if_bge.c revision 1.340 1 /* $NetBSD: if_bge.c,v 1.340 2019/11/25 04:52:27 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.340 2019/11/25 04:52:27 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94 #include <sys/rndsource.h>
95
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_ether.h>
100 #include <net/bpf.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115 #include <dev/pci/pcireg.h>
116 #include <dev/pci/pcivar.h>
117 #include <dev/pci/pcidevs.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/miidevs.h>
122 #include <dev/mii/brgphyreg.h>
123
124 #include <dev/pci/if_bgereg.h>
125 #include <dev/pci/if_bgevar.h>
126
127 #include <prop/proplib.h>
128
129 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
130
131
132 /*
133 * Tunable thresholds for rx-side bge interrupt mitigation.
134 */
135
136 /*
137 * The pairs of values below were obtained from empirical measurement
138 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
139 * interrupt for every N packets received, where N is, approximately,
140 * the second value (rx_max_bds) in each pair. The values are chosen
141 * such that moving from one pair to the succeeding pair was observed
142 * to roughly halve interrupt rate under sustained input packet load.
143 * The values were empirically chosen to avoid overflowing internal
144 * limits on the bcm5700: increasing rx_ticks much beyond 600
145 * results in internal wrapping and higher interrupt rates.
146 * The limit of 46 frames was chosen to match NFS workloads.
147 *
148 * These values also work well on bcm5701, bcm5704C, and (less
149 * tested) bcm5703. On other chipsets, (including the Altima chip
150 * family), the larger values may overflow internal chip limits,
151 * leading to increasing interrupt rates rather than lower interrupt
152 * rates.
153 *
154 * Applications using heavy interrupt mitigation (interrupting every
155 * 32 or 46 frames) in both directions may need to increase the TCP
156 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
157 * full link bandwidth, due to ACKs and window updates lingering
158 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
159 */
160 static const struct bge_load_rx_thresh {
161 int rx_ticks;
162 int rx_max_bds; }
163 bge_rx_threshes[] = {
164 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
165 { 32, 2 },
166 { 50, 4 },
167 { 100, 8 },
168 { 192, 16 },
169 { 416, 32 },
170 { 598, 46 }
171 };
172 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
173
174 /* XXX patchable; should be sysctl'able */
175 static int bge_auto_thresh = 1;
176 static int bge_rx_thresh_lvl;
177
178 static int bge_rxthresh_nodenum;
179
180 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
181
182 static uint32_t bge_chipid(const struct pci_attach_args *);
183 static int bge_can_use_msi(struct bge_softc *);
184 static int bge_probe(device_t, cfdata_t, void *);
185 static void bge_attach(device_t, device_t, void *);
186 static int bge_detach(device_t, int);
187 static void bge_release_resources(struct bge_softc *);
188
189 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
190 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
191 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
194
195 static void bge_txeof(struct bge_softc *);
196 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
197 static void bge_rxeof(struct bge_softc *);
198
199 static void bge_asf_driver_up (struct bge_softc *);
200 static void bge_tick(void *);
201 static void bge_stats_update(struct bge_softc *);
202 static void bge_stats_update_regs(struct bge_softc *);
203 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
204
205 static int bge_intr(void *);
206 static void bge_start(struct ifnet *);
207 static int bge_ifflags_cb(struct ethercom *);
208 static int bge_ioctl(struct ifnet *, u_long, void *);
209 static int bge_init(struct ifnet *);
210 static void bge_stop(struct ifnet *, int);
211 static void bge_watchdog(struct ifnet *);
212 static int bge_ifmedia_upd(struct ifnet *);
213 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
214
215 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
216 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
217
218 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
220 static void bge_setmulti(struct bge_softc *);
221
222 static void bge_handle_events(struct bge_softc *);
223 static int bge_alloc_jumbo_mem(struct bge_softc *);
224 #if 0 /* XXX */
225 static void bge_free_jumbo_mem(struct bge_softc *);
226 #endif
227 static void *bge_jalloc(struct bge_softc *);
228 static void bge_jfree(struct mbuf *, void *, size_t, void *);
229 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
230 bus_dmamap_t);
231 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
232 static int bge_init_rx_ring_std(struct bge_softc *);
233 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
234 static int bge_init_rx_ring_jumbo(struct bge_softc *);
235 static void bge_free_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_tx_ring(struct bge_softc *m, bool);
237 static int bge_init_tx_ring(struct bge_softc *);
238
239 static int bge_chipinit(struct bge_softc *);
240 static int bge_blockinit(struct bge_softc *);
241 static int bge_phy_addr(struct bge_softc *);
242 static uint32_t bge_readmem_ind(struct bge_softc *, int);
243 static void bge_writemem_ind(struct bge_softc *, int, int);
244 static void bge_writembx(struct bge_softc *, int, int);
245 static void bge_writembx_flush(struct bge_softc *, int, int);
246 static void bge_writemem_direct(struct bge_softc *, int, int);
247 static void bge_writereg_ind(struct bge_softc *, int, int);
248 static void bge_set_max_readrq(struct bge_softc *);
249
250 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
251 static int bge_miibus_writereg(device_t, int, int, uint16_t);
252 static void bge_miibus_statchg(struct ifnet *);
253
254 #define BGE_RESET_SHUTDOWN 0
255 #define BGE_RESET_START 1
256 #define BGE_RESET_SUSPEND 2
257 static void bge_sig_post_reset(struct bge_softc *, int);
258 static void bge_sig_legacy(struct bge_softc *, int);
259 static void bge_sig_pre_reset(struct bge_softc *, int);
260 static void bge_wait_for_event_ack(struct bge_softc *);
261 static void bge_stop_fw(struct bge_softc *);
262 static int bge_reset(struct bge_softc *);
263 static void bge_link_upd(struct bge_softc *);
264 static void bge_sysctl_init(struct bge_softc *);
265 static int bge_sysctl_verify(SYSCTLFN_PROTO);
266
267 static void bge_ape_lock_init(struct bge_softc *);
268 static void bge_ape_read_fw_ver(struct bge_softc *);
269 static int bge_ape_lock(struct bge_softc *, int);
270 static void bge_ape_unlock(struct bge_softc *, int);
271 static void bge_ape_send_event(struct bge_softc *, uint32_t);
272 static void bge_ape_driver_state_change(struct bge_softc *, int);
273
274 #ifdef BGE_DEBUG
275 #define DPRINTF(x) if (bgedebug) printf x
276 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
277 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
278 int bgedebug = 0;
279 int bge_tso_debug = 0;
280 void bge_debug_info(struct bge_softc *);
281 #else
282 #define DPRINTF(x)
283 #define DPRINTFN(n, x)
284 #define BGE_TSO_PRINTF(x)
285 #endif
286
287 #ifdef BGE_EVENT_COUNTERS
288 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
289 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
290 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
291 #else
292 #define BGE_EVCNT_INCR(ev) /* nothing */
293 #define BGE_EVCNT_ADD(ev, val) /* nothing */
294 #define BGE_EVCNT_UPD(ev, val) /* nothing */
295 #endif
296
297 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
298 /*
299 * The BCM5700 documentation seems to indicate that the hardware still has the
300 * Alteon vendor ID burned into it, though it should always be overridden by
301 * the value in the EEPROM. We'll check for it anyway.
302 */
303 static const struct bge_product {
304 pci_vendor_id_t bp_vendor;
305 pci_product_id_t bp_product;
306 const char *bp_name;
307 } bge_products[] = {
308 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
309 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
310 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
311 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
312 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
313 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
314 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
315 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
316 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
317 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
318 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
319 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
320 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
321 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
322 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
323 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
324 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
325 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
326 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
327 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
328 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
329 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
330 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
331 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
332 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
333 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
334 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
335 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
336 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
337 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
338 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
339 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
340 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
341 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
342 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
343 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
344 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
345 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
346 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
347 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
348 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
349 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
350 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
351 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
352 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
353 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
354 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
355 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
356 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
357 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
358 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
359 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
360 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
361 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
362 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
363 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
364 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
365 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
366 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
367 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
368 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
369 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
370 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
371 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
372 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
373 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
374 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
375 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
376 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
377 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
378 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
379 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
380 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
381 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
382 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
383 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
384 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
385 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
386 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
387 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
388 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
389 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
390 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
391 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
392 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
393 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
394 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
395 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
396 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
397 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
398 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
399 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
400 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
401 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
402 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
403 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
404 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
405 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
406 { 0, 0, NULL },
407 };
408
409 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
410 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
411 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
412 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
413 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
414 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
415 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
416 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
417 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
418
419 static const struct bge_revision {
420 uint32_t br_chipid;
421 const char *br_name;
422 } bge_revisions[] = {
423 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
424 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
425 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
426 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
427 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
428 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
429 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
430 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
431 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
432 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
433 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
434 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
435 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
436 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
437 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
438 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
439 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
440 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
441 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
442 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
443 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
444 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
445 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
446 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
447 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
448 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
449 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
450 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
451 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
452 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
453 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
454 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
455 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
456 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
457 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
458 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
459 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
460 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
461 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
462 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
463 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
464 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
465 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
466 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
467 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
468 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
469 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
470 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
471 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
472 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
473 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
474 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
475 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
476 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
477 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
478 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
479 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
480 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
481 /* 5754 and 5787 share the same ASIC ID */
482 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
483 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
484 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
485 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
486 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
487 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
488 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
489 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
490 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
491 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
492 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
493
494 { 0, NULL }
495 };
496
497 /*
498 * Some defaults for major revisions, so that newer steppings
499 * that we don't know about have a shot at working.
500 */
501 static const struct bge_revision bge_majorrevs[] = {
502 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
503 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
504 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
505 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
506 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
507 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
508 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
509 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
510 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
511 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
512 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
513 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
514 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
515 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
516 /* 5754 and 5787 share the same ASIC ID */
517 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
518 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
519 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
520 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
521 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
522 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
523 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
524 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
525 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
526
527 { 0, NULL }
528 };
529
530 static int bge_allow_asf = 1;
531
532 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
533 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
534
535 static uint32_t
536 bge_readmem_ind(struct bge_softc *sc, int off)
537 {
538 pcireg_t val;
539
540 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
541 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
542 return 0;
543
544 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
545 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
546 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
547 return val;
548 }
549
550 static void
551 bge_writemem_ind(struct bge_softc *sc, int off, int val)
552 {
553
554 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
555 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
556 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
557 }
558
559 /*
560 * PCI Express only
561 */
562 static void
563 bge_set_max_readrq(struct bge_softc *sc)
564 {
565 pcireg_t val;
566
567 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
568 + PCIE_DCSR);
569 val &= ~PCIE_DCSR_MAX_READ_REQ;
570 switch (sc->bge_expmrq) {
571 case 2048:
572 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
573 break;
574 case 4096:
575 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
576 break;
577 default:
578 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
579 break;
580 }
581 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
582 + PCIE_DCSR, val);
583 }
584
585 #ifdef notdef
586 static uint32_t
587 bge_readreg_ind(struct bge_softc *sc, int off)
588 {
589 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
590 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
591 }
592 #endif
593
594 static void
595 bge_writereg_ind(struct bge_softc *sc, int off, int val)
596 {
597 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
598 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
599 }
600
601 static void
602 bge_writemem_direct(struct bge_softc *sc, int off, int val)
603 {
604 CSR_WRITE_4(sc, off, val);
605 }
606
607 static void
608 bge_writembx(struct bge_softc *sc, int off, int val)
609 {
610 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
611 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
612
613 CSR_WRITE_4(sc, off, val);
614 }
615
616 static void
617 bge_writembx_flush(struct bge_softc *sc, int off, int val)
618 {
619 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
620 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
621
622 CSR_WRITE_4_FLUSH(sc, off, val);
623 }
624
625 /*
626 * Clear all stale locks and select the lock for this driver instance.
627 */
628 void
629 bge_ape_lock_init(struct bge_softc *sc)
630 {
631 struct pci_attach_args *pa = &(sc->bge_pa);
632 uint32_t bit, regbase;
633 int i;
634
635 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
636 regbase = BGE_APE_LOCK_GRANT;
637 else
638 regbase = BGE_APE_PER_LOCK_GRANT;
639
640 /* Clear any stale locks. */
641 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
642 switch (i) {
643 case BGE_APE_LOCK_PHY0:
644 case BGE_APE_LOCK_PHY1:
645 case BGE_APE_LOCK_PHY2:
646 case BGE_APE_LOCK_PHY3:
647 bit = BGE_APE_LOCK_GRANT_DRIVER0;
648 break;
649 default:
650 if (pa->pa_function == 0)
651 bit = BGE_APE_LOCK_GRANT_DRIVER0;
652 else
653 bit = (1 << pa->pa_function);
654 }
655 APE_WRITE_4(sc, regbase + 4 * i, bit);
656 }
657
658 /* Select the PHY lock based on the device's function number. */
659 switch (pa->pa_function) {
660 case 0:
661 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
662 break;
663 case 1:
664 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
665 break;
666 case 2:
667 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
668 break;
669 case 3:
670 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
671 break;
672 default:
673 printf("%s: PHY lock not supported on function\n",
674 device_xname(sc->bge_dev));
675 break;
676 }
677 }
678
679 /*
680 * Check for APE firmware, set flags, and print version info.
681 */
682 void
683 bge_ape_read_fw_ver(struct bge_softc *sc)
684 {
685 const char *fwtype;
686 uint32_t apedata, features;
687
688 /* Check for a valid APE signature in shared memory. */
689 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
690 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
691 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
692 return;
693 }
694
695 /* Check if APE firmware is running. */
696 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
697 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
698 printf("%s: APE signature found but FW status not ready! "
699 "0x%08x\n", device_xname(sc->bge_dev), apedata);
700 return;
701 }
702
703 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
704
705 /* Fetch the APE firwmare type and version. */
706 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
707 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
708 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
709 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
710 fwtype = "NCSI";
711 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
712 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
713 fwtype = "DASH";
714 } else
715 fwtype = "UNKN";
716
717 /* Print the APE firmware version. */
718 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
719 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
720 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
721 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
722 (apedata & BGE_APE_FW_VERSION_BLDMSK));
723 }
724
725 int
726 bge_ape_lock(struct bge_softc *sc, int locknum)
727 {
728 struct pci_attach_args *pa = &(sc->bge_pa);
729 uint32_t bit, gnt, req, status;
730 int i, off;
731
732 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
733 return (0);
734
735 /* Lock request/grant registers have different bases. */
736 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
737 req = BGE_APE_LOCK_REQ;
738 gnt = BGE_APE_LOCK_GRANT;
739 } else {
740 req = BGE_APE_PER_LOCK_REQ;
741 gnt = BGE_APE_PER_LOCK_GRANT;
742 }
743
744 off = 4 * locknum;
745
746 switch (locknum) {
747 case BGE_APE_LOCK_GPIO:
748 /* Lock required when using GPIO. */
749 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
750 return (0);
751 if (pa->pa_function == 0)
752 bit = BGE_APE_LOCK_REQ_DRIVER0;
753 else
754 bit = (1 << pa->pa_function);
755 break;
756 case BGE_APE_LOCK_GRC:
757 /* Lock required to reset the device. */
758 if (pa->pa_function == 0)
759 bit = BGE_APE_LOCK_REQ_DRIVER0;
760 else
761 bit = (1 << pa->pa_function);
762 break;
763 case BGE_APE_LOCK_MEM:
764 /* Lock required when accessing certain APE memory. */
765 if (pa->pa_function == 0)
766 bit = BGE_APE_LOCK_REQ_DRIVER0;
767 else
768 bit = (1 << pa->pa_function);
769 break;
770 case BGE_APE_LOCK_PHY0:
771 case BGE_APE_LOCK_PHY1:
772 case BGE_APE_LOCK_PHY2:
773 case BGE_APE_LOCK_PHY3:
774 /* Lock required when accessing PHYs. */
775 bit = BGE_APE_LOCK_REQ_DRIVER0;
776 break;
777 default:
778 return (EINVAL);
779 }
780
781 /* Request a lock. */
782 APE_WRITE_4_FLUSH(sc, req + off, bit);
783
784 /* Wait up to 1 second to acquire lock. */
785 for (i = 0; i < 20000; i++) {
786 status = APE_READ_4(sc, gnt + off);
787 if (status == bit)
788 break;
789 DELAY(50);
790 }
791
792 /* Handle any errors. */
793 if (status != bit) {
794 printf("%s: APE lock %d request failed! "
795 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
796 device_xname(sc->bge_dev),
797 locknum, req + off, bit & 0xFFFF, gnt + off,
798 status & 0xFFFF);
799 /* Revoke the lock request. */
800 APE_WRITE_4(sc, gnt + off, bit);
801 return (EBUSY);
802 }
803
804 return (0);
805 }
806
807 void
808 bge_ape_unlock(struct bge_softc *sc, int locknum)
809 {
810 struct pci_attach_args *pa = &(sc->bge_pa);
811 uint32_t bit, gnt;
812 int off;
813
814 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
815 return;
816
817 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
818 gnt = BGE_APE_LOCK_GRANT;
819 else
820 gnt = BGE_APE_PER_LOCK_GRANT;
821
822 off = 4 * locknum;
823
824 switch (locknum) {
825 case BGE_APE_LOCK_GPIO:
826 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
827 return;
828 if (pa->pa_function == 0)
829 bit = BGE_APE_LOCK_GRANT_DRIVER0;
830 else
831 bit = (1 << pa->pa_function);
832 break;
833 case BGE_APE_LOCK_GRC:
834 if (pa->pa_function == 0)
835 bit = BGE_APE_LOCK_GRANT_DRIVER0;
836 else
837 bit = (1 << pa->pa_function);
838 break;
839 case BGE_APE_LOCK_MEM:
840 if (pa->pa_function == 0)
841 bit = BGE_APE_LOCK_GRANT_DRIVER0;
842 else
843 bit = (1 << pa->pa_function);
844 break;
845 case BGE_APE_LOCK_PHY0:
846 case BGE_APE_LOCK_PHY1:
847 case BGE_APE_LOCK_PHY2:
848 case BGE_APE_LOCK_PHY3:
849 bit = BGE_APE_LOCK_GRANT_DRIVER0;
850 break;
851 default:
852 return;
853 }
854
855 /* Write and flush for consecutive bge_ape_lock() */
856 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
857 }
858
859 /*
860 * Send an event to the APE firmware.
861 */
862 void
863 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
864 {
865 uint32_t apedata;
866 int i;
867
868 /* NCSI does not support APE events. */
869 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
870 return;
871
872 /* Wait up to 1ms for APE to service previous event. */
873 for (i = 10; i > 0; i--) {
874 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
875 break;
876 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
877 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
878 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
879 BGE_APE_EVENT_STATUS_EVENT_PENDING);
880 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
881 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
882 break;
883 }
884 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
885 DELAY(100);
886 }
887 if (i == 0) {
888 printf("%s: APE event 0x%08x send timed out\n",
889 device_xname(sc->bge_dev), event);
890 }
891 }
892
893 void
894 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
895 {
896 uint32_t apedata, event;
897
898 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
899 return;
900
901 switch (kind) {
902 case BGE_RESET_START:
903 /* If this is the first load, clear the load counter. */
904 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
905 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
906 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
907 else {
908 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
909 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
910 }
911 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
912 BGE_APE_HOST_SEG_SIG_MAGIC);
913 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
914 BGE_APE_HOST_SEG_LEN_MAGIC);
915
916 /* Add some version info if bge(4) supports it. */
917 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
918 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
919 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
920 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
921 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
922 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
923 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
924 BGE_APE_HOST_DRVR_STATE_START);
925 event = BGE_APE_EVENT_STATUS_STATE_START;
926 break;
927 case BGE_RESET_SHUTDOWN:
928 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
929 BGE_APE_HOST_DRVR_STATE_UNLOAD);
930 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
931 break;
932 case BGE_RESET_SUSPEND:
933 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
934 break;
935 default:
936 return;
937 }
938
939 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
940 BGE_APE_EVENT_STATUS_STATE_CHNGE);
941 }
942
943 static uint8_t
944 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
945 {
946 uint32_t access, byte = 0;
947 int i;
948
949 /* Lock. */
950 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
951 for (i = 0; i < 8000; i++) {
952 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
953 break;
954 DELAY(20);
955 }
956 if (i == 8000)
957 return 1;
958
959 /* Enable access. */
960 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
961 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
962
963 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
964 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
965 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
966 DELAY(10);
967 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
968 DELAY(10);
969 break;
970 }
971 }
972
973 if (i == BGE_TIMEOUT * 10) {
974 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
975 return 1;
976 }
977
978 /* Get result. */
979 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
980
981 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
982
983 /* Disable access. */
984 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
985
986 /* Unlock. */
987 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
988
989 return 0;
990 }
991
992 /*
993 * Read a sequence of bytes from NVRAM.
994 */
995 static int
996 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
997 {
998 int error = 0, i;
999 uint8_t byte = 0;
1000
1001 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1002 return 1;
1003
1004 for (i = 0; i < cnt; i++) {
1005 error = bge_nvram_getbyte(sc, off + i, &byte);
1006 if (error)
1007 break;
1008 *(dest + i) = byte;
1009 }
1010
1011 return (error ? 1 : 0);
1012 }
1013
1014 /*
1015 * Read a byte of data stored in the EEPROM at address 'addr.' The
1016 * BCM570x supports both the traditional bitbang interface and an
1017 * auto access interface for reading the EEPROM. We use the auto
1018 * access method.
1019 */
1020 static uint8_t
1021 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1022 {
1023 int i;
1024 uint32_t byte = 0;
1025
1026 /*
1027 * Enable use of auto EEPROM access so we can avoid
1028 * having to use the bitbang method.
1029 */
1030 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1031
1032 /* Reset the EEPROM, load the clock period. */
1033 CSR_WRITE_4(sc, BGE_EE_ADDR,
1034 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1035 DELAY(20);
1036
1037 /* Issue the read EEPROM command. */
1038 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1039
1040 /* Wait for completion */
1041 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1042 DELAY(10);
1043 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1044 break;
1045 }
1046
1047 if (i == BGE_TIMEOUT * 10) {
1048 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1049 return 1;
1050 }
1051
1052 /* Get result. */
1053 byte = CSR_READ_4(sc, BGE_EE_DATA);
1054
1055 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1056
1057 return 0;
1058 }
1059
1060 /*
1061 * Read a sequence of bytes from the EEPROM.
1062 */
1063 static int
1064 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1065 {
1066 int error = 0, i;
1067 uint8_t byte = 0;
1068 char *dest = destv;
1069
1070 for (i = 0; i < cnt; i++) {
1071 error = bge_eeprom_getbyte(sc, off + i, &byte);
1072 if (error)
1073 break;
1074 *(dest + i) = byte;
1075 }
1076
1077 return (error ? 1 : 0);
1078 }
1079
1080 static int
1081 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1082 {
1083 struct bge_softc *sc = device_private(dev);
1084 uint32_t data;
1085 uint32_t autopoll;
1086 int rv = 0;
1087 int i;
1088
1089 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1090 return -1;
1091
1092 /* Reading with autopolling on may trigger PCI errors */
1093 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1094 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1095 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1096 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1097 DELAY(80);
1098 }
1099
1100 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1101 BGE_MIPHY(phy) | BGE_MIREG(reg));
1102
1103 for (i = 0; i < BGE_TIMEOUT; i++) {
1104 delay(10);
1105 data = CSR_READ_4(sc, BGE_MI_COMM);
1106 if (!(data & BGE_MICOMM_BUSY)) {
1107 DELAY(5);
1108 data = CSR_READ_4(sc, BGE_MI_COMM);
1109 break;
1110 }
1111 }
1112
1113 if (i == BGE_TIMEOUT) {
1114 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1115 rv = ETIMEDOUT;
1116 } else if ((data & BGE_MICOMM_READFAIL) != 0)
1117 rv = -1;
1118 else
1119 *val = data & BGE_MICOMM_DATA;
1120
1121 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1122 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1123 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1124 DELAY(80);
1125 }
1126
1127 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1128
1129 return rv;
1130 }
1131
1132 static int
1133 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1134 {
1135 struct bge_softc *sc = device_private(dev);
1136 uint32_t autopoll;
1137 int i;
1138
1139 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1140 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1141 return 0;
1142
1143 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1144 return -1;
1145
1146 /* Reading with autopolling on may trigger PCI errors */
1147 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1148 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1149 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1150 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1151 DELAY(80);
1152 }
1153
1154 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1155 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1156
1157 for (i = 0; i < BGE_TIMEOUT; i++) {
1158 delay(10);
1159 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1160 delay(5);
1161 CSR_READ_4(sc, BGE_MI_COMM);
1162 break;
1163 }
1164 }
1165
1166 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1167 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1168 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1169 delay(80);
1170 }
1171
1172 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1173
1174 if (i == BGE_TIMEOUT) {
1175 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1176 return ETIMEDOUT;
1177 }
1178
1179 return 0;
1180 }
1181
1182 static void
1183 bge_miibus_statchg(struct ifnet *ifp)
1184 {
1185 struct bge_softc *sc = ifp->if_softc;
1186 struct mii_data *mii = &sc->bge_mii;
1187 uint32_t mac_mode, rx_mode, tx_mode;
1188
1189 /*
1190 * Get flow control negotiation result.
1191 */
1192 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1193 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1194 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1195
1196 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1197 mii->mii_media_status & IFM_ACTIVE &&
1198 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1199 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1200 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1201 (!(mii->mii_media_status & IFM_ACTIVE) ||
1202 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1203 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1204
1205 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1206 return;
1207
1208 /* Set the port mode (MII/GMII) to match the link speed. */
1209 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1210 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1211 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1212 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1213 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1214 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1215 mac_mode |= BGE_PORTMODE_GMII;
1216 else
1217 mac_mode |= BGE_PORTMODE_MII;
1218
1219 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1220 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1221 if ((mii->mii_media_active & IFM_FDX) != 0) {
1222 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1223 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1224 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1225 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1226 } else
1227 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1228
1229 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1230 DELAY(40);
1231 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1232 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1233 }
1234
1235 /*
1236 * Update rx threshold levels to values in a particular slot
1237 * of the interrupt-mitigation table bge_rx_threshes.
1238 */
1239 static void
1240 bge_set_thresh(struct ifnet *ifp, int lvl)
1241 {
1242 struct bge_softc *sc = ifp->if_softc;
1243 int s;
1244
1245 /* For now, just save the new Rx-intr thresholds and record
1246 * that a threshold update is pending. Updating the hardware
1247 * registers here (even at splhigh()) is observed to
1248 * occasionaly cause glitches where Rx-interrupts are not
1249 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1250 */
1251 s = splnet();
1252 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1253 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1254 sc->bge_pending_rxintr_change = 1;
1255 splx(s);
1256 }
1257
1258
1259 /*
1260 * Update Rx thresholds of all bge devices
1261 */
1262 static void
1263 bge_update_all_threshes(int lvl)
1264 {
1265 struct ifnet *ifp;
1266 const char * const namebuf = "bge";
1267 int namelen;
1268 int s;
1269
1270 if (lvl < 0)
1271 lvl = 0;
1272 else if (lvl >= NBGE_RX_THRESH)
1273 lvl = NBGE_RX_THRESH - 1;
1274
1275 namelen = strlen(namebuf);
1276 /*
1277 * Now search all the interfaces for this name/number
1278 */
1279 s = pserialize_read_enter();
1280 IFNET_READER_FOREACH(ifp) {
1281 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1282 continue;
1283 /* We got a match: update if doing auto-threshold-tuning */
1284 if (bge_auto_thresh)
1285 bge_set_thresh(ifp, lvl);
1286 }
1287 pserialize_read_exit(s);
1288 }
1289
1290 /*
1291 * Handle events that have triggered interrupts.
1292 */
1293 static void
1294 bge_handle_events(struct bge_softc *sc)
1295 {
1296
1297 return;
1298 }
1299
1300 /*
1301 * Memory management for jumbo frames.
1302 */
1303
1304 static int
1305 bge_alloc_jumbo_mem(struct bge_softc *sc)
1306 {
1307 char *ptr, *kva;
1308 bus_dma_segment_t seg;
1309 int i, rseg, state, error;
1310 struct bge_jpool_entry *entry;
1311
1312 state = error = 0;
1313
1314 /* Grab a big chunk o' storage. */
1315 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1316 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1317 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1318 return ENOBUFS;
1319 }
1320
1321 state = 1;
1322 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1323 BUS_DMA_NOWAIT)) {
1324 aprint_error_dev(sc->bge_dev,
1325 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1326 error = ENOBUFS;
1327 goto out;
1328 }
1329
1330 state = 2;
1331 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1332 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1333 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1334 error = ENOBUFS;
1335 goto out;
1336 }
1337
1338 state = 3;
1339 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1340 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1341 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1342 error = ENOBUFS;
1343 goto out;
1344 }
1345
1346 state = 4;
1347 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1348 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1349
1350 SLIST_INIT(&sc->bge_jfree_listhead);
1351 SLIST_INIT(&sc->bge_jinuse_listhead);
1352
1353 /*
1354 * Now divide it up into 9K pieces and save the addresses
1355 * in an array.
1356 */
1357 ptr = sc->bge_cdata.bge_jumbo_buf;
1358 for (i = 0; i < BGE_JSLOTS; i++) {
1359 sc->bge_cdata.bge_jslots[i] = ptr;
1360 ptr += BGE_JLEN;
1361 entry = malloc(sizeof(struct bge_jpool_entry),
1362 M_DEVBUF, M_WAITOK);
1363 entry->slot = i;
1364 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1365 entry, jpool_entries);
1366 }
1367 out:
1368 if (error != 0) {
1369 switch (state) {
1370 case 4:
1371 bus_dmamap_unload(sc->bge_dmatag,
1372 sc->bge_cdata.bge_rx_jumbo_map);
1373 /* FALLTHROUGH */
1374 case 3:
1375 bus_dmamap_destroy(sc->bge_dmatag,
1376 sc->bge_cdata.bge_rx_jumbo_map);
1377 /* FALLTHROUGH */
1378 case 2:
1379 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1380 /* FALLTHROUGH */
1381 case 1:
1382 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1383 break;
1384 default:
1385 break;
1386 }
1387 }
1388
1389 return error;
1390 }
1391
1392 /*
1393 * Allocate a jumbo buffer.
1394 */
1395 static void *
1396 bge_jalloc(struct bge_softc *sc)
1397 {
1398 struct bge_jpool_entry *entry;
1399
1400 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1401
1402 if (entry == NULL) {
1403 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1404 return NULL;
1405 }
1406
1407 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1408 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1409 return (sc->bge_cdata.bge_jslots[entry->slot]);
1410 }
1411
1412 /*
1413 * Release a jumbo buffer.
1414 */
1415 static void
1416 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1417 {
1418 struct bge_jpool_entry *entry;
1419 struct bge_softc *sc;
1420 int i, s;
1421
1422 /* Extract the softc struct pointer. */
1423 sc = (struct bge_softc *)arg;
1424
1425 if (sc == NULL)
1426 panic("bge_jfree: can't find softc pointer!");
1427
1428 /* calculate the slot this buffer belongs to */
1429
1430 i = ((char *)buf
1431 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1432
1433 if ((i < 0) || (i >= BGE_JSLOTS))
1434 panic("bge_jfree: asked to free buffer that we don't manage!");
1435
1436 s = splvm();
1437 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1438 if (entry == NULL)
1439 panic("bge_jfree: buffer not in use!");
1440 entry->slot = i;
1441 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1442 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1443
1444 if (__predict_true(m != NULL))
1445 pool_cache_put(mb_cache, m);
1446 splx(s);
1447 }
1448
1449
1450 /*
1451 * Initialize a standard receive ring descriptor.
1452 */
1453 static int
1454 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1455 bus_dmamap_t dmamap)
1456 {
1457 struct mbuf *m_new = NULL;
1458 struct bge_rx_bd *r;
1459 int error;
1460
1461 if (dmamap == NULL)
1462 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1463
1464 if (dmamap == NULL) {
1465 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1466 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1467 if (error != 0)
1468 return error;
1469 }
1470
1471 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1472
1473 if (m == NULL) {
1474 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1475 if (m_new == NULL)
1476 return ENOBUFS;
1477
1478 MCLGET(m_new, M_DONTWAIT);
1479 if (!(m_new->m_flags & M_EXT)) {
1480 m_freem(m_new);
1481 return ENOBUFS;
1482 }
1483 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1484
1485 } else {
1486 m_new = m;
1487 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1488 m_new->m_data = m_new->m_ext.ext_buf;
1489 }
1490 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1491 m_adj(m_new, ETHER_ALIGN);
1492 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1493 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1494 m_freem(m_new);
1495 return ENOBUFS;
1496 }
1497 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1498 BUS_DMASYNC_PREREAD);
1499
1500 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1501 r = &sc->bge_rdata->bge_rx_std_ring[i];
1502 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1503 r->bge_flags = BGE_RXBDFLAG_END;
1504 r->bge_len = m_new->m_len;
1505 r->bge_idx = i;
1506
1507 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1508 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1509 i * sizeof (struct bge_rx_bd),
1510 sizeof (struct bge_rx_bd),
1511 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1512
1513 return 0;
1514 }
1515
1516 /*
1517 * Initialize a jumbo receive ring descriptor. This allocates
1518 * a jumbo buffer from the pool managed internally by the driver.
1519 */
1520 static int
1521 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1522 {
1523 struct mbuf *m_new = NULL;
1524 struct bge_rx_bd *r;
1525 void *buf = NULL;
1526
1527 if (m == NULL) {
1528
1529 /* Allocate the mbuf. */
1530 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1531 if (m_new == NULL)
1532 return ENOBUFS;
1533
1534 /* Allocate the jumbo buffer */
1535 buf = bge_jalloc(sc);
1536 if (buf == NULL) {
1537 m_freem(m_new);
1538 aprint_error_dev(sc->bge_dev,
1539 "jumbo allocation failed -- packet dropped!\n");
1540 return ENOBUFS;
1541 }
1542
1543 /* Attach the buffer to the mbuf. */
1544 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1545 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1546 bge_jfree, sc);
1547 m_new->m_flags |= M_EXT_RW;
1548 } else {
1549 m_new = m;
1550 buf = m_new->m_data = m_new->m_ext.ext_buf;
1551 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1552 }
1553 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1554 m_adj(m_new, ETHER_ALIGN);
1555 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1556 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1557 BGE_JLEN, BUS_DMASYNC_PREREAD);
1558 /* Set up the descriptor. */
1559 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1560 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1561 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1562 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1563 r->bge_len = m_new->m_len;
1564 r->bge_idx = i;
1565
1566 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1567 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1568 i * sizeof (struct bge_rx_bd),
1569 sizeof (struct bge_rx_bd),
1570 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1571
1572 return 0;
1573 }
1574
1575 /*
1576 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1577 * that's 1MB or memory, which is a lot. For now, we fill only the first
1578 * 256 ring entries and hope that our CPU is fast enough to keep up with
1579 * the NIC.
1580 */
1581 static int
1582 bge_init_rx_ring_std(struct bge_softc *sc)
1583 {
1584 int i;
1585
1586 if (sc->bge_flags & BGEF_RXRING_VALID)
1587 return 0;
1588
1589 for (i = 0; i < BGE_SSLOTS; i++) {
1590 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1591 return ENOBUFS;
1592 }
1593
1594 sc->bge_std = i - 1;
1595 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1596
1597 sc->bge_flags |= BGEF_RXRING_VALID;
1598
1599 return 0;
1600 }
1601
1602 static void
1603 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1604 {
1605 int i;
1606
1607 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1608 return;
1609
1610 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1611 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1612 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1613 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1614 if (disable) {
1615 bus_dmamap_destroy(sc->bge_dmatag,
1616 sc->bge_cdata.bge_rx_std_map[i]);
1617 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1618 }
1619 }
1620 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1621 sizeof(struct bge_rx_bd));
1622 }
1623
1624 sc->bge_flags &= ~BGEF_RXRING_VALID;
1625 }
1626
1627 static int
1628 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1629 {
1630 int i;
1631 volatile struct bge_rcb *rcb;
1632
1633 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1634 return 0;
1635
1636 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1637 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1638 return ENOBUFS;
1639 }
1640
1641 sc->bge_jumbo = i - 1;
1642 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1643
1644 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1645 rcb->bge_maxlen_flags = 0;
1646 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1647
1648 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1649
1650 return 0;
1651 }
1652
1653 static void
1654 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1655 {
1656 int i;
1657
1658 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1659 return;
1660
1661 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1662 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1663 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1664 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1665 }
1666 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1667 sizeof(struct bge_rx_bd));
1668 }
1669
1670 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1671 }
1672
1673 static void
1674 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1675 {
1676 int i;
1677 struct txdmamap_pool_entry *dma;
1678
1679 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1680 return;
1681
1682 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1683 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1684 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1685 sc->bge_cdata.bge_tx_chain[i] = NULL;
1686 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1687 link);
1688 sc->txdma[i] = 0;
1689 }
1690 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1691 sizeof(struct bge_tx_bd));
1692 }
1693
1694 if (disable) {
1695 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1696 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1697 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1698 if (sc->bge_dma64) {
1699 bus_dmamap_destroy(sc->bge_dmatag32,
1700 dma->dmamap32);
1701 }
1702 free(dma, M_DEVBUF);
1703 }
1704 SLIST_INIT(&sc->txdma_list);
1705 }
1706
1707 sc->bge_flags &= ~BGEF_TXRING_VALID;
1708 }
1709
1710 static int
1711 bge_init_tx_ring(struct bge_softc *sc)
1712 {
1713 struct ifnet *ifp = &sc->ethercom.ec_if;
1714 int i;
1715 bus_dmamap_t dmamap, dmamap32;
1716 bus_size_t maxsegsz;
1717 struct txdmamap_pool_entry *dma;
1718
1719 if (sc->bge_flags & BGEF_TXRING_VALID)
1720 return 0;
1721
1722 sc->bge_txcnt = 0;
1723 sc->bge_tx_saved_considx = 0;
1724
1725 /* Initialize transmit producer index for host-memory send ring. */
1726 sc->bge_tx_prodidx = 0;
1727 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1728 /* 5700 b2 errata */
1729 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1730 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1731
1732 /* NIC-memory send ring not used; initialize to zero. */
1733 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1734 /* 5700 b2 errata */
1735 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1736 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1737
1738 /* Limit DMA segment size for some chips */
1739 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1740 (ifp->if_mtu <= ETHERMTU))
1741 maxsegsz = 2048;
1742 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1743 maxsegsz = 4096;
1744 else
1745 maxsegsz = ETHER_MAX_LEN_JUMBO;
1746
1747 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1748 goto alloc_done;
1749
1750 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1751 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1752 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1753 &dmamap))
1754 return ENOBUFS;
1755 if (dmamap == NULL)
1756 panic("dmamap NULL in bge_init_tx_ring");
1757 if (sc->bge_dma64) {
1758 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1759 BGE_NTXSEG, maxsegsz, 0,
1760 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1761 &dmamap32)) {
1762 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1763 return ENOBUFS;
1764 }
1765 if (dmamap32 == NULL)
1766 panic("dmamap32 NULL in bge_init_tx_ring");
1767 } else
1768 dmamap32 = dmamap;
1769 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1770 if (dma == NULL) {
1771 aprint_error_dev(sc->bge_dev,
1772 "can't alloc txdmamap_pool_entry\n");
1773 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1774 if (sc->bge_dma64)
1775 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1776 return ENOMEM;
1777 }
1778 dma->dmamap = dmamap;
1779 dma->dmamap32 = dmamap32;
1780 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1781 }
1782 alloc_done:
1783 sc->bge_flags |= BGEF_TXRING_VALID;
1784
1785 return 0;
1786 }
1787
1788 static void
1789 bge_setmulti(struct bge_softc *sc)
1790 {
1791 struct ethercom *ec = &sc->ethercom;
1792 struct ifnet *ifp = &ec->ec_if;
1793 struct ether_multi *enm;
1794 struct ether_multistep step;
1795 uint32_t hashes[4] = { 0, 0, 0, 0 };
1796 uint32_t h;
1797 int i;
1798
1799 if (ifp->if_flags & IFF_PROMISC)
1800 goto allmulti;
1801
1802 /* Now program new ones. */
1803 ETHER_LOCK(ec);
1804 ETHER_FIRST_MULTI(step, ec, enm);
1805 while (enm != NULL) {
1806 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1807 /*
1808 * We must listen to a range of multicast addresses.
1809 * For now, just accept all multicasts, rather than
1810 * trying to set only those filter bits needed to match
1811 * the range. (At this time, the only use of address
1812 * ranges is for IP multicast routing, for which the
1813 * range is big enough to require all bits set.)
1814 */
1815 ETHER_UNLOCK(ec);
1816 goto allmulti;
1817 }
1818
1819 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1820
1821 /* Just want the 7 least-significant bits. */
1822 h &= 0x7f;
1823
1824 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1825 ETHER_NEXT_MULTI(step, enm);
1826 }
1827 ETHER_UNLOCK(ec);
1828
1829 ifp->if_flags &= ~IFF_ALLMULTI;
1830 goto setit;
1831
1832 allmulti:
1833 ifp->if_flags |= IFF_ALLMULTI;
1834 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1835
1836 setit:
1837 for (i = 0; i < 4; i++)
1838 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1839 }
1840
1841 static void
1842 bge_sig_pre_reset(struct bge_softc *sc, int type)
1843 {
1844
1845 /*
1846 * Some chips don't like this so only do this if ASF is enabled
1847 */
1848 if (sc->bge_asf_mode)
1849 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1850
1851 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1852 switch (type) {
1853 case BGE_RESET_START:
1854 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1855 BGE_FW_DRV_STATE_START);
1856 break;
1857 case BGE_RESET_SHUTDOWN:
1858 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1859 BGE_FW_DRV_STATE_UNLOAD);
1860 break;
1861 case BGE_RESET_SUSPEND:
1862 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1863 BGE_FW_DRV_STATE_SUSPEND);
1864 break;
1865 }
1866 }
1867
1868 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1869 bge_ape_driver_state_change(sc, type);
1870 }
1871
1872 static void
1873 bge_sig_post_reset(struct bge_softc *sc, int type)
1874 {
1875
1876 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1877 switch (type) {
1878 case BGE_RESET_START:
1879 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1880 BGE_FW_DRV_STATE_START_DONE);
1881 /* START DONE */
1882 break;
1883 case BGE_RESET_SHUTDOWN:
1884 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1885 BGE_FW_DRV_STATE_UNLOAD_DONE);
1886 break;
1887 }
1888 }
1889
1890 if (type == BGE_RESET_SHUTDOWN)
1891 bge_ape_driver_state_change(sc, type);
1892 }
1893
1894 static void
1895 bge_sig_legacy(struct bge_softc *sc, int type)
1896 {
1897
1898 if (sc->bge_asf_mode) {
1899 switch (type) {
1900 case BGE_RESET_START:
1901 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1902 BGE_FW_DRV_STATE_START);
1903 break;
1904 case BGE_RESET_SHUTDOWN:
1905 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1906 BGE_FW_DRV_STATE_UNLOAD);
1907 break;
1908 }
1909 }
1910 }
1911
1912 static void
1913 bge_wait_for_event_ack(struct bge_softc *sc)
1914 {
1915 int i;
1916
1917 /* wait up to 2500usec */
1918 for (i = 0; i < 250; i++) {
1919 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1920 BGE_RX_CPU_DRV_EVENT))
1921 break;
1922 DELAY(10);
1923 }
1924 }
1925
1926 static void
1927 bge_stop_fw(struct bge_softc *sc)
1928 {
1929
1930 if (sc->bge_asf_mode) {
1931 bge_wait_for_event_ack(sc);
1932
1933 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1934 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1935 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1936
1937 bge_wait_for_event_ack(sc);
1938 }
1939 }
1940
1941 static int
1942 bge_poll_fw(struct bge_softc *sc)
1943 {
1944 uint32_t val;
1945 int i;
1946
1947 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1948 for (i = 0; i < BGE_TIMEOUT; i++) {
1949 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1950 if (val & BGE_VCPU_STATUS_INIT_DONE)
1951 break;
1952 DELAY(100);
1953 }
1954 if (i >= BGE_TIMEOUT) {
1955 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1956 return -1;
1957 }
1958 } else {
1959 /*
1960 * Poll the value location we just wrote until
1961 * we see the 1's complement of the magic number.
1962 * This indicates that the firmware initialization
1963 * is complete.
1964 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1965 */
1966 for (i = 0; i < BGE_TIMEOUT; i++) {
1967 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1968 if (val == ~BGE_SRAM_FW_MB_MAGIC)
1969 break;
1970 DELAY(10);
1971 }
1972
1973 if ((i >= BGE_TIMEOUT)
1974 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1975 aprint_error_dev(sc->bge_dev,
1976 "firmware handshake timed out, val = %x\n", val);
1977 return -1;
1978 }
1979 }
1980
1981 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1982 /* tg3 says we have to wait extra time */
1983 delay(10 * 1000);
1984 }
1985
1986 return 0;
1987 }
1988
1989 int
1990 bge_phy_addr(struct bge_softc *sc)
1991 {
1992 struct pci_attach_args *pa = &(sc->bge_pa);
1993 int phy_addr = 1;
1994
1995 /*
1996 * PHY address mapping for various devices.
1997 *
1998 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
1999 * ---------+-------+-------+-------+-------+
2000 * BCM57XX | 1 | X | X | X |
2001 * BCM5704 | 1 | X | 1 | X |
2002 * BCM5717 | 1 | 8 | 2 | 9 |
2003 * BCM5719 | 1 | 8 | 2 | 9 |
2004 * BCM5720 | 1 | 8 | 2 | 9 |
2005 *
2006 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2007 * ---------+-------+-------+-------+-------+
2008 * BCM57XX | X | X | X | X |
2009 * BCM5704 | X | X | X | X |
2010 * BCM5717 | X | X | X | X |
2011 * BCM5719 | 3 | 10 | 4 | 11 |
2012 * BCM5720 | X | X | X | X |
2013 *
2014 * Other addresses may respond but they are not
2015 * IEEE compliant PHYs and should be ignored.
2016 */
2017 switch (BGE_ASICREV(sc->bge_chipid)) {
2018 case BGE_ASICREV_BCM5717:
2019 case BGE_ASICREV_BCM5719:
2020 case BGE_ASICREV_BCM5720:
2021 phy_addr = pa->pa_function;
2022 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2023 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2024 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2025 } else {
2026 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2027 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2028 }
2029 }
2030
2031 return phy_addr;
2032 }
2033
2034 /*
2035 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2036 * self-test results.
2037 */
2038 static int
2039 bge_chipinit(struct bge_softc *sc)
2040 {
2041 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2042 int i;
2043
2044 /* Set endianness before we access any non-PCI registers. */
2045 misc_ctl = BGE_INIT;
2046 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2047 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2048 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2049 misc_ctl);
2050
2051 /*
2052 * Clear the MAC statistics block in the NIC's
2053 * internal memory.
2054 */
2055 for (i = BGE_STATS_BLOCK;
2056 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2057 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2058
2059 for (i = BGE_STATUS_BLOCK;
2060 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2061 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2062
2063 /* 5717 workaround from tg3 */
2064 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2065 /* Save */
2066 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2067
2068 /* Temporary modify MODE_CTL to control TLP */
2069 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2070 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2071
2072 /* Control TLP */
2073 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2074 BGE_TLP_PHYCTL1);
2075 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2076 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2077
2078 /* Restore */
2079 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2080 }
2081
2082 if (BGE_IS_57765_FAMILY(sc)) {
2083 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2084 /* Save */
2085 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2086
2087 /* Temporary modify MODE_CTL to control TLP */
2088 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2089 CSR_WRITE_4(sc, BGE_MODE_CTL,
2090 reg | BGE_MODECTL_PCIE_TLPADDR1);
2091
2092 /* Control TLP */
2093 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2094 BGE_TLP_PHYCTL5);
2095 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2096 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2097
2098 /* Restore */
2099 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2100 }
2101 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2102 /*
2103 * For the 57766 and non Ax versions of 57765, bootcode
2104 * needs to setup the PCIE Fast Training Sequence (FTS)
2105 * value to prevent transmit hangs.
2106 */
2107 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2108 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2109 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2110
2111 /* Save */
2112 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2113
2114 /* Temporary modify MODE_CTL to control TLP */
2115 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2116 CSR_WRITE_4(sc, BGE_MODE_CTL,
2117 reg | BGE_MODECTL_PCIE_TLPADDR0);
2118
2119 /* Control TLP */
2120 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2121 BGE_TLP_FTSMAX);
2122 reg &= ~BGE_TLP_FTSMAX_MSK;
2123 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2124 reg | BGE_TLP_FTSMAX_VAL);
2125
2126 /* Restore */
2127 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2128 }
2129
2130 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2131 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2132 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2133 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2134 }
2135
2136 /* Set up the PCI DMA control register. */
2137 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2138 if (sc->bge_flags & BGEF_PCIE) {
2139 /* Read watermark not used, 128 bytes for write. */
2140 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2141 device_xname(sc->bge_dev)));
2142 if (sc->bge_mps >= 256)
2143 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2144 else
2145 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2146 } else if (sc->bge_flags & BGEF_PCIX) {
2147 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2148 device_xname(sc->bge_dev)));
2149 /* PCI-X bus */
2150 if (BGE_IS_5714_FAMILY(sc)) {
2151 /* 256 bytes for read and write. */
2152 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2153 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2154
2155 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2156 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2157 else
2158 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2159 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2160 /*
2161 * In the BCM5703, the DMA read watermark should
2162 * be set to less than or equal to the maximum
2163 * memory read byte count of the PCI-X command
2164 * register.
2165 */
2166 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2167 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2168 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2169 /* 1536 bytes for read, 384 bytes for write. */
2170 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2171 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2172 } else {
2173 /* 384 bytes for read and write. */
2174 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2175 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2176 (0x0F);
2177 }
2178
2179 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2180 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2181 uint32_t tmp;
2182
2183 /* Set ONEDMA_ATONCE for hardware workaround. */
2184 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2185 if (tmp == 6 || tmp == 7)
2186 dma_rw_ctl |=
2187 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2188
2189 /* Set PCI-X DMA write workaround. */
2190 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2191 }
2192 } else {
2193 /* Conventional PCI bus: 256 bytes for read and write. */
2194 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2195 device_xname(sc->bge_dev)));
2196 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2197 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2198
2199 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2200 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2201 dma_rw_ctl |= 0x0F;
2202 }
2203
2204 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2205 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2206 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2207 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2208
2209 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2210 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2211 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2212
2213 if (BGE_IS_57765_PLUS(sc)) {
2214 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2215 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2216 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2217
2218 /*
2219 * Enable HW workaround for controllers that misinterpret
2220 * a status tag update and leave interrupts permanently
2221 * disabled.
2222 */
2223 if (!BGE_IS_57765_FAMILY(sc) &&
2224 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2225 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2226 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2227 }
2228
2229 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2230 dma_rw_ctl);
2231
2232 /*
2233 * Set up general mode register.
2234 */
2235 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2236 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2237 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2238 /* Retain Host-2-BMC settings written by APE firmware. */
2239 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2240 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2241 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2242 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2243 }
2244 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2245 BGE_MODECTL_TX_NO_PHDR_CSUM;
2246
2247 /*
2248 * BCM5701 B5 have a bug causing data corruption when using
2249 * 64-bit DMA reads, which can be terminated early and then
2250 * completed later as 32-bit accesses, in combination with
2251 * certain bridges.
2252 */
2253 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2254 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2255 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2256
2257 /*
2258 * Tell the firmware the driver is running
2259 */
2260 if (sc->bge_asf_mode & ASF_STACKUP)
2261 mode_ctl |= BGE_MODECTL_STACKUP;
2262
2263 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2264
2265 /*
2266 * Disable memory write invalidate. Apparently it is not supported
2267 * properly by these devices.
2268 */
2269 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2270 PCI_COMMAND_INVALIDATE_ENABLE);
2271
2272 #ifdef __brokenalpha__
2273 /*
2274 * Must insure that we do not cross an 8K (bytes) boundary
2275 * for DMA reads. Our highest limit is 1K bytes. This is a
2276 * restriction on some ALPHA platforms with early revision
2277 * 21174 PCI chipsets, such as the AlphaPC 164lx
2278 */
2279 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2280 #endif
2281
2282 /* Set the timer prescaler (always 66MHz) */
2283 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2284
2285 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2286 DELAY(40); /* XXX */
2287
2288 /* Put PHY into ready state */
2289 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2290 DELAY(40);
2291 }
2292
2293 return 0;
2294 }
2295
2296 static int
2297 bge_blockinit(struct bge_softc *sc)
2298 {
2299 volatile struct bge_rcb *rcb;
2300 bus_size_t rcb_addr;
2301 struct ifnet *ifp = &sc->ethercom.ec_if;
2302 bge_hostaddr taddr;
2303 uint32_t dmactl, rdmareg, mimode, val;
2304 int i, limit;
2305
2306 /*
2307 * Initialize the memory window pointer register so that
2308 * we can access the first 32K of internal NIC RAM. This will
2309 * allow us to set up the TX send ring RCBs and the RX return
2310 * ring RCBs, plus other things which live in NIC memory.
2311 */
2312 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2313
2314 if (!BGE_IS_5705_PLUS(sc)) {
2315 /* 57XX step 33 */
2316 /* Configure mbuf memory pool */
2317 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2318
2319 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2320 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2321 else
2322 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2323
2324 /* 57XX step 34 */
2325 /* Configure DMA resource pool */
2326 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2327 BGE_DMA_DESCRIPTORS);
2328 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2329 }
2330
2331 /* 5718 step 11, 57XX step 35 */
2332 /*
2333 * Configure mbuf pool watermarks. New broadcom docs strongly
2334 * recommend these.
2335 */
2336 if (BGE_IS_5717_PLUS(sc)) {
2337 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2338 if (ifp->if_mtu > ETHERMTU) {
2339 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2340 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2341 } else {
2342 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2343 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2344 }
2345 } else if (BGE_IS_5705_PLUS(sc)) {
2346 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2347
2348 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2349 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2350 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2351 } else {
2352 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2353 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2354 }
2355 } else {
2356 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2357 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2358 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2359 }
2360
2361 /* 57XX step 36 */
2362 /* Configure DMA resource watermarks */
2363 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2364 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2365
2366 /* 5718 step 13, 57XX step 38 */
2367 /* Enable buffer manager */
2368 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2369 /*
2370 * Change the arbitration algorithm of TXMBUF read request to
2371 * round-robin instead of priority based for BCM5719. When
2372 * TXFIFO is almost empty, RDMA will hold its request until
2373 * TXFIFO is not almost empty.
2374 */
2375 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2376 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2377 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2378 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2379 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2380 val |= BGE_BMANMODE_LOMBUF_ATTN;
2381 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2382
2383 /* 57XX step 39 */
2384 /* Poll for buffer manager start indication */
2385 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2386 DELAY(10);
2387 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2388 break;
2389 }
2390
2391 if (i == BGE_TIMEOUT * 2) {
2392 aprint_error_dev(sc->bge_dev,
2393 "buffer manager failed to start\n");
2394 return ENXIO;
2395 }
2396
2397 /* 57XX step 40 */
2398 /* Enable flow-through queues */
2399 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2400 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2401
2402 /* Wait until queue initialization is complete */
2403 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2404 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2405 break;
2406 DELAY(10);
2407 }
2408
2409 if (i == BGE_TIMEOUT * 2) {
2410 aprint_error_dev(sc->bge_dev,
2411 "flow-through queue init failed\n");
2412 return ENXIO;
2413 }
2414
2415 /*
2416 * Summary of rings supported by the controller:
2417 *
2418 * Standard Receive Producer Ring
2419 * - This ring is used to feed receive buffers for "standard"
2420 * sized frames (typically 1536 bytes) to the controller.
2421 *
2422 * Jumbo Receive Producer Ring
2423 * - This ring is used to feed receive buffers for jumbo sized
2424 * frames (i.e. anything bigger than the "standard" frames)
2425 * to the controller.
2426 *
2427 * Mini Receive Producer Ring
2428 * - This ring is used to feed receive buffers for "mini"
2429 * sized frames to the controller.
2430 * - This feature required external memory for the controller
2431 * but was never used in a production system. Should always
2432 * be disabled.
2433 *
2434 * Receive Return Ring
2435 * - After the controller has placed an incoming frame into a
2436 * receive buffer that buffer is moved into a receive return
2437 * ring. The driver is then responsible to passing the
2438 * buffer up to the stack. Many versions of the controller
2439 * support multiple RR rings.
2440 *
2441 * Send Ring
2442 * - This ring is used for outgoing frames. Many versions of
2443 * the controller support multiple send rings.
2444 */
2445
2446 /* 5718 step 15, 57XX step 41 */
2447 /* Initialize the standard RX ring control block */
2448 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2449 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2450 /* 5718 step 16 */
2451 if (BGE_IS_57765_PLUS(sc)) {
2452 /*
2453 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2454 * Bits 15-2 : Maximum RX frame size
2455 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2456 * Bit 0 : Reserved
2457 */
2458 rcb->bge_maxlen_flags =
2459 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2460 } else if (BGE_IS_5705_PLUS(sc)) {
2461 /*
2462 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2463 * Bits 15-2 : Reserved (should be 0)
2464 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2465 * Bit 0 : Reserved
2466 */
2467 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2468 } else {
2469 /*
2470 * Ring size is always XXX entries
2471 * Bits 31-16: Maximum RX frame size
2472 * Bits 15-2 : Reserved (should be 0)
2473 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2474 * Bit 0 : Reserved
2475 */
2476 rcb->bge_maxlen_flags =
2477 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2478 }
2479 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2480 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2481 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2482 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2483 else
2484 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2485 /* Write the standard receive producer ring control block. */
2486 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2487 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2488 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2489 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2490
2491 /* Reset the standard receive producer ring producer index. */
2492 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2493
2494 /* 57XX step 42 */
2495 /*
2496 * Initialize the jumbo RX ring control block
2497 * We set the 'ring disabled' bit in the flags
2498 * field until we're actually ready to start
2499 * using this ring (i.e. once we set the MTU
2500 * high enough to require it).
2501 */
2502 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2503 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2504 BGE_HOSTADDR(rcb->bge_hostaddr,
2505 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2506 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2507 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2508 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2509 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2510 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2511 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2512 else
2513 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2514 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2515 rcb->bge_hostaddr.bge_addr_hi);
2516 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2517 rcb->bge_hostaddr.bge_addr_lo);
2518 /* Program the jumbo receive producer ring RCB parameters. */
2519 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2520 rcb->bge_maxlen_flags);
2521 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2522 /* Reset the jumbo receive producer ring producer index. */
2523 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2524 }
2525
2526 /* 57XX step 43 */
2527 /* Disable the mini receive producer ring RCB. */
2528 if (BGE_IS_5700_FAMILY(sc)) {
2529 /* Set up dummy disabled mini ring RCB */
2530 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2531 rcb->bge_maxlen_flags =
2532 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2533 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2534 rcb->bge_maxlen_flags);
2535 /* Reset the mini receive producer ring producer index. */
2536 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2537
2538 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2539 offsetof(struct bge_ring_data, bge_info),
2540 sizeof (struct bge_gib),
2541 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2542 }
2543
2544 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2545 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2546 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2547 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2548 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2549 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2550 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2551 }
2552 /* 5718 step 14, 57XX step 44 */
2553 /*
2554 * The BD ring replenish thresholds control how often the
2555 * hardware fetches new BD's from the producer rings in host
2556 * memory. Setting the value too low on a busy system can
2557 * starve the hardware and recue the throughpout.
2558 *
2559 * Set the BD ring replenish thresholds. The recommended
2560 * values are 1/8th the number of descriptors allocated to
2561 * each ring, but since we try to avoid filling the entire
2562 * ring we set these to the minimal value of 8. This needs to
2563 * be done on several of the supported chip revisions anyway,
2564 * to work around HW bugs.
2565 */
2566 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2567 if (BGE_IS_JUMBO_CAPABLE(sc))
2568 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2569
2570 /* 5718 step 18 */
2571 if (BGE_IS_5717_PLUS(sc)) {
2572 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2573 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2574 }
2575
2576 /* 57XX step 45 */
2577 /*
2578 * Disable all send rings by setting the 'ring disabled' bit
2579 * in the flags field of all the TX send ring control blocks,
2580 * located in NIC memory.
2581 */
2582 if (BGE_IS_5700_FAMILY(sc)) {
2583 /* 5700 to 5704 had 16 send rings. */
2584 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2585 } else if (BGE_IS_5717_PLUS(sc)) {
2586 limit = BGE_TX_RINGS_5717_MAX;
2587 } else if (BGE_IS_57765_FAMILY(sc) ||
2588 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2589 limit = BGE_TX_RINGS_57765_MAX;
2590 } else
2591 limit = 1;
2592 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2593 for (i = 0; i < limit; i++) {
2594 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2595 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2596 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2597 rcb_addr += sizeof(struct bge_rcb);
2598 }
2599
2600 /* 57XX step 46 and 47 */
2601 /* Configure send ring RCB 0 (we use only the first ring) */
2602 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2603 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2604 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2605 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2606 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2607 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2608 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2609 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2610 else
2611 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2612 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2613 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2614 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2615
2616 /* 57XX step 48 */
2617 /*
2618 * Disable all receive return rings by setting the
2619 * 'ring diabled' bit in the flags field of all the receive
2620 * return ring control blocks, located in NIC memory.
2621 */
2622 if (BGE_IS_5717_PLUS(sc)) {
2623 /* Should be 17, use 16 until we get an SRAM map. */
2624 limit = 16;
2625 } else if (BGE_IS_5700_FAMILY(sc))
2626 limit = BGE_RX_RINGS_MAX;
2627 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2628 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2629 BGE_IS_57765_FAMILY(sc))
2630 limit = 4;
2631 else
2632 limit = 1;
2633 /* Disable all receive return rings */
2634 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2635 for (i = 0; i < limit; i++) {
2636 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2637 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2638 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2639 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2640 BGE_RCB_FLAG_RING_DISABLED));
2641 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2642 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2643 (i * (sizeof(uint64_t))), 0);
2644 rcb_addr += sizeof(struct bge_rcb);
2645 }
2646
2647 /* 57XX step 49 */
2648 /*
2649 * Set up receive return ring 0. Note that the NIC address
2650 * for RX return rings is 0x0. The return rings live entirely
2651 * within the host, so the nicaddr field in the RCB isn't used.
2652 */
2653 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2654 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2655 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2656 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2657 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2658 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2659 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2660
2661 /* 5718 step 24, 57XX step 53 */
2662 /* Set random backoff seed for TX */
2663 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2664 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2665 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2666 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2667 BGE_TX_BACKOFF_SEED_MASK);
2668
2669 /* 5718 step 26, 57XX step 55 */
2670 /* Set inter-packet gap */
2671 val = 0x2620;
2672 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2673 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2674 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2675 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2676 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2677
2678 /* 5718 step 27, 57XX step 56 */
2679 /*
2680 * Specify which ring to use for packets that don't match
2681 * any RX rules.
2682 */
2683 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2684
2685 /* 5718 step 28, 57XX step 57 */
2686 /*
2687 * Configure number of RX lists. One interrupt distribution
2688 * list, sixteen active lists, one bad frames class.
2689 */
2690 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2691
2692 /* 5718 step 29, 57XX step 58 */
2693 /* Inialize RX list placement stats mask. */
2694 if (BGE_IS_575X_PLUS(sc)) {
2695 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2696 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2697 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2698 } else
2699 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2700
2701 /* 5718 step 30, 57XX step 59 */
2702 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2703
2704 /* 5718 step 33, 57XX step 62 */
2705 /* Disable host coalescing until we get it set up */
2706 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2707
2708 /* 5718 step 34, 57XX step 63 */
2709 /* Poll to make sure it's shut down. */
2710 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2711 DELAY(10);
2712 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2713 break;
2714 }
2715
2716 if (i == BGE_TIMEOUT * 2) {
2717 aprint_error_dev(sc->bge_dev,
2718 "host coalescing engine failed to idle\n");
2719 return ENXIO;
2720 }
2721
2722 /* 5718 step 35, 36, 37 */
2723 /* Set up host coalescing defaults */
2724 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2725 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2726 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2727 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2728 if (!(BGE_IS_5705_PLUS(sc))) {
2729 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2730 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2731 }
2732 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2733 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2734
2735 /* Set up address of statistics block */
2736 if (BGE_IS_5700_FAMILY(sc)) {
2737 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2738 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2739 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2740 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2741 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2742 }
2743
2744 /* 5718 step 38 */
2745 /* Set up address of status block */
2746 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2747 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2748 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2749 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2750 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2751 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2752
2753 /* Set up status block size. */
2754 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2755 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2756 val = BGE_STATBLKSZ_FULL;
2757 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2758 } else {
2759 val = BGE_STATBLKSZ_32BYTE;
2760 bzero(&sc->bge_rdata->bge_status_block, 32);
2761 }
2762
2763 /* 5718 step 39, 57XX step 73 */
2764 /* Turn on host coalescing state machine */
2765 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2766
2767 /* 5718 step 40, 57XX step 74 */
2768 /* Turn on RX BD completion state machine and enable attentions */
2769 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2770 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2771
2772 /* 5718 step 41, 57XX step 75 */
2773 /* Turn on RX list placement state machine */
2774 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2775
2776 /* 57XX step 76 */
2777 /* Turn on RX list selector state machine. */
2778 if (!(BGE_IS_5705_PLUS(sc)))
2779 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2780
2781 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2782 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2783 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2784 BGE_MACMODE_FRMHDR_DMA_ENB;
2785
2786 if (sc->bge_flags & BGEF_FIBER_TBI)
2787 val |= BGE_PORTMODE_TBI;
2788 else if (sc->bge_flags & BGEF_FIBER_MII)
2789 val |= BGE_PORTMODE_GMII;
2790 else
2791 val |= BGE_PORTMODE_MII;
2792
2793 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2794 /* Allow APE to send/receive frames. */
2795 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2796 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2797
2798 /* Turn on DMA, clear stats */
2799 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2800 /* 5718 step 44 */
2801 DELAY(40);
2802
2803 /* 5718 step 45, 57XX step 79 */
2804 /* Set misc. local control, enable interrupts on attentions */
2805 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2806 if (BGE_IS_5717_PLUS(sc)) {
2807 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2808 /* 5718 step 46 */
2809 DELAY(100);
2810 }
2811
2812 /* 57XX step 81 */
2813 /* Turn on DMA completion state machine */
2814 if (!(BGE_IS_5705_PLUS(sc)))
2815 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2816
2817 /* 5718 step 47, 57XX step 82 */
2818 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2819
2820 /* 5718 step 48 */
2821 /* Enable host coalescing bug fix. */
2822 if (BGE_IS_5755_PLUS(sc))
2823 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2824
2825 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2826 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2827
2828 /* Turn on write DMA state machine */
2829 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2830 /* 5718 step 49 */
2831 DELAY(40);
2832
2833 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2834
2835 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2836 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2837
2838 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2839 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2840 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2841 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2842 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2843 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2844
2845 if (sc->bge_flags & BGEF_PCIE)
2846 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2847 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2848 if (ifp->if_mtu <= ETHERMTU)
2849 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2850 }
2851 if (sc->bge_flags & BGEF_TSO) {
2852 val |= BGE_RDMAMODE_TSO4_ENABLE;
2853 if (BGE_IS_5717_PLUS(sc))
2854 val |= BGE_RDMAMODE_TSO6_ENABLE;
2855 }
2856
2857 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2858 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2859 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2860 BGE_RDMAMODE_H2BNC_VLAN_DET;
2861 /*
2862 * Allow multiple outstanding read requests from
2863 * non-LSO read DMA engine.
2864 */
2865 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2866 }
2867
2868 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2869 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2870 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2871 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2872 BGE_IS_57765_PLUS(sc)) {
2873 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2874 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2875 else
2876 rdmareg = BGE_RDMA_RSRVCTRL;
2877 dmactl = CSR_READ_4(sc, rdmareg);
2878 /*
2879 * Adjust tx margin to prevent TX data corruption and
2880 * fix internal FIFO overflow.
2881 */
2882 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2883 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2884 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2885 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2886 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2887 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2888 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2889 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2890 }
2891 /*
2892 * Enable fix for read DMA FIFO overruns.
2893 * The fix is to limit the number of RX BDs
2894 * the hardware would fetch at a fime.
2895 */
2896 CSR_WRITE_4(sc, rdmareg, dmactl |
2897 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2898 }
2899
2900 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2901 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2902 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2903 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2904 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2905 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2906 /*
2907 * Allow 4KB burst length reads for non-LSO frames.
2908 * Enable 512B burst length reads for buffer descriptors.
2909 */
2910 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2911 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2912 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2913 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2914 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2915 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2916 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2917 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2918 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2919 }
2920 /* Turn on read DMA state machine */
2921 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2922 /* 5718 step 52 */
2923 delay(40);
2924
2925 if (sc->bge_flags & BGEF_RDMA_BUG) {
2926 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2927 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2928 if ((val & 0xFFFF) > BGE_FRAMELEN)
2929 break;
2930 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2931 break;
2932 }
2933 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2934 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2935 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2936 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2937 else
2938 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2939 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2940 }
2941 }
2942
2943 /* 5718 step 56, 57XX step 84 */
2944 /* Turn on RX data completion state machine */
2945 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2946
2947 /* Turn on RX data and RX BD initiator state machine */
2948 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2949
2950 /* 57XX step 85 */
2951 /* Turn on Mbuf cluster free state machine */
2952 if (!BGE_IS_5705_PLUS(sc))
2953 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2954
2955 /* 5718 step 57, 57XX step 86 */
2956 /* Turn on send data completion state machine */
2957 val = BGE_SDCMODE_ENABLE;
2958 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2959 val |= BGE_SDCMODE_CDELAY;
2960 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2961
2962 /* 5718 step 58 */
2963 /* Turn on send BD completion state machine */
2964 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2965
2966 /* 57XX step 88 */
2967 /* Turn on RX BD initiator state machine */
2968 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2969
2970 /* 5718 step 60, 57XX step 90 */
2971 /* Turn on send data initiator state machine */
2972 if (sc->bge_flags & BGEF_TSO) {
2973 /* XXX: magic value from Linux driver */
2974 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2975 BGE_SDIMODE_HW_LSO_PRE_DMA);
2976 } else
2977 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2978
2979 /* 5718 step 61, 57XX step 91 */
2980 /* Turn on send BD initiator state machine */
2981 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2982
2983 /* 5718 step 62, 57XX step 92 */
2984 /* Turn on send BD selector state machine */
2985 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2986
2987 /* 5718 step 31, 57XX step 60 */
2988 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2989 /* 5718 step 32, 57XX step 61 */
2990 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2991 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2992
2993 /* ack/clear link change events */
2994 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2995 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2996 BGE_MACSTAT_LINK_CHANGED);
2997 CSR_WRITE_4(sc, BGE_MI_STS, 0);
2998
2999 /*
3000 * Enable attention when the link has changed state for
3001 * devices that use auto polling.
3002 */
3003 if (sc->bge_flags & BGEF_FIBER_TBI) {
3004 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3005 } else {
3006 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3007 mimode = BGE_MIMODE_500KHZ_CONST;
3008 else
3009 mimode = BGE_MIMODE_BASE;
3010 /* 5718 step 68. 5718 step 69 (optionally). */
3011 if (BGE_IS_5700_FAMILY(sc) ||
3012 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3013 mimode |= BGE_MIMODE_AUTOPOLL;
3014 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3015 }
3016 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3017 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3018 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3019 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3020 BGE_EVTENB_MI_INTERRUPT);
3021 }
3022
3023 /*
3024 * Clear any pending link state attention.
3025 * Otherwise some link state change events may be lost until attention
3026 * is cleared by bge_intr() -> bge_link_upd() sequence.
3027 * It's not necessary on newer BCM chips - perhaps enabling link
3028 * state change attentions implies clearing pending attention.
3029 */
3030 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3031 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3032 BGE_MACSTAT_LINK_CHANGED);
3033
3034 /* Enable link state change attentions. */
3035 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3036
3037 return 0;
3038 }
3039
3040 static const struct bge_revision *
3041 bge_lookup_rev(uint32_t chipid)
3042 {
3043 const struct bge_revision *br;
3044
3045 for (br = bge_revisions; br->br_name != NULL; br++) {
3046 if (br->br_chipid == chipid)
3047 return br;
3048 }
3049
3050 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3051 if (br->br_chipid == BGE_ASICREV(chipid))
3052 return br;
3053 }
3054
3055 return NULL;
3056 }
3057
3058 static const struct bge_product *
3059 bge_lookup(const struct pci_attach_args *pa)
3060 {
3061 const struct bge_product *bp;
3062
3063 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3064 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3065 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3066 return bp;
3067 }
3068
3069 return NULL;
3070 }
3071
3072 static uint32_t
3073 bge_chipid(const struct pci_attach_args *pa)
3074 {
3075 uint32_t id;
3076
3077 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3078 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3079
3080 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3081 switch (PCI_PRODUCT(pa->pa_id)) {
3082 case PCI_PRODUCT_BROADCOM_BCM5717:
3083 case PCI_PRODUCT_BROADCOM_BCM5718:
3084 case PCI_PRODUCT_BROADCOM_BCM5719:
3085 case PCI_PRODUCT_BROADCOM_BCM5720:
3086 case PCI_PRODUCT_BROADCOM_BCM5725:
3087 case PCI_PRODUCT_BROADCOM_BCM5727:
3088 case PCI_PRODUCT_BROADCOM_BCM5762:
3089 case PCI_PRODUCT_BROADCOM_BCM57764:
3090 case PCI_PRODUCT_BROADCOM_BCM57767:
3091 case PCI_PRODUCT_BROADCOM_BCM57787:
3092 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3093 BGE_PCI_GEN2_PRODID_ASICREV);
3094 break;
3095 case PCI_PRODUCT_BROADCOM_BCM57761:
3096 case PCI_PRODUCT_BROADCOM_BCM57762:
3097 case PCI_PRODUCT_BROADCOM_BCM57765:
3098 case PCI_PRODUCT_BROADCOM_BCM57766:
3099 case PCI_PRODUCT_BROADCOM_BCM57781:
3100 case PCI_PRODUCT_BROADCOM_BCM57782:
3101 case PCI_PRODUCT_BROADCOM_BCM57785:
3102 case PCI_PRODUCT_BROADCOM_BCM57786:
3103 case PCI_PRODUCT_BROADCOM_BCM57791:
3104 case PCI_PRODUCT_BROADCOM_BCM57795:
3105 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3106 BGE_PCI_GEN15_PRODID_ASICREV);
3107 break;
3108 default:
3109 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3110 BGE_PCI_PRODID_ASICREV);
3111 break;
3112 }
3113 }
3114
3115 return id;
3116 }
3117
3118 /*
3119 * Return true if MSI can be used with this device.
3120 */
3121 static int
3122 bge_can_use_msi(struct bge_softc *sc)
3123 {
3124 int can_use_msi = 0;
3125
3126 switch (BGE_ASICREV(sc->bge_chipid)) {
3127 case BGE_ASICREV_BCM5714_A0:
3128 case BGE_ASICREV_BCM5714:
3129 /*
3130 * Apparently, MSI doesn't work when these chips are
3131 * configured in single-port mode.
3132 */
3133 break;
3134 case BGE_ASICREV_BCM5750:
3135 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3136 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3137 can_use_msi = 1;
3138 break;
3139 default:
3140 if (BGE_IS_575X_PLUS(sc))
3141 can_use_msi = 1;
3142 }
3143 return (can_use_msi);
3144 }
3145
3146 /*
3147 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3148 * against our list and return its name if we find a match. Note
3149 * that since the Broadcom controller contains VPD support, we
3150 * can get the device name string from the controller itself instead
3151 * of the compiled-in string. This is a little slow, but it guarantees
3152 * we'll always announce the right product name.
3153 */
3154 static int
3155 bge_probe(device_t parent, cfdata_t match, void *aux)
3156 {
3157 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3158
3159 if (bge_lookup(pa) != NULL)
3160 return 1;
3161
3162 return 0;
3163 }
3164
3165 static void
3166 bge_attach(device_t parent, device_t self, void *aux)
3167 {
3168 struct bge_softc *sc = device_private(self);
3169 struct pci_attach_args *pa = aux;
3170 prop_dictionary_t dict;
3171 const struct bge_product *bp;
3172 const struct bge_revision *br;
3173 pci_chipset_tag_t pc;
3174 const char *intrstr = NULL;
3175 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3176 uint32_t command;
3177 struct ifnet *ifp;
3178 struct mii_data * const mii = &sc->bge_mii;
3179 uint32_t misccfg, mimode;
3180 void * kva;
3181 u_char eaddr[ETHER_ADDR_LEN];
3182 pcireg_t memtype, subid, reg;
3183 bus_addr_t memaddr;
3184 uint32_t pm_ctl;
3185 bool no_seeprom;
3186 int capmask;
3187 int mii_flags;
3188 int map_flags;
3189 char intrbuf[PCI_INTRSTR_LEN];
3190
3191 bp = bge_lookup(pa);
3192 KASSERT(bp != NULL);
3193
3194 sc->sc_pc = pa->pa_pc;
3195 sc->sc_pcitag = pa->pa_tag;
3196 sc->bge_dev = self;
3197
3198 sc->bge_pa = *pa;
3199 pc = sc->sc_pc;
3200 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3201
3202 aprint_naive(": Ethernet controller\n");
3203 aprint_normal(": %s Ethernet\n", bp->bp_name);
3204
3205 /*
3206 * Map control/status registers.
3207 */
3208 DPRINTFN(5, ("Map control/status regs\n"));
3209 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3210 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3211 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3212 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3213
3214 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3215 aprint_error_dev(sc->bge_dev,
3216 "failed to enable memory mapping!\n");
3217 return;
3218 }
3219
3220 DPRINTFN(5, ("pci_mem_find\n"));
3221 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3222 switch (memtype) {
3223 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3224 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3225 #if 0
3226 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3227 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3228 &memaddr, &sc->bge_bsize) == 0)
3229 break;
3230 #else
3231 /*
3232 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3233 * system get NMI on boot (PR#48451). This problem might not be
3234 * the driver's bug but our PCI common part's bug. Until we
3235 * find a real reason, we ignore the prefetchable bit.
3236 */
3237 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3238 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3239 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3240 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3241 map_flags, &sc->bge_bhandle) == 0) {
3242 sc->bge_btag = pa->pa_memt;
3243 break;
3244 }
3245 }
3246 #endif
3247 /* FALLTHROUGH */
3248 default:
3249 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3250 return;
3251 }
3252
3253 /* Save various chip information. */
3254 sc->bge_chipid = bge_chipid(pa);
3255 sc->bge_phy_addr = bge_phy_addr(sc);
3256
3257 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3258 &sc->bge_pciecap, NULL) != 0) {
3259 /* PCIe */
3260 sc->bge_flags |= BGEF_PCIE;
3261 /* Extract supported maximum payload size. */
3262 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3263 sc->bge_pciecap + PCIE_DCAP);
3264 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3265 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3266 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3267 sc->bge_expmrq = 2048;
3268 else
3269 sc->bge_expmrq = 4096;
3270 bge_set_max_readrq(sc);
3271 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3272 /* PCIe without PCIe cap */
3273 sc->bge_flags |= BGEF_PCIE;
3274 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3275 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3276 /* PCI-X */
3277 sc->bge_flags |= BGEF_PCIX;
3278 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3279 &sc->bge_pcixcap, NULL) == 0)
3280 aprint_error_dev(sc->bge_dev,
3281 "unable to find PCIX capability\n");
3282 }
3283
3284 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3285 /*
3286 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3287 * can clobber the chip's PCI config-space power control
3288 * registers, leaving the card in D3 powersave state. We do
3289 * not have memory-mapped registers in this state, so force
3290 * device into D0 state before starting initialization.
3291 */
3292 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3293 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3294 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3295 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3296 DELAY(1000); /* 27 usec is allegedly sufficent */
3297 }
3298
3299 /* Save chipset family. */
3300 switch (BGE_ASICREV(sc->bge_chipid)) {
3301 case BGE_ASICREV_BCM5717:
3302 case BGE_ASICREV_BCM5719:
3303 case BGE_ASICREV_BCM5720:
3304 sc->bge_flags |= BGEF_5717_PLUS;
3305 /* FALLTHROUGH */
3306 case BGE_ASICREV_BCM5762:
3307 case BGE_ASICREV_BCM57765:
3308 case BGE_ASICREV_BCM57766:
3309 if (!BGE_IS_5717_PLUS(sc))
3310 sc->bge_flags |= BGEF_57765_FAMILY;
3311 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3312 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3313 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3314 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3315 /*
3316 * Enable work around for DMA engine miscalculation
3317 * of TXMBUF available space.
3318 */
3319 sc->bge_flags |= BGEF_RDMA_BUG;
3320
3321 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3322 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3323 /* Jumbo frame on BCM5719 A0 does not work. */
3324 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3325 }
3326 }
3327 break;
3328 case BGE_ASICREV_BCM5755:
3329 case BGE_ASICREV_BCM5761:
3330 case BGE_ASICREV_BCM5784:
3331 case BGE_ASICREV_BCM5785:
3332 case BGE_ASICREV_BCM5787:
3333 case BGE_ASICREV_BCM57780:
3334 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3335 break;
3336 case BGE_ASICREV_BCM5700:
3337 case BGE_ASICREV_BCM5701:
3338 case BGE_ASICREV_BCM5703:
3339 case BGE_ASICREV_BCM5704:
3340 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3341 break;
3342 case BGE_ASICREV_BCM5714_A0:
3343 case BGE_ASICREV_BCM5780:
3344 case BGE_ASICREV_BCM5714:
3345 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3346 /* FALLTHROUGH */
3347 case BGE_ASICREV_BCM5750:
3348 case BGE_ASICREV_BCM5752:
3349 case BGE_ASICREV_BCM5906:
3350 sc->bge_flags |= BGEF_575X_PLUS;
3351 /* FALLTHROUGH */
3352 case BGE_ASICREV_BCM5705:
3353 sc->bge_flags |= BGEF_5705_PLUS;
3354 break;
3355 }
3356
3357 /* Identify chips with APE processor. */
3358 switch (BGE_ASICREV(sc->bge_chipid)) {
3359 case BGE_ASICREV_BCM5717:
3360 case BGE_ASICREV_BCM5719:
3361 case BGE_ASICREV_BCM5720:
3362 case BGE_ASICREV_BCM5761:
3363 case BGE_ASICREV_BCM5762:
3364 sc->bge_flags |= BGEF_APE;
3365 break;
3366 }
3367
3368 /*
3369 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3370 * not actually a MAC controller bug but an issue with the embedded
3371 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3372 */
3373 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3374 sc->bge_flags |= BGEF_40BIT_BUG;
3375
3376 /* Chips with APE need BAR2 access for APE registers/memory. */
3377 if ((sc->bge_flags & BGEF_APE) != 0) {
3378 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3379 #if 0
3380 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3381 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3382 &sc->bge_apesize)) {
3383 aprint_error_dev(sc->bge_dev,
3384 "couldn't map BAR2 memory\n");
3385 return;
3386 }
3387 #else
3388 /*
3389 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3390 * system get NMI on boot (PR#48451). This problem might not be
3391 * the driver's bug but our PCI common part's bug. Until we
3392 * find a real reason, we ignore the prefetchable bit.
3393 */
3394 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3395 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3396 aprint_error_dev(sc->bge_dev,
3397 "couldn't map BAR2 memory\n");
3398 return;
3399 }
3400
3401 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3402 if (bus_space_map(pa->pa_memt, memaddr,
3403 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3404 aprint_error_dev(sc->bge_dev,
3405 "couldn't map BAR2 memory\n");
3406 return;
3407 }
3408 sc->bge_apetag = pa->pa_memt;
3409 #endif
3410
3411 /* Enable APE register/memory access by host driver. */
3412 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3413 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3414 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3415 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3416 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3417
3418 bge_ape_lock_init(sc);
3419 bge_ape_read_fw_ver(sc);
3420 }
3421
3422 /* Identify the chips that use an CPMU. */
3423 if (BGE_IS_5717_PLUS(sc) ||
3424 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3425 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3426 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3427 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3428 sc->bge_flags |= BGEF_CPMU_PRESENT;
3429
3430 /* Set MI_MODE */
3431 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3432 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3433 mimode |= BGE_MIMODE_500KHZ_CONST;
3434 else
3435 mimode |= BGE_MIMODE_BASE;
3436 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3437
3438 /*
3439 * When using the BCM5701 in PCI-X mode, data corruption has
3440 * been observed in the first few bytes of some received packets.
3441 * Aligning the packet buffer in memory eliminates the corruption.
3442 * Unfortunately, this misaligns the packet payloads. On platforms
3443 * which do not support unaligned accesses, we will realign the
3444 * payloads by copying the received packets.
3445 */
3446 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3447 sc->bge_flags & BGEF_PCIX)
3448 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3449
3450 if (BGE_IS_5700_FAMILY(sc))
3451 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3452
3453 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3454 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3455
3456 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3457 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3458 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3459 sc->bge_flags |= BGEF_IS_5788;
3460
3461 /*
3462 * Some controllers seem to require a special firmware to use
3463 * TSO. But the firmware is not available to FreeBSD and Linux
3464 * claims that the TSO performed by the firmware is slower than
3465 * hardware based TSO. Moreover the firmware based TSO has one
3466 * known bug which can't handle TSO if ethernet header + IP/TCP
3467 * header is greater than 80 bytes. The workaround for the TSO
3468 * bug exist but it seems it's too expensive than not using
3469 * TSO at all. Some hardwares also have the TSO bug so limit
3470 * the TSO to the controllers that are not affected TSO issues
3471 * (e.g. 5755 or higher).
3472 */
3473 if (BGE_IS_5755_PLUS(sc)) {
3474 /*
3475 * BCM5754 and BCM5787 shares the same ASIC id so
3476 * explicit device id check is required.
3477 */
3478 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3479 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3480 sc->bge_flags |= BGEF_TSO;
3481 /* TSO on BCM5719 A0 does not work. */
3482 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3483 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3484 sc->bge_flags &= ~BGEF_TSO;
3485 }
3486
3487 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3488 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3489 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3490 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3491 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3492 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3493 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3494 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3495 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3496 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3497 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3498 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3499 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3500 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3501 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3502 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3503 /* These chips are 10/100 only. */
3504 capmask &= ~BMSR_EXTSTAT;
3505 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3506 }
3507
3508 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3509 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3510 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3511 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3512 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3513
3514 /* Set various PHY bug flags. */
3515 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3516 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3517 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3518 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3519 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3520 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3521 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3522 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3523 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3524 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3525 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3526 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3527 if (BGE_IS_5705_PLUS(sc) &&
3528 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3529 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3530 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3531 !BGE_IS_57765_PLUS(sc)) {
3532 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3533 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3534 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3535 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3536 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3537 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3538 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3539 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3540 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3541 } else
3542 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3543 }
3544
3545 /*
3546 * SEEPROM check.
3547 * First check if firmware knows we do not have SEEPROM.
3548 */
3549 if (prop_dictionary_get_bool(device_properties(self),
3550 "without-seeprom", &no_seeprom) && no_seeprom)
3551 sc->bge_flags |= BGEF_NO_EEPROM;
3552
3553 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3554 sc->bge_flags |= BGEF_NO_EEPROM;
3555
3556 /* Now check the 'ROM failed' bit on the RX CPU */
3557 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3558 sc->bge_flags |= BGEF_NO_EEPROM;
3559
3560 sc->bge_asf_mode = 0;
3561 /* No ASF if APE present. */
3562 if ((sc->bge_flags & BGEF_APE) == 0) {
3563 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3564 BGE_SRAM_DATA_SIG_MAGIC)) {
3565 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3566 BGE_HWCFG_ASF) {
3567 sc->bge_asf_mode |= ASF_ENABLE;
3568 sc->bge_asf_mode |= ASF_STACKUP;
3569 if (BGE_IS_575X_PLUS(sc))
3570 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3571 }
3572 }
3573 }
3574
3575 int counts[PCI_INTR_TYPE_SIZE] = {
3576 [PCI_INTR_TYPE_INTX] = 1,
3577 [PCI_INTR_TYPE_MSI] = 1,
3578 [PCI_INTR_TYPE_MSIX] = 1,
3579 };
3580 int max_type = PCI_INTR_TYPE_MSIX;
3581
3582 if (!bge_can_use_msi(sc)) {
3583 /* MSI broken, allow only INTx */
3584 max_type = PCI_INTR_TYPE_INTX;
3585 }
3586
3587 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3588 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3589 return;
3590 }
3591
3592 DPRINTFN(5, ("pci_intr_string\n"));
3593 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3594 sizeof(intrbuf));
3595 DPRINTFN(5, ("pci_intr_establish\n"));
3596 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3597 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3598 if (sc->bge_intrhand == NULL) {
3599 pci_intr_release(pc, sc->bge_pihp, 1);
3600 sc->bge_pihp = NULL;
3601
3602 aprint_error_dev(self, "couldn't establish interrupt");
3603 if (intrstr != NULL)
3604 aprint_error(" at %s", intrstr);
3605 aprint_error("\n");
3606 return;
3607 }
3608 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3609
3610 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3611 case PCI_INTR_TYPE_MSIX:
3612 case PCI_INTR_TYPE_MSI:
3613 KASSERT(bge_can_use_msi(sc));
3614 sc->bge_flags |= BGEF_MSI;
3615 break;
3616 default:
3617 /* nothing to do */
3618 break;
3619 }
3620
3621 /*
3622 * All controllers except BCM5700 supports tagged status but
3623 * we use tagged status only for MSI case on BCM5717. Otherwise
3624 * MSI on BCM5717 does not work.
3625 */
3626 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3627 sc->bge_flags |= BGEF_TAGGED_STATUS;
3628
3629 /*
3630 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3631 * lock in bge_reset().
3632 */
3633 CSR_WRITE_4(sc, BGE_EE_ADDR,
3634 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3635 delay(1000);
3636 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3637
3638 bge_stop_fw(sc);
3639 bge_sig_pre_reset(sc, BGE_RESET_START);
3640 if (bge_reset(sc))
3641 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3642
3643 /*
3644 * Read the hardware config word in the first 32k of NIC internal
3645 * memory, or fall back to the config word in the EEPROM.
3646 * Note: on some BCM5700 cards, this value appears to be unset.
3647 */
3648 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3649 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3650 BGE_SRAM_DATA_SIG_MAGIC) {
3651 uint32_t tmp;
3652
3653 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3654 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3655 BGE_SRAM_DATA_VER_SHIFT;
3656 if ((0 < tmp) && (tmp < 0x100))
3657 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3658 if (sc->bge_flags & BGEF_PCIE)
3659 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3660 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3661 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3662 if (BGE_IS_5717_PLUS(sc))
3663 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3664 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3665 bge_read_eeprom(sc, (void *)&hwcfg,
3666 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3667 hwcfg = be32toh(hwcfg);
3668 }
3669 aprint_normal_dev(sc->bge_dev,
3670 "HW config %08x, %08x, %08x, %08x %08x\n",
3671 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3672
3673 bge_sig_legacy(sc, BGE_RESET_START);
3674 bge_sig_post_reset(sc, BGE_RESET_START);
3675
3676 if (bge_chipinit(sc)) {
3677 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3678 bge_release_resources(sc);
3679 return;
3680 }
3681
3682 /*
3683 * Get station address from the EEPROM.
3684 */
3685 if (bge_get_eaddr(sc, eaddr)) {
3686 aprint_error_dev(sc->bge_dev,
3687 "failed to read station address\n");
3688 bge_release_resources(sc);
3689 return;
3690 }
3691
3692 br = bge_lookup_rev(sc->bge_chipid);
3693
3694 if (br == NULL) {
3695 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3696 sc->bge_chipid);
3697 } else {
3698 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3699 br->br_name, sc->bge_chipid);
3700 }
3701 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3702
3703 /* Allocate the general information block and ring buffers. */
3704 if (pci_dma64_available(pa)) {
3705 sc->bge_dmatag = pa->pa_dmat64;
3706 sc->bge_dmatag32 = pa->pa_dmat;
3707 sc->bge_dma64 = true;
3708 } else {
3709 sc->bge_dmatag = pa->pa_dmat;
3710 sc->bge_dmatag32 = pa->pa_dmat;
3711 sc->bge_dma64 = false;
3712 }
3713
3714 /* 40bit DMA workaround */
3715 if (sizeof(bus_addr_t) > 4) {
3716 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3717 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3718
3719 if (bus_dmatag_subregion(olddmatag, 0,
3720 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3721 BUS_DMA_NOWAIT) != 0) {
3722 aprint_error_dev(self,
3723 "WARNING: failed to restrict dma range,"
3724 " falling back to parent bus dma range\n");
3725 sc->bge_dmatag = olddmatag;
3726 }
3727 }
3728 }
3729 SLIST_INIT(&sc->txdma_list);
3730 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3731 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3732 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3733 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3734 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3735 return;
3736 }
3737 DPRINTFN(5, ("bus_dmamem_map\n"));
3738 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3739 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3740 BUS_DMA_NOWAIT)) {
3741 aprint_error_dev(sc->bge_dev,
3742 "can't map DMA buffers (%zu bytes)\n",
3743 sizeof(struct bge_ring_data));
3744 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3745 sc->bge_ring_rseg);
3746 return;
3747 }
3748 DPRINTFN(5, ("bus_dmamem_create\n"));
3749 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3750 sizeof(struct bge_ring_data), 0,
3751 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3752 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3753 bus_dmamem_unmap(sc->bge_dmatag, kva,
3754 sizeof(struct bge_ring_data));
3755 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3756 sc->bge_ring_rseg);
3757 return;
3758 }
3759 DPRINTFN(5, ("bus_dmamem_load\n"));
3760 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3761 sizeof(struct bge_ring_data), NULL,
3762 BUS_DMA_NOWAIT)) {
3763 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3764 bus_dmamem_unmap(sc->bge_dmatag, kva,
3765 sizeof(struct bge_ring_data));
3766 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3767 sc->bge_ring_rseg);
3768 return;
3769 }
3770
3771 DPRINTFN(5, ("bzero\n"));
3772 sc->bge_rdata = (struct bge_ring_data *)kva;
3773
3774 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3775
3776 /* Try to allocate memory for jumbo buffers. */
3777 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3778 if (bge_alloc_jumbo_mem(sc)) {
3779 aprint_error_dev(sc->bge_dev,
3780 "jumbo buffer allocation failed\n");
3781 } else
3782 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3783 }
3784
3785 /* Set default tuneable values. */
3786 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3787 sc->bge_rx_coal_ticks = 150;
3788 sc->bge_rx_max_coal_bds = 64;
3789 sc->bge_tx_coal_ticks = 300;
3790 sc->bge_tx_max_coal_bds = 400;
3791 if (BGE_IS_5705_PLUS(sc)) {
3792 sc->bge_tx_coal_ticks = (12 * 5);
3793 sc->bge_tx_max_coal_bds = (12 * 5);
3794 aprint_verbose_dev(sc->bge_dev,
3795 "setting short Tx thresholds\n");
3796 }
3797
3798 if (BGE_IS_5717_PLUS(sc))
3799 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3800 else if (BGE_IS_5705_PLUS(sc))
3801 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3802 else
3803 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3804
3805 /* Set up ifnet structure */
3806 ifp = &sc->ethercom.ec_if;
3807 ifp->if_softc = sc;
3808 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3809 ifp->if_ioctl = bge_ioctl;
3810 ifp->if_stop = bge_stop;
3811 ifp->if_start = bge_start;
3812 ifp->if_init = bge_init;
3813 ifp->if_watchdog = bge_watchdog;
3814 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3815 IFQ_SET_READY(&ifp->if_snd);
3816 DPRINTFN(5, ("strcpy if_xname\n"));
3817 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3818
3819 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3820 sc->ethercom.ec_if.if_capabilities |=
3821 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3822 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3823 sc->ethercom.ec_if.if_capabilities |=
3824 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3825 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3826 #endif
3827 sc->ethercom.ec_capabilities |=
3828 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3829 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3830
3831 if (sc->bge_flags & BGEF_TSO)
3832 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3833
3834 /*
3835 * Do MII setup.
3836 */
3837 DPRINTFN(5, ("mii setup\n"));
3838 mii->mii_ifp = ifp;
3839 mii->mii_readreg = bge_miibus_readreg;
3840 mii->mii_writereg = bge_miibus_writereg;
3841 mii->mii_statchg = bge_miibus_statchg;
3842
3843 /*
3844 * Figure out what sort of media we have by checking the hardware
3845 * config word. Note: on some BCM5700 cards, this value appears to be
3846 * unset. If that's the case, we have to rely on identifying the NIC
3847 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3848 * The SysKonnect SK-9D41 is a 1000baseSX card.
3849 */
3850 if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3851 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3852 if (BGE_IS_5705_PLUS(sc)) {
3853 sc->bge_flags |= BGEF_FIBER_MII;
3854 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3855 } else
3856 sc->bge_flags |= BGEF_FIBER_TBI;
3857 }
3858
3859 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3860 if (BGE_IS_JUMBO_CAPABLE(sc))
3861 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3862
3863 /* set phyflags and chipid before mii_attach() */
3864 dict = device_properties(self);
3865 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3866 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3867
3868 /* Initialize ifmedia structures. */
3869 if (sc->bge_flags & BGEF_FIBER_TBI) {
3870 sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
3871 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3872 bge_ifmedia_sts);
3873 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3874 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3875 0, NULL);
3876 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3877 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3878 /* Pretend the user requested this setting */
3879 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3880 } else {
3881 /*
3882 * Do transceiver setup and tell the firmware the
3883 * driver is down so we can try to get access the
3884 * probe if ASF is running. Retry a couple of times
3885 * if we get a conflict with the ASF firmware accessing
3886 * the PHY.
3887 */
3888 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3889 bge_asf_driver_up(sc);
3890
3891 sc->ethercom.ec_mii = mii;
3892 ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3893 bge_ifmedia_sts);
3894 mii_flags = MIIF_DOPAUSE;
3895 if (sc->bge_flags & BGEF_FIBER_MII)
3896 mii_flags |= MIIF_HAVEFIBER;
3897 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
3898 MII_OFFSET_ANY, mii_flags);
3899
3900 if (LIST_EMPTY(&mii->mii_phys)) {
3901 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3902 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
3903 0, NULL);
3904 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
3905 } else
3906 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
3907
3908 /*
3909 * Now tell the firmware we are going up after probing the PHY
3910 */
3911 if (sc->bge_asf_mode & ASF_STACKUP)
3912 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3913 }
3914
3915 /*
3916 * Call MI attach routine.
3917 */
3918 DPRINTFN(5, ("if_attach\n"));
3919 if_attach(ifp);
3920 if_deferred_start_init(ifp, NULL);
3921 DPRINTFN(5, ("ether_ifattach\n"));
3922 ether_ifattach(ifp, eaddr);
3923 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3924 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3925 RND_TYPE_NET, RND_FLAG_DEFAULT);
3926 #ifdef BGE_EVENT_COUNTERS
3927 /*
3928 * Attach event counters.
3929 */
3930 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3931 NULL, device_xname(sc->bge_dev), "intr");
3932 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3933 NULL, device_xname(sc->bge_dev), "intr_spurious");
3934 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3935 NULL, device_xname(sc->bge_dev), "intr_spurious2");
3936 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3937 NULL, device_xname(sc->bge_dev), "tx_xoff");
3938 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3939 NULL, device_xname(sc->bge_dev), "tx_xon");
3940 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3941 NULL, device_xname(sc->bge_dev), "rx_xoff");
3942 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3943 NULL, device_xname(sc->bge_dev), "rx_xon");
3944 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3945 NULL, device_xname(sc->bge_dev), "rx_macctl");
3946 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3947 NULL, device_xname(sc->bge_dev), "xoffentered");
3948 #endif /* BGE_EVENT_COUNTERS */
3949 DPRINTFN(5, ("callout_init\n"));
3950 callout_init(&sc->bge_timeout, 0);
3951
3952 if (pmf_device_register(self, NULL, NULL))
3953 pmf_class_network_register(self, ifp);
3954 else
3955 aprint_error_dev(self, "couldn't establish power handler\n");
3956
3957 bge_sysctl_init(sc);
3958
3959 #ifdef BGE_DEBUG
3960 bge_debug_info(sc);
3961 #endif
3962 }
3963
3964 /*
3965 * Stop all chip I/O so that the kernel's probe routines don't
3966 * get confused by errant DMAs when rebooting.
3967 */
3968 static int
3969 bge_detach(device_t self, int flags __unused)
3970 {
3971 struct bge_softc *sc = device_private(self);
3972 struct ifnet *ifp = &sc->ethercom.ec_if;
3973 int s;
3974
3975 s = splnet();
3976 /* Stop the interface. Callouts are stopped in it. */
3977 bge_stop(ifp, 1);
3978 splx(s);
3979
3980 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3981
3982 /* Delete all remaining media. */
3983 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3984
3985 ether_ifdetach(ifp);
3986 if_detach(ifp);
3987
3988 bge_release_resources(sc);
3989
3990 return 0;
3991 }
3992
3993 static void
3994 bge_release_resources(struct bge_softc *sc)
3995 {
3996
3997 /* Detach sysctl */
3998 if (sc->bge_log != NULL)
3999 sysctl_teardown(&sc->bge_log);
4000
4001 #ifdef BGE_EVENT_COUNTERS
4002 /* Detach event counters. */
4003 evcnt_detach(&sc->bge_ev_intr);
4004 evcnt_detach(&sc->bge_ev_intr_spurious);
4005 evcnt_detach(&sc->bge_ev_intr_spurious2);
4006 evcnt_detach(&sc->bge_ev_tx_xoff);
4007 evcnt_detach(&sc->bge_ev_tx_xon);
4008 evcnt_detach(&sc->bge_ev_rx_xoff);
4009 evcnt_detach(&sc->bge_ev_rx_xon);
4010 evcnt_detach(&sc->bge_ev_rx_macctl);
4011 evcnt_detach(&sc->bge_ev_xoffentered);
4012 #endif /* BGE_EVENT_COUNTERS */
4013
4014 /* Disestablish the interrupt handler */
4015 if (sc->bge_intrhand != NULL) {
4016 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4017 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4018 sc->bge_intrhand = NULL;
4019 }
4020
4021 if (sc->bge_dmatag != NULL) {
4022 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4023 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4024 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4025 sizeof(struct bge_ring_data));
4026 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4027 sc->bge_ring_rseg);
4028 }
4029
4030 /* Unmap the device registers */
4031 if (sc->bge_bsize != 0) {
4032 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4033 sc->bge_bsize = 0;
4034 }
4035
4036 /* Unmap the APE registers */
4037 if (sc->bge_apesize != 0) {
4038 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4039 sc->bge_apesize);
4040 sc->bge_apesize = 0;
4041 }
4042 }
4043
4044 static int
4045 bge_reset(struct bge_softc *sc)
4046 {
4047 uint32_t cachesize, command;
4048 uint32_t reset, mac_mode, mac_mode_mask;
4049 pcireg_t devctl, reg;
4050 int i, val;
4051 void (*write_op)(struct bge_softc *, int, int);
4052
4053 /* Make mask for BGE_MAC_MODE register. */
4054 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4055 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4056 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4057 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4058 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4059
4060 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4061 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4062 if (sc->bge_flags & BGEF_PCIE)
4063 write_op = bge_writemem_direct;
4064 else
4065 write_op = bge_writemem_ind;
4066 } else
4067 write_op = bge_writereg_ind;
4068
4069 /* 57XX step 4 */
4070 /* Acquire the NVM lock */
4071 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4072 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4073 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4074 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4075 for (i = 0; i < 8000; i++) {
4076 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4077 BGE_NVRAMSWARB_GNT1)
4078 break;
4079 DELAY(20);
4080 }
4081 if (i == 8000) {
4082 printf("%s: NVRAM lock timedout!\n",
4083 device_xname(sc->bge_dev));
4084 }
4085 }
4086
4087 /* Take APE lock when performing reset. */
4088 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4089
4090 /* 57XX step 3 */
4091 /* Save some important PCI state. */
4092 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4093 /* 5718 reset step 3 */
4094 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4095
4096 /* 5718 reset step 5, 57XX step 5b-5d */
4097 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4098 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4099 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4100
4101 /* XXX ???: Disable fastboot on controllers that support it. */
4102 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4103 BGE_IS_5755_PLUS(sc))
4104 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4105
4106 /* 5718 reset step 2, 57XX step 6 */
4107 /*
4108 * Write the magic number to SRAM at offset 0xB50.
4109 * When firmware finishes its initialization it will
4110 * write ~BGE_MAGIC_NUMBER to the same location.
4111 */
4112 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4113
4114 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4115 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4116 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4117 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4118 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4119 }
4120
4121 /* 5718 reset step 6, 57XX step 7 */
4122 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4123 /*
4124 * XXX: from FreeBSD/Linux; no documentation
4125 */
4126 if (sc->bge_flags & BGEF_PCIE) {
4127 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4128 !BGE_IS_57765_PLUS(sc) &&
4129 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4130 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4131 /* PCI Express 1.0 system */
4132 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4133 BGE_PHY_PCIE_SCRAM_MODE);
4134 }
4135 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4136 /*
4137 * Prevent PCI Express link training
4138 * during global reset.
4139 */
4140 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4141 reset |= (1 << 29);
4142 }
4143 }
4144
4145 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4146 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4147 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4148 i | BGE_VCPU_STATUS_DRV_RESET);
4149 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4150 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4151 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4152 }
4153
4154 /*
4155 * Set GPHY Power Down Override to leave GPHY
4156 * powered up in D0 uninitialized.
4157 */
4158 if (BGE_IS_5705_PLUS(sc) &&
4159 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4160 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4161
4162 /* Issue global reset */
4163 write_op(sc, BGE_MISC_CFG, reset);
4164
4165 /* 5718 reset step 7, 57XX step 8 */
4166 if (sc->bge_flags & BGEF_PCIE)
4167 delay(100*1000); /* too big */
4168 else
4169 delay(1000);
4170
4171 if (sc->bge_flags & BGEF_PCIE) {
4172 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4173 DELAY(500000);
4174 /* XXX: Magic Numbers */
4175 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4176 BGE_PCI_UNKNOWN0);
4177 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4178 BGE_PCI_UNKNOWN0,
4179 reg | (1 << 15));
4180 }
4181 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4182 sc->bge_pciecap + PCIE_DCSR);
4183 /* Clear enable no snoop and disable relaxed ordering. */
4184 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4185 PCIE_DCSR_ENA_NO_SNOOP);
4186
4187 /* Set PCIE max payload size to 128 for older PCIe devices */
4188 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4189 devctl &= ~(0x00e0);
4190 /* Clear device status register. Write 1b to clear */
4191 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4192 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4193 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4194 sc->bge_pciecap + PCIE_DCSR, devctl);
4195 bge_set_max_readrq(sc);
4196 }
4197
4198 /* From Linux: dummy read to flush PCI posted writes */
4199 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4200
4201 /*
4202 * Reset some of the PCI state that got zapped by reset
4203 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4204 * set, too.
4205 */
4206 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4207 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4208 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4209 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4210 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4211 (sc->bge_flags & BGEF_PCIX) != 0)
4212 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4213 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4214 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4215 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4216 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4217 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4218 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4219 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4220
4221 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4222 if (sc->bge_flags & BGEF_PCIX) {
4223 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4224 + PCIX_CMD);
4225 /* Set max memory read byte count to 2K */
4226 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4227 reg &= ~PCIX_CMD_BYTECNT_MASK;
4228 reg |= PCIX_CMD_BCNT_2048;
4229 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4230 /*
4231 * For 5704, set max outstanding split transaction
4232 * field to 0 (0 means it supports 1 request)
4233 */
4234 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4235 | PCIX_CMD_BYTECNT_MASK);
4236 reg |= PCIX_CMD_BCNT_2048;
4237 }
4238 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4239 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4240 }
4241
4242 /* 5718 reset step 10, 57XX step 12 */
4243 /* Enable memory arbiter. */
4244 if (BGE_IS_5714_FAMILY(sc)) {
4245 val = CSR_READ_4(sc, BGE_MARB_MODE);
4246 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4247 } else
4248 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4249
4250 /* XXX 5721, 5751 and 5752 */
4251 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4252 /* Step 19: */
4253 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4254 /* Step 20: */
4255 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4256 }
4257
4258 /* 5718 reset step 12, 57XX step 15 and 16 */
4259 /* Fix up byte swapping */
4260 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4261
4262 /* 5718 reset step 13, 57XX step 17 */
4263 /* Poll until the firmware initialization is complete */
4264 bge_poll_fw(sc);
4265
4266 /* 57XX step 21 */
4267 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4268 pcireg_t msidata;
4269
4270 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4271 BGE_PCI_MSI_DATA);
4272 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4273 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4274 msidata);
4275 }
4276
4277 /* 57XX step 18 */
4278 /* Write mac mode. */
4279 val = CSR_READ_4(sc, BGE_MAC_MODE);
4280 /* Restore mac_mode_mask's bits using mac_mode */
4281 val = (val & ~mac_mode_mask) | mac_mode;
4282 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4283 DELAY(40);
4284
4285 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4286
4287 /*
4288 * The 5704 in TBI mode apparently needs some special
4289 * adjustment to insure the SERDES drive level is set
4290 * to 1.2V.
4291 */
4292 if (sc->bge_flags & BGEF_FIBER_TBI &&
4293 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4294 uint32_t serdescfg;
4295
4296 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4297 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4298 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4299 }
4300
4301 if (sc->bge_flags & BGEF_PCIE &&
4302 !BGE_IS_57765_PLUS(sc) &&
4303 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4304 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4305 uint32_t v;
4306
4307 /* Enable PCI Express bug fix */
4308 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4309 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4310 v | BGE_TLP_DATA_FIFO_PROTECT);
4311 }
4312
4313 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4314 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4315 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4316
4317 return 0;
4318 }
4319
4320 /*
4321 * Frame reception handling. This is called if there's a frame
4322 * on the receive return list.
4323 *
4324 * Note: we have to be able to handle two possibilities here:
4325 * 1) the frame is from the jumbo receive ring
4326 * 2) the frame is from the standard receive ring
4327 */
4328
4329 static void
4330 bge_rxeof(struct bge_softc *sc)
4331 {
4332 struct ifnet *ifp;
4333 uint16_t rx_prod, rx_cons;
4334 int stdcnt = 0, jumbocnt = 0;
4335 bus_dmamap_t dmamap;
4336 bus_addr_t offset, toff;
4337 bus_size_t tlen;
4338 int tosync;
4339
4340 rx_cons = sc->bge_rx_saved_considx;
4341 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4342
4343 /* Nothing to do */
4344 if (rx_cons == rx_prod)
4345 return;
4346
4347 ifp = &sc->ethercom.ec_if;
4348
4349 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4350 offsetof(struct bge_ring_data, bge_status_block),
4351 sizeof (struct bge_status_block),
4352 BUS_DMASYNC_POSTREAD);
4353
4354 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4355 tosync = rx_prod - rx_cons;
4356
4357 if (tosync != 0)
4358 rnd_add_uint32(&sc->rnd_source, tosync);
4359
4360 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4361
4362 if (tosync < 0) {
4363 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4364 sizeof (struct bge_rx_bd);
4365 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4366 toff, tlen, BUS_DMASYNC_POSTREAD);
4367 tosync = -tosync;
4368 }
4369
4370 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4371 offset, tosync * sizeof (struct bge_rx_bd),
4372 BUS_DMASYNC_POSTREAD);
4373
4374 while (rx_cons != rx_prod) {
4375 struct bge_rx_bd *cur_rx;
4376 uint32_t rxidx;
4377 struct mbuf *m = NULL;
4378
4379 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4380
4381 rxidx = cur_rx->bge_idx;
4382 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4383
4384 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4385 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4386 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4387 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4388 jumbocnt++;
4389 bus_dmamap_sync(sc->bge_dmatag,
4390 sc->bge_cdata.bge_rx_jumbo_map,
4391 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4392 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4393 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4394 ifp->if_ierrors++;
4395 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4396 continue;
4397 }
4398 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4399 NULL)== ENOBUFS) {
4400 ifp->if_ierrors++;
4401 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4402 continue;
4403 }
4404 } else {
4405 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4406 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4407
4408 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4409 stdcnt++;
4410 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4411 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4412 if (dmamap == NULL) {
4413 ifp->if_ierrors++;
4414 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4415 continue;
4416 }
4417 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4418 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4419 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4420 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4421 ifp->if_ierrors++;
4422 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4423 continue;
4424 }
4425 if (bge_newbuf_std(sc, sc->bge_std,
4426 NULL, dmamap) == ENOBUFS) {
4427 ifp->if_ierrors++;
4428 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4429 continue;
4430 }
4431 }
4432
4433 #ifndef __NO_STRICT_ALIGNMENT
4434 /*
4435 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4436 * the Rx buffer has the layer-2 header unaligned.
4437 * If our CPU requires alignment, re-align by copying.
4438 */
4439 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4440 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4441 cur_rx->bge_len);
4442 m->m_data += ETHER_ALIGN;
4443 }
4444 #endif
4445
4446 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4447 m_set_rcvif(m, ifp);
4448
4449 bge_rxcsum(sc, cur_rx, m);
4450
4451 /*
4452 * If we received a packet with a vlan tag, pass it
4453 * to vlan_input() instead of ether_input().
4454 */
4455 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4456 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4457
4458 if_percpuq_enqueue(ifp->if_percpuq, m);
4459 }
4460
4461 sc->bge_rx_saved_considx = rx_cons;
4462 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4463 if (stdcnt)
4464 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4465 if (jumbocnt)
4466 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4467 }
4468
4469 static void
4470 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4471 {
4472
4473 if (BGE_IS_57765_PLUS(sc)) {
4474 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4475 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4476 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4477 if ((cur_rx->bge_error_flag &
4478 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4479 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4480 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4481 m->m_pkthdr.csum_data =
4482 cur_rx->bge_tcp_udp_csum;
4483 m->m_pkthdr.csum_flags |=
4484 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4485 }
4486 }
4487 } else {
4488 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4489 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4490 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4491 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4492 /*
4493 * Rx transport checksum-offload may also
4494 * have bugs with packets which, when transmitted,
4495 * were `runts' requiring padding.
4496 */
4497 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4498 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4499 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4500 m->m_pkthdr.csum_data =
4501 cur_rx->bge_tcp_udp_csum;
4502 m->m_pkthdr.csum_flags |=
4503 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4504 }
4505 }
4506 }
4507
4508 static void
4509 bge_txeof(struct bge_softc *sc)
4510 {
4511 struct bge_tx_bd *cur_tx = NULL;
4512 struct ifnet *ifp;
4513 struct txdmamap_pool_entry *dma;
4514 bus_addr_t offset, toff;
4515 bus_size_t tlen;
4516 int tosync;
4517 struct mbuf *m;
4518
4519 ifp = &sc->ethercom.ec_if;
4520
4521 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4522 offsetof(struct bge_ring_data, bge_status_block),
4523 sizeof (struct bge_status_block),
4524 BUS_DMASYNC_POSTREAD);
4525
4526 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4527 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4528 sc->bge_tx_saved_considx;
4529
4530 if (tosync != 0)
4531 rnd_add_uint32(&sc->rnd_source, tosync);
4532
4533 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4534
4535 if (tosync < 0) {
4536 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4537 sizeof (struct bge_tx_bd);
4538 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4539 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4540 tosync = -tosync;
4541 }
4542
4543 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4544 offset, tosync * sizeof (struct bge_tx_bd),
4545 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4546
4547 /*
4548 * Go through our tx ring and free mbufs for those
4549 * frames that have been sent.
4550 */
4551 while (sc->bge_tx_saved_considx !=
4552 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4553 uint32_t idx = 0;
4554
4555 idx = sc->bge_tx_saved_considx;
4556 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4557 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4558 ifp->if_opackets++;
4559 m = sc->bge_cdata.bge_tx_chain[idx];
4560 if (m != NULL) {
4561 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4562 dma = sc->txdma[idx];
4563 if (dma->is_dma32) {
4564 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4565 0, dma->dmamap32->dm_mapsize,
4566 BUS_DMASYNC_POSTWRITE);
4567 bus_dmamap_unload(
4568 sc->bge_dmatag32, dma->dmamap32);
4569 } else {
4570 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4571 0, dma->dmamap->dm_mapsize,
4572 BUS_DMASYNC_POSTWRITE);
4573 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4574 }
4575 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4576 sc->txdma[idx] = NULL;
4577
4578 m_freem(m);
4579 }
4580 sc->bge_txcnt--;
4581 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4582 ifp->if_timer = 0;
4583 }
4584
4585 if (cur_tx != NULL)
4586 ifp->if_flags &= ~IFF_OACTIVE;
4587 }
4588
4589 static int
4590 bge_intr(void *xsc)
4591 {
4592 struct bge_softc *sc;
4593 struct ifnet *ifp;
4594 uint32_t pcistate, statusword, statustag;
4595 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4596
4597 sc = xsc;
4598 ifp = &sc->ethercom.ec_if;
4599
4600 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4601 if (BGE_IS_5717_PLUS(sc))
4602 intrmask = 0;
4603
4604 /* It is possible for the interrupt to arrive before
4605 * the status block is updated prior to the interrupt.
4606 * Reading the PCI State register will confirm whether the
4607 * interrupt is ours and will flush the status block.
4608 */
4609 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4610
4611 /* read status word from status block */
4612 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4613 offsetof(struct bge_ring_data, bge_status_block),
4614 sizeof (struct bge_status_block),
4615 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4616 statusword = sc->bge_rdata->bge_status_block.bge_status;
4617 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4618
4619 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4620 if (sc->bge_lasttag == statustag &&
4621 (~pcistate & intrmask)) {
4622 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4623 return (0);
4624 }
4625 sc->bge_lasttag = statustag;
4626 } else {
4627 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4628 !(~pcistate & intrmask)) {
4629 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4630 return (0);
4631 }
4632 statustag = 0;
4633 }
4634 /* Ack interrupt and stop others from occurring. */
4635 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4636 BGE_EVCNT_INCR(sc->bge_ev_intr);
4637
4638 /* clear status word */
4639 sc->bge_rdata->bge_status_block.bge_status = 0;
4640
4641 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4642 offsetof(struct bge_ring_data, bge_status_block),
4643 sizeof (struct bge_status_block),
4644 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4645
4646 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4647 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4648 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4649 bge_link_upd(sc);
4650
4651 if (ifp->if_flags & IFF_RUNNING) {
4652 /* Check RX return ring producer/consumer */
4653 bge_rxeof(sc);
4654
4655 /* Check TX ring producer/consumer */
4656 bge_txeof(sc);
4657 }
4658
4659 if (sc->bge_pending_rxintr_change) {
4660 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4661 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4662
4663 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4664 DELAY(10);
4665 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4666
4667 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4668 DELAY(10);
4669 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4670
4671 sc->bge_pending_rxintr_change = 0;
4672 }
4673 bge_handle_events(sc);
4674
4675 /* Re-enable interrupts. */
4676 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4677
4678 if (ifp->if_flags & IFF_RUNNING)
4679 if_schedule_deferred_start(ifp);
4680
4681 return 1;
4682 }
4683
4684 static void
4685 bge_asf_driver_up(struct bge_softc *sc)
4686 {
4687 if (sc->bge_asf_mode & ASF_STACKUP) {
4688 /* Send ASF heartbeat aprox. every 2s */
4689 if (sc->bge_asf_count)
4690 sc->bge_asf_count --;
4691 else {
4692 sc->bge_asf_count = 2;
4693
4694 bge_wait_for_event_ack(sc);
4695
4696 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4697 BGE_FW_CMD_DRV_ALIVE3);
4698 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4699 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4700 BGE_FW_HB_TIMEOUT_SEC);
4701 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4702 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4703 BGE_RX_CPU_DRV_EVENT);
4704 }
4705 }
4706 }
4707
4708 static void
4709 bge_tick(void *xsc)
4710 {
4711 struct bge_softc *sc = xsc;
4712 struct mii_data *mii = &sc->bge_mii;
4713 int s;
4714
4715 s = splnet();
4716
4717 if (BGE_IS_5705_PLUS(sc))
4718 bge_stats_update_regs(sc);
4719 else
4720 bge_stats_update(sc);
4721
4722 if (sc->bge_flags & BGEF_FIBER_TBI) {
4723 /*
4724 * Since in TBI mode auto-polling can't be used we should poll
4725 * link status manually. Here we register pending link event
4726 * and trigger interrupt.
4727 */
4728 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4729 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4730 } else {
4731 /*
4732 * Do not touch PHY if we have link up. This could break
4733 * IPMI/ASF mode or produce extra input errors.
4734 * (extra input errors was reported for bcm5701 & bcm5704).
4735 */
4736 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4737 mii_tick(mii);
4738 }
4739
4740 bge_asf_driver_up(sc);
4741
4742 if (!sc->bge_detaching)
4743 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4744
4745 splx(s);
4746 }
4747
4748 static void
4749 bge_stats_update_regs(struct bge_softc *sc)
4750 {
4751 struct ifnet *ifp = &sc->ethercom.ec_if;
4752
4753 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4754 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4755
4756 /*
4757 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4758 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4759 * (silicon bug). There's no reliable workaround so just
4760 * ignore the counter
4761 */
4762 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4763 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4764 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4765 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4766 }
4767 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4768 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4769
4770 if (sc->bge_flags & BGEF_RDMA_BUG) {
4771 uint32_t val, ucast, mcast, bcast;
4772
4773 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4774 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4775 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4776 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4777 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4778 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4779
4780 /*
4781 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4782 * frames, it's safe to disable workaround for DMA engine's
4783 * miscalculation of TXMBUF space.
4784 */
4785 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4786 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4787 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4788 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4789 else
4790 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4791 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4792 sc->bge_flags &= ~BGEF_RDMA_BUG;
4793 }
4794 }
4795 }
4796
4797 static void
4798 bge_stats_update(struct bge_softc *sc)
4799 {
4800 struct ifnet *ifp = &sc->ethercom.ec_if;
4801 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4802
4803 #define READ_STAT(sc, stats, stat) \
4804 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4805
4806 ifp->if_collisions +=
4807 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4808 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4809 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4810 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4811 ifp->if_collisions;
4812
4813 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4814 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4815 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4816 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4817 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4818 READ_STAT(sc, stats,
4819 xoffPauseFramesReceived.bge_addr_lo));
4820 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4821 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4822 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4823 READ_STAT(sc, stats,
4824 macControlFramesReceived.bge_addr_lo));
4825 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4826 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4827
4828 #undef READ_STAT
4829
4830 #ifdef notdef
4831 ifp->if_collisions +=
4832 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4833 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4834 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4835 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4836 ifp->if_collisions;
4837 #endif
4838 }
4839
4840 /*
4841 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4842 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4843 * but when such padded frames employ the bge IP/TCP checksum offload,
4844 * the hardware checksum assist gives incorrect results (possibly
4845 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4846 * If we pad such runts with zeros, the onboard checksum comes out correct.
4847 */
4848 static inline int
4849 bge_cksum_pad(struct mbuf *pkt)
4850 {
4851 struct mbuf *last = NULL;
4852 int padlen;
4853
4854 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4855
4856 /* if there's only the packet-header and we can pad there, use it. */
4857 if (pkt->m_pkthdr.len == pkt->m_len &&
4858 M_TRAILINGSPACE(pkt) >= padlen) {
4859 last = pkt;
4860 } else {
4861 /*
4862 * Walk packet chain to find last mbuf. We will either
4863 * pad there, or append a new mbuf and pad it
4864 * (thus perhaps avoiding the bcm5700 dma-min bug).
4865 */
4866 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4867 continue; /* do nothing */
4868 }
4869
4870 /* `last' now points to last in chain. */
4871 if (M_TRAILINGSPACE(last) < padlen) {
4872 /* Allocate new empty mbuf, pad it. Compact later. */
4873 struct mbuf *n;
4874 MGET(n, M_DONTWAIT, MT_DATA);
4875 if (n == NULL)
4876 return ENOBUFS;
4877 n->m_len = 0;
4878 last->m_next = n;
4879 last = n;
4880 }
4881 }
4882
4883 KDASSERT(!M_READONLY(last));
4884 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4885
4886 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4887 memset(mtod(last, char *) + last->m_len, 0, padlen);
4888 last->m_len += padlen;
4889 pkt->m_pkthdr.len += padlen;
4890 return 0;
4891 }
4892
4893 /*
4894 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4895 */
4896 static inline int
4897 bge_compact_dma_runt(struct mbuf *pkt)
4898 {
4899 struct mbuf *m, *prev;
4900 int totlen;
4901
4902 prev = NULL;
4903 totlen = 0;
4904
4905 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
4906 int mlen = m->m_len;
4907 int shortfall = 8 - mlen ;
4908
4909 totlen += mlen;
4910 if (mlen == 0)
4911 continue;
4912 if (mlen >= 8)
4913 continue;
4914
4915 /* If we get here, mbuf data is too small for DMA engine.
4916 * Try to fix by shuffling data to prev or next in chain.
4917 * If that fails, do a compacting deep-copy of the whole chain.
4918 */
4919
4920 /* Internal frag. If fits in prev, copy it there. */
4921 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4922 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4923 prev->m_len += mlen;
4924 m->m_len = 0;
4925 /* XXX stitch chain */
4926 prev->m_next = m_free(m);
4927 m = prev;
4928 continue;
4929 } else if (m->m_next != NULL &&
4930 M_TRAILINGSPACE(m) >= shortfall &&
4931 m->m_next->m_len >= (8 + shortfall)) {
4932 /* m is writable and have enough data in next, pull up. */
4933
4934 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4935 shortfall);
4936 m->m_len += shortfall;
4937 m->m_next->m_len -= shortfall;
4938 m->m_next->m_data += shortfall;
4939 } else if (m->m_next == NULL || 1) {
4940 /* Got a runt at the very end of the packet.
4941 * borrow data from the tail of the preceding mbuf and
4942 * update its length in-place. (The original data is
4943 * still valid, so we can do this even if prev is not
4944 * writable.)
4945 */
4946
4947 /*
4948 * If we'd make prev a runt, just move all of its data.
4949 */
4950 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4951 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4952
4953 if ((prev->m_len - shortfall) < 8)
4954 shortfall = prev->m_len;
4955
4956 #ifdef notyet /* just do the safe slow thing for now */
4957 if (!M_READONLY(m)) {
4958 if (M_LEADINGSPACE(m) < shorfall) {
4959 void *m_dat;
4960 m_dat = M_BUFADDR(m);
4961 memmove(m_dat, mtod(m, void*),
4962 m->m_len);
4963 m->m_data = m_dat;
4964 }
4965 } else
4966 #endif /* just do the safe slow thing */
4967 {
4968 struct mbuf * n = NULL;
4969 int newprevlen = prev->m_len - shortfall;
4970
4971 MGET(n, M_NOWAIT, MT_DATA);
4972 if (n == NULL)
4973 return ENOBUFS;
4974 KASSERT(m->m_len + shortfall < MLEN
4975 /*,
4976 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4977
4978 /* first copy the data we're stealing from prev */
4979 memcpy(n->m_data, prev->m_data + newprevlen,
4980 shortfall);
4981
4982 /* update prev->m_len accordingly */
4983 prev->m_len -= shortfall;
4984
4985 /* copy data from runt m */
4986 memcpy(n->m_data + shortfall, m->m_data,
4987 m->m_len);
4988
4989 /* n holds what we stole from prev, plus m */
4990 n->m_len = shortfall + m->m_len;
4991
4992 /* stitch n into chain and free m */
4993 n->m_next = m->m_next;
4994 prev->m_next = n;
4995 /* KASSERT(m->m_next == NULL); */
4996 m->m_next = NULL;
4997 m_free(m);
4998 m = n; /* for continuing loop */
4999 }
5000 }
5001 }
5002 return 0;
5003 }
5004
5005 /*
5006 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5007 * pointers to descriptors.
5008 */
5009 static int
5010 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5011 {
5012 struct ifnet *ifp = &sc->ethercom.ec_if;
5013 struct bge_tx_bd *f, *prev_f;
5014 uint32_t frag, cur;
5015 uint16_t csum_flags = 0;
5016 uint16_t txbd_tso_flags = 0;
5017 struct txdmamap_pool_entry *dma;
5018 bus_dmamap_t dmamap;
5019 bus_dma_tag_t dmatag;
5020 int i = 0;
5021 int use_tso, maxsegsize, error;
5022 bool have_vtag;
5023 uint16_t vtag;
5024 bool remap;
5025
5026 if (m_head->m_pkthdr.csum_flags) {
5027 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5028 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5029 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5030 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5031 }
5032
5033 /*
5034 * If we were asked to do an outboard checksum, and the NIC
5035 * has the bug where it sometimes adds in the Ethernet padding,
5036 * explicitly pad with zeros so the cksum will be correct either way.
5037 * (For now, do this for all chip versions, until newer
5038 * are confirmed to not require the workaround.)
5039 */
5040 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5041 #ifdef notyet
5042 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5043 #endif
5044 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5045 goto check_dma_bug;
5046
5047 if (bge_cksum_pad(m_head) != 0)
5048 return ENOBUFS;
5049
5050 check_dma_bug:
5051 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5052 goto doit;
5053
5054 /*
5055 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5056 * less than eight bytes. If we encounter a teeny mbuf
5057 * at the end of a chain, we can pad. Otherwise, copy.
5058 */
5059 if (bge_compact_dma_runt(m_head) != 0)
5060 return ENOBUFS;
5061
5062 doit:
5063 dma = SLIST_FIRST(&sc->txdma_list);
5064 if (dma == NULL) {
5065 ifp->if_flags |= IFF_OACTIVE;
5066 return ENOBUFS;
5067 }
5068 dmamap = dma->dmamap;
5069 dmatag = sc->bge_dmatag;
5070 dma->is_dma32 = false;
5071
5072 /*
5073 * Set up any necessary TSO state before we start packing...
5074 */
5075 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5076 if (!use_tso) {
5077 maxsegsize = 0;
5078 } else { /* TSO setup */
5079 unsigned mss;
5080 struct ether_header *eh;
5081 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5082 unsigned bge_hlen;
5083 struct mbuf * m0 = m_head;
5084 struct ip *ip;
5085 struct tcphdr *th;
5086 int iphl, hlen;
5087
5088 /*
5089 * XXX It would be nice if the mbuf pkthdr had offset
5090 * fields for the protocol headers.
5091 */
5092
5093 eh = mtod(m0, struct ether_header *);
5094 switch (htons(eh->ether_type)) {
5095 case ETHERTYPE_IP:
5096 offset = ETHER_HDR_LEN;
5097 break;
5098
5099 case ETHERTYPE_VLAN:
5100 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5101 break;
5102
5103 default:
5104 /*
5105 * Don't support this protocol or encapsulation.
5106 */
5107 return ENOBUFS;
5108 }
5109
5110 /*
5111 * TCP/IP headers are in the first mbuf; we can do
5112 * this the easy way.
5113 */
5114 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5115 hlen = iphl + offset;
5116 if (__predict_false(m0->m_len <
5117 (hlen + sizeof(struct tcphdr)))) {
5118
5119 aprint_error_dev(sc->bge_dev,
5120 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5121 "not handled yet\n",
5122 m0->m_len, hlen+ sizeof(struct tcphdr));
5123 #ifdef NOTYET
5124 /*
5125 * XXX jonathan (at) NetBSD.org: untested.
5126 * how to force this branch to be taken?
5127 */
5128 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5129
5130 m_copydata(m0, offset, sizeof(ip), &ip);
5131 m_copydata(m0, hlen, sizeof(th), &th);
5132
5133 ip.ip_len = 0;
5134
5135 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5136 sizeof(ip.ip_len), &ip.ip_len);
5137
5138 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5139 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5140
5141 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5142 sizeof(th.th_sum), &th.th_sum);
5143
5144 hlen += th.th_off << 2;
5145 iptcp_opt_words = hlen;
5146 #else
5147 /*
5148 * if_wm "hard" case not yet supported, can we not
5149 * mandate it out of existence?
5150 */
5151 (void) ip; (void)th; (void) ip_tcp_hlen;
5152
5153 return ENOBUFS;
5154 #endif
5155 } else {
5156 ip = (struct ip *) (mtod(m0, char *) + offset);
5157 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5158 ip_tcp_hlen = iphl + (th->th_off << 2);
5159
5160 /* Total IP/TCP options, in 32-bit words */
5161 iptcp_opt_words = (ip_tcp_hlen
5162 - sizeof(struct tcphdr)
5163 - sizeof(struct ip)) >> 2;
5164 }
5165 if (BGE_IS_575X_PLUS(sc)) {
5166 th->th_sum = 0;
5167 csum_flags = 0;
5168 } else {
5169 /*
5170 * XXX jonathan (at) NetBSD.org: 5705 untested.
5171 * Requires TSO firmware patch for 5701/5703/5704.
5172 */
5173 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5174 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5175 }
5176
5177 mss = m_head->m_pkthdr.segsz;
5178 txbd_tso_flags |=
5179 BGE_TXBDFLAG_CPU_PRE_DMA |
5180 BGE_TXBDFLAG_CPU_POST_DMA;
5181
5182 /*
5183 * Our NIC TSO-assist assumes TSO has standard, optionless
5184 * IPv4 and TCP headers, which total 40 bytes. By default,
5185 * the NIC copies 40 bytes of IP/TCP header from the
5186 * supplied header into the IP/TCP header portion of
5187 * each post-TSO-segment. If the supplied packet has IP or
5188 * TCP options, we need to tell the NIC to copy those extra
5189 * bytes into each post-TSO header, in addition to the normal
5190 * 40-byte IP/TCP header (and to leave space accordingly).
5191 * Unfortunately, the driver encoding of option length
5192 * varies across different ASIC families.
5193 */
5194 tcp_seg_flags = 0;
5195 bge_hlen = ip_tcp_hlen >> 2;
5196 if (BGE_IS_5717_PLUS(sc)) {
5197 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5198 txbd_tso_flags |=
5199 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5200 } else if (BGE_IS_5705_PLUS(sc)) {
5201 tcp_seg_flags = bge_hlen << 11;
5202 } else {
5203 /* XXX iptcp_opt_words or bge_hlen ? */
5204 txbd_tso_flags |= iptcp_opt_words << 12;
5205 }
5206 maxsegsize = mss | tcp_seg_flags;
5207 ip->ip_len = htons(mss + ip_tcp_hlen);
5208 ip->ip_sum = 0;
5209
5210 } /* TSO setup */
5211
5212 have_vtag = vlan_has_tag(m_head);
5213 if (have_vtag)
5214 vtag = vlan_get_tag(m_head);
5215
5216 /*
5217 * Start packing the mbufs in this chain into
5218 * the fragment pointers. Stop when we run out
5219 * of fragments or hit the end of the mbuf chain.
5220 */
5221 remap = true;
5222 load_again:
5223 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5224 if (__predict_false(error)) {
5225 if (error == EFBIG && remap) {
5226 struct mbuf *m;
5227 remap = false;
5228 m = m_defrag(m_head, M_NOWAIT);
5229 if (m != NULL) {
5230 KASSERT(m == m_head);
5231 goto load_again;
5232 }
5233 }
5234 return error;
5235 }
5236 /*
5237 * Sanity check: avoid coming within 16 descriptors
5238 * of the end of the ring.
5239 */
5240 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5241 BGE_TSO_PRINTF(("%s: "
5242 " dmamap_load_mbuf too close to ring wrap\n",
5243 device_xname(sc->bge_dev)));
5244 goto fail_unload;
5245 }
5246
5247 /* Iterate over dmap-map fragments. */
5248 f = prev_f = NULL;
5249 cur = frag = *txidx;
5250
5251 for (i = 0; i < dmamap->dm_nsegs; i++) {
5252 f = &sc->bge_rdata->bge_tx_ring[frag];
5253 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5254 break;
5255
5256 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5257 f->bge_len = dmamap->dm_segs[i].ds_len;
5258 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5259 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5260 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5261 (prev_f != NULL &&
5262 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5263 ) {
5264 /*
5265 * watchdog timeout issue was observed with TSO,
5266 * limiting DMA address space to 32bits seems to
5267 * address the issue.
5268 */
5269 bus_dmamap_unload(dmatag, dmamap);
5270 dmatag = sc->bge_dmatag32;
5271 dmamap = dma->dmamap32;
5272 dma->is_dma32 = true;
5273 remap = true;
5274 goto load_again;
5275 }
5276
5277 /*
5278 * For 5751 and follow-ons, for TSO we must turn
5279 * off checksum-assist flag in the tx-descr, and
5280 * supply the ASIC-revision-specific encoding
5281 * of TSO flags and segsize.
5282 */
5283 if (use_tso) {
5284 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5285 f->bge_rsvd = maxsegsize;
5286 f->bge_flags = csum_flags | txbd_tso_flags;
5287 } else {
5288 f->bge_rsvd = 0;
5289 f->bge_flags =
5290 (csum_flags | txbd_tso_flags) & 0x0fff;
5291 }
5292 } else {
5293 f->bge_rsvd = 0;
5294 f->bge_flags = csum_flags;
5295 }
5296
5297 if (have_vtag) {
5298 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5299 f->bge_vlan_tag = vtag;
5300 } else {
5301 f->bge_vlan_tag = 0;
5302 }
5303 prev_f = f;
5304 cur = frag;
5305 BGE_INC(frag, BGE_TX_RING_CNT);
5306 }
5307
5308 if (i < dmamap->dm_nsegs) {
5309 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5310 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5311 goto fail_unload;
5312 }
5313
5314 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5315 BUS_DMASYNC_PREWRITE);
5316
5317 if (frag == sc->bge_tx_saved_considx) {
5318 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5319 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5320
5321 goto fail_unload;
5322 }
5323
5324 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5325 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5326 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5327 sc->txdma[cur] = dma;
5328 sc->bge_txcnt += dmamap->dm_nsegs;
5329
5330 *txidx = frag;
5331
5332 return 0;
5333
5334 fail_unload:
5335 bus_dmamap_unload(dmatag, dmamap);
5336 ifp->if_flags |= IFF_OACTIVE;
5337
5338 return ENOBUFS;
5339 }
5340
5341 /*
5342 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5343 * to the mbuf data regions directly in the transmit descriptors.
5344 */
5345 static void
5346 bge_start(struct ifnet *ifp)
5347 {
5348 struct bge_softc *sc;
5349 struct mbuf *m_head = NULL;
5350 struct mbuf *m;
5351 uint32_t prodidx;
5352 int pkts = 0;
5353 int error;
5354
5355 sc = ifp->if_softc;
5356
5357 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5358 return;
5359
5360 prodidx = sc->bge_tx_prodidx;
5361
5362 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5363 IFQ_POLL(&ifp->if_snd, m_head);
5364 if (m_head == NULL)
5365 break;
5366
5367 #if 0
5368 /*
5369 * XXX
5370 * safety overkill. If this is a fragmented packet chain
5371 * with delayed TCP/UDP checksums, then only encapsulate
5372 * it if we have enough descriptors to handle the entire
5373 * chain at once.
5374 * (paranoia -- may not actually be needed)
5375 */
5376 if (m_head->m_flags & M_FIRSTFRAG &&
5377 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5378 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5379 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5380 ifp->if_flags |= IFF_OACTIVE;
5381 break;
5382 }
5383 }
5384 #endif
5385
5386 /*
5387 * Pack the data into the transmit ring. If we
5388 * don't have room, set the OACTIVE flag and wait
5389 * for the NIC to drain the ring.
5390 */
5391 error = bge_encap(sc, m_head, &prodidx);
5392 if (__predict_false(error)) {
5393 if (ifp->if_flags & IFF_OACTIVE) {
5394 /* just wait for the transmit ring to drain */
5395 break;
5396 }
5397 IFQ_DEQUEUE(&ifp->if_snd, m);
5398 KASSERT(m == m_head);
5399 m_freem(m_head);
5400 continue;
5401 }
5402
5403 /* now we are committed to transmit the packet */
5404 IFQ_DEQUEUE(&ifp->if_snd, m);
5405 KASSERT(m == m_head);
5406 pkts++;
5407
5408 /*
5409 * If there's a BPF listener, bounce a copy of this frame
5410 * to him.
5411 */
5412 bpf_mtap(ifp, m_head, BPF_D_OUT);
5413 }
5414 if (pkts == 0)
5415 return;
5416
5417 /* Transmit */
5418 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5419 /* 5700 b2 errata */
5420 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5421 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5422
5423 sc->bge_tx_prodidx = prodidx;
5424
5425 /*
5426 * Set a timeout in case the chip goes out to lunch.
5427 */
5428 ifp->if_timer = 5;
5429 }
5430
5431 static int
5432 bge_init(struct ifnet *ifp)
5433 {
5434 struct bge_softc *sc = ifp->if_softc;
5435 const uint16_t *m;
5436 uint32_t mode, reg;
5437 int s, error = 0;
5438
5439 s = splnet();
5440
5441 ifp = &sc->ethercom.ec_if;
5442
5443 /* Cancel pending I/O and flush buffers. */
5444 bge_stop(ifp, 0);
5445
5446 bge_stop_fw(sc);
5447 bge_sig_pre_reset(sc, BGE_RESET_START);
5448 bge_reset(sc);
5449 bge_sig_legacy(sc, BGE_RESET_START);
5450
5451 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5452 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5453 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5454 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5455 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5456
5457 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5458 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5459 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5460 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5461
5462 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5463 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5464 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5465 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5466
5467 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5468 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5469 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5470 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5471 }
5472
5473 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5474 pcireg_t aercap;
5475
5476 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5477 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5478 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5479 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5480 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5481
5482 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5483 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5484 | BGE_PCIE_EIDLE_DELAY_13CLK;
5485 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5486
5487 /* Clear correctable error */
5488 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5489 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5490 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5491 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5492
5493 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5494 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5495 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5496 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5497 }
5498
5499 bge_sig_post_reset(sc, BGE_RESET_START);
5500
5501 bge_chipinit(sc);
5502
5503 /*
5504 * Init the various state machines, ring
5505 * control blocks and firmware.
5506 */
5507 error = bge_blockinit(sc);
5508 if (error != 0) {
5509 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5510 error);
5511 splx(s);
5512 return error;
5513 }
5514
5515 ifp = &sc->ethercom.ec_if;
5516
5517 /* 5718 step 25, 57XX step 54 */
5518 /* Specify MTU. */
5519 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5520 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5521
5522 /* 5718 step 23 */
5523 /* Load our MAC address. */
5524 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5525 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5526 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5527 ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5528
5529 /* Enable or disable promiscuous mode as needed. */
5530 if (ifp->if_flags & IFF_PROMISC)
5531 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5532 else
5533 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5534
5535 /* Program multicast filter. */
5536 bge_setmulti(sc);
5537
5538 /* Init RX ring. */
5539 bge_init_rx_ring_std(sc);
5540
5541 /*
5542 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5543 * memory to insure that the chip has in fact read the first
5544 * entry of the ring.
5545 */
5546 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5547 uint32_t v, i;
5548 for (i = 0; i < 10; i++) {
5549 DELAY(20);
5550 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5551 if (v == (MCLBYTES - ETHER_ALIGN))
5552 break;
5553 }
5554 if (i == 10)
5555 aprint_error_dev(sc->bge_dev,
5556 "5705 A0 chip failed to load RX ring\n");
5557 }
5558
5559 /* Init jumbo RX ring. */
5560 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5561 bge_init_rx_ring_jumbo(sc);
5562
5563 /* Init our RX return ring index */
5564 sc->bge_rx_saved_considx = 0;
5565
5566 /* Init TX ring. */
5567 bge_init_tx_ring(sc);
5568
5569 /* 5718 step 63, 57XX step 94 */
5570 /* Enable TX MAC state machine lockup fix. */
5571 mode = CSR_READ_4(sc, BGE_TX_MODE);
5572 if (BGE_IS_5755_PLUS(sc) ||
5573 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5574 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5575 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5576 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5577 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5578 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5579 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5580 }
5581
5582 /* Turn on transmitter */
5583 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5584 /* 5718 step 64 */
5585 DELAY(100);
5586
5587 /* 5718 step 65, 57XX step 95 */
5588 /* Turn on receiver */
5589 mode = CSR_READ_4(sc, BGE_RX_MODE);
5590 if (BGE_IS_5755_PLUS(sc))
5591 mode |= BGE_RXMODE_IPV6_ENABLE;
5592 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5593 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5594 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5595 /* 5718 step 66 */
5596 DELAY(10);
5597
5598 /* 5718 step 12, 57XX step 37 */
5599 /*
5600 * XXX Doucments of 5718 series and 577xx say the recommended value
5601 * is 1, but tg3 set 1 only on 57765 series.
5602 */
5603 if (BGE_IS_57765_PLUS(sc))
5604 reg = 1;
5605 else
5606 reg = 2;
5607 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5608
5609 /* Tell firmware we're alive. */
5610 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5611
5612 /* Enable host interrupts. */
5613 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5614 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5615 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5616
5617 if ((error = bge_ifmedia_upd(ifp)) != 0)
5618 goto out;
5619
5620 ifp->if_flags |= IFF_RUNNING;
5621 ifp->if_flags &= ~IFF_OACTIVE;
5622
5623 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5624
5625 out:
5626 sc->bge_if_flags = ifp->if_flags;
5627 splx(s);
5628
5629 return error;
5630 }
5631
5632 /*
5633 * Set media options.
5634 */
5635 static int
5636 bge_ifmedia_upd(struct ifnet *ifp)
5637 {
5638 struct bge_softc *sc = ifp->if_softc;
5639 struct mii_data *mii = &sc->bge_mii;
5640 struct ifmedia *ifm = &sc->bge_ifmedia;
5641 int rc;
5642
5643 /* If this is a 1000baseX NIC, enable the TBI port. */
5644 if (sc->bge_flags & BGEF_FIBER_TBI) {
5645 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5646 return EINVAL;
5647 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5648 case IFM_AUTO:
5649 /*
5650 * The BCM5704 ASIC appears to have a special
5651 * mechanism for programming the autoneg
5652 * advertisement registers in TBI mode.
5653 */
5654 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5655 uint32_t sgdig;
5656 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5657 if (sgdig & BGE_SGDIGSTS_DONE) {
5658 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5659 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5660 sgdig |= BGE_SGDIGCFG_AUTO |
5661 BGE_SGDIGCFG_PAUSE_CAP |
5662 BGE_SGDIGCFG_ASYM_PAUSE;
5663 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5664 sgdig | BGE_SGDIGCFG_SEND);
5665 DELAY(5);
5666 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5667 sgdig);
5668 }
5669 }
5670 break;
5671 case IFM_1000_SX:
5672 if ((ifm->ifm_media & IFM_FDX) != 0) {
5673 BGE_CLRBIT(sc, BGE_MAC_MODE,
5674 BGE_MACMODE_HALF_DUPLEX);
5675 } else {
5676 BGE_SETBIT(sc, BGE_MAC_MODE,
5677 BGE_MACMODE_HALF_DUPLEX);
5678 }
5679 DELAY(40);
5680 break;
5681 default:
5682 return EINVAL;
5683 }
5684 /* XXX 802.3x flow control for 1000BASE-SX */
5685 return 0;
5686 }
5687
5688 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5689 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5690 uint32_t reg;
5691
5692 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5693 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5694 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5695 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5696 }
5697 }
5698
5699 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5700 if ((rc = mii_mediachg(mii)) == ENXIO)
5701 return 0;
5702
5703 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5704 uint32_t reg;
5705
5706 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5707 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5708 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5709 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5710 delay(40);
5711 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5712 }
5713 }
5714
5715 /*
5716 * Force an interrupt so that we will call bge_link_upd
5717 * if needed and clear any pending link state attention.
5718 * Without this we are not getting any further interrupts
5719 * for link state changes and thus will not UP the link and
5720 * not be able to send in bge_start. The only way to get
5721 * things working was to receive a packet and get a RX intr.
5722 */
5723 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5724 sc->bge_flags & BGEF_IS_5788)
5725 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5726 else
5727 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5728
5729 return rc;
5730 }
5731
5732 /*
5733 * Report current media status.
5734 */
5735 static void
5736 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5737 {
5738 struct bge_softc *sc = ifp->if_softc;
5739 struct mii_data *mii = &sc->bge_mii;
5740
5741 if (sc->bge_flags & BGEF_FIBER_TBI) {
5742 ifmr->ifm_status = IFM_AVALID;
5743 ifmr->ifm_active = IFM_ETHER;
5744 if (CSR_READ_4(sc, BGE_MAC_STS) &
5745 BGE_MACSTAT_TBI_PCS_SYNCHED)
5746 ifmr->ifm_status |= IFM_ACTIVE;
5747 ifmr->ifm_active |= IFM_1000_SX;
5748 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5749 ifmr->ifm_active |= IFM_HDX;
5750 else
5751 ifmr->ifm_active |= IFM_FDX;
5752 return;
5753 }
5754
5755 mii_pollstat(mii);
5756 ifmr->ifm_status = mii->mii_media_status;
5757 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5758 sc->bge_flowflags;
5759 }
5760
5761 static int
5762 bge_ifflags_cb(struct ethercom *ec)
5763 {
5764 struct ifnet *ifp = &ec->ec_if;
5765 struct bge_softc *sc = ifp->if_softc;
5766 u_short change = ifp->if_flags ^ sc->bge_if_flags;
5767
5768 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
5769 return ENETRESET;
5770 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5771 return 0;
5772
5773 if ((ifp->if_flags & IFF_PROMISC) == 0)
5774 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5775 else
5776 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5777
5778 bge_setmulti(sc);
5779
5780 sc->bge_if_flags = ifp->if_flags;
5781 return 0;
5782 }
5783
5784 static int
5785 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5786 {
5787 struct bge_softc *sc = ifp->if_softc;
5788 struct ifreq *ifr = (struct ifreq *) data;
5789 int s, error = 0;
5790 struct mii_data *mii;
5791
5792 s = splnet();
5793
5794 switch (command) {
5795 case SIOCSIFMEDIA:
5796 /* XXX Flow control is not supported for 1000BASE-SX */
5797 if (sc->bge_flags & BGEF_FIBER_TBI) {
5798 ifr->ifr_media &= ~IFM_ETH_FMASK;
5799 sc->bge_flowflags = 0;
5800 }
5801
5802 /* Flow control requires full-duplex mode. */
5803 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5804 (ifr->ifr_media & IFM_FDX) == 0) {
5805 ifr->ifr_media &= ~IFM_ETH_FMASK;
5806 }
5807 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5808 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5809 /* We can do both TXPAUSE and RXPAUSE. */
5810 ifr->ifr_media |=
5811 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5812 }
5813 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5814 }
5815
5816 if (sc->bge_flags & BGEF_FIBER_TBI) {
5817 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5818 command);
5819 } else {
5820 mii = &sc->bge_mii;
5821 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5822 command);
5823 }
5824 break;
5825 default:
5826 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5827 break;
5828
5829 error = 0;
5830
5831 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5832 ;
5833 else if (ifp->if_flags & IFF_RUNNING)
5834 bge_setmulti(sc);
5835 break;
5836 }
5837
5838 splx(s);
5839
5840 return error;
5841 }
5842
5843 static void
5844 bge_watchdog(struct ifnet *ifp)
5845 {
5846 struct bge_softc *sc;
5847 uint32_t status;
5848
5849 sc = ifp->if_softc;
5850
5851 /* If pause frames are active then don't reset the hardware. */
5852 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5853 status = CSR_READ_4(sc, BGE_RX_STS);
5854 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5855 /*
5856 * If link partner has us in XOFF state then wait for
5857 * the condition to clear.
5858 */
5859 CSR_WRITE_4(sc, BGE_RX_STS, status);
5860 ifp->if_timer = 5;
5861 return;
5862 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5863 (status & BGE_RXSTAT_RCVD_XON) != 0) {
5864 /*
5865 * If link partner has us in XOFF state then wait for
5866 * the condition to clear.
5867 */
5868 CSR_WRITE_4(sc, BGE_RX_STS, status);
5869 ifp->if_timer = 5;
5870 return;
5871 }
5872 /*
5873 * Any other condition is unexpected and the controller
5874 * should be reset.
5875 */
5876 }
5877
5878 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5879
5880 ifp->if_flags &= ~IFF_RUNNING;
5881 bge_init(ifp);
5882
5883 ifp->if_oerrors++;
5884 }
5885
5886 static void
5887 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5888 {
5889 int i;
5890
5891 BGE_CLRBIT_FLUSH(sc, reg, bit);
5892
5893 for (i = 0; i < 1000; i++) {
5894 delay(100);
5895 if ((CSR_READ_4(sc, reg) & bit) == 0)
5896 return;
5897 }
5898
5899 /*
5900 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5901 * on some environment (and once after boot?)
5902 */
5903 if (reg != BGE_SRS_MODE)
5904 aprint_error_dev(sc->bge_dev,
5905 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5906 (u_long)reg, bit);
5907 }
5908
5909 /*
5910 * Stop the adapter and free any mbufs allocated to the
5911 * RX and TX lists.
5912 */
5913 static void
5914 bge_stop(struct ifnet *ifp, int disable)
5915 {
5916 struct bge_softc *sc = ifp->if_softc;
5917
5918 if (disable) {
5919 sc->bge_detaching = 1;
5920 callout_halt(&sc->bge_timeout, NULL);
5921 } else
5922 callout_stop(&sc->bge_timeout);
5923
5924 /* Disable host interrupts. */
5925 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5926 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5927
5928 /*
5929 * Tell firmware we're shutting down.
5930 */
5931 bge_stop_fw(sc);
5932 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5933
5934 /*
5935 * Disable all of the receiver blocks.
5936 */
5937 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5938 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5939 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5940 if (BGE_IS_5700_FAMILY(sc))
5941 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5942 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5943 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5944 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5945
5946 /*
5947 * Disable all of the transmit blocks.
5948 */
5949 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5950 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5951 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5952 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5953 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5954 if (BGE_IS_5700_FAMILY(sc))
5955 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5956 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5957
5958 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5959 delay(40);
5960
5961 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5962
5963 /*
5964 * Shut down all of the memory managers and related
5965 * state machines.
5966 */
5967 /* 5718 step 5a,5b */
5968 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5969 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5970 if (BGE_IS_5700_FAMILY(sc))
5971 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5972
5973 /* 5718 step 5c,5d */
5974 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5975 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5976
5977 if (BGE_IS_5700_FAMILY(sc)) {
5978 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5979 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5980 }
5981
5982 bge_reset(sc);
5983 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5984 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5985
5986 /*
5987 * Keep the ASF firmware running if up.
5988 */
5989 if (sc->bge_asf_mode & ASF_STACKUP)
5990 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5991 else
5992 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5993
5994 /* Free the RX lists. */
5995 bge_free_rx_ring_std(sc, disable);
5996
5997 /* Free jumbo RX list. */
5998 if (BGE_IS_JUMBO_CAPABLE(sc))
5999 bge_free_rx_ring_jumbo(sc);
6000
6001 /* Free TX buffers. */
6002 bge_free_tx_ring(sc, disable);
6003
6004 /*
6005 * Isolate/power down the PHY.
6006 */
6007 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6008 mii_down(&sc->bge_mii);
6009
6010 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6011
6012 /* Clear MAC's link state (PHY may still have link UP). */
6013 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6014
6015 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6016 }
6017
6018 static void
6019 bge_link_upd(struct bge_softc *sc)
6020 {
6021 struct ifnet *ifp = &sc->ethercom.ec_if;
6022 struct mii_data *mii = &sc->bge_mii;
6023 uint32_t status;
6024 uint16_t phyval;
6025 int link;
6026
6027 /* Clear 'pending link event' flag */
6028 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6029
6030 /*
6031 * Process link state changes.
6032 * Grrr. The link status word in the status block does
6033 * not work correctly on the BCM5700 rev AX and BX chips,
6034 * according to all available information. Hence, we have
6035 * to enable MII interrupts in order to properly obtain
6036 * async link changes. Unfortunately, this also means that
6037 * we have to read the MAC status register to detect link
6038 * changes, thereby adding an additional register access to
6039 * the interrupt handler.
6040 */
6041
6042 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6043 status = CSR_READ_4(sc, BGE_MAC_STS);
6044 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6045 mii_pollstat(mii);
6046
6047 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6048 mii->mii_media_status & IFM_ACTIVE &&
6049 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6050 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6051 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6052 (!(mii->mii_media_status & IFM_ACTIVE) ||
6053 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6054 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6055
6056 /* Clear the interrupt */
6057 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6058 BGE_EVTENB_MI_INTERRUPT);
6059 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6060 BRGPHY_MII_ISR, &phyval);
6061 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6062 BRGPHY_MII_IMR, BRGPHY_INTRS);
6063 }
6064 return;
6065 }
6066
6067 if (sc->bge_flags & BGEF_FIBER_TBI) {
6068 status = CSR_READ_4(sc, BGE_MAC_STS);
6069 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6070 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6071 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6072 if (BGE_ASICREV(sc->bge_chipid)
6073 == BGE_ASICREV_BCM5704) {
6074 BGE_CLRBIT(sc, BGE_MAC_MODE,
6075 BGE_MACMODE_TBI_SEND_CFGS);
6076 DELAY(40);
6077 }
6078 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6079 if_link_state_change(ifp, LINK_STATE_UP);
6080 }
6081 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6082 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6083 if_link_state_change(ifp, LINK_STATE_DOWN);
6084 }
6085 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6086 /*
6087 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6088 * bit in status word always set. Workaround this bug by
6089 * reading PHY link status directly.
6090 */
6091 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6092 BGE_STS_LINK : 0;
6093
6094 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6095 mii_pollstat(mii);
6096
6097 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6098 mii->mii_media_status & IFM_ACTIVE &&
6099 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6100 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6101 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6102 (!(mii->mii_media_status & IFM_ACTIVE) ||
6103 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6104 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6105 }
6106 } else {
6107 /*
6108 * For controllers that call mii_tick, we have to poll
6109 * link status.
6110 */
6111 mii_pollstat(mii);
6112 }
6113
6114 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6115 uint32_t reg, scale;
6116
6117 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6118 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6119 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6120 scale = 65;
6121 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6122 scale = 6;
6123 else
6124 scale = 12;
6125
6126 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6127 ~BGE_MISCCFG_TIMER_PRESCALER;
6128 reg |= scale << 1;
6129 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6130 }
6131 /* Clear the attention */
6132 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6133 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6134 BGE_MACSTAT_LINK_CHANGED);
6135 }
6136
6137 static int
6138 bge_sysctl_verify(SYSCTLFN_ARGS)
6139 {
6140 int error, t;
6141 struct sysctlnode node;
6142
6143 node = *rnode;
6144 t = *(int*)rnode->sysctl_data;
6145 node.sysctl_data = &t;
6146 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6147 if (error || newp == NULL)
6148 return error;
6149
6150 #if 0
6151 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6152 node.sysctl_num, rnode->sysctl_num));
6153 #endif
6154
6155 if (node.sysctl_num == bge_rxthresh_nodenum) {
6156 if (t < 0 || t >= NBGE_RX_THRESH)
6157 return EINVAL;
6158 bge_update_all_threshes(t);
6159 } else
6160 return EINVAL;
6161
6162 *(int*)rnode->sysctl_data = t;
6163
6164 return 0;
6165 }
6166
6167 /*
6168 * Set up sysctl(3) MIB, hw.bge.*.
6169 */
6170 static void
6171 bge_sysctl_init(struct bge_softc *sc)
6172 {
6173 int rc, bge_root_num;
6174 const struct sysctlnode *node;
6175
6176 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6177 0, CTLTYPE_NODE, "bge",
6178 SYSCTL_DESCR("BGE interface controls"),
6179 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6180 goto out;
6181 }
6182
6183 bge_root_num = node->sysctl_num;
6184
6185 /* BGE Rx interrupt mitigation level */
6186 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6187 CTLFLAG_READWRITE,
6188 CTLTYPE_INT, "rx_lvl",
6189 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6190 bge_sysctl_verify, 0,
6191 &bge_rx_thresh_lvl,
6192 0, CTL_HW, bge_root_num, CTL_CREATE,
6193 CTL_EOL)) != 0) {
6194 goto out;
6195 }
6196
6197 bge_rxthresh_nodenum = node->sysctl_num;
6198
6199 return;
6200
6201 out:
6202 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6203 }
6204
6205 #ifdef BGE_DEBUG
6206 void
6207 bge_debug_info(struct bge_softc *sc)
6208 {
6209
6210 printf("Hardware Flags:\n");
6211 if (BGE_IS_57765_PLUS(sc))
6212 printf(" - 57765 Plus\n");
6213 if (BGE_IS_5717_PLUS(sc))
6214 printf(" - 5717 Plus\n");
6215 if (BGE_IS_5755_PLUS(sc))
6216 printf(" - 5755 Plus\n");
6217 if (BGE_IS_575X_PLUS(sc))
6218 printf(" - 575X Plus\n");
6219 if (BGE_IS_5705_PLUS(sc))
6220 printf(" - 5705 Plus\n");
6221 if (BGE_IS_5714_FAMILY(sc))
6222 printf(" - 5714 Family\n");
6223 if (BGE_IS_5700_FAMILY(sc))
6224 printf(" - 5700 Family\n");
6225 if (sc->bge_flags & BGEF_IS_5788)
6226 printf(" - 5788\n");
6227 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6228 printf(" - Supports Jumbo Frames\n");
6229 if (sc->bge_flags & BGEF_NO_EEPROM)
6230 printf(" - No EEPROM\n");
6231 if (sc->bge_flags & BGEF_PCIX)
6232 printf(" - PCI-X Bus\n");
6233 if (sc->bge_flags & BGEF_PCIE)
6234 printf(" - PCI Express Bus\n");
6235 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6236 printf(" - RX Alignment Bug\n");
6237 if (sc->bge_flags & BGEF_APE)
6238 printf(" - APE\n");
6239 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6240 printf(" - CPMU\n");
6241 if (sc->bge_flags & BGEF_TSO)
6242 printf(" - TSO\n");
6243 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6244 printf(" - TAGGED_STATUS\n");
6245
6246 /* PHY related */
6247 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6248 printf(" - No 3 LEDs\n");
6249 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6250 printf(" - CRC bug\n");
6251 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6252 printf(" - ADC bug\n");
6253 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6254 printf(" - 5704 A0 bug\n");
6255 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6256 printf(" - jitter bug\n");
6257 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6258 printf(" - BER bug\n");
6259 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6260 printf(" - adjust trim\n");
6261 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6262 printf(" - no wirespeed\n");
6263
6264 /* ASF related */
6265 if (sc->bge_asf_mode & ASF_ENABLE)
6266 printf(" - ASF enable\n");
6267 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6268 printf(" - ASF new handshake\n");
6269 if (sc->bge_asf_mode & ASF_STACKUP)
6270 printf(" - ASF stackup\n");
6271 }
6272 #endif /* BGE_DEBUG */
6273
6274 static int
6275 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6276 {
6277 prop_dictionary_t dict;
6278 prop_data_t ea;
6279
6280 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6281 return 1;
6282
6283 dict = device_properties(sc->bge_dev);
6284 ea = prop_dictionary_get(dict, "mac-address");
6285 if (ea != NULL) {
6286 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6287 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6288 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6289 return 0;
6290 }
6291
6292 return 1;
6293 }
6294
6295 static int
6296 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6297 {
6298 uint32_t mac_addr;
6299
6300 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6301 if ((mac_addr >> 16) == 0x484b) {
6302 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6303 ether_addr[1] = (uint8_t)mac_addr;
6304 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6305 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6306 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6307 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6308 ether_addr[5] = (uint8_t)mac_addr;
6309 return 0;
6310 }
6311 return 1;
6312 }
6313
6314 static int
6315 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6316 {
6317 int mac_offset = BGE_EE_MAC_OFFSET;
6318
6319 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6320 mac_offset = BGE_EE_MAC_OFFSET_5906;
6321
6322 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6323 ETHER_ADDR_LEN));
6324 }
6325
6326 static int
6327 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6328 {
6329
6330 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6331 return 1;
6332
6333 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6334 ETHER_ADDR_LEN));
6335 }
6336
6337 static int
6338 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6339 {
6340 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6341 /* NOTE: Order is critical */
6342 bge_get_eaddr_fw,
6343 bge_get_eaddr_mem,
6344 bge_get_eaddr_nvram,
6345 bge_get_eaddr_eeprom,
6346 NULL
6347 };
6348 const bge_eaddr_fcn_t *func;
6349
6350 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6351 if ((*func)(sc, eaddr) == 0)
6352 break;
6353 }
6354 return (*func == NULL ? ENXIO : 0);
6355 }
6356