if_bge.c revision 1.334 1 /* $NetBSD: if_bge.c,v 1.334 2019/05/29 10:07:29 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.334 2019/05/29 10:07:29 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94 #include <sys/rndsource.h>
95
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_ether.h>
100 #include <net/bpf.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115 #include <dev/pci/pcireg.h>
116 #include <dev/pci/pcivar.h>
117 #include <dev/pci/pcidevs.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/miidevs.h>
122 #include <dev/mii/brgphyreg.h>
123
124 #include <dev/pci/if_bgereg.h>
125 #include <dev/pci/if_bgevar.h>
126
127 #include <prop/proplib.h>
128
129 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
130
131
132 /*
133 * Tunable thresholds for rx-side bge interrupt mitigation.
134 */
135
136 /*
137 * The pairs of values below were obtained from empirical measurement
138 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
139 * interrupt for every N packets received, where N is, approximately,
140 * the second value (rx_max_bds) in each pair. The values are chosen
141 * such that moving from one pair to the succeeding pair was observed
142 * to roughly halve interrupt rate under sustained input packet load.
143 * The values were empirically chosen to avoid overflowing internal
144 * limits on the bcm5700: increasing rx_ticks much beyond 600
145 * results in internal wrapping and higher interrupt rates.
146 * The limit of 46 frames was chosen to match NFS workloads.
147 *
148 * These values also work well on bcm5701, bcm5704C, and (less
149 * tested) bcm5703. On other chipsets, (including the Altima chip
150 * family), the larger values may overflow internal chip limits,
151 * leading to increasing interrupt rates rather than lower interrupt
152 * rates.
153 *
154 * Applications using heavy interrupt mitigation (interrupting every
155 * 32 or 46 frames) in both directions may need to increase the TCP
156 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
157 * full link bandwidth, due to ACKs and window updates lingering
158 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
159 */
160 static const struct bge_load_rx_thresh {
161 int rx_ticks;
162 int rx_max_bds; }
163 bge_rx_threshes[] = {
164 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
165 { 32, 2 },
166 { 50, 4 },
167 { 100, 8 },
168 { 192, 16 },
169 { 416, 32 },
170 { 598, 46 }
171 };
172 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
173
174 /* XXX patchable; should be sysctl'able */
175 static int bge_auto_thresh = 1;
176 static int bge_rx_thresh_lvl;
177
178 static int bge_rxthresh_nodenum;
179
180 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
181
182 static uint32_t bge_chipid(const struct pci_attach_args *);
183 static int bge_can_use_msi(struct bge_softc *);
184 static int bge_probe(device_t, cfdata_t, void *);
185 static void bge_attach(device_t, device_t, void *);
186 static int bge_detach(device_t, int);
187 static void bge_release_resources(struct bge_softc *);
188
189 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
190 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
191 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
194
195 static void bge_txeof(struct bge_softc *);
196 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
197 static void bge_rxeof(struct bge_softc *);
198
199 static void bge_asf_driver_up (struct bge_softc *);
200 static void bge_tick(void *);
201 static void bge_stats_update(struct bge_softc *);
202 static void bge_stats_update_regs(struct bge_softc *);
203 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
204
205 static int bge_intr(void *);
206 static void bge_start(struct ifnet *);
207 static int bge_ifflags_cb(struct ethercom *);
208 static int bge_ioctl(struct ifnet *, u_long, void *);
209 static int bge_init(struct ifnet *);
210 static void bge_stop(struct ifnet *, int);
211 static void bge_watchdog(struct ifnet *);
212 static int bge_ifmedia_upd(struct ifnet *);
213 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
214
215 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
216 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
217
218 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
220 static void bge_setmulti(struct bge_softc *);
221
222 static void bge_handle_events(struct bge_softc *);
223 static int bge_alloc_jumbo_mem(struct bge_softc *);
224 #if 0 /* XXX */
225 static void bge_free_jumbo_mem(struct bge_softc *);
226 #endif
227 static void *bge_jalloc(struct bge_softc *);
228 static void bge_jfree(struct mbuf *, void *, size_t, void *);
229 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
230 bus_dmamap_t);
231 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
232 static int bge_init_rx_ring_std(struct bge_softc *);
233 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
234 static int bge_init_rx_ring_jumbo(struct bge_softc *);
235 static void bge_free_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_tx_ring(struct bge_softc *m, bool);
237 static int bge_init_tx_ring(struct bge_softc *);
238
239 static int bge_chipinit(struct bge_softc *);
240 static int bge_blockinit(struct bge_softc *);
241 static int bge_phy_addr(struct bge_softc *);
242 static uint32_t bge_readmem_ind(struct bge_softc *, int);
243 static void bge_writemem_ind(struct bge_softc *, int, int);
244 static void bge_writembx(struct bge_softc *, int, int);
245 static void bge_writembx_flush(struct bge_softc *, int, int);
246 static void bge_writemem_direct(struct bge_softc *, int, int);
247 static void bge_writereg_ind(struct bge_softc *, int, int);
248 static void bge_set_max_readrq(struct bge_softc *);
249
250 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
251 static int bge_miibus_writereg(device_t, int, int, uint16_t);
252 static void bge_miibus_statchg(struct ifnet *);
253
254 #define BGE_RESET_SHUTDOWN 0
255 #define BGE_RESET_START 1
256 #define BGE_RESET_SUSPEND 2
257 static void bge_sig_post_reset(struct bge_softc *, int);
258 static void bge_sig_legacy(struct bge_softc *, int);
259 static void bge_sig_pre_reset(struct bge_softc *, int);
260 static void bge_wait_for_event_ack(struct bge_softc *);
261 static void bge_stop_fw(struct bge_softc *);
262 static int bge_reset(struct bge_softc *);
263 static void bge_link_upd(struct bge_softc *);
264 static void bge_sysctl_init(struct bge_softc *);
265 static int bge_sysctl_verify(SYSCTLFN_PROTO);
266
267 static void bge_ape_lock_init(struct bge_softc *);
268 static void bge_ape_read_fw_ver(struct bge_softc *);
269 static int bge_ape_lock(struct bge_softc *, int);
270 static void bge_ape_unlock(struct bge_softc *, int);
271 static void bge_ape_send_event(struct bge_softc *, uint32_t);
272 static void bge_ape_driver_state_change(struct bge_softc *, int);
273
274 #ifdef BGE_DEBUG
275 #define DPRINTF(x) if (bgedebug) printf x
276 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
277 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
278 int bgedebug = 0;
279 int bge_tso_debug = 0;
280 void bge_debug_info(struct bge_softc *);
281 #else
282 #define DPRINTF(x)
283 #define DPRINTFN(n, x)
284 #define BGE_TSO_PRINTF(x)
285 #endif
286
287 #ifdef BGE_EVENT_COUNTERS
288 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
289 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
290 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
291 #else
292 #define BGE_EVCNT_INCR(ev) /* nothing */
293 #define BGE_EVCNT_ADD(ev, val) /* nothing */
294 #define BGE_EVCNT_UPD(ev, val) /* nothing */
295 #endif
296
297 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
298 /*
299 * The BCM5700 documentation seems to indicate that the hardware still has the
300 * Alteon vendor ID burned into it, though it should always be overridden by
301 * the value in the EEPROM. We'll check for it anyway.
302 */
303 static const struct bge_product {
304 pci_vendor_id_t bp_vendor;
305 pci_product_id_t bp_product;
306 const char *bp_name;
307 } bge_products[] = {
308 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
309 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
310 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
311 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
312 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
313 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
314 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
315 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
316 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
317 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
318 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
319 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
320 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
321 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
322 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
323 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
324 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
325 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
326 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
327 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
328 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
329 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
330 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
331 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
332 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
333 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
334 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
335 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
336 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
337 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
338 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
339 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
340 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
341 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
342 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
343 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
344 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
345 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
346 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
347 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
348 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
349 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
350 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
351 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
352 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
353 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
354 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
355 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
356 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
357 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
358 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
359 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
360 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
361 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
362 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
363 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
364 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
365 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
366 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
367 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
368 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
369 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
370 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
371 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
372 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
373 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
374 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
375 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
376 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
377 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
378 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
379 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
380 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
381 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
382 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
383 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
384 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
385 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
386 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
387 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
388 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
389 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
390 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
391 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
392 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
393 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
394 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
395 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
396 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
397 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
398 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
399 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
400 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
401 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
402 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
403 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
404 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
405 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
406 { 0, 0, NULL },
407 };
408
409 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
410 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
411 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
412 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
413 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
414 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
415 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
416 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
417 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
418
419 static const struct bge_revision {
420 uint32_t br_chipid;
421 const char *br_name;
422 } bge_revisions[] = {
423 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
424 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
425 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
426 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
427 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
428 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
429 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
430 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
431 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
432 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
433 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
434 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
435 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
436 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
437 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
438 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
439 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
440 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
441 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
442 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
443 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
444 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
445 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
446 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
447 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
448 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
449 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
450 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
451 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
452 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
453 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
454 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
455 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
456 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
457 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
458 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
459 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
460 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
461 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
462 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
463 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
464 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
465 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
466 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
467 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
468 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
469 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
470 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
471 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
472 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
473 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
474 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
475 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
476 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
477 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
478 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
479 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
480 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
481 /* 5754 and 5787 share the same ASIC ID */
482 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
483 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
484 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
485 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
486 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
487 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
488 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
489 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
490 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
491 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
492 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
493
494 { 0, NULL }
495 };
496
497 /*
498 * Some defaults for major revisions, so that newer steppings
499 * that we don't know about have a shot at working.
500 */
501 static const struct bge_revision bge_majorrevs[] = {
502 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
503 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
504 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
505 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
506 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
507 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
508 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
509 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
510 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
511 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
512 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
513 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
514 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
515 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
516 /* 5754 and 5787 share the same ASIC ID */
517 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
518 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
519 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
520 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
521 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
522 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
523 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
524 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
525 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
526
527 { 0, NULL }
528 };
529
530 static int bge_allow_asf = 1;
531
532 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
533 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
534
535 static uint32_t
536 bge_readmem_ind(struct bge_softc *sc, int off)
537 {
538 pcireg_t val;
539
540 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
541 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
542 return 0;
543
544 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
545 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
546 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
547 return val;
548 }
549
550 static void
551 bge_writemem_ind(struct bge_softc *sc, int off, int val)
552 {
553
554 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
555 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
556 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
557 }
558
559 /*
560 * PCI Express only
561 */
562 static void
563 bge_set_max_readrq(struct bge_softc *sc)
564 {
565 pcireg_t val;
566
567 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
568 + PCIE_DCSR);
569 val &= ~PCIE_DCSR_MAX_READ_REQ;
570 switch (sc->bge_expmrq) {
571 case 2048:
572 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
573 break;
574 case 4096:
575 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
576 break;
577 default:
578 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
579 break;
580 }
581 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
582 + PCIE_DCSR, val);
583 }
584
585 #ifdef notdef
586 static uint32_t
587 bge_readreg_ind(struct bge_softc *sc, int off)
588 {
589 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
590 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
591 }
592 #endif
593
594 static void
595 bge_writereg_ind(struct bge_softc *sc, int off, int val)
596 {
597 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
598 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
599 }
600
601 static void
602 bge_writemem_direct(struct bge_softc *sc, int off, int val)
603 {
604 CSR_WRITE_4(sc, off, val);
605 }
606
607 static void
608 bge_writembx(struct bge_softc *sc, int off, int val)
609 {
610 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
611 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
612
613 CSR_WRITE_4(sc, off, val);
614 }
615
616 static void
617 bge_writembx_flush(struct bge_softc *sc, int off, int val)
618 {
619 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
620 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
621
622 CSR_WRITE_4_FLUSH(sc, off, val);
623 }
624
625 /*
626 * Clear all stale locks and select the lock for this driver instance.
627 */
628 void
629 bge_ape_lock_init(struct bge_softc *sc)
630 {
631 struct pci_attach_args *pa = &(sc->bge_pa);
632 uint32_t bit, regbase;
633 int i;
634
635 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
636 regbase = BGE_APE_LOCK_GRANT;
637 else
638 regbase = BGE_APE_PER_LOCK_GRANT;
639
640 /* Clear any stale locks. */
641 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
642 switch (i) {
643 case BGE_APE_LOCK_PHY0:
644 case BGE_APE_LOCK_PHY1:
645 case BGE_APE_LOCK_PHY2:
646 case BGE_APE_LOCK_PHY3:
647 bit = BGE_APE_LOCK_GRANT_DRIVER0;
648 break;
649 default:
650 if (pa->pa_function == 0)
651 bit = BGE_APE_LOCK_GRANT_DRIVER0;
652 else
653 bit = (1 << pa->pa_function);
654 }
655 APE_WRITE_4(sc, regbase + 4 * i, bit);
656 }
657
658 /* Select the PHY lock based on the device's function number. */
659 switch (pa->pa_function) {
660 case 0:
661 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
662 break;
663 case 1:
664 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
665 break;
666 case 2:
667 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
668 break;
669 case 3:
670 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
671 break;
672 default:
673 printf("%s: PHY lock not supported on function\n",
674 device_xname(sc->bge_dev));
675 break;
676 }
677 }
678
679 /*
680 * Check for APE firmware, set flags, and print version info.
681 */
682 void
683 bge_ape_read_fw_ver(struct bge_softc *sc)
684 {
685 const char *fwtype;
686 uint32_t apedata, features;
687
688 /* Check for a valid APE signature in shared memory. */
689 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
690 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
691 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
692 return;
693 }
694
695 /* Check if APE firmware is running. */
696 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
697 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
698 printf("%s: APE signature found but FW status not ready! "
699 "0x%08x\n", device_xname(sc->bge_dev), apedata);
700 return;
701 }
702
703 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
704
705 /* Fetch the APE firwmare type and version. */
706 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
707 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
708 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
709 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
710 fwtype = "NCSI";
711 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
712 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
713 fwtype = "DASH";
714 } else
715 fwtype = "UNKN";
716
717 /* Print the APE firmware version. */
718 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
719 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
720 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
721 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
722 (apedata & BGE_APE_FW_VERSION_BLDMSK));
723 }
724
725 int
726 bge_ape_lock(struct bge_softc *sc, int locknum)
727 {
728 struct pci_attach_args *pa = &(sc->bge_pa);
729 uint32_t bit, gnt, req, status;
730 int i, off;
731
732 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
733 return (0);
734
735 /* Lock request/grant registers have different bases. */
736 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
737 req = BGE_APE_LOCK_REQ;
738 gnt = BGE_APE_LOCK_GRANT;
739 } else {
740 req = BGE_APE_PER_LOCK_REQ;
741 gnt = BGE_APE_PER_LOCK_GRANT;
742 }
743
744 off = 4 * locknum;
745
746 switch (locknum) {
747 case BGE_APE_LOCK_GPIO:
748 /* Lock required when using GPIO. */
749 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
750 return (0);
751 if (pa->pa_function == 0)
752 bit = BGE_APE_LOCK_REQ_DRIVER0;
753 else
754 bit = (1 << pa->pa_function);
755 break;
756 case BGE_APE_LOCK_GRC:
757 /* Lock required to reset the device. */
758 if (pa->pa_function == 0)
759 bit = BGE_APE_LOCK_REQ_DRIVER0;
760 else
761 bit = (1 << pa->pa_function);
762 break;
763 case BGE_APE_LOCK_MEM:
764 /* Lock required when accessing certain APE memory. */
765 if (pa->pa_function == 0)
766 bit = BGE_APE_LOCK_REQ_DRIVER0;
767 else
768 bit = (1 << pa->pa_function);
769 break;
770 case BGE_APE_LOCK_PHY0:
771 case BGE_APE_LOCK_PHY1:
772 case BGE_APE_LOCK_PHY2:
773 case BGE_APE_LOCK_PHY3:
774 /* Lock required when accessing PHYs. */
775 bit = BGE_APE_LOCK_REQ_DRIVER0;
776 break;
777 default:
778 return (EINVAL);
779 }
780
781 /* Request a lock. */
782 APE_WRITE_4_FLUSH(sc, req + off, bit);
783
784 /* Wait up to 1 second to acquire lock. */
785 for (i = 0; i < 20000; i++) {
786 status = APE_READ_4(sc, gnt + off);
787 if (status == bit)
788 break;
789 DELAY(50);
790 }
791
792 /* Handle any errors. */
793 if (status != bit) {
794 printf("%s: APE lock %d request failed! "
795 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
796 device_xname(sc->bge_dev),
797 locknum, req + off, bit & 0xFFFF, gnt + off,
798 status & 0xFFFF);
799 /* Revoke the lock request. */
800 APE_WRITE_4(sc, gnt + off, bit);
801 return (EBUSY);
802 }
803
804 return (0);
805 }
806
807 void
808 bge_ape_unlock(struct bge_softc *sc, int locknum)
809 {
810 struct pci_attach_args *pa = &(sc->bge_pa);
811 uint32_t bit, gnt;
812 int off;
813
814 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
815 return;
816
817 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
818 gnt = BGE_APE_LOCK_GRANT;
819 else
820 gnt = BGE_APE_PER_LOCK_GRANT;
821
822 off = 4 * locknum;
823
824 switch (locknum) {
825 case BGE_APE_LOCK_GPIO:
826 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
827 return;
828 if (pa->pa_function == 0)
829 bit = BGE_APE_LOCK_GRANT_DRIVER0;
830 else
831 bit = (1 << pa->pa_function);
832 break;
833 case BGE_APE_LOCK_GRC:
834 if (pa->pa_function == 0)
835 bit = BGE_APE_LOCK_GRANT_DRIVER0;
836 else
837 bit = (1 << pa->pa_function);
838 break;
839 case BGE_APE_LOCK_MEM:
840 if (pa->pa_function == 0)
841 bit = BGE_APE_LOCK_GRANT_DRIVER0;
842 else
843 bit = (1 << pa->pa_function);
844 break;
845 case BGE_APE_LOCK_PHY0:
846 case BGE_APE_LOCK_PHY1:
847 case BGE_APE_LOCK_PHY2:
848 case BGE_APE_LOCK_PHY3:
849 bit = BGE_APE_LOCK_GRANT_DRIVER0;
850 break;
851 default:
852 return;
853 }
854
855 /* Write and flush for consecutive bge_ape_lock() */
856 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
857 }
858
859 /*
860 * Send an event to the APE firmware.
861 */
862 void
863 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
864 {
865 uint32_t apedata;
866 int i;
867
868 /* NCSI does not support APE events. */
869 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
870 return;
871
872 /* Wait up to 1ms for APE to service previous event. */
873 for (i = 10; i > 0; i--) {
874 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
875 break;
876 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
877 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
878 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
879 BGE_APE_EVENT_STATUS_EVENT_PENDING);
880 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
881 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
882 break;
883 }
884 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
885 DELAY(100);
886 }
887 if (i == 0) {
888 printf("%s: APE event 0x%08x send timed out\n",
889 device_xname(sc->bge_dev), event);
890 }
891 }
892
893 void
894 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
895 {
896 uint32_t apedata, event;
897
898 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
899 return;
900
901 switch (kind) {
902 case BGE_RESET_START:
903 /* If this is the first load, clear the load counter. */
904 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
905 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
906 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
907 else {
908 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
909 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
910 }
911 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
912 BGE_APE_HOST_SEG_SIG_MAGIC);
913 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
914 BGE_APE_HOST_SEG_LEN_MAGIC);
915
916 /* Add some version info if bge(4) supports it. */
917 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
918 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
919 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
920 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
921 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
922 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
923 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
924 BGE_APE_HOST_DRVR_STATE_START);
925 event = BGE_APE_EVENT_STATUS_STATE_START;
926 break;
927 case BGE_RESET_SHUTDOWN:
928 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
929 BGE_APE_HOST_DRVR_STATE_UNLOAD);
930 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
931 break;
932 case BGE_RESET_SUSPEND:
933 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
934 break;
935 default:
936 return;
937 }
938
939 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
940 BGE_APE_EVENT_STATUS_STATE_CHNGE);
941 }
942
943 static uint8_t
944 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
945 {
946 uint32_t access, byte = 0;
947 int i;
948
949 /* Lock. */
950 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
951 for (i = 0; i < 8000; i++) {
952 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
953 break;
954 DELAY(20);
955 }
956 if (i == 8000)
957 return 1;
958
959 /* Enable access. */
960 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
961 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
962
963 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
964 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
965 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
966 DELAY(10);
967 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
968 DELAY(10);
969 break;
970 }
971 }
972
973 if (i == BGE_TIMEOUT * 10) {
974 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
975 return 1;
976 }
977
978 /* Get result. */
979 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
980
981 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
982
983 /* Disable access. */
984 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
985
986 /* Unlock. */
987 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
988
989 return 0;
990 }
991
992 /*
993 * Read a sequence of bytes from NVRAM.
994 */
995 static int
996 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
997 {
998 int error = 0, i;
999 uint8_t byte = 0;
1000
1001 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1002 return 1;
1003
1004 for (i = 0; i < cnt; i++) {
1005 error = bge_nvram_getbyte(sc, off + i, &byte);
1006 if (error)
1007 break;
1008 *(dest + i) = byte;
1009 }
1010
1011 return (error ? 1 : 0);
1012 }
1013
1014 /*
1015 * Read a byte of data stored in the EEPROM at address 'addr.' The
1016 * BCM570x supports both the traditional bitbang interface and an
1017 * auto access interface for reading the EEPROM. We use the auto
1018 * access method.
1019 */
1020 static uint8_t
1021 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1022 {
1023 int i;
1024 uint32_t byte = 0;
1025
1026 /*
1027 * Enable use of auto EEPROM access so we can avoid
1028 * having to use the bitbang method.
1029 */
1030 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1031
1032 /* Reset the EEPROM, load the clock period. */
1033 CSR_WRITE_4(sc, BGE_EE_ADDR,
1034 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1035 DELAY(20);
1036
1037 /* Issue the read EEPROM command. */
1038 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1039
1040 /* Wait for completion */
1041 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1042 DELAY(10);
1043 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1044 break;
1045 }
1046
1047 if (i == BGE_TIMEOUT * 10) {
1048 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1049 return 1;
1050 }
1051
1052 /* Get result. */
1053 byte = CSR_READ_4(sc, BGE_EE_DATA);
1054
1055 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1056
1057 return 0;
1058 }
1059
1060 /*
1061 * Read a sequence of bytes from the EEPROM.
1062 */
1063 static int
1064 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1065 {
1066 int error = 0, i;
1067 uint8_t byte = 0;
1068 char *dest = destv;
1069
1070 for (i = 0; i < cnt; i++) {
1071 error = bge_eeprom_getbyte(sc, off + i, &byte);
1072 if (error)
1073 break;
1074 *(dest + i) = byte;
1075 }
1076
1077 return (error ? 1 : 0);
1078 }
1079
1080 static int
1081 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1082 {
1083 struct bge_softc *sc = device_private(dev);
1084 uint32_t data;
1085 uint32_t autopoll;
1086 int rv = 0;
1087 int i;
1088
1089 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1090 return -1;
1091
1092 /* Reading with autopolling on may trigger PCI errors */
1093 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1094 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1095 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1096 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1097 DELAY(80);
1098 }
1099
1100 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1101 BGE_MIPHY(phy) | BGE_MIREG(reg));
1102
1103 for (i = 0; i < BGE_TIMEOUT; i++) {
1104 delay(10);
1105 data = CSR_READ_4(sc, BGE_MI_COMM);
1106 if (!(data & BGE_MICOMM_BUSY)) {
1107 DELAY(5);
1108 data = CSR_READ_4(sc, BGE_MI_COMM);
1109 break;
1110 }
1111 }
1112
1113 if (i == BGE_TIMEOUT) {
1114 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1115 rv = ETIMEDOUT;
1116 } else if ((data & BGE_MICOMM_READFAIL) != 0)
1117 rv = -1;
1118 else
1119 *val = data & BGE_MICOMM_DATA;
1120
1121 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1122 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1123 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1124 DELAY(80);
1125 }
1126
1127 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1128
1129 return rv;
1130 }
1131
1132 static int
1133 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1134 {
1135 struct bge_softc *sc = device_private(dev);
1136 uint32_t autopoll;
1137 int i;
1138
1139 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1140 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1141 return 0;
1142
1143 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1144 return -1;
1145
1146 /* Reading with autopolling on may trigger PCI errors */
1147 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1148 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1149 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1150 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1151 DELAY(80);
1152 }
1153
1154 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1155 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1156
1157 for (i = 0; i < BGE_TIMEOUT; i++) {
1158 delay(10);
1159 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1160 delay(5);
1161 CSR_READ_4(sc, BGE_MI_COMM);
1162 break;
1163 }
1164 }
1165
1166 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1167 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1168 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1169 delay(80);
1170 }
1171
1172 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1173
1174 if (i == BGE_TIMEOUT) {
1175 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1176 return ETIMEDOUT;
1177 }
1178
1179 return 0;
1180 }
1181
1182 static void
1183 bge_miibus_statchg(struct ifnet *ifp)
1184 {
1185 struct bge_softc *sc = ifp->if_softc;
1186 struct mii_data *mii = &sc->bge_mii;
1187 uint32_t mac_mode, rx_mode, tx_mode;
1188
1189 /*
1190 * Get flow control negotiation result.
1191 */
1192 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1193 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1194 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1195
1196 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1197 mii->mii_media_status & IFM_ACTIVE &&
1198 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1199 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1200 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1201 (!(mii->mii_media_status & IFM_ACTIVE) ||
1202 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1203 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1204
1205 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1206 return;
1207
1208 /* Set the port mode (MII/GMII) to match the link speed. */
1209 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1210 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1211 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1212 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1213 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1214 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1215 mac_mode |= BGE_PORTMODE_GMII;
1216 else
1217 mac_mode |= BGE_PORTMODE_MII;
1218
1219 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1220 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1221 if ((mii->mii_media_active & IFM_FDX) != 0) {
1222 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1223 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1224 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1225 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1226 } else
1227 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1228
1229 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1230 DELAY(40);
1231 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1232 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1233 }
1234
1235 /*
1236 * Update rx threshold levels to values in a particular slot
1237 * of the interrupt-mitigation table bge_rx_threshes.
1238 */
1239 static void
1240 bge_set_thresh(struct ifnet *ifp, int lvl)
1241 {
1242 struct bge_softc *sc = ifp->if_softc;
1243 int s;
1244
1245 /* For now, just save the new Rx-intr thresholds and record
1246 * that a threshold update is pending. Updating the hardware
1247 * registers here (even at splhigh()) is observed to
1248 * occasionaly cause glitches where Rx-interrupts are not
1249 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1250 */
1251 s = splnet();
1252 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1253 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1254 sc->bge_pending_rxintr_change = 1;
1255 splx(s);
1256 }
1257
1258
1259 /*
1260 * Update Rx thresholds of all bge devices
1261 */
1262 static void
1263 bge_update_all_threshes(int lvl)
1264 {
1265 struct ifnet *ifp;
1266 const char * const namebuf = "bge";
1267 int namelen;
1268 int s;
1269
1270 if (lvl < 0)
1271 lvl = 0;
1272 else if (lvl >= NBGE_RX_THRESH)
1273 lvl = NBGE_RX_THRESH - 1;
1274
1275 namelen = strlen(namebuf);
1276 /*
1277 * Now search all the interfaces for this name/number
1278 */
1279 s = pserialize_read_enter();
1280 IFNET_READER_FOREACH(ifp) {
1281 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1282 continue;
1283 /* We got a match: update if doing auto-threshold-tuning */
1284 if (bge_auto_thresh)
1285 bge_set_thresh(ifp, lvl);
1286 }
1287 pserialize_read_exit(s);
1288 }
1289
1290 /*
1291 * Handle events that have triggered interrupts.
1292 */
1293 static void
1294 bge_handle_events(struct bge_softc *sc)
1295 {
1296
1297 return;
1298 }
1299
1300 /*
1301 * Memory management for jumbo frames.
1302 */
1303
1304 static int
1305 bge_alloc_jumbo_mem(struct bge_softc *sc)
1306 {
1307 char *ptr, *kva;
1308 bus_dma_segment_t seg;
1309 int i, rseg, state, error;
1310 struct bge_jpool_entry *entry;
1311
1312 state = error = 0;
1313
1314 /* Grab a big chunk o' storage. */
1315 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1316 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1317 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1318 return ENOBUFS;
1319 }
1320
1321 state = 1;
1322 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1323 BUS_DMA_NOWAIT)) {
1324 aprint_error_dev(sc->bge_dev,
1325 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1326 error = ENOBUFS;
1327 goto out;
1328 }
1329
1330 state = 2;
1331 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1332 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1333 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1334 error = ENOBUFS;
1335 goto out;
1336 }
1337
1338 state = 3;
1339 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1340 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1341 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1342 error = ENOBUFS;
1343 goto out;
1344 }
1345
1346 state = 4;
1347 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1348 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1349
1350 SLIST_INIT(&sc->bge_jfree_listhead);
1351 SLIST_INIT(&sc->bge_jinuse_listhead);
1352
1353 /*
1354 * Now divide it up into 9K pieces and save the addresses
1355 * in an array.
1356 */
1357 ptr = sc->bge_cdata.bge_jumbo_buf;
1358 for (i = 0; i < BGE_JSLOTS; i++) {
1359 sc->bge_cdata.bge_jslots[i] = ptr;
1360 ptr += BGE_JLEN;
1361 entry = malloc(sizeof(struct bge_jpool_entry),
1362 M_DEVBUF, M_NOWAIT);
1363 if (entry == NULL) {
1364 aprint_error_dev(sc->bge_dev,
1365 "no memory for jumbo buffer queue!\n");
1366 error = ENOBUFS;
1367 goto out;
1368 }
1369 entry->slot = i;
1370 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1371 entry, jpool_entries);
1372 }
1373 out:
1374 if (error != 0) {
1375 switch (state) {
1376 case 4:
1377 bus_dmamap_unload(sc->bge_dmatag,
1378 sc->bge_cdata.bge_rx_jumbo_map);
1379 /* FALLTHROUGH */
1380 case 3:
1381 bus_dmamap_destroy(sc->bge_dmatag,
1382 sc->bge_cdata.bge_rx_jumbo_map);
1383 /* FALLTHROUGH */
1384 case 2:
1385 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1386 /* FALLTHROUGH */
1387 case 1:
1388 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1389 break;
1390 default:
1391 break;
1392 }
1393 }
1394
1395 return error;
1396 }
1397
1398 /*
1399 * Allocate a jumbo buffer.
1400 */
1401 static void *
1402 bge_jalloc(struct bge_softc *sc)
1403 {
1404 struct bge_jpool_entry *entry;
1405
1406 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1407
1408 if (entry == NULL) {
1409 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1410 return NULL;
1411 }
1412
1413 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1414 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1415 return (sc->bge_cdata.bge_jslots[entry->slot]);
1416 }
1417
1418 /*
1419 * Release a jumbo buffer.
1420 */
1421 static void
1422 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1423 {
1424 struct bge_jpool_entry *entry;
1425 struct bge_softc *sc;
1426 int i, s;
1427
1428 /* Extract the softc struct pointer. */
1429 sc = (struct bge_softc *)arg;
1430
1431 if (sc == NULL)
1432 panic("bge_jfree: can't find softc pointer!");
1433
1434 /* calculate the slot this buffer belongs to */
1435
1436 i = ((char *)buf
1437 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1438
1439 if ((i < 0) || (i >= BGE_JSLOTS))
1440 panic("bge_jfree: asked to free buffer that we don't manage!");
1441
1442 s = splvm();
1443 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1444 if (entry == NULL)
1445 panic("bge_jfree: buffer not in use!");
1446 entry->slot = i;
1447 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1448 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1449
1450 if (__predict_true(m != NULL))
1451 pool_cache_put(mb_cache, m);
1452 splx(s);
1453 }
1454
1455
1456 /*
1457 * Initialize a standard receive ring descriptor.
1458 */
1459 static int
1460 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1461 bus_dmamap_t dmamap)
1462 {
1463 struct mbuf *m_new = NULL;
1464 struct bge_rx_bd *r;
1465 int error;
1466
1467 if (dmamap == NULL)
1468 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1469
1470 if (dmamap == NULL) {
1471 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1472 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1473 if (error != 0)
1474 return error;
1475 }
1476
1477 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1478
1479 if (m == NULL) {
1480 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1481 if (m_new == NULL)
1482 return ENOBUFS;
1483
1484 MCLGET(m_new, M_DONTWAIT);
1485 if (!(m_new->m_flags & M_EXT)) {
1486 m_freem(m_new);
1487 return ENOBUFS;
1488 }
1489 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1490
1491 } else {
1492 m_new = m;
1493 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1494 m_new->m_data = m_new->m_ext.ext_buf;
1495 }
1496 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1497 m_adj(m_new, ETHER_ALIGN);
1498 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1499 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1500 m_freem(m_new);
1501 return ENOBUFS;
1502 }
1503 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1504 BUS_DMASYNC_PREREAD);
1505
1506 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1507 r = &sc->bge_rdata->bge_rx_std_ring[i];
1508 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1509 r->bge_flags = BGE_RXBDFLAG_END;
1510 r->bge_len = m_new->m_len;
1511 r->bge_idx = i;
1512
1513 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1514 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1515 i * sizeof (struct bge_rx_bd),
1516 sizeof (struct bge_rx_bd),
1517 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1518
1519 return 0;
1520 }
1521
1522 /*
1523 * Initialize a jumbo receive ring descriptor. This allocates
1524 * a jumbo buffer from the pool managed internally by the driver.
1525 */
1526 static int
1527 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1528 {
1529 struct mbuf *m_new = NULL;
1530 struct bge_rx_bd *r;
1531 void *buf = NULL;
1532
1533 if (m == NULL) {
1534
1535 /* Allocate the mbuf. */
1536 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1537 if (m_new == NULL)
1538 return ENOBUFS;
1539
1540 /* Allocate the jumbo buffer */
1541 buf = bge_jalloc(sc);
1542 if (buf == NULL) {
1543 m_freem(m_new);
1544 aprint_error_dev(sc->bge_dev,
1545 "jumbo allocation failed -- packet dropped!\n");
1546 return ENOBUFS;
1547 }
1548
1549 /* Attach the buffer to the mbuf. */
1550 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1551 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1552 bge_jfree, sc);
1553 m_new->m_flags |= M_EXT_RW;
1554 } else {
1555 m_new = m;
1556 buf = m_new->m_data = m_new->m_ext.ext_buf;
1557 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1558 }
1559 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1560 m_adj(m_new, ETHER_ALIGN);
1561 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1562 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1563 BGE_JLEN, BUS_DMASYNC_PREREAD);
1564 /* Set up the descriptor. */
1565 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1566 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1567 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1568 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1569 r->bge_len = m_new->m_len;
1570 r->bge_idx = i;
1571
1572 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1573 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1574 i * sizeof (struct bge_rx_bd),
1575 sizeof (struct bge_rx_bd),
1576 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1577
1578 return 0;
1579 }
1580
1581 /*
1582 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1583 * that's 1MB or memory, which is a lot. For now, we fill only the first
1584 * 256 ring entries and hope that our CPU is fast enough to keep up with
1585 * the NIC.
1586 */
1587 static int
1588 bge_init_rx_ring_std(struct bge_softc *sc)
1589 {
1590 int i;
1591
1592 if (sc->bge_flags & BGEF_RXRING_VALID)
1593 return 0;
1594
1595 for (i = 0; i < BGE_SSLOTS; i++) {
1596 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1597 return ENOBUFS;
1598 }
1599
1600 sc->bge_std = i - 1;
1601 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1602
1603 sc->bge_flags |= BGEF_RXRING_VALID;
1604
1605 return 0;
1606 }
1607
1608 static void
1609 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1610 {
1611 int i;
1612
1613 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1614 return;
1615
1616 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1617 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1618 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1619 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1620 if (disable) {
1621 bus_dmamap_destroy(sc->bge_dmatag,
1622 sc->bge_cdata.bge_rx_std_map[i]);
1623 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1624 }
1625 }
1626 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1627 sizeof(struct bge_rx_bd));
1628 }
1629
1630 sc->bge_flags &= ~BGEF_RXRING_VALID;
1631 }
1632
1633 static int
1634 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1635 {
1636 int i;
1637 volatile struct bge_rcb *rcb;
1638
1639 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1640 return 0;
1641
1642 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1643 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1644 return ENOBUFS;
1645 }
1646
1647 sc->bge_jumbo = i - 1;
1648 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1649
1650 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1651 rcb->bge_maxlen_flags = 0;
1652 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1653
1654 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1655
1656 return 0;
1657 }
1658
1659 static void
1660 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1661 {
1662 int i;
1663
1664 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1665 return;
1666
1667 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1668 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1669 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1670 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1671 }
1672 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1673 sizeof(struct bge_rx_bd));
1674 }
1675
1676 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1677 }
1678
1679 static void
1680 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1681 {
1682 int i;
1683 struct txdmamap_pool_entry *dma;
1684
1685 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1686 return;
1687
1688 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1689 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1690 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1691 sc->bge_cdata.bge_tx_chain[i] = NULL;
1692 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1693 link);
1694 sc->txdma[i] = 0;
1695 }
1696 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1697 sizeof(struct bge_tx_bd));
1698 }
1699
1700 if (disable) {
1701 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1702 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1703 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1704 if (sc->bge_dma64) {
1705 bus_dmamap_destroy(sc->bge_dmatag32,
1706 dma->dmamap32);
1707 }
1708 free(dma, M_DEVBUF);
1709 }
1710 SLIST_INIT(&sc->txdma_list);
1711 }
1712
1713 sc->bge_flags &= ~BGEF_TXRING_VALID;
1714 }
1715
1716 static int
1717 bge_init_tx_ring(struct bge_softc *sc)
1718 {
1719 struct ifnet *ifp = &sc->ethercom.ec_if;
1720 int i;
1721 bus_dmamap_t dmamap, dmamap32;
1722 bus_size_t maxsegsz;
1723 struct txdmamap_pool_entry *dma;
1724
1725 if (sc->bge_flags & BGEF_TXRING_VALID)
1726 return 0;
1727
1728 sc->bge_txcnt = 0;
1729 sc->bge_tx_saved_considx = 0;
1730
1731 /* Initialize transmit producer index for host-memory send ring. */
1732 sc->bge_tx_prodidx = 0;
1733 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1734 /* 5700 b2 errata */
1735 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1736 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1737
1738 /* NIC-memory send ring not used; initialize to zero. */
1739 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1740 /* 5700 b2 errata */
1741 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1742 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1743
1744 /* Limit DMA segment size for some chips */
1745 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1746 (ifp->if_mtu <= ETHERMTU))
1747 maxsegsz = 2048;
1748 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1749 maxsegsz = 4096;
1750 else
1751 maxsegsz = ETHER_MAX_LEN_JUMBO;
1752
1753 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1754 goto alloc_done;
1755
1756 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1757 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1758 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1759 &dmamap))
1760 return ENOBUFS;
1761 if (dmamap == NULL)
1762 panic("dmamap NULL in bge_init_tx_ring");
1763 if (sc->bge_dma64) {
1764 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1765 BGE_NTXSEG, maxsegsz, 0,
1766 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1767 &dmamap32)) {
1768 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1769 return ENOBUFS;
1770 }
1771 if (dmamap32 == NULL)
1772 panic("dmamap32 NULL in bge_init_tx_ring");
1773 } else
1774 dmamap32 = dmamap;
1775 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1776 if (dma == NULL) {
1777 aprint_error_dev(sc->bge_dev,
1778 "can't alloc txdmamap_pool_entry\n");
1779 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1780 if (sc->bge_dma64)
1781 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1782 return ENOMEM;
1783 }
1784 dma->dmamap = dmamap;
1785 dma->dmamap32 = dmamap32;
1786 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1787 }
1788 alloc_done:
1789 sc->bge_flags |= BGEF_TXRING_VALID;
1790
1791 return 0;
1792 }
1793
1794 static void
1795 bge_setmulti(struct bge_softc *sc)
1796 {
1797 struct ethercom *ec = &sc->ethercom;
1798 struct ifnet *ifp = &ec->ec_if;
1799 struct ether_multi *enm;
1800 struct ether_multistep step;
1801 uint32_t hashes[4] = { 0, 0, 0, 0 };
1802 uint32_t h;
1803 int i;
1804
1805 if (ifp->if_flags & IFF_PROMISC)
1806 goto allmulti;
1807
1808 /* Now program new ones. */
1809 ETHER_LOCK(ec);
1810 ETHER_FIRST_MULTI(step, ec, enm);
1811 while (enm != NULL) {
1812 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1813 /*
1814 * We must listen to a range of multicast addresses.
1815 * For now, just accept all multicasts, rather than
1816 * trying to set only those filter bits needed to match
1817 * the range. (At this time, the only use of address
1818 * ranges is for IP multicast routing, for which the
1819 * range is big enough to require all bits set.)
1820 */
1821 ETHER_UNLOCK(ec);
1822 goto allmulti;
1823 }
1824
1825 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1826
1827 /* Just want the 7 least-significant bits. */
1828 h &= 0x7f;
1829
1830 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1831 ETHER_NEXT_MULTI(step, enm);
1832 }
1833 ETHER_UNLOCK(ec);
1834
1835 ifp->if_flags &= ~IFF_ALLMULTI;
1836 goto setit;
1837
1838 allmulti:
1839 ifp->if_flags |= IFF_ALLMULTI;
1840 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1841
1842 setit:
1843 for (i = 0; i < 4; i++)
1844 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1845 }
1846
1847 static void
1848 bge_sig_pre_reset(struct bge_softc *sc, int type)
1849 {
1850
1851 /*
1852 * Some chips don't like this so only do this if ASF is enabled
1853 */
1854 if (sc->bge_asf_mode)
1855 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1856
1857 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1858 switch (type) {
1859 case BGE_RESET_START:
1860 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1861 BGE_FW_DRV_STATE_START);
1862 break;
1863 case BGE_RESET_SHUTDOWN:
1864 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1865 BGE_FW_DRV_STATE_UNLOAD);
1866 break;
1867 case BGE_RESET_SUSPEND:
1868 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1869 BGE_FW_DRV_STATE_SUSPEND);
1870 break;
1871 }
1872 }
1873
1874 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1875 bge_ape_driver_state_change(sc, type);
1876 }
1877
1878 static void
1879 bge_sig_post_reset(struct bge_softc *sc, int type)
1880 {
1881
1882 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1883 switch (type) {
1884 case BGE_RESET_START:
1885 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1886 BGE_FW_DRV_STATE_START_DONE);
1887 /* START DONE */
1888 break;
1889 case BGE_RESET_SHUTDOWN:
1890 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1891 BGE_FW_DRV_STATE_UNLOAD_DONE);
1892 break;
1893 }
1894 }
1895
1896 if (type == BGE_RESET_SHUTDOWN)
1897 bge_ape_driver_state_change(sc, type);
1898 }
1899
1900 static void
1901 bge_sig_legacy(struct bge_softc *sc, int type)
1902 {
1903
1904 if (sc->bge_asf_mode) {
1905 switch (type) {
1906 case BGE_RESET_START:
1907 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1908 BGE_FW_DRV_STATE_START);
1909 break;
1910 case BGE_RESET_SHUTDOWN:
1911 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1912 BGE_FW_DRV_STATE_UNLOAD);
1913 break;
1914 }
1915 }
1916 }
1917
1918 static void
1919 bge_wait_for_event_ack(struct bge_softc *sc)
1920 {
1921 int i;
1922
1923 /* wait up to 2500usec */
1924 for (i = 0; i < 250; i++) {
1925 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1926 BGE_RX_CPU_DRV_EVENT))
1927 break;
1928 DELAY(10);
1929 }
1930 }
1931
1932 static void
1933 bge_stop_fw(struct bge_softc *sc)
1934 {
1935
1936 if (sc->bge_asf_mode) {
1937 bge_wait_for_event_ack(sc);
1938
1939 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1940 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1941 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1942
1943 bge_wait_for_event_ack(sc);
1944 }
1945 }
1946
1947 static int
1948 bge_poll_fw(struct bge_softc *sc)
1949 {
1950 uint32_t val;
1951 int i;
1952
1953 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1954 for (i = 0; i < BGE_TIMEOUT; i++) {
1955 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1956 if (val & BGE_VCPU_STATUS_INIT_DONE)
1957 break;
1958 DELAY(100);
1959 }
1960 if (i >= BGE_TIMEOUT) {
1961 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1962 return -1;
1963 }
1964 } else {
1965 /*
1966 * Poll the value location we just wrote until
1967 * we see the 1's complement of the magic number.
1968 * This indicates that the firmware initialization
1969 * is complete.
1970 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1971 */
1972 for (i = 0; i < BGE_TIMEOUT; i++) {
1973 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1974 if (val == ~BGE_SRAM_FW_MB_MAGIC)
1975 break;
1976 DELAY(10);
1977 }
1978
1979 if ((i >= BGE_TIMEOUT)
1980 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1981 aprint_error_dev(sc->bge_dev,
1982 "firmware handshake timed out, val = %x\n", val);
1983 return -1;
1984 }
1985 }
1986
1987 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1988 /* tg3 says we have to wait extra time */
1989 delay(10 * 1000);
1990 }
1991
1992 return 0;
1993 }
1994
1995 int
1996 bge_phy_addr(struct bge_softc *sc)
1997 {
1998 struct pci_attach_args *pa = &(sc->bge_pa);
1999 int phy_addr = 1;
2000
2001 /*
2002 * PHY address mapping for various devices.
2003 *
2004 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2005 * ---------+-------+-------+-------+-------+
2006 * BCM57XX | 1 | X | X | X |
2007 * BCM5704 | 1 | X | 1 | X |
2008 * BCM5717 | 1 | 8 | 2 | 9 |
2009 * BCM5719 | 1 | 8 | 2 | 9 |
2010 * BCM5720 | 1 | 8 | 2 | 9 |
2011 *
2012 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2013 * ---------+-------+-------+-------+-------+
2014 * BCM57XX | X | X | X | X |
2015 * BCM5704 | X | X | X | X |
2016 * BCM5717 | X | X | X | X |
2017 * BCM5719 | 3 | 10 | 4 | 11 |
2018 * BCM5720 | X | X | X | X |
2019 *
2020 * Other addresses may respond but they are not
2021 * IEEE compliant PHYs and should be ignored.
2022 */
2023 switch (BGE_ASICREV(sc->bge_chipid)) {
2024 case BGE_ASICREV_BCM5717:
2025 case BGE_ASICREV_BCM5719:
2026 case BGE_ASICREV_BCM5720:
2027 phy_addr = pa->pa_function;
2028 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2029 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2030 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2031 } else {
2032 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2033 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2034 }
2035 }
2036
2037 return phy_addr;
2038 }
2039
2040 /*
2041 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2042 * self-test results.
2043 */
2044 static int
2045 bge_chipinit(struct bge_softc *sc)
2046 {
2047 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2048 int i;
2049
2050 /* Set endianness before we access any non-PCI registers. */
2051 misc_ctl = BGE_INIT;
2052 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2053 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2054 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2055 misc_ctl);
2056
2057 /*
2058 * Clear the MAC statistics block in the NIC's
2059 * internal memory.
2060 */
2061 for (i = BGE_STATS_BLOCK;
2062 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2063 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2064
2065 for (i = BGE_STATUS_BLOCK;
2066 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2067 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2068
2069 /* 5717 workaround from tg3 */
2070 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2071 /* Save */
2072 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2073
2074 /* Temporary modify MODE_CTL to control TLP */
2075 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2076 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2077
2078 /* Control TLP */
2079 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2080 BGE_TLP_PHYCTL1);
2081 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2082 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2083
2084 /* Restore */
2085 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2086 }
2087
2088 if (BGE_IS_57765_FAMILY(sc)) {
2089 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2090 /* Save */
2091 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2092
2093 /* Temporary modify MODE_CTL to control TLP */
2094 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2095 CSR_WRITE_4(sc, BGE_MODE_CTL,
2096 reg | BGE_MODECTL_PCIE_TLPADDR1);
2097
2098 /* Control TLP */
2099 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2100 BGE_TLP_PHYCTL5);
2101 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2102 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2103
2104 /* Restore */
2105 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2106 }
2107 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2108 /*
2109 * For the 57766 and non Ax versions of 57765, bootcode
2110 * needs to setup the PCIE Fast Training Sequence (FTS)
2111 * value to prevent transmit hangs.
2112 */
2113 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2114 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2115 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2116
2117 /* Save */
2118 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2119
2120 /* Temporary modify MODE_CTL to control TLP */
2121 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2122 CSR_WRITE_4(sc, BGE_MODE_CTL,
2123 reg | BGE_MODECTL_PCIE_TLPADDR0);
2124
2125 /* Control TLP */
2126 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2127 BGE_TLP_FTSMAX);
2128 reg &= ~BGE_TLP_FTSMAX_MSK;
2129 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2130 reg | BGE_TLP_FTSMAX_VAL);
2131
2132 /* Restore */
2133 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2134 }
2135
2136 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2137 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2138 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2139 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2140 }
2141
2142 /* Set up the PCI DMA control register. */
2143 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2144 if (sc->bge_flags & BGEF_PCIE) {
2145 /* Read watermark not used, 128 bytes for write. */
2146 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2147 device_xname(sc->bge_dev)));
2148 if (sc->bge_mps >= 256)
2149 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2150 else
2151 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2152 } else if (sc->bge_flags & BGEF_PCIX) {
2153 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2154 device_xname(sc->bge_dev)));
2155 /* PCI-X bus */
2156 if (BGE_IS_5714_FAMILY(sc)) {
2157 /* 256 bytes for read and write. */
2158 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2159 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2160
2161 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2162 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2163 else
2164 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2165 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2166 /*
2167 * In the BCM5703, the DMA read watermark should
2168 * be set to less than or equal to the maximum
2169 * memory read byte count of the PCI-X command
2170 * register.
2171 */
2172 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2173 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2174 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2175 /* 1536 bytes for read, 384 bytes for write. */
2176 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2177 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2178 } else {
2179 /* 384 bytes for read and write. */
2180 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2181 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2182 (0x0F);
2183 }
2184
2185 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2186 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2187 uint32_t tmp;
2188
2189 /* Set ONEDMA_ATONCE for hardware workaround. */
2190 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2191 if (tmp == 6 || tmp == 7)
2192 dma_rw_ctl |=
2193 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2194
2195 /* Set PCI-X DMA write workaround. */
2196 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2197 }
2198 } else {
2199 /* Conventional PCI bus: 256 bytes for read and write. */
2200 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2201 device_xname(sc->bge_dev)));
2202 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2203 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2204
2205 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2206 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2207 dma_rw_ctl |= 0x0F;
2208 }
2209
2210 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2211 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2212 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2213 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2214
2215 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2216 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2217 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2218
2219 if (BGE_IS_57765_PLUS(sc)) {
2220 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2221 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2222 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2223
2224 /*
2225 * Enable HW workaround for controllers that misinterpret
2226 * a status tag update and leave interrupts permanently
2227 * disabled.
2228 */
2229 if (!BGE_IS_57765_FAMILY(sc) &&
2230 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2231 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2232 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2233 }
2234
2235 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2236 dma_rw_ctl);
2237
2238 /*
2239 * Set up general mode register.
2240 */
2241 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2242 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2243 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2244 /* Retain Host-2-BMC settings written by APE firmware. */
2245 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2246 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2247 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2248 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2249 }
2250 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2251 BGE_MODECTL_TX_NO_PHDR_CSUM;
2252
2253 /*
2254 * BCM5701 B5 have a bug causing data corruption when using
2255 * 64-bit DMA reads, which can be terminated early and then
2256 * completed later as 32-bit accesses, in combination with
2257 * certain bridges.
2258 */
2259 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2260 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2261 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2262
2263 /*
2264 * Tell the firmware the driver is running
2265 */
2266 if (sc->bge_asf_mode & ASF_STACKUP)
2267 mode_ctl |= BGE_MODECTL_STACKUP;
2268
2269 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2270
2271 /*
2272 * Disable memory write invalidate. Apparently it is not supported
2273 * properly by these devices.
2274 */
2275 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2276 PCI_COMMAND_INVALIDATE_ENABLE);
2277
2278 #ifdef __brokenalpha__
2279 /*
2280 * Must insure that we do not cross an 8K (bytes) boundary
2281 * for DMA reads. Our highest limit is 1K bytes. This is a
2282 * restriction on some ALPHA platforms with early revision
2283 * 21174 PCI chipsets, such as the AlphaPC 164lx
2284 */
2285 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2286 #endif
2287
2288 /* Set the timer prescaler (always 66MHz) */
2289 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2290
2291 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2292 DELAY(40); /* XXX */
2293
2294 /* Put PHY into ready state */
2295 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2296 DELAY(40);
2297 }
2298
2299 return 0;
2300 }
2301
2302 static int
2303 bge_blockinit(struct bge_softc *sc)
2304 {
2305 volatile struct bge_rcb *rcb;
2306 bus_size_t rcb_addr;
2307 struct ifnet *ifp = &sc->ethercom.ec_if;
2308 bge_hostaddr taddr;
2309 uint32_t dmactl, rdmareg, mimode, val;
2310 int i, limit;
2311
2312 /*
2313 * Initialize the memory window pointer register so that
2314 * we can access the first 32K of internal NIC RAM. This will
2315 * allow us to set up the TX send ring RCBs and the RX return
2316 * ring RCBs, plus other things which live in NIC memory.
2317 */
2318 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2319
2320 if (!BGE_IS_5705_PLUS(sc)) {
2321 /* 57XX step 33 */
2322 /* Configure mbuf memory pool */
2323 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2324
2325 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2326 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2327 else
2328 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2329
2330 /* 57XX step 34 */
2331 /* Configure DMA resource pool */
2332 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2333 BGE_DMA_DESCRIPTORS);
2334 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2335 }
2336
2337 /* 5718 step 11, 57XX step 35 */
2338 /*
2339 * Configure mbuf pool watermarks. New broadcom docs strongly
2340 * recommend these.
2341 */
2342 if (BGE_IS_5717_PLUS(sc)) {
2343 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2344 if (ifp->if_mtu > ETHERMTU) {
2345 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2346 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2347 } else {
2348 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2349 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2350 }
2351 } else if (BGE_IS_5705_PLUS(sc)) {
2352 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2353
2354 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2355 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2356 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2357 } else {
2358 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2359 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2360 }
2361 } else {
2362 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2363 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2364 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2365 }
2366
2367 /* 57XX step 36 */
2368 /* Configure DMA resource watermarks */
2369 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2370 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2371
2372 /* 5718 step 13, 57XX step 38 */
2373 /* Enable buffer manager */
2374 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2375 /*
2376 * Change the arbitration algorithm of TXMBUF read request to
2377 * round-robin instead of priority based for BCM5719. When
2378 * TXFIFO is almost empty, RDMA will hold its request until
2379 * TXFIFO is not almost empty.
2380 */
2381 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2382 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2383 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2384 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2385 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2386 val |= BGE_BMANMODE_LOMBUF_ATTN;
2387 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2388
2389 /* 57XX step 39 */
2390 /* Poll for buffer manager start indication */
2391 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2392 DELAY(10);
2393 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2394 break;
2395 }
2396
2397 if (i == BGE_TIMEOUT * 2) {
2398 aprint_error_dev(sc->bge_dev,
2399 "buffer manager failed to start\n");
2400 return ENXIO;
2401 }
2402
2403 /* 57XX step 40 */
2404 /* Enable flow-through queues */
2405 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2406 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2407
2408 /* Wait until queue initialization is complete */
2409 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2410 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2411 break;
2412 DELAY(10);
2413 }
2414
2415 if (i == BGE_TIMEOUT * 2) {
2416 aprint_error_dev(sc->bge_dev,
2417 "flow-through queue init failed\n");
2418 return ENXIO;
2419 }
2420
2421 /*
2422 * Summary of rings supported by the controller:
2423 *
2424 * Standard Receive Producer Ring
2425 * - This ring is used to feed receive buffers for "standard"
2426 * sized frames (typically 1536 bytes) to the controller.
2427 *
2428 * Jumbo Receive Producer Ring
2429 * - This ring is used to feed receive buffers for jumbo sized
2430 * frames (i.e. anything bigger than the "standard" frames)
2431 * to the controller.
2432 *
2433 * Mini Receive Producer Ring
2434 * - This ring is used to feed receive buffers for "mini"
2435 * sized frames to the controller.
2436 * - This feature required external memory for the controller
2437 * but was never used in a production system. Should always
2438 * be disabled.
2439 *
2440 * Receive Return Ring
2441 * - After the controller has placed an incoming frame into a
2442 * receive buffer that buffer is moved into a receive return
2443 * ring. The driver is then responsible to passing the
2444 * buffer up to the stack. Many versions of the controller
2445 * support multiple RR rings.
2446 *
2447 * Send Ring
2448 * - This ring is used for outgoing frames. Many versions of
2449 * the controller support multiple send rings.
2450 */
2451
2452 /* 5718 step 15, 57XX step 41 */
2453 /* Initialize the standard RX ring control block */
2454 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2455 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2456 /* 5718 step 16 */
2457 if (BGE_IS_57765_PLUS(sc)) {
2458 /*
2459 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2460 * Bits 15-2 : Maximum RX frame size
2461 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2462 * Bit 0 : Reserved
2463 */
2464 rcb->bge_maxlen_flags =
2465 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2466 } else if (BGE_IS_5705_PLUS(sc)) {
2467 /*
2468 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2469 * Bits 15-2 : Reserved (should be 0)
2470 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2471 * Bit 0 : Reserved
2472 */
2473 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2474 } else {
2475 /*
2476 * Ring size is always XXX entries
2477 * Bits 31-16: Maximum RX frame size
2478 * Bits 15-2 : Reserved (should be 0)
2479 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2480 * Bit 0 : Reserved
2481 */
2482 rcb->bge_maxlen_flags =
2483 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2484 }
2485 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2486 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2487 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2488 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2489 else
2490 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2491 /* Write the standard receive producer ring control block. */
2492 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2493 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2494 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2495 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2496
2497 /* Reset the standard receive producer ring producer index. */
2498 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2499
2500 /* 57XX step 42 */
2501 /*
2502 * Initialize the jumbo RX ring control block
2503 * We set the 'ring disabled' bit in the flags
2504 * field until we're actually ready to start
2505 * using this ring (i.e. once we set the MTU
2506 * high enough to require it).
2507 */
2508 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2509 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2510 BGE_HOSTADDR(rcb->bge_hostaddr,
2511 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2512 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2513 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2514 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2515 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2516 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2517 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2518 else
2519 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2520 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2521 rcb->bge_hostaddr.bge_addr_hi);
2522 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2523 rcb->bge_hostaddr.bge_addr_lo);
2524 /* Program the jumbo receive producer ring RCB parameters. */
2525 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2526 rcb->bge_maxlen_flags);
2527 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2528 /* Reset the jumbo receive producer ring producer index. */
2529 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2530 }
2531
2532 /* 57XX step 43 */
2533 /* Disable the mini receive producer ring RCB. */
2534 if (BGE_IS_5700_FAMILY(sc)) {
2535 /* Set up dummy disabled mini ring RCB */
2536 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2537 rcb->bge_maxlen_flags =
2538 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2539 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2540 rcb->bge_maxlen_flags);
2541 /* Reset the mini receive producer ring producer index. */
2542 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2543
2544 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2545 offsetof(struct bge_ring_data, bge_info),
2546 sizeof (struct bge_gib),
2547 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2548 }
2549
2550 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2551 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2552 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2553 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2554 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2555 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2556 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2557 }
2558 /* 5718 step 14, 57XX step 44 */
2559 /*
2560 * The BD ring replenish thresholds control how often the
2561 * hardware fetches new BD's from the producer rings in host
2562 * memory. Setting the value too low on a busy system can
2563 * starve the hardware and recue the throughpout.
2564 *
2565 * Set the BD ring replenish thresholds. The recommended
2566 * values are 1/8th the number of descriptors allocated to
2567 * each ring, but since we try to avoid filling the entire
2568 * ring we set these to the minimal value of 8. This needs to
2569 * be done on several of the supported chip revisions anyway,
2570 * to work around HW bugs.
2571 */
2572 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2573 if (BGE_IS_JUMBO_CAPABLE(sc))
2574 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2575
2576 /* 5718 step 18 */
2577 if (BGE_IS_5717_PLUS(sc)) {
2578 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2579 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2580 }
2581
2582 /* 57XX step 45 */
2583 /*
2584 * Disable all send rings by setting the 'ring disabled' bit
2585 * in the flags field of all the TX send ring control blocks,
2586 * located in NIC memory.
2587 */
2588 if (BGE_IS_5700_FAMILY(sc)) {
2589 /* 5700 to 5704 had 16 send rings. */
2590 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2591 } else if (BGE_IS_5717_PLUS(sc)) {
2592 limit = BGE_TX_RINGS_5717_MAX;
2593 } else if (BGE_IS_57765_FAMILY(sc) ||
2594 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2595 limit = BGE_TX_RINGS_57765_MAX;
2596 } else
2597 limit = 1;
2598 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2599 for (i = 0; i < limit; i++) {
2600 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2601 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2602 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2603 rcb_addr += sizeof(struct bge_rcb);
2604 }
2605
2606 /* 57XX step 46 and 47 */
2607 /* Configure send ring RCB 0 (we use only the first ring) */
2608 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2609 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2610 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2611 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2612 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2613 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2614 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2615 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2616 else
2617 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2618 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2619 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2620 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2621
2622 /* 57XX step 48 */
2623 /*
2624 * Disable all receive return rings by setting the
2625 * 'ring diabled' bit in the flags field of all the receive
2626 * return ring control blocks, located in NIC memory.
2627 */
2628 if (BGE_IS_5717_PLUS(sc)) {
2629 /* Should be 17, use 16 until we get an SRAM map. */
2630 limit = 16;
2631 } else if (BGE_IS_5700_FAMILY(sc))
2632 limit = BGE_RX_RINGS_MAX;
2633 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2634 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2635 BGE_IS_57765_FAMILY(sc))
2636 limit = 4;
2637 else
2638 limit = 1;
2639 /* Disable all receive return rings */
2640 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2641 for (i = 0; i < limit; i++) {
2642 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2643 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2644 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2645 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2646 BGE_RCB_FLAG_RING_DISABLED));
2647 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2648 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2649 (i * (sizeof(uint64_t))), 0);
2650 rcb_addr += sizeof(struct bge_rcb);
2651 }
2652
2653 /* 57XX step 49 */
2654 /*
2655 * Set up receive return ring 0. Note that the NIC address
2656 * for RX return rings is 0x0. The return rings live entirely
2657 * within the host, so the nicaddr field in the RCB isn't used.
2658 */
2659 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2660 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2661 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2662 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2663 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2664 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2665 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2666
2667 /* 5718 step 24, 57XX step 53 */
2668 /* Set random backoff seed for TX */
2669 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2670 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2671 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2672 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2673 BGE_TX_BACKOFF_SEED_MASK);
2674
2675 /* 5718 step 26, 57XX step 55 */
2676 /* Set inter-packet gap */
2677 val = 0x2620;
2678 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2679 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2680 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2681 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2682 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2683
2684 /* 5718 step 27, 57XX step 56 */
2685 /*
2686 * Specify which ring to use for packets that don't match
2687 * any RX rules.
2688 */
2689 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2690
2691 /* 5718 step 28, 57XX step 57 */
2692 /*
2693 * Configure number of RX lists. One interrupt distribution
2694 * list, sixteen active lists, one bad frames class.
2695 */
2696 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2697
2698 /* 5718 step 29, 57XX step 58 */
2699 /* Inialize RX list placement stats mask. */
2700 if (BGE_IS_575X_PLUS(sc)) {
2701 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2702 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2703 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2704 } else
2705 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2706
2707 /* 5718 step 30, 57XX step 59 */
2708 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2709
2710 /* 5718 step 33, 57XX step 62 */
2711 /* Disable host coalescing until we get it set up */
2712 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2713
2714 /* 5718 step 34, 57XX step 63 */
2715 /* Poll to make sure it's shut down. */
2716 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2717 DELAY(10);
2718 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2719 break;
2720 }
2721
2722 if (i == BGE_TIMEOUT * 2) {
2723 aprint_error_dev(sc->bge_dev,
2724 "host coalescing engine failed to idle\n");
2725 return ENXIO;
2726 }
2727
2728 /* 5718 step 35, 36, 37 */
2729 /* Set up host coalescing defaults */
2730 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2731 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2732 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2733 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2734 if (!(BGE_IS_5705_PLUS(sc))) {
2735 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2736 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2737 }
2738 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2739 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2740
2741 /* Set up address of statistics block */
2742 if (BGE_IS_5700_FAMILY(sc)) {
2743 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2744 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2745 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2746 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2747 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2748 }
2749
2750 /* 5718 step 38 */
2751 /* Set up address of status block */
2752 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2753 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2754 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2755 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2756 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2757 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2758
2759 /* Set up status block size. */
2760 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2761 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2762 val = BGE_STATBLKSZ_FULL;
2763 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2764 } else {
2765 val = BGE_STATBLKSZ_32BYTE;
2766 bzero(&sc->bge_rdata->bge_status_block, 32);
2767 }
2768
2769 /* 5718 step 39, 57XX step 73 */
2770 /* Turn on host coalescing state machine */
2771 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2772
2773 /* 5718 step 40, 57XX step 74 */
2774 /* Turn on RX BD completion state machine and enable attentions */
2775 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2776 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2777
2778 /* 5718 step 41, 57XX step 75 */
2779 /* Turn on RX list placement state machine */
2780 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2781
2782 /* 57XX step 76 */
2783 /* Turn on RX list selector state machine. */
2784 if (!(BGE_IS_5705_PLUS(sc)))
2785 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2786
2787 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2788 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2789 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2790 BGE_MACMODE_FRMHDR_DMA_ENB;
2791
2792 if (sc->bge_flags & BGEF_FIBER_TBI)
2793 val |= BGE_PORTMODE_TBI;
2794 else if (sc->bge_flags & BGEF_FIBER_MII)
2795 val |= BGE_PORTMODE_GMII;
2796 else
2797 val |= BGE_PORTMODE_MII;
2798
2799 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2800 /* Allow APE to send/receive frames. */
2801 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2802 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2803
2804 /* Turn on DMA, clear stats */
2805 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2806 /* 5718 step 44 */
2807 DELAY(40);
2808
2809 /* 5718 step 45, 57XX step 79 */
2810 /* Set misc. local control, enable interrupts on attentions */
2811 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2812 if (BGE_IS_5717_PLUS(sc)) {
2813 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2814 /* 5718 step 46 */
2815 DELAY(100);
2816 }
2817
2818 /* 57XX step 81 */
2819 /* Turn on DMA completion state machine */
2820 if (!(BGE_IS_5705_PLUS(sc)))
2821 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2822
2823 /* 5718 step 47, 57XX step 82 */
2824 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2825
2826 /* 5718 step 48 */
2827 /* Enable host coalescing bug fix. */
2828 if (BGE_IS_5755_PLUS(sc))
2829 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2830
2831 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2832 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2833
2834 /* Turn on write DMA state machine */
2835 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2836 /* 5718 step 49 */
2837 DELAY(40);
2838
2839 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2840
2841 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2842 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2843
2844 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2845 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2846 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2847 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2848 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2849 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2850
2851 if (sc->bge_flags & BGEF_PCIE)
2852 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2853 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2854 if (ifp->if_mtu <= ETHERMTU)
2855 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2856 }
2857 if (sc->bge_flags & BGEF_TSO) {
2858 val |= BGE_RDMAMODE_TSO4_ENABLE;
2859 if (BGE_IS_5717_PLUS(sc))
2860 val |= BGE_RDMAMODE_TSO6_ENABLE;
2861 }
2862
2863 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2864 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2865 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2866 BGE_RDMAMODE_H2BNC_VLAN_DET;
2867 /*
2868 * Allow multiple outstanding read requests from
2869 * non-LSO read DMA engine.
2870 */
2871 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2872 }
2873
2874 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2875 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2876 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2877 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2878 BGE_IS_57765_PLUS(sc)) {
2879 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2880 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2881 else
2882 rdmareg = BGE_RDMA_RSRVCTRL;
2883 dmactl = CSR_READ_4(sc, rdmareg);
2884 /*
2885 * Adjust tx margin to prevent TX data corruption and
2886 * fix internal FIFO overflow.
2887 */
2888 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2889 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2890 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2891 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2892 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2893 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2894 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2895 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2896 }
2897 /*
2898 * Enable fix for read DMA FIFO overruns.
2899 * The fix is to limit the number of RX BDs
2900 * the hardware would fetch at a fime.
2901 */
2902 CSR_WRITE_4(sc, rdmareg, dmactl |
2903 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2904 }
2905
2906 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2907 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2908 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2909 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2910 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2911 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2912 /*
2913 * Allow 4KB burst length reads for non-LSO frames.
2914 * Enable 512B burst length reads for buffer descriptors.
2915 */
2916 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2917 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2918 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2919 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2920 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2921 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2922 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2923 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2924 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2925 }
2926 /* Turn on read DMA state machine */
2927 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2928 /* 5718 step 52 */
2929 delay(40);
2930
2931 if (sc->bge_flags & BGEF_RDMA_BUG) {
2932 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2933 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2934 if ((val & 0xFFFF) > BGE_FRAMELEN)
2935 break;
2936 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2937 break;
2938 }
2939 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2940 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2941 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2942 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2943 else
2944 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2945 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2946 }
2947 }
2948
2949 /* 5718 step 56, 57XX step 84 */
2950 /* Turn on RX data completion state machine */
2951 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2952
2953 /* Turn on RX data and RX BD initiator state machine */
2954 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2955
2956 /* 57XX step 85 */
2957 /* Turn on Mbuf cluster free state machine */
2958 if (!BGE_IS_5705_PLUS(sc))
2959 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2960
2961 /* 5718 step 57, 57XX step 86 */
2962 /* Turn on send data completion state machine */
2963 val = BGE_SDCMODE_ENABLE;
2964 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2965 val |= BGE_SDCMODE_CDELAY;
2966 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2967
2968 /* 5718 step 58 */
2969 /* Turn on send BD completion state machine */
2970 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2971
2972 /* 57XX step 88 */
2973 /* Turn on RX BD initiator state machine */
2974 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2975
2976 /* 5718 step 60, 57XX step 90 */
2977 /* Turn on send data initiator state machine */
2978 if (sc->bge_flags & BGEF_TSO) {
2979 /* XXX: magic value from Linux driver */
2980 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2981 BGE_SDIMODE_HW_LSO_PRE_DMA);
2982 } else
2983 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2984
2985 /* 5718 step 61, 57XX step 91 */
2986 /* Turn on send BD initiator state machine */
2987 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2988
2989 /* 5718 step 62, 57XX step 92 */
2990 /* Turn on send BD selector state machine */
2991 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2992
2993 /* 5718 step 31, 57XX step 60 */
2994 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2995 /* 5718 step 32, 57XX step 61 */
2996 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2997 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2998
2999 /* ack/clear link change events */
3000 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3001 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3002 BGE_MACSTAT_LINK_CHANGED);
3003 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3004
3005 /*
3006 * Enable attention when the link has changed state for
3007 * devices that use auto polling.
3008 */
3009 if (sc->bge_flags & BGEF_FIBER_TBI) {
3010 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3011 } else {
3012 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3013 mimode = BGE_MIMODE_500KHZ_CONST;
3014 else
3015 mimode = BGE_MIMODE_BASE;
3016 /* 5718 step 68. 5718 step 69 (optionally). */
3017 if (BGE_IS_5700_FAMILY(sc) ||
3018 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3019 mimode |= BGE_MIMODE_AUTOPOLL;
3020 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3021 }
3022 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3023 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3024 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3025 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3026 BGE_EVTENB_MI_INTERRUPT);
3027 }
3028
3029 /*
3030 * Clear any pending link state attention.
3031 * Otherwise some link state change events may be lost until attention
3032 * is cleared by bge_intr() -> bge_link_upd() sequence.
3033 * It's not necessary on newer BCM chips - perhaps enabling link
3034 * state change attentions implies clearing pending attention.
3035 */
3036 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3037 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3038 BGE_MACSTAT_LINK_CHANGED);
3039
3040 /* Enable link state change attentions. */
3041 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3042
3043 return 0;
3044 }
3045
3046 static const struct bge_revision *
3047 bge_lookup_rev(uint32_t chipid)
3048 {
3049 const struct bge_revision *br;
3050
3051 for (br = bge_revisions; br->br_name != NULL; br++) {
3052 if (br->br_chipid == chipid)
3053 return br;
3054 }
3055
3056 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3057 if (br->br_chipid == BGE_ASICREV(chipid))
3058 return br;
3059 }
3060
3061 return NULL;
3062 }
3063
3064 static const struct bge_product *
3065 bge_lookup(const struct pci_attach_args *pa)
3066 {
3067 const struct bge_product *bp;
3068
3069 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3070 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3071 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3072 return bp;
3073 }
3074
3075 return NULL;
3076 }
3077
3078 static uint32_t
3079 bge_chipid(const struct pci_attach_args *pa)
3080 {
3081 uint32_t id;
3082
3083 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3084 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3085
3086 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3087 switch (PCI_PRODUCT(pa->pa_id)) {
3088 case PCI_PRODUCT_BROADCOM_BCM5717:
3089 case PCI_PRODUCT_BROADCOM_BCM5718:
3090 case PCI_PRODUCT_BROADCOM_BCM5719:
3091 case PCI_PRODUCT_BROADCOM_BCM5720:
3092 case PCI_PRODUCT_BROADCOM_BCM5725:
3093 case PCI_PRODUCT_BROADCOM_BCM5727:
3094 case PCI_PRODUCT_BROADCOM_BCM5762:
3095 case PCI_PRODUCT_BROADCOM_BCM57764:
3096 case PCI_PRODUCT_BROADCOM_BCM57767:
3097 case PCI_PRODUCT_BROADCOM_BCM57787:
3098 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3099 BGE_PCI_GEN2_PRODID_ASICREV);
3100 break;
3101 case PCI_PRODUCT_BROADCOM_BCM57761:
3102 case PCI_PRODUCT_BROADCOM_BCM57762:
3103 case PCI_PRODUCT_BROADCOM_BCM57765:
3104 case PCI_PRODUCT_BROADCOM_BCM57766:
3105 case PCI_PRODUCT_BROADCOM_BCM57781:
3106 case PCI_PRODUCT_BROADCOM_BCM57782:
3107 case PCI_PRODUCT_BROADCOM_BCM57785:
3108 case PCI_PRODUCT_BROADCOM_BCM57786:
3109 case PCI_PRODUCT_BROADCOM_BCM57791:
3110 case PCI_PRODUCT_BROADCOM_BCM57795:
3111 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3112 BGE_PCI_GEN15_PRODID_ASICREV);
3113 break;
3114 default:
3115 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3116 BGE_PCI_PRODID_ASICREV);
3117 break;
3118 }
3119 }
3120
3121 return id;
3122 }
3123
3124 /*
3125 * Return true if MSI can be used with this device.
3126 */
3127 static int
3128 bge_can_use_msi(struct bge_softc *sc)
3129 {
3130 int can_use_msi = 0;
3131
3132 switch (BGE_ASICREV(sc->bge_chipid)) {
3133 case BGE_ASICREV_BCM5714_A0:
3134 case BGE_ASICREV_BCM5714:
3135 /*
3136 * Apparently, MSI doesn't work when these chips are
3137 * configured in single-port mode.
3138 */
3139 break;
3140 case BGE_ASICREV_BCM5750:
3141 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3142 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3143 can_use_msi = 1;
3144 break;
3145 default:
3146 if (BGE_IS_575X_PLUS(sc))
3147 can_use_msi = 1;
3148 }
3149 return (can_use_msi);
3150 }
3151
3152 /*
3153 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3154 * against our list and return its name if we find a match. Note
3155 * that since the Broadcom controller contains VPD support, we
3156 * can get the device name string from the controller itself instead
3157 * of the compiled-in string. This is a little slow, but it guarantees
3158 * we'll always announce the right product name.
3159 */
3160 static int
3161 bge_probe(device_t parent, cfdata_t match, void *aux)
3162 {
3163 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3164
3165 if (bge_lookup(pa) != NULL)
3166 return 1;
3167
3168 return 0;
3169 }
3170
3171 static void
3172 bge_attach(device_t parent, device_t self, void *aux)
3173 {
3174 struct bge_softc *sc = device_private(self);
3175 struct pci_attach_args *pa = aux;
3176 prop_dictionary_t dict;
3177 const struct bge_product *bp;
3178 const struct bge_revision *br;
3179 pci_chipset_tag_t pc;
3180 const char *intrstr = NULL;
3181 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3182 uint32_t command;
3183 struct ifnet *ifp;
3184 struct mii_data * const mii = &sc->bge_mii;
3185 uint32_t misccfg, mimode;
3186 void * kva;
3187 u_char eaddr[ETHER_ADDR_LEN];
3188 pcireg_t memtype, subid, reg;
3189 bus_addr_t memaddr;
3190 uint32_t pm_ctl;
3191 bool no_seeprom;
3192 int capmask;
3193 int mii_flags;
3194 int map_flags;
3195 char intrbuf[PCI_INTRSTR_LEN];
3196
3197 bp = bge_lookup(pa);
3198 KASSERT(bp != NULL);
3199
3200 sc->sc_pc = pa->pa_pc;
3201 sc->sc_pcitag = pa->pa_tag;
3202 sc->bge_dev = self;
3203
3204 sc->bge_pa = *pa;
3205 pc = sc->sc_pc;
3206 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3207
3208 aprint_naive(": Ethernet controller\n");
3209 aprint_normal(": %s Ethernet\n", bp->bp_name);
3210
3211 /*
3212 * Map control/status registers.
3213 */
3214 DPRINTFN(5, ("Map control/status regs\n"));
3215 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3216 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3217 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3218 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3219
3220 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3221 aprint_error_dev(sc->bge_dev,
3222 "failed to enable memory mapping!\n");
3223 return;
3224 }
3225
3226 DPRINTFN(5, ("pci_mem_find\n"));
3227 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3228 switch (memtype) {
3229 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3230 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3231 #if 0
3232 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3233 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3234 &memaddr, &sc->bge_bsize) == 0)
3235 break;
3236 #else
3237 /*
3238 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3239 * system get NMI on boot (PR#48451). This problem might not be
3240 * the driver's bug but our PCI common part's bug. Until we
3241 * find a real reason, we ignore the prefetchable bit.
3242 */
3243 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3244 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3245 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3246 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3247 map_flags, &sc->bge_bhandle) == 0) {
3248 sc->bge_btag = pa->pa_memt;
3249 break;
3250 }
3251 }
3252 #endif
3253 /* FALLTHROUGH */
3254 default:
3255 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3256 return;
3257 }
3258
3259 /* Save various chip information. */
3260 sc->bge_chipid = bge_chipid(pa);
3261 sc->bge_phy_addr = bge_phy_addr(sc);
3262
3263 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3264 &sc->bge_pciecap, NULL) != 0) {
3265 /* PCIe */
3266 sc->bge_flags |= BGEF_PCIE;
3267 /* Extract supported maximum payload size. */
3268 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3269 sc->bge_pciecap + PCIE_DCAP);
3270 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3271 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3272 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3273 sc->bge_expmrq = 2048;
3274 else
3275 sc->bge_expmrq = 4096;
3276 bge_set_max_readrq(sc);
3277 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3278 /* PCIe without PCIe cap */
3279 sc->bge_flags |= BGEF_PCIE;
3280 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3281 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3282 /* PCI-X */
3283 sc->bge_flags |= BGEF_PCIX;
3284 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3285 &sc->bge_pcixcap, NULL) == 0)
3286 aprint_error_dev(sc->bge_dev,
3287 "unable to find PCIX capability\n");
3288 }
3289
3290 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3291 /*
3292 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3293 * can clobber the chip's PCI config-space power control
3294 * registers, leaving the card in D3 powersave state. We do
3295 * not have memory-mapped registers in this state, so force
3296 * device into D0 state before starting initialization.
3297 */
3298 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3299 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3300 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3301 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3302 DELAY(1000); /* 27 usec is allegedly sufficent */
3303 }
3304
3305 /* Save chipset family. */
3306 switch (BGE_ASICREV(sc->bge_chipid)) {
3307 case BGE_ASICREV_BCM5717:
3308 case BGE_ASICREV_BCM5719:
3309 case BGE_ASICREV_BCM5720:
3310 sc->bge_flags |= BGEF_5717_PLUS;
3311 /* FALLTHROUGH */
3312 case BGE_ASICREV_BCM5762:
3313 case BGE_ASICREV_BCM57765:
3314 case BGE_ASICREV_BCM57766:
3315 if (!BGE_IS_5717_PLUS(sc))
3316 sc->bge_flags |= BGEF_57765_FAMILY;
3317 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3318 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3319 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3320 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3321 /*
3322 * Enable work around for DMA engine miscalculation
3323 * of TXMBUF available space.
3324 */
3325 sc->bge_flags |= BGEF_RDMA_BUG;
3326
3327 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3328 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3329 /* Jumbo frame on BCM5719 A0 does not work. */
3330 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3331 }
3332 }
3333 break;
3334 case BGE_ASICREV_BCM5755:
3335 case BGE_ASICREV_BCM5761:
3336 case BGE_ASICREV_BCM5784:
3337 case BGE_ASICREV_BCM5785:
3338 case BGE_ASICREV_BCM5787:
3339 case BGE_ASICREV_BCM57780:
3340 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3341 break;
3342 case BGE_ASICREV_BCM5700:
3343 case BGE_ASICREV_BCM5701:
3344 case BGE_ASICREV_BCM5703:
3345 case BGE_ASICREV_BCM5704:
3346 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3347 break;
3348 case BGE_ASICREV_BCM5714_A0:
3349 case BGE_ASICREV_BCM5780:
3350 case BGE_ASICREV_BCM5714:
3351 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3352 /* FALLTHROUGH */
3353 case BGE_ASICREV_BCM5750:
3354 case BGE_ASICREV_BCM5752:
3355 case BGE_ASICREV_BCM5906:
3356 sc->bge_flags |= BGEF_575X_PLUS;
3357 /* FALLTHROUGH */
3358 case BGE_ASICREV_BCM5705:
3359 sc->bge_flags |= BGEF_5705_PLUS;
3360 break;
3361 }
3362
3363 /* Identify chips with APE processor. */
3364 switch (BGE_ASICREV(sc->bge_chipid)) {
3365 case BGE_ASICREV_BCM5717:
3366 case BGE_ASICREV_BCM5719:
3367 case BGE_ASICREV_BCM5720:
3368 case BGE_ASICREV_BCM5761:
3369 case BGE_ASICREV_BCM5762:
3370 sc->bge_flags |= BGEF_APE;
3371 break;
3372 }
3373
3374 /*
3375 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3376 * not actually a MAC controller bug but an issue with the embedded
3377 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3378 */
3379 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3380 sc->bge_flags |= BGEF_40BIT_BUG;
3381
3382 /* Chips with APE need BAR2 access for APE registers/memory. */
3383 if ((sc->bge_flags & BGEF_APE) != 0) {
3384 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3385 #if 0
3386 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3387 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3388 &sc->bge_apesize)) {
3389 aprint_error_dev(sc->bge_dev,
3390 "couldn't map BAR2 memory\n");
3391 return;
3392 }
3393 #else
3394 /*
3395 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3396 * system get NMI on boot (PR#48451). This problem might not be
3397 * the driver's bug but our PCI common part's bug. Until we
3398 * find a real reason, we ignore the prefetchable bit.
3399 */
3400 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3401 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3402 aprint_error_dev(sc->bge_dev,
3403 "couldn't map BAR2 memory\n");
3404 return;
3405 }
3406
3407 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3408 if (bus_space_map(pa->pa_memt, memaddr,
3409 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3410 aprint_error_dev(sc->bge_dev,
3411 "couldn't map BAR2 memory\n");
3412 return;
3413 }
3414 sc->bge_apetag = pa->pa_memt;
3415 #endif
3416
3417 /* Enable APE register/memory access by host driver. */
3418 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3419 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3420 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3421 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3422 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3423
3424 bge_ape_lock_init(sc);
3425 bge_ape_read_fw_ver(sc);
3426 }
3427
3428 /* Identify the chips that use an CPMU. */
3429 if (BGE_IS_5717_PLUS(sc) ||
3430 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3431 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3432 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3433 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3434 sc->bge_flags |= BGEF_CPMU_PRESENT;
3435
3436 /* Set MI_MODE */
3437 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3438 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3439 mimode |= BGE_MIMODE_500KHZ_CONST;
3440 else
3441 mimode |= BGE_MIMODE_BASE;
3442 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3443
3444 /*
3445 * When using the BCM5701 in PCI-X mode, data corruption has
3446 * been observed in the first few bytes of some received packets.
3447 * Aligning the packet buffer in memory eliminates the corruption.
3448 * Unfortunately, this misaligns the packet payloads. On platforms
3449 * which do not support unaligned accesses, we will realign the
3450 * payloads by copying the received packets.
3451 */
3452 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3453 sc->bge_flags & BGEF_PCIX)
3454 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3455
3456 if (BGE_IS_5700_FAMILY(sc))
3457 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3458
3459 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3460 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3461
3462 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3463 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3464 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3465 sc->bge_flags |= BGEF_IS_5788;
3466
3467 /*
3468 * Some controllers seem to require a special firmware to use
3469 * TSO. But the firmware is not available to FreeBSD and Linux
3470 * claims that the TSO performed by the firmware is slower than
3471 * hardware based TSO. Moreover the firmware based TSO has one
3472 * known bug which can't handle TSO if ethernet header + IP/TCP
3473 * header is greater than 80 bytes. The workaround for the TSO
3474 * bug exist but it seems it's too expensive than not using
3475 * TSO at all. Some hardwares also have the TSO bug so limit
3476 * the TSO to the controllers that are not affected TSO issues
3477 * (e.g. 5755 or higher).
3478 */
3479 if (BGE_IS_5755_PLUS(sc)) {
3480 /*
3481 * BCM5754 and BCM5787 shares the same ASIC id so
3482 * explicit device id check is required.
3483 */
3484 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3485 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3486 sc->bge_flags |= BGEF_TSO;
3487 /* TSO on BCM5719 A0 does not work. */
3488 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3489 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3490 sc->bge_flags &= ~BGEF_TSO;
3491 }
3492
3493 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3494 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3495 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3496 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3497 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3498 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3499 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3500 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3501 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3502 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3503 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3504 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3505 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3506 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3507 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3508 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3509 /* These chips are 10/100 only. */
3510 capmask &= ~BMSR_EXTSTAT;
3511 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3512 }
3513
3514 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3515 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3516 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3517 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3518 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3519
3520 /* Set various PHY bug flags. */
3521 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3522 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3523 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3524 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3525 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3526 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3527 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3528 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3529 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3530 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3531 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3532 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3533 if (BGE_IS_5705_PLUS(sc) &&
3534 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3535 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3536 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3537 !BGE_IS_57765_PLUS(sc)) {
3538 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3539 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3540 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3541 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3542 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3543 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3544 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3545 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3546 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3547 } else
3548 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3549 }
3550
3551 /*
3552 * SEEPROM check.
3553 * First check if firmware knows we do not have SEEPROM.
3554 */
3555 if (prop_dictionary_get_bool(device_properties(self),
3556 "without-seeprom", &no_seeprom) && no_seeprom)
3557 sc->bge_flags |= BGEF_NO_EEPROM;
3558
3559 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3560 sc->bge_flags |= BGEF_NO_EEPROM;
3561
3562 /* Now check the 'ROM failed' bit on the RX CPU */
3563 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3564 sc->bge_flags |= BGEF_NO_EEPROM;
3565
3566 sc->bge_asf_mode = 0;
3567 /* No ASF if APE present. */
3568 if ((sc->bge_flags & BGEF_APE) == 0) {
3569 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3570 BGE_SRAM_DATA_SIG_MAGIC)) {
3571 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3572 BGE_HWCFG_ASF) {
3573 sc->bge_asf_mode |= ASF_ENABLE;
3574 sc->bge_asf_mode |= ASF_STACKUP;
3575 if (BGE_IS_575X_PLUS(sc))
3576 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3577 }
3578 }
3579 }
3580
3581 int counts[PCI_INTR_TYPE_SIZE] = {
3582 [PCI_INTR_TYPE_INTX] = 1,
3583 [PCI_INTR_TYPE_MSI] = 1,
3584 [PCI_INTR_TYPE_MSIX] = 1,
3585 };
3586 int max_type = PCI_INTR_TYPE_MSIX;
3587
3588 if (!bge_can_use_msi(sc)) {
3589 /* MSI broken, allow only INTx */
3590 max_type = PCI_INTR_TYPE_INTX;
3591 }
3592
3593 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3594 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3595 return;
3596 }
3597
3598 DPRINTFN(5, ("pci_intr_string\n"));
3599 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3600 sizeof(intrbuf));
3601 DPRINTFN(5, ("pci_intr_establish\n"));
3602 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3603 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3604 if (sc->bge_intrhand == NULL) {
3605 pci_intr_release(pc, sc->bge_pihp, 1);
3606 sc->bge_pihp = NULL;
3607
3608 aprint_error_dev(self, "couldn't establish interrupt");
3609 if (intrstr != NULL)
3610 aprint_error(" at %s", intrstr);
3611 aprint_error("\n");
3612 return;
3613 }
3614 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3615
3616 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3617 case PCI_INTR_TYPE_MSIX:
3618 case PCI_INTR_TYPE_MSI:
3619 KASSERT(bge_can_use_msi(sc));
3620 sc->bge_flags |= BGEF_MSI;
3621 break;
3622 default:
3623 /* nothing to do */
3624 break;
3625 }
3626
3627 /*
3628 * All controllers except BCM5700 supports tagged status but
3629 * we use tagged status only for MSI case on BCM5717. Otherwise
3630 * MSI on BCM5717 does not work.
3631 */
3632 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3633 sc->bge_flags |= BGEF_TAGGED_STATUS;
3634
3635 /*
3636 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3637 * lock in bge_reset().
3638 */
3639 CSR_WRITE_4(sc, BGE_EE_ADDR,
3640 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3641 delay(1000);
3642 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3643
3644 bge_stop_fw(sc);
3645 bge_sig_pre_reset(sc, BGE_RESET_START);
3646 if (bge_reset(sc))
3647 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3648
3649 /*
3650 * Read the hardware config word in the first 32k of NIC internal
3651 * memory, or fall back to the config word in the EEPROM.
3652 * Note: on some BCM5700 cards, this value appears to be unset.
3653 */
3654 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3655 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3656 BGE_SRAM_DATA_SIG_MAGIC) {
3657 uint32_t tmp;
3658
3659 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3660 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3661 BGE_SRAM_DATA_VER_SHIFT;
3662 if ((0 < tmp) && (tmp < 0x100))
3663 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3664 if (sc->bge_flags & BGEF_PCIE)
3665 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3666 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3667 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3668 if (BGE_IS_5717_PLUS(sc))
3669 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3670 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3671 bge_read_eeprom(sc, (void *)&hwcfg,
3672 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3673 hwcfg = be32toh(hwcfg);
3674 }
3675 aprint_normal_dev(sc->bge_dev,
3676 "HW config %08x, %08x, %08x, %08x %08x\n",
3677 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3678
3679 bge_sig_legacy(sc, BGE_RESET_START);
3680 bge_sig_post_reset(sc, BGE_RESET_START);
3681
3682 if (bge_chipinit(sc)) {
3683 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3684 bge_release_resources(sc);
3685 return;
3686 }
3687
3688 /*
3689 * Get station address from the EEPROM.
3690 */
3691 if (bge_get_eaddr(sc, eaddr)) {
3692 aprint_error_dev(sc->bge_dev,
3693 "failed to read station address\n");
3694 bge_release_resources(sc);
3695 return;
3696 }
3697
3698 br = bge_lookup_rev(sc->bge_chipid);
3699
3700 if (br == NULL) {
3701 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3702 sc->bge_chipid);
3703 } else {
3704 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3705 br->br_name, sc->bge_chipid);
3706 }
3707 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3708
3709 /* Allocate the general information block and ring buffers. */
3710 if (pci_dma64_available(pa)) {
3711 sc->bge_dmatag = pa->pa_dmat64;
3712 sc->bge_dmatag32 = pa->pa_dmat;
3713 sc->bge_dma64 = true;
3714 } else {
3715 sc->bge_dmatag = pa->pa_dmat;
3716 sc->bge_dmatag32 = pa->pa_dmat;
3717 sc->bge_dma64 = false;
3718 }
3719
3720 /* 40bit DMA workaround */
3721 if (sizeof(bus_addr_t) > 4) {
3722 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3723 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3724
3725 if (bus_dmatag_subregion(olddmatag, 0,
3726 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3727 BUS_DMA_NOWAIT) != 0) {
3728 aprint_error_dev(self,
3729 "WARNING: failed to restrict dma range,"
3730 " falling back to parent bus dma range\n");
3731 sc->bge_dmatag = olddmatag;
3732 }
3733 }
3734 }
3735 SLIST_INIT(&sc->txdma_list);
3736 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3737 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3738 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3739 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3740 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3741 return;
3742 }
3743 DPRINTFN(5, ("bus_dmamem_map\n"));
3744 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3745 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3746 BUS_DMA_NOWAIT)) {
3747 aprint_error_dev(sc->bge_dev,
3748 "can't map DMA buffers (%zu bytes)\n",
3749 sizeof(struct bge_ring_data));
3750 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3751 sc->bge_ring_rseg);
3752 return;
3753 }
3754 DPRINTFN(5, ("bus_dmamem_create\n"));
3755 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3756 sizeof(struct bge_ring_data), 0,
3757 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3758 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3759 bus_dmamem_unmap(sc->bge_dmatag, kva,
3760 sizeof(struct bge_ring_data));
3761 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3762 sc->bge_ring_rseg);
3763 return;
3764 }
3765 DPRINTFN(5, ("bus_dmamem_load\n"));
3766 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3767 sizeof(struct bge_ring_data), NULL,
3768 BUS_DMA_NOWAIT)) {
3769 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3770 bus_dmamem_unmap(sc->bge_dmatag, kva,
3771 sizeof(struct bge_ring_data));
3772 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3773 sc->bge_ring_rseg);
3774 return;
3775 }
3776
3777 DPRINTFN(5, ("bzero\n"));
3778 sc->bge_rdata = (struct bge_ring_data *)kva;
3779
3780 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3781
3782 /* Try to allocate memory for jumbo buffers. */
3783 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3784 if (bge_alloc_jumbo_mem(sc)) {
3785 aprint_error_dev(sc->bge_dev,
3786 "jumbo buffer allocation failed\n");
3787 } else
3788 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3789 }
3790
3791 /* Set default tuneable values. */
3792 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3793 sc->bge_rx_coal_ticks = 150;
3794 sc->bge_rx_max_coal_bds = 64;
3795 sc->bge_tx_coal_ticks = 300;
3796 sc->bge_tx_max_coal_bds = 400;
3797 if (BGE_IS_5705_PLUS(sc)) {
3798 sc->bge_tx_coal_ticks = (12 * 5);
3799 sc->bge_tx_max_coal_bds = (12 * 5);
3800 aprint_verbose_dev(sc->bge_dev,
3801 "setting short Tx thresholds\n");
3802 }
3803
3804 if (BGE_IS_5717_PLUS(sc))
3805 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3806 else if (BGE_IS_5705_PLUS(sc))
3807 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3808 else
3809 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3810
3811 /* Set up ifnet structure */
3812 ifp = &sc->ethercom.ec_if;
3813 ifp->if_softc = sc;
3814 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3815 ifp->if_ioctl = bge_ioctl;
3816 ifp->if_stop = bge_stop;
3817 ifp->if_start = bge_start;
3818 ifp->if_init = bge_init;
3819 ifp->if_watchdog = bge_watchdog;
3820 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3821 IFQ_SET_READY(&ifp->if_snd);
3822 DPRINTFN(5, ("strcpy if_xname\n"));
3823 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3824
3825 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3826 sc->ethercom.ec_if.if_capabilities |=
3827 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3828 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3829 sc->ethercom.ec_if.if_capabilities |=
3830 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3831 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3832 #endif
3833 sc->ethercom.ec_capabilities |=
3834 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3835
3836 if (sc->bge_flags & BGEF_TSO)
3837 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3838
3839 /*
3840 * Do MII setup.
3841 */
3842 DPRINTFN(5, ("mii setup\n"));
3843 mii->mii_ifp = ifp;
3844 mii->mii_readreg = bge_miibus_readreg;
3845 mii->mii_writereg = bge_miibus_writereg;
3846 mii->mii_statchg = bge_miibus_statchg;
3847
3848 /*
3849 * Figure out what sort of media we have by checking the hardware
3850 * config word. Note: on some BCM5700 cards, this value appears to be
3851 * unset. If that's the case, we have to rely on identifying the NIC
3852 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3853 * The SysKonnect SK-9D41 is a 1000baseSX card.
3854 */
3855 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3856 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3857 if (BGE_IS_5705_PLUS(sc)) {
3858 sc->bge_flags |= BGEF_FIBER_MII;
3859 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3860 } else
3861 sc->bge_flags |= BGEF_FIBER_TBI;
3862 }
3863
3864 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3865 if (BGE_IS_JUMBO_CAPABLE(sc))
3866 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3867
3868 /* set phyflags and chipid before mii_attach() */
3869 dict = device_properties(self);
3870 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3871 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3872
3873 /* Initialize ifmedia structures. */
3874 if (sc->bge_flags & BGEF_FIBER_TBI) {
3875 sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
3876 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3877 bge_ifmedia_sts);
3878 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3879 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3880 0, NULL);
3881 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3882 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3883 /* Pretend the user requested this setting */
3884 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3885 } else {
3886 /*
3887 * Do transceiver setup and tell the firmware the
3888 * driver is down so we can try to get access the
3889 * probe if ASF is running. Retry a couple of times
3890 * if we get a conflict with the ASF firmware accessing
3891 * the PHY.
3892 */
3893 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3894 bge_asf_driver_up(sc);
3895
3896 sc->ethercom.ec_mii = mii;
3897 ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3898 bge_ifmedia_sts);
3899 mii_flags = MIIF_DOPAUSE;
3900 if (sc->bge_flags & BGEF_FIBER_MII)
3901 mii_flags |= MIIF_HAVEFIBER;
3902 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
3903 MII_OFFSET_ANY, mii_flags);
3904
3905 if (LIST_EMPTY(&mii->mii_phys)) {
3906 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3907 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
3908 0, NULL);
3909 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
3910 } else
3911 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
3912
3913 /*
3914 * Now tell the firmware we are going up after probing the PHY
3915 */
3916 if (sc->bge_asf_mode & ASF_STACKUP)
3917 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3918 }
3919
3920 /*
3921 * Call MI attach routine.
3922 */
3923 DPRINTFN(5, ("if_attach\n"));
3924 if_attach(ifp);
3925 if_deferred_start_init(ifp, NULL);
3926 DPRINTFN(5, ("ether_ifattach\n"));
3927 ether_ifattach(ifp, eaddr);
3928 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3929 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3930 RND_TYPE_NET, RND_FLAG_DEFAULT);
3931 #ifdef BGE_EVENT_COUNTERS
3932 /*
3933 * Attach event counters.
3934 */
3935 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3936 NULL, device_xname(sc->bge_dev), "intr");
3937 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3938 NULL, device_xname(sc->bge_dev), "intr_spurious");
3939 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3940 NULL, device_xname(sc->bge_dev), "intr_spurious2");
3941 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3942 NULL, device_xname(sc->bge_dev), "tx_xoff");
3943 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3944 NULL, device_xname(sc->bge_dev), "tx_xon");
3945 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3946 NULL, device_xname(sc->bge_dev), "rx_xoff");
3947 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3948 NULL, device_xname(sc->bge_dev), "rx_xon");
3949 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3950 NULL, device_xname(sc->bge_dev), "rx_macctl");
3951 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3952 NULL, device_xname(sc->bge_dev), "xoffentered");
3953 #endif /* BGE_EVENT_COUNTERS */
3954 DPRINTFN(5, ("callout_init\n"));
3955 callout_init(&sc->bge_timeout, 0);
3956
3957 if (pmf_device_register(self, NULL, NULL))
3958 pmf_class_network_register(self, ifp);
3959 else
3960 aprint_error_dev(self, "couldn't establish power handler\n");
3961
3962 bge_sysctl_init(sc);
3963
3964 #ifdef BGE_DEBUG
3965 bge_debug_info(sc);
3966 #endif
3967 }
3968
3969 /*
3970 * Stop all chip I/O so that the kernel's probe routines don't
3971 * get confused by errant DMAs when rebooting.
3972 */
3973 static int
3974 bge_detach(device_t self, int flags __unused)
3975 {
3976 struct bge_softc *sc = device_private(self);
3977 struct ifnet *ifp = &sc->ethercom.ec_if;
3978 int s;
3979
3980 s = splnet();
3981 /* Stop the interface. Callouts are stopped in it. */
3982 bge_stop(ifp, 1);
3983 splx(s);
3984
3985 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3986
3987 /* Delete all remaining media. */
3988 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3989
3990 ether_ifdetach(ifp);
3991 if_detach(ifp);
3992
3993 bge_release_resources(sc);
3994
3995 return 0;
3996 }
3997
3998 static void
3999 bge_release_resources(struct bge_softc *sc)
4000 {
4001
4002 /* Detach sysctl */
4003 if (sc->bge_log != NULL)
4004 sysctl_teardown(&sc->bge_log);
4005
4006 #ifdef BGE_EVENT_COUNTERS
4007 /* Detach event counters. */
4008 evcnt_detach(&sc->bge_ev_intr);
4009 evcnt_detach(&sc->bge_ev_intr_spurious);
4010 evcnt_detach(&sc->bge_ev_intr_spurious2);
4011 evcnt_detach(&sc->bge_ev_tx_xoff);
4012 evcnt_detach(&sc->bge_ev_tx_xon);
4013 evcnt_detach(&sc->bge_ev_rx_xoff);
4014 evcnt_detach(&sc->bge_ev_rx_xon);
4015 evcnt_detach(&sc->bge_ev_rx_macctl);
4016 evcnt_detach(&sc->bge_ev_xoffentered);
4017 #endif /* BGE_EVENT_COUNTERS */
4018
4019 /* Disestablish the interrupt handler */
4020 if (sc->bge_intrhand != NULL) {
4021 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4022 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4023 sc->bge_intrhand = NULL;
4024 }
4025
4026 if (sc->bge_dmatag != NULL) {
4027 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4028 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4029 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4030 sizeof(struct bge_ring_data));
4031 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4032 sc->bge_ring_rseg);
4033 }
4034
4035 /* Unmap the device registers */
4036 if (sc->bge_bsize != 0) {
4037 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4038 sc->bge_bsize = 0;
4039 }
4040
4041 /* Unmap the APE registers */
4042 if (sc->bge_apesize != 0) {
4043 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4044 sc->bge_apesize);
4045 sc->bge_apesize = 0;
4046 }
4047 }
4048
4049 static int
4050 bge_reset(struct bge_softc *sc)
4051 {
4052 uint32_t cachesize, command;
4053 uint32_t reset, mac_mode, mac_mode_mask;
4054 pcireg_t devctl, reg;
4055 int i, val;
4056 void (*write_op)(struct bge_softc *, int, int);
4057
4058 /* Make mask for BGE_MAC_MODE register. */
4059 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4060 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4061 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4062 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4063 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4064
4065 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4066 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4067 if (sc->bge_flags & BGEF_PCIE)
4068 write_op = bge_writemem_direct;
4069 else
4070 write_op = bge_writemem_ind;
4071 } else
4072 write_op = bge_writereg_ind;
4073
4074 /* 57XX step 4 */
4075 /* Acquire the NVM lock */
4076 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4077 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4078 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4079 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4080 for (i = 0; i < 8000; i++) {
4081 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4082 BGE_NVRAMSWARB_GNT1)
4083 break;
4084 DELAY(20);
4085 }
4086 if (i == 8000) {
4087 printf("%s: NVRAM lock timedout!\n",
4088 device_xname(sc->bge_dev));
4089 }
4090 }
4091
4092 /* Take APE lock when performing reset. */
4093 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4094
4095 /* 57XX step 3 */
4096 /* Save some important PCI state. */
4097 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4098 /* 5718 reset step 3 */
4099 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4100
4101 /* 5718 reset step 5, 57XX step 5b-5d */
4102 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4103 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4104 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4105
4106 /* XXX ???: Disable fastboot on controllers that support it. */
4107 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4108 BGE_IS_5755_PLUS(sc))
4109 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4110
4111 /* 5718 reset step 2, 57XX step 6 */
4112 /*
4113 * Write the magic number to SRAM at offset 0xB50.
4114 * When firmware finishes its initialization it will
4115 * write ~BGE_MAGIC_NUMBER to the same location.
4116 */
4117 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4118
4119 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4120 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4121 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4122 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4123 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4124 }
4125
4126 /* 5718 reset step 6, 57XX step 7 */
4127 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4128 /*
4129 * XXX: from FreeBSD/Linux; no documentation
4130 */
4131 if (sc->bge_flags & BGEF_PCIE) {
4132 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4133 !BGE_IS_57765_PLUS(sc) &&
4134 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4135 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4136 /* PCI Express 1.0 system */
4137 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4138 BGE_PHY_PCIE_SCRAM_MODE);
4139 }
4140 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4141 /*
4142 * Prevent PCI Express link training
4143 * during global reset.
4144 */
4145 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4146 reset |= (1 << 29);
4147 }
4148 }
4149
4150 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4151 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4152 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4153 i | BGE_VCPU_STATUS_DRV_RESET);
4154 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4155 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4156 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4157 }
4158
4159 /*
4160 * Set GPHY Power Down Override to leave GPHY
4161 * powered up in D0 uninitialized.
4162 */
4163 if (BGE_IS_5705_PLUS(sc) &&
4164 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4165 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4166
4167 /* Issue global reset */
4168 write_op(sc, BGE_MISC_CFG, reset);
4169
4170 /* 5718 reset step 7, 57XX step 8 */
4171 if (sc->bge_flags & BGEF_PCIE)
4172 delay(100*1000); /* too big */
4173 else
4174 delay(1000);
4175
4176 if (sc->bge_flags & BGEF_PCIE) {
4177 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4178 DELAY(500000);
4179 /* XXX: Magic Numbers */
4180 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4181 BGE_PCI_UNKNOWN0);
4182 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4183 BGE_PCI_UNKNOWN0,
4184 reg | (1 << 15));
4185 }
4186 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4187 sc->bge_pciecap + PCIE_DCSR);
4188 /* Clear enable no snoop and disable relaxed ordering. */
4189 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4190 PCIE_DCSR_ENA_NO_SNOOP);
4191
4192 /* Set PCIE max payload size to 128 for older PCIe devices */
4193 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4194 devctl &= ~(0x00e0);
4195 /* Clear device status register. Write 1b to clear */
4196 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4197 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4198 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4199 sc->bge_pciecap + PCIE_DCSR, devctl);
4200 bge_set_max_readrq(sc);
4201 }
4202
4203 /* From Linux: dummy read to flush PCI posted writes */
4204 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4205
4206 /*
4207 * Reset some of the PCI state that got zapped by reset
4208 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4209 * set, too.
4210 */
4211 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4212 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4213 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4214 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4215 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4216 (sc->bge_flags & BGEF_PCIX) != 0)
4217 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4218 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4219 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4220 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4221 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4222 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4223 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4224 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4225
4226 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4227 if (sc->bge_flags & BGEF_PCIX) {
4228 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4229 + PCIX_CMD);
4230 /* Set max memory read byte count to 2K */
4231 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4232 reg &= ~PCIX_CMD_BYTECNT_MASK;
4233 reg |= PCIX_CMD_BCNT_2048;
4234 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4235 /*
4236 * For 5704, set max outstanding split transaction
4237 * field to 0 (0 means it supports 1 request)
4238 */
4239 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4240 | PCIX_CMD_BYTECNT_MASK);
4241 reg |= PCIX_CMD_BCNT_2048;
4242 }
4243 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4244 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4245 }
4246
4247 /* 5718 reset step 10, 57XX step 12 */
4248 /* Enable memory arbiter. */
4249 if (BGE_IS_5714_FAMILY(sc)) {
4250 val = CSR_READ_4(sc, BGE_MARB_MODE);
4251 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4252 } else
4253 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4254
4255 /* XXX 5721, 5751 and 5752 */
4256 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4257 /* Step 19: */
4258 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4259 /* Step 20: */
4260 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4261 }
4262
4263 /* 5718 reset step 12, 57XX step 15 and 16 */
4264 /* Fix up byte swapping */
4265 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4266
4267 /* 5718 reset step 13, 57XX step 17 */
4268 /* Poll until the firmware initialization is complete */
4269 bge_poll_fw(sc);
4270
4271 /* 57XX step 21 */
4272 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4273 pcireg_t msidata;
4274
4275 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4276 BGE_PCI_MSI_DATA);
4277 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4278 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4279 msidata);
4280 }
4281
4282 /* 57XX step 18 */
4283 /* Write mac mode. */
4284 val = CSR_READ_4(sc, BGE_MAC_MODE);
4285 /* Restore mac_mode_mask's bits using mac_mode */
4286 val = (val & ~mac_mode_mask) | mac_mode;
4287 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4288 DELAY(40);
4289
4290 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4291
4292 /*
4293 * The 5704 in TBI mode apparently needs some special
4294 * adjustment to insure the SERDES drive level is set
4295 * to 1.2V.
4296 */
4297 if (sc->bge_flags & BGEF_FIBER_TBI &&
4298 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4299 uint32_t serdescfg;
4300
4301 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4302 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4303 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4304 }
4305
4306 if (sc->bge_flags & BGEF_PCIE &&
4307 !BGE_IS_57765_PLUS(sc) &&
4308 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4309 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4310 uint32_t v;
4311
4312 /* Enable PCI Express bug fix */
4313 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4314 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4315 v | BGE_TLP_DATA_FIFO_PROTECT);
4316 }
4317
4318 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4319 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4320 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4321
4322 return 0;
4323 }
4324
4325 /*
4326 * Frame reception handling. This is called if there's a frame
4327 * on the receive return list.
4328 *
4329 * Note: we have to be able to handle two possibilities here:
4330 * 1) the frame is from the jumbo receive ring
4331 * 2) the frame is from the standard receive ring
4332 */
4333
4334 static void
4335 bge_rxeof(struct bge_softc *sc)
4336 {
4337 struct ifnet *ifp;
4338 uint16_t rx_prod, rx_cons;
4339 int stdcnt = 0, jumbocnt = 0;
4340 bus_dmamap_t dmamap;
4341 bus_addr_t offset, toff;
4342 bus_size_t tlen;
4343 int tosync;
4344
4345 rx_cons = sc->bge_rx_saved_considx;
4346 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4347
4348 /* Nothing to do */
4349 if (rx_cons == rx_prod)
4350 return;
4351
4352 ifp = &sc->ethercom.ec_if;
4353
4354 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4355 offsetof(struct bge_ring_data, bge_status_block),
4356 sizeof (struct bge_status_block),
4357 BUS_DMASYNC_POSTREAD);
4358
4359 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4360 tosync = rx_prod - rx_cons;
4361
4362 if (tosync != 0)
4363 rnd_add_uint32(&sc->rnd_source, tosync);
4364
4365 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4366
4367 if (tosync < 0) {
4368 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4369 sizeof (struct bge_rx_bd);
4370 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4371 toff, tlen, BUS_DMASYNC_POSTREAD);
4372 tosync = -tosync;
4373 }
4374
4375 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4376 offset, tosync * sizeof (struct bge_rx_bd),
4377 BUS_DMASYNC_POSTREAD);
4378
4379 while (rx_cons != rx_prod) {
4380 struct bge_rx_bd *cur_rx;
4381 uint32_t rxidx;
4382 struct mbuf *m = NULL;
4383
4384 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4385
4386 rxidx = cur_rx->bge_idx;
4387 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4388
4389 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4390 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4391 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4392 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4393 jumbocnt++;
4394 bus_dmamap_sync(sc->bge_dmatag,
4395 sc->bge_cdata.bge_rx_jumbo_map,
4396 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4397 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4398 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4399 ifp->if_ierrors++;
4400 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4401 continue;
4402 }
4403 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4404 NULL)== ENOBUFS) {
4405 ifp->if_ierrors++;
4406 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4407 continue;
4408 }
4409 } else {
4410 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4411 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4412
4413 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4414 stdcnt++;
4415 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4416 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4417 if (dmamap == NULL) {
4418 ifp->if_ierrors++;
4419 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4420 continue;
4421 }
4422 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4423 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4424 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4425 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4426 ifp->if_ierrors++;
4427 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4428 continue;
4429 }
4430 if (bge_newbuf_std(sc, sc->bge_std,
4431 NULL, dmamap) == ENOBUFS) {
4432 ifp->if_ierrors++;
4433 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4434 continue;
4435 }
4436 }
4437
4438 #ifndef __NO_STRICT_ALIGNMENT
4439 /*
4440 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4441 * the Rx buffer has the layer-2 header unaligned.
4442 * If our CPU requires alignment, re-align by copying.
4443 */
4444 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4445 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4446 cur_rx->bge_len);
4447 m->m_data += ETHER_ALIGN;
4448 }
4449 #endif
4450
4451 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4452 m_set_rcvif(m, ifp);
4453
4454 bge_rxcsum(sc, cur_rx, m);
4455
4456 /*
4457 * If we received a packet with a vlan tag, pass it
4458 * to vlan_input() instead of ether_input().
4459 */
4460 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4461 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4462
4463 if_percpuq_enqueue(ifp->if_percpuq, m);
4464 }
4465
4466 sc->bge_rx_saved_considx = rx_cons;
4467 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4468 if (stdcnt)
4469 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4470 if (jumbocnt)
4471 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4472 }
4473
4474 static void
4475 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4476 {
4477
4478 if (BGE_IS_57765_PLUS(sc)) {
4479 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4480 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4481 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4482 if ((cur_rx->bge_error_flag &
4483 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4484 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4485 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4486 m->m_pkthdr.csum_data =
4487 cur_rx->bge_tcp_udp_csum;
4488 m->m_pkthdr.csum_flags |=
4489 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4490 }
4491 }
4492 } else {
4493 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4494 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4495 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4496 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4497 /*
4498 * Rx transport checksum-offload may also
4499 * have bugs with packets which, when transmitted,
4500 * were `runts' requiring padding.
4501 */
4502 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4503 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4504 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4505 m->m_pkthdr.csum_data =
4506 cur_rx->bge_tcp_udp_csum;
4507 m->m_pkthdr.csum_flags |=
4508 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4509 }
4510 }
4511 }
4512
4513 static void
4514 bge_txeof(struct bge_softc *sc)
4515 {
4516 struct bge_tx_bd *cur_tx = NULL;
4517 struct ifnet *ifp;
4518 struct txdmamap_pool_entry *dma;
4519 bus_addr_t offset, toff;
4520 bus_size_t tlen;
4521 int tosync;
4522 struct mbuf *m;
4523
4524 ifp = &sc->ethercom.ec_if;
4525
4526 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4527 offsetof(struct bge_ring_data, bge_status_block),
4528 sizeof (struct bge_status_block),
4529 BUS_DMASYNC_POSTREAD);
4530
4531 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4532 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4533 sc->bge_tx_saved_considx;
4534
4535 if (tosync != 0)
4536 rnd_add_uint32(&sc->rnd_source, tosync);
4537
4538 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4539
4540 if (tosync < 0) {
4541 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4542 sizeof (struct bge_tx_bd);
4543 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4544 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4545 tosync = -tosync;
4546 }
4547
4548 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4549 offset, tosync * sizeof (struct bge_tx_bd),
4550 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4551
4552 /*
4553 * Go through our tx ring and free mbufs for those
4554 * frames that have been sent.
4555 */
4556 while (sc->bge_tx_saved_considx !=
4557 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4558 uint32_t idx = 0;
4559
4560 idx = sc->bge_tx_saved_considx;
4561 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4562 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4563 ifp->if_opackets++;
4564 m = sc->bge_cdata.bge_tx_chain[idx];
4565 if (m != NULL) {
4566 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4567 dma = sc->txdma[idx];
4568 if (dma->is_dma32) {
4569 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4570 0, dma->dmamap32->dm_mapsize,
4571 BUS_DMASYNC_POSTWRITE);
4572 bus_dmamap_unload(
4573 sc->bge_dmatag32, dma->dmamap32);
4574 } else {
4575 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4576 0, dma->dmamap->dm_mapsize,
4577 BUS_DMASYNC_POSTWRITE);
4578 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4579 }
4580 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4581 sc->txdma[idx] = NULL;
4582
4583 m_freem(m);
4584 }
4585 sc->bge_txcnt--;
4586 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4587 ifp->if_timer = 0;
4588 }
4589
4590 if (cur_tx != NULL)
4591 ifp->if_flags &= ~IFF_OACTIVE;
4592 }
4593
4594 static int
4595 bge_intr(void *xsc)
4596 {
4597 struct bge_softc *sc;
4598 struct ifnet *ifp;
4599 uint32_t pcistate, statusword, statustag;
4600 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4601
4602 sc = xsc;
4603 ifp = &sc->ethercom.ec_if;
4604
4605 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4606 if (BGE_IS_5717_PLUS(sc))
4607 intrmask = 0;
4608
4609 /* It is possible for the interrupt to arrive before
4610 * the status block is updated prior to the interrupt.
4611 * Reading the PCI State register will confirm whether the
4612 * interrupt is ours and will flush the status block.
4613 */
4614 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4615
4616 /* read status word from status block */
4617 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4618 offsetof(struct bge_ring_data, bge_status_block),
4619 sizeof (struct bge_status_block),
4620 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4621 statusword = sc->bge_rdata->bge_status_block.bge_status;
4622 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4623
4624 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4625 if (sc->bge_lasttag == statustag &&
4626 (~pcistate & intrmask)) {
4627 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4628 return (0);
4629 }
4630 sc->bge_lasttag = statustag;
4631 } else {
4632 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4633 !(~pcistate & intrmask)) {
4634 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4635 return (0);
4636 }
4637 statustag = 0;
4638 }
4639 /* Ack interrupt and stop others from occurring. */
4640 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4641 BGE_EVCNT_INCR(sc->bge_ev_intr);
4642
4643 /* clear status word */
4644 sc->bge_rdata->bge_status_block.bge_status = 0;
4645
4646 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4647 offsetof(struct bge_ring_data, bge_status_block),
4648 sizeof (struct bge_status_block),
4649 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4650
4651 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4652 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4653 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4654 bge_link_upd(sc);
4655
4656 if (ifp->if_flags & IFF_RUNNING) {
4657 /* Check RX return ring producer/consumer */
4658 bge_rxeof(sc);
4659
4660 /* Check TX ring producer/consumer */
4661 bge_txeof(sc);
4662 }
4663
4664 if (sc->bge_pending_rxintr_change) {
4665 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4666 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4667
4668 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4669 DELAY(10);
4670 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4671
4672 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4673 DELAY(10);
4674 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4675
4676 sc->bge_pending_rxintr_change = 0;
4677 }
4678 bge_handle_events(sc);
4679
4680 /* Re-enable interrupts. */
4681 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4682
4683 if (ifp->if_flags & IFF_RUNNING)
4684 if_schedule_deferred_start(ifp);
4685
4686 return 1;
4687 }
4688
4689 static void
4690 bge_asf_driver_up(struct bge_softc *sc)
4691 {
4692 if (sc->bge_asf_mode & ASF_STACKUP) {
4693 /* Send ASF heartbeat aprox. every 2s */
4694 if (sc->bge_asf_count)
4695 sc->bge_asf_count --;
4696 else {
4697 sc->bge_asf_count = 2;
4698
4699 bge_wait_for_event_ack(sc);
4700
4701 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4702 BGE_FW_CMD_DRV_ALIVE3);
4703 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4704 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4705 BGE_FW_HB_TIMEOUT_SEC);
4706 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4707 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4708 BGE_RX_CPU_DRV_EVENT);
4709 }
4710 }
4711 }
4712
4713 static void
4714 bge_tick(void *xsc)
4715 {
4716 struct bge_softc *sc = xsc;
4717 struct mii_data *mii = &sc->bge_mii;
4718 int s;
4719
4720 s = splnet();
4721
4722 if (BGE_IS_5705_PLUS(sc))
4723 bge_stats_update_regs(sc);
4724 else
4725 bge_stats_update(sc);
4726
4727 if (sc->bge_flags & BGEF_FIBER_TBI) {
4728 /*
4729 * Since in TBI mode auto-polling can't be used we should poll
4730 * link status manually. Here we register pending link event
4731 * and trigger interrupt.
4732 */
4733 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4734 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4735 } else {
4736 /*
4737 * Do not touch PHY if we have link up. This could break
4738 * IPMI/ASF mode or produce extra input errors.
4739 * (extra input errors was reported for bcm5701 & bcm5704).
4740 */
4741 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4742 mii_tick(mii);
4743 }
4744
4745 bge_asf_driver_up(sc);
4746
4747 if (!sc->bge_detaching)
4748 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4749
4750 splx(s);
4751 }
4752
4753 static void
4754 bge_stats_update_regs(struct bge_softc *sc)
4755 {
4756 struct ifnet *ifp = &sc->ethercom.ec_if;
4757
4758 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4759 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4760
4761 /*
4762 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4763 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4764 * (silicon bug). There's no reliable workaround so just
4765 * ignore the counter
4766 */
4767 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4768 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4769 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4770 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4771 }
4772 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4773 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4774
4775 if (sc->bge_flags & BGEF_RDMA_BUG) {
4776 uint32_t val, ucast, mcast, bcast;
4777
4778 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4779 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4780 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4781 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4782 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4783 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4784
4785 /*
4786 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4787 * frames, it's safe to disable workaround for DMA engine's
4788 * miscalculation of TXMBUF space.
4789 */
4790 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4791 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4792 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4793 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4794 else
4795 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4796 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4797 sc->bge_flags &= ~BGEF_RDMA_BUG;
4798 }
4799 }
4800 }
4801
4802 static void
4803 bge_stats_update(struct bge_softc *sc)
4804 {
4805 struct ifnet *ifp = &sc->ethercom.ec_if;
4806 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4807
4808 #define READ_STAT(sc, stats, stat) \
4809 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4810
4811 ifp->if_collisions +=
4812 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4813 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4814 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4815 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4816 ifp->if_collisions;
4817
4818 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4819 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4820 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4821 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4822 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4823 READ_STAT(sc, stats,
4824 xoffPauseFramesReceived.bge_addr_lo));
4825 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4826 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4827 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4828 READ_STAT(sc, stats,
4829 macControlFramesReceived.bge_addr_lo));
4830 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4831 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4832
4833 #undef READ_STAT
4834
4835 #ifdef notdef
4836 ifp->if_collisions +=
4837 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4838 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4839 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4840 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4841 ifp->if_collisions;
4842 #endif
4843 }
4844
4845 /*
4846 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4847 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4848 * but when such padded frames employ the bge IP/TCP checksum offload,
4849 * the hardware checksum assist gives incorrect results (possibly
4850 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4851 * If we pad such runts with zeros, the onboard checksum comes out correct.
4852 */
4853 static inline int
4854 bge_cksum_pad(struct mbuf *pkt)
4855 {
4856 struct mbuf *last = NULL;
4857 int padlen;
4858
4859 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4860
4861 /* if there's only the packet-header and we can pad there, use it. */
4862 if (pkt->m_pkthdr.len == pkt->m_len &&
4863 M_TRAILINGSPACE(pkt) >= padlen) {
4864 last = pkt;
4865 } else {
4866 /*
4867 * Walk packet chain to find last mbuf. We will either
4868 * pad there, or append a new mbuf and pad it
4869 * (thus perhaps avoiding the bcm5700 dma-min bug).
4870 */
4871 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4872 continue; /* do nothing */
4873 }
4874
4875 /* `last' now points to last in chain. */
4876 if (M_TRAILINGSPACE(last) < padlen) {
4877 /* Allocate new empty mbuf, pad it. Compact later. */
4878 struct mbuf *n;
4879 MGET(n, M_DONTWAIT, MT_DATA);
4880 if (n == NULL)
4881 return ENOBUFS;
4882 n->m_len = 0;
4883 last->m_next = n;
4884 last = n;
4885 }
4886 }
4887
4888 KDASSERT(!M_READONLY(last));
4889 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4890
4891 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4892 memset(mtod(last, char *) + last->m_len, 0, padlen);
4893 last->m_len += padlen;
4894 pkt->m_pkthdr.len += padlen;
4895 return 0;
4896 }
4897
4898 /*
4899 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4900 */
4901 static inline int
4902 bge_compact_dma_runt(struct mbuf *pkt)
4903 {
4904 struct mbuf *m, *prev;
4905 int totlen;
4906
4907 prev = NULL;
4908 totlen = 0;
4909
4910 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
4911 int mlen = m->m_len;
4912 int shortfall = 8 - mlen ;
4913
4914 totlen += mlen;
4915 if (mlen == 0)
4916 continue;
4917 if (mlen >= 8)
4918 continue;
4919
4920 /* If we get here, mbuf data is too small for DMA engine.
4921 * Try to fix by shuffling data to prev or next in chain.
4922 * If that fails, do a compacting deep-copy of the whole chain.
4923 */
4924
4925 /* Internal frag. If fits in prev, copy it there. */
4926 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4927 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4928 prev->m_len += mlen;
4929 m->m_len = 0;
4930 /* XXX stitch chain */
4931 prev->m_next = m_free(m);
4932 m = prev;
4933 continue;
4934 } else if (m->m_next != NULL &&
4935 M_TRAILINGSPACE(m) >= shortfall &&
4936 m->m_next->m_len >= (8 + shortfall)) {
4937 /* m is writable and have enough data in next, pull up. */
4938
4939 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4940 shortfall);
4941 m->m_len += shortfall;
4942 m->m_next->m_len -= shortfall;
4943 m->m_next->m_data += shortfall;
4944 } else if (m->m_next == NULL || 1) {
4945 /* Got a runt at the very end of the packet.
4946 * borrow data from the tail of the preceding mbuf and
4947 * update its length in-place. (The original data is
4948 * still valid, so we can do this even if prev is not
4949 * writable.)
4950 */
4951
4952 /*
4953 * If we'd make prev a runt, just move all of its data.
4954 */
4955 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4956 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4957
4958 if ((prev->m_len - shortfall) < 8)
4959 shortfall = prev->m_len;
4960
4961 #ifdef notyet /* just do the safe slow thing for now */
4962 if (!M_READONLY(m)) {
4963 if (M_LEADINGSPACE(m) < shorfall) {
4964 void *m_dat;
4965 m_dat = (m->m_flags & M_PKTHDR) ?
4966 m->m_pktdat : m->dat;
4967 memmove(m_dat, mtod(m, void*),
4968 m->m_len);
4969 m->m_data = m_dat;
4970 }
4971 } else
4972 #endif /* just do the safe slow thing */
4973 {
4974 struct mbuf * n = NULL;
4975 int newprevlen = prev->m_len - shortfall;
4976
4977 MGET(n, M_NOWAIT, MT_DATA);
4978 if (n == NULL)
4979 return ENOBUFS;
4980 KASSERT(m->m_len + shortfall < MLEN
4981 /*,
4982 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4983
4984 /* first copy the data we're stealing from prev */
4985 memcpy(n->m_data, prev->m_data + newprevlen,
4986 shortfall);
4987
4988 /* update prev->m_len accordingly */
4989 prev->m_len -= shortfall;
4990
4991 /* copy data from runt m */
4992 memcpy(n->m_data + shortfall, m->m_data,
4993 m->m_len);
4994
4995 /* n holds what we stole from prev, plus m */
4996 n->m_len = shortfall + m->m_len;
4997
4998 /* stitch n into chain and free m */
4999 n->m_next = m->m_next;
5000 prev->m_next = n;
5001 /* KASSERT(m->m_next == NULL); */
5002 m->m_next = NULL;
5003 m_free(m);
5004 m = n; /* for continuing loop */
5005 }
5006 }
5007 }
5008 return 0;
5009 }
5010
5011 /*
5012 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5013 * pointers to descriptors.
5014 */
5015 static int
5016 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5017 {
5018 struct ifnet *ifp = &sc->ethercom.ec_if;
5019 struct bge_tx_bd *f, *prev_f;
5020 uint32_t frag, cur;
5021 uint16_t csum_flags = 0;
5022 uint16_t txbd_tso_flags = 0;
5023 struct txdmamap_pool_entry *dma;
5024 bus_dmamap_t dmamap;
5025 bus_dma_tag_t dmatag;
5026 int i = 0;
5027 int use_tso, maxsegsize, error;
5028 bool have_vtag;
5029 uint16_t vtag;
5030 bool remap;
5031
5032 if (m_head->m_pkthdr.csum_flags) {
5033 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5034 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5035 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5036 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5037 }
5038
5039 /*
5040 * If we were asked to do an outboard checksum, and the NIC
5041 * has the bug where it sometimes adds in the Ethernet padding,
5042 * explicitly pad with zeros so the cksum will be correct either way.
5043 * (For now, do this for all chip versions, until newer
5044 * are confirmed to not require the workaround.)
5045 */
5046 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5047 #ifdef notyet
5048 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5049 #endif
5050 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5051 goto check_dma_bug;
5052
5053 if (bge_cksum_pad(m_head) != 0)
5054 return ENOBUFS;
5055
5056 check_dma_bug:
5057 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5058 goto doit;
5059
5060 /*
5061 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5062 * less than eight bytes. If we encounter a teeny mbuf
5063 * at the end of a chain, we can pad. Otherwise, copy.
5064 */
5065 if (bge_compact_dma_runt(m_head) != 0)
5066 return ENOBUFS;
5067
5068 doit:
5069 dma = SLIST_FIRST(&sc->txdma_list);
5070 if (dma == NULL) {
5071 ifp->if_flags |= IFF_OACTIVE;
5072 return ENOBUFS;
5073 }
5074 dmamap = dma->dmamap;
5075 dmatag = sc->bge_dmatag;
5076 dma->is_dma32 = false;
5077
5078 /*
5079 * Set up any necessary TSO state before we start packing...
5080 */
5081 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5082 if (!use_tso) {
5083 maxsegsize = 0;
5084 } else { /* TSO setup */
5085 unsigned mss;
5086 struct ether_header *eh;
5087 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5088 unsigned bge_hlen;
5089 struct mbuf * m0 = m_head;
5090 struct ip *ip;
5091 struct tcphdr *th;
5092 int iphl, hlen;
5093
5094 /*
5095 * XXX It would be nice if the mbuf pkthdr had offset
5096 * fields for the protocol headers.
5097 */
5098
5099 eh = mtod(m0, struct ether_header *);
5100 switch (htons(eh->ether_type)) {
5101 case ETHERTYPE_IP:
5102 offset = ETHER_HDR_LEN;
5103 break;
5104
5105 case ETHERTYPE_VLAN:
5106 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5107 break;
5108
5109 default:
5110 /*
5111 * Don't support this protocol or encapsulation.
5112 */
5113 return ENOBUFS;
5114 }
5115
5116 /*
5117 * TCP/IP headers are in the first mbuf; we can do
5118 * this the easy way.
5119 */
5120 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5121 hlen = iphl + offset;
5122 if (__predict_false(m0->m_len <
5123 (hlen + sizeof(struct tcphdr)))) {
5124
5125 aprint_error_dev(sc->bge_dev,
5126 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5127 "not handled yet\n",
5128 m0->m_len, hlen+ sizeof(struct tcphdr));
5129 #ifdef NOTYET
5130 /*
5131 * XXX jonathan (at) NetBSD.org: untested.
5132 * how to force this branch to be taken?
5133 */
5134 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5135
5136 m_copydata(m0, offset, sizeof(ip), &ip);
5137 m_copydata(m0, hlen, sizeof(th), &th);
5138
5139 ip.ip_len = 0;
5140
5141 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5142 sizeof(ip.ip_len), &ip.ip_len);
5143
5144 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5145 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5146
5147 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5148 sizeof(th.th_sum), &th.th_sum);
5149
5150 hlen += th.th_off << 2;
5151 iptcp_opt_words = hlen;
5152 #else
5153 /*
5154 * if_wm "hard" case not yet supported, can we not
5155 * mandate it out of existence?
5156 */
5157 (void) ip; (void)th; (void) ip_tcp_hlen;
5158
5159 return ENOBUFS;
5160 #endif
5161 } else {
5162 ip = (struct ip *) (mtod(m0, char *) + offset);
5163 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5164 ip_tcp_hlen = iphl + (th->th_off << 2);
5165
5166 /* Total IP/TCP options, in 32-bit words */
5167 iptcp_opt_words = (ip_tcp_hlen
5168 - sizeof(struct tcphdr)
5169 - sizeof(struct ip)) >> 2;
5170 }
5171 if (BGE_IS_575X_PLUS(sc)) {
5172 th->th_sum = 0;
5173 csum_flags = 0;
5174 } else {
5175 /*
5176 * XXX jonathan (at) NetBSD.org: 5705 untested.
5177 * Requires TSO firmware patch for 5701/5703/5704.
5178 */
5179 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5180 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5181 }
5182
5183 mss = m_head->m_pkthdr.segsz;
5184 txbd_tso_flags |=
5185 BGE_TXBDFLAG_CPU_PRE_DMA |
5186 BGE_TXBDFLAG_CPU_POST_DMA;
5187
5188 /*
5189 * Our NIC TSO-assist assumes TSO has standard, optionless
5190 * IPv4 and TCP headers, which total 40 bytes. By default,
5191 * the NIC copies 40 bytes of IP/TCP header from the
5192 * supplied header into the IP/TCP header portion of
5193 * each post-TSO-segment. If the supplied packet has IP or
5194 * TCP options, we need to tell the NIC to copy those extra
5195 * bytes into each post-TSO header, in addition to the normal
5196 * 40-byte IP/TCP header (and to leave space accordingly).
5197 * Unfortunately, the driver encoding of option length
5198 * varies across different ASIC families.
5199 */
5200 tcp_seg_flags = 0;
5201 bge_hlen = ip_tcp_hlen >> 2;
5202 if (BGE_IS_5717_PLUS(sc)) {
5203 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5204 txbd_tso_flags |=
5205 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5206 } else if (BGE_IS_5705_PLUS(sc)) {
5207 tcp_seg_flags = bge_hlen << 11;
5208 } else {
5209 /* XXX iptcp_opt_words or bge_hlen ? */
5210 txbd_tso_flags |= iptcp_opt_words << 12;
5211 }
5212 maxsegsize = mss | tcp_seg_flags;
5213 ip->ip_len = htons(mss + ip_tcp_hlen);
5214 ip->ip_sum = 0;
5215
5216 } /* TSO setup */
5217
5218 have_vtag = vlan_has_tag(m_head);
5219 if (have_vtag)
5220 vtag = vlan_get_tag(m_head);
5221
5222 /*
5223 * Start packing the mbufs in this chain into
5224 * the fragment pointers. Stop when we run out
5225 * of fragments or hit the end of the mbuf chain.
5226 */
5227 remap = true;
5228 load_again:
5229 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5230 if (__predict_false(error)) {
5231 if (error == EFBIG && remap) {
5232 struct mbuf *m;
5233 remap = false;
5234 m = m_defrag(m_head, M_NOWAIT);
5235 if (m != NULL) {
5236 KASSERT(m == m_head);
5237 goto load_again;
5238 }
5239 }
5240 return error;
5241 }
5242 /*
5243 * Sanity check: avoid coming within 16 descriptors
5244 * of the end of the ring.
5245 */
5246 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5247 BGE_TSO_PRINTF(("%s: "
5248 " dmamap_load_mbuf too close to ring wrap\n",
5249 device_xname(sc->bge_dev)));
5250 goto fail_unload;
5251 }
5252
5253 /* Iterate over dmap-map fragments. */
5254 f = prev_f = NULL;
5255 cur = frag = *txidx;
5256
5257 for (i = 0; i < dmamap->dm_nsegs; i++) {
5258 f = &sc->bge_rdata->bge_tx_ring[frag];
5259 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5260 break;
5261
5262 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5263 f->bge_len = dmamap->dm_segs[i].ds_len;
5264 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5265 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5266 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5267 (prev_f != NULL &&
5268 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5269 ) {
5270 /*
5271 * watchdog timeout issue was observed with TSO,
5272 * limiting DMA address space to 32bits seems to
5273 * address the issue.
5274 */
5275 bus_dmamap_unload(dmatag, dmamap);
5276 dmatag = sc->bge_dmatag32;
5277 dmamap = dma->dmamap32;
5278 dma->is_dma32 = true;
5279 remap = true;
5280 goto load_again;
5281 }
5282
5283 /*
5284 * For 5751 and follow-ons, for TSO we must turn
5285 * off checksum-assist flag in the tx-descr, and
5286 * supply the ASIC-revision-specific encoding
5287 * of TSO flags and segsize.
5288 */
5289 if (use_tso) {
5290 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5291 f->bge_rsvd = maxsegsize;
5292 f->bge_flags = csum_flags | txbd_tso_flags;
5293 } else {
5294 f->bge_rsvd = 0;
5295 f->bge_flags =
5296 (csum_flags | txbd_tso_flags) & 0x0fff;
5297 }
5298 } else {
5299 f->bge_rsvd = 0;
5300 f->bge_flags = csum_flags;
5301 }
5302
5303 if (have_vtag) {
5304 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5305 f->bge_vlan_tag = vtag;
5306 } else {
5307 f->bge_vlan_tag = 0;
5308 }
5309 prev_f = f;
5310 cur = frag;
5311 BGE_INC(frag, BGE_TX_RING_CNT);
5312 }
5313
5314 if (i < dmamap->dm_nsegs) {
5315 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5316 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5317 goto fail_unload;
5318 }
5319
5320 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5321 BUS_DMASYNC_PREWRITE);
5322
5323 if (frag == sc->bge_tx_saved_considx) {
5324 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5325 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5326
5327 goto fail_unload;
5328 }
5329
5330 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5331 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5332 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5333 sc->txdma[cur] = dma;
5334 sc->bge_txcnt += dmamap->dm_nsegs;
5335
5336 *txidx = frag;
5337
5338 return 0;
5339
5340 fail_unload:
5341 bus_dmamap_unload(dmatag, dmamap);
5342 ifp->if_flags |= IFF_OACTIVE;
5343
5344 return ENOBUFS;
5345 }
5346
5347 /*
5348 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5349 * to the mbuf data regions directly in the transmit descriptors.
5350 */
5351 static void
5352 bge_start(struct ifnet *ifp)
5353 {
5354 struct bge_softc *sc;
5355 struct mbuf *m_head = NULL;
5356 struct mbuf *m;
5357 uint32_t prodidx;
5358 int pkts = 0;
5359 int error;
5360
5361 sc = ifp->if_softc;
5362
5363 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5364 return;
5365
5366 prodidx = sc->bge_tx_prodidx;
5367
5368 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5369 IFQ_POLL(&ifp->if_snd, m_head);
5370 if (m_head == NULL)
5371 break;
5372
5373 #if 0
5374 /*
5375 * XXX
5376 * safety overkill. If this is a fragmented packet chain
5377 * with delayed TCP/UDP checksums, then only encapsulate
5378 * it if we have enough descriptors to handle the entire
5379 * chain at once.
5380 * (paranoia -- may not actually be needed)
5381 */
5382 if (m_head->m_flags & M_FIRSTFRAG &&
5383 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5384 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5385 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5386 ifp->if_flags |= IFF_OACTIVE;
5387 break;
5388 }
5389 }
5390 #endif
5391
5392 /*
5393 * Pack the data into the transmit ring. If we
5394 * don't have room, set the OACTIVE flag and wait
5395 * for the NIC to drain the ring.
5396 */
5397 error = bge_encap(sc, m_head, &prodidx);
5398 if (__predict_false(error)) {
5399 if (ifp->if_flags & IFF_OACTIVE) {
5400 /* just wait for the transmit ring to drain */
5401 break;
5402 }
5403 IFQ_DEQUEUE(&ifp->if_snd, m);
5404 KASSERT(m == m_head);
5405 m_freem(m_head);
5406 continue;
5407 }
5408
5409 /* now we are committed to transmit the packet */
5410 IFQ_DEQUEUE(&ifp->if_snd, m);
5411 KASSERT(m == m_head);
5412 pkts++;
5413
5414 /*
5415 * If there's a BPF listener, bounce a copy of this frame
5416 * to him.
5417 */
5418 bpf_mtap(ifp, m_head, BPF_D_OUT);
5419 }
5420 if (pkts == 0)
5421 return;
5422
5423 /* Transmit */
5424 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5425 /* 5700 b2 errata */
5426 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5427 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5428
5429 sc->bge_tx_prodidx = prodidx;
5430
5431 /*
5432 * Set a timeout in case the chip goes out to lunch.
5433 */
5434 ifp->if_timer = 5;
5435 }
5436
5437 static int
5438 bge_init(struct ifnet *ifp)
5439 {
5440 struct bge_softc *sc = ifp->if_softc;
5441 const uint16_t *m;
5442 uint32_t mode, reg;
5443 int s, error = 0;
5444
5445 s = splnet();
5446
5447 ifp = &sc->ethercom.ec_if;
5448
5449 /* Cancel pending I/O and flush buffers. */
5450 bge_stop(ifp, 0);
5451
5452 bge_stop_fw(sc);
5453 bge_sig_pre_reset(sc, BGE_RESET_START);
5454 bge_reset(sc);
5455 bge_sig_legacy(sc, BGE_RESET_START);
5456
5457 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5458 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5459 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5460 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5461 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5462
5463 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5464 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5465 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5466 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5467
5468 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5469 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5470 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5471 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5472
5473 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5474 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5475 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5476 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5477 }
5478
5479 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5480 pcireg_t aercap;
5481
5482 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5483 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5484 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5485 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5486 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5487
5488 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5489 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5490 | BGE_PCIE_EIDLE_DELAY_13CLK;
5491 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5492
5493 /* Clear correctable error */
5494 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5495 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5496 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5497 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5498
5499 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5500 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5501 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5502 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5503 }
5504
5505 bge_sig_post_reset(sc, BGE_RESET_START);
5506
5507 bge_chipinit(sc);
5508
5509 /*
5510 * Init the various state machines, ring
5511 * control blocks and firmware.
5512 */
5513 error = bge_blockinit(sc);
5514 if (error != 0) {
5515 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5516 error);
5517 splx(s);
5518 return error;
5519 }
5520
5521 ifp = &sc->ethercom.ec_if;
5522
5523 /* 5718 step 25, 57XX step 54 */
5524 /* Specify MTU. */
5525 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5526 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5527
5528 /* 5718 step 23 */
5529 /* Load our MAC address. */
5530 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5531 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5532 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5533
5534 /* Enable or disable promiscuous mode as needed. */
5535 if (ifp->if_flags & IFF_PROMISC)
5536 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5537 else
5538 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5539
5540 /* Program multicast filter. */
5541 bge_setmulti(sc);
5542
5543 /* Init RX ring. */
5544 bge_init_rx_ring_std(sc);
5545
5546 /*
5547 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5548 * memory to insure that the chip has in fact read the first
5549 * entry of the ring.
5550 */
5551 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5552 uint32_t v, i;
5553 for (i = 0; i < 10; i++) {
5554 DELAY(20);
5555 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5556 if (v == (MCLBYTES - ETHER_ALIGN))
5557 break;
5558 }
5559 if (i == 10)
5560 aprint_error_dev(sc->bge_dev,
5561 "5705 A0 chip failed to load RX ring\n");
5562 }
5563
5564 /* Init jumbo RX ring. */
5565 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5566 bge_init_rx_ring_jumbo(sc);
5567
5568 /* Init our RX return ring index */
5569 sc->bge_rx_saved_considx = 0;
5570
5571 /* Init TX ring. */
5572 bge_init_tx_ring(sc);
5573
5574 /* 5718 step 63, 57XX step 94 */
5575 /* Enable TX MAC state machine lockup fix. */
5576 mode = CSR_READ_4(sc, BGE_TX_MODE);
5577 if (BGE_IS_5755_PLUS(sc) ||
5578 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5579 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5580 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5581 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5582 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5583 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5584 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5585 }
5586
5587 /* Turn on transmitter */
5588 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5589 /* 5718 step 64 */
5590 DELAY(100);
5591
5592 /* 5718 step 65, 57XX step 95 */
5593 /* Turn on receiver */
5594 mode = CSR_READ_4(sc, BGE_RX_MODE);
5595 if (BGE_IS_5755_PLUS(sc))
5596 mode |= BGE_RXMODE_IPV6_ENABLE;
5597 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5598 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5599 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5600 /* 5718 step 66 */
5601 DELAY(10);
5602
5603 /* 5718 step 12, 57XX step 37 */
5604 /*
5605 * XXX Doucments of 5718 series and 577xx say the recommended value
5606 * is 1, but tg3 set 1 only on 57765 series.
5607 */
5608 if (BGE_IS_57765_PLUS(sc))
5609 reg = 1;
5610 else
5611 reg = 2;
5612 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5613
5614 /* Tell firmware we're alive. */
5615 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5616
5617 /* Enable host interrupts. */
5618 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5619 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5620 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5621
5622 if ((error = bge_ifmedia_upd(ifp)) != 0)
5623 goto out;
5624
5625 ifp->if_flags |= IFF_RUNNING;
5626 ifp->if_flags &= ~IFF_OACTIVE;
5627
5628 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5629
5630 out:
5631 sc->bge_if_flags = ifp->if_flags;
5632 splx(s);
5633
5634 return error;
5635 }
5636
5637 /*
5638 * Set media options.
5639 */
5640 static int
5641 bge_ifmedia_upd(struct ifnet *ifp)
5642 {
5643 struct bge_softc *sc = ifp->if_softc;
5644 struct mii_data *mii = &sc->bge_mii;
5645 struct ifmedia *ifm = &sc->bge_ifmedia;
5646 int rc;
5647
5648 /* If this is a 1000baseX NIC, enable the TBI port. */
5649 if (sc->bge_flags & BGEF_FIBER_TBI) {
5650 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5651 return EINVAL;
5652 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5653 case IFM_AUTO:
5654 /*
5655 * The BCM5704 ASIC appears to have a special
5656 * mechanism for programming the autoneg
5657 * advertisement registers in TBI mode.
5658 */
5659 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5660 uint32_t sgdig;
5661 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5662 if (sgdig & BGE_SGDIGSTS_DONE) {
5663 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5664 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5665 sgdig |= BGE_SGDIGCFG_AUTO |
5666 BGE_SGDIGCFG_PAUSE_CAP |
5667 BGE_SGDIGCFG_ASYM_PAUSE;
5668 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5669 sgdig | BGE_SGDIGCFG_SEND);
5670 DELAY(5);
5671 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5672 sgdig);
5673 }
5674 }
5675 break;
5676 case IFM_1000_SX:
5677 if ((ifm->ifm_media & IFM_FDX) != 0) {
5678 BGE_CLRBIT(sc, BGE_MAC_MODE,
5679 BGE_MACMODE_HALF_DUPLEX);
5680 } else {
5681 BGE_SETBIT(sc, BGE_MAC_MODE,
5682 BGE_MACMODE_HALF_DUPLEX);
5683 }
5684 DELAY(40);
5685 break;
5686 default:
5687 return EINVAL;
5688 }
5689 /* XXX 802.3x flow control for 1000BASE-SX */
5690 return 0;
5691 }
5692
5693 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5694 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5695 uint32_t reg;
5696
5697 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5698 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5699 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5700 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5701 }
5702 }
5703
5704 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5705 if ((rc = mii_mediachg(mii)) == ENXIO)
5706 return 0;
5707
5708 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5709 uint32_t reg;
5710
5711 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5712 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5713 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5714 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5715 delay(40);
5716 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5717 }
5718 }
5719
5720 /*
5721 * Force an interrupt so that we will call bge_link_upd
5722 * if needed and clear any pending link state attention.
5723 * Without this we are not getting any further interrupts
5724 * for link state changes and thus will not UP the link and
5725 * not be able to send in bge_start. The only way to get
5726 * things working was to receive a packet and get a RX intr.
5727 */
5728 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5729 sc->bge_flags & BGEF_IS_5788)
5730 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5731 else
5732 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5733
5734 return rc;
5735 }
5736
5737 /*
5738 * Report current media status.
5739 */
5740 static void
5741 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5742 {
5743 struct bge_softc *sc = ifp->if_softc;
5744 struct mii_data *mii = &sc->bge_mii;
5745
5746 if (sc->bge_flags & BGEF_FIBER_TBI) {
5747 ifmr->ifm_status = IFM_AVALID;
5748 ifmr->ifm_active = IFM_ETHER;
5749 if (CSR_READ_4(sc, BGE_MAC_STS) &
5750 BGE_MACSTAT_TBI_PCS_SYNCHED)
5751 ifmr->ifm_status |= IFM_ACTIVE;
5752 ifmr->ifm_active |= IFM_1000_SX;
5753 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5754 ifmr->ifm_active |= IFM_HDX;
5755 else
5756 ifmr->ifm_active |= IFM_FDX;
5757 return;
5758 }
5759
5760 mii_pollstat(mii);
5761 ifmr->ifm_status = mii->mii_media_status;
5762 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5763 sc->bge_flowflags;
5764 }
5765
5766 static int
5767 bge_ifflags_cb(struct ethercom *ec)
5768 {
5769 struct ifnet *ifp = &ec->ec_if;
5770 struct bge_softc *sc = ifp->if_softc;
5771 int change = ifp->if_flags ^ sc->bge_if_flags;
5772
5773 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
5774 return ENETRESET;
5775 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5776 return 0;
5777
5778 if ((ifp->if_flags & IFF_PROMISC) == 0)
5779 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5780 else
5781 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5782
5783 bge_setmulti(sc);
5784
5785 sc->bge_if_flags = ifp->if_flags;
5786 return 0;
5787 }
5788
5789 static int
5790 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5791 {
5792 struct bge_softc *sc = ifp->if_softc;
5793 struct ifreq *ifr = (struct ifreq *) data;
5794 int s, error = 0;
5795 struct mii_data *mii;
5796
5797 s = splnet();
5798
5799 switch (command) {
5800 case SIOCSIFMEDIA:
5801 /* XXX Flow control is not supported for 1000BASE-SX */
5802 if (sc->bge_flags & BGEF_FIBER_TBI) {
5803 ifr->ifr_media &= ~IFM_ETH_FMASK;
5804 sc->bge_flowflags = 0;
5805 }
5806
5807 /* Flow control requires full-duplex mode. */
5808 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5809 (ifr->ifr_media & IFM_FDX) == 0) {
5810 ifr->ifr_media &= ~IFM_ETH_FMASK;
5811 }
5812 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5813 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5814 /* We can do both TXPAUSE and RXPAUSE. */
5815 ifr->ifr_media |=
5816 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5817 }
5818 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5819 }
5820
5821 if (sc->bge_flags & BGEF_FIBER_TBI) {
5822 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5823 command);
5824 } else {
5825 mii = &sc->bge_mii;
5826 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5827 command);
5828 }
5829 break;
5830 default:
5831 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5832 break;
5833
5834 error = 0;
5835
5836 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5837 ;
5838 else if (ifp->if_flags & IFF_RUNNING)
5839 bge_setmulti(sc);
5840 break;
5841 }
5842
5843 splx(s);
5844
5845 return error;
5846 }
5847
5848 static void
5849 bge_watchdog(struct ifnet *ifp)
5850 {
5851 struct bge_softc *sc;
5852 uint32_t status;
5853
5854 sc = ifp->if_softc;
5855
5856 /* If pause frames are active then don't reset the hardware. */
5857 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5858 status = CSR_READ_4(sc, BGE_RX_STS);
5859 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5860 /*
5861 * If link partner has us in XOFF state then wait for
5862 * the condition to clear.
5863 */
5864 CSR_WRITE_4(sc, BGE_RX_STS, status);
5865 ifp->if_timer = 5;
5866 return;
5867 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5868 (status & BGE_RXSTAT_RCVD_XON) != 0) {
5869 /*
5870 * If link partner has us in XOFF state then wait for
5871 * the condition to clear.
5872 */
5873 CSR_WRITE_4(sc, BGE_RX_STS, status);
5874 ifp->if_timer = 5;
5875 return;
5876 }
5877 /*
5878 * Any other condition is unexpected and the controller
5879 * should be reset.
5880 */
5881 }
5882
5883 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5884
5885 ifp->if_flags &= ~IFF_RUNNING;
5886 bge_init(ifp);
5887
5888 ifp->if_oerrors++;
5889 }
5890
5891 static void
5892 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5893 {
5894 int i;
5895
5896 BGE_CLRBIT_FLUSH(sc, reg, bit);
5897
5898 for (i = 0; i < 1000; i++) {
5899 delay(100);
5900 if ((CSR_READ_4(sc, reg) & bit) == 0)
5901 return;
5902 }
5903
5904 /*
5905 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5906 * on some environment (and once after boot?)
5907 */
5908 if (reg != BGE_SRS_MODE)
5909 aprint_error_dev(sc->bge_dev,
5910 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5911 (u_long)reg, bit);
5912 }
5913
5914 /*
5915 * Stop the adapter and free any mbufs allocated to the
5916 * RX and TX lists.
5917 */
5918 static void
5919 bge_stop(struct ifnet *ifp, int disable)
5920 {
5921 struct bge_softc *sc = ifp->if_softc;
5922
5923 if (disable) {
5924 sc->bge_detaching = 1;
5925 callout_halt(&sc->bge_timeout, NULL);
5926 } else
5927 callout_stop(&sc->bge_timeout);
5928
5929 /* Disable host interrupts. */
5930 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5931 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5932
5933 /*
5934 * Tell firmware we're shutting down.
5935 */
5936 bge_stop_fw(sc);
5937 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5938
5939 /*
5940 * Disable all of the receiver blocks.
5941 */
5942 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5943 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5944 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5945 if (BGE_IS_5700_FAMILY(sc))
5946 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5947 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5948 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5949 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5950
5951 /*
5952 * Disable all of the transmit blocks.
5953 */
5954 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5955 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5956 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5957 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5958 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5959 if (BGE_IS_5700_FAMILY(sc))
5960 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5961 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5962
5963 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5964 delay(40);
5965
5966 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5967
5968 /*
5969 * Shut down all of the memory managers and related
5970 * state machines.
5971 */
5972 /* 5718 step 5a,5b */
5973 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5974 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5975 if (BGE_IS_5700_FAMILY(sc))
5976 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5977
5978 /* 5718 step 5c,5d */
5979 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5980 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5981
5982 if (BGE_IS_5700_FAMILY(sc)) {
5983 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5984 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5985 }
5986
5987 bge_reset(sc);
5988 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5989 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5990
5991 /*
5992 * Keep the ASF firmware running if up.
5993 */
5994 if (sc->bge_asf_mode & ASF_STACKUP)
5995 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5996 else
5997 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5998
5999 /* Free the RX lists. */
6000 bge_free_rx_ring_std(sc, disable);
6001
6002 /* Free jumbo RX list. */
6003 if (BGE_IS_JUMBO_CAPABLE(sc))
6004 bge_free_rx_ring_jumbo(sc);
6005
6006 /* Free TX buffers. */
6007 bge_free_tx_ring(sc, disable);
6008
6009 /*
6010 * Isolate/power down the PHY.
6011 */
6012 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6013 mii_down(&sc->bge_mii);
6014
6015 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6016
6017 /* Clear MAC's link state (PHY may still have link UP). */
6018 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6019
6020 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6021 }
6022
6023 static void
6024 bge_link_upd(struct bge_softc *sc)
6025 {
6026 struct ifnet *ifp = &sc->ethercom.ec_if;
6027 struct mii_data *mii = &sc->bge_mii;
6028 uint32_t status;
6029 uint16_t phyval;
6030 int link;
6031
6032 /* Clear 'pending link event' flag */
6033 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6034
6035 /*
6036 * Process link state changes.
6037 * Grrr. The link status word in the status block does
6038 * not work correctly on the BCM5700 rev AX and BX chips,
6039 * according to all available information. Hence, we have
6040 * to enable MII interrupts in order to properly obtain
6041 * async link changes. Unfortunately, this also means that
6042 * we have to read the MAC status register to detect link
6043 * changes, thereby adding an additional register access to
6044 * the interrupt handler.
6045 */
6046
6047 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6048 status = CSR_READ_4(sc, BGE_MAC_STS);
6049 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6050 mii_pollstat(mii);
6051
6052 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6053 mii->mii_media_status & IFM_ACTIVE &&
6054 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6055 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6056 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6057 (!(mii->mii_media_status & IFM_ACTIVE) ||
6058 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6059 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6060
6061 /* Clear the interrupt */
6062 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6063 BGE_EVTENB_MI_INTERRUPT);
6064 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6065 BRGPHY_MII_ISR, &phyval);
6066 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6067 BRGPHY_MII_IMR, BRGPHY_INTRS);
6068 }
6069 return;
6070 }
6071
6072 if (sc->bge_flags & BGEF_FIBER_TBI) {
6073 status = CSR_READ_4(sc, BGE_MAC_STS);
6074 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6075 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6076 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6077 if (BGE_ASICREV(sc->bge_chipid)
6078 == BGE_ASICREV_BCM5704) {
6079 BGE_CLRBIT(sc, BGE_MAC_MODE,
6080 BGE_MACMODE_TBI_SEND_CFGS);
6081 DELAY(40);
6082 }
6083 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6084 if_link_state_change(ifp, LINK_STATE_UP);
6085 }
6086 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6087 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6088 if_link_state_change(ifp, LINK_STATE_DOWN);
6089 }
6090 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6091 /*
6092 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6093 * bit in status word always set. Workaround this bug by
6094 * reading PHY link status directly.
6095 */
6096 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6097 BGE_STS_LINK : 0;
6098
6099 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6100 mii_pollstat(mii);
6101
6102 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6103 mii->mii_media_status & IFM_ACTIVE &&
6104 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6105 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6106 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6107 (!(mii->mii_media_status & IFM_ACTIVE) ||
6108 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6109 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6110 }
6111 } else {
6112 /*
6113 * For controllers that call mii_tick, we have to poll
6114 * link status.
6115 */
6116 mii_pollstat(mii);
6117 }
6118
6119 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6120 uint32_t reg, scale;
6121
6122 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6123 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6124 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6125 scale = 65;
6126 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6127 scale = 6;
6128 else
6129 scale = 12;
6130
6131 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6132 ~BGE_MISCCFG_TIMER_PRESCALER;
6133 reg |= scale << 1;
6134 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6135 }
6136 /* Clear the attention */
6137 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6138 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6139 BGE_MACSTAT_LINK_CHANGED);
6140 }
6141
6142 static int
6143 bge_sysctl_verify(SYSCTLFN_ARGS)
6144 {
6145 int error, t;
6146 struct sysctlnode node;
6147
6148 node = *rnode;
6149 t = *(int*)rnode->sysctl_data;
6150 node.sysctl_data = &t;
6151 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6152 if (error || newp == NULL)
6153 return error;
6154
6155 #if 0
6156 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6157 node.sysctl_num, rnode->sysctl_num));
6158 #endif
6159
6160 if (node.sysctl_num == bge_rxthresh_nodenum) {
6161 if (t < 0 || t >= NBGE_RX_THRESH)
6162 return EINVAL;
6163 bge_update_all_threshes(t);
6164 } else
6165 return EINVAL;
6166
6167 *(int*)rnode->sysctl_data = t;
6168
6169 return 0;
6170 }
6171
6172 /*
6173 * Set up sysctl(3) MIB, hw.bge.*.
6174 */
6175 static void
6176 bge_sysctl_init(struct bge_softc *sc)
6177 {
6178 int rc, bge_root_num;
6179 const struct sysctlnode *node;
6180
6181 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6182 0, CTLTYPE_NODE, "bge",
6183 SYSCTL_DESCR("BGE interface controls"),
6184 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6185 goto out;
6186 }
6187
6188 bge_root_num = node->sysctl_num;
6189
6190 /* BGE Rx interrupt mitigation level */
6191 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6192 CTLFLAG_READWRITE,
6193 CTLTYPE_INT, "rx_lvl",
6194 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6195 bge_sysctl_verify, 0,
6196 &bge_rx_thresh_lvl,
6197 0, CTL_HW, bge_root_num, CTL_CREATE,
6198 CTL_EOL)) != 0) {
6199 goto out;
6200 }
6201
6202 bge_rxthresh_nodenum = node->sysctl_num;
6203
6204 return;
6205
6206 out:
6207 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6208 }
6209
6210 #ifdef BGE_DEBUG
6211 void
6212 bge_debug_info(struct bge_softc *sc)
6213 {
6214
6215 printf("Hardware Flags:\n");
6216 if (BGE_IS_57765_PLUS(sc))
6217 printf(" - 57765 Plus\n");
6218 if (BGE_IS_5717_PLUS(sc))
6219 printf(" - 5717 Plus\n");
6220 if (BGE_IS_5755_PLUS(sc))
6221 printf(" - 5755 Plus\n");
6222 if (BGE_IS_575X_PLUS(sc))
6223 printf(" - 575X Plus\n");
6224 if (BGE_IS_5705_PLUS(sc))
6225 printf(" - 5705 Plus\n");
6226 if (BGE_IS_5714_FAMILY(sc))
6227 printf(" - 5714 Family\n");
6228 if (BGE_IS_5700_FAMILY(sc))
6229 printf(" - 5700 Family\n");
6230 if (sc->bge_flags & BGEF_IS_5788)
6231 printf(" - 5788\n");
6232 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6233 printf(" - Supports Jumbo Frames\n");
6234 if (sc->bge_flags & BGEF_NO_EEPROM)
6235 printf(" - No EEPROM\n");
6236 if (sc->bge_flags & BGEF_PCIX)
6237 printf(" - PCI-X Bus\n");
6238 if (sc->bge_flags & BGEF_PCIE)
6239 printf(" - PCI Express Bus\n");
6240 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6241 printf(" - RX Alignment Bug\n");
6242 if (sc->bge_flags & BGEF_APE)
6243 printf(" - APE\n");
6244 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6245 printf(" - CPMU\n");
6246 if (sc->bge_flags & BGEF_TSO)
6247 printf(" - TSO\n");
6248 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6249 printf(" - TAGGED_STATUS\n");
6250
6251 /* PHY related */
6252 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6253 printf(" - No 3 LEDs\n");
6254 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6255 printf(" - CRC bug\n");
6256 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6257 printf(" - ADC bug\n");
6258 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6259 printf(" - 5704 A0 bug\n");
6260 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6261 printf(" - jitter bug\n");
6262 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6263 printf(" - BER bug\n");
6264 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6265 printf(" - adjust trim\n");
6266 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6267 printf(" - no wirespeed\n");
6268
6269 /* ASF related */
6270 if (sc->bge_asf_mode & ASF_ENABLE)
6271 printf(" - ASF enable\n");
6272 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6273 printf(" - ASF new handshake\n");
6274 if (sc->bge_asf_mode & ASF_STACKUP)
6275 printf(" - ASF stackup\n");
6276 }
6277 #endif /* BGE_DEBUG */
6278
6279 static int
6280 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6281 {
6282 prop_dictionary_t dict;
6283 prop_data_t ea;
6284
6285 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6286 return 1;
6287
6288 dict = device_properties(sc->bge_dev);
6289 ea = prop_dictionary_get(dict, "mac-address");
6290 if (ea != NULL) {
6291 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6292 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6293 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6294 return 0;
6295 }
6296
6297 return 1;
6298 }
6299
6300 static int
6301 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6302 {
6303 uint32_t mac_addr;
6304
6305 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6306 if ((mac_addr >> 16) == 0x484b) {
6307 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6308 ether_addr[1] = (uint8_t)mac_addr;
6309 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6310 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6311 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6312 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6313 ether_addr[5] = (uint8_t)mac_addr;
6314 return 0;
6315 }
6316 return 1;
6317 }
6318
6319 static int
6320 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6321 {
6322 int mac_offset = BGE_EE_MAC_OFFSET;
6323
6324 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6325 mac_offset = BGE_EE_MAC_OFFSET_5906;
6326
6327 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6328 ETHER_ADDR_LEN));
6329 }
6330
6331 static int
6332 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6333 {
6334
6335 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6336 return 1;
6337
6338 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6339 ETHER_ADDR_LEN));
6340 }
6341
6342 static int
6343 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6344 {
6345 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6346 /* NOTE: Order is critical */
6347 bge_get_eaddr_fw,
6348 bge_get_eaddr_mem,
6349 bge_get_eaddr_nvram,
6350 bge_get_eaddr_eeprom,
6351 NULL
6352 };
6353 const bge_eaddr_fcn_t *func;
6354
6355 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6356 if ((*func)(sc, eaddr) == 0)
6357 break;
6358 }
6359 return (*func == NULL ? ENXIO : 0);
6360 }
6361