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    281 int	bgedebug = 0;
    282 int	bge_tso_debug = 0;
    283 void		bge_debug_info(struct bge_softc *);
    284 #else
    285 #define DPRINTF(x)
    286 #define DPRINTFN(n,x)
    287 #define BGE_TSO_PRINTF(x)
    288 #endif
    289 
    290 #ifdef BGE_EVENT_COUNTERS
    291 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    292 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    293 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    294 #else
    295 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    296 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    297 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    298 #endif
    299 
    300 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
    301 /*
    302  * The BCM5700 documentation seems to indicate that the hardware still has the
    303  * Alteon vendor ID burned into it, though it should always be overridden by
    304  * the value in the EEPROM.  We'll check for it anyway.
    305  */
    306 static const struct bge_product {
    307 	pci_vendor_id_t		bp_vendor;
    308 	pci_product_id_t	bp_product;
    309 	const char		*bp_name;
    310 } bge_products[] = {
    311 	{ VIDDID(ALTEON,   BCM5700),	"Broadcom BCM5700 Gigabit" },
    312 	{ VIDDID(ALTEON,   BCM5701),	"Broadcom BCM5701 Gigabit" },
    313 	{ VIDDID(ALTIMA,   AC1000),	"Altima AC1000 Gigabit" },
    314 	{ VIDDID(ALTIMA,   AC1001),	"Altima AC1001 Gigabit" },
    315 	{ VIDDID(ALTIMA,   AC1003),	"Altima AC1003 Gigabit" },
    316 	{ VIDDID(ALTIMA,   AC9100),	"Altima AC9100 Gigabit" },
    317 	{ VIDDID(APPLE,	   BCM5701),	"APPLE BCM5701 Gigabit" },
    318 	{ VIDDID(BROADCOM, BCM5700),	"Broadcom BCM5700 Gigabit" },
    319 	{ VIDDID(BROADCOM, BCM5701),	"Broadcom BCM5701 Gigabit" },
    320 	{ VIDDID(BROADCOM, BCM5702),	"Broadcom BCM5702 Gigabit" },
    321 	{ VIDDID(BROADCOM, BCM5702X),	"Broadcom BCM5702X Gigabit" },
    322 	{ VIDDID(BROADCOM, BCM5703),	"Broadcom BCM5703 Gigabit" },
    323 	{ VIDDID(BROADCOM, BCM5703X),	"Broadcom BCM5703X Gigabit" },
    324 	{ VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
    325 	{ VIDDID(BROADCOM, BCM5704C),	"Broadcom BCM5704C Dual Gigabit" },
    326 	{ VIDDID(BROADCOM, BCM5704S),	"Broadcom BCM5704S Dual Gigabit" },
    327 	{ VIDDID(BROADCOM, BCM5705),	"Broadcom BCM5705 Gigabit" },
    328 	{ VIDDID(BROADCOM, BCM5705F),	"Broadcom BCM5705F Gigabit" },
    329 	{ VIDDID(BROADCOM, BCM5705K),	"Broadcom BCM5705K Gigabit" },
    330 	{ VIDDID(BROADCOM, BCM5705M),	"Broadcom BCM5705M Gigabit" },
    331 	{ VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
    332 	{ VIDDID(BROADCOM, BCM5714),	"Broadcom BCM5714 Gigabit" },
    333 	{ VIDDID(BROADCOM, BCM5714S),	"Broadcom BCM5714S Gigabit" },
    334 	{ VIDDID(BROADCOM, BCM5715),	"Broadcom BCM5715 Gigabit" },
    335 	{ VIDDID(BROADCOM, BCM5715S),	"Broadcom BCM5715S Gigabit" },
    336 	{ VIDDID(BROADCOM, BCM5717),	"Broadcom BCM5717 Gigabit" },
    337 	{ VIDDID(BROADCOM, BCM5717C),	"Broadcom BCM5717 Gigabit" },
    338 	{ VIDDID(BROADCOM, BCM5718),	"Broadcom BCM5718 Gigabit" },
    339 	{ VIDDID(BROADCOM, BCM5719),	"Broadcom BCM5719 Gigabit" },
    340 	{ VIDDID(BROADCOM, BCM5720),	"Broadcom BCM5720 Gigabit" },
    341 	{ VIDDID(BROADCOM, BCM5721),	"Broadcom BCM5721 Gigabit" },
    342 	{ VIDDID(BROADCOM, BCM5722),	"Broadcom BCM5722 Gigabit" },
    343 	{ VIDDID(BROADCOM, BCM5723),	"Broadcom BCM5723 Gigabit" },
    344 	{ VIDDID(BROADCOM, BCM5750),	"Broadcom BCM5750 Gigabit" },
    345 	{ VIDDID(BROADCOM, BCM5751),	"Broadcom BCM5751 Gigabit" },
    346 	{ VIDDID(BROADCOM, BCM5751F),	"Broadcom BCM5751F Gigabit" },
    347 	{ VIDDID(BROADCOM, BCM5751M),	"Broadcom BCM5751M Gigabit" },
    348 	{ VIDDID(BROADCOM, BCM5752),	"Broadcom BCM5752 Gigabit" },
    349 	{ VIDDID(BROADCOM, BCM5752M),	"Broadcom BCM5752M Gigabit" },
    350 	{ VIDDID(BROADCOM, BCM5753),	"Broadcom BCM5753 Gigabit" },
    351 	{ VIDDID(BROADCOM, BCM5753F),	"Broadcom BCM5753F Gigabit" },
    352 	{ VIDDID(BROADCOM, BCM5753M),	"Broadcom BCM5753M Gigabit" },
    353 	{ VIDDID(BROADCOM, BCM5754),	"Broadcom BCM5754 Gigabit" },
    354 	{ VIDDID(BROADCOM, BCM5754M),	"Broadcom BCM5754M Gigabit" },
    355 	{ VIDDID(BROADCOM, BCM5755),	"Broadcom BCM5755 Gigabit" },
    356 	{ VIDDID(BROADCOM, BCM5755M),	"Broadcom BCM5755M Gigabit" },
    357 	{ VIDDID(BROADCOM, BCM5756),	"Broadcom BCM5756 Gigabit" },
    358 	{ VIDDID(BROADCOM, BCM5761),	"Broadcom BCM5761 Gigabit" },
    359 	{ VIDDID(BROADCOM, BCM5761E),	"Broadcom BCM5761E Gigabit" },
    360 	{ VIDDID(BROADCOM, BCM5761S),	"Broadcom BCM5761S Gigabit" },
    361 	{ VIDDID(BROADCOM, BCM5761SE),	"Broadcom BCM5761SE Gigabit" },
    362 	{ VIDDID(BROADCOM, BCM5764),	"Broadcom BCM5764 Gigabit" },
    363 	{ VIDDID(BROADCOM, BCM5780),	"Broadcom BCM5780 Gigabit" },
    364 	{ VIDDID(BROADCOM, BCM5780S),	"Broadcom BCM5780S Gigabit" },
    365 	{ VIDDID(BROADCOM, BCM5781),	"Broadcom BCM5781 Gigabit" },
    366 	{ VIDDID(BROADCOM, BCM5782),	"Broadcom BCM5782 Gigabit" },
    367 	{ VIDDID(BROADCOM, BCM5784M),	"BCM5784M NetLink 1000baseT" },
    368 	{ VIDDID(BROADCOM, BCM5785F),	"BCM5785F NetLink 10/100" },
    369 	{ VIDDID(BROADCOM, BCM5785G),	"BCM5785G NetLink 1000baseT" },
    370 	{ VIDDID(BROADCOM, BCM5786),	"Broadcom BCM5786 Gigabit" },
    371 	{ VIDDID(BROADCOM, BCM5787),	"Broadcom BCM5787 Gigabit" },
    372 	{ VIDDID(BROADCOM, BCM5787F),	"Broadcom BCM5787F 10/100" },
    373 	{ VIDDID(BROADCOM, BCM5787M),	"Broadcom BCM5787M Gigabit" },
    374 	{ VIDDID(BROADCOM, BCM5788),	"Broadcom BCM5788 Gigabit" },
    375 	{ VIDDID(BROADCOM, BCM5789),	"Broadcom BCM5789 Gigabit" },
    376 	{ VIDDID(BROADCOM, BCM5901),	"Broadcom BCM5901 Fast" },
    377 	{ VIDDID(BROADCOM, BCM5901A2),	"Broadcom BCM5901A2 Fast" },
    378 	{ VIDDID(BROADCOM, BCM5903M),	"Broadcom BCM5903M Fast" },
    379 	{ VIDDID(BROADCOM, BCM5906),	"Broadcom BCM5906 Fast" },
    380 	{ VIDDID(BROADCOM, BCM5906M),	"Broadcom BCM5906M Fast" },
    381 	{ VIDDID(BROADCOM, BCM57760),	"Broadcom BCM57760 Gigabit" },
    382 	{ VIDDID(BROADCOM, BCM57761),	"Broadcom BCM57761 Gigabit" },
    383 	{ VIDDID(BROADCOM, BCM57762),	"Broadcom BCM57762 Gigabit" },
    384 	{ VIDDID(BROADCOM, BCM57765),	"Broadcom BCM57765 Gigabit" },
    385 	{ VIDDID(BROADCOM, BCM57766),	"Broadcom BCM57766 Gigabit" },
    386 	{ VIDDID(BROADCOM, BCM57780),	"Broadcom BCM57780 Gigabit" },
    387 	{ VIDDID(BROADCOM, BCM57781),	"Broadcom BCM57781 Gigabit" },
    388 	{ VIDDID(BROADCOM, BCM57782),	"Broadcom BCM57782 Gigabit" },
    389 	{ VIDDID(BROADCOM, BCM57785),	"Broadcom BCM57785 Gigabit" },
    390 	{ VIDDID(BROADCOM, BCM57786),	"Broadcom BCM57786 Gigabit" },
    391 	{ VIDDID(BROADCOM, BCM57788),	"Broadcom BCM57788 Gigabit" },
    392 	{ VIDDID(BROADCOM, BCM57790),	"Broadcom BCM57790 Gigabit" },
    393 	{ VIDDID(BROADCOM, BCM57791),	"Broadcom BCM57791 Gigabit" },
    394 	{ VIDDID(BROADCOM, BCM57795),	"Broadcom BCM57795 Gigabit" },
    395 	{ VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
    396 	{ VIDDID(3COM, 3C996),		"3Com 3c996 Gigabit" },
    397 	{ VIDDID(FUJITSU4, PW008GE4),	"Fujitsu PW008GE4 Gigabit" },
    398 	{ VIDDID(FUJITSU4, PW008GE5),	"Fujitsu PW008GE5 Gigabit" },
    399 	{ VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
    400 	{ 0, 0, NULL },
    401 };
    402 
    403 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
    404 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
    405 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
    406 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
    407 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
    408 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
    409 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
    410 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
    411 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
    412 
    413 static const struct bge_revision {
    414 	uint32_t		br_chipid;
    415 	const char		*br_name;
    416 } bge_revisions[] = {
    417 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    418 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    419 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    420 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    421 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    422 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    423 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    424 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    425 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    426 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    427 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    428 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    429 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    430 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    431 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    432 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    433 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    434 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    435 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    436 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    437 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    438 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    439 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    440 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    441 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    442 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    443 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    444 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    445 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    446 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    447 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    448 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    449 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    450 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    451 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    452 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    453 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    454 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    455 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    456 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    457 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    458 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    459 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    460 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    461 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    462 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    463 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    464 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    465 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    466 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    467 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    468 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    469 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    470 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    471 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    472 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
    473 	/* 5754 and 5787 share the same ASIC ID */
    474 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    475 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    476 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    477 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    478 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    479 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    480 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    481 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    482 	{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
    483 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    484 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    485 
    486 	{ 0, NULL }
    487 };
    488 
    489 /*
    490  * Some defaults for major revisions, so that newer steppings
    491  * that we don't know about have a shot at working.
    492  */
    493 static const struct bge_revision bge_majorrevs[] = {
    494 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    495 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    496 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    497 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    498 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    499 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    500 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    501 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    502 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    503 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    504 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    505 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    506 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    507 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    508 	/* 5754 and 5787 share the same ASIC ID */
    509 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    510 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    511 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    512 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    513 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    514 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    515 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    516 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    517 
    518 	{ 0, NULL }
    519 };
    520 
    521 static int bge_allow_asf = 1;
    522 
    523 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    524     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    525 
    526 static uint32_t
    527 bge_readmem_ind(struct bge_softc *sc, int off)
    528 {
    529 	pcireg_t val;
    530 
    531 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    532 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    533 		return 0;
    534 
    535 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    536 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    537 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    538 	return val;
    539 }
    540 
    541 static void
    542 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    543 {
    544 
    545 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    546 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    547 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    548 }
    549 
    550 /*
    551  * PCI Express only
    552  */
    553 static void
    554 bge_set_max_readrq(struct bge_softc *sc)
    555 {
    556 	pcireg_t val;
    557 
    558 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    559 	    + PCIE_DCSR);
    560 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    561 	switch (sc->bge_expmrq) {
    562 	case 2048:
    563 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    564 		break;
    565 	case 4096:
    566 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    567 		break;
    568 	default:
    569 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    570 		break;
    571 	}
    572 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    573 	    + PCIE_DCSR, val);
    574 }
    575 
    576 #ifdef notdef
    577 static uint32_t
    578 bge_readreg_ind(struct bge_softc *sc, int off)
    579 {
    580 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    581 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    582 }
    583 #endif
    584 
    585 static void
    586 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    587 {
    588 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    589 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    590 }
    591 
    592 static void
    593 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    594 {
    595 	CSR_WRITE_4(sc, off, val);
    596 }
    597 
    598 static void
    599 bge_writembx(struct bge_softc *sc, int off, int val)
    600 {
    601 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    602 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    603 
    604 	CSR_WRITE_4(sc, off, val);
    605 }
    606 
    607 static void
    608 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    609 {
    610 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    611 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    612 
    613 	CSR_WRITE_4_FLUSH(sc, off, val);
    614 }
    615 
    616 /*
    617  * Clear all stale locks and select the lock for this driver instance.
    618  */
    619 void
    620 bge_ape_lock_init(struct bge_softc *sc)
    621 {
    622 	struct pci_attach_args *pa = &(sc->bge_pa);
    623 	uint32_t bit, regbase;
    624 	int i;
    625 
    626 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    627 		regbase = BGE_APE_LOCK_GRANT;
    628 	else
    629 		regbase = BGE_APE_PER_LOCK_GRANT;
    630 
    631 	/* Clear any stale locks. */
    632 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    633 		switch (i) {
    634 		case BGE_APE_LOCK_PHY0:
    635 		case BGE_APE_LOCK_PHY1:
    636 		case BGE_APE_LOCK_PHY2:
    637 		case BGE_APE_LOCK_PHY3:
    638 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    639 			break;
    640 		default:
    641 			if (pa->pa_function == 0)
    642 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    643 			else
    644 				bit = (1 << pa->pa_function);
    645 		}
    646 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    647 	}
    648 
    649 	/* Select the PHY lock based on the device's function number. */
    650 	switch (pa->pa_function) {
    651 	case 0:
    652 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    653 		break;
    654 	case 1:
    655 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    656 		break;
    657 	case 2:
    658 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    659 		break;
    660 	case 3:
    661 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    662 		break;
    663 	default:
    664 		printf("%s: PHY lock not supported on function\n",
    665 		    device_xname(sc->bge_dev));
    666 		break;
    667 	}
    668 }
    669 
    670 /*
    671  * Check for APE firmware, set flags, and print version info.
    672  */
    673 void
    674 bge_ape_read_fw_ver(struct bge_softc *sc)
    675 {
    676 	const char *fwtype;
    677 	uint32_t apedata, features;
    678 
    679 	/* Check for a valid APE signature in shared memory. */
    680 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    681 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    682 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    683 		return;
    684 	}
    685 
    686 	/* Check if APE firmware is running. */
    687 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    688 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    689 		printf("%s: APE signature found but FW status not ready! "
    690 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    691 		return;
    692 	}
    693 
    694 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    695 
    696 	/* Fetch the APE firwmare type and version. */
    697 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    698 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    699 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    700 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    701 		fwtype = "NCSI";
    702 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    703 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    704 		fwtype = "DASH";
    705 	} else
    706 		fwtype = "UNKN";
    707 
    708 	/* Print the APE firmware version. */
    709 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
    710 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    711 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    712 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    713 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    714 }
    715 
    716 int
    717 bge_ape_lock(struct bge_softc *sc, int locknum)
    718 {
    719 	struct pci_attach_args *pa = &(sc->bge_pa);
    720 	uint32_t bit, gnt, req, status;
    721 	int i, off;
    722 
    723 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    724 		return (0);
    725 
    726 	/* Lock request/grant registers have different bases. */
    727 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    728 		req = BGE_APE_LOCK_REQ;
    729 		gnt = BGE_APE_LOCK_GRANT;
    730 	} else {
    731 		req = BGE_APE_PER_LOCK_REQ;
    732 		gnt = BGE_APE_PER_LOCK_GRANT;
    733 	}
    734 
    735 	off = 4 * locknum;
    736 
    737 	switch (locknum) {
    738 	case BGE_APE_LOCK_GPIO:
    739 		/* Lock required when using GPIO. */
    740 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    741 			return (0);
    742 		if (pa->pa_function == 0)
    743 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    744 		else
    745 			bit = (1 << pa->pa_function);
    746 		break;
    747 	case BGE_APE_LOCK_GRC:
    748 		/* Lock required to reset the device. */
    749 		if (pa->pa_function == 0)
    750 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    751 		else
    752 			bit = (1 << pa->pa_function);
    753 		break;
    754 	case BGE_APE_LOCK_MEM:
    755 		/* Lock required when accessing certain APE memory. */
    756 		if (pa->pa_function == 0)
    757 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    758 		else
    759 			bit = (1 << pa->pa_function);
    760 		break;
    761 	case BGE_APE_LOCK_PHY0:
    762 	case BGE_APE_LOCK_PHY1:
    763 	case BGE_APE_LOCK_PHY2:
    764 	case BGE_APE_LOCK_PHY3:
    765 		/* Lock required when accessing PHYs. */
    766 		bit = BGE_APE_LOCK_REQ_DRIVER0;
    767 		break;
    768 	default:
    769 		return (EINVAL);
    770 	}
    771 
    772 	/* Request a lock. */
    773 	APE_WRITE_4_FLUSH(sc, req + off, bit);
    774 
    775 	/* Wait up to 1 second to acquire lock. */
    776 	for (i = 0; i < 20000; i++) {
    777 		status = APE_READ_4(sc, gnt + off);
    778 		if (status == bit)
    779 			break;
    780 		DELAY(50);
    781 	}
    782 
    783 	/* Handle any errors. */
    784 	if (status != bit) {
    785 		printf("%s: APE lock %d request failed! "
    786 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
    787 		    device_xname(sc->bge_dev),
    788 		    locknum, req + off, bit & 0xFFFF, gnt + off,
    789 		    status & 0xFFFF);
    790 		/* Revoke the lock request. */
    791 		APE_WRITE_4(sc, gnt + off, bit);
    792 		return (EBUSY);
    793 	}
    794 
    795 	return (0);
    796 }
    797 
    798 void
    799 bge_ape_unlock(struct bge_softc *sc, int locknum)
    800 {
    801 	struct pci_attach_args *pa = &(sc->bge_pa);
    802 	uint32_t bit, gnt;
    803 	int off;
    804 
    805 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    806 		return;
    807 
    808 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    809 		gnt = BGE_APE_LOCK_GRANT;
    810 	else
    811 		gnt = BGE_APE_PER_LOCK_GRANT;
    812 
    813 	off = 4 * locknum;
    814 
    815 	switch (locknum) {
    816 	case BGE_APE_LOCK_GPIO:
    817 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    818 			return;
    819 		if (pa->pa_function == 0)
    820 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    821 		else
    822 			bit = (1 << pa->pa_function);
    823 		break;
    824 	case BGE_APE_LOCK_GRC:
    825 		if (pa->pa_function == 0)
    826 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    827 		else
    828 			bit = (1 << pa->pa_function);
    829 		break;
    830 	case BGE_APE_LOCK_MEM:
    831 		if (pa->pa_function == 0)
    832 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    833 		else
    834 			bit = (1 << pa->pa_function);
    835 		break;
    836 	case BGE_APE_LOCK_PHY0:
    837 	case BGE_APE_LOCK_PHY1:
    838 	case BGE_APE_LOCK_PHY2:
    839 	case BGE_APE_LOCK_PHY3:
    840 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
    841 		break;
    842 	default:
    843 		return;
    844 	}
    845 
    846 	/* Write and flush for consecutive bge_ape_lock() */
    847 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
    848 }
    849 
    850 /*
    851  * Send an event to the APE firmware.
    852  */
    853 void
    854 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
    855 {
    856 	uint32_t apedata;
    857 	int i;
    858 
    859 	/* NCSI does not support APE events. */
    860 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    861 		return;
    862 
    863 	/* Wait up to 1ms for APE to service previous event. */
    864 	for (i = 10; i > 0; i--) {
    865 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
    866 			break;
    867 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
    868 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
    869 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
    870 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
    871 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    872 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
    873 			break;
    874 		}
    875 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    876 		DELAY(100);
    877 	}
    878 	if (i == 0) {
    879 		printf("%s: APE event 0x%08x send timed out\n",
    880 		    device_xname(sc->bge_dev), event);
    881 	}
    882 }
    883 
    884 void
    885 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
    886 {
    887 	uint32_t apedata, event;
    888 
    889 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    890 		return;
    891 
    892 	switch (kind) {
    893 	case BGE_RESET_START:
    894 		/* If this is the first load, clear the load counter. */
    895 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
    896 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
    897 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
    898 		else {
    899 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
    900 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
    901 		}
    902 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
    903 		    BGE_APE_HOST_SEG_SIG_MAGIC);
    904 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
    905 		    BGE_APE_HOST_SEG_LEN_MAGIC);
    906 
    907 		/* Add some version info if bge(4) supports it. */
    908 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
    909 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
    910 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
    911 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
    912 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
    913 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
    914 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    915 		    BGE_APE_HOST_DRVR_STATE_START);
    916 		event = BGE_APE_EVENT_STATUS_STATE_START;
    917 		break;
    918 	case BGE_RESET_SHUTDOWN:
    919 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    920 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
    921 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
    922 		break;
    923 	case BGE_RESET_SUSPEND:
    924 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
    925 		break;
    926 	default:
    927 		return;
    928 	}
    929 
    930 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
    931 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
    932 }
    933 
    934 static uint8_t
    935 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    936 {
    937 	uint32_t access, byte = 0;
    938 	int i;
    939 
    940 	/* Lock. */
    941 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    942 	for (i = 0; i < 8000; i++) {
    943 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    944 			break;
    945 		DELAY(20);
    946 	}
    947 	if (i == 8000)
    948 		return 1;
    949 
    950 	/* Enable access. */
    951 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    952 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    953 
    954 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    955 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    956 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    957 		DELAY(10);
    958 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    959 			DELAY(10);
    960 			break;
    961 		}
    962 	}
    963 
    964 	if (i == BGE_TIMEOUT * 10) {
    965 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    966 		return 1;
    967 	}
    968 
    969 	/* Get result. */
    970 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    971 
    972 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    973 
    974 	/* Disable access. */
    975 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    976 
    977 	/* Unlock. */
    978 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    979 
    980 	return 0;
    981 }
    982 
    983 /*
    984  * Read a sequence of bytes from NVRAM.
    985  */
    986 static int
    987 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    988 {
    989 	int error = 0, i;
    990 	uint8_t byte = 0;
    991 
    992 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
    993 		return 1;
    994 
    995 	for (i = 0; i < cnt; i++) {
    996 		error = bge_nvram_getbyte(sc, off + i, &byte);
    997 		if (error)
    998 			break;
    999 		*(dest + i) = byte;
   1000 	}
   1001 
   1002 	return (error ? 1 : 0);
   1003 }
   1004 
   1005 /*
   1006  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1007  * BCM570x supports both the traditional bitbang interface and an
   1008  * auto access interface for reading the EEPROM. We use the auto
   1009  * access method.
   1010  */
   1011 static uint8_t
   1012 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1013 {
   1014 	int i;
   1015 	uint32_t byte = 0;
   1016 
   1017 	/*
   1018 	 * Enable use of auto EEPROM access so we can avoid
   1019 	 * having to use the bitbang method.
   1020 	 */
   1021 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1022 
   1023 	/* Reset the EEPROM, load the clock period. */
   1024 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   1025 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1026 	DELAY(20);
   1027 
   1028 	/* Issue the read EEPROM command. */
   1029 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1030 
   1031 	/* Wait for completion */
   1032 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1033 		DELAY(10);
   1034 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1035 			break;
   1036 	}
   1037 
   1038 	if (i == BGE_TIMEOUT * 10) {
   1039 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1040 		return 1;
   1041 	}
   1042 
   1043 	/* Get result. */
   1044 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1045 
   1046 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1047 
   1048 	return 0;
   1049 }
   1050 
   1051 /*
   1052  * Read a sequence of bytes from the EEPROM.
   1053  */
   1054 static int
   1055 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1056 {
   1057 	int error = 0, i;
   1058 	uint8_t byte = 0;
   1059 	char *dest = destv;
   1060 
   1061 	for (i = 0; i < cnt; i++) {
   1062 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1063 		if (error)
   1064 			break;
   1065 		*(dest + i) = byte;
   1066 	}
   1067 
   1068 	return (error ? 1 : 0);
   1069 }
   1070 
   1071 static int
   1072 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
   1073 {
   1074 	struct bge_softc *sc = device_private(dev);
   1075 	uint32_t data;
   1076 	uint32_t autopoll;
   1077 	int rv = 0;
   1078 	int i;
   1079 
   1080 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1081 		return -1;
   1082 
   1083 	/* Reading with autopolling on may trigger PCI errors */
   1084 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1085 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1086 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1087 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1088 		DELAY(80);
   1089 	}
   1090 
   1091 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1092 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1093 
   1094 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1095 		delay(10);
   1096 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1097 		if (!(data & BGE_MICOMM_BUSY)) {
   1098 			DELAY(5);
   1099 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1100 			break;
   1101 		}
   1102 	}
   1103 
   1104 	if (i == BGE_TIMEOUT) {
   1105 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1106 		rv = ETIMEDOUT;
   1107 	} else if ((data & BGE_MICOMM_READFAIL) != 0)
   1108 		rv = -1;
   1109 	else
   1110 		*val = data & BGE_MICOMM_DATA;
   1111 
   1112 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1113 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1114 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1115 		DELAY(80);
   1116 	}
   1117 
   1118 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1119 
   1120 	return rv;
   1121 }
   1122 
   1123 static int
   1124 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
   1125 {
   1126 	struct bge_softc *sc = device_private(dev);
   1127 	uint32_t autopoll;
   1128 	int i;
   1129 
   1130 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1131 	    (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
   1132 		return 0;
   1133 
   1134 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1135 		return -1;
   1136 
   1137 	/* Reading with autopolling on may trigger PCI errors */
   1138 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1139 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1140 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1141 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1142 		DELAY(80);
   1143 	}
   1144 
   1145 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1146 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1147 
   1148 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1149 		delay(10);
   1150 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1151 			delay(5);
   1152 			CSR_READ_4(sc, BGE_MI_COMM);
   1153 			break;
   1154 		}
   1155 	}
   1156 
   1157 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1158 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1159 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1160 		delay(80);
   1161 	}
   1162 
   1163 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1164 
   1165 	if (i == BGE_TIMEOUT) {
   1166 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1167 		return ETIMEDOUT;
   1168 	}
   1169 
   1170 	return 0;
   1171 }
   1172 
   1173 static void
   1174 bge_miibus_statchg(struct ifnet *ifp)
   1175 {
   1176 	struct bge_softc *sc = ifp->if_softc;
   1177 	struct mii_data *mii = &sc->bge_mii;
   1178 	uint32_t mac_mode, rx_mode, tx_mode;
   1179 
   1180 	/*
   1181 	 * Get flow control negotiation result.
   1182 	 */
   1183 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1184 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
   1185 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1186 
   1187 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1188 	    mii->mii_media_status & IFM_ACTIVE &&
   1189 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   1190 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
   1191 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1192 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
   1193 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   1194 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   1195 
   1196 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   1197 		return;
   1198 
   1199 	/* Set the port mode (MII/GMII) to match the link speed. */
   1200 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1201 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1202 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1203 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1204 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1205 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1206 		mac_mode |= BGE_PORTMODE_GMII;
   1207 	else
   1208 		mac_mode |= BGE_PORTMODE_MII;
   1209 
   1210 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1211 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1212 	if ((mii->mii_media_active & IFM_FDX) != 0) {
   1213 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1214 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1215 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1216 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1217 	} else
   1218 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1219 
   1220 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1221 	DELAY(40);
   1222 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1223 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1224 }
   1225 
   1226 /*
   1227  * Update rx threshold levels to values in a particular slot
   1228  * of the interrupt-mitigation table bge_rx_threshes.
   1229  */
   1230 static void
   1231 bge_set_thresh(struct ifnet *ifp, int lvl)
   1232 {
   1233 	struct bge_softc *sc = ifp->if_softc;
   1234 	int s;
   1235 
   1236 	/* For now, just save the new Rx-intr thresholds and record
   1237 	 * that a threshold update is pending.  Updating the hardware
   1238 	 * registers here (even at splhigh()) is observed to
   1239 	 * occasionaly cause glitches where Rx-interrupts are not
   1240 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1241 	 */
   1242 	s = splnet();
   1243 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1244 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1245 	sc->bge_pending_rxintr_change = 1;
   1246 	splx(s);
   1247 }
   1248 
   1249 
   1250 /*
   1251  * Update Rx thresholds of all bge devices
   1252  */
   1253 static void
   1254 bge_update_all_threshes(int lvl)
   1255 {
   1256 	struct ifnet *ifp;
   1257 	const char * const namebuf = "bge";
   1258 	int namelen;
   1259 	int s;
   1260 
   1261 	if (lvl < 0)
   1262 		lvl = 0;
   1263 	else if (lvl >= NBGE_RX_THRESH)
   1264 		lvl = NBGE_RX_THRESH - 1;
   1265 
   1266 	namelen = strlen(namebuf);
   1267 	/*
   1268 	 * Now search all the interfaces for this name/number
   1269 	 */
   1270 	s = pserialize_read_enter();
   1271 	IFNET_READER_FOREACH(ifp) {
   1272 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1273 		      continue;
   1274 		/* We got a match: update if doing auto-threshold-tuning */
   1275 		if (bge_auto_thresh)
   1276 			bge_set_thresh(ifp, lvl);
   1277 	}
   1278 	pserialize_read_exit(s);
   1279 }
   1280 
   1281 /*
   1282  * Handle events that have triggered interrupts.
   1283  */
   1284 static void
   1285 bge_handle_events(struct bge_softc *sc)
   1286 {
   1287 
   1288 	return;
   1289 }
   1290 
   1291 /*
   1292  * Memory management for jumbo frames.
   1293  */
   1294 
   1295 static int
   1296 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1297 {
   1298 	char *ptr, *kva;
   1299 	bus_dma_segment_t	seg;
   1300 	int		i, rseg, state, error;
   1301 	struct bge_jpool_entry   *entry;
   1302 
   1303 	state = error = 0;
   1304 
   1305 	/* Grab a big chunk o' storage. */
   1306 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1307 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1308 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1309 		return ENOBUFS;
   1310 	}
   1311 
   1312 	state = 1;
   1313 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1314 	    BUS_DMA_NOWAIT)) {
   1315 		aprint_error_dev(sc->bge_dev,
   1316 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1317 		error = ENOBUFS;
   1318 		goto out;
   1319 	}
   1320 
   1321 	state = 2;
   1322 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1323 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1324 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1325 		error = ENOBUFS;
   1326 		goto out;
   1327 	}
   1328 
   1329 	state = 3;
   1330 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1331 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1332 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1333 		error = ENOBUFS;
   1334 		goto out;
   1335 	}
   1336 
   1337 	state = 4;
   1338 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1339 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1340 
   1341 	SLIST_INIT(&sc->bge_jfree_listhead);
   1342 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1343 
   1344 	/*
   1345 	 * Now divide it up into 9K pieces and save the addresses
   1346 	 * in an array.
   1347 	 */
   1348 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1349 	for (i = 0; i < BGE_JSLOTS; i++) {
   1350 		sc->bge_cdata.bge_jslots[i] = ptr;
   1351 		ptr += BGE_JLEN;
   1352 		entry = malloc(sizeof(struct bge_jpool_entry),
   1353 		    M_DEVBUF, M_NOWAIT);
   1354 		if (entry == NULL) {
   1355 			aprint_error_dev(sc->bge_dev,
   1356 			    "no memory for jumbo buffer queue!\n");
   1357 			error = ENOBUFS;
   1358 			goto out;
   1359 		}
   1360 		entry->slot = i;
   1361 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1362 				 entry, jpool_entries);
   1363 	}
   1364 out:
   1365 	if (error != 0) {
   1366 		switch (state) {
   1367 		case 4:
   1368 			bus_dmamap_unload(sc->bge_dmatag,
   1369 			    sc->bge_cdata.bge_rx_jumbo_map);
   1370 			/* FALLTHROUGH */
   1371 		case 3:
   1372 			bus_dmamap_destroy(sc->bge_dmatag,
   1373 			    sc->bge_cdata.bge_rx_jumbo_map);
   1374 			/* FALLTHROUGH */
   1375 		case 2:
   1376 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1377 			/* FALLTHROUGH */
   1378 		case 1:
   1379 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1380 			break;
   1381 		default:
   1382 			break;
   1383 		}
   1384 	}
   1385 
   1386 	return error;
   1387 }
   1388 
   1389 /*
   1390  * Allocate a jumbo buffer.
   1391  */
   1392 static void *
   1393 bge_jalloc(struct bge_softc *sc)
   1394 {
   1395 	struct bge_jpool_entry   *entry;
   1396 
   1397 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1398 
   1399 	if (entry == NULL) {
   1400 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1401 		return NULL;
   1402 	}
   1403 
   1404 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1405 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1406 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1407 }
   1408 
   1409 /*
   1410  * Release a jumbo buffer.
   1411  */
   1412 static void
   1413 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1414 {
   1415 	struct bge_jpool_entry *entry;
   1416 	struct bge_softc *sc;
   1417 	int i, s;
   1418 
   1419 	/* Extract the softc struct pointer. */
   1420 	sc = (struct bge_softc *)arg;
   1421 
   1422 	if (sc == NULL)
   1423 		panic("bge_jfree: can't find softc pointer!");
   1424 
   1425 	/* calculate the slot this buffer belongs to */
   1426 
   1427 	i = ((char *)buf
   1428 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1429 
   1430 	if ((i < 0) || (i >= BGE_JSLOTS))
   1431 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1432 
   1433 	s = splvm();
   1434 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1435 	if (entry == NULL)
   1436 		panic("bge_jfree: buffer not in use!");
   1437 	entry->slot = i;
   1438 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1439 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1440 
   1441 	if (__predict_true(m != NULL))
   1442   		pool_cache_put(mb_cache, m);
   1443 	splx(s);
   1444 }
   1445 
   1446 
   1447 /*
   1448  * Initialize a standard receive ring descriptor.
   1449  */
   1450 static int
   1451 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1452     bus_dmamap_t dmamap)
   1453 {
   1454 	struct mbuf		*m_new = NULL;
   1455 	struct bge_rx_bd	*r;
   1456 	int			error;
   1457 
   1458 	if (dmamap == NULL)
   1459 		dmamap = sc->bge_cdata.bge_rx_std_map[i];
   1460 
   1461 	if (dmamap == NULL) {
   1462 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1463 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1464 		if (error != 0)
   1465 			return error;
   1466 	}
   1467 
   1468 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1469 
   1470 	if (m == NULL) {
   1471 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1472 		if (m_new == NULL)
   1473 			return ENOBUFS;
   1474 
   1475 		MCLGET(m_new, M_DONTWAIT);
   1476 		if (!(m_new->m_flags & M_EXT)) {
   1477 			m_freem(m_new);
   1478 			return ENOBUFS;
   1479 		}
   1480 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1481 
   1482 	} else {
   1483 		m_new = m;
   1484 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1485 		m_new->m_data = m_new->m_ext.ext_buf;
   1486 	}
   1487 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1488 	    m_adj(m_new, ETHER_ALIGN);
   1489 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1490 	    BUS_DMA_READ|BUS_DMA_NOWAIT)) {
   1491 		m_freem(m_new);
   1492 		return ENOBUFS;
   1493 	}
   1494 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1495 	    BUS_DMASYNC_PREREAD);
   1496 
   1497 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1498 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1499 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1500 	r->bge_flags = BGE_RXBDFLAG_END;
   1501 	r->bge_len = m_new->m_len;
   1502 	r->bge_idx = i;
   1503 
   1504 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1505 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1506 		i * sizeof (struct bge_rx_bd),
   1507 	    sizeof (struct bge_rx_bd),
   1508 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1509 
   1510 	return 0;
   1511 }
   1512 
   1513 /*
   1514  * Initialize a jumbo receive ring descriptor. This allocates
   1515  * a jumbo buffer from the pool managed internally by the driver.
   1516  */
   1517 static int
   1518 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1519 {
   1520 	struct mbuf *m_new = NULL;
   1521 	struct bge_rx_bd *r;
   1522 	void *buf = NULL;
   1523 
   1524 	if (m == NULL) {
   1525 
   1526 		/* Allocate the mbuf. */
   1527 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1528 		if (m_new == NULL)
   1529 			return ENOBUFS;
   1530 
   1531 		/* Allocate the jumbo buffer */
   1532 		buf = bge_jalloc(sc);
   1533 		if (buf == NULL) {
   1534 			m_freem(m_new);
   1535 			aprint_error_dev(sc->bge_dev,
   1536 			    "jumbo allocation failed -- packet dropped!\n");
   1537 			return ENOBUFS;
   1538 		}
   1539 
   1540 		/* Attach the buffer to the mbuf. */
   1541 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1542 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1543 		    bge_jfree, sc);
   1544 		m_new->m_flags |= M_EXT_RW;
   1545 	} else {
   1546 		m_new = m;
   1547 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1548 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1549 	}
   1550 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1551 	    m_adj(m_new, ETHER_ALIGN);
   1552 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1553 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1554 	    BUS_DMASYNC_PREREAD);
   1555 	/* Set up the descriptor. */
   1556 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1557 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1558 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1559 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1560 	r->bge_len = m_new->m_len;
   1561 	r->bge_idx = i;
   1562 
   1563 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1564 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1565 		i * sizeof (struct bge_rx_bd),
   1566 	    sizeof (struct bge_rx_bd),
   1567 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1568 
   1569 	return 0;
   1570 }
   1571 
   1572 /*
   1573  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1574  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1575  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1576  * the NIC.
   1577  */
   1578 static int
   1579 bge_init_rx_ring_std(struct bge_softc *sc)
   1580 {
   1581 	int i;
   1582 
   1583 	if (sc->bge_flags & BGEF_RXRING_VALID)
   1584 		return 0;
   1585 
   1586 	for (i = 0; i < BGE_SSLOTS; i++) {
   1587 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1588 			return ENOBUFS;
   1589 	}
   1590 
   1591 	sc->bge_std = i - 1;
   1592 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1593 
   1594 	sc->bge_flags |= BGEF_RXRING_VALID;
   1595 
   1596 	return 0;
   1597 }
   1598 
   1599 static void
   1600 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
   1601 {
   1602 	int i;
   1603 
   1604 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
   1605 		return;
   1606 
   1607 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1608 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1609 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1610 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1611 			if (disable) {
   1612 				bus_dmamap_destroy(sc->bge_dmatag,
   1613 				    sc->bge_cdata.bge_rx_std_map[i]);
   1614 				sc->bge_cdata.bge_rx_std_map[i] = NULL;
   1615 			}
   1616 		}
   1617 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1618 		    sizeof(struct bge_rx_bd));
   1619 	}
   1620 
   1621 	sc->bge_flags &= ~BGEF_RXRING_VALID;
   1622 }
   1623 
   1624 static int
   1625 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1626 {
   1627 	int i;
   1628 	volatile struct bge_rcb *rcb;
   1629 
   1630 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
   1631 		return 0;
   1632 
   1633 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1634 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1635 			return ENOBUFS;
   1636 	}
   1637 
   1638 	sc->bge_jumbo = i - 1;
   1639 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
   1640 
   1641 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1642 	rcb->bge_maxlen_flags = 0;
   1643 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1644 
   1645 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1646 
   1647 	return 0;
   1648 }
   1649 
   1650 static void
   1651 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1652 {
   1653 	int i;
   1654 
   1655 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
   1656 		return;
   1657 
   1658 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1659 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1660 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1661 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1662 		}
   1663 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1664 		    sizeof(struct bge_rx_bd));
   1665 	}
   1666 
   1667 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
   1668 }
   1669 
   1670 static void
   1671 bge_free_tx_ring(struct bge_softc *sc, bool disable)
   1672 {
   1673 	int i;
   1674 	struct txdmamap_pool_entry *dma;
   1675 
   1676 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
   1677 		return;
   1678 
   1679 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1680 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1681 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1682 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1683 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1684 					    link);
   1685 			sc->txdma[i] = 0;
   1686 		}
   1687 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1688 		    sizeof(struct bge_tx_bd));
   1689 	}
   1690 
   1691 	if (disable) {
   1692 		while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1693 			SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1694 			bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1695 			if (sc->bge_dma64) {
   1696 				bus_dmamap_destroy(sc->bge_dmatag32,
   1697 				    dma->dmamap32);
   1698 			}
   1699 			free(dma, M_DEVBUF);
   1700 		}
   1701 		SLIST_INIT(&sc->txdma_list);
   1702 	}
   1703 
   1704 	sc->bge_flags &= ~BGEF_TXRING_VALID;
   1705 }
   1706 
   1707 static int
   1708 bge_init_tx_ring(struct bge_softc *sc)
   1709 {
   1710 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1711 	int i;
   1712 	bus_dmamap_t dmamap, dmamap32;
   1713 	bus_size_t maxsegsz;
   1714 	struct txdmamap_pool_entry *dma;
   1715 
   1716 	if (sc->bge_flags & BGEF_TXRING_VALID)
   1717 		return 0;
   1718 
   1719 	sc->bge_txcnt = 0;
   1720 	sc->bge_tx_saved_considx = 0;
   1721 
   1722 	/* Initialize transmit producer index for host-memory send ring. */
   1723 	sc->bge_tx_prodidx = 0;
   1724 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1725 	/* 5700 b2 errata */
   1726 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1727 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1728 
   1729 	/* NIC-memory send ring not used; initialize to zero. */
   1730 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1731 	/* 5700 b2 errata */
   1732 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1733 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1734 
   1735 	/* Limit DMA segment size for some chips */
   1736 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
   1737 	    (ifp->if_mtu <= ETHERMTU))
   1738 		maxsegsz = 2048;
   1739 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   1740 		maxsegsz = 4096;
   1741 	else
   1742 		maxsegsz = ETHER_MAX_LEN_JUMBO;
   1743 
   1744 	if (SLIST_FIRST(&sc->txdma_list) != NULL)
   1745 		goto alloc_done;
   1746 
   1747 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1748 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1749 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1750 		    &dmamap))
   1751 			return ENOBUFS;
   1752 		if (dmamap == NULL)
   1753 			panic("dmamap NULL in bge_init_tx_ring");
   1754 		if (sc->bge_dma64) {
   1755 			if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
   1756 			    BGE_NTXSEG, maxsegsz, 0,
   1757 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1758 			    &dmamap32)) {
   1759 				bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1760 				return ENOBUFS;
   1761 			}
   1762 			if (dmamap32 == NULL)
   1763 				panic("dmamap32 NULL in bge_init_tx_ring");
   1764 		} else
   1765 			dmamap32 = dmamap;
   1766 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1767 		if (dma == NULL) {
   1768 			aprint_error_dev(sc->bge_dev,
   1769 			    "can't alloc txdmamap_pool_entry\n");
   1770 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1771 			if (sc->bge_dma64)
   1772 				bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
   1773 			return ENOMEM;
   1774 		}
   1775 		dma->dmamap = dmamap;
   1776 		dma->dmamap32 = dmamap32;
   1777 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1778 	}
   1779 alloc_done:
   1780 	sc->bge_flags |= BGEF_TXRING_VALID;
   1781 
   1782 	return 0;
   1783 }
   1784 
   1785 static void
   1786 bge_setmulti(struct bge_softc *sc)
   1787 {
   1788 	struct ethercom		*ac = &sc->ethercom;
   1789 	struct ifnet		*ifp = &ac->ec_if;
   1790 	struct ether_multi	*enm;
   1791 	struct ether_multistep  step;
   1792 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1793 	uint32_t		h;
   1794 	int			i;
   1795 
   1796 	if (ifp->if_flags & IFF_PROMISC)
   1797 		goto allmulti;
   1798 
   1799 	/* Now program new ones. */
   1800 	ETHER_FIRST_MULTI(step, ac, enm);
   1801 	while (enm != NULL) {
   1802 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1803 			/*
   1804 			 * We must listen to a range of multicast addresses.
   1805 			 * For now, just accept all multicasts, rather than
   1806 			 * trying to set only those filter bits needed to match
   1807 			 * the range.  (At this time, the only use of address
   1808 			 * ranges is for IP multicast routing, for which the
   1809 			 * range is big enough to require all bits set.)
   1810 			 */
   1811 			goto allmulti;
   1812 		}
   1813 
   1814 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1815 
   1816 		/* Just want the 7 least-significant bits. */
   1817 		h &= 0x7f;
   1818 
   1819 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1820 		ETHER_NEXT_MULTI(step, enm);
   1821 	}
   1822 
   1823 	ifp->if_flags &= ~IFF_ALLMULTI;
   1824 	goto setit;
   1825 
   1826  allmulti:
   1827 	ifp->if_flags |= IFF_ALLMULTI;
   1828 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1829 
   1830  setit:
   1831 	for (i = 0; i < 4; i++)
   1832 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1833 }
   1834 
   1835 static void
   1836 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1837 {
   1838 
   1839 	/*
   1840 	 * Some chips don't like this so only do this if ASF is enabled
   1841 	 */
   1842 	if (sc->bge_asf_mode)
   1843 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   1844 
   1845 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1846 		switch (type) {
   1847 		case BGE_RESET_START:
   1848 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1849 			    BGE_FW_DRV_STATE_START);
   1850 			break;
   1851 		case BGE_RESET_SHUTDOWN:
   1852 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1853 			    BGE_FW_DRV_STATE_UNLOAD);
   1854 			break;
   1855 		case BGE_RESET_SUSPEND:
   1856 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1857 			    BGE_FW_DRV_STATE_SUSPEND);
   1858 			break;
   1859 		}
   1860 	}
   1861 
   1862 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   1863 		bge_ape_driver_state_change(sc, type);
   1864 }
   1865 
   1866 static void
   1867 bge_sig_post_reset(struct bge_softc *sc, int type)
   1868 {
   1869 
   1870 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1871 		switch (type) {
   1872 		case BGE_RESET_START:
   1873 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1874 			    BGE_FW_DRV_STATE_START_DONE);
   1875 			/* START DONE */
   1876 			break;
   1877 		case BGE_RESET_SHUTDOWN:
   1878 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1879 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   1880 			break;
   1881 		}
   1882 	}
   1883 
   1884 	if (type == BGE_RESET_SHUTDOWN)
   1885 		bge_ape_driver_state_change(sc, type);
   1886 }
   1887 
   1888 static void
   1889 bge_sig_legacy(struct bge_softc *sc, int type)
   1890 {
   1891 
   1892 	if (sc->bge_asf_mode) {
   1893 		switch (type) {
   1894 		case BGE_RESET_START:
   1895 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1896 			    BGE_FW_DRV_STATE_START);
   1897 			break;
   1898 		case BGE_RESET_SHUTDOWN:
   1899 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1900 			    BGE_FW_DRV_STATE_UNLOAD);
   1901 			break;
   1902 		}
   1903 	}
   1904 }
   1905 
   1906 static void
   1907 bge_wait_for_event_ack(struct bge_softc *sc)
   1908 {
   1909 	int i;
   1910 
   1911 	/* wait up to 2500usec */
   1912 	for (i = 0; i < 250; i++) {
   1913 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   1914 			BGE_RX_CPU_DRV_EVENT))
   1915 			break;
   1916 		DELAY(10);
   1917 	}
   1918 }
   1919 
   1920 static void
   1921 bge_stop_fw(struct bge_softc *sc)
   1922 {
   1923 
   1924 	if (sc->bge_asf_mode) {
   1925 		bge_wait_for_event_ack(sc);
   1926 
   1927 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   1928 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   1929 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   1930 
   1931 		bge_wait_for_event_ack(sc);
   1932 	}
   1933 }
   1934 
   1935 static int
   1936 bge_poll_fw(struct bge_softc *sc)
   1937 {
   1938 	uint32_t val;
   1939 	int i;
   1940 
   1941 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1942 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1943 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1944 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1945 				break;
   1946 			DELAY(100);
   1947 		}
   1948 		if (i >= BGE_TIMEOUT) {
   1949 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   1950 			return -1;
   1951 		}
   1952 	} else {
   1953 		/*
   1954 		 * Poll the value location we just wrote until
   1955 		 * we see the 1's complement of the magic number.
   1956 		 * This indicates that the firmware initialization
   1957 		 * is complete.
   1958 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   1959 		 */
   1960 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1961 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   1962 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   1963 				break;
   1964 			DELAY(10);
   1965 		}
   1966 
   1967 		if ((i >= BGE_TIMEOUT)
   1968 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
   1969 			aprint_error_dev(sc->bge_dev,
   1970 			    "firmware handshake timed out, val = %x\n", val);
   1971 			return -1;
   1972 		}
   1973 	}
   1974 
   1975 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   1976 		/* tg3 says we have to wait extra time */
   1977 		delay(10 * 1000);
   1978 	}
   1979 
   1980 	return 0;
   1981 }
   1982 
   1983 int
   1984 bge_phy_addr(struct bge_softc *sc)
   1985 {
   1986 	struct pci_attach_args *pa = &(sc->bge_pa);
   1987 	int phy_addr = 1;
   1988 
   1989 	/*
   1990 	 * PHY address mapping for various devices.
   1991 	 *
   1992 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   1993 	 * ---------+-------+-------+-------+-------+
   1994 	 * BCM57XX  |   1   |   X   |   X   |   X   |
   1995 	 * BCM5704  |   1   |   X   |   1   |   X   |
   1996 	 * BCM5717  |   1   |   8   |   2   |   9   |
   1997 	 * BCM5719  |   1   |   8   |   2   |   9   |
   1998 	 * BCM5720  |   1   |   8   |   2   |   9   |
   1999 	 *
   2000 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2001 	 * ---------+-------+-------+-------+-------+
   2002 	 * BCM57XX  |   X   |   X   |   X   |   X   |
   2003 	 * BCM5704  |   X   |   X   |   X   |   X   |
   2004 	 * BCM5717  |   X   |   X   |   X   |   X   |
   2005 	 * BCM5719  |   3   |   10  |   4   |   11  |
   2006 	 * BCM5720  |   X   |   X   |   X   |   X   |
   2007 	 *
   2008 	 * Other addresses may respond but they are not
   2009 	 * IEEE compliant PHYs and should be ignored.
   2010 	 */
   2011 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2012 	case BGE_ASICREV_BCM5717:
   2013 	case BGE_ASICREV_BCM5719:
   2014 	case BGE_ASICREV_BCM5720:
   2015 		phy_addr = pa->pa_function;
   2016 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2017 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2018 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2019 		} else {
   2020 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2021 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2022 		}
   2023 	}
   2024 
   2025 	return phy_addr;
   2026 }
   2027 
   2028 /*
   2029  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2030  * self-test results.
   2031  */
   2032 static int
   2033 bge_chipinit(struct bge_softc *sc)
   2034 {
   2035 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
   2036 	int i;
   2037 
   2038 	/* Set endianness before we access any non-PCI registers. */
   2039 	misc_ctl = BGE_INIT;
   2040 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   2041 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
   2042 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2043 	    misc_ctl);
   2044 
   2045 	/*
   2046 	 * Clear the MAC statistics block in the NIC's
   2047 	 * internal memory.
   2048 	 */
   2049 	for (i = BGE_STATS_BLOCK;
   2050 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2051 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2052 
   2053 	for (i = BGE_STATUS_BLOCK;
   2054 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2055 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2056 
   2057 	/* 5717 workaround from tg3 */
   2058 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2059 		/* Save */
   2060 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2061 
   2062 		/* Temporary modify MODE_CTL to control TLP */
   2063 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2064 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2065 
   2066 		/* Control TLP */
   2067 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2068 		    BGE_TLP_PHYCTL1);
   2069 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2070 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2071 
   2072 		/* Restore */
   2073 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2074 	}
   2075 
   2076 	if (BGE_IS_57765_FAMILY(sc)) {
   2077 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2078 			/* Save */
   2079 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2080 
   2081 			/* Temporary modify MODE_CTL to control TLP */
   2082 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2083 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2084 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2085 
   2086 			/* Control TLP */
   2087 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2088 			    BGE_TLP_PHYCTL5);
   2089 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2090 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2091 
   2092 			/* Restore */
   2093 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2094 		}
   2095 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2096 			/*
   2097 			 * For the 57766 and non Ax versions of 57765, bootcode
   2098 			 * needs to setup the PCIE Fast Training Sequence (FTS)
   2099 			 * value to prevent transmit hangs.
   2100 			 */
   2101 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2102 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2103 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2104 
   2105 			/* Save */
   2106 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2107 
   2108 			/* Temporary modify MODE_CTL to control TLP */
   2109 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2110 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2111 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2112 
   2113 			/* Control TLP */
   2114 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2115 			    BGE_TLP_FTSMAX);
   2116 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2117 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2118 			    reg | BGE_TLP_FTSMAX_VAL);
   2119 
   2120 			/* Restore */
   2121 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2122 		}
   2123 
   2124 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2125 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2126 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2127 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2128 	}
   2129 
   2130 	/* Set up the PCI DMA control register. */
   2131 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2132 	if (sc->bge_flags & BGEF_PCIE) {
   2133 		/* Read watermark not used, 128 bytes for write. */
   2134 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2135 		    device_xname(sc->bge_dev)));
   2136 		if (sc->bge_mps >= 256)
   2137 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2138 		else
   2139 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2140 	} else if (sc->bge_flags & BGEF_PCIX) {
   2141 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2142 		    device_xname(sc->bge_dev)));
   2143 		/* PCI-X bus */
   2144 		if (BGE_IS_5714_FAMILY(sc)) {
   2145 			/* 256 bytes for read and write. */
   2146 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2147 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2148 
   2149 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2150 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2151 			else
   2152 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2153 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   2154 			/*
   2155 			 * In the BCM5703, the DMA read watermark should
   2156 			 * be set to less than or equal to the maximum
   2157 			 * memory read byte count of the PCI-X command
   2158 			 * register.
   2159 			 */
   2160 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
   2161 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2162 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2163 			/* 1536 bytes for read, 384 bytes for write. */
   2164 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2165 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2166 		} else {
   2167 			/* 384 bytes for read and write. */
   2168 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2169 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2170 			    (0x0F);
   2171 		}
   2172 
   2173 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2174 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2175 			uint32_t tmp;
   2176 
   2177 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2178 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2179 			if (tmp == 6 || tmp == 7)
   2180 				dma_rw_ctl |=
   2181 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2182 
   2183 			/* Set PCI-X DMA write workaround. */
   2184 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2185 		}
   2186 	} else {
   2187 		/* Conventional PCI bus: 256 bytes for read and write. */
   2188 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2189 		    device_xname(sc->bge_dev)));
   2190 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2191 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2192 
   2193 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2194 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2195 			dma_rw_ctl |= 0x0F;
   2196 	}
   2197 
   2198 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2199 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2200 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2201 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2202 
   2203 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2204 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2205 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2206 
   2207 	if (BGE_IS_57765_PLUS(sc)) {
   2208 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2209 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2210 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2211 
   2212 		/*
   2213 		 * Enable HW workaround for controllers that misinterpret
   2214 		 * a status tag update and leave interrupts permanently
   2215 		 * disabled.
   2216 		 */
   2217 		if (!BGE_IS_57765_FAMILY(sc) &&
   2218 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
   2219 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2220 	}
   2221 
   2222 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2223 	    dma_rw_ctl);
   2224 
   2225 	/*
   2226 	 * Set up general mode register.
   2227 	 */
   2228 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2229 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2230 		/* Retain Host-2-BMC settings written by APE firmware. */
   2231 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2232 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2233 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2234 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2235 	}
   2236 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2237 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2238 
   2239 	/*
   2240 	 * BCM5701 B5 have a bug causing data corruption when using
   2241 	 * 64-bit DMA reads, which can be terminated early and then
   2242 	 * completed later as 32-bit accesses, in combination with
   2243 	 * certain bridges.
   2244 	 */
   2245 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2246 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2247 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2248 
   2249 	/*
   2250 	 * Tell the firmware the driver is running
   2251 	 */
   2252 	if (sc->bge_asf_mode & ASF_STACKUP)
   2253 		mode_ctl |= BGE_MODECTL_STACKUP;
   2254 
   2255 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2256 
   2257 	/*
   2258 	 * Disable memory write invalidate.  Apparently it is not supported
   2259 	 * properly by these devices.
   2260 	 */
   2261 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2262 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2263 
   2264 #ifdef __brokenalpha__
   2265 	/*
   2266 	 * Must insure that we do not cross an 8K (bytes) boundary
   2267 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2268 	 * restriction on some ALPHA platforms with early revision
   2269 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2270 	 */
   2271 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2272 #endif
   2273 
   2274 	/* Set the timer prescaler (always 66MHz) */
   2275 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2276 
   2277 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2278 		DELAY(40);	/* XXX */
   2279 
   2280 		/* Put PHY into ready state */
   2281 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2282 		DELAY(40);
   2283 	}
   2284 
   2285 	return 0;
   2286 }
   2287 
   2288 static int
   2289 bge_blockinit(struct bge_softc *sc)
   2290 {
   2291 	volatile struct bge_rcb	 *rcb;
   2292 	bus_size_t rcb_addr;
   2293 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2294 	bge_hostaddr taddr;
   2295 	uint32_t	dmactl, mimode, val;
   2296 	int		i, limit;
   2297 
   2298 	/*
   2299 	 * Initialize the memory window pointer register so that
   2300 	 * we can access the first 32K of internal NIC RAM. This will
   2301 	 * allow us to set up the TX send ring RCBs and the RX return
   2302 	 * ring RCBs, plus other things which live in NIC memory.
   2303 	 */
   2304 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2305 
   2306 	if (!BGE_IS_5705_PLUS(sc)) {
   2307 		/* 57XX step 33 */
   2308 		/* Configure mbuf memory pool */
   2309 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   2310 		    BGE_BUFFPOOL_1);
   2311 
   2312 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2313 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2314 		else
   2315 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2316 
   2317 		/* 57XX step 34 */
   2318 		/* Configure DMA resource pool */
   2319 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2320 		    BGE_DMA_DESCRIPTORS);
   2321 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2322 	}
   2323 
   2324 	/* 5718 step 11, 57XX step 35 */
   2325 	/*
   2326 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2327 	 * recommend these.
   2328 	 */
   2329 	if (BGE_IS_5717_PLUS(sc)) {
   2330 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2331 		if (ifp->if_mtu > ETHERMTU) {
   2332 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
   2333 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
   2334 		} else {
   2335 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2336 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2337 		}
   2338 	} else if (BGE_IS_5705_PLUS(sc)) {
   2339 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2340 
   2341 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2342 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2343 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2344 		} else {
   2345 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2346 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2347 		}
   2348 	} else {
   2349 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2350 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2351 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2352 	}
   2353 
   2354 	/* 57XX step 36 */
   2355 	/* Configure DMA resource watermarks */
   2356 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2357 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2358 
   2359 	/* 5718 step 13, 57XX step 38 */
   2360 	/* Enable buffer manager */
   2361 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2362 	/*
   2363 	 * Change the arbitration algorithm of TXMBUF read request to
   2364 	 * round-robin instead of priority based for BCM5719.  When
   2365 	 * TXFIFO is almost empty, RDMA will hold its request until
   2366 	 * TXFIFO is not almost empty.
   2367 	 */
   2368 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2369 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2370 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2371 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2372 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2373 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2374 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2375 
   2376 	/* 57XX step 39 */
   2377 	/* Poll for buffer manager start indication */
   2378 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2379 		DELAY(10);
   2380 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2381 			break;
   2382 	}
   2383 
   2384 	if (i == BGE_TIMEOUT * 2) {
   2385 		aprint_error_dev(sc->bge_dev,
   2386 		    "buffer manager failed to start\n");
   2387 		return ENXIO;
   2388 	}
   2389 
   2390 	/* 57XX step 40 */
   2391 	/* Enable flow-through queues */
   2392 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2393 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2394 
   2395 	/* Wait until queue initialization is complete */
   2396 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2397 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2398 			break;
   2399 		DELAY(10);
   2400 	}
   2401 
   2402 	if (i == BGE_TIMEOUT * 2) {
   2403 		aprint_error_dev(sc->bge_dev,
   2404 		    "flow-through queue init failed\n");
   2405 		return ENXIO;
   2406 	}
   2407 
   2408 	/*
   2409 	 * Summary of rings supported by the controller:
   2410 	 *
   2411 	 * Standard Receive Producer Ring
   2412 	 * - This ring is used to feed receive buffers for "standard"
   2413 	 *   sized frames (typically 1536 bytes) to the controller.
   2414 	 *
   2415 	 * Jumbo Receive Producer Ring
   2416 	 * - This ring is used to feed receive buffers for jumbo sized
   2417 	 *   frames (i.e. anything bigger than the "standard" frames)
   2418 	 *   to the controller.
   2419 	 *
   2420 	 * Mini Receive Producer Ring
   2421 	 * - This ring is used to feed receive buffers for "mini"
   2422 	 *   sized frames to the controller.
   2423 	 * - This feature required external memory for the controller
   2424 	 *   but was never used in a production system.  Should always
   2425 	 *   be disabled.
   2426 	 *
   2427 	 * Receive Return Ring
   2428 	 * - After the controller has placed an incoming frame into a
   2429 	 *   receive buffer that buffer is moved into a receive return
   2430 	 *   ring.  The driver is then responsible to passing the
   2431 	 *   buffer up to the stack.  Many versions of the controller
   2432 	 *   support multiple RR rings.
   2433 	 *
   2434 	 * Send Ring
   2435 	 * - This ring is used for outgoing frames.  Many versions of
   2436 	 *   the controller support multiple send rings.
   2437 	 */
   2438 
   2439 	/* 5718 step 15, 57XX step 41 */
   2440 	/* Initialize the standard RX ring control block */
   2441 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2442 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2443 	/* 5718 step 16 */
   2444 	if (BGE_IS_57765_PLUS(sc)) {
   2445 		/*
   2446 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2447 		 * Bits 15-2 : Maximum RX frame size
   2448 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2449 		 * Bit 0     : Reserved
   2450 		 */
   2451 		rcb->bge_maxlen_flags =
   2452 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2453 	} else if (BGE_IS_5705_PLUS(sc)) {
   2454 		/*
   2455 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2456 		 * Bits 15-2 : Reserved (should be 0)
   2457 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2458 		 * Bit 0     : Reserved
   2459 		 */
   2460 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2461 	} else {
   2462 		/*
   2463 		 * Ring size is always XXX entries
   2464 		 * Bits 31-16: Maximum RX frame size
   2465 		 * Bits 15-2 : Reserved (should be 0)
   2466 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2467 		 * Bit 0     : Reserved
   2468 		 */
   2469 		rcb->bge_maxlen_flags =
   2470 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2471 	}
   2472 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2473 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2474 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2475 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2476 	else
   2477 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2478 	/* Write the standard receive producer ring control block. */
   2479 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2480 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2481 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2482 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2483 
   2484 	/* Reset the standard receive producer ring producer index. */
   2485 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2486 
   2487 	/* 57XX step 42 */
   2488 	/*
   2489 	 * Initialize the jumbo RX ring control block
   2490 	 * We set the 'ring disabled' bit in the flags
   2491 	 * field until we're actually ready to start
   2492 	 * using this ring (i.e. once we set the MTU
   2493 	 * high enough to require it).
   2494 	 */
   2495 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2496 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2497 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2498 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2499 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2500 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2501 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2502 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2503 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2504 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2505 		else
   2506 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2507 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2508 		    rcb->bge_hostaddr.bge_addr_hi);
   2509 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2510 		    rcb->bge_hostaddr.bge_addr_lo);
   2511 		/* Program the jumbo receive producer ring RCB parameters. */
   2512 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2513 		    rcb->bge_maxlen_flags);
   2514 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2515 		/* Reset the jumbo receive producer ring producer index. */
   2516 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2517 	}
   2518 
   2519 	/* 57XX step 43 */
   2520 	/* Disable the mini receive producer ring RCB. */
   2521 	if (BGE_IS_5700_FAMILY(sc)) {
   2522 		/* Set up dummy disabled mini ring RCB */
   2523 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2524 		rcb->bge_maxlen_flags =
   2525 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2526 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2527 		    rcb->bge_maxlen_flags);
   2528 		/* Reset the mini receive producer ring producer index. */
   2529 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2530 
   2531 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2532 		    offsetof(struct bge_ring_data, bge_info),
   2533 		    sizeof (struct bge_gib),
   2534 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2535 	}
   2536 
   2537 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2538 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2539 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2540 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2541 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2542 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2543 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2544 	}
   2545 	/* 5718 step 14, 57XX step 44 */
   2546 	/*
   2547 	 * The BD ring replenish thresholds control how often the
   2548 	 * hardware fetches new BD's from the producer rings in host
   2549 	 * memory.  Setting the value too low on a busy system can
   2550 	 * starve the hardware and recue the throughpout.
   2551 	 *
   2552 	 * Set the BD ring replenish thresholds. The recommended
   2553 	 * values are 1/8th the number of descriptors allocated to
   2554 	 * each ring, but since we try to avoid filling the entire
   2555 	 * ring we set these to the minimal value of 8.  This needs to
   2556 	 * be done on several of the supported chip revisions anyway,
   2557 	 * to work around HW bugs.
   2558 	 */
   2559 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2560 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2561 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2562 
   2563 	/* 5718 step 18 */
   2564 	if (BGE_IS_5717_PLUS(sc)) {
   2565 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2566 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2567 	}
   2568 
   2569 	/* 57XX step 45 */
   2570 	/*
   2571 	 * Disable all send rings by setting the 'ring disabled' bit
   2572 	 * in the flags field of all the TX send ring control blocks,
   2573 	 * located in NIC memory.
   2574 	 */
   2575 	if (BGE_IS_5700_FAMILY(sc)) {
   2576 		/* 5700 to 5704 had 16 send rings. */
   2577 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2578 	} else if (BGE_IS_5717_PLUS(sc)) {
   2579 		limit = BGE_TX_RINGS_5717_MAX;
   2580 	} else if (BGE_IS_57765_FAMILY(sc)) {
   2581 		limit = BGE_TX_RINGS_57765_MAX;
   2582 	} else
   2583 		limit = 1;
   2584 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2585 	for (i = 0; i < limit; i++) {
   2586 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2587 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2588 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2589 		rcb_addr += sizeof(struct bge_rcb);
   2590 	}
   2591 
   2592 	/* 57XX step 46 and 47 */
   2593 	/* Configure send ring RCB 0 (we use only the first ring) */
   2594 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2595 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2596 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2597 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2598 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2599 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2600 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2601 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2602 	else
   2603 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2604 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2605 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2606 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2607 
   2608 	/* 57XX step 48 */
   2609 	/*
   2610 	 * Disable all receive return rings by setting the
   2611 	 * 'ring diabled' bit in the flags field of all the receive
   2612 	 * return ring control blocks, located in NIC memory.
   2613 	 */
   2614 	if (BGE_IS_5717_PLUS(sc)) {
   2615 		/* Should be 17, use 16 until we get an SRAM map. */
   2616 		limit = 16;
   2617 	} else if (BGE_IS_5700_FAMILY(sc))
   2618 		limit = BGE_RX_RINGS_MAX;
   2619 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2620 	    BGE_IS_57765_FAMILY(sc))
   2621 		limit = 4;
   2622 	else
   2623 		limit = 1;
   2624 	/* Disable all receive return rings */
   2625 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2626 	for (i = 0; i < limit; i++) {
   2627 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2628 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2629 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2630 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2631 			BGE_RCB_FLAG_RING_DISABLED));
   2632 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2633 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2634 		    (i * (sizeof(uint64_t))), 0);
   2635 		rcb_addr += sizeof(struct bge_rcb);
   2636 	}
   2637 
   2638 	/* 57XX step 49 */
   2639 	/*
   2640 	 * Set up receive return ring 0.  Note that the NIC address
   2641 	 * for RX return rings is 0x0.  The return rings live entirely
   2642 	 * within the host, so the nicaddr field in the RCB isn't used.
   2643 	 */
   2644 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2645 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2646 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2647 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2648 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2649 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2650 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2651 
   2652 	/* 5718 step 24, 57XX step 53 */
   2653 	/* Set random backoff seed for TX */
   2654 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2655 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2656 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2657 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2658 	    BGE_TX_BACKOFF_SEED_MASK);
   2659 
   2660 	/* 5718 step 26, 57XX step 55 */
   2661 	/* Set inter-packet gap */
   2662 	val = 0x2620;
   2663 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2664 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2665 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2666 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2667 
   2668 	/* 5718 step 27, 57XX step 56 */
   2669 	/*
   2670 	 * Specify which ring to use for packets that don't match
   2671 	 * any RX rules.
   2672 	 */
   2673 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2674 
   2675 	/* 5718 step 28, 57XX step 57 */
   2676 	/*
   2677 	 * Configure number of RX lists. One interrupt distribution
   2678 	 * list, sixteen active lists, one bad frames class.
   2679 	 */
   2680 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2681 
   2682 	/* 5718 step 29, 57XX step 58 */
   2683 	/* Inialize RX list placement stats mask. */
   2684 	if (BGE_IS_575X_PLUS(sc)) {
   2685 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2686 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2687 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2688 	} else
   2689 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2690 
   2691 	/* 5718 step 30, 57XX step 59 */
   2692 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2693 
   2694 	/* 5718 step 33, 57XX step 62 */
   2695 	/* Disable host coalescing until we get it set up */
   2696 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2697 
   2698 	/* 5718 step 34, 57XX step 63 */
   2699 	/* Poll to make sure it's shut down. */
   2700 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2701 		DELAY(10);
   2702 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2703 			break;
   2704 	}
   2705 
   2706 	if (i == BGE_TIMEOUT * 2) {
   2707 		aprint_error_dev(sc->bge_dev,
   2708 		    "host coalescing engine failed to idle\n");
   2709 		return ENXIO;
   2710 	}
   2711 
   2712 	/* 5718 step 35, 36, 37 */
   2713 	/* Set up host coalescing defaults */
   2714 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2715 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2716 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2717 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2718 	if (!(BGE_IS_5705_PLUS(sc))) {
   2719 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2720 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2721 	}
   2722 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2723 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2724 
   2725 	/* Set up address of statistics block */
   2726 	if (BGE_IS_5700_FAMILY(sc)) {
   2727 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2728 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2729 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2730 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2731 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2732 	}
   2733 
   2734 	/* 5718 step 38 */
   2735 	/* Set up address of status block */
   2736 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2737 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2738 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2739 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2740 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2741 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2742 
   2743 	/* Set up status block size. */
   2744 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2745 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2746 		val = BGE_STATBLKSZ_FULL;
   2747 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2748 	} else {
   2749 		val = BGE_STATBLKSZ_32BYTE;
   2750 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2751 	}
   2752 
   2753 	/* 5718 step 39, 57XX step 73 */
   2754 	/* Turn on host coalescing state machine */
   2755 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2756 
   2757 	/* 5718 step 40, 57XX step 74 */
   2758 	/* Turn on RX BD completion state machine and enable attentions */
   2759 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2760 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2761 
   2762 	/* 5718 step 41, 57XX step 75 */
   2763 	/* Turn on RX list placement state machine */
   2764 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2765 
   2766 	/* 57XX step 76 */
   2767 	/* Turn on RX list selector state machine. */
   2768 	if (!(BGE_IS_5705_PLUS(sc)))
   2769 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2770 
   2771 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2772 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2773 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2774 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2775 
   2776 	if (sc->bge_flags & BGEF_FIBER_TBI)
   2777 		val |= BGE_PORTMODE_TBI;
   2778 	else if (sc->bge_flags & BGEF_FIBER_MII)
   2779 		val |= BGE_PORTMODE_GMII;
   2780 	else
   2781 		val |= BGE_PORTMODE_MII;
   2782 
   2783 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   2784 	/* Allow APE to send/receive frames. */
   2785 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2786 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2787 
   2788 	/* Turn on DMA, clear stats */
   2789 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2790 	/* 5718 step 44 */
   2791 	DELAY(40);
   2792 
   2793 	/* 5718 step 45, 57XX step 79 */
   2794 	/* Set misc. local control, enable interrupts on attentions */
   2795 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2796 	if (BGE_IS_5717_PLUS(sc)) {
   2797 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2798 		/* 5718 step 46 */
   2799 		DELAY(100);
   2800 	}
   2801 
   2802 	/* 57XX step 81 */
   2803 	/* Turn on DMA completion state machine */
   2804 	if (!(BGE_IS_5705_PLUS(sc)))
   2805 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2806 
   2807 	/* 5718 step 47, 57XX step 82 */
   2808 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2809 
   2810 	/* 5718 step 48 */
   2811 	/* Enable host coalescing bug fix. */
   2812 	if (BGE_IS_5755_PLUS(sc))
   2813 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2814 
   2815 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2816 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2817 
   2818 	/* Turn on write DMA state machine */
   2819 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2820 	/* 5718 step 49 */
   2821 	DELAY(40);
   2822 
   2823 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2824 
   2825 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   2826 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2827 
   2828 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2829 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2830 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2831 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2832 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2833 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2834 
   2835 	if (sc->bge_flags & BGEF_PCIE)
   2836 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2837 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2838 		if (ifp->if_mtu <= ETHERMTU)
   2839 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
   2840 	}
   2841 	if (sc->bge_flags & BGEF_TSO) {
   2842 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2843 		if (BGE_IS_5717_PLUS(sc))
   2844 			val |= BGE_RDMAMODE_TSO6_ENABLE;
   2845 	}
   2846 
   2847 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2848 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   2849 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   2850 		/*
   2851 		 * Allow multiple outstanding read requests from
   2852 		 * non-LSO read DMA engine.
   2853 		 */
   2854 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2855 	}
   2856 
   2857 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2858 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2859 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2860 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   2861 	    BGE_IS_57765_PLUS(sc)) {
   2862 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
   2863 		/*
   2864 		 * Adjust tx margin to prevent TX data corruption and
   2865 		 * fix internal FIFO overflow.
   2866 		 */
   2867 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
   2868 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   2869 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   2870 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   2871 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   2872 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   2873 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   2874 		}
   2875 		/*
   2876 		 * Enable fix for read DMA FIFO overruns.
   2877 		 * The fix is to limit the number of RX BDs
   2878 		 * the hardware would fetch at a fime.
   2879 		 */
   2880 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
   2881 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   2882 	}
   2883 
   2884 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   2885 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2886 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2887 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2888 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2889 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2890 		/*
   2891 		 * Allow 4KB burst length reads for non-LSO frames.
   2892 		 * Enable 512B burst length reads for buffer descriptors.
   2893 		 */
   2894 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2895 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2896 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   2897 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2898 	}
   2899 	/* Turn on read DMA state machine */
   2900 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   2901 	/* 5718 step 52 */
   2902 	delay(40);
   2903 
   2904 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2905 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2906 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
   2907 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
   2908 			if ((val & 0xFFFF) > BGE_FRAMELEN)
   2909 				break;
   2910 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
   2911 				break;
   2912 		}
   2913 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
   2914 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   2915 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2916 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
   2917 			else
   2918 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
   2919 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   2920 		}
   2921 	}
   2922 
   2923 	/* 5718 step 56, 57XX step 84 */
   2924 	/* Turn on RX data completion state machine */
   2925 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2926 
   2927 	/* Turn on RX data and RX BD initiator state machine */
   2928 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2929 
   2930 	/* 57XX step 85 */
   2931 	/* Turn on Mbuf cluster free state machine */
   2932 	if (!BGE_IS_5705_PLUS(sc))
   2933 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2934 
   2935 	/* 5718 step 57, 57XX step 86 */
   2936 	/* Turn on send data completion state machine */
   2937 	val = BGE_SDCMODE_ENABLE;
   2938 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2939 		val |= BGE_SDCMODE_CDELAY;
   2940 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2941 
   2942 	/* 5718 step 58 */
   2943 	/* Turn on send BD completion state machine */
   2944 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2945 
   2946 	/* 57XX step 88 */
   2947 	/* Turn on RX BD initiator state machine */
   2948 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2949 
   2950 	/* 5718 step 60, 57XX step 90 */
   2951 	/* Turn on send data initiator state machine */
   2952 	if (sc->bge_flags & BGEF_TSO) {
   2953 		/* XXX: magic value from Linux driver */
   2954 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   2955 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   2956 	} else
   2957 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2958 
   2959 	/* 5718 step 61, 57XX step 91 */
   2960 	/* Turn on send BD initiator state machine */
   2961 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2962 
   2963 	/* 5718 step 62, 57XX step 92 */
   2964 	/* Turn on send BD selector state machine */
   2965 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2966 
   2967 	/* 5718 step 31, 57XX step 60 */
   2968 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2969 	/* 5718 step 32, 57XX step 61 */
   2970 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2971 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2972 
   2973 	/* ack/clear link change events */
   2974 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2975 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2976 	    BGE_MACSTAT_LINK_CHANGED);
   2977 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   2978 
   2979 	/*
   2980 	 * Enable attention when the link has changed state for
   2981 	 * devices that use auto polling.
   2982 	 */
   2983 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   2984 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   2985 	} else {
   2986 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   2987 			mimode = BGE_MIMODE_500KHZ_CONST;
   2988 		else
   2989 			mimode = BGE_MIMODE_BASE;
   2990 		/* 5718 step 68. 5718 step 69 (optionally). */
   2991 		if (BGE_IS_5700_FAMILY(sc) ||
   2992 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
   2993 			mimode |= BGE_MIMODE_AUTOPOLL;
   2994 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   2995 		}
   2996 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   2997 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   2998 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   2999 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3000 			    BGE_EVTENB_MI_INTERRUPT);
   3001 	}
   3002 
   3003 	/*
   3004 	 * Clear any pending link state attention.
   3005 	 * Otherwise some link state change events may be lost until attention
   3006 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3007 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3008 	 * state change attentions implies clearing pending attention.
   3009 	 */
   3010 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3011 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3012 	    BGE_MACSTAT_LINK_CHANGED);
   3013 
   3014 	/* Enable link state change attentions. */
   3015 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3016 
   3017 	return 0;
   3018 }
   3019 
   3020 static const struct bge_revision *
   3021 bge_lookup_rev(uint32_t chipid)
   3022 {
   3023 	const struct bge_revision *br;
   3024 
   3025 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3026 		if (br->br_chipid == chipid)
   3027 			return br;
   3028 	}
   3029 
   3030 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3031 		if (br->br_chipid == BGE_ASICREV(chipid))
   3032 			return br;
   3033 	}
   3034 
   3035 	return NULL;
   3036 }
   3037 
   3038 static const struct bge_product *
   3039 bge_lookup(const struct pci_attach_args *pa)
   3040 {
   3041 	const struct bge_product *bp;
   3042 
   3043 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3044 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3045 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3046 			return bp;
   3047 	}
   3048 
   3049 	return NULL;
   3050 }
   3051 
   3052 static uint32_t
   3053 bge_chipid(const struct pci_attach_args *pa)
   3054 {
   3055 	uint32_t id;
   3056 
   3057 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3058 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3059 
   3060 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3061 		switch (PCI_PRODUCT(pa->pa_id)) {
   3062 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3063 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3064 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3065 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3066 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3067 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3068 			break;
   3069 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3070 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3071 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3072 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3073 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3074 		case PCI_PRODUCT_BROADCOM_BCM57782:
   3075 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3076 		case PCI_PRODUCT_BROADCOM_BCM57786:
   3077 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3078 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3079 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3080 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3081 			break;
   3082 		default:
   3083 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3084 			    BGE_PCI_PRODID_ASICREV);
   3085 			break;
   3086 		}
   3087 	}
   3088 
   3089 	return id;
   3090 }
   3091 
   3092 /*
   3093  * Return true if MSI can be used with this device.
   3094  */
   3095 static int
   3096 bge_can_use_msi(struct bge_softc *sc)
   3097 {
   3098 	int can_use_msi = 0;
   3099 
   3100 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3101 	case BGE_ASICREV_BCM5714_A0:
   3102 	case BGE_ASICREV_BCM5714:
   3103 		/*
   3104 		 * Apparently, MSI doesn't work when these chips are
   3105 		 * configured in single-port mode.
   3106 		 */
   3107 		break;
   3108 	case BGE_ASICREV_BCM5750:
   3109 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
   3110 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
   3111 			can_use_msi = 1;
   3112 		break;
   3113 	default:
   3114 		if (BGE_IS_575X_PLUS(sc))
   3115 			can_use_msi = 1;
   3116 	}
   3117 	return (can_use_msi);
   3118 }
   3119 
   3120 /*
   3121  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3122  * against our list and return its name if we find a match. Note
   3123  * that since the Broadcom controller contains VPD support, we
   3124  * can get the device name string from the controller itself instead
   3125  * of the compiled-in string. This is a little slow, but it guarantees
   3126  * we'll always announce the right product name.
   3127  */
   3128 static int
   3129 bge_probe(device_t parent, cfdata_t match, void *aux)
   3130 {
   3131 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3132 
   3133 	if (bge_lookup(pa) != NULL)
   3134 		return 1;
   3135 
   3136 	return 0;
   3137 }
   3138 
   3139 static void
   3140 bge_attach(device_t parent, device_t self, void *aux)
   3141 {
   3142 	struct bge_softc	*sc = device_private(self);
   3143 	struct pci_attach_args	*pa = aux;
   3144 	prop_dictionary_t dict;
   3145 	const struct bge_product *bp;
   3146 	const struct bge_revision *br;
   3147 	pci_chipset_tag_t	pc;
   3148 	const char		*intrstr = NULL;
   3149 	uint32_t 		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
   3150 	uint32_t		command;
   3151 	struct ifnet		*ifp;
   3152 	uint32_t		misccfg, mimode;
   3153 	void *			kva;
   3154 	u_char			eaddr[ETHER_ADDR_LEN];
   3155 	pcireg_t		memtype, subid, reg;
   3156 	bus_addr_t		memaddr;
   3157 	uint32_t		pm_ctl;
   3158 	bool			no_seeprom;
   3159 	int			capmask;
   3160 	int			mii_flags;
   3161 	int			map_flags;
   3162 	char intrbuf[PCI_INTRSTR_LEN];
   3163 
   3164 	bp = bge_lookup(pa);
   3165 	KASSERT(bp != NULL);
   3166 
   3167 	sc->sc_pc = pa->pa_pc;
   3168 	sc->sc_pcitag = pa->pa_tag;
   3169 	sc->bge_dev = self;
   3170 
   3171 	sc->bge_pa = *pa;
   3172 	pc = sc->sc_pc;
   3173 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3174 
   3175 	aprint_naive(": Ethernet controller\n");
   3176 	aprint_normal(": %s Ethernet\n", bp->bp_name);
   3177 
   3178 	/*
   3179 	 * Map control/status registers.
   3180 	 */
   3181 	DPRINTFN(5, ("Map control/status regs\n"));
   3182 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3183 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3184 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3185 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3186 
   3187 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3188 		aprint_error_dev(sc->bge_dev,
   3189 		    "failed to enable memory mapping!\n");
   3190 		return;
   3191 	}
   3192 
   3193 	DPRINTFN(5, ("pci_mem_find\n"));
   3194 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3195 	switch (memtype) {
   3196 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3197 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3198 #if 0
   3199 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3200 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3201 		    &memaddr, &sc->bge_bsize) == 0)
   3202 			break;
   3203 #else
   3204 		/*
   3205 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3206 		 * system get NMI on boot (PR#48451). This problem might not be
   3207 		 * the driver's bug but our PCI common part's bug. Until we
   3208 		 * find a real reason, we ignore the prefetchable bit.
   3209 		 */
   3210 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
   3211 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
   3212 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3213 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
   3214 			    map_flags, &sc->bge_bhandle) == 0) {
   3215 				sc->bge_btag = pa->pa_memt;
   3216 				break;
   3217 			}
   3218 		}
   3219 #endif
   3220 		/* FALLTHROUGH */
   3221 	default:
   3222 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3223 		return;
   3224 	}
   3225 
   3226 	/* Save various chip information. */
   3227 	sc->bge_chipid = bge_chipid(pa);
   3228 	sc->bge_phy_addr = bge_phy_addr(sc);
   3229 
   3230 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3231 	    &sc->bge_pciecap, NULL) != 0) {
   3232 		/* PCIe */
   3233 		sc->bge_flags |= BGEF_PCIE;
   3234 		/* Extract supported maximum payload size. */
   3235 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3236 		    sc->bge_pciecap + PCIE_DCAP);
   3237 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3238 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3239 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3240 			sc->bge_expmrq = 2048;
   3241 		else
   3242 			sc->bge_expmrq = 4096;
   3243 		bge_set_max_readrq(sc);
   3244 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
   3245 		/* PCIe without PCIe cap */
   3246 		sc->bge_flags |= BGEF_PCIE;
   3247 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3248 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3249 		/* PCI-X */
   3250 		sc->bge_flags |= BGEF_PCIX;
   3251 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3252 			&sc->bge_pcixcap, NULL) == 0)
   3253 			aprint_error_dev(sc->bge_dev,
   3254 			    "unable to find PCIX capability\n");
   3255 	}
   3256 
   3257 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3258 		/*
   3259 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3260 		 * can clobber the chip's PCI config-space power control
   3261 		 * registers, leaving the card in D3 powersave state. We do
   3262 		 * not have memory-mapped registers in this state, so force
   3263 		 * device into D0 state before starting initialization.
   3264 		 */
   3265 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3266 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   3267 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3268 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3269 		DELAY(1000);	/* 27 usec is allegedly sufficent */
   3270 	}
   3271 
   3272 	/* Save chipset family. */
   3273 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3274 	case BGE_ASICREV_BCM5717:
   3275 	case BGE_ASICREV_BCM5719:
   3276 	case BGE_ASICREV_BCM5720:
   3277 		sc->bge_flags |= BGEF_5717_PLUS;
   3278 		/* FALLTHROUGH */
   3279 	case BGE_ASICREV_BCM57765:
   3280 	case BGE_ASICREV_BCM57766:
   3281 		if (!BGE_IS_5717_PLUS(sc))
   3282 			sc->bge_flags |= BGEF_57765_FAMILY;
   3283 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
   3284 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
   3285 		/* Jumbo frame on BCM5719 A0 does not work. */
   3286 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3287 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3288 			sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
   3289 		break;
   3290 	case BGE_ASICREV_BCM5755:
   3291 	case BGE_ASICREV_BCM5761:
   3292 	case BGE_ASICREV_BCM5784:
   3293 	case BGE_ASICREV_BCM5785:
   3294 	case BGE_ASICREV_BCM5787:
   3295 	case BGE_ASICREV_BCM57780:
   3296 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
   3297 		break;
   3298 	case BGE_ASICREV_BCM5700:
   3299 	case BGE_ASICREV_BCM5701:
   3300 	case BGE_ASICREV_BCM5703:
   3301 	case BGE_ASICREV_BCM5704:
   3302 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
   3303 		break;
   3304 	case BGE_ASICREV_BCM5714_A0:
   3305 	case BGE_ASICREV_BCM5780:
   3306 	case BGE_ASICREV_BCM5714:
   3307 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
   3308 		/* FALLTHROUGH */
   3309 	case BGE_ASICREV_BCM5750:
   3310 	case BGE_ASICREV_BCM5752:
   3311 	case BGE_ASICREV_BCM5906:
   3312 		sc->bge_flags |= BGEF_575X_PLUS;
   3313 		/* FALLTHROUGH */
   3314 	case BGE_ASICREV_BCM5705:
   3315 		sc->bge_flags |= BGEF_5705_PLUS;
   3316 		break;
   3317 	}
   3318 
   3319 	/* Identify chips with APE processor. */
   3320 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3321 	case BGE_ASICREV_BCM5717:
   3322 	case BGE_ASICREV_BCM5719:
   3323 	case BGE_ASICREV_BCM5720:
   3324 	case BGE_ASICREV_BCM5761:
   3325 		sc->bge_flags |= BGEF_APE;
   3326 		break;
   3327 	}
   3328 
   3329 	/*
   3330 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
   3331 	 * not actually a MAC controller bug but an issue with the embedded
   3332 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
   3333 	 */
   3334 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
   3335 		sc->bge_flags |= BGEF_40BIT_BUG;
   3336 
   3337 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3338 	if ((sc->bge_flags & BGEF_APE) != 0) {
   3339 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3340 #if 0
   3341 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3342 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3343 			&sc->bge_apesize)) {
   3344 			aprint_error_dev(sc->bge_dev,
   3345 			    "couldn't map BAR2 memory\n");
   3346 			return;
   3347 		}
   3348 #else
   3349 		/*
   3350 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3351 		 * system get NMI on boot (PR#48451). This problem might not be
   3352 		 * the driver's bug but our PCI common part's bug. Until we
   3353 		 * find a real reason, we ignore the prefetchable bit.
   3354 		 */
   3355 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
   3356 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
   3357 			aprint_error_dev(sc->bge_dev,
   3358 			    "couldn't map BAR2 memory\n");
   3359 			return;
   3360 		}
   3361 
   3362 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3363 		if (bus_space_map(pa->pa_memt, memaddr,
   3364 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
   3365 			aprint_error_dev(sc->bge_dev,
   3366 			    "couldn't map BAR2 memory\n");
   3367 			return;
   3368 		}
   3369 		sc->bge_apetag = pa->pa_memt;
   3370 #endif
   3371 
   3372 		/* Enable APE register/memory access by host driver. */
   3373 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3374 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3375 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3376 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3377 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3378 
   3379 		bge_ape_lock_init(sc);
   3380 		bge_ape_read_fw_ver(sc);
   3381 	}
   3382 
   3383 	/* Identify the chips that use an CPMU. */
   3384 	if (BGE_IS_5717_PLUS(sc) ||
   3385 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3386 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3387 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3388 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3389 		sc->bge_flags |= BGEF_CPMU_PRESENT;
   3390 
   3391 	/* Set MI_MODE */
   3392 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3393 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3394 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3395 	else
   3396 		mimode |= BGE_MIMODE_BASE;
   3397 	CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3398 
   3399 	/*
   3400 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3401 	 * been observed in the first few bytes of some received packets.
   3402 	 * Aligning the packet buffer in memory eliminates the corruption.
   3403 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3404 	 * which do not support unaligned accesses, we will realign the
   3405 	 * payloads by copying the received packets.
   3406 	 */
   3407 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3408 	    sc->bge_flags & BGEF_PCIX)
   3409 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
   3410 
   3411 	if (BGE_IS_5700_FAMILY(sc))
   3412 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
   3413 
   3414 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3415 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3416 
   3417 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3418 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3419 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3420 		sc->bge_flags |= BGEF_IS_5788;
   3421 
   3422 	/*
   3423 	 * Some controllers seem to require a special firmware to use
   3424 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3425 	 * claims that the TSO performed by the firmware is slower than
   3426 	 * hardware based TSO. Moreover the firmware based TSO has one
   3427 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3428 	 * header is greater than 80 bytes. The workaround for the TSO
   3429 	 * bug exist but it seems it's too expensive than not using
   3430 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3431 	 * the TSO to the controllers that are not affected TSO issues
   3432 	 * (e.g. 5755 or higher).
   3433 	 */
   3434 	if (BGE_IS_5755_PLUS(sc)) {
   3435 		/*
   3436 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3437 		 * explicit device id check is required.
   3438 		 */
   3439 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3440 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3441 			sc->bge_flags |= BGEF_TSO;
   3442 		/* TSO on BCM5719 A0 does not work. */
   3443 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3444 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3445 			sc->bge_flags &= ~BGEF_TSO;
   3446 	}
   3447 
   3448 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3449 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3450 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3451 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3452 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3453 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3454 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3455 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3456 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3457 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3458 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3459 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3460 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3461 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3462 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3463 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3464 		/* These chips are 10/100 only. */
   3465 		capmask &= ~BMSR_EXTSTAT;
   3466 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3467 	}
   3468 
   3469 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3470 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3471 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3472 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3473 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3474 
   3475 	/* Set various PHY bug flags. */
   3476 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3477 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3478 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
   3479 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3480 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3481 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
   3482 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3483 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
   3484 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3485 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3486 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3487 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
   3488 	if (BGE_IS_5705_PLUS(sc) &&
   3489 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3490 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3491 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3492 	    !BGE_IS_57765_PLUS(sc)) {
   3493 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3494 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3495 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3496 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3497 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3498 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3499 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
   3500 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3501 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
   3502 		} else
   3503 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
   3504 	}
   3505 
   3506 	/*
   3507 	 * SEEPROM check.
   3508 	 * First check if firmware knows we do not have SEEPROM.
   3509 	 */
   3510 	if (prop_dictionary_get_bool(device_properties(self),
   3511 	     "without-seeprom", &no_seeprom) && no_seeprom)
   3512 	 	sc->bge_flags |= BGEF_NO_EEPROM;
   3513 
   3514 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3515 		sc->bge_flags |= BGEF_NO_EEPROM;
   3516 
   3517 	/* Now check the 'ROM failed' bit on the RX CPU */
   3518 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3519 		sc->bge_flags |= BGEF_NO_EEPROM;
   3520 
   3521 	sc->bge_asf_mode = 0;
   3522 	/* No ASF if APE present. */
   3523 	if ((sc->bge_flags & BGEF_APE) == 0) {
   3524 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3525 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3526 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3527 			    BGE_HWCFG_ASF) {
   3528 				sc->bge_asf_mode |= ASF_ENABLE;
   3529 				sc->bge_asf_mode |= ASF_STACKUP;
   3530 				if (BGE_IS_575X_PLUS(sc))
   3531 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3532 			}
   3533 		}
   3534 	}
   3535 
   3536 	int counts[PCI_INTR_TYPE_SIZE] = {
   3537 		[PCI_INTR_TYPE_INTX] = 1,
   3538 		[PCI_INTR_TYPE_MSI] = 1,
   3539 		[PCI_INTR_TYPE_MSIX] = 1,
   3540 	};
   3541 	int max_type = PCI_INTR_TYPE_MSIX;
   3542 
   3543 	if (!bge_can_use_msi(sc)) {
   3544 		/* MSI broken, allow only INTx */
   3545 		max_type = PCI_INTR_TYPE_INTX;
   3546 	}
   3547 
   3548 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
   3549 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
   3550 		return;
   3551 	}
   3552 
   3553 	DPRINTFN(5, ("pci_intr_string\n"));
   3554 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
   3555 	    sizeof(intrbuf));
   3556 	DPRINTFN(5, ("pci_intr_establish\n"));
   3557 	sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
   3558 	    IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
   3559 	if (sc->bge_intrhand == NULL) {
   3560 		pci_intr_release(pc, sc->bge_pihp, 1);
   3561 		sc->bge_pihp = NULL;
   3562 
   3563 		aprint_error_dev(self, "couldn't establish interrupt");
   3564 		if (intrstr != NULL)
   3565 			aprint_error(" at %s", intrstr);
   3566 		aprint_error("\n");
   3567 		return;
   3568 	}
   3569 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3570 
   3571 	switch (pci_intr_type(pc, sc->bge_pihp[0])) {
   3572 	case PCI_INTR_TYPE_MSIX:
   3573 	case PCI_INTR_TYPE_MSI:
   3574 		KASSERT(bge_can_use_msi(sc));
   3575 		sc->bge_flags |= BGEF_MSI;
   3576 		break;
   3577 	default:
   3578 		/* nothing to do */
   3579 		break;
   3580 	}
   3581 
   3582 	/*
   3583 	 * All controllers except BCM5700 supports tagged status but
   3584 	 * we use tagged status only for MSI case on BCM5717. Otherwise
   3585 	 * MSI on BCM5717 does not work.
   3586 	 */
   3587 	if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
   3588 		sc->bge_flags |= BGEF_TAGGED_STATUS;
   3589 
   3590 	/*
   3591 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3592 	 * lock in bge_reset().
   3593 	 */
   3594 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   3595 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3596 	delay(1000);
   3597 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3598 
   3599 	bge_stop_fw(sc);
   3600 	bge_sig_pre_reset(sc, BGE_RESET_START);
   3601 	if (bge_reset(sc))
   3602 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3603 
   3604 	/*
   3605 	 * Read the hardware config word in the first 32k of NIC internal
   3606 	 * memory, or fall back to the config word in the EEPROM.
   3607 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3608 	 */
   3609 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
   3610 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3611 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3612 		uint32_t tmp;
   3613 
   3614 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3615 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3616 		    BGE_SRAM_DATA_VER_SHIFT;
   3617 		if ((0 < tmp) && (tmp < 0x100))
   3618 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3619 		if (sc->bge_flags & BGEF_PCIE)
   3620 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3621 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3622 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3623 		if (BGE_IS_5717_PLUS(sc))
   3624 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
   3625 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
   3626 		bge_read_eeprom(sc, (void *)&hwcfg,
   3627 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3628 		hwcfg = be32toh(hwcfg);
   3629 	}
   3630 	aprint_normal_dev(sc->bge_dev,
   3631 	    "HW config %08x, %08x, %08x, %08x %08x\n",
   3632 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
   3633 
   3634 	bge_sig_legacy(sc, BGE_RESET_START);
   3635 	bge_sig_post_reset(sc, BGE_RESET_START);
   3636 
   3637 	if (bge_chipinit(sc)) {
   3638 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3639 		bge_release_resources(sc);
   3640 		return;
   3641 	}
   3642 
   3643 	/*
   3644 	 * Get station address from the EEPROM.
   3645 	 */
   3646 	if (bge_get_eaddr(sc, eaddr)) {
   3647 		aprint_error_dev(sc->bge_dev,
   3648 		    "failed to read station address\n");
   3649 		bge_release_resources(sc);
   3650 		return;
   3651 	}
   3652 
   3653 	br = bge_lookup_rev(sc->bge_chipid);
   3654 
   3655 	if (br == NULL) {
   3656 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3657 		    sc->bge_chipid);
   3658 	} else {
   3659 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3660 		    br->br_name, sc->bge_chipid);
   3661 	}
   3662 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3663 
   3664 	/* Allocate the general information block and ring buffers. */
   3665 	if (pci_dma64_available(pa)) {
   3666 		sc->bge_dmatag = pa->pa_dmat64;
   3667 		sc->bge_dmatag32 = pa->pa_dmat;
   3668 		sc->bge_dma64 = true;
   3669 	} else {
   3670 		sc->bge_dmatag = pa->pa_dmat;
   3671 		sc->bge_dmatag32 = pa->pa_dmat;
   3672 		sc->bge_dma64 = false;
   3673 	}
   3674 
   3675 	/* 40bit DMA workaround */
   3676 	if (sizeof(bus_addr_t) > 4) {
   3677 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
   3678 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
   3679 
   3680 			if (bus_dmatag_subregion(olddmatag, 0,
   3681 				(bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
   3682 				BUS_DMA_NOWAIT) != 0) {
   3683 				aprint_error_dev(self,
   3684 				    "WARNING: failed to restrict dma range,"
   3685 				    " falling back to parent bus dma range\n");
   3686 				sc->bge_dmatag = olddmatag;
   3687 			}
   3688 		}
   3689 	}
   3690 	SLIST_INIT(&sc->txdma_list);
   3691 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3692 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3693 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3694 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
   3695 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3696 		return;
   3697 	}
   3698 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3699 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3700 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3701 			   BUS_DMA_NOWAIT)) {
   3702 		aprint_error_dev(sc->bge_dev,
   3703 		    "can't map DMA buffers (%zu bytes)\n",
   3704 		    sizeof(struct bge_ring_data));
   3705 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3706 		    sc->bge_ring_rseg);
   3707 		return;
   3708 	}
   3709 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3710 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3711 	    sizeof(struct bge_ring_data), 0,
   3712 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3713 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3714 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3715 				 sizeof(struct bge_ring_data));
   3716 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3717 		    sc->bge_ring_rseg);
   3718 		return;
   3719 	}
   3720 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3721 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3722 			    sizeof(struct bge_ring_data), NULL,
   3723 			    BUS_DMA_NOWAIT)) {
   3724 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3725 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3726 				 sizeof(struct bge_ring_data));
   3727 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3728 		    sc->bge_ring_rseg);
   3729 		return;
   3730 	}
   3731 
   3732 	DPRINTFN(5, ("bzero\n"));
   3733 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3734 
   3735 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3736 
   3737 	/* Try to allocate memory for jumbo buffers. */
   3738 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3739 		if (bge_alloc_jumbo_mem(sc)) {
   3740 			aprint_error_dev(sc->bge_dev,
   3741 			    "jumbo buffer allocation failed\n");
   3742 		} else
   3743 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3744 	}
   3745 
   3746 	/* Set default tuneable values. */
   3747 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3748 	sc->bge_rx_coal_ticks = 150;
   3749 	sc->bge_rx_max_coal_bds = 64;
   3750 	sc->bge_tx_coal_ticks = 300;
   3751 	sc->bge_tx_max_coal_bds = 400;
   3752 	if (BGE_IS_5705_PLUS(sc)) {
   3753 		sc->bge_tx_coal_ticks = (12 * 5);
   3754 		sc->bge_tx_max_coal_bds = (12 * 5);
   3755 			aprint_verbose_dev(sc->bge_dev,
   3756 			    "setting short Tx thresholds\n");
   3757 	}
   3758 
   3759 	if (BGE_IS_5717_PLUS(sc))
   3760 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3761 	else if (BGE_IS_5705_PLUS(sc))
   3762 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3763 	else
   3764 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3765 
   3766 	/* Set up ifnet structure */
   3767 	ifp = &sc->ethercom.ec_if;
   3768 	ifp->if_softc = sc;
   3769 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3770 	ifp->if_ioctl = bge_ioctl;
   3771 	ifp->if_stop = bge_stop;
   3772 	ifp->if_start = bge_start;
   3773 	ifp->if_init = bge_init;
   3774 	ifp->if_watchdog = bge_watchdog;
   3775 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3776 	IFQ_SET_READY(&ifp->if_snd);
   3777 	DPRINTFN(5, ("strcpy if_xname\n"));
   3778 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3779 
   3780 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3781 		sc->ethercom.ec_if.if_capabilities |=
   3782 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3783 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3784 		sc->ethercom.ec_if.if_capabilities |=
   3785 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3786 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3787 #endif
   3788 	sc->ethercom.ec_capabilities |=
   3789 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3790 
   3791 	if (sc->bge_flags & BGEF_TSO)
   3792 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3793 
   3794 	/*
   3795 	 * Do MII setup.
   3796 	 */
   3797 	DPRINTFN(5, ("mii setup\n"));
   3798 	sc->bge_mii.mii_ifp = ifp;
   3799 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   3800 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   3801 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   3802 
   3803 	/*
   3804 	 * Figure out what sort of media we have by checking the hardware
   3805 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   3806 	 * unset. If that's the case, we have to rely on identifying the NIC
   3807 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   3808 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   3809 	 */
   3810 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   3811 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3812 		if (BGE_IS_5705_PLUS(sc)) {
   3813 			sc->bge_flags |= BGEF_FIBER_MII;
   3814 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3815 		} else
   3816 			sc->bge_flags |= BGEF_FIBER_TBI;
   3817 	}
   3818 
   3819 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
   3820 	if (BGE_IS_JUMBO_CAPABLE(sc))
   3821 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
   3822 
   3823 	/* set phyflags and chipid before mii_attach() */
   3824 	dict = device_properties(self);
   3825 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
   3826 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3827 
   3828 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3829 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3830 		    bge_ifmedia_sts);
   3831 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3832 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   3833 			    0, NULL);
   3834 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3835 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3836 		/* Pretend the user requested this setting */
   3837 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3838 	} else {
   3839 		/*
   3840 		 * Do transceiver setup and tell the firmware the
   3841 		 * driver is down so we can try to get access the
   3842 		 * probe if ASF is running.  Retry a couple of times
   3843 		 * if we get a conflict with the ASF firmware accessing
   3844 		 * the PHY.
   3845 		 */
   3846 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3847 		bge_asf_driver_up(sc);
   3848 
   3849 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3850 			     bge_ifmedia_sts);
   3851 		mii_flags = MIIF_DOPAUSE;
   3852 		if (sc->bge_flags & BGEF_FIBER_MII)
   3853 			mii_flags |= MIIF_HAVEFIBER;
   3854 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
   3855 		    MII_OFFSET_ANY, mii_flags);
   3856 
   3857 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3858 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3859 			ifmedia_add(&sc->bge_mii.mii_media,
   3860 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3861 			ifmedia_set(&sc->bge_mii.mii_media,
   3862 				    IFM_ETHER|IFM_MANUAL);
   3863 		} else
   3864 			ifmedia_set(&sc->bge_mii.mii_media,
   3865 				    IFM_ETHER|IFM_AUTO);
   3866 
   3867 		/*
   3868 		 * Now tell the firmware we are going up after probing the PHY
   3869 		 */
   3870 		if (sc->bge_asf_mode & ASF_STACKUP)
   3871 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3872 	}
   3873 
   3874 	/*
   3875 	 * Call MI attach routine.
   3876 	 */
   3877 	DPRINTFN(5, ("if_attach\n"));
   3878 	if_attach(ifp);
   3879 	if_deferred_start_init(ifp, NULL);
   3880 	DPRINTFN(5, ("ether_ifattach\n"));
   3881 	ether_ifattach(ifp, eaddr);
   3882 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3883 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3884 		RND_TYPE_NET, RND_FLAG_DEFAULT);
   3885 #ifdef BGE_EVENT_COUNTERS
   3886 	/*
   3887 	 * Attach event counters.
   3888 	 */
   3889 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3890 	    NULL, device_xname(sc->bge_dev), "intr");
   3891 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
   3892 	    NULL, device_xname(sc->bge_dev), "intr_spurious");
   3893 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
   3894 	    NULL, device_xname(sc->bge_dev), "intr_spurious2");
   3895 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3896 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3897 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3898 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3899 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3900 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3901 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3902 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3903 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3904 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3905 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3906 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3907 #endif /* BGE_EVENT_COUNTERS */
   3908 	DPRINTFN(5, ("callout_init\n"));
   3909 	callout_init(&sc->bge_timeout, 0);
   3910 
   3911 	if (pmf_device_register(self, NULL, NULL))
   3912 		pmf_class_network_register(self, ifp);
   3913 	else
   3914 		aprint_error_dev(self, "couldn't establish power handler\n");
   3915 
   3916 	bge_sysctl_init(sc);
   3917 
   3918 #ifdef BGE_DEBUG
   3919 	bge_debug_info(sc);
   3920 #endif
   3921 }
   3922 
   3923 /*
   3924  * Stop all chip I/O so that the kernel's probe routines don't
   3925  * get confused by errant DMAs when rebooting.
   3926  */
   3927 static int
   3928 bge_detach(device_t self, int flags __unused)
   3929 {
   3930 	struct bge_softc *sc = device_private(self);
   3931 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3932 	int s;
   3933 
   3934 	s = splnet();
   3935 	/* Stop the interface. Callouts are stopped in it. */
   3936 	bge_stop(ifp, 1);
   3937 	splx(s);
   3938 
   3939 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   3940 
   3941 	/* Delete all remaining media. */
   3942 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
   3943 
   3944 	ether_ifdetach(ifp);
   3945 	if_detach(ifp);
   3946 
   3947 	bge_release_resources(sc);
   3948 
   3949 	return 0;
   3950 }
   3951 
   3952 static void
   3953 bge_release_resources(struct bge_softc *sc)
   3954 {
   3955 
   3956 	/* Detach sysctl */
   3957 	if (sc->bge_log != NULL)
   3958 		sysctl_teardown(&sc->bge_log);
   3959 
   3960 #ifdef BGE_EVENT_COUNTERS
   3961 	/* Detach event counters. */
   3962 	evcnt_detach(&sc->bge_ev_intr);
   3963 	evcnt_detach(&sc->bge_ev_intr_spurious);
   3964 	evcnt_detach(&sc->bge_ev_intr_spurious2);
   3965 	evcnt_detach(&sc->bge_ev_tx_xoff);
   3966 	evcnt_detach(&sc->bge_ev_tx_xon);
   3967 	evcnt_detach(&sc->bge_ev_rx_xoff);
   3968 	evcnt_detach(&sc->bge_ev_rx_xon);
   3969 	evcnt_detach(&sc->bge_ev_rx_macctl);
   3970 	evcnt_detach(&sc->bge_ev_xoffentered);
   3971 #endif /* BGE_EVENT_COUNTERS */
   3972 
   3973 	/* Disestablish the interrupt handler */
   3974 	if (sc->bge_intrhand != NULL) {
   3975 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   3976 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
   3977 		sc->bge_intrhand = NULL;
   3978 	}
   3979 
   3980 	if (sc->bge_dmatag != NULL) {
   3981 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   3982 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3983 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   3984 		    sizeof(struct bge_ring_data));
   3985 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3986 		    sc->bge_ring_rseg);
   3987 	}
   3988 
   3989 	/* Unmap the device registers */
   3990 	if (sc->bge_bsize != 0) {
   3991 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   3992 		sc->bge_bsize = 0;
   3993 	}
   3994 
   3995 	/* Unmap the APE registers */
   3996 	if (sc->bge_apesize != 0) {
   3997 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   3998 		    sc->bge_apesize);
   3999 		sc->bge_apesize = 0;
   4000 	}
   4001 }
   4002 
   4003 static int
   4004 bge_reset(struct bge_softc *sc)
   4005 {
   4006 	uint32_t cachesize, command;
   4007 	uint32_t reset, mac_mode, mac_mode_mask;
   4008 	pcireg_t devctl, reg;
   4009 	int i, val;
   4010 	void (*write_op)(struct bge_softc *, int, int);
   4011 
   4012 	/* Make mask for BGE_MAC_MODE register. */
   4013 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   4014 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4015 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   4016 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   4017 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   4018 
   4019 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   4020 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   4021 	    	if (sc->bge_flags & BGEF_PCIE)
   4022 			write_op = bge_writemem_direct;
   4023 		else
   4024 			write_op = bge_writemem_ind;
   4025 	} else
   4026 		write_op = bge_writereg_ind;
   4027 
   4028 	/* 57XX step 4 */
   4029 	/* Acquire the NVM lock */
   4030 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
   4031 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4032 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4033 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4034 		for (i = 0; i < 8000; i++) {
   4035 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4036 			    BGE_NVRAMSWARB_GNT1)
   4037 				break;
   4038 			DELAY(20);
   4039 		}
   4040 		if (i == 8000) {
   4041 			printf("%s: NVRAM lock timedout!\n",
   4042 			    device_xname(sc->bge_dev));
   4043 		}
   4044 	}
   4045 
   4046 	/* Take APE lock when performing reset. */
   4047 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4048 
   4049 	/* 57XX step 3 */
   4050 	/* Save some important PCI state. */
   4051 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4052 	/* 5718 reset step 3 */
   4053 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4054 
   4055 	/* 5718 reset step 5, 57XX step 5b-5d */
   4056 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4057 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4058 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4059 
   4060 	/* XXX ???: Disable fastboot on controllers that support it. */
   4061 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4062 	    BGE_IS_5755_PLUS(sc))
   4063 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4064 
   4065 	/* 5718 reset step 2, 57XX step 6 */
   4066 	/*
   4067 	 * Write the magic number to SRAM at offset 0xB50.
   4068 	 * When firmware finishes its initialization it will
   4069 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4070 	 */
   4071 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4072 
   4073 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   4074 		val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   4075 		val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   4076 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   4077 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
   4078 	}
   4079 
   4080 	/* 5718 reset step 6, 57XX step 7 */
   4081 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4082 	/*
   4083 	 * XXX: from FreeBSD/Linux; no documentation
   4084 	 */
   4085 	if (sc->bge_flags & BGEF_PCIE) {
   4086 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
   4087 		    !BGE_IS_57765_PLUS(sc) &&
   4088 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4089 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4090 			/* PCI Express 1.0 system */
   4091 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4092 			    BGE_PHY_PCIE_SCRAM_MODE);
   4093 		}
   4094 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4095 			/*
   4096 			 * Prevent PCI Express link training
   4097 			 * during global reset.
   4098 			 */
   4099 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4100 			reset |= (1 << 29);
   4101 		}
   4102 	}
   4103 
   4104 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4105 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4106 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4107 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4108 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4109 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4110 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4111 	}
   4112 
   4113 	/*
   4114 	 * Set GPHY Power Down Override to leave GPHY
   4115 	 * powered up in D0 uninitialized.
   4116 	 */
   4117 	if (BGE_IS_5705_PLUS(sc) &&
   4118 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4119 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4120 
   4121 	/* Issue global reset */
   4122 	write_op(sc, BGE_MISC_CFG, reset);
   4123 
   4124 	/* 5718 reset step 7, 57XX step 8 */
   4125 	if (sc->bge_flags & BGEF_PCIE)
   4126 		delay(100*1000); /* too big */
   4127 	else
   4128 		delay(1000);
   4129 
   4130 	if (sc->bge_flags & BGEF_PCIE) {
   4131 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4132 			DELAY(500000);
   4133 			/* XXX: Magic Numbers */
   4134 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4135 			    BGE_PCI_UNKNOWN0);
   4136 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4137 			    BGE_PCI_UNKNOWN0,
   4138 			    reg | (1 << 15));
   4139 		}
   4140 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4141 		    sc->bge_pciecap + PCIE_DCSR);
   4142 		/* Clear enable no snoop and disable relaxed ordering. */
   4143 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4144 		    PCIE_DCSR_ENA_NO_SNOOP);
   4145 
   4146 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4147 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4148 			devctl &= ~(0x00e0);
   4149 		/* Clear device status register. Write 1b to clear */
   4150 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4151 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4152 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4153 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4154 		bge_set_max_readrq(sc);
   4155 	}
   4156 
   4157 	/* From Linux: dummy read to flush PCI posted writes */
   4158 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4159 
   4160 	/*
   4161 	 * Reset some of the PCI state that got zapped by reset
   4162 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4163 	 * set, too.
   4164 	 */
   4165 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4166 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4167 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4168 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4169 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4170 	    (sc->bge_flags & BGEF_PCIX) != 0)
   4171 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4172 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4173 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4174 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4175 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4176 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4177 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4178 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4179 
   4180 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
   4181 	if (sc->bge_flags & BGEF_PCIX) {
   4182 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4183 		    + PCIX_CMD);
   4184 		/* Set max memory read byte count to 2K */
   4185 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   4186 			reg &= ~PCIX_CMD_BYTECNT_MASK;
   4187 			reg |= PCIX_CMD_BCNT_2048;
   4188 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
   4189 			/*
   4190 			 * For 5704, set max outstanding split transaction
   4191 			 * field to 0 (0 means it supports 1 request)
   4192 			 */
   4193 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
   4194 			    | PCIX_CMD_BYTECNT_MASK);
   4195 			reg |= PCIX_CMD_BCNT_2048;
   4196 		}
   4197 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4198 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4199 	}
   4200 
   4201 	/* 5718 reset step 10, 57XX step 12 */
   4202 	/* Enable memory arbiter. */
   4203 	if (BGE_IS_5714_FAMILY(sc)) {
   4204 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4205 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4206 	} else
   4207 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4208 
   4209 	/* XXX 5721, 5751 and 5752 */
   4210 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4211 		/* Step 19: */
   4212 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4213 		/* Step 20: */
   4214 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4215 	}
   4216 
   4217 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4218 	/* Fix up byte swapping */
   4219 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4220 
   4221 	/* 5718 reset step 13, 57XX step 17 */
   4222 	/* Poll until the firmware initialization is complete */
   4223 	bge_poll_fw(sc);
   4224 
   4225 	/* 57XX step 21 */
   4226 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4227 		pcireg_t msidata;
   4228 
   4229 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4230 		    BGE_PCI_MSI_DATA);
   4231 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4232 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4233 		    msidata);
   4234 	}
   4235 
   4236 	/* 57XX step 18 */
   4237 	/* Write mac mode. */
   4238 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4239 	/* Restore mac_mode_mask's bits using mac_mode */
   4240 	val = (val & ~mac_mode_mask) | mac_mode;
   4241 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4242 	DELAY(40);
   4243 
   4244 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4245 
   4246 	/*
   4247 	 * The 5704 in TBI mode apparently needs some special
   4248 	 * adjustment to insure the SERDES drive level is set
   4249 	 * to 1.2V.
   4250 	 */
   4251 	if (sc->bge_flags & BGEF_FIBER_TBI &&
   4252 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4253 		uint32_t serdescfg;
   4254 
   4255 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4256 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4257 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4258 	}
   4259 
   4260 	if (sc->bge_flags & BGEF_PCIE &&
   4261 	    !BGE_IS_57765_PLUS(sc) &&
   4262 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4263 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4264 		uint32_t v;
   4265 
   4266 		/* Enable PCI Express bug fix */
   4267 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4268 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4269 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4270 	}
   4271 
   4272 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4273 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4274 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4275 
   4276 	return 0;
   4277 }
   4278 
   4279 /*
   4280  * Frame reception handling. This is called if there's a frame
   4281  * on the receive return list.
   4282  *
   4283  * Note: we have to be able to handle two possibilities here:
   4284  * 1) the frame is from the jumbo receive ring
   4285  * 2) the frame is from the standard receive ring
   4286  */
   4287 
   4288 static void
   4289 bge_rxeof(struct bge_softc *sc)
   4290 {
   4291 	struct ifnet *ifp;
   4292 	uint16_t rx_prod, rx_cons;
   4293 	int stdcnt = 0, jumbocnt = 0;
   4294 	bus_dmamap_t dmamap;
   4295 	bus_addr_t offset, toff;
   4296 	bus_size_t tlen;
   4297 	int tosync;
   4298 
   4299 	rx_cons = sc->bge_rx_saved_considx;
   4300 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4301 
   4302 	/* Nothing to do */
   4303 	if (rx_cons == rx_prod)
   4304 		return;
   4305 
   4306 	ifp = &sc->ethercom.ec_if;
   4307 
   4308 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4309 	    offsetof(struct bge_ring_data, bge_status_block),
   4310 	    sizeof (struct bge_status_block),
   4311 	    BUS_DMASYNC_POSTREAD);
   4312 
   4313 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4314 	tosync = rx_prod - rx_cons;
   4315 
   4316 	if (tosync != 0)
   4317 		rnd_add_uint32(&sc->rnd_source, tosync);
   4318 
   4319 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   4320 
   4321 	if (tosync < 0) {
   4322 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4323 		    sizeof (struct bge_rx_bd);
   4324 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4325 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4326 		tosync = -tosync;
   4327 	}
   4328 
   4329 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4330 	    offset, tosync * sizeof (struct bge_rx_bd),
   4331 	    BUS_DMASYNC_POSTREAD);
   4332 
   4333 	while (rx_cons != rx_prod) {
   4334 		struct bge_rx_bd	*cur_rx;
   4335 		uint32_t		rxidx;
   4336 		struct mbuf		*m = NULL;
   4337 
   4338 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4339 
   4340 		rxidx = cur_rx->bge_idx;
   4341 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4342 
   4343 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4344 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4345 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4346 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4347 			jumbocnt++;
   4348 			bus_dmamap_sync(sc->bge_dmatag,
   4349 			    sc->bge_cdata.bge_rx_jumbo_map,
   4350 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4351 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4352 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4353 				ifp->if_ierrors++;
   4354 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4355 				continue;
   4356 			}
   4357 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4358 					     NULL)== ENOBUFS) {
   4359 				ifp->if_ierrors++;
   4360 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4361 				continue;
   4362 			}
   4363 		} else {
   4364 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   4365 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4366 
   4367 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4368 			stdcnt++;
   4369 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4370 			sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
   4371 			if (dmamap == NULL) {
   4372 				ifp->if_ierrors++;
   4373 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4374 				continue;
   4375 			}
   4376 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4377 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4378 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4379 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4380 				ifp->if_ierrors++;
   4381 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4382 				continue;
   4383 			}
   4384 			if (bge_newbuf_std(sc, sc->bge_std,
   4385 			    NULL, dmamap) == ENOBUFS) {
   4386 				ifp->if_ierrors++;
   4387 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4388 				continue;
   4389 			}
   4390 		}
   4391 
   4392 #ifndef __NO_STRICT_ALIGNMENT
   4393 		/*
   4394 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4395 		 * the Rx buffer has the layer-2 header unaligned.
   4396 		 * If our CPU requires alignment, re-align by copying.
   4397 		 */
   4398 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
   4399 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4400 				cur_rx->bge_len);
   4401 			m->m_data += ETHER_ALIGN;
   4402 		}
   4403 #endif
   4404 
   4405 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4406 		m_set_rcvif(m, ifp);
   4407 
   4408 		bge_rxcsum(sc, cur_rx, m);
   4409 
   4410 		/*
   4411 		 * If we received a packet with a vlan tag, pass it
   4412 		 * to vlan_input() instead of ether_input().
   4413 		 */
   4414 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   4415 			vlan_set_tag(m, cur_rx->bge_vlan_tag);
   4416 		}
   4417 
   4418 		if_percpuq_enqueue(ifp->if_percpuq, m);
   4419 	}
   4420 
   4421 	sc->bge_rx_saved_considx = rx_cons;
   4422 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4423 	if (stdcnt)
   4424 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   4425 	if (jumbocnt)
   4426 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4427 }
   4428 
   4429 static void
   4430 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4431 {
   4432 
   4433 	if (BGE_IS_57765_PLUS(sc)) {
   4434 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4435 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4436 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4437 			if ((cur_rx->bge_error_flag &
   4438 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4439 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4440 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4441 				m->m_pkthdr.csum_data =
   4442 				    cur_rx->bge_tcp_udp_csum;
   4443 				m->m_pkthdr.csum_flags |=
   4444 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4445 					M_CSUM_DATA);
   4446 			}
   4447 		}
   4448 	} else {
   4449 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4450 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4451 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4452 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4453 		/*
   4454 		 * Rx transport checksum-offload may also
   4455 		 * have bugs with packets which, when transmitted,
   4456 		 * were `runts' requiring padding.
   4457 		 */
   4458 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4459 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4460 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4461 			m->m_pkthdr.csum_data =
   4462 			    cur_rx->bge_tcp_udp_csum;
   4463 			m->m_pkthdr.csum_flags |=
   4464 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4465 				M_CSUM_DATA);
   4466 		}
   4467 	}
   4468 }
   4469 
   4470 static void
   4471 bge_txeof(struct bge_softc *sc)
   4472 {
   4473 	struct bge_tx_bd *cur_tx = NULL;
   4474 	struct ifnet *ifp;
   4475 	struct txdmamap_pool_entry *dma;
   4476 	bus_addr_t offset, toff;
   4477 	bus_size_t tlen;
   4478 	int tosync;
   4479 	struct mbuf *m;
   4480 
   4481 	ifp = &sc->ethercom.ec_if;
   4482 
   4483 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4484 	    offsetof(struct bge_ring_data, bge_status_block),
   4485 	    sizeof (struct bge_status_block),
   4486 	    BUS_DMASYNC_POSTREAD);
   4487 
   4488 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4489 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   4490 	    sc->bge_tx_saved_considx;
   4491 
   4492 	if (tosync != 0)
   4493 		rnd_add_uint32(&sc->rnd_source, tosync);
   4494 
   4495 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   4496 
   4497 	if (tosync < 0) {
   4498 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4499 		    sizeof (struct bge_tx_bd);
   4500 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4501 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4502 		tosync = -tosync;
   4503 	}
   4504 
   4505 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4506 	    offset, tosync * sizeof (struct bge_tx_bd),
   4507 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4508 
   4509 	/*
   4510 	 * Go through our tx ring and free mbufs for those
   4511 	 * frames that have been sent.
   4512 	 */
   4513 	while (sc->bge_tx_saved_considx !=
   4514 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   4515 		uint32_t		idx = 0;
   4516 
   4517 		idx = sc->bge_tx_saved_considx;
   4518 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4519 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4520 			ifp->if_opackets++;
   4521 		m = sc->bge_cdata.bge_tx_chain[idx];
   4522 		if (m != NULL) {
   4523 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4524 			dma = sc->txdma[idx];
   4525 			if (dma->is_dma32) {
   4526 				bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
   4527 				    0, dma->dmamap32->dm_mapsize,
   4528 				    BUS_DMASYNC_POSTWRITE);
   4529 				bus_dmamap_unload(
   4530 				    sc->bge_dmatag32, dma->dmamap32);
   4531 			} else {
   4532 				bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
   4533 				    0, dma->dmamap->dm_mapsize,
   4534 				    BUS_DMASYNC_POSTWRITE);
   4535 				bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4536 			}
   4537 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4538 			sc->txdma[idx] = NULL;
   4539 
   4540 			m_freem(m);
   4541 		}
   4542 		sc->bge_txcnt--;
   4543 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4544 		ifp->if_timer = 0;
   4545 	}
   4546 
   4547 	if (cur_tx != NULL)
   4548 		ifp->if_flags &= ~IFF_OACTIVE;
   4549 }
   4550 
   4551 static int
   4552 bge_intr(void *xsc)
   4553 {
   4554 	struct bge_softc *sc;
   4555 	struct ifnet *ifp;
   4556 	uint32_t pcistate, statusword, statustag;
   4557 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4558 
   4559 	sc = xsc;
   4560 	ifp = &sc->ethercom.ec_if;
   4561 
   4562 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4563 	if (BGE_IS_5717_PLUS(sc))
   4564 		intrmask = 0;
   4565 
   4566 	/* It is possible for the interrupt to arrive before
   4567 	 * the status block is updated prior to the interrupt.
   4568 	 * Reading the PCI State register will confirm whether the
   4569 	 * interrupt is ours and will flush the status block.
   4570 	 */
   4571 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
   4572 
   4573 	/* read status word from status block */
   4574 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4575 	    offsetof(struct bge_ring_data, bge_status_block),
   4576 	    sizeof (struct bge_status_block),
   4577 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4578 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4579 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
   4580 
   4581 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
   4582 		if (sc->bge_lasttag == statustag &&
   4583 		    (~pcistate & intrmask)) {
   4584 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
   4585 			return (0);
   4586 		}
   4587 		sc->bge_lasttag = statustag;
   4588 	} else {
   4589 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
   4590 		    !(~pcistate & intrmask)) {
   4591 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
   4592 			return (0);
   4593 		}
   4594 		statustag = 0;
   4595 	}
   4596 	/* Ack interrupt and stop others from occurring. */
   4597 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4598 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   4599 
   4600 	/* clear status word */
   4601 	sc->bge_rdata->bge_status_block.bge_status = 0;
   4602 
   4603 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4604 	    offsetof(struct bge_ring_data, bge_status_block),
   4605 	    sizeof (struct bge_status_block),
   4606 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4607 
   4608 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4609 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4610 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4611 		bge_link_upd(sc);
   4612 
   4613 	if (ifp->if_flags & IFF_RUNNING) {
   4614 		/* Check RX return ring producer/consumer */
   4615 		bge_rxeof(sc);
   4616 
   4617 		/* Check TX ring producer/consumer */
   4618 		bge_txeof(sc);
   4619 	}
   4620 
   4621 	if (sc->bge_pending_rxintr_change) {
   4622 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4623 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4624 
   4625 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4626 		DELAY(10);
   4627 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4628 
   4629 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4630 		DELAY(10);
   4631 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4632 
   4633 		sc->bge_pending_rxintr_change = 0;
   4634 	}
   4635 	bge_handle_events(sc);
   4636 
   4637 	/* Re-enable interrupts. */
   4638 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
   4639 
   4640 	if (ifp->if_flags & IFF_RUNNING)
   4641 		if_schedule_deferred_start(ifp);
   4642 
   4643 	return 1;
   4644 }
   4645 
   4646 static void
   4647 bge_asf_driver_up(struct bge_softc *sc)
   4648 {
   4649 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4650 		/* Send ASF heartbeat aprox. every 2s */
   4651 		if (sc->bge_asf_count)
   4652 			sc->bge_asf_count --;
   4653 		else {
   4654 			sc->bge_asf_count = 2;
   4655 
   4656 			bge_wait_for_event_ack(sc);
   4657 
   4658 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4659 			    BGE_FW_CMD_DRV_ALIVE3);
   4660 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4661 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4662 			    BGE_FW_HB_TIMEOUT_SEC);
   4663 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4664 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4665 			    BGE_RX_CPU_DRV_EVENT);
   4666 		}
   4667 	}
   4668 }
   4669 
   4670 static void
   4671 bge_tick(void *xsc)
   4672 {
   4673 	struct bge_softc *sc = xsc;
   4674 	struct mii_data *mii = &sc->bge_mii;
   4675 	int s;
   4676 
   4677 	s = splnet();
   4678 
   4679 	if (BGE_IS_5705_PLUS(sc))
   4680 		bge_stats_update_regs(sc);
   4681 	else
   4682 		bge_stats_update(sc);
   4683 
   4684 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4685 		/*
   4686 		 * Since in TBI mode auto-polling can't be used we should poll
   4687 		 * link status manually. Here we register pending link event
   4688 		 * and trigger interrupt.
   4689 		 */
   4690 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4691 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4692 	} else {
   4693 		/*
   4694 		 * Do not touch PHY if we have link up. This could break
   4695 		 * IPMI/ASF mode or produce extra input errors.
   4696 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4697 		 */
   4698 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4699 			mii_tick(mii);
   4700 	}
   4701 
   4702 	bge_asf_driver_up(sc);
   4703 
   4704 	if (!sc->bge_detaching)
   4705 		callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4706 
   4707 	splx(s);
   4708 }
   4709 
   4710 static void
   4711 bge_stats_update_regs(struct bge_softc *sc)
   4712 {
   4713 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4714 
   4715 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   4716 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   4717 
   4718 	/*
   4719 	 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
   4720 	 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
   4721 	 * (silicon bug). There's no reliable workaround so just
   4722 	 * ignore the counter
   4723 	 */
   4724 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   4725 	    BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5719_A0 &&
   4726 	    BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5720_A0) {
   4727 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   4728 	}
   4729 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   4730 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   4731 }
   4732 
   4733 static void
   4734 bge_stats_update(struct bge_softc *sc)
   4735 {
   4736 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4737 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4738 
   4739 #define READ_STAT(sc, stats, stat) \
   4740 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4741 
   4742 	ifp->if_collisions +=
   4743 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4744 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4745 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4746 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   4747 	  ifp->if_collisions;
   4748 
   4749 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4750 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4751 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4752 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4753 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4754 		      READ_STAT(sc, stats,
   4755 		      		xoffPauseFramesReceived.bge_addr_lo));
   4756 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4757 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4758 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4759 		      READ_STAT(sc, stats,
   4760 		      		macControlFramesReceived.bge_addr_lo));
   4761 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4762 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4763 
   4764 #undef READ_STAT
   4765 
   4766 #ifdef notdef
   4767 	ifp->if_collisions +=
   4768 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   4769 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   4770 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   4771 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   4772 	   ifp->if_collisions;
   4773 #endif
   4774 }
   4775 
   4776 /*
   4777  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4778  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4779  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4780  * the hardware checksum assist gives incorrect results (possibly
   4781  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4782  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4783  */
   4784 static inline int
   4785 bge_cksum_pad(struct mbuf *pkt)
   4786 {
   4787 	struct mbuf *last = NULL;
   4788 	int padlen;
   4789 
   4790 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4791 
   4792 	/* if there's only the packet-header and we can pad there, use it. */
   4793 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4794 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4795 		last = pkt;
   4796 	} else {
   4797 		/*
   4798 		 * Walk packet chain to find last mbuf. We will either
   4799 		 * pad there, or append a new mbuf and pad it
   4800 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4801 		 */
   4802 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4803 	      	       continue; /* do nothing */
   4804 		}
   4805 
   4806 		/* `last' now points to last in chain. */
   4807 		if (M_TRAILINGSPACE(last) < padlen) {
   4808 			/* Allocate new empty mbuf, pad it. Compact later. */
   4809 			struct mbuf *n;
   4810 			MGET(n, M_DONTWAIT, MT_DATA);
   4811 			if (n == NULL)
   4812 				return ENOBUFS;
   4813 			n->m_len = 0;
   4814 			last->m_next = n;
   4815 			last = n;
   4816 		}
   4817 	}
   4818 
   4819 	KDASSERT(!M_READONLY(last));
   4820 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4821 
   4822 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4823 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4824 	last->m_len += padlen;
   4825 	pkt->m_pkthdr.len += padlen;
   4826 	return 0;
   4827 }
   4828 
   4829 /*
   4830  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   4831  */
   4832 static inline int
   4833 bge_compact_dma_runt(struct mbuf *pkt)
   4834 {
   4835 	struct mbuf	*m, *prev;
   4836 	int 		totlen;
   4837 
   4838 	prev = NULL;
   4839 	totlen = 0;
   4840 
   4841 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   4842 		int mlen = m->m_len;
   4843 		int shortfall = 8 - mlen ;
   4844 
   4845 		totlen += mlen;
   4846 		if (mlen == 0)
   4847 			continue;
   4848 		if (mlen >= 8)
   4849 			continue;
   4850 
   4851 		/* If we get here, mbuf data is too small for DMA engine.
   4852 		 * Try to fix by shuffling data to prev or next in chain.
   4853 		 * If that fails, do a compacting deep-copy of the whole chain.
   4854 		 */
   4855 
   4856 		/* Internal frag. If fits in prev, copy it there. */
   4857 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   4858 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   4859 			prev->m_len += mlen;
   4860 			m->m_len = 0;
   4861 			/* XXX stitch chain */
   4862 			prev->m_next = m_free(m);
   4863 			m = prev;
   4864 			continue;
   4865 		}
   4866 		else if (m->m_next != NULL &&
   4867 			     M_TRAILINGSPACE(m) >= shortfall &&
   4868 			     m->m_next->m_len >= (8 + shortfall)) {
   4869 		    /* m is writable and have enough data in next, pull up. */
   4870 
   4871 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   4872 			    shortfall);
   4873 			m->m_len += shortfall;
   4874 			m->m_next->m_len -= shortfall;
   4875 			m->m_next->m_data += shortfall;
   4876 		}
   4877 		else if (m->m_next == NULL || 1) {
   4878 		  	/* Got a runt at the very end of the packet.
   4879 			 * borrow data from the tail of the preceding mbuf and
   4880 			 * update its length in-place. (The original data is still
   4881 			 * valid, so we can do this even if prev is not writable.)
   4882 			 */
   4883 
   4884 			/* if we'd make prev a runt, just move all of its data. */
   4885 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   4886 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   4887 
   4888 			if ((prev->m_len - shortfall) < 8)
   4889 				shortfall = prev->m_len;
   4890 
   4891 #ifdef notyet	/* just do the safe slow thing for now */
   4892 			if (!M_READONLY(m)) {
   4893 				if (M_LEADINGSPACE(m) < shorfall) {
   4894 					void *m_dat;
   4895 					m_dat = (m->m_flags & M_PKTHDR) ?
   4896 					  m->m_pktdat : m->dat;
   4897 					memmove(m_dat, mtod(m, void*), m->m_len);
   4898 					m->m_data = m_dat;
   4899 				    }
   4900 			} else
   4901 #endif	/* just do the safe slow thing */
   4902 			{
   4903 				struct mbuf * n = NULL;
   4904 				int newprevlen = prev->m_len - shortfall;
   4905 
   4906 				MGET(n, M_NOWAIT, MT_DATA);
   4907 				if (n == NULL)
   4908 				   return ENOBUFS;
   4909 				KASSERT(m->m_len + shortfall < MLEN
   4910 					/*,
   4911 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   4912 
   4913 				/* first copy the data we're stealing from prev */
   4914 				memcpy(n->m_data, prev->m_data + newprevlen,
   4915 				    shortfall);
   4916 
   4917 				/* update prev->m_len accordingly */
   4918 				prev->m_len -= shortfall;
   4919 
   4920 				/* copy data from runt m */
   4921 				memcpy(n->m_data + shortfall, m->m_data,
   4922 				    m->m_len);
   4923 
   4924 				/* n holds what we stole from prev, plus m */
   4925 				n->m_len = shortfall + m->m_len;
   4926 
   4927 				/* stitch n into chain and free m */
   4928 				n->m_next = m->m_next;
   4929 				prev->m_next = n;
   4930 				/* KASSERT(m->m_next == NULL); */
   4931 				m->m_next = NULL;
   4932 				m_free(m);
   4933 				m = n;	/* for continuing loop */
   4934 			}
   4935 		}
   4936 	}
   4937 	return 0;
   4938 }
   4939 
   4940 /*
   4941  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   4942  * pointers to descriptors.
   4943  */
   4944 static int
   4945 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   4946 {
   4947 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4948 	struct bge_tx_bd	*f, *prev_f;
   4949 	uint32_t		frag, cur;
   4950 	uint16_t		csum_flags = 0;
   4951 	uint16_t		txbd_tso_flags = 0;
   4952 	struct txdmamap_pool_entry *dma;
   4953 	bus_dmamap_t dmamap;
   4954 	bus_dma_tag_t dmatag;
   4955 	int			i = 0;
   4956 	int			use_tso, maxsegsize, error;
   4957 	bool			have_vtag;
   4958 	uint16_t		vtag;
   4959 	bool 			remap;
   4960 
   4961 	if (m_head->m_pkthdr.csum_flags) {
   4962 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4963 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   4964 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   4965 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   4966 	}
   4967 
   4968 	/*
   4969 	 * If we were asked to do an outboard checksum, and the NIC
   4970 	 * has the bug where it sometimes adds in the Ethernet padding,
   4971 	 * explicitly pad with zeros so the cksum will be correct either way.
   4972 	 * (For now, do this for all chip versions, until newer
   4973 	 * are confirmed to not require the workaround.)
   4974 	 */
   4975 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   4976 #ifdef notyet
   4977 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   4978 #endif
   4979 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   4980 		goto check_dma_bug;
   4981 
   4982 	if (bge_cksum_pad(m_head) != 0)
   4983 		return ENOBUFS;
   4984 
   4985 check_dma_bug:
   4986 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   4987 		goto doit;
   4988 
   4989 	/*
   4990 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   4991 	 * less than eight bytes.  If we encounter a teeny mbuf
   4992 	 * at the end of a chain, we can pad.  Otherwise, copy.
   4993 	 */
   4994 	if (bge_compact_dma_runt(m_head) != 0)
   4995 		return ENOBUFS;
   4996 
   4997 doit:
   4998 	dma = SLIST_FIRST(&sc->txdma_list);
   4999 	if (dma == NULL) {
   5000 		ifp->if_flags |= IFF_OACTIVE;
   5001 		return ENOBUFS;
   5002 	}
   5003 	dmamap = dma->dmamap;
   5004 	dmatag = sc->bge_dmatag;
   5005 	dma->is_dma32 = false;
   5006 
   5007 	/*
   5008 	 * Set up any necessary TSO state before we start packing...
   5009 	 */
   5010 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   5011 	if (!use_tso) {
   5012 		maxsegsize = 0;
   5013 	} else {	/* TSO setup */
   5014 		unsigned  mss;
   5015 		struct ether_header *eh;
   5016 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   5017 		unsigned bge_hlen;
   5018 		struct mbuf * m0 = m_head;
   5019 		struct ip *ip;
   5020 		struct tcphdr *th;
   5021 		int iphl, hlen;
   5022 
   5023 		/*
   5024 		 * XXX It would be nice if the mbuf pkthdr had offset
   5025 		 * fields for the protocol headers.
   5026 		 */
   5027 
   5028 		eh = mtod(m0, struct ether_header *);
   5029 		switch (htons(eh->ether_type)) {
   5030 		case ETHERTYPE_IP:
   5031 			offset = ETHER_HDR_LEN;
   5032 			break;
   5033 
   5034 		case ETHERTYPE_VLAN:
   5035 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   5036 			break;
   5037 
   5038 		default:
   5039 			/*
   5040 			 * Don't support this protocol or encapsulation.
   5041 			 */
   5042 			return ENOBUFS;
   5043 		}
   5044 
   5045 		/*
   5046 		 * TCP/IP headers are in the first mbuf; we can do
   5047 		 * this the easy way.
   5048 		 */
   5049 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   5050 		hlen = iphl + offset;
   5051 		if (__predict_false(m0->m_len <
   5052 				    (hlen + sizeof(struct tcphdr)))) {
   5053 
   5054 			aprint_error_dev(sc->bge_dev,
   5055 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   5056 			    "not handled yet\n",
   5057 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   5058 #ifdef NOTYET
   5059 			/*
   5060 			 * XXX jonathan (at) NetBSD.org: untested.
   5061 			 * how to force  this branch to be taken?
   5062 			 */
   5063 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
   5064 
   5065 			m_copydata(m0, offset, sizeof(ip), &ip);
   5066 			m_copydata(m0, hlen, sizeof(th), &th);
   5067 
   5068 			ip.ip_len = 0;
   5069 
   5070 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   5071 			    sizeof(ip.ip_len), &ip.ip_len);
   5072 
   5073 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   5074 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   5075 
   5076 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   5077 			    sizeof(th.th_sum), &th.th_sum);
   5078 
   5079 			hlen += th.th_off << 2;
   5080 			iptcp_opt_words	= hlen;
   5081 #else
   5082 			/*
   5083 			 * if_wm "hard" case not yet supported, can we not
   5084 			 * mandate it out of existence?
   5085 			 */
   5086 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5087 
   5088 			return ENOBUFS;
   5089 #endif
   5090 		} else {
   5091 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5092 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5093 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5094 
   5095 			/* Total IP/TCP options, in 32-bit words */
   5096 			iptcp_opt_words = (ip_tcp_hlen
   5097 					   - sizeof(struct tcphdr)
   5098 					   - sizeof(struct ip)) >> 2;
   5099 		}
   5100 		if (BGE_IS_575X_PLUS(sc)) {
   5101 			th->th_sum = 0;
   5102 			csum_flags = 0;
   5103 		} else {
   5104 			/*
   5105 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5106 			 * Requires TSO firmware patch for 5701/5703/5704.
   5107 			 */
   5108 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5109 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5110 		}
   5111 
   5112 		mss = m_head->m_pkthdr.segsz;
   5113 		txbd_tso_flags |=
   5114 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5115 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5116 
   5117 		/*
   5118 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5119 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5120 		 * the NIC copies 40 bytes of IP/TCP header from the
   5121 		 * supplied header into the IP/TCP header portion of
   5122 		 * each post-TSO-segment. If the supplied packet has IP or
   5123 		 * TCP options, we need to tell the NIC to copy those extra
   5124 		 * bytes into each  post-TSO header, in addition to the normal
   5125 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5126 		 * Unfortunately, the driver encoding of option length
   5127 		 * varies across different ASIC families.
   5128 		 */
   5129 		tcp_seg_flags = 0;
   5130 		bge_hlen = ip_tcp_hlen >> 2;
   5131 		if (BGE_IS_5717_PLUS(sc)) {
   5132 			tcp_seg_flags = (bge_hlen & 0x3) << 14;
   5133 			txbd_tso_flags |=
   5134 			    ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
   5135 		} else if (BGE_IS_5705_PLUS(sc)) {
   5136 			tcp_seg_flags =
   5137 				bge_hlen << 11;
   5138 		} else {
   5139 			/* XXX iptcp_opt_words or bge_hlen ? */
   5140 			txbd_tso_flags |=
   5141 				iptcp_opt_words << 12;
   5142 		}
   5143 		maxsegsize = mss | tcp_seg_flags;
   5144 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5145 		ip->ip_sum = 0;
   5146 
   5147 	}	/* TSO setup */
   5148 
   5149 	have_vtag = vlan_has_tag(m_head);
   5150 	if (have_vtag)
   5151 		vtag = vlan_get_tag(m_head);
   5152 
   5153 	/*
   5154 	 * Start packing the mbufs in this chain into
   5155 	 * the fragment pointers. Stop when we run out
   5156 	 * of fragments or hit the end of the mbuf chain.
   5157 	 */
   5158 	remap = true;
   5159 load_again:
   5160 	error = bus_dmamap_load_mbuf(dmatag, dmamap,
   5161 	    m_head, BUS_DMA_NOWAIT);
   5162 	if (__predict_false(error)) {
   5163 		if (error == EFBIG && remap)  {
   5164 			struct mbuf *m;
   5165 			remap = false;
   5166 			m = m_defrag(m_head, M_NOWAIT);
   5167 			if (m != NULL) {
   5168 				KASSERT(m == m_head);
   5169 				goto load_again;
   5170 			}
   5171 		}
   5172 		return error;
   5173 	}
   5174 	/*
   5175 	 * Sanity check: avoid coming within 16 descriptors
   5176 	 * of the end of the ring.
   5177 	 */
   5178 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5179 		BGE_TSO_PRINTF(("%s: "
   5180 		    " dmamap_load_mbuf too close to ring wrap\n",
   5181 		    device_xname(sc->bge_dev)));
   5182 		goto fail_unload;
   5183 	}
   5184 
   5185 	/* Iterate over dmap-map fragments. */
   5186 	f = prev_f = NULL;
   5187 	cur = frag = *txidx;
   5188 
   5189 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5190 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5191 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5192 			break;
   5193 
   5194 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5195 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5196 		if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
   5197 		    (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
   5198 		    ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
   5199 		    (prev_f != NULL &&
   5200 		     prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
   5201 		   ) {
   5202 			/*
   5203 			 * watchdog timeout issue was observed with TSO,
   5204 			 * limiting DMA address space to 32bits seems to
   5205 			 * address the issue.
   5206 			 */
   5207 			bus_dmamap_unload(dmatag, dmamap);
   5208 			dmatag = sc->bge_dmatag32;
   5209 			dmamap = dma->dmamap32;
   5210 			dma->is_dma32 = true;
   5211 			remap = true;
   5212 			goto load_again;
   5213 		}
   5214 
   5215 		/*
   5216 		 * For 5751 and follow-ons, for TSO we must turn
   5217 		 * off checksum-assist flag in the tx-descr, and
   5218 		 * supply the ASIC-revision-specific encoding
   5219 		 * of TSO flags and segsize.
   5220 		 */
   5221 		if (use_tso) {
   5222 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5223 				f->bge_rsvd = maxsegsize;
   5224 				f->bge_flags = csum_flags | txbd_tso_flags;
   5225 			} else {
   5226 				f->bge_rsvd = 0;
   5227 				f->bge_flags =
   5228 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5229 			}
   5230 		} else {
   5231 			f->bge_rsvd = 0;
   5232 			f->bge_flags = csum_flags;
   5233 		}
   5234 
   5235 		if (have_vtag) {
   5236 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5237 			f->bge_vlan_tag = vtag;
   5238 		} else {
   5239 			f->bge_vlan_tag = 0;
   5240 		}
   5241 		prev_f = f;
   5242 		cur = frag;
   5243 		BGE_INC(frag, BGE_TX_RING_CNT);
   5244 	}
   5245 
   5246 	if (i < dmamap->dm_nsegs) {
   5247 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5248 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5249 		goto fail_unload;
   5250 	}
   5251 
   5252 	bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
   5253 	    BUS_DMASYNC_PREWRITE);
   5254 
   5255 	if (frag == sc->bge_tx_saved_considx) {
   5256 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5257 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5258 
   5259 		goto fail_unload;
   5260 	}
   5261 
   5262 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5263 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5264 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5265 	sc->txdma[cur] = dma;
   5266 	sc->bge_txcnt += dmamap->dm_nsegs;
   5267 
   5268 	*txidx = frag;
   5269 
   5270 	return 0;
   5271 
   5272 fail_unload:
   5273 	bus_dmamap_unload(dmatag, dmamap);
   5274 	ifp->if_flags |= IFF_OACTIVE;
   5275 
   5276 	return ENOBUFS;
   5277 }
   5278 
   5279 /*
   5280  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5281  * to the mbuf data regions directly in the transmit descriptors.
   5282  */
   5283 static void
   5284 bge_start(struct ifnet *ifp)
   5285 {
   5286 	struct bge_softc *sc;
   5287 	struct mbuf *m_head = NULL;
   5288 	struct mbuf *m;
   5289 	uint32_t prodidx;
   5290 	int pkts = 0;
   5291 	int error;
   5292 
   5293 	sc = ifp->if_softc;
   5294 
   5295 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   5296 		return;
   5297 
   5298 	prodidx = sc->bge_tx_prodidx;
   5299 
   5300 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5301 		IFQ_POLL(&ifp->if_snd, m_head);
   5302 		if (m_head == NULL)
   5303 			break;
   5304 
   5305 #if 0
   5306 		/*
   5307 		 * XXX
   5308 		 * safety overkill.  If this is a fragmented packet chain
   5309 		 * with delayed TCP/UDP checksums, then only encapsulate
   5310 		 * it if we have enough descriptors to handle the entire
   5311 		 * chain at once.
   5312 		 * (paranoia -- may not actually be needed)
   5313 		 */
   5314 		if (m_head->m_flags & M_FIRSTFRAG &&
   5315 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5316 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5317 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5318 				ifp->if_flags |= IFF_OACTIVE;
   5319 				break;
   5320 			}
   5321 		}
   5322 #endif
   5323 
   5324 		/*
   5325 		 * Pack the data into the transmit ring. If we
   5326 		 * don't have room, set the OACTIVE flag and wait
   5327 		 * for the NIC to drain the ring.
   5328 		 */
   5329 		error = bge_encap(sc, m_head, &prodidx);
   5330 		if (__predict_false(error)) {
   5331 			if (ifp->if_flags & IFF_OACTIVE) {
   5332 				/* just wait for the transmit ring to drain */
   5333 				break;
   5334 			}
   5335 			IFQ_DEQUEUE(&ifp->if_snd, m);
   5336 			KASSERT(m == m_head);
   5337 			m_freem(m_head);
   5338 			continue;
   5339 		}
   5340 
   5341 		/* now we are committed to transmit the packet */
   5342 		IFQ_DEQUEUE(&ifp->if_snd, m);
   5343 		KASSERT(m == m_head);
   5344 		pkts++;
   5345 
   5346 		/*
   5347 		 * If there's a BPF listener, bounce a copy of this frame
   5348 		 * to him.
   5349 		 */
   5350 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5351 	}
   5352 	if (pkts == 0)
   5353 		return;
   5354 
   5355 	/* Transmit */
   5356 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5357 	/* 5700 b2 errata */
   5358 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5359 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5360 
   5361 	sc->bge_tx_prodidx = prodidx;
   5362 
   5363 	/*
   5364 	 * Set a timeout in case the chip goes out to lunch.
   5365 	 */
   5366 	ifp->if_timer = 5;
   5367 }
   5368 
   5369 static int
   5370 bge_init(struct ifnet *ifp)
   5371 {
   5372 	struct bge_softc *sc = ifp->if_softc;
   5373 	const uint16_t *m;
   5374 	uint32_t mode, reg;
   5375 	int s, error = 0;
   5376 
   5377 	s = splnet();
   5378 
   5379 	ifp = &sc->ethercom.ec_if;
   5380 
   5381 	/* Cancel pending I/O and flush buffers. */
   5382 	bge_stop(ifp, 0);
   5383 
   5384 	bge_stop_fw(sc);
   5385 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5386 	bge_reset(sc);
   5387 	bge_sig_legacy(sc, BGE_RESET_START);
   5388 
   5389 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5390 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5391 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
   5392 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
   5393 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5394 
   5395 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   5396 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
   5397 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   5398 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   5399 
   5400 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
   5401 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
   5402 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
   5403 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
   5404 
   5405 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
   5406 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
   5407 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
   5408 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
   5409 	}
   5410 
   5411 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   5412 		pcireg_t aercap;
   5413 
   5414 		reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
   5415 		reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
   5416 		    | BGE_PCIE_PWRMNG_L1THRESH_4MS
   5417 		    | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
   5418 		CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
   5419 
   5420 		reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
   5421 		reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
   5422 		    | BGE_PCIE_EIDLE_DELAY_13CLK;
   5423 		CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
   5424 
   5425 		/* Clear correctable error */
   5426 		if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
   5427 		    PCI_EXTCAP_AER, &aercap, NULL) != 0)
   5428 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   5429 			    aercap + PCI_AER_COR_STATUS, 0xffffffff);
   5430 
   5431 		reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   5432 		reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   5433 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   5434 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
   5435 	}
   5436 
   5437 	bge_sig_post_reset(sc, BGE_RESET_START);
   5438 
   5439 	bge_chipinit(sc);
   5440 
   5441 	/*
   5442 	 * Init the various state machines, ring
   5443 	 * control blocks and firmware.
   5444 	 */
   5445 	error = bge_blockinit(sc);
   5446 	if (error != 0) {
   5447 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5448 		    error);
   5449 		splx(s);
   5450 		return error;
   5451 	}
   5452 
   5453 	ifp = &sc->ethercom.ec_if;
   5454 
   5455 	/* 5718 step 25, 57XX step 54 */
   5456 	/* Specify MTU. */
   5457 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5458 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5459 
   5460 	/* 5718 step 23 */
   5461 	/* Load our MAC address. */
   5462 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5463 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5464 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   5465 
   5466 	/* Enable or disable promiscuous mode as needed. */
   5467 	if (ifp->if_flags & IFF_PROMISC)
   5468 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5469 	else
   5470 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5471 
   5472 	/* Program multicast filter. */
   5473 	bge_setmulti(sc);
   5474 
   5475 	/* Init RX ring. */
   5476 	bge_init_rx_ring_std(sc);
   5477 
   5478 	/*
   5479 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5480 	 * memory to insure that the chip has in fact read the first
   5481 	 * entry of the ring.
   5482 	 */
   5483 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5484 		uint32_t		v, i;
   5485 		for (i = 0; i < 10; i++) {
   5486 			DELAY(20);
   5487 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5488 			if (v == (MCLBYTES - ETHER_ALIGN))
   5489 				break;
   5490 		}
   5491 		if (i == 10)
   5492 			aprint_error_dev(sc->bge_dev,
   5493 			    "5705 A0 chip failed to load RX ring\n");
   5494 	}
   5495 
   5496 	/* Init jumbo RX ring. */
   5497 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5498 		bge_init_rx_ring_jumbo(sc);
   5499 
   5500 	/* Init our RX return ring index */
   5501 	sc->bge_rx_saved_considx = 0;
   5502 
   5503 	/* Init TX ring. */
   5504 	bge_init_tx_ring(sc);
   5505 
   5506 	/* 5718 step 63, 57XX step 94 */
   5507 	/* Enable TX MAC state machine lockup fix. */
   5508 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5509 	if (BGE_IS_5755_PLUS(sc) ||
   5510 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5511 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5512 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   5513 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5514 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5515 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5516 	}
   5517 
   5518 	/* Turn on transmitter */
   5519 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5520 	/* 5718 step 64 */
   5521 	DELAY(100);
   5522 
   5523 	/* 5718 step 65, 57XX step 95 */
   5524 	/* Turn on receiver */
   5525 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5526 	if (BGE_IS_5755_PLUS(sc))
   5527 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5528 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5529 	/* 5718 step 66 */
   5530 	DELAY(10);
   5531 
   5532 	/* 5718 step 12, 57XX step 37 */
   5533 	/*
   5534 	 * XXX Doucments of 5718 series and 577xx say the recommended value
   5535 	 * is 1, but tg3 set 1 only on 57765 series.
   5536 	 */
   5537 	if (BGE_IS_57765_PLUS(sc))
   5538 		reg = 1;
   5539 	else
   5540 		reg = 2;
   5541 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
   5542 
   5543 	/* Tell firmware we're alive. */
   5544 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5545 
   5546 	/* Enable host interrupts. */
   5547 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5548 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5549 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5550 
   5551 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5552 		goto out;
   5553 
   5554 	ifp->if_flags |= IFF_RUNNING;
   5555 	ifp->if_flags &= ~IFF_OACTIVE;
   5556 
   5557 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   5558 
   5559 out:
   5560 	sc->bge_if_flags = ifp->if_flags;
   5561 	splx(s);
   5562 
   5563 	return error;
   5564 }
   5565 
   5566 /*
   5567  * Set media options.
   5568  */
   5569 static int
   5570 bge_ifmedia_upd(struct ifnet *ifp)
   5571 {
   5572 	struct bge_softc *sc = ifp->if_softc;
   5573 	struct mii_data *mii = &sc->bge_mii;
   5574 	struct ifmedia *ifm = &sc->bge_ifmedia;
   5575 	int rc;
   5576 
   5577 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5578 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5579 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5580 			return EINVAL;
   5581 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5582 		case IFM_AUTO:
   5583 			/*
   5584 			 * The BCM5704 ASIC appears to have a special
   5585 			 * mechanism for programming the autoneg
   5586 			 * advertisement registers in TBI mode.
   5587 			 */
   5588 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5589 				uint32_t sgdig;
   5590 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5591 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5592 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5593 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5594 					sgdig |= BGE_SGDIGCFG_AUTO |
   5595 					    BGE_SGDIGCFG_PAUSE_CAP |
   5596 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5597 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5598 					    sgdig | BGE_SGDIGCFG_SEND);
   5599 					DELAY(5);
   5600 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5601 					    sgdig);
   5602 				}
   5603 			}
   5604 			break;
   5605 		case IFM_1000_SX:
   5606 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   5607 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   5608 				    BGE_MACMODE_HALF_DUPLEX);
   5609 			} else {
   5610 				BGE_SETBIT(sc, BGE_MAC_MODE,
   5611 				    BGE_MACMODE_HALF_DUPLEX);
   5612 			}
   5613 			DELAY(40);
   5614 			break;
   5615 		default:
   5616 			return EINVAL;
   5617 		}
   5618 		/* XXX 802.3x flow control for 1000BASE-SX */
   5619 		return 0;
   5620 	}
   5621 
   5622 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
   5623 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
   5624 		uint32_t reg;
   5625 
   5626 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5627 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
   5628 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
   5629 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5630 		}
   5631 	}
   5632 
   5633 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5634 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5635 		return 0;
   5636 
   5637 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5638 		uint32_t reg;
   5639 
   5640 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
   5641 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
   5642 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
   5643 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
   5644 			delay(40);
   5645 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
   5646 		}
   5647 	}
   5648 
   5649 	/*
   5650 	 * Force an interrupt so that we will call bge_link_upd
   5651 	 * if needed and clear any pending link state attention.
   5652 	 * Without this we are not getting any further interrupts
   5653 	 * for link state changes and thus will not UP the link and
   5654 	 * not be able to send in bge_start. The only way to get
   5655 	 * things working was to receive a packet and get a RX intr.
   5656 	 */
   5657 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5658 	    sc->bge_flags & BGEF_IS_5788)
   5659 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5660 	else
   5661 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5662 
   5663 	return rc;
   5664 }
   5665 
   5666 /*
   5667  * Report current media status.
   5668  */
   5669 static void
   5670 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5671 {
   5672 	struct bge_softc *sc = ifp->if_softc;
   5673 	struct mii_data *mii = &sc->bge_mii;
   5674 
   5675 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5676 		ifmr->ifm_status = IFM_AVALID;
   5677 		ifmr->ifm_active = IFM_ETHER;
   5678 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5679 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5680 			ifmr->ifm_status |= IFM_ACTIVE;
   5681 		ifmr->ifm_active |= IFM_1000_SX;
   5682 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5683 			ifmr->ifm_active |= IFM_HDX;
   5684 		else
   5685 			ifmr->ifm_active |= IFM_FDX;
   5686 		return;
   5687 	}
   5688 
   5689 	mii_pollstat(mii);
   5690 	ifmr->ifm_status = mii->mii_media_status;
   5691 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5692 	    sc->bge_flowflags;
   5693 }
   5694 
   5695 static int
   5696 bge_ifflags_cb(struct ethercom *ec)
   5697 {
   5698 	struct ifnet *ifp = &ec->ec_if;
   5699 	struct bge_softc *sc = ifp->if_softc;
   5700 	int change = ifp->if_flags ^ sc->bge_if_flags;
   5701 
   5702 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   5703 		return ENETRESET;
   5704 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   5705 		return 0;
   5706 
   5707 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   5708 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5709 	else
   5710 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5711 
   5712 	bge_setmulti(sc);
   5713 
   5714 	sc->bge_if_flags = ifp->if_flags;
   5715 	return 0;
   5716 }
   5717 
   5718 static int
   5719 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5720 {
   5721 	struct bge_softc *sc = ifp->if_softc;
   5722 	struct ifreq *ifr = (struct ifreq *) data;
   5723 	int s, error = 0;
   5724 	struct mii_data *mii;
   5725 
   5726 	s = splnet();
   5727 
   5728 	switch (command) {
   5729 	case SIOCSIFMEDIA:
   5730 		/* XXX Flow control is not supported for 1000BASE-SX */
   5731 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5732 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5733 			sc->bge_flowflags = 0;
   5734 		}
   5735 
   5736 		/* Flow control requires full-duplex mode. */
   5737 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5738 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5739 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   5740 		}
   5741 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5742 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5743 				/* We can do both TXPAUSE and RXPAUSE. */
   5744 				ifr->ifr_media |=
   5745 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5746 			}
   5747 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5748 		}
   5749 		/* FALLTHROUGH */
   5750 	case SIOCGIFMEDIA:
   5751 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5752 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5753 			    command);
   5754 		} else {
   5755 			mii = &sc->bge_mii;
   5756 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5757 			    command);
   5758 		}
   5759 		break;
   5760 	default:
   5761 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5762 			break;
   5763 
   5764 		error = 0;
   5765 
   5766 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   5767 			;
   5768 		else if (ifp->if_flags & IFF_RUNNING)
   5769 			bge_setmulti(sc);
   5770 		break;
   5771 	}
   5772 
   5773 	splx(s);
   5774 
   5775 	return error;
   5776 }
   5777 
   5778 static void
   5779 bge_watchdog(struct ifnet *ifp)
   5780 {
   5781 	struct bge_softc *sc;
   5782 	uint32_t status;
   5783 
   5784 	sc = ifp->if_softc;
   5785 
   5786         /* If pause frames are active then don't reset the hardware. */
   5787 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
   5788 		status = CSR_READ_4(sc, BGE_RX_STS);
   5789 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
   5790 			/*
   5791 			 * If link partner has us in XOFF state then wait for
   5792 			 * the condition to clear.
   5793 			 */
   5794 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   5795 			ifp->if_timer = 5;
   5796 			return;
   5797 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
   5798 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
   5799 			/*
   5800 			 * If link partner has us in XOFF state then wait for
   5801 			 * the condition to clear.
   5802 			 */
   5803 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   5804 			ifp->if_timer = 5;
   5805 			return;
   5806 		}
   5807 		/*
   5808 		 * Any other condition is unexpected and the controller
   5809 		 * should be reset.
   5810 		 */
   5811 	}
   5812 
   5813 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   5814 
   5815 	ifp->if_flags &= ~IFF_RUNNING;
   5816 	bge_init(ifp);
   5817 
   5818 	ifp->if_oerrors++;
   5819 }
   5820 
   5821 static void
   5822 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   5823 {
   5824 	int i;
   5825 
   5826 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   5827 
   5828 	for (i = 0; i < 1000; i++) {
   5829 		delay(100);
   5830 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   5831 			return;
   5832 	}
   5833 
   5834 	/*
   5835 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   5836 	 * on some environment (and once after boot?)
   5837 	 */
   5838 	if (reg != BGE_SRS_MODE)
   5839 		aprint_error_dev(sc->bge_dev,
   5840 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   5841 		    (u_long)reg, bit);
   5842 }
   5843 
   5844 /*
   5845  * Stop the adapter and free any mbufs allocated to the
   5846  * RX and TX lists.
   5847  */
   5848 static void
   5849 bge_stop(struct ifnet *ifp, int disable)
   5850 {
   5851 	struct bge_softc *sc = ifp->if_softc;
   5852 
   5853 	if (disable) {
   5854 		sc->bge_detaching = 1;
   5855 		callout_halt(&sc->bge_timeout, NULL);
   5856 	} else
   5857 		callout_stop(&sc->bge_timeout);
   5858 
   5859 	/* Disable host interrupts. */
   5860 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5861 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   5862 
   5863 	/*
   5864 	 * Tell firmware we're shutting down.
   5865 	 */
   5866 	bge_stop_fw(sc);
   5867 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   5868 
   5869 	/*
   5870 	 * Disable all of the receiver blocks.
   5871 	 */
   5872 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   5873 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   5874 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   5875 	if (BGE_IS_5700_FAMILY(sc))
   5876 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   5877 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   5878 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   5879 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   5880 
   5881 	/*
   5882 	 * Disable all of the transmit blocks.
   5883 	 */
   5884 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   5885 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   5886 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   5887 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   5888 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   5889 	if (BGE_IS_5700_FAMILY(sc))
   5890 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   5891 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   5892 
   5893 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   5894 	delay(40);
   5895 
   5896 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   5897 
   5898 	/*
   5899 	 * Shut down all of the memory managers and related
   5900 	 * state machines.
   5901 	 */
   5902 	/* 5718 step 5a,5b */
   5903 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   5904 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   5905 	if (BGE_IS_5700_FAMILY(sc))
   5906 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   5907 
   5908 	/* 5718 step 5c,5d */
   5909 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   5910 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   5911 
   5912 	if (BGE_IS_5700_FAMILY(sc)) {
   5913 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   5914 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   5915 	}
   5916 
   5917 	bge_reset(sc);
   5918 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   5919 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   5920 
   5921 	/*
   5922 	 * Keep the ASF firmware running if up.
   5923 	 */
   5924 	if (sc->bge_asf_mode & ASF_STACKUP)
   5925 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5926 	else
   5927 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5928 
   5929 	/* Free the RX lists. */
   5930 	bge_free_rx_ring_std(sc, disable);
   5931 
   5932 	/* Free jumbo RX list. */
   5933 	if (BGE_IS_JUMBO_CAPABLE(sc))
   5934 		bge_free_rx_ring_jumbo(sc);
   5935 
   5936 	/* Free TX buffers. */
   5937 	bge_free_tx_ring(sc, disable);
   5938 
   5939 	/*
   5940 	 * Isolate/power down the PHY.
   5941 	 */
   5942 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
   5943 		mii_down(&sc->bge_mii);
   5944 
   5945 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   5946 
   5947 	/* Clear MAC's link state (PHY may still have link UP). */
   5948 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5949 
   5950 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   5951 }
   5952 
   5953 static void
   5954 bge_link_upd(struct bge_softc *sc)
   5955 {
   5956 	struct ifnet *ifp = &sc->ethercom.ec_if;
   5957 	struct mii_data *mii = &sc->bge_mii;
   5958 	uint32_t status;
   5959 	uint16_t phyval;
   5960 	int link;
   5961 
   5962 	/* Clear 'pending link event' flag */
   5963 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   5964 
   5965 	/*
   5966 	 * Process link state changes.
   5967 	 * Grrr. The link status word in the status block does
   5968 	 * not work correctly on the BCM5700 rev AX and BX chips,
   5969 	 * according to all available information. Hence, we have
   5970 	 * to enable MII interrupts in order to properly obtain
   5971 	 * async link changes. Unfortunately, this also means that
   5972 	 * we have to read the MAC status register to detect link
   5973 	 * changes, thereby adding an additional register access to
   5974 	 * the interrupt handler.
   5975 	 */
   5976 
   5977 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   5978 		status = CSR_READ_4(sc, BGE_MAC_STS);
   5979 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   5980 			mii_pollstat(mii);
   5981 
   5982 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5983 			    mii->mii_media_status & IFM_ACTIVE &&
   5984 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   5985 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   5986 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   5987 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   5988 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   5989 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   5990 
   5991 			/* Clear the interrupt */
   5992 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   5993 			    BGE_EVTENB_MI_INTERRUPT);
   5994 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   5995 			    BRGPHY_MII_ISR, &phyval);
   5996 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   5997 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   5998 		}
   5999 		return;
   6000 	}
   6001 
   6002 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   6003 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6004 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   6005 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6006 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6007 				if (BGE_ASICREV(sc->bge_chipid)
   6008 				    == BGE_ASICREV_BCM5704) {
   6009 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   6010 					    BGE_MACMODE_TBI_SEND_CFGS);
   6011 					DELAY(40);
   6012 				}
   6013 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   6014 				if_link_state_change(ifp, LINK_STATE_UP);
   6015 			}
   6016 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6017 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6018 			if_link_state_change(ifp, LINK_STATE_DOWN);
   6019 		}
   6020 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   6021 		/*
   6022 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   6023 		 * bit in status word always set. Workaround this bug by
   6024 		 * reading PHY link status directly.
   6025 		 */
   6026 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   6027 		    BGE_STS_LINK : 0;
   6028 
   6029 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   6030 			mii_pollstat(mii);
   6031 
   6032 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6033 			    mii->mii_media_status & IFM_ACTIVE &&
   6034 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6035 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6036 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6037 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6038 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6039 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6040 		}
   6041 	} else {
   6042 		/*
   6043 		 * For controllers that call mii_tick, we have to poll
   6044 		 * link status.
   6045 		 */
   6046 		mii_pollstat(mii);
   6047 	}
   6048 
   6049 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   6050 		uint32_t reg, scale;
   6051 
   6052 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
   6053 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
   6054 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
   6055 			scale = 65;
   6056 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
   6057 			scale = 6;
   6058 		else
   6059 			scale = 12;
   6060 
   6061 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
   6062 		    ~BGE_MISCCFG_TIMER_PRESCALER;
   6063 		reg |= scale << 1;
   6064 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
   6065 	}
   6066 	/* Clear the attention */
   6067 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   6068 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   6069 	    BGE_MACSTAT_LINK_CHANGED);
   6070 }
   6071 
   6072 static int
   6073 bge_sysctl_verify(SYSCTLFN_ARGS)
   6074 {
   6075 	int error, t;
   6076 	struct sysctlnode node;
   6077 
   6078 	node = *rnode;
   6079 	t = *(int*)rnode->sysctl_data;
   6080 	node.sysctl_data = &t;
   6081 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   6082 	if (error || newp == NULL)
   6083 		return error;
   6084 
   6085 #if 0
   6086 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   6087 	    node.sysctl_num, rnode->sysctl_num));
   6088 #endif
   6089 
   6090 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   6091 		if (t < 0 || t >= NBGE_RX_THRESH)
   6092 			return EINVAL;
   6093 		bge_update_all_threshes(t);
   6094 	} else
   6095 		return EINVAL;
   6096 
   6097 	*(int*)rnode->sysctl_data = t;
   6098 
   6099 	return 0;
   6100 }
   6101 
   6102 /*
   6103  * Set up sysctl(3) MIB, hw.bge.*.
   6104  */
   6105 static void
   6106 bge_sysctl_init(struct bge_softc *sc)
   6107 {
   6108 	int rc, bge_root_num;
   6109 	const struct sysctlnode *node;
   6110 
   6111 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6112 	    0, CTLTYPE_NODE, "bge",
   6113 	    SYSCTL_DESCR("BGE interface controls"),
   6114 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   6115 		goto out;
   6116 	}
   6117 
   6118 	bge_root_num = node->sysctl_num;
   6119 
   6120 	/* BGE Rx interrupt mitigation level */
   6121 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6122 	    CTLFLAG_READWRITE,
   6123 	    CTLTYPE_INT, "rx_lvl",
   6124 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   6125 	    bge_sysctl_verify, 0,
   6126 	    &bge_rx_thresh_lvl,
   6127 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   6128 	    CTL_EOL)) != 0) {
   6129 		goto out;
   6130 	}
   6131 
   6132 	bge_rxthresh_nodenum = node->sysctl_num;
   6133 
   6134 	return;
   6135 
   6136 out:
   6137 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   6138 }
   6139 
   6140 #ifdef BGE_DEBUG
   6141 void
   6142 bge_debug_info(struct bge_softc *sc)
   6143 {
   6144 
   6145 	printf("Hardware Flags:\n");
   6146 	if (BGE_IS_57765_PLUS(sc))
   6147 		printf(" - 57765 Plus\n");
   6148 	if (BGE_IS_5717_PLUS(sc))
   6149 		printf(" - 5717 Plus\n");
   6150 	if (BGE_IS_5755_PLUS(sc))
   6151 		printf(" - 5755 Plus\n");
   6152 	if (BGE_IS_575X_PLUS(sc))
   6153 		printf(" - 575X Plus\n");
   6154 	if (BGE_IS_5705_PLUS(sc))
   6155 		printf(" - 5705 Plus\n");
   6156 	if (BGE_IS_5714_FAMILY(sc))
   6157 		printf(" - 5714 Family\n");
   6158 	if (BGE_IS_5700_FAMILY(sc))
   6159 		printf(" - 5700 Family\n");
   6160 	if (sc->bge_flags & BGEF_IS_5788)
   6161 		printf(" - 5788\n");
   6162 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
   6163 		printf(" - Supports Jumbo Frames\n");
   6164 	if (sc->bge_flags & BGEF_NO_EEPROM)
   6165 		printf(" - No EEPROM\n");
   6166 	if (sc->bge_flags & BGEF_PCIX)
   6167 		printf(" - PCI-X Bus\n");
   6168 	if (sc->bge_flags & BGEF_PCIE)
   6169 		printf(" - PCI Express Bus\n");
   6170 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
   6171 		printf(" - RX Alignment Bug\n");
   6172 	if (sc->bge_flags & BGEF_APE)
   6173 		printf(" - APE\n");
   6174 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
   6175 		printf(" - CPMU\n");
   6176 	if (sc->bge_flags & BGEF_TSO)
   6177 		printf(" - TSO\n");
   6178 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   6179 		printf(" - TAGGED_STATUS\n");
   6180 
   6181 	/* PHY related */
   6182 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
   6183 		printf(" - No 3 LEDs\n");
   6184 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
   6185 		printf(" - CRC bug\n");
   6186 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
   6187 		printf(" - ADC bug\n");
   6188 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
   6189 		printf(" - 5704 A0 bug\n");
   6190 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
   6191 		printf(" - jitter bug\n");
   6192 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
   6193 		printf(" - BER bug\n");
   6194 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
   6195 		printf(" - adjust trim\n");
   6196 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
   6197 		printf(" - no wirespeed\n");
   6198 
   6199 	/* ASF related */
   6200 	if (sc->bge_asf_mode & ASF_ENABLE)
   6201 		printf(" - ASF enable\n");
   6202 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
   6203 		printf(" - ASF new handshake\n");
   6204 	if (sc->bge_asf_mode & ASF_STACKUP)
   6205 		printf(" - ASF stackup\n");
   6206 }
   6207 #endif /* BGE_DEBUG */
   6208 
   6209 static int
   6210 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   6211 {
   6212 	prop_dictionary_t dict;
   6213 	prop_data_t ea;
   6214 
   6215 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
   6216 		return 1;
   6217 
   6218 	dict = device_properties(sc->bge_dev);
   6219 	ea = prop_dictionary_get(dict, "mac-address");
   6220 	if (ea != NULL) {
   6221 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   6222 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   6223 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   6224 		return 0;
   6225 	}
   6226 
   6227 	return 1;
   6228 }
   6229 
   6230 static int
   6231 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   6232 {
   6233 	uint32_t mac_addr;
   6234 
   6235 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   6236 	if ((mac_addr >> 16) == 0x484b) {
   6237 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   6238 		ether_addr[1] = (uint8_t)mac_addr;
   6239 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   6240 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   6241 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   6242 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   6243 		ether_addr[5] = (uint8_t)mac_addr;
   6244 		return 0;
   6245 	}
   6246 	return 1;
   6247 }
   6248 
   6249 static int
   6250 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   6251 {
   6252 	int mac_offset = BGE_EE_MAC_OFFSET;
   6253 
   6254 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6255 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   6256 
   6257 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   6258 	    ETHER_ADDR_LEN));
   6259 }
   6260 
   6261 static int
   6262 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   6263 {
   6264 
   6265 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6266 		return 1;
   6267 
   6268 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   6269 	   ETHER_ADDR_LEN));
   6270 }
   6271 
   6272 static int
   6273 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6274 {
   6275 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6276 		/* NOTE: Order is critical */
   6277 		bge_get_eaddr_fw,
   6278 		bge_get_eaddr_mem,
   6279 		bge_get_eaddr_nvram,
   6280 		bge_get_eaddr_eeprom,
   6281 		NULL
   6282 	};
   6283 	const bge_eaddr_fcn_t *func;
   6284 
   6285 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6286 		if ((*func)(sc, eaddr) == 0)
   6287 			break;
   6288 	}
   6289 	return (*func == NULL ? ENXIO : 0);
   6290 }
   6291