if_bge.c revision 1.34 1 /* $NetBSD: if_bge.c,v 1.34 2003/03/06 20:12:53 jonathan Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include "bpfilter.h"
82 #include "vlan.h"
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #ifdef INET
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip.h>
104 #endif
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/miidevs.h>
117 #include <dev/mii/brgphyreg.h>
118
119 #include <dev/pci/if_bgereg.h>
120
121 #include <uvm/uvm_extern.h>
122
123 int bge_probe(struct device *, struct cfdata *, void *);
124 void bge_attach(struct device *, struct device *, void *);
125 void bge_release_resources(struct bge_softc *);
126 void bge_txeof(struct bge_softc *);
127 void bge_rxeof(struct bge_softc *);
128
129 void bge_tick(void *);
130 void bge_stats_update(struct bge_softc *);
131 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
132
133 int bge_intr(void *);
134 void bge_start(struct ifnet *);
135 int bge_ioctl(struct ifnet *, u_long, caddr_t);
136 int bge_init(struct ifnet *);
137 void bge_stop(struct bge_softc *);
138 void bge_watchdog(struct ifnet *);
139 void bge_shutdown(void *);
140 int bge_ifmedia_upd(struct ifnet *);
141 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
142
143 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
144 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
145
146 void bge_setmulti(struct bge_softc *);
147
148 void bge_handle_events(struct bge_softc *);
149 int bge_alloc_jumbo_mem(struct bge_softc *);
150 void bge_free_jumbo_mem(struct bge_softc *);
151 void *bge_jalloc(struct bge_softc *);
152 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
153 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
154 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
155 int bge_init_rx_ring_std(struct bge_softc *);
156 void bge_free_rx_ring_std(struct bge_softc *);
157 int bge_init_rx_ring_jumbo(struct bge_softc *);
158 void bge_free_rx_ring_jumbo(struct bge_softc *);
159 void bge_free_tx_ring(struct bge_softc *);
160 int bge_init_tx_ring(struct bge_softc *);
161
162 int bge_chipinit(struct bge_softc *);
163 int bge_blockinit(struct bge_softc *);
164 int bge_setpowerstate(struct bge_softc *, int);
165
166 #ifdef notdef
167 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
168 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
169 void bge_vpd_read(struct bge_softc *);
170 #endif
171
172 u_int32_t bge_readmem_ind(struct bge_softc *, int);
173 void bge_writemem_ind(struct bge_softc *, int, int);
174 #ifdef notdef
175 u_int32_t bge_readreg_ind(struct bge_softc *, int);
176 #endif
177 void bge_writereg_ind(struct bge_softc *, int, int);
178
179 int bge_miibus_readreg(struct device *, int, int);
180 void bge_miibus_writereg(struct device *, int, int, int);
181 void bge_miibus_statchg(struct device *);
182
183 void bge_reset(struct bge_softc *);
184
185 void bge_dump_status(struct bge_softc *);
186 void bge_dump_rxbd(struct bge_rx_bd *);
187
188 #define BGE_DEBUG
189 #ifdef BGE_DEBUG
190 #define DPRINTF(x) if (bgedebug) printf x
191 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
192 int bgedebug = 0;
193 #else
194 #define DPRINTF(x)
195 #define DPRINTFN(n,x)
196 #endif
197
198 /* Various chip quirks. */
199 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
200 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
201 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
202 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
203 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
204 #define BGE_QUIRK_PRODUCER_BUG 0x00000011
205
206 /* following bugs are common to bcm5700 rev B, all flavours */
207 #define BGE_QUIRK_5700_COMMON \
208 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
209
210 CFATTACH_DECL(bge, sizeof(struct bge_softc),
211 bge_probe, bge_attach, NULL, NULL);
212
213 u_int32_t
214 bge_readmem_ind(sc, off)
215 struct bge_softc *sc;
216 int off;
217 {
218 struct pci_attach_args *pa = &(sc->bge_pa);
219 pcireg_t val;
220
221 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
222 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
223 return val;
224 }
225
226 void
227 bge_writemem_ind(sc, off, val)
228 struct bge_softc *sc;
229 int off, val;
230 {
231 struct pci_attach_args *pa = &(sc->bge_pa);
232
233 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
234 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
235 }
236
237 #ifdef notdef
238 u_int32_t
239 bge_readreg_ind(sc, off)
240 struct bge_softc *sc;
241 int off;
242 {
243 struct pci_attach_args *pa = &(sc->bge_pa);
244
245 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
246 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
247 }
248 #endif
249
250 void
251 bge_writereg_ind(sc, off, val)
252 struct bge_softc *sc;
253 int off, val;
254 {
255 struct pci_attach_args *pa = &(sc->bge_pa);
256
257 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
258 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
259 }
260
261 #ifdef notdef
262 u_int8_t
263 bge_vpd_readbyte(sc, addr)
264 struct bge_softc *sc;
265 int addr;
266 {
267 int i;
268 u_int32_t val;
269 struct pci_attach_args *pa = &(sc->bge_pa);
270
271 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
272 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
273 DELAY(10);
274 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
275 BGE_VPD_FLAG)
276 break;
277 }
278
279 if (i == BGE_TIMEOUT) {
280 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
281 return(0);
282 }
283
284 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
285
286 return((val >> ((addr % 4) * 8)) & 0xFF);
287 }
288
289 void
290 bge_vpd_read_res(sc, res, addr)
291 struct bge_softc *sc;
292 struct vpd_res *res;
293 int addr;
294 {
295 int i;
296 u_int8_t *ptr;
297
298 ptr = (u_int8_t *)res;
299 for (i = 0; i < sizeof(struct vpd_res); i++)
300 ptr[i] = bge_vpd_readbyte(sc, i + addr);
301 }
302
303 void
304 bge_vpd_read(sc)
305 struct bge_softc *sc;
306 {
307 int pos = 0, i;
308 struct vpd_res res;
309
310 if (sc->bge_vpd_prodname != NULL)
311 free(sc->bge_vpd_prodname, M_DEVBUF);
312 if (sc->bge_vpd_readonly != NULL)
313 free(sc->bge_vpd_readonly, M_DEVBUF);
314 sc->bge_vpd_prodname = NULL;
315 sc->bge_vpd_readonly = NULL;
316
317 bge_vpd_read_res(sc, &res, pos);
318
319 if (res.vr_id != VPD_RES_ID) {
320 printf("%s: bad VPD resource id: expected %x got %x\n",
321 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
322 return;
323 }
324
325 pos += sizeof(res);
326 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
327 if (sc->bge_vpd_prodname == NULL)
328 panic("bge_vpd_read");
329 for (i = 0; i < res.vr_len; i++)
330 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
331 sc->bge_vpd_prodname[i] = '\0';
332 pos += i;
333
334 bge_vpd_read_res(sc, &res, pos);
335
336 if (res.vr_id != VPD_RES_READ) {
337 printf("%s: bad VPD resource id: expected %x got %x\n",
338 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
339 return;
340 }
341
342 pos += sizeof(res);
343 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
344 if (sc->bge_vpd_readonly == NULL)
345 panic("bge_vpd_read");
346 for (i = 0; i < res.vr_len + 1; i++)
347 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
348 }
349 #endif
350
351 /*
352 * Read a byte of data stored in the EEPROM at address 'addr.' The
353 * BCM570x supports both the traditional bitbang interface and an
354 * auto access interface for reading the EEPROM. We use the auto
355 * access method.
356 */
357 u_int8_t
358 bge_eeprom_getbyte(sc, addr, dest)
359 struct bge_softc *sc;
360 int addr;
361 u_int8_t *dest;
362 {
363 int i;
364 u_int32_t byte = 0;
365
366 /*
367 * Enable use of auto EEPROM access so we can avoid
368 * having to use the bitbang method.
369 */
370 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
371
372 /* Reset the EEPROM, load the clock period. */
373 CSR_WRITE_4(sc, BGE_EE_ADDR,
374 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
375 DELAY(20);
376
377 /* Issue the read EEPROM command. */
378 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
379
380 /* Wait for completion */
381 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
382 DELAY(10);
383 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
384 break;
385 }
386
387 if (i == BGE_TIMEOUT) {
388 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
389 return(0);
390 }
391
392 /* Get result. */
393 byte = CSR_READ_4(sc, BGE_EE_DATA);
394
395 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
396
397 return(0);
398 }
399
400 /*
401 * Read a sequence of bytes from the EEPROM.
402 */
403 int
404 bge_read_eeprom(sc, dest, off, cnt)
405 struct bge_softc *sc;
406 caddr_t dest;
407 int off;
408 int cnt;
409 {
410 int err = 0, i;
411 u_int8_t byte = 0;
412
413 for (i = 0; i < cnt; i++) {
414 err = bge_eeprom_getbyte(sc, off + i, &byte);
415 if (err)
416 break;
417 *(dest + i) = byte;
418 }
419
420 return(err ? 1 : 0);
421 }
422
423 int
424 bge_miibus_readreg(dev, phy, reg)
425 struct device *dev;
426 int phy, reg;
427 {
428 struct bge_softc *sc = (struct bge_softc *)dev;
429 struct ifnet *ifp;
430 u_int32_t val;
431 u_int32_t saved_autopoll;
432 int i;
433
434 ifp = &sc->ethercom.ec_if;
435
436 /*
437 * Several chips with builtin PHYs will incorrectly answer to
438 * other PHY instances than the builtin PHY at id 1.
439 */
440 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
441 return(0);
442
443 /* Reading with autopolling on may trigger PCI errors */
444 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
445 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
446 CSR_WRITE_4(sc, BGE_MI_MODE,
447 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
448 DELAY(40);
449 }
450
451 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
452 BGE_MIPHY(phy)|BGE_MIREG(reg));
453
454 for (i = 0; i < BGE_TIMEOUT; i++) {
455 val = CSR_READ_4(sc, BGE_MI_COMM);
456 if (!(val & BGE_MICOMM_BUSY))
457 break;
458 delay(10);
459 }
460
461 if (i == BGE_TIMEOUT) {
462 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
463 val = 0;
464 goto done;
465 }
466
467 val = CSR_READ_4(sc, BGE_MI_COMM);
468
469 done:
470 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
471 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
472 DELAY(40);
473 }
474
475 if (val & BGE_MICOMM_READFAIL)
476 return(0);
477
478 return(val & 0xFFFF);
479 }
480
481 void
482 bge_miibus_writereg(dev, phy, reg, val)
483 struct device *dev;
484 int phy, reg, val;
485 {
486 struct bge_softc *sc = (struct bge_softc *)dev;
487 u_int32_t saved_autopoll;
488 int i;
489
490 /* Touching the PHY while autopolling is on may trigger PCI errors */
491 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
492 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
493 delay(40);
494 CSR_WRITE_4(sc, BGE_MI_MODE,
495 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
496 delay(10); /* 40 usec is supposed to be adequate */
497 }
498
499 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
500 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
501
502 for (i = 0; i < BGE_TIMEOUT; i++) {
503 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
504 break;
505 delay(10);
506 }
507
508 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
509 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
510 delay(40);
511 }
512
513 if (i == BGE_TIMEOUT) {
514 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
515 }
516 }
517
518 void
519 bge_miibus_statchg(dev)
520 struct device *dev;
521 {
522 struct bge_softc *sc = (struct bge_softc *)dev;
523 struct mii_data *mii = &sc->bge_mii;
524
525 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
526 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
527 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
528 } else {
529 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
530 }
531
532 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
533 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
534 } else {
535 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
536 }
537 }
538
539 /*
540 * Handle events that have triggered interrupts.
541 */
542 void
543 bge_handle_events(sc)
544 struct bge_softc *sc;
545 {
546
547 return;
548 }
549
550 /*
551 * Memory management for jumbo frames.
552 */
553
554 int
555 bge_alloc_jumbo_mem(sc)
556 struct bge_softc *sc;
557 {
558 caddr_t ptr, kva;
559 bus_dma_segment_t seg;
560 int i, rseg, state, error;
561 struct bge_jpool_entry *entry;
562
563 state = error = 0;
564
565 /* Grab a big chunk o' storage. */
566 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
567 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
568 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
569 return ENOBUFS;
570 }
571
572 state = 1;
573 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
574 BUS_DMA_NOWAIT)) {
575 printf("%s: can't map dma buffers (%d bytes)\n",
576 sc->bge_dev.dv_xname, (int)BGE_JMEM);
577 error = ENOBUFS;
578 goto out;
579 }
580
581 state = 2;
582 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
583 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
584 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
585 error = ENOBUFS;
586 goto out;
587 }
588
589 state = 3;
590 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
591 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
592 printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
593 error = ENOBUFS;
594 goto out;
595 }
596
597 state = 4;
598 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
599 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
600
601 SLIST_INIT(&sc->bge_jfree_listhead);
602 SLIST_INIT(&sc->bge_jinuse_listhead);
603
604 /*
605 * Now divide it up into 9K pieces and save the addresses
606 * in an array.
607 */
608 ptr = sc->bge_cdata.bge_jumbo_buf;
609 for (i = 0; i < BGE_JSLOTS; i++) {
610 sc->bge_cdata.bge_jslots[i] = ptr;
611 ptr += BGE_JLEN;
612 entry = malloc(sizeof(struct bge_jpool_entry),
613 M_DEVBUF, M_NOWAIT);
614 if (entry == NULL) {
615 printf("%s: no memory for jumbo buffer queue!\n",
616 sc->bge_dev.dv_xname);
617 error = ENOBUFS;
618 goto out;
619 }
620 entry->slot = i;
621 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
622 entry, jpool_entries);
623 }
624 out:
625 if (error != 0) {
626 switch (state) {
627 case 4:
628 bus_dmamap_unload(sc->bge_dmatag,
629 sc->bge_cdata.bge_rx_jumbo_map);
630 case 3:
631 bus_dmamap_destroy(sc->bge_dmatag,
632 sc->bge_cdata.bge_rx_jumbo_map);
633 case 2:
634 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
635 case 1:
636 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
637 break;
638 default:
639 break;
640 }
641 }
642
643 return error;
644 }
645
646 /*
647 * Allocate a jumbo buffer.
648 */
649 void *
650 bge_jalloc(sc)
651 struct bge_softc *sc;
652 {
653 struct bge_jpool_entry *entry;
654
655 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
656
657 if (entry == NULL) {
658 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
659 return(NULL);
660 }
661
662 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
663 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
664 return(sc->bge_cdata.bge_jslots[entry->slot]);
665 }
666
667 /*
668 * Release a jumbo buffer.
669 */
670 void
671 bge_jfree(m, buf, size, arg)
672 struct mbuf *m;
673 caddr_t buf;
674 size_t size;
675 void *arg;
676 {
677 struct bge_jpool_entry *entry;
678 struct bge_softc *sc;
679 int i, s;
680
681 /* Extract the softc struct pointer. */
682 sc = (struct bge_softc *)arg;
683
684 if (sc == NULL)
685 panic("bge_jfree: can't find softc pointer!");
686
687 /* calculate the slot this buffer belongs to */
688
689 i = ((caddr_t)buf
690 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
691
692 if ((i < 0) || (i >= BGE_JSLOTS))
693 panic("bge_jfree: asked to free buffer that we don't manage!");
694
695 s = splvm();
696 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
697 if (entry == NULL)
698 panic("bge_jfree: buffer not in use!");
699 entry->slot = i;
700 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
701 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
702
703 if (__predict_true(m != NULL))
704 pool_cache_put(&mbpool_cache, m);
705 splx(s);
706 }
707
708
709 /*
710 * Intialize a standard receive ring descriptor.
711 */
712 int
713 bge_newbuf_std(sc, i, m, dmamap)
714 struct bge_softc *sc;
715 int i;
716 struct mbuf *m;
717 bus_dmamap_t dmamap;
718 {
719 struct mbuf *m_new = NULL;
720 struct bge_rx_bd *r;
721 int error;
722
723 if (dmamap == NULL) {
724 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
725 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
726 if (error != 0)
727 return error;
728 }
729
730 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
731
732 if (m == NULL) {
733 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
734 if (m_new == NULL) {
735 return(ENOBUFS);
736 }
737
738 MCLGET(m_new, M_DONTWAIT);
739 if (!(m_new->m_flags & M_EXT)) {
740 m_freem(m_new);
741 return(ENOBUFS);
742 }
743 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
744 m_adj(m_new, ETHER_ALIGN);
745
746 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
747 BUS_DMA_READ|BUS_DMA_NOWAIT))
748 return(ENOBUFS);
749 } else {
750 m_new = m;
751 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
752 m_new->m_data = m_new->m_ext.ext_buf;
753 m_adj(m_new, ETHER_ALIGN);
754 }
755
756 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
757 r = &sc->bge_rdata->bge_rx_std_ring[i];
758 bge_set_hostaddr(&r->bge_addr,
759 dmamap->dm_segs[0].ds_addr);
760 r->bge_flags = BGE_RXBDFLAG_END;
761 r->bge_len = m_new->m_len;
762 r->bge_idx = i;
763
764 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
765 offsetof(struct bge_ring_data, bge_rx_std_ring) +
766 i * sizeof (struct bge_rx_bd),
767 sizeof (struct bge_rx_bd),
768 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
769
770 return(0);
771 }
772
773 /*
774 * Initialize a jumbo receive ring descriptor. This allocates
775 * a jumbo buffer from the pool managed internally by the driver.
776 */
777 int
778 bge_newbuf_jumbo(sc, i, m)
779 struct bge_softc *sc;
780 int i;
781 struct mbuf *m;
782 {
783 struct mbuf *m_new = NULL;
784 struct bge_rx_bd *r;
785
786 if (m == NULL) {
787 caddr_t *buf = NULL;
788
789 /* Allocate the mbuf. */
790 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
791 if (m_new == NULL) {
792 return(ENOBUFS);
793 }
794
795 /* Allocate the jumbo buffer */
796 buf = bge_jalloc(sc);
797 if (buf == NULL) {
798 m_freem(m_new);
799 printf("%s: jumbo allocation failed "
800 "-- packet dropped!\n", sc->bge_dev.dv_xname);
801 return(ENOBUFS);
802 }
803
804 /* Attach the buffer to the mbuf. */
805 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
806 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
807 bge_jfree, sc);
808 } else {
809 m_new = m;
810 m_new->m_data = m_new->m_ext.ext_buf;
811 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
812 }
813
814 m_adj(m_new, ETHER_ALIGN);
815 /* Set up the descriptor. */
816 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
817 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
818 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
819 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
820 r->bge_len = m_new->m_len;
821 r->bge_idx = i;
822
823 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
824 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
825 i * sizeof (struct bge_rx_bd),
826 sizeof (struct bge_rx_bd),
827 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
828
829 return(0);
830 }
831
832 /*
833 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
834 * that's 1MB or memory, which is a lot. For now, we fill only the first
835 * 256 ring entries and hope that our CPU is fast enough to keep up with
836 * the NIC.
837 */
838 int
839 bge_init_rx_ring_std(sc)
840 struct bge_softc *sc;
841 {
842 int i;
843
844 if (sc->bge_flags & BGE_RXRING_VALID)
845 return 0;
846
847 for (i = 0; i < BGE_SSLOTS; i++) {
848 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
849 return(ENOBUFS);
850 }
851
852 sc->bge_std = i - 1;
853 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
854
855 sc->bge_flags |= BGE_RXRING_VALID;
856
857 return(0);
858 }
859
860 void
861 bge_free_rx_ring_std(sc)
862 struct bge_softc *sc;
863 {
864 int i;
865
866 if (!(sc->bge_flags & BGE_RXRING_VALID))
867 return;
868
869 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
870 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
871 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
872 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
873 bus_dmamap_destroy(sc->bge_dmatag,
874 sc->bge_cdata.bge_rx_std_map[i]);
875 }
876 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
877 sizeof(struct bge_rx_bd));
878 }
879
880 sc->bge_flags &= ~BGE_RXRING_VALID;
881 }
882
883 int
884 bge_init_rx_ring_jumbo(sc)
885 struct bge_softc *sc;
886 {
887 int i;
888 volatile struct bge_rcb *rcb;
889
890 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
891 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
892 return(ENOBUFS);
893 };
894
895 sc->bge_jumbo = i - 1;
896
897 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
898 rcb->bge_maxlen_flags = 0;
899 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
900
901 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
902
903 return(0);
904 }
905
906 void
907 bge_free_rx_ring_jumbo(sc)
908 struct bge_softc *sc;
909 {
910 int i;
911
912 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
913 return;
914
915 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
916 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
917 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
918 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
919 }
920 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
921 sizeof(struct bge_rx_bd));
922 }
923
924 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
925 }
926
927 void
928 bge_free_tx_ring(sc)
929 struct bge_softc *sc;
930 {
931 int i, freed;
932 struct txdmamap_pool_entry *dma;
933
934 if (!(sc->bge_flags & BGE_TXRING_VALID))
935 return;
936
937 freed = 0;
938
939 for (i = 0; i < BGE_TX_RING_CNT; i++) {
940 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
941 freed++;
942 m_freem(sc->bge_cdata.bge_tx_chain[i]);
943 sc->bge_cdata.bge_tx_chain[i] = NULL;
944 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
945 link);
946 sc->txdma[i] = 0;
947 }
948 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
949 sizeof(struct bge_tx_bd));
950 }
951
952 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
953 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
954 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
955 free(dma, M_DEVBUF);
956 }
957
958 sc->bge_flags &= ~BGE_TXRING_VALID;
959 }
960
961 int
962 bge_init_tx_ring(sc)
963 struct bge_softc *sc;
964 {
965 int i;
966 bus_dmamap_t dmamap;
967 struct txdmamap_pool_entry *dma;
968
969 if (sc->bge_flags & BGE_TXRING_VALID)
970 return 0;
971
972 sc->bge_txcnt = 0;
973 sc->bge_tx_saved_considx = 0;
974 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
975 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
976 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
977
978 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
979 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
980 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
981
982 SLIST_INIT(&sc->txdma_list);
983 for (i = 0; i < BGE_RSLOTS; i++) {
984 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
985 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
986 &dmamap))
987 return(ENOBUFS);
988 if (dmamap == NULL)
989 panic("dmamap NULL in bge_init_tx_ring");
990 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
991 if (dma == NULL) {
992 printf("%s: can't alloc txdmamap_pool_entry\n",
993 sc->bge_dev.dv_xname);
994 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
995 return (ENOMEM);
996 }
997 dma->dmamap = dmamap;
998 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
999 }
1000
1001 sc->bge_flags |= BGE_TXRING_VALID;
1002
1003 return(0);
1004 }
1005
1006 void
1007 bge_setmulti(sc)
1008 struct bge_softc *sc;
1009 {
1010 struct ethercom *ac = &sc->ethercom;
1011 struct ifnet *ifp = &ac->ec_if;
1012 struct ether_multi *enm;
1013 struct ether_multistep step;
1014 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1015 u_int32_t h;
1016 int i;
1017
1018 if (ifp->if_flags & IFF_PROMISC)
1019 goto allmulti;
1020
1021 /* Now program new ones. */
1022 ETHER_FIRST_MULTI(step, ac, enm);
1023 while (enm != NULL) {
1024 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1025 /*
1026 * We must listen to a range of multicast addresses.
1027 * For now, just accept all multicasts, rather than
1028 * trying to set only those filter bits needed to match
1029 * the range. (At this time, the only use of address
1030 * ranges is for IP multicast routing, for which the
1031 * range is big enough to require all bits set.)
1032 */
1033 goto allmulti;
1034 }
1035
1036 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1037
1038 /* Just want the 7 least-significant bits. */
1039 h &= 0x7f;
1040
1041 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1042 ETHER_NEXT_MULTI(step, enm);
1043 }
1044
1045 ifp->if_flags &= ~IFF_ALLMULTI;
1046 goto setit;
1047
1048 allmulti:
1049 ifp->if_flags |= IFF_ALLMULTI;
1050 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1051
1052 setit:
1053 for (i = 0; i < 4; i++)
1054 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1055 }
1056
1057 const int bge_swapbits[] = {
1058 0,
1059 BGE_MODECTL_BYTESWAP_DATA,
1060 BGE_MODECTL_WORDSWAP_DATA,
1061 BGE_MODECTL_BYTESWAP_NONFRAME,
1062 BGE_MODECTL_WORDSWAP_NONFRAME,
1063
1064 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1065 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1066 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1067
1068 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1069 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1070
1071 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1072
1073 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1074 BGE_MODECTL_BYTESWAP_NONFRAME,
1075 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1076 BGE_MODECTL_WORDSWAP_NONFRAME,
1077 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1078 BGE_MODECTL_WORDSWAP_NONFRAME,
1079 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1080 BGE_MODECTL_WORDSWAP_NONFRAME,
1081
1082 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1083 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1084 };
1085
1086 int bge_swapindex = 0;
1087
1088 /*
1089 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1090 * self-test results.
1091 */
1092 int
1093 bge_chipinit(sc)
1094 struct bge_softc *sc;
1095 {
1096 u_int32_t cachesize;
1097 int i;
1098 u_int32_t dma_rw_ctl;
1099 struct pci_attach_args *pa = &(sc->bge_pa);
1100
1101
1102 /* Set endianness before we access any non-PCI registers. */
1103 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1104 BGE_INIT);
1105
1106 /* Set power state to D0. */
1107 bge_setpowerstate(sc, 0);
1108
1109 /*
1110 * Check the 'ROM failed' bit on the RX CPU to see if
1111 * self-tests passed.
1112 */
1113 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1114 printf("%s: RX CPU self-diagnostics failed!\n",
1115 sc->bge_dev.dv_xname);
1116 return(ENODEV);
1117 }
1118
1119 /* Clear the MAC control register */
1120 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1121
1122 /*
1123 * Clear the MAC statistics block in the NIC's
1124 * internal memory.
1125 */
1126 for (i = BGE_STATS_BLOCK;
1127 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1128 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1129
1130 for (i = BGE_STATUS_BLOCK;
1131 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1132 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1133
1134 /* Set up the PCI DMA control register. */
1135 if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1136 BGE_PCISTATE_PCI_BUSMODE) {
1137 /* Conventional PCI bus */
1138 DPRINTFN(4, ("(%s: PCI 2.2 dma setting)\n", sc->bge_dev.dv_xname));
1139 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1140 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1141 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1142 (0x0F));
1143 } else {
1144 DPRINTFN(4, ("(:%s: PCI-X dma setting)\n", sc->bge_dev.dv_xname));
1145 /* PCI-X bus */
1146 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1147 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1148 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1149 (0x0F);
1150 /*
1151 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1152 * for hardware bugs, which means we should also clear
1153 * the low-order MINDMA bits. In addition, the 5704
1154 * uses a different encoding of read/write watermarks.
1155 */
1156 if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0) {
1157 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1158 /* should be 0x1f0000 */
1159 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1160 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1161 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1162 }
1163 else if ((sc->bge_asicrev >> 28) ==
1164 (BGE_ASICREV_BCM5703_A0 >> 28)) {
1165 dma_rw_ctl &= 0xfffffff0;
1166 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1167 }
1168 }
1169
1170 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1171
1172 /*
1173 * Set up general mode register.
1174 */
1175 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1176 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1177 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1178 BGE_MODECTL_RX_NO_PHDR_CSUM);
1179
1180 /* Get cache line size. */
1181 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1182
1183 /*
1184 * Avoid violating PCI spec on certain chip revs.
1185 */
1186 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1187 PCIM_CMD_MWIEN) {
1188 switch(cachesize) {
1189 case 1:
1190 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1191 BGE_PCI_WRITE_BNDRY_16BYTES);
1192 break;
1193 case 2:
1194 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1195 BGE_PCI_WRITE_BNDRY_32BYTES);
1196 break;
1197 case 4:
1198 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1199 BGE_PCI_WRITE_BNDRY_64BYTES);
1200 break;
1201 case 8:
1202 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1203 BGE_PCI_WRITE_BNDRY_128BYTES);
1204 break;
1205 case 16:
1206 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1207 BGE_PCI_WRITE_BNDRY_256BYTES);
1208 break;
1209 case 32:
1210 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1211 BGE_PCI_WRITE_BNDRY_512BYTES);
1212 break;
1213 case 64:
1214 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1215 BGE_PCI_WRITE_BNDRY_1024BYTES);
1216 break;
1217 default:
1218 /* Disable PCI memory write and invalidate. */
1219 #if 0
1220 if (bootverbose)
1221 printf("%s: cache line size %d not "
1222 "supported; disabling PCI MWI\n",
1223 sc->bge_dev.dv_xname, cachesize);
1224 #endif
1225 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1226 PCIM_CMD_MWIEN);
1227 break;
1228 }
1229 }
1230
1231 /*
1232 * Disable memory write invalidate. Apparently it is not supported
1233 * properly by these devices.
1234 */
1235 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1236
1237
1238 #ifdef __brokenalpha__
1239 /*
1240 * Must insure that we do not cross an 8K (bytes) boundary
1241 * for DMA reads. Our highest limit is 1K bytes. This is a
1242 * restriction on some ALPHA platforms with early revision
1243 * 21174 PCI chipsets, such as the AlphaPC 164lx
1244 */
1245 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1246 #endif
1247
1248 /* Set the timer prescaler (always 66MHz) */
1249 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1250
1251 return(0);
1252 }
1253
1254 int
1255 bge_blockinit(sc)
1256 struct bge_softc *sc;
1257 {
1258 volatile struct bge_rcb *rcb;
1259 bus_size_t rcb_addr;
1260 int i;
1261 struct ifnet *ifp = &sc->ethercom.ec_if;
1262 bge_hostaddr taddr;
1263
1264 /*
1265 * Initialize the memory window pointer register so that
1266 * we can access the first 32K of internal NIC RAM. This will
1267 * allow us to set up the TX send ring RCBs and the RX return
1268 * ring RCBs, plus other things which live in NIC memory.
1269 */
1270
1271 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1272 BGE_PCI_MEMWIN_BASEADDR, 0);
1273
1274 /* Configure mbuf memory pool */
1275 if (sc->bge_extram) {
1276 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1277 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1278 } else {
1279 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1280 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1281 }
1282
1283 /* Configure DMA resource pool */
1284 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1285 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1286
1287 /* Configure mbuf pool watermarks */
1288 #ifdef ORIG_WPAUL_VALUES
1289 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1290 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1291 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1292 #else
1293 /* new broadcom docs strongly recommend these: */
1294 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1295 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1296 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1297 #endif
1298
1299 /* Configure DMA resource watermarks */
1300 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1301 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1302
1303 /* Enable buffer manager */
1304 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1305 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1306
1307 /* Poll for buffer manager start indication */
1308 for (i = 0; i < BGE_TIMEOUT; i++) {
1309 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1310 break;
1311 DELAY(10);
1312 }
1313
1314 if (i == BGE_TIMEOUT) {
1315 printf("%s: buffer manager failed to start\n",
1316 sc->bge_dev.dv_xname);
1317 return(ENXIO);
1318 }
1319
1320 /* Enable flow-through queues */
1321 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1322 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1323
1324 /* Wait until queue initialization is complete */
1325 for (i = 0; i < BGE_TIMEOUT; i++) {
1326 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1327 break;
1328 DELAY(10);
1329 }
1330
1331 if (i == BGE_TIMEOUT) {
1332 printf("%s: flow-through queue init failed\n",
1333 sc->bge_dev.dv_xname);
1334 return(ENXIO);
1335 }
1336
1337 /* Initialize the standard RX ring control block */
1338 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1339 bge_set_hostaddr(&rcb->bge_hostaddr,
1340 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1341 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1342 if (sc->bge_extram)
1343 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1344 else
1345 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1346 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1347 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1348 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1349 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1350
1351 /*
1352 * Initialize the jumbo RX ring control block
1353 * We set the 'ring disabled' bit in the flags
1354 * field until we're actually ready to start
1355 * using this ring (i.e. once we set the MTU
1356 * high enough to require it).
1357 */
1358 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1359 bge_set_hostaddr(&rcb->bge_hostaddr,
1360 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1361 rcb->bge_maxlen_flags =
1362 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED);
1363 if (sc->bge_extram)
1364 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1365 else
1366 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1367
1368 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1369 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1370 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1371 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1372
1373 /* Set up dummy disabled mini ring RCB */
1374 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1375 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1376 BGE_RCB_FLAG_RING_DISABLED);
1377 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1378
1379 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1380 offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1381 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1382
1383 /*
1384 * Set the BD ring replentish thresholds. The recommended
1385 * values are 1/8th the number of descriptors allocated to
1386 * each ring.
1387 */
1388 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1389 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1390
1391 /*
1392 * Disable all unused send rings by setting the 'ring disabled'
1393 * bit in the flags field of all the TX send ring control blocks.
1394 * These are located in NIC memory.
1395 */
1396 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1397 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1398 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1399 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1400 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1401 rcb_addr += sizeof(struct bge_rcb);
1402 }
1403
1404 /* Configure TX RCB 0 (we use only the first ring) */
1405 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1406 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1407 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1408 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1409 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1410 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1411 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1412 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1413
1414 /* Disable all unused RX return rings */
1415 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1416 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1417 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1418 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1419 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1420 BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,
1421 BGE_RCB_FLAG_RING_DISABLED));
1422 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1423 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1424 (i * (sizeof(u_int64_t))), 0);
1425 rcb_addr += sizeof(struct bge_rcb);
1426 }
1427
1428 /* Initialize RX ring indexes */
1429 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1430 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1431 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1432
1433 /*
1434 * Set up RX return ring 0
1435 * Note that the NIC address for RX return rings is 0x00000000.
1436 * The return rings live entirely within the host, so the
1437 * nicaddr field in the RCB isn't used.
1438 */
1439 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1440 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1441 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1442 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1443 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1444 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1445 BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,0));
1446
1447 /* Set random backoff seed for TX */
1448 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1449 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1450 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1451 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1452 BGE_TX_BACKOFF_SEED_MASK);
1453
1454 /* Set inter-packet gap */
1455 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1456
1457 /*
1458 * Specify which ring to use for packets that don't match
1459 * any RX rules.
1460 */
1461 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1462
1463 /*
1464 * Configure number of RX lists. One interrupt distribution
1465 * list, sixteen active lists, one bad frames class.
1466 */
1467 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1468
1469 /* Inialize RX list placement stats mask. */
1470 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1471 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1472
1473 /* Disable host coalescing until we get it set up */
1474 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1475
1476 /* Poll to make sure it's shut down. */
1477 for (i = 0; i < BGE_TIMEOUT; i++) {
1478 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1479 break;
1480 DELAY(10);
1481 }
1482
1483 if (i == BGE_TIMEOUT) {
1484 printf("%s: host coalescing engine failed to idle\n",
1485 sc->bge_dev.dv_xname);
1486 return(ENXIO);
1487 }
1488
1489 /* Set up host coalescing defaults */
1490 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1491 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1492 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1493 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1494 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1495 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1496 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1497 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1498 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1499
1500 /* Set up address of statistics block */
1501 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1502 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1503 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1504 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1505
1506 /* Set up address of status block */
1507 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1508 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1509 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1510 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1511 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1512 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1513
1514 /* Turn on host coalescing state machine */
1515 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1516
1517 /* Turn on RX BD completion state machine and enable attentions */
1518 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1519 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1520
1521 /* Turn on RX list placement state machine */
1522 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1523
1524 /* Turn on RX list selector state machine. */
1525 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1526
1527 /* Turn on DMA, clear stats */
1528 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1529 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1530 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1531 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1532 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1533
1534 /* Set misc. local control, enable interrupts on attentions */
1535 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1536
1537 #ifdef notdef
1538 /* Assert GPIO pins for PHY reset */
1539 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1540 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1541 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1542 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1543 #endif
1544
1545 #if defined(not_quite_yet)
1546 /* Linux driver enables enable gpio pin #1 on 5700s */
1547 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
1548 sc->bge_local_ctrl_reg |=
1549 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1550 }
1551 #endif
1552 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1553
1554 /* Turn on DMA completion state machine */
1555 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1556
1557 /* Turn on write DMA state machine */
1558 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1559 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1560
1561 /* Turn on read DMA state machine */
1562 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1563 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1564
1565 /* Turn on RX data completion state machine */
1566 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1567
1568 /* Turn on RX BD initiator state machine */
1569 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1570
1571 /* Turn on RX data and RX BD initiator state machine */
1572 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1573
1574 /* Turn on Mbuf cluster free state machine */
1575 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1576
1577 /* Turn on send BD completion state machine */
1578 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1579
1580 /* Turn on send data completion state machine */
1581 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1582
1583 /* Turn on send data initiator state machine */
1584 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1585
1586 /* Turn on send BD initiator state machine */
1587 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1588
1589 /* Turn on send BD selector state machine */
1590 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1591
1592 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1593 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1594 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1595
1596 /* init LED register */
1597 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1598
1599 /* ack/clear link change events */
1600 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1601 BGE_MACSTAT_CFG_CHANGED);
1602 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1603
1604 /* Enable PHY auto polling (for MII/GMII only) */
1605 if (sc->bge_tbi) {
1606 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1607 } else {
1608 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1609 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1610 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1611 BGE_EVTENB_MI_INTERRUPT);
1612 }
1613
1614 /* Enable link state change attentions. */
1615 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1616
1617 return(0);
1618 }
1619
1620 static const struct bge_revision {
1621 uint32_t br_asicrev;
1622 uint32_t br_quirks;
1623 const char *br_name;
1624 } bge_revisions[] = {
1625 { BGE_ASICREV_BCM5700_A0,
1626 BGE_QUIRK_LINK_STATE_BROKEN,
1627 "BCM5700 A0" },
1628
1629 { BGE_ASICREV_BCM5700_A1,
1630 BGE_QUIRK_LINK_STATE_BROKEN,
1631 "BCM5700 A1" },
1632
1633 { BGE_ASICREV_BCM5700_B0,
1634 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1635 "BCM5700 B0" },
1636
1637 { BGE_ASICREV_BCM5700_B1,
1638 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1639 "BCM5700 B1" },
1640
1641 { BGE_ASICREV_BCM5700_B2,
1642 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1643 "BCM5700 B2" },
1644
1645 /* This is treated like a BCM5700 Bx */
1646 { BGE_ASICREV_BCM5700_ALTIMA,
1647 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1648 "BCM5700 Altima" },
1649
1650 { BGE_ASICREV_BCM5700_C0,
1651 0,
1652 "BCM5700 C0" },
1653
1654 { BGE_ASICREV_BCM5701_A0,
1655 0,
1656 "BCM5701 A0" },
1657
1658 { BGE_ASICREV_BCM5701_B0,
1659 0,
1660 "BCM5701 B0" },
1661
1662 { BGE_ASICREV_BCM5701_B2,
1663 0,
1664 "BCM5701 B2" },
1665
1666 { BGE_ASICREV_BCM5701_B5,
1667 BGE_QUIRK_ONLY_PHY_1,
1668 "BCM5701 B5" },
1669
1670 { BGE_ASICREV_BCM5703_A0,
1671 0,
1672 "BCM5703 A0" },
1673
1674 { BGE_ASICREV_BCM5703_A1,
1675 0,
1676 "BCM5703 A1" },
1677
1678 { BGE_ASICREV_BCM5703_A2,
1679 BGE_QUIRK_ONLY_PHY_1,
1680 "BCM5703 A2" },
1681
1682 { BGE_ASICREV_BCM5704_A0,
1683 BGE_QUIRK_ONLY_PHY_1,
1684 "BCM5704 A0" },
1685
1686 { 0, 0, NULL }
1687 };
1688
1689 static const struct bge_revision *
1690 bge_lookup_rev(uint32_t asicrev)
1691 {
1692 const struct bge_revision *br;
1693
1694 for (br = bge_revisions; br->br_name != NULL; br++) {
1695 if (br->br_asicrev == asicrev)
1696 return (br);
1697 }
1698
1699 return (NULL);
1700 }
1701
1702 static const struct bge_product {
1703 pci_vendor_id_t bp_vendor;
1704 pci_product_id_t bp_product;
1705 const char *bp_name;
1706 } bge_products[] = {
1707 /*
1708 * The BCM5700 documentation seems to indicate that the hardware
1709 * still has the Alteon vendor ID burned into it, though it
1710 * should always be overridden by the value in the EEPROM. We'll
1711 * check for it anyway.
1712 */
1713 { PCI_VENDOR_ALTEON,
1714 PCI_PRODUCT_ALTEON_BCM5700,
1715 "Broadcom BCM5700 Gigabit Ethernet" },
1716 { PCI_VENDOR_ALTEON,
1717 PCI_PRODUCT_ALTEON_BCM5701,
1718 "Broadcom BCM5701 Gigabit Ethernet" },
1719
1720 { PCI_VENDOR_ALTIMA,
1721 PCI_PRODUCT_ALTIMA_AC1000,
1722 "Altima AC1000 Gigabit Ethernet" },
1723 { PCI_VENDOR_ALTIMA,
1724 PCI_PRODUCT_ALTIMA_AC1001,
1725 "Altima AC1001 Gigabit Ethernet" },
1726 { PCI_VENDOR_ALTIMA,
1727 PCI_PRODUCT_ALTIMA_AC9100,
1728 "Altima AC9100 Gigabit Ethernet" },
1729
1730 { PCI_VENDOR_BROADCOM,
1731 PCI_PRODUCT_BROADCOM_BCM5700,
1732 "Broadcom BCM5700 Gigabit Ethernet" },
1733 { PCI_VENDOR_BROADCOM,
1734 PCI_PRODUCT_BROADCOM_BCM5701,
1735 "Broadcom BCM5701 Gigabit Ethernet" },
1736 { PCI_VENDOR_BROADCOM,
1737 PCI_PRODUCT_BROADCOM_BCM5702,
1738 "Broadcom BCM5702 Gigabit Ethernet" },
1739 { PCI_VENDOR_BROADCOM,
1740 PCI_PRODUCT_BROADCOM_BCM5702X,
1741 "Broadcom BCM5702X Gigabit Ethernet" },
1742 { PCI_VENDOR_BROADCOM,
1743 PCI_PRODUCT_BROADCOM_BCM5703,
1744 "Broadcom BCM5703 Gigabit Ethernet" },
1745 { PCI_VENDOR_BROADCOM,
1746 PCI_PRODUCT_BROADCOM_BCM5703X,
1747 "Broadcom BCM5703X Gigabit Ethernet" },
1748 { PCI_VENDOR_BROADCOM,
1749 PCI_PRODUCT_BROADCOM_BCM5704C,
1750 "Broadcom BCM5704C Dual Gigabit Ethernet" },
1751 { PCI_VENDOR_BROADCOM,
1752 PCI_PRODUCT_BROADCOM_BCM5704S,
1753 "Broadcom BCM5704S Dual Gigabit Ethernet" },
1754
1755
1756 { PCI_VENDOR_SCHNEIDERKOCH,
1757 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1758 "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1759
1760 { PCI_VENDOR_3COM,
1761 PCI_PRODUCT_3COM_3C996,
1762 "3Com 3c996 Gigabit Ethernet" },
1763
1764 { 0,
1765 0,
1766 NULL },
1767 };
1768
1769 static const struct bge_product *
1770 bge_lookup(const struct pci_attach_args *pa)
1771 {
1772 const struct bge_product *bp;
1773
1774 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1775 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1776 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1777 return (bp);
1778 }
1779
1780 return (NULL);
1781 }
1782
1783 int
1784 bge_setpowerstate(sc, powerlevel)
1785 struct bge_softc *sc;
1786 int powerlevel;
1787 {
1788 #ifdef NOTYET
1789 u_int32_t pm_ctl = 0;
1790
1791 /* XXX FIXME: make sure indirect accesses enabled? */
1792 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1793 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1794 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1795
1796 /* clear the PME_assert bit and power state bits, enable PME */
1797 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1798 pm_ctl &= ~PCIM_PSTAT_DMASK;
1799 pm_ctl |= (1 << 8);
1800
1801 if (powerlevel == 0) {
1802 pm_ctl |= PCIM_PSTAT_D0;
1803 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1804 pm_ctl, 2);
1805 DELAY(10000);
1806 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1807 DELAY(10000);
1808
1809 #ifdef NOTYET
1810 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1811 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1812 #endif
1813 DELAY(40); DELAY(40); DELAY(40);
1814 DELAY(10000); /* above not quite adequate on 5700 */
1815 return 0;
1816 }
1817
1818
1819 /*
1820 * Entering ACPI power states D1-D3 is achieved by wiggling
1821 * GMII gpio pins. Example code assumes all hardware vendors
1822 * followed Broadom's sample pcb layout. Until we verify that
1823 * for all supported OEM cards, states D1-D3 are unsupported.
1824 */
1825 printf("%s: power state %d unimplemented; check GPIO pins\n",
1826 sc->bge_dev.dv_xname, powerlevel);
1827 #endif
1828 return EOPNOTSUPP;
1829 }
1830
1831
1832 /*
1833 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1834 * against our list and return its name if we find a match. Note
1835 * that since the Broadcom controller contains VPD support, we
1836 * can get the device name string from the controller itself instead
1837 * of the compiled-in string. This is a little slow, but it guarantees
1838 * we'll always announce the right product name.
1839 */
1840 int
1841 bge_probe(parent, match, aux)
1842 struct device *parent;
1843 struct cfdata *match;
1844 void *aux;
1845 {
1846 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1847
1848 if (bge_lookup(pa) != NULL)
1849 return (1);
1850
1851 return (0);
1852 }
1853
1854 void
1855 bge_attach(parent, self, aux)
1856 struct device *parent, *self;
1857 void *aux;
1858 {
1859 struct bge_softc *sc = (struct bge_softc *)self;
1860 struct pci_attach_args *pa = aux;
1861 const struct bge_product *bp;
1862 const struct bge_revision *br;
1863 pci_chipset_tag_t pc = pa->pa_pc;
1864 pci_intr_handle_t ih;
1865 const char *intrstr = NULL;
1866 bus_dma_segment_t seg;
1867 int rseg;
1868 u_int32_t hwcfg = 0;
1869 u_int32_t mac_addr = 0;
1870 u_int32_t command;
1871 struct ifnet *ifp;
1872 caddr_t kva;
1873 u_char eaddr[ETHER_ADDR_LEN];
1874 pcireg_t memtype;
1875 bus_addr_t memaddr;
1876 bus_size_t memsize;
1877 u_int32_t pm_ctl;
1878
1879 bp = bge_lookup(pa);
1880 KASSERT(bp != NULL);
1881
1882 sc->bge_pa = *pa;
1883
1884 aprint_naive(": Ethernet controller\n");
1885 aprint_normal(": %s\n", bp->bp_name);
1886
1887 /*
1888 * Map control/status registers.
1889 */
1890 DPRINTFN(5, ("Map control/status regs\n"));
1891 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1892 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1893 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1894 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1895
1896 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1897 aprint_error("%s: failed to enable memory mapping!\n",
1898 sc->bge_dev.dv_xname);
1899 return;
1900 }
1901
1902 DPRINTFN(5, ("pci_mem_find\n"));
1903 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1904 switch (memtype) {
1905 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1906 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1907 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1908 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1909 &memaddr, &memsize) == 0)
1910 break;
1911 default:
1912 aprint_error("%s: can't find mem space\n",
1913 sc->bge_dev.dv_xname);
1914 return;
1915 }
1916
1917 DPRINTFN(5, ("pci_intr_map\n"));
1918 if (pci_intr_map(pa, &ih)) {
1919 aprint_error("%s: couldn't map interrupt\n",
1920 sc->bge_dev.dv_xname);
1921 return;
1922 }
1923
1924 DPRINTFN(5, ("pci_intr_string\n"));
1925 intrstr = pci_intr_string(pc, ih);
1926
1927 DPRINTFN(5, ("pci_intr_establish\n"));
1928 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1929
1930 if (sc->bge_intrhand == NULL) {
1931 aprint_error("%s: couldn't establish interrupt",
1932 sc->bge_dev.dv_xname);
1933 if (intrstr != NULL)
1934 aprint_normal(" at %s", intrstr);
1935 aprint_normal("\n");
1936 return;
1937 }
1938 aprint_normal("%s: interrupting at %s\n",
1939 sc->bge_dev.dv_xname, intrstr);
1940
1941 /*
1942 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
1943 * can clobber the chip's PCI config-space power control registers,
1944 * leaving the card in D3 powersave state.
1945 * We do not have memory-mapped registers in this state,
1946 * so force device into D0 state before starting initialization.
1947 */
1948 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
1949 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
1950 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
1951 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
1952 DELAY(1000); /* 27 usec is allegedly sufficent */
1953
1954 /* Try to reset the chip. */
1955 DPRINTFN(5, ("bge_reset\n"));
1956 bge_reset(sc);
1957
1958 if (bge_chipinit(sc)) {
1959 aprint_error("%s: chip initialization failed\n",
1960 sc->bge_dev.dv_xname);
1961 bge_release_resources(sc);
1962 return;
1963 }
1964
1965 /*
1966 * Get station address from the EEPROM.
1967 */
1968 mac_addr = bge_readmem_ind(sc, 0x0c14);
1969 if ((mac_addr >> 16) == 0x484b) {
1970 eaddr[0] = (u_char)(mac_addr >> 8);
1971 eaddr[1] = (u_char)(mac_addr >> 0);
1972 mac_addr = bge_readmem_ind(sc, 0x0c18);
1973 eaddr[2] = (u_char)(mac_addr >> 24);
1974 eaddr[3] = (u_char)(mac_addr >> 16);
1975 eaddr[4] = (u_char)(mac_addr >> 8);
1976 eaddr[5] = (u_char)(mac_addr >> 0);
1977 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
1978 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1979 aprint_error("%s: failed to read station address\n",
1980 sc->bge_dev.dv_xname);
1981 bge_release_resources(sc);
1982 return;
1983 }
1984
1985 /*
1986 * Save ASIC rev. Look up any quirks associated with this
1987 * ASIC.
1988 */
1989 sc->bge_asicrev =
1990 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
1991 BGE_PCIMISCCTL_ASICREV;
1992 br = bge_lookup_rev(sc->bge_asicrev);
1993
1994 aprint_normal("%s: ", sc->bge_dev.dv_xname);
1995 if (br == NULL) {
1996 aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
1997 sc->bge_quirks = 0;
1998 } else {
1999 aprint_normal("ASIC %s", br->br_name);
2000 sc->bge_quirks = br->br_quirks;
2001 }
2002 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2003
2004 /* Allocate the general information block and ring buffers. */
2005 sc->bge_dmatag = pa->pa_dmat;
2006 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2007 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2008 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2009 aprint_error("%s: can't alloc rx buffers\n",
2010 sc->bge_dev.dv_xname);
2011 return;
2012 }
2013 DPRINTFN(5, ("bus_dmamem_map\n"));
2014 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2015 sizeof(struct bge_ring_data), &kva,
2016 BUS_DMA_NOWAIT)) {
2017 aprint_error("%s: can't map dma buffers (%d bytes)\n",
2018 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2019 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2020 return;
2021 }
2022 DPRINTFN(5, ("bus_dmamem_create\n"));
2023 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2024 sizeof(struct bge_ring_data), 0,
2025 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2026 aprint_error("%s: can't create dma map\n",
2027 sc->bge_dev.dv_xname);
2028 bus_dmamem_unmap(sc->bge_dmatag, kva,
2029 sizeof(struct bge_ring_data));
2030 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2031 return;
2032 }
2033 DPRINTFN(5, ("bus_dmamem_load\n"));
2034 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2035 sizeof(struct bge_ring_data), NULL,
2036 BUS_DMA_NOWAIT)) {
2037 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2038 bus_dmamem_unmap(sc->bge_dmatag, kva,
2039 sizeof(struct bge_ring_data));
2040 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2041 return;
2042 }
2043
2044 DPRINTFN(5, ("bzero\n"));
2045 sc->bge_rdata = (struct bge_ring_data *)kva;
2046
2047 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2048
2049 /* Try to allocate memory for jumbo buffers. */
2050 if (bge_alloc_jumbo_mem(sc)) {
2051 aprint_error("%s: jumbo buffer allocation failed\n",
2052 sc->bge_dev.dv_xname);
2053 } else
2054 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2055
2056 /* Set default tuneable values. */
2057 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2058 sc->bge_rx_coal_ticks = 150;
2059 sc->bge_rx_max_coal_bds = 64;
2060 #ifdef ORIG_WPAUL_VALUES
2061 sc->bge_tx_coal_ticks = 150;
2062 sc->bge_tx_max_coal_bds = 128;
2063 #else
2064 sc->bge_tx_coal_ticks = 300;
2065 sc->bge_tx_max_coal_bds = 400;
2066 #endif
2067
2068 /* Set up ifnet structure */
2069 ifp = &sc->ethercom.ec_if;
2070 ifp->if_softc = sc;
2071 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2072 ifp->if_ioctl = bge_ioctl;
2073 ifp->if_start = bge_start;
2074 ifp->if_init = bge_init;
2075 ifp->if_watchdog = bge_watchdog;
2076 IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2077 IFQ_SET_READY(&ifp->if_snd);
2078 DPRINTFN(5, ("bcopy\n"));
2079 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2080
2081 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2082 sc->ethercom.ec_if.if_capabilities |=
2083 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2084 sc->ethercom.ec_capabilities |=
2085 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2086
2087 /*
2088 * Do MII setup.
2089 */
2090 DPRINTFN(5, ("mii setup\n"));
2091 sc->bge_mii.mii_ifp = ifp;
2092 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2093 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2094 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2095
2096 /*
2097 * Figure out what sort of media we have by checking the
2098 * hardware config word in the EEPROM. Note: on some BCM5700
2099 * cards, this value appears to be unset. If that's the
2100 * case, we have to rely on identifying the NIC by its PCI
2101 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2102 */
2103 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2104 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2105 if ((be32toh(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2106 sc->bge_tbi = 1;
2107
2108 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2109 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2110 SK_SUBSYSID_9D41)
2111 sc->bge_tbi = 1;
2112
2113 if (sc->bge_tbi) {
2114 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2115 bge_ifmedia_sts);
2116 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2117 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2118 0, NULL);
2119 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2120 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2121 } else {
2122 /*
2123 * Do transceiver setup.
2124 */
2125 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2126 bge_ifmedia_sts);
2127 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2128 MII_PHY_ANY, MII_OFFSET_ANY, 0);
2129
2130 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2131 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2132 ifmedia_add(&sc->bge_mii.mii_media,
2133 IFM_ETHER|IFM_MANUAL, 0, NULL);
2134 ifmedia_set(&sc->bge_mii.mii_media,
2135 IFM_ETHER|IFM_MANUAL);
2136 } else
2137 ifmedia_set(&sc->bge_mii.mii_media,
2138 IFM_ETHER|IFM_AUTO);
2139 }
2140
2141 /*
2142 * Call MI attach routine.
2143 */
2144 DPRINTFN(5, ("if_attach\n"));
2145 if_attach(ifp);
2146 DPRINTFN(5, ("ether_ifattach\n"));
2147 ether_ifattach(ifp, eaddr);
2148 DPRINTFN(5, ("callout_init\n"));
2149 callout_init(&sc->bge_timeout);
2150 }
2151
2152 void
2153 bge_release_resources(sc)
2154 struct bge_softc *sc;
2155 {
2156 if (sc->bge_vpd_prodname != NULL)
2157 free(sc->bge_vpd_prodname, M_DEVBUF);
2158
2159 if (sc->bge_vpd_readonly != NULL)
2160 free(sc->bge_vpd_readonly, M_DEVBUF);
2161 }
2162
2163 void
2164 bge_reset(sc)
2165 struct bge_softc *sc;
2166 {
2167 struct pci_attach_args *pa = &sc->bge_pa;
2168 u_int32_t cachesize, command, pcistate;
2169 int i, val = 0;
2170
2171 /* Save some important PCI state. */
2172 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2173 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2174 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2175
2176 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2177 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2178 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2179
2180 /* Issue global reset */
2181 bge_writereg_ind(sc, BGE_MISC_CFG,
2182 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2183
2184 DELAY(1000);
2185
2186 /* Reset some of the PCI state that got zapped by reset */
2187 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2188 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2189 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2190 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2191 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2192 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2193
2194 /* Enable memory arbiter. */
2195 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2196
2197 /*
2198 * Prevent PXE restart: write a magic number to the
2199 * general communications memory at 0xB50.
2200 */
2201 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2202
2203 /*
2204 * Poll the value location we just wrote until
2205 * we see the 1's complement of the magic number.
2206 * This indicates that the firmware initialization
2207 * is complete.
2208 */
2209 for (i = 0; i < 750; i++) {
2210 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2211 if (val == ~BGE_MAGIC_NUMBER)
2212 break;
2213 DELAY(1000);
2214 }
2215
2216 if (i == 750) {
2217 printf("%s: firmware handshake timed out, val = %x\n",
2218 sc->bge_dev.dv_xname, val);
2219 return;
2220 }
2221
2222 /*
2223 * XXX Wait for the value of the PCISTATE register to
2224 * return to its original pre-reset state. This is a
2225 * fairly good indicator of reset completion. If we don't
2226 * wait for the reset to fully complete, trying to read
2227 * from the device's non-PCI registers may yield garbage
2228 * results.
2229 */
2230 for (i = 0; i < BGE_TIMEOUT; i++) {
2231 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2232 pcistate)
2233 break;
2234 DELAY(10);
2235 }
2236
2237 /* Enable memory arbiter. */
2238 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2239
2240 /* Fix up byte swapping */
2241 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2242
2243 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2244
2245 DELAY(10000);
2246 }
2247
2248 /*
2249 * Frame reception handling. This is called if there's a frame
2250 * on the receive return list.
2251 *
2252 * Note: we have to be able to handle two possibilities here:
2253 * 1) the frame is from the jumbo recieve ring
2254 * 2) the frame is from the standard receive ring
2255 */
2256
2257 void
2258 bge_rxeof(sc)
2259 struct bge_softc *sc;
2260 {
2261 struct ifnet *ifp;
2262 int stdcnt = 0, jumbocnt = 0;
2263 int have_tag = 0;
2264 u_int16_t vlan_tag = 0;
2265 bus_dmamap_t dmamap;
2266 bus_addr_t offset, toff;
2267 bus_size_t tlen;
2268 int tosync;
2269
2270 ifp = &sc->ethercom.ec_if;
2271
2272 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2273 offsetof(struct bge_ring_data, bge_status_block),
2274 sizeof (struct bge_status_block),
2275 BUS_DMASYNC_POSTREAD);
2276
2277 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2278 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2279 sc->bge_rx_saved_considx;
2280
2281 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2282
2283 if (tosync < 0) {
2284 tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
2285 sizeof (struct bge_rx_bd);
2286 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2287 toff, tlen, BUS_DMASYNC_POSTREAD);
2288 tosync = -tosync;
2289 }
2290
2291 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2292 offset, tosync * sizeof (struct bge_rx_bd),
2293 BUS_DMASYNC_POSTREAD);
2294
2295 while(sc->bge_rx_saved_considx !=
2296 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2297 struct bge_rx_bd *cur_rx;
2298 u_int32_t rxidx;
2299 struct mbuf *m = NULL;
2300
2301 cur_rx = &sc->bge_rdata->
2302 bge_rx_return_ring[sc->bge_rx_saved_considx];
2303
2304 rxidx = cur_rx->bge_idx;
2305 BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2306
2307 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2308 have_tag = 1;
2309 vlan_tag = cur_rx->bge_vlan_tag;
2310 }
2311
2312 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2313 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2314 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2315 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2316 jumbocnt++;
2317 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2318 ifp->if_ierrors++;
2319 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2320 continue;
2321 }
2322 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2323 NULL)== ENOBUFS) {
2324 ifp->if_ierrors++;
2325 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2326 continue;
2327 }
2328 } else {
2329 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2330 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2331 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2332 stdcnt++;
2333 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2334 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2335 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2336 ifp->if_ierrors++;
2337 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2338 continue;
2339 }
2340 if (bge_newbuf_std(sc, sc->bge_std,
2341 NULL, dmamap) == ENOBUFS) {
2342 ifp->if_ierrors++;
2343 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2344 continue;
2345 }
2346 }
2347
2348 ifp->if_ipackets++;
2349 m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2350 m->m_pkthdr.rcvif = ifp;
2351
2352 #if NBPFILTER > 0
2353 /*
2354 * Handle BPF listeners. Let the BPF user see the packet.
2355 */
2356 if (ifp->if_bpf)
2357 bpf_mtap(ifp->if_bpf, m);
2358 #endif
2359
2360 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
2361 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2362 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2363 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2364 #if 0 /* XXX appears to be broken */
2365 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2366 m->m_pkthdr.csum_data =
2367 cur_rx->bge_tcp_udp_csum;
2368 m->m_pkthdr.csum_flags |=
2369 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2370 }
2371 #endif
2372 }
2373
2374 /*
2375 * If we received a packet with a vlan tag, pass it
2376 * to vlan_input() instead of ether_input().
2377 */
2378 if (have_tag) {
2379 struct m_tag *mtag;
2380
2381 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2382 M_NOWAIT);
2383 if (mtag != NULL) {
2384 *(u_int *)(mtag + 1) = vlan_tag;
2385 m_tag_prepend(m, mtag);
2386 have_tag = vlan_tag = 0;
2387 } else {
2388 printf("%s: no mbuf for tag\n", ifp->if_xname);
2389 m_freem(m);
2390 have_tag = vlan_tag = 0;
2391 continue;
2392 }
2393 }
2394 (*ifp->if_input)(ifp, m);
2395 }
2396
2397 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2398 if (stdcnt)
2399 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2400 if (jumbocnt)
2401 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2402 }
2403
2404 void
2405 bge_txeof(sc)
2406 struct bge_softc *sc;
2407 {
2408 struct bge_tx_bd *cur_tx = NULL;
2409 struct ifnet *ifp;
2410 struct txdmamap_pool_entry *dma;
2411 bus_addr_t offset, toff;
2412 bus_size_t tlen;
2413 int tosync;
2414 struct mbuf *m;
2415
2416 ifp = &sc->ethercom.ec_if;
2417
2418 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2419 offsetof(struct bge_ring_data, bge_status_block),
2420 sizeof (struct bge_status_block),
2421 BUS_DMASYNC_POSTREAD);
2422
2423 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2424 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2425 sc->bge_tx_saved_considx;
2426
2427 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2428
2429 if (tosync < 0) {
2430 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2431 sizeof (struct bge_tx_bd);
2432 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2433 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2434 tosync = -tosync;
2435 }
2436
2437 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2438 offset, tosync * sizeof (struct bge_tx_bd),
2439 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2440
2441 /*
2442 * Go through our tx ring and free mbufs for those
2443 * frames that have been sent.
2444 */
2445 while (sc->bge_tx_saved_considx !=
2446 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2447 u_int32_t idx = 0;
2448
2449 idx = sc->bge_tx_saved_considx;
2450 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2451 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2452 ifp->if_opackets++;
2453 m = sc->bge_cdata.bge_tx_chain[idx];
2454 if (m != NULL) {
2455 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2456 dma = sc->txdma[idx];
2457 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2458 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2459 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2460 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2461 sc->txdma[idx] = NULL;
2462
2463 m_freem(m);
2464 }
2465 sc->bge_txcnt--;
2466 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2467 ifp->if_timer = 0;
2468 }
2469
2470 if (cur_tx != NULL)
2471 ifp->if_flags &= ~IFF_OACTIVE;
2472 }
2473
2474 int
2475 bge_intr(xsc)
2476 void *xsc;
2477 {
2478 struct bge_softc *sc;
2479 struct ifnet *ifp;
2480
2481 sc = xsc;
2482 ifp = &sc->ethercom.ec_if;
2483
2484 #ifdef notdef
2485 /* Avoid this for now -- checking this register is expensive. */
2486 /* Make sure this is really our interrupt. */
2487 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2488 return (0);
2489 #endif
2490 /* Ack interrupt and stop others from occuring. */
2491 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2492
2493 /*
2494 * Process link state changes.
2495 * Grrr. The link status word in the status block does
2496 * not work correctly on the BCM5700 rev AX and BX chips,
2497 * according to all avaibable information. Hence, we have
2498 * to enable MII interrupts in order to properly obtain
2499 * async link changes. Unfortunately, this also means that
2500 * we have to read the MAC status register to detect link
2501 * changes, thereby adding an additional register access to
2502 * the interrupt handler.
2503 */
2504
2505 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2506 u_int32_t status;
2507
2508 status = CSR_READ_4(sc, BGE_MAC_STS);
2509 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2510 sc->bge_link = 0;
2511 callout_stop(&sc->bge_timeout);
2512 bge_tick(sc);
2513 /* Clear the interrupt */
2514 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2515 BGE_EVTENB_MI_INTERRUPT);
2516 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2517 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2518 BRGPHY_INTRS);
2519 }
2520 } else {
2521 if (sc->bge_rdata->bge_status_block.bge_status &
2522 BGE_STATFLAG_LINKSTATE_CHANGED) {
2523 sc->bge_link = 0;
2524 callout_stop(&sc->bge_timeout);
2525 bge_tick(sc);
2526 /* Clear the interrupt */
2527 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2528 BGE_MACSTAT_CFG_CHANGED);
2529 }
2530 }
2531
2532 if (ifp->if_flags & IFF_RUNNING) {
2533 /* Check RX return ring producer/consumer */
2534 bge_rxeof(sc);
2535
2536 /* Check TX ring producer/consumer */
2537 bge_txeof(sc);
2538 }
2539
2540 bge_handle_events(sc);
2541
2542 /* Re-enable interrupts. */
2543 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2544
2545 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2546 bge_start(ifp);
2547
2548 return (1);
2549 }
2550
2551 void
2552 bge_tick(xsc)
2553 void *xsc;
2554 {
2555 struct bge_softc *sc = xsc;
2556 struct mii_data *mii = &sc->bge_mii;
2557 struct ifmedia *ifm = NULL;
2558 struct ifnet *ifp = &sc->ethercom.ec_if;
2559 int s;
2560
2561 s = splnet();
2562
2563 bge_stats_update(sc);
2564 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2565 if (sc->bge_link) {
2566 splx(s);
2567 return;
2568 }
2569
2570 if (sc->bge_tbi) {
2571 ifm = &sc->bge_ifmedia;
2572 if (CSR_READ_4(sc, BGE_MAC_STS) &
2573 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2574 sc->bge_link++;
2575 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2576 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2577 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2578 bge_start(ifp);
2579 }
2580 splx(s);
2581 return;
2582 }
2583
2584 mii_tick(mii);
2585
2586 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2587 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2588 sc->bge_link++;
2589 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2590 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2591 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2592 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2593 bge_start(ifp);
2594 }
2595
2596 splx(s);
2597 }
2598
2599 void
2600 bge_stats_update(sc)
2601 struct bge_softc *sc;
2602 {
2603 struct ifnet *ifp = &sc->ethercom.ec_if;
2604 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2605
2606 #define READ_STAT(sc, stats, stat) \
2607 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2608
2609 ifp->if_collisions +=
2610 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2611 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2612 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2613 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2614 ifp->if_collisions;
2615
2616 #undef READ_STAT
2617
2618 #ifdef notdef
2619 ifp->if_collisions +=
2620 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2621 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2622 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2623 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2624 ifp->if_collisions;
2625 #endif
2626 }
2627
2628 /*
2629 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2630 * pointers to descriptors.
2631 */
2632 int
2633 bge_encap(sc, m_head, txidx)
2634 struct bge_softc *sc;
2635 struct mbuf *m_head;
2636 u_int32_t *txidx;
2637 {
2638 struct bge_tx_bd *f = NULL;
2639 u_int32_t frag, cur, cnt = 0;
2640 u_int16_t csum_flags = 0;
2641 struct txdmamap_pool_entry *dma;
2642 bus_dmamap_t dmamap;
2643 int i = 0;
2644 struct m_tag *mtag;
2645 struct mbuf *prev, *m;
2646 int totlen, prevlen;
2647
2648 cur = frag = *txidx;
2649
2650 if (m_head->m_pkthdr.csum_flags) {
2651 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2652 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2653 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2654 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2655 }
2656
2657 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
2658 goto doit;
2659 /*
2660 * bcm5700 Revision B silicon cannot handle DMA descriptors with
2661 * less than eight bytes. If we encounter a teeny mbuf
2662 * at the end of a chain, we can pad. Otherwise, copy.
2663 */
2664 prev = NULL;
2665 totlen = 0;
2666 for (m = m_head; m != NULL; prev = m,m = m->m_next) {
2667 int mlen = m->m_len;
2668
2669 totlen += mlen;
2670 if (mlen == 0) {
2671 /* print a warning? */
2672 continue;
2673 }
2674 if (mlen >= 8)
2675 continue;
2676
2677 /* If we get here, mbuf data is too small for DMA engine. */
2678 if (m->m_next != 0) {
2679 /* Internal frag. If fits in prev, copy it there. */
2680 if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
2681 !M_READONLY(prev)) {
2682 bcopy(m->m_data,
2683 prev->m_data+prev->m_len,
2684 mlen);
2685 prev->m_len += mlen;
2686 m->m_len = 0;
2687 MFREE(m, prev->m_next); /* XXX stitch chain */
2688 m = prev;
2689 continue;
2690 } else {
2691 struct mbuf *n;
2692 /* slow copy */
2693 slowcopy:
2694 n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
2695 m_freem(m_head);
2696 if (n == 0)
2697 return 0;
2698 m_head = n;
2699 goto doit;
2700 }
2701 } else if ((totlen -mlen +8) >= 1500) {
2702 goto slowcopy;
2703 }
2704 prevlen = m->m_len;
2705 }
2706
2707 doit:
2708 dma = SLIST_FIRST(&sc->txdma_list);
2709 if (dma == NULL)
2710 return ENOBUFS;
2711 dmamap = dma->dmamap;
2712
2713 /*
2714 * Start packing the mbufs in this chain into
2715 * the fragment pointers. Stop when we run out
2716 * of fragments or hit the end of the mbuf chain.
2717 */
2718 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2719 BUS_DMA_NOWAIT))
2720 return(ENOBUFS);
2721
2722 mtag = sc->ethercom.ec_nvlans ?
2723 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
2724
2725 for (i = 0; i < dmamap->dm_nsegs; i++) {
2726 f = &sc->bge_rdata->bge_tx_ring[frag];
2727 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2728 break;
2729 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2730 f->bge_len = dmamap->dm_segs[i].ds_len;
2731 f->bge_flags = csum_flags;
2732
2733 if (mtag != NULL) {
2734 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2735 f->bge_vlan_tag = *(u_int *)(mtag + 1);
2736 } else {
2737 f->bge_vlan_tag = 0;
2738 }
2739 /*
2740 * Sanity check: avoid coming within 16 descriptors
2741 * of the end of the ring.
2742 */
2743 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2744 return(ENOBUFS);
2745 cur = frag;
2746 BGE_INC(frag, BGE_TX_RING_CNT);
2747 cnt++;
2748 }
2749
2750 if (i < dmamap->dm_nsegs)
2751 return ENOBUFS;
2752
2753 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2754 BUS_DMASYNC_PREWRITE);
2755
2756 if (frag == sc->bge_tx_saved_considx)
2757 return(ENOBUFS);
2758
2759 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2760 sc->bge_cdata.bge_tx_chain[cur] = m_head;
2761 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2762 sc->txdma[cur] = dma;
2763 sc->bge_txcnt += cnt;
2764
2765 *txidx = frag;
2766
2767 return(0);
2768 }
2769
2770 /*
2771 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2772 * to the mbuf data regions directly in the transmit descriptors.
2773 */
2774 void
2775 bge_start(ifp)
2776 struct ifnet *ifp;
2777 {
2778 struct bge_softc *sc;
2779 struct mbuf *m_head = NULL;
2780 u_int32_t prodidx = 0;
2781 int pkts = 0;
2782
2783 sc = ifp->if_softc;
2784
2785 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2786 return;
2787
2788 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2789
2790 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2791 IFQ_POLL(&ifp->if_snd, m_head);
2792 if (m_head == NULL)
2793 break;
2794
2795 #if 0
2796 /*
2797 * XXX
2798 * safety overkill. If this is a fragmented packet chain
2799 * with delayed TCP/UDP checksums, then only encapsulate
2800 * it if we have enough descriptors to handle the entire
2801 * chain at once.
2802 * (paranoia -- may not actually be needed)
2803 */
2804 if (m_head->m_flags & M_FIRSTFRAG &&
2805 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2806 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2807 m_head->m_pkthdr.csum_data + 16) {
2808 ifp->if_flags |= IFF_OACTIVE;
2809 break;
2810 }
2811 }
2812 #endif
2813
2814 /*
2815 * Pack the data into the transmit ring. If we
2816 * don't have room, set the OACTIVE flag and wait
2817 * for the NIC to drain the ring.
2818 */
2819 if (bge_encap(sc, m_head, &prodidx)) {
2820 ifp->if_flags |= IFF_OACTIVE;
2821 break;
2822 }
2823
2824 /* now we are committed to transmit the packet */
2825 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2826 pkts++;
2827
2828 #if NBPFILTER > 0
2829 /*
2830 * If there's a BPF listener, bounce a copy of this frame
2831 * to him.
2832 */
2833 if (ifp->if_bpf)
2834 bpf_mtap(ifp->if_bpf, m_head);
2835 #endif
2836 }
2837 if (pkts == 0)
2838 return;
2839
2840 /* Transmit */
2841 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2842 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
2843 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2844
2845 /*
2846 * Set a timeout in case the chip goes out to lunch.
2847 */
2848 ifp->if_timer = 5;
2849 }
2850
2851 int
2852 bge_init(ifp)
2853 struct ifnet *ifp;
2854 {
2855 struct bge_softc *sc = ifp->if_softc;
2856 u_int16_t *m;
2857 int s, error;
2858
2859 s = splnet();
2860
2861 ifp = &sc->ethercom.ec_if;
2862
2863 /* Cancel pending I/O and flush buffers. */
2864 bge_stop(sc);
2865 bge_reset(sc);
2866 bge_chipinit(sc);
2867
2868 /*
2869 * Init the various state machines, ring
2870 * control blocks and firmware.
2871 */
2872 error = bge_blockinit(sc);
2873 if (error != 0) {
2874 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2875 error);
2876 splx(s);
2877 return error;
2878 }
2879
2880 ifp = &sc->ethercom.ec_if;
2881
2882 /* Specify MTU. */
2883 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2884 ETHER_HDR_LEN + ETHER_CRC_LEN);
2885
2886 /* Load our MAC address. */
2887 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2888 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2889 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2890
2891 /* Enable or disable promiscuous mode as needed. */
2892 if (ifp->if_flags & IFF_PROMISC) {
2893 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2894 } else {
2895 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2896 }
2897
2898 /* Program multicast filter. */
2899 bge_setmulti(sc);
2900
2901 /* Init RX ring. */
2902 bge_init_rx_ring_std(sc);
2903
2904 /* Init jumbo RX ring. */
2905 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2906 bge_init_rx_ring_jumbo(sc);
2907
2908 /* Init our RX return ring index */
2909 sc->bge_rx_saved_considx = 0;
2910
2911 /* Init TX ring. */
2912 bge_init_tx_ring(sc);
2913
2914 /* Turn on transmitter */
2915 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2916
2917 /* Turn on receiver */
2918 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2919
2920 /* Tell firmware we're alive. */
2921 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2922
2923 /* Enable host interrupts. */
2924 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2925 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2926 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2927
2928 bge_ifmedia_upd(ifp);
2929
2930 ifp->if_flags |= IFF_RUNNING;
2931 ifp->if_flags &= ~IFF_OACTIVE;
2932
2933 splx(s);
2934
2935 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2936
2937 return 0;
2938 }
2939
2940 /*
2941 * Set media options.
2942 */
2943 int
2944 bge_ifmedia_upd(ifp)
2945 struct ifnet *ifp;
2946 {
2947 struct bge_softc *sc = ifp->if_softc;
2948 struct mii_data *mii = &sc->bge_mii;
2949 struct ifmedia *ifm = &sc->bge_ifmedia;
2950
2951 /* If this is a 1000baseX NIC, enable the TBI port. */
2952 if (sc->bge_tbi) {
2953 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2954 return(EINVAL);
2955 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2956 case IFM_AUTO:
2957 break;
2958 case IFM_1000_SX:
2959 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2960 BGE_CLRBIT(sc, BGE_MAC_MODE,
2961 BGE_MACMODE_HALF_DUPLEX);
2962 } else {
2963 BGE_SETBIT(sc, BGE_MAC_MODE,
2964 BGE_MACMODE_HALF_DUPLEX);
2965 }
2966 break;
2967 default:
2968 return(EINVAL);
2969 }
2970 return(0);
2971 }
2972
2973 sc->bge_link = 0;
2974 mii_mediachg(mii);
2975
2976 return(0);
2977 }
2978
2979 /*
2980 * Report current media status.
2981 */
2982 void
2983 bge_ifmedia_sts(ifp, ifmr)
2984 struct ifnet *ifp;
2985 struct ifmediareq *ifmr;
2986 {
2987 struct bge_softc *sc = ifp->if_softc;
2988 struct mii_data *mii = &sc->bge_mii;
2989
2990 if (sc->bge_tbi) {
2991 ifmr->ifm_status = IFM_AVALID;
2992 ifmr->ifm_active = IFM_ETHER;
2993 if (CSR_READ_4(sc, BGE_MAC_STS) &
2994 BGE_MACSTAT_TBI_PCS_SYNCHED)
2995 ifmr->ifm_status |= IFM_ACTIVE;
2996 ifmr->ifm_active |= IFM_1000_SX;
2997 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2998 ifmr->ifm_active |= IFM_HDX;
2999 else
3000 ifmr->ifm_active |= IFM_FDX;
3001 return;
3002 }
3003
3004 mii_pollstat(mii);
3005 ifmr->ifm_active = mii->mii_media_active;
3006 ifmr->ifm_status = mii->mii_media_status;
3007 }
3008
3009 int
3010 bge_ioctl(ifp, command, data)
3011 struct ifnet *ifp;
3012 u_long command;
3013 caddr_t data;
3014 {
3015 struct bge_softc *sc = ifp->if_softc;
3016 struct ifreq *ifr = (struct ifreq *) data;
3017 int s, error = 0;
3018 struct mii_data *mii;
3019
3020 s = splnet();
3021
3022 switch(command) {
3023 case SIOCSIFFLAGS:
3024 if (ifp->if_flags & IFF_UP) {
3025 /*
3026 * If only the state of the PROMISC flag changed,
3027 * then just use the 'set promisc mode' command
3028 * instead of reinitializing the entire NIC. Doing
3029 * a full re-init means reloading the firmware and
3030 * waiting for it to start up, which may take a
3031 * second or two.
3032 */
3033 if (ifp->if_flags & IFF_RUNNING &&
3034 ifp->if_flags & IFF_PROMISC &&
3035 !(sc->bge_if_flags & IFF_PROMISC)) {
3036 BGE_SETBIT(sc, BGE_RX_MODE,
3037 BGE_RXMODE_RX_PROMISC);
3038 } else if (ifp->if_flags & IFF_RUNNING &&
3039 !(ifp->if_flags & IFF_PROMISC) &&
3040 sc->bge_if_flags & IFF_PROMISC) {
3041 BGE_CLRBIT(sc, BGE_RX_MODE,
3042 BGE_RXMODE_RX_PROMISC);
3043 } else
3044 bge_init(ifp);
3045 } else {
3046 if (ifp->if_flags & IFF_RUNNING) {
3047 bge_stop(sc);
3048 }
3049 }
3050 sc->bge_if_flags = ifp->if_flags;
3051 error = 0;
3052 break;
3053 case SIOCSIFMEDIA:
3054 case SIOCGIFMEDIA:
3055 if (sc->bge_tbi) {
3056 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3057 command);
3058 } else {
3059 mii = &sc->bge_mii;
3060 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3061 command);
3062 }
3063 error = 0;
3064 break;
3065 default:
3066 error = ether_ioctl(ifp, command, data);
3067 if (error == ENETRESET) {
3068 bge_setmulti(sc);
3069 error = 0;
3070 }
3071 break;
3072 }
3073
3074 splx(s);
3075
3076 return(error);
3077 }
3078
3079 void
3080 bge_watchdog(ifp)
3081 struct ifnet *ifp;
3082 {
3083 struct bge_softc *sc;
3084
3085 sc = ifp->if_softc;
3086
3087 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3088
3089 ifp->if_flags &= ~IFF_RUNNING;
3090 bge_init(ifp);
3091
3092 ifp->if_oerrors++;
3093 }
3094
3095 static void
3096 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3097 {
3098 int i;
3099
3100 BGE_CLRBIT(sc, reg, bit);
3101
3102 for (i = 0; i < BGE_TIMEOUT; i++) {
3103 if ((CSR_READ_4(sc, reg) & bit) == 0)
3104 return;
3105 delay(100);
3106 }
3107
3108 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3109 sc->bge_dev.dv_xname, (u_long) reg, bit);
3110 }
3111
3112 /*
3113 * Stop the adapter and free any mbufs allocated to the
3114 * RX and TX lists.
3115 */
3116 void
3117 bge_stop(sc)
3118 struct bge_softc *sc;
3119 {
3120 struct ifnet *ifp = &sc->ethercom.ec_if;
3121
3122 callout_stop(&sc->bge_timeout);
3123
3124 /*
3125 * Disable all of the receiver blocks
3126 */
3127 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3128 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3129 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3130 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3131 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3132 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3133 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3134
3135 /*
3136 * Disable all of the transmit blocks
3137 */
3138 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3139 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3140 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3141 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3142 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3143 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3144 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3145
3146 /*
3147 * Shut down all of the memory managers and related
3148 * state machines.
3149 */
3150 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3151 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3152 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3153
3154 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3155 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3156
3157 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3158 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3159
3160 /* Disable host interrupts. */
3161 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3162 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3163
3164 /*
3165 * Tell firmware we're shutting down.
3166 */
3167 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3168
3169 /* Free the RX lists. */
3170 bge_free_rx_ring_std(sc);
3171
3172 /* Free jumbo RX list. */
3173 bge_free_rx_ring_jumbo(sc);
3174
3175 /* Free TX buffers. */
3176 bge_free_tx_ring(sc);
3177
3178 /*
3179 * Isolate/power down the PHY.
3180 */
3181 if (!sc->bge_tbi)
3182 mii_down(&sc->bge_mii);
3183
3184 sc->bge_link = 0;
3185
3186 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3187
3188 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3189 }
3190
3191 /*
3192 * Stop all chip I/O so that the kernel's probe routines don't
3193 * get confused by errant DMAs when rebooting.
3194 */
3195 void
3196 bge_shutdown(xsc)
3197 void *xsc;
3198 {
3199 struct bge_softc *sc = (struct bge_softc *)xsc;
3200
3201 bge_stop(sc);
3202 bge_reset(sc);
3203 }
3204