if_bge.c revision 1.337 1 /* $NetBSD: if_bge.c,v 1.337 2019/09/13 07:55:07 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.337 2019/09/13 07:55:07 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94 #include <sys/rndsource.h>
95
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_ether.h>
100 #include <net/bpf.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115 #include <dev/pci/pcireg.h>
116 #include <dev/pci/pcivar.h>
117 #include <dev/pci/pcidevs.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/miidevs.h>
122 #include <dev/mii/brgphyreg.h>
123
124 #include <dev/pci/if_bgereg.h>
125 #include <dev/pci/if_bgevar.h>
126
127 #include <prop/proplib.h>
128
129 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
130
131
132 /*
133 * Tunable thresholds for rx-side bge interrupt mitigation.
134 */
135
136 /*
137 * The pairs of values below were obtained from empirical measurement
138 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
139 * interrupt for every N packets received, where N is, approximately,
140 * the second value (rx_max_bds) in each pair. The values are chosen
141 * such that moving from one pair to the succeeding pair was observed
142 * to roughly halve interrupt rate under sustained input packet load.
143 * The values were empirically chosen to avoid overflowing internal
144 * limits on the bcm5700: increasing rx_ticks much beyond 600
145 * results in internal wrapping and higher interrupt rates.
146 * The limit of 46 frames was chosen to match NFS workloads.
147 *
148 * These values also work well on bcm5701, bcm5704C, and (less
149 * tested) bcm5703. On other chipsets, (including the Altima chip
150 * family), the larger values may overflow internal chip limits,
151 * leading to increasing interrupt rates rather than lower interrupt
152 * rates.
153 *
154 * Applications using heavy interrupt mitigation (interrupting every
155 * 32 or 46 frames) in both directions may need to increase the TCP
156 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
157 * full link bandwidth, due to ACKs and window updates lingering
158 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
159 */
160 static const struct bge_load_rx_thresh {
161 int rx_ticks;
162 int rx_max_bds; }
163 bge_rx_threshes[] = {
164 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
165 { 32, 2 },
166 { 50, 4 },
167 { 100, 8 },
168 { 192, 16 },
169 { 416, 32 },
170 { 598, 46 }
171 };
172 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
173
174 /* XXX patchable; should be sysctl'able */
175 static int bge_auto_thresh = 1;
176 static int bge_rx_thresh_lvl;
177
178 static int bge_rxthresh_nodenum;
179
180 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
181
182 static uint32_t bge_chipid(const struct pci_attach_args *);
183 static int bge_can_use_msi(struct bge_softc *);
184 static int bge_probe(device_t, cfdata_t, void *);
185 static void bge_attach(device_t, device_t, void *);
186 static int bge_detach(device_t, int);
187 static void bge_release_resources(struct bge_softc *);
188
189 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
190 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
191 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
194
195 static void bge_txeof(struct bge_softc *);
196 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
197 static void bge_rxeof(struct bge_softc *);
198
199 static void bge_asf_driver_up (struct bge_softc *);
200 static void bge_tick(void *);
201 static void bge_stats_update(struct bge_softc *);
202 static void bge_stats_update_regs(struct bge_softc *);
203 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
204
205 static int bge_intr(void *);
206 static void bge_start(struct ifnet *);
207 static int bge_ifflags_cb(struct ethercom *);
208 static int bge_ioctl(struct ifnet *, u_long, void *);
209 static int bge_init(struct ifnet *);
210 static void bge_stop(struct ifnet *, int);
211 static void bge_watchdog(struct ifnet *);
212 static int bge_ifmedia_upd(struct ifnet *);
213 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
214
215 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
216 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
217
218 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
220 static void bge_setmulti(struct bge_softc *);
221
222 static void bge_handle_events(struct bge_softc *);
223 static int bge_alloc_jumbo_mem(struct bge_softc *);
224 #if 0 /* XXX */
225 static void bge_free_jumbo_mem(struct bge_softc *);
226 #endif
227 static void *bge_jalloc(struct bge_softc *);
228 static void bge_jfree(struct mbuf *, void *, size_t, void *);
229 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
230 bus_dmamap_t);
231 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
232 static int bge_init_rx_ring_std(struct bge_softc *);
233 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
234 static int bge_init_rx_ring_jumbo(struct bge_softc *);
235 static void bge_free_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_tx_ring(struct bge_softc *m, bool);
237 static int bge_init_tx_ring(struct bge_softc *);
238
239 static int bge_chipinit(struct bge_softc *);
240 static int bge_blockinit(struct bge_softc *);
241 static int bge_phy_addr(struct bge_softc *);
242 static uint32_t bge_readmem_ind(struct bge_softc *, int);
243 static void bge_writemem_ind(struct bge_softc *, int, int);
244 static void bge_writembx(struct bge_softc *, int, int);
245 static void bge_writembx_flush(struct bge_softc *, int, int);
246 static void bge_writemem_direct(struct bge_softc *, int, int);
247 static void bge_writereg_ind(struct bge_softc *, int, int);
248 static void bge_set_max_readrq(struct bge_softc *);
249
250 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
251 static int bge_miibus_writereg(device_t, int, int, uint16_t);
252 static void bge_miibus_statchg(struct ifnet *);
253
254 #define BGE_RESET_SHUTDOWN 0
255 #define BGE_RESET_START 1
256 #define BGE_RESET_SUSPEND 2
257 static void bge_sig_post_reset(struct bge_softc *, int);
258 static void bge_sig_legacy(struct bge_softc *, int);
259 static void bge_sig_pre_reset(struct bge_softc *, int);
260 static void bge_wait_for_event_ack(struct bge_softc *);
261 static void bge_stop_fw(struct bge_softc *);
262 static int bge_reset(struct bge_softc *);
263 static void bge_link_upd(struct bge_softc *);
264 static void bge_sysctl_init(struct bge_softc *);
265 static int bge_sysctl_verify(SYSCTLFN_PROTO);
266
267 static void bge_ape_lock_init(struct bge_softc *);
268 static void bge_ape_read_fw_ver(struct bge_softc *);
269 static int bge_ape_lock(struct bge_softc *, int);
270 static void bge_ape_unlock(struct bge_softc *, int);
271 static void bge_ape_send_event(struct bge_softc *, uint32_t);
272 static void bge_ape_driver_state_change(struct bge_softc *, int);
273
274 #ifdef BGE_DEBUG
275 #define DPRINTF(x) if (bgedebug) printf x
276 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
277 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
278 int bgedebug = 0;
279 int bge_tso_debug = 0;
280 void bge_debug_info(struct bge_softc *);
281 #else
282 #define DPRINTF(x)
283 #define DPRINTFN(n, x)
284 #define BGE_TSO_PRINTF(x)
285 #endif
286
287 #ifdef BGE_EVENT_COUNTERS
288 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
289 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
290 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
291 #else
292 #define BGE_EVCNT_INCR(ev) /* nothing */
293 #define BGE_EVCNT_ADD(ev, val) /* nothing */
294 #define BGE_EVCNT_UPD(ev, val) /* nothing */
295 #endif
296
297 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
298 /*
299 * The BCM5700 documentation seems to indicate that the hardware still has the
300 * Alteon vendor ID burned into it, though it should always be overridden by
301 * the value in the EEPROM. We'll check for it anyway.
302 */
303 static const struct bge_product {
304 pci_vendor_id_t bp_vendor;
305 pci_product_id_t bp_product;
306 const char *bp_name;
307 } bge_products[] = {
308 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
309 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
310 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
311 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
312 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
313 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
314 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
315 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
316 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
317 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
318 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
319 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
320 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
321 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
322 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
323 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
324 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
325 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
326 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
327 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
328 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
329 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
330 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
331 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
332 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
333 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
334 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
335 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
336 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
337 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
338 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
339 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
340 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
341 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
342 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
343 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
344 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
345 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
346 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
347 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
348 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
349 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
350 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
351 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
352 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
353 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
354 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
355 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
356 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
357 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
358 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
359 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
360 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
361 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
362 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
363 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
364 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
365 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
366 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
367 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
368 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
369 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
370 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
371 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
372 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
373 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
374 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
375 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
376 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
377 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
378 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
379 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
380 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
381 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
382 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
383 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
384 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
385 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
386 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
387 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
388 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
389 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
390 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
391 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
392 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
393 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
394 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
395 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
396 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
397 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
398 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
399 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
400 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
401 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
402 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
403 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
404 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
405 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
406 { 0, 0, NULL },
407 };
408
409 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
410 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
411 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
412 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
413 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
414 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
415 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
416 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
417 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
418
419 static const struct bge_revision {
420 uint32_t br_chipid;
421 const char *br_name;
422 } bge_revisions[] = {
423 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
424 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
425 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
426 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
427 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
428 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
429 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
430 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
431 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
432 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
433 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
434 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
435 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
436 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
437 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
438 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
439 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
440 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
441 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
442 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
443 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
444 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
445 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
446 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
447 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
448 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
449 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
450 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
451 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
452 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
453 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
454 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
455 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
456 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
457 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
458 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
459 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
460 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
461 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
462 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
463 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
464 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
465 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
466 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
467 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
468 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
469 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
470 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
471 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
472 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
473 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
474 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
475 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
476 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
477 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
478 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
479 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
480 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
481 /* 5754 and 5787 share the same ASIC ID */
482 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
483 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
484 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
485 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
486 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
487 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
488 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
489 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
490 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
491 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
492 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
493
494 { 0, NULL }
495 };
496
497 /*
498 * Some defaults for major revisions, so that newer steppings
499 * that we don't know about have a shot at working.
500 */
501 static const struct bge_revision bge_majorrevs[] = {
502 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
503 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
504 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
505 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
506 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
507 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
508 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
509 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
510 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
511 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
512 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
513 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
514 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
515 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
516 /* 5754 and 5787 share the same ASIC ID */
517 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
518 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
519 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
520 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
521 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
522 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
523 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
524 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
525 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
526
527 { 0, NULL }
528 };
529
530 static int bge_allow_asf = 1;
531
532 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
533 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
534
535 static uint32_t
536 bge_readmem_ind(struct bge_softc *sc, int off)
537 {
538 pcireg_t val;
539
540 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
541 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
542 return 0;
543
544 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
545 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
546 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
547 return val;
548 }
549
550 static void
551 bge_writemem_ind(struct bge_softc *sc, int off, int val)
552 {
553
554 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
555 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
556 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
557 }
558
559 /*
560 * PCI Express only
561 */
562 static void
563 bge_set_max_readrq(struct bge_softc *sc)
564 {
565 pcireg_t val;
566
567 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
568 + PCIE_DCSR);
569 val &= ~PCIE_DCSR_MAX_READ_REQ;
570 switch (sc->bge_expmrq) {
571 case 2048:
572 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
573 break;
574 case 4096:
575 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
576 break;
577 default:
578 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
579 break;
580 }
581 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
582 + PCIE_DCSR, val);
583 }
584
585 #ifdef notdef
586 static uint32_t
587 bge_readreg_ind(struct bge_softc *sc, int off)
588 {
589 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
590 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
591 }
592 #endif
593
594 static void
595 bge_writereg_ind(struct bge_softc *sc, int off, int val)
596 {
597 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
598 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
599 }
600
601 static void
602 bge_writemem_direct(struct bge_softc *sc, int off, int val)
603 {
604 CSR_WRITE_4(sc, off, val);
605 }
606
607 static void
608 bge_writembx(struct bge_softc *sc, int off, int val)
609 {
610 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
611 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
612
613 CSR_WRITE_4(sc, off, val);
614 }
615
616 static void
617 bge_writembx_flush(struct bge_softc *sc, int off, int val)
618 {
619 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
620 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
621
622 CSR_WRITE_4_FLUSH(sc, off, val);
623 }
624
625 /*
626 * Clear all stale locks and select the lock for this driver instance.
627 */
628 void
629 bge_ape_lock_init(struct bge_softc *sc)
630 {
631 struct pci_attach_args *pa = &(sc->bge_pa);
632 uint32_t bit, regbase;
633 int i;
634
635 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
636 regbase = BGE_APE_LOCK_GRANT;
637 else
638 regbase = BGE_APE_PER_LOCK_GRANT;
639
640 /* Clear any stale locks. */
641 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
642 switch (i) {
643 case BGE_APE_LOCK_PHY0:
644 case BGE_APE_LOCK_PHY1:
645 case BGE_APE_LOCK_PHY2:
646 case BGE_APE_LOCK_PHY3:
647 bit = BGE_APE_LOCK_GRANT_DRIVER0;
648 break;
649 default:
650 if (pa->pa_function == 0)
651 bit = BGE_APE_LOCK_GRANT_DRIVER0;
652 else
653 bit = (1 << pa->pa_function);
654 }
655 APE_WRITE_4(sc, regbase + 4 * i, bit);
656 }
657
658 /* Select the PHY lock based on the device's function number. */
659 switch (pa->pa_function) {
660 case 0:
661 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
662 break;
663 case 1:
664 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
665 break;
666 case 2:
667 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
668 break;
669 case 3:
670 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
671 break;
672 default:
673 printf("%s: PHY lock not supported on function\n",
674 device_xname(sc->bge_dev));
675 break;
676 }
677 }
678
679 /*
680 * Check for APE firmware, set flags, and print version info.
681 */
682 void
683 bge_ape_read_fw_ver(struct bge_softc *sc)
684 {
685 const char *fwtype;
686 uint32_t apedata, features;
687
688 /* Check for a valid APE signature in shared memory. */
689 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
690 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
691 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
692 return;
693 }
694
695 /* Check if APE firmware is running. */
696 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
697 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
698 printf("%s: APE signature found but FW status not ready! "
699 "0x%08x\n", device_xname(sc->bge_dev), apedata);
700 return;
701 }
702
703 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
704
705 /* Fetch the APE firwmare type and version. */
706 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
707 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
708 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
709 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
710 fwtype = "NCSI";
711 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
712 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
713 fwtype = "DASH";
714 } else
715 fwtype = "UNKN";
716
717 /* Print the APE firmware version. */
718 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
719 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
720 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
721 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
722 (apedata & BGE_APE_FW_VERSION_BLDMSK));
723 }
724
725 int
726 bge_ape_lock(struct bge_softc *sc, int locknum)
727 {
728 struct pci_attach_args *pa = &(sc->bge_pa);
729 uint32_t bit, gnt, req, status;
730 int i, off;
731
732 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
733 return (0);
734
735 /* Lock request/grant registers have different bases. */
736 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
737 req = BGE_APE_LOCK_REQ;
738 gnt = BGE_APE_LOCK_GRANT;
739 } else {
740 req = BGE_APE_PER_LOCK_REQ;
741 gnt = BGE_APE_PER_LOCK_GRANT;
742 }
743
744 off = 4 * locknum;
745
746 switch (locknum) {
747 case BGE_APE_LOCK_GPIO:
748 /* Lock required when using GPIO. */
749 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
750 return (0);
751 if (pa->pa_function == 0)
752 bit = BGE_APE_LOCK_REQ_DRIVER0;
753 else
754 bit = (1 << pa->pa_function);
755 break;
756 case BGE_APE_LOCK_GRC:
757 /* Lock required to reset the device. */
758 if (pa->pa_function == 0)
759 bit = BGE_APE_LOCK_REQ_DRIVER0;
760 else
761 bit = (1 << pa->pa_function);
762 break;
763 case BGE_APE_LOCK_MEM:
764 /* Lock required when accessing certain APE memory. */
765 if (pa->pa_function == 0)
766 bit = BGE_APE_LOCK_REQ_DRIVER0;
767 else
768 bit = (1 << pa->pa_function);
769 break;
770 case BGE_APE_LOCK_PHY0:
771 case BGE_APE_LOCK_PHY1:
772 case BGE_APE_LOCK_PHY2:
773 case BGE_APE_LOCK_PHY3:
774 /* Lock required when accessing PHYs. */
775 bit = BGE_APE_LOCK_REQ_DRIVER0;
776 break;
777 default:
778 return (EINVAL);
779 }
780
781 /* Request a lock. */
782 APE_WRITE_4_FLUSH(sc, req + off, bit);
783
784 /* Wait up to 1 second to acquire lock. */
785 for (i = 0; i < 20000; i++) {
786 status = APE_READ_4(sc, gnt + off);
787 if (status == bit)
788 break;
789 DELAY(50);
790 }
791
792 /* Handle any errors. */
793 if (status != bit) {
794 printf("%s: APE lock %d request failed! "
795 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
796 device_xname(sc->bge_dev),
797 locknum, req + off, bit & 0xFFFF, gnt + off,
798 status & 0xFFFF);
799 /* Revoke the lock request. */
800 APE_WRITE_4(sc, gnt + off, bit);
801 return (EBUSY);
802 }
803
804 return (0);
805 }
806
807 void
808 bge_ape_unlock(struct bge_softc *sc, int locknum)
809 {
810 struct pci_attach_args *pa = &(sc->bge_pa);
811 uint32_t bit, gnt;
812 int off;
813
814 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
815 return;
816
817 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
818 gnt = BGE_APE_LOCK_GRANT;
819 else
820 gnt = BGE_APE_PER_LOCK_GRANT;
821
822 off = 4 * locknum;
823
824 switch (locknum) {
825 case BGE_APE_LOCK_GPIO:
826 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
827 return;
828 if (pa->pa_function == 0)
829 bit = BGE_APE_LOCK_GRANT_DRIVER0;
830 else
831 bit = (1 << pa->pa_function);
832 break;
833 case BGE_APE_LOCK_GRC:
834 if (pa->pa_function == 0)
835 bit = BGE_APE_LOCK_GRANT_DRIVER0;
836 else
837 bit = (1 << pa->pa_function);
838 break;
839 case BGE_APE_LOCK_MEM:
840 if (pa->pa_function == 0)
841 bit = BGE_APE_LOCK_GRANT_DRIVER0;
842 else
843 bit = (1 << pa->pa_function);
844 break;
845 case BGE_APE_LOCK_PHY0:
846 case BGE_APE_LOCK_PHY1:
847 case BGE_APE_LOCK_PHY2:
848 case BGE_APE_LOCK_PHY3:
849 bit = BGE_APE_LOCK_GRANT_DRIVER0;
850 break;
851 default:
852 return;
853 }
854
855 /* Write and flush for consecutive bge_ape_lock() */
856 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
857 }
858
859 /*
860 * Send an event to the APE firmware.
861 */
862 void
863 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
864 {
865 uint32_t apedata;
866 int i;
867
868 /* NCSI does not support APE events. */
869 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
870 return;
871
872 /* Wait up to 1ms for APE to service previous event. */
873 for (i = 10; i > 0; i--) {
874 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
875 break;
876 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
877 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
878 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
879 BGE_APE_EVENT_STATUS_EVENT_PENDING);
880 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
881 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
882 break;
883 }
884 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
885 DELAY(100);
886 }
887 if (i == 0) {
888 printf("%s: APE event 0x%08x send timed out\n",
889 device_xname(sc->bge_dev), event);
890 }
891 }
892
893 void
894 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
895 {
896 uint32_t apedata, event;
897
898 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
899 return;
900
901 switch (kind) {
902 case BGE_RESET_START:
903 /* If this is the first load, clear the load counter. */
904 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
905 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
906 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
907 else {
908 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
909 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
910 }
911 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
912 BGE_APE_HOST_SEG_SIG_MAGIC);
913 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
914 BGE_APE_HOST_SEG_LEN_MAGIC);
915
916 /* Add some version info if bge(4) supports it. */
917 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
918 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
919 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
920 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
921 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
922 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
923 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
924 BGE_APE_HOST_DRVR_STATE_START);
925 event = BGE_APE_EVENT_STATUS_STATE_START;
926 break;
927 case BGE_RESET_SHUTDOWN:
928 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
929 BGE_APE_HOST_DRVR_STATE_UNLOAD);
930 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
931 break;
932 case BGE_RESET_SUSPEND:
933 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
934 break;
935 default:
936 return;
937 }
938
939 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
940 BGE_APE_EVENT_STATUS_STATE_CHNGE);
941 }
942
943 static uint8_t
944 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
945 {
946 uint32_t access, byte = 0;
947 int i;
948
949 /* Lock. */
950 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
951 for (i = 0; i < 8000; i++) {
952 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
953 break;
954 DELAY(20);
955 }
956 if (i == 8000)
957 return 1;
958
959 /* Enable access. */
960 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
961 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
962
963 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
964 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
965 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
966 DELAY(10);
967 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
968 DELAY(10);
969 break;
970 }
971 }
972
973 if (i == BGE_TIMEOUT * 10) {
974 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
975 return 1;
976 }
977
978 /* Get result. */
979 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
980
981 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
982
983 /* Disable access. */
984 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
985
986 /* Unlock. */
987 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
988
989 return 0;
990 }
991
992 /*
993 * Read a sequence of bytes from NVRAM.
994 */
995 static int
996 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
997 {
998 int error = 0, i;
999 uint8_t byte = 0;
1000
1001 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1002 return 1;
1003
1004 for (i = 0; i < cnt; i++) {
1005 error = bge_nvram_getbyte(sc, off + i, &byte);
1006 if (error)
1007 break;
1008 *(dest + i) = byte;
1009 }
1010
1011 return (error ? 1 : 0);
1012 }
1013
1014 /*
1015 * Read a byte of data stored in the EEPROM at address 'addr.' The
1016 * BCM570x supports both the traditional bitbang interface and an
1017 * auto access interface for reading the EEPROM. We use the auto
1018 * access method.
1019 */
1020 static uint8_t
1021 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1022 {
1023 int i;
1024 uint32_t byte = 0;
1025
1026 /*
1027 * Enable use of auto EEPROM access so we can avoid
1028 * having to use the bitbang method.
1029 */
1030 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1031
1032 /* Reset the EEPROM, load the clock period. */
1033 CSR_WRITE_4(sc, BGE_EE_ADDR,
1034 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1035 DELAY(20);
1036
1037 /* Issue the read EEPROM command. */
1038 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1039
1040 /* Wait for completion */
1041 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1042 DELAY(10);
1043 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1044 break;
1045 }
1046
1047 if (i == BGE_TIMEOUT * 10) {
1048 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1049 return 1;
1050 }
1051
1052 /* Get result. */
1053 byte = CSR_READ_4(sc, BGE_EE_DATA);
1054
1055 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1056
1057 return 0;
1058 }
1059
1060 /*
1061 * Read a sequence of bytes from the EEPROM.
1062 */
1063 static int
1064 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1065 {
1066 int error = 0, i;
1067 uint8_t byte = 0;
1068 char *dest = destv;
1069
1070 for (i = 0; i < cnt; i++) {
1071 error = bge_eeprom_getbyte(sc, off + i, &byte);
1072 if (error)
1073 break;
1074 *(dest + i) = byte;
1075 }
1076
1077 return (error ? 1 : 0);
1078 }
1079
1080 static int
1081 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1082 {
1083 struct bge_softc *sc = device_private(dev);
1084 uint32_t data;
1085 uint32_t autopoll;
1086 int rv = 0;
1087 int i;
1088
1089 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1090 return -1;
1091
1092 /* Reading with autopolling on may trigger PCI errors */
1093 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1094 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1095 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1096 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1097 DELAY(80);
1098 }
1099
1100 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1101 BGE_MIPHY(phy) | BGE_MIREG(reg));
1102
1103 for (i = 0; i < BGE_TIMEOUT; i++) {
1104 delay(10);
1105 data = CSR_READ_4(sc, BGE_MI_COMM);
1106 if (!(data & BGE_MICOMM_BUSY)) {
1107 DELAY(5);
1108 data = CSR_READ_4(sc, BGE_MI_COMM);
1109 break;
1110 }
1111 }
1112
1113 if (i == BGE_TIMEOUT) {
1114 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1115 rv = ETIMEDOUT;
1116 } else if ((data & BGE_MICOMM_READFAIL) != 0)
1117 rv = -1;
1118 else
1119 *val = data & BGE_MICOMM_DATA;
1120
1121 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1122 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1123 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1124 DELAY(80);
1125 }
1126
1127 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1128
1129 return rv;
1130 }
1131
1132 static int
1133 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1134 {
1135 struct bge_softc *sc = device_private(dev);
1136 uint32_t autopoll;
1137 int i;
1138
1139 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1140 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1141 return 0;
1142
1143 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1144 return -1;
1145
1146 /* Reading with autopolling on may trigger PCI errors */
1147 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1148 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1149 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1150 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1151 DELAY(80);
1152 }
1153
1154 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1155 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1156
1157 for (i = 0; i < BGE_TIMEOUT; i++) {
1158 delay(10);
1159 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1160 delay(5);
1161 CSR_READ_4(sc, BGE_MI_COMM);
1162 break;
1163 }
1164 }
1165
1166 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1167 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1168 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1169 delay(80);
1170 }
1171
1172 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1173
1174 if (i == BGE_TIMEOUT) {
1175 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1176 return ETIMEDOUT;
1177 }
1178
1179 return 0;
1180 }
1181
1182 static void
1183 bge_miibus_statchg(struct ifnet *ifp)
1184 {
1185 struct bge_softc *sc = ifp->if_softc;
1186 struct mii_data *mii = &sc->bge_mii;
1187 uint32_t mac_mode, rx_mode, tx_mode;
1188
1189 /*
1190 * Get flow control negotiation result.
1191 */
1192 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1193 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1194 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1195
1196 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1197 mii->mii_media_status & IFM_ACTIVE &&
1198 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1199 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1200 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1201 (!(mii->mii_media_status & IFM_ACTIVE) ||
1202 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1203 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1204
1205 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1206 return;
1207
1208 /* Set the port mode (MII/GMII) to match the link speed. */
1209 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1210 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1211 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1212 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1213 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1214 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1215 mac_mode |= BGE_PORTMODE_GMII;
1216 else
1217 mac_mode |= BGE_PORTMODE_MII;
1218
1219 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1220 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1221 if ((mii->mii_media_active & IFM_FDX) != 0) {
1222 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1223 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1224 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1225 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1226 } else
1227 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1228
1229 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1230 DELAY(40);
1231 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1232 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1233 }
1234
1235 /*
1236 * Update rx threshold levels to values in a particular slot
1237 * of the interrupt-mitigation table bge_rx_threshes.
1238 */
1239 static void
1240 bge_set_thresh(struct ifnet *ifp, int lvl)
1241 {
1242 struct bge_softc *sc = ifp->if_softc;
1243 int s;
1244
1245 /* For now, just save the new Rx-intr thresholds and record
1246 * that a threshold update is pending. Updating the hardware
1247 * registers here (even at splhigh()) is observed to
1248 * occasionaly cause glitches where Rx-interrupts are not
1249 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1250 */
1251 s = splnet();
1252 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1253 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1254 sc->bge_pending_rxintr_change = 1;
1255 splx(s);
1256 }
1257
1258
1259 /*
1260 * Update Rx thresholds of all bge devices
1261 */
1262 static void
1263 bge_update_all_threshes(int lvl)
1264 {
1265 struct ifnet *ifp;
1266 const char * const namebuf = "bge";
1267 int namelen;
1268 int s;
1269
1270 if (lvl < 0)
1271 lvl = 0;
1272 else if (lvl >= NBGE_RX_THRESH)
1273 lvl = NBGE_RX_THRESH - 1;
1274
1275 namelen = strlen(namebuf);
1276 /*
1277 * Now search all the interfaces for this name/number
1278 */
1279 s = pserialize_read_enter();
1280 IFNET_READER_FOREACH(ifp) {
1281 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1282 continue;
1283 /* We got a match: update if doing auto-threshold-tuning */
1284 if (bge_auto_thresh)
1285 bge_set_thresh(ifp, lvl);
1286 }
1287 pserialize_read_exit(s);
1288 }
1289
1290 /*
1291 * Handle events that have triggered interrupts.
1292 */
1293 static void
1294 bge_handle_events(struct bge_softc *sc)
1295 {
1296
1297 return;
1298 }
1299
1300 /*
1301 * Memory management for jumbo frames.
1302 */
1303
1304 static int
1305 bge_alloc_jumbo_mem(struct bge_softc *sc)
1306 {
1307 char *ptr, *kva;
1308 bus_dma_segment_t seg;
1309 int i, rseg, state, error;
1310 struct bge_jpool_entry *entry;
1311
1312 state = error = 0;
1313
1314 /* Grab a big chunk o' storage. */
1315 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1316 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1317 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1318 return ENOBUFS;
1319 }
1320
1321 state = 1;
1322 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1323 BUS_DMA_NOWAIT)) {
1324 aprint_error_dev(sc->bge_dev,
1325 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1326 error = ENOBUFS;
1327 goto out;
1328 }
1329
1330 state = 2;
1331 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1332 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1333 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1334 error = ENOBUFS;
1335 goto out;
1336 }
1337
1338 state = 3;
1339 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1340 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1341 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1342 error = ENOBUFS;
1343 goto out;
1344 }
1345
1346 state = 4;
1347 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1348 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1349
1350 SLIST_INIT(&sc->bge_jfree_listhead);
1351 SLIST_INIT(&sc->bge_jinuse_listhead);
1352
1353 /*
1354 * Now divide it up into 9K pieces and save the addresses
1355 * in an array.
1356 */
1357 ptr = sc->bge_cdata.bge_jumbo_buf;
1358 for (i = 0; i < BGE_JSLOTS; i++) {
1359 sc->bge_cdata.bge_jslots[i] = ptr;
1360 ptr += BGE_JLEN;
1361 entry = malloc(sizeof(struct bge_jpool_entry),
1362 M_DEVBUF, M_NOWAIT);
1363 if (entry == NULL) {
1364 aprint_error_dev(sc->bge_dev,
1365 "no memory for jumbo buffer queue!\n");
1366 error = ENOBUFS;
1367 goto out;
1368 }
1369 entry->slot = i;
1370 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1371 entry, jpool_entries);
1372 }
1373 out:
1374 if (error != 0) {
1375 switch (state) {
1376 case 4:
1377 bus_dmamap_unload(sc->bge_dmatag,
1378 sc->bge_cdata.bge_rx_jumbo_map);
1379 /* FALLTHROUGH */
1380 case 3:
1381 bus_dmamap_destroy(sc->bge_dmatag,
1382 sc->bge_cdata.bge_rx_jumbo_map);
1383 /* FALLTHROUGH */
1384 case 2:
1385 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1386 /* FALLTHROUGH */
1387 case 1:
1388 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1389 break;
1390 default:
1391 break;
1392 }
1393 }
1394
1395 return error;
1396 }
1397
1398 /*
1399 * Allocate a jumbo buffer.
1400 */
1401 static void *
1402 bge_jalloc(struct bge_softc *sc)
1403 {
1404 struct bge_jpool_entry *entry;
1405
1406 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1407
1408 if (entry == NULL) {
1409 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1410 return NULL;
1411 }
1412
1413 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1414 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1415 return (sc->bge_cdata.bge_jslots[entry->slot]);
1416 }
1417
1418 /*
1419 * Release a jumbo buffer.
1420 */
1421 static void
1422 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1423 {
1424 struct bge_jpool_entry *entry;
1425 struct bge_softc *sc;
1426 int i, s;
1427
1428 /* Extract the softc struct pointer. */
1429 sc = (struct bge_softc *)arg;
1430
1431 if (sc == NULL)
1432 panic("bge_jfree: can't find softc pointer!");
1433
1434 /* calculate the slot this buffer belongs to */
1435
1436 i = ((char *)buf
1437 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1438
1439 if ((i < 0) || (i >= BGE_JSLOTS))
1440 panic("bge_jfree: asked to free buffer that we don't manage!");
1441
1442 s = splvm();
1443 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1444 if (entry == NULL)
1445 panic("bge_jfree: buffer not in use!");
1446 entry->slot = i;
1447 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1448 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1449
1450 if (__predict_true(m != NULL))
1451 pool_cache_put(mb_cache, m);
1452 splx(s);
1453 }
1454
1455
1456 /*
1457 * Initialize a standard receive ring descriptor.
1458 */
1459 static int
1460 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1461 bus_dmamap_t dmamap)
1462 {
1463 struct mbuf *m_new = NULL;
1464 struct bge_rx_bd *r;
1465 int error;
1466
1467 if (dmamap == NULL)
1468 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1469
1470 if (dmamap == NULL) {
1471 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1472 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1473 if (error != 0)
1474 return error;
1475 }
1476
1477 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1478
1479 if (m == NULL) {
1480 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1481 if (m_new == NULL)
1482 return ENOBUFS;
1483
1484 MCLGET(m_new, M_DONTWAIT);
1485 if (!(m_new->m_flags & M_EXT)) {
1486 m_freem(m_new);
1487 return ENOBUFS;
1488 }
1489 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1490
1491 } else {
1492 m_new = m;
1493 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1494 m_new->m_data = m_new->m_ext.ext_buf;
1495 }
1496 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1497 m_adj(m_new, ETHER_ALIGN);
1498 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1499 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1500 m_freem(m_new);
1501 return ENOBUFS;
1502 }
1503 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1504 BUS_DMASYNC_PREREAD);
1505
1506 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1507 r = &sc->bge_rdata->bge_rx_std_ring[i];
1508 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1509 r->bge_flags = BGE_RXBDFLAG_END;
1510 r->bge_len = m_new->m_len;
1511 r->bge_idx = i;
1512
1513 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1514 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1515 i * sizeof (struct bge_rx_bd),
1516 sizeof (struct bge_rx_bd),
1517 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1518
1519 return 0;
1520 }
1521
1522 /*
1523 * Initialize a jumbo receive ring descriptor. This allocates
1524 * a jumbo buffer from the pool managed internally by the driver.
1525 */
1526 static int
1527 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1528 {
1529 struct mbuf *m_new = NULL;
1530 struct bge_rx_bd *r;
1531 void *buf = NULL;
1532
1533 if (m == NULL) {
1534
1535 /* Allocate the mbuf. */
1536 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1537 if (m_new == NULL)
1538 return ENOBUFS;
1539
1540 /* Allocate the jumbo buffer */
1541 buf = bge_jalloc(sc);
1542 if (buf == NULL) {
1543 m_freem(m_new);
1544 aprint_error_dev(sc->bge_dev,
1545 "jumbo allocation failed -- packet dropped!\n");
1546 return ENOBUFS;
1547 }
1548
1549 /* Attach the buffer to the mbuf. */
1550 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1551 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1552 bge_jfree, sc);
1553 m_new->m_flags |= M_EXT_RW;
1554 } else {
1555 m_new = m;
1556 buf = m_new->m_data = m_new->m_ext.ext_buf;
1557 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1558 }
1559 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1560 m_adj(m_new, ETHER_ALIGN);
1561 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1562 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1563 BGE_JLEN, BUS_DMASYNC_PREREAD);
1564 /* Set up the descriptor. */
1565 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1566 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1567 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1568 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1569 r->bge_len = m_new->m_len;
1570 r->bge_idx = i;
1571
1572 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1573 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1574 i * sizeof (struct bge_rx_bd),
1575 sizeof (struct bge_rx_bd),
1576 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1577
1578 return 0;
1579 }
1580
1581 /*
1582 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1583 * that's 1MB or memory, which is a lot. For now, we fill only the first
1584 * 256 ring entries and hope that our CPU is fast enough to keep up with
1585 * the NIC.
1586 */
1587 static int
1588 bge_init_rx_ring_std(struct bge_softc *sc)
1589 {
1590 int i;
1591
1592 if (sc->bge_flags & BGEF_RXRING_VALID)
1593 return 0;
1594
1595 for (i = 0; i < BGE_SSLOTS; i++) {
1596 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1597 return ENOBUFS;
1598 }
1599
1600 sc->bge_std = i - 1;
1601 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1602
1603 sc->bge_flags |= BGEF_RXRING_VALID;
1604
1605 return 0;
1606 }
1607
1608 static void
1609 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1610 {
1611 int i;
1612
1613 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1614 return;
1615
1616 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1617 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1618 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1619 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1620 if (disable) {
1621 bus_dmamap_destroy(sc->bge_dmatag,
1622 sc->bge_cdata.bge_rx_std_map[i]);
1623 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1624 }
1625 }
1626 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1627 sizeof(struct bge_rx_bd));
1628 }
1629
1630 sc->bge_flags &= ~BGEF_RXRING_VALID;
1631 }
1632
1633 static int
1634 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1635 {
1636 int i;
1637 volatile struct bge_rcb *rcb;
1638
1639 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1640 return 0;
1641
1642 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1643 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1644 return ENOBUFS;
1645 }
1646
1647 sc->bge_jumbo = i - 1;
1648 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1649
1650 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1651 rcb->bge_maxlen_flags = 0;
1652 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1653
1654 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1655
1656 return 0;
1657 }
1658
1659 static void
1660 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1661 {
1662 int i;
1663
1664 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1665 return;
1666
1667 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1668 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1669 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1670 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1671 }
1672 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1673 sizeof(struct bge_rx_bd));
1674 }
1675
1676 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1677 }
1678
1679 static void
1680 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1681 {
1682 int i;
1683 struct txdmamap_pool_entry *dma;
1684
1685 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1686 return;
1687
1688 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1689 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1690 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1691 sc->bge_cdata.bge_tx_chain[i] = NULL;
1692 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1693 link);
1694 sc->txdma[i] = 0;
1695 }
1696 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1697 sizeof(struct bge_tx_bd));
1698 }
1699
1700 if (disable) {
1701 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1702 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1703 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1704 if (sc->bge_dma64) {
1705 bus_dmamap_destroy(sc->bge_dmatag32,
1706 dma->dmamap32);
1707 }
1708 free(dma, M_DEVBUF);
1709 }
1710 SLIST_INIT(&sc->txdma_list);
1711 }
1712
1713 sc->bge_flags &= ~BGEF_TXRING_VALID;
1714 }
1715
1716 static int
1717 bge_init_tx_ring(struct bge_softc *sc)
1718 {
1719 struct ifnet *ifp = &sc->ethercom.ec_if;
1720 int i;
1721 bus_dmamap_t dmamap, dmamap32;
1722 bus_size_t maxsegsz;
1723 struct txdmamap_pool_entry *dma;
1724
1725 if (sc->bge_flags & BGEF_TXRING_VALID)
1726 return 0;
1727
1728 sc->bge_txcnt = 0;
1729 sc->bge_tx_saved_considx = 0;
1730
1731 /* Initialize transmit producer index for host-memory send ring. */
1732 sc->bge_tx_prodidx = 0;
1733 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1734 /* 5700 b2 errata */
1735 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1736 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1737
1738 /* NIC-memory send ring not used; initialize to zero. */
1739 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1740 /* 5700 b2 errata */
1741 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1742 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1743
1744 /* Limit DMA segment size for some chips */
1745 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1746 (ifp->if_mtu <= ETHERMTU))
1747 maxsegsz = 2048;
1748 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1749 maxsegsz = 4096;
1750 else
1751 maxsegsz = ETHER_MAX_LEN_JUMBO;
1752
1753 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1754 goto alloc_done;
1755
1756 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1757 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1758 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1759 &dmamap))
1760 return ENOBUFS;
1761 if (dmamap == NULL)
1762 panic("dmamap NULL in bge_init_tx_ring");
1763 if (sc->bge_dma64) {
1764 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1765 BGE_NTXSEG, maxsegsz, 0,
1766 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1767 &dmamap32)) {
1768 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1769 return ENOBUFS;
1770 }
1771 if (dmamap32 == NULL)
1772 panic("dmamap32 NULL in bge_init_tx_ring");
1773 } else
1774 dmamap32 = dmamap;
1775 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1776 if (dma == NULL) {
1777 aprint_error_dev(sc->bge_dev,
1778 "can't alloc txdmamap_pool_entry\n");
1779 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1780 if (sc->bge_dma64)
1781 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1782 return ENOMEM;
1783 }
1784 dma->dmamap = dmamap;
1785 dma->dmamap32 = dmamap32;
1786 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1787 }
1788 alloc_done:
1789 sc->bge_flags |= BGEF_TXRING_VALID;
1790
1791 return 0;
1792 }
1793
1794 static void
1795 bge_setmulti(struct bge_softc *sc)
1796 {
1797 struct ethercom *ec = &sc->ethercom;
1798 struct ifnet *ifp = &ec->ec_if;
1799 struct ether_multi *enm;
1800 struct ether_multistep step;
1801 uint32_t hashes[4] = { 0, 0, 0, 0 };
1802 uint32_t h;
1803 int i;
1804
1805 if (ifp->if_flags & IFF_PROMISC)
1806 goto allmulti;
1807
1808 /* Now program new ones. */
1809 ETHER_LOCK(ec);
1810 ETHER_FIRST_MULTI(step, ec, enm);
1811 while (enm != NULL) {
1812 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1813 /*
1814 * We must listen to a range of multicast addresses.
1815 * For now, just accept all multicasts, rather than
1816 * trying to set only those filter bits needed to match
1817 * the range. (At this time, the only use of address
1818 * ranges is for IP multicast routing, for which the
1819 * range is big enough to require all bits set.)
1820 */
1821 ETHER_UNLOCK(ec);
1822 goto allmulti;
1823 }
1824
1825 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1826
1827 /* Just want the 7 least-significant bits. */
1828 h &= 0x7f;
1829
1830 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1831 ETHER_NEXT_MULTI(step, enm);
1832 }
1833 ETHER_UNLOCK(ec);
1834
1835 ifp->if_flags &= ~IFF_ALLMULTI;
1836 goto setit;
1837
1838 allmulti:
1839 ifp->if_flags |= IFF_ALLMULTI;
1840 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1841
1842 setit:
1843 for (i = 0; i < 4; i++)
1844 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1845 }
1846
1847 static void
1848 bge_sig_pre_reset(struct bge_softc *sc, int type)
1849 {
1850
1851 /*
1852 * Some chips don't like this so only do this if ASF is enabled
1853 */
1854 if (sc->bge_asf_mode)
1855 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1856
1857 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1858 switch (type) {
1859 case BGE_RESET_START:
1860 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1861 BGE_FW_DRV_STATE_START);
1862 break;
1863 case BGE_RESET_SHUTDOWN:
1864 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1865 BGE_FW_DRV_STATE_UNLOAD);
1866 break;
1867 case BGE_RESET_SUSPEND:
1868 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1869 BGE_FW_DRV_STATE_SUSPEND);
1870 break;
1871 }
1872 }
1873
1874 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1875 bge_ape_driver_state_change(sc, type);
1876 }
1877
1878 static void
1879 bge_sig_post_reset(struct bge_softc *sc, int type)
1880 {
1881
1882 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1883 switch (type) {
1884 case BGE_RESET_START:
1885 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1886 BGE_FW_DRV_STATE_START_DONE);
1887 /* START DONE */
1888 break;
1889 case BGE_RESET_SHUTDOWN:
1890 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1891 BGE_FW_DRV_STATE_UNLOAD_DONE);
1892 break;
1893 }
1894 }
1895
1896 if (type == BGE_RESET_SHUTDOWN)
1897 bge_ape_driver_state_change(sc, type);
1898 }
1899
1900 static void
1901 bge_sig_legacy(struct bge_softc *sc, int type)
1902 {
1903
1904 if (sc->bge_asf_mode) {
1905 switch (type) {
1906 case BGE_RESET_START:
1907 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1908 BGE_FW_DRV_STATE_START);
1909 break;
1910 case BGE_RESET_SHUTDOWN:
1911 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1912 BGE_FW_DRV_STATE_UNLOAD);
1913 break;
1914 }
1915 }
1916 }
1917
1918 static void
1919 bge_wait_for_event_ack(struct bge_softc *sc)
1920 {
1921 int i;
1922
1923 /* wait up to 2500usec */
1924 for (i = 0; i < 250; i++) {
1925 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1926 BGE_RX_CPU_DRV_EVENT))
1927 break;
1928 DELAY(10);
1929 }
1930 }
1931
1932 static void
1933 bge_stop_fw(struct bge_softc *sc)
1934 {
1935
1936 if (sc->bge_asf_mode) {
1937 bge_wait_for_event_ack(sc);
1938
1939 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1940 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1941 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1942
1943 bge_wait_for_event_ack(sc);
1944 }
1945 }
1946
1947 static int
1948 bge_poll_fw(struct bge_softc *sc)
1949 {
1950 uint32_t val;
1951 int i;
1952
1953 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1954 for (i = 0; i < BGE_TIMEOUT; i++) {
1955 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1956 if (val & BGE_VCPU_STATUS_INIT_DONE)
1957 break;
1958 DELAY(100);
1959 }
1960 if (i >= BGE_TIMEOUT) {
1961 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1962 return -1;
1963 }
1964 } else {
1965 /*
1966 * Poll the value location we just wrote until
1967 * we see the 1's complement of the magic number.
1968 * This indicates that the firmware initialization
1969 * is complete.
1970 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1971 */
1972 for (i = 0; i < BGE_TIMEOUT; i++) {
1973 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1974 if (val == ~BGE_SRAM_FW_MB_MAGIC)
1975 break;
1976 DELAY(10);
1977 }
1978
1979 if ((i >= BGE_TIMEOUT)
1980 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1981 aprint_error_dev(sc->bge_dev,
1982 "firmware handshake timed out, val = %x\n", val);
1983 return -1;
1984 }
1985 }
1986
1987 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1988 /* tg3 says we have to wait extra time */
1989 delay(10 * 1000);
1990 }
1991
1992 return 0;
1993 }
1994
1995 int
1996 bge_phy_addr(struct bge_softc *sc)
1997 {
1998 struct pci_attach_args *pa = &(sc->bge_pa);
1999 int phy_addr = 1;
2000
2001 /*
2002 * PHY address mapping for various devices.
2003 *
2004 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2005 * ---------+-------+-------+-------+-------+
2006 * BCM57XX | 1 | X | X | X |
2007 * BCM5704 | 1 | X | 1 | X |
2008 * BCM5717 | 1 | 8 | 2 | 9 |
2009 * BCM5719 | 1 | 8 | 2 | 9 |
2010 * BCM5720 | 1 | 8 | 2 | 9 |
2011 *
2012 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2013 * ---------+-------+-------+-------+-------+
2014 * BCM57XX | X | X | X | X |
2015 * BCM5704 | X | X | X | X |
2016 * BCM5717 | X | X | X | X |
2017 * BCM5719 | 3 | 10 | 4 | 11 |
2018 * BCM5720 | X | X | X | X |
2019 *
2020 * Other addresses may respond but they are not
2021 * IEEE compliant PHYs and should be ignored.
2022 */
2023 switch (BGE_ASICREV(sc->bge_chipid)) {
2024 case BGE_ASICREV_BCM5717:
2025 case BGE_ASICREV_BCM5719:
2026 case BGE_ASICREV_BCM5720:
2027 phy_addr = pa->pa_function;
2028 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2029 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2030 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2031 } else {
2032 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2033 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2034 }
2035 }
2036
2037 return phy_addr;
2038 }
2039
2040 /*
2041 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2042 * self-test results.
2043 */
2044 static int
2045 bge_chipinit(struct bge_softc *sc)
2046 {
2047 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2048 int i;
2049
2050 /* Set endianness before we access any non-PCI registers. */
2051 misc_ctl = BGE_INIT;
2052 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2053 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2054 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2055 misc_ctl);
2056
2057 /*
2058 * Clear the MAC statistics block in the NIC's
2059 * internal memory.
2060 */
2061 for (i = BGE_STATS_BLOCK;
2062 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2063 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2064
2065 for (i = BGE_STATUS_BLOCK;
2066 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2067 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2068
2069 /* 5717 workaround from tg3 */
2070 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2071 /* Save */
2072 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2073
2074 /* Temporary modify MODE_CTL to control TLP */
2075 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2076 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2077
2078 /* Control TLP */
2079 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2080 BGE_TLP_PHYCTL1);
2081 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2082 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2083
2084 /* Restore */
2085 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2086 }
2087
2088 if (BGE_IS_57765_FAMILY(sc)) {
2089 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2090 /* Save */
2091 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2092
2093 /* Temporary modify MODE_CTL to control TLP */
2094 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2095 CSR_WRITE_4(sc, BGE_MODE_CTL,
2096 reg | BGE_MODECTL_PCIE_TLPADDR1);
2097
2098 /* Control TLP */
2099 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2100 BGE_TLP_PHYCTL5);
2101 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2102 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2103
2104 /* Restore */
2105 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2106 }
2107 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2108 /*
2109 * For the 57766 and non Ax versions of 57765, bootcode
2110 * needs to setup the PCIE Fast Training Sequence (FTS)
2111 * value to prevent transmit hangs.
2112 */
2113 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2114 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2115 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2116
2117 /* Save */
2118 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2119
2120 /* Temporary modify MODE_CTL to control TLP */
2121 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2122 CSR_WRITE_4(sc, BGE_MODE_CTL,
2123 reg | BGE_MODECTL_PCIE_TLPADDR0);
2124
2125 /* Control TLP */
2126 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2127 BGE_TLP_FTSMAX);
2128 reg &= ~BGE_TLP_FTSMAX_MSK;
2129 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2130 reg | BGE_TLP_FTSMAX_VAL);
2131
2132 /* Restore */
2133 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2134 }
2135
2136 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2137 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2138 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2139 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2140 }
2141
2142 /* Set up the PCI DMA control register. */
2143 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2144 if (sc->bge_flags & BGEF_PCIE) {
2145 /* Read watermark not used, 128 bytes for write. */
2146 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2147 device_xname(sc->bge_dev)));
2148 if (sc->bge_mps >= 256)
2149 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2150 else
2151 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2152 } else if (sc->bge_flags & BGEF_PCIX) {
2153 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2154 device_xname(sc->bge_dev)));
2155 /* PCI-X bus */
2156 if (BGE_IS_5714_FAMILY(sc)) {
2157 /* 256 bytes for read and write. */
2158 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2159 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2160
2161 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2162 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2163 else
2164 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2165 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2166 /*
2167 * In the BCM5703, the DMA read watermark should
2168 * be set to less than or equal to the maximum
2169 * memory read byte count of the PCI-X command
2170 * register.
2171 */
2172 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2173 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2174 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2175 /* 1536 bytes for read, 384 bytes for write. */
2176 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2177 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2178 } else {
2179 /* 384 bytes for read and write. */
2180 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2181 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2182 (0x0F);
2183 }
2184
2185 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2186 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2187 uint32_t tmp;
2188
2189 /* Set ONEDMA_ATONCE for hardware workaround. */
2190 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2191 if (tmp == 6 || tmp == 7)
2192 dma_rw_ctl |=
2193 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2194
2195 /* Set PCI-X DMA write workaround. */
2196 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2197 }
2198 } else {
2199 /* Conventional PCI bus: 256 bytes for read and write. */
2200 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2201 device_xname(sc->bge_dev)));
2202 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2203 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2204
2205 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2206 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2207 dma_rw_ctl |= 0x0F;
2208 }
2209
2210 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2211 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2212 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2213 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2214
2215 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2216 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2217 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2218
2219 if (BGE_IS_57765_PLUS(sc)) {
2220 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2221 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2222 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2223
2224 /*
2225 * Enable HW workaround for controllers that misinterpret
2226 * a status tag update and leave interrupts permanently
2227 * disabled.
2228 */
2229 if (!BGE_IS_57765_FAMILY(sc) &&
2230 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2231 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2232 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2233 }
2234
2235 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2236 dma_rw_ctl);
2237
2238 /*
2239 * Set up general mode register.
2240 */
2241 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2242 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2243 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2244 /* Retain Host-2-BMC settings written by APE firmware. */
2245 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2246 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2247 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2248 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2249 }
2250 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2251 BGE_MODECTL_TX_NO_PHDR_CSUM;
2252
2253 /*
2254 * BCM5701 B5 have a bug causing data corruption when using
2255 * 64-bit DMA reads, which can be terminated early and then
2256 * completed later as 32-bit accesses, in combination with
2257 * certain bridges.
2258 */
2259 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2260 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2261 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2262
2263 /*
2264 * Tell the firmware the driver is running
2265 */
2266 if (sc->bge_asf_mode & ASF_STACKUP)
2267 mode_ctl |= BGE_MODECTL_STACKUP;
2268
2269 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2270
2271 /*
2272 * Disable memory write invalidate. Apparently it is not supported
2273 * properly by these devices.
2274 */
2275 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2276 PCI_COMMAND_INVALIDATE_ENABLE);
2277
2278 #ifdef __brokenalpha__
2279 /*
2280 * Must insure that we do not cross an 8K (bytes) boundary
2281 * for DMA reads. Our highest limit is 1K bytes. This is a
2282 * restriction on some ALPHA platforms with early revision
2283 * 21174 PCI chipsets, such as the AlphaPC 164lx
2284 */
2285 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2286 #endif
2287
2288 /* Set the timer prescaler (always 66MHz) */
2289 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2290
2291 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2292 DELAY(40); /* XXX */
2293
2294 /* Put PHY into ready state */
2295 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2296 DELAY(40);
2297 }
2298
2299 return 0;
2300 }
2301
2302 static int
2303 bge_blockinit(struct bge_softc *sc)
2304 {
2305 volatile struct bge_rcb *rcb;
2306 bus_size_t rcb_addr;
2307 struct ifnet *ifp = &sc->ethercom.ec_if;
2308 bge_hostaddr taddr;
2309 uint32_t dmactl, rdmareg, mimode, val;
2310 int i, limit;
2311
2312 /*
2313 * Initialize the memory window pointer register so that
2314 * we can access the first 32K of internal NIC RAM. This will
2315 * allow us to set up the TX send ring RCBs and the RX return
2316 * ring RCBs, plus other things which live in NIC memory.
2317 */
2318 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2319
2320 if (!BGE_IS_5705_PLUS(sc)) {
2321 /* 57XX step 33 */
2322 /* Configure mbuf memory pool */
2323 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2324
2325 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2326 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2327 else
2328 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2329
2330 /* 57XX step 34 */
2331 /* Configure DMA resource pool */
2332 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2333 BGE_DMA_DESCRIPTORS);
2334 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2335 }
2336
2337 /* 5718 step 11, 57XX step 35 */
2338 /*
2339 * Configure mbuf pool watermarks. New broadcom docs strongly
2340 * recommend these.
2341 */
2342 if (BGE_IS_5717_PLUS(sc)) {
2343 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2344 if (ifp->if_mtu > ETHERMTU) {
2345 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2346 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2347 } else {
2348 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2349 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2350 }
2351 } else if (BGE_IS_5705_PLUS(sc)) {
2352 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2353
2354 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2355 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2356 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2357 } else {
2358 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2359 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2360 }
2361 } else {
2362 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2363 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2364 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2365 }
2366
2367 /* 57XX step 36 */
2368 /* Configure DMA resource watermarks */
2369 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2370 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2371
2372 /* 5718 step 13, 57XX step 38 */
2373 /* Enable buffer manager */
2374 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2375 /*
2376 * Change the arbitration algorithm of TXMBUF read request to
2377 * round-robin instead of priority based for BCM5719. When
2378 * TXFIFO is almost empty, RDMA will hold its request until
2379 * TXFIFO is not almost empty.
2380 */
2381 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2382 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2383 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2384 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2385 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2386 val |= BGE_BMANMODE_LOMBUF_ATTN;
2387 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2388
2389 /* 57XX step 39 */
2390 /* Poll for buffer manager start indication */
2391 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2392 DELAY(10);
2393 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2394 break;
2395 }
2396
2397 if (i == BGE_TIMEOUT * 2) {
2398 aprint_error_dev(sc->bge_dev,
2399 "buffer manager failed to start\n");
2400 return ENXIO;
2401 }
2402
2403 /* 57XX step 40 */
2404 /* Enable flow-through queues */
2405 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2406 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2407
2408 /* Wait until queue initialization is complete */
2409 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2410 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2411 break;
2412 DELAY(10);
2413 }
2414
2415 if (i == BGE_TIMEOUT * 2) {
2416 aprint_error_dev(sc->bge_dev,
2417 "flow-through queue init failed\n");
2418 return ENXIO;
2419 }
2420
2421 /*
2422 * Summary of rings supported by the controller:
2423 *
2424 * Standard Receive Producer Ring
2425 * - This ring is used to feed receive buffers for "standard"
2426 * sized frames (typically 1536 bytes) to the controller.
2427 *
2428 * Jumbo Receive Producer Ring
2429 * - This ring is used to feed receive buffers for jumbo sized
2430 * frames (i.e. anything bigger than the "standard" frames)
2431 * to the controller.
2432 *
2433 * Mini Receive Producer Ring
2434 * - This ring is used to feed receive buffers for "mini"
2435 * sized frames to the controller.
2436 * - This feature required external memory for the controller
2437 * but was never used in a production system. Should always
2438 * be disabled.
2439 *
2440 * Receive Return Ring
2441 * - After the controller has placed an incoming frame into a
2442 * receive buffer that buffer is moved into a receive return
2443 * ring. The driver is then responsible to passing the
2444 * buffer up to the stack. Many versions of the controller
2445 * support multiple RR rings.
2446 *
2447 * Send Ring
2448 * - This ring is used for outgoing frames. Many versions of
2449 * the controller support multiple send rings.
2450 */
2451
2452 /* 5718 step 15, 57XX step 41 */
2453 /* Initialize the standard RX ring control block */
2454 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2455 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2456 /* 5718 step 16 */
2457 if (BGE_IS_57765_PLUS(sc)) {
2458 /*
2459 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2460 * Bits 15-2 : Maximum RX frame size
2461 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2462 * Bit 0 : Reserved
2463 */
2464 rcb->bge_maxlen_flags =
2465 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2466 } else if (BGE_IS_5705_PLUS(sc)) {
2467 /*
2468 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2469 * Bits 15-2 : Reserved (should be 0)
2470 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2471 * Bit 0 : Reserved
2472 */
2473 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2474 } else {
2475 /*
2476 * Ring size is always XXX entries
2477 * Bits 31-16: Maximum RX frame size
2478 * Bits 15-2 : Reserved (should be 0)
2479 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2480 * Bit 0 : Reserved
2481 */
2482 rcb->bge_maxlen_flags =
2483 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2484 }
2485 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2486 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2487 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2488 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2489 else
2490 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2491 /* Write the standard receive producer ring control block. */
2492 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2493 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2494 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2495 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2496
2497 /* Reset the standard receive producer ring producer index. */
2498 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2499
2500 /* 57XX step 42 */
2501 /*
2502 * Initialize the jumbo RX ring control block
2503 * We set the 'ring disabled' bit in the flags
2504 * field until we're actually ready to start
2505 * using this ring (i.e. once we set the MTU
2506 * high enough to require it).
2507 */
2508 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2509 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2510 BGE_HOSTADDR(rcb->bge_hostaddr,
2511 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2512 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2513 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2514 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2515 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2516 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2517 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2518 else
2519 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2520 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2521 rcb->bge_hostaddr.bge_addr_hi);
2522 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2523 rcb->bge_hostaddr.bge_addr_lo);
2524 /* Program the jumbo receive producer ring RCB parameters. */
2525 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2526 rcb->bge_maxlen_flags);
2527 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2528 /* Reset the jumbo receive producer ring producer index. */
2529 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2530 }
2531
2532 /* 57XX step 43 */
2533 /* Disable the mini receive producer ring RCB. */
2534 if (BGE_IS_5700_FAMILY(sc)) {
2535 /* Set up dummy disabled mini ring RCB */
2536 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2537 rcb->bge_maxlen_flags =
2538 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2539 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2540 rcb->bge_maxlen_flags);
2541 /* Reset the mini receive producer ring producer index. */
2542 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2543
2544 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2545 offsetof(struct bge_ring_data, bge_info),
2546 sizeof (struct bge_gib),
2547 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2548 }
2549
2550 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2551 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2552 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2553 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2554 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2555 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2556 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2557 }
2558 /* 5718 step 14, 57XX step 44 */
2559 /*
2560 * The BD ring replenish thresholds control how often the
2561 * hardware fetches new BD's from the producer rings in host
2562 * memory. Setting the value too low on a busy system can
2563 * starve the hardware and recue the throughpout.
2564 *
2565 * Set the BD ring replenish thresholds. The recommended
2566 * values are 1/8th the number of descriptors allocated to
2567 * each ring, but since we try to avoid filling the entire
2568 * ring we set these to the minimal value of 8. This needs to
2569 * be done on several of the supported chip revisions anyway,
2570 * to work around HW bugs.
2571 */
2572 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2573 if (BGE_IS_JUMBO_CAPABLE(sc))
2574 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2575
2576 /* 5718 step 18 */
2577 if (BGE_IS_5717_PLUS(sc)) {
2578 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2579 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2580 }
2581
2582 /* 57XX step 45 */
2583 /*
2584 * Disable all send rings by setting the 'ring disabled' bit
2585 * in the flags field of all the TX send ring control blocks,
2586 * located in NIC memory.
2587 */
2588 if (BGE_IS_5700_FAMILY(sc)) {
2589 /* 5700 to 5704 had 16 send rings. */
2590 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2591 } else if (BGE_IS_5717_PLUS(sc)) {
2592 limit = BGE_TX_RINGS_5717_MAX;
2593 } else if (BGE_IS_57765_FAMILY(sc) ||
2594 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2595 limit = BGE_TX_RINGS_57765_MAX;
2596 } else
2597 limit = 1;
2598 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2599 for (i = 0; i < limit; i++) {
2600 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2601 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2602 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2603 rcb_addr += sizeof(struct bge_rcb);
2604 }
2605
2606 /* 57XX step 46 and 47 */
2607 /* Configure send ring RCB 0 (we use only the first ring) */
2608 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2609 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2610 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2611 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2612 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2613 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2614 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2615 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2616 else
2617 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2618 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2619 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2620 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2621
2622 /* 57XX step 48 */
2623 /*
2624 * Disable all receive return rings by setting the
2625 * 'ring diabled' bit in the flags field of all the receive
2626 * return ring control blocks, located in NIC memory.
2627 */
2628 if (BGE_IS_5717_PLUS(sc)) {
2629 /* Should be 17, use 16 until we get an SRAM map. */
2630 limit = 16;
2631 } else if (BGE_IS_5700_FAMILY(sc))
2632 limit = BGE_RX_RINGS_MAX;
2633 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2634 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2635 BGE_IS_57765_FAMILY(sc))
2636 limit = 4;
2637 else
2638 limit = 1;
2639 /* Disable all receive return rings */
2640 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2641 for (i = 0; i < limit; i++) {
2642 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2643 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2644 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2645 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2646 BGE_RCB_FLAG_RING_DISABLED));
2647 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2648 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2649 (i * (sizeof(uint64_t))), 0);
2650 rcb_addr += sizeof(struct bge_rcb);
2651 }
2652
2653 /* 57XX step 49 */
2654 /*
2655 * Set up receive return ring 0. Note that the NIC address
2656 * for RX return rings is 0x0. The return rings live entirely
2657 * within the host, so the nicaddr field in the RCB isn't used.
2658 */
2659 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2660 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2661 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2662 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2663 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2664 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2665 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2666
2667 /* 5718 step 24, 57XX step 53 */
2668 /* Set random backoff seed for TX */
2669 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2670 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2671 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2672 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2673 BGE_TX_BACKOFF_SEED_MASK);
2674
2675 /* 5718 step 26, 57XX step 55 */
2676 /* Set inter-packet gap */
2677 val = 0x2620;
2678 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2679 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2680 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2681 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2682 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2683
2684 /* 5718 step 27, 57XX step 56 */
2685 /*
2686 * Specify which ring to use for packets that don't match
2687 * any RX rules.
2688 */
2689 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2690
2691 /* 5718 step 28, 57XX step 57 */
2692 /*
2693 * Configure number of RX lists. One interrupt distribution
2694 * list, sixteen active lists, one bad frames class.
2695 */
2696 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2697
2698 /* 5718 step 29, 57XX step 58 */
2699 /* Inialize RX list placement stats mask. */
2700 if (BGE_IS_575X_PLUS(sc)) {
2701 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2702 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2703 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2704 } else
2705 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2706
2707 /* 5718 step 30, 57XX step 59 */
2708 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2709
2710 /* 5718 step 33, 57XX step 62 */
2711 /* Disable host coalescing until we get it set up */
2712 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2713
2714 /* 5718 step 34, 57XX step 63 */
2715 /* Poll to make sure it's shut down. */
2716 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2717 DELAY(10);
2718 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2719 break;
2720 }
2721
2722 if (i == BGE_TIMEOUT * 2) {
2723 aprint_error_dev(sc->bge_dev,
2724 "host coalescing engine failed to idle\n");
2725 return ENXIO;
2726 }
2727
2728 /* 5718 step 35, 36, 37 */
2729 /* Set up host coalescing defaults */
2730 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2731 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2732 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2733 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2734 if (!(BGE_IS_5705_PLUS(sc))) {
2735 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2736 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2737 }
2738 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2739 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2740
2741 /* Set up address of statistics block */
2742 if (BGE_IS_5700_FAMILY(sc)) {
2743 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2744 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2745 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2746 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2747 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2748 }
2749
2750 /* 5718 step 38 */
2751 /* Set up address of status block */
2752 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2753 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2754 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2755 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2756 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2757 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2758
2759 /* Set up status block size. */
2760 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2761 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2762 val = BGE_STATBLKSZ_FULL;
2763 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2764 } else {
2765 val = BGE_STATBLKSZ_32BYTE;
2766 bzero(&sc->bge_rdata->bge_status_block, 32);
2767 }
2768
2769 /* 5718 step 39, 57XX step 73 */
2770 /* Turn on host coalescing state machine */
2771 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2772
2773 /* 5718 step 40, 57XX step 74 */
2774 /* Turn on RX BD completion state machine and enable attentions */
2775 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2776 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2777
2778 /* 5718 step 41, 57XX step 75 */
2779 /* Turn on RX list placement state machine */
2780 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2781
2782 /* 57XX step 76 */
2783 /* Turn on RX list selector state machine. */
2784 if (!(BGE_IS_5705_PLUS(sc)))
2785 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2786
2787 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2788 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2789 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2790 BGE_MACMODE_FRMHDR_DMA_ENB;
2791
2792 if (sc->bge_flags & BGEF_FIBER_TBI)
2793 val |= BGE_PORTMODE_TBI;
2794 else if (sc->bge_flags & BGEF_FIBER_MII)
2795 val |= BGE_PORTMODE_GMII;
2796 else
2797 val |= BGE_PORTMODE_MII;
2798
2799 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2800 /* Allow APE to send/receive frames. */
2801 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2802 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2803
2804 /* Turn on DMA, clear stats */
2805 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2806 /* 5718 step 44 */
2807 DELAY(40);
2808
2809 /* 5718 step 45, 57XX step 79 */
2810 /* Set misc. local control, enable interrupts on attentions */
2811 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2812 if (BGE_IS_5717_PLUS(sc)) {
2813 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2814 /* 5718 step 46 */
2815 DELAY(100);
2816 }
2817
2818 /* 57XX step 81 */
2819 /* Turn on DMA completion state machine */
2820 if (!(BGE_IS_5705_PLUS(sc)))
2821 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2822
2823 /* 5718 step 47, 57XX step 82 */
2824 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2825
2826 /* 5718 step 48 */
2827 /* Enable host coalescing bug fix. */
2828 if (BGE_IS_5755_PLUS(sc))
2829 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2830
2831 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2832 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2833
2834 /* Turn on write DMA state machine */
2835 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2836 /* 5718 step 49 */
2837 DELAY(40);
2838
2839 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2840
2841 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2842 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2843
2844 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2845 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2846 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2847 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2848 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2849 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2850
2851 if (sc->bge_flags & BGEF_PCIE)
2852 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2853 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2854 if (ifp->if_mtu <= ETHERMTU)
2855 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2856 }
2857 if (sc->bge_flags & BGEF_TSO) {
2858 val |= BGE_RDMAMODE_TSO4_ENABLE;
2859 if (BGE_IS_5717_PLUS(sc))
2860 val |= BGE_RDMAMODE_TSO6_ENABLE;
2861 }
2862
2863 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2864 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2865 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2866 BGE_RDMAMODE_H2BNC_VLAN_DET;
2867 /*
2868 * Allow multiple outstanding read requests from
2869 * non-LSO read DMA engine.
2870 */
2871 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2872 }
2873
2874 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2875 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2876 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2877 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2878 BGE_IS_57765_PLUS(sc)) {
2879 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2880 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2881 else
2882 rdmareg = BGE_RDMA_RSRVCTRL;
2883 dmactl = CSR_READ_4(sc, rdmareg);
2884 /*
2885 * Adjust tx margin to prevent TX data corruption and
2886 * fix internal FIFO overflow.
2887 */
2888 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2889 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2890 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2891 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2892 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2893 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2894 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2895 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2896 }
2897 /*
2898 * Enable fix for read DMA FIFO overruns.
2899 * The fix is to limit the number of RX BDs
2900 * the hardware would fetch at a fime.
2901 */
2902 CSR_WRITE_4(sc, rdmareg, dmactl |
2903 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2904 }
2905
2906 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2907 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2908 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2909 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2910 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2911 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2912 /*
2913 * Allow 4KB burst length reads for non-LSO frames.
2914 * Enable 512B burst length reads for buffer descriptors.
2915 */
2916 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2917 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2918 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2919 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2920 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2921 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2922 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2923 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2924 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2925 }
2926 /* Turn on read DMA state machine */
2927 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2928 /* 5718 step 52 */
2929 delay(40);
2930
2931 if (sc->bge_flags & BGEF_RDMA_BUG) {
2932 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2933 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2934 if ((val & 0xFFFF) > BGE_FRAMELEN)
2935 break;
2936 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2937 break;
2938 }
2939 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2940 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2941 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2942 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2943 else
2944 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2945 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2946 }
2947 }
2948
2949 /* 5718 step 56, 57XX step 84 */
2950 /* Turn on RX data completion state machine */
2951 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2952
2953 /* Turn on RX data and RX BD initiator state machine */
2954 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2955
2956 /* 57XX step 85 */
2957 /* Turn on Mbuf cluster free state machine */
2958 if (!BGE_IS_5705_PLUS(sc))
2959 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2960
2961 /* 5718 step 57, 57XX step 86 */
2962 /* Turn on send data completion state machine */
2963 val = BGE_SDCMODE_ENABLE;
2964 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2965 val |= BGE_SDCMODE_CDELAY;
2966 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2967
2968 /* 5718 step 58 */
2969 /* Turn on send BD completion state machine */
2970 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2971
2972 /* 57XX step 88 */
2973 /* Turn on RX BD initiator state machine */
2974 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2975
2976 /* 5718 step 60, 57XX step 90 */
2977 /* Turn on send data initiator state machine */
2978 if (sc->bge_flags & BGEF_TSO) {
2979 /* XXX: magic value from Linux driver */
2980 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2981 BGE_SDIMODE_HW_LSO_PRE_DMA);
2982 } else
2983 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2984
2985 /* 5718 step 61, 57XX step 91 */
2986 /* Turn on send BD initiator state machine */
2987 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2988
2989 /* 5718 step 62, 57XX step 92 */
2990 /* Turn on send BD selector state machine */
2991 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2992
2993 /* 5718 step 31, 57XX step 60 */
2994 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2995 /* 5718 step 32, 57XX step 61 */
2996 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2997 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2998
2999 /* ack/clear link change events */
3000 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3001 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3002 BGE_MACSTAT_LINK_CHANGED);
3003 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3004
3005 /*
3006 * Enable attention when the link has changed state for
3007 * devices that use auto polling.
3008 */
3009 if (sc->bge_flags & BGEF_FIBER_TBI) {
3010 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3011 } else {
3012 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3013 mimode = BGE_MIMODE_500KHZ_CONST;
3014 else
3015 mimode = BGE_MIMODE_BASE;
3016 /* 5718 step 68. 5718 step 69 (optionally). */
3017 if (BGE_IS_5700_FAMILY(sc) ||
3018 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3019 mimode |= BGE_MIMODE_AUTOPOLL;
3020 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3021 }
3022 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3023 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3024 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3025 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3026 BGE_EVTENB_MI_INTERRUPT);
3027 }
3028
3029 /*
3030 * Clear any pending link state attention.
3031 * Otherwise some link state change events may be lost until attention
3032 * is cleared by bge_intr() -> bge_link_upd() sequence.
3033 * It's not necessary on newer BCM chips - perhaps enabling link
3034 * state change attentions implies clearing pending attention.
3035 */
3036 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3037 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3038 BGE_MACSTAT_LINK_CHANGED);
3039
3040 /* Enable link state change attentions. */
3041 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3042
3043 return 0;
3044 }
3045
3046 static const struct bge_revision *
3047 bge_lookup_rev(uint32_t chipid)
3048 {
3049 const struct bge_revision *br;
3050
3051 for (br = bge_revisions; br->br_name != NULL; br++) {
3052 if (br->br_chipid == chipid)
3053 return br;
3054 }
3055
3056 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3057 if (br->br_chipid == BGE_ASICREV(chipid))
3058 return br;
3059 }
3060
3061 return NULL;
3062 }
3063
3064 static const struct bge_product *
3065 bge_lookup(const struct pci_attach_args *pa)
3066 {
3067 const struct bge_product *bp;
3068
3069 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3070 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3071 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3072 return bp;
3073 }
3074
3075 return NULL;
3076 }
3077
3078 static uint32_t
3079 bge_chipid(const struct pci_attach_args *pa)
3080 {
3081 uint32_t id;
3082
3083 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3084 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3085
3086 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3087 switch (PCI_PRODUCT(pa->pa_id)) {
3088 case PCI_PRODUCT_BROADCOM_BCM5717:
3089 case PCI_PRODUCT_BROADCOM_BCM5718:
3090 case PCI_PRODUCT_BROADCOM_BCM5719:
3091 case PCI_PRODUCT_BROADCOM_BCM5720:
3092 case PCI_PRODUCT_BROADCOM_BCM5725:
3093 case PCI_PRODUCT_BROADCOM_BCM5727:
3094 case PCI_PRODUCT_BROADCOM_BCM5762:
3095 case PCI_PRODUCT_BROADCOM_BCM57764:
3096 case PCI_PRODUCT_BROADCOM_BCM57767:
3097 case PCI_PRODUCT_BROADCOM_BCM57787:
3098 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3099 BGE_PCI_GEN2_PRODID_ASICREV);
3100 break;
3101 case PCI_PRODUCT_BROADCOM_BCM57761:
3102 case PCI_PRODUCT_BROADCOM_BCM57762:
3103 case PCI_PRODUCT_BROADCOM_BCM57765:
3104 case PCI_PRODUCT_BROADCOM_BCM57766:
3105 case PCI_PRODUCT_BROADCOM_BCM57781:
3106 case PCI_PRODUCT_BROADCOM_BCM57782:
3107 case PCI_PRODUCT_BROADCOM_BCM57785:
3108 case PCI_PRODUCT_BROADCOM_BCM57786:
3109 case PCI_PRODUCT_BROADCOM_BCM57791:
3110 case PCI_PRODUCT_BROADCOM_BCM57795:
3111 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3112 BGE_PCI_GEN15_PRODID_ASICREV);
3113 break;
3114 default:
3115 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3116 BGE_PCI_PRODID_ASICREV);
3117 break;
3118 }
3119 }
3120
3121 return id;
3122 }
3123
3124 /*
3125 * Return true if MSI can be used with this device.
3126 */
3127 static int
3128 bge_can_use_msi(struct bge_softc *sc)
3129 {
3130 int can_use_msi = 0;
3131
3132 switch (BGE_ASICREV(sc->bge_chipid)) {
3133 case BGE_ASICREV_BCM5714_A0:
3134 case BGE_ASICREV_BCM5714:
3135 /*
3136 * Apparently, MSI doesn't work when these chips are
3137 * configured in single-port mode.
3138 */
3139 break;
3140 case BGE_ASICREV_BCM5750:
3141 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3142 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3143 can_use_msi = 1;
3144 break;
3145 default:
3146 if (BGE_IS_575X_PLUS(sc))
3147 can_use_msi = 1;
3148 }
3149 return (can_use_msi);
3150 }
3151
3152 /*
3153 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3154 * against our list and return its name if we find a match. Note
3155 * that since the Broadcom controller contains VPD support, we
3156 * can get the device name string from the controller itself instead
3157 * of the compiled-in string. This is a little slow, but it guarantees
3158 * we'll always announce the right product name.
3159 */
3160 static int
3161 bge_probe(device_t parent, cfdata_t match, void *aux)
3162 {
3163 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3164
3165 if (bge_lookup(pa) != NULL)
3166 return 1;
3167
3168 return 0;
3169 }
3170
3171 static void
3172 bge_attach(device_t parent, device_t self, void *aux)
3173 {
3174 struct bge_softc *sc = device_private(self);
3175 struct pci_attach_args *pa = aux;
3176 prop_dictionary_t dict;
3177 const struct bge_product *bp;
3178 const struct bge_revision *br;
3179 pci_chipset_tag_t pc;
3180 const char *intrstr = NULL;
3181 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3182 uint32_t command;
3183 struct ifnet *ifp;
3184 struct mii_data * const mii = &sc->bge_mii;
3185 uint32_t misccfg, mimode;
3186 void * kva;
3187 u_char eaddr[ETHER_ADDR_LEN];
3188 pcireg_t memtype, subid, reg;
3189 bus_addr_t memaddr;
3190 uint32_t pm_ctl;
3191 bool no_seeprom;
3192 int capmask;
3193 int mii_flags;
3194 int map_flags;
3195 char intrbuf[PCI_INTRSTR_LEN];
3196
3197 bp = bge_lookup(pa);
3198 KASSERT(bp != NULL);
3199
3200 sc->sc_pc = pa->pa_pc;
3201 sc->sc_pcitag = pa->pa_tag;
3202 sc->bge_dev = self;
3203
3204 sc->bge_pa = *pa;
3205 pc = sc->sc_pc;
3206 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3207
3208 aprint_naive(": Ethernet controller\n");
3209 aprint_normal(": %s Ethernet\n", bp->bp_name);
3210
3211 /*
3212 * Map control/status registers.
3213 */
3214 DPRINTFN(5, ("Map control/status regs\n"));
3215 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3216 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3217 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3218 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3219
3220 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3221 aprint_error_dev(sc->bge_dev,
3222 "failed to enable memory mapping!\n");
3223 return;
3224 }
3225
3226 DPRINTFN(5, ("pci_mem_find\n"));
3227 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3228 switch (memtype) {
3229 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3230 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3231 #if 0
3232 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3233 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3234 &memaddr, &sc->bge_bsize) == 0)
3235 break;
3236 #else
3237 /*
3238 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3239 * system get NMI on boot (PR#48451). This problem might not be
3240 * the driver's bug but our PCI common part's bug. Until we
3241 * find a real reason, we ignore the prefetchable bit.
3242 */
3243 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3244 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3245 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3246 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3247 map_flags, &sc->bge_bhandle) == 0) {
3248 sc->bge_btag = pa->pa_memt;
3249 break;
3250 }
3251 }
3252 #endif
3253 /* FALLTHROUGH */
3254 default:
3255 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3256 return;
3257 }
3258
3259 /* Save various chip information. */
3260 sc->bge_chipid = bge_chipid(pa);
3261 sc->bge_phy_addr = bge_phy_addr(sc);
3262
3263 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3264 &sc->bge_pciecap, NULL) != 0) {
3265 /* PCIe */
3266 sc->bge_flags |= BGEF_PCIE;
3267 /* Extract supported maximum payload size. */
3268 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3269 sc->bge_pciecap + PCIE_DCAP);
3270 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3271 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3272 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3273 sc->bge_expmrq = 2048;
3274 else
3275 sc->bge_expmrq = 4096;
3276 bge_set_max_readrq(sc);
3277 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3278 /* PCIe without PCIe cap */
3279 sc->bge_flags |= BGEF_PCIE;
3280 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3281 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3282 /* PCI-X */
3283 sc->bge_flags |= BGEF_PCIX;
3284 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3285 &sc->bge_pcixcap, NULL) == 0)
3286 aprint_error_dev(sc->bge_dev,
3287 "unable to find PCIX capability\n");
3288 }
3289
3290 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3291 /*
3292 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3293 * can clobber the chip's PCI config-space power control
3294 * registers, leaving the card in D3 powersave state. We do
3295 * not have memory-mapped registers in this state, so force
3296 * device into D0 state before starting initialization.
3297 */
3298 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3299 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3300 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3301 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3302 DELAY(1000); /* 27 usec is allegedly sufficent */
3303 }
3304
3305 /* Save chipset family. */
3306 switch (BGE_ASICREV(sc->bge_chipid)) {
3307 case BGE_ASICREV_BCM5717:
3308 case BGE_ASICREV_BCM5719:
3309 case BGE_ASICREV_BCM5720:
3310 sc->bge_flags |= BGEF_5717_PLUS;
3311 /* FALLTHROUGH */
3312 case BGE_ASICREV_BCM5762:
3313 case BGE_ASICREV_BCM57765:
3314 case BGE_ASICREV_BCM57766:
3315 if (!BGE_IS_5717_PLUS(sc))
3316 sc->bge_flags |= BGEF_57765_FAMILY;
3317 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3318 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3319 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3320 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3321 /*
3322 * Enable work around for DMA engine miscalculation
3323 * of TXMBUF available space.
3324 */
3325 sc->bge_flags |= BGEF_RDMA_BUG;
3326
3327 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3328 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3329 /* Jumbo frame on BCM5719 A0 does not work. */
3330 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3331 }
3332 }
3333 break;
3334 case BGE_ASICREV_BCM5755:
3335 case BGE_ASICREV_BCM5761:
3336 case BGE_ASICREV_BCM5784:
3337 case BGE_ASICREV_BCM5785:
3338 case BGE_ASICREV_BCM5787:
3339 case BGE_ASICREV_BCM57780:
3340 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3341 break;
3342 case BGE_ASICREV_BCM5700:
3343 case BGE_ASICREV_BCM5701:
3344 case BGE_ASICREV_BCM5703:
3345 case BGE_ASICREV_BCM5704:
3346 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3347 break;
3348 case BGE_ASICREV_BCM5714_A0:
3349 case BGE_ASICREV_BCM5780:
3350 case BGE_ASICREV_BCM5714:
3351 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3352 /* FALLTHROUGH */
3353 case BGE_ASICREV_BCM5750:
3354 case BGE_ASICREV_BCM5752:
3355 case BGE_ASICREV_BCM5906:
3356 sc->bge_flags |= BGEF_575X_PLUS;
3357 /* FALLTHROUGH */
3358 case BGE_ASICREV_BCM5705:
3359 sc->bge_flags |= BGEF_5705_PLUS;
3360 break;
3361 }
3362
3363 /* Identify chips with APE processor. */
3364 switch (BGE_ASICREV(sc->bge_chipid)) {
3365 case BGE_ASICREV_BCM5717:
3366 case BGE_ASICREV_BCM5719:
3367 case BGE_ASICREV_BCM5720:
3368 case BGE_ASICREV_BCM5761:
3369 case BGE_ASICREV_BCM5762:
3370 sc->bge_flags |= BGEF_APE;
3371 break;
3372 }
3373
3374 /*
3375 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3376 * not actually a MAC controller bug but an issue with the embedded
3377 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3378 */
3379 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3380 sc->bge_flags |= BGEF_40BIT_BUG;
3381
3382 /* Chips with APE need BAR2 access for APE registers/memory. */
3383 if ((sc->bge_flags & BGEF_APE) != 0) {
3384 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3385 #if 0
3386 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3387 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3388 &sc->bge_apesize)) {
3389 aprint_error_dev(sc->bge_dev,
3390 "couldn't map BAR2 memory\n");
3391 return;
3392 }
3393 #else
3394 /*
3395 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3396 * system get NMI on boot (PR#48451). This problem might not be
3397 * the driver's bug but our PCI common part's bug. Until we
3398 * find a real reason, we ignore the prefetchable bit.
3399 */
3400 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3401 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3402 aprint_error_dev(sc->bge_dev,
3403 "couldn't map BAR2 memory\n");
3404 return;
3405 }
3406
3407 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3408 if (bus_space_map(pa->pa_memt, memaddr,
3409 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3410 aprint_error_dev(sc->bge_dev,
3411 "couldn't map BAR2 memory\n");
3412 return;
3413 }
3414 sc->bge_apetag = pa->pa_memt;
3415 #endif
3416
3417 /* Enable APE register/memory access by host driver. */
3418 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3419 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3420 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3421 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3422 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3423
3424 bge_ape_lock_init(sc);
3425 bge_ape_read_fw_ver(sc);
3426 }
3427
3428 /* Identify the chips that use an CPMU. */
3429 if (BGE_IS_5717_PLUS(sc) ||
3430 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3431 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3432 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3433 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3434 sc->bge_flags |= BGEF_CPMU_PRESENT;
3435
3436 /* Set MI_MODE */
3437 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3438 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3439 mimode |= BGE_MIMODE_500KHZ_CONST;
3440 else
3441 mimode |= BGE_MIMODE_BASE;
3442 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3443
3444 /*
3445 * When using the BCM5701 in PCI-X mode, data corruption has
3446 * been observed in the first few bytes of some received packets.
3447 * Aligning the packet buffer in memory eliminates the corruption.
3448 * Unfortunately, this misaligns the packet payloads. On platforms
3449 * which do not support unaligned accesses, we will realign the
3450 * payloads by copying the received packets.
3451 */
3452 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3453 sc->bge_flags & BGEF_PCIX)
3454 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3455
3456 if (BGE_IS_5700_FAMILY(sc))
3457 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3458
3459 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3460 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3461
3462 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3463 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3464 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3465 sc->bge_flags |= BGEF_IS_5788;
3466
3467 /*
3468 * Some controllers seem to require a special firmware to use
3469 * TSO. But the firmware is not available to FreeBSD and Linux
3470 * claims that the TSO performed by the firmware is slower than
3471 * hardware based TSO. Moreover the firmware based TSO has one
3472 * known bug which can't handle TSO if ethernet header + IP/TCP
3473 * header is greater than 80 bytes. The workaround for the TSO
3474 * bug exist but it seems it's too expensive than not using
3475 * TSO at all. Some hardwares also have the TSO bug so limit
3476 * the TSO to the controllers that are not affected TSO issues
3477 * (e.g. 5755 or higher).
3478 */
3479 if (BGE_IS_5755_PLUS(sc)) {
3480 /*
3481 * BCM5754 and BCM5787 shares the same ASIC id so
3482 * explicit device id check is required.
3483 */
3484 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3485 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3486 sc->bge_flags |= BGEF_TSO;
3487 /* TSO on BCM5719 A0 does not work. */
3488 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3489 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3490 sc->bge_flags &= ~BGEF_TSO;
3491 }
3492
3493 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3494 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3495 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3496 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3497 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3498 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3499 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3500 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3501 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3502 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3503 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3504 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3505 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3506 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3507 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3508 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3509 /* These chips are 10/100 only. */
3510 capmask &= ~BMSR_EXTSTAT;
3511 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3512 }
3513
3514 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3515 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3516 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3517 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3518 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3519
3520 /* Set various PHY bug flags. */
3521 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3522 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3523 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3524 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3525 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3526 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3527 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3528 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3529 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3530 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3531 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3532 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3533 if (BGE_IS_5705_PLUS(sc) &&
3534 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3535 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3536 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3537 !BGE_IS_57765_PLUS(sc)) {
3538 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3539 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3540 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3541 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3542 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3543 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3544 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3545 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3546 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3547 } else
3548 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3549 }
3550
3551 /*
3552 * SEEPROM check.
3553 * First check if firmware knows we do not have SEEPROM.
3554 */
3555 if (prop_dictionary_get_bool(device_properties(self),
3556 "without-seeprom", &no_seeprom) && no_seeprom)
3557 sc->bge_flags |= BGEF_NO_EEPROM;
3558
3559 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3560 sc->bge_flags |= BGEF_NO_EEPROM;
3561
3562 /* Now check the 'ROM failed' bit on the RX CPU */
3563 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3564 sc->bge_flags |= BGEF_NO_EEPROM;
3565
3566 sc->bge_asf_mode = 0;
3567 /* No ASF if APE present. */
3568 if ((sc->bge_flags & BGEF_APE) == 0) {
3569 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3570 BGE_SRAM_DATA_SIG_MAGIC)) {
3571 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3572 BGE_HWCFG_ASF) {
3573 sc->bge_asf_mode |= ASF_ENABLE;
3574 sc->bge_asf_mode |= ASF_STACKUP;
3575 if (BGE_IS_575X_PLUS(sc))
3576 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3577 }
3578 }
3579 }
3580
3581 int counts[PCI_INTR_TYPE_SIZE] = {
3582 [PCI_INTR_TYPE_INTX] = 1,
3583 [PCI_INTR_TYPE_MSI] = 1,
3584 [PCI_INTR_TYPE_MSIX] = 1,
3585 };
3586 int max_type = PCI_INTR_TYPE_MSIX;
3587
3588 if (!bge_can_use_msi(sc)) {
3589 /* MSI broken, allow only INTx */
3590 max_type = PCI_INTR_TYPE_INTX;
3591 }
3592
3593 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3594 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3595 return;
3596 }
3597
3598 DPRINTFN(5, ("pci_intr_string\n"));
3599 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3600 sizeof(intrbuf));
3601 DPRINTFN(5, ("pci_intr_establish\n"));
3602 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3603 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3604 if (sc->bge_intrhand == NULL) {
3605 pci_intr_release(pc, sc->bge_pihp, 1);
3606 sc->bge_pihp = NULL;
3607
3608 aprint_error_dev(self, "couldn't establish interrupt");
3609 if (intrstr != NULL)
3610 aprint_error(" at %s", intrstr);
3611 aprint_error("\n");
3612 return;
3613 }
3614 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3615
3616 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3617 case PCI_INTR_TYPE_MSIX:
3618 case PCI_INTR_TYPE_MSI:
3619 KASSERT(bge_can_use_msi(sc));
3620 sc->bge_flags |= BGEF_MSI;
3621 break;
3622 default:
3623 /* nothing to do */
3624 break;
3625 }
3626
3627 /*
3628 * All controllers except BCM5700 supports tagged status but
3629 * we use tagged status only for MSI case on BCM5717. Otherwise
3630 * MSI on BCM5717 does not work.
3631 */
3632 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3633 sc->bge_flags |= BGEF_TAGGED_STATUS;
3634
3635 /*
3636 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3637 * lock in bge_reset().
3638 */
3639 CSR_WRITE_4(sc, BGE_EE_ADDR,
3640 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3641 delay(1000);
3642 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3643
3644 bge_stop_fw(sc);
3645 bge_sig_pre_reset(sc, BGE_RESET_START);
3646 if (bge_reset(sc))
3647 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3648
3649 /*
3650 * Read the hardware config word in the first 32k of NIC internal
3651 * memory, or fall back to the config word in the EEPROM.
3652 * Note: on some BCM5700 cards, this value appears to be unset.
3653 */
3654 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3655 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3656 BGE_SRAM_DATA_SIG_MAGIC) {
3657 uint32_t tmp;
3658
3659 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3660 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3661 BGE_SRAM_DATA_VER_SHIFT;
3662 if ((0 < tmp) && (tmp < 0x100))
3663 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3664 if (sc->bge_flags & BGEF_PCIE)
3665 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3666 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3667 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3668 if (BGE_IS_5717_PLUS(sc))
3669 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3670 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3671 bge_read_eeprom(sc, (void *)&hwcfg,
3672 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3673 hwcfg = be32toh(hwcfg);
3674 }
3675 aprint_normal_dev(sc->bge_dev,
3676 "HW config %08x, %08x, %08x, %08x %08x\n",
3677 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3678
3679 bge_sig_legacy(sc, BGE_RESET_START);
3680 bge_sig_post_reset(sc, BGE_RESET_START);
3681
3682 if (bge_chipinit(sc)) {
3683 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3684 bge_release_resources(sc);
3685 return;
3686 }
3687
3688 /*
3689 * Get station address from the EEPROM.
3690 */
3691 if (bge_get_eaddr(sc, eaddr)) {
3692 aprint_error_dev(sc->bge_dev,
3693 "failed to read station address\n");
3694 bge_release_resources(sc);
3695 return;
3696 }
3697
3698 br = bge_lookup_rev(sc->bge_chipid);
3699
3700 if (br == NULL) {
3701 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3702 sc->bge_chipid);
3703 } else {
3704 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3705 br->br_name, sc->bge_chipid);
3706 }
3707 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3708
3709 /* Allocate the general information block and ring buffers. */
3710 if (pci_dma64_available(pa)) {
3711 sc->bge_dmatag = pa->pa_dmat64;
3712 sc->bge_dmatag32 = pa->pa_dmat;
3713 sc->bge_dma64 = true;
3714 } else {
3715 sc->bge_dmatag = pa->pa_dmat;
3716 sc->bge_dmatag32 = pa->pa_dmat;
3717 sc->bge_dma64 = false;
3718 }
3719
3720 /* 40bit DMA workaround */
3721 if (sizeof(bus_addr_t) > 4) {
3722 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3723 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3724
3725 if (bus_dmatag_subregion(olddmatag, 0,
3726 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3727 BUS_DMA_NOWAIT) != 0) {
3728 aprint_error_dev(self,
3729 "WARNING: failed to restrict dma range,"
3730 " falling back to parent bus dma range\n");
3731 sc->bge_dmatag = olddmatag;
3732 }
3733 }
3734 }
3735 SLIST_INIT(&sc->txdma_list);
3736 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3737 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3738 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3739 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3740 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3741 return;
3742 }
3743 DPRINTFN(5, ("bus_dmamem_map\n"));
3744 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3745 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3746 BUS_DMA_NOWAIT)) {
3747 aprint_error_dev(sc->bge_dev,
3748 "can't map DMA buffers (%zu bytes)\n",
3749 sizeof(struct bge_ring_data));
3750 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3751 sc->bge_ring_rseg);
3752 return;
3753 }
3754 DPRINTFN(5, ("bus_dmamem_create\n"));
3755 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3756 sizeof(struct bge_ring_data), 0,
3757 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3758 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3759 bus_dmamem_unmap(sc->bge_dmatag, kva,
3760 sizeof(struct bge_ring_data));
3761 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3762 sc->bge_ring_rseg);
3763 return;
3764 }
3765 DPRINTFN(5, ("bus_dmamem_load\n"));
3766 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3767 sizeof(struct bge_ring_data), NULL,
3768 BUS_DMA_NOWAIT)) {
3769 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3770 bus_dmamem_unmap(sc->bge_dmatag, kva,
3771 sizeof(struct bge_ring_data));
3772 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3773 sc->bge_ring_rseg);
3774 return;
3775 }
3776
3777 DPRINTFN(5, ("bzero\n"));
3778 sc->bge_rdata = (struct bge_ring_data *)kva;
3779
3780 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3781
3782 /* Try to allocate memory for jumbo buffers. */
3783 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3784 if (bge_alloc_jumbo_mem(sc)) {
3785 aprint_error_dev(sc->bge_dev,
3786 "jumbo buffer allocation failed\n");
3787 } else
3788 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3789 }
3790
3791 /* Set default tuneable values. */
3792 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3793 sc->bge_rx_coal_ticks = 150;
3794 sc->bge_rx_max_coal_bds = 64;
3795 sc->bge_tx_coal_ticks = 300;
3796 sc->bge_tx_max_coal_bds = 400;
3797 if (BGE_IS_5705_PLUS(sc)) {
3798 sc->bge_tx_coal_ticks = (12 * 5);
3799 sc->bge_tx_max_coal_bds = (12 * 5);
3800 aprint_verbose_dev(sc->bge_dev,
3801 "setting short Tx thresholds\n");
3802 }
3803
3804 if (BGE_IS_5717_PLUS(sc))
3805 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3806 else if (BGE_IS_5705_PLUS(sc))
3807 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3808 else
3809 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3810
3811 /* Set up ifnet structure */
3812 ifp = &sc->ethercom.ec_if;
3813 ifp->if_softc = sc;
3814 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3815 ifp->if_ioctl = bge_ioctl;
3816 ifp->if_stop = bge_stop;
3817 ifp->if_start = bge_start;
3818 ifp->if_init = bge_init;
3819 ifp->if_watchdog = bge_watchdog;
3820 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3821 IFQ_SET_READY(&ifp->if_snd);
3822 DPRINTFN(5, ("strcpy if_xname\n"));
3823 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3824
3825 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3826 sc->ethercom.ec_if.if_capabilities |=
3827 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3828 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3829 sc->ethercom.ec_if.if_capabilities |=
3830 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3831 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3832 #endif
3833 sc->ethercom.ec_capabilities |=
3834 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3835 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3836
3837 if (sc->bge_flags & BGEF_TSO)
3838 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3839
3840 /*
3841 * Do MII setup.
3842 */
3843 DPRINTFN(5, ("mii setup\n"));
3844 mii->mii_ifp = ifp;
3845 mii->mii_readreg = bge_miibus_readreg;
3846 mii->mii_writereg = bge_miibus_writereg;
3847 mii->mii_statchg = bge_miibus_statchg;
3848
3849 /*
3850 * Figure out what sort of media we have by checking the hardware
3851 * config word. Note: on some BCM5700 cards, this value appears to be
3852 * unset. If that's the case, we have to rely on identifying the NIC
3853 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3854 * The SysKonnect SK-9D41 is a 1000baseSX card.
3855 */
3856 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3857 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3858 if (BGE_IS_5705_PLUS(sc)) {
3859 sc->bge_flags |= BGEF_FIBER_MII;
3860 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3861 } else
3862 sc->bge_flags |= BGEF_FIBER_TBI;
3863 }
3864
3865 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3866 if (BGE_IS_JUMBO_CAPABLE(sc))
3867 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3868
3869 /* set phyflags and chipid before mii_attach() */
3870 dict = device_properties(self);
3871 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3872 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3873
3874 /* Initialize ifmedia structures. */
3875 if (sc->bge_flags & BGEF_FIBER_TBI) {
3876 sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
3877 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3878 bge_ifmedia_sts);
3879 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3880 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3881 0, NULL);
3882 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3883 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3884 /* Pretend the user requested this setting */
3885 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3886 } else {
3887 /*
3888 * Do transceiver setup and tell the firmware the
3889 * driver is down so we can try to get access the
3890 * probe if ASF is running. Retry a couple of times
3891 * if we get a conflict with the ASF firmware accessing
3892 * the PHY.
3893 */
3894 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3895 bge_asf_driver_up(sc);
3896
3897 sc->ethercom.ec_mii = mii;
3898 ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3899 bge_ifmedia_sts);
3900 mii_flags = MIIF_DOPAUSE;
3901 if (sc->bge_flags & BGEF_FIBER_MII)
3902 mii_flags |= MIIF_HAVEFIBER;
3903 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
3904 MII_OFFSET_ANY, mii_flags);
3905
3906 if (LIST_EMPTY(&mii->mii_phys)) {
3907 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3908 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
3909 0, NULL);
3910 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
3911 } else
3912 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
3913
3914 /*
3915 * Now tell the firmware we are going up after probing the PHY
3916 */
3917 if (sc->bge_asf_mode & ASF_STACKUP)
3918 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3919 }
3920
3921 /*
3922 * Call MI attach routine.
3923 */
3924 DPRINTFN(5, ("if_attach\n"));
3925 if_attach(ifp);
3926 if_deferred_start_init(ifp, NULL);
3927 DPRINTFN(5, ("ether_ifattach\n"));
3928 ether_ifattach(ifp, eaddr);
3929 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3930 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3931 RND_TYPE_NET, RND_FLAG_DEFAULT);
3932 #ifdef BGE_EVENT_COUNTERS
3933 /*
3934 * Attach event counters.
3935 */
3936 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3937 NULL, device_xname(sc->bge_dev), "intr");
3938 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3939 NULL, device_xname(sc->bge_dev), "intr_spurious");
3940 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3941 NULL, device_xname(sc->bge_dev), "intr_spurious2");
3942 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3943 NULL, device_xname(sc->bge_dev), "tx_xoff");
3944 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3945 NULL, device_xname(sc->bge_dev), "tx_xon");
3946 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3947 NULL, device_xname(sc->bge_dev), "rx_xoff");
3948 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3949 NULL, device_xname(sc->bge_dev), "rx_xon");
3950 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3951 NULL, device_xname(sc->bge_dev), "rx_macctl");
3952 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3953 NULL, device_xname(sc->bge_dev), "xoffentered");
3954 #endif /* BGE_EVENT_COUNTERS */
3955 DPRINTFN(5, ("callout_init\n"));
3956 callout_init(&sc->bge_timeout, 0);
3957
3958 if (pmf_device_register(self, NULL, NULL))
3959 pmf_class_network_register(self, ifp);
3960 else
3961 aprint_error_dev(self, "couldn't establish power handler\n");
3962
3963 bge_sysctl_init(sc);
3964
3965 #ifdef BGE_DEBUG
3966 bge_debug_info(sc);
3967 #endif
3968 }
3969
3970 /*
3971 * Stop all chip I/O so that the kernel's probe routines don't
3972 * get confused by errant DMAs when rebooting.
3973 */
3974 static int
3975 bge_detach(device_t self, int flags __unused)
3976 {
3977 struct bge_softc *sc = device_private(self);
3978 struct ifnet *ifp = &sc->ethercom.ec_if;
3979 int s;
3980
3981 s = splnet();
3982 /* Stop the interface. Callouts are stopped in it. */
3983 bge_stop(ifp, 1);
3984 splx(s);
3985
3986 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3987
3988 /* Delete all remaining media. */
3989 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3990
3991 ether_ifdetach(ifp);
3992 if_detach(ifp);
3993
3994 bge_release_resources(sc);
3995
3996 return 0;
3997 }
3998
3999 static void
4000 bge_release_resources(struct bge_softc *sc)
4001 {
4002
4003 /* Detach sysctl */
4004 if (sc->bge_log != NULL)
4005 sysctl_teardown(&sc->bge_log);
4006
4007 #ifdef BGE_EVENT_COUNTERS
4008 /* Detach event counters. */
4009 evcnt_detach(&sc->bge_ev_intr);
4010 evcnt_detach(&sc->bge_ev_intr_spurious);
4011 evcnt_detach(&sc->bge_ev_intr_spurious2);
4012 evcnt_detach(&sc->bge_ev_tx_xoff);
4013 evcnt_detach(&sc->bge_ev_tx_xon);
4014 evcnt_detach(&sc->bge_ev_rx_xoff);
4015 evcnt_detach(&sc->bge_ev_rx_xon);
4016 evcnt_detach(&sc->bge_ev_rx_macctl);
4017 evcnt_detach(&sc->bge_ev_xoffentered);
4018 #endif /* BGE_EVENT_COUNTERS */
4019
4020 /* Disestablish the interrupt handler */
4021 if (sc->bge_intrhand != NULL) {
4022 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4023 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4024 sc->bge_intrhand = NULL;
4025 }
4026
4027 if (sc->bge_dmatag != NULL) {
4028 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4029 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4030 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4031 sizeof(struct bge_ring_data));
4032 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4033 sc->bge_ring_rseg);
4034 }
4035
4036 /* Unmap the device registers */
4037 if (sc->bge_bsize != 0) {
4038 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4039 sc->bge_bsize = 0;
4040 }
4041
4042 /* Unmap the APE registers */
4043 if (sc->bge_apesize != 0) {
4044 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4045 sc->bge_apesize);
4046 sc->bge_apesize = 0;
4047 }
4048 }
4049
4050 static int
4051 bge_reset(struct bge_softc *sc)
4052 {
4053 uint32_t cachesize, command;
4054 uint32_t reset, mac_mode, mac_mode_mask;
4055 pcireg_t devctl, reg;
4056 int i, val;
4057 void (*write_op)(struct bge_softc *, int, int);
4058
4059 /* Make mask for BGE_MAC_MODE register. */
4060 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4061 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4062 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4063 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4064 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4065
4066 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4067 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4068 if (sc->bge_flags & BGEF_PCIE)
4069 write_op = bge_writemem_direct;
4070 else
4071 write_op = bge_writemem_ind;
4072 } else
4073 write_op = bge_writereg_ind;
4074
4075 /* 57XX step 4 */
4076 /* Acquire the NVM lock */
4077 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4078 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4079 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4080 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4081 for (i = 0; i < 8000; i++) {
4082 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4083 BGE_NVRAMSWARB_GNT1)
4084 break;
4085 DELAY(20);
4086 }
4087 if (i == 8000) {
4088 printf("%s: NVRAM lock timedout!\n",
4089 device_xname(sc->bge_dev));
4090 }
4091 }
4092
4093 /* Take APE lock when performing reset. */
4094 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4095
4096 /* 57XX step 3 */
4097 /* Save some important PCI state. */
4098 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4099 /* 5718 reset step 3 */
4100 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4101
4102 /* 5718 reset step 5, 57XX step 5b-5d */
4103 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4104 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4105 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4106
4107 /* XXX ???: Disable fastboot on controllers that support it. */
4108 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4109 BGE_IS_5755_PLUS(sc))
4110 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4111
4112 /* 5718 reset step 2, 57XX step 6 */
4113 /*
4114 * Write the magic number to SRAM at offset 0xB50.
4115 * When firmware finishes its initialization it will
4116 * write ~BGE_MAGIC_NUMBER to the same location.
4117 */
4118 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4119
4120 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4121 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4122 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4123 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4124 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4125 }
4126
4127 /* 5718 reset step 6, 57XX step 7 */
4128 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4129 /*
4130 * XXX: from FreeBSD/Linux; no documentation
4131 */
4132 if (sc->bge_flags & BGEF_PCIE) {
4133 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4134 !BGE_IS_57765_PLUS(sc) &&
4135 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4136 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4137 /* PCI Express 1.0 system */
4138 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4139 BGE_PHY_PCIE_SCRAM_MODE);
4140 }
4141 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4142 /*
4143 * Prevent PCI Express link training
4144 * during global reset.
4145 */
4146 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4147 reset |= (1 << 29);
4148 }
4149 }
4150
4151 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4152 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4153 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4154 i | BGE_VCPU_STATUS_DRV_RESET);
4155 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4156 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4157 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4158 }
4159
4160 /*
4161 * Set GPHY Power Down Override to leave GPHY
4162 * powered up in D0 uninitialized.
4163 */
4164 if (BGE_IS_5705_PLUS(sc) &&
4165 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4166 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4167
4168 /* Issue global reset */
4169 write_op(sc, BGE_MISC_CFG, reset);
4170
4171 /* 5718 reset step 7, 57XX step 8 */
4172 if (sc->bge_flags & BGEF_PCIE)
4173 delay(100*1000); /* too big */
4174 else
4175 delay(1000);
4176
4177 if (sc->bge_flags & BGEF_PCIE) {
4178 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4179 DELAY(500000);
4180 /* XXX: Magic Numbers */
4181 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4182 BGE_PCI_UNKNOWN0);
4183 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4184 BGE_PCI_UNKNOWN0,
4185 reg | (1 << 15));
4186 }
4187 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4188 sc->bge_pciecap + PCIE_DCSR);
4189 /* Clear enable no snoop and disable relaxed ordering. */
4190 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4191 PCIE_DCSR_ENA_NO_SNOOP);
4192
4193 /* Set PCIE max payload size to 128 for older PCIe devices */
4194 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4195 devctl &= ~(0x00e0);
4196 /* Clear device status register. Write 1b to clear */
4197 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4198 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4199 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4200 sc->bge_pciecap + PCIE_DCSR, devctl);
4201 bge_set_max_readrq(sc);
4202 }
4203
4204 /* From Linux: dummy read to flush PCI posted writes */
4205 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4206
4207 /*
4208 * Reset some of the PCI state that got zapped by reset
4209 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4210 * set, too.
4211 */
4212 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4213 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4214 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4215 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4216 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4217 (sc->bge_flags & BGEF_PCIX) != 0)
4218 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4219 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4220 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4221 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4222 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4223 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4224 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4225 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4226
4227 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4228 if (sc->bge_flags & BGEF_PCIX) {
4229 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4230 + PCIX_CMD);
4231 /* Set max memory read byte count to 2K */
4232 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4233 reg &= ~PCIX_CMD_BYTECNT_MASK;
4234 reg |= PCIX_CMD_BCNT_2048;
4235 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4236 /*
4237 * For 5704, set max outstanding split transaction
4238 * field to 0 (0 means it supports 1 request)
4239 */
4240 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4241 | PCIX_CMD_BYTECNT_MASK);
4242 reg |= PCIX_CMD_BCNT_2048;
4243 }
4244 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4245 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4246 }
4247
4248 /* 5718 reset step 10, 57XX step 12 */
4249 /* Enable memory arbiter. */
4250 if (BGE_IS_5714_FAMILY(sc)) {
4251 val = CSR_READ_4(sc, BGE_MARB_MODE);
4252 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4253 } else
4254 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4255
4256 /* XXX 5721, 5751 and 5752 */
4257 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4258 /* Step 19: */
4259 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4260 /* Step 20: */
4261 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4262 }
4263
4264 /* 5718 reset step 12, 57XX step 15 and 16 */
4265 /* Fix up byte swapping */
4266 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4267
4268 /* 5718 reset step 13, 57XX step 17 */
4269 /* Poll until the firmware initialization is complete */
4270 bge_poll_fw(sc);
4271
4272 /* 57XX step 21 */
4273 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4274 pcireg_t msidata;
4275
4276 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4277 BGE_PCI_MSI_DATA);
4278 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4279 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4280 msidata);
4281 }
4282
4283 /* 57XX step 18 */
4284 /* Write mac mode. */
4285 val = CSR_READ_4(sc, BGE_MAC_MODE);
4286 /* Restore mac_mode_mask's bits using mac_mode */
4287 val = (val & ~mac_mode_mask) | mac_mode;
4288 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4289 DELAY(40);
4290
4291 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4292
4293 /*
4294 * The 5704 in TBI mode apparently needs some special
4295 * adjustment to insure the SERDES drive level is set
4296 * to 1.2V.
4297 */
4298 if (sc->bge_flags & BGEF_FIBER_TBI &&
4299 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4300 uint32_t serdescfg;
4301
4302 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4303 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4304 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4305 }
4306
4307 if (sc->bge_flags & BGEF_PCIE &&
4308 !BGE_IS_57765_PLUS(sc) &&
4309 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4310 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4311 uint32_t v;
4312
4313 /* Enable PCI Express bug fix */
4314 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4315 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4316 v | BGE_TLP_DATA_FIFO_PROTECT);
4317 }
4318
4319 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4320 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4321 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4322
4323 return 0;
4324 }
4325
4326 /*
4327 * Frame reception handling. This is called if there's a frame
4328 * on the receive return list.
4329 *
4330 * Note: we have to be able to handle two possibilities here:
4331 * 1) the frame is from the jumbo receive ring
4332 * 2) the frame is from the standard receive ring
4333 */
4334
4335 static void
4336 bge_rxeof(struct bge_softc *sc)
4337 {
4338 struct ifnet *ifp;
4339 uint16_t rx_prod, rx_cons;
4340 int stdcnt = 0, jumbocnt = 0;
4341 bus_dmamap_t dmamap;
4342 bus_addr_t offset, toff;
4343 bus_size_t tlen;
4344 int tosync;
4345
4346 rx_cons = sc->bge_rx_saved_considx;
4347 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4348
4349 /* Nothing to do */
4350 if (rx_cons == rx_prod)
4351 return;
4352
4353 ifp = &sc->ethercom.ec_if;
4354
4355 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4356 offsetof(struct bge_ring_data, bge_status_block),
4357 sizeof (struct bge_status_block),
4358 BUS_DMASYNC_POSTREAD);
4359
4360 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4361 tosync = rx_prod - rx_cons;
4362
4363 if (tosync != 0)
4364 rnd_add_uint32(&sc->rnd_source, tosync);
4365
4366 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4367
4368 if (tosync < 0) {
4369 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4370 sizeof (struct bge_rx_bd);
4371 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4372 toff, tlen, BUS_DMASYNC_POSTREAD);
4373 tosync = -tosync;
4374 }
4375
4376 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4377 offset, tosync * sizeof (struct bge_rx_bd),
4378 BUS_DMASYNC_POSTREAD);
4379
4380 while (rx_cons != rx_prod) {
4381 struct bge_rx_bd *cur_rx;
4382 uint32_t rxidx;
4383 struct mbuf *m = NULL;
4384
4385 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4386
4387 rxidx = cur_rx->bge_idx;
4388 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4389
4390 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4391 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4392 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4393 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4394 jumbocnt++;
4395 bus_dmamap_sync(sc->bge_dmatag,
4396 sc->bge_cdata.bge_rx_jumbo_map,
4397 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4398 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4399 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4400 ifp->if_ierrors++;
4401 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4402 continue;
4403 }
4404 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4405 NULL)== ENOBUFS) {
4406 ifp->if_ierrors++;
4407 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4408 continue;
4409 }
4410 } else {
4411 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4412 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4413
4414 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4415 stdcnt++;
4416 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4417 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4418 if (dmamap == NULL) {
4419 ifp->if_ierrors++;
4420 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4421 continue;
4422 }
4423 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4424 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4425 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4426 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4427 ifp->if_ierrors++;
4428 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4429 continue;
4430 }
4431 if (bge_newbuf_std(sc, sc->bge_std,
4432 NULL, dmamap) == ENOBUFS) {
4433 ifp->if_ierrors++;
4434 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4435 continue;
4436 }
4437 }
4438
4439 #ifndef __NO_STRICT_ALIGNMENT
4440 /*
4441 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4442 * the Rx buffer has the layer-2 header unaligned.
4443 * If our CPU requires alignment, re-align by copying.
4444 */
4445 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4446 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4447 cur_rx->bge_len);
4448 m->m_data += ETHER_ALIGN;
4449 }
4450 #endif
4451
4452 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4453 m_set_rcvif(m, ifp);
4454
4455 bge_rxcsum(sc, cur_rx, m);
4456
4457 /*
4458 * If we received a packet with a vlan tag, pass it
4459 * to vlan_input() instead of ether_input().
4460 */
4461 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4462 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4463
4464 if_percpuq_enqueue(ifp->if_percpuq, m);
4465 }
4466
4467 sc->bge_rx_saved_considx = rx_cons;
4468 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4469 if (stdcnt)
4470 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4471 if (jumbocnt)
4472 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4473 }
4474
4475 static void
4476 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4477 {
4478
4479 if (BGE_IS_57765_PLUS(sc)) {
4480 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4481 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4482 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4483 if ((cur_rx->bge_error_flag &
4484 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4485 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4486 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4487 m->m_pkthdr.csum_data =
4488 cur_rx->bge_tcp_udp_csum;
4489 m->m_pkthdr.csum_flags |=
4490 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4491 }
4492 }
4493 } else {
4494 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4495 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4496 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4497 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4498 /*
4499 * Rx transport checksum-offload may also
4500 * have bugs with packets which, when transmitted,
4501 * were `runts' requiring padding.
4502 */
4503 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4504 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4505 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4506 m->m_pkthdr.csum_data =
4507 cur_rx->bge_tcp_udp_csum;
4508 m->m_pkthdr.csum_flags |=
4509 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4510 }
4511 }
4512 }
4513
4514 static void
4515 bge_txeof(struct bge_softc *sc)
4516 {
4517 struct bge_tx_bd *cur_tx = NULL;
4518 struct ifnet *ifp;
4519 struct txdmamap_pool_entry *dma;
4520 bus_addr_t offset, toff;
4521 bus_size_t tlen;
4522 int tosync;
4523 struct mbuf *m;
4524
4525 ifp = &sc->ethercom.ec_if;
4526
4527 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4528 offsetof(struct bge_ring_data, bge_status_block),
4529 sizeof (struct bge_status_block),
4530 BUS_DMASYNC_POSTREAD);
4531
4532 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4533 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4534 sc->bge_tx_saved_considx;
4535
4536 if (tosync != 0)
4537 rnd_add_uint32(&sc->rnd_source, tosync);
4538
4539 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4540
4541 if (tosync < 0) {
4542 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4543 sizeof (struct bge_tx_bd);
4544 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4545 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4546 tosync = -tosync;
4547 }
4548
4549 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4550 offset, tosync * sizeof (struct bge_tx_bd),
4551 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4552
4553 /*
4554 * Go through our tx ring and free mbufs for those
4555 * frames that have been sent.
4556 */
4557 while (sc->bge_tx_saved_considx !=
4558 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4559 uint32_t idx = 0;
4560
4561 idx = sc->bge_tx_saved_considx;
4562 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4563 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4564 ifp->if_opackets++;
4565 m = sc->bge_cdata.bge_tx_chain[idx];
4566 if (m != NULL) {
4567 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4568 dma = sc->txdma[idx];
4569 if (dma->is_dma32) {
4570 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4571 0, dma->dmamap32->dm_mapsize,
4572 BUS_DMASYNC_POSTWRITE);
4573 bus_dmamap_unload(
4574 sc->bge_dmatag32, dma->dmamap32);
4575 } else {
4576 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4577 0, dma->dmamap->dm_mapsize,
4578 BUS_DMASYNC_POSTWRITE);
4579 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4580 }
4581 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4582 sc->txdma[idx] = NULL;
4583
4584 m_freem(m);
4585 }
4586 sc->bge_txcnt--;
4587 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4588 ifp->if_timer = 0;
4589 }
4590
4591 if (cur_tx != NULL)
4592 ifp->if_flags &= ~IFF_OACTIVE;
4593 }
4594
4595 static int
4596 bge_intr(void *xsc)
4597 {
4598 struct bge_softc *sc;
4599 struct ifnet *ifp;
4600 uint32_t pcistate, statusword, statustag;
4601 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4602
4603 sc = xsc;
4604 ifp = &sc->ethercom.ec_if;
4605
4606 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4607 if (BGE_IS_5717_PLUS(sc))
4608 intrmask = 0;
4609
4610 /* It is possible for the interrupt to arrive before
4611 * the status block is updated prior to the interrupt.
4612 * Reading the PCI State register will confirm whether the
4613 * interrupt is ours and will flush the status block.
4614 */
4615 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4616
4617 /* read status word from status block */
4618 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4619 offsetof(struct bge_ring_data, bge_status_block),
4620 sizeof (struct bge_status_block),
4621 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4622 statusword = sc->bge_rdata->bge_status_block.bge_status;
4623 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4624
4625 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4626 if (sc->bge_lasttag == statustag &&
4627 (~pcistate & intrmask)) {
4628 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4629 return (0);
4630 }
4631 sc->bge_lasttag = statustag;
4632 } else {
4633 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4634 !(~pcistate & intrmask)) {
4635 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4636 return (0);
4637 }
4638 statustag = 0;
4639 }
4640 /* Ack interrupt and stop others from occurring. */
4641 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4642 BGE_EVCNT_INCR(sc->bge_ev_intr);
4643
4644 /* clear status word */
4645 sc->bge_rdata->bge_status_block.bge_status = 0;
4646
4647 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4648 offsetof(struct bge_ring_data, bge_status_block),
4649 sizeof (struct bge_status_block),
4650 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4651
4652 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4653 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4654 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4655 bge_link_upd(sc);
4656
4657 if (ifp->if_flags & IFF_RUNNING) {
4658 /* Check RX return ring producer/consumer */
4659 bge_rxeof(sc);
4660
4661 /* Check TX ring producer/consumer */
4662 bge_txeof(sc);
4663 }
4664
4665 if (sc->bge_pending_rxintr_change) {
4666 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4667 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4668
4669 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4670 DELAY(10);
4671 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4672
4673 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4674 DELAY(10);
4675 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4676
4677 sc->bge_pending_rxintr_change = 0;
4678 }
4679 bge_handle_events(sc);
4680
4681 /* Re-enable interrupts. */
4682 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4683
4684 if (ifp->if_flags & IFF_RUNNING)
4685 if_schedule_deferred_start(ifp);
4686
4687 return 1;
4688 }
4689
4690 static void
4691 bge_asf_driver_up(struct bge_softc *sc)
4692 {
4693 if (sc->bge_asf_mode & ASF_STACKUP) {
4694 /* Send ASF heartbeat aprox. every 2s */
4695 if (sc->bge_asf_count)
4696 sc->bge_asf_count --;
4697 else {
4698 sc->bge_asf_count = 2;
4699
4700 bge_wait_for_event_ack(sc);
4701
4702 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4703 BGE_FW_CMD_DRV_ALIVE3);
4704 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4705 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4706 BGE_FW_HB_TIMEOUT_SEC);
4707 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4708 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4709 BGE_RX_CPU_DRV_EVENT);
4710 }
4711 }
4712 }
4713
4714 static void
4715 bge_tick(void *xsc)
4716 {
4717 struct bge_softc *sc = xsc;
4718 struct mii_data *mii = &sc->bge_mii;
4719 int s;
4720
4721 s = splnet();
4722
4723 if (BGE_IS_5705_PLUS(sc))
4724 bge_stats_update_regs(sc);
4725 else
4726 bge_stats_update(sc);
4727
4728 if (sc->bge_flags & BGEF_FIBER_TBI) {
4729 /*
4730 * Since in TBI mode auto-polling can't be used we should poll
4731 * link status manually. Here we register pending link event
4732 * and trigger interrupt.
4733 */
4734 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4735 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4736 } else {
4737 /*
4738 * Do not touch PHY if we have link up. This could break
4739 * IPMI/ASF mode or produce extra input errors.
4740 * (extra input errors was reported for bcm5701 & bcm5704).
4741 */
4742 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4743 mii_tick(mii);
4744 }
4745
4746 bge_asf_driver_up(sc);
4747
4748 if (!sc->bge_detaching)
4749 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4750
4751 splx(s);
4752 }
4753
4754 static void
4755 bge_stats_update_regs(struct bge_softc *sc)
4756 {
4757 struct ifnet *ifp = &sc->ethercom.ec_if;
4758
4759 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4760 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4761
4762 /*
4763 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4764 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4765 * (silicon bug). There's no reliable workaround so just
4766 * ignore the counter
4767 */
4768 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4769 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4770 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4771 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4772 }
4773 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4774 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4775
4776 if (sc->bge_flags & BGEF_RDMA_BUG) {
4777 uint32_t val, ucast, mcast, bcast;
4778
4779 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4780 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4781 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4782 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4783 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4784 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4785
4786 /*
4787 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4788 * frames, it's safe to disable workaround for DMA engine's
4789 * miscalculation of TXMBUF space.
4790 */
4791 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4792 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4793 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4794 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4795 else
4796 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4797 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4798 sc->bge_flags &= ~BGEF_RDMA_BUG;
4799 }
4800 }
4801 }
4802
4803 static void
4804 bge_stats_update(struct bge_softc *sc)
4805 {
4806 struct ifnet *ifp = &sc->ethercom.ec_if;
4807 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4808
4809 #define READ_STAT(sc, stats, stat) \
4810 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4811
4812 ifp->if_collisions +=
4813 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4814 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4815 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4816 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4817 ifp->if_collisions;
4818
4819 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4820 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4821 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4822 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4823 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4824 READ_STAT(sc, stats,
4825 xoffPauseFramesReceived.bge_addr_lo));
4826 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4827 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4828 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4829 READ_STAT(sc, stats,
4830 macControlFramesReceived.bge_addr_lo));
4831 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4832 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4833
4834 #undef READ_STAT
4835
4836 #ifdef notdef
4837 ifp->if_collisions +=
4838 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4839 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4840 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4841 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4842 ifp->if_collisions;
4843 #endif
4844 }
4845
4846 /*
4847 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4848 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4849 * but when such padded frames employ the bge IP/TCP checksum offload,
4850 * the hardware checksum assist gives incorrect results (possibly
4851 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4852 * If we pad such runts with zeros, the onboard checksum comes out correct.
4853 */
4854 static inline int
4855 bge_cksum_pad(struct mbuf *pkt)
4856 {
4857 struct mbuf *last = NULL;
4858 int padlen;
4859
4860 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4861
4862 /* if there's only the packet-header and we can pad there, use it. */
4863 if (pkt->m_pkthdr.len == pkt->m_len &&
4864 M_TRAILINGSPACE(pkt) >= padlen) {
4865 last = pkt;
4866 } else {
4867 /*
4868 * Walk packet chain to find last mbuf. We will either
4869 * pad there, or append a new mbuf and pad it
4870 * (thus perhaps avoiding the bcm5700 dma-min bug).
4871 */
4872 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4873 continue; /* do nothing */
4874 }
4875
4876 /* `last' now points to last in chain. */
4877 if (M_TRAILINGSPACE(last) < padlen) {
4878 /* Allocate new empty mbuf, pad it. Compact later. */
4879 struct mbuf *n;
4880 MGET(n, M_DONTWAIT, MT_DATA);
4881 if (n == NULL)
4882 return ENOBUFS;
4883 n->m_len = 0;
4884 last->m_next = n;
4885 last = n;
4886 }
4887 }
4888
4889 KDASSERT(!M_READONLY(last));
4890 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4891
4892 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4893 memset(mtod(last, char *) + last->m_len, 0, padlen);
4894 last->m_len += padlen;
4895 pkt->m_pkthdr.len += padlen;
4896 return 0;
4897 }
4898
4899 /*
4900 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4901 */
4902 static inline int
4903 bge_compact_dma_runt(struct mbuf *pkt)
4904 {
4905 struct mbuf *m, *prev;
4906 int totlen;
4907
4908 prev = NULL;
4909 totlen = 0;
4910
4911 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
4912 int mlen = m->m_len;
4913 int shortfall = 8 - mlen ;
4914
4915 totlen += mlen;
4916 if (mlen == 0)
4917 continue;
4918 if (mlen >= 8)
4919 continue;
4920
4921 /* If we get here, mbuf data is too small for DMA engine.
4922 * Try to fix by shuffling data to prev or next in chain.
4923 * If that fails, do a compacting deep-copy of the whole chain.
4924 */
4925
4926 /* Internal frag. If fits in prev, copy it there. */
4927 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4928 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4929 prev->m_len += mlen;
4930 m->m_len = 0;
4931 /* XXX stitch chain */
4932 prev->m_next = m_free(m);
4933 m = prev;
4934 continue;
4935 } else if (m->m_next != NULL &&
4936 M_TRAILINGSPACE(m) >= shortfall &&
4937 m->m_next->m_len >= (8 + shortfall)) {
4938 /* m is writable and have enough data in next, pull up. */
4939
4940 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4941 shortfall);
4942 m->m_len += shortfall;
4943 m->m_next->m_len -= shortfall;
4944 m->m_next->m_data += shortfall;
4945 } else if (m->m_next == NULL || 1) {
4946 /* Got a runt at the very end of the packet.
4947 * borrow data from the tail of the preceding mbuf and
4948 * update its length in-place. (The original data is
4949 * still valid, so we can do this even if prev is not
4950 * writable.)
4951 */
4952
4953 /*
4954 * If we'd make prev a runt, just move all of its data.
4955 */
4956 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4957 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4958
4959 if ((prev->m_len - shortfall) < 8)
4960 shortfall = prev->m_len;
4961
4962 #ifdef notyet /* just do the safe slow thing for now */
4963 if (!M_READONLY(m)) {
4964 if (M_LEADINGSPACE(m) < shorfall) {
4965 void *m_dat;
4966 m_dat = (m->m_flags & M_PKTHDR) ?
4967 m->m_pktdat : m->dat;
4968 memmove(m_dat, mtod(m, void*),
4969 m->m_len);
4970 m->m_data = m_dat;
4971 }
4972 } else
4973 #endif /* just do the safe slow thing */
4974 {
4975 struct mbuf * n = NULL;
4976 int newprevlen = prev->m_len - shortfall;
4977
4978 MGET(n, M_NOWAIT, MT_DATA);
4979 if (n == NULL)
4980 return ENOBUFS;
4981 KASSERT(m->m_len + shortfall < MLEN
4982 /*,
4983 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4984
4985 /* first copy the data we're stealing from prev */
4986 memcpy(n->m_data, prev->m_data + newprevlen,
4987 shortfall);
4988
4989 /* update prev->m_len accordingly */
4990 prev->m_len -= shortfall;
4991
4992 /* copy data from runt m */
4993 memcpy(n->m_data + shortfall, m->m_data,
4994 m->m_len);
4995
4996 /* n holds what we stole from prev, plus m */
4997 n->m_len = shortfall + m->m_len;
4998
4999 /* stitch n into chain and free m */
5000 n->m_next = m->m_next;
5001 prev->m_next = n;
5002 /* KASSERT(m->m_next == NULL); */
5003 m->m_next = NULL;
5004 m_free(m);
5005 m = n; /* for continuing loop */
5006 }
5007 }
5008 }
5009 return 0;
5010 }
5011
5012 /*
5013 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5014 * pointers to descriptors.
5015 */
5016 static int
5017 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5018 {
5019 struct ifnet *ifp = &sc->ethercom.ec_if;
5020 struct bge_tx_bd *f, *prev_f;
5021 uint32_t frag, cur;
5022 uint16_t csum_flags = 0;
5023 uint16_t txbd_tso_flags = 0;
5024 struct txdmamap_pool_entry *dma;
5025 bus_dmamap_t dmamap;
5026 bus_dma_tag_t dmatag;
5027 int i = 0;
5028 int use_tso, maxsegsize, error;
5029 bool have_vtag;
5030 uint16_t vtag;
5031 bool remap;
5032
5033 if (m_head->m_pkthdr.csum_flags) {
5034 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5035 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5036 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5037 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5038 }
5039
5040 /*
5041 * If we were asked to do an outboard checksum, and the NIC
5042 * has the bug where it sometimes adds in the Ethernet padding,
5043 * explicitly pad with zeros so the cksum will be correct either way.
5044 * (For now, do this for all chip versions, until newer
5045 * are confirmed to not require the workaround.)
5046 */
5047 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5048 #ifdef notyet
5049 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5050 #endif
5051 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5052 goto check_dma_bug;
5053
5054 if (bge_cksum_pad(m_head) != 0)
5055 return ENOBUFS;
5056
5057 check_dma_bug:
5058 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5059 goto doit;
5060
5061 /*
5062 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5063 * less than eight bytes. If we encounter a teeny mbuf
5064 * at the end of a chain, we can pad. Otherwise, copy.
5065 */
5066 if (bge_compact_dma_runt(m_head) != 0)
5067 return ENOBUFS;
5068
5069 doit:
5070 dma = SLIST_FIRST(&sc->txdma_list);
5071 if (dma == NULL) {
5072 ifp->if_flags |= IFF_OACTIVE;
5073 return ENOBUFS;
5074 }
5075 dmamap = dma->dmamap;
5076 dmatag = sc->bge_dmatag;
5077 dma->is_dma32 = false;
5078
5079 /*
5080 * Set up any necessary TSO state before we start packing...
5081 */
5082 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5083 if (!use_tso) {
5084 maxsegsize = 0;
5085 } else { /* TSO setup */
5086 unsigned mss;
5087 struct ether_header *eh;
5088 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5089 unsigned bge_hlen;
5090 struct mbuf * m0 = m_head;
5091 struct ip *ip;
5092 struct tcphdr *th;
5093 int iphl, hlen;
5094
5095 /*
5096 * XXX It would be nice if the mbuf pkthdr had offset
5097 * fields for the protocol headers.
5098 */
5099
5100 eh = mtod(m0, struct ether_header *);
5101 switch (htons(eh->ether_type)) {
5102 case ETHERTYPE_IP:
5103 offset = ETHER_HDR_LEN;
5104 break;
5105
5106 case ETHERTYPE_VLAN:
5107 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5108 break;
5109
5110 default:
5111 /*
5112 * Don't support this protocol or encapsulation.
5113 */
5114 return ENOBUFS;
5115 }
5116
5117 /*
5118 * TCP/IP headers are in the first mbuf; we can do
5119 * this the easy way.
5120 */
5121 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5122 hlen = iphl + offset;
5123 if (__predict_false(m0->m_len <
5124 (hlen + sizeof(struct tcphdr)))) {
5125
5126 aprint_error_dev(sc->bge_dev,
5127 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5128 "not handled yet\n",
5129 m0->m_len, hlen+ sizeof(struct tcphdr));
5130 #ifdef NOTYET
5131 /*
5132 * XXX jonathan (at) NetBSD.org: untested.
5133 * how to force this branch to be taken?
5134 */
5135 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5136
5137 m_copydata(m0, offset, sizeof(ip), &ip);
5138 m_copydata(m0, hlen, sizeof(th), &th);
5139
5140 ip.ip_len = 0;
5141
5142 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5143 sizeof(ip.ip_len), &ip.ip_len);
5144
5145 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5146 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5147
5148 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5149 sizeof(th.th_sum), &th.th_sum);
5150
5151 hlen += th.th_off << 2;
5152 iptcp_opt_words = hlen;
5153 #else
5154 /*
5155 * if_wm "hard" case not yet supported, can we not
5156 * mandate it out of existence?
5157 */
5158 (void) ip; (void)th; (void) ip_tcp_hlen;
5159
5160 return ENOBUFS;
5161 #endif
5162 } else {
5163 ip = (struct ip *) (mtod(m0, char *) + offset);
5164 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5165 ip_tcp_hlen = iphl + (th->th_off << 2);
5166
5167 /* Total IP/TCP options, in 32-bit words */
5168 iptcp_opt_words = (ip_tcp_hlen
5169 - sizeof(struct tcphdr)
5170 - sizeof(struct ip)) >> 2;
5171 }
5172 if (BGE_IS_575X_PLUS(sc)) {
5173 th->th_sum = 0;
5174 csum_flags = 0;
5175 } else {
5176 /*
5177 * XXX jonathan (at) NetBSD.org: 5705 untested.
5178 * Requires TSO firmware patch for 5701/5703/5704.
5179 */
5180 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5181 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5182 }
5183
5184 mss = m_head->m_pkthdr.segsz;
5185 txbd_tso_flags |=
5186 BGE_TXBDFLAG_CPU_PRE_DMA |
5187 BGE_TXBDFLAG_CPU_POST_DMA;
5188
5189 /*
5190 * Our NIC TSO-assist assumes TSO has standard, optionless
5191 * IPv4 and TCP headers, which total 40 bytes. By default,
5192 * the NIC copies 40 bytes of IP/TCP header from the
5193 * supplied header into the IP/TCP header portion of
5194 * each post-TSO-segment. If the supplied packet has IP or
5195 * TCP options, we need to tell the NIC to copy those extra
5196 * bytes into each post-TSO header, in addition to the normal
5197 * 40-byte IP/TCP header (and to leave space accordingly).
5198 * Unfortunately, the driver encoding of option length
5199 * varies across different ASIC families.
5200 */
5201 tcp_seg_flags = 0;
5202 bge_hlen = ip_tcp_hlen >> 2;
5203 if (BGE_IS_5717_PLUS(sc)) {
5204 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5205 txbd_tso_flags |=
5206 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5207 } else if (BGE_IS_5705_PLUS(sc)) {
5208 tcp_seg_flags = bge_hlen << 11;
5209 } else {
5210 /* XXX iptcp_opt_words or bge_hlen ? */
5211 txbd_tso_flags |= iptcp_opt_words << 12;
5212 }
5213 maxsegsize = mss | tcp_seg_flags;
5214 ip->ip_len = htons(mss + ip_tcp_hlen);
5215 ip->ip_sum = 0;
5216
5217 } /* TSO setup */
5218
5219 have_vtag = vlan_has_tag(m_head);
5220 if (have_vtag)
5221 vtag = vlan_get_tag(m_head);
5222
5223 /*
5224 * Start packing the mbufs in this chain into
5225 * the fragment pointers. Stop when we run out
5226 * of fragments or hit the end of the mbuf chain.
5227 */
5228 remap = true;
5229 load_again:
5230 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5231 if (__predict_false(error)) {
5232 if (error == EFBIG && remap) {
5233 struct mbuf *m;
5234 remap = false;
5235 m = m_defrag(m_head, M_NOWAIT);
5236 if (m != NULL) {
5237 KASSERT(m == m_head);
5238 goto load_again;
5239 }
5240 }
5241 return error;
5242 }
5243 /*
5244 * Sanity check: avoid coming within 16 descriptors
5245 * of the end of the ring.
5246 */
5247 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5248 BGE_TSO_PRINTF(("%s: "
5249 " dmamap_load_mbuf too close to ring wrap\n",
5250 device_xname(sc->bge_dev)));
5251 goto fail_unload;
5252 }
5253
5254 /* Iterate over dmap-map fragments. */
5255 f = prev_f = NULL;
5256 cur = frag = *txidx;
5257
5258 for (i = 0; i < dmamap->dm_nsegs; i++) {
5259 f = &sc->bge_rdata->bge_tx_ring[frag];
5260 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5261 break;
5262
5263 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5264 f->bge_len = dmamap->dm_segs[i].ds_len;
5265 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5266 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5267 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5268 (prev_f != NULL &&
5269 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5270 ) {
5271 /*
5272 * watchdog timeout issue was observed with TSO,
5273 * limiting DMA address space to 32bits seems to
5274 * address the issue.
5275 */
5276 bus_dmamap_unload(dmatag, dmamap);
5277 dmatag = sc->bge_dmatag32;
5278 dmamap = dma->dmamap32;
5279 dma->is_dma32 = true;
5280 remap = true;
5281 goto load_again;
5282 }
5283
5284 /*
5285 * For 5751 and follow-ons, for TSO we must turn
5286 * off checksum-assist flag in the tx-descr, and
5287 * supply the ASIC-revision-specific encoding
5288 * of TSO flags and segsize.
5289 */
5290 if (use_tso) {
5291 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5292 f->bge_rsvd = maxsegsize;
5293 f->bge_flags = csum_flags | txbd_tso_flags;
5294 } else {
5295 f->bge_rsvd = 0;
5296 f->bge_flags =
5297 (csum_flags | txbd_tso_flags) & 0x0fff;
5298 }
5299 } else {
5300 f->bge_rsvd = 0;
5301 f->bge_flags = csum_flags;
5302 }
5303
5304 if (have_vtag) {
5305 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5306 f->bge_vlan_tag = vtag;
5307 } else {
5308 f->bge_vlan_tag = 0;
5309 }
5310 prev_f = f;
5311 cur = frag;
5312 BGE_INC(frag, BGE_TX_RING_CNT);
5313 }
5314
5315 if (i < dmamap->dm_nsegs) {
5316 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5317 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5318 goto fail_unload;
5319 }
5320
5321 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5322 BUS_DMASYNC_PREWRITE);
5323
5324 if (frag == sc->bge_tx_saved_considx) {
5325 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5326 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5327
5328 goto fail_unload;
5329 }
5330
5331 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5332 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5333 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5334 sc->txdma[cur] = dma;
5335 sc->bge_txcnt += dmamap->dm_nsegs;
5336
5337 *txidx = frag;
5338
5339 return 0;
5340
5341 fail_unload:
5342 bus_dmamap_unload(dmatag, dmamap);
5343 ifp->if_flags |= IFF_OACTIVE;
5344
5345 return ENOBUFS;
5346 }
5347
5348 /*
5349 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5350 * to the mbuf data regions directly in the transmit descriptors.
5351 */
5352 static void
5353 bge_start(struct ifnet *ifp)
5354 {
5355 struct bge_softc *sc;
5356 struct mbuf *m_head = NULL;
5357 struct mbuf *m;
5358 uint32_t prodidx;
5359 int pkts = 0;
5360 int error;
5361
5362 sc = ifp->if_softc;
5363
5364 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5365 return;
5366
5367 prodidx = sc->bge_tx_prodidx;
5368
5369 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5370 IFQ_POLL(&ifp->if_snd, m_head);
5371 if (m_head == NULL)
5372 break;
5373
5374 #if 0
5375 /*
5376 * XXX
5377 * safety overkill. If this is a fragmented packet chain
5378 * with delayed TCP/UDP checksums, then only encapsulate
5379 * it if we have enough descriptors to handle the entire
5380 * chain at once.
5381 * (paranoia -- may not actually be needed)
5382 */
5383 if (m_head->m_flags & M_FIRSTFRAG &&
5384 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5385 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5386 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5387 ifp->if_flags |= IFF_OACTIVE;
5388 break;
5389 }
5390 }
5391 #endif
5392
5393 /*
5394 * Pack the data into the transmit ring. If we
5395 * don't have room, set the OACTIVE flag and wait
5396 * for the NIC to drain the ring.
5397 */
5398 error = bge_encap(sc, m_head, &prodidx);
5399 if (__predict_false(error)) {
5400 if (ifp->if_flags & IFF_OACTIVE) {
5401 /* just wait for the transmit ring to drain */
5402 break;
5403 }
5404 IFQ_DEQUEUE(&ifp->if_snd, m);
5405 KASSERT(m == m_head);
5406 m_freem(m_head);
5407 continue;
5408 }
5409
5410 /* now we are committed to transmit the packet */
5411 IFQ_DEQUEUE(&ifp->if_snd, m);
5412 KASSERT(m == m_head);
5413 pkts++;
5414
5415 /*
5416 * If there's a BPF listener, bounce a copy of this frame
5417 * to him.
5418 */
5419 bpf_mtap(ifp, m_head, BPF_D_OUT);
5420 }
5421 if (pkts == 0)
5422 return;
5423
5424 /* Transmit */
5425 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5426 /* 5700 b2 errata */
5427 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5428 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5429
5430 sc->bge_tx_prodidx = prodidx;
5431
5432 /*
5433 * Set a timeout in case the chip goes out to lunch.
5434 */
5435 ifp->if_timer = 5;
5436 }
5437
5438 static int
5439 bge_init(struct ifnet *ifp)
5440 {
5441 struct bge_softc *sc = ifp->if_softc;
5442 const uint16_t *m;
5443 uint32_t mode, reg;
5444 int s, error = 0;
5445
5446 s = splnet();
5447
5448 ifp = &sc->ethercom.ec_if;
5449
5450 /* Cancel pending I/O and flush buffers. */
5451 bge_stop(ifp, 0);
5452
5453 bge_stop_fw(sc);
5454 bge_sig_pre_reset(sc, BGE_RESET_START);
5455 bge_reset(sc);
5456 bge_sig_legacy(sc, BGE_RESET_START);
5457
5458 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5459 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5460 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5461 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5462 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5463
5464 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5465 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5466 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5467 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5468
5469 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5470 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5471 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5472 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5473
5474 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5475 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5476 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5477 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5478 }
5479
5480 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5481 pcireg_t aercap;
5482
5483 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5484 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5485 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5486 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5487 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5488
5489 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5490 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5491 | BGE_PCIE_EIDLE_DELAY_13CLK;
5492 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5493
5494 /* Clear correctable error */
5495 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5496 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5497 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5498 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5499
5500 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5501 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5502 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5503 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5504 }
5505
5506 bge_sig_post_reset(sc, BGE_RESET_START);
5507
5508 bge_chipinit(sc);
5509
5510 /*
5511 * Init the various state machines, ring
5512 * control blocks and firmware.
5513 */
5514 error = bge_blockinit(sc);
5515 if (error != 0) {
5516 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5517 error);
5518 splx(s);
5519 return error;
5520 }
5521
5522 ifp = &sc->ethercom.ec_if;
5523
5524 /* 5718 step 25, 57XX step 54 */
5525 /* Specify MTU. */
5526 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5527 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5528
5529 /* 5718 step 23 */
5530 /* Load our MAC address. */
5531 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5532 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5533 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5534 ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5535
5536 /* Enable or disable promiscuous mode as needed. */
5537 if (ifp->if_flags & IFF_PROMISC)
5538 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5539 else
5540 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5541
5542 /* Program multicast filter. */
5543 bge_setmulti(sc);
5544
5545 /* Init RX ring. */
5546 bge_init_rx_ring_std(sc);
5547
5548 /*
5549 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5550 * memory to insure that the chip has in fact read the first
5551 * entry of the ring.
5552 */
5553 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5554 uint32_t v, i;
5555 for (i = 0; i < 10; i++) {
5556 DELAY(20);
5557 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5558 if (v == (MCLBYTES - ETHER_ALIGN))
5559 break;
5560 }
5561 if (i == 10)
5562 aprint_error_dev(sc->bge_dev,
5563 "5705 A0 chip failed to load RX ring\n");
5564 }
5565
5566 /* Init jumbo RX ring. */
5567 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5568 bge_init_rx_ring_jumbo(sc);
5569
5570 /* Init our RX return ring index */
5571 sc->bge_rx_saved_considx = 0;
5572
5573 /* Init TX ring. */
5574 bge_init_tx_ring(sc);
5575
5576 /* 5718 step 63, 57XX step 94 */
5577 /* Enable TX MAC state machine lockup fix. */
5578 mode = CSR_READ_4(sc, BGE_TX_MODE);
5579 if (BGE_IS_5755_PLUS(sc) ||
5580 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5581 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5582 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5583 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5584 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5585 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5586 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5587 }
5588
5589 /* Turn on transmitter */
5590 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5591 /* 5718 step 64 */
5592 DELAY(100);
5593
5594 /* 5718 step 65, 57XX step 95 */
5595 /* Turn on receiver */
5596 mode = CSR_READ_4(sc, BGE_RX_MODE);
5597 if (BGE_IS_5755_PLUS(sc))
5598 mode |= BGE_RXMODE_IPV6_ENABLE;
5599 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5600 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5601 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5602 /* 5718 step 66 */
5603 DELAY(10);
5604
5605 /* 5718 step 12, 57XX step 37 */
5606 /*
5607 * XXX Doucments of 5718 series and 577xx say the recommended value
5608 * is 1, but tg3 set 1 only on 57765 series.
5609 */
5610 if (BGE_IS_57765_PLUS(sc))
5611 reg = 1;
5612 else
5613 reg = 2;
5614 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5615
5616 /* Tell firmware we're alive. */
5617 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5618
5619 /* Enable host interrupts. */
5620 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5621 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5622 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5623
5624 if ((error = bge_ifmedia_upd(ifp)) != 0)
5625 goto out;
5626
5627 ifp->if_flags |= IFF_RUNNING;
5628 ifp->if_flags &= ~IFF_OACTIVE;
5629
5630 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5631
5632 out:
5633 sc->bge_if_flags = ifp->if_flags;
5634 splx(s);
5635
5636 return error;
5637 }
5638
5639 /*
5640 * Set media options.
5641 */
5642 static int
5643 bge_ifmedia_upd(struct ifnet *ifp)
5644 {
5645 struct bge_softc *sc = ifp->if_softc;
5646 struct mii_data *mii = &sc->bge_mii;
5647 struct ifmedia *ifm = &sc->bge_ifmedia;
5648 int rc;
5649
5650 /* If this is a 1000baseX NIC, enable the TBI port. */
5651 if (sc->bge_flags & BGEF_FIBER_TBI) {
5652 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5653 return EINVAL;
5654 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5655 case IFM_AUTO:
5656 /*
5657 * The BCM5704 ASIC appears to have a special
5658 * mechanism for programming the autoneg
5659 * advertisement registers in TBI mode.
5660 */
5661 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5662 uint32_t sgdig;
5663 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5664 if (sgdig & BGE_SGDIGSTS_DONE) {
5665 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5666 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5667 sgdig |= BGE_SGDIGCFG_AUTO |
5668 BGE_SGDIGCFG_PAUSE_CAP |
5669 BGE_SGDIGCFG_ASYM_PAUSE;
5670 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5671 sgdig | BGE_SGDIGCFG_SEND);
5672 DELAY(5);
5673 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5674 sgdig);
5675 }
5676 }
5677 break;
5678 case IFM_1000_SX:
5679 if ((ifm->ifm_media & IFM_FDX) != 0) {
5680 BGE_CLRBIT(sc, BGE_MAC_MODE,
5681 BGE_MACMODE_HALF_DUPLEX);
5682 } else {
5683 BGE_SETBIT(sc, BGE_MAC_MODE,
5684 BGE_MACMODE_HALF_DUPLEX);
5685 }
5686 DELAY(40);
5687 break;
5688 default:
5689 return EINVAL;
5690 }
5691 /* XXX 802.3x flow control for 1000BASE-SX */
5692 return 0;
5693 }
5694
5695 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5696 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5697 uint32_t reg;
5698
5699 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5700 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5701 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5702 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5703 }
5704 }
5705
5706 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5707 if ((rc = mii_mediachg(mii)) == ENXIO)
5708 return 0;
5709
5710 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5711 uint32_t reg;
5712
5713 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5714 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5715 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5716 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5717 delay(40);
5718 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5719 }
5720 }
5721
5722 /*
5723 * Force an interrupt so that we will call bge_link_upd
5724 * if needed and clear any pending link state attention.
5725 * Without this we are not getting any further interrupts
5726 * for link state changes and thus will not UP the link and
5727 * not be able to send in bge_start. The only way to get
5728 * things working was to receive a packet and get a RX intr.
5729 */
5730 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5731 sc->bge_flags & BGEF_IS_5788)
5732 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5733 else
5734 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5735
5736 return rc;
5737 }
5738
5739 /*
5740 * Report current media status.
5741 */
5742 static void
5743 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5744 {
5745 struct bge_softc *sc = ifp->if_softc;
5746 struct mii_data *mii = &sc->bge_mii;
5747
5748 if (sc->bge_flags & BGEF_FIBER_TBI) {
5749 ifmr->ifm_status = IFM_AVALID;
5750 ifmr->ifm_active = IFM_ETHER;
5751 if (CSR_READ_4(sc, BGE_MAC_STS) &
5752 BGE_MACSTAT_TBI_PCS_SYNCHED)
5753 ifmr->ifm_status |= IFM_ACTIVE;
5754 ifmr->ifm_active |= IFM_1000_SX;
5755 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5756 ifmr->ifm_active |= IFM_HDX;
5757 else
5758 ifmr->ifm_active |= IFM_FDX;
5759 return;
5760 }
5761
5762 mii_pollstat(mii);
5763 ifmr->ifm_status = mii->mii_media_status;
5764 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5765 sc->bge_flowflags;
5766 }
5767
5768 static int
5769 bge_ifflags_cb(struct ethercom *ec)
5770 {
5771 struct ifnet *ifp = &ec->ec_if;
5772 struct bge_softc *sc = ifp->if_softc;
5773 u_short change = ifp->if_flags ^ sc->bge_if_flags;
5774
5775 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
5776 return ENETRESET;
5777 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5778 return 0;
5779
5780 if ((ifp->if_flags & IFF_PROMISC) == 0)
5781 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5782 else
5783 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5784
5785 bge_setmulti(sc);
5786
5787 sc->bge_if_flags = ifp->if_flags;
5788 return 0;
5789 }
5790
5791 static int
5792 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5793 {
5794 struct bge_softc *sc = ifp->if_softc;
5795 struct ifreq *ifr = (struct ifreq *) data;
5796 int s, error = 0;
5797 struct mii_data *mii;
5798
5799 s = splnet();
5800
5801 switch (command) {
5802 case SIOCSIFMEDIA:
5803 /* XXX Flow control is not supported for 1000BASE-SX */
5804 if (sc->bge_flags & BGEF_FIBER_TBI) {
5805 ifr->ifr_media &= ~IFM_ETH_FMASK;
5806 sc->bge_flowflags = 0;
5807 }
5808
5809 /* Flow control requires full-duplex mode. */
5810 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5811 (ifr->ifr_media & IFM_FDX) == 0) {
5812 ifr->ifr_media &= ~IFM_ETH_FMASK;
5813 }
5814 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5815 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5816 /* We can do both TXPAUSE and RXPAUSE. */
5817 ifr->ifr_media |=
5818 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5819 }
5820 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5821 }
5822
5823 if (sc->bge_flags & BGEF_FIBER_TBI) {
5824 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5825 command);
5826 } else {
5827 mii = &sc->bge_mii;
5828 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5829 command);
5830 }
5831 break;
5832 default:
5833 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5834 break;
5835
5836 error = 0;
5837
5838 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5839 ;
5840 else if (ifp->if_flags & IFF_RUNNING)
5841 bge_setmulti(sc);
5842 break;
5843 }
5844
5845 splx(s);
5846
5847 return error;
5848 }
5849
5850 static void
5851 bge_watchdog(struct ifnet *ifp)
5852 {
5853 struct bge_softc *sc;
5854 uint32_t status;
5855
5856 sc = ifp->if_softc;
5857
5858 /* If pause frames are active then don't reset the hardware. */
5859 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5860 status = CSR_READ_4(sc, BGE_RX_STS);
5861 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5862 /*
5863 * If link partner has us in XOFF state then wait for
5864 * the condition to clear.
5865 */
5866 CSR_WRITE_4(sc, BGE_RX_STS, status);
5867 ifp->if_timer = 5;
5868 return;
5869 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5870 (status & BGE_RXSTAT_RCVD_XON) != 0) {
5871 /*
5872 * If link partner has us in XOFF state then wait for
5873 * the condition to clear.
5874 */
5875 CSR_WRITE_4(sc, BGE_RX_STS, status);
5876 ifp->if_timer = 5;
5877 return;
5878 }
5879 /*
5880 * Any other condition is unexpected and the controller
5881 * should be reset.
5882 */
5883 }
5884
5885 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5886
5887 ifp->if_flags &= ~IFF_RUNNING;
5888 bge_init(ifp);
5889
5890 ifp->if_oerrors++;
5891 }
5892
5893 static void
5894 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5895 {
5896 int i;
5897
5898 BGE_CLRBIT_FLUSH(sc, reg, bit);
5899
5900 for (i = 0; i < 1000; i++) {
5901 delay(100);
5902 if ((CSR_READ_4(sc, reg) & bit) == 0)
5903 return;
5904 }
5905
5906 /*
5907 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5908 * on some environment (and once after boot?)
5909 */
5910 if (reg != BGE_SRS_MODE)
5911 aprint_error_dev(sc->bge_dev,
5912 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5913 (u_long)reg, bit);
5914 }
5915
5916 /*
5917 * Stop the adapter and free any mbufs allocated to the
5918 * RX and TX lists.
5919 */
5920 static void
5921 bge_stop(struct ifnet *ifp, int disable)
5922 {
5923 struct bge_softc *sc = ifp->if_softc;
5924
5925 if (disable) {
5926 sc->bge_detaching = 1;
5927 callout_halt(&sc->bge_timeout, NULL);
5928 } else
5929 callout_stop(&sc->bge_timeout);
5930
5931 /* Disable host interrupts. */
5932 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5933 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5934
5935 /*
5936 * Tell firmware we're shutting down.
5937 */
5938 bge_stop_fw(sc);
5939 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5940
5941 /*
5942 * Disable all of the receiver blocks.
5943 */
5944 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5945 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5946 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5947 if (BGE_IS_5700_FAMILY(sc))
5948 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5949 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5950 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5951 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5952
5953 /*
5954 * Disable all of the transmit blocks.
5955 */
5956 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5957 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5958 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5959 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5960 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5961 if (BGE_IS_5700_FAMILY(sc))
5962 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5963 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5964
5965 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5966 delay(40);
5967
5968 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5969
5970 /*
5971 * Shut down all of the memory managers and related
5972 * state machines.
5973 */
5974 /* 5718 step 5a,5b */
5975 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5976 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5977 if (BGE_IS_5700_FAMILY(sc))
5978 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5979
5980 /* 5718 step 5c,5d */
5981 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5982 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5983
5984 if (BGE_IS_5700_FAMILY(sc)) {
5985 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5986 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5987 }
5988
5989 bge_reset(sc);
5990 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5991 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5992
5993 /*
5994 * Keep the ASF firmware running if up.
5995 */
5996 if (sc->bge_asf_mode & ASF_STACKUP)
5997 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5998 else
5999 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6000
6001 /* Free the RX lists. */
6002 bge_free_rx_ring_std(sc, disable);
6003
6004 /* Free jumbo RX list. */
6005 if (BGE_IS_JUMBO_CAPABLE(sc))
6006 bge_free_rx_ring_jumbo(sc);
6007
6008 /* Free TX buffers. */
6009 bge_free_tx_ring(sc, disable);
6010
6011 /*
6012 * Isolate/power down the PHY.
6013 */
6014 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6015 mii_down(&sc->bge_mii);
6016
6017 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6018
6019 /* Clear MAC's link state (PHY may still have link UP). */
6020 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6021
6022 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6023 }
6024
6025 static void
6026 bge_link_upd(struct bge_softc *sc)
6027 {
6028 struct ifnet *ifp = &sc->ethercom.ec_if;
6029 struct mii_data *mii = &sc->bge_mii;
6030 uint32_t status;
6031 uint16_t phyval;
6032 int link;
6033
6034 /* Clear 'pending link event' flag */
6035 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6036
6037 /*
6038 * Process link state changes.
6039 * Grrr. The link status word in the status block does
6040 * not work correctly on the BCM5700 rev AX and BX chips,
6041 * according to all available information. Hence, we have
6042 * to enable MII interrupts in order to properly obtain
6043 * async link changes. Unfortunately, this also means that
6044 * we have to read the MAC status register to detect link
6045 * changes, thereby adding an additional register access to
6046 * the interrupt handler.
6047 */
6048
6049 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6050 status = CSR_READ_4(sc, BGE_MAC_STS);
6051 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6052 mii_pollstat(mii);
6053
6054 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6055 mii->mii_media_status & IFM_ACTIVE &&
6056 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6057 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6058 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6059 (!(mii->mii_media_status & IFM_ACTIVE) ||
6060 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6061 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6062
6063 /* Clear the interrupt */
6064 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6065 BGE_EVTENB_MI_INTERRUPT);
6066 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6067 BRGPHY_MII_ISR, &phyval);
6068 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6069 BRGPHY_MII_IMR, BRGPHY_INTRS);
6070 }
6071 return;
6072 }
6073
6074 if (sc->bge_flags & BGEF_FIBER_TBI) {
6075 status = CSR_READ_4(sc, BGE_MAC_STS);
6076 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6077 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6078 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6079 if (BGE_ASICREV(sc->bge_chipid)
6080 == BGE_ASICREV_BCM5704) {
6081 BGE_CLRBIT(sc, BGE_MAC_MODE,
6082 BGE_MACMODE_TBI_SEND_CFGS);
6083 DELAY(40);
6084 }
6085 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6086 if_link_state_change(ifp, LINK_STATE_UP);
6087 }
6088 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6089 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6090 if_link_state_change(ifp, LINK_STATE_DOWN);
6091 }
6092 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6093 /*
6094 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6095 * bit in status word always set. Workaround this bug by
6096 * reading PHY link status directly.
6097 */
6098 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6099 BGE_STS_LINK : 0;
6100
6101 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6102 mii_pollstat(mii);
6103
6104 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6105 mii->mii_media_status & IFM_ACTIVE &&
6106 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6107 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6108 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6109 (!(mii->mii_media_status & IFM_ACTIVE) ||
6110 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6111 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6112 }
6113 } else {
6114 /*
6115 * For controllers that call mii_tick, we have to poll
6116 * link status.
6117 */
6118 mii_pollstat(mii);
6119 }
6120
6121 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6122 uint32_t reg, scale;
6123
6124 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6125 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6126 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6127 scale = 65;
6128 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6129 scale = 6;
6130 else
6131 scale = 12;
6132
6133 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6134 ~BGE_MISCCFG_TIMER_PRESCALER;
6135 reg |= scale << 1;
6136 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6137 }
6138 /* Clear the attention */
6139 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6140 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6141 BGE_MACSTAT_LINK_CHANGED);
6142 }
6143
6144 static int
6145 bge_sysctl_verify(SYSCTLFN_ARGS)
6146 {
6147 int error, t;
6148 struct sysctlnode node;
6149
6150 node = *rnode;
6151 t = *(int*)rnode->sysctl_data;
6152 node.sysctl_data = &t;
6153 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6154 if (error || newp == NULL)
6155 return error;
6156
6157 #if 0
6158 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6159 node.sysctl_num, rnode->sysctl_num));
6160 #endif
6161
6162 if (node.sysctl_num == bge_rxthresh_nodenum) {
6163 if (t < 0 || t >= NBGE_RX_THRESH)
6164 return EINVAL;
6165 bge_update_all_threshes(t);
6166 } else
6167 return EINVAL;
6168
6169 *(int*)rnode->sysctl_data = t;
6170
6171 return 0;
6172 }
6173
6174 /*
6175 * Set up sysctl(3) MIB, hw.bge.*.
6176 */
6177 static void
6178 bge_sysctl_init(struct bge_softc *sc)
6179 {
6180 int rc, bge_root_num;
6181 const struct sysctlnode *node;
6182
6183 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6184 0, CTLTYPE_NODE, "bge",
6185 SYSCTL_DESCR("BGE interface controls"),
6186 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6187 goto out;
6188 }
6189
6190 bge_root_num = node->sysctl_num;
6191
6192 /* BGE Rx interrupt mitigation level */
6193 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6194 CTLFLAG_READWRITE,
6195 CTLTYPE_INT, "rx_lvl",
6196 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6197 bge_sysctl_verify, 0,
6198 &bge_rx_thresh_lvl,
6199 0, CTL_HW, bge_root_num, CTL_CREATE,
6200 CTL_EOL)) != 0) {
6201 goto out;
6202 }
6203
6204 bge_rxthresh_nodenum = node->sysctl_num;
6205
6206 return;
6207
6208 out:
6209 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6210 }
6211
6212 #ifdef BGE_DEBUG
6213 void
6214 bge_debug_info(struct bge_softc *sc)
6215 {
6216
6217 printf("Hardware Flags:\n");
6218 if (BGE_IS_57765_PLUS(sc))
6219 printf(" - 57765 Plus\n");
6220 if (BGE_IS_5717_PLUS(sc))
6221 printf(" - 5717 Plus\n");
6222 if (BGE_IS_5755_PLUS(sc))
6223 printf(" - 5755 Plus\n");
6224 if (BGE_IS_575X_PLUS(sc))
6225 printf(" - 575X Plus\n");
6226 if (BGE_IS_5705_PLUS(sc))
6227 printf(" - 5705 Plus\n");
6228 if (BGE_IS_5714_FAMILY(sc))
6229 printf(" - 5714 Family\n");
6230 if (BGE_IS_5700_FAMILY(sc))
6231 printf(" - 5700 Family\n");
6232 if (sc->bge_flags & BGEF_IS_5788)
6233 printf(" - 5788\n");
6234 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6235 printf(" - Supports Jumbo Frames\n");
6236 if (sc->bge_flags & BGEF_NO_EEPROM)
6237 printf(" - No EEPROM\n");
6238 if (sc->bge_flags & BGEF_PCIX)
6239 printf(" - PCI-X Bus\n");
6240 if (sc->bge_flags & BGEF_PCIE)
6241 printf(" - PCI Express Bus\n");
6242 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6243 printf(" - RX Alignment Bug\n");
6244 if (sc->bge_flags & BGEF_APE)
6245 printf(" - APE\n");
6246 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6247 printf(" - CPMU\n");
6248 if (sc->bge_flags & BGEF_TSO)
6249 printf(" - TSO\n");
6250 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6251 printf(" - TAGGED_STATUS\n");
6252
6253 /* PHY related */
6254 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6255 printf(" - No 3 LEDs\n");
6256 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6257 printf(" - CRC bug\n");
6258 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6259 printf(" - ADC bug\n");
6260 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6261 printf(" - 5704 A0 bug\n");
6262 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6263 printf(" - jitter bug\n");
6264 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6265 printf(" - BER bug\n");
6266 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6267 printf(" - adjust trim\n");
6268 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6269 printf(" - no wirespeed\n");
6270
6271 /* ASF related */
6272 if (sc->bge_asf_mode & ASF_ENABLE)
6273 printf(" - ASF enable\n");
6274 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6275 printf(" - ASF new handshake\n");
6276 if (sc->bge_asf_mode & ASF_STACKUP)
6277 printf(" - ASF stackup\n");
6278 }
6279 #endif /* BGE_DEBUG */
6280
6281 static int
6282 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6283 {
6284 prop_dictionary_t dict;
6285 prop_data_t ea;
6286
6287 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6288 return 1;
6289
6290 dict = device_properties(sc->bge_dev);
6291 ea = prop_dictionary_get(dict, "mac-address");
6292 if (ea != NULL) {
6293 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6294 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6295 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6296 return 0;
6297 }
6298
6299 return 1;
6300 }
6301
6302 static int
6303 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6304 {
6305 uint32_t mac_addr;
6306
6307 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6308 if ((mac_addr >> 16) == 0x484b) {
6309 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6310 ether_addr[1] = (uint8_t)mac_addr;
6311 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6312 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6313 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6314 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6315 ether_addr[5] = (uint8_t)mac_addr;
6316 return 0;
6317 }
6318 return 1;
6319 }
6320
6321 static int
6322 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6323 {
6324 int mac_offset = BGE_EE_MAC_OFFSET;
6325
6326 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6327 mac_offset = BGE_EE_MAC_OFFSET_5906;
6328
6329 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6330 ETHER_ADDR_LEN));
6331 }
6332
6333 static int
6334 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6335 {
6336
6337 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6338 return 1;
6339
6340 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6341 ETHER_ADDR_LEN));
6342 }
6343
6344 static int
6345 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6346 {
6347 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6348 /* NOTE: Order is critical */
6349 bge_get_eaddr_fw,
6350 bge_get_eaddr_mem,
6351 bge_get_eaddr_nvram,
6352 bge_get_eaddr_eeprom,
6353 NULL
6354 };
6355 const bge_eaddr_fcn_t *func;
6356
6357 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6358 if ((*func)(sc, eaddr) == 0)
6359 break;
6360 }
6361 return (*func == NULL ? ENXIO : 0);
6362 }
6363