if_bge.c revision 1.332 1 /* $NetBSD: if_bge.c,v 1.332 2019/05/24 05:57:35 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.332 2019/05/24 05:57:35 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94 #include <sys/rndsource.h>
95
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_ether.h>
100 #include <net/bpf.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115 #include <dev/pci/pcireg.h>
116 #include <dev/pci/pcivar.h>
117 #include <dev/pci/pcidevs.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/miidevs.h>
122 #include <dev/mii/brgphyreg.h>
123
124 #include <dev/pci/if_bgereg.h>
125 #include <dev/pci/if_bgevar.h>
126
127 #include <prop/proplib.h>
128
129 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
130
131
132 /*
133 * Tunable thresholds for rx-side bge interrupt mitigation.
134 */
135
136 /*
137 * The pairs of values below were obtained from empirical measurement
138 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
139 * interrupt for every N packets received, where N is, approximately,
140 * the second value (rx_max_bds) in each pair. The values are chosen
141 * such that moving from one pair to the succeeding pair was observed
142 * to roughly halve interrupt rate under sustained input packet load.
143 * The values were empirically chosen to avoid overflowing internal
144 * limits on the bcm5700: increasing rx_ticks much beyond 600
145 * results in internal wrapping and higher interrupt rates.
146 * The limit of 46 frames was chosen to match NFS workloads.
147 *
148 * These values also work well on bcm5701, bcm5704C, and (less
149 * tested) bcm5703. On other chipsets, (including the Altima chip
150 * family), the larger values may overflow internal chip limits,
151 * leading to increasing interrupt rates rather than lower interrupt
152 * rates.
153 *
154 * Applications using heavy interrupt mitigation (interrupting every
155 * 32 or 46 frames) in both directions may need to increase the TCP
156 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
157 * full link bandwidth, due to ACKs and window updates lingering
158 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
159 */
160 static const struct bge_load_rx_thresh {
161 int rx_ticks;
162 int rx_max_bds; }
163 bge_rx_threshes[] = {
164 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
165 { 32, 2 },
166 { 50, 4 },
167 { 100, 8 },
168 { 192, 16 },
169 { 416, 32 },
170 { 598, 46 }
171 };
172 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
173
174 /* XXX patchable; should be sysctl'able */
175 static int bge_auto_thresh = 1;
176 static int bge_rx_thresh_lvl;
177
178 static int bge_rxthresh_nodenum;
179
180 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
181
182 static uint32_t bge_chipid(const struct pci_attach_args *);
183 static int bge_can_use_msi(struct bge_softc *);
184 static int bge_probe(device_t, cfdata_t, void *);
185 static void bge_attach(device_t, device_t, void *);
186 static int bge_detach(device_t, int);
187 static void bge_release_resources(struct bge_softc *);
188
189 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
190 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
191 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
194
195 static void bge_txeof(struct bge_softc *);
196 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
197 static void bge_rxeof(struct bge_softc *);
198
199 static void bge_asf_driver_up (struct bge_softc *);
200 static void bge_tick(void *);
201 static void bge_stats_update(struct bge_softc *);
202 static void bge_stats_update_regs(struct bge_softc *);
203 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
204
205 static int bge_intr(void *);
206 static void bge_start(struct ifnet *);
207 static int bge_ifflags_cb(struct ethercom *);
208 static int bge_ioctl(struct ifnet *, u_long, void *);
209 static int bge_init(struct ifnet *);
210 static void bge_stop(struct ifnet *, int);
211 static void bge_watchdog(struct ifnet *);
212 static int bge_ifmedia_upd(struct ifnet *);
213 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
214
215 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
216 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
217
218 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
220 static void bge_setmulti(struct bge_softc *);
221
222 static void bge_handle_events(struct bge_softc *);
223 static int bge_alloc_jumbo_mem(struct bge_softc *);
224 #if 0 /* XXX */
225 static void bge_free_jumbo_mem(struct bge_softc *);
226 #endif
227 static void *bge_jalloc(struct bge_softc *);
228 static void bge_jfree(struct mbuf *, void *, size_t, void *);
229 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
230 bus_dmamap_t);
231 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
232 static int bge_init_rx_ring_std(struct bge_softc *);
233 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
234 static int bge_init_rx_ring_jumbo(struct bge_softc *);
235 static void bge_free_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_tx_ring(struct bge_softc *m, bool);
237 static int bge_init_tx_ring(struct bge_softc *);
238
239 static int bge_chipinit(struct bge_softc *);
240 static int bge_blockinit(struct bge_softc *);
241 static int bge_phy_addr(struct bge_softc *);
242 static uint32_t bge_readmem_ind(struct bge_softc *, int);
243 static void bge_writemem_ind(struct bge_softc *, int, int);
244 static void bge_writembx(struct bge_softc *, int, int);
245 static void bge_writembx_flush(struct bge_softc *, int, int);
246 static void bge_writemem_direct(struct bge_softc *, int, int);
247 static void bge_writereg_ind(struct bge_softc *, int, int);
248 static void bge_set_max_readrq(struct bge_softc *);
249
250 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
251 static int bge_miibus_writereg(device_t, int, int, uint16_t);
252 static void bge_miibus_statchg(struct ifnet *);
253
254 #define BGE_RESET_SHUTDOWN 0
255 #define BGE_RESET_START 1
256 #define BGE_RESET_SUSPEND 2
257 static void bge_sig_post_reset(struct bge_softc *, int);
258 static void bge_sig_legacy(struct bge_softc *, int);
259 static void bge_sig_pre_reset(struct bge_softc *, int);
260 static void bge_wait_for_event_ack(struct bge_softc *);
261 static void bge_stop_fw(struct bge_softc *);
262 static int bge_reset(struct bge_softc *);
263 static void bge_link_upd(struct bge_softc *);
264 static void bge_sysctl_init(struct bge_softc *);
265 static int bge_sysctl_verify(SYSCTLFN_PROTO);
266
267 static void bge_ape_lock_init(struct bge_softc *);
268 static void bge_ape_read_fw_ver(struct bge_softc *);
269 static int bge_ape_lock(struct bge_softc *, int);
270 static void bge_ape_unlock(struct bge_softc *, int);
271 static void bge_ape_send_event(struct bge_softc *, uint32_t);
272 static void bge_ape_driver_state_change(struct bge_softc *, int);
273
274 #ifdef BGE_DEBUG
275 #define DPRINTF(x) if (bgedebug) printf x
276 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
277 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
278 int bgedebug = 0;
279 int bge_tso_debug = 0;
280 void bge_debug_info(struct bge_softc *);
281 #else
282 #define DPRINTF(x)
283 #define DPRINTFN(n, x)
284 #define BGE_TSO_PRINTF(x)
285 #endif
286
287 #ifdef BGE_EVENT_COUNTERS
288 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
289 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
290 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
291 #else
292 #define BGE_EVCNT_INCR(ev) /* nothing */
293 #define BGE_EVCNT_ADD(ev, val) /* nothing */
294 #define BGE_EVCNT_UPD(ev, val) /* nothing */
295 #endif
296
297 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
298 /*
299 * The BCM5700 documentation seems to indicate that the hardware still has the
300 * Alteon vendor ID burned into it, though it should always be overridden by
301 * the value in the EEPROM. We'll check for it anyway.
302 */
303 static const struct bge_product {
304 pci_vendor_id_t bp_vendor;
305 pci_product_id_t bp_product;
306 const char *bp_name;
307 } bge_products[] = {
308 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
309 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
310 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
311 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
312 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
313 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
314 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
315 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
316 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
317 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
318 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
319 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
320 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
321 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
322 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
323 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
324 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
325 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
326 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
327 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
328 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
329 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
330 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
331 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
332 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
333 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
334 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
335 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
336 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
337 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
338 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
339 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
340 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
341 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
342 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
343 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
344 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
345 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
346 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
347 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
348 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
349 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
350 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
351 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
352 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
353 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
354 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
355 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
356 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
357 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
358 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
359 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
360 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
361 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
362 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
363 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
364 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
365 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
366 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
367 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
368 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
369 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
370 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
371 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
372 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
373 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
374 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
375 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
376 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
377 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
378 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
379 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
380 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
381 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
382 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
383 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
384 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
385 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
386 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
387 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
388 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
389 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
390 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
391 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
392 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
393 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
394 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
395 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
396 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
397 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
398 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
399 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
400 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
401 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
402 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
403 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
404 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
405 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
406 { 0, 0, NULL },
407 };
408
409 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
410 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
411 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
412 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
413 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
414 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
415 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
416 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
417 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
418
419 static const struct bge_revision {
420 uint32_t br_chipid;
421 const char *br_name;
422 } bge_revisions[] = {
423 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
424 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
425 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
426 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
427 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
428 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
429 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
430 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
431 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
432 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
433 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
434 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
435 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
436 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
437 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
438 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
439 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
440 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
441 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
442 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
443 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
444 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
445 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
446 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
447 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
448 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
449 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
450 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
451 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
452 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
453 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
454 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
455 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
456 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
457 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
458 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
459 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
460 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
461 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
462 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
463 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
464 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
465 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
466 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
467 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
468 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
469 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
470 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
471 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
472 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
473 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
474 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
475 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
476 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
477 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
478 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
479 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
480 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
481 /* 5754 and 5787 share the same ASIC ID */
482 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
483 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
484 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
485 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
486 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
487 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
488 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
489 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
490 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
491 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
492 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
493
494 { 0, NULL }
495 };
496
497 /*
498 * Some defaults for major revisions, so that newer steppings
499 * that we don't know about have a shot at working.
500 */
501 static const struct bge_revision bge_majorrevs[] = {
502 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
503 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
504 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
505 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
506 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
507 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
508 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
509 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
510 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
511 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
512 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
513 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
514 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
515 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
516 /* 5754 and 5787 share the same ASIC ID */
517 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
518 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
519 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
520 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
521 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
522 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
523 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
524 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
525 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
526
527 { 0, NULL }
528 };
529
530 static int bge_allow_asf = 1;
531
532 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
533 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
534
535 static uint32_t
536 bge_readmem_ind(struct bge_softc *sc, int off)
537 {
538 pcireg_t val;
539
540 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
541 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
542 return 0;
543
544 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
545 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
546 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
547 return val;
548 }
549
550 static void
551 bge_writemem_ind(struct bge_softc *sc, int off, int val)
552 {
553
554 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
555 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
556 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
557 }
558
559 /*
560 * PCI Express only
561 */
562 static void
563 bge_set_max_readrq(struct bge_softc *sc)
564 {
565 pcireg_t val;
566
567 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
568 + PCIE_DCSR);
569 val &= ~PCIE_DCSR_MAX_READ_REQ;
570 switch (sc->bge_expmrq) {
571 case 2048:
572 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
573 break;
574 case 4096:
575 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
576 break;
577 default:
578 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
579 break;
580 }
581 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
582 + PCIE_DCSR, val);
583 }
584
585 #ifdef notdef
586 static uint32_t
587 bge_readreg_ind(struct bge_softc *sc, int off)
588 {
589 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
590 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
591 }
592 #endif
593
594 static void
595 bge_writereg_ind(struct bge_softc *sc, int off, int val)
596 {
597 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
598 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
599 }
600
601 static void
602 bge_writemem_direct(struct bge_softc *sc, int off, int val)
603 {
604 CSR_WRITE_4(sc, off, val);
605 }
606
607 static void
608 bge_writembx(struct bge_softc *sc, int off, int val)
609 {
610 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
611 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
612
613 CSR_WRITE_4(sc, off, val);
614 }
615
616 static void
617 bge_writembx_flush(struct bge_softc *sc, int off, int val)
618 {
619 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
620 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
621
622 CSR_WRITE_4_FLUSH(sc, off, val);
623 }
624
625 /*
626 * Clear all stale locks and select the lock for this driver instance.
627 */
628 void
629 bge_ape_lock_init(struct bge_softc *sc)
630 {
631 struct pci_attach_args *pa = &(sc->bge_pa);
632 uint32_t bit, regbase;
633 int i;
634
635 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
636 regbase = BGE_APE_LOCK_GRANT;
637 else
638 regbase = BGE_APE_PER_LOCK_GRANT;
639
640 /* Clear any stale locks. */
641 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
642 switch (i) {
643 case BGE_APE_LOCK_PHY0:
644 case BGE_APE_LOCK_PHY1:
645 case BGE_APE_LOCK_PHY2:
646 case BGE_APE_LOCK_PHY3:
647 bit = BGE_APE_LOCK_GRANT_DRIVER0;
648 break;
649 default:
650 if (pa->pa_function == 0)
651 bit = BGE_APE_LOCK_GRANT_DRIVER0;
652 else
653 bit = (1 << pa->pa_function);
654 }
655 APE_WRITE_4(sc, regbase + 4 * i, bit);
656 }
657
658 /* Select the PHY lock based on the device's function number. */
659 switch (pa->pa_function) {
660 case 0:
661 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
662 break;
663 case 1:
664 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
665 break;
666 case 2:
667 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
668 break;
669 case 3:
670 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
671 break;
672 default:
673 printf("%s: PHY lock not supported on function\n",
674 device_xname(sc->bge_dev));
675 break;
676 }
677 }
678
679 /*
680 * Check for APE firmware, set flags, and print version info.
681 */
682 void
683 bge_ape_read_fw_ver(struct bge_softc *sc)
684 {
685 const char *fwtype;
686 uint32_t apedata, features;
687
688 /* Check for a valid APE signature in shared memory. */
689 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
690 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
691 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
692 return;
693 }
694
695 /* Check if APE firmware is running. */
696 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
697 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
698 printf("%s: APE signature found but FW status not ready! "
699 "0x%08x\n", device_xname(sc->bge_dev), apedata);
700 return;
701 }
702
703 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
704
705 /* Fetch the APE firwmare type and version. */
706 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
707 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
708 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
709 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
710 fwtype = "NCSI";
711 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
712 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
713 fwtype = "DASH";
714 } else
715 fwtype = "UNKN";
716
717 /* Print the APE firmware version. */
718 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
719 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
720 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
721 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
722 (apedata & BGE_APE_FW_VERSION_BLDMSK));
723 }
724
725 int
726 bge_ape_lock(struct bge_softc *sc, int locknum)
727 {
728 struct pci_attach_args *pa = &(sc->bge_pa);
729 uint32_t bit, gnt, req, status;
730 int i, off;
731
732 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
733 return (0);
734
735 /* Lock request/grant registers have different bases. */
736 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
737 req = BGE_APE_LOCK_REQ;
738 gnt = BGE_APE_LOCK_GRANT;
739 } else {
740 req = BGE_APE_PER_LOCK_REQ;
741 gnt = BGE_APE_PER_LOCK_GRANT;
742 }
743
744 off = 4 * locknum;
745
746 switch (locknum) {
747 case BGE_APE_LOCK_GPIO:
748 /* Lock required when using GPIO. */
749 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
750 return (0);
751 if (pa->pa_function == 0)
752 bit = BGE_APE_LOCK_REQ_DRIVER0;
753 else
754 bit = (1 << pa->pa_function);
755 break;
756 case BGE_APE_LOCK_GRC:
757 /* Lock required to reset the device. */
758 if (pa->pa_function == 0)
759 bit = BGE_APE_LOCK_REQ_DRIVER0;
760 else
761 bit = (1 << pa->pa_function);
762 break;
763 case BGE_APE_LOCK_MEM:
764 /* Lock required when accessing certain APE memory. */
765 if (pa->pa_function == 0)
766 bit = BGE_APE_LOCK_REQ_DRIVER0;
767 else
768 bit = (1 << pa->pa_function);
769 break;
770 case BGE_APE_LOCK_PHY0:
771 case BGE_APE_LOCK_PHY1:
772 case BGE_APE_LOCK_PHY2:
773 case BGE_APE_LOCK_PHY3:
774 /* Lock required when accessing PHYs. */
775 bit = BGE_APE_LOCK_REQ_DRIVER0;
776 break;
777 default:
778 return (EINVAL);
779 }
780
781 /* Request a lock. */
782 APE_WRITE_4_FLUSH(sc, req + off, bit);
783
784 /* Wait up to 1 second to acquire lock. */
785 for (i = 0; i < 20000; i++) {
786 status = APE_READ_4(sc, gnt + off);
787 if (status == bit)
788 break;
789 DELAY(50);
790 }
791
792 /* Handle any errors. */
793 if (status != bit) {
794 printf("%s: APE lock %d request failed! "
795 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
796 device_xname(sc->bge_dev),
797 locknum, req + off, bit & 0xFFFF, gnt + off,
798 status & 0xFFFF);
799 /* Revoke the lock request. */
800 APE_WRITE_4(sc, gnt + off, bit);
801 return (EBUSY);
802 }
803
804 return (0);
805 }
806
807 void
808 bge_ape_unlock(struct bge_softc *sc, int locknum)
809 {
810 struct pci_attach_args *pa = &(sc->bge_pa);
811 uint32_t bit, gnt;
812 int off;
813
814 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
815 return;
816
817 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
818 gnt = BGE_APE_LOCK_GRANT;
819 else
820 gnt = BGE_APE_PER_LOCK_GRANT;
821
822 off = 4 * locknum;
823
824 switch (locknum) {
825 case BGE_APE_LOCK_GPIO:
826 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
827 return;
828 if (pa->pa_function == 0)
829 bit = BGE_APE_LOCK_GRANT_DRIVER0;
830 else
831 bit = (1 << pa->pa_function);
832 break;
833 case BGE_APE_LOCK_GRC:
834 if (pa->pa_function == 0)
835 bit = BGE_APE_LOCK_GRANT_DRIVER0;
836 else
837 bit = (1 << pa->pa_function);
838 break;
839 case BGE_APE_LOCK_MEM:
840 if (pa->pa_function == 0)
841 bit = BGE_APE_LOCK_GRANT_DRIVER0;
842 else
843 bit = (1 << pa->pa_function);
844 break;
845 case BGE_APE_LOCK_PHY0:
846 case BGE_APE_LOCK_PHY1:
847 case BGE_APE_LOCK_PHY2:
848 case BGE_APE_LOCK_PHY3:
849 bit = BGE_APE_LOCK_GRANT_DRIVER0;
850 break;
851 default:
852 return;
853 }
854
855 /* Write and flush for consecutive bge_ape_lock() */
856 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
857 }
858
859 /*
860 * Send an event to the APE firmware.
861 */
862 void
863 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
864 {
865 uint32_t apedata;
866 int i;
867
868 /* NCSI does not support APE events. */
869 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
870 return;
871
872 /* Wait up to 1ms for APE to service previous event. */
873 for (i = 10; i > 0; i--) {
874 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
875 break;
876 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
877 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
878 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
879 BGE_APE_EVENT_STATUS_EVENT_PENDING);
880 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
881 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
882 break;
883 }
884 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
885 DELAY(100);
886 }
887 if (i == 0) {
888 printf("%s: APE event 0x%08x send timed out\n",
889 device_xname(sc->bge_dev), event);
890 }
891 }
892
893 void
894 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
895 {
896 uint32_t apedata, event;
897
898 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
899 return;
900
901 switch (kind) {
902 case BGE_RESET_START:
903 /* If this is the first load, clear the load counter. */
904 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
905 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
906 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
907 else {
908 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
909 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
910 }
911 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
912 BGE_APE_HOST_SEG_SIG_MAGIC);
913 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
914 BGE_APE_HOST_SEG_LEN_MAGIC);
915
916 /* Add some version info if bge(4) supports it. */
917 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
918 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
919 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
920 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
921 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
922 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
923 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
924 BGE_APE_HOST_DRVR_STATE_START);
925 event = BGE_APE_EVENT_STATUS_STATE_START;
926 break;
927 case BGE_RESET_SHUTDOWN:
928 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
929 BGE_APE_HOST_DRVR_STATE_UNLOAD);
930 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
931 break;
932 case BGE_RESET_SUSPEND:
933 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
934 break;
935 default:
936 return;
937 }
938
939 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
940 BGE_APE_EVENT_STATUS_STATE_CHNGE);
941 }
942
943 static uint8_t
944 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
945 {
946 uint32_t access, byte = 0;
947 int i;
948
949 /* Lock. */
950 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
951 for (i = 0; i < 8000; i++) {
952 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
953 break;
954 DELAY(20);
955 }
956 if (i == 8000)
957 return 1;
958
959 /* Enable access. */
960 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
961 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
962
963 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
964 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
965 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
966 DELAY(10);
967 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
968 DELAY(10);
969 break;
970 }
971 }
972
973 if (i == BGE_TIMEOUT * 10) {
974 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
975 return 1;
976 }
977
978 /* Get result. */
979 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
980
981 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
982
983 /* Disable access. */
984 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
985
986 /* Unlock. */
987 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
988
989 return 0;
990 }
991
992 /*
993 * Read a sequence of bytes from NVRAM.
994 */
995 static int
996 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
997 {
998 int error = 0, i;
999 uint8_t byte = 0;
1000
1001 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1002 return 1;
1003
1004 for (i = 0; i < cnt; i++) {
1005 error = bge_nvram_getbyte(sc, off + i, &byte);
1006 if (error)
1007 break;
1008 *(dest + i) = byte;
1009 }
1010
1011 return (error ? 1 : 0);
1012 }
1013
1014 /*
1015 * Read a byte of data stored in the EEPROM at address 'addr.' The
1016 * BCM570x supports both the traditional bitbang interface and an
1017 * auto access interface for reading the EEPROM. We use the auto
1018 * access method.
1019 */
1020 static uint8_t
1021 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1022 {
1023 int i;
1024 uint32_t byte = 0;
1025
1026 /*
1027 * Enable use of auto EEPROM access so we can avoid
1028 * having to use the bitbang method.
1029 */
1030 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1031
1032 /* Reset the EEPROM, load the clock period. */
1033 CSR_WRITE_4(sc, BGE_EE_ADDR,
1034 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1035 DELAY(20);
1036
1037 /* Issue the read EEPROM command. */
1038 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1039
1040 /* Wait for completion */
1041 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1042 DELAY(10);
1043 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1044 break;
1045 }
1046
1047 if (i == BGE_TIMEOUT * 10) {
1048 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1049 return 1;
1050 }
1051
1052 /* Get result. */
1053 byte = CSR_READ_4(sc, BGE_EE_DATA);
1054
1055 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1056
1057 return 0;
1058 }
1059
1060 /*
1061 * Read a sequence of bytes from the EEPROM.
1062 */
1063 static int
1064 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1065 {
1066 int error = 0, i;
1067 uint8_t byte = 0;
1068 char *dest = destv;
1069
1070 for (i = 0; i < cnt; i++) {
1071 error = bge_eeprom_getbyte(sc, off + i, &byte);
1072 if (error)
1073 break;
1074 *(dest + i) = byte;
1075 }
1076
1077 return (error ? 1 : 0);
1078 }
1079
1080 static int
1081 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1082 {
1083 struct bge_softc *sc = device_private(dev);
1084 uint32_t data;
1085 uint32_t autopoll;
1086 int rv = 0;
1087 int i;
1088
1089 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1090 return -1;
1091
1092 /* Reading with autopolling on may trigger PCI errors */
1093 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1094 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1095 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1096 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1097 DELAY(80);
1098 }
1099
1100 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1101 BGE_MIPHY(phy) | BGE_MIREG(reg));
1102
1103 for (i = 0; i < BGE_TIMEOUT; i++) {
1104 delay(10);
1105 data = CSR_READ_4(sc, BGE_MI_COMM);
1106 if (!(data & BGE_MICOMM_BUSY)) {
1107 DELAY(5);
1108 data = CSR_READ_4(sc, BGE_MI_COMM);
1109 break;
1110 }
1111 }
1112
1113 if (i == BGE_TIMEOUT) {
1114 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1115 rv = ETIMEDOUT;
1116 } else if ((data & BGE_MICOMM_READFAIL) != 0)
1117 rv = -1;
1118 else
1119 *val = data & BGE_MICOMM_DATA;
1120
1121 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1122 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1123 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1124 DELAY(80);
1125 }
1126
1127 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1128
1129 return rv;
1130 }
1131
1132 static int
1133 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1134 {
1135 struct bge_softc *sc = device_private(dev);
1136 uint32_t autopoll;
1137 int i;
1138
1139 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1140 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1141 return 0;
1142
1143 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1144 return -1;
1145
1146 /* Reading with autopolling on may trigger PCI errors */
1147 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1148 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1149 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1150 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1151 DELAY(80);
1152 }
1153
1154 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1155 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1156
1157 for (i = 0; i < BGE_TIMEOUT; i++) {
1158 delay(10);
1159 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1160 delay(5);
1161 CSR_READ_4(sc, BGE_MI_COMM);
1162 break;
1163 }
1164 }
1165
1166 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1167 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1168 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1169 delay(80);
1170 }
1171
1172 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1173
1174 if (i == BGE_TIMEOUT) {
1175 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1176 return ETIMEDOUT;
1177 }
1178
1179 return 0;
1180 }
1181
1182 static void
1183 bge_miibus_statchg(struct ifnet *ifp)
1184 {
1185 struct bge_softc *sc = ifp->if_softc;
1186 struct mii_data *mii = &sc->bge_mii;
1187 uint32_t mac_mode, rx_mode, tx_mode;
1188
1189 /*
1190 * Get flow control negotiation result.
1191 */
1192 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1193 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1194 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1195
1196 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1197 mii->mii_media_status & IFM_ACTIVE &&
1198 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1199 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1200 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1201 (!(mii->mii_media_status & IFM_ACTIVE) ||
1202 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1203 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1204
1205 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1206 return;
1207
1208 /* Set the port mode (MII/GMII) to match the link speed. */
1209 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1210 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1211 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1212 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1213 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1214 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1215 mac_mode |= BGE_PORTMODE_GMII;
1216 else
1217 mac_mode |= BGE_PORTMODE_MII;
1218
1219 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1220 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1221 if ((mii->mii_media_active & IFM_FDX) != 0) {
1222 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1223 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1224 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1225 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1226 } else
1227 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1228
1229 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1230 DELAY(40);
1231 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1232 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1233 }
1234
1235 /*
1236 * Update rx threshold levels to values in a particular slot
1237 * of the interrupt-mitigation table bge_rx_threshes.
1238 */
1239 static void
1240 bge_set_thresh(struct ifnet *ifp, int lvl)
1241 {
1242 struct bge_softc *sc = ifp->if_softc;
1243 int s;
1244
1245 /* For now, just save the new Rx-intr thresholds and record
1246 * that a threshold update is pending. Updating the hardware
1247 * registers here (even at splhigh()) is observed to
1248 * occasionaly cause glitches where Rx-interrupts are not
1249 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1250 */
1251 s = splnet();
1252 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1253 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1254 sc->bge_pending_rxintr_change = 1;
1255 splx(s);
1256 }
1257
1258
1259 /*
1260 * Update Rx thresholds of all bge devices
1261 */
1262 static void
1263 bge_update_all_threshes(int lvl)
1264 {
1265 struct ifnet *ifp;
1266 const char * const namebuf = "bge";
1267 int namelen;
1268 int s;
1269
1270 if (lvl < 0)
1271 lvl = 0;
1272 else if (lvl >= NBGE_RX_THRESH)
1273 lvl = NBGE_RX_THRESH - 1;
1274
1275 namelen = strlen(namebuf);
1276 /*
1277 * Now search all the interfaces for this name/number
1278 */
1279 s = pserialize_read_enter();
1280 IFNET_READER_FOREACH(ifp) {
1281 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1282 continue;
1283 /* We got a match: update if doing auto-threshold-tuning */
1284 if (bge_auto_thresh)
1285 bge_set_thresh(ifp, lvl);
1286 }
1287 pserialize_read_exit(s);
1288 }
1289
1290 /*
1291 * Handle events that have triggered interrupts.
1292 */
1293 static void
1294 bge_handle_events(struct bge_softc *sc)
1295 {
1296
1297 return;
1298 }
1299
1300 /*
1301 * Memory management for jumbo frames.
1302 */
1303
1304 static int
1305 bge_alloc_jumbo_mem(struct bge_softc *sc)
1306 {
1307 char *ptr, *kva;
1308 bus_dma_segment_t seg;
1309 int i, rseg, state, error;
1310 struct bge_jpool_entry *entry;
1311
1312 state = error = 0;
1313
1314 /* Grab a big chunk o' storage. */
1315 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1316 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1317 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1318 return ENOBUFS;
1319 }
1320
1321 state = 1;
1322 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1323 BUS_DMA_NOWAIT)) {
1324 aprint_error_dev(sc->bge_dev,
1325 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1326 error = ENOBUFS;
1327 goto out;
1328 }
1329
1330 state = 2;
1331 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1332 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1333 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1334 error = ENOBUFS;
1335 goto out;
1336 }
1337
1338 state = 3;
1339 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1340 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1341 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1342 error = ENOBUFS;
1343 goto out;
1344 }
1345
1346 state = 4;
1347 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1348 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1349
1350 SLIST_INIT(&sc->bge_jfree_listhead);
1351 SLIST_INIT(&sc->bge_jinuse_listhead);
1352
1353 /*
1354 * Now divide it up into 9K pieces and save the addresses
1355 * in an array.
1356 */
1357 ptr = sc->bge_cdata.bge_jumbo_buf;
1358 for (i = 0; i < BGE_JSLOTS; i++) {
1359 sc->bge_cdata.bge_jslots[i] = ptr;
1360 ptr += BGE_JLEN;
1361 entry = malloc(sizeof(struct bge_jpool_entry),
1362 M_DEVBUF, M_NOWAIT);
1363 if (entry == NULL) {
1364 aprint_error_dev(sc->bge_dev,
1365 "no memory for jumbo buffer queue!\n");
1366 error = ENOBUFS;
1367 goto out;
1368 }
1369 entry->slot = i;
1370 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1371 entry, jpool_entries);
1372 }
1373 out:
1374 if (error != 0) {
1375 switch (state) {
1376 case 4:
1377 bus_dmamap_unload(sc->bge_dmatag,
1378 sc->bge_cdata.bge_rx_jumbo_map);
1379 /* FALLTHROUGH */
1380 case 3:
1381 bus_dmamap_destroy(sc->bge_dmatag,
1382 sc->bge_cdata.bge_rx_jumbo_map);
1383 /* FALLTHROUGH */
1384 case 2:
1385 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1386 /* FALLTHROUGH */
1387 case 1:
1388 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1389 break;
1390 default:
1391 break;
1392 }
1393 }
1394
1395 return error;
1396 }
1397
1398 /*
1399 * Allocate a jumbo buffer.
1400 */
1401 static void *
1402 bge_jalloc(struct bge_softc *sc)
1403 {
1404 struct bge_jpool_entry *entry;
1405
1406 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1407
1408 if (entry == NULL) {
1409 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1410 return NULL;
1411 }
1412
1413 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1414 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1415 return (sc->bge_cdata.bge_jslots[entry->slot]);
1416 }
1417
1418 /*
1419 * Release a jumbo buffer.
1420 */
1421 static void
1422 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1423 {
1424 struct bge_jpool_entry *entry;
1425 struct bge_softc *sc;
1426 int i, s;
1427
1428 /* Extract the softc struct pointer. */
1429 sc = (struct bge_softc *)arg;
1430
1431 if (sc == NULL)
1432 panic("bge_jfree: can't find softc pointer!");
1433
1434 /* calculate the slot this buffer belongs to */
1435
1436 i = ((char *)buf
1437 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1438
1439 if ((i < 0) || (i >= BGE_JSLOTS))
1440 panic("bge_jfree: asked to free buffer that we don't manage!");
1441
1442 s = splvm();
1443 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1444 if (entry == NULL)
1445 panic("bge_jfree: buffer not in use!");
1446 entry->slot = i;
1447 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1448 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1449
1450 if (__predict_true(m != NULL))
1451 pool_cache_put(mb_cache, m);
1452 splx(s);
1453 }
1454
1455
1456 /*
1457 * Initialize a standard receive ring descriptor.
1458 */
1459 static int
1460 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1461 bus_dmamap_t dmamap)
1462 {
1463 struct mbuf *m_new = NULL;
1464 struct bge_rx_bd *r;
1465 int error;
1466
1467 if (dmamap == NULL)
1468 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1469
1470 if (dmamap == NULL) {
1471 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1472 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1473 if (error != 0)
1474 return error;
1475 }
1476
1477 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1478
1479 if (m == NULL) {
1480 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1481 if (m_new == NULL)
1482 return ENOBUFS;
1483
1484 MCLGET(m_new, M_DONTWAIT);
1485 if (!(m_new->m_flags & M_EXT)) {
1486 m_freem(m_new);
1487 return ENOBUFS;
1488 }
1489 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1490
1491 } else {
1492 m_new = m;
1493 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1494 m_new->m_data = m_new->m_ext.ext_buf;
1495 }
1496 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1497 m_adj(m_new, ETHER_ALIGN);
1498 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1499 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1500 m_freem(m_new);
1501 return ENOBUFS;
1502 }
1503 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1504 BUS_DMASYNC_PREREAD);
1505
1506 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1507 r = &sc->bge_rdata->bge_rx_std_ring[i];
1508 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1509 r->bge_flags = BGE_RXBDFLAG_END;
1510 r->bge_len = m_new->m_len;
1511 r->bge_idx = i;
1512
1513 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1514 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1515 i * sizeof (struct bge_rx_bd),
1516 sizeof (struct bge_rx_bd),
1517 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1518
1519 return 0;
1520 }
1521
1522 /*
1523 * Initialize a jumbo receive ring descriptor. This allocates
1524 * a jumbo buffer from the pool managed internally by the driver.
1525 */
1526 static int
1527 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1528 {
1529 struct mbuf *m_new = NULL;
1530 struct bge_rx_bd *r;
1531 void *buf = NULL;
1532
1533 if (m == NULL) {
1534
1535 /* Allocate the mbuf. */
1536 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1537 if (m_new == NULL)
1538 return ENOBUFS;
1539
1540 /* Allocate the jumbo buffer */
1541 buf = bge_jalloc(sc);
1542 if (buf == NULL) {
1543 m_freem(m_new);
1544 aprint_error_dev(sc->bge_dev,
1545 "jumbo allocation failed -- packet dropped!\n");
1546 return ENOBUFS;
1547 }
1548
1549 /* Attach the buffer to the mbuf. */
1550 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1551 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1552 bge_jfree, sc);
1553 m_new->m_flags |= M_EXT_RW;
1554 } else {
1555 m_new = m;
1556 buf = m_new->m_data = m_new->m_ext.ext_buf;
1557 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1558 }
1559 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1560 m_adj(m_new, ETHER_ALIGN);
1561 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1562 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1563 BGE_JLEN, BUS_DMASYNC_PREREAD);
1564 /* Set up the descriptor. */
1565 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1566 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1567 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1568 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1569 r->bge_len = m_new->m_len;
1570 r->bge_idx = i;
1571
1572 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1573 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1574 i * sizeof (struct bge_rx_bd),
1575 sizeof (struct bge_rx_bd),
1576 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1577
1578 return 0;
1579 }
1580
1581 /*
1582 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1583 * that's 1MB or memory, which is a lot. For now, we fill only the first
1584 * 256 ring entries and hope that our CPU is fast enough to keep up with
1585 * the NIC.
1586 */
1587 static int
1588 bge_init_rx_ring_std(struct bge_softc *sc)
1589 {
1590 int i;
1591
1592 if (sc->bge_flags & BGEF_RXRING_VALID)
1593 return 0;
1594
1595 for (i = 0; i < BGE_SSLOTS; i++) {
1596 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1597 return ENOBUFS;
1598 }
1599
1600 sc->bge_std = i - 1;
1601 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1602
1603 sc->bge_flags |= BGEF_RXRING_VALID;
1604
1605 return 0;
1606 }
1607
1608 static void
1609 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1610 {
1611 int i;
1612
1613 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1614 return;
1615
1616 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1617 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1618 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1619 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1620 if (disable) {
1621 bus_dmamap_destroy(sc->bge_dmatag,
1622 sc->bge_cdata.bge_rx_std_map[i]);
1623 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1624 }
1625 }
1626 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1627 sizeof(struct bge_rx_bd));
1628 }
1629
1630 sc->bge_flags &= ~BGEF_RXRING_VALID;
1631 }
1632
1633 static int
1634 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1635 {
1636 int i;
1637 volatile struct bge_rcb *rcb;
1638
1639 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1640 return 0;
1641
1642 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1643 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1644 return ENOBUFS;
1645 }
1646
1647 sc->bge_jumbo = i - 1;
1648 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1649
1650 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1651 rcb->bge_maxlen_flags = 0;
1652 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1653
1654 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1655
1656 return 0;
1657 }
1658
1659 static void
1660 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1661 {
1662 int i;
1663
1664 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1665 return;
1666
1667 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1668 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1669 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1670 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1671 }
1672 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1673 sizeof(struct bge_rx_bd));
1674 }
1675
1676 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1677 }
1678
1679 static void
1680 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1681 {
1682 int i;
1683 struct txdmamap_pool_entry *dma;
1684
1685 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1686 return;
1687
1688 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1689 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1690 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1691 sc->bge_cdata.bge_tx_chain[i] = NULL;
1692 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1693 link);
1694 sc->txdma[i] = 0;
1695 }
1696 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1697 sizeof(struct bge_tx_bd));
1698 }
1699
1700 if (disable) {
1701 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1702 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1703 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1704 if (sc->bge_dma64) {
1705 bus_dmamap_destroy(sc->bge_dmatag32,
1706 dma->dmamap32);
1707 }
1708 free(dma, M_DEVBUF);
1709 }
1710 SLIST_INIT(&sc->txdma_list);
1711 }
1712
1713 sc->bge_flags &= ~BGEF_TXRING_VALID;
1714 }
1715
1716 static int
1717 bge_init_tx_ring(struct bge_softc *sc)
1718 {
1719 struct ifnet *ifp = &sc->ethercom.ec_if;
1720 int i;
1721 bus_dmamap_t dmamap, dmamap32;
1722 bus_size_t maxsegsz;
1723 struct txdmamap_pool_entry *dma;
1724
1725 if (sc->bge_flags & BGEF_TXRING_VALID)
1726 return 0;
1727
1728 sc->bge_txcnt = 0;
1729 sc->bge_tx_saved_considx = 0;
1730
1731 /* Initialize transmit producer index for host-memory send ring. */
1732 sc->bge_tx_prodidx = 0;
1733 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1734 /* 5700 b2 errata */
1735 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1736 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1737
1738 /* NIC-memory send ring not used; initialize to zero. */
1739 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1740 /* 5700 b2 errata */
1741 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1742 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1743
1744 /* Limit DMA segment size for some chips */
1745 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1746 (ifp->if_mtu <= ETHERMTU))
1747 maxsegsz = 2048;
1748 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1749 maxsegsz = 4096;
1750 else
1751 maxsegsz = ETHER_MAX_LEN_JUMBO;
1752
1753 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1754 goto alloc_done;
1755
1756 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1757 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1758 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1759 &dmamap))
1760 return ENOBUFS;
1761 if (dmamap == NULL)
1762 panic("dmamap NULL in bge_init_tx_ring");
1763 if (sc->bge_dma64) {
1764 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1765 BGE_NTXSEG, maxsegsz, 0,
1766 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1767 &dmamap32)) {
1768 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1769 return ENOBUFS;
1770 }
1771 if (dmamap32 == NULL)
1772 panic("dmamap32 NULL in bge_init_tx_ring");
1773 } else
1774 dmamap32 = dmamap;
1775 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1776 if (dma == NULL) {
1777 aprint_error_dev(sc->bge_dev,
1778 "can't alloc txdmamap_pool_entry\n");
1779 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1780 if (sc->bge_dma64)
1781 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1782 return ENOMEM;
1783 }
1784 dma->dmamap = dmamap;
1785 dma->dmamap32 = dmamap32;
1786 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1787 }
1788 alloc_done:
1789 sc->bge_flags |= BGEF_TXRING_VALID;
1790
1791 return 0;
1792 }
1793
1794 static void
1795 bge_setmulti(struct bge_softc *sc)
1796 {
1797 struct ethercom *ec = &sc->ethercom;
1798 struct ifnet *ifp = &ec->ec_if;
1799 struct ether_multi *enm;
1800 struct ether_multistep step;
1801 uint32_t hashes[4] = { 0, 0, 0, 0 };
1802 uint32_t h;
1803 int i;
1804
1805 if (ifp->if_flags & IFF_PROMISC)
1806 goto allmulti;
1807
1808 /* Now program new ones. */
1809 ETHER_FIRST_MULTI(step, ec, enm);
1810 while (enm != NULL) {
1811 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1812 /*
1813 * We must listen to a range of multicast addresses.
1814 * For now, just accept all multicasts, rather than
1815 * trying to set only those filter bits needed to match
1816 * the range. (At this time, the only use of address
1817 * ranges is for IP multicast routing, for which the
1818 * range is big enough to require all bits set.)
1819 */
1820 goto allmulti;
1821 }
1822
1823 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1824
1825 /* Just want the 7 least-significant bits. */
1826 h &= 0x7f;
1827
1828 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1829 ETHER_NEXT_MULTI(step, enm);
1830 }
1831
1832 ifp->if_flags &= ~IFF_ALLMULTI;
1833 goto setit;
1834
1835 allmulti:
1836 ifp->if_flags |= IFF_ALLMULTI;
1837 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1838
1839 setit:
1840 for (i = 0; i < 4; i++)
1841 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1842 }
1843
1844 static void
1845 bge_sig_pre_reset(struct bge_softc *sc, int type)
1846 {
1847
1848 /*
1849 * Some chips don't like this so only do this if ASF is enabled
1850 */
1851 if (sc->bge_asf_mode)
1852 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1853
1854 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1855 switch (type) {
1856 case BGE_RESET_START:
1857 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1858 BGE_FW_DRV_STATE_START);
1859 break;
1860 case BGE_RESET_SHUTDOWN:
1861 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1862 BGE_FW_DRV_STATE_UNLOAD);
1863 break;
1864 case BGE_RESET_SUSPEND:
1865 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1866 BGE_FW_DRV_STATE_SUSPEND);
1867 break;
1868 }
1869 }
1870
1871 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1872 bge_ape_driver_state_change(sc, type);
1873 }
1874
1875 static void
1876 bge_sig_post_reset(struct bge_softc *sc, int type)
1877 {
1878
1879 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1880 switch (type) {
1881 case BGE_RESET_START:
1882 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1883 BGE_FW_DRV_STATE_START_DONE);
1884 /* START DONE */
1885 break;
1886 case BGE_RESET_SHUTDOWN:
1887 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1888 BGE_FW_DRV_STATE_UNLOAD_DONE);
1889 break;
1890 }
1891 }
1892
1893 if (type == BGE_RESET_SHUTDOWN)
1894 bge_ape_driver_state_change(sc, type);
1895 }
1896
1897 static void
1898 bge_sig_legacy(struct bge_softc *sc, int type)
1899 {
1900
1901 if (sc->bge_asf_mode) {
1902 switch (type) {
1903 case BGE_RESET_START:
1904 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1905 BGE_FW_DRV_STATE_START);
1906 break;
1907 case BGE_RESET_SHUTDOWN:
1908 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1909 BGE_FW_DRV_STATE_UNLOAD);
1910 break;
1911 }
1912 }
1913 }
1914
1915 static void
1916 bge_wait_for_event_ack(struct bge_softc *sc)
1917 {
1918 int i;
1919
1920 /* wait up to 2500usec */
1921 for (i = 0; i < 250; i++) {
1922 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1923 BGE_RX_CPU_DRV_EVENT))
1924 break;
1925 DELAY(10);
1926 }
1927 }
1928
1929 static void
1930 bge_stop_fw(struct bge_softc *sc)
1931 {
1932
1933 if (sc->bge_asf_mode) {
1934 bge_wait_for_event_ack(sc);
1935
1936 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1937 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1938 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1939
1940 bge_wait_for_event_ack(sc);
1941 }
1942 }
1943
1944 static int
1945 bge_poll_fw(struct bge_softc *sc)
1946 {
1947 uint32_t val;
1948 int i;
1949
1950 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1951 for (i = 0; i < BGE_TIMEOUT; i++) {
1952 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1953 if (val & BGE_VCPU_STATUS_INIT_DONE)
1954 break;
1955 DELAY(100);
1956 }
1957 if (i >= BGE_TIMEOUT) {
1958 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1959 return -1;
1960 }
1961 } else {
1962 /*
1963 * Poll the value location we just wrote until
1964 * we see the 1's complement of the magic number.
1965 * This indicates that the firmware initialization
1966 * is complete.
1967 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1968 */
1969 for (i = 0; i < BGE_TIMEOUT; i++) {
1970 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1971 if (val == ~BGE_SRAM_FW_MB_MAGIC)
1972 break;
1973 DELAY(10);
1974 }
1975
1976 if ((i >= BGE_TIMEOUT)
1977 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1978 aprint_error_dev(sc->bge_dev,
1979 "firmware handshake timed out, val = %x\n", val);
1980 return -1;
1981 }
1982 }
1983
1984 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1985 /* tg3 says we have to wait extra time */
1986 delay(10 * 1000);
1987 }
1988
1989 return 0;
1990 }
1991
1992 int
1993 bge_phy_addr(struct bge_softc *sc)
1994 {
1995 struct pci_attach_args *pa = &(sc->bge_pa);
1996 int phy_addr = 1;
1997
1998 /*
1999 * PHY address mapping for various devices.
2000 *
2001 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2002 * ---------+-------+-------+-------+-------+
2003 * BCM57XX | 1 | X | X | X |
2004 * BCM5704 | 1 | X | 1 | X |
2005 * BCM5717 | 1 | 8 | 2 | 9 |
2006 * BCM5719 | 1 | 8 | 2 | 9 |
2007 * BCM5720 | 1 | 8 | 2 | 9 |
2008 *
2009 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2010 * ---------+-------+-------+-------+-------+
2011 * BCM57XX | X | X | X | X |
2012 * BCM5704 | X | X | X | X |
2013 * BCM5717 | X | X | X | X |
2014 * BCM5719 | 3 | 10 | 4 | 11 |
2015 * BCM5720 | X | X | X | X |
2016 *
2017 * Other addresses may respond but they are not
2018 * IEEE compliant PHYs and should be ignored.
2019 */
2020 switch (BGE_ASICREV(sc->bge_chipid)) {
2021 case BGE_ASICREV_BCM5717:
2022 case BGE_ASICREV_BCM5719:
2023 case BGE_ASICREV_BCM5720:
2024 phy_addr = pa->pa_function;
2025 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2026 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2027 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2028 } else {
2029 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2030 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2031 }
2032 }
2033
2034 return phy_addr;
2035 }
2036
2037 /*
2038 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2039 * self-test results.
2040 */
2041 static int
2042 bge_chipinit(struct bge_softc *sc)
2043 {
2044 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2045 int i;
2046
2047 /* Set endianness before we access any non-PCI registers. */
2048 misc_ctl = BGE_INIT;
2049 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2050 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2051 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2052 misc_ctl);
2053
2054 /*
2055 * Clear the MAC statistics block in the NIC's
2056 * internal memory.
2057 */
2058 for (i = BGE_STATS_BLOCK;
2059 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2060 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2061
2062 for (i = BGE_STATUS_BLOCK;
2063 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2064 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2065
2066 /* 5717 workaround from tg3 */
2067 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2068 /* Save */
2069 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2070
2071 /* Temporary modify MODE_CTL to control TLP */
2072 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2073 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2074
2075 /* Control TLP */
2076 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2077 BGE_TLP_PHYCTL1);
2078 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2079 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2080
2081 /* Restore */
2082 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2083 }
2084
2085 if (BGE_IS_57765_FAMILY(sc)) {
2086 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2087 /* Save */
2088 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2089
2090 /* Temporary modify MODE_CTL to control TLP */
2091 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2092 CSR_WRITE_4(sc, BGE_MODE_CTL,
2093 reg | BGE_MODECTL_PCIE_TLPADDR1);
2094
2095 /* Control TLP */
2096 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2097 BGE_TLP_PHYCTL5);
2098 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2099 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2100
2101 /* Restore */
2102 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2103 }
2104 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2105 /*
2106 * For the 57766 and non Ax versions of 57765, bootcode
2107 * needs to setup the PCIE Fast Training Sequence (FTS)
2108 * value to prevent transmit hangs.
2109 */
2110 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2111 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2112 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2113
2114 /* Save */
2115 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2116
2117 /* Temporary modify MODE_CTL to control TLP */
2118 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2119 CSR_WRITE_4(sc, BGE_MODE_CTL,
2120 reg | BGE_MODECTL_PCIE_TLPADDR0);
2121
2122 /* Control TLP */
2123 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2124 BGE_TLP_FTSMAX);
2125 reg &= ~BGE_TLP_FTSMAX_MSK;
2126 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2127 reg | BGE_TLP_FTSMAX_VAL);
2128
2129 /* Restore */
2130 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2131 }
2132
2133 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2134 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2135 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2136 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2137 }
2138
2139 /* Set up the PCI DMA control register. */
2140 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2141 if (sc->bge_flags & BGEF_PCIE) {
2142 /* Read watermark not used, 128 bytes for write. */
2143 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2144 device_xname(sc->bge_dev)));
2145 if (sc->bge_mps >= 256)
2146 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2147 else
2148 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2149 } else if (sc->bge_flags & BGEF_PCIX) {
2150 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2151 device_xname(sc->bge_dev)));
2152 /* PCI-X bus */
2153 if (BGE_IS_5714_FAMILY(sc)) {
2154 /* 256 bytes for read and write. */
2155 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2156 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2157
2158 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2159 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2160 else
2161 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2162 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2163 /*
2164 * In the BCM5703, the DMA read watermark should
2165 * be set to less than or equal to the maximum
2166 * memory read byte count of the PCI-X command
2167 * register.
2168 */
2169 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2170 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2171 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2172 /* 1536 bytes for read, 384 bytes for write. */
2173 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2174 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2175 } else {
2176 /* 384 bytes for read and write. */
2177 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2178 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2179 (0x0F);
2180 }
2181
2182 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2183 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2184 uint32_t tmp;
2185
2186 /* Set ONEDMA_ATONCE for hardware workaround. */
2187 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2188 if (tmp == 6 || tmp == 7)
2189 dma_rw_ctl |=
2190 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2191
2192 /* Set PCI-X DMA write workaround. */
2193 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2194 }
2195 } else {
2196 /* Conventional PCI bus: 256 bytes for read and write. */
2197 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2198 device_xname(sc->bge_dev)));
2199 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2200 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2201
2202 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2203 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2204 dma_rw_ctl |= 0x0F;
2205 }
2206
2207 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2208 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2209 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2210 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2211
2212 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2213 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2214 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2215
2216 if (BGE_IS_57765_PLUS(sc)) {
2217 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2218 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2219 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2220
2221 /*
2222 * Enable HW workaround for controllers that misinterpret
2223 * a status tag update and leave interrupts permanently
2224 * disabled.
2225 */
2226 if (!BGE_IS_57765_FAMILY(sc) &&
2227 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2228 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2229 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2230 }
2231
2232 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2233 dma_rw_ctl);
2234
2235 /*
2236 * Set up general mode register.
2237 */
2238 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2239 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2240 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2241 /* Retain Host-2-BMC settings written by APE firmware. */
2242 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2243 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2244 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2245 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2246 }
2247 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2248 BGE_MODECTL_TX_NO_PHDR_CSUM;
2249
2250 /*
2251 * BCM5701 B5 have a bug causing data corruption when using
2252 * 64-bit DMA reads, which can be terminated early and then
2253 * completed later as 32-bit accesses, in combination with
2254 * certain bridges.
2255 */
2256 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2257 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2258 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2259
2260 /*
2261 * Tell the firmware the driver is running
2262 */
2263 if (sc->bge_asf_mode & ASF_STACKUP)
2264 mode_ctl |= BGE_MODECTL_STACKUP;
2265
2266 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2267
2268 /*
2269 * Disable memory write invalidate. Apparently it is not supported
2270 * properly by these devices.
2271 */
2272 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2273 PCI_COMMAND_INVALIDATE_ENABLE);
2274
2275 #ifdef __brokenalpha__
2276 /*
2277 * Must insure that we do not cross an 8K (bytes) boundary
2278 * for DMA reads. Our highest limit is 1K bytes. This is a
2279 * restriction on some ALPHA platforms with early revision
2280 * 21174 PCI chipsets, such as the AlphaPC 164lx
2281 */
2282 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2283 #endif
2284
2285 /* Set the timer prescaler (always 66MHz) */
2286 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2287
2288 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2289 DELAY(40); /* XXX */
2290
2291 /* Put PHY into ready state */
2292 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2293 DELAY(40);
2294 }
2295
2296 return 0;
2297 }
2298
2299 static int
2300 bge_blockinit(struct bge_softc *sc)
2301 {
2302 volatile struct bge_rcb *rcb;
2303 bus_size_t rcb_addr;
2304 struct ifnet *ifp = &sc->ethercom.ec_if;
2305 bge_hostaddr taddr;
2306 uint32_t dmactl, rdmareg, mimode, val;
2307 int i, limit;
2308
2309 /*
2310 * Initialize the memory window pointer register so that
2311 * we can access the first 32K of internal NIC RAM. This will
2312 * allow us to set up the TX send ring RCBs and the RX return
2313 * ring RCBs, plus other things which live in NIC memory.
2314 */
2315 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2316
2317 if (!BGE_IS_5705_PLUS(sc)) {
2318 /* 57XX step 33 */
2319 /* Configure mbuf memory pool */
2320 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2321
2322 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2323 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2324 else
2325 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2326
2327 /* 57XX step 34 */
2328 /* Configure DMA resource pool */
2329 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2330 BGE_DMA_DESCRIPTORS);
2331 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2332 }
2333
2334 /* 5718 step 11, 57XX step 35 */
2335 /*
2336 * Configure mbuf pool watermarks. New broadcom docs strongly
2337 * recommend these.
2338 */
2339 if (BGE_IS_5717_PLUS(sc)) {
2340 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2341 if (ifp->if_mtu > ETHERMTU) {
2342 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2343 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2344 } else {
2345 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2346 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2347 }
2348 } else if (BGE_IS_5705_PLUS(sc)) {
2349 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2350
2351 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2352 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2353 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2354 } else {
2355 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2356 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2357 }
2358 } else {
2359 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2360 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2361 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2362 }
2363
2364 /* 57XX step 36 */
2365 /* Configure DMA resource watermarks */
2366 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2367 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2368
2369 /* 5718 step 13, 57XX step 38 */
2370 /* Enable buffer manager */
2371 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2372 /*
2373 * Change the arbitration algorithm of TXMBUF read request to
2374 * round-robin instead of priority based for BCM5719. When
2375 * TXFIFO is almost empty, RDMA will hold its request until
2376 * TXFIFO is not almost empty.
2377 */
2378 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2379 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2380 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2381 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2382 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2383 val |= BGE_BMANMODE_LOMBUF_ATTN;
2384 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2385
2386 /* 57XX step 39 */
2387 /* Poll for buffer manager start indication */
2388 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2389 DELAY(10);
2390 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2391 break;
2392 }
2393
2394 if (i == BGE_TIMEOUT * 2) {
2395 aprint_error_dev(sc->bge_dev,
2396 "buffer manager failed to start\n");
2397 return ENXIO;
2398 }
2399
2400 /* 57XX step 40 */
2401 /* Enable flow-through queues */
2402 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2403 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2404
2405 /* Wait until queue initialization is complete */
2406 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2407 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2408 break;
2409 DELAY(10);
2410 }
2411
2412 if (i == BGE_TIMEOUT * 2) {
2413 aprint_error_dev(sc->bge_dev,
2414 "flow-through queue init failed\n");
2415 return ENXIO;
2416 }
2417
2418 /*
2419 * Summary of rings supported by the controller:
2420 *
2421 * Standard Receive Producer Ring
2422 * - This ring is used to feed receive buffers for "standard"
2423 * sized frames (typically 1536 bytes) to the controller.
2424 *
2425 * Jumbo Receive Producer Ring
2426 * - This ring is used to feed receive buffers for jumbo sized
2427 * frames (i.e. anything bigger than the "standard" frames)
2428 * to the controller.
2429 *
2430 * Mini Receive Producer Ring
2431 * - This ring is used to feed receive buffers for "mini"
2432 * sized frames to the controller.
2433 * - This feature required external memory for the controller
2434 * but was never used in a production system. Should always
2435 * be disabled.
2436 *
2437 * Receive Return Ring
2438 * - After the controller has placed an incoming frame into a
2439 * receive buffer that buffer is moved into a receive return
2440 * ring. The driver is then responsible to passing the
2441 * buffer up to the stack. Many versions of the controller
2442 * support multiple RR rings.
2443 *
2444 * Send Ring
2445 * - This ring is used for outgoing frames. Many versions of
2446 * the controller support multiple send rings.
2447 */
2448
2449 /* 5718 step 15, 57XX step 41 */
2450 /* Initialize the standard RX ring control block */
2451 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2452 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2453 /* 5718 step 16 */
2454 if (BGE_IS_57765_PLUS(sc)) {
2455 /*
2456 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2457 * Bits 15-2 : Maximum RX frame size
2458 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2459 * Bit 0 : Reserved
2460 */
2461 rcb->bge_maxlen_flags =
2462 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2463 } else if (BGE_IS_5705_PLUS(sc)) {
2464 /*
2465 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2466 * Bits 15-2 : Reserved (should be 0)
2467 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2468 * Bit 0 : Reserved
2469 */
2470 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2471 } else {
2472 /*
2473 * Ring size is always XXX entries
2474 * Bits 31-16: Maximum RX frame size
2475 * Bits 15-2 : Reserved (should be 0)
2476 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2477 * Bit 0 : Reserved
2478 */
2479 rcb->bge_maxlen_flags =
2480 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2481 }
2482 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2483 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2484 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2485 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2486 else
2487 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2488 /* Write the standard receive producer ring control block. */
2489 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2490 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2491 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2492 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2493
2494 /* Reset the standard receive producer ring producer index. */
2495 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2496
2497 /* 57XX step 42 */
2498 /*
2499 * Initialize the jumbo RX ring control block
2500 * We set the 'ring disabled' bit in the flags
2501 * field until we're actually ready to start
2502 * using this ring (i.e. once we set the MTU
2503 * high enough to require it).
2504 */
2505 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2506 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2507 BGE_HOSTADDR(rcb->bge_hostaddr,
2508 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2509 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2510 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2511 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2512 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2513 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2514 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2515 else
2516 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2517 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2518 rcb->bge_hostaddr.bge_addr_hi);
2519 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2520 rcb->bge_hostaddr.bge_addr_lo);
2521 /* Program the jumbo receive producer ring RCB parameters. */
2522 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2523 rcb->bge_maxlen_flags);
2524 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2525 /* Reset the jumbo receive producer ring producer index. */
2526 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2527 }
2528
2529 /* 57XX step 43 */
2530 /* Disable the mini receive producer ring RCB. */
2531 if (BGE_IS_5700_FAMILY(sc)) {
2532 /* Set up dummy disabled mini ring RCB */
2533 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2534 rcb->bge_maxlen_flags =
2535 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2536 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2537 rcb->bge_maxlen_flags);
2538 /* Reset the mini receive producer ring producer index. */
2539 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2540
2541 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2542 offsetof(struct bge_ring_data, bge_info),
2543 sizeof (struct bge_gib),
2544 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2545 }
2546
2547 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2548 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2549 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2550 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2551 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2552 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2553 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2554 }
2555 /* 5718 step 14, 57XX step 44 */
2556 /*
2557 * The BD ring replenish thresholds control how often the
2558 * hardware fetches new BD's from the producer rings in host
2559 * memory. Setting the value too low on a busy system can
2560 * starve the hardware and recue the throughpout.
2561 *
2562 * Set the BD ring replenish thresholds. The recommended
2563 * values are 1/8th the number of descriptors allocated to
2564 * each ring, but since we try to avoid filling the entire
2565 * ring we set these to the minimal value of 8. This needs to
2566 * be done on several of the supported chip revisions anyway,
2567 * to work around HW bugs.
2568 */
2569 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2570 if (BGE_IS_JUMBO_CAPABLE(sc))
2571 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2572
2573 /* 5718 step 18 */
2574 if (BGE_IS_5717_PLUS(sc)) {
2575 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2576 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2577 }
2578
2579 /* 57XX step 45 */
2580 /*
2581 * Disable all send rings by setting the 'ring disabled' bit
2582 * in the flags field of all the TX send ring control blocks,
2583 * located in NIC memory.
2584 */
2585 if (BGE_IS_5700_FAMILY(sc)) {
2586 /* 5700 to 5704 had 16 send rings. */
2587 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2588 } else if (BGE_IS_5717_PLUS(sc)) {
2589 limit = BGE_TX_RINGS_5717_MAX;
2590 } else if (BGE_IS_57765_FAMILY(sc) ||
2591 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2592 limit = BGE_TX_RINGS_57765_MAX;
2593 } else
2594 limit = 1;
2595 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2596 for (i = 0; i < limit; i++) {
2597 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2598 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2599 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2600 rcb_addr += sizeof(struct bge_rcb);
2601 }
2602
2603 /* 57XX step 46 and 47 */
2604 /* Configure send ring RCB 0 (we use only the first ring) */
2605 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2606 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2607 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2608 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2609 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2610 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2611 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2612 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2613 else
2614 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2615 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2616 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2617 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2618
2619 /* 57XX step 48 */
2620 /*
2621 * Disable all receive return rings by setting the
2622 * 'ring diabled' bit in the flags field of all the receive
2623 * return ring control blocks, located in NIC memory.
2624 */
2625 if (BGE_IS_5717_PLUS(sc)) {
2626 /* Should be 17, use 16 until we get an SRAM map. */
2627 limit = 16;
2628 } else if (BGE_IS_5700_FAMILY(sc))
2629 limit = BGE_RX_RINGS_MAX;
2630 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2631 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2632 BGE_IS_57765_FAMILY(sc))
2633 limit = 4;
2634 else
2635 limit = 1;
2636 /* Disable all receive return rings */
2637 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2638 for (i = 0; i < limit; i++) {
2639 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2640 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2641 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2642 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2643 BGE_RCB_FLAG_RING_DISABLED));
2644 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2645 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2646 (i * (sizeof(uint64_t))), 0);
2647 rcb_addr += sizeof(struct bge_rcb);
2648 }
2649
2650 /* 57XX step 49 */
2651 /*
2652 * Set up receive return ring 0. Note that the NIC address
2653 * for RX return rings is 0x0. The return rings live entirely
2654 * within the host, so the nicaddr field in the RCB isn't used.
2655 */
2656 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2657 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2658 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2659 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2660 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2661 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2662 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2663
2664 /* 5718 step 24, 57XX step 53 */
2665 /* Set random backoff seed for TX */
2666 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2667 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2668 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2669 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2670 BGE_TX_BACKOFF_SEED_MASK);
2671
2672 /* 5718 step 26, 57XX step 55 */
2673 /* Set inter-packet gap */
2674 val = 0x2620;
2675 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2676 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2677 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2678 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2679 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2680
2681 /* 5718 step 27, 57XX step 56 */
2682 /*
2683 * Specify which ring to use for packets that don't match
2684 * any RX rules.
2685 */
2686 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2687
2688 /* 5718 step 28, 57XX step 57 */
2689 /*
2690 * Configure number of RX lists. One interrupt distribution
2691 * list, sixteen active lists, one bad frames class.
2692 */
2693 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2694
2695 /* 5718 step 29, 57XX step 58 */
2696 /* Inialize RX list placement stats mask. */
2697 if (BGE_IS_575X_PLUS(sc)) {
2698 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2699 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2700 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2701 } else
2702 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2703
2704 /* 5718 step 30, 57XX step 59 */
2705 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2706
2707 /* 5718 step 33, 57XX step 62 */
2708 /* Disable host coalescing until we get it set up */
2709 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2710
2711 /* 5718 step 34, 57XX step 63 */
2712 /* Poll to make sure it's shut down. */
2713 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2714 DELAY(10);
2715 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2716 break;
2717 }
2718
2719 if (i == BGE_TIMEOUT * 2) {
2720 aprint_error_dev(sc->bge_dev,
2721 "host coalescing engine failed to idle\n");
2722 return ENXIO;
2723 }
2724
2725 /* 5718 step 35, 36, 37 */
2726 /* Set up host coalescing defaults */
2727 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2728 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2729 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2730 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2731 if (!(BGE_IS_5705_PLUS(sc))) {
2732 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2733 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2734 }
2735 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2736 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2737
2738 /* Set up address of statistics block */
2739 if (BGE_IS_5700_FAMILY(sc)) {
2740 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2741 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2742 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2743 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2744 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2745 }
2746
2747 /* 5718 step 38 */
2748 /* Set up address of status block */
2749 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2750 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2751 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2752 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2753 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2754 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2755
2756 /* Set up status block size. */
2757 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2758 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2759 val = BGE_STATBLKSZ_FULL;
2760 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2761 } else {
2762 val = BGE_STATBLKSZ_32BYTE;
2763 bzero(&sc->bge_rdata->bge_status_block, 32);
2764 }
2765
2766 /* 5718 step 39, 57XX step 73 */
2767 /* Turn on host coalescing state machine */
2768 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2769
2770 /* 5718 step 40, 57XX step 74 */
2771 /* Turn on RX BD completion state machine and enable attentions */
2772 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2773 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2774
2775 /* 5718 step 41, 57XX step 75 */
2776 /* Turn on RX list placement state machine */
2777 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2778
2779 /* 57XX step 76 */
2780 /* Turn on RX list selector state machine. */
2781 if (!(BGE_IS_5705_PLUS(sc)))
2782 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2783
2784 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2785 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2786 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2787 BGE_MACMODE_FRMHDR_DMA_ENB;
2788
2789 if (sc->bge_flags & BGEF_FIBER_TBI)
2790 val |= BGE_PORTMODE_TBI;
2791 else if (sc->bge_flags & BGEF_FIBER_MII)
2792 val |= BGE_PORTMODE_GMII;
2793 else
2794 val |= BGE_PORTMODE_MII;
2795
2796 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2797 /* Allow APE to send/receive frames. */
2798 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2799 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2800
2801 /* Turn on DMA, clear stats */
2802 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2803 /* 5718 step 44 */
2804 DELAY(40);
2805
2806 /* 5718 step 45, 57XX step 79 */
2807 /* Set misc. local control, enable interrupts on attentions */
2808 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2809 if (BGE_IS_5717_PLUS(sc)) {
2810 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2811 /* 5718 step 46 */
2812 DELAY(100);
2813 }
2814
2815 /* 57XX step 81 */
2816 /* Turn on DMA completion state machine */
2817 if (!(BGE_IS_5705_PLUS(sc)))
2818 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2819
2820 /* 5718 step 47, 57XX step 82 */
2821 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2822
2823 /* 5718 step 48 */
2824 /* Enable host coalescing bug fix. */
2825 if (BGE_IS_5755_PLUS(sc))
2826 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2827
2828 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2829 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2830
2831 /* Turn on write DMA state machine */
2832 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2833 /* 5718 step 49 */
2834 DELAY(40);
2835
2836 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2837
2838 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2839 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2840
2841 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2842 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2843 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2844 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2845 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2846 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2847
2848 if (sc->bge_flags & BGEF_PCIE)
2849 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2850 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2851 if (ifp->if_mtu <= ETHERMTU)
2852 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2853 }
2854 if (sc->bge_flags & BGEF_TSO) {
2855 val |= BGE_RDMAMODE_TSO4_ENABLE;
2856 if (BGE_IS_5717_PLUS(sc))
2857 val |= BGE_RDMAMODE_TSO6_ENABLE;
2858 }
2859
2860 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2861 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2862 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2863 BGE_RDMAMODE_H2BNC_VLAN_DET;
2864 /*
2865 * Allow multiple outstanding read requests from
2866 * non-LSO read DMA engine.
2867 */
2868 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2869 }
2870
2871 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2872 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2873 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2874 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2875 BGE_IS_57765_PLUS(sc)) {
2876 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2877 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2878 else
2879 rdmareg = BGE_RDMA_RSRVCTRL;
2880 dmactl = CSR_READ_4(sc, rdmareg);
2881 /*
2882 * Adjust tx margin to prevent TX data corruption and
2883 * fix internal FIFO overflow.
2884 */
2885 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2886 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2887 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2888 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2889 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2890 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2891 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2892 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2893 }
2894 /*
2895 * Enable fix for read DMA FIFO overruns.
2896 * The fix is to limit the number of RX BDs
2897 * the hardware would fetch at a fime.
2898 */
2899 CSR_WRITE_4(sc, rdmareg, dmactl |
2900 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2901 }
2902
2903 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2904 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2905 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2906 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2907 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2908 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2909 /*
2910 * Allow 4KB burst length reads for non-LSO frames.
2911 * Enable 512B burst length reads for buffer descriptors.
2912 */
2913 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2914 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2915 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2916 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2917 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2918 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2919 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2920 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2921 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2922 }
2923 /* Turn on read DMA state machine */
2924 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2925 /* 5718 step 52 */
2926 delay(40);
2927
2928 if (sc->bge_flags & BGEF_RDMA_BUG) {
2929 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2930 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2931 if ((val & 0xFFFF) > BGE_FRAMELEN)
2932 break;
2933 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2934 break;
2935 }
2936 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2937 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2938 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2939 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2940 else
2941 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2942 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2943 }
2944 }
2945
2946 /* 5718 step 56, 57XX step 84 */
2947 /* Turn on RX data completion state machine */
2948 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2949
2950 /* Turn on RX data and RX BD initiator state machine */
2951 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2952
2953 /* 57XX step 85 */
2954 /* Turn on Mbuf cluster free state machine */
2955 if (!BGE_IS_5705_PLUS(sc))
2956 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2957
2958 /* 5718 step 57, 57XX step 86 */
2959 /* Turn on send data completion state machine */
2960 val = BGE_SDCMODE_ENABLE;
2961 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2962 val |= BGE_SDCMODE_CDELAY;
2963 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2964
2965 /* 5718 step 58 */
2966 /* Turn on send BD completion state machine */
2967 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2968
2969 /* 57XX step 88 */
2970 /* Turn on RX BD initiator state machine */
2971 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2972
2973 /* 5718 step 60, 57XX step 90 */
2974 /* Turn on send data initiator state machine */
2975 if (sc->bge_flags & BGEF_TSO) {
2976 /* XXX: magic value from Linux driver */
2977 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2978 BGE_SDIMODE_HW_LSO_PRE_DMA);
2979 } else
2980 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2981
2982 /* 5718 step 61, 57XX step 91 */
2983 /* Turn on send BD initiator state machine */
2984 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2985
2986 /* 5718 step 62, 57XX step 92 */
2987 /* Turn on send BD selector state machine */
2988 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2989
2990 /* 5718 step 31, 57XX step 60 */
2991 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2992 /* 5718 step 32, 57XX step 61 */
2993 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2994 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2995
2996 /* ack/clear link change events */
2997 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2998 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2999 BGE_MACSTAT_LINK_CHANGED);
3000 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3001
3002 /*
3003 * Enable attention when the link has changed state for
3004 * devices that use auto polling.
3005 */
3006 if (sc->bge_flags & BGEF_FIBER_TBI) {
3007 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3008 } else {
3009 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3010 mimode = BGE_MIMODE_500KHZ_CONST;
3011 else
3012 mimode = BGE_MIMODE_BASE;
3013 /* 5718 step 68. 5718 step 69 (optionally). */
3014 if (BGE_IS_5700_FAMILY(sc) ||
3015 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3016 mimode |= BGE_MIMODE_AUTOPOLL;
3017 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3018 }
3019 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3020 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3021 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3022 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3023 BGE_EVTENB_MI_INTERRUPT);
3024 }
3025
3026 /*
3027 * Clear any pending link state attention.
3028 * Otherwise some link state change events may be lost until attention
3029 * is cleared by bge_intr() -> bge_link_upd() sequence.
3030 * It's not necessary on newer BCM chips - perhaps enabling link
3031 * state change attentions implies clearing pending attention.
3032 */
3033 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3034 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3035 BGE_MACSTAT_LINK_CHANGED);
3036
3037 /* Enable link state change attentions. */
3038 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3039
3040 return 0;
3041 }
3042
3043 static const struct bge_revision *
3044 bge_lookup_rev(uint32_t chipid)
3045 {
3046 const struct bge_revision *br;
3047
3048 for (br = bge_revisions; br->br_name != NULL; br++) {
3049 if (br->br_chipid == chipid)
3050 return br;
3051 }
3052
3053 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3054 if (br->br_chipid == BGE_ASICREV(chipid))
3055 return br;
3056 }
3057
3058 return NULL;
3059 }
3060
3061 static const struct bge_product *
3062 bge_lookup(const struct pci_attach_args *pa)
3063 {
3064 const struct bge_product *bp;
3065
3066 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3067 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3068 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3069 return bp;
3070 }
3071
3072 return NULL;
3073 }
3074
3075 static uint32_t
3076 bge_chipid(const struct pci_attach_args *pa)
3077 {
3078 uint32_t id;
3079
3080 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3081 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3082
3083 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3084 switch (PCI_PRODUCT(pa->pa_id)) {
3085 case PCI_PRODUCT_BROADCOM_BCM5717:
3086 case PCI_PRODUCT_BROADCOM_BCM5718:
3087 case PCI_PRODUCT_BROADCOM_BCM5719:
3088 case PCI_PRODUCT_BROADCOM_BCM5720:
3089 case PCI_PRODUCT_BROADCOM_BCM5725:
3090 case PCI_PRODUCT_BROADCOM_BCM5727:
3091 case PCI_PRODUCT_BROADCOM_BCM5762:
3092 case PCI_PRODUCT_BROADCOM_BCM57764:
3093 case PCI_PRODUCT_BROADCOM_BCM57767:
3094 case PCI_PRODUCT_BROADCOM_BCM57787:
3095 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3096 BGE_PCI_GEN2_PRODID_ASICREV);
3097 break;
3098 case PCI_PRODUCT_BROADCOM_BCM57761:
3099 case PCI_PRODUCT_BROADCOM_BCM57762:
3100 case PCI_PRODUCT_BROADCOM_BCM57765:
3101 case PCI_PRODUCT_BROADCOM_BCM57766:
3102 case PCI_PRODUCT_BROADCOM_BCM57781:
3103 case PCI_PRODUCT_BROADCOM_BCM57782:
3104 case PCI_PRODUCT_BROADCOM_BCM57785:
3105 case PCI_PRODUCT_BROADCOM_BCM57786:
3106 case PCI_PRODUCT_BROADCOM_BCM57791:
3107 case PCI_PRODUCT_BROADCOM_BCM57795:
3108 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3109 BGE_PCI_GEN15_PRODID_ASICREV);
3110 break;
3111 default:
3112 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3113 BGE_PCI_PRODID_ASICREV);
3114 break;
3115 }
3116 }
3117
3118 return id;
3119 }
3120
3121 /*
3122 * Return true if MSI can be used with this device.
3123 */
3124 static int
3125 bge_can_use_msi(struct bge_softc *sc)
3126 {
3127 int can_use_msi = 0;
3128
3129 switch (BGE_ASICREV(sc->bge_chipid)) {
3130 case BGE_ASICREV_BCM5714_A0:
3131 case BGE_ASICREV_BCM5714:
3132 /*
3133 * Apparently, MSI doesn't work when these chips are
3134 * configured in single-port mode.
3135 */
3136 break;
3137 case BGE_ASICREV_BCM5750:
3138 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3139 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3140 can_use_msi = 1;
3141 break;
3142 default:
3143 if (BGE_IS_575X_PLUS(sc))
3144 can_use_msi = 1;
3145 }
3146 return (can_use_msi);
3147 }
3148
3149 /*
3150 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3151 * against our list and return its name if we find a match. Note
3152 * that since the Broadcom controller contains VPD support, we
3153 * can get the device name string from the controller itself instead
3154 * of the compiled-in string. This is a little slow, but it guarantees
3155 * we'll always announce the right product name.
3156 */
3157 static int
3158 bge_probe(device_t parent, cfdata_t match, void *aux)
3159 {
3160 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3161
3162 if (bge_lookup(pa) != NULL)
3163 return 1;
3164
3165 return 0;
3166 }
3167
3168 static void
3169 bge_attach(device_t parent, device_t self, void *aux)
3170 {
3171 struct bge_softc *sc = device_private(self);
3172 struct pci_attach_args *pa = aux;
3173 prop_dictionary_t dict;
3174 const struct bge_product *bp;
3175 const struct bge_revision *br;
3176 pci_chipset_tag_t pc;
3177 const char *intrstr = NULL;
3178 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3179 uint32_t command;
3180 struct ifnet *ifp;
3181 struct mii_data * const mii = &sc->bge_mii;
3182 uint32_t misccfg, mimode;
3183 void * kva;
3184 u_char eaddr[ETHER_ADDR_LEN];
3185 pcireg_t memtype, subid, reg;
3186 bus_addr_t memaddr;
3187 uint32_t pm_ctl;
3188 bool no_seeprom;
3189 int capmask;
3190 int mii_flags;
3191 int map_flags;
3192 char intrbuf[PCI_INTRSTR_LEN];
3193
3194 bp = bge_lookup(pa);
3195 KASSERT(bp != NULL);
3196
3197 sc->sc_pc = pa->pa_pc;
3198 sc->sc_pcitag = pa->pa_tag;
3199 sc->bge_dev = self;
3200
3201 sc->bge_pa = *pa;
3202 pc = sc->sc_pc;
3203 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3204
3205 aprint_naive(": Ethernet controller\n");
3206 aprint_normal(": %s Ethernet\n", bp->bp_name);
3207
3208 /*
3209 * Map control/status registers.
3210 */
3211 DPRINTFN(5, ("Map control/status regs\n"));
3212 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3213 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3214 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3215 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3216
3217 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3218 aprint_error_dev(sc->bge_dev,
3219 "failed to enable memory mapping!\n");
3220 return;
3221 }
3222
3223 DPRINTFN(5, ("pci_mem_find\n"));
3224 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3225 switch (memtype) {
3226 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3227 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3228 #if 0
3229 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3230 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3231 &memaddr, &sc->bge_bsize) == 0)
3232 break;
3233 #else
3234 /*
3235 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3236 * system get NMI on boot (PR#48451). This problem might not be
3237 * the driver's bug but our PCI common part's bug. Until we
3238 * find a real reason, we ignore the prefetchable bit.
3239 */
3240 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3241 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3242 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3243 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3244 map_flags, &sc->bge_bhandle) == 0) {
3245 sc->bge_btag = pa->pa_memt;
3246 break;
3247 }
3248 }
3249 #endif
3250 /* FALLTHROUGH */
3251 default:
3252 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3253 return;
3254 }
3255
3256 /* Save various chip information. */
3257 sc->bge_chipid = bge_chipid(pa);
3258 sc->bge_phy_addr = bge_phy_addr(sc);
3259
3260 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3261 &sc->bge_pciecap, NULL) != 0) {
3262 /* PCIe */
3263 sc->bge_flags |= BGEF_PCIE;
3264 /* Extract supported maximum payload size. */
3265 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3266 sc->bge_pciecap + PCIE_DCAP);
3267 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3268 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3269 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3270 sc->bge_expmrq = 2048;
3271 else
3272 sc->bge_expmrq = 4096;
3273 bge_set_max_readrq(sc);
3274 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3275 /* PCIe without PCIe cap */
3276 sc->bge_flags |= BGEF_PCIE;
3277 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3278 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3279 /* PCI-X */
3280 sc->bge_flags |= BGEF_PCIX;
3281 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3282 &sc->bge_pcixcap, NULL) == 0)
3283 aprint_error_dev(sc->bge_dev,
3284 "unable to find PCIX capability\n");
3285 }
3286
3287 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3288 /*
3289 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3290 * can clobber the chip's PCI config-space power control
3291 * registers, leaving the card in D3 powersave state. We do
3292 * not have memory-mapped registers in this state, so force
3293 * device into D0 state before starting initialization.
3294 */
3295 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3296 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3297 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3298 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3299 DELAY(1000); /* 27 usec is allegedly sufficent */
3300 }
3301
3302 /* Save chipset family. */
3303 switch (BGE_ASICREV(sc->bge_chipid)) {
3304 case BGE_ASICREV_BCM5717:
3305 case BGE_ASICREV_BCM5719:
3306 case BGE_ASICREV_BCM5720:
3307 sc->bge_flags |= BGEF_5717_PLUS;
3308 /* FALLTHROUGH */
3309 case BGE_ASICREV_BCM5762:
3310 case BGE_ASICREV_BCM57765:
3311 case BGE_ASICREV_BCM57766:
3312 if (!BGE_IS_5717_PLUS(sc))
3313 sc->bge_flags |= BGEF_57765_FAMILY;
3314 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3315 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3316 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3317 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3318 /*
3319 * Enable work around for DMA engine miscalculation
3320 * of TXMBUF available space.
3321 */
3322 sc->bge_flags |= BGEF_RDMA_BUG;
3323
3324 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3325 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3326 /* Jumbo frame on BCM5719 A0 does not work. */
3327 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3328 }
3329 }
3330 break;
3331 case BGE_ASICREV_BCM5755:
3332 case BGE_ASICREV_BCM5761:
3333 case BGE_ASICREV_BCM5784:
3334 case BGE_ASICREV_BCM5785:
3335 case BGE_ASICREV_BCM5787:
3336 case BGE_ASICREV_BCM57780:
3337 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3338 break;
3339 case BGE_ASICREV_BCM5700:
3340 case BGE_ASICREV_BCM5701:
3341 case BGE_ASICREV_BCM5703:
3342 case BGE_ASICREV_BCM5704:
3343 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3344 break;
3345 case BGE_ASICREV_BCM5714_A0:
3346 case BGE_ASICREV_BCM5780:
3347 case BGE_ASICREV_BCM5714:
3348 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3349 /* FALLTHROUGH */
3350 case BGE_ASICREV_BCM5750:
3351 case BGE_ASICREV_BCM5752:
3352 case BGE_ASICREV_BCM5906:
3353 sc->bge_flags |= BGEF_575X_PLUS;
3354 /* FALLTHROUGH */
3355 case BGE_ASICREV_BCM5705:
3356 sc->bge_flags |= BGEF_5705_PLUS;
3357 break;
3358 }
3359
3360 /* Identify chips with APE processor. */
3361 switch (BGE_ASICREV(sc->bge_chipid)) {
3362 case BGE_ASICREV_BCM5717:
3363 case BGE_ASICREV_BCM5719:
3364 case BGE_ASICREV_BCM5720:
3365 case BGE_ASICREV_BCM5761:
3366 case BGE_ASICREV_BCM5762:
3367 sc->bge_flags |= BGEF_APE;
3368 break;
3369 }
3370
3371 /*
3372 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3373 * not actually a MAC controller bug but an issue with the embedded
3374 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3375 */
3376 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3377 sc->bge_flags |= BGEF_40BIT_BUG;
3378
3379 /* Chips with APE need BAR2 access for APE registers/memory. */
3380 if ((sc->bge_flags & BGEF_APE) != 0) {
3381 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3382 #if 0
3383 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3384 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3385 &sc->bge_apesize)) {
3386 aprint_error_dev(sc->bge_dev,
3387 "couldn't map BAR2 memory\n");
3388 return;
3389 }
3390 #else
3391 /*
3392 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3393 * system get NMI on boot (PR#48451). This problem might not be
3394 * the driver's bug but our PCI common part's bug. Until we
3395 * find a real reason, we ignore the prefetchable bit.
3396 */
3397 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3398 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3399 aprint_error_dev(sc->bge_dev,
3400 "couldn't map BAR2 memory\n");
3401 return;
3402 }
3403
3404 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3405 if (bus_space_map(pa->pa_memt, memaddr,
3406 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3407 aprint_error_dev(sc->bge_dev,
3408 "couldn't map BAR2 memory\n");
3409 return;
3410 }
3411 sc->bge_apetag = pa->pa_memt;
3412 #endif
3413
3414 /* Enable APE register/memory access by host driver. */
3415 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3416 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3417 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3418 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3419 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3420
3421 bge_ape_lock_init(sc);
3422 bge_ape_read_fw_ver(sc);
3423 }
3424
3425 /* Identify the chips that use an CPMU. */
3426 if (BGE_IS_5717_PLUS(sc) ||
3427 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3428 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3429 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3430 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3431 sc->bge_flags |= BGEF_CPMU_PRESENT;
3432
3433 /* Set MI_MODE */
3434 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3435 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3436 mimode |= BGE_MIMODE_500KHZ_CONST;
3437 else
3438 mimode |= BGE_MIMODE_BASE;
3439 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3440
3441 /*
3442 * When using the BCM5701 in PCI-X mode, data corruption has
3443 * been observed in the first few bytes of some received packets.
3444 * Aligning the packet buffer in memory eliminates the corruption.
3445 * Unfortunately, this misaligns the packet payloads. On platforms
3446 * which do not support unaligned accesses, we will realign the
3447 * payloads by copying the received packets.
3448 */
3449 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3450 sc->bge_flags & BGEF_PCIX)
3451 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3452
3453 if (BGE_IS_5700_FAMILY(sc))
3454 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3455
3456 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3457 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3458
3459 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3460 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3461 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3462 sc->bge_flags |= BGEF_IS_5788;
3463
3464 /*
3465 * Some controllers seem to require a special firmware to use
3466 * TSO. But the firmware is not available to FreeBSD and Linux
3467 * claims that the TSO performed by the firmware is slower than
3468 * hardware based TSO. Moreover the firmware based TSO has one
3469 * known bug which can't handle TSO if ethernet header + IP/TCP
3470 * header is greater than 80 bytes. The workaround for the TSO
3471 * bug exist but it seems it's too expensive than not using
3472 * TSO at all. Some hardwares also have the TSO bug so limit
3473 * the TSO to the controllers that are not affected TSO issues
3474 * (e.g. 5755 or higher).
3475 */
3476 if (BGE_IS_5755_PLUS(sc)) {
3477 /*
3478 * BCM5754 and BCM5787 shares the same ASIC id so
3479 * explicit device id check is required.
3480 */
3481 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3482 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3483 sc->bge_flags |= BGEF_TSO;
3484 /* TSO on BCM5719 A0 does not work. */
3485 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3486 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3487 sc->bge_flags &= ~BGEF_TSO;
3488 }
3489
3490 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3491 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3492 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3493 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3494 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3495 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3496 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3497 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3498 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3499 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3500 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3501 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3502 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3503 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3504 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3505 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3506 /* These chips are 10/100 only. */
3507 capmask &= ~BMSR_EXTSTAT;
3508 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3509 }
3510
3511 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3512 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3513 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3514 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3515 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3516
3517 /* Set various PHY bug flags. */
3518 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3519 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3520 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3521 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3522 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3523 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3524 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3525 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3526 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3527 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3528 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3529 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3530 if (BGE_IS_5705_PLUS(sc) &&
3531 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3532 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3533 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3534 !BGE_IS_57765_PLUS(sc)) {
3535 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3536 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3537 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3538 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3539 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3540 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3541 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3542 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3543 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3544 } else
3545 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3546 }
3547
3548 /*
3549 * SEEPROM check.
3550 * First check if firmware knows we do not have SEEPROM.
3551 */
3552 if (prop_dictionary_get_bool(device_properties(self),
3553 "without-seeprom", &no_seeprom) && no_seeprom)
3554 sc->bge_flags |= BGEF_NO_EEPROM;
3555
3556 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3557 sc->bge_flags |= BGEF_NO_EEPROM;
3558
3559 /* Now check the 'ROM failed' bit on the RX CPU */
3560 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3561 sc->bge_flags |= BGEF_NO_EEPROM;
3562
3563 sc->bge_asf_mode = 0;
3564 /* No ASF if APE present. */
3565 if ((sc->bge_flags & BGEF_APE) == 0) {
3566 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3567 BGE_SRAM_DATA_SIG_MAGIC)) {
3568 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3569 BGE_HWCFG_ASF) {
3570 sc->bge_asf_mode |= ASF_ENABLE;
3571 sc->bge_asf_mode |= ASF_STACKUP;
3572 if (BGE_IS_575X_PLUS(sc))
3573 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3574 }
3575 }
3576 }
3577
3578 int counts[PCI_INTR_TYPE_SIZE] = {
3579 [PCI_INTR_TYPE_INTX] = 1,
3580 [PCI_INTR_TYPE_MSI] = 1,
3581 [PCI_INTR_TYPE_MSIX] = 1,
3582 };
3583 int max_type = PCI_INTR_TYPE_MSIX;
3584
3585 if (!bge_can_use_msi(sc)) {
3586 /* MSI broken, allow only INTx */
3587 max_type = PCI_INTR_TYPE_INTX;
3588 }
3589
3590 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3591 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3592 return;
3593 }
3594
3595 DPRINTFN(5, ("pci_intr_string\n"));
3596 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3597 sizeof(intrbuf));
3598 DPRINTFN(5, ("pci_intr_establish\n"));
3599 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3600 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3601 if (sc->bge_intrhand == NULL) {
3602 pci_intr_release(pc, sc->bge_pihp, 1);
3603 sc->bge_pihp = NULL;
3604
3605 aprint_error_dev(self, "couldn't establish interrupt");
3606 if (intrstr != NULL)
3607 aprint_error(" at %s", intrstr);
3608 aprint_error("\n");
3609 return;
3610 }
3611 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3612
3613 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3614 case PCI_INTR_TYPE_MSIX:
3615 case PCI_INTR_TYPE_MSI:
3616 KASSERT(bge_can_use_msi(sc));
3617 sc->bge_flags |= BGEF_MSI;
3618 break;
3619 default:
3620 /* nothing to do */
3621 break;
3622 }
3623
3624 /*
3625 * All controllers except BCM5700 supports tagged status but
3626 * we use tagged status only for MSI case on BCM5717. Otherwise
3627 * MSI on BCM5717 does not work.
3628 */
3629 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3630 sc->bge_flags |= BGEF_TAGGED_STATUS;
3631
3632 /*
3633 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3634 * lock in bge_reset().
3635 */
3636 CSR_WRITE_4(sc, BGE_EE_ADDR,
3637 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3638 delay(1000);
3639 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3640
3641 bge_stop_fw(sc);
3642 bge_sig_pre_reset(sc, BGE_RESET_START);
3643 if (bge_reset(sc))
3644 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3645
3646 /*
3647 * Read the hardware config word in the first 32k of NIC internal
3648 * memory, or fall back to the config word in the EEPROM.
3649 * Note: on some BCM5700 cards, this value appears to be unset.
3650 */
3651 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3652 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3653 BGE_SRAM_DATA_SIG_MAGIC) {
3654 uint32_t tmp;
3655
3656 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3657 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3658 BGE_SRAM_DATA_VER_SHIFT;
3659 if ((0 < tmp) && (tmp < 0x100))
3660 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3661 if (sc->bge_flags & BGEF_PCIE)
3662 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3663 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3664 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3665 if (BGE_IS_5717_PLUS(sc))
3666 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3667 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3668 bge_read_eeprom(sc, (void *)&hwcfg,
3669 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3670 hwcfg = be32toh(hwcfg);
3671 }
3672 aprint_normal_dev(sc->bge_dev,
3673 "HW config %08x, %08x, %08x, %08x %08x\n",
3674 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3675
3676 bge_sig_legacy(sc, BGE_RESET_START);
3677 bge_sig_post_reset(sc, BGE_RESET_START);
3678
3679 if (bge_chipinit(sc)) {
3680 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3681 bge_release_resources(sc);
3682 return;
3683 }
3684
3685 /*
3686 * Get station address from the EEPROM.
3687 */
3688 if (bge_get_eaddr(sc, eaddr)) {
3689 aprint_error_dev(sc->bge_dev,
3690 "failed to read station address\n");
3691 bge_release_resources(sc);
3692 return;
3693 }
3694
3695 br = bge_lookup_rev(sc->bge_chipid);
3696
3697 if (br == NULL) {
3698 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3699 sc->bge_chipid);
3700 } else {
3701 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3702 br->br_name, sc->bge_chipid);
3703 }
3704 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3705
3706 /* Allocate the general information block and ring buffers. */
3707 if (pci_dma64_available(pa)) {
3708 sc->bge_dmatag = pa->pa_dmat64;
3709 sc->bge_dmatag32 = pa->pa_dmat;
3710 sc->bge_dma64 = true;
3711 } else {
3712 sc->bge_dmatag = pa->pa_dmat;
3713 sc->bge_dmatag32 = pa->pa_dmat;
3714 sc->bge_dma64 = false;
3715 }
3716
3717 /* 40bit DMA workaround */
3718 if (sizeof(bus_addr_t) > 4) {
3719 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3720 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3721
3722 if (bus_dmatag_subregion(olddmatag, 0,
3723 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3724 BUS_DMA_NOWAIT) != 0) {
3725 aprint_error_dev(self,
3726 "WARNING: failed to restrict dma range,"
3727 " falling back to parent bus dma range\n");
3728 sc->bge_dmatag = olddmatag;
3729 }
3730 }
3731 }
3732 SLIST_INIT(&sc->txdma_list);
3733 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3734 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3735 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3736 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3737 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3738 return;
3739 }
3740 DPRINTFN(5, ("bus_dmamem_map\n"));
3741 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3742 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3743 BUS_DMA_NOWAIT)) {
3744 aprint_error_dev(sc->bge_dev,
3745 "can't map DMA buffers (%zu bytes)\n",
3746 sizeof(struct bge_ring_data));
3747 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3748 sc->bge_ring_rseg);
3749 return;
3750 }
3751 DPRINTFN(5, ("bus_dmamem_create\n"));
3752 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3753 sizeof(struct bge_ring_data), 0,
3754 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3755 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3756 bus_dmamem_unmap(sc->bge_dmatag, kva,
3757 sizeof(struct bge_ring_data));
3758 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3759 sc->bge_ring_rseg);
3760 return;
3761 }
3762 DPRINTFN(5, ("bus_dmamem_load\n"));
3763 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3764 sizeof(struct bge_ring_data), NULL,
3765 BUS_DMA_NOWAIT)) {
3766 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3767 bus_dmamem_unmap(sc->bge_dmatag, kva,
3768 sizeof(struct bge_ring_data));
3769 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3770 sc->bge_ring_rseg);
3771 return;
3772 }
3773
3774 DPRINTFN(5, ("bzero\n"));
3775 sc->bge_rdata = (struct bge_ring_data *)kva;
3776
3777 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3778
3779 /* Try to allocate memory for jumbo buffers. */
3780 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3781 if (bge_alloc_jumbo_mem(sc)) {
3782 aprint_error_dev(sc->bge_dev,
3783 "jumbo buffer allocation failed\n");
3784 } else
3785 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3786 }
3787
3788 /* Set default tuneable values. */
3789 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3790 sc->bge_rx_coal_ticks = 150;
3791 sc->bge_rx_max_coal_bds = 64;
3792 sc->bge_tx_coal_ticks = 300;
3793 sc->bge_tx_max_coal_bds = 400;
3794 if (BGE_IS_5705_PLUS(sc)) {
3795 sc->bge_tx_coal_ticks = (12 * 5);
3796 sc->bge_tx_max_coal_bds = (12 * 5);
3797 aprint_verbose_dev(sc->bge_dev,
3798 "setting short Tx thresholds\n");
3799 }
3800
3801 if (BGE_IS_5717_PLUS(sc))
3802 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3803 else if (BGE_IS_5705_PLUS(sc))
3804 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3805 else
3806 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3807
3808 /* Set up ifnet structure */
3809 ifp = &sc->ethercom.ec_if;
3810 ifp->if_softc = sc;
3811 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3812 ifp->if_ioctl = bge_ioctl;
3813 ifp->if_stop = bge_stop;
3814 ifp->if_start = bge_start;
3815 ifp->if_init = bge_init;
3816 ifp->if_watchdog = bge_watchdog;
3817 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3818 IFQ_SET_READY(&ifp->if_snd);
3819 DPRINTFN(5, ("strcpy if_xname\n"));
3820 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3821
3822 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3823 sc->ethercom.ec_if.if_capabilities |=
3824 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3825 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3826 sc->ethercom.ec_if.if_capabilities |=
3827 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3828 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3829 #endif
3830 sc->ethercom.ec_capabilities |=
3831 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3832
3833 if (sc->bge_flags & BGEF_TSO)
3834 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3835
3836 /*
3837 * Do MII setup.
3838 */
3839 DPRINTFN(5, ("mii setup\n"));
3840 mii->mii_ifp = ifp;
3841 mii->mii_readreg = bge_miibus_readreg;
3842 mii->mii_writereg = bge_miibus_writereg;
3843 mii->mii_statchg = bge_miibus_statchg;
3844
3845 /*
3846 * Figure out what sort of media we have by checking the hardware
3847 * config word. Note: on some BCM5700 cards, this value appears to be
3848 * unset. If that's the case, we have to rely on identifying the NIC
3849 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3850 * The SysKonnect SK-9D41 is a 1000baseSX card.
3851 */
3852 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3853 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3854 if (BGE_IS_5705_PLUS(sc)) {
3855 sc->bge_flags |= BGEF_FIBER_MII;
3856 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3857 } else
3858 sc->bge_flags |= BGEF_FIBER_TBI;
3859 }
3860
3861 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3862 if (BGE_IS_JUMBO_CAPABLE(sc))
3863 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3864
3865 /* set phyflags and chipid before mii_attach() */
3866 dict = device_properties(self);
3867 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3868 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3869
3870 if (sc->bge_flags & BGEF_FIBER_TBI) {
3871 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3872 bge_ifmedia_sts);
3873 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3874 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3875 0, NULL);
3876 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3877 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3878 /* Pretend the user requested this setting */
3879 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3880 } else {
3881 /*
3882 * Do transceiver setup and tell the firmware the
3883 * driver is down so we can try to get access the
3884 * probe if ASF is running. Retry a couple of times
3885 * if we get a conflict with the ASF firmware accessing
3886 * the PHY.
3887 */
3888 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3889 bge_asf_driver_up(sc);
3890
3891 ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3892 bge_ifmedia_sts);
3893 mii_flags = MIIF_DOPAUSE;
3894 if (sc->bge_flags & BGEF_FIBER_MII)
3895 mii_flags |= MIIF_HAVEFIBER;
3896 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
3897 MII_OFFSET_ANY, mii_flags);
3898
3899 if (LIST_EMPTY(&mii->mii_phys)) {
3900 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3901 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
3902 0, NULL);
3903 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
3904 } else
3905 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
3906
3907 /*
3908 * Now tell the firmware we are going up after probing the PHY
3909 */
3910 if (sc->bge_asf_mode & ASF_STACKUP)
3911 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3912 }
3913
3914 /*
3915 * Call MI attach routine.
3916 */
3917 DPRINTFN(5, ("if_attach\n"));
3918 if_attach(ifp);
3919 if_deferred_start_init(ifp, NULL);
3920 DPRINTFN(5, ("ether_ifattach\n"));
3921 ether_ifattach(ifp, eaddr);
3922 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3923 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3924 RND_TYPE_NET, RND_FLAG_DEFAULT);
3925 #ifdef BGE_EVENT_COUNTERS
3926 /*
3927 * Attach event counters.
3928 */
3929 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3930 NULL, device_xname(sc->bge_dev), "intr");
3931 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3932 NULL, device_xname(sc->bge_dev), "intr_spurious");
3933 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3934 NULL, device_xname(sc->bge_dev), "intr_spurious2");
3935 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3936 NULL, device_xname(sc->bge_dev), "tx_xoff");
3937 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3938 NULL, device_xname(sc->bge_dev), "tx_xon");
3939 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3940 NULL, device_xname(sc->bge_dev), "rx_xoff");
3941 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3942 NULL, device_xname(sc->bge_dev), "rx_xon");
3943 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3944 NULL, device_xname(sc->bge_dev), "rx_macctl");
3945 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3946 NULL, device_xname(sc->bge_dev), "xoffentered");
3947 #endif /* BGE_EVENT_COUNTERS */
3948 DPRINTFN(5, ("callout_init\n"));
3949 callout_init(&sc->bge_timeout, 0);
3950
3951 if (pmf_device_register(self, NULL, NULL))
3952 pmf_class_network_register(self, ifp);
3953 else
3954 aprint_error_dev(self, "couldn't establish power handler\n");
3955
3956 bge_sysctl_init(sc);
3957
3958 #ifdef BGE_DEBUG
3959 bge_debug_info(sc);
3960 #endif
3961 }
3962
3963 /*
3964 * Stop all chip I/O so that the kernel's probe routines don't
3965 * get confused by errant DMAs when rebooting.
3966 */
3967 static int
3968 bge_detach(device_t self, int flags __unused)
3969 {
3970 struct bge_softc *sc = device_private(self);
3971 struct ifnet *ifp = &sc->ethercom.ec_if;
3972 int s;
3973
3974 s = splnet();
3975 /* Stop the interface. Callouts are stopped in it. */
3976 bge_stop(ifp, 1);
3977 splx(s);
3978
3979 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3980
3981 /* Delete all remaining media. */
3982 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3983
3984 ether_ifdetach(ifp);
3985 if_detach(ifp);
3986
3987 bge_release_resources(sc);
3988
3989 return 0;
3990 }
3991
3992 static void
3993 bge_release_resources(struct bge_softc *sc)
3994 {
3995
3996 /* Detach sysctl */
3997 if (sc->bge_log != NULL)
3998 sysctl_teardown(&sc->bge_log);
3999
4000 #ifdef BGE_EVENT_COUNTERS
4001 /* Detach event counters. */
4002 evcnt_detach(&sc->bge_ev_intr);
4003 evcnt_detach(&sc->bge_ev_intr_spurious);
4004 evcnt_detach(&sc->bge_ev_intr_spurious2);
4005 evcnt_detach(&sc->bge_ev_tx_xoff);
4006 evcnt_detach(&sc->bge_ev_tx_xon);
4007 evcnt_detach(&sc->bge_ev_rx_xoff);
4008 evcnt_detach(&sc->bge_ev_rx_xon);
4009 evcnt_detach(&sc->bge_ev_rx_macctl);
4010 evcnt_detach(&sc->bge_ev_xoffentered);
4011 #endif /* BGE_EVENT_COUNTERS */
4012
4013 /* Disestablish the interrupt handler */
4014 if (sc->bge_intrhand != NULL) {
4015 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4016 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4017 sc->bge_intrhand = NULL;
4018 }
4019
4020 if (sc->bge_dmatag != NULL) {
4021 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4022 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4023 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4024 sizeof(struct bge_ring_data));
4025 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4026 sc->bge_ring_rseg);
4027 }
4028
4029 /* Unmap the device registers */
4030 if (sc->bge_bsize != 0) {
4031 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4032 sc->bge_bsize = 0;
4033 }
4034
4035 /* Unmap the APE registers */
4036 if (sc->bge_apesize != 0) {
4037 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4038 sc->bge_apesize);
4039 sc->bge_apesize = 0;
4040 }
4041 }
4042
4043 static int
4044 bge_reset(struct bge_softc *sc)
4045 {
4046 uint32_t cachesize, command;
4047 uint32_t reset, mac_mode, mac_mode_mask;
4048 pcireg_t devctl, reg;
4049 int i, val;
4050 void (*write_op)(struct bge_softc *, int, int);
4051
4052 /* Make mask for BGE_MAC_MODE register. */
4053 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4054 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4055 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4056 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4057 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4058
4059 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4060 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4061 if (sc->bge_flags & BGEF_PCIE)
4062 write_op = bge_writemem_direct;
4063 else
4064 write_op = bge_writemem_ind;
4065 } else
4066 write_op = bge_writereg_ind;
4067
4068 /* 57XX step 4 */
4069 /* Acquire the NVM lock */
4070 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4071 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4072 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4073 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4074 for (i = 0; i < 8000; i++) {
4075 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4076 BGE_NVRAMSWARB_GNT1)
4077 break;
4078 DELAY(20);
4079 }
4080 if (i == 8000) {
4081 printf("%s: NVRAM lock timedout!\n",
4082 device_xname(sc->bge_dev));
4083 }
4084 }
4085
4086 /* Take APE lock when performing reset. */
4087 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4088
4089 /* 57XX step 3 */
4090 /* Save some important PCI state. */
4091 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4092 /* 5718 reset step 3 */
4093 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4094
4095 /* 5718 reset step 5, 57XX step 5b-5d */
4096 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4097 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4098 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4099
4100 /* XXX ???: Disable fastboot on controllers that support it. */
4101 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4102 BGE_IS_5755_PLUS(sc))
4103 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4104
4105 /* 5718 reset step 2, 57XX step 6 */
4106 /*
4107 * Write the magic number to SRAM at offset 0xB50.
4108 * When firmware finishes its initialization it will
4109 * write ~BGE_MAGIC_NUMBER to the same location.
4110 */
4111 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4112
4113 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4114 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4115 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4116 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4117 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4118 }
4119
4120 /* 5718 reset step 6, 57XX step 7 */
4121 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4122 /*
4123 * XXX: from FreeBSD/Linux; no documentation
4124 */
4125 if (sc->bge_flags & BGEF_PCIE) {
4126 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4127 !BGE_IS_57765_PLUS(sc) &&
4128 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4129 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4130 /* PCI Express 1.0 system */
4131 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4132 BGE_PHY_PCIE_SCRAM_MODE);
4133 }
4134 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4135 /*
4136 * Prevent PCI Express link training
4137 * during global reset.
4138 */
4139 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4140 reset |= (1 << 29);
4141 }
4142 }
4143
4144 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4145 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4146 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4147 i | BGE_VCPU_STATUS_DRV_RESET);
4148 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4149 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4150 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4151 }
4152
4153 /*
4154 * Set GPHY Power Down Override to leave GPHY
4155 * powered up in D0 uninitialized.
4156 */
4157 if (BGE_IS_5705_PLUS(sc) &&
4158 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4159 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4160
4161 /* Issue global reset */
4162 write_op(sc, BGE_MISC_CFG, reset);
4163
4164 /* 5718 reset step 7, 57XX step 8 */
4165 if (sc->bge_flags & BGEF_PCIE)
4166 delay(100*1000); /* too big */
4167 else
4168 delay(1000);
4169
4170 if (sc->bge_flags & BGEF_PCIE) {
4171 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4172 DELAY(500000);
4173 /* XXX: Magic Numbers */
4174 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4175 BGE_PCI_UNKNOWN0);
4176 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4177 BGE_PCI_UNKNOWN0,
4178 reg | (1 << 15));
4179 }
4180 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4181 sc->bge_pciecap + PCIE_DCSR);
4182 /* Clear enable no snoop and disable relaxed ordering. */
4183 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4184 PCIE_DCSR_ENA_NO_SNOOP);
4185
4186 /* Set PCIE max payload size to 128 for older PCIe devices */
4187 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4188 devctl &= ~(0x00e0);
4189 /* Clear device status register. Write 1b to clear */
4190 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4191 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4192 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4193 sc->bge_pciecap + PCIE_DCSR, devctl);
4194 bge_set_max_readrq(sc);
4195 }
4196
4197 /* From Linux: dummy read to flush PCI posted writes */
4198 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4199
4200 /*
4201 * Reset some of the PCI state that got zapped by reset
4202 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4203 * set, too.
4204 */
4205 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4206 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4207 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4208 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4209 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4210 (sc->bge_flags & BGEF_PCIX) != 0)
4211 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4212 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4213 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4214 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4215 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4216 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4217 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4218 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4219
4220 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4221 if (sc->bge_flags & BGEF_PCIX) {
4222 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4223 + PCIX_CMD);
4224 /* Set max memory read byte count to 2K */
4225 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4226 reg &= ~PCIX_CMD_BYTECNT_MASK;
4227 reg |= PCIX_CMD_BCNT_2048;
4228 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4229 /*
4230 * For 5704, set max outstanding split transaction
4231 * field to 0 (0 means it supports 1 request)
4232 */
4233 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4234 | PCIX_CMD_BYTECNT_MASK);
4235 reg |= PCIX_CMD_BCNT_2048;
4236 }
4237 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4238 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4239 }
4240
4241 /* 5718 reset step 10, 57XX step 12 */
4242 /* Enable memory arbiter. */
4243 if (BGE_IS_5714_FAMILY(sc)) {
4244 val = CSR_READ_4(sc, BGE_MARB_MODE);
4245 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4246 } else
4247 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4248
4249 /* XXX 5721, 5751 and 5752 */
4250 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4251 /* Step 19: */
4252 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4253 /* Step 20: */
4254 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4255 }
4256
4257 /* 5718 reset step 12, 57XX step 15 and 16 */
4258 /* Fix up byte swapping */
4259 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4260
4261 /* 5718 reset step 13, 57XX step 17 */
4262 /* Poll until the firmware initialization is complete */
4263 bge_poll_fw(sc);
4264
4265 /* 57XX step 21 */
4266 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4267 pcireg_t msidata;
4268
4269 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4270 BGE_PCI_MSI_DATA);
4271 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4272 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4273 msidata);
4274 }
4275
4276 /* 57XX step 18 */
4277 /* Write mac mode. */
4278 val = CSR_READ_4(sc, BGE_MAC_MODE);
4279 /* Restore mac_mode_mask's bits using mac_mode */
4280 val = (val & ~mac_mode_mask) | mac_mode;
4281 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4282 DELAY(40);
4283
4284 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4285
4286 /*
4287 * The 5704 in TBI mode apparently needs some special
4288 * adjustment to insure the SERDES drive level is set
4289 * to 1.2V.
4290 */
4291 if (sc->bge_flags & BGEF_FIBER_TBI &&
4292 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4293 uint32_t serdescfg;
4294
4295 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4296 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4297 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4298 }
4299
4300 if (sc->bge_flags & BGEF_PCIE &&
4301 !BGE_IS_57765_PLUS(sc) &&
4302 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4303 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4304 uint32_t v;
4305
4306 /* Enable PCI Express bug fix */
4307 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4308 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4309 v | BGE_TLP_DATA_FIFO_PROTECT);
4310 }
4311
4312 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4313 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4314 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4315
4316 return 0;
4317 }
4318
4319 /*
4320 * Frame reception handling. This is called if there's a frame
4321 * on the receive return list.
4322 *
4323 * Note: we have to be able to handle two possibilities here:
4324 * 1) the frame is from the jumbo receive ring
4325 * 2) the frame is from the standard receive ring
4326 */
4327
4328 static void
4329 bge_rxeof(struct bge_softc *sc)
4330 {
4331 struct ifnet *ifp;
4332 uint16_t rx_prod, rx_cons;
4333 int stdcnt = 0, jumbocnt = 0;
4334 bus_dmamap_t dmamap;
4335 bus_addr_t offset, toff;
4336 bus_size_t tlen;
4337 int tosync;
4338
4339 rx_cons = sc->bge_rx_saved_considx;
4340 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4341
4342 /* Nothing to do */
4343 if (rx_cons == rx_prod)
4344 return;
4345
4346 ifp = &sc->ethercom.ec_if;
4347
4348 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4349 offsetof(struct bge_ring_data, bge_status_block),
4350 sizeof (struct bge_status_block),
4351 BUS_DMASYNC_POSTREAD);
4352
4353 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4354 tosync = rx_prod - rx_cons;
4355
4356 if (tosync != 0)
4357 rnd_add_uint32(&sc->rnd_source, tosync);
4358
4359 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4360
4361 if (tosync < 0) {
4362 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4363 sizeof (struct bge_rx_bd);
4364 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4365 toff, tlen, BUS_DMASYNC_POSTREAD);
4366 tosync = -tosync;
4367 }
4368
4369 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4370 offset, tosync * sizeof (struct bge_rx_bd),
4371 BUS_DMASYNC_POSTREAD);
4372
4373 while (rx_cons != rx_prod) {
4374 struct bge_rx_bd *cur_rx;
4375 uint32_t rxidx;
4376 struct mbuf *m = NULL;
4377
4378 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4379
4380 rxidx = cur_rx->bge_idx;
4381 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4382
4383 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4384 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4385 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4386 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4387 jumbocnt++;
4388 bus_dmamap_sync(sc->bge_dmatag,
4389 sc->bge_cdata.bge_rx_jumbo_map,
4390 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4391 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4392 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4393 ifp->if_ierrors++;
4394 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4395 continue;
4396 }
4397 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4398 NULL)== ENOBUFS) {
4399 ifp->if_ierrors++;
4400 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4401 continue;
4402 }
4403 } else {
4404 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4405 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4406
4407 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4408 stdcnt++;
4409 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4410 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4411 if (dmamap == NULL) {
4412 ifp->if_ierrors++;
4413 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4414 continue;
4415 }
4416 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4417 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4418 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4419 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4420 ifp->if_ierrors++;
4421 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4422 continue;
4423 }
4424 if (bge_newbuf_std(sc, sc->bge_std,
4425 NULL, dmamap) == ENOBUFS) {
4426 ifp->if_ierrors++;
4427 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4428 continue;
4429 }
4430 }
4431
4432 #ifndef __NO_STRICT_ALIGNMENT
4433 /*
4434 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4435 * the Rx buffer has the layer-2 header unaligned.
4436 * If our CPU requires alignment, re-align by copying.
4437 */
4438 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4439 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4440 cur_rx->bge_len);
4441 m->m_data += ETHER_ALIGN;
4442 }
4443 #endif
4444
4445 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4446 m_set_rcvif(m, ifp);
4447
4448 bge_rxcsum(sc, cur_rx, m);
4449
4450 /*
4451 * If we received a packet with a vlan tag, pass it
4452 * to vlan_input() instead of ether_input().
4453 */
4454 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4455 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4456
4457 if_percpuq_enqueue(ifp->if_percpuq, m);
4458 }
4459
4460 sc->bge_rx_saved_considx = rx_cons;
4461 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4462 if (stdcnt)
4463 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4464 if (jumbocnt)
4465 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4466 }
4467
4468 static void
4469 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4470 {
4471
4472 if (BGE_IS_57765_PLUS(sc)) {
4473 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4474 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4475 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4476 if ((cur_rx->bge_error_flag &
4477 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4478 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4479 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4480 m->m_pkthdr.csum_data =
4481 cur_rx->bge_tcp_udp_csum;
4482 m->m_pkthdr.csum_flags |=
4483 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4484 }
4485 }
4486 } else {
4487 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4488 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4489 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4490 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4491 /*
4492 * Rx transport checksum-offload may also
4493 * have bugs with packets which, when transmitted,
4494 * were `runts' requiring padding.
4495 */
4496 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4497 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4498 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4499 m->m_pkthdr.csum_data =
4500 cur_rx->bge_tcp_udp_csum;
4501 m->m_pkthdr.csum_flags |=
4502 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4503 }
4504 }
4505 }
4506
4507 static void
4508 bge_txeof(struct bge_softc *sc)
4509 {
4510 struct bge_tx_bd *cur_tx = NULL;
4511 struct ifnet *ifp;
4512 struct txdmamap_pool_entry *dma;
4513 bus_addr_t offset, toff;
4514 bus_size_t tlen;
4515 int tosync;
4516 struct mbuf *m;
4517
4518 ifp = &sc->ethercom.ec_if;
4519
4520 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4521 offsetof(struct bge_ring_data, bge_status_block),
4522 sizeof (struct bge_status_block),
4523 BUS_DMASYNC_POSTREAD);
4524
4525 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4526 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4527 sc->bge_tx_saved_considx;
4528
4529 if (tosync != 0)
4530 rnd_add_uint32(&sc->rnd_source, tosync);
4531
4532 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4533
4534 if (tosync < 0) {
4535 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4536 sizeof (struct bge_tx_bd);
4537 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4538 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4539 tosync = -tosync;
4540 }
4541
4542 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4543 offset, tosync * sizeof (struct bge_tx_bd),
4544 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4545
4546 /*
4547 * Go through our tx ring and free mbufs for those
4548 * frames that have been sent.
4549 */
4550 while (sc->bge_tx_saved_considx !=
4551 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4552 uint32_t idx = 0;
4553
4554 idx = sc->bge_tx_saved_considx;
4555 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4556 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4557 ifp->if_opackets++;
4558 m = sc->bge_cdata.bge_tx_chain[idx];
4559 if (m != NULL) {
4560 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4561 dma = sc->txdma[idx];
4562 if (dma->is_dma32) {
4563 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4564 0, dma->dmamap32->dm_mapsize,
4565 BUS_DMASYNC_POSTWRITE);
4566 bus_dmamap_unload(
4567 sc->bge_dmatag32, dma->dmamap32);
4568 } else {
4569 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4570 0, dma->dmamap->dm_mapsize,
4571 BUS_DMASYNC_POSTWRITE);
4572 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4573 }
4574 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4575 sc->txdma[idx] = NULL;
4576
4577 m_freem(m);
4578 }
4579 sc->bge_txcnt--;
4580 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4581 ifp->if_timer = 0;
4582 }
4583
4584 if (cur_tx != NULL)
4585 ifp->if_flags &= ~IFF_OACTIVE;
4586 }
4587
4588 static int
4589 bge_intr(void *xsc)
4590 {
4591 struct bge_softc *sc;
4592 struct ifnet *ifp;
4593 uint32_t pcistate, statusword, statustag;
4594 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4595
4596 sc = xsc;
4597 ifp = &sc->ethercom.ec_if;
4598
4599 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4600 if (BGE_IS_5717_PLUS(sc))
4601 intrmask = 0;
4602
4603 /* It is possible for the interrupt to arrive before
4604 * the status block is updated prior to the interrupt.
4605 * Reading the PCI State register will confirm whether the
4606 * interrupt is ours and will flush the status block.
4607 */
4608 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4609
4610 /* read status word from status block */
4611 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4612 offsetof(struct bge_ring_data, bge_status_block),
4613 sizeof (struct bge_status_block),
4614 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4615 statusword = sc->bge_rdata->bge_status_block.bge_status;
4616 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4617
4618 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4619 if (sc->bge_lasttag == statustag &&
4620 (~pcistate & intrmask)) {
4621 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4622 return (0);
4623 }
4624 sc->bge_lasttag = statustag;
4625 } else {
4626 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4627 !(~pcistate & intrmask)) {
4628 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4629 return (0);
4630 }
4631 statustag = 0;
4632 }
4633 /* Ack interrupt and stop others from occurring. */
4634 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4635 BGE_EVCNT_INCR(sc->bge_ev_intr);
4636
4637 /* clear status word */
4638 sc->bge_rdata->bge_status_block.bge_status = 0;
4639
4640 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4641 offsetof(struct bge_ring_data, bge_status_block),
4642 sizeof (struct bge_status_block),
4643 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4644
4645 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4646 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4647 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4648 bge_link_upd(sc);
4649
4650 if (ifp->if_flags & IFF_RUNNING) {
4651 /* Check RX return ring producer/consumer */
4652 bge_rxeof(sc);
4653
4654 /* Check TX ring producer/consumer */
4655 bge_txeof(sc);
4656 }
4657
4658 if (sc->bge_pending_rxintr_change) {
4659 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4660 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4661
4662 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4663 DELAY(10);
4664 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4665
4666 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4667 DELAY(10);
4668 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4669
4670 sc->bge_pending_rxintr_change = 0;
4671 }
4672 bge_handle_events(sc);
4673
4674 /* Re-enable interrupts. */
4675 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4676
4677 if (ifp->if_flags & IFF_RUNNING)
4678 if_schedule_deferred_start(ifp);
4679
4680 return 1;
4681 }
4682
4683 static void
4684 bge_asf_driver_up(struct bge_softc *sc)
4685 {
4686 if (sc->bge_asf_mode & ASF_STACKUP) {
4687 /* Send ASF heartbeat aprox. every 2s */
4688 if (sc->bge_asf_count)
4689 sc->bge_asf_count --;
4690 else {
4691 sc->bge_asf_count = 2;
4692
4693 bge_wait_for_event_ack(sc);
4694
4695 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4696 BGE_FW_CMD_DRV_ALIVE3);
4697 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4698 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4699 BGE_FW_HB_TIMEOUT_SEC);
4700 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4701 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4702 BGE_RX_CPU_DRV_EVENT);
4703 }
4704 }
4705 }
4706
4707 static void
4708 bge_tick(void *xsc)
4709 {
4710 struct bge_softc *sc = xsc;
4711 struct mii_data *mii = &sc->bge_mii;
4712 int s;
4713
4714 s = splnet();
4715
4716 if (BGE_IS_5705_PLUS(sc))
4717 bge_stats_update_regs(sc);
4718 else
4719 bge_stats_update(sc);
4720
4721 if (sc->bge_flags & BGEF_FIBER_TBI) {
4722 /*
4723 * Since in TBI mode auto-polling can't be used we should poll
4724 * link status manually. Here we register pending link event
4725 * and trigger interrupt.
4726 */
4727 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4728 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4729 } else {
4730 /*
4731 * Do not touch PHY if we have link up. This could break
4732 * IPMI/ASF mode or produce extra input errors.
4733 * (extra input errors was reported for bcm5701 & bcm5704).
4734 */
4735 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4736 mii_tick(mii);
4737 }
4738
4739 bge_asf_driver_up(sc);
4740
4741 if (!sc->bge_detaching)
4742 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4743
4744 splx(s);
4745 }
4746
4747 static void
4748 bge_stats_update_regs(struct bge_softc *sc)
4749 {
4750 struct ifnet *ifp = &sc->ethercom.ec_if;
4751
4752 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4753 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4754
4755 /*
4756 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4757 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4758 * (silicon bug). There's no reliable workaround so just
4759 * ignore the counter
4760 */
4761 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4762 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4763 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4764 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4765 }
4766 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4767 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4768
4769 if (sc->bge_flags & BGEF_RDMA_BUG) {
4770 uint32_t val, ucast, mcast, bcast;
4771
4772 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4773 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4774 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4775 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4776 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4777 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4778
4779 /*
4780 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4781 * frames, it's safe to disable workaround for DMA engine's
4782 * miscalculation of TXMBUF space.
4783 */
4784 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4785 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4786 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4787 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4788 else
4789 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4790 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4791 sc->bge_flags &= ~BGEF_RDMA_BUG;
4792 }
4793 }
4794 }
4795
4796 static void
4797 bge_stats_update(struct bge_softc *sc)
4798 {
4799 struct ifnet *ifp = &sc->ethercom.ec_if;
4800 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4801
4802 #define READ_STAT(sc, stats, stat) \
4803 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4804
4805 ifp->if_collisions +=
4806 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4807 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4808 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4809 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4810 ifp->if_collisions;
4811
4812 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4813 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4814 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4815 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4816 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4817 READ_STAT(sc, stats,
4818 xoffPauseFramesReceived.bge_addr_lo));
4819 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4820 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4821 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4822 READ_STAT(sc, stats,
4823 macControlFramesReceived.bge_addr_lo));
4824 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4825 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4826
4827 #undef READ_STAT
4828
4829 #ifdef notdef
4830 ifp->if_collisions +=
4831 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4832 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4833 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4834 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4835 ifp->if_collisions;
4836 #endif
4837 }
4838
4839 /*
4840 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4841 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4842 * but when such padded frames employ the bge IP/TCP checksum offload,
4843 * the hardware checksum assist gives incorrect results (possibly
4844 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4845 * If we pad such runts with zeros, the onboard checksum comes out correct.
4846 */
4847 static inline int
4848 bge_cksum_pad(struct mbuf *pkt)
4849 {
4850 struct mbuf *last = NULL;
4851 int padlen;
4852
4853 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4854
4855 /* if there's only the packet-header and we can pad there, use it. */
4856 if (pkt->m_pkthdr.len == pkt->m_len &&
4857 M_TRAILINGSPACE(pkt) >= padlen) {
4858 last = pkt;
4859 } else {
4860 /*
4861 * Walk packet chain to find last mbuf. We will either
4862 * pad there, or append a new mbuf and pad it
4863 * (thus perhaps avoiding the bcm5700 dma-min bug).
4864 */
4865 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4866 continue; /* do nothing */
4867 }
4868
4869 /* `last' now points to last in chain. */
4870 if (M_TRAILINGSPACE(last) < padlen) {
4871 /* Allocate new empty mbuf, pad it. Compact later. */
4872 struct mbuf *n;
4873 MGET(n, M_DONTWAIT, MT_DATA);
4874 if (n == NULL)
4875 return ENOBUFS;
4876 n->m_len = 0;
4877 last->m_next = n;
4878 last = n;
4879 }
4880 }
4881
4882 KDASSERT(!M_READONLY(last));
4883 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4884
4885 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4886 memset(mtod(last, char *) + last->m_len, 0, padlen);
4887 last->m_len += padlen;
4888 pkt->m_pkthdr.len += padlen;
4889 return 0;
4890 }
4891
4892 /*
4893 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4894 */
4895 static inline int
4896 bge_compact_dma_runt(struct mbuf *pkt)
4897 {
4898 struct mbuf *m, *prev;
4899 int totlen;
4900
4901 prev = NULL;
4902 totlen = 0;
4903
4904 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
4905 int mlen = m->m_len;
4906 int shortfall = 8 - mlen ;
4907
4908 totlen += mlen;
4909 if (mlen == 0)
4910 continue;
4911 if (mlen >= 8)
4912 continue;
4913
4914 /* If we get here, mbuf data is too small for DMA engine.
4915 * Try to fix by shuffling data to prev or next in chain.
4916 * If that fails, do a compacting deep-copy of the whole chain.
4917 */
4918
4919 /* Internal frag. If fits in prev, copy it there. */
4920 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4921 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4922 prev->m_len += mlen;
4923 m->m_len = 0;
4924 /* XXX stitch chain */
4925 prev->m_next = m_free(m);
4926 m = prev;
4927 continue;
4928 } else if (m->m_next != NULL &&
4929 M_TRAILINGSPACE(m) >= shortfall &&
4930 m->m_next->m_len >= (8 + shortfall)) {
4931 /* m is writable and have enough data in next, pull up. */
4932
4933 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4934 shortfall);
4935 m->m_len += shortfall;
4936 m->m_next->m_len -= shortfall;
4937 m->m_next->m_data += shortfall;
4938 } else if (m->m_next == NULL || 1) {
4939 /* Got a runt at the very end of the packet.
4940 * borrow data from the tail of the preceding mbuf and
4941 * update its length in-place. (The original data is
4942 * still valid, so we can do this even if prev is not
4943 * writable.)
4944 */
4945
4946 /*
4947 * If we'd make prev a runt, just move all of its data.
4948 */
4949 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4950 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4951
4952 if ((prev->m_len - shortfall) < 8)
4953 shortfall = prev->m_len;
4954
4955 #ifdef notyet /* just do the safe slow thing for now */
4956 if (!M_READONLY(m)) {
4957 if (M_LEADINGSPACE(m) < shorfall) {
4958 void *m_dat;
4959 m_dat = (m->m_flags & M_PKTHDR) ?
4960 m->m_pktdat : m->dat;
4961 memmove(m_dat, mtod(m, void*),
4962 m->m_len);
4963 m->m_data = m_dat;
4964 }
4965 } else
4966 #endif /* just do the safe slow thing */
4967 {
4968 struct mbuf * n = NULL;
4969 int newprevlen = prev->m_len - shortfall;
4970
4971 MGET(n, M_NOWAIT, MT_DATA);
4972 if (n == NULL)
4973 return ENOBUFS;
4974 KASSERT(m->m_len + shortfall < MLEN
4975 /*,
4976 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4977
4978 /* first copy the data we're stealing from prev */
4979 memcpy(n->m_data, prev->m_data + newprevlen,
4980 shortfall);
4981
4982 /* update prev->m_len accordingly */
4983 prev->m_len -= shortfall;
4984
4985 /* copy data from runt m */
4986 memcpy(n->m_data + shortfall, m->m_data,
4987 m->m_len);
4988
4989 /* n holds what we stole from prev, plus m */
4990 n->m_len = shortfall + m->m_len;
4991
4992 /* stitch n into chain and free m */
4993 n->m_next = m->m_next;
4994 prev->m_next = n;
4995 /* KASSERT(m->m_next == NULL); */
4996 m->m_next = NULL;
4997 m_free(m);
4998 m = n; /* for continuing loop */
4999 }
5000 }
5001 }
5002 return 0;
5003 }
5004
5005 /*
5006 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5007 * pointers to descriptors.
5008 */
5009 static int
5010 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5011 {
5012 struct ifnet *ifp = &sc->ethercom.ec_if;
5013 struct bge_tx_bd *f, *prev_f;
5014 uint32_t frag, cur;
5015 uint16_t csum_flags = 0;
5016 uint16_t txbd_tso_flags = 0;
5017 struct txdmamap_pool_entry *dma;
5018 bus_dmamap_t dmamap;
5019 bus_dma_tag_t dmatag;
5020 int i = 0;
5021 int use_tso, maxsegsize, error;
5022 bool have_vtag;
5023 uint16_t vtag;
5024 bool remap;
5025
5026 if (m_head->m_pkthdr.csum_flags) {
5027 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5028 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5029 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5030 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5031 }
5032
5033 /*
5034 * If we were asked to do an outboard checksum, and the NIC
5035 * has the bug where it sometimes adds in the Ethernet padding,
5036 * explicitly pad with zeros so the cksum will be correct either way.
5037 * (For now, do this for all chip versions, until newer
5038 * are confirmed to not require the workaround.)
5039 */
5040 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5041 #ifdef notyet
5042 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5043 #endif
5044 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5045 goto check_dma_bug;
5046
5047 if (bge_cksum_pad(m_head) != 0)
5048 return ENOBUFS;
5049
5050 check_dma_bug:
5051 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5052 goto doit;
5053
5054 /*
5055 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5056 * less than eight bytes. If we encounter a teeny mbuf
5057 * at the end of a chain, we can pad. Otherwise, copy.
5058 */
5059 if (bge_compact_dma_runt(m_head) != 0)
5060 return ENOBUFS;
5061
5062 doit:
5063 dma = SLIST_FIRST(&sc->txdma_list);
5064 if (dma == NULL) {
5065 ifp->if_flags |= IFF_OACTIVE;
5066 return ENOBUFS;
5067 }
5068 dmamap = dma->dmamap;
5069 dmatag = sc->bge_dmatag;
5070 dma->is_dma32 = false;
5071
5072 /*
5073 * Set up any necessary TSO state before we start packing...
5074 */
5075 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5076 if (!use_tso) {
5077 maxsegsize = 0;
5078 } else { /* TSO setup */
5079 unsigned mss;
5080 struct ether_header *eh;
5081 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5082 unsigned bge_hlen;
5083 struct mbuf * m0 = m_head;
5084 struct ip *ip;
5085 struct tcphdr *th;
5086 int iphl, hlen;
5087
5088 /*
5089 * XXX It would be nice if the mbuf pkthdr had offset
5090 * fields for the protocol headers.
5091 */
5092
5093 eh = mtod(m0, struct ether_header *);
5094 switch (htons(eh->ether_type)) {
5095 case ETHERTYPE_IP:
5096 offset = ETHER_HDR_LEN;
5097 break;
5098
5099 case ETHERTYPE_VLAN:
5100 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5101 break;
5102
5103 default:
5104 /*
5105 * Don't support this protocol or encapsulation.
5106 */
5107 return ENOBUFS;
5108 }
5109
5110 /*
5111 * TCP/IP headers are in the first mbuf; we can do
5112 * this the easy way.
5113 */
5114 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5115 hlen = iphl + offset;
5116 if (__predict_false(m0->m_len <
5117 (hlen + sizeof(struct tcphdr)))) {
5118
5119 aprint_error_dev(sc->bge_dev,
5120 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5121 "not handled yet\n",
5122 m0->m_len, hlen+ sizeof(struct tcphdr));
5123 #ifdef NOTYET
5124 /*
5125 * XXX jonathan (at) NetBSD.org: untested.
5126 * how to force this branch to be taken?
5127 */
5128 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5129
5130 m_copydata(m0, offset, sizeof(ip), &ip);
5131 m_copydata(m0, hlen, sizeof(th), &th);
5132
5133 ip.ip_len = 0;
5134
5135 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5136 sizeof(ip.ip_len), &ip.ip_len);
5137
5138 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5139 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5140
5141 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5142 sizeof(th.th_sum), &th.th_sum);
5143
5144 hlen += th.th_off << 2;
5145 iptcp_opt_words = hlen;
5146 #else
5147 /*
5148 * if_wm "hard" case not yet supported, can we not
5149 * mandate it out of existence?
5150 */
5151 (void) ip; (void)th; (void) ip_tcp_hlen;
5152
5153 return ENOBUFS;
5154 #endif
5155 } else {
5156 ip = (struct ip *) (mtod(m0, char *) + offset);
5157 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5158 ip_tcp_hlen = iphl + (th->th_off << 2);
5159
5160 /* Total IP/TCP options, in 32-bit words */
5161 iptcp_opt_words = (ip_tcp_hlen
5162 - sizeof(struct tcphdr)
5163 - sizeof(struct ip)) >> 2;
5164 }
5165 if (BGE_IS_575X_PLUS(sc)) {
5166 th->th_sum = 0;
5167 csum_flags = 0;
5168 } else {
5169 /*
5170 * XXX jonathan (at) NetBSD.org: 5705 untested.
5171 * Requires TSO firmware patch for 5701/5703/5704.
5172 */
5173 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5174 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5175 }
5176
5177 mss = m_head->m_pkthdr.segsz;
5178 txbd_tso_flags |=
5179 BGE_TXBDFLAG_CPU_PRE_DMA |
5180 BGE_TXBDFLAG_CPU_POST_DMA;
5181
5182 /*
5183 * Our NIC TSO-assist assumes TSO has standard, optionless
5184 * IPv4 and TCP headers, which total 40 bytes. By default,
5185 * the NIC copies 40 bytes of IP/TCP header from the
5186 * supplied header into the IP/TCP header portion of
5187 * each post-TSO-segment. If the supplied packet has IP or
5188 * TCP options, we need to tell the NIC to copy those extra
5189 * bytes into each post-TSO header, in addition to the normal
5190 * 40-byte IP/TCP header (and to leave space accordingly).
5191 * Unfortunately, the driver encoding of option length
5192 * varies across different ASIC families.
5193 */
5194 tcp_seg_flags = 0;
5195 bge_hlen = ip_tcp_hlen >> 2;
5196 if (BGE_IS_5717_PLUS(sc)) {
5197 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5198 txbd_tso_flags |=
5199 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5200 } else if (BGE_IS_5705_PLUS(sc)) {
5201 tcp_seg_flags = bge_hlen << 11;
5202 } else {
5203 /* XXX iptcp_opt_words or bge_hlen ? */
5204 txbd_tso_flags |= iptcp_opt_words << 12;
5205 }
5206 maxsegsize = mss | tcp_seg_flags;
5207 ip->ip_len = htons(mss + ip_tcp_hlen);
5208 ip->ip_sum = 0;
5209
5210 } /* TSO setup */
5211
5212 have_vtag = vlan_has_tag(m_head);
5213 if (have_vtag)
5214 vtag = vlan_get_tag(m_head);
5215
5216 /*
5217 * Start packing the mbufs in this chain into
5218 * the fragment pointers. Stop when we run out
5219 * of fragments or hit the end of the mbuf chain.
5220 */
5221 remap = true;
5222 load_again:
5223 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5224 if (__predict_false(error)) {
5225 if (error == EFBIG && remap) {
5226 struct mbuf *m;
5227 remap = false;
5228 m = m_defrag(m_head, M_NOWAIT);
5229 if (m != NULL) {
5230 KASSERT(m == m_head);
5231 goto load_again;
5232 }
5233 }
5234 return error;
5235 }
5236 /*
5237 * Sanity check: avoid coming within 16 descriptors
5238 * of the end of the ring.
5239 */
5240 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5241 BGE_TSO_PRINTF(("%s: "
5242 " dmamap_load_mbuf too close to ring wrap\n",
5243 device_xname(sc->bge_dev)));
5244 goto fail_unload;
5245 }
5246
5247 /* Iterate over dmap-map fragments. */
5248 f = prev_f = NULL;
5249 cur = frag = *txidx;
5250
5251 for (i = 0; i < dmamap->dm_nsegs; i++) {
5252 f = &sc->bge_rdata->bge_tx_ring[frag];
5253 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5254 break;
5255
5256 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5257 f->bge_len = dmamap->dm_segs[i].ds_len;
5258 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5259 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5260 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5261 (prev_f != NULL &&
5262 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5263 ) {
5264 /*
5265 * watchdog timeout issue was observed with TSO,
5266 * limiting DMA address space to 32bits seems to
5267 * address the issue.
5268 */
5269 bus_dmamap_unload(dmatag, dmamap);
5270 dmatag = sc->bge_dmatag32;
5271 dmamap = dma->dmamap32;
5272 dma->is_dma32 = true;
5273 remap = true;
5274 goto load_again;
5275 }
5276
5277 /*
5278 * For 5751 and follow-ons, for TSO we must turn
5279 * off checksum-assist flag in the tx-descr, and
5280 * supply the ASIC-revision-specific encoding
5281 * of TSO flags and segsize.
5282 */
5283 if (use_tso) {
5284 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5285 f->bge_rsvd = maxsegsize;
5286 f->bge_flags = csum_flags | txbd_tso_flags;
5287 } else {
5288 f->bge_rsvd = 0;
5289 f->bge_flags =
5290 (csum_flags | txbd_tso_flags) & 0x0fff;
5291 }
5292 } else {
5293 f->bge_rsvd = 0;
5294 f->bge_flags = csum_flags;
5295 }
5296
5297 if (have_vtag) {
5298 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5299 f->bge_vlan_tag = vtag;
5300 } else {
5301 f->bge_vlan_tag = 0;
5302 }
5303 prev_f = f;
5304 cur = frag;
5305 BGE_INC(frag, BGE_TX_RING_CNT);
5306 }
5307
5308 if (i < dmamap->dm_nsegs) {
5309 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5310 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5311 goto fail_unload;
5312 }
5313
5314 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5315 BUS_DMASYNC_PREWRITE);
5316
5317 if (frag == sc->bge_tx_saved_considx) {
5318 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5319 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5320
5321 goto fail_unload;
5322 }
5323
5324 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5325 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5326 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5327 sc->txdma[cur] = dma;
5328 sc->bge_txcnt += dmamap->dm_nsegs;
5329
5330 *txidx = frag;
5331
5332 return 0;
5333
5334 fail_unload:
5335 bus_dmamap_unload(dmatag, dmamap);
5336 ifp->if_flags |= IFF_OACTIVE;
5337
5338 return ENOBUFS;
5339 }
5340
5341 /*
5342 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5343 * to the mbuf data regions directly in the transmit descriptors.
5344 */
5345 static void
5346 bge_start(struct ifnet *ifp)
5347 {
5348 struct bge_softc *sc;
5349 struct mbuf *m_head = NULL;
5350 struct mbuf *m;
5351 uint32_t prodidx;
5352 int pkts = 0;
5353 int error;
5354
5355 sc = ifp->if_softc;
5356
5357 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5358 return;
5359
5360 prodidx = sc->bge_tx_prodidx;
5361
5362 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5363 IFQ_POLL(&ifp->if_snd, m_head);
5364 if (m_head == NULL)
5365 break;
5366
5367 #if 0
5368 /*
5369 * XXX
5370 * safety overkill. If this is a fragmented packet chain
5371 * with delayed TCP/UDP checksums, then only encapsulate
5372 * it if we have enough descriptors to handle the entire
5373 * chain at once.
5374 * (paranoia -- may not actually be needed)
5375 */
5376 if (m_head->m_flags & M_FIRSTFRAG &&
5377 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5378 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5379 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5380 ifp->if_flags |= IFF_OACTIVE;
5381 break;
5382 }
5383 }
5384 #endif
5385
5386 /*
5387 * Pack the data into the transmit ring. If we
5388 * don't have room, set the OACTIVE flag and wait
5389 * for the NIC to drain the ring.
5390 */
5391 error = bge_encap(sc, m_head, &prodidx);
5392 if (__predict_false(error)) {
5393 if (ifp->if_flags & IFF_OACTIVE) {
5394 /* just wait for the transmit ring to drain */
5395 break;
5396 }
5397 IFQ_DEQUEUE(&ifp->if_snd, m);
5398 KASSERT(m == m_head);
5399 m_freem(m_head);
5400 continue;
5401 }
5402
5403 /* now we are committed to transmit the packet */
5404 IFQ_DEQUEUE(&ifp->if_snd, m);
5405 KASSERT(m == m_head);
5406 pkts++;
5407
5408 /*
5409 * If there's a BPF listener, bounce a copy of this frame
5410 * to him.
5411 */
5412 bpf_mtap(ifp, m_head, BPF_D_OUT);
5413 }
5414 if (pkts == 0)
5415 return;
5416
5417 /* Transmit */
5418 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5419 /* 5700 b2 errata */
5420 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5421 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5422
5423 sc->bge_tx_prodidx = prodidx;
5424
5425 /*
5426 * Set a timeout in case the chip goes out to lunch.
5427 */
5428 ifp->if_timer = 5;
5429 }
5430
5431 static int
5432 bge_init(struct ifnet *ifp)
5433 {
5434 struct bge_softc *sc = ifp->if_softc;
5435 const uint16_t *m;
5436 uint32_t mode, reg;
5437 int s, error = 0;
5438
5439 s = splnet();
5440
5441 ifp = &sc->ethercom.ec_if;
5442
5443 /* Cancel pending I/O and flush buffers. */
5444 bge_stop(ifp, 0);
5445
5446 bge_stop_fw(sc);
5447 bge_sig_pre_reset(sc, BGE_RESET_START);
5448 bge_reset(sc);
5449 bge_sig_legacy(sc, BGE_RESET_START);
5450
5451 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5452 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5453 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5454 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5455 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5456
5457 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5458 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5459 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5460 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5461
5462 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5463 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5464 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5465 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5466
5467 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5468 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5469 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5470 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5471 }
5472
5473 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5474 pcireg_t aercap;
5475
5476 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5477 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5478 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5479 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5480 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5481
5482 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5483 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5484 | BGE_PCIE_EIDLE_DELAY_13CLK;
5485 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5486
5487 /* Clear correctable error */
5488 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5489 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5490 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5491 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5492
5493 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5494 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5495 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5496 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5497 }
5498
5499 bge_sig_post_reset(sc, BGE_RESET_START);
5500
5501 bge_chipinit(sc);
5502
5503 /*
5504 * Init the various state machines, ring
5505 * control blocks and firmware.
5506 */
5507 error = bge_blockinit(sc);
5508 if (error != 0) {
5509 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5510 error);
5511 splx(s);
5512 return error;
5513 }
5514
5515 ifp = &sc->ethercom.ec_if;
5516
5517 /* 5718 step 25, 57XX step 54 */
5518 /* Specify MTU. */
5519 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5520 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5521
5522 /* 5718 step 23 */
5523 /* Load our MAC address. */
5524 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5525 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5526 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5527
5528 /* Enable or disable promiscuous mode as needed. */
5529 if (ifp->if_flags & IFF_PROMISC)
5530 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5531 else
5532 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5533
5534 /* Program multicast filter. */
5535 bge_setmulti(sc);
5536
5537 /* Init RX ring. */
5538 bge_init_rx_ring_std(sc);
5539
5540 /*
5541 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5542 * memory to insure that the chip has in fact read the first
5543 * entry of the ring.
5544 */
5545 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5546 uint32_t v, i;
5547 for (i = 0; i < 10; i++) {
5548 DELAY(20);
5549 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5550 if (v == (MCLBYTES - ETHER_ALIGN))
5551 break;
5552 }
5553 if (i == 10)
5554 aprint_error_dev(sc->bge_dev,
5555 "5705 A0 chip failed to load RX ring\n");
5556 }
5557
5558 /* Init jumbo RX ring. */
5559 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5560 bge_init_rx_ring_jumbo(sc);
5561
5562 /* Init our RX return ring index */
5563 sc->bge_rx_saved_considx = 0;
5564
5565 /* Init TX ring. */
5566 bge_init_tx_ring(sc);
5567
5568 /* 5718 step 63, 57XX step 94 */
5569 /* Enable TX MAC state machine lockup fix. */
5570 mode = CSR_READ_4(sc, BGE_TX_MODE);
5571 if (BGE_IS_5755_PLUS(sc) ||
5572 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5573 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5574 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5575 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5576 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5577 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5578 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5579 }
5580
5581 /* Turn on transmitter */
5582 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5583 /* 5718 step 64 */
5584 DELAY(100);
5585
5586 /* 5718 step 65, 57XX step 95 */
5587 /* Turn on receiver */
5588 mode = CSR_READ_4(sc, BGE_RX_MODE);
5589 if (BGE_IS_5755_PLUS(sc))
5590 mode |= BGE_RXMODE_IPV6_ENABLE;
5591 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5592 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5593 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5594 /* 5718 step 66 */
5595 DELAY(10);
5596
5597 /* 5718 step 12, 57XX step 37 */
5598 /*
5599 * XXX Doucments of 5718 series and 577xx say the recommended value
5600 * is 1, but tg3 set 1 only on 57765 series.
5601 */
5602 if (BGE_IS_57765_PLUS(sc))
5603 reg = 1;
5604 else
5605 reg = 2;
5606 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5607
5608 /* Tell firmware we're alive. */
5609 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5610
5611 /* Enable host interrupts. */
5612 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5613 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5614 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5615
5616 if ((error = bge_ifmedia_upd(ifp)) != 0)
5617 goto out;
5618
5619 ifp->if_flags |= IFF_RUNNING;
5620 ifp->if_flags &= ~IFF_OACTIVE;
5621
5622 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5623
5624 out:
5625 sc->bge_if_flags = ifp->if_flags;
5626 splx(s);
5627
5628 return error;
5629 }
5630
5631 /*
5632 * Set media options.
5633 */
5634 static int
5635 bge_ifmedia_upd(struct ifnet *ifp)
5636 {
5637 struct bge_softc *sc = ifp->if_softc;
5638 struct mii_data *mii = &sc->bge_mii;
5639 struct ifmedia *ifm = &sc->bge_ifmedia;
5640 int rc;
5641
5642 /* If this is a 1000baseX NIC, enable the TBI port. */
5643 if (sc->bge_flags & BGEF_FIBER_TBI) {
5644 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5645 return EINVAL;
5646 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5647 case IFM_AUTO:
5648 /*
5649 * The BCM5704 ASIC appears to have a special
5650 * mechanism for programming the autoneg
5651 * advertisement registers in TBI mode.
5652 */
5653 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5654 uint32_t sgdig;
5655 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5656 if (sgdig & BGE_SGDIGSTS_DONE) {
5657 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5658 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5659 sgdig |= BGE_SGDIGCFG_AUTO |
5660 BGE_SGDIGCFG_PAUSE_CAP |
5661 BGE_SGDIGCFG_ASYM_PAUSE;
5662 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5663 sgdig | BGE_SGDIGCFG_SEND);
5664 DELAY(5);
5665 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5666 sgdig);
5667 }
5668 }
5669 break;
5670 case IFM_1000_SX:
5671 if ((ifm->ifm_media & IFM_FDX) != 0) {
5672 BGE_CLRBIT(sc, BGE_MAC_MODE,
5673 BGE_MACMODE_HALF_DUPLEX);
5674 } else {
5675 BGE_SETBIT(sc, BGE_MAC_MODE,
5676 BGE_MACMODE_HALF_DUPLEX);
5677 }
5678 DELAY(40);
5679 break;
5680 default:
5681 return EINVAL;
5682 }
5683 /* XXX 802.3x flow control for 1000BASE-SX */
5684 return 0;
5685 }
5686
5687 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5688 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5689 uint32_t reg;
5690
5691 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5692 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5693 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5694 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5695 }
5696 }
5697
5698 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5699 if ((rc = mii_mediachg(mii)) == ENXIO)
5700 return 0;
5701
5702 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5703 uint32_t reg;
5704
5705 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5706 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5707 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5708 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5709 delay(40);
5710 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5711 }
5712 }
5713
5714 /*
5715 * Force an interrupt so that we will call bge_link_upd
5716 * if needed and clear any pending link state attention.
5717 * Without this we are not getting any further interrupts
5718 * for link state changes and thus will not UP the link and
5719 * not be able to send in bge_start. The only way to get
5720 * things working was to receive a packet and get a RX intr.
5721 */
5722 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5723 sc->bge_flags & BGEF_IS_5788)
5724 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5725 else
5726 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5727
5728 return rc;
5729 }
5730
5731 /*
5732 * Report current media status.
5733 */
5734 static void
5735 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5736 {
5737 struct bge_softc *sc = ifp->if_softc;
5738 struct mii_data *mii = &sc->bge_mii;
5739
5740 if (sc->bge_flags & BGEF_FIBER_TBI) {
5741 ifmr->ifm_status = IFM_AVALID;
5742 ifmr->ifm_active = IFM_ETHER;
5743 if (CSR_READ_4(sc, BGE_MAC_STS) &
5744 BGE_MACSTAT_TBI_PCS_SYNCHED)
5745 ifmr->ifm_status |= IFM_ACTIVE;
5746 ifmr->ifm_active |= IFM_1000_SX;
5747 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5748 ifmr->ifm_active |= IFM_HDX;
5749 else
5750 ifmr->ifm_active |= IFM_FDX;
5751 return;
5752 }
5753
5754 mii_pollstat(mii);
5755 ifmr->ifm_status = mii->mii_media_status;
5756 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5757 sc->bge_flowflags;
5758 }
5759
5760 static int
5761 bge_ifflags_cb(struct ethercom *ec)
5762 {
5763 struct ifnet *ifp = &ec->ec_if;
5764 struct bge_softc *sc = ifp->if_softc;
5765 int change = ifp->if_flags ^ sc->bge_if_flags;
5766
5767 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
5768 return ENETRESET;
5769 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5770 return 0;
5771
5772 if ((ifp->if_flags & IFF_PROMISC) == 0)
5773 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5774 else
5775 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5776
5777 bge_setmulti(sc);
5778
5779 sc->bge_if_flags = ifp->if_flags;
5780 return 0;
5781 }
5782
5783 static int
5784 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5785 {
5786 struct bge_softc *sc = ifp->if_softc;
5787 struct ifreq *ifr = (struct ifreq *) data;
5788 int s, error = 0;
5789 struct mii_data *mii;
5790
5791 s = splnet();
5792
5793 switch (command) {
5794 case SIOCSIFMEDIA:
5795 /* XXX Flow control is not supported for 1000BASE-SX */
5796 if (sc->bge_flags & BGEF_FIBER_TBI) {
5797 ifr->ifr_media &= ~IFM_ETH_FMASK;
5798 sc->bge_flowflags = 0;
5799 }
5800
5801 /* Flow control requires full-duplex mode. */
5802 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5803 (ifr->ifr_media & IFM_FDX) == 0) {
5804 ifr->ifr_media &= ~IFM_ETH_FMASK;
5805 }
5806 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5807 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5808 /* We can do both TXPAUSE and RXPAUSE. */
5809 ifr->ifr_media |=
5810 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5811 }
5812 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5813 }
5814 /* FALLTHROUGH */
5815 case SIOCGIFMEDIA:
5816 if (sc->bge_flags & BGEF_FIBER_TBI) {
5817 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5818 command);
5819 } else {
5820 mii = &sc->bge_mii;
5821 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5822 command);
5823 }
5824 break;
5825 default:
5826 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5827 break;
5828
5829 error = 0;
5830
5831 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5832 ;
5833 else if (ifp->if_flags & IFF_RUNNING)
5834 bge_setmulti(sc);
5835 break;
5836 }
5837
5838 splx(s);
5839
5840 return error;
5841 }
5842
5843 static void
5844 bge_watchdog(struct ifnet *ifp)
5845 {
5846 struct bge_softc *sc;
5847 uint32_t status;
5848
5849 sc = ifp->if_softc;
5850
5851 /* If pause frames are active then don't reset the hardware. */
5852 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5853 status = CSR_READ_4(sc, BGE_RX_STS);
5854 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5855 /*
5856 * If link partner has us in XOFF state then wait for
5857 * the condition to clear.
5858 */
5859 CSR_WRITE_4(sc, BGE_RX_STS, status);
5860 ifp->if_timer = 5;
5861 return;
5862 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5863 (status & BGE_RXSTAT_RCVD_XON) != 0) {
5864 /*
5865 * If link partner has us in XOFF state then wait for
5866 * the condition to clear.
5867 */
5868 CSR_WRITE_4(sc, BGE_RX_STS, status);
5869 ifp->if_timer = 5;
5870 return;
5871 }
5872 /*
5873 * Any other condition is unexpected and the controller
5874 * should be reset.
5875 */
5876 }
5877
5878 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5879
5880 ifp->if_flags &= ~IFF_RUNNING;
5881 bge_init(ifp);
5882
5883 ifp->if_oerrors++;
5884 }
5885
5886 static void
5887 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5888 {
5889 int i;
5890
5891 BGE_CLRBIT_FLUSH(sc, reg, bit);
5892
5893 for (i = 0; i < 1000; i++) {
5894 delay(100);
5895 if ((CSR_READ_4(sc, reg) & bit) == 0)
5896 return;
5897 }
5898
5899 /*
5900 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5901 * on some environment (and once after boot?)
5902 */
5903 if (reg != BGE_SRS_MODE)
5904 aprint_error_dev(sc->bge_dev,
5905 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5906 (u_long)reg, bit);
5907 }
5908
5909 /*
5910 * Stop the adapter and free any mbufs allocated to the
5911 * RX and TX lists.
5912 */
5913 static void
5914 bge_stop(struct ifnet *ifp, int disable)
5915 {
5916 struct bge_softc *sc = ifp->if_softc;
5917
5918 if (disable) {
5919 sc->bge_detaching = 1;
5920 callout_halt(&sc->bge_timeout, NULL);
5921 } else
5922 callout_stop(&sc->bge_timeout);
5923
5924 /* Disable host interrupts. */
5925 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5926 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5927
5928 /*
5929 * Tell firmware we're shutting down.
5930 */
5931 bge_stop_fw(sc);
5932 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5933
5934 /*
5935 * Disable all of the receiver blocks.
5936 */
5937 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5938 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5939 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5940 if (BGE_IS_5700_FAMILY(sc))
5941 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5942 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5943 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5944 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5945
5946 /*
5947 * Disable all of the transmit blocks.
5948 */
5949 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5950 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5951 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5952 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5953 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5954 if (BGE_IS_5700_FAMILY(sc))
5955 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5956 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5957
5958 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5959 delay(40);
5960
5961 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5962
5963 /*
5964 * Shut down all of the memory managers and related
5965 * state machines.
5966 */
5967 /* 5718 step 5a,5b */
5968 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5969 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5970 if (BGE_IS_5700_FAMILY(sc))
5971 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5972
5973 /* 5718 step 5c,5d */
5974 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5975 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5976
5977 if (BGE_IS_5700_FAMILY(sc)) {
5978 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5979 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5980 }
5981
5982 bge_reset(sc);
5983 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5984 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5985
5986 /*
5987 * Keep the ASF firmware running if up.
5988 */
5989 if (sc->bge_asf_mode & ASF_STACKUP)
5990 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5991 else
5992 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5993
5994 /* Free the RX lists. */
5995 bge_free_rx_ring_std(sc, disable);
5996
5997 /* Free jumbo RX list. */
5998 if (BGE_IS_JUMBO_CAPABLE(sc))
5999 bge_free_rx_ring_jumbo(sc);
6000
6001 /* Free TX buffers. */
6002 bge_free_tx_ring(sc, disable);
6003
6004 /*
6005 * Isolate/power down the PHY.
6006 */
6007 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6008 mii_down(&sc->bge_mii);
6009
6010 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6011
6012 /* Clear MAC's link state (PHY may still have link UP). */
6013 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6014
6015 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6016 }
6017
6018 static void
6019 bge_link_upd(struct bge_softc *sc)
6020 {
6021 struct ifnet *ifp = &sc->ethercom.ec_if;
6022 struct mii_data *mii = &sc->bge_mii;
6023 uint32_t status;
6024 uint16_t phyval;
6025 int link;
6026
6027 /* Clear 'pending link event' flag */
6028 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6029
6030 /*
6031 * Process link state changes.
6032 * Grrr. The link status word in the status block does
6033 * not work correctly on the BCM5700 rev AX and BX chips,
6034 * according to all available information. Hence, we have
6035 * to enable MII interrupts in order to properly obtain
6036 * async link changes. Unfortunately, this also means that
6037 * we have to read the MAC status register to detect link
6038 * changes, thereby adding an additional register access to
6039 * the interrupt handler.
6040 */
6041
6042 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6043 status = CSR_READ_4(sc, BGE_MAC_STS);
6044 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6045 mii_pollstat(mii);
6046
6047 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6048 mii->mii_media_status & IFM_ACTIVE &&
6049 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6050 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6051 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6052 (!(mii->mii_media_status & IFM_ACTIVE) ||
6053 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6054 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6055
6056 /* Clear the interrupt */
6057 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6058 BGE_EVTENB_MI_INTERRUPT);
6059 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6060 BRGPHY_MII_ISR, &phyval);
6061 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6062 BRGPHY_MII_IMR, BRGPHY_INTRS);
6063 }
6064 return;
6065 }
6066
6067 if (sc->bge_flags & BGEF_FIBER_TBI) {
6068 status = CSR_READ_4(sc, BGE_MAC_STS);
6069 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6070 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6071 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6072 if (BGE_ASICREV(sc->bge_chipid)
6073 == BGE_ASICREV_BCM5704) {
6074 BGE_CLRBIT(sc, BGE_MAC_MODE,
6075 BGE_MACMODE_TBI_SEND_CFGS);
6076 DELAY(40);
6077 }
6078 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6079 if_link_state_change(ifp, LINK_STATE_UP);
6080 }
6081 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6082 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6083 if_link_state_change(ifp, LINK_STATE_DOWN);
6084 }
6085 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6086 /*
6087 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6088 * bit in status word always set. Workaround this bug by
6089 * reading PHY link status directly.
6090 */
6091 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6092 BGE_STS_LINK : 0;
6093
6094 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6095 mii_pollstat(mii);
6096
6097 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6098 mii->mii_media_status & IFM_ACTIVE &&
6099 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6100 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6101 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6102 (!(mii->mii_media_status & IFM_ACTIVE) ||
6103 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6104 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6105 }
6106 } else {
6107 /*
6108 * For controllers that call mii_tick, we have to poll
6109 * link status.
6110 */
6111 mii_pollstat(mii);
6112 }
6113
6114 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6115 uint32_t reg, scale;
6116
6117 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6118 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6119 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6120 scale = 65;
6121 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6122 scale = 6;
6123 else
6124 scale = 12;
6125
6126 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6127 ~BGE_MISCCFG_TIMER_PRESCALER;
6128 reg |= scale << 1;
6129 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6130 }
6131 /* Clear the attention */
6132 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6133 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6134 BGE_MACSTAT_LINK_CHANGED);
6135 }
6136
6137 static int
6138 bge_sysctl_verify(SYSCTLFN_ARGS)
6139 {
6140 int error, t;
6141 struct sysctlnode node;
6142
6143 node = *rnode;
6144 t = *(int*)rnode->sysctl_data;
6145 node.sysctl_data = &t;
6146 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6147 if (error || newp == NULL)
6148 return error;
6149
6150 #if 0
6151 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6152 node.sysctl_num, rnode->sysctl_num));
6153 #endif
6154
6155 if (node.sysctl_num == bge_rxthresh_nodenum) {
6156 if (t < 0 || t >= NBGE_RX_THRESH)
6157 return EINVAL;
6158 bge_update_all_threshes(t);
6159 } else
6160 return EINVAL;
6161
6162 *(int*)rnode->sysctl_data = t;
6163
6164 return 0;
6165 }
6166
6167 /*
6168 * Set up sysctl(3) MIB, hw.bge.*.
6169 */
6170 static void
6171 bge_sysctl_init(struct bge_softc *sc)
6172 {
6173 int rc, bge_root_num;
6174 const struct sysctlnode *node;
6175
6176 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6177 0, CTLTYPE_NODE, "bge",
6178 SYSCTL_DESCR("BGE interface controls"),
6179 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6180 goto out;
6181 }
6182
6183 bge_root_num = node->sysctl_num;
6184
6185 /* BGE Rx interrupt mitigation level */
6186 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6187 CTLFLAG_READWRITE,
6188 CTLTYPE_INT, "rx_lvl",
6189 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6190 bge_sysctl_verify, 0,
6191 &bge_rx_thresh_lvl,
6192 0, CTL_HW, bge_root_num, CTL_CREATE,
6193 CTL_EOL)) != 0) {
6194 goto out;
6195 }
6196
6197 bge_rxthresh_nodenum = node->sysctl_num;
6198
6199 return;
6200
6201 out:
6202 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6203 }
6204
6205 #ifdef BGE_DEBUG
6206 void
6207 bge_debug_info(struct bge_softc *sc)
6208 {
6209
6210 printf("Hardware Flags:\n");
6211 if (BGE_IS_57765_PLUS(sc))
6212 printf(" - 57765 Plus\n");
6213 if (BGE_IS_5717_PLUS(sc))
6214 printf(" - 5717 Plus\n");
6215 if (BGE_IS_5755_PLUS(sc))
6216 printf(" - 5755 Plus\n");
6217 if (BGE_IS_575X_PLUS(sc))
6218 printf(" - 575X Plus\n");
6219 if (BGE_IS_5705_PLUS(sc))
6220 printf(" - 5705 Plus\n");
6221 if (BGE_IS_5714_FAMILY(sc))
6222 printf(" - 5714 Family\n");
6223 if (BGE_IS_5700_FAMILY(sc))
6224 printf(" - 5700 Family\n");
6225 if (sc->bge_flags & BGEF_IS_5788)
6226 printf(" - 5788\n");
6227 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6228 printf(" - Supports Jumbo Frames\n");
6229 if (sc->bge_flags & BGEF_NO_EEPROM)
6230 printf(" - No EEPROM\n");
6231 if (sc->bge_flags & BGEF_PCIX)
6232 printf(" - PCI-X Bus\n");
6233 if (sc->bge_flags & BGEF_PCIE)
6234 printf(" - PCI Express Bus\n");
6235 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6236 printf(" - RX Alignment Bug\n");
6237 if (sc->bge_flags & BGEF_APE)
6238 printf(" - APE\n");
6239 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6240 printf(" - CPMU\n");
6241 if (sc->bge_flags & BGEF_TSO)
6242 printf(" - TSO\n");
6243 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6244 printf(" - TAGGED_STATUS\n");
6245
6246 /* PHY related */
6247 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6248 printf(" - No 3 LEDs\n");
6249 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6250 printf(" - CRC bug\n");
6251 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6252 printf(" - ADC bug\n");
6253 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6254 printf(" - 5704 A0 bug\n");
6255 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6256 printf(" - jitter bug\n");
6257 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6258 printf(" - BER bug\n");
6259 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6260 printf(" - adjust trim\n");
6261 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6262 printf(" - no wirespeed\n");
6263
6264 /* ASF related */
6265 if (sc->bge_asf_mode & ASF_ENABLE)
6266 printf(" - ASF enable\n");
6267 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6268 printf(" - ASF new handshake\n");
6269 if (sc->bge_asf_mode & ASF_STACKUP)
6270 printf(" - ASF stackup\n");
6271 }
6272 #endif /* BGE_DEBUG */
6273
6274 static int
6275 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6276 {
6277 prop_dictionary_t dict;
6278 prop_data_t ea;
6279
6280 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6281 return 1;
6282
6283 dict = device_properties(sc->bge_dev);
6284 ea = prop_dictionary_get(dict, "mac-address");
6285 if (ea != NULL) {
6286 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6287 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6288 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6289 return 0;
6290 }
6291
6292 return 1;
6293 }
6294
6295 static int
6296 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6297 {
6298 uint32_t mac_addr;
6299
6300 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6301 if ((mac_addr >> 16) == 0x484b) {
6302 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6303 ether_addr[1] = (uint8_t)mac_addr;
6304 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6305 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6306 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6307 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6308 ether_addr[5] = (uint8_t)mac_addr;
6309 return 0;
6310 }
6311 return 1;
6312 }
6313
6314 static int
6315 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6316 {
6317 int mac_offset = BGE_EE_MAC_OFFSET;
6318
6319 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6320 mac_offset = BGE_EE_MAC_OFFSET_5906;
6321
6322 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6323 ETHER_ADDR_LEN));
6324 }
6325
6326 static int
6327 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6328 {
6329
6330 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6331 return 1;
6332
6333 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6334 ETHER_ADDR_LEN));
6335 }
6336
6337 static int
6338 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6339 {
6340 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6341 /* NOTE: Order is critical */
6342 bge_get_eaddr_fw,
6343 bge_get_eaddr_mem,
6344 bge_get_eaddr_nvram,
6345 bge_get_eaddr_eeprom,
6346 NULL
6347 };
6348 const bge_eaddr_fcn_t *func;
6349
6350 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6351 if ((*func)(sc, eaddr) == 0)
6352 break;
6353 }
6354 return (*func == NULL ? ENXIO : 0);
6355 }
6356