if_bge.c revision 1.33 1 /* $NetBSD: if_bge.c,v 1.33 2003/02/22 04:57:49 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include "bpfilter.h"
82 #include "vlan.h"
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #ifdef INET
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip.h>
104 #endif
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/miidevs.h>
117 #include <dev/mii/brgphyreg.h>
118
119 #include <dev/pci/if_bgereg.h>
120
121 #include <uvm/uvm_extern.h>
122
123 int bge_probe(struct device *, struct cfdata *, void *);
124 void bge_attach(struct device *, struct device *, void *);
125 void bge_release_resources(struct bge_softc *);
126 void bge_txeof(struct bge_softc *);
127 void bge_rxeof(struct bge_softc *);
128
129 void bge_tick(void *);
130 void bge_stats_update(struct bge_softc *);
131 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
132
133 int bge_intr(void *);
134 void bge_start(struct ifnet *);
135 int bge_ioctl(struct ifnet *, u_long, caddr_t);
136 int bge_init(struct ifnet *);
137 void bge_stop(struct bge_softc *);
138 void bge_watchdog(struct ifnet *);
139 void bge_shutdown(void *);
140 int bge_ifmedia_upd(struct ifnet *);
141 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
142
143 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
144 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
145
146 void bge_setmulti(struct bge_softc *);
147
148 void bge_handle_events(struct bge_softc *);
149 int bge_alloc_jumbo_mem(struct bge_softc *);
150 void bge_free_jumbo_mem(struct bge_softc *);
151 void *bge_jalloc(struct bge_softc *);
152 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
153 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
154 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
155 int bge_init_rx_ring_std(struct bge_softc *);
156 void bge_free_rx_ring_std(struct bge_softc *);
157 int bge_init_rx_ring_jumbo(struct bge_softc *);
158 void bge_free_rx_ring_jumbo(struct bge_softc *);
159 void bge_free_tx_ring(struct bge_softc *);
160 int bge_init_tx_ring(struct bge_softc *);
161
162 int bge_chipinit(struct bge_softc *);
163 int bge_blockinit(struct bge_softc *);
164 int bge_setpowerstate(struct bge_softc *, int);
165
166 #ifdef notdef
167 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
168 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
169 void bge_vpd_read(struct bge_softc *);
170 #endif
171
172 u_int32_t bge_readmem_ind(struct bge_softc *, int);
173 void bge_writemem_ind(struct bge_softc *, int, int);
174 #ifdef notdef
175 u_int32_t bge_readreg_ind(struct bge_softc *, int);
176 #endif
177 void bge_writereg_ind(struct bge_softc *, int, int);
178
179 int bge_miibus_readreg(struct device *, int, int);
180 void bge_miibus_writereg(struct device *, int, int, int);
181 void bge_miibus_statchg(struct device *);
182
183 void bge_reset(struct bge_softc *);
184
185 void bge_dump_status(struct bge_softc *);
186 void bge_dump_rxbd(struct bge_rx_bd *);
187
188 #define BGE_DEBUG
189 #ifdef BGE_DEBUG
190 #define DPRINTF(x) if (bgedebug) printf x
191 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
192 int bgedebug = 0;
193 #else
194 #define DPRINTF(x)
195 #define DPRINTFN(n,x)
196 #endif
197
198 /* Various chip quirks. */
199 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
200 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
201 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
202 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
203 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
204 #define BGE_QUIRK_PRODUCER_BUG 0x00000011
205
206 /* following bugs are common to bcm5700 rev B, all flavours */
207 #define BGE_QUIRK_5700_COMMON \
208 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
209
210 CFATTACH_DECL(bge, sizeof(struct bge_softc),
211 bge_probe, bge_attach, NULL, NULL);
212
213 u_int32_t
214 bge_readmem_ind(sc, off)
215 struct bge_softc *sc;
216 int off;
217 {
218 struct pci_attach_args *pa = &(sc->bge_pa);
219 pcireg_t val;
220
221 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
222 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
223 return val;
224 }
225
226 void
227 bge_writemem_ind(sc, off, val)
228 struct bge_softc *sc;
229 int off, val;
230 {
231 struct pci_attach_args *pa = &(sc->bge_pa);
232
233 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
234 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
235 }
236
237 #ifdef notdef
238 u_int32_t
239 bge_readreg_ind(sc, off)
240 struct bge_softc *sc;
241 int off;
242 {
243 struct pci_attach_args *pa = &(sc->bge_pa);
244
245 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
246 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
247 }
248 #endif
249
250 void
251 bge_writereg_ind(sc, off, val)
252 struct bge_softc *sc;
253 int off, val;
254 {
255 struct pci_attach_args *pa = &(sc->bge_pa);
256
257 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
258 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
259 }
260
261 #ifdef notdef
262 u_int8_t
263 bge_vpd_readbyte(sc, addr)
264 struct bge_softc *sc;
265 int addr;
266 {
267 int i;
268 u_int32_t val;
269 struct pci_attach_args *pa = &(sc->bge_pa);
270
271 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
272 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
273 DELAY(10);
274 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
275 BGE_VPD_FLAG)
276 break;
277 }
278
279 if (i == BGE_TIMEOUT) {
280 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
281 return(0);
282 }
283
284 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
285
286 return((val >> ((addr % 4) * 8)) & 0xFF);
287 }
288
289 void
290 bge_vpd_read_res(sc, res, addr)
291 struct bge_softc *sc;
292 struct vpd_res *res;
293 int addr;
294 {
295 int i;
296 u_int8_t *ptr;
297
298 ptr = (u_int8_t *)res;
299 for (i = 0; i < sizeof(struct vpd_res); i++)
300 ptr[i] = bge_vpd_readbyte(sc, i + addr);
301 }
302
303 void
304 bge_vpd_read(sc)
305 struct bge_softc *sc;
306 {
307 int pos = 0, i;
308 struct vpd_res res;
309
310 if (sc->bge_vpd_prodname != NULL)
311 free(sc->bge_vpd_prodname, M_DEVBUF);
312 if (sc->bge_vpd_readonly != NULL)
313 free(sc->bge_vpd_readonly, M_DEVBUF);
314 sc->bge_vpd_prodname = NULL;
315 sc->bge_vpd_readonly = NULL;
316
317 bge_vpd_read_res(sc, &res, pos);
318
319 if (res.vr_id != VPD_RES_ID) {
320 printf("%s: bad VPD resource id: expected %x got %x\n",
321 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
322 return;
323 }
324
325 pos += sizeof(res);
326 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
327 if (sc->bge_vpd_prodname == NULL)
328 panic("bge_vpd_read");
329 for (i = 0; i < res.vr_len; i++)
330 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
331 sc->bge_vpd_prodname[i] = '\0';
332 pos += i;
333
334 bge_vpd_read_res(sc, &res, pos);
335
336 if (res.vr_id != VPD_RES_READ) {
337 printf("%s: bad VPD resource id: expected %x got %x\n",
338 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
339 return;
340 }
341
342 pos += sizeof(res);
343 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
344 if (sc->bge_vpd_readonly == NULL)
345 panic("bge_vpd_read");
346 for (i = 0; i < res.vr_len + 1; i++)
347 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
348 }
349 #endif
350
351 /*
352 * Read a byte of data stored in the EEPROM at address 'addr.' The
353 * BCM570x supports both the traditional bitbang interface and an
354 * auto access interface for reading the EEPROM. We use the auto
355 * access method.
356 */
357 u_int8_t
358 bge_eeprom_getbyte(sc, addr, dest)
359 struct bge_softc *sc;
360 int addr;
361 u_int8_t *dest;
362 {
363 int i;
364 u_int32_t byte = 0;
365
366 /*
367 * Enable use of auto EEPROM access so we can avoid
368 * having to use the bitbang method.
369 */
370 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
371
372 /* Reset the EEPROM, load the clock period. */
373 CSR_WRITE_4(sc, BGE_EE_ADDR,
374 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
375 DELAY(20);
376
377 /* Issue the read EEPROM command. */
378 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
379
380 /* Wait for completion */
381 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
382 DELAY(10);
383 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
384 break;
385 }
386
387 if (i == BGE_TIMEOUT) {
388 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
389 return(0);
390 }
391
392 /* Get result. */
393 byte = CSR_READ_4(sc, BGE_EE_DATA);
394
395 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
396
397 return(0);
398 }
399
400 /*
401 * Read a sequence of bytes from the EEPROM.
402 */
403 int
404 bge_read_eeprom(sc, dest, off, cnt)
405 struct bge_softc *sc;
406 caddr_t dest;
407 int off;
408 int cnt;
409 {
410 int err = 0, i;
411 u_int8_t byte = 0;
412
413 for (i = 0; i < cnt; i++) {
414 err = bge_eeprom_getbyte(sc, off + i, &byte);
415 if (err)
416 break;
417 *(dest + i) = byte;
418 }
419
420 return(err ? 1 : 0);
421 }
422
423 int
424 bge_miibus_readreg(dev, phy, reg)
425 struct device *dev;
426 int phy, reg;
427 {
428 struct bge_softc *sc = (struct bge_softc *)dev;
429 struct ifnet *ifp;
430 u_int32_t val;
431 u_int32_t saved_autopoll;
432 int i;
433
434 ifp = &sc->ethercom.ec_if;
435
436 /*
437 * Several chips with builtin PHYs will incorrectly answer to
438 * other PHY instances than the builtin PHY at id 1.
439 */
440 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
441 return(0);
442
443 /* Reading with autopolling on may trigger PCI errors */
444 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
445 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
446 CSR_WRITE_4(sc, BGE_MI_MODE,
447 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
448 DELAY(40);
449 }
450
451 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
452 BGE_MIPHY(phy)|BGE_MIREG(reg));
453
454 for (i = 0; i < BGE_TIMEOUT; i++) {
455 val = CSR_READ_4(sc, BGE_MI_COMM);
456 if (!(val & BGE_MICOMM_BUSY))
457 break;
458 delay(10);
459 }
460
461 if (i == BGE_TIMEOUT) {
462 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
463 val = 0;
464 goto done;
465 }
466
467 val = CSR_READ_4(sc, BGE_MI_COMM);
468
469 done:
470 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
471 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
472 DELAY(40);
473 }
474
475 if (val & BGE_MICOMM_READFAIL)
476 return(0);
477
478 return(val & 0xFFFF);
479 }
480
481 void
482 bge_miibus_writereg(dev, phy, reg, val)
483 struct device *dev;
484 int phy, reg, val;
485 {
486 struct bge_softc *sc = (struct bge_softc *)dev;
487 u_int32_t saved_autopoll;
488 int i;
489
490 /* Touching the PHY while autopolling is on may trigger PCI errors */
491 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
492 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
493 delay(40);
494 CSR_WRITE_4(sc, BGE_MI_MODE,
495 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
496 delay(10); /* 40 usec is supposed to be adequate */
497 }
498
499 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
500 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
501
502 for (i = 0; i < BGE_TIMEOUT; i++) {
503 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
504 break;
505 delay(10);
506 }
507
508 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
509 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
510 delay(40);
511 }
512
513 if (i == BGE_TIMEOUT) {
514 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
515 }
516 }
517
518 void
519 bge_miibus_statchg(dev)
520 struct device *dev;
521 {
522 struct bge_softc *sc = (struct bge_softc *)dev;
523 struct mii_data *mii = &sc->bge_mii;
524
525 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
526 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
527 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
528 } else {
529 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
530 }
531
532 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
533 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
534 } else {
535 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
536 }
537 }
538
539 /*
540 * Handle events that have triggered interrupts.
541 */
542 void
543 bge_handle_events(sc)
544 struct bge_softc *sc;
545 {
546
547 return;
548 }
549
550 /*
551 * Memory management for jumbo frames.
552 */
553
554 int
555 bge_alloc_jumbo_mem(sc)
556 struct bge_softc *sc;
557 {
558 caddr_t ptr, kva;
559 bus_dma_segment_t seg;
560 int i, rseg, state, error;
561 struct bge_jpool_entry *entry;
562
563 state = error = 0;
564
565 /* Grab a big chunk o' storage. */
566 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
567 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
568 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
569 return ENOBUFS;
570 }
571
572 state = 1;
573 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
574 BUS_DMA_NOWAIT)) {
575 printf("%s: can't map dma buffers (%d bytes)\n",
576 sc->bge_dev.dv_xname, (int)BGE_JMEM);
577 error = ENOBUFS;
578 goto out;
579 }
580
581 state = 2;
582 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
583 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
584 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
585 error = ENOBUFS;
586 goto out;
587 }
588
589 state = 3;
590 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
591 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
592 printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
593 error = ENOBUFS;
594 goto out;
595 }
596
597 state = 4;
598 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
599 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
600
601 SLIST_INIT(&sc->bge_jfree_listhead);
602 SLIST_INIT(&sc->bge_jinuse_listhead);
603
604 /*
605 * Now divide it up into 9K pieces and save the addresses
606 * in an array.
607 */
608 ptr = sc->bge_cdata.bge_jumbo_buf;
609 for (i = 0; i < BGE_JSLOTS; i++) {
610 sc->bge_cdata.bge_jslots[i] = ptr;
611 ptr += BGE_JLEN;
612 entry = malloc(sizeof(struct bge_jpool_entry),
613 M_DEVBUF, M_NOWAIT);
614 if (entry == NULL) {
615 printf("%s: no memory for jumbo buffer queue!\n",
616 sc->bge_dev.dv_xname);
617 error = ENOBUFS;
618 goto out;
619 }
620 entry->slot = i;
621 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
622 entry, jpool_entries);
623 }
624 out:
625 if (error != 0) {
626 switch (state) {
627 case 4:
628 bus_dmamap_unload(sc->bge_dmatag,
629 sc->bge_cdata.bge_rx_jumbo_map);
630 case 3:
631 bus_dmamap_destroy(sc->bge_dmatag,
632 sc->bge_cdata.bge_rx_jumbo_map);
633 case 2:
634 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
635 case 1:
636 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
637 break;
638 default:
639 break;
640 }
641 }
642
643 return error;
644 }
645
646 /*
647 * Allocate a jumbo buffer.
648 */
649 void *
650 bge_jalloc(sc)
651 struct bge_softc *sc;
652 {
653 struct bge_jpool_entry *entry;
654
655 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
656
657 if (entry == NULL) {
658 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
659 return(NULL);
660 }
661
662 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
663 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
664 return(sc->bge_cdata.bge_jslots[entry->slot]);
665 }
666
667 /*
668 * Release a jumbo buffer.
669 */
670 void
671 bge_jfree(m, buf, size, arg)
672 struct mbuf *m;
673 caddr_t buf;
674 size_t size;
675 void *arg;
676 {
677 struct bge_jpool_entry *entry;
678 struct bge_softc *sc;
679 int i, s;
680
681 /* Extract the softc struct pointer. */
682 sc = (struct bge_softc *)arg;
683
684 if (sc == NULL)
685 panic("bge_jfree: can't find softc pointer!");
686
687 /* calculate the slot this buffer belongs to */
688
689 i = ((caddr_t)buf
690 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
691
692 if ((i < 0) || (i >= BGE_JSLOTS))
693 panic("bge_jfree: asked to free buffer that we don't manage!");
694
695 s = splvm();
696 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
697 if (entry == NULL)
698 panic("bge_jfree: buffer not in use!");
699 entry->slot = i;
700 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
701 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
702
703 if (__predict_true(m != NULL))
704 pool_cache_put(&mbpool_cache, m);
705 splx(s);
706 }
707
708
709 /*
710 * Intialize a standard receive ring descriptor.
711 */
712 int
713 bge_newbuf_std(sc, i, m, dmamap)
714 struct bge_softc *sc;
715 int i;
716 struct mbuf *m;
717 bus_dmamap_t dmamap;
718 {
719 struct mbuf *m_new = NULL;
720 struct bge_rx_bd *r;
721 int error;
722
723 if (dmamap == NULL) {
724 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
725 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
726 if (error != 0)
727 return error;
728 }
729
730 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
731
732 if (m == NULL) {
733 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
734 if (m_new == NULL) {
735 return(ENOBUFS);
736 }
737
738 MCLGET(m_new, M_DONTWAIT);
739 if (!(m_new->m_flags & M_EXT)) {
740 m_freem(m_new);
741 return(ENOBUFS);
742 }
743 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
744 m_adj(m_new, ETHER_ALIGN);
745
746 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
747 BUS_DMA_READ|BUS_DMA_NOWAIT))
748 return(ENOBUFS);
749 } else {
750 m_new = m;
751 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
752 m_new->m_data = m_new->m_ext.ext_buf;
753 m_adj(m_new, ETHER_ALIGN);
754 }
755
756 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
757 r = &sc->bge_rdata->bge_rx_std_ring[i];
758 bge_set_hostaddr(&r->bge_addr,
759 dmamap->dm_segs[0].ds_addr);
760 r->bge_flags = BGE_RXBDFLAG_END;
761 r->bge_len = m_new->m_len;
762 r->bge_idx = i;
763
764 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
765 offsetof(struct bge_ring_data, bge_rx_std_ring) +
766 i * sizeof (struct bge_rx_bd),
767 sizeof (struct bge_rx_bd),
768 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
769
770 return(0);
771 }
772
773 /*
774 * Initialize a jumbo receive ring descriptor. This allocates
775 * a jumbo buffer from the pool managed internally by the driver.
776 */
777 int
778 bge_newbuf_jumbo(sc, i, m)
779 struct bge_softc *sc;
780 int i;
781 struct mbuf *m;
782 {
783 struct mbuf *m_new = NULL;
784 struct bge_rx_bd *r;
785
786 if (m == NULL) {
787 caddr_t *buf = NULL;
788
789 /* Allocate the mbuf. */
790 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
791 if (m_new == NULL) {
792 return(ENOBUFS);
793 }
794
795 /* Allocate the jumbo buffer */
796 buf = bge_jalloc(sc);
797 if (buf == NULL) {
798 m_freem(m_new);
799 printf("%s: jumbo allocation failed "
800 "-- packet dropped!\n", sc->bge_dev.dv_xname);
801 return(ENOBUFS);
802 }
803
804 /* Attach the buffer to the mbuf. */
805 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
806 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
807 bge_jfree, sc);
808 } else {
809 m_new = m;
810 m_new->m_data = m_new->m_ext.ext_buf;
811 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
812 }
813
814 m_adj(m_new, ETHER_ALIGN);
815 /* Set up the descriptor. */
816 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
817 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
818 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
819 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
820 r->bge_len = m_new->m_len;
821 r->bge_idx = i;
822
823 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
824 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
825 i * sizeof (struct bge_rx_bd),
826 sizeof (struct bge_rx_bd),
827 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
828
829 return(0);
830 }
831
832 /*
833 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
834 * that's 1MB or memory, which is a lot. For now, we fill only the first
835 * 256 ring entries and hope that our CPU is fast enough to keep up with
836 * the NIC.
837 */
838 int
839 bge_init_rx_ring_std(sc)
840 struct bge_softc *sc;
841 {
842 int i;
843
844 if (sc->bge_flags & BGE_RXRING_VALID)
845 return 0;
846
847 for (i = 0; i < BGE_SSLOTS; i++) {
848 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
849 return(ENOBUFS);
850 }
851
852 sc->bge_std = i - 1;
853 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
854
855 sc->bge_flags |= BGE_RXRING_VALID;
856
857 return(0);
858 }
859
860 void
861 bge_free_rx_ring_std(sc)
862 struct bge_softc *sc;
863 {
864 int i;
865
866 if (!(sc->bge_flags & BGE_RXRING_VALID))
867 return;
868
869 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
870 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
871 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
872 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
873 bus_dmamap_destroy(sc->bge_dmatag,
874 sc->bge_cdata.bge_rx_std_map[i]);
875 }
876 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
877 sizeof(struct bge_rx_bd));
878 }
879
880 sc->bge_flags &= ~BGE_RXRING_VALID;
881 }
882
883 int
884 bge_init_rx_ring_jumbo(sc)
885 struct bge_softc *sc;
886 {
887 int i;
888 struct bge_rcb *rcb;
889 struct bge_rcb_opaque *rcbo;
890
891 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
892 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
893 return(ENOBUFS);
894 };
895
896 sc->bge_jumbo = i - 1;
897
898 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
899 rcbo = (struct bge_rcb_opaque *)rcb;
900 rcb->bge_flags = 0;
901 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
902
903 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
904
905 return(0);
906 }
907
908 void
909 bge_free_rx_ring_jumbo(sc)
910 struct bge_softc *sc;
911 {
912 int i;
913
914 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
915 return;
916
917 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
918 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
919 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
920 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
921 }
922 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
923 sizeof(struct bge_rx_bd));
924 }
925
926 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
927 }
928
929 void
930 bge_free_tx_ring(sc)
931 struct bge_softc *sc;
932 {
933 int i, freed;
934 struct txdmamap_pool_entry *dma;
935
936 if (!(sc->bge_flags & BGE_TXRING_VALID))
937 return;
938
939 freed = 0;
940
941 for (i = 0; i < BGE_TX_RING_CNT; i++) {
942 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
943 freed++;
944 m_freem(sc->bge_cdata.bge_tx_chain[i]);
945 sc->bge_cdata.bge_tx_chain[i] = NULL;
946 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
947 link);
948 sc->txdma[i] = 0;
949 }
950 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
951 sizeof(struct bge_tx_bd));
952 }
953
954 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
955 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
956 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
957 free(dma, M_DEVBUF);
958 }
959
960 sc->bge_flags &= ~BGE_TXRING_VALID;
961 }
962
963 int
964 bge_init_tx_ring(sc)
965 struct bge_softc *sc;
966 {
967 int i;
968 bus_dmamap_t dmamap;
969 struct txdmamap_pool_entry *dma;
970
971 if (sc->bge_flags & BGE_TXRING_VALID)
972 return 0;
973
974 sc->bge_txcnt = 0;
975 sc->bge_tx_saved_considx = 0;
976 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
977 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
978 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
979
980 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
981 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
982 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
983
984 SLIST_INIT(&sc->txdma_list);
985 for (i = 0; i < BGE_RSLOTS; i++) {
986 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
987 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
988 &dmamap))
989 return(ENOBUFS);
990 if (dmamap == NULL)
991 panic("dmamap NULL in bge_init_tx_ring");
992 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
993 if (dma == NULL) {
994 printf("%s: can't alloc txdmamap_pool_entry\n",
995 sc->bge_dev.dv_xname);
996 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
997 return (ENOMEM);
998 }
999 dma->dmamap = dmamap;
1000 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1001 }
1002
1003 sc->bge_flags |= BGE_TXRING_VALID;
1004
1005 return(0);
1006 }
1007
1008 void
1009 bge_setmulti(sc)
1010 struct bge_softc *sc;
1011 {
1012 struct ethercom *ac = &sc->ethercom;
1013 struct ifnet *ifp = &ac->ec_if;
1014 struct ether_multi *enm;
1015 struct ether_multistep step;
1016 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1017 u_int32_t h;
1018 int i;
1019
1020 if (ifp->if_flags & IFF_PROMISC)
1021 goto allmulti;
1022
1023 /* Now program new ones. */
1024 ETHER_FIRST_MULTI(step, ac, enm);
1025 while (enm != NULL) {
1026 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1027 /*
1028 * We must listen to a range of multicast addresses.
1029 * For now, just accept all multicasts, rather than
1030 * trying to set only those filter bits needed to match
1031 * the range. (At this time, the only use of address
1032 * ranges is for IP multicast routing, for which the
1033 * range is big enough to require all bits set.)
1034 */
1035 goto allmulti;
1036 }
1037
1038 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1039
1040 /* Just want the 7 least-significant bits. */
1041 h &= 0x7f;
1042
1043 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1044 ETHER_NEXT_MULTI(step, enm);
1045 }
1046
1047 ifp->if_flags &= ~IFF_ALLMULTI;
1048 goto setit;
1049
1050 allmulti:
1051 ifp->if_flags |= IFF_ALLMULTI;
1052 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1053
1054 setit:
1055 for (i = 0; i < 4; i++)
1056 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1057 }
1058
1059 const int bge_swapbits[] = {
1060 0,
1061 BGE_MODECTL_BYTESWAP_DATA,
1062 BGE_MODECTL_WORDSWAP_DATA,
1063 BGE_MODECTL_BYTESWAP_NONFRAME,
1064 BGE_MODECTL_WORDSWAP_NONFRAME,
1065
1066 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1067 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1068 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1069
1070 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1071 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1072
1073 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1074
1075 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1076 BGE_MODECTL_BYTESWAP_NONFRAME,
1077 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1078 BGE_MODECTL_WORDSWAP_NONFRAME,
1079 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1080 BGE_MODECTL_WORDSWAP_NONFRAME,
1081 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1082 BGE_MODECTL_WORDSWAP_NONFRAME,
1083
1084 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1085 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1086 };
1087
1088 int bge_swapindex = 0;
1089
1090 /*
1091 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1092 * self-test results.
1093 */
1094 int
1095 bge_chipinit(sc)
1096 struct bge_softc *sc;
1097 {
1098 u_int32_t cachesize;
1099 int i;
1100 u_int32_t dma_rw_ctl;
1101 struct pci_attach_args *pa = &(sc->bge_pa);
1102
1103
1104 /* Set endianness before we access any non-PCI registers. */
1105 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1106 BGE_INIT);
1107
1108 /* Set power state to D0. */
1109 bge_setpowerstate(sc, 0);
1110
1111 /*
1112 * Check the 'ROM failed' bit on the RX CPU to see if
1113 * self-tests passed.
1114 */
1115 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1116 printf("%s: RX CPU self-diagnostics failed!\n",
1117 sc->bge_dev.dv_xname);
1118 return(ENODEV);
1119 }
1120
1121 /* Clear the MAC control register */
1122 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1123
1124 /*
1125 * Clear the MAC statistics block in the NIC's
1126 * internal memory.
1127 */
1128 for (i = BGE_STATS_BLOCK;
1129 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1130 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1131
1132 for (i = BGE_STATUS_BLOCK;
1133 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1134 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1135
1136 /* Set up the PCI DMA control register. */
1137 if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1138 BGE_PCISTATE_PCI_BUSMODE) {
1139 /* Conventional PCI bus */
1140 DPRINTFN(4, ("(%s: PCI 2.2 dma setting)\n", sc->bge_dev.dv_xname));
1141 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1142 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1143 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1144 (0x0F));
1145 } else {
1146 DPRINTFN(4, ("(:%s: PCI-X dma setting)\n", sc->bge_dev.dv_xname));
1147 /* PCI-X bus */
1148 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1149 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1150 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1151 (0x0F);
1152 /*
1153 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1154 * for hardware bugs, which means we should also clear
1155 * the low-order MINDMA bits. In addition, the 5704
1156 * uses a different encoding of read/write watermarks.
1157 */
1158 if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0) {
1159 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1160 /* should be 0x1f0000 */
1161 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1162 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1163 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1164 }
1165 else if ((sc->bge_asicrev >> 28) ==
1166 (BGE_ASICREV_BCM5703_A0 >> 28)) {
1167 dma_rw_ctl &= 0xfffffff0;
1168 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1169 }
1170 }
1171
1172 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1173
1174 /*
1175 * Set up general mode register.
1176 */
1177 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1178 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1179 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1180 BGE_MODECTL_RX_NO_PHDR_CSUM);
1181
1182 /* Get cache line size. */
1183 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1184
1185 /*
1186 * Avoid violating PCI spec on certain chip revs.
1187 */
1188 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1189 PCIM_CMD_MWIEN) {
1190 switch(cachesize) {
1191 case 1:
1192 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1193 BGE_PCI_WRITE_BNDRY_16BYTES);
1194 break;
1195 case 2:
1196 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1197 BGE_PCI_WRITE_BNDRY_32BYTES);
1198 break;
1199 case 4:
1200 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1201 BGE_PCI_WRITE_BNDRY_64BYTES);
1202 break;
1203 case 8:
1204 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1205 BGE_PCI_WRITE_BNDRY_128BYTES);
1206 break;
1207 case 16:
1208 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1209 BGE_PCI_WRITE_BNDRY_256BYTES);
1210 break;
1211 case 32:
1212 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1213 BGE_PCI_WRITE_BNDRY_512BYTES);
1214 break;
1215 case 64:
1216 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1217 BGE_PCI_WRITE_BNDRY_1024BYTES);
1218 break;
1219 default:
1220 /* Disable PCI memory write and invalidate. */
1221 #if 0
1222 if (bootverbose)
1223 printf("%s: cache line size %d not "
1224 "supported; disabling PCI MWI\n",
1225 sc->bge_dev.dv_xname, cachesize);
1226 #endif
1227 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1228 PCIM_CMD_MWIEN);
1229 break;
1230 }
1231 }
1232
1233 /*
1234 * Disable memory write invalidate. Apparently it is not supported
1235 * properly by these devices.
1236 */
1237 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1238
1239
1240 #ifdef __brokenalpha__
1241 /*
1242 * Must insure that we do not cross an 8K (bytes) boundary
1243 * for DMA reads. Our highest limit is 1K bytes. This is a
1244 * restriction on some ALPHA platforms with early revision
1245 * 21174 PCI chipsets, such as the AlphaPC 164lx
1246 */
1247 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1248 #endif
1249
1250 /* Set the timer prescaler (always 66MHz) */
1251 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1252
1253 return(0);
1254 }
1255
1256 int
1257 bge_blockinit(sc)
1258 struct bge_softc *sc;
1259 {
1260 struct bge_rcb *rcb;
1261 struct bge_rcb_opaque *rcbo;
1262 bus_size_t rcb_addr;
1263 int i;
1264 struct ifnet *ifp = &sc->ethercom.ec_if;
1265 bge_hostaddr taddr;
1266
1267 /*
1268 * Initialize the memory window pointer register so that
1269 * we can access the first 32K of internal NIC RAM. This will
1270 * allow us to set up the TX send ring RCBs and the RX return
1271 * ring RCBs, plus other things which live in NIC memory.
1272 */
1273
1274 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1275 BGE_PCI_MEMWIN_BASEADDR, 0);
1276
1277 /* Configure mbuf memory pool */
1278 if (sc->bge_extram) {
1279 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1280 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1281 } else {
1282 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1283 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1284 }
1285
1286 /* Configure DMA resource pool */
1287 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1288 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1289
1290 /* Configure mbuf pool watermarks */
1291 #ifdef ORIG_WPAUL_VALUES
1292 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1293 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1294 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1295 #else
1296 /* new broadcom docs strongly recommend these: */
1297 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1298 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1299 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1300 #endif
1301
1302 /* Configure DMA resource watermarks */
1303 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1304 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1305
1306 /* Enable buffer manager */
1307 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1308 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1309
1310 /* Poll for buffer manager start indication */
1311 for (i = 0; i < BGE_TIMEOUT; i++) {
1312 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1313 break;
1314 DELAY(10);
1315 }
1316
1317 if (i == BGE_TIMEOUT) {
1318 printf("%s: buffer manager failed to start\n",
1319 sc->bge_dev.dv_xname);
1320 return(ENXIO);
1321 }
1322
1323 /* Enable flow-through queues */
1324 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1325 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1326
1327 /* Wait until queue initialization is complete */
1328 for (i = 0; i < BGE_TIMEOUT; i++) {
1329 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1330 break;
1331 DELAY(10);
1332 }
1333
1334 if (i == BGE_TIMEOUT) {
1335 printf("%s: flow-through queue init failed\n",
1336 sc->bge_dev.dv_xname);
1337 return(ENXIO);
1338 }
1339
1340 /* Initialize the standard RX ring control block */
1341 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1342 bge_set_hostaddr(&rcb->bge_hostaddr,
1343 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1344 rcb->bge_max_len = BGE_MAX_FRAMELEN;
1345 if (sc->bge_extram)
1346 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1347 else
1348 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1349 rcb->bge_flags = 0;
1350 rcbo = (struct bge_rcb_opaque *)rcb;
1351 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1352 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1353 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1354 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1355
1356 /*
1357 * Initialize the jumbo RX ring control block
1358 * We set the 'ring disabled' bit in the flags
1359 * field until we're actually ready to start
1360 * using this ring (i.e. once we set the MTU
1361 * high enough to require it).
1362 */
1363 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1364 bge_set_hostaddr(&rcb->bge_hostaddr,
1365 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1366 rcb->bge_max_len = BGE_MAX_FRAMELEN;
1367 if (sc->bge_extram)
1368 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1369 else
1370 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1371 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1372
1373 rcbo = (struct bge_rcb_opaque *)rcb;
1374 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1375 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1376 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1377 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1378
1379 /* Set up dummy disabled mini ring RCB */
1380 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1381 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1382 rcbo = (struct bge_rcb_opaque *)rcb;
1383 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1384
1385 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1386 offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1387 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1388
1389 /*
1390 * Set the BD ring replentish thresholds. The recommended
1391 * values are 1/8th the number of descriptors allocated to
1392 * each ring.
1393 */
1394 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1395 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1396
1397 /*
1398 * Disable all unused send rings by setting the 'ring disabled'
1399 * bit in the flags field of all the TX send ring control blocks.
1400 * These are located in NIC memory.
1401 */
1402 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1403 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1404 RCB_WRITE_2(sc, rcb_addr, bge_flags,
1405 BGE_RCB_FLAG_RING_DISABLED);
1406 RCB_WRITE_2(sc, rcb_addr, bge_max_len, 0);
1407 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1408 rcb_addr += sizeof(struct bge_rcb);
1409 }
1410
1411 /* Configure TX RCB 0 (we use only the first ring) */
1412 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1413 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1414 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1415 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1416 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1417 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1418 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_TX_RING_CNT);
1419 RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1420
1421 /* Disable all unused RX return rings */
1422 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1423 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1424 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1425 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1426 RCB_WRITE_2(sc, rcb_addr, bge_flags,
1427 BGE_RCB_FLAG_RING_DISABLED);
1428 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1429 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1430 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1431 (i * (sizeof(u_int64_t))), 0);
1432 rcb_addr += sizeof(struct bge_rcb);
1433 }
1434
1435 /* Initialize RX ring indexes */
1436 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1437 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1438 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1439
1440 /*
1441 * Set up RX return ring 0
1442 * Note that the NIC address for RX return rings is 0x00000000.
1443 * The return rings live entirely within the host, so the
1444 * nicaddr field in the RCB isn't used.
1445 */
1446 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1447 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1448 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1449 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1450 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1451 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1452 RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1453
1454 /* Set random backoff seed for TX */
1455 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1456 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1457 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1458 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1459 BGE_TX_BACKOFF_SEED_MASK);
1460
1461 /* Set inter-packet gap */
1462 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1463
1464 /*
1465 * Specify which ring to use for packets that don't match
1466 * any RX rules.
1467 */
1468 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1469
1470 /*
1471 * Configure number of RX lists. One interrupt distribution
1472 * list, sixteen active lists, one bad frames class.
1473 */
1474 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1475
1476 /* Inialize RX list placement stats mask. */
1477 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1478 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1479
1480 /* Disable host coalescing until we get it set up */
1481 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1482
1483 /* Poll to make sure it's shut down. */
1484 for (i = 0; i < BGE_TIMEOUT; i++) {
1485 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1486 break;
1487 DELAY(10);
1488 }
1489
1490 if (i == BGE_TIMEOUT) {
1491 printf("%s: host coalescing engine failed to idle\n",
1492 sc->bge_dev.dv_xname);
1493 return(ENXIO);
1494 }
1495
1496 /* Set up host coalescing defaults */
1497 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1498 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1499 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1500 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1501 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1502 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1503 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1504 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1505 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1506
1507 /* Set up address of statistics block */
1508 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1509 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1510 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1511 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1512
1513 /* Set up address of status block */
1514 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1515 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1516 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1517 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1518 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1519 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1520
1521 /* Turn on host coalescing state machine */
1522 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1523
1524 /* Turn on RX BD completion state machine and enable attentions */
1525 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1526 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1527
1528 /* Turn on RX list placement state machine */
1529 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1530
1531 /* Turn on RX list selector state machine. */
1532 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1533
1534 /* Turn on DMA, clear stats */
1535 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1536 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1537 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1538 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1539 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1540
1541 /* Set misc. local control, enable interrupts on attentions */
1542 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1543
1544 #ifdef notdef
1545 /* Assert GPIO pins for PHY reset */
1546 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1547 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1548 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1549 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1550 #endif
1551
1552 #if defined(not_quite_yet)
1553 /* Linux driver enables enable gpio pin #1 on 5700s */
1554 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
1555 sc->bge_local_ctrl_reg |=
1556 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1557 }
1558 #endif
1559 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1560
1561 /* Turn on DMA completion state machine */
1562 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1563
1564 /* Turn on write DMA state machine */
1565 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1566 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1567
1568 /* Turn on read DMA state machine */
1569 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1570 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1571
1572 /* Turn on RX data completion state machine */
1573 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1574
1575 /* Turn on RX BD initiator state machine */
1576 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1577
1578 /* Turn on RX data and RX BD initiator state machine */
1579 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1580
1581 /* Turn on Mbuf cluster free state machine */
1582 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1583
1584 /* Turn on send BD completion state machine */
1585 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1586
1587 /* Turn on send data completion state machine */
1588 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1589
1590 /* Turn on send data initiator state machine */
1591 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1592
1593 /* Turn on send BD initiator state machine */
1594 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1595
1596 /* Turn on send BD selector state machine */
1597 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1598
1599 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1600 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1601 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1602
1603 /* init LED register */
1604 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1605
1606 /* ack/clear link change events */
1607 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1608 BGE_MACSTAT_CFG_CHANGED);
1609 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1610
1611 /* Enable PHY auto polling (for MII/GMII only) */
1612 if (sc->bge_tbi) {
1613 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1614 } else {
1615 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1616 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1617 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1618 BGE_EVTENB_MI_INTERRUPT);
1619 }
1620
1621 /* Enable link state change attentions. */
1622 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1623
1624 return(0);
1625 }
1626
1627 static const struct bge_revision {
1628 uint32_t br_asicrev;
1629 uint32_t br_quirks;
1630 const char *br_name;
1631 } bge_revisions[] = {
1632 { BGE_ASICREV_BCM5700_A0,
1633 BGE_QUIRK_LINK_STATE_BROKEN,
1634 "BCM5700 A0" },
1635
1636 { BGE_ASICREV_BCM5700_A1,
1637 BGE_QUIRK_LINK_STATE_BROKEN,
1638 "BCM5700 A1" },
1639
1640 { BGE_ASICREV_BCM5700_B0,
1641 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1642 "BCM5700 B0" },
1643
1644 { BGE_ASICREV_BCM5700_B1,
1645 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1646 "BCM5700 B1" },
1647
1648 { BGE_ASICREV_BCM5700_B2,
1649 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1650 "BCM5700 B2" },
1651
1652 /* This is treated like a BCM5700 Bx */
1653 { BGE_ASICREV_BCM5700_ALTIMA,
1654 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1655 "BCM5700 Altima" },
1656
1657 { BGE_ASICREV_BCM5700_C0,
1658 0,
1659 "BCM5700 C0" },
1660
1661 { BGE_ASICREV_BCM5701_A0,
1662 0,
1663 "BCM5701 A0" },
1664
1665 { BGE_ASICREV_BCM5701_B0,
1666 0,
1667 "BCM5701 B0" },
1668
1669 { BGE_ASICREV_BCM5701_B2,
1670 0,
1671 "BCM5701 B2" },
1672
1673 { BGE_ASICREV_BCM5701_B5,
1674 BGE_QUIRK_ONLY_PHY_1,
1675 "BCM5701 B5" },
1676
1677 { BGE_ASICREV_BCM5703_A0,
1678 0,
1679 "BCM5703 A0" },
1680
1681 { BGE_ASICREV_BCM5703_A1,
1682 0,
1683 "BCM5703 A1" },
1684
1685 { BGE_ASICREV_BCM5703_A2,
1686 BGE_QUIRK_ONLY_PHY_1,
1687 "BCM5703 A2" },
1688
1689 { BGE_ASICREV_BCM5704_A0,
1690 BGE_QUIRK_ONLY_PHY_1,
1691 "BCM5704 A0" },
1692
1693 { 0, 0, NULL }
1694 };
1695
1696 static const struct bge_revision *
1697 bge_lookup_rev(uint32_t asicrev)
1698 {
1699 const struct bge_revision *br;
1700
1701 for (br = bge_revisions; br->br_name != NULL; br++) {
1702 if (br->br_asicrev == asicrev)
1703 return (br);
1704 }
1705
1706 return (NULL);
1707 }
1708
1709 static const struct bge_product {
1710 pci_vendor_id_t bp_vendor;
1711 pci_product_id_t bp_product;
1712 const char *bp_name;
1713 } bge_products[] = {
1714 /*
1715 * The BCM5700 documentation seems to indicate that the hardware
1716 * still has the Alteon vendor ID burned into it, though it
1717 * should always be overridden by the value in the EEPROM. We'll
1718 * check for it anyway.
1719 */
1720 { PCI_VENDOR_ALTEON,
1721 PCI_PRODUCT_ALTEON_BCM5700,
1722 "Broadcom BCM5700 Gigabit Ethernet" },
1723 { PCI_VENDOR_ALTEON,
1724 PCI_PRODUCT_ALTEON_BCM5701,
1725 "Broadcom BCM5701 Gigabit Ethernet" },
1726
1727 { PCI_VENDOR_ALTIMA,
1728 PCI_PRODUCT_ALTIMA_AC1000,
1729 "Altima AC1000 Gigabit Ethernet" },
1730 { PCI_VENDOR_ALTIMA,
1731 PCI_PRODUCT_ALTIMA_AC1001,
1732 "Altima AC1001 Gigabit Ethernet" },
1733 { PCI_VENDOR_ALTIMA,
1734 PCI_PRODUCT_ALTIMA_AC9100,
1735 "Altima AC9100 Gigabit Ethernet" },
1736
1737 { PCI_VENDOR_BROADCOM,
1738 PCI_PRODUCT_BROADCOM_BCM5700,
1739 "Broadcom BCM5700 Gigabit Ethernet" },
1740 { PCI_VENDOR_BROADCOM,
1741 PCI_PRODUCT_BROADCOM_BCM5701,
1742 "Broadcom BCM5701 Gigabit Ethernet" },
1743 { PCI_VENDOR_BROADCOM,
1744 PCI_PRODUCT_BROADCOM_BCM5702,
1745 "Broadcom BCM5702 Gigabit Ethernet" },
1746 { PCI_VENDOR_BROADCOM,
1747 PCI_PRODUCT_BROADCOM_BCM5702X,
1748 "Broadcom BCM5702X Gigabit Ethernet" },
1749 { PCI_VENDOR_BROADCOM,
1750 PCI_PRODUCT_BROADCOM_BCM5703,
1751 "Broadcom BCM5703 Gigabit Ethernet" },
1752 { PCI_VENDOR_BROADCOM,
1753 PCI_PRODUCT_BROADCOM_BCM5703X,
1754 "Broadcom BCM5703X Gigabit Ethernet" },
1755 { PCI_VENDOR_BROADCOM,
1756 PCI_PRODUCT_BROADCOM_BCM5704C,
1757 "Broadcom BCM5704C Dual Gigabit Ethernet" },
1758 { PCI_VENDOR_BROADCOM,
1759 PCI_PRODUCT_BROADCOM_BCM5704S,
1760 "Broadcom BCM5704S Dual Gigabit Ethernet" },
1761
1762
1763 { PCI_VENDOR_SCHNEIDERKOCH,
1764 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1765 "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1766
1767 { PCI_VENDOR_3COM,
1768 PCI_PRODUCT_3COM_3C996,
1769 "3Com 3c996 Gigabit Ethernet" },
1770
1771 { 0,
1772 0,
1773 NULL },
1774 };
1775
1776 static const struct bge_product *
1777 bge_lookup(const struct pci_attach_args *pa)
1778 {
1779 const struct bge_product *bp;
1780
1781 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1782 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1783 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1784 return (bp);
1785 }
1786
1787 return (NULL);
1788 }
1789
1790 int
1791 bge_setpowerstate(sc, powerlevel)
1792 struct bge_softc *sc;
1793 int powerlevel;
1794 {
1795 #ifdef NOTYET
1796 u_int32_t pm_ctl = 0;
1797
1798 /* XXX FIXME: make sure indirect accesses enabled? */
1799 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1800 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1801 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1802
1803 /* clear the PME_assert bit and power state bits, enable PME */
1804 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1805 pm_ctl &= ~PCIM_PSTAT_DMASK;
1806 pm_ctl |= (1 << 8);
1807
1808 if (powerlevel == 0) {
1809 pm_ctl |= PCIM_PSTAT_D0;
1810 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1811 pm_ctl, 2);
1812 DELAY(10000);
1813 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1814 DELAY(10000);
1815
1816 #ifdef NOTYET
1817 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1818 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1819 #endif
1820 DELAY(40); DELAY(40); DELAY(40);
1821 DELAY(10000); /* above not quite adequate on 5700 */
1822 return 0;
1823 }
1824
1825
1826 /*
1827 * Entering ACPI power states D1-D3 is achieved by wiggling
1828 * GMII gpio pins. Example code assumes all hardware vendors
1829 * followed Broadom's sample pcb layout. Until we verify that
1830 * for all supported OEM cards, states D1-D3 are unsupported.
1831 */
1832 printf("%s: power state %d unimplemented; check GPIO pins\n",
1833 sc->bge_dev.dv_xname, powerlevel);
1834 #endif
1835 return EOPNOTSUPP;
1836 }
1837
1838
1839 /*
1840 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1841 * against our list and return its name if we find a match. Note
1842 * that since the Broadcom controller contains VPD support, we
1843 * can get the device name string from the controller itself instead
1844 * of the compiled-in string. This is a little slow, but it guarantees
1845 * we'll always announce the right product name.
1846 */
1847 int
1848 bge_probe(parent, match, aux)
1849 struct device *parent;
1850 struct cfdata *match;
1851 void *aux;
1852 {
1853 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1854
1855 if (bge_lookup(pa) != NULL)
1856 return (1);
1857
1858 return (0);
1859 }
1860
1861 void
1862 bge_attach(parent, self, aux)
1863 struct device *parent, *self;
1864 void *aux;
1865 {
1866 struct bge_softc *sc = (struct bge_softc *)self;
1867 struct pci_attach_args *pa = aux;
1868 const struct bge_product *bp;
1869 const struct bge_revision *br;
1870 pci_chipset_tag_t pc = pa->pa_pc;
1871 pci_intr_handle_t ih;
1872 const char *intrstr = NULL;
1873 bus_dma_segment_t seg;
1874 int rseg;
1875 u_int32_t hwcfg = 0;
1876 u_int32_t mac_addr = 0;
1877 u_int32_t command;
1878 struct ifnet *ifp;
1879 caddr_t kva;
1880 u_char eaddr[ETHER_ADDR_LEN];
1881 pcireg_t memtype;
1882 bus_addr_t memaddr;
1883 bus_size_t memsize;
1884 u_int32_t pm_ctl;
1885
1886 bp = bge_lookup(pa);
1887 KASSERT(bp != NULL);
1888
1889 sc->bge_pa = *pa;
1890
1891 aprint_naive(": Ethernet controller\n");
1892 aprint_normal(": %s\n", bp->bp_name);
1893
1894 /*
1895 * Map control/status registers.
1896 */
1897 DPRINTFN(5, ("Map control/status regs\n"));
1898 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1899 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1900 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1901 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1902
1903 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1904 aprint_error("%s: failed to enable memory mapping!\n",
1905 sc->bge_dev.dv_xname);
1906 return;
1907 }
1908
1909 DPRINTFN(5, ("pci_mem_find\n"));
1910 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1911 switch (memtype) {
1912 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1913 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1914 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1915 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1916 &memaddr, &memsize) == 0)
1917 break;
1918 default:
1919 aprint_error("%s: can't find mem space\n",
1920 sc->bge_dev.dv_xname);
1921 return;
1922 }
1923
1924 DPRINTFN(5, ("pci_intr_map\n"));
1925 if (pci_intr_map(pa, &ih)) {
1926 aprint_error("%s: couldn't map interrupt\n",
1927 sc->bge_dev.dv_xname);
1928 return;
1929 }
1930
1931 DPRINTFN(5, ("pci_intr_string\n"));
1932 intrstr = pci_intr_string(pc, ih);
1933
1934 DPRINTFN(5, ("pci_intr_establish\n"));
1935 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1936
1937 if (sc->bge_intrhand == NULL) {
1938 aprint_error("%s: couldn't establish interrupt",
1939 sc->bge_dev.dv_xname);
1940 if (intrstr != NULL)
1941 aprint_normal(" at %s", intrstr);
1942 aprint_normal("\n");
1943 return;
1944 }
1945 aprint_normal("%s: interrupting at %s\n",
1946 sc->bge_dev.dv_xname, intrstr);
1947
1948 /*
1949 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
1950 * can clobber the chip's PCI config-space power control registers,
1951 * leaving the card in D3 powersave state.
1952 * We do not have memory-mapped registers in this state,
1953 * so force device into D0 state before starting initialization.
1954 */
1955 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
1956 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
1957 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
1958 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
1959 DELAY(1000); /* 27 usec is allegedly sufficent */
1960
1961 /* Try to reset the chip. */
1962 DPRINTFN(5, ("bge_reset\n"));
1963 bge_reset(sc);
1964
1965 if (bge_chipinit(sc)) {
1966 aprint_error("%s: chip initialization failed\n",
1967 sc->bge_dev.dv_xname);
1968 bge_release_resources(sc);
1969 return;
1970 }
1971
1972 /*
1973 * Get station address from the EEPROM.
1974 */
1975 mac_addr = bge_readmem_ind(sc, 0x0c14);
1976 if ((mac_addr >> 16) == 0x484b) {
1977 eaddr[0] = (u_char)(mac_addr >> 8);
1978 eaddr[1] = (u_char)(mac_addr >> 0);
1979 mac_addr = bge_readmem_ind(sc, 0x0c18);
1980 eaddr[2] = (u_char)(mac_addr >> 24);
1981 eaddr[3] = (u_char)(mac_addr >> 16);
1982 eaddr[4] = (u_char)(mac_addr >> 8);
1983 eaddr[5] = (u_char)(mac_addr >> 0);
1984 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
1985 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1986 aprint_error("%s: failed to read station address\n",
1987 sc->bge_dev.dv_xname);
1988 bge_release_resources(sc);
1989 return;
1990 }
1991
1992 /*
1993 * Save ASIC rev. Look up any quirks associated with this
1994 * ASIC.
1995 */
1996 sc->bge_asicrev =
1997 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
1998 BGE_PCIMISCCTL_ASICREV;
1999 br = bge_lookup_rev(sc->bge_asicrev);
2000
2001 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2002 if (br == NULL) {
2003 aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
2004 sc->bge_quirks = 0;
2005 } else {
2006 aprint_normal("ASIC %s", br->br_name);
2007 sc->bge_quirks = br->br_quirks;
2008 }
2009 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2010
2011 /* Allocate the general information block and ring buffers. */
2012 sc->bge_dmatag = pa->pa_dmat;
2013 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2014 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2015 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2016 aprint_error("%s: can't alloc rx buffers\n",
2017 sc->bge_dev.dv_xname);
2018 return;
2019 }
2020 DPRINTFN(5, ("bus_dmamem_map\n"));
2021 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2022 sizeof(struct bge_ring_data), &kva,
2023 BUS_DMA_NOWAIT)) {
2024 aprint_error("%s: can't map dma buffers (%d bytes)\n",
2025 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2026 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2027 return;
2028 }
2029 DPRINTFN(5, ("bus_dmamem_create\n"));
2030 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2031 sizeof(struct bge_ring_data), 0,
2032 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2033 aprint_error("%s: can't create dma map\n",
2034 sc->bge_dev.dv_xname);
2035 bus_dmamem_unmap(sc->bge_dmatag, kva,
2036 sizeof(struct bge_ring_data));
2037 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2038 return;
2039 }
2040 DPRINTFN(5, ("bus_dmamem_load\n"));
2041 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2042 sizeof(struct bge_ring_data), NULL,
2043 BUS_DMA_NOWAIT)) {
2044 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2045 bus_dmamem_unmap(sc->bge_dmatag, kva,
2046 sizeof(struct bge_ring_data));
2047 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2048 return;
2049 }
2050
2051 DPRINTFN(5, ("bzero\n"));
2052 sc->bge_rdata = (struct bge_ring_data *)kva;
2053
2054 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2055
2056 /* Try to allocate memory for jumbo buffers. */
2057 if (bge_alloc_jumbo_mem(sc)) {
2058 aprint_error("%s: jumbo buffer allocation failed\n",
2059 sc->bge_dev.dv_xname);
2060 } else
2061 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2062
2063 /* Set default tuneable values. */
2064 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2065 sc->bge_rx_coal_ticks = 150;
2066 sc->bge_rx_max_coal_bds = 64;
2067 #ifdef ORIG_WPAUL_VALUES
2068 sc->bge_tx_coal_ticks = 150;
2069 sc->bge_tx_max_coal_bds = 128;
2070 #else
2071 sc->bge_tx_coal_ticks = 300;
2072 sc->bge_tx_max_coal_bds = 400;
2073 #endif
2074
2075 /* Set up ifnet structure */
2076 ifp = &sc->ethercom.ec_if;
2077 ifp->if_softc = sc;
2078 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2079 ifp->if_ioctl = bge_ioctl;
2080 ifp->if_start = bge_start;
2081 ifp->if_init = bge_init;
2082 ifp->if_watchdog = bge_watchdog;
2083 IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2084 IFQ_SET_READY(&ifp->if_snd);
2085 DPRINTFN(5, ("bcopy\n"));
2086 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2087
2088 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2089 sc->ethercom.ec_if.if_capabilities |=
2090 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2091 sc->ethercom.ec_capabilities |=
2092 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2093
2094 /*
2095 * Do MII setup.
2096 */
2097 DPRINTFN(5, ("mii setup\n"));
2098 sc->bge_mii.mii_ifp = ifp;
2099 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2100 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2101 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2102
2103 /*
2104 * Figure out what sort of media we have by checking the
2105 * hardware config word in the EEPROM. Note: on some BCM5700
2106 * cards, this value appears to be unset. If that's the
2107 * case, we have to rely on identifying the NIC by its PCI
2108 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2109 */
2110 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2111 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2112 if ((be32toh(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2113 sc->bge_tbi = 1;
2114
2115 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2116 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2117 SK_SUBSYSID_9D41)
2118 sc->bge_tbi = 1;
2119
2120 if (sc->bge_tbi) {
2121 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2122 bge_ifmedia_sts);
2123 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2124 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2125 0, NULL);
2126 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2127 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2128 } else {
2129 /*
2130 * Do transceiver setup.
2131 */
2132 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2133 bge_ifmedia_sts);
2134 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2135 MII_PHY_ANY, MII_OFFSET_ANY, 0);
2136
2137 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2138 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2139 ifmedia_add(&sc->bge_mii.mii_media,
2140 IFM_ETHER|IFM_MANUAL, 0, NULL);
2141 ifmedia_set(&sc->bge_mii.mii_media,
2142 IFM_ETHER|IFM_MANUAL);
2143 } else
2144 ifmedia_set(&sc->bge_mii.mii_media,
2145 IFM_ETHER|IFM_AUTO);
2146 }
2147
2148 /*
2149 * Call MI attach routine.
2150 */
2151 DPRINTFN(5, ("if_attach\n"));
2152 if_attach(ifp);
2153 DPRINTFN(5, ("ether_ifattach\n"));
2154 ether_ifattach(ifp, eaddr);
2155 DPRINTFN(5, ("callout_init\n"));
2156 callout_init(&sc->bge_timeout);
2157 }
2158
2159 void
2160 bge_release_resources(sc)
2161 struct bge_softc *sc;
2162 {
2163 if (sc->bge_vpd_prodname != NULL)
2164 free(sc->bge_vpd_prodname, M_DEVBUF);
2165
2166 if (sc->bge_vpd_readonly != NULL)
2167 free(sc->bge_vpd_readonly, M_DEVBUF);
2168 }
2169
2170 void
2171 bge_reset(sc)
2172 struct bge_softc *sc;
2173 {
2174 struct pci_attach_args *pa = &sc->bge_pa;
2175 u_int32_t cachesize, command, pcistate;
2176 int i, val = 0;
2177
2178 /* Save some important PCI state. */
2179 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2180 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2181 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2182
2183 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2184 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2185 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2186
2187 /* Issue global reset */
2188 bge_writereg_ind(sc, BGE_MISC_CFG,
2189 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2190
2191 DELAY(1000);
2192
2193 /* Reset some of the PCI state that got zapped by reset */
2194 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2195 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2196 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2197 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2198 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2199 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2200
2201 /* Enable memory arbiter. */
2202 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2203
2204 /*
2205 * Prevent PXE restart: write a magic number to the
2206 * general communications memory at 0xB50.
2207 */
2208 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2209
2210 /*
2211 * Poll the value location we just wrote until
2212 * we see the 1's complement of the magic number.
2213 * This indicates that the firmware initialization
2214 * is complete.
2215 */
2216 for (i = 0; i < 750; i++) {
2217 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2218 if (val == ~BGE_MAGIC_NUMBER)
2219 break;
2220 DELAY(1000);
2221 }
2222
2223 if (i == 750) {
2224 printf("%s: firmware handshake timed out, val = %x\n",
2225 sc->bge_dev.dv_xname, val);
2226 return;
2227 }
2228
2229 /*
2230 * XXX Wait for the value of the PCISTATE register to
2231 * return to its original pre-reset state. This is a
2232 * fairly good indicator of reset completion. If we don't
2233 * wait for the reset to fully complete, trying to read
2234 * from the device's non-PCI registers may yield garbage
2235 * results.
2236 */
2237 for (i = 0; i < BGE_TIMEOUT; i++) {
2238 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2239 pcistate)
2240 break;
2241 DELAY(10);
2242 }
2243
2244 /* Enable memory arbiter. */
2245 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2246
2247 /* Fix up byte swapping */
2248 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2249
2250 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2251
2252 DELAY(10000);
2253 }
2254
2255 /*
2256 * Frame reception handling. This is called if there's a frame
2257 * on the receive return list.
2258 *
2259 * Note: we have to be able to handle two possibilities here:
2260 * 1) the frame is from the jumbo recieve ring
2261 * 2) the frame is from the standard receive ring
2262 */
2263
2264 void
2265 bge_rxeof(sc)
2266 struct bge_softc *sc;
2267 {
2268 struct ifnet *ifp;
2269 int stdcnt = 0, jumbocnt = 0;
2270 int have_tag = 0;
2271 u_int16_t vlan_tag = 0;
2272 bus_dmamap_t dmamap;
2273 bus_addr_t offset, toff;
2274 bus_size_t tlen;
2275 int tosync;
2276
2277 ifp = &sc->ethercom.ec_if;
2278
2279 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2280 offsetof(struct bge_ring_data, bge_status_block),
2281 sizeof (struct bge_status_block),
2282 BUS_DMASYNC_POSTREAD);
2283
2284 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2285 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2286 sc->bge_rx_saved_considx;
2287
2288 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2289
2290 if (tosync < 0) {
2291 tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
2292 sizeof (struct bge_rx_bd);
2293 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2294 toff, tlen, BUS_DMASYNC_POSTREAD);
2295 tosync = -tosync;
2296 }
2297
2298 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2299 offset, tosync * sizeof (struct bge_rx_bd),
2300 BUS_DMASYNC_POSTREAD);
2301
2302 while(sc->bge_rx_saved_considx !=
2303 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2304 struct bge_rx_bd *cur_rx;
2305 u_int32_t rxidx;
2306 struct mbuf *m = NULL;
2307
2308 cur_rx = &sc->bge_rdata->
2309 bge_rx_return_ring[sc->bge_rx_saved_considx];
2310
2311 rxidx = cur_rx->bge_idx;
2312 BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2313
2314 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2315 have_tag = 1;
2316 vlan_tag = cur_rx->bge_vlan_tag;
2317 }
2318
2319 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2320 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2321 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2322 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2323 jumbocnt++;
2324 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2325 ifp->if_ierrors++;
2326 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2327 continue;
2328 }
2329 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2330 NULL)== ENOBUFS) {
2331 ifp->if_ierrors++;
2332 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2333 continue;
2334 }
2335 } else {
2336 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2337 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2338 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2339 stdcnt++;
2340 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2341 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2342 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2343 ifp->if_ierrors++;
2344 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2345 continue;
2346 }
2347 if (bge_newbuf_std(sc, sc->bge_std,
2348 NULL, dmamap) == ENOBUFS) {
2349 ifp->if_ierrors++;
2350 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2351 continue;
2352 }
2353 }
2354
2355 ifp->if_ipackets++;
2356 m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2357 m->m_pkthdr.rcvif = ifp;
2358
2359 #if NBPFILTER > 0
2360 /*
2361 * Handle BPF listeners. Let the BPF user see the packet.
2362 */
2363 if (ifp->if_bpf)
2364 bpf_mtap(ifp->if_bpf, m);
2365 #endif
2366
2367 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
2368 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2369 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2370 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2371 #if 0 /* XXX appears to be broken */
2372 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2373 m->m_pkthdr.csum_data =
2374 cur_rx->bge_tcp_udp_csum;
2375 m->m_pkthdr.csum_flags |=
2376 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2377 }
2378 #endif
2379 }
2380
2381 /*
2382 * If we received a packet with a vlan tag, pass it
2383 * to vlan_input() instead of ether_input().
2384 */
2385 if (have_tag) {
2386 struct m_tag *mtag;
2387
2388 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2389 M_NOWAIT);
2390 if (mtag != NULL) {
2391 *(u_int *)(mtag + 1) = vlan_tag;
2392 m_tag_prepend(m, mtag);
2393 have_tag = vlan_tag = 0;
2394 } else {
2395 printf("%s: no mbuf for tag\n", ifp->if_xname);
2396 m_freem(m);
2397 have_tag = vlan_tag = 0;
2398 continue;
2399 }
2400 }
2401 (*ifp->if_input)(ifp, m);
2402 }
2403
2404 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2405 if (stdcnt)
2406 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2407 if (jumbocnt)
2408 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2409 }
2410
2411 void
2412 bge_txeof(sc)
2413 struct bge_softc *sc;
2414 {
2415 struct bge_tx_bd *cur_tx = NULL;
2416 struct ifnet *ifp;
2417 struct txdmamap_pool_entry *dma;
2418 bus_addr_t offset, toff;
2419 bus_size_t tlen;
2420 int tosync;
2421 struct mbuf *m;
2422
2423 ifp = &sc->ethercom.ec_if;
2424
2425 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2426 offsetof(struct bge_ring_data, bge_status_block),
2427 sizeof (struct bge_status_block),
2428 BUS_DMASYNC_POSTREAD);
2429
2430 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2431 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2432 sc->bge_tx_saved_considx;
2433
2434 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2435
2436 if (tosync < 0) {
2437 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2438 sizeof (struct bge_tx_bd);
2439 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2440 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2441 tosync = -tosync;
2442 }
2443
2444 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2445 offset, tosync * sizeof (struct bge_tx_bd),
2446 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2447
2448 /*
2449 * Go through our tx ring and free mbufs for those
2450 * frames that have been sent.
2451 */
2452 while (sc->bge_tx_saved_considx !=
2453 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2454 u_int32_t idx = 0;
2455
2456 idx = sc->bge_tx_saved_considx;
2457 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2458 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2459 ifp->if_opackets++;
2460 m = sc->bge_cdata.bge_tx_chain[idx];
2461 if (m != NULL) {
2462 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2463 dma = sc->txdma[idx];
2464 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2465 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2466 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2467 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2468 sc->txdma[idx] = NULL;
2469
2470 m_freem(m);
2471 }
2472 sc->bge_txcnt--;
2473 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2474 ifp->if_timer = 0;
2475 }
2476
2477 if (cur_tx != NULL)
2478 ifp->if_flags &= ~IFF_OACTIVE;
2479 }
2480
2481 int
2482 bge_intr(xsc)
2483 void *xsc;
2484 {
2485 struct bge_softc *sc;
2486 struct ifnet *ifp;
2487
2488 sc = xsc;
2489 ifp = &sc->ethercom.ec_if;
2490
2491 #ifdef notdef
2492 /* Avoid this for now -- checking this register is expensive. */
2493 /* Make sure this is really our interrupt. */
2494 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2495 return (0);
2496 #endif
2497 /* Ack interrupt and stop others from occuring. */
2498 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2499
2500 /*
2501 * Process link state changes.
2502 * Grrr. The link status word in the status block does
2503 * not work correctly on the BCM5700 rev AX and BX chips,
2504 * according to all avaibable information. Hence, we have
2505 * to enable MII interrupts in order to properly obtain
2506 * async link changes. Unfortunately, this also means that
2507 * we have to read the MAC status register to detect link
2508 * changes, thereby adding an additional register access to
2509 * the interrupt handler.
2510 */
2511
2512 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2513 u_int32_t status;
2514
2515 status = CSR_READ_4(sc, BGE_MAC_STS);
2516 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2517 sc->bge_link = 0;
2518 callout_stop(&sc->bge_timeout);
2519 bge_tick(sc);
2520 /* Clear the interrupt */
2521 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2522 BGE_EVTENB_MI_INTERRUPT);
2523 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2524 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2525 BRGPHY_INTRS);
2526 }
2527 } else {
2528 if (sc->bge_rdata->bge_status_block.bge_status &
2529 BGE_STATFLAG_LINKSTATE_CHANGED) {
2530 sc->bge_link = 0;
2531 callout_stop(&sc->bge_timeout);
2532 bge_tick(sc);
2533 /* Clear the interrupt */
2534 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2535 BGE_MACSTAT_CFG_CHANGED);
2536 }
2537 }
2538
2539 if (ifp->if_flags & IFF_RUNNING) {
2540 /* Check RX return ring producer/consumer */
2541 bge_rxeof(sc);
2542
2543 /* Check TX ring producer/consumer */
2544 bge_txeof(sc);
2545 }
2546
2547 bge_handle_events(sc);
2548
2549 /* Re-enable interrupts. */
2550 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2551
2552 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2553 bge_start(ifp);
2554
2555 return (1);
2556 }
2557
2558 void
2559 bge_tick(xsc)
2560 void *xsc;
2561 {
2562 struct bge_softc *sc = xsc;
2563 struct mii_data *mii = &sc->bge_mii;
2564 struct ifmedia *ifm = NULL;
2565 struct ifnet *ifp = &sc->ethercom.ec_if;
2566 int s;
2567
2568 s = splnet();
2569
2570 bge_stats_update(sc);
2571 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2572 if (sc->bge_link) {
2573 splx(s);
2574 return;
2575 }
2576
2577 if (sc->bge_tbi) {
2578 ifm = &sc->bge_ifmedia;
2579 if (CSR_READ_4(sc, BGE_MAC_STS) &
2580 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2581 sc->bge_link++;
2582 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2583 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2584 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2585 bge_start(ifp);
2586 }
2587 splx(s);
2588 return;
2589 }
2590
2591 mii_tick(mii);
2592
2593 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2594 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2595 sc->bge_link++;
2596 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2597 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2598 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2599 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2600 bge_start(ifp);
2601 }
2602
2603 splx(s);
2604 }
2605
2606 void
2607 bge_stats_update(sc)
2608 struct bge_softc *sc;
2609 {
2610 struct ifnet *ifp = &sc->ethercom.ec_if;
2611 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2612
2613 #define READ_STAT(sc, stats, stat) \
2614 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2615
2616 ifp->if_collisions +=
2617 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2618 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2619 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2620 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2621 ifp->if_collisions;
2622
2623 #undef READ_STAT
2624
2625 #ifdef notdef
2626 ifp->if_collisions +=
2627 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2628 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2629 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2630 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2631 ifp->if_collisions;
2632 #endif
2633 }
2634
2635 /*
2636 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2637 * pointers to descriptors.
2638 */
2639 int
2640 bge_encap(sc, m_head, txidx)
2641 struct bge_softc *sc;
2642 struct mbuf *m_head;
2643 u_int32_t *txidx;
2644 {
2645 struct bge_tx_bd *f = NULL;
2646 u_int32_t frag, cur, cnt = 0;
2647 u_int16_t csum_flags = 0;
2648 struct txdmamap_pool_entry *dma;
2649 bus_dmamap_t dmamap;
2650 int i = 0;
2651 struct m_tag *mtag;
2652 struct mbuf *prev, *m;
2653 int totlen, prevlen;
2654
2655 cur = frag = *txidx;
2656
2657 if (m_head->m_pkthdr.csum_flags) {
2658 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2659 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2660 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2661 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2662 }
2663
2664 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
2665 goto doit;
2666 /*
2667 * bcm5700 Revision B silicon cannot handle DMA descriptors with
2668 * less than eight bytes. If we encounter a teeny mbuf
2669 * at the end of a chain, we can pad. Otherwise, copy.
2670 */
2671 prev = NULL;
2672 totlen = 0;
2673 for (m = m_head; m != NULL; prev = m,m = m->m_next) {
2674 int mlen = m->m_len;
2675
2676 totlen += mlen;
2677 if (mlen == 0) {
2678 /* print a warning? */
2679 continue;
2680 }
2681 if (mlen >= 8)
2682 continue;
2683
2684 /* If we get here, mbuf data is too small for DMA engine. */
2685 if (m->m_next != 0) {
2686 /* Internal frag. If fits in prev, copy it there. */
2687 if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
2688 !M_READONLY(prev)) {
2689 bcopy(m->m_data,
2690 prev->m_data+prev->m_len,
2691 mlen);
2692 prev->m_len += mlen;
2693 m->m_len = 0;
2694 MFREE(m, prev->m_next); /* XXX stitch chain */
2695 m = prev;
2696 continue;
2697 } else {
2698 struct mbuf *n;
2699 /* slow copy */
2700 slowcopy:
2701 n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
2702 m_freem(m_head);
2703 if (n == 0)
2704 return 0;
2705 m_head = n;
2706 goto doit;
2707 }
2708 } else if ((totlen -mlen +8) >= 1500) {
2709 goto slowcopy;
2710 }
2711 prevlen = m->m_len;
2712 }
2713
2714 doit:
2715 dma = SLIST_FIRST(&sc->txdma_list);
2716 if (dma == NULL)
2717 return ENOBUFS;
2718 dmamap = dma->dmamap;
2719
2720 /*
2721 * Start packing the mbufs in this chain into
2722 * the fragment pointers. Stop when we run out
2723 * of fragments or hit the end of the mbuf chain.
2724 */
2725 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2726 BUS_DMA_NOWAIT))
2727 return(ENOBUFS);
2728
2729 mtag = sc->ethercom.ec_nvlans ?
2730 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
2731
2732 for (i = 0; i < dmamap->dm_nsegs; i++) {
2733 f = &sc->bge_rdata->bge_tx_ring[frag];
2734 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2735 break;
2736 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2737 f->bge_len = dmamap->dm_segs[i].ds_len;
2738 f->bge_flags = csum_flags;
2739
2740 if (mtag != NULL) {
2741 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2742 f->bge_vlan_tag = *(u_int *)(mtag + 1);
2743 } else {
2744 f->bge_vlan_tag = 0;
2745 }
2746 /*
2747 * Sanity check: avoid coming within 16 descriptors
2748 * of the end of the ring.
2749 */
2750 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2751 return(ENOBUFS);
2752 cur = frag;
2753 BGE_INC(frag, BGE_TX_RING_CNT);
2754 cnt++;
2755 }
2756
2757 if (i < dmamap->dm_nsegs)
2758 return ENOBUFS;
2759
2760 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2761 BUS_DMASYNC_PREWRITE);
2762
2763 if (frag == sc->bge_tx_saved_considx)
2764 return(ENOBUFS);
2765
2766 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2767 sc->bge_cdata.bge_tx_chain[cur] = m_head;
2768 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2769 sc->txdma[cur] = dma;
2770 sc->bge_txcnt += cnt;
2771
2772 *txidx = frag;
2773
2774 return(0);
2775 }
2776
2777 /*
2778 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2779 * to the mbuf data regions directly in the transmit descriptors.
2780 */
2781 void
2782 bge_start(ifp)
2783 struct ifnet *ifp;
2784 {
2785 struct bge_softc *sc;
2786 struct mbuf *m_head = NULL;
2787 u_int32_t prodidx = 0;
2788 int pkts = 0;
2789
2790 sc = ifp->if_softc;
2791
2792 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2793 return;
2794
2795 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2796
2797 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2798 IFQ_POLL(&ifp->if_snd, m_head);
2799 if (m_head == NULL)
2800 break;
2801
2802 #if 0
2803 /*
2804 * XXX
2805 * safety overkill. If this is a fragmented packet chain
2806 * with delayed TCP/UDP checksums, then only encapsulate
2807 * it if we have enough descriptors to handle the entire
2808 * chain at once.
2809 * (paranoia -- may not actually be needed)
2810 */
2811 if (m_head->m_flags & M_FIRSTFRAG &&
2812 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2813 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2814 m_head->m_pkthdr.csum_data + 16) {
2815 ifp->if_flags |= IFF_OACTIVE;
2816 break;
2817 }
2818 }
2819 #endif
2820
2821 /*
2822 * Pack the data into the transmit ring. If we
2823 * don't have room, set the OACTIVE flag and wait
2824 * for the NIC to drain the ring.
2825 */
2826 if (bge_encap(sc, m_head, &prodidx)) {
2827 ifp->if_flags |= IFF_OACTIVE;
2828 break;
2829 }
2830
2831 /* now we are committed to transmit the packet */
2832 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2833 pkts++;
2834
2835 #if NBPFILTER > 0
2836 /*
2837 * If there's a BPF listener, bounce a copy of this frame
2838 * to him.
2839 */
2840 if (ifp->if_bpf)
2841 bpf_mtap(ifp->if_bpf, m_head);
2842 #endif
2843 }
2844 if (pkts == 0)
2845 return;
2846
2847 /* Transmit */
2848 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2849 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
2850 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2851
2852 /*
2853 * Set a timeout in case the chip goes out to lunch.
2854 */
2855 ifp->if_timer = 5;
2856 }
2857
2858 int
2859 bge_init(ifp)
2860 struct ifnet *ifp;
2861 {
2862 struct bge_softc *sc = ifp->if_softc;
2863 u_int16_t *m;
2864 int s, error;
2865
2866 s = splnet();
2867
2868 ifp = &sc->ethercom.ec_if;
2869
2870 /* Cancel pending I/O and flush buffers. */
2871 bge_stop(sc);
2872 bge_reset(sc);
2873 bge_chipinit(sc);
2874
2875 /*
2876 * Init the various state machines, ring
2877 * control blocks and firmware.
2878 */
2879 error = bge_blockinit(sc);
2880 if (error != 0) {
2881 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2882 error);
2883 splx(s);
2884 return error;
2885 }
2886
2887 ifp = &sc->ethercom.ec_if;
2888
2889 /* Specify MTU. */
2890 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2891 ETHER_HDR_LEN + ETHER_CRC_LEN);
2892
2893 /* Load our MAC address. */
2894 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2895 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2896 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2897
2898 /* Enable or disable promiscuous mode as needed. */
2899 if (ifp->if_flags & IFF_PROMISC) {
2900 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2901 } else {
2902 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2903 }
2904
2905 /* Program multicast filter. */
2906 bge_setmulti(sc);
2907
2908 /* Init RX ring. */
2909 bge_init_rx_ring_std(sc);
2910
2911 /* Init jumbo RX ring. */
2912 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2913 bge_init_rx_ring_jumbo(sc);
2914
2915 /* Init our RX return ring index */
2916 sc->bge_rx_saved_considx = 0;
2917
2918 /* Init TX ring. */
2919 bge_init_tx_ring(sc);
2920
2921 /* Turn on transmitter */
2922 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2923
2924 /* Turn on receiver */
2925 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2926
2927 /* Tell firmware we're alive. */
2928 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2929
2930 /* Enable host interrupts. */
2931 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2932 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2933 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2934
2935 bge_ifmedia_upd(ifp);
2936
2937 ifp->if_flags |= IFF_RUNNING;
2938 ifp->if_flags &= ~IFF_OACTIVE;
2939
2940 splx(s);
2941
2942 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2943
2944 return 0;
2945 }
2946
2947 /*
2948 * Set media options.
2949 */
2950 int
2951 bge_ifmedia_upd(ifp)
2952 struct ifnet *ifp;
2953 {
2954 struct bge_softc *sc = ifp->if_softc;
2955 struct mii_data *mii = &sc->bge_mii;
2956 struct ifmedia *ifm = &sc->bge_ifmedia;
2957
2958 /* If this is a 1000baseX NIC, enable the TBI port. */
2959 if (sc->bge_tbi) {
2960 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2961 return(EINVAL);
2962 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2963 case IFM_AUTO:
2964 break;
2965 case IFM_1000_SX:
2966 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2967 BGE_CLRBIT(sc, BGE_MAC_MODE,
2968 BGE_MACMODE_HALF_DUPLEX);
2969 } else {
2970 BGE_SETBIT(sc, BGE_MAC_MODE,
2971 BGE_MACMODE_HALF_DUPLEX);
2972 }
2973 break;
2974 default:
2975 return(EINVAL);
2976 }
2977 return(0);
2978 }
2979
2980 sc->bge_link = 0;
2981 mii_mediachg(mii);
2982
2983 return(0);
2984 }
2985
2986 /*
2987 * Report current media status.
2988 */
2989 void
2990 bge_ifmedia_sts(ifp, ifmr)
2991 struct ifnet *ifp;
2992 struct ifmediareq *ifmr;
2993 {
2994 struct bge_softc *sc = ifp->if_softc;
2995 struct mii_data *mii = &sc->bge_mii;
2996
2997 if (sc->bge_tbi) {
2998 ifmr->ifm_status = IFM_AVALID;
2999 ifmr->ifm_active = IFM_ETHER;
3000 if (CSR_READ_4(sc, BGE_MAC_STS) &
3001 BGE_MACSTAT_TBI_PCS_SYNCHED)
3002 ifmr->ifm_status |= IFM_ACTIVE;
3003 ifmr->ifm_active |= IFM_1000_SX;
3004 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3005 ifmr->ifm_active |= IFM_HDX;
3006 else
3007 ifmr->ifm_active |= IFM_FDX;
3008 return;
3009 }
3010
3011 mii_pollstat(mii);
3012 ifmr->ifm_active = mii->mii_media_active;
3013 ifmr->ifm_status = mii->mii_media_status;
3014 }
3015
3016 int
3017 bge_ioctl(ifp, command, data)
3018 struct ifnet *ifp;
3019 u_long command;
3020 caddr_t data;
3021 {
3022 struct bge_softc *sc = ifp->if_softc;
3023 struct ifreq *ifr = (struct ifreq *) data;
3024 int s, error = 0;
3025 struct mii_data *mii;
3026
3027 s = splnet();
3028
3029 switch(command) {
3030 case SIOCSIFFLAGS:
3031 if (ifp->if_flags & IFF_UP) {
3032 /*
3033 * If only the state of the PROMISC flag changed,
3034 * then just use the 'set promisc mode' command
3035 * instead of reinitializing the entire NIC. Doing
3036 * a full re-init means reloading the firmware and
3037 * waiting for it to start up, which may take a
3038 * second or two.
3039 */
3040 if (ifp->if_flags & IFF_RUNNING &&
3041 ifp->if_flags & IFF_PROMISC &&
3042 !(sc->bge_if_flags & IFF_PROMISC)) {
3043 BGE_SETBIT(sc, BGE_RX_MODE,
3044 BGE_RXMODE_RX_PROMISC);
3045 } else if (ifp->if_flags & IFF_RUNNING &&
3046 !(ifp->if_flags & IFF_PROMISC) &&
3047 sc->bge_if_flags & IFF_PROMISC) {
3048 BGE_CLRBIT(sc, BGE_RX_MODE,
3049 BGE_RXMODE_RX_PROMISC);
3050 } else
3051 bge_init(ifp);
3052 } else {
3053 if (ifp->if_flags & IFF_RUNNING) {
3054 bge_stop(sc);
3055 }
3056 }
3057 sc->bge_if_flags = ifp->if_flags;
3058 error = 0;
3059 break;
3060 case SIOCSIFMEDIA:
3061 case SIOCGIFMEDIA:
3062 if (sc->bge_tbi) {
3063 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3064 command);
3065 } else {
3066 mii = &sc->bge_mii;
3067 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3068 command);
3069 }
3070 error = 0;
3071 break;
3072 default:
3073 error = ether_ioctl(ifp, command, data);
3074 if (error == ENETRESET) {
3075 bge_setmulti(sc);
3076 error = 0;
3077 }
3078 break;
3079 }
3080
3081 splx(s);
3082
3083 return(error);
3084 }
3085
3086 void
3087 bge_watchdog(ifp)
3088 struct ifnet *ifp;
3089 {
3090 struct bge_softc *sc;
3091
3092 sc = ifp->if_softc;
3093
3094 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3095
3096 ifp->if_flags &= ~IFF_RUNNING;
3097 bge_init(ifp);
3098
3099 ifp->if_oerrors++;
3100 }
3101
3102 static void
3103 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3104 {
3105 int i;
3106
3107 BGE_CLRBIT(sc, reg, bit);
3108
3109 for (i = 0; i < BGE_TIMEOUT; i++) {
3110 if ((CSR_READ_4(sc, reg) & bit) == 0)
3111 return;
3112 delay(100);
3113 }
3114
3115 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3116 sc->bge_dev.dv_xname, (u_long) reg, bit);
3117 }
3118
3119 /*
3120 * Stop the adapter and free any mbufs allocated to the
3121 * RX and TX lists.
3122 */
3123 void
3124 bge_stop(sc)
3125 struct bge_softc *sc;
3126 {
3127 struct ifnet *ifp = &sc->ethercom.ec_if;
3128
3129 callout_stop(&sc->bge_timeout);
3130
3131 /*
3132 * Disable all of the receiver blocks
3133 */
3134 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3135 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3136 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3137 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3138 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3139 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3140 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3141
3142 /*
3143 * Disable all of the transmit blocks
3144 */
3145 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3146 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3147 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3148 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3149 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3150 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3151 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3152
3153 /*
3154 * Shut down all of the memory managers and related
3155 * state machines.
3156 */
3157 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3158 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3159 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3160
3161 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3162 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3163
3164 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3165 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3166
3167 /* Disable host interrupts. */
3168 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3169 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3170
3171 /*
3172 * Tell firmware we're shutting down.
3173 */
3174 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3175
3176 /* Free the RX lists. */
3177 bge_free_rx_ring_std(sc);
3178
3179 /* Free jumbo RX list. */
3180 bge_free_rx_ring_jumbo(sc);
3181
3182 /* Free TX buffers. */
3183 bge_free_tx_ring(sc);
3184
3185 /*
3186 * Isolate/power down the PHY.
3187 */
3188 if (!sc->bge_tbi)
3189 mii_down(&sc->bge_mii);
3190
3191 sc->bge_link = 0;
3192
3193 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3194
3195 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3196 }
3197
3198 /*
3199 * Stop all chip I/O so that the kernel's probe routines don't
3200 * get confused by errant DMAs when rebooting.
3201 */
3202 void
3203 bge_shutdown(xsc)
3204 void *xsc;
3205 {
3206 struct bge_softc *sc = (struct bge_softc *)xsc;
3207
3208 bge_stop(sc);
3209 bge_reset(sc);
3210 }
3211