Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.327
      1 /*	$NetBSD: if_bge.c,v 1.327 2019/02/20 17:00:20 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.327 2019/02/20 17:00:20 msaitoh Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/systm.h>
     86 #include <sys/callout.h>
     87 #include <sys/sockio.h>
     88 #include <sys/mbuf.h>
     89 #include <sys/malloc.h>
     90 #include <sys/kernel.h>
     91 #include <sys/device.h>
     92 #include <sys/socket.h>
     93 #include <sys/sysctl.h>
     94 
     95 #include <net/if.h>
     96 #include <net/if_dl.h>
     97 #include <net/if_media.h>
     98 #include <net/if_ether.h>
     99 
    100 #include <sys/rndsource.h>
    101 
    102 #ifdef INET
    103 #include <netinet/in.h>
    104 #include <netinet/in_systm.h>
    105 #include <netinet/in_var.h>
    106 #include <netinet/ip.h>
    107 #endif
    108 
    109 /* Headers for TCP Segmentation Offload (TSO) */
    110 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    111 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    112 #include <netinet/ip.h>			/* for struct ip */
    113 #include <netinet/tcp.h>		/* for struct tcphdr */
    114 
    115 
    116 #include <net/bpf.h>
    117 
    118 #include <dev/pci/pcireg.h>
    119 #include <dev/pci/pcivar.h>
    120 #include <dev/pci/pcidevs.h>
    121 
    122 #include <dev/mii/mii.h>
    123 #include <dev/mii/miivar.h>
    124 #include <dev/mii/miidevs.h>
    125 #include <dev/mii/brgphyreg.h>
    126 
    127 #include <dev/pci/if_bgereg.h>
    128 #include <dev/pci/if_bgevar.h>
    129 
    130 #include <prop/proplib.h>
    131 
    132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    133 
    134 
    135 /*
    136  * Tunable thresholds for rx-side bge interrupt mitigation.
    137  */
    138 
    139 /*
    140  * The pairs of values below were obtained from empirical measurement
    141  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    142  * interrupt for every N packets received, where N is, approximately,
    143  * the second value (rx_max_bds) in each pair.  The values are chosen
    144  * such that moving from one pair to the succeeding pair was observed
    145  * to roughly halve interrupt rate under sustained input packet load.
    146  * The values were empirically chosen to avoid overflowing internal
    147  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    148  * results in internal wrapping and higher interrupt rates.
    149  * The limit of 46 frames was chosen to match NFS workloads.
    150  *
    151  * These values also work well on bcm5701, bcm5704C, and (less
    152  * tested) bcm5703.  On other chipsets, (including the Altima chip
    153  * family), the larger values may overflow internal chip limits,
    154  * leading to increasing interrupt rates rather than lower interrupt
    155  * rates.
    156  *
    157  * Applications using heavy interrupt mitigation (interrupting every
    158  * 32 or 46 frames) in both directions may need to increase the TCP
    159  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    160  * full link bandwidth, due to ACKs and window updates lingering
    161  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    162  */
    163 static const struct bge_load_rx_thresh {
    164 	int rx_ticks;
    165 	int rx_max_bds; }
    166 bge_rx_threshes[] = {
    167 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    168 	{ 32,   2 },
    169 	{ 50,   4 },
    170 	{ 100,  8 },
    171 	{ 192, 16 },
    172 	{ 416, 32 },
    173 	{ 598, 46 }
    174 };
    175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    176 
    177 /* XXX patchable; should be sysctl'able */
    178 static int bge_auto_thresh = 1;
    179 static int bge_rx_thresh_lvl;
    180 
    181 static int bge_rxthresh_nodenum;
    182 
    183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    184 
    185 static uint32_t bge_chipid(const struct pci_attach_args *);
    186 static int bge_can_use_msi(struct bge_softc *);
    187 static int bge_probe(device_t, cfdata_t, void *);
    188 static void bge_attach(device_t, device_t, void *);
    189 static int bge_detach(device_t, int);
    190 static void bge_release_resources(struct bge_softc *);
    191 
    192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    197 
    198 static void bge_txeof(struct bge_softc *);
    199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    200 static void bge_rxeof(struct bge_softc *);
    201 
    202 static void bge_asf_driver_up (struct bge_softc *);
    203 static void bge_tick(void *);
    204 static void bge_stats_update(struct bge_softc *);
    205 static void bge_stats_update_regs(struct bge_softc *);
    206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    207 
    208 static int bge_intr(void *);
    209 static void bge_start(struct ifnet *);
    210 static int bge_ifflags_cb(struct ethercom *);
    211 static int bge_ioctl(struct ifnet *, u_long, void *);
    212 static int bge_init(struct ifnet *);
    213 static void bge_stop(struct ifnet *, int);
    214 static void bge_watchdog(struct ifnet *);
    215 static int bge_ifmedia_upd(struct ifnet *);
    216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    217 
    218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    220 
    221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    223 static void bge_setmulti(struct bge_softc *);
    224 
    225 static void bge_handle_events(struct bge_softc *);
    226 static int bge_alloc_jumbo_mem(struct bge_softc *);
    227 #if 0 /* XXX */
    228 static void bge_free_jumbo_mem(struct bge_softc *);
    229 #endif
    230 static void *bge_jalloc(struct bge_softc *);
    231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    233 			       bus_dmamap_t);
    234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    235 static int bge_init_rx_ring_std(struct bge_softc *);
    236 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
    237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    239 static void bge_free_tx_ring(struct bge_softc *m, bool);
    240 static int bge_init_tx_ring(struct bge_softc *);
    241 
    242 static int bge_chipinit(struct bge_softc *);
    243 static int bge_blockinit(struct bge_softc *);
    244 static int bge_phy_addr(struct bge_softc *);
    245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    246 static void bge_writemem_ind(struct bge_softc *, int, int);
    247 static void bge_writembx(struct bge_softc *, int, int);
    248 static void bge_writembx_flush(struct bge_softc *, int, int);
    249 static void bge_writemem_direct(struct bge_softc *, int, int);
    250 static void bge_writereg_ind(struct bge_softc *, int, int);
    251 static void bge_set_max_readrq(struct bge_softc *);
    252 
    253 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
    254 static int bge_miibus_writereg(device_t, int, int, uint16_t);
    255 static void bge_miibus_statchg(struct ifnet *);
    256 
    257 #define BGE_RESET_SHUTDOWN	0
    258 #define	BGE_RESET_START		1
    259 #define	BGE_RESET_SUSPEND	2
    260 static void bge_sig_post_reset(struct bge_softc *, int);
    261 static void bge_sig_legacy(struct bge_softc *, int);
    262 static void bge_sig_pre_reset(struct bge_softc *, int);
    263 static void bge_wait_for_event_ack(struct bge_softc *);
    264 static void bge_stop_fw(struct bge_softc *);
    265 static int bge_reset(struct bge_softc *);
    266 static void bge_link_upd(struct bge_softc *);
    267 static void bge_sysctl_init(struct bge_softc *);
    268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    269 
    270 static void bge_ape_lock_init(struct bge_softc *);
    271 static void bge_ape_read_fw_ver(struct bge_softc *);
    272 static int bge_ape_lock(struct bge_softc *, int);
    273 static void bge_ape_unlock(struct bge_softc *, int);
    274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    275 static void bge_ape_driver_state_change(struct bge_softc *, int);
    276 
    277 #ifdef BGE_DEBUG
    278 #define DPRINTF(x)	if (bgedebug) printf x
    279 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    280 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    281 int	bgedebug = 0;
    282 int	bge_tso_debug = 0;
    283 void		bge_debug_info(struct bge_softc *);
    284 #else
    285 #define DPRINTF(x)
    286 #define DPRINTFN(n,x)
    287 #define BGE_TSO_PRINTF(x)
    288 #endif
    289 
    290 #ifdef BGE_EVENT_COUNTERS
    291 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    292 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    293 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    294 #else
    295 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    296 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    297 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    298 #endif
    299 
    300 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
    301 /*
    302  * The BCM5700 documentation seems to indicate that the hardware still has the
    303  * Alteon vendor ID burned into it, though it should always be overridden by
    304  * the value in the EEPROM.  We'll check for it anyway.
    305  */
    306 static const struct bge_product {
    307 	pci_vendor_id_t		bp_vendor;
    308 	pci_product_id_t	bp_product;
    309 	const char		*bp_name;
    310 } bge_products[] = {
    311 	{ VIDDID(ALTEON,   BCM5700),	"Broadcom BCM5700 Gigabit" },
    312 	{ VIDDID(ALTEON,   BCM5701),	"Broadcom BCM5701 Gigabit" },
    313 	{ VIDDID(ALTIMA,   AC1000),	"Altima AC1000 Gigabit" },
    314 	{ VIDDID(ALTIMA,   AC1001),	"Altima AC1001 Gigabit" },
    315 	{ VIDDID(ALTIMA,   AC1003),	"Altima AC1003 Gigabit" },
    316 	{ VIDDID(ALTIMA,   AC9100),	"Altima AC9100 Gigabit" },
    317 	{ VIDDID(APPLE,	   BCM5701),	"APPLE BCM5701 Gigabit" },
    318 	{ VIDDID(BROADCOM, BCM5700),	"Broadcom BCM5700 Gigabit" },
    319 	{ VIDDID(BROADCOM, BCM5701),	"Broadcom BCM5701 Gigabit" },
    320 	{ VIDDID(BROADCOM, BCM5702),	"Broadcom BCM5702 Gigabit" },
    321 	{ VIDDID(BROADCOM, BCM5702FE),	"Broadcom BCM5702FE Fast" },
    322 	{ VIDDID(BROADCOM, BCM5702X),	"Broadcom BCM5702X Gigabit" },
    323 	{ VIDDID(BROADCOM, BCM5703),	"Broadcom BCM5703 Gigabit" },
    324 	{ VIDDID(BROADCOM, BCM5703X),	"Broadcom BCM5703X Gigabit" },
    325 	{ VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
    326 	{ VIDDID(BROADCOM, BCM5704C),	"Broadcom BCM5704C Dual Gigabit" },
    327 	{ VIDDID(BROADCOM, BCM5704S),	"Broadcom BCM5704S Dual Gigabit" },
    328 	{ VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
    329 	{ VIDDID(BROADCOM, BCM5705),	"Broadcom BCM5705 Gigabit" },
    330 	{ VIDDID(BROADCOM, BCM5705F),	"Broadcom BCM5705F Gigabit" },
    331 	{ VIDDID(BROADCOM, BCM5705K),	"Broadcom BCM5705K Gigabit" },
    332 	{ VIDDID(BROADCOM, BCM5705M),	"Broadcom BCM5705M Gigabit" },
    333 	{ VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
    334 	{ VIDDID(BROADCOM, BCM5714),	"Broadcom BCM5714 Gigabit" },
    335 	{ VIDDID(BROADCOM, BCM5714S),	"Broadcom BCM5714S Gigabit" },
    336 	{ VIDDID(BROADCOM, BCM5715),	"Broadcom BCM5715 Gigabit" },
    337 	{ VIDDID(BROADCOM, BCM5715S),	"Broadcom BCM5715S Gigabit" },
    338 	{ VIDDID(BROADCOM, BCM5717),	"Broadcom BCM5717 Gigabit" },
    339 	{ VIDDID(BROADCOM, BCM5717C),	"Broadcom BCM5717 Gigabit" },
    340 	{ VIDDID(BROADCOM, BCM5718),	"Broadcom BCM5718 Gigabit" },
    341 	{ VIDDID(BROADCOM, BCM5719),	"Broadcom BCM5719 Gigabit" },
    342 	{ VIDDID(BROADCOM, BCM5720),	"Broadcom BCM5720 Gigabit" },
    343 	{ VIDDID(BROADCOM, BCM5721),	"Broadcom BCM5721 Gigabit" },
    344 	{ VIDDID(BROADCOM, BCM5722),	"Broadcom BCM5722 Gigabit" },
    345 	{ VIDDID(BROADCOM, BCM5723),	"Broadcom BCM5723 Gigabit" },
    346 	{ VIDDID(BROADCOM, BCM5725),	"Broadcom BCM5725 Gigabit" },
    347 	{ VIDDID(BROADCOM, BCM5727),	"Broadcom BCM5727 Gigabit" },
    348 	{ VIDDID(BROADCOM, BCM5750),	"Broadcom BCM5750 Gigabit" },
    349 	{ VIDDID(BROADCOM, BCM5751),	"Broadcom BCM5751 Gigabit" },
    350 	{ VIDDID(BROADCOM, BCM5751F),	"Broadcom BCM5751F Gigabit" },
    351 	{ VIDDID(BROADCOM, BCM5751M),	"Broadcom BCM5751M Gigabit" },
    352 	{ VIDDID(BROADCOM, BCM5752),	"Broadcom BCM5752 Gigabit" },
    353 	{ VIDDID(BROADCOM, BCM5752M),	"Broadcom BCM5752M Gigabit" },
    354 	{ VIDDID(BROADCOM, BCM5753),	"Broadcom BCM5753 Gigabit" },
    355 	{ VIDDID(BROADCOM, BCM5753F),	"Broadcom BCM5753F Gigabit" },
    356 	{ VIDDID(BROADCOM, BCM5753M),	"Broadcom BCM5753M Gigabit" },
    357 	{ VIDDID(BROADCOM, BCM5754),	"Broadcom BCM5754 Gigabit" },
    358 	{ VIDDID(BROADCOM, BCM5754M),	"Broadcom BCM5754M Gigabit" },
    359 	{ VIDDID(BROADCOM, BCM5755),	"Broadcom BCM5755 Gigabit" },
    360 	{ VIDDID(BROADCOM, BCM5755M),	"Broadcom BCM5755M Gigabit" },
    361 	{ VIDDID(BROADCOM, BCM5756),	"Broadcom BCM5756 Gigabit" },
    362 	{ VIDDID(BROADCOM, BCM5761),	"Broadcom BCM5761 Gigabit" },
    363 	{ VIDDID(BROADCOM, BCM5761E),	"Broadcom BCM5761E Gigabit" },
    364 	{ VIDDID(BROADCOM, BCM5761S),	"Broadcom BCM5761S Gigabit" },
    365 	{ VIDDID(BROADCOM, BCM5761SE),	"Broadcom BCM5761SE Gigabit" },
    366 	{ VIDDID(BROADCOM, BCM5762),	"Broadcom BCM5762 Gigabit" },
    367 	{ VIDDID(BROADCOM, BCM5764),	"Broadcom BCM5764 Gigabit" },
    368 	{ VIDDID(BROADCOM, BCM5780),	"Broadcom BCM5780 Gigabit" },
    369 	{ VIDDID(BROADCOM, BCM5780S),	"Broadcom BCM5780S Gigabit" },
    370 	{ VIDDID(BROADCOM, BCM5781),	"Broadcom BCM5781 Gigabit" },
    371 	{ VIDDID(BROADCOM, BCM5782),	"Broadcom BCM5782 Gigabit" },
    372 	{ VIDDID(BROADCOM, BCM5784M),	"BCM5784M NetLink 1000baseT" },
    373 	{ VIDDID(BROADCOM, BCM5785F),	"BCM5785F NetLink 10/100" },
    374 	{ VIDDID(BROADCOM, BCM5785G),	"BCM5785G NetLink 1000baseT" },
    375 	{ VIDDID(BROADCOM, BCM5786),	"Broadcom BCM5786 Gigabit" },
    376 	{ VIDDID(BROADCOM, BCM5787),	"Broadcom BCM5787 Gigabit" },
    377 	{ VIDDID(BROADCOM, BCM5787F),	"Broadcom BCM5787F 10/100" },
    378 	{ VIDDID(BROADCOM, BCM5787M),	"Broadcom BCM5787M Gigabit" },
    379 	{ VIDDID(BROADCOM, BCM5788),	"Broadcom BCM5788 Gigabit" },
    380 	{ VIDDID(BROADCOM, BCM5789),	"Broadcom BCM5789 Gigabit" },
    381 	{ VIDDID(BROADCOM, BCM5901),	"Broadcom BCM5901 Fast" },
    382 	{ VIDDID(BROADCOM, BCM5901A2),	"Broadcom BCM5901A2 Fast" },
    383 	{ VIDDID(BROADCOM, BCM5903M),	"Broadcom BCM5903M Fast" },
    384 	{ VIDDID(BROADCOM, BCM5906),	"Broadcom BCM5906 Fast" },
    385 	{ VIDDID(BROADCOM, BCM5906M),	"Broadcom BCM5906M Fast" },
    386 	{ VIDDID(BROADCOM, BCM57760),	"Broadcom BCM57760 Gigabit" },
    387 	{ VIDDID(BROADCOM, BCM57761),	"Broadcom BCM57761 Gigabit" },
    388 	{ VIDDID(BROADCOM, BCM57762),	"Broadcom BCM57762 Gigabit" },
    389 	{ VIDDID(BROADCOM, BCM57764),	"Broadcom BCM57764 Gigabit" },
    390 	{ VIDDID(BROADCOM, BCM57765),	"Broadcom BCM57765 Gigabit" },
    391 	{ VIDDID(BROADCOM, BCM57766),	"Broadcom BCM57766 Gigabit" },
    392 	{ VIDDID(BROADCOM, BCM57767),	"Broadcom BCM57767 Gigabit" },
    393 	{ VIDDID(BROADCOM, BCM57780),	"Broadcom BCM57780 Gigabit" },
    394 	{ VIDDID(BROADCOM, BCM57781),	"Broadcom BCM57781 Gigabit" },
    395 	{ VIDDID(BROADCOM, BCM57782),	"Broadcom BCM57782 Gigabit" },
    396 	{ VIDDID(BROADCOM, BCM57785),	"Broadcom BCM57785 Gigabit" },
    397 	{ VIDDID(BROADCOM, BCM57786),	"Broadcom BCM57786 Gigabit" },
    398 	{ VIDDID(BROADCOM, BCM57787),	"Broadcom BCM57787 Gigabit" },
    399 	{ VIDDID(BROADCOM, BCM57788),	"Broadcom BCM57788 Gigabit" },
    400 	{ VIDDID(BROADCOM, BCM57790),	"Broadcom BCM57790 Gigabit" },
    401 	{ VIDDID(BROADCOM, BCM57791),	"Broadcom BCM57791 Gigabit" },
    402 	{ VIDDID(BROADCOM, BCM57795),	"Broadcom BCM57795 Gigabit" },
    403 	{ VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
    404 	{ VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
    405 	{ VIDDID(3COM, 3C996),		"3Com 3c996 Gigabit" },
    406 	{ VIDDID(FUJITSU4, PW008GE4),	"Fujitsu PW008GE4 Gigabit" },
    407 	{ VIDDID(FUJITSU4, PW008GE5),	"Fujitsu PW008GE5 Gigabit" },
    408 	{ VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
    409 	{ 0, 0, NULL },
    410 };
    411 
    412 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
    413 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
    414 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
    415 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
    416 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
    417 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
    418 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
    419 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
    420 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
    421 
    422 static const struct bge_revision {
    423 	uint32_t		br_chipid;
    424 	const char		*br_name;
    425 } bge_revisions[] = {
    426 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    427 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    428 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    429 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    430 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    431 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    432 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    433 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    434 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    435 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    436 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    437 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    438 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    439 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    440 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    441 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    442 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    443 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    444 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    445 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    446 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    447 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    448 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    449 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    450 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    451 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    452 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    453 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    454 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    455 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    456 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    457 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    458 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    459 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    460 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    461 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    462 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    463 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    464 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    465 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    466 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    467 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    468 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    469 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    470 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    471 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    472 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    473 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    474 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    475 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    476 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    477 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    478 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    479 	{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
    480 	{ BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
    481 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    482 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    483 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
    484 	/* 5754 and 5787 share the same ASIC ID */
    485 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    486 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    487 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    488 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    489 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    490 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    491 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    492 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    493 	{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
    494 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    495 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    496 
    497 	{ 0, NULL }
    498 };
    499 
    500 /*
    501  * Some defaults for major revisions, so that newer steppings
    502  * that we don't know about have a shot at working.
    503  */
    504 static const struct bge_revision bge_majorrevs[] = {
    505 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    506 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    507 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    508 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    509 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    510 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    511 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    512 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    513 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    514 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    515 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    516 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    517 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    518 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    519 	/* 5754 and 5787 share the same ASIC ID */
    520 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    521 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    522 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    523 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    524 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    525 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    526 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    527 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    528 	{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
    529 
    530 	{ 0, NULL }
    531 };
    532 
    533 static int bge_allow_asf = 1;
    534 
    535 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    536     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    537 
    538 static uint32_t
    539 bge_readmem_ind(struct bge_softc *sc, int off)
    540 {
    541 	pcireg_t val;
    542 
    543 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    544 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    545 		return 0;
    546 
    547 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    548 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    549 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    550 	return val;
    551 }
    552 
    553 static void
    554 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    555 {
    556 
    557 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    558 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    559 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    560 }
    561 
    562 /*
    563  * PCI Express only
    564  */
    565 static void
    566 bge_set_max_readrq(struct bge_softc *sc)
    567 {
    568 	pcireg_t val;
    569 
    570 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    571 	    + PCIE_DCSR);
    572 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    573 	switch (sc->bge_expmrq) {
    574 	case 2048:
    575 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    576 		break;
    577 	case 4096:
    578 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    579 		break;
    580 	default:
    581 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    582 		break;
    583 	}
    584 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    585 	    + PCIE_DCSR, val);
    586 }
    587 
    588 #ifdef notdef
    589 static uint32_t
    590 bge_readreg_ind(struct bge_softc *sc, int off)
    591 {
    592 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    593 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
    594 }
    595 #endif
    596 
    597 static void
    598 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    599 {
    600 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    601 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    602 }
    603 
    604 static void
    605 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    606 {
    607 	CSR_WRITE_4(sc, off, val);
    608 }
    609 
    610 static void
    611 bge_writembx(struct bge_softc *sc, int off, int val)
    612 {
    613 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    614 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    615 
    616 	CSR_WRITE_4(sc, off, val);
    617 }
    618 
    619 static void
    620 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    621 {
    622 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    623 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    624 
    625 	CSR_WRITE_4_FLUSH(sc, off, val);
    626 }
    627 
    628 /*
    629  * Clear all stale locks and select the lock for this driver instance.
    630  */
    631 void
    632 bge_ape_lock_init(struct bge_softc *sc)
    633 {
    634 	struct pci_attach_args *pa = &(sc->bge_pa);
    635 	uint32_t bit, regbase;
    636 	int i;
    637 
    638 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    639 		regbase = BGE_APE_LOCK_GRANT;
    640 	else
    641 		regbase = BGE_APE_PER_LOCK_GRANT;
    642 
    643 	/* Clear any stale locks. */
    644 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    645 		switch (i) {
    646 		case BGE_APE_LOCK_PHY0:
    647 		case BGE_APE_LOCK_PHY1:
    648 		case BGE_APE_LOCK_PHY2:
    649 		case BGE_APE_LOCK_PHY3:
    650 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    651 			break;
    652 		default:
    653 			if (pa->pa_function == 0)
    654 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    655 			else
    656 				bit = (1 << pa->pa_function);
    657 		}
    658 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    659 	}
    660 
    661 	/* Select the PHY lock based on the device's function number. */
    662 	switch (pa->pa_function) {
    663 	case 0:
    664 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    665 		break;
    666 	case 1:
    667 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    668 		break;
    669 	case 2:
    670 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    671 		break;
    672 	case 3:
    673 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    674 		break;
    675 	default:
    676 		printf("%s: PHY lock not supported on function\n",
    677 		    device_xname(sc->bge_dev));
    678 		break;
    679 	}
    680 }
    681 
    682 /*
    683  * Check for APE firmware, set flags, and print version info.
    684  */
    685 void
    686 bge_ape_read_fw_ver(struct bge_softc *sc)
    687 {
    688 	const char *fwtype;
    689 	uint32_t apedata, features;
    690 
    691 	/* Check for a valid APE signature in shared memory. */
    692 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    693 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    694 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    695 		return;
    696 	}
    697 
    698 	/* Check if APE firmware is running. */
    699 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    700 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    701 		printf("%s: APE signature found but FW status not ready! "
    702 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    703 		return;
    704 	}
    705 
    706 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    707 
    708 	/* Fetch the APE firwmare type and version. */
    709 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    710 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    711 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    712 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    713 		fwtype = "NCSI";
    714 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    715 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    716 		fwtype = "DASH";
    717 	} else
    718 		fwtype = "UNKN";
    719 
    720 	/* Print the APE firmware version. */
    721 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
    722 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    723 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    724 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    725 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    726 }
    727 
    728 int
    729 bge_ape_lock(struct bge_softc *sc, int locknum)
    730 {
    731 	struct pci_attach_args *pa = &(sc->bge_pa);
    732 	uint32_t bit, gnt, req, status;
    733 	int i, off;
    734 
    735 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    736 		return (0);
    737 
    738 	/* Lock request/grant registers have different bases. */
    739 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    740 		req = BGE_APE_LOCK_REQ;
    741 		gnt = BGE_APE_LOCK_GRANT;
    742 	} else {
    743 		req = BGE_APE_PER_LOCK_REQ;
    744 		gnt = BGE_APE_PER_LOCK_GRANT;
    745 	}
    746 
    747 	off = 4 * locknum;
    748 
    749 	switch (locknum) {
    750 	case BGE_APE_LOCK_GPIO:
    751 		/* Lock required when using GPIO. */
    752 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    753 			return (0);
    754 		if (pa->pa_function == 0)
    755 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    756 		else
    757 			bit = (1 << pa->pa_function);
    758 		break;
    759 	case BGE_APE_LOCK_GRC:
    760 		/* Lock required to reset the device. */
    761 		if (pa->pa_function == 0)
    762 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    763 		else
    764 			bit = (1 << pa->pa_function);
    765 		break;
    766 	case BGE_APE_LOCK_MEM:
    767 		/* Lock required when accessing certain APE memory. */
    768 		if (pa->pa_function == 0)
    769 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    770 		else
    771 			bit = (1 << pa->pa_function);
    772 		break;
    773 	case BGE_APE_LOCK_PHY0:
    774 	case BGE_APE_LOCK_PHY1:
    775 	case BGE_APE_LOCK_PHY2:
    776 	case BGE_APE_LOCK_PHY3:
    777 		/* Lock required when accessing PHYs. */
    778 		bit = BGE_APE_LOCK_REQ_DRIVER0;
    779 		break;
    780 	default:
    781 		return (EINVAL);
    782 	}
    783 
    784 	/* Request a lock. */
    785 	APE_WRITE_4_FLUSH(sc, req + off, bit);
    786 
    787 	/* Wait up to 1 second to acquire lock. */
    788 	for (i = 0; i < 20000; i++) {
    789 		status = APE_READ_4(sc, gnt + off);
    790 		if (status == bit)
    791 			break;
    792 		DELAY(50);
    793 	}
    794 
    795 	/* Handle any errors. */
    796 	if (status != bit) {
    797 		printf("%s: APE lock %d request failed! "
    798 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
    799 		    device_xname(sc->bge_dev),
    800 		    locknum, req + off, bit & 0xFFFF, gnt + off,
    801 		    status & 0xFFFF);
    802 		/* Revoke the lock request. */
    803 		APE_WRITE_4(sc, gnt + off, bit);
    804 		return (EBUSY);
    805 	}
    806 
    807 	return (0);
    808 }
    809 
    810 void
    811 bge_ape_unlock(struct bge_softc *sc, int locknum)
    812 {
    813 	struct pci_attach_args *pa = &(sc->bge_pa);
    814 	uint32_t bit, gnt;
    815 	int off;
    816 
    817 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    818 		return;
    819 
    820 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    821 		gnt = BGE_APE_LOCK_GRANT;
    822 	else
    823 		gnt = BGE_APE_PER_LOCK_GRANT;
    824 
    825 	off = 4 * locknum;
    826 
    827 	switch (locknum) {
    828 	case BGE_APE_LOCK_GPIO:
    829 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    830 			return;
    831 		if (pa->pa_function == 0)
    832 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    833 		else
    834 			bit = (1 << pa->pa_function);
    835 		break;
    836 	case BGE_APE_LOCK_GRC:
    837 		if (pa->pa_function == 0)
    838 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    839 		else
    840 			bit = (1 << pa->pa_function);
    841 		break;
    842 	case BGE_APE_LOCK_MEM:
    843 		if (pa->pa_function == 0)
    844 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    845 		else
    846 			bit = (1 << pa->pa_function);
    847 		break;
    848 	case BGE_APE_LOCK_PHY0:
    849 	case BGE_APE_LOCK_PHY1:
    850 	case BGE_APE_LOCK_PHY2:
    851 	case BGE_APE_LOCK_PHY3:
    852 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
    853 		break;
    854 	default:
    855 		return;
    856 	}
    857 
    858 	/* Write and flush for consecutive bge_ape_lock() */
    859 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
    860 }
    861 
    862 /*
    863  * Send an event to the APE firmware.
    864  */
    865 void
    866 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
    867 {
    868 	uint32_t apedata;
    869 	int i;
    870 
    871 	/* NCSI does not support APE events. */
    872 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    873 		return;
    874 
    875 	/* Wait up to 1ms for APE to service previous event. */
    876 	for (i = 10; i > 0; i--) {
    877 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
    878 			break;
    879 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
    880 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
    881 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
    882 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
    883 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    884 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
    885 			break;
    886 		}
    887 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    888 		DELAY(100);
    889 	}
    890 	if (i == 0) {
    891 		printf("%s: APE event 0x%08x send timed out\n",
    892 		    device_xname(sc->bge_dev), event);
    893 	}
    894 }
    895 
    896 void
    897 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
    898 {
    899 	uint32_t apedata, event;
    900 
    901 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    902 		return;
    903 
    904 	switch (kind) {
    905 	case BGE_RESET_START:
    906 		/* If this is the first load, clear the load counter. */
    907 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
    908 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
    909 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
    910 		else {
    911 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
    912 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
    913 		}
    914 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
    915 		    BGE_APE_HOST_SEG_SIG_MAGIC);
    916 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
    917 		    BGE_APE_HOST_SEG_LEN_MAGIC);
    918 
    919 		/* Add some version info if bge(4) supports it. */
    920 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
    921 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
    922 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
    923 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
    924 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
    925 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
    926 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    927 		    BGE_APE_HOST_DRVR_STATE_START);
    928 		event = BGE_APE_EVENT_STATUS_STATE_START;
    929 		break;
    930 	case BGE_RESET_SHUTDOWN:
    931 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    932 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
    933 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
    934 		break;
    935 	case BGE_RESET_SUSPEND:
    936 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
    937 		break;
    938 	default:
    939 		return;
    940 	}
    941 
    942 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
    943 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
    944 }
    945 
    946 static uint8_t
    947 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    948 {
    949 	uint32_t access, byte = 0;
    950 	int i;
    951 
    952 	/* Lock. */
    953 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    954 	for (i = 0; i < 8000; i++) {
    955 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    956 			break;
    957 		DELAY(20);
    958 	}
    959 	if (i == 8000)
    960 		return 1;
    961 
    962 	/* Enable access. */
    963 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    964 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    965 
    966 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    967 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    968 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    969 		DELAY(10);
    970 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    971 			DELAY(10);
    972 			break;
    973 		}
    974 	}
    975 
    976 	if (i == BGE_TIMEOUT * 10) {
    977 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    978 		return 1;
    979 	}
    980 
    981 	/* Get result. */
    982 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    983 
    984 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    985 
    986 	/* Disable access. */
    987 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    988 
    989 	/* Unlock. */
    990 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    991 
    992 	return 0;
    993 }
    994 
    995 /*
    996  * Read a sequence of bytes from NVRAM.
    997  */
    998 static int
    999 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
   1000 {
   1001 	int error = 0, i;
   1002 	uint8_t byte = 0;
   1003 
   1004 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1005 		return 1;
   1006 
   1007 	for (i = 0; i < cnt; i++) {
   1008 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1009 		if (error)
   1010 			break;
   1011 		*(dest + i) = byte;
   1012 	}
   1013 
   1014 	return (error ? 1 : 0);
   1015 }
   1016 
   1017 /*
   1018  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1019  * BCM570x supports both the traditional bitbang interface and an
   1020  * auto access interface for reading the EEPROM. We use the auto
   1021  * access method.
   1022  */
   1023 static uint8_t
   1024 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1025 {
   1026 	int i;
   1027 	uint32_t byte = 0;
   1028 
   1029 	/*
   1030 	 * Enable use of auto EEPROM access so we can avoid
   1031 	 * having to use the bitbang method.
   1032 	 */
   1033 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1034 
   1035 	/* Reset the EEPROM, load the clock period. */
   1036 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   1037 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1038 	DELAY(20);
   1039 
   1040 	/* Issue the read EEPROM command. */
   1041 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1042 
   1043 	/* Wait for completion */
   1044 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1045 		DELAY(10);
   1046 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1047 			break;
   1048 	}
   1049 
   1050 	if (i == BGE_TIMEOUT * 10) {
   1051 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1052 		return 1;
   1053 	}
   1054 
   1055 	/* Get result. */
   1056 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1057 
   1058 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1059 
   1060 	return 0;
   1061 }
   1062 
   1063 /*
   1064  * Read a sequence of bytes from the EEPROM.
   1065  */
   1066 static int
   1067 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1068 {
   1069 	int error = 0, i;
   1070 	uint8_t byte = 0;
   1071 	char *dest = destv;
   1072 
   1073 	for (i = 0; i < cnt; i++) {
   1074 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1075 		if (error)
   1076 			break;
   1077 		*(dest + i) = byte;
   1078 	}
   1079 
   1080 	return (error ? 1 : 0);
   1081 }
   1082 
   1083 static int
   1084 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
   1085 {
   1086 	struct bge_softc *sc = device_private(dev);
   1087 	uint32_t data;
   1088 	uint32_t autopoll;
   1089 	int rv = 0;
   1090 	int i;
   1091 
   1092 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1093 		return -1;
   1094 
   1095 	/* Reading with autopolling on may trigger PCI errors */
   1096 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1097 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1098 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1099 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1100 		DELAY(80);
   1101 	}
   1102 
   1103 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1104 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1105 
   1106 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1107 		delay(10);
   1108 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1109 		if (!(data & BGE_MICOMM_BUSY)) {
   1110 			DELAY(5);
   1111 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1112 			break;
   1113 		}
   1114 	}
   1115 
   1116 	if (i == BGE_TIMEOUT) {
   1117 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1118 		rv = ETIMEDOUT;
   1119 	} else if ((data & BGE_MICOMM_READFAIL) != 0)
   1120 		rv = -1;
   1121 	else
   1122 		*val = data & BGE_MICOMM_DATA;
   1123 
   1124 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1125 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1126 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1127 		DELAY(80);
   1128 	}
   1129 
   1130 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1131 
   1132 	return rv;
   1133 }
   1134 
   1135 static int
   1136 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
   1137 {
   1138 	struct bge_softc *sc = device_private(dev);
   1139 	uint32_t autopoll;
   1140 	int i;
   1141 
   1142 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1143 	    (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
   1144 		return 0;
   1145 
   1146 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1147 		return -1;
   1148 
   1149 	/* Reading with autopolling on may trigger PCI errors */
   1150 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1151 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1152 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1153 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1154 		DELAY(80);
   1155 	}
   1156 
   1157 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1158 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1159 
   1160 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1161 		delay(10);
   1162 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
   1163 			delay(5);
   1164 			CSR_READ_4(sc, BGE_MI_COMM);
   1165 			break;
   1166 		}
   1167 	}
   1168 
   1169 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1170 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1171 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1172 		delay(80);
   1173 	}
   1174 
   1175 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1176 
   1177 	if (i == BGE_TIMEOUT) {
   1178 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1179 		return ETIMEDOUT;
   1180 	}
   1181 
   1182 	return 0;
   1183 }
   1184 
   1185 static void
   1186 bge_miibus_statchg(struct ifnet *ifp)
   1187 {
   1188 	struct bge_softc *sc = ifp->if_softc;
   1189 	struct mii_data *mii = &sc->bge_mii;
   1190 	uint32_t mac_mode, rx_mode, tx_mode;
   1191 
   1192 	/*
   1193 	 * Get flow control negotiation result.
   1194 	 */
   1195 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1196 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
   1197 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1198 
   1199 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1200 	    mii->mii_media_status & IFM_ACTIVE &&
   1201 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   1202 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
   1203 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1204 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
   1205 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   1206 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   1207 
   1208 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   1209 		return;
   1210 
   1211 	/* Set the port mode (MII/GMII) to match the link speed. */
   1212 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1213 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1214 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1215 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1216 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1217 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1218 		mac_mode |= BGE_PORTMODE_GMII;
   1219 	else
   1220 		mac_mode |= BGE_PORTMODE_MII;
   1221 
   1222 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1223 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1224 	if ((mii->mii_media_active & IFM_FDX) != 0) {
   1225 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1226 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1227 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1228 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1229 	} else
   1230 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1231 
   1232 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1233 	DELAY(40);
   1234 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1235 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1236 }
   1237 
   1238 /*
   1239  * Update rx threshold levels to values in a particular slot
   1240  * of the interrupt-mitigation table bge_rx_threshes.
   1241  */
   1242 static void
   1243 bge_set_thresh(struct ifnet *ifp, int lvl)
   1244 {
   1245 	struct bge_softc *sc = ifp->if_softc;
   1246 	int s;
   1247 
   1248 	/* For now, just save the new Rx-intr thresholds and record
   1249 	 * that a threshold update is pending.  Updating the hardware
   1250 	 * registers here (even at splhigh()) is observed to
   1251 	 * occasionaly cause glitches where Rx-interrupts are not
   1252 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1253 	 */
   1254 	s = splnet();
   1255 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1256 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1257 	sc->bge_pending_rxintr_change = 1;
   1258 	splx(s);
   1259 }
   1260 
   1261 
   1262 /*
   1263  * Update Rx thresholds of all bge devices
   1264  */
   1265 static void
   1266 bge_update_all_threshes(int lvl)
   1267 {
   1268 	struct ifnet *ifp;
   1269 	const char * const namebuf = "bge";
   1270 	int namelen;
   1271 	int s;
   1272 
   1273 	if (lvl < 0)
   1274 		lvl = 0;
   1275 	else if (lvl >= NBGE_RX_THRESH)
   1276 		lvl = NBGE_RX_THRESH - 1;
   1277 
   1278 	namelen = strlen(namebuf);
   1279 	/*
   1280 	 * Now search all the interfaces for this name/number
   1281 	 */
   1282 	s = pserialize_read_enter();
   1283 	IFNET_READER_FOREACH(ifp) {
   1284 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1285 		      continue;
   1286 		/* We got a match: update if doing auto-threshold-tuning */
   1287 		if (bge_auto_thresh)
   1288 			bge_set_thresh(ifp, lvl);
   1289 	}
   1290 	pserialize_read_exit(s);
   1291 }
   1292 
   1293 /*
   1294  * Handle events that have triggered interrupts.
   1295  */
   1296 static void
   1297 bge_handle_events(struct bge_softc *sc)
   1298 {
   1299 
   1300 	return;
   1301 }
   1302 
   1303 /*
   1304  * Memory management for jumbo frames.
   1305  */
   1306 
   1307 static int
   1308 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1309 {
   1310 	char *ptr, *kva;
   1311 	bus_dma_segment_t	seg;
   1312 	int		i, rseg, state, error;
   1313 	struct bge_jpool_entry   *entry;
   1314 
   1315 	state = error = 0;
   1316 
   1317 	/* Grab a big chunk o' storage. */
   1318 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1319 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1320 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1321 		return ENOBUFS;
   1322 	}
   1323 
   1324 	state = 1;
   1325 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1326 	    BUS_DMA_NOWAIT)) {
   1327 		aprint_error_dev(sc->bge_dev,
   1328 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1329 		error = ENOBUFS;
   1330 		goto out;
   1331 	}
   1332 
   1333 	state = 2;
   1334 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1335 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1336 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1337 		error = ENOBUFS;
   1338 		goto out;
   1339 	}
   1340 
   1341 	state = 3;
   1342 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1343 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1344 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1345 		error = ENOBUFS;
   1346 		goto out;
   1347 	}
   1348 
   1349 	state = 4;
   1350 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1351 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1352 
   1353 	SLIST_INIT(&sc->bge_jfree_listhead);
   1354 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1355 
   1356 	/*
   1357 	 * Now divide it up into 9K pieces and save the addresses
   1358 	 * in an array.
   1359 	 */
   1360 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1361 	for (i = 0; i < BGE_JSLOTS; i++) {
   1362 		sc->bge_cdata.bge_jslots[i] = ptr;
   1363 		ptr += BGE_JLEN;
   1364 		entry = malloc(sizeof(struct bge_jpool_entry),
   1365 		    M_DEVBUF, M_NOWAIT);
   1366 		if (entry == NULL) {
   1367 			aprint_error_dev(sc->bge_dev,
   1368 			    "no memory for jumbo buffer queue!\n");
   1369 			error = ENOBUFS;
   1370 			goto out;
   1371 		}
   1372 		entry->slot = i;
   1373 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1374 				 entry, jpool_entries);
   1375 	}
   1376 out:
   1377 	if (error != 0) {
   1378 		switch (state) {
   1379 		case 4:
   1380 			bus_dmamap_unload(sc->bge_dmatag,
   1381 			    sc->bge_cdata.bge_rx_jumbo_map);
   1382 			/* FALLTHROUGH */
   1383 		case 3:
   1384 			bus_dmamap_destroy(sc->bge_dmatag,
   1385 			    sc->bge_cdata.bge_rx_jumbo_map);
   1386 			/* FALLTHROUGH */
   1387 		case 2:
   1388 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1389 			/* FALLTHROUGH */
   1390 		case 1:
   1391 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1392 			break;
   1393 		default:
   1394 			break;
   1395 		}
   1396 	}
   1397 
   1398 	return error;
   1399 }
   1400 
   1401 /*
   1402  * Allocate a jumbo buffer.
   1403  */
   1404 static void *
   1405 bge_jalloc(struct bge_softc *sc)
   1406 {
   1407 	struct bge_jpool_entry   *entry;
   1408 
   1409 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1410 
   1411 	if (entry == NULL) {
   1412 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1413 		return NULL;
   1414 	}
   1415 
   1416 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1417 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1418 	return (sc->bge_cdata.bge_jslots[entry->slot]);
   1419 }
   1420 
   1421 /*
   1422  * Release a jumbo buffer.
   1423  */
   1424 static void
   1425 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1426 {
   1427 	struct bge_jpool_entry *entry;
   1428 	struct bge_softc *sc;
   1429 	int i, s;
   1430 
   1431 	/* Extract the softc struct pointer. */
   1432 	sc = (struct bge_softc *)arg;
   1433 
   1434 	if (sc == NULL)
   1435 		panic("bge_jfree: can't find softc pointer!");
   1436 
   1437 	/* calculate the slot this buffer belongs to */
   1438 
   1439 	i = ((char *)buf
   1440 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1441 
   1442 	if ((i < 0) || (i >= BGE_JSLOTS))
   1443 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1444 
   1445 	s = splvm();
   1446 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1447 	if (entry == NULL)
   1448 		panic("bge_jfree: buffer not in use!");
   1449 	entry->slot = i;
   1450 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1451 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1452 
   1453 	if (__predict_true(m != NULL))
   1454   		pool_cache_put(mb_cache, m);
   1455 	splx(s);
   1456 }
   1457 
   1458 
   1459 /*
   1460  * Initialize a standard receive ring descriptor.
   1461  */
   1462 static int
   1463 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1464     bus_dmamap_t dmamap)
   1465 {
   1466 	struct mbuf		*m_new = NULL;
   1467 	struct bge_rx_bd	*r;
   1468 	int			error;
   1469 
   1470 	if (dmamap == NULL)
   1471 		dmamap = sc->bge_cdata.bge_rx_std_map[i];
   1472 
   1473 	if (dmamap == NULL) {
   1474 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1475 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1476 		if (error != 0)
   1477 			return error;
   1478 	}
   1479 
   1480 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1481 
   1482 	if (m == NULL) {
   1483 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1484 		if (m_new == NULL)
   1485 			return ENOBUFS;
   1486 
   1487 		MCLGET(m_new, M_DONTWAIT);
   1488 		if (!(m_new->m_flags & M_EXT)) {
   1489 			m_freem(m_new);
   1490 			return ENOBUFS;
   1491 		}
   1492 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1493 
   1494 	} else {
   1495 		m_new = m;
   1496 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1497 		m_new->m_data = m_new->m_ext.ext_buf;
   1498 	}
   1499 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1500 	    m_adj(m_new, ETHER_ALIGN);
   1501 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1502 	    BUS_DMA_READ|BUS_DMA_NOWAIT)) {
   1503 		m_freem(m_new);
   1504 		return ENOBUFS;
   1505 	}
   1506 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1507 	    BUS_DMASYNC_PREREAD);
   1508 
   1509 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1510 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1511 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1512 	r->bge_flags = BGE_RXBDFLAG_END;
   1513 	r->bge_len = m_new->m_len;
   1514 	r->bge_idx = i;
   1515 
   1516 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1517 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1518 		i * sizeof (struct bge_rx_bd),
   1519 	    sizeof (struct bge_rx_bd),
   1520 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1521 
   1522 	return 0;
   1523 }
   1524 
   1525 /*
   1526  * Initialize a jumbo receive ring descriptor. This allocates
   1527  * a jumbo buffer from the pool managed internally by the driver.
   1528  */
   1529 static int
   1530 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1531 {
   1532 	struct mbuf *m_new = NULL;
   1533 	struct bge_rx_bd *r;
   1534 	void *buf = NULL;
   1535 
   1536 	if (m == NULL) {
   1537 
   1538 		/* Allocate the mbuf. */
   1539 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1540 		if (m_new == NULL)
   1541 			return ENOBUFS;
   1542 
   1543 		/* Allocate the jumbo buffer */
   1544 		buf = bge_jalloc(sc);
   1545 		if (buf == NULL) {
   1546 			m_freem(m_new);
   1547 			aprint_error_dev(sc->bge_dev,
   1548 			    "jumbo allocation failed -- packet dropped!\n");
   1549 			return ENOBUFS;
   1550 		}
   1551 
   1552 		/* Attach the buffer to the mbuf. */
   1553 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1554 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1555 		    bge_jfree, sc);
   1556 		m_new->m_flags |= M_EXT_RW;
   1557 	} else {
   1558 		m_new = m;
   1559 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1560 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1561 	}
   1562 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1563 	    m_adj(m_new, ETHER_ALIGN);
   1564 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1565 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
   1566 	    BUS_DMASYNC_PREREAD);
   1567 	/* Set up the descriptor. */
   1568 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1569 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1570 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1571 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
   1572 	r->bge_len = m_new->m_len;
   1573 	r->bge_idx = i;
   1574 
   1575 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1576 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1577 		i * sizeof (struct bge_rx_bd),
   1578 	    sizeof (struct bge_rx_bd),
   1579 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
   1580 
   1581 	return 0;
   1582 }
   1583 
   1584 /*
   1585  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1586  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1587  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1588  * the NIC.
   1589  */
   1590 static int
   1591 bge_init_rx_ring_std(struct bge_softc *sc)
   1592 {
   1593 	int i;
   1594 
   1595 	if (sc->bge_flags & BGEF_RXRING_VALID)
   1596 		return 0;
   1597 
   1598 	for (i = 0; i < BGE_SSLOTS; i++) {
   1599 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1600 			return ENOBUFS;
   1601 	}
   1602 
   1603 	sc->bge_std = i - 1;
   1604 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1605 
   1606 	sc->bge_flags |= BGEF_RXRING_VALID;
   1607 
   1608 	return 0;
   1609 }
   1610 
   1611 static void
   1612 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
   1613 {
   1614 	int i;
   1615 
   1616 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
   1617 		return;
   1618 
   1619 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1620 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1621 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1622 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1623 			if (disable) {
   1624 				bus_dmamap_destroy(sc->bge_dmatag,
   1625 				    sc->bge_cdata.bge_rx_std_map[i]);
   1626 				sc->bge_cdata.bge_rx_std_map[i] = NULL;
   1627 			}
   1628 		}
   1629 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1630 		    sizeof(struct bge_rx_bd));
   1631 	}
   1632 
   1633 	sc->bge_flags &= ~BGEF_RXRING_VALID;
   1634 }
   1635 
   1636 static int
   1637 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1638 {
   1639 	int i;
   1640 	volatile struct bge_rcb *rcb;
   1641 
   1642 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
   1643 		return 0;
   1644 
   1645 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1646 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1647 			return ENOBUFS;
   1648 	}
   1649 
   1650 	sc->bge_jumbo = i - 1;
   1651 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
   1652 
   1653 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1654 	rcb->bge_maxlen_flags = 0;
   1655 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1656 
   1657 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1658 
   1659 	return 0;
   1660 }
   1661 
   1662 static void
   1663 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1664 {
   1665 	int i;
   1666 
   1667 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
   1668 		return;
   1669 
   1670 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1671 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1672 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1673 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1674 		}
   1675 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1676 		    sizeof(struct bge_rx_bd));
   1677 	}
   1678 
   1679 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
   1680 }
   1681 
   1682 static void
   1683 bge_free_tx_ring(struct bge_softc *sc, bool disable)
   1684 {
   1685 	int i;
   1686 	struct txdmamap_pool_entry *dma;
   1687 
   1688 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
   1689 		return;
   1690 
   1691 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1692 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1693 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1694 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1695 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1696 					    link);
   1697 			sc->txdma[i] = 0;
   1698 		}
   1699 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1700 		    sizeof(struct bge_tx_bd));
   1701 	}
   1702 
   1703 	if (disable) {
   1704 		while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1705 			SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1706 			bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1707 			if (sc->bge_dma64) {
   1708 				bus_dmamap_destroy(sc->bge_dmatag32,
   1709 				    dma->dmamap32);
   1710 			}
   1711 			free(dma, M_DEVBUF);
   1712 		}
   1713 		SLIST_INIT(&sc->txdma_list);
   1714 	}
   1715 
   1716 	sc->bge_flags &= ~BGEF_TXRING_VALID;
   1717 }
   1718 
   1719 static int
   1720 bge_init_tx_ring(struct bge_softc *sc)
   1721 {
   1722 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1723 	int i;
   1724 	bus_dmamap_t dmamap, dmamap32;
   1725 	bus_size_t maxsegsz;
   1726 	struct txdmamap_pool_entry *dma;
   1727 
   1728 	if (sc->bge_flags & BGEF_TXRING_VALID)
   1729 		return 0;
   1730 
   1731 	sc->bge_txcnt = 0;
   1732 	sc->bge_tx_saved_considx = 0;
   1733 
   1734 	/* Initialize transmit producer index for host-memory send ring. */
   1735 	sc->bge_tx_prodidx = 0;
   1736 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1737 	/* 5700 b2 errata */
   1738 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1739 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1740 
   1741 	/* NIC-memory send ring not used; initialize to zero. */
   1742 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1743 	/* 5700 b2 errata */
   1744 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1745 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1746 
   1747 	/* Limit DMA segment size for some chips */
   1748 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
   1749 	    (ifp->if_mtu <= ETHERMTU))
   1750 		maxsegsz = 2048;
   1751 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   1752 		maxsegsz = 4096;
   1753 	else
   1754 		maxsegsz = ETHER_MAX_LEN_JUMBO;
   1755 
   1756 	if (SLIST_FIRST(&sc->txdma_list) != NULL)
   1757 		goto alloc_done;
   1758 
   1759 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1760 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1761 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1762 		    &dmamap))
   1763 			return ENOBUFS;
   1764 		if (dmamap == NULL)
   1765 			panic("dmamap NULL in bge_init_tx_ring");
   1766 		if (sc->bge_dma64) {
   1767 			if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
   1768 			    BGE_NTXSEG, maxsegsz, 0,
   1769 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1770 			    &dmamap32)) {
   1771 				bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1772 				return ENOBUFS;
   1773 			}
   1774 			if (dmamap32 == NULL)
   1775 				panic("dmamap32 NULL in bge_init_tx_ring");
   1776 		} else
   1777 			dmamap32 = dmamap;
   1778 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1779 		if (dma == NULL) {
   1780 			aprint_error_dev(sc->bge_dev,
   1781 			    "can't alloc txdmamap_pool_entry\n");
   1782 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1783 			if (sc->bge_dma64)
   1784 				bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
   1785 			return ENOMEM;
   1786 		}
   1787 		dma->dmamap = dmamap;
   1788 		dma->dmamap32 = dmamap32;
   1789 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1790 	}
   1791 alloc_done:
   1792 	sc->bge_flags |= BGEF_TXRING_VALID;
   1793 
   1794 	return 0;
   1795 }
   1796 
   1797 static void
   1798 bge_setmulti(struct bge_softc *sc)
   1799 {
   1800 	struct ethercom		*ac = &sc->ethercom;
   1801 	struct ifnet		*ifp = &ac->ec_if;
   1802 	struct ether_multi	*enm;
   1803 	struct ether_multistep  step;
   1804 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1805 	uint32_t		h;
   1806 	int			i;
   1807 
   1808 	if (ifp->if_flags & IFF_PROMISC)
   1809 		goto allmulti;
   1810 
   1811 	/* Now program new ones. */
   1812 	ETHER_FIRST_MULTI(step, ac, enm);
   1813 	while (enm != NULL) {
   1814 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1815 			/*
   1816 			 * We must listen to a range of multicast addresses.
   1817 			 * For now, just accept all multicasts, rather than
   1818 			 * trying to set only those filter bits needed to match
   1819 			 * the range.  (At this time, the only use of address
   1820 			 * ranges is for IP multicast routing, for which the
   1821 			 * range is big enough to require all bits set.)
   1822 			 */
   1823 			goto allmulti;
   1824 		}
   1825 
   1826 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1827 
   1828 		/* Just want the 7 least-significant bits. */
   1829 		h &= 0x7f;
   1830 
   1831 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1832 		ETHER_NEXT_MULTI(step, enm);
   1833 	}
   1834 
   1835 	ifp->if_flags &= ~IFF_ALLMULTI;
   1836 	goto setit;
   1837 
   1838  allmulti:
   1839 	ifp->if_flags |= IFF_ALLMULTI;
   1840 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1841 
   1842  setit:
   1843 	for (i = 0; i < 4; i++)
   1844 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1845 }
   1846 
   1847 static void
   1848 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1849 {
   1850 
   1851 	/*
   1852 	 * Some chips don't like this so only do this if ASF is enabled
   1853 	 */
   1854 	if (sc->bge_asf_mode)
   1855 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   1856 
   1857 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1858 		switch (type) {
   1859 		case BGE_RESET_START:
   1860 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1861 			    BGE_FW_DRV_STATE_START);
   1862 			break;
   1863 		case BGE_RESET_SHUTDOWN:
   1864 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1865 			    BGE_FW_DRV_STATE_UNLOAD);
   1866 			break;
   1867 		case BGE_RESET_SUSPEND:
   1868 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1869 			    BGE_FW_DRV_STATE_SUSPEND);
   1870 			break;
   1871 		}
   1872 	}
   1873 
   1874 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   1875 		bge_ape_driver_state_change(sc, type);
   1876 }
   1877 
   1878 static void
   1879 bge_sig_post_reset(struct bge_softc *sc, int type)
   1880 {
   1881 
   1882 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1883 		switch (type) {
   1884 		case BGE_RESET_START:
   1885 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1886 			    BGE_FW_DRV_STATE_START_DONE);
   1887 			/* START DONE */
   1888 			break;
   1889 		case BGE_RESET_SHUTDOWN:
   1890 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1891 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   1892 			break;
   1893 		}
   1894 	}
   1895 
   1896 	if (type == BGE_RESET_SHUTDOWN)
   1897 		bge_ape_driver_state_change(sc, type);
   1898 }
   1899 
   1900 static void
   1901 bge_sig_legacy(struct bge_softc *sc, int type)
   1902 {
   1903 
   1904 	if (sc->bge_asf_mode) {
   1905 		switch (type) {
   1906 		case BGE_RESET_START:
   1907 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1908 			    BGE_FW_DRV_STATE_START);
   1909 			break;
   1910 		case BGE_RESET_SHUTDOWN:
   1911 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1912 			    BGE_FW_DRV_STATE_UNLOAD);
   1913 			break;
   1914 		}
   1915 	}
   1916 }
   1917 
   1918 static void
   1919 bge_wait_for_event_ack(struct bge_softc *sc)
   1920 {
   1921 	int i;
   1922 
   1923 	/* wait up to 2500usec */
   1924 	for (i = 0; i < 250; i++) {
   1925 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   1926 			BGE_RX_CPU_DRV_EVENT))
   1927 			break;
   1928 		DELAY(10);
   1929 	}
   1930 }
   1931 
   1932 static void
   1933 bge_stop_fw(struct bge_softc *sc)
   1934 {
   1935 
   1936 	if (sc->bge_asf_mode) {
   1937 		bge_wait_for_event_ack(sc);
   1938 
   1939 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   1940 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   1941 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   1942 
   1943 		bge_wait_for_event_ack(sc);
   1944 	}
   1945 }
   1946 
   1947 static int
   1948 bge_poll_fw(struct bge_softc *sc)
   1949 {
   1950 	uint32_t val;
   1951 	int i;
   1952 
   1953 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1954 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1955 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1956 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1957 				break;
   1958 			DELAY(100);
   1959 		}
   1960 		if (i >= BGE_TIMEOUT) {
   1961 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   1962 			return -1;
   1963 		}
   1964 	} else {
   1965 		/*
   1966 		 * Poll the value location we just wrote until
   1967 		 * we see the 1's complement of the magic number.
   1968 		 * This indicates that the firmware initialization
   1969 		 * is complete.
   1970 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   1971 		 */
   1972 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1973 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   1974 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   1975 				break;
   1976 			DELAY(10);
   1977 		}
   1978 
   1979 		if ((i >= BGE_TIMEOUT)
   1980 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
   1981 			aprint_error_dev(sc->bge_dev,
   1982 			    "firmware handshake timed out, val = %x\n", val);
   1983 			return -1;
   1984 		}
   1985 	}
   1986 
   1987 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   1988 		/* tg3 says we have to wait extra time */
   1989 		delay(10 * 1000);
   1990 	}
   1991 
   1992 	return 0;
   1993 }
   1994 
   1995 int
   1996 bge_phy_addr(struct bge_softc *sc)
   1997 {
   1998 	struct pci_attach_args *pa = &(sc->bge_pa);
   1999 	int phy_addr = 1;
   2000 
   2001 	/*
   2002 	 * PHY address mapping for various devices.
   2003 	 *
   2004 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2005 	 * ---------+-------+-------+-------+-------+
   2006 	 * BCM57XX  |   1   |   X   |   X   |   X   |
   2007 	 * BCM5704  |   1   |   X   |   1   |   X   |
   2008 	 * BCM5717  |   1   |   8   |   2   |   9   |
   2009 	 * BCM5719  |   1   |   8   |   2   |   9   |
   2010 	 * BCM5720  |   1   |   8   |   2   |   9   |
   2011 	 *
   2012 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2013 	 * ---------+-------+-------+-------+-------+
   2014 	 * BCM57XX  |   X   |   X   |   X   |   X   |
   2015 	 * BCM5704  |   X   |   X   |   X   |   X   |
   2016 	 * BCM5717  |   X   |   X   |   X   |   X   |
   2017 	 * BCM5719  |   3   |   10  |   4   |   11  |
   2018 	 * BCM5720  |   X   |   X   |   X   |   X   |
   2019 	 *
   2020 	 * Other addresses may respond but they are not
   2021 	 * IEEE compliant PHYs and should be ignored.
   2022 	 */
   2023 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2024 	case BGE_ASICREV_BCM5717:
   2025 	case BGE_ASICREV_BCM5719:
   2026 	case BGE_ASICREV_BCM5720:
   2027 		phy_addr = pa->pa_function;
   2028 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2029 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2030 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2031 		} else {
   2032 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2033 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2034 		}
   2035 	}
   2036 
   2037 	return phy_addr;
   2038 }
   2039 
   2040 /*
   2041  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2042  * self-test results.
   2043  */
   2044 static int
   2045 bge_chipinit(struct bge_softc *sc)
   2046 {
   2047 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
   2048 	int i;
   2049 
   2050 	/* Set endianness before we access any non-PCI registers. */
   2051 	misc_ctl = BGE_INIT;
   2052 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   2053 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
   2054 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2055 	    misc_ctl);
   2056 
   2057 	/*
   2058 	 * Clear the MAC statistics block in the NIC's
   2059 	 * internal memory.
   2060 	 */
   2061 	for (i = BGE_STATS_BLOCK;
   2062 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2063 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2064 
   2065 	for (i = BGE_STATUS_BLOCK;
   2066 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2067 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2068 
   2069 	/* 5717 workaround from tg3 */
   2070 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2071 		/* Save */
   2072 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2073 
   2074 		/* Temporary modify MODE_CTL to control TLP */
   2075 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2076 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2077 
   2078 		/* Control TLP */
   2079 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2080 		    BGE_TLP_PHYCTL1);
   2081 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2082 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2083 
   2084 		/* Restore */
   2085 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2086 	}
   2087 
   2088 	if (BGE_IS_57765_FAMILY(sc)) {
   2089 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2090 			/* Save */
   2091 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2092 
   2093 			/* Temporary modify MODE_CTL to control TLP */
   2094 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2095 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2096 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2097 
   2098 			/* Control TLP */
   2099 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2100 			    BGE_TLP_PHYCTL5);
   2101 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2102 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2103 
   2104 			/* Restore */
   2105 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2106 		}
   2107 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2108 			/*
   2109 			 * For the 57766 and non Ax versions of 57765, bootcode
   2110 			 * needs to setup the PCIE Fast Training Sequence (FTS)
   2111 			 * value to prevent transmit hangs.
   2112 			 */
   2113 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2114 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2115 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2116 
   2117 			/* Save */
   2118 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2119 
   2120 			/* Temporary modify MODE_CTL to control TLP */
   2121 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2122 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2123 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2124 
   2125 			/* Control TLP */
   2126 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2127 			    BGE_TLP_FTSMAX);
   2128 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2129 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2130 			    reg | BGE_TLP_FTSMAX_VAL);
   2131 
   2132 			/* Restore */
   2133 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2134 		}
   2135 
   2136 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2137 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2138 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2139 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2140 	}
   2141 
   2142 	/* Set up the PCI DMA control register. */
   2143 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2144 	if (sc->bge_flags & BGEF_PCIE) {
   2145 		/* Read watermark not used, 128 bytes for write. */
   2146 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2147 		    device_xname(sc->bge_dev)));
   2148 		if (sc->bge_mps >= 256)
   2149 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2150 		else
   2151 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2152 	} else if (sc->bge_flags & BGEF_PCIX) {
   2153 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2154 		    device_xname(sc->bge_dev)));
   2155 		/* PCI-X bus */
   2156 		if (BGE_IS_5714_FAMILY(sc)) {
   2157 			/* 256 bytes for read and write. */
   2158 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2159 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2160 
   2161 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2162 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2163 			else
   2164 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2165 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   2166 			/*
   2167 			 * In the BCM5703, the DMA read watermark should
   2168 			 * be set to less than or equal to the maximum
   2169 			 * memory read byte count of the PCI-X command
   2170 			 * register.
   2171 			 */
   2172 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
   2173 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2174 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2175 			/* 1536 bytes for read, 384 bytes for write. */
   2176 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2177 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2178 		} else {
   2179 			/* 384 bytes for read and write. */
   2180 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2181 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2182 			    (0x0F);
   2183 		}
   2184 
   2185 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2186 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2187 			uint32_t tmp;
   2188 
   2189 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2190 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2191 			if (tmp == 6 || tmp == 7)
   2192 				dma_rw_ctl |=
   2193 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2194 
   2195 			/* Set PCI-X DMA write workaround. */
   2196 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2197 		}
   2198 	} else {
   2199 		/* Conventional PCI bus: 256 bytes for read and write. */
   2200 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2201 		    device_xname(sc->bge_dev)));
   2202 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2203 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2204 
   2205 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2206 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2207 			dma_rw_ctl |= 0x0F;
   2208 	}
   2209 
   2210 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2211 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2212 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2213 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2214 
   2215 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2216 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2217 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2218 
   2219 	if (BGE_IS_57765_PLUS(sc)) {
   2220 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2221 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2222 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2223 
   2224 		/*
   2225 		 * Enable HW workaround for controllers that misinterpret
   2226 		 * a status tag update and leave interrupts permanently
   2227 		 * disabled.
   2228 		 */
   2229 		if (!BGE_IS_57765_FAMILY(sc) &&
   2230 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2231 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
   2232 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2233 	}
   2234 
   2235 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2236 	    dma_rw_ctl);
   2237 
   2238 	/*
   2239 	 * Set up general mode register.
   2240 	 */
   2241 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2242 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2243 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2244 		/* Retain Host-2-BMC settings written by APE firmware. */
   2245 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2246 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2247 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2248 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2249 	}
   2250 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2251 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2252 
   2253 	/*
   2254 	 * BCM5701 B5 have a bug causing data corruption when using
   2255 	 * 64-bit DMA reads, which can be terminated early and then
   2256 	 * completed later as 32-bit accesses, in combination with
   2257 	 * certain bridges.
   2258 	 */
   2259 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2260 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2261 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2262 
   2263 	/*
   2264 	 * Tell the firmware the driver is running
   2265 	 */
   2266 	if (sc->bge_asf_mode & ASF_STACKUP)
   2267 		mode_ctl |= BGE_MODECTL_STACKUP;
   2268 
   2269 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2270 
   2271 	/*
   2272 	 * Disable memory write invalidate.  Apparently it is not supported
   2273 	 * properly by these devices.
   2274 	 */
   2275 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2276 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2277 
   2278 #ifdef __brokenalpha__
   2279 	/*
   2280 	 * Must insure that we do not cross an 8K (bytes) boundary
   2281 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2282 	 * restriction on some ALPHA platforms with early revision
   2283 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2284 	 */
   2285 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2286 #endif
   2287 
   2288 	/* Set the timer prescaler (always 66MHz) */
   2289 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2290 
   2291 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2292 		DELAY(40);	/* XXX */
   2293 
   2294 		/* Put PHY into ready state */
   2295 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2296 		DELAY(40);
   2297 	}
   2298 
   2299 	return 0;
   2300 }
   2301 
   2302 static int
   2303 bge_blockinit(struct bge_softc *sc)
   2304 {
   2305 	volatile struct bge_rcb	 *rcb;
   2306 	bus_size_t rcb_addr;
   2307 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2308 	bge_hostaddr taddr;
   2309 	uint32_t	dmactl, rdmareg, mimode, val;
   2310 	int		i, limit;
   2311 
   2312 	/*
   2313 	 * Initialize the memory window pointer register so that
   2314 	 * we can access the first 32K of internal NIC RAM. This will
   2315 	 * allow us to set up the TX send ring RCBs and the RX return
   2316 	 * ring RCBs, plus other things which live in NIC memory.
   2317 	 */
   2318 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2319 
   2320 	if (!BGE_IS_5705_PLUS(sc)) {
   2321 		/* 57XX step 33 */
   2322 		/* Configure mbuf memory pool */
   2323 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   2324 		    BGE_BUFFPOOL_1);
   2325 
   2326 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2327 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2328 		else
   2329 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2330 
   2331 		/* 57XX step 34 */
   2332 		/* Configure DMA resource pool */
   2333 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2334 		    BGE_DMA_DESCRIPTORS);
   2335 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2336 	}
   2337 
   2338 	/* 5718 step 11, 57XX step 35 */
   2339 	/*
   2340 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2341 	 * recommend these.
   2342 	 */
   2343 	if (BGE_IS_5717_PLUS(sc)) {
   2344 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2345 		if (ifp->if_mtu > ETHERMTU) {
   2346 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
   2347 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
   2348 		} else {
   2349 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2350 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2351 		}
   2352 	} else if (BGE_IS_5705_PLUS(sc)) {
   2353 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2354 
   2355 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2356 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2357 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2358 		} else {
   2359 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2360 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2361 		}
   2362 	} else {
   2363 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2364 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2365 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2366 	}
   2367 
   2368 	/* 57XX step 36 */
   2369 	/* Configure DMA resource watermarks */
   2370 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2371 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2372 
   2373 	/* 5718 step 13, 57XX step 38 */
   2374 	/* Enable buffer manager */
   2375 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2376 	/*
   2377 	 * Change the arbitration algorithm of TXMBUF read request to
   2378 	 * round-robin instead of priority based for BCM5719.  When
   2379 	 * TXFIFO is almost empty, RDMA will hold its request until
   2380 	 * TXFIFO is not almost empty.
   2381 	 */
   2382 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2383 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2384 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2385 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2386 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2387 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2388 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2389 
   2390 	/* 57XX step 39 */
   2391 	/* Poll for buffer manager start indication */
   2392 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2393 		DELAY(10);
   2394 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2395 			break;
   2396 	}
   2397 
   2398 	if (i == BGE_TIMEOUT * 2) {
   2399 		aprint_error_dev(sc->bge_dev,
   2400 		    "buffer manager failed to start\n");
   2401 		return ENXIO;
   2402 	}
   2403 
   2404 	/* 57XX step 40 */
   2405 	/* Enable flow-through queues */
   2406 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2407 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2408 
   2409 	/* Wait until queue initialization is complete */
   2410 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2411 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2412 			break;
   2413 		DELAY(10);
   2414 	}
   2415 
   2416 	if (i == BGE_TIMEOUT * 2) {
   2417 		aprint_error_dev(sc->bge_dev,
   2418 		    "flow-through queue init failed\n");
   2419 		return ENXIO;
   2420 	}
   2421 
   2422 	/*
   2423 	 * Summary of rings supported by the controller:
   2424 	 *
   2425 	 * Standard Receive Producer Ring
   2426 	 * - This ring is used to feed receive buffers for "standard"
   2427 	 *   sized frames (typically 1536 bytes) to the controller.
   2428 	 *
   2429 	 * Jumbo Receive Producer Ring
   2430 	 * - This ring is used to feed receive buffers for jumbo sized
   2431 	 *   frames (i.e. anything bigger than the "standard" frames)
   2432 	 *   to the controller.
   2433 	 *
   2434 	 * Mini Receive Producer Ring
   2435 	 * - This ring is used to feed receive buffers for "mini"
   2436 	 *   sized frames to the controller.
   2437 	 * - This feature required external memory for the controller
   2438 	 *   but was never used in a production system.  Should always
   2439 	 *   be disabled.
   2440 	 *
   2441 	 * Receive Return Ring
   2442 	 * - After the controller has placed an incoming frame into a
   2443 	 *   receive buffer that buffer is moved into a receive return
   2444 	 *   ring.  The driver is then responsible to passing the
   2445 	 *   buffer up to the stack.  Many versions of the controller
   2446 	 *   support multiple RR rings.
   2447 	 *
   2448 	 * Send Ring
   2449 	 * - This ring is used for outgoing frames.  Many versions of
   2450 	 *   the controller support multiple send rings.
   2451 	 */
   2452 
   2453 	/* 5718 step 15, 57XX step 41 */
   2454 	/* Initialize the standard RX ring control block */
   2455 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2456 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2457 	/* 5718 step 16 */
   2458 	if (BGE_IS_57765_PLUS(sc)) {
   2459 		/*
   2460 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2461 		 * Bits 15-2 : Maximum RX frame size
   2462 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2463 		 * Bit 0     : Reserved
   2464 		 */
   2465 		rcb->bge_maxlen_flags =
   2466 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2467 	} else if (BGE_IS_5705_PLUS(sc)) {
   2468 		/*
   2469 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2470 		 * Bits 15-2 : Reserved (should be 0)
   2471 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2472 		 * Bit 0     : Reserved
   2473 		 */
   2474 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2475 	} else {
   2476 		/*
   2477 		 * Ring size is always XXX entries
   2478 		 * Bits 31-16: Maximum RX frame size
   2479 		 * Bits 15-2 : Reserved (should be 0)
   2480 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2481 		 * Bit 0     : Reserved
   2482 		 */
   2483 		rcb->bge_maxlen_flags =
   2484 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2485 	}
   2486 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2487 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2488 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2489 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2490 	else
   2491 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2492 	/* Write the standard receive producer ring control block. */
   2493 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2494 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2495 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2496 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2497 
   2498 	/* Reset the standard receive producer ring producer index. */
   2499 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2500 
   2501 	/* 57XX step 42 */
   2502 	/*
   2503 	 * Initialize the jumbo RX ring control block
   2504 	 * We set the 'ring disabled' bit in the flags
   2505 	 * field until we're actually ready to start
   2506 	 * using this ring (i.e. once we set the MTU
   2507 	 * high enough to require it).
   2508 	 */
   2509 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2510 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2511 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2512 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2513 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2514 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2515 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2516 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2517 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2518 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2519 		else
   2520 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2521 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2522 		    rcb->bge_hostaddr.bge_addr_hi);
   2523 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2524 		    rcb->bge_hostaddr.bge_addr_lo);
   2525 		/* Program the jumbo receive producer ring RCB parameters. */
   2526 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2527 		    rcb->bge_maxlen_flags);
   2528 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2529 		/* Reset the jumbo receive producer ring producer index. */
   2530 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2531 	}
   2532 
   2533 	/* 57XX step 43 */
   2534 	/* Disable the mini receive producer ring RCB. */
   2535 	if (BGE_IS_5700_FAMILY(sc)) {
   2536 		/* Set up dummy disabled mini ring RCB */
   2537 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2538 		rcb->bge_maxlen_flags =
   2539 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2540 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2541 		    rcb->bge_maxlen_flags);
   2542 		/* Reset the mini receive producer ring producer index. */
   2543 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2544 
   2545 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2546 		    offsetof(struct bge_ring_data, bge_info),
   2547 		    sizeof (struct bge_gib),
   2548 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2549 	}
   2550 
   2551 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2552 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2553 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2554 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2555 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2556 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2557 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2558 	}
   2559 	/* 5718 step 14, 57XX step 44 */
   2560 	/*
   2561 	 * The BD ring replenish thresholds control how often the
   2562 	 * hardware fetches new BD's from the producer rings in host
   2563 	 * memory.  Setting the value too low on a busy system can
   2564 	 * starve the hardware and recue the throughpout.
   2565 	 *
   2566 	 * Set the BD ring replenish thresholds. The recommended
   2567 	 * values are 1/8th the number of descriptors allocated to
   2568 	 * each ring, but since we try to avoid filling the entire
   2569 	 * ring we set these to the minimal value of 8.  This needs to
   2570 	 * be done on several of the supported chip revisions anyway,
   2571 	 * to work around HW bugs.
   2572 	 */
   2573 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2574 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2575 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2576 
   2577 	/* 5718 step 18 */
   2578 	if (BGE_IS_5717_PLUS(sc)) {
   2579 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2580 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2581 	}
   2582 
   2583 	/* 57XX step 45 */
   2584 	/*
   2585 	 * Disable all send rings by setting the 'ring disabled' bit
   2586 	 * in the flags field of all the TX send ring control blocks,
   2587 	 * located in NIC memory.
   2588 	 */
   2589 	if (BGE_IS_5700_FAMILY(sc)) {
   2590 		/* 5700 to 5704 had 16 send rings. */
   2591 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2592 	} else if (BGE_IS_5717_PLUS(sc)) {
   2593 		limit = BGE_TX_RINGS_5717_MAX;
   2594 	} else if (BGE_IS_57765_FAMILY(sc) ||
   2595 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2596 		limit = BGE_TX_RINGS_57765_MAX;
   2597 	} else
   2598 		limit = 1;
   2599 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2600 	for (i = 0; i < limit; i++) {
   2601 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2602 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2603 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2604 		rcb_addr += sizeof(struct bge_rcb);
   2605 	}
   2606 
   2607 	/* 57XX step 46 and 47 */
   2608 	/* Configure send ring RCB 0 (we use only the first ring) */
   2609 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2610 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2611 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2612 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2613 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2614 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2615 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2616 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2617 	else
   2618 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2619 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2620 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2621 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2622 
   2623 	/* 57XX step 48 */
   2624 	/*
   2625 	 * Disable all receive return rings by setting the
   2626 	 * 'ring diabled' bit in the flags field of all the receive
   2627 	 * return ring control blocks, located in NIC memory.
   2628 	 */
   2629 	if (BGE_IS_5717_PLUS(sc)) {
   2630 		/* Should be 17, use 16 until we get an SRAM map. */
   2631 		limit = 16;
   2632 	} else if (BGE_IS_5700_FAMILY(sc))
   2633 		limit = BGE_RX_RINGS_MAX;
   2634 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2635 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
   2636 	    BGE_IS_57765_FAMILY(sc))
   2637 		limit = 4;
   2638 	else
   2639 		limit = 1;
   2640 	/* Disable all receive return rings */
   2641 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2642 	for (i = 0; i < limit; i++) {
   2643 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2644 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2645 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2646 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2647 			BGE_RCB_FLAG_RING_DISABLED));
   2648 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2649 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2650 		    (i * (sizeof(uint64_t))), 0);
   2651 		rcb_addr += sizeof(struct bge_rcb);
   2652 	}
   2653 
   2654 	/* 57XX step 49 */
   2655 	/*
   2656 	 * Set up receive return ring 0.  Note that the NIC address
   2657 	 * for RX return rings is 0x0.  The return rings live entirely
   2658 	 * within the host, so the nicaddr field in the RCB isn't used.
   2659 	 */
   2660 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2661 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2662 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2663 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2664 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2665 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2666 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2667 
   2668 	/* 5718 step 24, 57XX step 53 */
   2669 	/* Set random backoff seed for TX */
   2670 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2671 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2672 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2673 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2674 	    BGE_TX_BACKOFF_SEED_MASK);
   2675 
   2676 	/* 5718 step 26, 57XX step 55 */
   2677 	/* Set inter-packet gap */
   2678 	val = 0x2620;
   2679 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2680 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2681 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2682 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2683 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2684 
   2685 	/* 5718 step 27, 57XX step 56 */
   2686 	/*
   2687 	 * Specify which ring to use for packets that don't match
   2688 	 * any RX rules.
   2689 	 */
   2690 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2691 
   2692 	/* 5718 step 28, 57XX step 57 */
   2693 	/*
   2694 	 * Configure number of RX lists. One interrupt distribution
   2695 	 * list, sixteen active lists, one bad frames class.
   2696 	 */
   2697 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2698 
   2699 	/* 5718 step 29, 57XX step 58 */
   2700 	/* Inialize RX list placement stats mask. */
   2701 	if (BGE_IS_575X_PLUS(sc)) {
   2702 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2703 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2704 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2705 	} else
   2706 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2707 
   2708 	/* 5718 step 30, 57XX step 59 */
   2709 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2710 
   2711 	/* 5718 step 33, 57XX step 62 */
   2712 	/* Disable host coalescing until we get it set up */
   2713 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2714 
   2715 	/* 5718 step 34, 57XX step 63 */
   2716 	/* Poll to make sure it's shut down. */
   2717 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2718 		DELAY(10);
   2719 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2720 			break;
   2721 	}
   2722 
   2723 	if (i == BGE_TIMEOUT * 2) {
   2724 		aprint_error_dev(sc->bge_dev,
   2725 		    "host coalescing engine failed to idle\n");
   2726 		return ENXIO;
   2727 	}
   2728 
   2729 	/* 5718 step 35, 36, 37 */
   2730 	/* Set up host coalescing defaults */
   2731 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2732 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2733 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2734 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2735 	if (!(BGE_IS_5705_PLUS(sc))) {
   2736 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2737 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2738 	}
   2739 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2740 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2741 
   2742 	/* Set up address of statistics block */
   2743 	if (BGE_IS_5700_FAMILY(sc)) {
   2744 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2745 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2746 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2747 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2748 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2749 	}
   2750 
   2751 	/* 5718 step 38 */
   2752 	/* Set up address of status block */
   2753 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2754 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2755 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2756 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2757 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2758 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2759 
   2760 	/* Set up status block size. */
   2761 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2762 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2763 		val = BGE_STATBLKSZ_FULL;
   2764 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2765 	} else {
   2766 		val = BGE_STATBLKSZ_32BYTE;
   2767 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2768 	}
   2769 
   2770 	/* 5718 step 39, 57XX step 73 */
   2771 	/* Turn on host coalescing state machine */
   2772 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2773 
   2774 	/* 5718 step 40, 57XX step 74 */
   2775 	/* Turn on RX BD completion state machine and enable attentions */
   2776 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2777 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2778 
   2779 	/* 5718 step 41, 57XX step 75 */
   2780 	/* Turn on RX list placement state machine */
   2781 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2782 
   2783 	/* 57XX step 76 */
   2784 	/* Turn on RX list selector state machine. */
   2785 	if (!(BGE_IS_5705_PLUS(sc)))
   2786 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2787 
   2788 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2789 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2790 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2791 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2792 
   2793 	if (sc->bge_flags & BGEF_FIBER_TBI)
   2794 		val |= BGE_PORTMODE_TBI;
   2795 	else if (sc->bge_flags & BGEF_FIBER_MII)
   2796 		val |= BGE_PORTMODE_GMII;
   2797 	else
   2798 		val |= BGE_PORTMODE_MII;
   2799 
   2800 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   2801 	/* Allow APE to send/receive frames. */
   2802 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2803 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2804 
   2805 	/* Turn on DMA, clear stats */
   2806 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2807 	/* 5718 step 44 */
   2808 	DELAY(40);
   2809 
   2810 	/* 5718 step 45, 57XX step 79 */
   2811 	/* Set misc. local control, enable interrupts on attentions */
   2812 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2813 	if (BGE_IS_5717_PLUS(sc)) {
   2814 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2815 		/* 5718 step 46 */
   2816 		DELAY(100);
   2817 	}
   2818 
   2819 	/* 57XX step 81 */
   2820 	/* Turn on DMA completion state machine */
   2821 	if (!(BGE_IS_5705_PLUS(sc)))
   2822 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2823 
   2824 	/* 5718 step 47, 57XX step 82 */
   2825 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2826 
   2827 	/* 5718 step 48 */
   2828 	/* Enable host coalescing bug fix. */
   2829 	if (BGE_IS_5755_PLUS(sc))
   2830 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2831 
   2832 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2833 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2834 
   2835 	/* Turn on write DMA state machine */
   2836 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2837 	/* 5718 step 49 */
   2838 	DELAY(40);
   2839 
   2840 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2841 
   2842 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   2843 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2844 
   2845 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2846 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2847 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2848 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2849 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2850 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2851 
   2852 	if (sc->bge_flags & BGEF_PCIE)
   2853 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2854 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2855 		if (ifp->if_mtu <= ETHERMTU)
   2856 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
   2857 	}
   2858 	if (sc->bge_flags & BGEF_TSO) {
   2859 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2860 		if (BGE_IS_5717_PLUS(sc))
   2861 			val |= BGE_RDMAMODE_TSO6_ENABLE;
   2862 	}
   2863 
   2864 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2865 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2866 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   2867 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   2868 		/*
   2869 		 * Allow multiple outstanding read requests from
   2870 		 * non-LSO read DMA engine.
   2871 		 */
   2872 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2873 	}
   2874 
   2875 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2876 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2877 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2878 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   2879 	    BGE_IS_57765_PLUS(sc)) {
   2880 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2881 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
   2882 		else
   2883 			rdmareg = BGE_RDMA_RSRVCTRL;
   2884 		dmactl = CSR_READ_4(sc, rdmareg);
   2885 		/*
   2886 		 * Adjust tx margin to prevent TX data corruption and
   2887 		 * fix internal FIFO overflow.
   2888 		 */
   2889 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2890 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2891 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   2892 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   2893 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   2894 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   2895 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   2896 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   2897 		}
   2898 		/*
   2899 		 * Enable fix for read DMA FIFO overruns.
   2900 		 * The fix is to limit the number of RX BDs
   2901 		 * the hardware would fetch at a fime.
   2902 		 */
   2903 		CSR_WRITE_4(sc, rdmareg, dmactl |
   2904 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   2905 	}
   2906 
   2907 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   2908 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2909 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2910 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2911 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2912 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2913 		/*
   2914 		 * Allow 4KB burst length reads for non-LSO frames.
   2915 		 * Enable 512B burst length reads for buffer descriptors.
   2916 		 */
   2917 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2918 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2919 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   2920 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2921 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2922 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
   2923 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
   2924 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2925 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2926 	}
   2927 	/* Turn on read DMA state machine */
   2928 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   2929 	/* 5718 step 52 */
   2930 	delay(40);
   2931 
   2932 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   2933 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
   2934 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
   2935 			if ((val & 0xFFFF) > BGE_FRAMELEN)
   2936 				break;
   2937 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
   2938 				break;
   2939 		}
   2940 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
   2941 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   2942 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2943 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
   2944 			else
   2945 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
   2946 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   2947 		}
   2948 	}
   2949 
   2950 	/* 5718 step 56, 57XX step 84 */
   2951 	/* Turn on RX data completion state machine */
   2952 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2953 
   2954 	/* Turn on RX data and RX BD initiator state machine */
   2955 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2956 
   2957 	/* 57XX step 85 */
   2958 	/* Turn on Mbuf cluster free state machine */
   2959 	if (!BGE_IS_5705_PLUS(sc))
   2960 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2961 
   2962 	/* 5718 step 57, 57XX step 86 */
   2963 	/* Turn on send data completion state machine */
   2964 	val = BGE_SDCMODE_ENABLE;
   2965 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2966 		val |= BGE_SDCMODE_CDELAY;
   2967 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2968 
   2969 	/* 5718 step 58 */
   2970 	/* Turn on send BD completion state machine */
   2971 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2972 
   2973 	/* 57XX step 88 */
   2974 	/* Turn on RX BD initiator state machine */
   2975 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2976 
   2977 	/* 5718 step 60, 57XX step 90 */
   2978 	/* Turn on send data initiator state machine */
   2979 	if (sc->bge_flags & BGEF_TSO) {
   2980 		/* XXX: magic value from Linux driver */
   2981 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   2982 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   2983 	} else
   2984 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2985 
   2986 	/* 5718 step 61, 57XX step 91 */
   2987 	/* Turn on send BD initiator state machine */
   2988 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2989 
   2990 	/* 5718 step 62, 57XX step 92 */
   2991 	/* Turn on send BD selector state machine */
   2992 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2993 
   2994 	/* 5718 step 31, 57XX step 60 */
   2995 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2996 	/* 5718 step 32, 57XX step 61 */
   2997 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2998 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2999 
   3000 	/* ack/clear link change events */
   3001 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3002 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3003 	    BGE_MACSTAT_LINK_CHANGED);
   3004 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3005 
   3006 	/*
   3007 	 * Enable attention when the link has changed state for
   3008 	 * devices that use auto polling.
   3009 	 */
   3010 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3011 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3012 	} else {
   3013 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3014 			mimode = BGE_MIMODE_500KHZ_CONST;
   3015 		else
   3016 			mimode = BGE_MIMODE_BASE;
   3017 		/* 5718 step 68. 5718 step 69 (optionally). */
   3018 		if (BGE_IS_5700_FAMILY(sc) ||
   3019 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
   3020 			mimode |= BGE_MIMODE_AUTOPOLL;
   3021 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3022 		}
   3023 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3024 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3025 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3026 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3027 			    BGE_EVTENB_MI_INTERRUPT);
   3028 	}
   3029 
   3030 	/*
   3031 	 * Clear any pending link state attention.
   3032 	 * Otherwise some link state change events may be lost until attention
   3033 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3034 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3035 	 * state change attentions implies clearing pending attention.
   3036 	 */
   3037 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3038 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3039 	    BGE_MACSTAT_LINK_CHANGED);
   3040 
   3041 	/* Enable link state change attentions. */
   3042 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3043 
   3044 	return 0;
   3045 }
   3046 
   3047 static const struct bge_revision *
   3048 bge_lookup_rev(uint32_t chipid)
   3049 {
   3050 	const struct bge_revision *br;
   3051 
   3052 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3053 		if (br->br_chipid == chipid)
   3054 			return br;
   3055 	}
   3056 
   3057 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3058 		if (br->br_chipid == BGE_ASICREV(chipid))
   3059 			return br;
   3060 	}
   3061 
   3062 	return NULL;
   3063 }
   3064 
   3065 static const struct bge_product *
   3066 bge_lookup(const struct pci_attach_args *pa)
   3067 {
   3068 	const struct bge_product *bp;
   3069 
   3070 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3071 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3072 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3073 			return bp;
   3074 	}
   3075 
   3076 	return NULL;
   3077 }
   3078 
   3079 static uint32_t
   3080 bge_chipid(const struct pci_attach_args *pa)
   3081 {
   3082 	uint32_t id;
   3083 
   3084 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3085 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3086 
   3087 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3088 		switch (PCI_PRODUCT(pa->pa_id)) {
   3089 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3090 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3091 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3092 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3093 		case PCI_PRODUCT_BROADCOM_BCM5725:
   3094 		case PCI_PRODUCT_BROADCOM_BCM5727:
   3095 		case PCI_PRODUCT_BROADCOM_BCM5762:
   3096 		case PCI_PRODUCT_BROADCOM_BCM57764:
   3097 		case PCI_PRODUCT_BROADCOM_BCM57767:
   3098 		case PCI_PRODUCT_BROADCOM_BCM57787:
   3099 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3100 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3101 			break;
   3102 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3103 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3104 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3105 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3106 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3107 		case PCI_PRODUCT_BROADCOM_BCM57782:
   3108 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3109 		case PCI_PRODUCT_BROADCOM_BCM57786:
   3110 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3111 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3112 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3113 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3114 			break;
   3115 		default:
   3116 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3117 			    BGE_PCI_PRODID_ASICREV);
   3118 			break;
   3119 		}
   3120 	}
   3121 
   3122 	return id;
   3123 }
   3124 
   3125 /*
   3126  * Return true if MSI can be used with this device.
   3127  */
   3128 static int
   3129 bge_can_use_msi(struct bge_softc *sc)
   3130 {
   3131 	int can_use_msi = 0;
   3132 
   3133 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3134 	case BGE_ASICREV_BCM5714_A0:
   3135 	case BGE_ASICREV_BCM5714:
   3136 		/*
   3137 		 * Apparently, MSI doesn't work when these chips are
   3138 		 * configured in single-port mode.
   3139 		 */
   3140 		break;
   3141 	case BGE_ASICREV_BCM5750:
   3142 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
   3143 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
   3144 			can_use_msi = 1;
   3145 		break;
   3146 	default:
   3147 		if (BGE_IS_575X_PLUS(sc))
   3148 			can_use_msi = 1;
   3149 	}
   3150 	return (can_use_msi);
   3151 }
   3152 
   3153 /*
   3154  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3155  * against our list and return its name if we find a match. Note
   3156  * that since the Broadcom controller contains VPD support, we
   3157  * can get the device name string from the controller itself instead
   3158  * of the compiled-in string. This is a little slow, but it guarantees
   3159  * we'll always announce the right product name.
   3160  */
   3161 static int
   3162 bge_probe(device_t parent, cfdata_t match, void *aux)
   3163 {
   3164 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3165 
   3166 	if (bge_lookup(pa) != NULL)
   3167 		return 1;
   3168 
   3169 	return 0;
   3170 }
   3171 
   3172 static void
   3173 bge_attach(device_t parent, device_t self, void *aux)
   3174 {
   3175 	struct bge_softc	*sc = device_private(self);
   3176 	struct pci_attach_args	*pa = aux;
   3177 	prop_dictionary_t dict;
   3178 	const struct bge_product *bp;
   3179 	const struct bge_revision *br;
   3180 	pci_chipset_tag_t	pc;
   3181 	const char		*intrstr = NULL;
   3182 	uint32_t 		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
   3183 	uint32_t		command;
   3184 	struct ifnet		*ifp;
   3185 	uint32_t		misccfg, mimode;
   3186 	void *			kva;
   3187 	u_char			eaddr[ETHER_ADDR_LEN];
   3188 	pcireg_t		memtype, subid, reg;
   3189 	bus_addr_t		memaddr;
   3190 	uint32_t		pm_ctl;
   3191 	bool			no_seeprom;
   3192 	int			capmask;
   3193 	int			mii_flags;
   3194 	int			map_flags;
   3195 	char intrbuf[PCI_INTRSTR_LEN];
   3196 
   3197 	bp = bge_lookup(pa);
   3198 	KASSERT(bp != NULL);
   3199 
   3200 	sc->sc_pc = pa->pa_pc;
   3201 	sc->sc_pcitag = pa->pa_tag;
   3202 	sc->bge_dev = self;
   3203 
   3204 	sc->bge_pa = *pa;
   3205 	pc = sc->sc_pc;
   3206 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3207 
   3208 	aprint_naive(": Ethernet controller\n");
   3209 	aprint_normal(": %s Ethernet\n", bp->bp_name);
   3210 
   3211 	/*
   3212 	 * Map control/status registers.
   3213 	 */
   3214 	DPRINTFN(5, ("Map control/status regs\n"));
   3215 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3216 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3217 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3218 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3219 
   3220 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3221 		aprint_error_dev(sc->bge_dev,
   3222 		    "failed to enable memory mapping!\n");
   3223 		return;
   3224 	}
   3225 
   3226 	DPRINTFN(5, ("pci_mem_find\n"));
   3227 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3228 	switch (memtype) {
   3229 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3230 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3231 #if 0
   3232 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3233 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3234 		    &memaddr, &sc->bge_bsize) == 0)
   3235 			break;
   3236 #else
   3237 		/*
   3238 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3239 		 * system get NMI on boot (PR#48451). This problem might not be
   3240 		 * the driver's bug but our PCI common part's bug. Until we
   3241 		 * find a real reason, we ignore the prefetchable bit.
   3242 		 */
   3243 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
   3244 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
   3245 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3246 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
   3247 			    map_flags, &sc->bge_bhandle) == 0) {
   3248 				sc->bge_btag = pa->pa_memt;
   3249 				break;
   3250 			}
   3251 		}
   3252 #endif
   3253 		/* FALLTHROUGH */
   3254 	default:
   3255 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3256 		return;
   3257 	}
   3258 
   3259 	/* Save various chip information. */
   3260 	sc->bge_chipid = bge_chipid(pa);
   3261 	sc->bge_phy_addr = bge_phy_addr(sc);
   3262 
   3263 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3264 	    &sc->bge_pciecap, NULL) != 0) {
   3265 		/* PCIe */
   3266 		sc->bge_flags |= BGEF_PCIE;
   3267 		/* Extract supported maximum payload size. */
   3268 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3269 		    sc->bge_pciecap + PCIE_DCAP);
   3270 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3271 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3272 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3273 			sc->bge_expmrq = 2048;
   3274 		else
   3275 			sc->bge_expmrq = 4096;
   3276 		bge_set_max_readrq(sc);
   3277 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
   3278 		/* PCIe without PCIe cap */
   3279 		sc->bge_flags |= BGEF_PCIE;
   3280 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3281 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3282 		/* PCI-X */
   3283 		sc->bge_flags |= BGEF_PCIX;
   3284 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3285 			&sc->bge_pcixcap, NULL) == 0)
   3286 			aprint_error_dev(sc->bge_dev,
   3287 			    "unable to find PCIX capability\n");
   3288 	}
   3289 
   3290 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3291 		/*
   3292 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3293 		 * can clobber the chip's PCI config-space power control
   3294 		 * registers, leaving the card in D3 powersave state. We do
   3295 		 * not have memory-mapped registers in this state, so force
   3296 		 * device into D0 state before starting initialization.
   3297 		 */
   3298 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3299 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   3300 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3301 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3302 		DELAY(1000);	/* 27 usec is allegedly sufficent */
   3303 	}
   3304 
   3305 	/* Save chipset family. */
   3306 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3307 	case BGE_ASICREV_BCM5717:
   3308 	case BGE_ASICREV_BCM5719:
   3309 	case BGE_ASICREV_BCM5720:
   3310 		sc->bge_flags |= BGEF_5717_PLUS;
   3311 		/* FALLTHROUGH */
   3312 	case BGE_ASICREV_BCM5762:
   3313 	case BGE_ASICREV_BCM57765:
   3314 	case BGE_ASICREV_BCM57766:
   3315 		if (!BGE_IS_5717_PLUS(sc))
   3316 			sc->bge_flags |= BGEF_57765_FAMILY;
   3317 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
   3318 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
   3319 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3320 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3321 			/*
   3322 			 * Enable work around for DMA engine miscalculation
   3323 			 * of TXMBUF available space.
   3324 			 */
   3325 			sc->bge_flags |= BGEF_RDMA_BUG;
   3326 
   3327 			if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3328 			    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
   3329 				/* Jumbo frame on BCM5719 A0 does not work. */
   3330 				sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
   3331 			}
   3332 		}
   3333 		break;
   3334 	case BGE_ASICREV_BCM5755:
   3335 	case BGE_ASICREV_BCM5761:
   3336 	case BGE_ASICREV_BCM5784:
   3337 	case BGE_ASICREV_BCM5785:
   3338 	case BGE_ASICREV_BCM5787:
   3339 	case BGE_ASICREV_BCM57780:
   3340 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
   3341 		break;
   3342 	case BGE_ASICREV_BCM5700:
   3343 	case BGE_ASICREV_BCM5701:
   3344 	case BGE_ASICREV_BCM5703:
   3345 	case BGE_ASICREV_BCM5704:
   3346 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
   3347 		break;
   3348 	case BGE_ASICREV_BCM5714_A0:
   3349 	case BGE_ASICREV_BCM5780:
   3350 	case BGE_ASICREV_BCM5714:
   3351 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
   3352 		/* FALLTHROUGH */
   3353 	case BGE_ASICREV_BCM5750:
   3354 	case BGE_ASICREV_BCM5752:
   3355 	case BGE_ASICREV_BCM5906:
   3356 		sc->bge_flags |= BGEF_575X_PLUS;
   3357 		/* FALLTHROUGH */
   3358 	case BGE_ASICREV_BCM5705:
   3359 		sc->bge_flags |= BGEF_5705_PLUS;
   3360 		break;
   3361 	}
   3362 
   3363 	/* Identify chips with APE processor. */
   3364 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3365 	case BGE_ASICREV_BCM5717:
   3366 	case BGE_ASICREV_BCM5719:
   3367 	case BGE_ASICREV_BCM5720:
   3368 	case BGE_ASICREV_BCM5761:
   3369 	case BGE_ASICREV_BCM5762:
   3370 		sc->bge_flags |= BGEF_APE;
   3371 		break;
   3372 	}
   3373 
   3374 	/*
   3375 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
   3376 	 * not actually a MAC controller bug but an issue with the embedded
   3377 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
   3378 	 */
   3379 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
   3380 		sc->bge_flags |= BGEF_40BIT_BUG;
   3381 
   3382 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3383 	if ((sc->bge_flags & BGEF_APE) != 0) {
   3384 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3385 #if 0
   3386 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3387 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3388 			&sc->bge_apesize)) {
   3389 			aprint_error_dev(sc->bge_dev,
   3390 			    "couldn't map BAR2 memory\n");
   3391 			return;
   3392 		}
   3393 #else
   3394 		/*
   3395 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3396 		 * system get NMI on boot (PR#48451). This problem might not be
   3397 		 * the driver's bug but our PCI common part's bug. Until we
   3398 		 * find a real reason, we ignore the prefetchable bit.
   3399 		 */
   3400 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
   3401 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
   3402 			aprint_error_dev(sc->bge_dev,
   3403 			    "couldn't map BAR2 memory\n");
   3404 			return;
   3405 		}
   3406 
   3407 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3408 		if (bus_space_map(pa->pa_memt, memaddr,
   3409 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
   3410 			aprint_error_dev(sc->bge_dev,
   3411 			    "couldn't map BAR2 memory\n");
   3412 			return;
   3413 		}
   3414 		sc->bge_apetag = pa->pa_memt;
   3415 #endif
   3416 
   3417 		/* Enable APE register/memory access by host driver. */
   3418 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3419 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3420 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3421 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3422 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3423 
   3424 		bge_ape_lock_init(sc);
   3425 		bge_ape_read_fw_ver(sc);
   3426 	}
   3427 
   3428 	/* Identify the chips that use an CPMU. */
   3429 	if (BGE_IS_5717_PLUS(sc) ||
   3430 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3431 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3432 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3433 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3434 		sc->bge_flags |= BGEF_CPMU_PRESENT;
   3435 
   3436 	/* Set MI_MODE */
   3437 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3438 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3439 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3440 	else
   3441 		mimode |= BGE_MIMODE_BASE;
   3442 	CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3443 
   3444 	/*
   3445 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3446 	 * been observed in the first few bytes of some received packets.
   3447 	 * Aligning the packet buffer in memory eliminates the corruption.
   3448 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3449 	 * which do not support unaligned accesses, we will realign the
   3450 	 * payloads by copying the received packets.
   3451 	 */
   3452 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3453 	    sc->bge_flags & BGEF_PCIX)
   3454 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
   3455 
   3456 	if (BGE_IS_5700_FAMILY(sc))
   3457 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
   3458 
   3459 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3460 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3461 
   3462 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3463 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3464 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3465 		sc->bge_flags |= BGEF_IS_5788;
   3466 
   3467 	/*
   3468 	 * Some controllers seem to require a special firmware to use
   3469 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3470 	 * claims that the TSO performed by the firmware is slower than
   3471 	 * hardware based TSO. Moreover the firmware based TSO has one
   3472 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3473 	 * header is greater than 80 bytes. The workaround for the TSO
   3474 	 * bug exist but it seems it's too expensive than not using
   3475 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3476 	 * the TSO to the controllers that are not affected TSO issues
   3477 	 * (e.g. 5755 or higher).
   3478 	 */
   3479 	if (BGE_IS_5755_PLUS(sc)) {
   3480 		/*
   3481 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3482 		 * explicit device id check is required.
   3483 		 */
   3484 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3485 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3486 			sc->bge_flags |= BGEF_TSO;
   3487 		/* TSO on BCM5719 A0 does not work. */
   3488 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3489 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3490 			sc->bge_flags &= ~BGEF_TSO;
   3491 	}
   3492 
   3493 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3494 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3495 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3496 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3497 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3498 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3499 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3500 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3501 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3502 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3503 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3504 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3505 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3506 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3507 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3508 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3509 		/* These chips are 10/100 only. */
   3510 		capmask &= ~BMSR_EXTSTAT;
   3511 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3512 	}
   3513 
   3514 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3515 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3516 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3517 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3518 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3519 
   3520 	/* Set various PHY bug flags. */
   3521 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3522 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3523 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
   3524 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3525 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3526 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
   3527 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3528 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
   3529 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3530 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3531 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3532 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
   3533 	if (BGE_IS_5705_PLUS(sc) &&
   3534 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3535 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3536 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3537 	    !BGE_IS_57765_PLUS(sc)) {
   3538 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3539 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3540 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3541 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3542 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3543 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3544 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
   3545 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3546 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
   3547 		} else
   3548 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
   3549 	}
   3550 
   3551 	/*
   3552 	 * SEEPROM check.
   3553 	 * First check if firmware knows we do not have SEEPROM.
   3554 	 */
   3555 	if (prop_dictionary_get_bool(device_properties(self),
   3556 	     "without-seeprom", &no_seeprom) && no_seeprom)
   3557 	 	sc->bge_flags |= BGEF_NO_EEPROM;
   3558 
   3559 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3560 		sc->bge_flags |= BGEF_NO_EEPROM;
   3561 
   3562 	/* Now check the 'ROM failed' bit on the RX CPU */
   3563 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3564 		sc->bge_flags |= BGEF_NO_EEPROM;
   3565 
   3566 	sc->bge_asf_mode = 0;
   3567 	/* No ASF if APE present. */
   3568 	if ((sc->bge_flags & BGEF_APE) == 0) {
   3569 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3570 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3571 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3572 			    BGE_HWCFG_ASF) {
   3573 				sc->bge_asf_mode |= ASF_ENABLE;
   3574 				sc->bge_asf_mode |= ASF_STACKUP;
   3575 				if (BGE_IS_575X_PLUS(sc))
   3576 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3577 			}
   3578 		}
   3579 	}
   3580 
   3581 	int counts[PCI_INTR_TYPE_SIZE] = {
   3582 		[PCI_INTR_TYPE_INTX] = 1,
   3583 		[PCI_INTR_TYPE_MSI] = 1,
   3584 		[PCI_INTR_TYPE_MSIX] = 1,
   3585 	};
   3586 	int max_type = PCI_INTR_TYPE_MSIX;
   3587 
   3588 	if (!bge_can_use_msi(sc)) {
   3589 		/* MSI broken, allow only INTx */
   3590 		max_type = PCI_INTR_TYPE_INTX;
   3591 	}
   3592 
   3593 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
   3594 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
   3595 		return;
   3596 	}
   3597 
   3598 	DPRINTFN(5, ("pci_intr_string\n"));
   3599 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
   3600 	    sizeof(intrbuf));
   3601 	DPRINTFN(5, ("pci_intr_establish\n"));
   3602 	sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
   3603 	    IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
   3604 	if (sc->bge_intrhand == NULL) {
   3605 		pci_intr_release(pc, sc->bge_pihp, 1);
   3606 		sc->bge_pihp = NULL;
   3607 
   3608 		aprint_error_dev(self, "couldn't establish interrupt");
   3609 		if (intrstr != NULL)
   3610 			aprint_error(" at %s", intrstr);
   3611 		aprint_error("\n");
   3612 		return;
   3613 	}
   3614 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3615 
   3616 	switch (pci_intr_type(pc, sc->bge_pihp[0])) {
   3617 	case PCI_INTR_TYPE_MSIX:
   3618 	case PCI_INTR_TYPE_MSI:
   3619 		KASSERT(bge_can_use_msi(sc));
   3620 		sc->bge_flags |= BGEF_MSI;
   3621 		break;
   3622 	default:
   3623 		/* nothing to do */
   3624 		break;
   3625 	}
   3626 
   3627 	/*
   3628 	 * All controllers except BCM5700 supports tagged status but
   3629 	 * we use tagged status only for MSI case on BCM5717. Otherwise
   3630 	 * MSI on BCM5717 does not work.
   3631 	 */
   3632 	if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
   3633 		sc->bge_flags |= BGEF_TAGGED_STATUS;
   3634 
   3635 	/*
   3636 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3637 	 * lock in bge_reset().
   3638 	 */
   3639 	CSR_WRITE_4(sc, BGE_EE_ADDR,
   3640 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3641 	delay(1000);
   3642 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3643 
   3644 	bge_stop_fw(sc);
   3645 	bge_sig_pre_reset(sc, BGE_RESET_START);
   3646 	if (bge_reset(sc))
   3647 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3648 
   3649 	/*
   3650 	 * Read the hardware config word in the first 32k of NIC internal
   3651 	 * memory, or fall back to the config word in the EEPROM.
   3652 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3653 	 */
   3654 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
   3655 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3656 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3657 		uint32_t tmp;
   3658 
   3659 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3660 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3661 		    BGE_SRAM_DATA_VER_SHIFT;
   3662 		if ((0 < tmp) && (tmp < 0x100))
   3663 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3664 		if (sc->bge_flags & BGEF_PCIE)
   3665 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3666 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3667 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3668 		if (BGE_IS_5717_PLUS(sc))
   3669 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
   3670 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
   3671 		bge_read_eeprom(sc, (void *)&hwcfg,
   3672 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3673 		hwcfg = be32toh(hwcfg);
   3674 	}
   3675 	aprint_normal_dev(sc->bge_dev,
   3676 	    "HW config %08x, %08x, %08x, %08x %08x\n",
   3677 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
   3678 
   3679 	bge_sig_legacy(sc, BGE_RESET_START);
   3680 	bge_sig_post_reset(sc, BGE_RESET_START);
   3681 
   3682 	if (bge_chipinit(sc)) {
   3683 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3684 		bge_release_resources(sc);
   3685 		return;
   3686 	}
   3687 
   3688 	/*
   3689 	 * Get station address from the EEPROM.
   3690 	 */
   3691 	if (bge_get_eaddr(sc, eaddr)) {
   3692 		aprint_error_dev(sc->bge_dev,
   3693 		    "failed to read station address\n");
   3694 		bge_release_resources(sc);
   3695 		return;
   3696 	}
   3697 
   3698 	br = bge_lookup_rev(sc->bge_chipid);
   3699 
   3700 	if (br == NULL) {
   3701 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3702 		    sc->bge_chipid);
   3703 	} else {
   3704 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3705 		    br->br_name, sc->bge_chipid);
   3706 	}
   3707 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3708 
   3709 	/* Allocate the general information block and ring buffers. */
   3710 	if (pci_dma64_available(pa)) {
   3711 		sc->bge_dmatag = pa->pa_dmat64;
   3712 		sc->bge_dmatag32 = pa->pa_dmat;
   3713 		sc->bge_dma64 = true;
   3714 	} else {
   3715 		sc->bge_dmatag = pa->pa_dmat;
   3716 		sc->bge_dmatag32 = pa->pa_dmat;
   3717 		sc->bge_dma64 = false;
   3718 	}
   3719 
   3720 	/* 40bit DMA workaround */
   3721 	if (sizeof(bus_addr_t) > 4) {
   3722 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
   3723 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
   3724 
   3725 			if (bus_dmatag_subregion(olddmatag, 0,
   3726 				(bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
   3727 				BUS_DMA_NOWAIT) != 0) {
   3728 				aprint_error_dev(self,
   3729 				    "WARNING: failed to restrict dma range,"
   3730 				    " falling back to parent bus dma range\n");
   3731 				sc->bge_dmatag = olddmatag;
   3732 			}
   3733 		}
   3734 	}
   3735 	SLIST_INIT(&sc->txdma_list);
   3736 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3737 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3738 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3739 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
   3740 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3741 		return;
   3742 	}
   3743 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3744 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3745 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3746 			   BUS_DMA_NOWAIT)) {
   3747 		aprint_error_dev(sc->bge_dev,
   3748 		    "can't map DMA buffers (%zu bytes)\n",
   3749 		    sizeof(struct bge_ring_data));
   3750 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3751 		    sc->bge_ring_rseg);
   3752 		return;
   3753 	}
   3754 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3755 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3756 	    sizeof(struct bge_ring_data), 0,
   3757 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3758 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3759 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3760 				 sizeof(struct bge_ring_data));
   3761 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3762 		    sc->bge_ring_rseg);
   3763 		return;
   3764 	}
   3765 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3766 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3767 			    sizeof(struct bge_ring_data), NULL,
   3768 			    BUS_DMA_NOWAIT)) {
   3769 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3770 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3771 				 sizeof(struct bge_ring_data));
   3772 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3773 		    sc->bge_ring_rseg);
   3774 		return;
   3775 	}
   3776 
   3777 	DPRINTFN(5, ("bzero\n"));
   3778 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3779 
   3780 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3781 
   3782 	/* Try to allocate memory for jumbo buffers. */
   3783 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3784 		if (bge_alloc_jumbo_mem(sc)) {
   3785 			aprint_error_dev(sc->bge_dev,
   3786 			    "jumbo buffer allocation failed\n");
   3787 		} else
   3788 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3789 	}
   3790 
   3791 	/* Set default tuneable values. */
   3792 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3793 	sc->bge_rx_coal_ticks = 150;
   3794 	sc->bge_rx_max_coal_bds = 64;
   3795 	sc->bge_tx_coal_ticks = 300;
   3796 	sc->bge_tx_max_coal_bds = 400;
   3797 	if (BGE_IS_5705_PLUS(sc)) {
   3798 		sc->bge_tx_coal_ticks = (12 * 5);
   3799 		sc->bge_tx_max_coal_bds = (12 * 5);
   3800 			aprint_verbose_dev(sc->bge_dev,
   3801 			    "setting short Tx thresholds\n");
   3802 	}
   3803 
   3804 	if (BGE_IS_5717_PLUS(sc))
   3805 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3806 	else if (BGE_IS_5705_PLUS(sc))
   3807 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3808 	else
   3809 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3810 
   3811 	/* Set up ifnet structure */
   3812 	ifp = &sc->ethercom.ec_if;
   3813 	ifp->if_softc = sc;
   3814 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3815 	ifp->if_ioctl = bge_ioctl;
   3816 	ifp->if_stop = bge_stop;
   3817 	ifp->if_start = bge_start;
   3818 	ifp->if_init = bge_init;
   3819 	ifp->if_watchdog = bge_watchdog;
   3820 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3821 	IFQ_SET_READY(&ifp->if_snd);
   3822 	DPRINTFN(5, ("strcpy if_xname\n"));
   3823 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3824 
   3825 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3826 		sc->ethercom.ec_if.if_capabilities |=
   3827 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3828 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3829 		sc->ethercom.ec_if.if_capabilities |=
   3830 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3831 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3832 #endif
   3833 	sc->ethercom.ec_capabilities |=
   3834 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3835 
   3836 	if (sc->bge_flags & BGEF_TSO)
   3837 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3838 
   3839 	/*
   3840 	 * Do MII setup.
   3841 	 */
   3842 	DPRINTFN(5, ("mii setup\n"));
   3843 	sc->bge_mii.mii_ifp = ifp;
   3844 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   3845 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   3846 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   3847 
   3848 	/*
   3849 	 * Figure out what sort of media we have by checking the hardware
   3850 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   3851 	 * unset. If that's the case, we have to rely on identifying the NIC
   3852 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   3853 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   3854 	 */
   3855 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
   3856 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3857 		if (BGE_IS_5705_PLUS(sc)) {
   3858 			sc->bge_flags |= BGEF_FIBER_MII;
   3859 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3860 		} else
   3861 			sc->bge_flags |= BGEF_FIBER_TBI;
   3862 	}
   3863 
   3864 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
   3865 	if (BGE_IS_JUMBO_CAPABLE(sc))
   3866 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
   3867 
   3868 	/* set phyflags and chipid before mii_attach() */
   3869 	dict = device_properties(self);
   3870 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
   3871 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3872 
   3873 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3874 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3875 		    bge_ifmedia_sts);
   3876 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3877 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
   3878 			    0, NULL);
   3879 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3880 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3881 		/* Pretend the user requested this setting */
   3882 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3883 	} else {
   3884 		/*
   3885 		 * Do transceiver setup and tell the firmware the
   3886 		 * driver is down so we can try to get access the
   3887 		 * probe if ASF is running.  Retry a couple of times
   3888 		 * if we get a conflict with the ASF firmware accessing
   3889 		 * the PHY.
   3890 		 */
   3891 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3892 		bge_asf_driver_up(sc);
   3893 
   3894 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   3895 			     bge_ifmedia_sts);
   3896 		mii_flags = MIIF_DOPAUSE;
   3897 		if (sc->bge_flags & BGEF_FIBER_MII)
   3898 			mii_flags |= MIIF_HAVEFIBER;
   3899 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
   3900 		    MII_OFFSET_ANY, mii_flags);
   3901 
   3902 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
   3903 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3904 			ifmedia_add(&sc->bge_mii.mii_media,
   3905 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   3906 			ifmedia_set(&sc->bge_mii.mii_media,
   3907 				    IFM_ETHER|IFM_MANUAL);
   3908 		} else
   3909 			ifmedia_set(&sc->bge_mii.mii_media,
   3910 				    IFM_ETHER|IFM_AUTO);
   3911 
   3912 		/*
   3913 		 * Now tell the firmware we are going up after probing the PHY
   3914 		 */
   3915 		if (sc->bge_asf_mode & ASF_STACKUP)
   3916 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3917 	}
   3918 
   3919 	/*
   3920 	 * Call MI attach routine.
   3921 	 */
   3922 	DPRINTFN(5, ("if_attach\n"));
   3923 	if_attach(ifp);
   3924 	if_deferred_start_init(ifp, NULL);
   3925 	DPRINTFN(5, ("ether_ifattach\n"));
   3926 	ether_ifattach(ifp, eaddr);
   3927 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3928 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3929 		RND_TYPE_NET, RND_FLAG_DEFAULT);
   3930 #ifdef BGE_EVENT_COUNTERS
   3931 	/*
   3932 	 * Attach event counters.
   3933 	 */
   3934 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3935 	    NULL, device_xname(sc->bge_dev), "intr");
   3936 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
   3937 	    NULL, device_xname(sc->bge_dev), "intr_spurious");
   3938 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
   3939 	    NULL, device_xname(sc->bge_dev), "intr_spurious2");
   3940 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3941 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3942 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3943 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3944 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3945 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3946 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3947 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3948 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3949 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3950 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3951 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   3952 #endif /* BGE_EVENT_COUNTERS */
   3953 	DPRINTFN(5, ("callout_init\n"));
   3954 	callout_init(&sc->bge_timeout, 0);
   3955 
   3956 	if (pmf_device_register(self, NULL, NULL))
   3957 		pmf_class_network_register(self, ifp);
   3958 	else
   3959 		aprint_error_dev(self, "couldn't establish power handler\n");
   3960 
   3961 	bge_sysctl_init(sc);
   3962 
   3963 #ifdef BGE_DEBUG
   3964 	bge_debug_info(sc);
   3965 #endif
   3966 }
   3967 
   3968 /*
   3969  * Stop all chip I/O so that the kernel's probe routines don't
   3970  * get confused by errant DMAs when rebooting.
   3971  */
   3972 static int
   3973 bge_detach(device_t self, int flags __unused)
   3974 {
   3975 	struct bge_softc *sc = device_private(self);
   3976 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3977 	int s;
   3978 
   3979 	s = splnet();
   3980 	/* Stop the interface. Callouts are stopped in it. */
   3981 	bge_stop(ifp, 1);
   3982 	splx(s);
   3983 
   3984 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   3985 
   3986 	/* Delete all remaining media. */
   3987 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
   3988 
   3989 	ether_ifdetach(ifp);
   3990 	if_detach(ifp);
   3991 
   3992 	bge_release_resources(sc);
   3993 
   3994 	return 0;
   3995 }
   3996 
   3997 static void
   3998 bge_release_resources(struct bge_softc *sc)
   3999 {
   4000 
   4001 	/* Detach sysctl */
   4002 	if (sc->bge_log != NULL)
   4003 		sysctl_teardown(&sc->bge_log);
   4004 
   4005 #ifdef BGE_EVENT_COUNTERS
   4006 	/* Detach event counters. */
   4007 	evcnt_detach(&sc->bge_ev_intr);
   4008 	evcnt_detach(&sc->bge_ev_intr_spurious);
   4009 	evcnt_detach(&sc->bge_ev_intr_spurious2);
   4010 	evcnt_detach(&sc->bge_ev_tx_xoff);
   4011 	evcnt_detach(&sc->bge_ev_tx_xon);
   4012 	evcnt_detach(&sc->bge_ev_rx_xoff);
   4013 	evcnt_detach(&sc->bge_ev_rx_xon);
   4014 	evcnt_detach(&sc->bge_ev_rx_macctl);
   4015 	evcnt_detach(&sc->bge_ev_xoffentered);
   4016 #endif /* BGE_EVENT_COUNTERS */
   4017 
   4018 	/* Disestablish the interrupt handler */
   4019 	if (sc->bge_intrhand != NULL) {
   4020 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   4021 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
   4022 		sc->bge_intrhand = NULL;
   4023 	}
   4024 
   4025 	if (sc->bge_dmatag != NULL) {
   4026 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   4027 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   4028 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   4029 		    sizeof(struct bge_ring_data));
   4030 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   4031 		    sc->bge_ring_rseg);
   4032 	}
   4033 
   4034 	/* Unmap the device registers */
   4035 	if (sc->bge_bsize != 0) {
   4036 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   4037 		sc->bge_bsize = 0;
   4038 	}
   4039 
   4040 	/* Unmap the APE registers */
   4041 	if (sc->bge_apesize != 0) {
   4042 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   4043 		    sc->bge_apesize);
   4044 		sc->bge_apesize = 0;
   4045 	}
   4046 }
   4047 
   4048 static int
   4049 bge_reset(struct bge_softc *sc)
   4050 {
   4051 	uint32_t cachesize, command;
   4052 	uint32_t reset, mac_mode, mac_mode_mask;
   4053 	pcireg_t devctl, reg;
   4054 	int i, val;
   4055 	void (*write_op)(struct bge_softc *, int, int);
   4056 
   4057 	/* Make mask for BGE_MAC_MODE register. */
   4058 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   4059 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4060 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   4061 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   4062 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   4063 
   4064 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   4065 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   4066 	    	if (sc->bge_flags & BGEF_PCIE)
   4067 			write_op = bge_writemem_direct;
   4068 		else
   4069 			write_op = bge_writemem_ind;
   4070 	} else
   4071 		write_op = bge_writereg_ind;
   4072 
   4073 	/* 57XX step 4 */
   4074 	/* Acquire the NVM lock */
   4075 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
   4076 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4077 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4078 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4079 		for (i = 0; i < 8000; i++) {
   4080 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4081 			    BGE_NVRAMSWARB_GNT1)
   4082 				break;
   4083 			DELAY(20);
   4084 		}
   4085 		if (i == 8000) {
   4086 			printf("%s: NVRAM lock timedout!\n",
   4087 			    device_xname(sc->bge_dev));
   4088 		}
   4089 	}
   4090 
   4091 	/* Take APE lock when performing reset. */
   4092 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4093 
   4094 	/* 57XX step 3 */
   4095 	/* Save some important PCI state. */
   4096 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4097 	/* 5718 reset step 3 */
   4098 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4099 
   4100 	/* 5718 reset step 5, 57XX step 5b-5d */
   4101 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4102 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4103 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4104 
   4105 	/* XXX ???: Disable fastboot on controllers that support it. */
   4106 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4107 	    BGE_IS_5755_PLUS(sc))
   4108 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4109 
   4110 	/* 5718 reset step 2, 57XX step 6 */
   4111 	/*
   4112 	 * Write the magic number to SRAM at offset 0xB50.
   4113 	 * When firmware finishes its initialization it will
   4114 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4115 	 */
   4116 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4117 
   4118 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   4119 		val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   4120 		val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   4121 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   4122 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
   4123 	}
   4124 
   4125 	/* 5718 reset step 6, 57XX step 7 */
   4126 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4127 	/*
   4128 	 * XXX: from FreeBSD/Linux; no documentation
   4129 	 */
   4130 	if (sc->bge_flags & BGEF_PCIE) {
   4131 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
   4132 		    !BGE_IS_57765_PLUS(sc) &&
   4133 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4134 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4135 			/* PCI Express 1.0 system */
   4136 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4137 			    BGE_PHY_PCIE_SCRAM_MODE);
   4138 		}
   4139 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4140 			/*
   4141 			 * Prevent PCI Express link training
   4142 			 * during global reset.
   4143 			 */
   4144 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4145 			reset |= (1 << 29);
   4146 		}
   4147 	}
   4148 
   4149 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4150 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4151 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4152 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4153 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4154 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4155 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4156 	}
   4157 
   4158 	/*
   4159 	 * Set GPHY Power Down Override to leave GPHY
   4160 	 * powered up in D0 uninitialized.
   4161 	 */
   4162 	if (BGE_IS_5705_PLUS(sc) &&
   4163 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4164 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4165 
   4166 	/* Issue global reset */
   4167 	write_op(sc, BGE_MISC_CFG, reset);
   4168 
   4169 	/* 5718 reset step 7, 57XX step 8 */
   4170 	if (sc->bge_flags & BGEF_PCIE)
   4171 		delay(100*1000); /* too big */
   4172 	else
   4173 		delay(1000);
   4174 
   4175 	if (sc->bge_flags & BGEF_PCIE) {
   4176 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4177 			DELAY(500000);
   4178 			/* XXX: Magic Numbers */
   4179 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4180 			    BGE_PCI_UNKNOWN0);
   4181 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4182 			    BGE_PCI_UNKNOWN0,
   4183 			    reg | (1 << 15));
   4184 		}
   4185 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4186 		    sc->bge_pciecap + PCIE_DCSR);
   4187 		/* Clear enable no snoop and disable relaxed ordering. */
   4188 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4189 		    PCIE_DCSR_ENA_NO_SNOOP);
   4190 
   4191 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4192 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4193 			devctl &= ~(0x00e0);
   4194 		/* Clear device status register. Write 1b to clear */
   4195 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4196 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4197 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4198 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4199 		bge_set_max_readrq(sc);
   4200 	}
   4201 
   4202 	/* From Linux: dummy read to flush PCI posted writes */
   4203 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4204 
   4205 	/*
   4206 	 * Reset some of the PCI state that got zapped by reset
   4207 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4208 	 * set, too.
   4209 	 */
   4210 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4211 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4212 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4213 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4214 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4215 	    (sc->bge_flags & BGEF_PCIX) != 0)
   4216 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4217 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4218 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4219 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4220 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4221 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4222 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4223 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4224 
   4225 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
   4226 	if (sc->bge_flags & BGEF_PCIX) {
   4227 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4228 		    + PCIX_CMD);
   4229 		/* Set max memory read byte count to 2K */
   4230 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   4231 			reg &= ~PCIX_CMD_BYTECNT_MASK;
   4232 			reg |= PCIX_CMD_BCNT_2048;
   4233 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
   4234 			/*
   4235 			 * For 5704, set max outstanding split transaction
   4236 			 * field to 0 (0 means it supports 1 request)
   4237 			 */
   4238 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
   4239 			    | PCIX_CMD_BYTECNT_MASK);
   4240 			reg |= PCIX_CMD_BCNT_2048;
   4241 		}
   4242 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4243 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4244 	}
   4245 
   4246 	/* 5718 reset step 10, 57XX step 12 */
   4247 	/* Enable memory arbiter. */
   4248 	if (BGE_IS_5714_FAMILY(sc)) {
   4249 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4250 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4251 	} else
   4252 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4253 
   4254 	/* XXX 5721, 5751 and 5752 */
   4255 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4256 		/* Step 19: */
   4257 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4258 		/* Step 20: */
   4259 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4260 	}
   4261 
   4262 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4263 	/* Fix up byte swapping */
   4264 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4265 
   4266 	/* 5718 reset step 13, 57XX step 17 */
   4267 	/* Poll until the firmware initialization is complete */
   4268 	bge_poll_fw(sc);
   4269 
   4270 	/* 57XX step 21 */
   4271 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4272 		pcireg_t msidata;
   4273 
   4274 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4275 		    BGE_PCI_MSI_DATA);
   4276 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4277 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4278 		    msidata);
   4279 	}
   4280 
   4281 	/* 57XX step 18 */
   4282 	/* Write mac mode. */
   4283 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4284 	/* Restore mac_mode_mask's bits using mac_mode */
   4285 	val = (val & ~mac_mode_mask) | mac_mode;
   4286 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4287 	DELAY(40);
   4288 
   4289 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4290 
   4291 	/*
   4292 	 * The 5704 in TBI mode apparently needs some special
   4293 	 * adjustment to insure the SERDES drive level is set
   4294 	 * to 1.2V.
   4295 	 */
   4296 	if (sc->bge_flags & BGEF_FIBER_TBI &&
   4297 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4298 		uint32_t serdescfg;
   4299 
   4300 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4301 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4302 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4303 	}
   4304 
   4305 	if (sc->bge_flags & BGEF_PCIE &&
   4306 	    !BGE_IS_57765_PLUS(sc) &&
   4307 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4308 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4309 		uint32_t v;
   4310 
   4311 		/* Enable PCI Express bug fix */
   4312 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4313 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4314 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4315 	}
   4316 
   4317 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4318 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4319 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4320 
   4321 	return 0;
   4322 }
   4323 
   4324 /*
   4325  * Frame reception handling. This is called if there's a frame
   4326  * on the receive return list.
   4327  *
   4328  * Note: we have to be able to handle two possibilities here:
   4329  * 1) the frame is from the jumbo receive ring
   4330  * 2) the frame is from the standard receive ring
   4331  */
   4332 
   4333 static void
   4334 bge_rxeof(struct bge_softc *sc)
   4335 {
   4336 	struct ifnet *ifp;
   4337 	uint16_t rx_prod, rx_cons;
   4338 	int stdcnt = 0, jumbocnt = 0;
   4339 	bus_dmamap_t dmamap;
   4340 	bus_addr_t offset, toff;
   4341 	bus_size_t tlen;
   4342 	int tosync;
   4343 
   4344 	rx_cons = sc->bge_rx_saved_considx;
   4345 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4346 
   4347 	/* Nothing to do */
   4348 	if (rx_cons == rx_prod)
   4349 		return;
   4350 
   4351 	ifp = &sc->ethercom.ec_if;
   4352 
   4353 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4354 	    offsetof(struct bge_ring_data, bge_status_block),
   4355 	    sizeof (struct bge_status_block),
   4356 	    BUS_DMASYNC_POSTREAD);
   4357 
   4358 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4359 	tosync = rx_prod - rx_cons;
   4360 
   4361 	if (tosync != 0)
   4362 		rnd_add_uint32(&sc->rnd_source, tosync);
   4363 
   4364 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
   4365 
   4366 	if (tosync < 0) {
   4367 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4368 		    sizeof (struct bge_rx_bd);
   4369 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4370 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4371 		tosync = -tosync;
   4372 	}
   4373 
   4374 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4375 	    offset, tosync * sizeof (struct bge_rx_bd),
   4376 	    BUS_DMASYNC_POSTREAD);
   4377 
   4378 	while (rx_cons != rx_prod) {
   4379 		struct bge_rx_bd	*cur_rx;
   4380 		uint32_t		rxidx;
   4381 		struct mbuf		*m = NULL;
   4382 
   4383 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4384 
   4385 		rxidx = cur_rx->bge_idx;
   4386 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4387 
   4388 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4389 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4390 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4391 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4392 			jumbocnt++;
   4393 			bus_dmamap_sync(sc->bge_dmatag,
   4394 			    sc->bge_cdata.bge_rx_jumbo_map,
   4395 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4396 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4397 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4398 				ifp->if_ierrors++;
   4399 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4400 				continue;
   4401 			}
   4402 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4403 					     NULL)== ENOBUFS) {
   4404 				ifp->if_ierrors++;
   4405 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4406 				continue;
   4407 			}
   4408 		} else {
   4409 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   4410 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4411 
   4412 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4413 			stdcnt++;
   4414 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4415 			sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
   4416 			if (dmamap == NULL) {
   4417 				ifp->if_ierrors++;
   4418 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4419 				continue;
   4420 			}
   4421 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4422 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4423 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4424 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4425 				ifp->if_ierrors++;
   4426 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4427 				continue;
   4428 			}
   4429 			if (bge_newbuf_std(sc, sc->bge_std,
   4430 			    NULL, dmamap) == ENOBUFS) {
   4431 				ifp->if_ierrors++;
   4432 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4433 				continue;
   4434 			}
   4435 		}
   4436 
   4437 #ifndef __NO_STRICT_ALIGNMENT
   4438 		/*
   4439 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4440 		 * the Rx buffer has the layer-2 header unaligned.
   4441 		 * If our CPU requires alignment, re-align by copying.
   4442 		 */
   4443 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
   4444 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4445 				cur_rx->bge_len);
   4446 			m->m_data += ETHER_ALIGN;
   4447 		}
   4448 #endif
   4449 
   4450 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4451 		m_set_rcvif(m, ifp);
   4452 
   4453 		bge_rxcsum(sc, cur_rx, m);
   4454 
   4455 		/*
   4456 		 * If we received a packet with a vlan tag, pass it
   4457 		 * to vlan_input() instead of ether_input().
   4458 		 */
   4459 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   4460 			vlan_set_tag(m, cur_rx->bge_vlan_tag);
   4461 		}
   4462 
   4463 		if_percpuq_enqueue(ifp->if_percpuq, m);
   4464 	}
   4465 
   4466 	sc->bge_rx_saved_considx = rx_cons;
   4467 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4468 	if (stdcnt)
   4469 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   4470 	if (jumbocnt)
   4471 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4472 }
   4473 
   4474 static void
   4475 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4476 {
   4477 
   4478 	if (BGE_IS_57765_PLUS(sc)) {
   4479 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4480 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4481 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4482 			if ((cur_rx->bge_error_flag &
   4483 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4484 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4485 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4486 				m->m_pkthdr.csum_data =
   4487 				    cur_rx->bge_tcp_udp_csum;
   4488 				m->m_pkthdr.csum_flags |=
   4489 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4490 					M_CSUM_DATA);
   4491 			}
   4492 		}
   4493 	} else {
   4494 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4495 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4496 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4497 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4498 		/*
   4499 		 * Rx transport checksum-offload may also
   4500 		 * have bugs with packets which, when transmitted,
   4501 		 * were `runts' requiring padding.
   4502 		 */
   4503 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4504 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4505 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4506 			m->m_pkthdr.csum_data =
   4507 			    cur_rx->bge_tcp_udp_csum;
   4508 			m->m_pkthdr.csum_flags |=
   4509 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   4510 				M_CSUM_DATA);
   4511 		}
   4512 	}
   4513 }
   4514 
   4515 static void
   4516 bge_txeof(struct bge_softc *sc)
   4517 {
   4518 	struct bge_tx_bd *cur_tx = NULL;
   4519 	struct ifnet *ifp;
   4520 	struct txdmamap_pool_entry *dma;
   4521 	bus_addr_t offset, toff;
   4522 	bus_size_t tlen;
   4523 	int tosync;
   4524 	struct mbuf *m;
   4525 
   4526 	ifp = &sc->ethercom.ec_if;
   4527 
   4528 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4529 	    offsetof(struct bge_ring_data, bge_status_block),
   4530 	    sizeof (struct bge_status_block),
   4531 	    BUS_DMASYNC_POSTREAD);
   4532 
   4533 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4534 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   4535 	    sc->bge_tx_saved_considx;
   4536 
   4537 	if (tosync != 0)
   4538 		rnd_add_uint32(&sc->rnd_source, tosync);
   4539 
   4540 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   4541 
   4542 	if (tosync < 0) {
   4543 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4544 		    sizeof (struct bge_tx_bd);
   4545 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4546 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4547 		tosync = -tosync;
   4548 	}
   4549 
   4550 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4551 	    offset, tosync * sizeof (struct bge_tx_bd),
   4552 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   4553 
   4554 	/*
   4555 	 * Go through our tx ring and free mbufs for those
   4556 	 * frames that have been sent.
   4557 	 */
   4558 	while (sc->bge_tx_saved_considx !=
   4559 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   4560 		uint32_t		idx = 0;
   4561 
   4562 		idx = sc->bge_tx_saved_considx;
   4563 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4564 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4565 			ifp->if_opackets++;
   4566 		m = sc->bge_cdata.bge_tx_chain[idx];
   4567 		if (m != NULL) {
   4568 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4569 			dma = sc->txdma[idx];
   4570 			if (dma->is_dma32) {
   4571 				bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
   4572 				    0, dma->dmamap32->dm_mapsize,
   4573 				    BUS_DMASYNC_POSTWRITE);
   4574 				bus_dmamap_unload(
   4575 				    sc->bge_dmatag32, dma->dmamap32);
   4576 			} else {
   4577 				bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
   4578 				    0, dma->dmamap->dm_mapsize,
   4579 				    BUS_DMASYNC_POSTWRITE);
   4580 				bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4581 			}
   4582 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4583 			sc->txdma[idx] = NULL;
   4584 
   4585 			m_freem(m);
   4586 		}
   4587 		sc->bge_txcnt--;
   4588 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4589 		ifp->if_timer = 0;
   4590 	}
   4591 
   4592 	if (cur_tx != NULL)
   4593 		ifp->if_flags &= ~IFF_OACTIVE;
   4594 }
   4595 
   4596 static int
   4597 bge_intr(void *xsc)
   4598 {
   4599 	struct bge_softc *sc;
   4600 	struct ifnet *ifp;
   4601 	uint32_t pcistate, statusword, statustag;
   4602 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4603 
   4604 	sc = xsc;
   4605 	ifp = &sc->ethercom.ec_if;
   4606 
   4607 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4608 	if (BGE_IS_5717_PLUS(sc))
   4609 		intrmask = 0;
   4610 
   4611 	/* It is possible for the interrupt to arrive before
   4612 	 * the status block is updated prior to the interrupt.
   4613 	 * Reading the PCI State register will confirm whether the
   4614 	 * interrupt is ours and will flush the status block.
   4615 	 */
   4616 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
   4617 
   4618 	/* read status word from status block */
   4619 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4620 	    offsetof(struct bge_ring_data, bge_status_block),
   4621 	    sizeof (struct bge_status_block),
   4622 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4623 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4624 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
   4625 
   4626 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
   4627 		if (sc->bge_lasttag == statustag &&
   4628 		    (~pcistate & intrmask)) {
   4629 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
   4630 			return (0);
   4631 		}
   4632 		sc->bge_lasttag = statustag;
   4633 	} else {
   4634 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
   4635 		    !(~pcistate & intrmask)) {
   4636 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
   4637 			return (0);
   4638 		}
   4639 		statustag = 0;
   4640 	}
   4641 	/* Ack interrupt and stop others from occurring. */
   4642 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4643 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   4644 
   4645 	/* clear status word */
   4646 	sc->bge_rdata->bge_status_block.bge_status = 0;
   4647 
   4648 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4649 	    offsetof(struct bge_ring_data, bge_status_block),
   4650 	    sizeof (struct bge_status_block),
   4651 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4652 
   4653 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4654 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4655 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4656 		bge_link_upd(sc);
   4657 
   4658 	if (ifp->if_flags & IFF_RUNNING) {
   4659 		/* Check RX return ring producer/consumer */
   4660 		bge_rxeof(sc);
   4661 
   4662 		/* Check TX ring producer/consumer */
   4663 		bge_txeof(sc);
   4664 	}
   4665 
   4666 	if (sc->bge_pending_rxintr_change) {
   4667 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4668 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4669 
   4670 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4671 		DELAY(10);
   4672 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4673 
   4674 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4675 		DELAY(10);
   4676 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4677 
   4678 		sc->bge_pending_rxintr_change = 0;
   4679 	}
   4680 	bge_handle_events(sc);
   4681 
   4682 	/* Re-enable interrupts. */
   4683 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
   4684 
   4685 	if (ifp->if_flags & IFF_RUNNING)
   4686 		if_schedule_deferred_start(ifp);
   4687 
   4688 	return 1;
   4689 }
   4690 
   4691 static void
   4692 bge_asf_driver_up(struct bge_softc *sc)
   4693 {
   4694 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4695 		/* Send ASF heartbeat aprox. every 2s */
   4696 		if (sc->bge_asf_count)
   4697 			sc->bge_asf_count --;
   4698 		else {
   4699 			sc->bge_asf_count = 2;
   4700 
   4701 			bge_wait_for_event_ack(sc);
   4702 
   4703 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4704 			    BGE_FW_CMD_DRV_ALIVE3);
   4705 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4706 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4707 			    BGE_FW_HB_TIMEOUT_SEC);
   4708 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4709 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4710 			    BGE_RX_CPU_DRV_EVENT);
   4711 		}
   4712 	}
   4713 }
   4714 
   4715 static void
   4716 bge_tick(void *xsc)
   4717 {
   4718 	struct bge_softc *sc = xsc;
   4719 	struct mii_data *mii = &sc->bge_mii;
   4720 	int s;
   4721 
   4722 	s = splnet();
   4723 
   4724 	if (BGE_IS_5705_PLUS(sc))
   4725 		bge_stats_update_regs(sc);
   4726 	else
   4727 		bge_stats_update(sc);
   4728 
   4729 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4730 		/*
   4731 		 * Since in TBI mode auto-polling can't be used we should poll
   4732 		 * link status manually. Here we register pending link event
   4733 		 * and trigger interrupt.
   4734 		 */
   4735 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4736 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4737 	} else {
   4738 		/*
   4739 		 * Do not touch PHY if we have link up. This could break
   4740 		 * IPMI/ASF mode or produce extra input errors.
   4741 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4742 		 */
   4743 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4744 			mii_tick(mii);
   4745 	}
   4746 
   4747 	bge_asf_driver_up(sc);
   4748 
   4749 	if (!sc->bge_detaching)
   4750 		callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   4751 
   4752 	splx(s);
   4753 }
   4754 
   4755 static void
   4756 bge_stats_update_regs(struct bge_softc *sc)
   4757 {
   4758 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4759 
   4760 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
   4761 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
   4762 
   4763 	/*
   4764 	 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
   4765 	 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
   4766 	 * (silicon bug). There's no reliable workaround so just
   4767 	 * ignore the counter
   4768 	 */
   4769 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   4770 	    BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5719_A0 &&
   4771 	    BGE_ASICREV(sc->bge_chipid) != BGE_CHIPID_BCM5720_A0) {
   4772 		ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
   4773 	}
   4774 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
   4775 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
   4776 
   4777 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   4778 		uint32_t val, ucast, mcast, bcast;
   4779 
   4780 		ucast = CSR_READ_4(sc, BGE_MAC_STATS +
   4781 		    offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
   4782 		mcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4783 		    offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
   4784 		bcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4785 		    offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
   4786 
   4787 		/*
   4788 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
   4789 		 * frames, it's safe to disable workaround for DMA engine's
   4790 		 * miscalculation of TXMBUF space.
   4791 		 */
   4792 		if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
   4793 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   4794 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   4795 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
   4796 			else
   4797 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
   4798 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   4799 			sc->bge_flags &= ~BGEF_RDMA_BUG;
   4800 		}
   4801 	}
   4802 }
   4803 
   4804 static void
   4805 bge_stats_update(struct bge_softc *sc)
   4806 {
   4807 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4808 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4809 
   4810 #define READ_STAT(sc, stats, stat) \
   4811 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4812 
   4813 	ifp->if_collisions +=
   4814 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4815 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4816 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4817 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   4818 	  ifp->if_collisions;
   4819 
   4820 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4821 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4822 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4823 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4824 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4825 		      READ_STAT(sc, stats,
   4826 		      		xoffPauseFramesReceived.bge_addr_lo));
   4827 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4828 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4829 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4830 		      READ_STAT(sc, stats,
   4831 		      		macControlFramesReceived.bge_addr_lo));
   4832 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4833 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4834 
   4835 #undef READ_STAT
   4836 
   4837 #ifdef notdef
   4838 	ifp->if_collisions +=
   4839 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   4840 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   4841 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   4842 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   4843 	   ifp->if_collisions;
   4844 #endif
   4845 }
   4846 
   4847 /*
   4848  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4849  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4850  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4851  * the hardware checksum assist gives incorrect results (possibly
   4852  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4853  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4854  */
   4855 static inline int
   4856 bge_cksum_pad(struct mbuf *pkt)
   4857 {
   4858 	struct mbuf *last = NULL;
   4859 	int padlen;
   4860 
   4861 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4862 
   4863 	/* if there's only the packet-header and we can pad there, use it. */
   4864 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4865 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4866 		last = pkt;
   4867 	} else {
   4868 		/*
   4869 		 * Walk packet chain to find last mbuf. We will either
   4870 		 * pad there, or append a new mbuf and pad it
   4871 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4872 		 */
   4873 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4874 	      	       continue; /* do nothing */
   4875 		}
   4876 
   4877 		/* `last' now points to last in chain. */
   4878 		if (M_TRAILINGSPACE(last) < padlen) {
   4879 			/* Allocate new empty mbuf, pad it. Compact later. */
   4880 			struct mbuf *n;
   4881 			MGET(n, M_DONTWAIT, MT_DATA);
   4882 			if (n == NULL)
   4883 				return ENOBUFS;
   4884 			n->m_len = 0;
   4885 			last->m_next = n;
   4886 			last = n;
   4887 		}
   4888 	}
   4889 
   4890 	KDASSERT(!M_READONLY(last));
   4891 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4892 
   4893 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4894 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4895 	last->m_len += padlen;
   4896 	pkt->m_pkthdr.len += padlen;
   4897 	return 0;
   4898 }
   4899 
   4900 /*
   4901  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   4902  */
   4903 static inline int
   4904 bge_compact_dma_runt(struct mbuf *pkt)
   4905 {
   4906 	struct mbuf	*m, *prev;
   4907 	int 		totlen;
   4908 
   4909 	prev = NULL;
   4910 	totlen = 0;
   4911 
   4912 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   4913 		int mlen = m->m_len;
   4914 		int shortfall = 8 - mlen ;
   4915 
   4916 		totlen += mlen;
   4917 		if (mlen == 0)
   4918 			continue;
   4919 		if (mlen >= 8)
   4920 			continue;
   4921 
   4922 		/* If we get here, mbuf data is too small for DMA engine.
   4923 		 * Try to fix by shuffling data to prev or next in chain.
   4924 		 * If that fails, do a compacting deep-copy of the whole chain.
   4925 		 */
   4926 
   4927 		/* Internal frag. If fits in prev, copy it there. */
   4928 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   4929 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   4930 			prev->m_len += mlen;
   4931 			m->m_len = 0;
   4932 			/* XXX stitch chain */
   4933 			prev->m_next = m_free(m);
   4934 			m = prev;
   4935 			continue;
   4936 		}
   4937 		else if (m->m_next != NULL &&
   4938 			     M_TRAILINGSPACE(m) >= shortfall &&
   4939 			     m->m_next->m_len >= (8 + shortfall)) {
   4940 		    /* m is writable and have enough data in next, pull up. */
   4941 
   4942 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
   4943 			    shortfall);
   4944 			m->m_len += shortfall;
   4945 			m->m_next->m_len -= shortfall;
   4946 			m->m_next->m_data += shortfall;
   4947 		}
   4948 		else if (m->m_next == NULL || 1) {
   4949 		  	/* Got a runt at the very end of the packet.
   4950 			 * borrow data from the tail of the preceding mbuf and
   4951 			 * update its length in-place. (The original data is still
   4952 			 * valid, so we can do this even if prev is not writable.)
   4953 			 */
   4954 
   4955 			/* if we'd make prev a runt, just move all of its data. */
   4956 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   4957 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   4958 
   4959 			if ((prev->m_len - shortfall) < 8)
   4960 				shortfall = prev->m_len;
   4961 
   4962 #ifdef notyet	/* just do the safe slow thing for now */
   4963 			if (!M_READONLY(m)) {
   4964 				if (M_LEADINGSPACE(m) < shorfall) {
   4965 					void *m_dat;
   4966 					m_dat = (m->m_flags & M_PKTHDR) ?
   4967 					  m->m_pktdat : m->dat;
   4968 					memmove(m_dat, mtod(m, void*), m->m_len);
   4969 					m->m_data = m_dat;
   4970 				    }
   4971 			} else
   4972 #endif	/* just do the safe slow thing */
   4973 			{
   4974 				struct mbuf * n = NULL;
   4975 				int newprevlen = prev->m_len - shortfall;
   4976 
   4977 				MGET(n, M_NOWAIT, MT_DATA);
   4978 				if (n == NULL)
   4979 				   return ENOBUFS;
   4980 				KASSERT(m->m_len + shortfall < MLEN
   4981 					/*,
   4982 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   4983 
   4984 				/* first copy the data we're stealing from prev */
   4985 				memcpy(n->m_data, prev->m_data + newprevlen,
   4986 				    shortfall);
   4987 
   4988 				/* update prev->m_len accordingly */
   4989 				prev->m_len -= shortfall;
   4990 
   4991 				/* copy data from runt m */
   4992 				memcpy(n->m_data + shortfall, m->m_data,
   4993 				    m->m_len);
   4994 
   4995 				/* n holds what we stole from prev, plus m */
   4996 				n->m_len = shortfall + m->m_len;
   4997 
   4998 				/* stitch n into chain and free m */
   4999 				n->m_next = m->m_next;
   5000 				prev->m_next = n;
   5001 				/* KASSERT(m->m_next == NULL); */
   5002 				m->m_next = NULL;
   5003 				m_free(m);
   5004 				m = n;	/* for continuing loop */
   5005 			}
   5006 		}
   5007 	}
   5008 	return 0;
   5009 }
   5010 
   5011 /*
   5012  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   5013  * pointers to descriptors.
   5014  */
   5015 static int
   5016 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   5017 {
   5018 	struct ifnet *ifp = &sc->ethercom.ec_if;
   5019 	struct bge_tx_bd	*f, *prev_f;
   5020 	uint32_t		frag, cur;
   5021 	uint16_t		csum_flags = 0;
   5022 	uint16_t		txbd_tso_flags = 0;
   5023 	struct txdmamap_pool_entry *dma;
   5024 	bus_dmamap_t dmamap;
   5025 	bus_dma_tag_t dmatag;
   5026 	int			i = 0;
   5027 	int			use_tso, maxsegsize, error;
   5028 	bool			have_vtag;
   5029 	uint16_t		vtag;
   5030 	bool 			remap;
   5031 
   5032 	if (m_head->m_pkthdr.csum_flags) {
   5033 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5034 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   5035 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   5036 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   5037 	}
   5038 
   5039 	/*
   5040 	 * If we were asked to do an outboard checksum, and the NIC
   5041 	 * has the bug where it sometimes adds in the Ethernet padding,
   5042 	 * explicitly pad with zeros so the cksum will be correct either way.
   5043 	 * (For now, do this for all chip versions, until newer
   5044 	 * are confirmed to not require the workaround.)
   5045 	 */
   5046 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   5047 #ifdef notyet
   5048 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   5049 #endif
   5050 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   5051 		goto check_dma_bug;
   5052 
   5053 	if (bge_cksum_pad(m_head) != 0)
   5054 		return ENOBUFS;
   5055 
   5056 check_dma_bug:
   5057 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   5058 		goto doit;
   5059 
   5060 	/*
   5061 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   5062 	 * less than eight bytes.  If we encounter a teeny mbuf
   5063 	 * at the end of a chain, we can pad.  Otherwise, copy.
   5064 	 */
   5065 	if (bge_compact_dma_runt(m_head) != 0)
   5066 		return ENOBUFS;
   5067 
   5068 doit:
   5069 	dma = SLIST_FIRST(&sc->txdma_list);
   5070 	if (dma == NULL) {
   5071 		ifp->if_flags |= IFF_OACTIVE;
   5072 		return ENOBUFS;
   5073 	}
   5074 	dmamap = dma->dmamap;
   5075 	dmatag = sc->bge_dmatag;
   5076 	dma->is_dma32 = false;
   5077 
   5078 	/*
   5079 	 * Set up any necessary TSO state before we start packing...
   5080 	 */
   5081 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   5082 	if (!use_tso) {
   5083 		maxsegsize = 0;
   5084 	} else {	/* TSO setup */
   5085 		unsigned  mss;
   5086 		struct ether_header *eh;
   5087 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   5088 		unsigned bge_hlen;
   5089 		struct mbuf * m0 = m_head;
   5090 		struct ip *ip;
   5091 		struct tcphdr *th;
   5092 		int iphl, hlen;
   5093 
   5094 		/*
   5095 		 * XXX It would be nice if the mbuf pkthdr had offset
   5096 		 * fields for the protocol headers.
   5097 		 */
   5098 
   5099 		eh = mtod(m0, struct ether_header *);
   5100 		switch (htons(eh->ether_type)) {
   5101 		case ETHERTYPE_IP:
   5102 			offset = ETHER_HDR_LEN;
   5103 			break;
   5104 
   5105 		case ETHERTYPE_VLAN:
   5106 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   5107 			break;
   5108 
   5109 		default:
   5110 			/*
   5111 			 * Don't support this protocol or encapsulation.
   5112 			 */
   5113 			return ENOBUFS;
   5114 		}
   5115 
   5116 		/*
   5117 		 * TCP/IP headers are in the first mbuf; we can do
   5118 		 * this the easy way.
   5119 		 */
   5120 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   5121 		hlen = iphl + offset;
   5122 		if (__predict_false(m0->m_len <
   5123 				    (hlen + sizeof(struct tcphdr)))) {
   5124 
   5125 			aprint_error_dev(sc->bge_dev,
   5126 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   5127 			    "not handled yet\n",
   5128 			     m0->m_len, hlen+ sizeof(struct tcphdr));
   5129 #ifdef NOTYET
   5130 			/*
   5131 			 * XXX jonathan (at) NetBSD.org: untested.
   5132 			 * how to force  this branch to be taken?
   5133 			 */
   5134 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
   5135 
   5136 			m_copydata(m0, offset, sizeof(ip), &ip);
   5137 			m_copydata(m0, hlen, sizeof(th), &th);
   5138 
   5139 			ip.ip_len = 0;
   5140 
   5141 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   5142 			    sizeof(ip.ip_len), &ip.ip_len);
   5143 
   5144 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   5145 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   5146 
   5147 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   5148 			    sizeof(th.th_sum), &th.th_sum);
   5149 
   5150 			hlen += th.th_off << 2;
   5151 			iptcp_opt_words	= hlen;
   5152 #else
   5153 			/*
   5154 			 * if_wm "hard" case not yet supported, can we not
   5155 			 * mandate it out of existence?
   5156 			 */
   5157 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5158 
   5159 			return ENOBUFS;
   5160 #endif
   5161 		} else {
   5162 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5163 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5164 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5165 
   5166 			/* Total IP/TCP options, in 32-bit words */
   5167 			iptcp_opt_words = (ip_tcp_hlen
   5168 					   - sizeof(struct tcphdr)
   5169 					   - sizeof(struct ip)) >> 2;
   5170 		}
   5171 		if (BGE_IS_575X_PLUS(sc)) {
   5172 			th->th_sum = 0;
   5173 			csum_flags = 0;
   5174 		} else {
   5175 			/*
   5176 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5177 			 * Requires TSO firmware patch for 5701/5703/5704.
   5178 			 */
   5179 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5180 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5181 		}
   5182 
   5183 		mss = m_head->m_pkthdr.segsz;
   5184 		txbd_tso_flags |=
   5185 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5186 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5187 
   5188 		/*
   5189 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5190 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5191 		 * the NIC copies 40 bytes of IP/TCP header from the
   5192 		 * supplied header into the IP/TCP header portion of
   5193 		 * each post-TSO-segment. If the supplied packet has IP or
   5194 		 * TCP options, we need to tell the NIC to copy those extra
   5195 		 * bytes into each  post-TSO header, in addition to the normal
   5196 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5197 		 * Unfortunately, the driver encoding of option length
   5198 		 * varies across different ASIC families.
   5199 		 */
   5200 		tcp_seg_flags = 0;
   5201 		bge_hlen = ip_tcp_hlen >> 2;
   5202 		if (BGE_IS_5717_PLUS(sc)) {
   5203 			tcp_seg_flags = (bge_hlen & 0x3) << 14;
   5204 			txbd_tso_flags |=
   5205 			    ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
   5206 		} else if (BGE_IS_5705_PLUS(sc)) {
   5207 			tcp_seg_flags =
   5208 				bge_hlen << 11;
   5209 		} else {
   5210 			/* XXX iptcp_opt_words or bge_hlen ? */
   5211 			txbd_tso_flags |=
   5212 				iptcp_opt_words << 12;
   5213 		}
   5214 		maxsegsize = mss | tcp_seg_flags;
   5215 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5216 		ip->ip_sum = 0;
   5217 
   5218 	}	/* TSO setup */
   5219 
   5220 	have_vtag = vlan_has_tag(m_head);
   5221 	if (have_vtag)
   5222 		vtag = vlan_get_tag(m_head);
   5223 
   5224 	/*
   5225 	 * Start packing the mbufs in this chain into
   5226 	 * the fragment pointers. Stop when we run out
   5227 	 * of fragments or hit the end of the mbuf chain.
   5228 	 */
   5229 	remap = true;
   5230 load_again:
   5231 	error = bus_dmamap_load_mbuf(dmatag, dmamap,
   5232 	    m_head, BUS_DMA_NOWAIT);
   5233 	if (__predict_false(error)) {
   5234 		if (error == EFBIG && remap)  {
   5235 			struct mbuf *m;
   5236 			remap = false;
   5237 			m = m_defrag(m_head, M_NOWAIT);
   5238 			if (m != NULL) {
   5239 				KASSERT(m == m_head);
   5240 				goto load_again;
   5241 			}
   5242 		}
   5243 		return error;
   5244 	}
   5245 	/*
   5246 	 * Sanity check: avoid coming within 16 descriptors
   5247 	 * of the end of the ring.
   5248 	 */
   5249 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5250 		BGE_TSO_PRINTF(("%s: "
   5251 		    " dmamap_load_mbuf too close to ring wrap\n",
   5252 		    device_xname(sc->bge_dev)));
   5253 		goto fail_unload;
   5254 	}
   5255 
   5256 	/* Iterate over dmap-map fragments. */
   5257 	f = prev_f = NULL;
   5258 	cur = frag = *txidx;
   5259 
   5260 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5261 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5262 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5263 			break;
   5264 
   5265 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5266 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5267 		if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
   5268 		    (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
   5269 		    ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
   5270 		    (prev_f != NULL &&
   5271 		     prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
   5272 		   ) {
   5273 			/*
   5274 			 * watchdog timeout issue was observed with TSO,
   5275 			 * limiting DMA address space to 32bits seems to
   5276 			 * address the issue.
   5277 			 */
   5278 			bus_dmamap_unload(dmatag, dmamap);
   5279 			dmatag = sc->bge_dmatag32;
   5280 			dmamap = dma->dmamap32;
   5281 			dma->is_dma32 = true;
   5282 			remap = true;
   5283 			goto load_again;
   5284 		}
   5285 
   5286 		/*
   5287 		 * For 5751 and follow-ons, for TSO we must turn
   5288 		 * off checksum-assist flag in the tx-descr, and
   5289 		 * supply the ASIC-revision-specific encoding
   5290 		 * of TSO flags and segsize.
   5291 		 */
   5292 		if (use_tso) {
   5293 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5294 				f->bge_rsvd = maxsegsize;
   5295 				f->bge_flags = csum_flags | txbd_tso_flags;
   5296 			} else {
   5297 				f->bge_rsvd = 0;
   5298 				f->bge_flags =
   5299 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5300 			}
   5301 		} else {
   5302 			f->bge_rsvd = 0;
   5303 			f->bge_flags = csum_flags;
   5304 		}
   5305 
   5306 		if (have_vtag) {
   5307 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5308 			f->bge_vlan_tag = vtag;
   5309 		} else {
   5310 			f->bge_vlan_tag = 0;
   5311 		}
   5312 		prev_f = f;
   5313 		cur = frag;
   5314 		BGE_INC(frag, BGE_TX_RING_CNT);
   5315 	}
   5316 
   5317 	if (i < dmamap->dm_nsegs) {
   5318 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5319 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5320 		goto fail_unload;
   5321 	}
   5322 
   5323 	bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
   5324 	    BUS_DMASYNC_PREWRITE);
   5325 
   5326 	if (frag == sc->bge_tx_saved_considx) {
   5327 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5328 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5329 
   5330 		goto fail_unload;
   5331 	}
   5332 
   5333 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5334 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5335 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5336 	sc->txdma[cur] = dma;
   5337 	sc->bge_txcnt += dmamap->dm_nsegs;
   5338 
   5339 	*txidx = frag;
   5340 
   5341 	return 0;
   5342 
   5343 fail_unload:
   5344 	bus_dmamap_unload(dmatag, dmamap);
   5345 	ifp->if_flags |= IFF_OACTIVE;
   5346 
   5347 	return ENOBUFS;
   5348 }
   5349 
   5350 /*
   5351  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5352  * to the mbuf data regions directly in the transmit descriptors.
   5353  */
   5354 static void
   5355 bge_start(struct ifnet *ifp)
   5356 {
   5357 	struct bge_softc *sc;
   5358 	struct mbuf *m_head = NULL;
   5359 	struct mbuf *m;
   5360 	uint32_t prodidx;
   5361 	int pkts = 0;
   5362 	int error;
   5363 
   5364 	sc = ifp->if_softc;
   5365 
   5366 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   5367 		return;
   5368 
   5369 	prodidx = sc->bge_tx_prodidx;
   5370 
   5371 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5372 		IFQ_POLL(&ifp->if_snd, m_head);
   5373 		if (m_head == NULL)
   5374 			break;
   5375 
   5376 #if 0
   5377 		/*
   5378 		 * XXX
   5379 		 * safety overkill.  If this is a fragmented packet chain
   5380 		 * with delayed TCP/UDP checksums, then only encapsulate
   5381 		 * it if we have enough descriptors to handle the entire
   5382 		 * chain at once.
   5383 		 * (paranoia -- may not actually be needed)
   5384 		 */
   5385 		if (m_head->m_flags & M_FIRSTFRAG &&
   5386 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5387 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5388 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5389 				ifp->if_flags |= IFF_OACTIVE;
   5390 				break;
   5391 			}
   5392 		}
   5393 #endif
   5394 
   5395 		/*
   5396 		 * Pack the data into the transmit ring. If we
   5397 		 * don't have room, set the OACTIVE flag and wait
   5398 		 * for the NIC to drain the ring.
   5399 		 */
   5400 		error = bge_encap(sc, m_head, &prodidx);
   5401 		if (__predict_false(error)) {
   5402 			if (ifp->if_flags & IFF_OACTIVE) {
   5403 				/* just wait for the transmit ring to drain */
   5404 				break;
   5405 			}
   5406 			IFQ_DEQUEUE(&ifp->if_snd, m);
   5407 			KASSERT(m == m_head);
   5408 			m_freem(m_head);
   5409 			continue;
   5410 		}
   5411 
   5412 		/* now we are committed to transmit the packet */
   5413 		IFQ_DEQUEUE(&ifp->if_snd, m);
   5414 		KASSERT(m == m_head);
   5415 		pkts++;
   5416 
   5417 		/*
   5418 		 * If there's a BPF listener, bounce a copy of this frame
   5419 		 * to him.
   5420 		 */
   5421 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5422 	}
   5423 	if (pkts == 0)
   5424 		return;
   5425 
   5426 	/* Transmit */
   5427 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5428 	/* 5700 b2 errata */
   5429 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5430 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5431 
   5432 	sc->bge_tx_prodidx = prodidx;
   5433 
   5434 	/*
   5435 	 * Set a timeout in case the chip goes out to lunch.
   5436 	 */
   5437 	ifp->if_timer = 5;
   5438 }
   5439 
   5440 static int
   5441 bge_init(struct ifnet *ifp)
   5442 {
   5443 	struct bge_softc *sc = ifp->if_softc;
   5444 	const uint16_t *m;
   5445 	uint32_t mode, reg;
   5446 	int s, error = 0;
   5447 
   5448 	s = splnet();
   5449 
   5450 	ifp = &sc->ethercom.ec_if;
   5451 
   5452 	/* Cancel pending I/O and flush buffers. */
   5453 	bge_stop(ifp, 0);
   5454 
   5455 	bge_stop_fw(sc);
   5456 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5457 	bge_reset(sc);
   5458 	bge_sig_legacy(sc, BGE_RESET_START);
   5459 
   5460 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5461 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5462 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
   5463 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
   5464 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5465 
   5466 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   5467 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
   5468 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   5469 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   5470 
   5471 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
   5472 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
   5473 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
   5474 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
   5475 
   5476 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
   5477 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
   5478 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
   5479 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
   5480 	}
   5481 
   5482 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   5483 		pcireg_t aercap;
   5484 
   5485 		reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
   5486 		reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
   5487 		    | BGE_PCIE_PWRMNG_L1THRESH_4MS
   5488 		    | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
   5489 		CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
   5490 
   5491 		reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
   5492 		reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
   5493 		    | BGE_PCIE_EIDLE_DELAY_13CLK;
   5494 		CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
   5495 
   5496 		/* Clear correctable error */
   5497 		if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
   5498 		    PCI_EXTCAP_AER, &aercap, NULL) != 0)
   5499 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   5500 			    aercap + PCI_AER_COR_STATUS, 0xffffffff);
   5501 
   5502 		reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   5503 		reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   5504 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   5505 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
   5506 	}
   5507 
   5508 	bge_sig_post_reset(sc, BGE_RESET_START);
   5509 
   5510 	bge_chipinit(sc);
   5511 
   5512 	/*
   5513 	 * Init the various state machines, ring
   5514 	 * control blocks and firmware.
   5515 	 */
   5516 	error = bge_blockinit(sc);
   5517 	if (error != 0) {
   5518 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5519 		    error);
   5520 		splx(s);
   5521 		return error;
   5522 	}
   5523 
   5524 	ifp = &sc->ethercom.ec_if;
   5525 
   5526 	/* 5718 step 25, 57XX step 54 */
   5527 	/* Specify MTU. */
   5528 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5529 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5530 
   5531 	/* 5718 step 23 */
   5532 	/* Load our MAC address. */
   5533 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5534 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5535 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   5536 
   5537 	/* Enable or disable promiscuous mode as needed. */
   5538 	if (ifp->if_flags & IFF_PROMISC)
   5539 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5540 	else
   5541 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5542 
   5543 	/* Program multicast filter. */
   5544 	bge_setmulti(sc);
   5545 
   5546 	/* Init RX ring. */
   5547 	bge_init_rx_ring_std(sc);
   5548 
   5549 	/*
   5550 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5551 	 * memory to insure that the chip has in fact read the first
   5552 	 * entry of the ring.
   5553 	 */
   5554 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5555 		uint32_t		v, i;
   5556 		for (i = 0; i < 10; i++) {
   5557 			DELAY(20);
   5558 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5559 			if (v == (MCLBYTES - ETHER_ALIGN))
   5560 				break;
   5561 		}
   5562 		if (i == 10)
   5563 			aprint_error_dev(sc->bge_dev,
   5564 			    "5705 A0 chip failed to load RX ring\n");
   5565 	}
   5566 
   5567 	/* Init jumbo RX ring. */
   5568 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5569 		bge_init_rx_ring_jumbo(sc);
   5570 
   5571 	/* Init our RX return ring index */
   5572 	sc->bge_rx_saved_considx = 0;
   5573 
   5574 	/* Init TX ring. */
   5575 	bge_init_tx_ring(sc);
   5576 
   5577 	/* 5718 step 63, 57XX step 94 */
   5578 	/* Enable TX MAC state machine lockup fix. */
   5579 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5580 	if (BGE_IS_5755_PLUS(sc) ||
   5581 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5582 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5583 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   5584 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   5585 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5586 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5587 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5588 	}
   5589 
   5590 	/* Turn on transmitter */
   5591 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5592 	/* 5718 step 64 */
   5593 	DELAY(100);
   5594 
   5595 	/* 5718 step 65, 57XX step 95 */
   5596 	/* Turn on receiver */
   5597 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5598 	if (BGE_IS_5755_PLUS(sc))
   5599 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5600 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   5601 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
   5602 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5603 	/* 5718 step 66 */
   5604 	DELAY(10);
   5605 
   5606 	/* 5718 step 12, 57XX step 37 */
   5607 	/*
   5608 	 * XXX Doucments of 5718 series and 577xx say the recommended value
   5609 	 * is 1, but tg3 set 1 only on 57765 series.
   5610 	 */
   5611 	if (BGE_IS_57765_PLUS(sc))
   5612 		reg = 1;
   5613 	else
   5614 		reg = 2;
   5615 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
   5616 
   5617 	/* Tell firmware we're alive. */
   5618 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5619 
   5620 	/* Enable host interrupts. */
   5621 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5622 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5623 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5624 
   5625 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5626 		goto out;
   5627 
   5628 	ifp->if_flags |= IFF_RUNNING;
   5629 	ifp->if_flags &= ~IFF_OACTIVE;
   5630 
   5631 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   5632 
   5633 out:
   5634 	sc->bge_if_flags = ifp->if_flags;
   5635 	splx(s);
   5636 
   5637 	return error;
   5638 }
   5639 
   5640 /*
   5641  * Set media options.
   5642  */
   5643 static int
   5644 bge_ifmedia_upd(struct ifnet *ifp)
   5645 {
   5646 	struct bge_softc *sc = ifp->if_softc;
   5647 	struct mii_data *mii = &sc->bge_mii;
   5648 	struct ifmedia *ifm = &sc->bge_ifmedia;
   5649 	int rc;
   5650 
   5651 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5652 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5653 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5654 			return EINVAL;
   5655 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5656 		case IFM_AUTO:
   5657 			/*
   5658 			 * The BCM5704 ASIC appears to have a special
   5659 			 * mechanism for programming the autoneg
   5660 			 * advertisement registers in TBI mode.
   5661 			 */
   5662 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5663 				uint32_t sgdig;
   5664 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5665 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5666 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5667 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5668 					sgdig |= BGE_SGDIGCFG_AUTO |
   5669 					    BGE_SGDIGCFG_PAUSE_CAP |
   5670 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5671 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5672 					    sgdig | BGE_SGDIGCFG_SEND);
   5673 					DELAY(5);
   5674 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5675 					    sgdig);
   5676 				}
   5677 			}
   5678 			break;
   5679 		case IFM_1000_SX:
   5680 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   5681 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   5682 				    BGE_MACMODE_HALF_DUPLEX);
   5683 			} else {
   5684 				BGE_SETBIT(sc, BGE_MAC_MODE,
   5685 				    BGE_MACMODE_HALF_DUPLEX);
   5686 			}
   5687 			DELAY(40);
   5688 			break;
   5689 		default:
   5690 			return EINVAL;
   5691 		}
   5692 		/* XXX 802.3x flow control for 1000BASE-SX */
   5693 		return 0;
   5694 	}
   5695 
   5696 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
   5697 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
   5698 		uint32_t reg;
   5699 
   5700 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5701 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
   5702 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
   5703 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5704 		}
   5705 	}
   5706 
   5707 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5708 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5709 		return 0;
   5710 
   5711 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5712 		uint32_t reg;
   5713 
   5714 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
   5715 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
   5716 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
   5717 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
   5718 			delay(40);
   5719 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
   5720 		}
   5721 	}
   5722 
   5723 	/*
   5724 	 * Force an interrupt so that we will call bge_link_upd
   5725 	 * if needed and clear any pending link state attention.
   5726 	 * Without this we are not getting any further interrupts
   5727 	 * for link state changes and thus will not UP the link and
   5728 	 * not be able to send in bge_start. The only way to get
   5729 	 * things working was to receive a packet and get a RX intr.
   5730 	 */
   5731 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5732 	    sc->bge_flags & BGEF_IS_5788)
   5733 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5734 	else
   5735 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5736 
   5737 	return rc;
   5738 }
   5739 
   5740 /*
   5741  * Report current media status.
   5742  */
   5743 static void
   5744 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5745 {
   5746 	struct bge_softc *sc = ifp->if_softc;
   5747 	struct mii_data *mii = &sc->bge_mii;
   5748 
   5749 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5750 		ifmr->ifm_status = IFM_AVALID;
   5751 		ifmr->ifm_active = IFM_ETHER;
   5752 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5753 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5754 			ifmr->ifm_status |= IFM_ACTIVE;
   5755 		ifmr->ifm_active |= IFM_1000_SX;
   5756 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5757 			ifmr->ifm_active |= IFM_HDX;
   5758 		else
   5759 			ifmr->ifm_active |= IFM_FDX;
   5760 		return;
   5761 	}
   5762 
   5763 	mii_pollstat(mii);
   5764 	ifmr->ifm_status = mii->mii_media_status;
   5765 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5766 	    sc->bge_flowflags;
   5767 }
   5768 
   5769 static int
   5770 bge_ifflags_cb(struct ethercom *ec)
   5771 {
   5772 	struct ifnet *ifp = &ec->ec_if;
   5773 	struct bge_softc *sc = ifp->if_softc;
   5774 	int change = ifp->if_flags ^ sc->bge_if_flags;
   5775 
   5776 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   5777 		return ENETRESET;
   5778 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   5779 		return 0;
   5780 
   5781 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   5782 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5783 	else
   5784 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5785 
   5786 	bge_setmulti(sc);
   5787 
   5788 	sc->bge_if_flags = ifp->if_flags;
   5789 	return 0;
   5790 }
   5791 
   5792 static int
   5793 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5794 {
   5795 	struct bge_softc *sc = ifp->if_softc;
   5796 	struct ifreq *ifr = (struct ifreq *) data;
   5797 	int s, error = 0;
   5798 	struct mii_data *mii;
   5799 
   5800 	s = splnet();
   5801 
   5802 	switch (command) {
   5803 	case SIOCSIFMEDIA:
   5804 		/* XXX Flow control is not supported for 1000BASE-SX */
   5805 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5806 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5807 			sc->bge_flowflags = 0;
   5808 		}
   5809 
   5810 		/* Flow control requires full-duplex mode. */
   5811 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5812 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5813 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   5814 		}
   5815 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5816 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5817 				/* We can do both TXPAUSE and RXPAUSE. */
   5818 				ifr->ifr_media |=
   5819 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5820 			}
   5821 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5822 		}
   5823 		/* FALLTHROUGH */
   5824 	case SIOCGIFMEDIA:
   5825 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5826 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5827 			    command);
   5828 		} else {
   5829 			mii = &sc->bge_mii;
   5830 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5831 			    command);
   5832 		}
   5833 		break;
   5834 	default:
   5835 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5836 			break;
   5837 
   5838 		error = 0;
   5839 
   5840 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   5841 			;
   5842 		else if (ifp->if_flags & IFF_RUNNING)
   5843 			bge_setmulti(sc);
   5844 		break;
   5845 	}
   5846 
   5847 	splx(s);
   5848 
   5849 	return error;
   5850 }
   5851 
   5852 static void
   5853 bge_watchdog(struct ifnet *ifp)
   5854 {
   5855 	struct bge_softc *sc;
   5856 	uint32_t status;
   5857 
   5858 	sc = ifp->if_softc;
   5859 
   5860         /* If pause frames are active then don't reset the hardware. */
   5861 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
   5862 		status = CSR_READ_4(sc, BGE_RX_STS);
   5863 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
   5864 			/*
   5865 			 * If link partner has us in XOFF state then wait for
   5866 			 * the condition to clear.
   5867 			 */
   5868 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   5869 			ifp->if_timer = 5;
   5870 			return;
   5871 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
   5872 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
   5873 			/*
   5874 			 * If link partner has us in XOFF state then wait for
   5875 			 * the condition to clear.
   5876 			 */
   5877 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   5878 			ifp->if_timer = 5;
   5879 			return;
   5880 		}
   5881 		/*
   5882 		 * Any other condition is unexpected and the controller
   5883 		 * should be reset.
   5884 		 */
   5885 	}
   5886 
   5887 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   5888 
   5889 	ifp->if_flags &= ~IFF_RUNNING;
   5890 	bge_init(ifp);
   5891 
   5892 	ifp->if_oerrors++;
   5893 }
   5894 
   5895 static void
   5896 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   5897 {
   5898 	int i;
   5899 
   5900 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   5901 
   5902 	for (i = 0; i < 1000; i++) {
   5903 		delay(100);
   5904 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   5905 			return;
   5906 	}
   5907 
   5908 	/*
   5909 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   5910 	 * on some environment (and once after boot?)
   5911 	 */
   5912 	if (reg != BGE_SRS_MODE)
   5913 		aprint_error_dev(sc->bge_dev,
   5914 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   5915 		    (u_long)reg, bit);
   5916 }
   5917 
   5918 /*
   5919  * Stop the adapter and free any mbufs allocated to the
   5920  * RX and TX lists.
   5921  */
   5922 static void
   5923 bge_stop(struct ifnet *ifp, int disable)
   5924 {
   5925 	struct bge_softc *sc = ifp->if_softc;
   5926 
   5927 	if (disable) {
   5928 		sc->bge_detaching = 1;
   5929 		callout_halt(&sc->bge_timeout, NULL);
   5930 	} else
   5931 		callout_stop(&sc->bge_timeout);
   5932 
   5933 	/* Disable host interrupts. */
   5934 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5935 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   5936 
   5937 	/*
   5938 	 * Tell firmware we're shutting down.
   5939 	 */
   5940 	bge_stop_fw(sc);
   5941 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   5942 
   5943 	/*
   5944 	 * Disable all of the receiver blocks.
   5945 	 */
   5946 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   5947 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   5948 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   5949 	if (BGE_IS_5700_FAMILY(sc))
   5950 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   5951 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   5952 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   5953 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   5954 
   5955 	/*
   5956 	 * Disable all of the transmit blocks.
   5957 	 */
   5958 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   5959 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   5960 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   5961 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   5962 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   5963 	if (BGE_IS_5700_FAMILY(sc))
   5964 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   5965 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   5966 
   5967 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   5968 	delay(40);
   5969 
   5970 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   5971 
   5972 	/*
   5973 	 * Shut down all of the memory managers and related
   5974 	 * state machines.
   5975 	 */
   5976 	/* 5718 step 5a,5b */
   5977 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   5978 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   5979 	if (BGE_IS_5700_FAMILY(sc))
   5980 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   5981 
   5982 	/* 5718 step 5c,5d */
   5983 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   5984 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   5985 
   5986 	if (BGE_IS_5700_FAMILY(sc)) {
   5987 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   5988 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   5989 	}
   5990 
   5991 	bge_reset(sc);
   5992 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   5993 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   5994 
   5995 	/*
   5996 	 * Keep the ASF firmware running if up.
   5997 	 */
   5998 	if (sc->bge_asf_mode & ASF_STACKUP)
   5999 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6000 	else
   6001 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6002 
   6003 	/* Free the RX lists. */
   6004 	bge_free_rx_ring_std(sc, disable);
   6005 
   6006 	/* Free jumbo RX list. */
   6007 	if (BGE_IS_JUMBO_CAPABLE(sc))
   6008 		bge_free_rx_ring_jumbo(sc);
   6009 
   6010 	/* Free TX buffers. */
   6011 	bge_free_tx_ring(sc, disable);
   6012 
   6013 	/*
   6014 	 * Isolate/power down the PHY.
   6015 	 */
   6016 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
   6017 		mii_down(&sc->bge_mii);
   6018 
   6019 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   6020 
   6021 	/* Clear MAC's link state (PHY may still have link UP). */
   6022 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6023 
   6024 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   6025 }
   6026 
   6027 static void
   6028 bge_link_upd(struct bge_softc *sc)
   6029 {
   6030 	struct ifnet *ifp = &sc->ethercom.ec_if;
   6031 	struct mii_data *mii = &sc->bge_mii;
   6032 	uint32_t status;
   6033 	uint16_t phyval;
   6034 	int link;
   6035 
   6036 	/* Clear 'pending link event' flag */
   6037 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   6038 
   6039 	/*
   6040 	 * Process link state changes.
   6041 	 * Grrr. The link status word in the status block does
   6042 	 * not work correctly on the BCM5700 rev AX and BX chips,
   6043 	 * according to all available information. Hence, we have
   6044 	 * to enable MII interrupts in order to properly obtain
   6045 	 * async link changes. Unfortunately, this also means that
   6046 	 * we have to read the MAC status register to detect link
   6047 	 * changes, thereby adding an additional register access to
   6048 	 * the interrupt handler.
   6049 	 */
   6050 
   6051 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   6052 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6053 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   6054 			mii_pollstat(mii);
   6055 
   6056 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6057 			    mii->mii_media_status & IFM_ACTIVE &&
   6058 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6059 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6060 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6061 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6062 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6063 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6064 
   6065 			/* Clear the interrupt */
   6066 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   6067 			    BGE_EVTENB_MI_INTERRUPT);
   6068 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   6069 			    BRGPHY_MII_ISR, &phyval);
   6070 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   6071 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   6072 		}
   6073 		return;
   6074 	}
   6075 
   6076 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   6077 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6078 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   6079 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6080 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6081 				if (BGE_ASICREV(sc->bge_chipid)
   6082 				    == BGE_ASICREV_BCM5704) {
   6083 					BGE_CLRBIT(sc, BGE_MAC_MODE,
   6084 					    BGE_MACMODE_TBI_SEND_CFGS);
   6085 					DELAY(40);
   6086 				}
   6087 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   6088 				if_link_state_change(ifp, LINK_STATE_UP);
   6089 			}
   6090 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6091 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6092 			if_link_state_change(ifp, LINK_STATE_DOWN);
   6093 		}
   6094 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   6095 		/*
   6096 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   6097 		 * bit in status word always set. Workaround this bug by
   6098 		 * reading PHY link status directly.
   6099 		 */
   6100 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   6101 		    BGE_STS_LINK : 0;
   6102 
   6103 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   6104 			mii_pollstat(mii);
   6105 
   6106 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6107 			    mii->mii_media_status & IFM_ACTIVE &&
   6108 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6109 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6110 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6111 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6112 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6113 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6114 		}
   6115 	} else {
   6116 		/*
   6117 		 * For controllers that call mii_tick, we have to poll
   6118 		 * link status.
   6119 		 */
   6120 		mii_pollstat(mii);
   6121 	}
   6122 
   6123 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   6124 		uint32_t reg, scale;
   6125 
   6126 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
   6127 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
   6128 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
   6129 			scale = 65;
   6130 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
   6131 			scale = 6;
   6132 		else
   6133 			scale = 12;
   6134 
   6135 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
   6136 		    ~BGE_MISCCFG_TIMER_PRESCALER;
   6137 		reg |= scale << 1;
   6138 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
   6139 	}
   6140 	/* Clear the attention */
   6141 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   6142 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   6143 	    BGE_MACSTAT_LINK_CHANGED);
   6144 }
   6145 
   6146 static int
   6147 bge_sysctl_verify(SYSCTLFN_ARGS)
   6148 {
   6149 	int error, t;
   6150 	struct sysctlnode node;
   6151 
   6152 	node = *rnode;
   6153 	t = *(int*)rnode->sysctl_data;
   6154 	node.sysctl_data = &t;
   6155 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   6156 	if (error || newp == NULL)
   6157 		return error;
   6158 
   6159 #if 0
   6160 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   6161 	    node.sysctl_num, rnode->sysctl_num));
   6162 #endif
   6163 
   6164 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   6165 		if (t < 0 || t >= NBGE_RX_THRESH)
   6166 			return EINVAL;
   6167 		bge_update_all_threshes(t);
   6168 	} else
   6169 		return EINVAL;
   6170 
   6171 	*(int*)rnode->sysctl_data = t;
   6172 
   6173 	return 0;
   6174 }
   6175 
   6176 /*
   6177  * Set up sysctl(3) MIB, hw.bge.*.
   6178  */
   6179 static void
   6180 bge_sysctl_init(struct bge_softc *sc)
   6181 {
   6182 	int rc, bge_root_num;
   6183 	const struct sysctlnode *node;
   6184 
   6185 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6186 	    0, CTLTYPE_NODE, "bge",
   6187 	    SYSCTL_DESCR("BGE interface controls"),
   6188 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   6189 		goto out;
   6190 	}
   6191 
   6192 	bge_root_num = node->sysctl_num;
   6193 
   6194 	/* BGE Rx interrupt mitigation level */
   6195 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6196 	    CTLFLAG_READWRITE,
   6197 	    CTLTYPE_INT, "rx_lvl",
   6198 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   6199 	    bge_sysctl_verify, 0,
   6200 	    &bge_rx_thresh_lvl,
   6201 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   6202 	    CTL_EOL)) != 0) {
   6203 		goto out;
   6204 	}
   6205 
   6206 	bge_rxthresh_nodenum = node->sysctl_num;
   6207 
   6208 	return;
   6209 
   6210 out:
   6211 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   6212 }
   6213 
   6214 #ifdef BGE_DEBUG
   6215 void
   6216 bge_debug_info(struct bge_softc *sc)
   6217 {
   6218 
   6219 	printf("Hardware Flags:\n");
   6220 	if (BGE_IS_57765_PLUS(sc))
   6221 		printf(" - 57765 Plus\n");
   6222 	if (BGE_IS_5717_PLUS(sc))
   6223 		printf(" - 5717 Plus\n");
   6224 	if (BGE_IS_5755_PLUS(sc))
   6225 		printf(" - 5755 Plus\n");
   6226 	if (BGE_IS_575X_PLUS(sc))
   6227 		printf(" - 575X Plus\n");
   6228 	if (BGE_IS_5705_PLUS(sc))
   6229 		printf(" - 5705 Plus\n");
   6230 	if (BGE_IS_5714_FAMILY(sc))
   6231 		printf(" - 5714 Family\n");
   6232 	if (BGE_IS_5700_FAMILY(sc))
   6233 		printf(" - 5700 Family\n");
   6234 	if (sc->bge_flags & BGEF_IS_5788)
   6235 		printf(" - 5788\n");
   6236 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
   6237 		printf(" - Supports Jumbo Frames\n");
   6238 	if (sc->bge_flags & BGEF_NO_EEPROM)
   6239 		printf(" - No EEPROM\n");
   6240 	if (sc->bge_flags & BGEF_PCIX)
   6241 		printf(" - PCI-X Bus\n");
   6242 	if (sc->bge_flags & BGEF_PCIE)
   6243 		printf(" - PCI Express Bus\n");
   6244 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
   6245 		printf(" - RX Alignment Bug\n");
   6246 	if (sc->bge_flags & BGEF_APE)
   6247 		printf(" - APE\n");
   6248 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
   6249 		printf(" - CPMU\n");
   6250 	if (sc->bge_flags & BGEF_TSO)
   6251 		printf(" - TSO\n");
   6252 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   6253 		printf(" - TAGGED_STATUS\n");
   6254 
   6255 	/* PHY related */
   6256 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
   6257 		printf(" - No 3 LEDs\n");
   6258 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
   6259 		printf(" - CRC bug\n");
   6260 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
   6261 		printf(" - ADC bug\n");
   6262 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
   6263 		printf(" - 5704 A0 bug\n");
   6264 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
   6265 		printf(" - jitter bug\n");
   6266 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
   6267 		printf(" - BER bug\n");
   6268 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
   6269 		printf(" - adjust trim\n");
   6270 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
   6271 		printf(" - no wirespeed\n");
   6272 
   6273 	/* ASF related */
   6274 	if (sc->bge_asf_mode & ASF_ENABLE)
   6275 		printf(" - ASF enable\n");
   6276 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
   6277 		printf(" - ASF new handshake\n");
   6278 	if (sc->bge_asf_mode & ASF_STACKUP)
   6279 		printf(" - ASF stackup\n");
   6280 }
   6281 #endif /* BGE_DEBUG */
   6282 
   6283 static int
   6284 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   6285 {
   6286 	prop_dictionary_t dict;
   6287 	prop_data_t ea;
   6288 
   6289 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
   6290 		return 1;
   6291 
   6292 	dict = device_properties(sc->bge_dev);
   6293 	ea = prop_dictionary_get(dict, "mac-address");
   6294 	if (ea != NULL) {
   6295 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   6296 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   6297 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
   6298 		return 0;
   6299 	}
   6300 
   6301 	return 1;
   6302 }
   6303 
   6304 static int
   6305 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   6306 {
   6307 	uint32_t mac_addr;
   6308 
   6309 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   6310 	if ((mac_addr >> 16) == 0x484b) {
   6311 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   6312 		ether_addr[1] = (uint8_t)mac_addr;
   6313 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   6314 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   6315 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   6316 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   6317 		ether_addr[5] = (uint8_t)mac_addr;
   6318 		return 0;
   6319 	}
   6320 	return 1;
   6321 }
   6322 
   6323 static int
   6324 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   6325 {
   6326 	int mac_offset = BGE_EE_MAC_OFFSET;
   6327 
   6328 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6329 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   6330 
   6331 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   6332 	    ETHER_ADDR_LEN));
   6333 }
   6334 
   6335 static int
   6336 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   6337 {
   6338 
   6339 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6340 		return 1;
   6341 
   6342 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   6343 	   ETHER_ADDR_LEN));
   6344 }
   6345 
   6346 static int
   6347 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6348 {
   6349 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6350 		/* NOTE: Order is critical */
   6351 		bge_get_eaddr_fw,
   6352 		bge_get_eaddr_mem,
   6353 		bge_get_eaddr_nvram,
   6354 		bge_get_eaddr_eeprom,
   6355 		NULL
   6356 	};
   6357 	const bge_eaddr_fcn_t *func;
   6358 
   6359 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6360 		if ((*func)(sc, eaddr) == 0)
   6361 			break;
   6362 	}
   6363 	return (*func == NULL ? ENXIO : 0);
   6364 }
   6365