if_bge.c revision 1.326 1 /* $NetBSD: if_bge.c,v 1.326 2019/02/20 15:56:51 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.326 2019/02/20 15:56:51 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99
100 #include <sys/rndsource.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115
116 #include <net/bpf.h>
117
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129
130 #include <prop/proplib.h>
131
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133
134
135 /*
136 * Tunable thresholds for rx-side bge interrupt mitigation.
137 */
138
139 /*
140 * The pairs of values below were obtained from empirical measurement
141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142 * interrupt for every N packets received, where N is, approximately,
143 * the second value (rx_max_bds) in each pair. The values are chosen
144 * such that moving from one pair to the succeeding pair was observed
145 * to roughly halve interrupt rate under sustained input packet load.
146 * The values were empirically chosen to avoid overflowing internal
147 * limits on the bcm5700: increasing rx_ticks much beyond 600
148 * results in internal wrapping and higher interrupt rates.
149 * The limit of 46 frames was chosen to match NFS workloads.
150 *
151 * These values also work well on bcm5701, bcm5704C, and (less
152 * tested) bcm5703. On other chipsets, (including the Altima chip
153 * family), the larger values may overflow internal chip limits,
154 * leading to increasing interrupt rates rather than lower interrupt
155 * rates.
156 *
157 * Applications using heavy interrupt mitigation (interrupting every
158 * 32 or 46 frames) in both directions may need to increase the TCP
159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160 * full link bandwidth, due to ACKs and window updates lingering
161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162 */
163 static const struct bge_load_rx_thresh {
164 int rx_ticks;
165 int rx_max_bds; }
166 bge_rx_threshes[] = {
167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
168 { 32, 2 },
169 { 50, 4 },
170 { 100, 8 },
171 { 192, 16 },
172 { 416, 32 },
173 { 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180
181 static int bge_rxthresh_nodenum;
182
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_can_use_msi(struct bge_softc *);
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static int bge_detach(device_t, int);
190 static void bge_release_resources(struct bge_softc *);
191
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *m, bool);
240 static int bge_init_tx_ring(struct bge_softc *);
241
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252
253 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
254 static int bge_miibus_writereg(device_t, int, int, uint16_t);
255 static void bge_miibus_statchg(struct ifnet *);
256
257 #define BGE_RESET_SHUTDOWN 0
258 #define BGE_RESET_START 1
259 #define BGE_RESET_SUSPEND 2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x) if (bgedebug) printf x
279 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
281 int bgedebug = 0;
282 int bge_tso_debug = 0;
283 void bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289
290 #ifdef BGE_EVENT_COUNTERS
291 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
292 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
293 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
294 #else
295 #define BGE_EVCNT_INCR(ev) /* nothing */
296 #define BGE_EVCNT_ADD(ev, val) /* nothing */
297 #define BGE_EVCNT_UPD(ev, val) /* nothing */
298 #endif
299
300 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
301 /*
302 * The BCM5700 documentation seems to indicate that the hardware still has the
303 * Alteon vendor ID burned into it, though it should always be overridden by
304 * the value in the EEPROM. We'll check for it anyway.
305 */
306 static const struct bge_product {
307 pci_vendor_id_t bp_vendor;
308 pci_product_id_t bp_product;
309 const char *bp_name;
310 } bge_products[] = {
311 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
312 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
313 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
314 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
315 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
316 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
317 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
318 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
319 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
320 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
321 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
322 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
323 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
324 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
325 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
326 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
327 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
328 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
329 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
330 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
331 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
332 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
333 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
334 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
335 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
336 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
337 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
338 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
339 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
340 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
341 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
342 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
343 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
344 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
345 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
346 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
347 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
348 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
349 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
350 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
351 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
352 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
353 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
354 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
355 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
356 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
357 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
358 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
359 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
360 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
361 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
362 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
363 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
364 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
365 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
366 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
367 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
368 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
369 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
370 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
371 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
372 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
373 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
374 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
375 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
376 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
377 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
378 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
379 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
380 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
381 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
382 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
383 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
384 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
385 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
386 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
387 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
388 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
389 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
390 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
391 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
392 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
393 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
394 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
395 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
396 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
397 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
398 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
399 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
400 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
401 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
402 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
403 { 0, 0, NULL },
404 };
405
406 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
407 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
408 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
409 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
410 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
411 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
412 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
413 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
414 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
415
416 static const struct bge_revision {
417 uint32_t br_chipid;
418 const char *br_name;
419 } bge_revisions[] = {
420 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
421 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
422 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
423 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
424 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
425 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
426 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
427 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
428 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
429 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
430 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
431 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
432 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
433 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
434 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
435 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
436 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
437 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
438 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
439 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
440 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
441 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
442 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
443 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
444 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
445 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
446 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
447 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
448 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
449 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
450 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
451 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
452 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
453 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
454 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
455 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
456 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
457 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
458 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
459 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
460 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
461 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
462 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
463 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
464 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
465 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
466 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
467 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
468 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
469 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
470 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
471 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
472 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
473 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
474 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
475 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
476 /* 5754 and 5787 share the same ASIC ID */
477 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
478 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
479 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
480 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
481 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
482 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
483 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
484 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
485 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
486 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
487 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
488
489 { 0, NULL }
490 };
491
492 /*
493 * Some defaults for major revisions, so that newer steppings
494 * that we don't know about have a shot at working.
495 */
496 static const struct bge_revision bge_majorrevs[] = {
497 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
498 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
499 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
500 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
501 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
502 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
503 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
504 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
505 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
506 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
507 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
508 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
509 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
510 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
511 /* 5754 and 5787 share the same ASIC ID */
512 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
513 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
514 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
515 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
516 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
517 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
518 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
519 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
520
521 { 0, NULL }
522 };
523
524 static int bge_allow_asf = 1;
525
526 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
527 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
528
529 static uint32_t
530 bge_readmem_ind(struct bge_softc *sc, int off)
531 {
532 pcireg_t val;
533
534 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
535 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
536 return 0;
537
538 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
539 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
540 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
541 return val;
542 }
543
544 static void
545 bge_writemem_ind(struct bge_softc *sc, int off, int val)
546 {
547
548 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
549 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
550 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
551 }
552
553 /*
554 * PCI Express only
555 */
556 static void
557 bge_set_max_readrq(struct bge_softc *sc)
558 {
559 pcireg_t val;
560
561 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
562 + PCIE_DCSR);
563 val &= ~PCIE_DCSR_MAX_READ_REQ;
564 switch (sc->bge_expmrq) {
565 case 2048:
566 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
567 break;
568 case 4096:
569 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
570 break;
571 default:
572 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
573 break;
574 }
575 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
576 + PCIE_DCSR, val);
577 }
578
579 #ifdef notdef
580 static uint32_t
581 bge_readreg_ind(struct bge_softc *sc, int off)
582 {
583 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
584 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
585 }
586 #endif
587
588 static void
589 bge_writereg_ind(struct bge_softc *sc, int off, int val)
590 {
591 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
592 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
593 }
594
595 static void
596 bge_writemem_direct(struct bge_softc *sc, int off, int val)
597 {
598 CSR_WRITE_4(sc, off, val);
599 }
600
601 static void
602 bge_writembx(struct bge_softc *sc, int off, int val)
603 {
604 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
605 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
606
607 CSR_WRITE_4(sc, off, val);
608 }
609
610 static void
611 bge_writembx_flush(struct bge_softc *sc, int off, int val)
612 {
613 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
614 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
615
616 CSR_WRITE_4_FLUSH(sc, off, val);
617 }
618
619 /*
620 * Clear all stale locks and select the lock for this driver instance.
621 */
622 void
623 bge_ape_lock_init(struct bge_softc *sc)
624 {
625 struct pci_attach_args *pa = &(sc->bge_pa);
626 uint32_t bit, regbase;
627 int i;
628
629 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
630 regbase = BGE_APE_LOCK_GRANT;
631 else
632 regbase = BGE_APE_PER_LOCK_GRANT;
633
634 /* Clear any stale locks. */
635 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
636 switch (i) {
637 case BGE_APE_LOCK_PHY0:
638 case BGE_APE_LOCK_PHY1:
639 case BGE_APE_LOCK_PHY2:
640 case BGE_APE_LOCK_PHY3:
641 bit = BGE_APE_LOCK_GRANT_DRIVER0;
642 break;
643 default:
644 if (pa->pa_function == 0)
645 bit = BGE_APE_LOCK_GRANT_DRIVER0;
646 else
647 bit = (1 << pa->pa_function);
648 }
649 APE_WRITE_4(sc, regbase + 4 * i, bit);
650 }
651
652 /* Select the PHY lock based on the device's function number. */
653 switch (pa->pa_function) {
654 case 0:
655 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
656 break;
657 case 1:
658 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
659 break;
660 case 2:
661 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
662 break;
663 case 3:
664 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
665 break;
666 default:
667 printf("%s: PHY lock not supported on function\n",
668 device_xname(sc->bge_dev));
669 break;
670 }
671 }
672
673 /*
674 * Check for APE firmware, set flags, and print version info.
675 */
676 void
677 bge_ape_read_fw_ver(struct bge_softc *sc)
678 {
679 const char *fwtype;
680 uint32_t apedata, features;
681
682 /* Check for a valid APE signature in shared memory. */
683 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
684 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
685 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
686 return;
687 }
688
689 /* Check if APE firmware is running. */
690 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
691 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
692 printf("%s: APE signature found but FW status not ready! "
693 "0x%08x\n", device_xname(sc->bge_dev), apedata);
694 return;
695 }
696
697 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
698
699 /* Fetch the APE firwmare type and version. */
700 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
701 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
702 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
703 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
704 fwtype = "NCSI";
705 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
706 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
707 fwtype = "DASH";
708 } else
709 fwtype = "UNKN";
710
711 /* Print the APE firmware version. */
712 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
713 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
714 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
715 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
716 (apedata & BGE_APE_FW_VERSION_BLDMSK));
717 }
718
719 int
720 bge_ape_lock(struct bge_softc *sc, int locknum)
721 {
722 struct pci_attach_args *pa = &(sc->bge_pa);
723 uint32_t bit, gnt, req, status;
724 int i, off;
725
726 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
727 return (0);
728
729 /* Lock request/grant registers have different bases. */
730 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
731 req = BGE_APE_LOCK_REQ;
732 gnt = BGE_APE_LOCK_GRANT;
733 } else {
734 req = BGE_APE_PER_LOCK_REQ;
735 gnt = BGE_APE_PER_LOCK_GRANT;
736 }
737
738 off = 4 * locknum;
739
740 switch (locknum) {
741 case BGE_APE_LOCK_GPIO:
742 /* Lock required when using GPIO. */
743 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
744 return (0);
745 if (pa->pa_function == 0)
746 bit = BGE_APE_LOCK_REQ_DRIVER0;
747 else
748 bit = (1 << pa->pa_function);
749 break;
750 case BGE_APE_LOCK_GRC:
751 /* Lock required to reset the device. */
752 if (pa->pa_function == 0)
753 bit = BGE_APE_LOCK_REQ_DRIVER0;
754 else
755 bit = (1 << pa->pa_function);
756 break;
757 case BGE_APE_LOCK_MEM:
758 /* Lock required when accessing certain APE memory. */
759 if (pa->pa_function == 0)
760 bit = BGE_APE_LOCK_REQ_DRIVER0;
761 else
762 bit = (1 << pa->pa_function);
763 break;
764 case BGE_APE_LOCK_PHY0:
765 case BGE_APE_LOCK_PHY1:
766 case BGE_APE_LOCK_PHY2:
767 case BGE_APE_LOCK_PHY3:
768 /* Lock required when accessing PHYs. */
769 bit = BGE_APE_LOCK_REQ_DRIVER0;
770 break;
771 default:
772 return (EINVAL);
773 }
774
775 /* Request a lock. */
776 APE_WRITE_4_FLUSH(sc, req + off, bit);
777
778 /* Wait up to 1 second to acquire lock. */
779 for (i = 0; i < 20000; i++) {
780 status = APE_READ_4(sc, gnt + off);
781 if (status == bit)
782 break;
783 DELAY(50);
784 }
785
786 /* Handle any errors. */
787 if (status != bit) {
788 printf("%s: APE lock %d request failed! "
789 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
790 device_xname(sc->bge_dev),
791 locknum, req + off, bit & 0xFFFF, gnt + off,
792 status & 0xFFFF);
793 /* Revoke the lock request. */
794 APE_WRITE_4(sc, gnt + off, bit);
795 return (EBUSY);
796 }
797
798 return (0);
799 }
800
801 void
802 bge_ape_unlock(struct bge_softc *sc, int locknum)
803 {
804 struct pci_attach_args *pa = &(sc->bge_pa);
805 uint32_t bit, gnt;
806 int off;
807
808 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
809 return;
810
811 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
812 gnt = BGE_APE_LOCK_GRANT;
813 else
814 gnt = BGE_APE_PER_LOCK_GRANT;
815
816 off = 4 * locknum;
817
818 switch (locknum) {
819 case BGE_APE_LOCK_GPIO:
820 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
821 return;
822 if (pa->pa_function == 0)
823 bit = BGE_APE_LOCK_GRANT_DRIVER0;
824 else
825 bit = (1 << pa->pa_function);
826 break;
827 case BGE_APE_LOCK_GRC:
828 if (pa->pa_function == 0)
829 bit = BGE_APE_LOCK_GRANT_DRIVER0;
830 else
831 bit = (1 << pa->pa_function);
832 break;
833 case BGE_APE_LOCK_MEM:
834 if (pa->pa_function == 0)
835 bit = BGE_APE_LOCK_GRANT_DRIVER0;
836 else
837 bit = (1 << pa->pa_function);
838 break;
839 case BGE_APE_LOCK_PHY0:
840 case BGE_APE_LOCK_PHY1:
841 case BGE_APE_LOCK_PHY2:
842 case BGE_APE_LOCK_PHY3:
843 bit = BGE_APE_LOCK_GRANT_DRIVER0;
844 break;
845 default:
846 return;
847 }
848
849 /* Write and flush for consecutive bge_ape_lock() */
850 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
851 }
852
853 /*
854 * Send an event to the APE firmware.
855 */
856 void
857 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
858 {
859 uint32_t apedata;
860 int i;
861
862 /* NCSI does not support APE events. */
863 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
864 return;
865
866 /* Wait up to 1ms for APE to service previous event. */
867 for (i = 10; i > 0; i--) {
868 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
869 break;
870 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
871 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
872 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
873 BGE_APE_EVENT_STATUS_EVENT_PENDING);
874 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
875 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
876 break;
877 }
878 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
879 DELAY(100);
880 }
881 if (i == 0) {
882 printf("%s: APE event 0x%08x send timed out\n",
883 device_xname(sc->bge_dev), event);
884 }
885 }
886
887 void
888 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
889 {
890 uint32_t apedata, event;
891
892 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
893 return;
894
895 switch (kind) {
896 case BGE_RESET_START:
897 /* If this is the first load, clear the load counter. */
898 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
899 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
900 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
901 else {
902 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
903 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
904 }
905 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
906 BGE_APE_HOST_SEG_SIG_MAGIC);
907 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
908 BGE_APE_HOST_SEG_LEN_MAGIC);
909
910 /* Add some version info if bge(4) supports it. */
911 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
912 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
913 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
914 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
915 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
916 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
917 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
918 BGE_APE_HOST_DRVR_STATE_START);
919 event = BGE_APE_EVENT_STATUS_STATE_START;
920 break;
921 case BGE_RESET_SHUTDOWN:
922 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
923 BGE_APE_HOST_DRVR_STATE_UNLOAD);
924 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
925 break;
926 case BGE_RESET_SUSPEND:
927 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
928 break;
929 default:
930 return;
931 }
932
933 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
934 BGE_APE_EVENT_STATUS_STATE_CHNGE);
935 }
936
937 static uint8_t
938 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
939 {
940 uint32_t access, byte = 0;
941 int i;
942
943 /* Lock. */
944 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
945 for (i = 0; i < 8000; i++) {
946 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
947 break;
948 DELAY(20);
949 }
950 if (i == 8000)
951 return 1;
952
953 /* Enable access. */
954 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
955 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
956
957 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
958 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
959 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
960 DELAY(10);
961 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
962 DELAY(10);
963 break;
964 }
965 }
966
967 if (i == BGE_TIMEOUT * 10) {
968 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
969 return 1;
970 }
971
972 /* Get result. */
973 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
974
975 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
976
977 /* Disable access. */
978 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
979
980 /* Unlock. */
981 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
982
983 return 0;
984 }
985
986 /*
987 * Read a sequence of bytes from NVRAM.
988 */
989 static int
990 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
991 {
992 int error = 0, i;
993 uint8_t byte = 0;
994
995 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
996 return 1;
997
998 for (i = 0; i < cnt; i++) {
999 error = bge_nvram_getbyte(sc, off + i, &byte);
1000 if (error)
1001 break;
1002 *(dest + i) = byte;
1003 }
1004
1005 return (error ? 1 : 0);
1006 }
1007
1008 /*
1009 * Read a byte of data stored in the EEPROM at address 'addr.' The
1010 * BCM570x supports both the traditional bitbang interface and an
1011 * auto access interface for reading the EEPROM. We use the auto
1012 * access method.
1013 */
1014 static uint8_t
1015 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1016 {
1017 int i;
1018 uint32_t byte = 0;
1019
1020 /*
1021 * Enable use of auto EEPROM access so we can avoid
1022 * having to use the bitbang method.
1023 */
1024 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1025
1026 /* Reset the EEPROM, load the clock period. */
1027 CSR_WRITE_4(sc, BGE_EE_ADDR,
1028 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1029 DELAY(20);
1030
1031 /* Issue the read EEPROM command. */
1032 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1033
1034 /* Wait for completion */
1035 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1036 DELAY(10);
1037 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1038 break;
1039 }
1040
1041 if (i == BGE_TIMEOUT * 10) {
1042 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1043 return 1;
1044 }
1045
1046 /* Get result. */
1047 byte = CSR_READ_4(sc, BGE_EE_DATA);
1048
1049 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1050
1051 return 0;
1052 }
1053
1054 /*
1055 * Read a sequence of bytes from the EEPROM.
1056 */
1057 static int
1058 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1059 {
1060 int error = 0, i;
1061 uint8_t byte = 0;
1062 char *dest = destv;
1063
1064 for (i = 0; i < cnt; i++) {
1065 error = bge_eeprom_getbyte(sc, off + i, &byte);
1066 if (error)
1067 break;
1068 *(dest + i) = byte;
1069 }
1070
1071 return (error ? 1 : 0);
1072 }
1073
1074 static int
1075 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1076 {
1077 struct bge_softc *sc = device_private(dev);
1078 uint32_t data;
1079 uint32_t autopoll;
1080 int rv = 0;
1081 int i;
1082
1083 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1084 return -1;
1085
1086 /* Reading with autopolling on may trigger PCI errors */
1087 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1088 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1089 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1090 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1091 DELAY(80);
1092 }
1093
1094 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1095 BGE_MIPHY(phy) | BGE_MIREG(reg));
1096
1097 for (i = 0; i < BGE_TIMEOUT; i++) {
1098 delay(10);
1099 data = CSR_READ_4(sc, BGE_MI_COMM);
1100 if (!(data & BGE_MICOMM_BUSY)) {
1101 DELAY(5);
1102 data = CSR_READ_4(sc, BGE_MI_COMM);
1103 break;
1104 }
1105 }
1106
1107 if (i == BGE_TIMEOUT) {
1108 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1109 rv = ETIMEDOUT;
1110 } else if ((data & BGE_MICOMM_READFAIL) != 0)
1111 rv = -1;
1112 else
1113 *val = data & BGE_MICOMM_DATA;
1114
1115 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1116 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1117 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1118 DELAY(80);
1119 }
1120
1121 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1122
1123 return rv;
1124 }
1125
1126 static int
1127 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1128 {
1129 struct bge_softc *sc = device_private(dev);
1130 uint32_t autopoll;
1131 int i;
1132
1133 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1134 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1135 return 0;
1136
1137 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1138 return -1;
1139
1140 /* Reading with autopolling on may trigger PCI errors */
1141 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1142 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1143 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1144 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1145 DELAY(80);
1146 }
1147
1148 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1149 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1150
1151 for (i = 0; i < BGE_TIMEOUT; i++) {
1152 delay(10);
1153 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1154 delay(5);
1155 CSR_READ_4(sc, BGE_MI_COMM);
1156 break;
1157 }
1158 }
1159
1160 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1161 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1162 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1163 delay(80);
1164 }
1165
1166 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1167
1168 if (i == BGE_TIMEOUT) {
1169 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1170 return ETIMEDOUT;
1171 }
1172
1173 return 0;
1174 }
1175
1176 static void
1177 bge_miibus_statchg(struct ifnet *ifp)
1178 {
1179 struct bge_softc *sc = ifp->if_softc;
1180 struct mii_data *mii = &sc->bge_mii;
1181 uint32_t mac_mode, rx_mode, tx_mode;
1182
1183 /*
1184 * Get flow control negotiation result.
1185 */
1186 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1187 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1188 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1189
1190 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1191 mii->mii_media_status & IFM_ACTIVE &&
1192 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1193 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1194 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1195 (!(mii->mii_media_status & IFM_ACTIVE) ||
1196 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1197 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1198
1199 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1200 return;
1201
1202 /* Set the port mode (MII/GMII) to match the link speed. */
1203 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1204 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1205 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1206 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1207 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1208 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1209 mac_mode |= BGE_PORTMODE_GMII;
1210 else
1211 mac_mode |= BGE_PORTMODE_MII;
1212
1213 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1214 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1215 if ((mii->mii_media_active & IFM_FDX) != 0) {
1216 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1217 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1218 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1219 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1220 } else
1221 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1222
1223 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1224 DELAY(40);
1225 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1226 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1227 }
1228
1229 /*
1230 * Update rx threshold levels to values in a particular slot
1231 * of the interrupt-mitigation table bge_rx_threshes.
1232 */
1233 static void
1234 bge_set_thresh(struct ifnet *ifp, int lvl)
1235 {
1236 struct bge_softc *sc = ifp->if_softc;
1237 int s;
1238
1239 /* For now, just save the new Rx-intr thresholds and record
1240 * that a threshold update is pending. Updating the hardware
1241 * registers here (even at splhigh()) is observed to
1242 * occasionaly cause glitches where Rx-interrupts are not
1243 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1244 */
1245 s = splnet();
1246 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1247 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1248 sc->bge_pending_rxintr_change = 1;
1249 splx(s);
1250 }
1251
1252
1253 /*
1254 * Update Rx thresholds of all bge devices
1255 */
1256 static void
1257 bge_update_all_threshes(int lvl)
1258 {
1259 struct ifnet *ifp;
1260 const char * const namebuf = "bge";
1261 int namelen;
1262 int s;
1263
1264 if (lvl < 0)
1265 lvl = 0;
1266 else if (lvl >= NBGE_RX_THRESH)
1267 lvl = NBGE_RX_THRESH - 1;
1268
1269 namelen = strlen(namebuf);
1270 /*
1271 * Now search all the interfaces for this name/number
1272 */
1273 s = pserialize_read_enter();
1274 IFNET_READER_FOREACH(ifp) {
1275 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1276 continue;
1277 /* We got a match: update if doing auto-threshold-tuning */
1278 if (bge_auto_thresh)
1279 bge_set_thresh(ifp, lvl);
1280 }
1281 pserialize_read_exit(s);
1282 }
1283
1284 /*
1285 * Handle events that have triggered interrupts.
1286 */
1287 static void
1288 bge_handle_events(struct bge_softc *sc)
1289 {
1290
1291 return;
1292 }
1293
1294 /*
1295 * Memory management for jumbo frames.
1296 */
1297
1298 static int
1299 bge_alloc_jumbo_mem(struct bge_softc *sc)
1300 {
1301 char *ptr, *kva;
1302 bus_dma_segment_t seg;
1303 int i, rseg, state, error;
1304 struct bge_jpool_entry *entry;
1305
1306 state = error = 0;
1307
1308 /* Grab a big chunk o' storage. */
1309 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1310 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1311 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1312 return ENOBUFS;
1313 }
1314
1315 state = 1;
1316 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1317 BUS_DMA_NOWAIT)) {
1318 aprint_error_dev(sc->bge_dev,
1319 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1320 error = ENOBUFS;
1321 goto out;
1322 }
1323
1324 state = 2;
1325 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1326 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1327 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1328 error = ENOBUFS;
1329 goto out;
1330 }
1331
1332 state = 3;
1333 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1334 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1335 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1336 error = ENOBUFS;
1337 goto out;
1338 }
1339
1340 state = 4;
1341 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1342 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1343
1344 SLIST_INIT(&sc->bge_jfree_listhead);
1345 SLIST_INIT(&sc->bge_jinuse_listhead);
1346
1347 /*
1348 * Now divide it up into 9K pieces and save the addresses
1349 * in an array.
1350 */
1351 ptr = sc->bge_cdata.bge_jumbo_buf;
1352 for (i = 0; i < BGE_JSLOTS; i++) {
1353 sc->bge_cdata.bge_jslots[i] = ptr;
1354 ptr += BGE_JLEN;
1355 entry = malloc(sizeof(struct bge_jpool_entry),
1356 M_DEVBUF, M_NOWAIT);
1357 if (entry == NULL) {
1358 aprint_error_dev(sc->bge_dev,
1359 "no memory for jumbo buffer queue!\n");
1360 error = ENOBUFS;
1361 goto out;
1362 }
1363 entry->slot = i;
1364 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1365 entry, jpool_entries);
1366 }
1367 out:
1368 if (error != 0) {
1369 switch (state) {
1370 case 4:
1371 bus_dmamap_unload(sc->bge_dmatag,
1372 sc->bge_cdata.bge_rx_jumbo_map);
1373 /* FALLTHROUGH */
1374 case 3:
1375 bus_dmamap_destroy(sc->bge_dmatag,
1376 sc->bge_cdata.bge_rx_jumbo_map);
1377 /* FALLTHROUGH */
1378 case 2:
1379 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1380 /* FALLTHROUGH */
1381 case 1:
1382 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1383 break;
1384 default:
1385 break;
1386 }
1387 }
1388
1389 return error;
1390 }
1391
1392 /*
1393 * Allocate a jumbo buffer.
1394 */
1395 static void *
1396 bge_jalloc(struct bge_softc *sc)
1397 {
1398 struct bge_jpool_entry *entry;
1399
1400 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1401
1402 if (entry == NULL) {
1403 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1404 return NULL;
1405 }
1406
1407 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1408 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1409 return (sc->bge_cdata.bge_jslots[entry->slot]);
1410 }
1411
1412 /*
1413 * Release a jumbo buffer.
1414 */
1415 static void
1416 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1417 {
1418 struct bge_jpool_entry *entry;
1419 struct bge_softc *sc;
1420 int i, s;
1421
1422 /* Extract the softc struct pointer. */
1423 sc = (struct bge_softc *)arg;
1424
1425 if (sc == NULL)
1426 panic("bge_jfree: can't find softc pointer!");
1427
1428 /* calculate the slot this buffer belongs to */
1429
1430 i = ((char *)buf
1431 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1432
1433 if ((i < 0) || (i >= BGE_JSLOTS))
1434 panic("bge_jfree: asked to free buffer that we don't manage!");
1435
1436 s = splvm();
1437 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1438 if (entry == NULL)
1439 panic("bge_jfree: buffer not in use!");
1440 entry->slot = i;
1441 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1442 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1443
1444 if (__predict_true(m != NULL))
1445 pool_cache_put(mb_cache, m);
1446 splx(s);
1447 }
1448
1449
1450 /*
1451 * Initialize a standard receive ring descriptor.
1452 */
1453 static int
1454 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1455 bus_dmamap_t dmamap)
1456 {
1457 struct mbuf *m_new = NULL;
1458 struct bge_rx_bd *r;
1459 int error;
1460
1461 if (dmamap == NULL)
1462 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1463
1464 if (dmamap == NULL) {
1465 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1466 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1467 if (error != 0)
1468 return error;
1469 }
1470
1471 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1472
1473 if (m == NULL) {
1474 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1475 if (m_new == NULL)
1476 return ENOBUFS;
1477
1478 MCLGET(m_new, M_DONTWAIT);
1479 if (!(m_new->m_flags & M_EXT)) {
1480 m_freem(m_new);
1481 return ENOBUFS;
1482 }
1483 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1484
1485 } else {
1486 m_new = m;
1487 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1488 m_new->m_data = m_new->m_ext.ext_buf;
1489 }
1490 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1491 m_adj(m_new, ETHER_ALIGN);
1492 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1493 BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1494 m_freem(m_new);
1495 return ENOBUFS;
1496 }
1497 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1498 BUS_DMASYNC_PREREAD);
1499
1500 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1501 r = &sc->bge_rdata->bge_rx_std_ring[i];
1502 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1503 r->bge_flags = BGE_RXBDFLAG_END;
1504 r->bge_len = m_new->m_len;
1505 r->bge_idx = i;
1506
1507 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1508 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1509 i * sizeof (struct bge_rx_bd),
1510 sizeof (struct bge_rx_bd),
1511 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1512
1513 return 0;
1514 }
1515
1516 /*
1517 * Initialize a jumbo receive ring descriptor. This allocates
1518 * a jumbo buffer from the pool managed internally by the driver.
1519 */
1520 static int
1521 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1522 {
1523 struct mbuf *m_new = NULL;
1524 struct bge_rx_bd *r;
1525 void *buf = NULL;
1526
1527 if (m == NULL) {
1528
1529 /* Allocate the mbuf. */
1530 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1531 if (m_new == NULL)
1532 return ENOBUFS;
1533
1534 /* Allocate the jumbo buffer */
1535 buf = bge_jalloc(sc);
1536 if (buf == NULL) {
1537 m_freem(m_new);
1538 aprint_error_dev(sc->bge_dev,
1539 "jumbo allocation failed -- packet dropped!\n");
1540 return ENOBUFS;
1541 }
1542
1543 /* Attach the buffer to the mbuf. */
1544 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1545 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1546 bge_jfree, sc);
1547 m_new->m_flags |= M_EXT_RW;
1548 } else {
1549 m_new = m;
1550 buf = m_new->m_data = m_new->m_ext.ext_buf;
1551 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1552 }
1553 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1554 m_adj(m_new, ETHER_ALIGN);
1555 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1556 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1557 BUS_DMASYNC_PREREAD);
1558 /* Set up the descriptor. */
1559 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1560 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1561 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1562 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1563 r->bge_len = m_new->m_len;
1564 r->bge_idx = i;
1565
1566 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1567 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1568 i * sizeof (struct bge_rx_bd),
1569 sizeof (struct bge_rx_bd),
1570 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1571
1572 return 0;
1573 }
1574
1575 /*
1576 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1577 * that's 1MB or memory, which is a lot. For now, we fill only the first
1578 * 256 ring entries and hope that our CPU is fast enough to keep up with
1579 * the NIC.
1580 */
1581 static int
1582 bge_init_rx_ring_std(struct bge_softc *sc)
1583 {
1584 int i;
1585
1586 if (sc->bge_flags & BGEF_RXRING_VALID)
1587 return 0;
1588
1589 for (i = 0; i < BGE_SSLOTS; i++) {
1590 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1591 return ENOBUFS;
1592 }
1593
1594 sc->bge_std = i - 1;
1595 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1596
1597 sc->bge_flags |= BGEF_RXRING_VALID;
1598
1599 return 0;
1600 }
1601
1602 static void
1603 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1604 {
1605 int i;
1606
1607 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1608 return;
1609
1610 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1611 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1612 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1613 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1614 if (disable) {
1615 bus_dmamap_destroy(sc->bge_dmatag,
1616 sc->bge_cdata.bge_rx_std_map[i]);
1617 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1618 }
1619 }
1620 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1621 sizeof(struct bge_rx_bd));
1622 }
1623
1624 sc->bge_flags &= ~BGEF_RXRING_VALID;
1625 }
1626
1627 static int
1628 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1629 {
1630 int i;
1631 volatile struct bge_rcb *rcb;
1632
1633 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1634 return 0;
1635
1636 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1637 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1638 return ENOBUFS;
1639 }
1640
1641 sc->bge_jumbo = i - 1;
1642 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1643
1644 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1645 rcb->bge_maxlen_flags = 0;
1646 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1647
1648 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1649
1650 return 0;
1651 }
1652
1653 static void
1654 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1655 {
1656 int i;
1657
1658 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1659 return;
1660
1661 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1662 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1663 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1664 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1665 }
1666 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1667 sizeof(struct bge_rx_bd));
1668 }
1669
1670 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1671 }
1672
1673 static void
1674 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1675 {
1676 int i;
1677 struct txdmamap_pool_entry *dma;
1678
1679 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1680 return;
1681
1682 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1683 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1684 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1685 sc->bge_cdata.bge_tx_chain[i] = NULL;
1686 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1687 link);
1688 sc->txdma[i] = 0;
1689 }
1690 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1691 sizeof(struct bge_tx_bd));
1692 }
1693
1694 if (disable) {
1695 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1696 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1697 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1698 if (sc->bge_dma64) {
1699 bus_dmamap_destroy(sc->bge_dmatag32,
1700 dma->dmamap32);
1701 }
1702 free(dma, M_DEVBUF);
1703 }
1704 SLIST_INIT(&sc->txdma_list);
1705 }
1706
1707 sc->bge_flags &= ~BGEF_TXRING_VALID;
1708 }
1709
1710 static int
1711 bge_init_tx_ring(struct bge_softc *sc)
1712 {
1713 struct ifnet *ifp = &sc->ethercom.ec_if;
1714 int i;
1715 bus_dmamap_t dmamap, dmamap32;
1716 bus_size_t maxsegsz;
1717 struct txdmamap_pool_entry *dma;
1718
1719 if (sc->bge_flags & BGEF_TXRING_VALID)
1720 return 0;
1721
1722 sc->bge_txcnt = 0;
1723 sc->bge_tx_saved_considx = 0;
1724
1725 /* Initialize transmit producer index for host-memory send ring. */
1726 sc->bge_tx_prodidx = 0;
1727 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1728 /* 5700 b2 errata */
1729 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1730 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1731
1732 /* NIC-memory send ring not used; initialize to zero. */
1733 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1734 /* 5700 b2 errata */
1735 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1736 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1737
1738 /* Limit DMA segment size for some chips */
1739 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1740 (ifp->if_mtu <= ETHERMTU))
1741 maxsegsz = 2048;
1742 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1743 maxsegsz = 4096;
1744 else
1745 maxsegsz = ETHER_MAX_LEN_JUMBO;
1746
1747 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1748 goto alloc_done;
1749
1750 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1751 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1752 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1753 &dmamap))
1754 return ENOBUFS;
1755 if (dmamap == NULL)
1756 panic("dmamap NULL in bge_init_tx_ring");
1757 if (sc->bge_dma64) {
1758 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1759 BGE_NTXSEG, maxsegsz, 0,
1760 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1761 &dmamap32)) {
1762 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1763 return ENOBUFS;
1764 }
1765 if (dmamap32 == NULL)
1766 panic("dmamap32 NULL in bge_init_tx_ring");
1767 } else
1768 dmamap32 = dmamap;
1769 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1770 if (dma == NULL) {
1771 aprint_error_dev(sc->bge_dev,
1772 "can't alloc txdmamap_pool_entry\n");
1773 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1774 if (sc->bge_dma64)
1775 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1776 return ENOMEM;
1777 }
1778 dma->dmamap = dmamap;
1779 dma->dmamap32 = dmamap32;
1780 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1781 }
1782 alloc_done:
1783 sc->bge_flags |= BGEF_TXRING_VALID;
1784
1785 return 0;
1786 }
1787
1788 static void
1789 bge_setmulti(struct bge_softc *sc)
1790 {
1791 struct ethercom *ac = &sc->ethercom;
1792 struct ifnet *ifp = &ac->ec_if;
1793 struct ether_multi *enm;
1794 struct ether_multistep step;
1795 uint32_t hashes[4] = { 0, 0, 0, 0 };
1796 uint32_t h;
1797 int i;
1798
1799 if (ifp->if_flags & IFF_PROMISC)
1800 goto allmulti;
1801
1802 /* Now program new ones. */
1803 ETHER_FIRST_MULTI(step, ac, enm);
1804 while (enm != NULL) {
1805 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1806 /*
1807 * We must listen to a range of multicast addresses.
1808 * For now, just accept all multicasts, rather than
1809 * trying to set only those filter bits needed to match
1810 * the range. (At this time, the only use of address
1811 * ranges is for IP multicast routing, for which the
1812 * range is big enough to require all bits set.)
1813 */
1814 goto allmulti;
1815 }
1816
1817 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1818
1819 /* Just want the 7 least-significant bits. */
1820 h &= 0x7f;
1821
1822 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1823 ETHER_NEXT_MULTI(step, enm);
1824 }
1825
1826 ifp->if_flags &= ~IFF_ALLMULTI;
1827 goto setit;
1828
1829 allmulti:
1830 ifp->if_flags |= IFF_ALLMULTI;
1831 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1832
1833 setit:
1834 for (i = 0; i < 4; i++)
1835 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1836 }
1837
1838 static void
1839 bge_sig_pre_reset(struct bge_softc *sc, int type)
1840 {
1841
1842 /*
1843 * Some chips don't like this so only do this if ASF is enabled
1844 */
1845 if (sc->bge_asf_mode)
1846 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1847
1848 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1849 switch (type) {
1850 case BGE_RESET_START:
1851 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1852 BGE_FW_DRV_STATE_START);
1853 break;
1854 case BGE_RESET_SHUTDOWN:
1855 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1856 BGE_FW_DRV_STATE_UNLOAD);
1857 break;
1858 case BGE_RESET_SUSPEND:
1859 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1860 BGE_FW_DRV_STATE_SUSPEND);
1861 break;
1862 }
1863 }
1864
1865 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1866 bge_ape_driver_state_change(sc, type);
1867 }
1868
1869 static void
1870 bge_sig_post_reset(struct bge_softc *sc, int type)
1871 {
1872
1873 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1874 switch (type) {
1875 case BGE_RESET_START:
1876 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1877 BGE_FW_DRV_STATE_START_DONE);
1878 /* START DONE */
1879 break;
1880 case BGE_RESET_SHUTDOWN:
1881 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1882 BGE_FW_DRV_STATE_UNLOAD_DONE);
1883 break;
1884 }
1885 }
1886
1887 if (type == BGE_RESET_SHUTDOWN)
1888 bge_ape_driver_state_change(sc, type);
1889 }
1890
1891 static void
1892 bge_sig_legacy(struct bge_softc *sc, int type)
1893 {
1894
1895 if (sc->bge_asf_mode) {
1896 switch (type) {
1897 case BGE_RESET_START:
1898 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1899 BGE_FW_DRV_STATE_START);
1900 break;
1901 case BGE_RESET_SHUTDOWN:
1902 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1903 BGE_FW_DRV_STATE_UNLOAD);
1904 break;
1905 }
1906 }
1907 }
1908
1909 static void
1910 bge_wait_for_event_ack(struct bge_softc *sc)
1911 {
1912 int i;
1913
1914 /* wait up to 2500usec */
1915 for (i = 0; i < 250; i++) {
1916 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1917 BGE_RX_CPU_DRV_EVENT))
1918 break;
1919 DELAY(10);
1920 }
1921 }
1922
1923 static void
1924 bge_stop_fw(struct bge_softc *sc)
1925 {
1926
1927 if (sc->bge_asf_mode) {
1928 bge_wait_for_event_ack(sc);
1929
1930 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1931 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1932 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1933
1934 bge_wait_for_event_ack(sc);
1935 }
1936 }
1937
1938 static int
1939 bge_poll_fw(struct bge_softc *sc)
1940 {
1941 uint32_t val;
1942 int i;
1943
1944 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1945 for (i = 0; i < BGE_TIMEOUT; i++) {
1946 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1947 if (val & BGE_VCPU_STATUS_INIT_DONE)
1948 break;
1949 DELAY(100);
1950 }
1951 if (i >= BGE_TIMEOUT) {
1952 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1953 return -1;
1954 }
1955 } else {
1956 /*
1957 * Poll the value location we just wrote until
1958 * we see the 1's complement of the magic number.
1959 * This indicates that the firmware initialization
1960 * is complete.
1961 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1962 */
1963 for (i = 0; i < BGE_TIMEOUT; i++) {
1964 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1965 if (val == ~BGE_SRAM_FW_MB_MAGIC)
1966 break;
1967 DELAY(10);
1968 }
1969
1970 if ((i >= BGE_TIMEOUT)
1971 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1972 aprint_error_dev(sc->bge_dev,
1973 "firmware handshake timed out, val = %x\n", val);
1974 return -1;
1975 }
1976 }
1977
1978 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1979 /* tg3 says we have to wait extra time */
1980 delay(10 * 1000);
1981 }
1982
1983 return 0;
1984 }
1985
1986 int
1987 bge_phy_addr(struct bge_softc *sc)
1988 {
1989 struct pci_attach_args *pa = &(sc->bge_pa);
1990 int phy_addr = 1;
1991
1992 /*
1993 * PHY address mapping for various devices.
1994 *
1995 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
1996 * ---------+-------+-------+-------+-------+
1997 * BCM57XX | 1 | X | X | X |
1998 * BCM5704 | 1 | X | 1 | X |
1999 * BCM5717 | 1 | 8 | 2 | 9 |
2000 * BCM5719 | 1 | 8 | 2 | 9 |
2001 * BCM5720 | 1 | 8 | 2 | 9 |
2002 *
2003 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2004 * ---------+-------+-------+-------+-------+
2005 * BCM57XX | X | X | X | X |
2006 * BCM5704 | X | X | X | X |
2007 * BCM5717 | X | X | X | X |
2008 * BCM5719 | 3 | 10 | 4 | 11 |
2009 * BCM5720 | X | X | X | X |
2010 *
2011 * Other addresses may respond but they are not
2012 * IEEE compliant PHYs and should be ignored.
2013 */
2014 switch (BGE_ASICREV(sc->bge_chipid)) {
2015 case BGE_ASICREV_BCM5717:
2016 case BGE_ASICREV_BCM5719:
2017 case BGE_ASICREV_BCM5720:
2018 phy_addr = pa->pa_function;
2019 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2020 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2021 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2022 } else {
2023 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2024 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2025 }
2026 }
2027
2028 return phy_addr;
2029 }
2030
2031 /*
2032 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2033 * self-test results.
2034 */
2035 static int
2036 bge_chipinit(struct bge_softc *sc)
2037 {
2038 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2039 int i;
2040
2041 /* Set endianness before we access any non-PCI registers. */
2042 misc_ctl = BGE_INIT;
2043 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2044 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2045 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2046 misc_ctl);
2047
2048 /*
2049 * Clear the MAC statistics block in the NIC's
2050 * internal memory.
2051 */
2052 for (i = BGE_STATS_BLOCK;
2053 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2054 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2055
2056 for (i = BGE_STATUS_BLOCK;
2057 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2058 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2059
2060 /* 5717 workaround from tg3 */
2061 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2062 /* Save */
2063 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2064
2065 /* Temporary modify MODE_CTL to control TLP */
2066 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2067 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2068
2069 /* Control TLP */
2070 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2071 BGE_TLP_PHYCTL1);
2072 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2073 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2074
2075 /* Restore */
2076 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2077 }
2078
2079 if (BGE_IS_57765_FAMILY(sc)) {
2080 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2081 /* Save */
2082 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2083
2084 /* Temporary modify MODE_CTL to control TLP */
2085 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2086 CSR_WRITE_4(sc, BGE_MODE_CTL,
2087 reg | BGE_MODECTL_PCIE_TLPADDR1);
2088
2089 /* Control TLP */
2090 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2091 BGE_TLP_PHYCTL5);
2092 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2093 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2094
2095 /* Restore */
2096 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2097 }
2098 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2099 /*
2100 * For the 57766 and non Ax versions of 57765, bootcode
2101 * needs to setup the PCIE Fast Training Sequence (FTS)
2102 * value to prevent transmit hangs.
2103 */
2104 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2105 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2106 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2107
2108 /* Save */
2109 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2110
2111 /* Temporary modify MODE_CTL to control TLP */
2112 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2113 CSR_WRITE_4(sc, BGE_MODE_CTL,
2114 reg | BGE_MODECTL_PCIE_TLPADDR0);
2115
2116 /* Control TLP */
2117 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2118 BGE_TLP_FTSMAX);
2119 reg &= ~BGE_TLP_FTSMAX_MSK;
2120 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2121 reg | BGE_TLP_FTSMAX_VAL);
2122
2123 /* Restore */
2124 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2125 }
2126
2127 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2128 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2129 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2130 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2131 }
2132
2133 /* Set up the PCI DMA control register. */
2134 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2135 if (sc->bge_flags & BGEF_PCIE) {
2136 /* Read watermark not used, 128 bytes for write. */
2137 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2138 device_xname(sc->bge_dev)));
2139 if (sc->bge_mps >= 256)
2140 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2141 else
2142 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2143 } else if (sc->bge_flags & BGEF_PCIX) {
2144 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2145 device_xname(sc->bge_dev)));
2146 /* PCI-X bus */
2147 if (BGE_IS_5714_FAMILY(sc)) {
2148 /* 256 bytes for read and write. */
2149 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2150 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2151
2152 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2153 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2154 else
2155 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2156 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2157 /*
2158 * In the BCM5703, the DMA read watermark should
2159 * be set to less than or equal to the maximum
2160 * memory read byte count of the PCI-X command
2161 * register.
2162 */
2163 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2164 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2165 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2166 /* 1536 bytes for read, 384 bytes for write. */
2167 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2168 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2169 } else {
2170 /* 384 bytes for read and write. */
2171 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2172 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2173 (0x0F);
2174 }
2175
2176 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2177 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2178 uint32_t tmp;
2179
2180 /* Set ONEDMA_ATONCE for hardware workaround. */
2181 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2182 if (tmp == 6 || tmp == 7)
2183 dma_rw_ctl |=
2184 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2185
2186 /* Set PCI-X DMA write workaround. */
2187 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2188 }
2189 } else {
2190 /* Conventional PCI bus: 256 bytes for read and write. */
2191 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2192 device_xname(sc->bge_dev)));
2193 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2194 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2195
2196 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2197 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2198 dma_rw_ctl |= 0x0F;
2199 }
2200
2201 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2202 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2203 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2204 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2205
2206 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2207 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2208 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2209
2210 if (BGE_IS_57765_PLUS(sc)) {
2211 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2212 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2213 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2214
2215 /*
2216 * Enable HW workaround for controllers that misinterpret
2217 * a status tag update and leave interrupts permanently
2218 * disabled.
2219 */
2220 if (!BGE_IS_57765_FAMILY(sc) &&
2221 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2222 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2223 }
2224
2225 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2226 dma_rw_ctl);
2227
2228 /*
2229 * Set up general mode register.
2230 */
2231 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2232 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2233 /* Retain Host-2-BMC settings written by APE firmware. */
2234 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2235 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2236 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2237 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2238 }
2239 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2240 BGE_MODECTL_TX_NO_PHDR_CSUM;
2241
2242 /*
2243 * BCM5701 B5 have a bug causing data corruption when using
2244 * 64-bit DMA reads, which can be terminated early and then
2245 * completed later as 32-bit accesses, in combination with
2246 * certain bridges.
2247 */
2248 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2249 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2250 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2251
2252 /*
2253 * Tell the firmware the driver is running
2254 */
2255 if (sc->bge_asf_mode & ASF_STACKUP)
2256 mode_ctl |= BGE_MODECTL_STACKUP;
2257
2258 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2259
2260 /*
2261 * Disable memory write invalidate. Apparently it is not supported
2262 * properly by these devices.
2263 */
2264 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2265 PCI_COMMAND_INVALIDATE_ENABLE);
2266
2267 #ifdef __brokenalpha__
2268 /*
2269 * Must insure that we do not cross an 8K (bytes) boundary
2270 * for DMA reads. Our highest limit is 1K bytes. This is a
2271 * restriction on some ALPHA platforms with early revision
2272 * 21174 PCI chipsets, such as the AlphaPC 164lx
2273 */
2274 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2275 #endif
2276
2277 /* Set the timer prescaler (always 66MHz) */
2278 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2279
2280 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2281 DELAY(40); /* XXX */
2282
2283 /* Put PHY into ready state */
2284 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2285 DELAY(40);
2286 }
2287
2288 return 0;
2289 }
2290
2291 static int
2292 bge_blockinit(struct bge_softc *sc)
2293 {
2294 volatile struct bge_rcb *rcb;
2295 bus_size_t rcb_addr;
2296 struct ifnet *ifp = &sc->ethercom.ec_if;
2297 bge_hostaddr taddr;
2298 uint32_t dmactl, mimode, val;
2299 int i, limit;
2300
2301 /*
2302 * Initialize the memory window pointer register so that
2303 * we can access the first 32K of internal NIC RAM. This will
2304 * allow us to set up the TX send ring RCBs and the RX return
2305 * ring RCBs, plus other things which live in NIC memory.
2306 */
2307 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2308
2309 if (!BGE_IS_5705_PLUS(sc)) {
2310 /* 57XX step 33 */
2311 /* Configure mbuf memory pool */
2312 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2313 BGE_BUFFPOOL_1);
2314
2315 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2316 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2317 else
2318 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2319
2320 /* 57XX step 34 */
2321 /* Configure DMA resource pool */
2322 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2323 BGE_DMA_DESCRIPTORS);
2324 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2325 }
2326
2327 /* 5718 step 11, 57XX step 35 */
2328 /*
2329 * Configure mbuf pool watermarks. New broadcom docs strongly
2330 * recommend these.
2331 */
2332 if (BGE_IS_5717_PLUS(sc)) {
2333 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2334 if (ifp->if_mtu > ETHERMTU) {
2335 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2336 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2337 } else {
2338 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2339 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2340 }
2341 } else if (BGE_IS_5705_PLUS(sc)) {
2342 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2343
2344 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2345 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2346 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2347 } else {
2348 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2349 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2350 }
2351 } else {
2352 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2353 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2354 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2355 }
2356
2357 /* 57XX step 36 */
2358 /* Configure DMA resource watermarks */
2359 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2360 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2361
2362 /* 5718 step 13, 57XX step 38 */
2363 /* Enable buffer manager */
2364 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2365 /*
2366 * Change the arbitration algorithm of TXMBUF read request to
2367 * round-robin instead of priority based for BCM5719. When
2368 * TXFIFO is almost empty, RDMA will hold its request until
2369 * TXFIFO is not almost empty.
2370 */
2371 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2372 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2373 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2374 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2375 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2376 val |= BGE_BMANMODE_LOMBUF_ATTN;
2377 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2378
2379 /* 57XX step 39 */
2380 /* Poll for buffer manager start indication */
2381 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2382 DELAY(10);
2383 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2384 break;
2385 }
2386
2387 if (i == BGE_TIMEOUT * 2) {
2388 aprint_error_dev(sc->bge_dev,
2389 "buffer manager failed to start\n");
2390 return ENXIO;
2391 }
2392
2393 /* 57XX step 40 */
2394 /* Enable flow-through queues */
2395 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2396 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2397
2398 /* Wait until queue initialization is complete */
2399 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2400 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2401 break;
2402 DELAY(10);
2403 }
2404
2405 if (i == BGE_TIMEOUT * 2) {
2406 aprint_error_dev(sc->bge_dev,
2407 "flow-through queue init failed\n");
2408 return ENXIO;
2409 }
2410
2411 /*
2412 * Summary of rings supported by the controller:
2413 *
2414 * Standard Receive Producer Ring
2415 * - This ring is used to feed receive buffers for "standard"
2416 * sized frames (typically 1536 bytes) to the controller.
2417 *
2418 * Jumbo Receive Producer Ring
2419 * - This ring is used to feed receive buffers for jumbo sized
2420 * frames (i.e. anything bigger than the "standard" frames)
2421 * to the controller.
2422 *
2423 * Mini Receive Producer Ring
2424 * - This ring is used to feed receive buffers for "mini"
2425 * sized frames to the controller.
2426 * - This feature required external memory for the controller
2427 * but was never used in a production system. Should always
2428 * be disabled.
2429 *
2430 * Receive Return Ring
2431 * - After the controller has placed an incoming frame into a
2432 * receive buffer that buffer is moved into a receive return
2433 * ring. The driver is then responsible to passing the
2434 * buffer up to the stack. Many versions of the controller
2435 * support multiple RR rings.
2436 *
2437 * Send Ring
2438 * - This ring is used for outgoing frames. Many versions of
2439 * the controller support multiple send rings.
2440 */
2441
2442 /* 5718 step 15, 57XX step 41 */
2443 /* Initialize the standard RX ring control block */
2444 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2445 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2446 /* 5718 step 16 */
2447 if (BGE_IS_57765_PLUS(sc)) {
2448 /*
2449 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2450 * Bits 15-2 : Maximum RX frame size
2451 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2452 * Bit 0 : Reserved
2453 */
2454 rcb->bge_maxlen_flags =
2455 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2456 } else if (BGE_IS_5705_PLUS(sc)) {
2457 /*
2458 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2459 * Bits 15-2 : Reserved (should be 0)
2460 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2461 * Bit 0 : Reserved
2462 */
2463 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2464 } else {
2465 /*
2466 * Ring size is always XXX entries
2467 * Bits 31-16: Maximum RX frame size
2468 * Bits 15-2 : Reserved (should be 0)
2469 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2470 * Bit 0 : Reserved
2471 */
2472 rcb->bge_maxlen_flags =
2473 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2474 }
2475 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2476 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2477 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2478 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2479 else
2480 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2481 /* Write the standard receive producer ring control block. */
2482 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2483 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2484 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2485 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2486
2487 /* Reset the standard receive producer ring producer index. */
2488 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2489
2490 /* 57XX step 42 */
2491 /*
2492 * Initialize the jumbo RX ring control block
2493 * We set the 'ring disabled' bit in the flags
2494 * field until we're actually ready to start
2495 * using this ring (i.e. once we set the MTU
2496 * high enough to require it).
2497 */
2498 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2499 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2500 BGE_HOSTADDR(rcb->bge_hostaddr,
2501 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2502 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2503 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2504 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2505 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2506 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2507 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2508 else
2509 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2510 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2511 rcb->bge_hostaddr.bge_addr_hi);
2512 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2513 rcb->bge_hostaddr.bge_addr_lo);
2514 /* Program the jumbo receive producer ring RCB parameters. */
2515 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2516 rcb->bge_maxlen_flags);
2517 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2518 /* Reset the jumbo receive producer ring producer index. */
2519 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2520 }
2521
2522 /* 57XX step 43 */
2523 /* Disable the mini receive producer ring RCB. */
2524 if (BGE_IS_5700_FAMILY(sc)) {
2525 /* Set up dummy disabled mini ring RCB */
2526 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2527 rcb->bge_maxlen_flags =
2528 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2529 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2530 rcb->bge_maxlen_flags);
2531 /* Reset the mini receive producer ring producer index. */
2532 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2533
2534 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2535 offsetof(struct bge_ring_data, bge_info),
2536 sizeof (struct bge_gib),
2537 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2538 }
2539
2540 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2541 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2542 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2543 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2544 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2545 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2546 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2547 }
2548 /* 5718 step 14, 57XX step 44 */
2549 /*
2550 * The BD ring replenish thresholds control how often the
2551 * hardware fetches new BD's from the producer rings in host
2552 * memory. Setting the value too low on a busy system can
2553 * starve the hardware and recue the throughpout.
2554 *
2555 * Set the BD ring replenish thresholds. The recommended
2556 * values are 1/8th the number of descriptors allocated to
2557 * each ring, but since we try to avoid filling the entire
2558 * ring we set these to the minimal value of 8. This needs to
2559 * be done on several of the supported chip revisions anyway,
2560 * to work around HW bugs.
2561 */
2562 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2563 if (BGE_IS_JUMBO_CAPABLE(sc))
2564 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2565
2566 /* 5718 step 18 */
2567 if (BGE_IS_5717_PLUS(sc)) {
2568 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2569 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2570 }
2571
2572 /* 57XX step 45 */
2573 /*
2574 * Disable all send rings by setting the 'ring disabled' bit
2575 * in the flags field of all the TX send ring control blocks,
2576 * located in NIC memory.
2577 */
2578 if (BGE_IS_5700_FAMILY(sc)) {
2579 /* 5700 to 5704 had 16 send rings. */
2580 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2581 } else if (BGE_IS_5717_PLUS(sc)) {
2582 limit = BGE_TX_RINGS_5717_MAX;
2583 } else if (BGE_IS_57765_FAMILY(sc)) {
2584 limit = BGE_TX_RINGS_57765_MAX;
2585 } else
2586 limit = 1;
2587 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2588 for (i = 0; i < limit; i++) {
2589 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2590 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2591 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2592 rcb_addr += sizeof(struct bge_rcb);
2593 }
2594
2595 /* 57XX step 46 and 47 */
2596 /* Configure send ring RCB 0 (we use only the first ring) */
2597 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2598 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2599 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2600 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2601 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2602 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2603 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2604 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2605 else
2606 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2607 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2608 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2609 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2610
2611 /* 57XX step 48 */
2612 /*
2613 * Disable all receive return rings by setting the
2614 * 'ring diabled' bit in the flags field of all the receive
2615 * return ring control blocks, located in NIC memory.
2616 */
2617 if (BGE_IS_5717_PLUS(sc)) {
2618 /* Should be 17, use 16 until we get an SRAM map. */
2619 limit = 16;
2620 } else if (BGE_IS_5700_FAMILY(sc))
2621 limit = BGE_RX_RINGS_MAX;
2622 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2623 BGE_IS_57765_FAMILY(sc))
2624 limit = 4;
2625 else
2626 limit = 1;
2627 /* Disable all receive return rings */
2628 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2629 for (i = 0; i < limit; i++) {
2630 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2631 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2632 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2633 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2634 BGE_RCB_FLAG_RING_DISABLED));
2635 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2636 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2637 (i * (sizeof(uint64_t))), 0);
2638 rcb_addr += sizeof(struct bge_rcb);
2639 }
2640
2641 /* 57XX step 49 */
2642 /*
2643 * Set up receive return ring 0. Note that the NIC address
2644 * for RX return rings is 0x0. The return rings live entirely
2645 * within the host, so the nicaddr field in the RCB isn't used.
2646 */
2647 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2648 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2649 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2650 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2651 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2652 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2653 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2654
2655 /* 5718 step 24, 57XX step 53 */
2656 /* Set random backoff seed for TX */
2657 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2658 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2659 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2660 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2661 BGE_TX_BACKOFF_SEED_MASK);
2662
2663 /* 5718 step 26, 57XX step 55 */
2664 /* Set inter-packet gap */
2665 val = 0x2620;
2666 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2667 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2668 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2669 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2670
2671 /* 5718 step 27, 57XX step 56 */
2672 /*
2673 * Specify which ring to use for packets that don't match
2674 * any RX rules.
2675 */
2676 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2677
2678 /* 5718 step 28, 57XX step 57 */
2679 /*
2680 * Configure number of RX lists. One interrupt distribution
2681 * list, sixteen active lists, one bad frames class.
2682 */
2683 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2684
2685 /* 5718 step 29, 57XX step 58 */
2686 /* Inialize RX list placement stats mask. */
2687 if (BGE_IS_575X_PLUS(sc)) {
2688 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2689 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2690 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2691 } else
2692 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2693
2694 /* 5718 step 30, 57XX step 59 */
2695 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2696
2697 /* 5718 step 33, 57XX step 62 */
2698 /* Disable host coalescing until we get it set up */
2699 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2700
2701 /* 5718 step 34, 57XX step 63 */
2702 /* Poll to make sure it's shut down. */
2703 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2704 DELAY(10);
2705 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2706 break;
2707 }
2708
2709 if (i == BGE_TIMEOUT * 2) {
2710 aprint_error_dev(sc->bge_dev,
2711 "host coalescing engine failed to idle\n");
2712 return ENXIO;
2713 }
2714
2715 /* 5718 step 35, 36, 37 */
2716 /* Set up host coalescing defaults */
2717 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2718 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2719 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2720 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2721 if (!(BGE_IS_5705_PLUS(sc))) {
2722 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2723 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2724 }
2725 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2726 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2727
2728 /* Set up address of statistics block */
2729 if (BGE_IS_5700_FAMILY(sc)) {
2730 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2731 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2732 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2733 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2734 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2735 }
2736
2737 /* 5718 step 38 */
2738 /* Set up address of status block */
2739 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2740 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2741 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2742 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2743 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2744 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2745
2746 /* Set up status block size. */
2747 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2748 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2749 val = BGE_STATBLKSZ_FULL;
2750 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2751 } else {
2752 val = BGE_STATBLKSZ_32BYTE;
2753 bzero(&sc->bge_rdata->bge_status_block, 32);
2754 }
2755
2756 /* 5718 step 39, 57XX step 73 */
2757 /* Turn on host coalescing state machine */
2758 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2759
2760 /* 5718 step 40, 57XX step 74 */
2761 /* Turn on RX BD completion state machine and enable attentions */
2762 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2763 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2764
2765 /* 5718 step 41, 57XX step 75 */
2766 /* Turn on RX list placement state machine */
2767 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2768
2769 /* 57XX step 76 */
2770 /* Turn on RX list selector state machine. */
2771 if (!(BGE_IS_5705_PLUS(sc)))
2772 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2773
2774 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2775 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2776 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2777 BGE_MACMODE_FRMHDR_DMA_ENB;
2778
2779 if (sc->bge_flags & BGEF_FIBER_TBI)
2780 val |= BGE_PORTMODE_TBI;
2781 else if (sc->bge_flags & BGEF_FIBER_MII)
2782 val |= BGE_PORTMODE_GMII;
2783 else
2784 val |= BGE_PORTMODE_MII;
2785
2786 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2787 /* Allow APE to send/receive frames. */
2788 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2789 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2790
2791 /* Turn on DMA, clear stats */
2792 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2793 /* 5718 step 44 */
2794 DELAY(40);
2795
2796 /* 5718 step 45, 57XX step 79 */
2797 /* Set misc. local control, enable interrupts on attentions */
2798 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2799 if (BGE_IS_5717_PLUS(sc)) {
2800 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2801 /* 5718 step 46 */
2802 DELAY(100);
2803 }
2804
2805 /* 57XX step 81 */
2806 /* Turn on DMA completion state machine */
2807 if (!(BGE_IS_5705_PLUS(sc)))
2808 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2809
2810 /* 5718 step 47, 57XX step 82 */
2811 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2812
2813 /* 5718 step 48 */
2814 /* Enable host coalescing bug fix. */
2815 if (BGE_IS_5755_PLUS(sc))
2816 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2817
2818 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2819 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2820
2821 /* Turn on write DMA state machine */
2822 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2823 /* 5718 step 49 */
2824 DELAY(40);
2825
2826 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2827
2828 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2829 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2830
2831 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2832 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2833 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2834 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2835 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2836 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2837
2838 if (sc->bge_flags & BGEF_PCIE)
2839 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2840 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2841 if (ifp->if_mtu <= ETHERMTU)
2842 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2843 }
2844 if (sc->bge_flags & BGEF_TSO) {
2845 val |= BGE_RDMAMODE_TSO4_ENABLE;
2846 if (BGE_IS_5717_PLUS(sc))
2847 val |= BGE_RDMAMODE_TSO6_ENABLE;
2848 }
2849
2850 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2851 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2852 BGE_RDMAMODE_H2BNC_VLAN_DET;
2853 /*
2854 * Allow multiple outstanding read requests from
2855 * non-LSO read DMA engine.
2856 */
2857 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2858 }
2859
2860 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2861 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2862 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2863 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2864 BGE_IS_57765_PLUS(sc)) {
2865 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2866 /*
2867 * Adjust tx margin to prevent TX data corruption and
2868 * fix internal FIFO overflow.
2869 */
2870 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2871 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2872 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2873 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2874 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2875 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2876 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2877 }
2878 /*
2879 * Enable fix for read DMA FIFO overruns.
2880 * The fix is to limit the number of RX BDs
2881 * the hardware would fetch at a fime.
2882 */
2883 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
2884 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2885 }
2886
2887 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2888 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2889 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2890 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2891 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2892 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2893 /*
2894 * Allow 4KB burst length reads for non-LSO frames.
2895 * Enable 512B burst length reads for buffer descriptors.
2896 */
2897 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2898 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2899 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2900 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2901 }
2902 /* Turn on read DMA state machine */
2903 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2904 /* 5718 step 52 */
2905 delay(40);
2906
2907 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2908 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2909 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2910 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2911 if ((val & 0xFFFF) > BGE_FRAMELEN)
2912 break;
2913 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2914 break;
2915 }
2916 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2917 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2918 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2919 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2920 else
2921 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2922 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2923 }
2924 }
2925
2926 /* 5718 step 56, 57XX step 84 */
2927 /* Turn on RX data completion state machine */
2928 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2929
2930 /* Turn on RX data and RX BD initiator state machine */
2931 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2932
2933 /* 57XX step 85 */
2934 /* Turn on Mbuf cluster free state machine */
2935 if (!BGE_IS_5705_PLUS(sc))
2936 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2937
2938 /* 5718 step 57, 57XX step 86 */
2939 /* Turn on send data completion state machine */
2940 val = BGE_SDCMODE_ENABLE;
2941 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2942 val |= BGE_SDCMODE_CDELAY;
2943 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2944
2945 /* 5718 step 58 */
2946 /* Turn on send BD completion state machine */
2947 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2948
2949 /* 57XX step 88 */
2950 /* Turn on RX BD initiator state machine */
2951 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2952
2953 /* 5718 step 60, 57XX step 90 */
2954 /* Turn on send data initiator state machine */
2955 if (sc->bge_flags & BGEF_TSO) {
2956 /* XXX: magic value from Linux driver */
2957 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2958 BGE_SDIMODE_HW_LSO_PRE_DMA);
2959 } else
2960 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2961
2962 /* 5718 step 61, 57XX step 91 */
2963 /* Turn on send BD initiator state machine */
2964 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2965
2966 /* 5718 step 62, 57XX step 92 */
2967 /* Turn on send BD selector state machine */
2968 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2969
2970 /* 5718 step 31, 57XX step 60 */
2971 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2972 /* 5718 step 32, 57XX step 61 */
2973 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2974 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2975
2976 /* ack/clear link change events */
2977 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2978 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2979 BGE_MACSTAT_LINK_CHANGED);
2980 CSR_WRITE_4(sc, BGE_MI_STS, 0);
2981
2982 /*
2983 * Enable attention when the link has changed state for
2984 * devices that use auto polling.
2985 */
2986 if (sc->bge_flags & BGEF_FIBER_TBI) {
2987 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2988 } else {
2989 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
2990 mimode = BGE_MIMODE_500KHZ_CONST;
2991 else
2992 mimode = BGE_MIMODE_BASE;
2993 /* 5718 step 68. 5718 step 69 (optionally). */
2994 if (BGE_IS_5700_FAMILY(sc) ||
2995 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
2996 mimode |= BGE_MIMODE_AUTOPOLL;
2997 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2998 }
2999 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3000 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3001 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3002 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3003 BGE_EVTENB_MI_INTERRUPT);
3004 }
3005
3006 /*
3007 * Clear any pending link state attention.
3008 * Otherwise some link state change events may be lost until attention
3009 * is cleared by bge_intr() -> bge_link_upd() sequence.
3010 * It's not necessary on newer BCM chips - perhaps enabling link
3011 * state change attentions implies clearing pending attention.
3012 */
3013 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3014 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3015 BGE_MACSTAT_LINK_CHANGED);
3016
3017 /* Enable link state change attentions. */
3018 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3019
3020 return 0;
3021 }
3022
3023 static const struct bge_revision *
3024 bge_lookup_rev(uint32_t chipid)
3025 {
3026 const struct bge_revision *br;
3027
3028 for (br = bge_revisions; br->br_name != NULL; br++) {
3029 if (br->br_chipid == chipid)
3030 return br;
3031 }
3032
3033 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3034 if (br->br_chipid == BGE_ASICREV(chipid))
3035 return br;
3036 }
3037
3038 return NULL;
3039 }
3040
3041 static const struct bge_product *
3042 bge_lookup(const struct pci_attach_args *pa)
3043 {
3044 const struct bge_product *bp;
3045
3046 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3047 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3048 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3049 return bp;
3050 }
3051
3052 return NULL;
3053 }
3054
3055 static uint32_t
3056 bge_chipid(const struct pci_attach_args *pa)
3057 {
3058 uint32_t id;
3059
3060 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3061 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3062
3063 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3064 switch (PCI_PRODUCT(pa->pa_id)) {
3065 case PCI_PRODUCT_BROADCOM_BCM5717:
3066 case PCI_PRODUCT_BROADCOM_BCM5718:
3067 case PCI_PRODUCT_BROADCOM_BCM5719:
3068 case PCI_PRODUCT_BROADCOM_BCM5720:
3069 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3070 BGE_PCI_GEN2_PRODID_ASICREV);
3071 break;
3072 case PCI_PRODUCT_BROADCOM_BCM57761:
3073 case PCI_PRODUCT_BROADCOM_BCM57762:
3074 case PCI_PRODUCT_BROADCOM_BCM57765:
3075 case PCI_PRODUCT_BROADCOM_BCM57766:
3076 case PCI_PRODUCT_BROADCOM_BCM57781:
3077 case PCI_PRODUCT_BROADCOM_BCM57782:
3078 case PCI_PRODUCT_BROADCOM_BCM57785:
3079 case PCI_PRODUCT_BROADCOM_BCM57786:
3080 case PCI_PRODUCT_BROADCOM_BCM57791:
3081 case PCI_PRODUCT_BROADCOM_BCM57795:
3082 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3083 BGE_PCI_GEN15_PRODID_ASICREV);
3084 break;
3085 default:
3086 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3087 BGE_PCI_PRODID_ASICREV);
3088 break;
3089 }
3090 }
3091
3092 return id;
3093 }
3094
3095 /*
3096 * Return true if MSI can be used with this device.
3097 */
3098 static int
3099 bge_can_use_msi(struct bge_softc *sc)
3100 {
3101 int can_use_msi = 0;
3102
3103 switch (BGE_ASICREV(sc->bge_chipid)) {
3104 case BGE_ASICREV_BCM5714_A0:
3105 case BGE_ASICREV_BCM5714:
3106 /*
3107 * Apparently, MSI doesn't work when these chips are
3108 * configured in single-port mode.
3109 */
3110 break;
3111 case BGE_ASICREV_BCM5750:
3112 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3113 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3114 can_use_msi = 1;
3115 break;
3116 default:
3117 if (BGE_IS_575X_PLUS(sc))
3118 can_use_msi = 1;
3119 }
3120 return (can_use_msi);
3121 }
3122
3123 /*
3124 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3125 * against our list and return its name if we find a match. Note
3126 * that since the Broadcom controller contains VPD support, we
3127 * can get the device name string from the controller itself instead
3128 * of the compiled-in string. This is a little slow, but it guarantees
3129 * we'll always announce the right product name.
3130 */
3131 static int
3132 bge_probe(device_t parent, cfdata_t match, void *aux)
3133 {
3134 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3135
3136 if (bge_lookup(pa) != NULL)
3137 return 1;
3138
3139 return 0;
3140 }
3141
3142 static void
3143 bge_attach(device_t parent, device_t self, void *aux)
3144 {
3145 struct bge_softc *sc = device_private(self);
3146 struct pci_attach_args *pa = aux;
3147 prop_dictionary_t dict;
3148 const struct bge_product *bp;
3149 const struct bge_revision *br;
3150 pci_chipset_tag_t pc;
3151 const char *intrstr = NULL;
3152 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3153 uint32_t command;
3154 struct ifnet *ifp;
3155 uint32_t misccfg, mimode;
3156 void * kva;
3157 u_char eaddr[ETHER_ADDR_LEN];
3158 pcireg_t memtype, subid, reg;
3159 bus_addr_t memaddr;
3160 uint32_t pm_ctl;
3161 bool no_seeprom;
3162 int capmask;
3163 int mii_flags;
3164 int map_flags;
3165 char intrbuf[PCI_INTRSTR_LEN];
3166
3167 bp = bge_lookup(pa);
3168 KASSERT(bp != NULL);
3169
3170 sc->sc_pc = pa->pa_pc;
3171 sc->sc_pcitag = pa->pa_tag;
3172 sc->bge_dev = self;
3173
3174 sc->bge_pa = *pa;
3175 pc = sc->sc_pc;
3176 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3177
3178 aprint_naive(": Ethernet controller\n");
3179 aprint_normal(": %s Ethernet\n", bp->bp_name);
3180
3181 /*
3182 * Map control/status registers.
3183 */
3184 DPRINTFN(5, ("Map control/status regs\n"));
3185 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3186 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3187 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3188 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3189
3190 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3191 aprint_error_dev(sc->bge_dev,
3192 "failed to enable memory mapping!\n");
3193 return;
3194 }
3195
3196 DPRINTFN(5, ("pci_mem_find\n"));
3197 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3198 switch (memtype) {
3199 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3200 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3201 #if 0
3202 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3203 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3204 &memaddr, &sc->bge_bsize) == 0)
3205 break;
3206 #else
3207 /*
3208 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3209 * system get NMI on boot (PR#48451). This problem might not be
3210 * the driver's bug but our PCI common part's bug. Until we
3211 * find a real reason, we ignore the prefetchable bit.
3212 */
3213 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3214 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3215 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3216 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3217 map_flags, &sc->bge_bhandle) == 0) {
3218 sc->bge_btag = pa->pa_memt;
3219 break;
3220 }
3221 }
3222 #endif
3223 /* FALLTHROUGH */
3224 default:
3225 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3226 return;
3227 }
3228
3229 /* Save various chip information. */
3230 sc->bge_chipid = bge_chipid(pa);
3231 sc->bge_phy_addr = bge_phy_addr(sc);
3232
3233 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3234 &sc->bge_pciecap, NULL) != 0) {
3235 /* PCIe */
3236 sc->bge_flags |= BGEF_PCIE;
3237 /* Extract supported maximum payload size. */
3238 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3239 sc->bge_pciecap + PCIE_DCAP);
3240 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3241 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3242 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3243 sc->bge_expmrq = 2048;
3244 else
3245 sc->bge_expmrq = 4096;
3246 bge_set_max_readrq(sc);
3247 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3248 /* PCIe without PCIe cap */
3249 sc->bge_flags |= BGEF_PCIE;
3250 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3251 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3252 /* PCI-X */
3253 sc->bge_flags |= BGEF_PCIX;
3254 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3255 &sc->bge_pcixcap, NULL) == 0)
3256 aprint_error_dev(sc->bge_dev,
3257 "unable to find PCIX capability\n");
3258 }
3259
3260 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3261 /*
3262 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3263 * can clobber the chip's PCI config-space power control
3264 * registers, leaving the card in D3 powersave state. We do
3265 * not have memory-mapped registers in this state, so force
3266 * device into D0 state before starting initialization.
3267 */
3268 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3269 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3270 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3271 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3272 DELAY(1000); /* 27 usec is allegedly sufficent */
3273 }
3274
3275 /* Save chipset family. */
3276 switch (BGE_ASICREV(sc->bge_chipid)) {
3277 case BGE_ASICREV_BCM5717:
3278 case BGE_ASICREV_BCM5719:
3279 case BGE_ASICREV_BCM5720:
3280 sc->bge_flags |= BGEF_5717_PLUS;
3281 /* FALLTHROUGH */
3282 case BGE_ASICREV_BCM57765:
3283 case BGE_ASICREV_BCM57766:
3284 if (!BGE_IS_5717_PLUS(sc))
3285 sc->bge_flags |= BGEF_57765_FAMILY;
3286 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3287 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3288 /* Jumbo frame on BCM5719 A0 does not work. */
3289 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3290 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3291 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3292 break;
3293 case BGE_ASICREV_BCM5755:
3294 case BGE_ASICREV_BCM5761:
3295 case BGE_ASICREV_BCM5784:
3296 case BGE_ASICREV_BCM5785:
3297 case BGE_ASICREV_BCM5787:
3298 case BGE_ASICREV_BCM57780:
3299 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3300 break;
3301 case BGE_ASICREV_BCM5700:
3302 case BGE_ASICREV_BCM5701:
3303 case BGE_ASICREV_BCM5703:
3304 case BGE_ASICREV_BCM5704:
3305 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3306 break;
3307 case BGE_ASICREV_BCM5714_A0:
3308 case BGE_ASICREV_BCM5780:
3309 case BGE_ASICREV_BCM5714:
3310 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3311 /* FALLTHROUGH */
3312 case BGE_ASICREV_BCM5750:
3313 case BGE_ASICREV_BCM5752:
3314 case BGE_ASICREV_BCM5906:
3315 sc->bge_flags |= BGEF_575X_PLUS;
3316 /* FALLTHROUGH */
3317 case BGE_ASICREV_BCM5705:
3318 sc->bge_flags |= BGEF_5705_PLUS;
3319 break;
3320 }
3321
3322 /* Identify chips with APE processor. */
3323 switch (BGE_ASICREV(sc->bge_chipid)) {
3324 case BGE_ASICREV_BCM5717:
3325 case BGE_ASICREV_BCM5719:
3326 case BGE_ASICREV_BCM5720:
3327 case BGE_ASICREV_BCM5761:
3328 sc->bge_flags |= BGEF_APE;
3329 break;
3330 }
3331
3332 /*
3333 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3334 * not actually a MAC controller bug but an issue with the embedded
3335 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3336 */
3337 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3338 sc->bge_flags |= BGEF_40BIT_BUG;
3339
3340 /* Chips with APE need BAR2 access for APE registers/memory. */
3341 if ((sc->bge_flags & BGEF_APE) != 0) {
3342 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3343 #if 0
3344 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3345 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3346 &sc->bge_apesize)) {
3347 aprint_error_dev(sc->bge_dev,
3348 "couldn't map BAR2 memory\n");
3349 return;
3350 }
3351 #else
3352 /*
3353 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3354 * system get NMI on boot (PR#48451). This problem might not be
3355 * the driver's bug but our PCI common part's bug. Until we
3356 * find a real reason, we ignore the prefetchable bit.
3357 */
3358 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3359 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3360 aprint_error_dev(sc->bge_dev,
3361 "couldn't map BAR2 memory\n");
3362 return;
3363 }
3364
3365 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3366 if (bus_space_map(pa->pa_memt, memaddr,
3367 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3368 aprint_error_dev(sc->bge_dev,
3369 "couldn't map BAR2 memory\n");
3370 return;
3371 }
3372 sc->bge_apetag = pa->pa_memt;
3373 #endif
3374
3375 /* Enable APE register/memory access by host driver. */
3376 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3377 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3378 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3379 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3380 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3381
3382 bge_ape_lock_init(sc);
3383 bge_ape_read_fw_ver(sc);
3384 }
3385
3386 /* Identify the chips that use an CPMU. */
3387 if (BGE_IS_5717_PLUS(sc) ||
3388 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3389 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3390 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3391 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3392 sc->bge_flags |= BGEF_CPMU_PRESENT;
3393
3394 /* Set MI_MODE */
3395 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3396 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3397 mimode |= BGE_MIMODE_500KHZ_CONST;
3398 else
3399 mimode |= BGE_MIMODE_BASE;
3400 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3401
3402 /*
3403 * When using the BCM5701 in PCI-X mode, data corruption has
3404 * been observed in the first few bytes of some received packets.
3405 * Aligning the packet buffer in memory eliminates the corruption.
3406 * Unfortunately, this misaligns the packet payloads. On platforms
3407 * which do not support unaligned accesses, we will realign the
3408 * payloads by copying the received packets.
3409 */
3410 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3411 sc->bge_flags & BGEF_PCIX)
3412 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3413
3414 if (BGE_IS_5700_FAMILY(sc))
3415 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3416
3417 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3418 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3419
3420 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3421 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3422 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3423 sc->bge_flags |= BGEF_IS_5788;
3424
3425 /*
3426 * Some controllers seem to require a special firmware to use
3427 * TSO. But the firmware is not available to FreeBSD and Linux
3428 * claims that the TSO performed by the firmware is slower than
3429 * hardware based TSO. Moreover the firmware based TSO has one
3430 * known bug which can't handle TSO if ethernet header + IP/TCP
3431 * header is greater than 80 bytes. The workaround for the TSO
3432 * bug exist but it seems it's too expensive than not using
3433 * TSO at all. Some hardwares also have the TSO bug so limit
3434 * the TSO to the controllers that are not affected TSO issues
3435 * (e.g. 5755 or higher).
3436 */
3437 if (BGE_IS_5755_PLUS(sc)) {
3438 /*
3439 * BCM5754 and BCM5787 shares the same ASIC id so
3440 * explicit device id check is required.
3441 */
3442 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3443 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3444 sc->bge_flags |= BGEF_TSO;
3445 /* TSO on BCM5719 A0 does not work. */
3446 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3447 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3448 sc->bge_flags &= ~BGEF_TSO;
3449 }
3450
3451 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3452 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3453 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3454 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3455 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3456 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3457 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3458 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3459 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3460 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3461 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3462 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3463 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3464 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3465 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3466 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3467 /* These chips are 10/100 only. */
3468 capmask &= ~BMSR_EXTSTAT;
3469 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3470 }
3471
3472 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3473 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3474 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3475 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3476 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3477
3478 /* Set various PHY bug flags. */
3479 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3480 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3481 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3482 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3483 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3484 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3485 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3486 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3487 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3488 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3489 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3490 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3491 if (BGE_IS_5705_PLUS(sc) &&
3492 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3493 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3494 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3495 !BGE_IS_57765_PLUS(sc)) {
3496 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3497 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3498 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3499 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3500 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3501 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3502 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3503 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3504 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3505 } else
3506 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3507 }
3508
3509 /*
3510 * SEEPROM check.
3511 * First check if firmware knows we do not have SEEPROM.
3512 */
3513 if (prop_dictionary_get_bool(device_properties(self),
3514 "without-seeprom", &no_seeprom) && no_seeprom)
3515 sc->bge_flags |= BGEF_NO_EEPROM;
3516
3517 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3518 sc->bge_flags |= BGEF_NO_EEPROM;
3519
3520 /* Now check the 'ROM failed' bit on the RX CPU */
3521 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3522 sc->bge_flags |= BGEF_NO_EEPROM;
3523
3524 sc->bge_asf_mode = 0;
3525 /* No ASF if APE present. */
3526 if ((sc->bge_flags & BGEF_APE) == 0) {
3527 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3528 BGE_SRAM_DATA_SIG_MAGIC)) {
3529 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3530 BGE_HWCFG_ASF) {
3531 sc->bge_asf_mode |= ASF_ENABLE;
3532 sc->bge_asf_mode |= ASF_STACKUP;
3533 if (BGE_IS_575X_PLUS(sc))
3534 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3535 }
3536 }
3537 }
3538
3539 int counts[PCI_INTR_TYPE_SIZE] = {
3540 [PCI_INTR_TYPE_INTX] = 1,
3541 [PCI_INTR_TYPE_MSI] = 1,
3542 [PCI_INTR_TYPE_MSIX] = 1,
3543 };
3544 int max_type = PCI_INTR_TYPE_MSIX;
3545
3546 if (!bge_can_use_msi(sc)) {
3547 /* MSI broken, allow only INTx */
3548 max_type = PCI_INTR_TYPE_INTX;
3549 }
3550
3551 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3552 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3553 return;
3554 }
3555
3556 DPRINTFN(5, ("pci_intr_string\n"));
3557 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3558 sizeof(intrbuf));
3559 DPRINTFN(5, ("pci_intr_establish\n"));
3560 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3561 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3562 if (sc->bge_intrhand == NULL) {
3563 pci_intr_release(pc, sc->bge_pihp, 1);
3564 sc->bge_pihp = NULL;
3565
3566 aprint_error_dev(self, "couldn't establish interrupt");
3567 if (intrstr != NULL)
3568 aprint_error(" at %s", intrstr);
3569 aprint_error("\n");
3570 return;
3571 }
3572 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3573
3574 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3575 case PCI_INTR_TYPE_MSIX:
3576 case PCI_INTR_TYPE_MSI:
3577 KASSERT(bge_can_use_msi(sc));
3578 sc->bge_flags |= BGEF_MSI;
3579 break;
3580 default:
3581 /* nothing to do */
3582 break;
3583 }
3584
3585 /*
3586 * All controllers except BCM5700 supports tagged status but
3587 * we use tagged status only for MSI case on BCM5717. Otherwise
3588 * MSI on BCM5717 does not work.
3589 */
3590 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3591 sc->bge_flags |= BGEF_TAGGED_STATUS;
3592
3593 /*
3594 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3595 * lock in bge_reset().
3596 */
3597 CSR_WRITE_4(sc, BGE_EE_ADDR,
3598 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3599 delay(1000);
3600 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3601
3602 bge_stop_fw(sc);
3603 bge_sig_pre_reset(sc, BGE_RESET_START);
3604 if (bge_reset(sc))
3605 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3606
3607 /*
3608 * Read the hardware config word in the first 32k of NIC internal
3609 * memory, or fall back to the config word in the EEPROM.
3610 * Note: on some BCM5700 cards, this value appears to be unset.
3611 */
3612 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3613 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3614 BGE_SRAM_DATA_SIG_MAGIC) {
3615 uint32_t tmp;
3616
3617 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3618 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3619 BGE_SRAM_DATA_VER_SHIFT;
3620 if ((0 < tmp) && (tmp < 0x100))
3621 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3622 if (sc->bge_flags & BGEF_PCIE)
3623 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3624 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3625 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3626 if (BGE_IS_5717_PLUS(sc))
3627 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3628 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3629 bge_read_eeprom(sc, (void *)&hwcfg,
3630 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3631 hwcfg = be32toh(hwcfg);
3632 }
3633 aprint_normal_dev(sc->bge_dev,
3634 "HW config %08x, %08x, %08x, %08x %08x\n",
3635 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3636
3637 bge_sig_legacy(sc, BGE_RESET_START);
3638 bge_sig_post_reset(sc, BGE_RESET_START);
3639
3640 if (bge_chipinit(sc)) {
3641 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3642 bge_release_resources(sc);
3643 return;
3644 }
3645
3646 /*
3647 * Get station address from the EEPROM.
3648 */
3649 if (bge_get_eaddr(sc, eaddr)) {
3650 aprint_error_dev(sc->bge_dev,
3651 "failed to read station address\n");
3652 bge_release_resources(sc);
3653 return;
3654 }
3655
3656 br = bge_lookup_rev(sc->bge_chipid);
3657
3658 if (br == NULL) {
3659 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3660 sc->bge_chipid);
3661 } else {
3662 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3663 br->br_name, sc->bge_chipid);
3664 }
3665 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3666
3667 /* Allocate the general information block and ring buffers. */
3668 if (pci_dma64_available(pa)) {
3669 sc->bge_dmatag = pa->pa_dmat64;
3670 sc->bge_dmatag32 = pa->pa_dmat;
3671 sc->bge_dma64 = true;
3672 } else {
3673 sc->bge_dmatag = pa->pa_dmat;
3674 sc->bge_dmatag32 = pa->pa_dmat;
3675 sc->bge_dma64 = false;
3676 }
3677
3678 /* 40bit DMA workaround */
3679 if (sizeof(bus_addr_t) > 4) {
3680 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3681 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3682
3683 if (bus_dmatag_subregion(olddmatag, 0,
3684 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3685 BUS_DMA_NOWAIT) != 0) {
3686 aprint_error_dev(self,
3687 "WARNING: failed to restrict dma range,"
3688 " falling back to parent bus dma range\n");
3689 sc->bge_dmatag = olddmatag;
3690 }
3691 }
3692 }
3693 SLIST_INIT(&sc->txdma_list);
3694 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3695 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3696 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3697 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3698 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3699 return;
3700 }
3701 DPRINTFN(5, ("bus_dmamem_map\n"));
3702 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3703 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3704 BUS_DMA_NOWAIT)) {
3705 aprint_error_dev(sc->bge_dev,
3706 "can't map DMA buffers (%zu bytes)\n",
3707 sizeof(struct bge_ring_data));
3708 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3709 sc->bge_ring_rseg);
3710 return;
3711 }
3712 DPRINTFN(5, ("bus_dmamem_create\n"));
3713 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3714 sizeof(struct bge_ring_data), 0,
3715 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3716 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3717 bus_dmamem_unmap(sc->bge_dmatag, kva,
3718 sizeof(struct bge_ring_data));
3719 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3720 sc->bge_ring_rseg);
3721 return;
3722 }
3723 DPRINTFN(5, ("bus_dmamem_load\n"));
3724 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3725 sizeof(struct bge_ring_data), NULL,
3726 BUS_DMA_NOWAIT)) {
3727 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3728 bus_dmamem_unmap(sc->bge_dmatag, kva,
3729 sizeof(struct bge_ring_data));
3730 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3731 sc->bge_ring_rseg);
3732 return;
3733 }
3734
3735 DPRINTFN(5, ("bzero\n"));
3736 sc->bge_rdata = (struct bge_ring_data *)kva;
3737
3738 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3739
3740 /* Try to allocate memory for jumbo buffers. */
3741 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3742 if (bge_alloc_jumbo_mem(sc)) {
3743 aprint_error_dev(sc->bge_dev,
3744 "jumbo buffer allocation failed\n");
3745 } else
3746 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3747 }
3748
3749 /* Set default tuneable values. */
3750 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3751 sc->bge_rx_coal_ticks = 150;
3752 sc->bge_rx_max_coal_bds = 64;
3753 sc->bge_tx_coal_ticks = 300;
3754 sc->bge_tx_max_coal_bds = 400;
3755 if (BGE_IS_5705_PLUS(sc)) {
3756 sc->bge_tx_coal_ticks = (12 * 5);
3757 sc->bge_tx_max_coal_bds = (12 * 5);
3758 aprint_verbose_dev(sc->bge_dev,
3759 "setting short Tx thresholds\n");
3760 }
3761
3762 if (BGE_IS_5717_PLUS(sc))
3763 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3764 else if (BGE_IS_5705_PLUS(sc))
3765 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3766 else
3767 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3768
3769 /* Set up ifnet structure */
3770 ifp = &sc->ethercom.ec_if;
3771 ifp->if_softc = sc;
3772 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3773 ifp->if_ioctl = bge_ioctl;
3774 ifp->if_stop = bge_stop;
3775 ifp->if_start = bge_start;
3776 ifp->if_init = bge_init;
3777 ifp->if_watchdog = bge_watchdog;
3778 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3779 IFQ_SET_READY(&ifp->if_snd);
3780 DPRINTFN(5, ("strcpy if_xname\n"));
3781 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3782
3783 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3784 sc->ethercom.ec_if.if_capabilities |=
3785 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3786 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3787 sc->ethercom.ec_if.if_capabilities |=
3788 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3789 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3790 #endif
3791 sc->ethercom.ec_capabilities |=
3792 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3793
3794 if (sc->bge_flags & BGEF_TSO)
3795 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3796
3797 /*
3798 * Do MII setup.
3799 */
3800 DPRINTFN(5, ("mii setup\n"));
3801 sc->bge_mii.mii_ifp = ifp;
3802 sc->bge_mii.mii_readreg = bge_miibus_readreg;
3803 sc->bge_mii.mii_writereg = bge_miibus_writereg;
3804 sc->bge_mii.mii_statchg = bge_miibus_statchg;
3805
3806 /*
3807 * Figure out what sort of media we have by checking the hardware
3808 * config word. Note: on some BCM5700 cards, this value appears to be
3809 * unset. If that's the case, we have to rely on identifying the NIC
3810 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3811 * The SysKonnect SK-9D41 is a 1000baseSX card.
3812 */
3813 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3814 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3815 if (BGE_IS_5705_PLUS(sc)) {
3816 sc->bge_flags |= BGEF_FIBER_MII;
3817 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3818 } else
3819 sc->bge_flags |= BGEF_FIBER_TBI;
3820 }
3821
3822 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3823 if (BGE_IS_JUMBO_CAPABLE(sc))
3824 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3825
3826 /* set phyflags and chipid before mii_attach() */
3827 dict = device_properties(self);
3828 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3829 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3830
3831 if (sc->bge_flags & BGEF_FIBER_TBI) {
3832 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3833 bge_ifmedia_sts);
3834 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3835 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3836 0, NULL);
3837 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3838 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3839 /* Pretend the user requested this setting */
3840 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3841 } else {
3842 /*
3843 * Do transceiver setup and tell the firmware the
3844 * driver is down so we can try to get access the
3845 * probe if ASF is running. Retry a couple of times
3846 * if we get a conflict with the ASF firmware accessing
3847 * the PHY.
3848 */
3849 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3850 bge_asf_driver_up(sc);
3851
3852 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3853 bge_ifmedia_sts);
3854 mii_flags = MIIF_DOPAUSE;
3855 if (sc->bge_flags & BGEF_FIBER_MII)
3856 mii_flags |= MIIF_HAVEFIBER;
3857 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
3858 MII_OFFSET_ANY, mii_flags);
3859
3860 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3861 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3862 ifmedia_add(&sc->bge_mii.mii_media,
3863 IFM_ETHER|IFM_MANUAL, 0, NULL);
3864 ifmedia_set(&sc->bge_mii.mii_media,
3865 IFM_ETHER|IFM_MANUAL);
3866 } else
3867 ifmedia_set(&sc->bge_mii.mii_media,
3868 IFM_ETHER|IFM_AUTO);
3869
3870 /*
3871 * Now tell the firmware we are going up after probing the PHY
3872 */
3873 if (sc->bge_asf_mode & ASF_STACKUP)
3874 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3875 }
3876
3877 /*
3878 * Call MI attach routine.
3879 */
3880 DPRINTFN(5, ("if_attach\n"));
3881 if_attach(ifp);
3882 if_deferred_start_init(ifp, NULL);
3883 DPRINTFN(5, ("ether_ifattach\n"));
3884 ether_ifattach(ifp, eaddr);
3885 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3886 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3887 RND_TYPE_NET, RND_FLAG_DEFAULT);
3888 #ifdef BGE_EVENT_COUNTERS
3889 /*
3890 * Attach event counters.
3891 */
3892 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3893 NULL, device_xname(sc->bge_dev), "intr");
3894 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3895 NULL, device_xname(sc->bge_dev), "intr_spurious");
3896 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3897 NULL, device_xname(sc->bge_dev), "intr_spurious2");
3898 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3899 NULL, device_xname(sc->bge_dev), "tx_xoff");
3900 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3901 NULL, device_xname(sc->bge_dev), "tx_xon");
3902 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3903 NULL, device_xname(sc->bge_dev), "rx_xoff");
3904 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3905 NULL, device_xname(sc->bge_dev), "rx_xon");
3906 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3907 NULL, device_xname(sc->bge_dev), "rx_macctl");
3908 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3909 NULL, device_xname(sc->bge_dev), "xoffentered");
3910 #endif /* BGE_EVENT_COUNTERS */
3911 DPRINTFN(5, ("callout_init\n"));
3912 callout_init(&sc->bge_timeout, 0);
3913
3914 if (pmf_device_register(self, NULL, NULL))
3915 pmf_class_network_register(self, ifp);
3916 else
3917 aprint_error_dev(self, "couldn't establish power handler\n");
3918
3919 bge_sysctl_init(sc);
3920
3921 #ifdef BGE_DEBUG
3922 bge_debug_info(sc);
3923 #endif
3924 }
3925
3926 /*
3927 * Stop all chip I/O so that the kernel's probe routines don't
3928 * get confused by errant DMAs when rebooting.
3929 */
3930 static int
3931 bge_detach(device_t self, int flags __unused)
3932 {
3933 struct bge_softc *sc = device_private(self);
3934 struct ifnet *ifp = &sc->ethercom.ec_if;
3935 int s;
3936
3937 s = splnet();
3938 /* Stop the interface. Callouts are stopped in it. */
3939 bge_stop(ifp, 1);
3940 splx(s);
3941
3942 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3943
3944 /* Delete all remaining media. */
3945 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3946
3947 ether_ifdetach(ifp);
3948 if_detach(ifp);
3949
3950 bge_release_resources(sc);
3951
3952 return 0;
3953 }
3954
3955 static void
3956 bge_release_resources(struct bge_softc *sc)
3957 {
3958
3959 /* Detach sysctl */
3960 if (sc->bge_log != NULL)
3961 sysctl_teardown(&sc->bge_log);
3962
3963 #ifdef BGE_EVENT_COUNTERS
3964 /* Detach event counters. */
3965 evcnt_detach(&sc->bge_ev_intr);
3966 evcnt_detach(&sc->bge_ev_intr_spurious);
3967 evcnt_detach(&sc->bge_ev_intr_spurious2);
3968 evcnt_detach(&sc->bge_ev_tx_xoff);
3969 evcnt_detach(&sc->bge_ev_tx_xon);
3970 evcnt_detach(&sc->bge_ev_rx_xoff);
3971 evcnt_detach(&sc->bge_ev_rx_xon);
3972 evcnt_detach(&sc->bge_ev_rx_macctl);
3973 evcnt_detach(&sc->bge_ev_xoffentered);
3974 #endif /* BGE_EVENT_COUNTERS */
3975
3976 /* Disestablish the interrupt handler */
3977 if (sc->bge_intrhand != NULL) {
3978 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
3979 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
3980 sc->bge_intrhand = NULL;
3981 }
3982
3983 if (sc->bge_dmatag != NULL) {
3984 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
3985 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3986 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
3987 sizeof(struct bge_ring_data));
3988 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3989 sc->bge_ring_rseg);
3990 }
3991
3992 /* Unmap the device registers */
3993 if (sc->bge_bsize != 0) {
3994 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
3995 sc->bge_bsize = 0;
3996 }
3997
3998 /* Unmap the APE registers */
3999 if (sc->bge_apesize != 0) {
4000 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4001 sc->bge_apesize);
4002 sc->bge_apesize = 0;
4003 }
4004 }
4005
4006 static int
4007 bge_reset(struct bge_softc *sc)
4008 {
4009 uint32_t cachesize, command;
4010 uint32_t reset, mac_mode, mac_mode_mask;
4011 pcireg_t devctl, reg;
4012 int i, val;
4013 void (*write_op)(struct bge_softc *, int, int);
4014
4015 /* Make mask for BGE_MAC_MODE register. */
4016 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4017 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4018 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4019 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4020 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4021
4022 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4023 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4024 if (sc->bge_flags & BGEF_PCIE)
4025 write_op = bge_writemem_direct;
4026 else
4027 write_op = bge_writemem_ind;
4028 } else
4029 write_op = bge_writereg_ind;
4030
4031 /* 57XX step 4 */
4032 /* Acquire the NVM lock */
4033 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4034 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4035 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4036 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4037 for (i = 0; i < 8000; i++) {
4038 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4039 BGE_NVRAMSWARB_GNT1)
4040 break;
4041 DELAY(20);
4042 }
4043 if (i == 8000) {
4044 printf("%s: NVRAM lock timedout!\n",
4045 device_xname(sc->bge_dev));
4046 }
4047 }
4048
4049 /* Take APE lock when performing reset. */
4050 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4051
4052 /* 57XX step 3 */
4053 /* Save some important PCI state. */
4054 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4055 /* 5718 reset step 3 */
4056 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4057
4058 /* 5718 reset step 5, 57XX step 5b-5d */
4059 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4060 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4061 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4062
4063 /* XXX ???: Disable fastboot on controllers that support it. */
4064 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4065 BGE_IS_5755_PLUS(sc))
4066 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4067
4068 /* 5718 reset step 2, 57XX step 6 */
4069 /*
4070 * Write the magic number to SRAM at offset 0xB50.
4071 * When firmware finishes its initialization it will
4072 * write ~BGE_MAGIC_NUMBER to the same location.
4073 */
4074 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4075
4076 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4077 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4078 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4079 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4080 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4081 }
4082
4083 /* 5718 reset step 6, 57XX step 7 */
4084 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4085 /*
4086 * XXX: from FreeBSD/Linux; no documentation
4087 */
4088 if (sc->bge_flags & BGEF_PCIE) {
4089 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4090 !BGE_IS_57765_PLUS(sc) &&
4091 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4092 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4093 /* PCI Express 1.0 system */
4094 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4095 BGE_PHY_PCIE_SCRAM_MODE);
4096 }
4097 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4098 /*
4099 * Prevent PCI Express link training
4100 * during global reset.
4101 */
4102 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4103 reset |= (1 << 29);
4104 }
4105 }
4106
4107 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4108 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4109 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4110 i | BGE_VCPU_STATUS_DRV_RESET);
4111 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4112 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4113 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4114 }
4115
4116 /*
4117 * Set GPHY Power Down Override to leave GPHY
4118 * powered up in D0 uninitialized.
4119 */
4120 if (BGE_IS_5705_PLUS(sc) &&
4121 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4122 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4123
4124 /* Issue global reset */
4125 write_op(sc, BGE_MISC_CFG, reset);
4126
4127 /* 5718 reset step 7, 57XX step 8 */
4128 if (sc->bge_flags & BGEF_PCIE)
4129 delay(100*1000); /* too big */
4130 else
4131 delay(1000);
4132
4133 if (sc->bge_flags & BGEF_PCIE) {
4134 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4135 DELAY(500000);
4136 /* XXX: Magic Numbers */
4137 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4138 BGE_PCI_UNKNOWN0);
4139 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4140 BGE_PCI_UNKNOWN0,
4141 reg | (1 << 15));
4142 }
4143 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4144 sc->bge_pciecap + PCIE_DCSR);
4145 /* Clear enable no snoop and disable relaxed ordering. */
4146 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4147 PCIE_DCSR_ENA_NO_SNOOP);
4148
4149 /* Set PCIE max payload size to 128 for older PCIe devices */
4150 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4151 devctl &= ~(0x00e0);
4152 /* Clear device status register. Write 1b to clear */
4153 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4154 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4155 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4156 sc->bge_pciecap + PCIE_DCSR, devctl);
4157 bge_set_max_readrq(sc);
4158 }
4159
4160 /* From Linux: dummy read to flush PCI posted writes */
4161 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4162
4163 /*
4164 * Reset some of the PCI state that got zapped by reset
4165 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4166 * set, too.
4167 */
4168 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4169 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4170 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4171 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4172 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4173 (sc->bge_flags & BGEF_PCIX) != 0)
4174 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4175 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4176 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4177 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4178 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4179 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4180 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4181 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4182
4183 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4184 if (sc->bge_flags & BGEF_PCIX) {
4185 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4186 + PCIX_CMD);
4187 /* Set max memory read byte count to 2K */
4188 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4189 reg &= ~PCIX_CMD_BYTECNT_MASK;
4190 reg |= PCIX_CMD_BCNT_2048;
4191 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4192 /*
4193 * For 5704, set max outstanding split transaction
4194 * field to 0 (0 means it supports 1 request)
4195 */
4196 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4197 | PCIX_CMD_BYTECNT_MASK);
4198 reg |= PCIX_CMD_BCNT_2048;
4199 }
4200 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4201 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4202 }
4203
4204 /* 5718 reset step 10, 57XX step 12 */
4205 /* Enable memory arbiter. */
4206 if (BGE_IS_5714_FAMILY(sc)) {
4207 val = CSR_READ_4(sc, BGE_MARB_MODE);
4208 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4209 } else
4210 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4211
4212 /* XXX 5721, 5751 and 5752 */
4213 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4214 /* Step 19: */
4215 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4216 /* Step 20: */
4217 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4218 }
4219
4220 /* 5718 reset step 12, 57XX step 15 and 16 */
4221 /* Fix up byte swapping */
4222 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4223
4224 /* 5718 reset step 13, 57XX step 17 */
4225 /* Poll until the firmware initialization is complete */
4226 bge_poll_fw(sc);
4227
4228 /* 57XX step 21 */
4229 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4230 pcireg_t msidata;
4231
4232 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4233 BGE_PCI_MSI_DATA);
4234 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4235 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4236 msidata);
4237 }
4238
4239 /* 57XX step 18 */
4240 /* Write mac mode. */
4241 val = CSR_READ_4(sc, BGE_MAC_MODE);
4242 /* Restore mac_mode_mask's bits using mac_mode */
4243 val = (val & ~mac_mode_mask) | mac_mode;
4244 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4245 DELAY(40);
4246
4247 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4248
4249 /*
4250 * The 5704 in TBI mode apparently needs some special
4251 * adjustment to insure the SERDES drive level is set
4252 * to 1.2V.
4253 */
4254 if (sc->bge_flags & BGEF_FIBER_TBI &&
4255 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4256 uint32_t serdescfg;
4257
4258 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4259 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4260 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4261 }
4262
4263 if (sc->bge_flags & BGEF_PCIE &&
4264 !BGE_IS_57765_PLUS(sc) &&
4265 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4266 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4267 uint32_t v;
4268
4269 /* Enable PCI Express bug fix */
4270 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4271 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4272 v | BGE_TLP_DATA_FIFO_PROTECT);
4273 }
4274
4275 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4276 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4277 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4278
4279 return 0;
4280 }
4281
4282 /*
4283 * Frame reception handling. This is called if there's a frame
4284 * on the receive return list.
4285 *
4286 * Note: we have to be able to handle two possibilities here:
4287 * 1) the frame is from the jumbo receive ring
4288 * 2) the frame is from the standard receive ring
4289 */
4290
4291 static void
4292 bge_rxeof(struct bge_softc *sc)
4293 {
4294 struct ifnet *ifp;
4295 uint16_t rx_prod, rx_cons;
4296 int stdcnt = 0, jumbocnt = 0;
4297 bus_dmamap_t dmamap;
4298 bus_addr_t offset, toff;
4299 bus_size_t tlen;
4300 int tosync;
4301
4302 rx_cons = sc->bge_rx_saved_considx;
4303 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4304
4305 /* Nothing to do */
4306 if (rx_cons == rx_prod)
4307 return;
4308
4309 ifp = &sc->ethercom.ec_if;
4310
4311 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4312 offsetof(struct bge_ring_data, bge_status_block),
4313 sizeof (struct bge_status_block),
4314 BUS_DMASYNC_POSTREAD);
4315
4316 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4317 tosync = rx_prod - rx_cons;
4318
4319 if (tosync != 0)
4320 rnd_add_uint32(&sc->rnd_source, tosync);
4321
4322 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4323
4324 if (tosync < 0) {
4325 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4326 sizeof (struct bge_rx_bd);
4327 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4328 toff, tlen, BUS_DMASYNC_POSTREAD);
4329 tosync = -tosync;
4330 }
4331
4332 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4333 offset, tosync * sizeof (struct bge_rx_bd),
4334 BUS_DMASYNC_POSTREAD);
4335
4336 while (rx_cons != rx_prod) {
4337 struct bge_rx_bd *cur_rx;
4338 uint32_t rxidx;
4339 struct mbuf *m = NULL;
4340
4341 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4342
4343 rxidx = cur_rx->bge_idx;
4344 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4345
4346 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4347 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4348 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4349 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4350 jumbocnt++;
4351 bus_dmamap_sync(sc->bge_dmatag,
4352 sc->bge_cdata.bge_rx_jumbo_map,
4353 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4354 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4355 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4356 ifp->if_ierrors++;
4357 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4358 continue;
4359 }
4360 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4361 NULL)== ENOBUFS) {
4362 ifp->if_ierrors++;
4363 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4364 continue;
4365 }
4366 } else {
4367 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4368 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4369
4370 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4371 stdcnt++;
4372 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4373 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4374 if (dmamap == NULL) {
4375 ifp->if_ierrors++;
4376 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4377 continue;
4378 }
4379 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4380 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4381 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4382 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4383 ifp->if_ierrors++;
4384 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4385 continue;
4386 }
4387 if (bge_newbuf_std(sc, sc->bge_std,
4388 NULL, dmamap) == ENOBUFS) {
4389 ifp->if_ierrors++;
4390 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4391 continue;
4392 }
4393 }
4394
4395 #ifndef __NO_STRICT_ALIGNMENT
4396 /*
4397 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4398 * the Rx buffer has the layer-2 header unaligned.
4399 * If our CPU requires alignment, re-align by copying.
4400 */
4401 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4402 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4403 cur_rx->bge_len);
4404 m->m_data += ETHER_ALIGN;
4405 }
4406 #endif
4407
4408 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4409 m_set_rcvif(m, ifp);
4410
4411 bge_rxcsum(sc, cur_rx, m);
4412
4413 /*
4414 * If we received a packet with a vlan tag, pass it
4415 * to vlan_input() instead of ether_input().
4416 */
4417 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4418 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4419 }
4420
4421 if_percpuq_enqueue(ifp->if_percpuq, m);
4422 }
4423
4424 sc->bge_rx_saved_considx = rx_cons;
4425 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4426 if (stdcnt)
4427 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4428 if (jumbocnt)
4429 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4430 }
4431
4432 static void
4433 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4434 {
4435
4436 if (BGE_IS_57765_PLUS(sc)) {
4437 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4438 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4439 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4440 if ((cur_rx->bge_error_flag &
4441 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4442 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4443 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4444 m->m_pkthdr.csum_data =
4445 cur_rx->bge_tcp_udp_csum;
4446 m->m_pkthdr.csum_flags |=
4447 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4448 M_CSUM_DATA);
4449 }
4450 }
4451 } else {
4452 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4453 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4454 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4455 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4456 /*
4457 * Rx transport checksum-offload may also
4458 * have bugs with packets which, when transmitted,
4459 * were `runts' requiring padding.
4460 */
4461 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4462 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4463 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4464 m->m_pkthdr.csum_data =
4465 cur_rx->bge_tcp_udp_csum;
4466 m->m_pkthdr.csum_flags |=
4467 (M_CSUM_TCPv4|M_CSUM_UDPv4|
4468 M_CSUM_DATA);
4469 }
4470 }
4471 }
4472
4473 static void
4474 bge_txeof(struct bge_softc *sc)
4475 {
4476 struct bge_tx_bd *cur_tx = NULL;
4477 struct ifnet *ifp;
4478 struct txdmamap_pool_entry *dma;
4479 bus_addr_t offset, toff;
4480 bus_size_t tlen;
4481 int tosync;
4482 struct mbuf *m;
4483
4484 ifp = &sc->ethercom.ec_if;
4485
4486 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4487 offsetof(struct bge_ring_data, bge_status_block),
4488 sizeof (struct bge_status_block),
4489 BUS_DMASYNC_POSTREAD);
4490
4491 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4492 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4493 sc->bge_tx_saved_considx;
4494
4495 if (tosync != 0)
4496 rnd_add_uint32(&sc->rnd_source, tosync);
4497
4498 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4499
4500 if (tosync < 0) {
4501 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4502 sizeof (struct bge_tx_bd);
4503 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4504 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4505 tosync = -tosync;
4506 }
4507
4508 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4509 offset, tosync * sizeof (struct bge_tx_bd),
4510 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4511
4512 /*
4513 * Go through our tx ring and free mbufs for those
4514 * frames that have been sent.
4515 */
4516 while (sc->bge_tx_saved_considx !=
4517 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4518 uint32_t idx = 0;
4519
4520 idx = sc->bge_tx_saved_considx;
4521 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4522 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4523 ifp->if_opackets++;
4524 m = sc->bge_cdata.bge_tx_chain[idx];
4525 if (m != NULL) {
4526 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4527 dma = sc->txdma[idx];
4528 if (dma->is_dma32) {
4529 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4530 0, dma->dmamap32->dm_mapsize,
4531 BUS_DMASYNC_POSTWRITE);
4532 bus_dmamap_unload(
4533 sc->bge_dmatag32, dma->dmamap32);
4534 } else {
4535 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4536 0, dma->dmamap->dm_mapsize,
4537 BUS_DMASYNC_POSTWRITE);
4538 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4539 }
4540 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4541 sc->txdma[idx] = NULL;
4542
4543 m_freem(m);
4544 }
4545 sc->bge_txcnt--;
4546 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4547 ifp->if_timer = 0;
4548 }
4549
4550 if (cur_tx != NULL)
4551 ifp->if_flags &= ~IFF_OACTIVE;
4552 }
4553
4554 static int
4555 bge_intr(void *xsc)
4556 {
4557 struct bge_softc *sc;
4558 struct ifnet *ifp;
4559 uint32_t pcistate, statusword, statustag;
4560 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4561
4562 sc = xsc;
4563 ifp = &sc->ethercom.ec_if;
4564
4565 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4566 if (BGE_IS_5717_PLUS(sc))
4567 intrmask = 0;
4568
4569 /* It is possible for the interrupt to arrive before
4570 * the status block is updated prior to the interrupt.
4571 * Reading the PCI State register will confirm whether the
4572 * interrupt is ours and will flush the status block.
4573 */
4574 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4575
4576 /* read status word from status block */
4577 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4578 offsetof(struct bge_ring_data, bge_status_block),
4579 sizeof (struct bge_status_block),
4580 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4581 statusword = sc->bge_rdata->bge_status_block.bge_status;
4582 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4583
4584 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4585 if (sc->bge_lasttag == statustag &&
4586 (~pcistate & intrmask)) {
4587 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4588 return (0);
4589 }
4590 sc->bge_lasttag = statustag;
4591 } else {
4592 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4593 !(~pcistate & intrmask)) {
4594 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4595 return (0);
4596 }
4597 statustag = 0;
4598 }
4599 /* Ack interrupt and stop others from occurring. */
4600 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4601 BGE_EVCNT_INCR(sc->bge_ev_intr);
4602
4603 /* clear status word */
4604 sc->bge_rdata->bge_status_block.bge_status = 0;
4605
4606 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4607 offsetof(struct bge_ring_data, bge_status_block),
4608 sizeof (struct bge_status_block),
4609 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4610
4611 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4612 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4613 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4614 bge_link_upd(sc);
4615
4616 if (ifp->if_flags & IFF_RUNNING) {
4617 /* Check RX return ring producer/consumer */
4618 bge_rxeof(sc);
4619
4620 /* Check TX ring producer/consumer */
4621 bge_txeof(sc);
4622 }
4623
4624 if (sc->bge_pending_rxintr_change) {
4625 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4626 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4627
4628 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4629 DELAY(10);
4630 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4631
4632 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4633 DELAY(10);
4634 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4635
4636 sc->bge_pending_rxintr_change = 0;
4637 }
4638 bge_handle_events(sc);
4639
4640 /* Re-enable interrupts. */
4641 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4642
4643 if (ifp->if_flags & IFF_RUNNING)
4644 if_schedule_deferred_start(ifp);
4645
4646 return 1;
4647 }
4648
4649 static void
4650 bge_asf_driver_up(struct bge_softc *sc)
4651 {
4652 if (sc->bge_asf_mode & ASF_STACKUP) {
4653 /* Send ASF heartbeat aprox. every 2s */
4654 if (sc->bge_asf_count)
4655 sc->bge_asf_count --;
4656 else {
4657 sc->bge_asf_count = 2;
4658
4659 bge_wait_for_event_ack(sc);
4660
4661 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4662 BGE_FW_CMD_DRV_ALIVE3);
4663 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4664 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4665 BGE_FW_HB_TIMEOUT_SEC);
4666 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4667 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4668 BGE_RX_CPU_DRV_EVENT);
4669 }
4670 }
4671 }
4672
4673 static void
4674 bge_tick(void *xsc)
4675 {
4676 struct bge_softc *sc = xsc;
4677 struct mii_data *mii = &sc->bge_mii;
4678 int s;
4679
4680 s = splnet();
4681
4682 if (BGE_IS_5705_PLUS(sc))
4683 bge_stats_update_regs(sc);
4684 else
4685 bge_stats_update(sc);
4686
4687 if (sc->bge_flags & BGEF_FIBER_TBI) {
4688 /*
4689 * Since in TBI mode auto-polling can't be used we should poll
4690 * link status manually. Here we register pending link event
4691 * and trigger interrupt.
4692 */
4693 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4694 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4695 } else {
4696 /*
4697 * Do not touch PHY if we have link up. This could break
4698 * IPMI/ASF mode or produce extra input errors.
4699 * (extra input errors was reported for bcm5701 & bcm5704).
4700 */
4701 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4702 mii_tick(mii);
4703 }
4704
4705 bge_asf_driver_up(sc);
4706
4707 if (!sc->bge_detaching)
4708 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4709
4710 splx(s);
4711 }
4712
4713 static void
4714 bge_stats_update_regs(struct bge_softc *sc)
4715 {
4716 struct ifnet *ifp = &sc->ethercom.ec_if;
4717
4718 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4719 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4720
4721 /*
4722 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4723 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4724 * (silicon bug). There's no reliable workaround so just
4725 * ignore the counter
4726 */
4727 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4728 BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5719_A0 &&
4729 BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5720_A0) {
4730 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4731 }
4732 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4733 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4734 }
4735
4736 static void
4737 bge_stats_update(struct bge_softc *sc)
4738 {
4739 struct ifnet *ifp = &sc->ethercom.ec_if;
4740 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4741
4742 #define READ_STAT(sc, stats, stat) \
4743 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4744
4745 ifp->if_collisions +=
4746 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4747 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4748 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4749 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4750 ifp->if_collisions;
4751
4752 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4753 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4754 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4755 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4756 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4757 READ_STAT(sc, stats,
4758 xoffPauseFramesReceived.bge_addr_lo));
4759 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4760 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4761 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4762 READ_STAT(sc, stats,
4763 macControlFramesReceived.bge_addr_lo));
4764 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4765 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4766
4767 #undef READ_STAT
4768
4769 #ifdef notdef
4770 ifp->if_collisions +=
4771 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4772 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4773 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4774 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4775 ifp->if_collisions;
4776 #endif
4777 }
4778
4779 /*
4780 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4781 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4782 * but when such padded frames employ the bge IP/TCP checksum offload,
4783 * the hardware checksum assist gives incorrect results (possibly
4784 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4785 * If we pad such runts with zeros, the onboard checksum comes out correct.
4786 */
4787 static inline int
4788 bge_cksum_pad(struct mbuf *pkt)
4789 {
4790 struct mbuf *last = NULL;
4791 int padlen;
4792
4793 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4794
4795 /* if there's only the packet-header and we can pad there, use it. */
4796 if (pkt->m_pkthdr.len == pkt->m_len &&
4797 M_TRAILINGSPACE(pkt) >= padlen) {
4798 last = pkt;
4799 } else {
4800 /*
4801 * Walk packet chain to find last mbuf. We will either
4802 * pad there, or append a new mbuf and pad it
4803 * (thus perhaps avoiding the bcm5700 dma-min bug).
4804 */
4805 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4806 continue; /* do nothing */
4807 }
4808
4809 /* `last' now points to last in chain. */
4810 if (M_TRAILINGSPACE(last) < padlen) {
4811 /* Allocate new empty mbuf, pad it. Compact later. */
4812 struct mbuf *n;
4813 MGET(n, M_DONTWAIT, MT_DATA);
4814 if (n == NULL)
4815 return ENOBUFS;
4816 n->m_len = 0;
4817 last->m_next = n;
4818 last = n;
4819 }
4820 }
4821
4822 KDASSERT(!M_READONLY(last));
4823 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4824
4825 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4826 memset(mtod(last, char *) + last->m_len, 0, padlen);
4827 last->m_len += padlen;
4828 pkt->m_pkthdr.len += padlen;
4829 return 0;
4830 }
4831
4832 /*
4833 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4834 */
4835 static inline int
4836 bge_compact_dma_runt(struct mbuf *pkt)
4837 {
4838 struct mbuf *m, *prev;
4839 int totlen;
4840
4841 prev = NULL;
4842 totlen = 0;
4843
4844 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4845 int mlen = m->m_len;
4846 int shortfall = 8 - mlen ;
4847
4848 totlen += mlen;
4849 if (mlen == 0)
4850 continue;
4851 if (mlen >= 8)
4852 continue;
4853
4854 /* If we get here, mbuf data is too small for DMA engine.
4855 * Try to fix by shuffling data to prev or next in chain.
4856 * If that fails, do a compacting deep-copy of the whole chain.
4857 */
4858
4859 /* Internal frag. If fits in prev, copy it there. */
4860 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4861 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4862 prev->m_len += mlen;
4863 m->m_len = 0;
4864 /* XXX stitch chain */
4865 prev->m_next = m_free(m);
4866 m = prev;
4867 continue;
4868 }
4869 else if (m->m_next != NULL &&
4870 M_TRAILINGSPACE(m) >= shortfall &&
4871 m->m_next->m_len >= (8 + shortfall)) {
4872 /* m is writable and have enough data in next, pull up. */
4873
4874 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4875 shortfall);
4876 m->m_len += shortfall;
4877 m->m_next->m_len -= shortfall;
4878 m->m_next->m_data += shortfall;
4879 }
4880 else if (m->m_next == NULL || 1) {
4881 /* Got a runt at the very end of the packet.
4882 * borrow data from the tail of the preceding mbuf and
4883 * update its length in-place. (The original data is still
4884 * valid, so we can do this even if prev is not writable.)
4885 */
4886
4887 /* if we'd make prev a runt, just move all of its data. */
4888 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4889 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4890
4891 if ((prev->m_len - shortfall) < 8)
4892 shortfall = prev->m_len;
4893
4894 #ifdef notyet /* just do the safe slow thing for now */
4895 if (!M_READONLY(m)) {
4896 if (M_LEADINGSPACE(m) < shorfall) {
4897 void *m_dat;
4898 m_dat = (m->m_flags & M_PKTHDR) ?
4899 m->m_pktdat : m->dat;
4900 memmove(m_dat, mtod(m, void*), m->m_len);
4901 m->m_data = m_dat;
4902 }
4903 } else
4904 #endif /* just do the safe slow thing */
4905 {
4906 struct mbuf * n = NULL;
4907 int newprevlen = prev->m_len - shortfall;
4908
4909 MGET(n, M_NOWAIT, MT_DATA);
4910 if (n == NULL)
4911 return ENOBUFS;
4912 KASSERT(m->m_len + shortfall < MLEN
4913 /*,
4914 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4915
4916 /* first copy the data we're stealing from prev */
4917 memcpy(n->m_data, prev->m_data + newprevlen,
4918 shortfall);
4919
4920 /* update prev->m_len accordingly */
4921 prev->m_len -= shortfall;
4922
4923 /* copy data from runt m */
4924 memcpy(n->m_data + shortfall, m->m_data,
4925 m->m_len);
4926
4927 /* n holds what we stole from prev, plus m */
4928 n->m_len = shortfall + m->m_len;
4929
4930 /* stitch n into chain and free m */
4931 n->m_next = m->m_next;
4932 prev->m_next = n;
4933 /* KASSERT(m->m_next == NULL); */
4934 m->m_next = NULL;
4935 m_free(m);
4936 m = n; /* for continuing loop */
4937 }
4938 }
4939 }
4940 return 0;
4941 }
4942
4943 /*
4944 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4945 * pointers to descriptors.
4946 */
4947 static int
4948 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4949 {
4950 struct ifnet *ifp = &sc->ethercom.ec_if;
4951 struct bge_tx_bd *f, *prev_f;
4952 uint32_t frag, cur;
4953 uint16_t csum_flags = 0;
4954 uint16_t txbd_tso_flags = 0;
4955 struct txdmamap_pool_entry *dma;
4956 bus_dmamap_t dmamap;
4957 bus_dma_tag_t dmatag;
4958 int i = 0;
4959 int use_tso, maxsegsize, error;
4960 bool have_vtag;
4961 uint16_t vtag;
4962 bool remap;
4963
4964 if (m_head->m_pkthdr.csum_flags) {
4965 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4966 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4967 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4968 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4969 }
4970
4971 /*
4972 * If we were asked to do an outboard checksum, and the NIC
4973 * has the bug where it sometimes adds in the Ethernet padding,
4974 * explicitly pad with zeros so the cksum will be correct either way.
4975 * (For now, do this for all chip versions, until newer
4976 * are confirmed to not require the workaround.)
4977 */
4978 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4979 #ifdef notyet
4980 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4981 #endif
4982 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4983 goto check_dma_bug;
4984
4985 if (bge_cksum_pad(m_head) != 0)
4986 return ENOBUFS;
4987
4988 check_dma_bug:
4989 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4990 goto doit;
4991
4992 /*
4993 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4994 * less than eight bytes. If we encounter a teeny mbuf
4995 * at the end of a chain, we can pad. Otherwise, copy.
4996 */
4997 if (bge_compact_dma_runt(m_head) != 0)
4998 return ENOBUFS;
4999
5000 doit:
5001 dma = SLIST_FIRST(&sc->txdma_list);
5002 if (dma == NULL) {
5003 ifp->if_flags |= IFF_OACTIVE;
5004 return ENOBUFS;
5005 }
5006 dmamap = dma->dmamap;
5007 dmatag = sc->bge_dmatag;
5008 dma->is_dma32 = false;
5009
5010 /*
5011 * Set up any necessary TSO state before we start packing...
5012 */
5013 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5014 if (!use_tso) {
5015 maxsegsize = 0;
5016 } else { /* TSO setup */
5017 unsigned mss;
5018 struct ether_header *eh;
5019 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5020 unsigned bge_hlen;
5021 struct mbuf * m0 = m_head;
5022 struct ip *ip;
5023 struct tcphdr *th;
5024 int iphl, hlen;
5025
5026 /*
5027 * XXX It would be nice if the mbuf pkthdr had offset
5028 * fields for the protocol headers.
5029 */
5030
5031 eh = mtod(m0, struct ether_header *);
5032 switch (htons(eh->ether_type)) {
5033 case ETHERTYPE_IP:
5034 offset = ETHER_HDR_LEN;
5035 break;
5036
5037 case ETHERTYPE_VLAN:
5038 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5039 break;
5040
5041 default:
5042 /*
5043 * Don't support this protocol or encapsulation.
5044 */
5045 return ENOBUFS;
5046 }
5047
5048 /*
5049 * TCP/IP headers are in the first mbuf; we can do
5050 * this the easy way.
5051 */
5052 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5053 hlen = iphl + offset;
5054 if (__predict_false(m0->m_len <
5055 (hlen + sizeof(struct tcphdr)))) {
5056
5057 aprint_error_dev(sc->bge_dev,
5058 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5059 "not handled yet\n",
5060 m0->m_len, hlen+ sizeof(struct tcphdr));
5061 #ifdef NOTYET
5062 /*
5063 * XXX jonathan (at) NetBSD.org: untested.
5064 * how to force this branch to be taken?
5065 */
5066 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5067
5068 m_copydata(m0, offset, sizeof(ip), &ip);
5069 m_copydata(m0, hlen, sizeof(th), &th);
5070
5071 ip.ip_len = 0;
5072
5073 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5074 sizeof(ip.ip_len), &ip.ip_len);
5075
5076 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5077 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5078
5079 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5080 sizeof(th.th_sum), &th.th_sum);
5081
5082 hlen += th.th_off << 2;
5083 iptcp_opt_words = hlen;
5084 #else
5085 /*
5086 * if_wm "hard" case not yet supported, can we not
5087 * mandate it out of existence?
5088 */
5089 (void) ip; (void)th; (void) ip_tcp_hlen;
5090
5091 return ENOBUFS;
5092 #endif
5093 } else {
5094 ip = (struct ip *) (mtod(m0, char *) + offset);
5095 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5096 ip_tcp_hlen = iphl + (th->th_off << 2);
5097
5098 /* Total IP/TCP options, in 32-bit words */
5099 iptcp_opt_words = (ip_tcp_hlen
5100 - sizeof(struct tcphdr)
5101 - sizeof(struct ip)) >> 2;
5102 }
5103 if (BGE_IS_575X_PLUS(sc)) {
5104 th->th_sum = 0;
5105 csum_flags = 0;
5106 } else {
5107 /*
5108 * XXX jonathan (at) NetBSD.org: 5705 untested.
5109 * Requires TSO firmware patch for 5701/5703/5704.
5110 */
5111 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5112 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5113 }
5114
5115 mss = m_head->m_pkthdr.segsz;
5116 txbd_tso_flags |=
5117 BGE_TXBDFLAG_CPU_PRE_DMA |
5118 BGE_TXBDFLAG_CPU_POST_DMA;
5119
5120 /*
5121 * Our NIC TSO-assist assumes TSO has standard, optionless
5122 * IPv4 and TCP headers, which total 40 bytes. By default,
5123 * the NIC copies 40 bytes of IP/TCP header from the
5124 * supplied header into the IP/TCP header portion of
5125 * each post-TSO-segment. If the supplied packet has IP or
5126 * TCP options, we need to tell the NIC to copy those extra
5127 * bytes into each post-TSO header, in addition to the normal
5128 * 40-byte IP/TCP header (and to leave space accordingly).
5129 * Unfortunately, the driver encoding of option length
5130 * varies across different ASIC families.
5131 */
5132 tcp_seg_flags = 0;
5133 bge_hlen = ip_tcp_hlen >> 2;
5134 if (BGE_IS_5717_PLUS(sc)) {
5135 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5136 txbd_tso_flags |=
5137 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5138 } else if (BGE_IS_5705_PLUS(sc)) {
5139 tcp_seg_flags =
5140 bge_hlen << 11;
5141 } else {
5142 /* XXX iptcp_opt_words or bge_hlen ? */
5143 txbd_tso_flags |=
5144 iptcp_opt_words << 12;
5145 }
5146 maxsegsize = mss | tcp_seg_flags;
5147 ip->ip_len = htons(mss + ip_tcp_hlen);
5148 ip->ip_sum = 0;
5149
5150 } /* TSO setup */
5151
5152 have_vtag = vlan_has_tag(m_head);
5153 if (have_vtag)
5154 vtag = vlan_get_tag(m_head);
5155
5156 /*
5157 * Start packing the mbufs in this chain into
5158 * the fragment pointers. Stop when we run out
5159 * of fragments or hit the end of the mbuf chain.
5160 */
5161 remap = true;
5162 load_again:
5163 error = bus_dmamap_load_mbuf(dmatag, dmamap,
5164 m_head, BUS_DMA_NOWAIT);
5165 if (__predict_false(error)) {
5166 if (error == EFBIG && remap) {
5167 struct mbuf *m;
5168 remap = false;
5169 m = m_defrag(m_head, M_NOWAIT);
5170 if (m != NULL) {
5171 KASSERT(m == m_head);
5172 goto load_again;
5173 }
5174 }
5175 return error;
5176 }
5177 /*
5178 * Sanity check: avoid coming within 16 descriptors
5179 * of the end of the ring.
5180 */
5181 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5182 BGE_TSO_PRINTF(("%s: "
5183 " dmamap_load_mbuf too close to ring wrap\n",
5184 device_xname(sc->bge_dev)));
5185 goto fail_unload;
5186 }
5187
5188 /* Iterate over dmap-map fragments. */
5189 f = prev_f = NULL;
5190 cur = frag = *txidx;
5191
5192 for (i = 0; i < dmamap->dm_nsegs; i++) {
5193 f = &sc->bge_rdata->bge_tx_ring[frag];
5194 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5195 break;
5196
5197 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5198 f->bge_len = dmamap->dm_segs[i].ds_len;
5199 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5200 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5201 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5202 (prev_f != NULL &&
5203 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5204 ) {
5205 /*
5206 * watchdog timeout issue was observed with TSO,
5207 * limiting DMA address space to 32bits seems to
5208 * address the issue.
5209 */
5210 bus_dmamap_unload(dmatag, dmamap);
5211 dmatag = sc->bge_dmatag32;
5212 dmamap = dma->dmamap32;
5213 dma->is_dma32 = true;
5214 remap = true;
5215 goto load_again;
5216 }
5217
5218 /*
5219 * For 5751 and follow-ons, for TSO we must turn
5220 * off checksum-assist flag in the tx-descr, and
5221 * supply the ASIC-revision-specific encoding
5222 * of TSO flags and segsize.
5223 */
5224 if (use_tso) {
5225 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5226 f->bge_rsvd = maxsegsize;
5227 f->bge_flags = csum_flags | txbd_tso_flags;
5228 } else {
5229 f->bge_rsvd = 0;
5230 f->bge_flags =
5231 (csum_flags | txbd_tso_flags) & 0x0fff;
5232 }
5233 } else {
5234 f->bge_rsvd = 0;
5235 f->bge_flags = csum_flags;
5236 }
5237
5238 if (have_vtag) {
5239 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5240 f->bge_vlan_tag = vtag;
5241 } else {
5242 f->bge_vlan_tag = 0;
5243 }
5244 prev_f = f;
5245 cur = frag;
5246 BGE_INC(frag, BGE_TX_RING_CNT);
5247 }
5248
5249 if (i < dmamap->dm_nsegs) {
5250 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5251 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5252 goto fail_unload;
5253 }
5254
5255 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5256 BUS_DMASYNC_PREWRITE);
5257
5258 if (frag == sc->bge_tx_saved_considx) {
5259 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5260 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5261
5262 goto fail_unload;
5263 }
5264
5265 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5266 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5267 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5268 sc->txdma[cur] = dma;
5269 sc->bge_txcnt += dmamap->dm_nsegs;
5270
5271 *txidx = frag;
5272
5273 return 0;
5274
5275 fail_unload:
5276 bus_dmamap_unload(dmatag, dmamap);
5277 ifp->if_flags |= IFF_OACTIVE;
5278
5279 return ENOBUFS;
5280 }
5281
5282 /*
5283 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5284 * to the mbuf data regions directly in the transmit descriptors.
5285 */
5286 static void
5287 bge_start(struct ifnet *ifp)
5288 {
5289 struct bge_softc *sc;
5290 struct mbuf *m_head = NULL;
5291 struct mbuf *m;
5292 uint32_t prodidx;
5293 int pkts = 0;
5294 int error;
5295
5296 sc = ifp->if_softc;
5297
5298 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5299 return;
5300
5301 prodidx = sc->bge_tx_prodidx;
5302
5303 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5304 IFQ_POLL(&ifp->if_snd, m_head);
5305 if (m_head == NULL)
5306 break;
5307
5308 #if 0
5309 /*
5310 * XXX
5311 * safety overkill. If this is a fragmented packet chain
5312 * with delayed TCP/UDP checksums, then only encapsulate
5313 * it if we have enough descriptors to handle the entire
5314 * chain at once.
5315 * (paranoia -- may not actually be needed)
5316 */
5317 if (m_head->m_flags & M_FIRSTFRAG &&
5318 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5319 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5320 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5321 ifp->if_flags |= IFF_OACTIVE;
5322 break;
5323 }
5324 }
5325 #endif
5326
5327 /*
5328 * Pack the data into the transmit ring. If we
5329 * don't have room, set the OACTIVE flag and wait
5330 * for the NIC to drain the ring.
5331 */
5332 error = bge_encap(sc, m_head, &prodidx);
5333 if (__predict_false(error)) {
5334 if (ifp->if_flags & IFF_OACTIVE) {
5335 /* just wait for the transmit ring to drain */
5336 break;
5337 }
5338 IFQ_DEQUEUE(&ifp->if_snd, m);
5339 KASSERT(m == m_head);
5340 m_freem(m_head);
5341 continue;
5342 }
5343
5344 /* now we are committed to transmit the packet */
5345 IFQ_DEQUEUE(&ifp->if_snd, m);
5346 KASSERT(m == m_head);
5347 pkts++;
5348
5349 /*
5350 * If there's a BPF listener, bounce a copy of this frame
5351 * to him.
5352 */
5353 bpf_mtap(ifp, m_head, BPF_D_OUT);
5354 }
5355 if (pkts == 0)
5356 return;
5357
5358 /* Transmit */
5359 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5360 /* 5700 b2 errata */
5361 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5362 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5363
5364 sc->bge_tx_prodidx = prodidx;
5365
5366 /*
5367 * Set a timeout in case the chip goes out to lunch.
5368 */
5369 ifp->if_timer = 5;
5370 }
5371
5372 static int
5373 bge_init(struct ifnet *ifp)
5374 {
5375 struct bge_softc *sc = ifp->if_softc;
5376 const uint16_t *m;
5377 uint32_t mode, reg;
5378 int s, error = 0;
5379
5380 s = splnet();
5381
5382 ifp = &sc->ethercom.ec_if;
5383
5384 /* Cancel pending I/O and flush buffers. */
5385 bge_stop(ifp, 0);
5386
5387 bge_stop_fw(sc);
5388 bge_sig_pre_reset(sc, BGE_RESET_START);
5389 bge_reset(sc);
5390 bge_sig_legacy(sc, BGE_RESET_START);
5391
5392 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5393 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5394 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5395 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5396 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5397
5398 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5399 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5400 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5401 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5402
5403 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5404 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5405 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5406 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5407
5408 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5409 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5410 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5411 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5412 }
5413
5414 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5415 pcireg_t aercap;
5416
5417 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5418 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5419 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5420 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5421 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5422
5423 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5424 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5425 | BGE_PCIE_EIDLE_DELAY_13CLK;
5426 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5427
5428 /* Clear correctable error */
5429 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5430 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5431 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5432 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5433
5434 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5435 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5436 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5437 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5438 }
5439
5440 bge_sig_post_reset(sc, BGE_RESET_START);
5441
5442 bge_chipinit(sc);
5443
5444 /*
5445 * Init the various state machines, ring
5446 * control blocks and firmware.
5447 */
5448 error = bge_blockinit(sc);
5449 if (error != 0) {
5450 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5451 error);
5452 splx(s);
5453 return error;
5454 }
5455
5456 ifp = &sc->ethercom.ec_if;
5457
5458 /* 5718 step 25, 57XX step 54 */
5459 /* Specify MTU. */
5460 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5461 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5462
5463 /* 5718 step 23 */
5464 /* Load our MAC address. */
5465 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5466 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5467 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5468
5469 /* Enable or disable promiscuous mode as needed. */
5470 if (ifp->if_flags & IFF_PROMISC)
5471 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5472 else
5473 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5474
5475 /* Program multicast filter. */
5476 bge_setmulti(sc);
5477
5478 /* Init RX ring. */
5479 bge_init_rx_ring_std(sc);
5480
5481 /*
5482 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5483 * memory to insure that the chip has in fact read the first
5484 * entry of the ring.
5485 */
5486 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5487 uint32_t v, i;
5488 for (i = 0; i < 10; i++) {
5489 DELAY(20);
5490 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5491 if (v == (MCLBYTES - ETHER_ALIGN))
5492 break;
5493 }
5494 if (i == 10)
5495 aprint_error_dev(sc->bge_dev,
5496 "5705 A0 chip failed to load RX ring\n");
5497 }
5498
5499 /* Init jumbo RX ring. */
5500 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5501 bge_init_rx_ring_jumbo(sc);
5502
5503 /* Init our RX return ring index */
5504 sc->bge_rx_saved_considx = 0;
5505
5506 /* Init TX ring. */
5507 bge_init_tx_ring(sc);
5508
5509 /* 5718 step 63, 57XX step 94 */
5510 /* Enable TX MAC state machine lockup fix. */
5511 mode = CSR_READ_4(sc, BGE_TX_MODE);
5512 if (BGE_IS_5755_PLUS(sc) ||
5513 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5514 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5515 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5516 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5517 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5518 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5519 }
5520
5521 /* Turn on transmitter */
5522 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5523 /* 5718 step 64 */
5524 DELAY(100);
5525
5526 /* 5718 step 65, 57XX step 95 */
5527 /* Turn on receiver */
5528 mode = CSR_READ_4(sc, BGE_RX_MODE);
5529 if (BGE_IS_5755_PLUS(sc))
5530 mode |= BGE_RXMODE_IPV6_ENABLE;
5531 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5532 /* 5718 step 66 */
5533 DELAY(10);
5534
5535 /* 5718 step 12, 57XX step 37 */
5536 /*
5537 * XXX Doucments of 5718 series and 577xx say the recommended value
5538 * is 1, but tg3 set 1 only on 57765 series.
5539 */
5540 if (BGE_IS_57765_PLUS(sc))
5541 reg = 1;
5542 else
5543 reg = 2;
5544 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5545
5546 /* Tell firmware we're alive. */
5547 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5548
5549 /* Enable host interrupts. */
5550 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5551 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5552 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5553
5554 if ((error = bge_ifmedia_upd(ifp)) != 0)
5555 goto out;
5556
5557 ifp->if_flags |= IFF_RUNNING;
5558 ifp->if_flags &= ~IFF_OACTIVE;
5559
5560 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5561
5562 out:
5563 sc->bge_if_flags = ifp->if_flags;
5564 splx(s);
5565
5566 return error;
5567 }
5568
5569 /*
5570 * Set media options.
5571 */
5572 static int
5573 bge_ifmedia_upd(struct ifnet *ifp)
5574 {
5575 struct bge_softc *sc = ifp->if_softc;
5576 struct mii_data *mii = &sc->bge_mii;
5577 struct ifmedia *ifm = &sc->bge_ifmedia;
5578 int rc;
5579
5580 /* If this is a 1000baseX NIC, enable the TBI port. */
5581 if (sc->bge_flags & BGEF_FIBER_TBI) {
5582 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5583 return EINVAL;
5584 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5585 case IFM_AUTO:
5586 /*
5587 * The BCM5704 ASIC appears to have a special
5588 * mechanism for programming the autoneg
5589 * advertisement registers in TBI mode.
5590 */
5591 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5592 uint32_t sgdig;
5593 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5594 if (sgdig & BGE_SGDIGSTS_DONE) {
5595 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5596 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5597 sgdig |= BGE_SGDIGCFG_AUTO |
5598 BGE_SGDIGCFG_PAUSE_CAP |
5599 BGE_SGDIGCFG_ASYM_PAUSE;
5600 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5601 sgdig | BGE_SGDIGCFG_SEND);
5602 DELAY(5);
5603 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5604 sgdig);
5605 }
5606 }
5607 break;
5608 case IFM_1000_SX:
5609 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5610 BGE_CLRBIT(sc, BGE_MAC_MODE,
5611 BGE_MACMODE_HALF_DUPLEX);
5612 } else {
5613 BGE_SETBIT(sc, BGE_MAC_MODE,
5614 BGE_MACMODE_HALF_DUPLEX);
5615 }
5616 DELAY(40);
5617 break;
5618 default:
5619 return EINVAL;
5620 }
5621 /* XXX 802.3x flow control for 1000BASE-SX */
5622 return 0;
5623 }
5624
5625 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5626 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5627 uint32_t reg;
5628
5629 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5630 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5631 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5632 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5633 }
5634 }
5635
5636 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5637 if ((rc = mii_mediachg(mii)) == ENXIO)
5638 return 0;
5639
5640 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5641 uint32_t reg;
5642
5643 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5644 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5645 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5646 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5647 delay(40);
5648 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5649 }
5650 }
5651
5652 /*
5653 * Force an interrupt so that we will call bge_link_upd
5654 * if needed and clear any pending link state attention.
5655 * Without this we are not getting any further interrupts
5656 * for link state changes and thus will not UP the link and
5657 * not be able to send in bge_start. The only way to get
5658 * things working was to receive a packet and get a RX intr.
5659 */
5660 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5661 sc->bge_flags & BGEF_IS_5788)
5662 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5663 else
5664 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5665
5666 return rc;
5667 }
5668
5669 /*
5670 * Report current media status.
5671 */
5672 static void
5673 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5674 {
5675 struct bge_softc *sc = ifp->if_softc;
5676 struct mii_data *mii = &sc->bge_mii;
5677
5678 if (sc->bge_flags & BGEF_FIBER_TBI) {
5679 ifmr->ifm_status = IFM_AVALID;
5680 ifmr->ifm_active = IFM_ETHER;
5681 if (CSR_READ_4(sc, BGE_MAC_STS) &
5682 BGE_MACSTAT_TBI_PCS_SYNCHED)
5683 ifmr->ifm_status |= IFM_ACTIVE;
5684 ifmr->ifm_active |= IFM_1000_SX;
5685 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5686 ifmr->ifm_active |= IFM_HDX;
5687 else
5688 ifmr->ifm_active |= IFM_FDX;
5689 return;
5690 }
5691
5692 mii_pollstat(mii);
5693 ifmr->ifm_status = mii->mii_media_status;
5694 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5695 sc->bge_flowflags;
5696 }
5697
5698 static int
5699 bge_ifflags_cb(struct ethercom *ec)
5700 {
5701 struct ifnet *ifp = &ec->ec_if;
5702 struct bge_softc *sc = ifp->if_softc;
5703 int change = ifp->if_flags ^ sc->bge_if_flags;
5704
5705 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5706 return ENETRESET;
5707 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5708 return 0;
5709
5710 if ((ifp->if_flags & IFF_PROMISC) == 0)
5711 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5712 else
5713 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5714
5715 bge_setmulti(sc);
5716
5717 sc->bge_if_flags = ifp->if_flags;
5718 return 0;
5719 }
5720
5721 static int
5722 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5723 {
5724 struct bge_softc *sc = ifp->if_softc;
5725 struct ifreq *ifr = (struct ifreq *) data;
5726 int s, error = 0;
5727 struct mii_data *mii;
5728
5729 s = splnet();
5730
5731 switch (command) {
5732 case SIOCSIFMEDIA:
5733 /* XXX Flow control is not supported for 1000BASE-SX */
5734 if (sc->bge_flags & BGEF_FIBER_TBI) {
5735 ifr->ifr_media &= ~IFM_ETH_FMASK;
5736 sc->bge_flowflags = 0;
5737 }
5738
5739 /* Flow control requires full-duplex mode. */
5740 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5741 (ifr->ifr_media & IFM_FDX) == 0) {
5742 ifr->ifr_media &= ~IFM_ETH_FMASK;
5743 }
5744 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5745 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5746 /* We can do both TXPAUSE and RXPAUSE. */
5747 ifr->ifr_media |=
5748 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5749 }
5750 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5751 }
5752 /* FALLTHROUGH */
5753 case SIOCGIFMEDIA:
5754 if (sc->bge_flags & BGEF_FIBER_TBI) {
5755 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5756 command);
5757 } else {
5758 mii = &sc->bge_mii;
5759 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5760 command);
5761 }
5762 break;
5763 default:
5764 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5765 break;
5766
5767 error = 0;
5768
5769 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5770 ;
5771 else if (ifp->if_flags & IFF_RUNNING)
5772 bge_setmulti(sc);
5773 break;
5774 }
5775
5776 splx(s);
5777
5778 return error;
5779 }
5780
5781 static void
5782 bge_watchdog(struct ifnet *ifp)
5783 {
5784 struct bge_softc *sc;
5785 uint32_t status;
5786
5787 sc = ifp->if_softc;
5788
5789 /* If pause frames are active then don't reset the hardware. */
5790 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5791 status = CSR_READ_4(sc, BGE_RX_STS);
5792 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5793 /*
5794 * If link partner has us in XOFF state then wait for
5795 * the condition to clear.
5796 */
5797 CSR_WRITE_4(sc, BGE_RX_STS, status);
5798 ifp->if_timer = 5;
5799 return;
5800 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5801 (status & BGE_RXSTAT_RCVD_XON) != 0) {
5802 /*
5803 * If link partner has us in XOFF state then wait for
5804 * the condition to clear.
5805 */
5806 CSR_WRITE_4(sc, BGE_RX_STS, status);
5807 ifp->if_timer = 5;
5808 return;
5809 }
5810 /*
5811 * Any other condition is unexpected and the controller
5812 * should be reset.
5813 */
5814 }
5815
5816 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5817
5818 ifp->if_flags &= ~IFF_RUNNING;
5819 bge_init(ifp);
5820
5821 ifp->if_oerrors++;
5822 }
5823
5824 static void
5825 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5826 {
5827 int i;
5828
5829 BGE_CLRBIT_FLUSH(sc, reg, bit);
5830
5831 for (i = 0; i < 1000; i++) {
5832 delay(100);
5833 if ((CSR_READ_4(sc, reg) & bit) == 0)
5834 return;
5835 }
5836
5837 /*
5838 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5839 * on some environment (and once after boot?)
5840 */
5841 if (reg != BGE_SRS_MODE)
5842 aprint_error_dev(sc->bge_dev,
5843 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5844 (u_long)reg, bit);
5845 }
5846
5847 /*
5848 * Stop the adapter and free any mbufs allocated to the
5849 * RX and TX lists.
5850 */
5851 static void
5852 bge_stop(struct ifnet *ifp, int disable)
5853 {
5854 struct bge_softc *sc = ifp->if_softc;
5855
5856 if (disable) {
5857 sc->bge_detaching = 1;
5858 callout_halt(&sc->bge_timeout, NULL);
5859 } else
5860 callout_stop(&sc->bge_timeout);
5861
5862 /* Disable host interrupts. */
5863 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5864 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5865
5866 /*
5867 * Tell firmware we're shutting down.
5868 */
5869 bge_stop_fw(sc);
5870 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5871
5872 /*
5873 * Disable all of the receiver blocks.
5874 */
5875 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5876 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5877 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5878 if (BGE_IS_5700_FAMILY(sc))
5879 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5880 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5881 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5882 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5883
5884 /*
5885 * Disable all of the transmit blocks.
5886 */
5887 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5888 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5889 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5890 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5891 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5892 if (BGE_IS_5700_FAMILY(sc))
5893 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5894 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5895
5896 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5897 delay(40);
5898
5899 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5900
5901 /*
5902 * Shut down all of the memory managers and related
5903 * state machines.
5904 */
5905 /* 5718 step 5a,5b */
5906 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5907 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5908 if (BGE_IS_5700_FAMILY(sc))
5909 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5910
5911 /* 5718 step 5c,5d */
5912 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5913 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5914
5915 if (BGE_IS_5700_FAMILY(sc)) {
5916 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5917 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5918 }
5919
5920 bge_reset(sc);
5921 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5922 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5923
5924 /*
5925 * Keep the ASF firmware running if up.
5926 */
5927 if (sc->bge_asf_mode & ASF_STACKUP)
5928 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5929 else
5930 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5931
5932 /* Free the RX lists. */
5933 bge_free_rx_ring_std(sc, disable);
5934
5935 /* Free jumbo RX list. */
5936 if (BGE_IS_JUMBO_CAPABLE(sc))
5937 bge_free_rx_ring_jumbo(sc);
5938
5939 /* Free TX buffers. */
5940 bge_free_tx_ring(sc, disable);
5941
5942 /*
5943 * Isolate/power down the PHY.
5944 */
5945 if (!(sc->bge_flags & BGEF_FIBER_TBI))
5946 mii_down(&sc->bge_mii);
5947
5948 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5949
5950 /* Clear MAC's link state (PHY may still have link UP). */
5951 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5952
5953 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5954 }
5955
5956 static void
5957 bge_link_upd(struct bge_softc *sc)
5958 {
5959 struct ifnet *ifp = &sc->ethercom.ec_if;
5960 struct mii_data *mii = &sc->bge_mii;
5961 uint32_t status;
5962 uint16_t phyval;
5963 int link;
5964
5965 /* Clear 'pending link event' flag */
5966 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5967
5968 /*
5969 * Process link state changes.
5970 * Grrr. The link status word in the status block does
5971 * not work correctly on the BCM5700 rev AX and BX chips,
5972 * according to all available information. Hence, we have
5973 * to enable MII interrupts in order to properly obtain
5974 * async link changes. Unfortunately, this also means that
5975 * we have to read the MAC status register to detect link
5976 * changes, thereby adding an additional register access to
5977 * the interrupt handler.
5978 */
5979
5980 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5981 status = CSR_READ_4(sc, BGE_MAC_STS);
5982 if (status & BGE_MACSTAT_MI_INTERRUPT) {
5983 mii_pollstat(mii);
5984
5985 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5986 mii->mii_media_status & IFM_ACTIVE &&
5987 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5988 BGE_STS_SETBIT(sc, BGE_STS_LINK);
5989 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5990 (!(mii->mii_media_status & IFM_ACTIVE) ||
5991 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5992 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5993
5994 /* Clear the interrupt */
5995 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5996 BGE_EVTENB_MI_INTERRUPT);
5997 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5998 BRGPHY_MII_ISR, &phyval);
5999 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6000 BRGPHY_MII_IMR, BRGPHY_INTRS);
6001 }
6002 return;
6003 }
6004
6005 if (sc->bge_flags & BGEF_FIBER_TBI) {
6006 status = CSR_READ_4(sc, BGE_MAC_STS);
6007 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6008 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6009 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6010 if (BGE_ASICREV(sc->bge_chipid)
6011 == BGE_ASICREV_BCM5704) {
6012 BGE_CLRBIT(sc, BGE_MAC_MODE,
6013 BGE_MACMODE_TBI_SEND_CFGS);
6014 DELAY(40);
6015 }
6016 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6017 if_link_state_change(ifp, LINK_STATE_UP);
6018 }
6019 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6020 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6021 if_link_state_change(ifp, LINK_STATE_DOWN);
6022 }
6023 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6024 /*
6025 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6026 * bit in status word always set. Workaround this bug by
6027 * reading PHY link status directly.
6028 */
6029 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6030 BGE_STS_LINK : 0;
6031
6032 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6033 mii_pollstat(mii);
6034
6035 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6036 mii->mii_media_status & IFM_ACTIVE &&
6037 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6038 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6039 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6040 (!(mii->mii_media_status & IFM_ACTIVE) ||
6041 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6042 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6043 }
6044 } else {
6045 /*
6046 * For controllers that call mii_tick, we have to poll
6047 * link status.
6048 */
6049 mii_pollstat(mii);
6050 }
6051
6052 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6053 uint32_t reg, scale;
6054
6055 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6056 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6057 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6058 scale = 65;
6059 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6060 scale = 6;
6061 else
6062 scale = 12;
6063
6064 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6065 ~BGE_MISCCFG_TIMER_PRESCALER;
6066 reg |= scale << 1;
6067 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6068 }
6069 /* Clear the attention */
6070 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
6071 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
6072 BGE_MACSTAT_LINK_CHANGED);
6073 }
6074
6075 static int
6076 bge_sysctl_verify(SYSCTLFN_ARGS)
6077 {
6078 int error, t;
6079 struct sysctlnode node;
6080
6081 node = *rnode;
6082 t = *(int*)rnode->sysctl_data;
6083 node.sysctl_data = &t;
6084 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6085 if (error || newp == NULL)
6086 return error;
6087
6088 #if 0
6089 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6090 node.sysctl_num, rnode->sysctl_num));
6091 #endif
6092
6093 if (node.sysctl_num == bge_rxthresh_nodenum) {
6094 if (t < 0 || t >= NBGE_RX_THRESH)
6095 return EINVAL;
6096 bge_update_all_threshes(t);
6097 } else
6098 return EINVAL;
6099
6100 *(int*)rnode->sysctl_data = t;
6101
6102 return 0;
6103 }
6104
6105 /*
6106 * Set up sysctl(3) MIB, hw.bge.*.
6107 */
6108 static void
6109 bge_sysctl_init(struct bge_softc *sc)
6110 {
6111 int rc, bge_root_num;
6112 const struct sysctlnode *node;
6113
6114 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6115 0, CTLTYPE_NODE, "bge",
6116 SYSCTL_DESCR("BGE interface controls"),
6117 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6118 goto out;
6119 }
6120
6121 bge_root_num = node->sysctl_num;
6122
6123 /* BGE Rx interrupt mitigation level */
6124 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6125 CTLFLAG_READWRITE,
6126 CTLTYPE_INT, "rx_lvl",
6127 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6128 bge_sysctl_verify, 0,
6129 &bge_rx_thresh_lvl,
6130 0, CTL_HW, bge_root_num, CTL_CREATE,
6131 CTL_EOL)) != 0) {
6132 goto out;
6133 }
6134
6135 bge_rxthresh_nodenum = node->sysctl_num;
6136
6137 return;
6138
6139 out:
6140 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6141 }
6142
6143 #ifdef BGE_DEBUG
6144 void
6145 bge_debug_info(struct bge_softc *sc)
6146 {
6147
6148 printf("Hardware Flags:\n");
6149 if (BGE_IS_57765_PLUS(sc))
6150 printf(" - 57765 Plus\n");
6151 if (BGE_IS_5717_PLUS(sc))
6152 printf(" - 5717 Plus\n");
6153 if (BGE_IS_5755_PLUS(sc))
6154 printf(" - 5755 Plus\n");
6155 if (BGE_IS_575X_PLUS(sc))
6156 printf(" - 575X Plus\n");
6157 if (BGE_IS_5705_PLUS(sc))
6158 printf(" - 5705 Plus\n");
6159 if (BGE_IS_5714_FAMILY(sc))
6160 printf(" - 5714 Family\n");
6161 if (BGE_IS_5700_FAMILY(sc))
6162 printf(" - 5700 Family\n");
6163 if (sc->bge_flags & BGEF_IS_5788)
6164 printf(" - 5788\n");
6165 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6166 printf(" - Supports Jumbo Frames\n");
6167 if (sc->bge_flags & BGEF_NO_EEPROM)
6168 printf(" - No EEPROM\n");
6169 if (sc->bge_flags & BGEF_PCIX)
6170 printf(" - PCI-X Bus\n");
6171 if (sc->bge_flags & BGEF_PCIE)
6172 printf(" - PCI Express Bus\n");
6173 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6174 printf(" - RX Alignment Bug\n");
6175 if (sc->bge_flags & BGEF_APE)
6176 printf(" - APE\n");
6177 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6178 printf(" - CPMU\n");
6179 if (sc->bge_flags & BGEF_TSO)
6180 printf(" - TSO\n");
6181 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6182 printf(" - TAGGED_STATUS\n");
6183
6184 /* PHY related */
6185 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6186 printf(" - No 3 LEDs\n");
6187 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6188 printf(" - CRC bug\n");
6189 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6190 printf(" - ADC bug\n");
6191 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6192 printf(" - 5704 A0 bug\n");
6193 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6194 printf(" - jitter bug\n");
6195 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6196 printf(" - BER bug\n");
6197 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6198 printf(" - adjust trim\n");
6199 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6200 printf(" - no wirespeed\n");
6201
6202 /* ASF related */
6203 if (sc->bge_asf_mode & ASF_ENABLE)
6204 printf(" - ASF enable\n");
6205 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6206 printf(" - ASF new handshake\n");
6207 if (sc->bge_asf_mode & ASF_STACKUP)
6208 printf(" - ASF stackup\n");
6209 }
6210 #endif /* BGE_DEBUG */
6211
6212 static int
6213 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6214 {
6215 prop_dictionary_t dict;
6216 prop_data_t ea;
6217
6218 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6219 return 1;
6220
6221 dict = device_properties(sc->bge_dev);
6222 ea = prop_dictionary_get(dict, "mac-address");
6223 if (ea != NULL) {
6224 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6225 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6226 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6227 return 0;
6228 }
6229
6230 return 1;
6231 }
6232
6233 static int
6234 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6235 {
6236 uint32_t mac_addr;
6237
6238 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6239 if ((mac_addr >> 16) == 0x484b) {
6240 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6241 ether_addr[1] = (uint8_t)mac_addr;
6242 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6243 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6244 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6245 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6246 ether_addr[5] = (uint8_t)mac_addr;
6247 return 0;
6248 }
6249 return 1;
6250 }
6251
6252 static int
6253 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6254 {
6255 int mac_offset = BGE_EE_MAC_OFFSET;
6256
6257 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6258 mac_offset = BGE_EE_MAC_OFFSET_5906;
6259
6260 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6261 ETHER_ADDR_LEN));
6262 }
6263
6264 static int
6265 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6266 {
6267
6268 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6269 return 1;
6270
6271 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6272 ETHER_ADDR_LEN));
6273 }
6274
6275 static int
6276 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6277 {
6278 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6279 /* NOTE: Order is critical */
6280 bge_get_eaddr_fw,
6281 bge_get_eaddr_mem,
6282 bge_get_eaddr_nvram,
6283 bge_get_eaddr_eeprom,
6284 NULL
6285 };
6286 const bge_eaddr_fcn_t *func;
6287
6288 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6289 if ((*func)(sc, eaddr) == 0)
6290 break;
6291 }
6292 return (*func == NULL ? ENXIO : 0);
6293 }
6294