if_bge.c revision 1.342 1 /* $NetBSD: if_bge.c,v 1.342 2019/11/25 05:35:26 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.342 2019/11/25 05:35:26 msaitoh Exp $");
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94 #include <sys/rndsource.h>
95
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_ether.h>
100 #include <net/bpf.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h> /* for struct ip */
113 #include <netinet/tcp.h> /* for struct tcphdr */
114
115 #include <dev/pci/pcireg.h>
116 #include <dev/pci/pcivar.h>
117 #include <dev/pci/pcidevs.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/miidevs.h>
122 #include <dev/mii/brgphyreg.h>
123
124 #include <dev/pci/if_bgereg.h>
125 #include <dev/pci/if_bgevar.h>
126
127 #include <prop/proplib.h>
128
129 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
130
131
132 /*
133 * Tunable thresholds for rx-side bge interrupt mitigation.
134 */
135
136 /*
137 * The pairs of values below were obtained from empirical measurement
138 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
139 * interrupt for every N packets received, where N is, approximately,
140 * the second value (rx_max_bds) in each pair. The values are chosen
141 * such that moving from one pair to the succeeding pair was observed
142 * to roughly halve interrupt rate under sustained input packet load.
143 * The values were empirically chosen to avoid overflowing internal
144 * limits on the bcm5700: increasing rx_ticks much beyond 600
145 * results in internal wrapping and higher interrupt rates.
146 * The limit of 46 frames was chosen to match NFS workloads.
147 *
148 * These values also work well on bcm5701, bcm5704C, and (less
149 * tested) bcm5703. On other chipsets, (including the Altima chip
150 * family), the larger values may overflow internal chip limits,
151 * leading to increasing interrupt rates rather than lower interrupt
152 * rates.
153 *
154 * Applications using heavy interrupt mitigation (interrupting every
155 * 32 or 46 frames) in both directions may need to increase the TCP
156 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
157 * full link bandwidth, due to ACKs and window updates lingering
158 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
159 */
160 static const struct bge_load_rx_thresh {
161 int rx_ticks;
162 int rx_max_bds; }
163 bge_rx_threshes[] = {
164 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
165 { 32, 2 },
166 { 50, 4 },
167 { 100, 8 },
168 { 192, 16 },
169 { 416, 32 },
170 { 598, 46 }
171 };
172 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
173
174 /* XXX patchable; should be sysctl'able */
175 static int bge_auto_thresh = 1;
176 static int bge_rx_thresh_lvl;
177
178 static int bge_rxthresh_nodenum;
179
180 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
181
182 static uint32_t bge_chipid(const struct pci_attach_args *);
183 static int bge_can_use_msi(struct bge_softc *);
184 static int bge_probe(device_t, cfdata_t, void *);
185 static void bge_attach(device_t, device_t, void *);
186 static int bge_detach(device_t, int);
187 static void bge_release_resources(struct bge_softc *);
188
189 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
190 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
191 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
194
195 static void bge_txeof(struct bge_softc *);
196 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
197 static void bge_rxeof(struct bge_softc *);
198
199 static void bge_asf_driver_up (struct bge_softc *);
200 static void bge_tick(void *);
201 static void bge_stats_update(struct bge_softc *);
202 static void bge_stats_update_regs(struct bge_softc *);
203 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
204
205 static int bge_intr(void *);
206 static void bge_start(struct ifnet *);
207 static int bge_ifflags_cb(struct ethercom *);
208 static int bge_ioctl(struct ifnet *, u_long, void *);
209 static int bge_init(struct ifnet *);
210 static void bge_stop(struct ifnet *, int);
211 static void bge_watchdog(struct ifnet *);
212 static int bge_ifmedia_upd(struct ifnet *);
213 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
214
215 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
216 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
217
218 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
220 static void bge_setmulti(struct bge_softc *);
221
222 static void bge_handle_events(struct bge_softc *);
223 static int bge_alloc_jumbo_mem(struct bge_softc *);
224 #if 0 /* XXX */
225 static void bge_free_jumbo_mem(struct bge_softc *);
226 #endif
227 static void *bge_jalloc(struct bge_softc *);
228 static void bge_jfree(struct mbuf *, void *, size_t, void *);
229 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
230 bus_dmamap_t);
231 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
232 static int bge_init_rx_ring_std(struct bge_softc *);
233 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
234 static int bge_init_rx_ring_jumbo(struct bge_softc *);
235 static void bge_free_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_tx_ring(struct bge_softc *m, bool);
237 static int bge_init_tx_ring(struct bge_softc *);
238
239 static int bge_chipinit(struct bge_softc *);
240 static int bge_blockinit(struct bge_softc *);
241 static int bge_phy_addr(struct bge_softc *);
242 static uint32_t bge_readmem_ind(struct bge_softc *, int);
243 static void bge_writemem_ind(struct bge_softc *, int, int);
244 static void bge_writembx(struct bge_softc *, int, int);
245 static void bge_writembx_flush(struct bge_softc *, int, int);
246 static void bge_writemem_direct(struct bge_softc *, int, int);
247 static void bge_writereg_ind(struct bge_softc *, int, int);
248 static void bge_set_max_readrq(struct bge_softc *);
249
250 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
251 static int bge_miibus_writereg(device_t, int, int, uint16_t);
252 static void bge_miibus_statchg(struct ifnet *);
253
254 #define BGE_RESET_SHUTDOWN 0
255 #define BGE_RESET_START 1
256 #define BGE_RESET_SUSPEND 2
257 static void bge_sig_post_reset(struct bge_softc *, int);
258 static void bge_sig_legacy(struct bge_softc *, int);
259 static void bge_sig_pre_reset(struct bge_softc *, int);
260 static void bge_wait_for_event_ack(struct bge_softc *);
261 static void bge_stop_fw(struct bge_softc *);
262 static int bge_reset(struct bge_softc *);
263 static void bge_link_upd(struct bge_softc *);
264 static void bge_sysctl_init(struct bge_softc *);
265 static int bge_sysctl_verify(SYSCTLFN_PROTO);
266
267 static void bge_ape_lock_init(struct bge_softc *);
268 static void bge_ape_read_fw_ver(struct bge_softc *);
269 static int bge_ape_lock(struct bge_softc *, int);
270 static void bge_ape_unlock(struct bge_softc *, int);
271 static void bge_ape_send_event(struct bge_softc *, uint32_t);
272 static void bge_ape_driver_state_change(struct bge_softc *, int);
273
274 #ifdef BGE_DEBUG
275 #define DPRINTF(x) if (bgedebug) printf x
276 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
277 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
278 int bgedebug = 0;
279 int bge_tso_debug = 0;
280 void bge_debug_info(struct bge_softc *);
281 #else
282 #define DPRINTF(x)
283 #define DPRINTFN(n, x)
284 #define BGE_TSO_PRINTF(x)
285 #endif
286
287 #ifdef BGE_EVENT_COUNTERS
288 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
289 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
290 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
291 #else
292 #define BGE_EVCNT_INCR(ev) /* nothing */
293 #define BGE_EVCNT_ADD(ev, val) /* nothing */
294 #define BGE_EVCNT_UPD(ev, val) /* nothing */
295 #endif
296
297 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
298 /*
299 * The BCM5700 documentation seems to indicate that the hardware still has the
300 * Alteon vendor ID burned into it, though it should always be overridden by
301 * the value in the EEPROM. We'll check for it anyway.
302 */
303 static const struct bge_product {
304 pci_vendor_id_t bp_vendor;
305 pci_product_id_t bp_product;
306 const char *bp_name;
307 } bge_products[] = {
308 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
309 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
310 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
311 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
312 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
313 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
314 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
315 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
316 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
317 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
318 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
319 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
320 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
321 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
322 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
323 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
324 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
325 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
326 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
327 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
328 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
329 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
330 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
331 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
332 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
333 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
334 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
335 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
336 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
337 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
338 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
339 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
340 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
341 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
342 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
343 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
344 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
345 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
346 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
347 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
348 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
349 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
350 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
351 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
352 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
353 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
354 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
355 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
356 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
357 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
358 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
359 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
360 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
361 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
362 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
363 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
364 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
365 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
366 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
367 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
368 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
369 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
370 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
371 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
372 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
373 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
374 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
375 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
376 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
377 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
378 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
379 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
380 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
381 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
382 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
383 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
384 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
385 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
386 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
387 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
388 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
389 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
390 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
391 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
392 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
393 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
394 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
395 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
396 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
397 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
398 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
399 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
400 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
401 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
402 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
403 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
404 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
405 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
406 { 0, 0, NULL },
407 };
408
409 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
410 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
411 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
412 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
413 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
414 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
415 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
416 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
417 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
418
419 static const struct bge_revision {
420 uint32_t br_chipid;
421 const char *br_name;
422 } bge_revisions[] = {
423 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
424 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
425 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
426 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
427 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
428 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
429 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
430 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
431 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
432 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
433 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
434 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
435 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
436 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
437 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
438 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
439 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
440 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
441 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
442 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
443 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
444 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
445 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
446 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
447 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
448 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
449 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
450 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
451 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
452 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
453 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
454 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
455 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
456 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
457 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
458 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
459 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
460 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
461 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
462 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
463 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
464 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
465 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
466 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
467 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
468 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
469 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
470 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
471 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
472 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
473 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
474 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
475 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
476 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
477 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
478 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
479 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
480 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
481 /* 5754 and 5787 share the same ASIC ID */
482 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
483 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
484 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
485 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
486 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
487 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
488 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
489 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
490 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
491 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
492 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
493
494 { 0, NULL }
495 };
496
497 /*
498 * Some defaults for major revisions, so that newer steppings
499 * that we don't know about have a shot at working.
500 */
501 static const struct bge_revision bge_majorrevs[] = {
502 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
503 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
504 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
505 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
506 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
507 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
508 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
509 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
510 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
511 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
512 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
513 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
514 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
515 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
516 /* 5754 and 5787 share the same ASIC ID */
517 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
518 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
519 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
520 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
521 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
522 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
523 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
524 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
525 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
526
527 { 0, NULL }
528 };
529
530 static int bge_allow_asf = 1;
531
532 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
533 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
534
535 static uint32_t
536 bge_readmem_ind(struct bge_softc *sc, int off)
537 {
538 pcireg_t val;
539
540 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
541 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
542 return 0;
543
544 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
545 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
546 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
547 return val;
548 }
549
550 static void
551 bge_writemem_ind(struct bge_softc *sc, int off, int val)
552 {
553
554 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
555 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
556 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
557 }
558
559 /*
560 * PCI Express only
561 */
562 static void
563 bge_set_max_readrq(struct bge_softc *sc)
564 {
565 pcireg_t val;
566
567 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
568 + PCIE_DCSR);
569 val &= ~PCIE_DCSR_MAX_READ_REQ;
570 switch (sc->bge_expmrq) {
571 case 2048:
572 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
573 break;
574 case 4096:
575 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
576 break;
577 default:
578 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
579 break;
580 }
581 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
582 + PCIE_DCSR, val);
583 }
584
585 #ifdef notdef
586 static uint32_t
587 bge_readreg_ind(struct bge_softc *sc, int off)
588 {
589 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
590 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
591 }
592 #endif
593
594 static void
595 bge_writereg_ind(struct bge_softc *sc, int off, int val)
596 {
597 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
598 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
599 }
600
601 static void
602 bge_writemem_direct(struct bge_softc *sc, int off, int val)
603 {
604 CSR_WRITE_4(sc, off, val);
605 }
606
607 static void
608 bge_writembx(struct bge_softc *sc, int off, int val)
609 {
610 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
611 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
612
613 CSR_WRITE_4(sc, off, val);
614 }
615
616 static void
617 bge_writembx_flush(struct bge_softc *sc, int off, int val)
618 {
619 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
620 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
621
622 CSR_WRITE_4_FLUSH(sc, off, val);
623 }
624
625 /*
626 * Clear all stale locks and select the lock for this driver instance.
627 */
628 void
629 bge_ape_lock_init(struct bge_softc *sc)
630 {
631 struct pci_attach_args *pa = &(sc->bge_pa);
632 uint32_t bit, regbase;
633 int i;
634
635 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
636 regbase = BGE_APE_LOCK_GRANT;
637 else
638 regbase = BGE_APE_PER_LOCK_GRANT;
639
640 /* Clear any stale locks. */
641 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
642 switch (i) {
643 case BGE_APE_LOCK_PHY0:
644 case BGE_APE_LOCK_PHY1:
645 case BGE_APE_LOCK_PHY2:
646 case BGE_APE_LOCK_PHY3:
647 bit = BGE_APE_LOCK_GRANT_DRIVER0;
648 break;
649 default:
650 if (pa->pa_function == 0)
651 bit = BGE_APE_LOCK_GRANT_DRIVER0;
652 else
653 bit = (1 << pa->pa_function);
654 }
655 APE_WRITE_4(sc, regbase + 4 * i, bit);
656 }
657
658 /* Select the PHY lock based on the device's function number. */
659 switch (pa->pa_function) {
660 case 0:
661 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
662 break;
663 case 1:
664 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
665 break;
666 case 2:
667 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
668 break;
669 case 3:
670 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
671 break;
672 default:
673 printf("%s: PHY lock not supported on function\n",
674 device_xname(sc->bge_dev));
675 break;
676 }
677 }
678
679 /*
680 * Check for APE firmware, set flags, and print version info.
681 */
682 void
683 bge_ape_read_fw_ver(struct bge_softc *sc)
684 {
685 const char *fwtype;
686 uint32_t apedata, features;
687
688 /* Check for a valid APE signature in shared memory. */
689 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
690 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
691 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
692 return;
693 }
694
695 /* Check if APE firmware is running. */
696 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
697 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
698 printf("%s: APE signature found but FW status not ready! "
699 "0x%08x\n", device_xname(sc->bge_dev), apedata);
700 return;
701 }
702
703 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
704
705 /* Fetch the APE firwmare type and version. */
706 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
707 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
708 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
709 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
710 fwtype = "NCSI";
711 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
712 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
713 fwtype = "DASH";
714 } else
715 fwtype = "UNKN";
716
717 /* Print the APE firmware version. */
718 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
719 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
720 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
721 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
722 (apedata & BGE_APE_FW_VERSION_BLDMSK));
723 }
724
725 int
726 bge_ape_lock(struct bge_softc *sc, int locknum)
727 {
728 struct pci_attach_args *pa = &(sc->bge_pa);
729 uint32_t bit, gnt, req, status;
730 int i, off;
731
732 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
733 return (0);
734
735 /* Lock request/grant registers have different bases. */
736 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
737 req = BGE_APE_LOCK_REQ;
738 gnt = BGE_APE_LOCK_GRANT;
739 } else {
740 req = BGE_APE_PER_LOCK_REQ;
741 gnt = BGE_APE_PER_LOCK_GRANT;
742 }
743
744 off = 4 * locknum;
745
746 switch (locknum) {
747 case BGE_APE_LOCK_GPIO:
748 /* Lock required when using GPIO. */
749 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
750 return (0);
751 if (pa->pa_function == 0)
752 bit = BGE_APE_LOCK_REQ_DRIVER0;
753 else
754 bit = (1 << pa->pa_function);
755 break;
756 case BGE_APE_LOCK_GRC:
757 /* Lock required to reset the device. */
758 if (pa->pa_function == 0)
759 bit = BGE_APE_LOCK_REQ_DRIVER0;
760 else
761 bit = (1 << pa->pa_function);
762 break;
763 case BGE_APE_LOCK_MEM:
764 /* Lock required when accessing certain APE memory. */
765 if (pa->pa_function == 0)
766 bit = BGE_APE_LOCK_REQ_DRIVER0;
767 else
768 bit = (1 << pa->pa_function);
769 break;
770 case BGE_APE_LOCK_PHY0:
771 case BGE_APE_LOCK_PHY1:
772 case BGE_APE_LOCK_PHY2:
773 case BGE_APE_LOCK_PHY3:
774 /* Lock required when accessing PHYs. */
775 bit = BGE_APE_LOCK_REQ_DRIVER0;
776 break;
777 default:
778 return (EINVAL);
779 }
780
781 /* Request a lock. */
782 APE_WRITE_4_FLUSH(sc, req + off, bit);
783
784 /* Wait up to 1 second to acquire lock. */
785 for (i = 0; i < 20000; i++) {
786 status = APE_READ_4(sc, gnt + off);
787 if (status == bit)
788 break;
789 DELAY(50);
790 }
791
792 /* Handle any errors. */
793 if (status != bit) {
794 printf("%s: APE lock %d request failed! "
795 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
796 device_xname(sc->bge_dev),
797 locknum, req + off, bit & 0xFFFF, gnt + off,
798 status & 0xFFFF);
799 /* Revoke the lock request. */
800 APE_WRITE_4(sc, gnt + off, bit);
801 return (EBUSY);
802 }
803
804 return (0);
805 }
806
807 void
808 bge_ape_unlock(struct bge_softc *sc, int locknum)
809 {
810 struct pci_attach_args *pa = &(sc->bge_pa);
811 uint32_t bit, gnt;
812 int off;
813
814 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
815 return;
816
817 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
818 gnt = BGE_APE_LOCK_GRANT;
819 else
820 gnt = BGE_APE_PER_LOCK_GRANT;
821
822 off = 4 * locknum;
823
824 switch (locknum) {
825 case BGE_APE_LOCK_GPIO:
826 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
827 return;
828 if (pa->pa_function == 0)
829 bit = BGE_APE_LOCK_GRANT_DRIVER0;
830 else
831 bit = (1 << pa->pa_function);
832 break;
833 case BGE_APE_LOCK_GRC:
834 if (pa->pa_function == 0)
835 bit = BGE_APE_LOCK_GRANT_DRIVER0;
836 else
837 bit = (1 << pa->pa_function);
838 break;
839 case BGE_APE_LOCK_MEM:
840 if (pa->pa_function == 0)
841 bit = BGE_APE_LOCK_GRANT_DRIVER0;
842 else
843 bit = (1 << pa->pa_function);
844 break;
845 case BGE_APE_LOCK_PHY0:
846 case BGE_APE_LOCK_PHY1:
847 case BGE_APE_LOCK_PHY2:
848 case BGE_APE_LOCK_PHY3:
849 bit = BGE_APE_LOCK_GRANT_DRIVER0;
850 break;
851 default:
852 return;
853 }
854
855 /* Write and flush for consecutive bge_ape_lock() */
856 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
857 }
858
859 /*
860 * Send an event to the APE firmware.
861 */
862 void
863 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
864 {
865 uint32_t apedata;
866 int i;
867
868 /* NCSI does not support APE events. */
869 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
870 return;
871
872 /* Wait up to 1ms for APE to service previous event. */
873 for (i = 10; i > 0; i--) {
874 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
875 break;
876 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
877 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
878 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
879 BGE_APE_EVENT_STATUS_EVENT_PENDING);
880 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
881 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
882 break;
883 }
884 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
885 DELAY(100);
886 }
887 if (i == 0) {
888 printf("%s: APE event 0x%08x send timed out\n",
889 device_xname(sc->bge_dev), event);
890 }
891 }
892
893 void
894 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
895 {
896 uint32_t apedata, event;
897
898 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
899 return;
900
901 switch (kind) {
902 case BGE_RESET_START:
903 /* If this is the first load, clear the load counter. */
904 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
905 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
906 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
907 else {
908 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
909 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
910 }
911 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
912 BGE_APE_HOST_SEG_SIG_MAGIC);
913 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
914 BGE_APE_HOST_SEG_LEN_MAGIC);
915
916 /* Add some version info if bge(4) supports it. */
917 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
918 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
919 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
920 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
921 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
922 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
923 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
924 BGE_APE_HOST_DRVR_STATE_START);
925 event = BGE_APE_EVENT_STATUS_STATE_START;
926 break;
927 case BGE_RESET_SHUTDOWN:
928 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
929 BGE_APE_HOST_DRVR_STATE_UNLOAD);
930 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
931 break;
932 case BGE_RESET_SUSPEND:
933 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
934 break;
935 default:
936 return;
937 }
938
939 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
940 BGE_APE_EVENT_STATUS_STATE_CHNGE);
941 }
942
943 static uint8_t
944 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
945 {
946 uint32_t access, byte = 0;
947 int i;
948
949 /* Lock. */
950 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
951 for (i = 0; i < 8000; i++) {
952 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
953 break;
954 DELAY(20);
955 }
956 if (i == 8000)
957 return 1;
958
959 /* Enable access. */
960 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
961 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
962
963 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
964 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
965 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
966 DELAY(10);
967 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
968 DELAY(10);
969 break;
970 }
971 }
972
973 if (i == BGE_TIMEOUT * 10) {
974 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
975 return 1;
976 }
977
978 /* Get result. */
979 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
980
981 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
982
983 /* Disable access. */
984 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
985
986 /* Unlock. */
987 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
988
989 return 0;
990 }
991
992 /*
993 * Read a sequence of bytes from NVRAM.
994 */
995 static int
996 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
997 {
998 int error = 0, i;
999 uint8_t byte = 0;
1000
1001 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1002 return 1;
1003
1004 for (i = 0; i < cnt; i++) {
1005 error = bge_nvram_getbyte(sc, off + i, &byte);
1006 if (error)
1007 break;
1008 *(dest + i) = byte;
1009 }
1010
1011 return (error ? 1 : 0);
1012 }
1013
1014 /*
1015 * Read a byte of data stored in the EEPROM at address 'addr.' The
1016 * BCM570x supports both the traditional bitbang interface and an
1017 * auto access interface for reading the EEPROM. We use the auto
1018 * access method.
1019 */
1020 static uint8_t
1021 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1022 {
1023 int i;
1024 uint32_t byte = 0;
1025
1026 /*
1027 * Enable use of auto EEPROM access so we can avoid
1028 * having to use the bitbang method.
1029 */
1030 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1031
1032 /* Reset the EEPROM, load the clock period. */
1033 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1034 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1035 DELAY(20);
1036
1037 /* Issue the read EEPROM command. */
1038 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1039
1040 /* Wait for completion */
1041 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1042 DELAY(10);
1043 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1044 break;
1045 }
1046
1047 if (i == BGE_TIMEOUT * 10) {
1048 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1049 return 1;
1050 }
1051
1052 /* Get result. */
1053 byte = CSR_READ_4(sc, BGE_EE_DATA);
1054
1055 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1056
1057 return 0;
1058 }
1059
1060 /*
1061 * Read a sequence of bytes from the EEPROM.
1062 */
1063 static int
1064 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1065 {
1066 int error = 0, i;
1067 uint8_t byte = 0;
1068 char *dest = destv;
1069
1070 for (i = 0; i < cnt; i++) {
1071 error = bge_eeprom_getbyte(sc, off + i, &byte);
1072 if (error)
1073 break;
1074 *(dest + i) = byte;
1075 }
1076
1077 return (error ? 1 : 0);
1078 }
1079
1080 static int
1081 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1082 {
1083 struct bge_softc *sc = device_private(dev);
1084 uint32_t data;
1085 uint32_t autopoll;
1086 int rv = 0;
1087 int i;
1088
1089 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1090 return -1;
1091
1092 /* Reading with autopolling on may trigger PCI errors */
1093 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1094 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1095 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1096 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1097 DELAY(80);
1098 }
1099
1100 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1101 BGE_MIPHY(phy) | BGE_MIREG(reg));
1102
1103 for (i = 0; i < BGE_TIMEOUT; i++) {
1104 delay(10);
1105 data = CSR_READ_4(sc, BGE_MI_COMM);
1106 if (!(data & BGE_MICOMM_BUSY)) {
1107 DELAY(5);
1108 data = CSR_READ_4(sc, BGE_MI_COMM);
1109 break;
1110 }
1111 }
1112
1113 if (i == BGE_TIMEOUT) {
1114 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1115 rv = ETIMEDOUT;
1116 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1117 /* XXX This error occurs on some devices while attaching. */
1118 aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1119 rv = EIO;
1120 } else
1121 *val = data & BGE_MICOMM_DATA;
1122
1123 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1124 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1125 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1126 DELAY(80);
1127 }
1128
1129 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1130
1131 return rv;
1132 }
1133
1134 static int
1135 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1136 {
1137 struct bge_softc *sc = device_private(dev);
1138 uint32_t data, autopoll;
1139 int rv = 0;
1140 int i;
1141
1142 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1143 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1144 return 0;
1145
1146 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1147 return -1;
1148
1149 /* Reading with autopolling on may trigger PCI errors */
1150 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1151 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1152 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1153 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1154 DELAY(80);
1155 }
1156
1157 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1158 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1159
1160 for (i = 0; i < BGE_TIMEOUT; i++) {
1161 delay(10);
1162 data = CSR_READ_4(sc, BGE_MI_COMM);
1163 if (!(data & BGE_MICOMM_BUSY)) {
1164 delay(5);
1165 data = CSR_READ_4(sc, BGE_MI_COMM);
1166 break;
1167 }
1168 }
1169
1170 if (i == BGE_TIMEOUT) {
1171 aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1172 rv = ETIMEDOUT;
1173 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1174 aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1175 rv = EIO;
1176 }
1177
1178 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1179 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1180 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1181 delay(80);
1182 }
1183
1184 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1185
1186 if (i == BGE_TIMEOUT) {
1187 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1188 return ETIMEDOUT;
1189 }
1190
1191 return rv;
1192 }
1193
1194 static void
1195 bge_miibus_statchg(struct ifnet *ifp)
1196 {
1197 struct bge_softc *sc = ifp->if_softc;
1198 struct mii_data *mii = &sc->bge_mii;
1199 uint32_t mac_mode, rx_mode, tx_mode;
1200
1201 /*
1202 * Get flow control negotiation result.
1203 */
1204 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1205 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1206 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1207
1208 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1209 mii->mii_media_status & IFM_ACTIVE &&
1210 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1211 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1212 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1213 (!(mii->mii_media_status & IFM_ACTIVE) ||
1214 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1215 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1216
1217 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1218 return;
1219
1220 /* Set the port mode (MII/GMII) to match the link speed. */
1221 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1222 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1223 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1224 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1225 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1226 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1227 mac_mode |= BGE_PORTMODE_GMII;
1228 else
1229 mac_mode |= BGE_PORTMODE_MII;
1230
1231 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1232 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1233 if ((mii->mii_media_active & IFM_FDX) != 0) {
1234 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1235 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1236 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1237 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1238 } else
1239 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1240
1241 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1242 DELAY(40);
1243 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1244 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1245 }
1246
1247 /*
1248 * Update rx threshold levels to values in a particular slot
1249 * of the interrupt-mitigation table bge_rx_threshes.
1250 */
1251 static void
1252 bge_set_thresh(struct ifnet *ifp, int lvl)
1253 {
1254 struct bge_softc *sc = ifp->if_softc;
1255 int s;
1256
1257 /* For now, just save the new Rx-intr thresholds and record
1258 * that a threshold update is pending. Updating the hardware
1259 * registers here (even at splhigh()) is observed to
1260 * occasionaly cause glitches where Rx-interrupts are not
1261 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1262 */
1263 s = splnet();
1264 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1265 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1266 sc->bge_pending_rxintr_change = 1;
1267 splx(s);
1268 }
1269
1270
1271 /*
1272 * Update Rx thresholds of all bge devices
1273 */
1274 static void
1275 bge_update_all_threshes(int lvl)
1276 {
1277 struct ifnet *ifp;
1278 const char * const namebuf = "bge";
1279 int namelen;
1280 int s;
1281
1282 if (lvl < 0)
1283 lvl = 0;
1284 else if (lvl >= NBGE_RX_THRESH)
1285 lvl = NBGE_RX_THRESH - 1;
1286
1287 namelen = strlen(namebuf);
1288 /*
1289 * Now search all the interfaces for this name/number
1290 */
1291 s = pserialize_read_enter();
1292 IFNET_READER_FOREACH(ifp) {
1293 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1294 continue;
1295 /* We got a match: update if doing auto-threshold-tuning */
1296 if (bge_auto_thresh)
1297 bge_set_thresh(ifp, lvl);
1298 }
1299 pserialize_read_exit(s);
1300 }
1301
1302 /*
1303 * Handle events that have triggered interrupts.
1304 */
1305 static void
1306 bge_handle_events(struct bge_softc *sc)
1307 {
1308
1309 return;
1310 }
1311
1312 /*
1313 * Memory management for jumbo frames.
1314 */
1315
1316 static int
1317 bge_alloc_jumbo_mem(struct bge_softc *sc)
1318 {
1319 char *ptr, *kva;
1320 bus_dma_segment_t seg;
1321 int i, rseg, state, error;
1322 struct bge_jpool_entry *entry;
1323
1324 state = error = 0;
1325
1326 /* Grab a big chunk o' storage. */
1327 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1328 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1329 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1330 return ENOBUFS;
1331 }
1332
1333 state = 1;
1334 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1335 BUS_DMA_NOWAIT)) {
1336 aprint_error_dev(sc->bge_dev,
1337 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1338 error = ENOBUFS;
1339 goto out;
1340 }
1341
1342 state = 2;
1343 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1344 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1345 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1346 error = ENOBUFS;
1347 goto out;
1348 }
1349
1350 state = 3;
1351 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1352 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1353 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1354 error = ENOBUFS;
1355 goto out;
1356 }
1357
1358 state = 4;
1359 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1360 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1361
1362 SLIST_INIT(&sc->bge_jfree_listhead);
1363 SLIST_INIT(&sc->bge_jinuse_listhead);
1364
1365 /*
1366 * Now divide it up into 9K pieces and save the addresses
1367 * in an array.
1368 */
1369 ptr = sc->bge_cdata.bge_jumbo_buf;
1370 for (i = 0; i < BGE_JSLOTS; i++) {
1371 sc->bge_cdata.bge_jslots[i] = ptr;
1372 ptr += BGE_JLEN;
1373 entry = malloc(sizeof(struct bge_jpool_entry),
1374 M_DEVBUF, M_WAITOK);
1375 entry->slot = i;
1376 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1377 entry, jpool_entries);
1378 }
1379 out:
1380 if (error != 0) {
1381 switch (state) {
1382 case 4:
1383 bus_dmamap_unload(sc->bge_dmatag,
1384 sc->bge_cdata.bge_rx_jumbo_map);
1385 /* FALLTHROUGH */
1386 case 3:
1387 bus_dmamap_destroy(sc->bge_dmatag,
1388 sc->bge_cdata.bge_rx_jumbo_map);
1389 /* FALLTHROUGH */
1390 case 2:
1391 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1392 /* FALLTHROUGH */
1393 case 1:
1394 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1395 break;
1396 default:
1397 break;
1398 }
1399 }
1400
1401 return error;
1402 }
1403
1404 /*
1405 * Allocate a jumbo buffer.
1406 */
1407 static void *
1408 bge_jalloc(struct bge_softc *sc)
1409 {
1410 struct bge_jpool_entry *entry;
1411
1412 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1413
1414 if (entry == NULL) {
1415 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1416 return NULL;
1417 }
1418
1419 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1420 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1421 return (sc->bge_cdata.bge_jslots[entry->slot]);
1422 }
1423
1424 /*
1425 * Release a jumbo buffer.
1426 */
1427 static void
1428 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1429 {
1430 struct bge_jpool_entry *entry;
1431 struct bge_softc *sc;
1432 int i, s;
1433
1434 /* Extract the softc struct pointer. */
1435 sc = (struct bge_softc *)arg;
1436
1437 if (sc == NULL)
1438 panic("bge_jfree: can't find softc pointer!");
1439
1440 /* calculate the slot this buffer belongs to */
1441
1442 i = ((char *)buf
1443 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1444
1445 if ((i < 0) || (i >= BGE_JSLOTS))
1446 panic("bge_jfree: asked to free buffer that we don't manage!");
1447
1448 s = splvm();
1449 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1450 if (entry == NULL)
1451 panic("bge_jfree: buffer not in use!");
1452 entry->slot = i;
1453 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1454 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1455
1456 if (__predict_true(m != NULL))
1457 pool_cache_put(mb_cache, m);
1458 splx(s);
1459 }
1460
1461
1462 /*
1463 * Initialize a standard receive ring descriptor.
1464 */
1465 static int
1466 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1467 bus_dmamap_t dmamap)
1468 {
1469 struct mbuf *m_new = NULL;
1470 struct bge_rx_bd *r;
1471 int error;
1472
1473 if (dmamap == NULL)
1474 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1475
1476 if (dmamap == NULL) {
1477 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1478 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1479 if (error != 0)
1480 return error;
1481 }
1482
1483 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1484
1485 if (m == NULL) {
1486 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1487 if (m_new == NULL)
1488 return ENOBUFS;
1489
1490 MCLGET(m_new, M_DONTWAIT);
1491 if (!(m_new->m_flags & M_EXT)) {
1492 m_freem(m_new);
1493 return ENOBUFS;
1494 }
1495 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1496
1497 } else {
1498 m_new = m;
1499 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1500 m_new->m_data = m_new->m_ext.ext_buf;
1501 }
1502 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1503 m_adj(m_new, ETHER_ALIGN);
1504 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1505 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1506 m_freem(m_new);
1507 return ENOBUFS;
1508 }
1509 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1510 BUS_DMASYNC_PREREAD);
1511
1512 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1513 r = &sc->bge_rdata->bge_rx_std_ring[i];
1514 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1515 r->bge_flags = BGE_RXBDFLAG_END;
1516 r->bge_len = m_new->m_len;
1517 r->bge_idx = i;
1518
1519 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1520 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1521 i * sizeof (struct bge_rx_bd),
1522 sizeof (struct bge_rx_bd),
1523 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1524
1525 return 0;
1526 }
1527
1528 /*
1529 * Initialize a jumbo receive ring descriptor. This allocates
1530 * a jumbo buffer from the pool managed internally by the driver.
1531 */
1532 static int
1533 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1534 {
1535 struct mbuf *m_new = NULL;
1536 struct bge_rx_bd *r;
1537 void *buf = NULL;
1538
1539 if (m == NULL) {
1540
1541 /* Allocate the mbuf. */
1542 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1543 if (m_new == NULL)
1544 return ENOBUFS;
1545
1546 /* Allocate the jumbo buffer */
1547 buf = bge_jalloc(sc);
1548 if (buf == NULL) {
1549 m_freem(m_new);
1550 aprint_error_dev(sc->bge_dev,
1551 "jumbo allocation failed -- packet dropped!\n");
1552 return ENOBUFS;
1553 }
1554
1555 /* Attach the buffer to the mbuf. */
1556 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1557 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1558 bge_jfree, sc);
1559 m_new->m_flags |= M_EXT_RW;
1560 } else {
1561 m_new = m;
1562 buf = m_new->m_data = m_new->m_ext.ext_buf;
1563 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1564 }
1565 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1566 m_adj(m_new, ETHER_ALIGN);
1567 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1568 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1569 BGE_JLEN, BUS_DMASYNC_PREREAD);
1570 /* Set up the descriptor. */
1571 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1572 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1573 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1574 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1575 r->bge_len = m_new->m_len;
1576 r->bge_idx = i;
1577
1578 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1579 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1580 i * sizeof (struct bge_rx_bd),
1581 sizeof (struct bge_rx_bd),
1582 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1583
1584 return 0;
1585 }
1586
1587 /*
1588 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1589 * that's 1MB or memory, which is a lot. For now, we fill only the first
1590 * 256 ring entries and hope that our CPU is fast enough to keep up with
1591 * the NIC.
1592 */
1593 static int
1594 bge_init_rx_ring_std(struct bge_softc *sc)
1595 {
1596 int i;
1597
1598 if (sc->bge_flags & BGEF_RXRING_VALID)
1599 return 0;
1600
1601 for (i = 0; i < BGE_SSLOTS; i++) {
1602 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1603 return ENOBUFS;
1604 }
1605
1606 sc->bge_std = i - 1;
1607 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1608
1609 sc->bge_flags |= BGEF_RXRING_VALID;
1610
1611 return 0;
1612 }
1613
1614 static void
1615 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1616 {
1617 int i;
1618
1619 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1620 return;
1621
1622 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1623 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1624 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1625 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1626 if (disable) {
1627 bus_dmamap_destroy(sc->bge_dmatag,
1628 sc->bge_cdata.bge_rx_std_map[i]);
1629 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1630 }
1631 }
1632 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1633 sizeof(struct bge_rx_bd));
1634 }
1635
1636 sc->bge_flags &= ~BGEF_RXRING_VALID;
1637 }
1638
1639 static int
1640 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1641 {
1642 int i;
1643 volatile struct bge_rcb *rcb;
1644
1645 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1646 return 0;
1647
1648 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1649 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1650 return ENOBUFS;
1651 }
1652
1653 sc->bge_jumbo = i - 1;
1654 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1655
1656 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1657 rcb->bge_maxlen_flags = 0;
1658 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1659
1660 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1661
1662 return 0;
1663 }
1664
1665 static void
1666 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1667 {
1668 int i;
1669
1670 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1671 return;
1672
1673 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1674 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1675 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1676 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1677 }
1678 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1679 sizeof(struct bge_rx_bd));
1680 }
1681
1682 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1683 }
1684
1685 static void
1686 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1687 {
1688 int i;
1689 struct txdmamap_pool_entry *dma;
1690
1691 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1692 return;
1693
1694 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1695 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1696 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1697 sc->bge_cdata.bge_tx_chain[i] = NULL;
1698 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1699 link);
1700 sc->txdma[i] = 0;
1701 }
1702 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1703 sizeof(struct bge_tx_bd));
1704 }
1705
1706 if (disable) {
1707 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1708 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1709 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1710 if (sc->bge_dma64) {
1711 bus_dmamap_destroy(sc->bge_dmatag32,
1712 dma->dmamap32);
1713 }
1714 free(dma, M_DEVBUF);
1715 }
1716 SLIST_INIT(&sc->txdma_list);
1717 }
1718
1719 sc->bge_flags &= ~BGEF_TXRING_VALID;
1720 }
1721
1722 static int
1723 bge_init_tx_ring(struct bge_softc *sc)
1724 {
1725 struct ifnet *ifp = &sc->ethercom.ec_if;
1726 int i;
1727 bus_dmamap_t dmamap, dmamap32;
1728 bus_size_t maxsegsz;
1729 struct txdmamap_pool_entry *dma;
1730
1731 if (sc->bge_flags & BGEF_TXRING_VALID)
1732 return 0;
1733
1734 sc->bge_txcnt = 0;
1735 sc->bge_tx_saved_considx = 0;
1736
1737 /* Initialize transmit producer index for host-memory send ring. */
1738 sc->bge_tx_prodidx = 0;
1739 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1740 /* 5700 b2 errata */
1741 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1742 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1743
1744 /* NIC-memory send ring not used; initialize to zero. */
1745 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1746 /* 5700 b2 errata */
1747 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1748 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1749
1750 /* Limit DMA segment size for some chips */
1751 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1752 (ifp->if_mtu <= ETHERMTU))
1753 maxsegsz = 2048;
1754 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1755 maxsegsz = 4096;
1756 else
1757 maxsegsz = ETHER_MAX_LEN_JUMBO;
1758
1759 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1760 goto alloc_done;
1761
1762 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1763 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1764 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1765 &dmamap))
1766 return ENOBUFS;
1767 if (dmamap == NULL)
1768 panic("dmamap NULL in bge_init_tx_ring");
1769 if (sc->bge_dma64) {
1770 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1771 BGE_NTXSEG, maxsegsz, 0,
1772 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1773 &dmamap32)) {
1774 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1775 return ENOBUFS;
1776 }
1777 if (dmamap32 == NULL)
1778 panic("dmamap32 NULL in bge_init_tx_ring");
1779 } else
1780 dmamap32 = dmamap;
1781 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1782 if (dma == NULL) {
1783 aprint_error_dev(sc->bge_dev,
1784 "can't alloc txdmamap_pool_entry\n");
1785 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1786 if (sc->bge_dma64)
1787 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1788 return ENOMEM;
1789 }
1790 dma->dmamap = dmamap;
1791 dma->dmamap32 = dmamap32;
1792 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1793 }
1794 alloc_done:
1795 sc->bge_flags |= BGEF_TXRING_VALID;
1796
1797 return 0;
1798 }
1799
1800 static void
1801 bge_setmulti(struct bge_softc *sc)
1802 {
1803 struct ethercom *ec = &sc->ethercom;
1804 struct ifnet *ifp = &ec->ec_if;
1805 struct ether_multi *enm;
1806 struct ether_multistep step;
1807 uint32_t hashes[4] = { 0, 0, 0, 0 };
1808 uint32_t h;
1809 int i;
1810
1811 if (ifp->if_flags & IFF_PROMISC)
1812 goto allmulti;
1813
1814 /* Now program new ones. */
1815 ETHER_LOCK(ec);
1816 ETHER_FIRST_MULTI(step, ec, enm);
1817 while (enm != NULL) {
1818 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1819 /*
1820 * We must listen to a range of multicast addresses.
1821 * For now, just accept all multicasts, rather than
1822 * trying to set only those filter bits needed to match
1823 * the range. (At this time, the only use of address
1824 * ranges is for IP multicast routing, for which the
1825 * range is big enough to require all bits set.)
1826 */
1827 ETHER_UNLOCK(ec);
1828 goto allmulti;
1829 }
1830
1831 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1832
1833 /* Just want the 7 least-significant bits. */
1834 h &= 0x7f;
1835
1836 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1837 ETHER_NEXT_MULTI(step, enm);
1838 }
1839 ETHER_UNLOCK(ec);
1840
1841 ifp->if_flags &= ~IFF_ALLMULTI;
1842 goto setit;
1843
1844 allmulti:
1845 ifp->if_flags |= IFF_ALLMULTI;
1846 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1847
1848 setit:
1849 for (i = 0; i < 4; i++)
1850 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1851 }
1852
1853 static void
1854 bge_sig_pre_reset(struct bge_softc *sc, int type)
1855 {
1856
1857 /*
1858 * Some chips don't like this so only do this if ASF is enabled
1859 */
1860 if (sc->bge_asf_mode)
1861 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1862
1863 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1864 switch (type) {
1865 case BGE_RESET_START:
1866 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1867 BGE_FW_DRV_STATE_START);
1868 break;
1869 case BGE_RESET_SHUTDOWN:
1870 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1871 BGE_FW_DRV_STATE_UNLOAD);
1872 break;
1873 case BGE_RESET_SUSPEND:
1874 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1875 BGE_FW_DRV_STATE_SUSPEND);
1876 break;
1877 }
1878 }
1879
1880 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1881 bge_ape_driver_state_change(sc, type);
1882 }
1883
1884 static void
1885 bge_sig_post_reset(struct bge_softc *sc, int type)
1886 {
1887
1888 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1889 switch (type) {
1890 case BGE_RESET_START:
1891 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1892 BGE_FW_DRV_STATE_START_DONE);
1893 /* START DONE */
1894 break;
1895 case BGE_RESET_SHUTDOWN:
1896 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1897 BGE_FW_DRV_STATE_UNLOAD_DONE);
1898 break;
1899 }
1900 }
1901
1902 if (type == BGE_RESET_SHUTDOWN)
1903 bge_ape_driver_state_change(sc, type);
1904 }
1905
1906 static void
1907 bge_sig_legacy(struct bge_softc *sc, int type)
1908 {
1909
1910 if (sc->bge_asf_mode) {
1911 switch (type) {
1912 case BGE_RESET_START:
1913 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1914 BGE_FW_DRV_STATE_START);
1915 break;
1916 case BGE_RESET_SHUTDOWN:
1917 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1918 BGE_FW_DRV_STATE_UNLOAD);
1919 break;
1920 }
1921 }
1922 }
1923
1924 static void
1925 bge_wait_for_event_ack(struct bge_softc *sc)
1926 {
1927 int i;
1928
1929 /* wait up to 2500usec */
1930 for (i = 0; i < 250; i++) {
1931 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1932 BGE_RX_CPU_DRV_EVENT))
1933 break;
1934 DELAY(10);
1935 }
1936 }
1937
1938 static void
1939 bge_stop_fw(struct bge_softc *sc)
1940 {
1941
1942 if (sc->bge_asf_mode) {
1943 bge_wait_for_event_ack(sc);
1944
1945 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1946 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1947 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1948
1949 bge_wait_for_event_ack(sc);
1950 }
1951 }
1952
1953 static int
1954 bge_poll_fw(struct bge_softc *sc)
1955 {
1956 uint32_t val;
1957 int i;
1958
1959 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1960 for (i = 0; i < BGE_TIMEOUT; i++) {
1961 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1962 if (val & BGE_VCPU_STATUS_INIT_DONE)
1963 break;
1964 DELAY(100);
1965 }
1966 if (i >= BGE_TIMEOUT) {
1967 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1968 return -1;
1969 }
1970 } else {
1971 /*
1972 * Poll the value location we just wrote until
1973 * we see the 1's complement of the magic number.
1974 * This indicates that the firmware initialization
1975 * is complete.
1976 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1977 */
1978 for (i = 0; i < BGE_TIMEOUT; i++) {
1979 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1980 if (val == ~BGE_SRAM_FW_MB_MAGIC)
1981 break;
1982 DELAY(10);
1983 }
1984
1985 if ((i >= BGE_TIMEOUT)
1986 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1987 aprint_error_dev(sc->bge_dev,
1988 "firmware handshake timed out, val = %x\n", val);
1989 return -1;
1990 }
1991 }
1992
1993 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1994 /* tg3 says we have to wait extra time */
1995 delay(10 * 1000);
1996 }
1997
1998 return 0;
1999 }
2000
2001 int
2002 bge_phy_addr(struct bge_softc *sc)
2003 {
2004 struct pci_attach_args *pa = &(sc->bge_pa);
2005 int phy_addr = 1;
2006
2007 /*
2008 * PHY address mapping for various devices.
2009 *
2010 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2011 * ---------+-------+-------+-------+-------+
2012 * BCM57XX | 1 | X | X | X |
2013 * BCM5704 | 1 | X | 1 | X |
2014 * BCM5717 | 1 | 8 | 2 | 9 |
2015 * BCM5719 | 1 | 8 | 2 | 9 |
2016 * BCM5720 | 1 | 8 | 2 | 9 |
2017 *
2018 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2019 * ---------+-------+-------+-------+-------+
2020 * BCM57XX | X | X | X | X |
2021 * BCM5704 | X | X | X | X |
2022 * BCM5717 | X | X | X | X |
2023 * BCM5719 | 3 | 10 | 4 | 11 |
2024 * BCM5720 | X | X | X | X |
2025 *
2026 * Other addresses may respond but they are not
2027 * IEEE compliant PHYs and should be ignored.
2028 */
2029 switch (BGE_ASICREV(sc->bge_chipid)) {
2030 case BGE_ASICREV_BCM5717:
2031 case BGE_ASICREV_BCM5719:
2032 case BGE_ASICREV_BCM5720:
2033 phy_addr = pa->pa_function;
2034 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2035 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2036 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2037 } else {
2038 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2039 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2040 }
2041 }
2042
2043 return phy_addr;
2044 }
2045
2046 /*
2047 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2048 * self-test results.
2049 */
2050 static int
2051 bge_chipinit(struct bge_softc *sc)
2052 {
2053 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2054 int i;
2055
2056 /* Set endianness before we access any non-PCI registers. */
2057 misc_ctl = BGE_INIT;
2058 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2059 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2060 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2061 misc_ctl);
2062
2063 /*
2064 * Clear the MAC statistics block in the NIC's
2065 * internal memory.
2066 */
2067 for (i = BGE_STATS_BLOCK;
2068 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2069 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2070
2071 for (i = BGE_STATUS_BLOCK;
2072 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2073 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2074
2075 /* 5717 workaround from tg3 */
2076 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2077 /* Save */
2078 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2079
2080 /* Temporary modify MODE_CTL to control TLP */
2081 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2082 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2083
2084 /* Control TLP */
2085 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2086 BGE_TLP_PHYCTL1);
2087 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2088 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2089
2090 /* Restore */
2091 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2092 }
2093
2094 if (BGE_IS_57765_FAMILY(sc)) {
2095 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2096 /* Save */
2097 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2098
2099 /* Temporary modify MODE_CTL to control TLP */
2100 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2101 CSR_WRITE_4(sc, BGE_MODE_CTL,
2102 reg | BGE_MODECTL_PCIE_TLPADDR1);
2103
2104 /* Control TLP */
2105 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2106 BGE_TLP_PHYCTL5);
2107 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2108 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2109
2110 /* Restore */
2111 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2112 }
2113 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2114 /*
2115 * For the 57766 and non Ax versions of 57765, bootcode
2116 * needs to setup the PCIE Fast Training Sequence (FTS)
2117 * value to prevent transmit hangs.
2118 */
2119 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2120 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2121 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2122
2123 /* Save */
2124 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2125
2126 /* Temporary modify MODE_CTL to control TLP */
2127 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2128 CSR_WRITE_4(sc, BGE_MODE_CTL,
2129 reg | BGE_MODECTL_PCIE_TLPADDR0);
2130
2131 /* Control TLP */
2132 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2133 BGE_TLP_FTSMAX);
2134 reg &= ~BGE_TLP_FTSMAX_MSK;
2135 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2136 reg | BGE_TLP_FTSMAX_VAL);
2137
2138 /* Restore */
2139 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2140 }
2141
2142 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2143 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2144 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2145 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2146 }
2147
2148 /* Set up the PCI DMA control register. */
2149 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2150 if (sc->bge_flags & BGEF_PCIE) {
2151 /* Read watermark not used, 128 bytes for write. */
2152 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2153 device_xname(sc->bge_dev)));
2154 if (sc->bge_mps >= 256)
2155 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2156 else
2157 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2158 } else if (sc->bge_flags & BGEF_PCIX) {
2159 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2160 device_xname(sc->bge_dev)));
2161 /* PCI-X bus */
2162 if (BGE_IS_5714_FAMILY(sc)) {
2163 /* 256 bytes for read and write. */
2164 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2165 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2166
2167 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2168 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2169 else
2170 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2171 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2172 /*
2173 * In the BCM5703, the DMA read watermark should
2174 * be set to less than or equal to the maximum
2175 * memory read byte count of the PCI-X command
2176 * register.
2177 */
2178 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2179 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2180 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2181 /* 1536 bytes for read, 384 bytes for write. */
2182 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2183 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2184 } else {
2185 /* 384 bytes for read and write. */
2186 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2187 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2188 (0x0F);
2189 }
2190
2191 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2192 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2193 uint32_t tmp;
2194
2195 /* Set ONEDMA_ATONCE for hardware workaround. */
2196 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2197 if (tmp == 6 || tmp == 7)
2198 dma_rw_ctl |=
2199 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2200
2201 /* Set PCI-X DMA write workaround. */
2202 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2203 }
2204 } else {
2205 /* Conventional PCI bus: 256 bytes for read and write. */
2206 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2207 device_xname(sc->bge_dev)));
2208 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2209 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2210
2211 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2212 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2213 dma_rw_ctl |= 0x0F;
2214 }
2215
2216 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2217 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2218 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2219 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2220
2221 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2222 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2223 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2224
2225 if (BGE_IS_57765_PLUS(sc)) {
2226 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2227 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2228 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2229
2230 /*
2231 * Enable HW workaround for controllers that misinterpret
2232 * a status tag update and leave interrupts permanently
2233 * disabled.
2234 */
2235 if (!BGE_IS_57765_FAMILY(sc) &&
2236 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2237 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2238 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2239 }
2240
2241 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2242 dma_rw_ctl);
2243
2244 /*
2245 * Set up general mode register.
2246 */
2247 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2248 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2249 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2250 /* Retain Host-2-BMC settings written by APE firmware. */
2251 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2252 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2253 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2254 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2255 }
2256 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2257 BGE_MODECTL_TX_NO_PHDR_CSUM;
2258
2259 /*
2260 * BCM5701 B5 have a bug causing data corruption when using
2261 * 64-bit DMA reads, which can be terminated early and then
2262 * completed later as 32-bit accesses, in combination with
2263 * certain bridges.
2264 */
2265 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2266 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2267 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2268
2269 /*
2270 * Tell the firmware the driver is running
2271 */
2272 if (sc->bge_asf_mode & ASF_STACKUP)
2273 mode_ctl |= BGE_MODECTL_STACKUP;
2274
2275 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2276
2277 /*
2278 * Disable memory write invalidate. Apparently it is not supported
2279 * properly by these devices.
2280 */
2281 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2282 PCI_COMMAND_INVALIDATE_ENABLE);
2283
2284 #ifdef __brokenalpha__
2285 /*
2286 * Must insure that we do not cross an 8K (bytes) boundary
2287 * for DMA reads. Our highest limit is 1K bytes. This is a
2288 * restriction on some ALPHA platforms with early revision
2289 * 21174 PCI chipsets, such as the AlphaPC 164lx
2290 */
2291 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2292 #endif
2293
2294 /* Set the timer prescaler (always 66MHz) */
2295 CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2296
2297 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2298 DELAY(40); /* XXX */
2299
2300 /* Put PHY into ready state */
2301 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2302 DELAY(40);
2303 }
2304
2305 return 0;
2306 }
2307
2308 static int
2309 bge_blockinit(struct bge_softc *sc)
2310 {
2311 volatile struct bge_rcb *rcb;
2312 bus_size_t rcb_addr;
2313 struct ifnet *ifp = &sc->ethercom.ec_if;
2314 bge_hostaddr taddr;
2315 uint32_t dmactl, rdmareg, mimode, val;
2316 int i, limit;
2317
2318 /*
2319 * Initialize the memory window pointer register so that
2320 * we can access the first 32K of internal NIC RAM. This will
2321 * allow us to set up the TX send ring RCBs and the RX return
2322 * ring RCBs, plus other things which live in NIC memory.
2323 */
2324 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2325
2326 if (!BGE_IS_5705_PLUS(sc)) {
2327 /* 57XX step 33 */
2328 /* Configure mbuf memory pool */
2329 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2330
2331 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2332 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2333 else
2334 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2335
2336 /* 57XX step 34 */
2337 /* Configure DMA resource pool */
2338 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2339 BGE_DMA_DESCRIPTORS);
2340 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2341 }
2342
2343 /* 5718 step 11, 57XX step 35 */
2344 /*
2345 * Configure mbuf pool watermarks. New broadcom docs strongly
2346 * recommend these.
2347 */
2348 if (BGE_IS_5717_PLUS(sc)) {
2349 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2350 if (ifp->if_mtu > ETHERMTU) {
2351 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2352 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2353 } else {
2354 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2355 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2356 }
2357 } else if (BGE_IS_5705_PLUS(sc)) {
2358 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2359
2360 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2361 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2362 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2363 } else {
2364 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2365 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2366 }
2367 } else {
2368 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2369 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2370 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2371 }
2372
2373 /* 57XX step 36 */
2374 /* Configure DMA resource watermarks */
2375 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2376 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2377
2378 /* 5718 step 13, 57XX step 38 */
2379 /* Enable buffer manager */
2380 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2381 /*
2382 * Change the arbitration algorithm of TXMBUF read request to
2383 * round-robin instead of priority based for BCM5719. When
2384 * TXFIFO is almost empty, RDMA will hold its request until
2385 * TXFIFO is not almost empty.
2386 */
2387 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2388 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2389 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2390 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2391 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2392 val |= BGE_BMANMODE_LOMBUF_ATTN;
2393 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2394
2395 /* 57XX step 39 */
2396 /* Poll for buffer manager start indication */
2397 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2398 DELAY(10);
2399 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2400 break;
2401 }
2402
2403 if (i == BGE_TIMEOUT * 2) {
2404 aprint_error_dev(sc->bge_dev,
2405 "buffer manager failed to start\n");
2406 return ENXIO;
2407 }
2408
2409 /* 57XX step 40 */
2410 /* Enable flow-through queues */
2411 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2412 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2413
2414 /* Wait until queue initialization is complete */
2415 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2416 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2417 break;
2418 DELAY(10);
2419 }
2420
2421 if (i == BGE_TIMEOUT * 2) {
2422 aprint_error_dev(sc->bge_dev,
2423 "flow-through queue init failed\n");
2424 return ENXIO;
2425 }
2426
2427 /*
2428 * Summary of rings supported by the controller:
2429 *
2430 * Standard Receive Producer Ring
2431 * - This ring is used to feed receive buffers for "standard"
2432 * sized frames (typically 1536 bytes) to the controller.
2433 *
2434 * Jumbo Receive Producer Ring
2435 * - This ring is used to feed receive buffers for jumbo sized
2436 * frames (i.e. anything bigger than the "standard" frames)
2437 * to the controller.
2438 *
2439 * Mini Receive Producer Ring
2440 * - This ring is used to feed receive buffers for "mini"
2441 * sized frames to the controller.
2442 * - This feature required external memory for the controller
2443 * but was never used in a production system. Should always
2444 * be disabled.
2445 *
2446 * Receive Return Ring
2447 * - After the controller has placed an incoming frame into a
2448 * receive buffer that buffer is moved into a receive return
2449 * ring. The driver is then responsible to passing the
2450 * buffer up to the stack. Many versions of the controller
2451 * support multiple RR rings.
2452 *
2453 * Send Ring
2454 * - This ring is used for outgoing frames. Many versions of
2455 * the controller support multiple send rings.
2456 */
2457
2458 /* 5718 step 15, 57XX step 41 */
2459 /* Initialize the standard RX ring control block */
2460 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2461 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2462 /* 5718 step 16 */
2463 if (BGE_IS_57765_PLUS(sc)) {
2464 /*
2465 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2466 * Bits 15-2 : Maximum RX frame size
2467 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2468 * Bit 0 : Reserved
2469 */
2470 rcb->bge_maxlen_flags =
2471 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2472 } else if (BGE_IS_5705_PLUS(sc)) {
2473 /*
2474 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2475 * Bits 15-2 : Reserved (should be 0)
2476 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2477 * Bit 0 : Reserved
2478 */
2479 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2480 } else {
2481 /*
2482 * Ring size is always XXX entries
2483 * Bits 31-16: Maximum RX frame size
2484 * Bits 15-2 : Reserved (should be 0)
2485 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2486 * Bit 0 : Reserved
2487 */
2488 rcb->bge_maxlen_flags =
2489 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2490 }
2491 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2492 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2493 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2494 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2495 else
2496 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2497 /* Write the standard receive producer ring control block. */
2498 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2499 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2500 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2501 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2502
2503 /* Reset the standard receive producer ring producer index. */
2504 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2505
2506 /* 57XX step 42 */
2507 /*
2508 * Initialize the jumbo RX ring control block
2509 * We set the 'ring disabled' bit in the flags
2510 * field until we're actually ready to start
2511 * using this ring (i.e. once we set the MTU
2512 * high enough to require it).
2513 */
2514 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2515 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2516 BGE_HOSTADDR(rcb->bge_hostaddr,
2517 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2518 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2519 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2520 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2521 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2522 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2523 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2524 else
2525 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2526 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2527 rcb->bge_hostaddr.bge_addr_hi);
2528 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2529 rcb->bge_hostaddr.bge_addr_lo);
2530 /* Program the jumbo receive producer ring RCB parameters. */
2531 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2532 rcb->bge_maxlen_flags);
2533 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2534 /* Reset the jumbo receive producer ring producer index. */
2535 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2536 }
2537
2538 /* 57XX step 43 */
2539 /* Disable the mini receive producer ring RCB. */
2540 if (BGE_IS_5700_FAMILY(sc)) {
2541 /* Set up dummy disabled mini ring RCB */
2542 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2543 rcb->bge_maxlen_flags =
2544 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2545 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2546 rcb->bge_maxlen_flags);
2547 /* Reset the mini receive producer ring producer index. */
2548 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2549
2550 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2551 offsetof(struct bge_ring_data, bge_info),
2552 sizeof (struct bge_gib),
2553 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2554 }
2555
2556 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2557 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2558 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2559 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2560 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2561 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2562 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2563 }
2564 /* 5718 step 14, 57XX step 44 */
2565 /*
2566 * The BD ring replenish thresholds control how often the
2567 * hardware fetches new BD's from the producer rings in host
2568 * memory. Setting the value too low on a busy system can
2569 * starve the hardware and recue the throughpout.
2570 *
2571 * Set the BD ring replenish thresholds. The recommended
2572 * values are 1/8th the number of descriptors allocated to
2573 * each ring, but since we try to avoid filling the entire
2574 * ring we set these to the minimal value of 8. This needs to
2575 * be done on several of the supported chip revisions anyway,
2576 * to work around HW bugs.
2577 */
2578 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2579 if (BGE_IS_JUMBO_CAPABLE(sc))
2580 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2581
2582 /* 5718 step 18 */
2583 if (BGE_IS_5717_PLUS(sc)) {
2584 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2585 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2586 }
2587
2588 /* 57XX step 45 */
2589 /*
2590 * Disable all send rings by setting the 'ring disabled' bit
2591 * in the flags field of all the TX send ring control blocks,
2592 * located in NIC memory.
2593 */
2594 if (BGE_IS_5700_FAMILY(sc)) {
2595 /* 5700 to 5704 had 16 send rings. */
2596 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2597 } else if (BGE_IS_5717_PLUS(sc)) {
2598 limit = BGE_TX_RINGS_5717_MAX;
2599 } else if (BGE_IS_57765_FAMILY(sc) ||
2600 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2601 limit = BGE_TX_RINGS_57765_MAX;
2602 } else
2603 limit = 1;
2604 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2605 for (i = 0; i < limit; i++) {
2606 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2607 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2608 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2609 rcb_addr += sizeof(struct bge_rcb);
2610 }
2611
2612 /* 57XX step 46 and 47 */
2613 /* Configure send ring RCB 0 (we use only the first ring) */
2614 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2615 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2616 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2617 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2618 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2619 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2620 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2621 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2622 else
2623 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2624 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2625 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2626 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2627
2628 /* 57XX step 48 */
2629 /*
2630 * Disable all receive return rings by setting the
2631 * 'ring diabled' bit in the flags field of all the receive
2632 * return ring control blocks, located in NIC memory.
2633 */
2634 if (BGE_IS_5717_PLUS(sc)) {
2635 /* Should be 17, use 16 until we get an SRAM map. */
2636 limit = 16;
2637 } else if (BGE_IS_5700_FAMILY(sc))
2638 limit = BGE_RX_RINGS_MAX;
2639 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2640 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2641 BGE_IS_57765_FAMILY(sc))
2642 limit = 4;
2643 else
2644 limit = 1;
2645 /* Disable all receive return rings */
2646 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2647 for (i = 0; i < limit; i++) {
2648 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2649 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2650 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2651 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2652 BGE_RCB_FLAG_RING_DISABLED));
2653 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2654 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2655 (i * (sizeof(uint64_t))), 0);
2656 rcb_addr += sizeof(struct bge_rcb);
2657 }
2658
2659 /* 57XX step 49 */
2660 /*
2661 * Set up receive return ring 0. Note that the NIC address
2662 * for RX return rings is 0x0. The return rings live entirely
2663 * within the host, so the nicaddr field in the RCB isn't used.
2664 */
2665 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2666 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2667 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2668 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2669 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2670 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2671 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2672
2673 /* 5718 step 24, 57XX step 53 */
2674 /* Set random backoff seed for TX */
2675 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2676 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2677 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2678 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2679 BGE_TX_BACKOFF_SEED_MASK);
2680
2681 /* 5718 step 26, 57XX step 55 */
2682 /* Set inter-packet gap */
2683 val = 0x2620;
2684 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2685 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2686 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2687 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2688 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2689
2690 /* 5718 step 27, 57XX step 56 */
2691 /*
2692 * Specify which ring to use for packets that don't match
2693 * any RX rules.
2694 */
2695 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2696
2697 /* 5718 step 28, 57XX step 57 */
2698 /*
2699 * Configure number of RX lists. One interrupt distribution
2700 * list, sixteen active lists, one bad frames class.
2701 */
2702 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2703
2704 /* 5718 step 29, 57XX step 58 */
2705 /* Inialize RX list placement stats mask. */
2706 if (BGE_IS_575X_PLUS(sc)) {
2707 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2708 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2709 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2710 } else
2711 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2712
2713 /* 5718 step 30, 57XX step 59 */
2714 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2715
2716 /* 5718 step 33, 57XX step 62 */
2717 /* Disable host coalescing until we get it set up */
2718 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2719
2720 /* 5718 step 34, 57XX step 63 */
2721 /* Poll to make sure it's shut down. */
2722 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2723 DELAY(10);
2724 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2725 break;
2726 }
2727
2728 if (i == BGE_TIMEOUT * 2) {
2729 aprint_error_dev(sc->bge_dev,
2730 "host coalescing engine failed to idle\n");
2731 return ENXIO;
2732 }
2733
2734 /* 5718 step 35, 36, 37 */
2735 /* Set up host coalescing defaults */
2736 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2737 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2738 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2739 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2740 if (!(BGE_IS_5705_PLUS(sc))) {
2741 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2742 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2743 }
2744 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2745 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2746
2747 /* Set up address of statistics block */
2748 if (BGE_IS_5700_FAMILY(sc)) {
2749 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2750 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2751 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2752 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2753 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2754 }
2755
2756 /* 5718 step 38 */
2757 /* Set up address of status block */
2758 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2759 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2760 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2761 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2762 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2763 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2764
2765 /* Set up status block size. */
2766 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2767 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2768 val = BGE_STATBLKSZ_FULL;
2769 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2770 } else {
2771 val = BGE_STATBLKSZ_32BYTE;
2772 bzero(&sc->bge_rdata->bge_status_block, 32);
2773 }
2774
2775 /* 5718 step 39, 57XX step 73 */
2776 /* Turn on host coalescing state machine */
2777 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2778
2779 /* 5718 step 40, 57XX step 74 */
2780 /* Turn on RX BD completion state machine and enable attentions */
2781 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2782 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2783
2784 /* 5718 step 41, 57XX step 75 */
2785 /* Turn on RX list placement state machine */
2786 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2787
2788 /* 57XX step 76 */
2789 /* Turn on RX list selector state machine. */
2790 if (!(BGE_IS_5705_PLUS(sc)))
2791 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2792
2793 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2794 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2795 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2796 BGE_MACMODE_FRMHDR_DMA_ENB;
2797
2798 if (sc->bge_flags & BGEF_FIBER_TBI)
2799 val |= BGE_PORTMODE_TBI;
2800 else if (sc->bge_flags & BGEF_FIBER_MII)
2801 val |= BGE_PORTMODE_GMII;
2802 else
2803 val |= BGE_PORTMODE_MII;
2804
2805 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2806 /* Allow APE to send/receive frames. */
2807 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2808 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2809
2810 /* Turn on DMA, clear stats */
2811 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2812 /* 5718 step 44 */
2813 DELAY(40);
2814
2815 /* 5718 step 45, 57XX step 79 */
2816 /* Set misc. local control, enable interrupts on attentions */
2817 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2818 if (BGE_IS_5717_PLUS(sc)) {
2819 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2820 /* 5718 step 46 */
2821 DELAY(100);
2822 }
2823
2824 /* 57XX step 81 */
2825 /* Turn on DMA completion state machine */
2826 if (!(BGE_IS_5705_PLUS(sc)))
2827 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2828
2829 /* 5718 step 47, 57XX step 82 */
2830 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2831
2832 /* 5718 step 48 */
2833 /* Enable host coalescing bug fix. */
2834 if (BGE_IS_5755_PLUS(sc))
2835 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2836
2837 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2838 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2839
2840 /* Turn on write DMA state machine */
2841 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2842 /* 5718 step 49 */
2843 DELAY(40);
2844
2845 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2846
2847 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2848 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2849
2850 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2851 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2852 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2853 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2854 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2855 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2856
2857 if (sc->bge_flags & BGEF_PCIE)
2858 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2859 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2860 if (ifp->if_mtu <= ETHERMTU)
2861 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2862 }
2863 if (sc->bge_flags & BGEF_TSO) {
2864 val |= BGE_RDMAMODE_TSO4_ENABLE;
2865 if (BGE_IS_5717_PLUS(sc))
2866 val |= BGE_RDMAMODE_TSO6_ENABLE;
2867 }
2868
2869 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2870 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2871 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2872 BGE_RDMAMODE_H2BNC_VLAN_DET;
2873 /*
2874 * Allow multiple outstanding read requests from
2875 * non-LSO read DMA engine.
2876 */
2877 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2878 }
2879
2880 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2881 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2882 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2883 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2884 BGE_IS_57765_PLUS(sc)) {
2885 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2886 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2887 else
2888 rdmareg = BGE_RDMA_RSRVCTRL;
2889 dmactl = CSR_READ_4(sc, rdmareg);
2890 /*
2891 * Adjust tx margin to prevent TX data corruption and
2892 * fix internal FIFO overflow.
2893 */
2894 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2895 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2896 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2897 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2898 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2899 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2900 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2901 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2902 }
2903 /*
2904 * Enable fix for read DMA FIFO overruns.
2905 * The fix is to limit the number of RX BDs
2906 * the hardware would fetch at a fime.
2907 */
2908 CSR_WRITE_4(sc, rdmareg, dmactl |
2909 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2910 }
2911
2912 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2913 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2914 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2915 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2916 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2917 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2918 /*
2919 * Allow 4KB burst length reads for non-LSO frames.
2920 * Enable 512B burst length reads for buffer descriptors.
2921 */
2922 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2923 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2924 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2925 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2926 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2927 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2928 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2929 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2930 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2931 }
2932 /* Turn on read DMA state machine */
2933 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2934 /* 5718 step 52 */
2935 delay(40);
2936
2937 if (sc->bge_flags & BGEF_RDMA_BUG) {
2938 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2939 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2940 if ((val & 0xFFFF) > BGE_FRAMELEN)
2941 break;
2942 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2943 break;
2944 }
2945 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2946 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2947 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2948 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2949 else
2950 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2951 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2952 }
2953 }
2954
2955 /* 5718 step 56, 57XX step 84 */
2956 /* Turn on RX data completion state machine */
2957 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2958
2959 /* Turn on RX data and RX BD initiator state machine */
2960 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2961
2962 /* 57XX step 85 */
2963 /* Turn on Mbuf cluster free state machine */
2964 if (!BGE_IS_5705_PLUS(sc))
2965 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2966
2967 /* 5718 step 57, 57XX step 86 */
2968 /* Turn on send data completion state machine */
2969 val = BGE_SDCMODE_ENABLE;
2970 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2971 val |= BGE_SDCMODE_CDELAY;
2972 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2973
2974 /* 5718 step 58 */
2975 /* Turn on send BD completion state machine */
2976 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2977
2978 /* 57XX step 88 */
2979 /* Turn on RX BD initiator state machine */
2980 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2981
2982 /* 5718 step 60, 57XX step 90 */
2983 /* Turn on send data initiator state machine */
2984 if (sc->bge_flags & BGEF_TSO) {
2985 /* XXX: magic value from Linux driver */
2986 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2987 BGE_SDIMODE_HW_LSO_PRE_DMA);
2988 } else
2989 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2990
2991 /* 5718 step 61, 57XX step 91 */
2992 /* Turn on send BD initiator state machine */
2993 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2994
2995 /* 5718 step 62, 57XX step 92 */
2996 /* Turn on send BD selector state machine */
2997 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2998
2999 /* 5718 step 31, 57XX step 60 */
3000 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3001 /* 5718 step 32, 57XX step 61 */
3002 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3003 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3004
3005 /* ack/clear link change events */
3006 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3007 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3008 BGE_MACSTAT_LINK_CHANGED);
3009 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3010
3011 /*
3012 * Enable attention when the link has changed state for
3013 * devices that use auto polling.
3014 */
3015 if (sc->bge_flags & BGEF_FIBER_TBI) {
3016 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3017 } else {
3018 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3019 mimode = BGE_MIMODE_500KHZ_CONST;
3020 else
3021 mimode = BGE_MIMODE_BASE;
3022 /* 5718 step 68. 5718 step 69 (optionally). */
3023 if (BGE_IS_5700_FAMILY(sc) ||
3024 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3025 mimode |= BGE_MIMODE_AUTOPOLL;
3026 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3027 }
3028 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3029 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3030 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3031 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3032 BGE_EVTENB_MI_INTERRUPT);
3033 }
3034
3035 /*
3036 * Clear any pending link state attention.
3037 * Otherwise some link state change events may be lost until attention
3038 * is cleared by bge_intr() -> bge_link_upd() sequence.
3039 * It's not necessary on newer BCM chips - perhaps enabling link
3040 * state change attentions implies clearing pending attention.
3041 */
3042 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3043 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3044 BGE_MACSTAT_LINK_CHANGED);
3045
3046 /* Enable link state change attentions. */
3047 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3048
3049 return 0;
3050 }
3051
3052 static const struct bge_revision *
3053 bge_lookup_rev(uint32_t chipid)
3054 {
3055 const struct bge_revision *br;
3056
3057 for (br = bge_revisions; br->br_name != NULL; br++) {
3058 if (br->br_chipid == chipid)
3059 return br;
3060 }
3061
3062 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3063 if (br->br_chipid == BGE_ASICREV(chipid))
3064 return br;
3065 }
3066
3067 return NULL;
3068 }
3069
3070 static const struct bge_product *
3071 bge_lookup(const struct pci_attach_args *pa)
3072 {
3073 const struct bge_product *bp;
3074
3075 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3076 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3077 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3078 return bp;
3079 }
3080
3081 return NULL;
3082 }
3083
3084 static uint32_t
3085 bge_chipid(const struct pci_attach_args *pa)
3086 {
3087 uint32_t id;
3088
3089 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3090 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3091
3092 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3093 switch (PCI_PRODUCT(pa->pa_id)) {
3094 case PCI_PRODUCT_BROADCOM_BCM5717:
3095 case PCI_PRODUCT_BROADCOM_BCM5718:
3096 case PCI_PRODUCT_BROADCOM_BCM5719:
3097 case PCI_PRODUCT_BROADCOM_BCM5720:
3098 case PCI_PRODUCT_BROADCOM_BCM5725:
3099 case PCI_PRODUCT_BROADCOM_BCM5727:
3100 case PCI_PRODUCT_BROADCOM_BCM5762:
3101 case PCI_PRODUCT_BROADCOM_BCM57764:
3102 case PCI_PRODUCT_BROADCOM_BCM57767:
3103 case PCI_PRODUCT_BROADCOM_BCM57787:
3104 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3105 BGE_PCI_GEN2_PRODID_ASICREV);
3106 break;
3107 case PCI_PRODUCT_BROADCOM_BCM57761:
3108 case PCI_PRODUCT_BROADCOM_BCM57762:
3109 case PCI_PRODUCT_BROADCOM_BCM57765:
3110 case PCI_PRODUCT_BROADCOM_BCM57766:
3111 case PCI_PRODUCT_BROADCOM_BCM57781:
3112 case PCI_PRODUCT_BROADCOM_BCM57782:
3113 case PCI_PRODUCT_BROADCOM_BCM57785:
3114 case PCI_PRODUCT_BROADCOM_BCM57786:
3115 case PCI_PRODUCT_BROADCOM_BCM57791:
3116 case PCI_PRODUCT_BROADCOM_BCM57795:
3117 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3118 BGE_PCI_GEN15_PRODID_ASICREV);
3119 break;
3120 default:
3121 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3122 BGE_PCI_PRODID_ASICREV);
3123 break;
3124 }
3125 }
3126
3127 return id;
3128 }
3129
3130 /*
3131 * Return true if MSI can be used with this device.
3132 */
3133 static int
3134 bge_can_use_msi(struct bge_softc *sc)
3135 {
3136 int can_use_msi = 0;
3137
3138 switch (BGE_ASICREV(sc->bge_chipid)) {
3139 case BGE_ASICREV_BCM5714_A0:
3140 case BGE_ASICREV_BCM5714:
3141 /*
3142 * Apparently, MSI doesn't work when these chips are
3143 * configured in single-port mode.
3144 */
3145 break;
3146 case BGE_ASICREV_BCM5750:
3147 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3148 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3149 can_use_msi = 1;
3150 break;
3151 default:
3152 if (BGE_IS_575X_PLUS(sc))
3153 can_use_msi = 1;
3154 }
3155 return (can_use_msi);
3156 }
3157
3158 /*
3159 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3160 * against our list and return its name if we find a match. Note
3161 * that since the Broadcom controller contains VPD support, we
3162 * can get the device name string from the controller itself instead
3163 * of the compiled-in string. This is a little slow, but it guarantees
3164 * we'll always announce the right product name.
3165 */
3166 static int
3167 bge_probe(device_t parent, cfdata_t match, void *aux)
3168 {
3169 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3170
3171 if (bge_lookup(pa) != NULL)
3172 return 1;
3173
3174 return 0;
3175 }
3176
3177 static void
3178 bge_attach(device_t parent, device_t self, void *aux)
3179 {
3180 struct bge_softc *sc = device_private(self);
3181 struct pci_attach_args *pa = aux;
3182 prop_dictionary_t dict;
3183 const struct bge_product *bp;
3184 const struct bge_revision *br;
3185 pci_chipset_tag_t pc;
3186 const char *intrstr = NULL;
3187 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3188 uint32_t command;
3189 struct ifnet *ifp;
3190 struct mii_data * const mii = &sc->bge_mii;
3191 uint32_t misccfg, mimode, macmode;
3192 void * kva;
3193 u_char eaddr[ETHER_ADDR_LEN];
3194 pcireg_t memtype, subid, reg;
3195 bus_addr_t memaddr;
3196 uint32_t pm_ctl;
3197 bool no_seeprom;
3198 int capmask, trys;
3199 int mii_flags;
3200 int map_flags;
3201 char intrbuf[PCI_INTRSTR_LEN];
3202
3203 bp = bge_lookup(pa);
3204 KASSERT(bp != NULL);
3205
3206 sc->sc_pc = pa->pa_pc;
3207 sc->sc_pcitag = pa->pa_tag;
3208 sc->bge_dev = self;
3209
3210 sc->bge_pa = *pa;
3211 pc = sc->sc_pc;
3212 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3213
3214 aprint_naive(": Ethernet controller\n");
3215 aprint_normal(": %s Ethernet\n", bp->bp_name);
3216
3217 /*
3218 * Map control/status registers.
3219 */
3220 DPRINTFN(5, ("Map control/status regs\n"));
3221 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3222 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3223 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3224 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3225
3226 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3227 aprint_error_dev(sc->bge_dev,
3228 "failed to enable memory mapping!\n");
3229 return;
3230 }
3231
3232 DPRINTFN(5, ("pci_mem_find\n"));
3233 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3234 switch (memtype) {
3235 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3236 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3237 #if 0
3238 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3239 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3240 &memaddr, &sc->bge_bsize) == 0)
3241 break;
3242 #else
3243 /*
3244 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3245 * system get NMI on boot (PR#48451). This problem might not be
3246 * the driver's bug but our PCI common part's bug. Until we
3247 * find a real reason, we ignore the prefetchable bit.
3248 */
3249 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3250 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3251 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3252 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3253 map_flags, &sc->bge_bhandle) == 0) {
3254 sc->bge_btag = pa->pa_memt;
3255 break;
3256 }
3257 }
3258 #endif
3259 /* FALLTHROUGH */
3260 default:
3261 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3262 return;
3263 }
3264
3265 /* Save various chip information. */
3266 sc->bge_chipid = bge_chipid(pa);
3267 sc->bge_phy_addr = bge_phy_addr(sc);
3268
3269 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3270 &sc->bge_pciecap, NULL) != 0) {
3271 /* PCIe */
3272 sc->bge_flags |= BGEF_PCIE;
3273 /* Extract supported maximum payload size. */
3274 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3275 sc->bge_pciecap + PCIE_DCAP);
3276 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3277 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3278 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3279 sc->bge_expmrq = 2048;
3280 else
3281 sc->bge_expmrq = 4096;
3282 bge_set_max_readrq(sc);
3283 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3284 /* PCIe without PCIe cap */
3285 sc->bge_flags |= BGEF_PCIE;
3286 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3287 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3288 /* PCI-X */
3289 sc->bge_flags |= BGEF_PCIX;
3290 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3291 &sc->bge_pcixcap, NULL) == 0)
3292 aprint_error_dev(sc->bge_dev,
3293 "unable to find PCIX capability\n");
3294 }
3295
3296 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3297 /*
3298 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3299 * can clobber the chip's PCI config-space power control
3300 * registers, leaving the card in D3 powersave state. We do
3301 * not have memory-mapped registers in this state, so force
3302 * device into D0 state before starting initialization.
3303 */
3304 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3305 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3306 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3307 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3308 DELAY(1000); /* 27 usec is allegedly sufficent */
3309 }
3310
3311 /* Save chipset family. */
3312 switch (BGE_ASICREV(sc->bge_chipid)) {
3313 case BGE_ASICREV_BCM5717:
3314 case BGE_ASICREV_BCM5719:
3315 case BGE_ASICREV_BCM5720:
3316 sc->bge_flags |= BGEF_5717_PLUS;
3317 /* FALLTHROUGH */
3318 case BGE_ASICREV_BCM5762:
3319 case BGE_ASICREV_BCM57765:
3320 case BGE_ASICREV_BCM57766:
3321 if (!BGE_IS_5717_PLUS(sc))
3322 sc->bge_flags |= BGEF_57765_FAMILY;
3323 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3324 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3325 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3326 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3327 /*
3328 * Enable work around for DMA engine miscalculation
3329 * of TXMBUF available space.
3330 */
3331 sc->bge_flags |= BGEF_RDMA_BUG;
3332
3333 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3334 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3335 /* Jumbo frame on BCM5719 A0 does not work. */
3336 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3337 }
3338 }
3339 break;
3340 case BGE_ASICREV_BCM5755:
3341 case BGE_ASICREV_BCM5761:
3342 case BGE_ASICREV_BCM5784:
3343 case BGE_ASICREV_BCM5785:
3344 case BGE_ASICREV_BCM5787:
3345 case BGE_ASICREV_BCM57780:
3346 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3347 break;
3348 case BGE_ASICREV_BCM5700:
3349 case BGE_ASICREV_BCM5701:
3350 case BGE_ASICREV_BCM5703:
3351 case BGE_ASICREV_BCM5704:
3352 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3353 break;
3354 case BGE_ASICREV_BCM5714_A0:
3355 case BGE_ASICREV_BCM5780:
3356 case BGE_ASICREV_BCM5714:
3357 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3358 /* FALLTHROUGH */
3359 case BGE_ASICREV_BCM5750:
3360 case BGE_ASICREV_BCM5752:
3361 case BGE_ASICREV_BCM5906:
3362 sc->bge_flags |= BGEF_575X_PLUS;
3363 /* FALLTHROUGH */
3364 case BGE_ASICREV_BCM5705:
3365 sc->bge_flags |= BGEF_5705_PLUS;
3366 break;
3367 }
3368
3369 /* Identify chips with APE processor. */
3370 switch (BGE_ASICREV(sc->bge_chipid)) {
3371 case BGE_ASICREV_BCM5717:
3372 case BGE_ASICREV_BCM5719:
3373 case BGE_ASICREV_BCM5720:
3374 case BGE_ASICREV_BCM5761:
3375 case BGE_ASICREV_BCM5762:
3376 sc->bge_flags |= BGEF_APE;
3377 break;
3378 }
3379
3380 /*
3381 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3382 * not actually a MAC controller bug but an issue with the embedded
3383 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3384 */
3385 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3386 sc->bge_flags |= BGEF_40BIT_BUG;
3387
3388 /* Chips with APE need BAR2 access for APE registers/memory. */
3389 if ((sc->bge_flags & BGEF_APE) != 0) {
3390 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3391 #if 0
3392 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3393 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3394 &sc->bge_apesize)) {
3395 aprint_error_dev(sc->bge_dev,
3396 "couldn't map BAR2 memory\n");
3397 return;
3398 }
3399 #else
3400 /*
3401 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3402 * system get NMI on boot (PR#48451). This problem might not be
3403 * the driver's bug but our PCI common part's bug. Until we
3404 * find a real reason, we ignore the prefetchable bit.
3405 */
3406 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3407 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3408 aprint_error_dev(sc->bge_dev,
3409 "couldn't map BAR2 memory\n");
3410 return;
3411 }
3412
3413 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3414 if (bus_space_map(pa->pa_memt, memaddr,
3415 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3416 aprint_error_dev(sc->bge_dev,
3417 "couldn't map BAR2 memory\n");
3418 return;
3419 }
3420 sc->bge_apetag = pa->pa_memt;
3421 #endif
3422
3423 /* Enable APE register/memory access by host driver. */
3424 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3425 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3426 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3427 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3428 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3429
3430 bge_ape_lock_init(sc);
3431 bge_ape_read_fw_ver(sc);
3432 }
3433
3434 /* Identify the chips that use an CPMU. */
3435 if (BGE_IS_5717_PLUS(sc) ||
3436 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3437 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3438 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3439 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3440 sc->bge_flags |= BGEF_CPMU_PRESENT;
3441
3442 /*
3443 * When using the BCM5701 in PCI-X mode, data corruption has
3444 * been observed in the first few bytes of some received packets.
3445 * Aligning the packet buffer in memory eliminates the corruption.
3446 * Unfortunately, this misaligns the packet payloads. On platforms
3447 * which do not support unaligned accesses, we will realign the
3448 * payloads by copying the received packets.
3449 */
3450 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3451 sc->bge_flags & BGEF_PCIX)
3452 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3453
3454 if (BGE_IS_5700_FAMILY(sc))
3455 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3456
3457 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3458 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3459
3460 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3461 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3462 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3463 sc->bge_flags |= BGEF_IS_5788;
3464
3465 /*
3466 * Some controllers seem to require a special firmware to use
3467 * TSO. But the firmware is not available to FreeBSD and Linux
3468 * claims that the TSO performed by the firmware is slower than
3469 * hardware based TSO. Moreover the firmware based TSO has one
3470 * known bug which can't handle TSO if ethernet header + IP/TCP
3471 * header is greater than 80 bytes. The workaround for the TSO
3472 * bug exist but it seems it's too expensive than not using
3473 * TSO at all. Some hardwares also have the TSO bug so limit
3474 * the TSO to the controllers that are not affected TSO issues
3475 * (e.g. 5755 or higher).
3476 */
3477 if (BGE_IS_5755_PLUS(sc)) {
3478 /*
3479 * BCM5754 and BCM5787 shares the same ASIC id so
3480 * explicit device id check is required.
3481 */
3482 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3483 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3484 sc->bge_flags |= BGEF_TSO;
3485 /* TSO on BCM5719 A0 does not work. */
3486 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3487 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3488 sc->bge_flags &= ~BGEF_TSO;
3489 }
3490
3491 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3492 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3493 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3494 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3495 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3496 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3497 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3498 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3499 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3500 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3501 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3502 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3503 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3504 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3505 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3506 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3507 /* These chips are 10/100 only. */
3508 capmask &= ~BMSR_EXTSTAT;
3509 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3510 }
3511
3512 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3513 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3514 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3515 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3516 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3517
3518 /* Set various PHY bug flags. */
3519 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3520 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3521 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3522 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3523 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3524 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3525 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3526 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3527 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3528 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3529 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3530 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3531 if (BGE_IS_5705_PLUS(sc) &&
3532 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3533 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3534 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3535 !BGE_IS_57765_PLUS(sc)) {
3536 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3537 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3538 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3539 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3540 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3541 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3542 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3543 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3544 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3545 } else
3546 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3547 }
3548
3549 /*
3550 * SEEPROM check.
3551 * First check if firmware knows we do not have SEEPROM.
3552 */
3553 if (prop_dictionary_get_bool(device_properties(self),
3554 "without-seeprom", &no_seeprom) && no_seeprom)
3555 sc->bge_flags |= BGEF_NO_EEPROM;
3556
3557 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3558 sc->bge_flags |= BGEF_NO_EEPROM;
3559
3560 /* Now check the 'ROM failed' bit on the RX CPU */
3561 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3562 sc->bge_flags |= BGEF_NO_EEPROM;
3563
3564 sc->bge_asf_mode = 0;
3565 /* No ASF if APE present. */
3566 if ((sc->bge_flags & BGEF_APE) == 0) {
3567 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3568 BGE_SRAM_DATA_SIG_MAGIC)) {
3569 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3570 BGE_HWCFG_ASF) {
3571 sc->bge_asf_mode |= ASF_ENABLE;
3572 sc->bge_asf_mode |= ASF_STACKUP;
3573 if (BGE_IS_575X_PLUS(sc))
3574 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3575 }
3576 }
3577 }
3578
3579 int counts[PCI_INTR_TYPE_SIZE] = {
3580 [PCI_INTR_TYPE_INTX] = 1,
3581 [PCI_INTR_TYPE_MSI] = 1,
3582 [PCI_INTR_TYPE_MSIX] = 1,
3583 };
3584 int max_type = PCI_INTR_TYPE_MSIX;
3585
3586 if (!bge_can_use_msi(sc)) {
3587 /* MSI broken, allow only INTx */
3588 max_type = PCI_INTR_TYPE_INTX;
3589 }
3590
3591 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3592 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3593 return;
3594 }
3595
3596 DPRINTFN(5, ("pci_intr_string\n"));
3597 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3598 sizeof(intrbuf));
3599 DPRINTFN(5, ("pci_intr_establish\n"));
3600 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3601 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3602 if (sc->bge_intrhand == NULL) {
3603 pci_intr_release(pc, sc->bge_pihp, 1);
3604 sc->bge_pihp = NULL;
3605
3606 aprint_error_dev(self, "couldn't establish interrupt");
3607 if (intrstr != NULL)
3608 aprint_error(" at %s", intrstr);
3609 aprint_error("\n");
3610 return;
3611 }
3612 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3613
3614 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3615 case PCI_INTR_TYPE_MSIX:
3616 case PCI_INTR_TYPE_MSI:
3617 KASSERT(bge_can_use_msi(sc));
3618 sc->bge_flags |= BGEF_MSI;
3619 break;
3620 default:
3621 /* nothing to do */
3622 break;
3623 }
3624
3625 /*
3626 * All controllers except BCM5700 supports tagged status but
3627 * we use tagged status only for MSI case on BCM5717. Otherwise
3628 * MSI on BCM5717 does not work.
3629 */
3630 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3631 sc->bge_flags |= BGEF_TAGGED_STATUS;
3632
3633 /*
3634 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3635 * lock in bge_reset().
3636 */
3637 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3638 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3639 delay(1000);
3640 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3641
3642 bge_stop_fw(sc);
3643 bge_sig_pre_reset(sc, BGE_RESET_START);
3644 if (bge_reset(sc))
3645 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3646
3647 /*
3648 * Read the hardware config word in the first 32k of NIC internal
3649 * memory, or fall back to the config word in the EEPROM.
3650 * Note: on some BCM5700 cards, this value appears to be unset.
3651 */
3652 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3653 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3654 BGE_SRAM_DATA_SIG_MAGIC) {
3655 uint32_t tmp;
3656
3657 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3658 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3659 BGE_SRAM_DATA_VER_SHIFT;
3660 if ((0 < tmp) && (tmp < 0x100))
3661 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3662 if (sc->bge_flags & BGEF_PCIE)
3663 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3664 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3665 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3666 if (BGE_IS_5717_PLUS(sc))
3667 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3668 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3669 bge_read_eeprom(sc, (void *)&hwcfg,
3670 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3671 hwcfg = be32toh(hwcfg);
3672 }
3673 aprint_normal_dev(sc->bge_dev,
3674 "HW config %08x, %08x, %08x, %08x %08x\n",
3675 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3676
3677 bge_sig_legacy(sc, BGE_RESET_START);
3678 bge_sig_post_reset(sc, BGE_RESET_START);
3679
3680 if (bge_chipinit(sc)) {
3681 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3682 bge_release_resources(sc);
3683 return;
3684 }
3685
3686 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3687 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3688 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3689 DELAY(100);
3690 }
3691
3692 /* Set MI_MODE */
3693 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3694 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3695 mimode |= BGE_MIMODE_500KHZ_CONST;
3696 else
3697 mimode |= BGE_MIMODE_BASE;
3698 CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3699 DELAY(80);
3700
3701 /*
3702 * Get station address from the EEPROM.
3703 */
3704 if (bge_get_eaddr(sc, eaddr)) {
3705 aprint_error_dev(sc->bge_dev,
3706 "failed to read station address\n");
3707 bge_release_resources(sc);
3708 return;
3709 }
3710
3711 br = bge_lookup_rev(sc->bge_chipid);
3712
3713 if (br == NULL) {
3714 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3715 sc->bge_chipid);
3716 } else {
3717 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3718 br->br_name, sc->bge_chipid);
3719 }
3720 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3721
3722 /* Allocate the general information block and ring buffers. */
3723 if (pci_dma64_available(pa)) {
3724 sc->bge_dmatag = pa->pa_dmat64;
3725 sc->bge_dmatag32 = pa->pa_dmat;
3726 sc->bge_dma64 = true;
3727 } else {
3728 sc->bge_dmatag = pa->pa_dmat;
3729 sc->bge_dmatag32 = pa->pa_dmat;
3730 sc->bge_dma64 = false;
3731 }
3732
3733 /* 40bit DMA workaround */
3734 if (sizeof(bus_addr_t) > 4) {
3735 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3736 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3737
3738 if (bus_dmatag_subregion(olddmatag, 0,
3739 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3740 BUS_DMA_NOWAIT) != 0) {
3741 aprint_error_dev(self,
3742 "WARNING: failed to restrict dma range,"
3743 " falling back to parent bus dma range\n");
3744 sc->bge_dmatag = olddmatag;
3745 }
3746 }
3747 }
3748 SLIST_INIT(&sc->txdma_list);
3749 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3750 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3751 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3752 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3753 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3754 return;
3755 }
3756 DPRINTFN(5, ("bus_dmamem_map\n"));
3757 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3758 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3759 BUS_DMA_NOWAIT)) {
3760 aprint_error_dev(sc->bge_dev,
3761 "can't map DMA buffers (%zu bytes)\n",
3762 sizeof(struct bge_ring_data));
3763 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3764 sc->bge_ring_rseg);
3765 return;
3766 }
3767 DPRINTFN(5, ("bus_dmamem_create\n"));
3768 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3769 sizeof(struct bge_ring_data), 0,
3770 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3771 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3772 bus_dmamem_unmap(sc->bge_dmatag, kva,
3773 sizeof(struct bge_ring_data));
3774 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3775 sc->bge_ring_rseg);
3776 return;
3777 }
3778 DPRINTFN(5, ("bus_dmamem_load\n"));
3779 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3780 sizeof(struct bge_ring_data), NULL,
3781 BUS_DMA_NOWAIT)) {
3782 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3783 bus_dmamem_unmap(sc->bge_dmatag, kva,
3784 sizeof(struct bge_ring_data));
3785 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3786 sc->bge_ring_rseg);
3787 return;
3788 }
3789
3790 DPRINTFN(5, ("bzero\n"));
3791 sc->bge_rdata = (struct bge_ring_data *)kva;
3792
3793 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3794
3795 /* Try to allocate memory for jumbo buffers. */
3796 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3797 if (bge_alloc_jumbo_mem(sc)) {
3798 aprint_error_dev(sc->bge_dev,
3799 "jumbo buffer allocation failed\n");
3800 } else
3801 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3802 }
3803
3804 /* Set default tuneable values. */
3805 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3806 sc->bge_rx_coal_ticks = 150;
3807 sc->bge_rx_max_coal_bds = 64;
3808 sc->bge_tx_coal_ticks = 300;
3809 sc->bge_tx_max_coal_bds = 400;
3810 if (BGE_IS_5705_PLUS(sc)) {
3811 sc->bge_tx_coal_ticks = (12 * 5);
3812 sc->bge_tx_max_coal_bds = (12 * 5);
3813 aprint_verbose_dev(sc->bge_dev,
3814 "setting short Tx thresholds\n");
3815 }
3816
3817 if (BGE_IS_5717_PLUS(sc))
3818 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3819 else if (BGE_IS_5705_PLUS(sc))
3820 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3821 else
3822 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3823
3824 /* Set up ifnet structure */
3825 ifp = &sc->ethercom.ec_if;
3826 ifp->if_softc = sc;
3827 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3828 ifp->if_ioctl = bge_ioctl;
3829 ifp->if_stop = bge_stop;
3830 ifp->if_start = bge_start;
3831 ifp->if_init = bge_init;
3832 ifp->if_watchdog = bge_watchdog;
3833 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3834 IFQ_SET_READY(&ifp->if_snd);
3835 DPRINTFN(5, ("strcpy if_xname\n"));
3836 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3837
3838 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3839 sc->ethercom.ec_if.if_capabilities |=
3840 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3841 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3842 sc->ethercom.ec_if.if_capabilities |=
3843 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3844 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3845 #endif
3846 sc->ethercom.ec_capabilities |=
3847 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3848 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3849
3850 if (sc->bge_flags & BGEF_TSO)
3851 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3852
3853 /*
3854 * Do MII setup.
3855 */
3856 DPRINTFN(5, ("mii setup\n"));
3857 mii->mii_ifp = ifp;
3858 mii->mii_readreg = bge_miibus_readreg;
3859 mii->mii_writereg = bge_miibus_writereg;
3860 mii->mii_statchg = bge_miibus_statchg;
3861
3862 /*
3863 * Figure out what sort of media we have by checking the hardware
3864 * config word. Note: on some BCM5700 cards, this value appears to be
3865 * unset. If that's the case, we have to rely on identifying the NIC
3866 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3867 * The SysKonnect SK-9D41 is a 1000baseSX card.
3868 */
3869 if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3870 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3871 if (BGE_IS_5705_PLUS(sc)) {
3872 sc->bge_flags |= BGEF_FIBER_MII;
3873 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3874 } else
3875 sc->bge_flags |= BGEF_FIBER_TBI;
3876 }
3877
3878 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3879 if (BGE_IS_JUMBO_CAPABLE(sc))
3880 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3881
3882 /* set phyflags and chipid before mii_attach() */
3883 dict = device_properties(self);
3884 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3885 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3886
3887 macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3888 macmode &= ~BGE_MACMODE_PORTMODE;
3889 /* Initialize ifmedia structures. */
3890 if (sc->bge_flags & BGEF_FIBER_TBI) {
3891 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3892 macmode | BGE_PORTMODE_TBI);
3893 DELAY(40);
3894
3895 sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
3896 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3897 bge_ifmedia_sts);
3898 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3899 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3900 0, NULL);
3901 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3902 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3903 /* Pretend the user requested this setting */
3904 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3905 } else {
3906 uint16_t phyreg;
3907 int rv;
3908 /*
3909 * Do transceiver setup and tell the firmware the
3910 * driver is down so we can try to get access the
3911 * probe if ASF is running. Retry a couple of times
3912 * if we get a conflict with the ASF firmware accessing
3913 * the PHY.
3914 */
3915 if (sc->bge_flags & BGEF_FIBER_MII)
3916 macmode |= BGE_PORTMODE_GMII;
3917 else
3918 macmode |= BGE_PORTMODE_MII;
3919 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3920 DELAY(40);
3921
3922 /*
3923 * Do transceiver setup and tell the firmware the
3924 * driver is down so we can try to get access the
3925 * probe if ASF is running. Retry a couple of times
3926 * if we get a conflict with the ASF firmware accessing
3927 * the PHY.
3928 */
3929 trys = 0;
3930 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3931 sc->ethercom.ec_mii = mii;
3932 ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3933 bge_ifmedia_sts);
3934 mii_flags = MIIF_DOPAUSE;
3935 if (sc->bge_flags & BGEF_FIBER_MII)
3936 mii_flags |= MIIF_HAVEFIBER;
3937 again:
3938 bge_asf_driver_up(sc);
3939 rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
3940 MII_BMCR, &phyreg);
3941 if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
3942 int i;
3943
3944 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
3945 MII_BMCR, BMCR_RESET);
3946 /* Wait up to 500ms for it to complete. */
3947 for (i = 0; i < 500; i++) {
3948 bge_miibus_readreg(sc->bge_dev,
3949 sc->bge_phy_addr, MII_BMCR, &phyreg);
3950 if ((phyreg & BMCR_RESET) == 0)
3951 break;
3952 DELAY(1000);
3953 }
3954 }
3955
3956 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
3957 MII_OFFSET_ANY, mii_flags);
3958
3959 if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
3960 goto again;
3961
3962 if (LIST_EMPTY(&mii->mii_phys)) {
3963 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3964 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
3965 0, NULL);
3966 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
3967 } else
3968 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
3969
3970 /*
3971 * Now tell the firmware we are going up after probing the PHY
3972 */
3973 if (sc->bge_asf_mode & ASF_STACKUP)
3974 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3975 }
3976
3977 /*
3978 * Call MI attach routine.
3979 */
3980 DPRINTFN(5, ("if_attach\n"));
3981 if_attach(ifp);
3982 if_deferred_start_init(ifp, NULL);
3983 DPRINTFN(5, ("ether_ifattach\n"));
3984 ether_ifattach(ifp, eaddr);
3985 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3986 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3987 RND_TYPE_NET, RND_FLAG_DEFAULT);
3988 #ifdef BGE_EVENT_COUNTERS
3989 /*
3990 * Attach event counters.
3991 */
3992 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3993 NULL, device_xname(sc->bge_dev), "intr");
3994 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3995 NULL, device_xname(sc->bge_dev), "intr_spurious");
3996 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3997 NULL, device_xname(sc->bge_dev), "intr_spurious2");
3998 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3999 NULL, device_xname(sc->bge_dev), "tx_xoff");
4000 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4001 NULL, device_xname(sc->bge_dev), "tx_xon");
4002 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4003 NULL, device_xname(sc->bge_dev), "rx_xoff");
4004 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4005 NULL, device_xname(sc->bge_dev), "rx_xon");
4006 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4007 NULL, device_xname(sc->bge_dev), "rx_macctl");
4008 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4009 NULL, device_xname(sc->bge_dev), "xoffentered");
4010 #endif /* BGE_EVENT_COUNTERS */
4011 DPRINTFN(5, ("callout_init\n"));
4012 callout_init(&sc->bge_timeout, 0);
4013
4014 if (pmf_device_register(self, NULL, NULL))
4015 pmf_class_network_register(self, ifp);
4016 else
4017 aprint_error_dev(self, "couldn't establish power handler\n");
4018
4019 bge_sysctl_init(sc);
4020
4021 #ifdef BGE_DEBUG
4022 bge_debug_info(sc);
4023 #endif
4024 }
4025
4026 /*
4027 * Stop all chip I/O so that the kernel's probe routines don't
4028 * get confused by errant DMAs when rebooting.
4029 */
4030 static int
4031 bge_detach(device_t self, int flags __unused)
4032 {
4033 struct bge_softc *sc = device_private(self);
4034 struct ifnet *ifp = &sc->ethercom.ec_if;
4035 int s;
4036
4037 s = splnet();
4038 /* Stop the interface. Callouts are stopped in it. */
4039 bge_stop(ifp, 1);
4040 splx(s);
4041
4042 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4043
4044 /* Delete all remaining media. */
4045 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
4046
4047 ether_ifdetach(ifp);
4048 if_detach(ifp);
4049
4050 bge_release_resources(sc);
4051
4052 return 0;
4053 }
4054
4055 static void
4056 bge_release_resources(struct bge_softc *sc)
4057 {
4058
4059 /* Detach sysctl */
4060 if (sc->bge_log != NULL)
4061 sysctl_teardown(&sc->bge_log);
4062
4063 #ifdef BGE_EVENT_COUNTERS
4064 /* Detach event counters. */
4065 evcnt_detach(&sc->bge_ev_intr);
4066 evcnt_detach(&sc->bge_ev_intr_spurious);
4067 evcnt_detach(&sc->bge_ev_intr_spurious2);
4068 evcnt_detach(&sc->bge_ev_tx_xoff);
4069 evcnt_detach(&sc->bge_ev_tx_xon);
4070 evcnt_detach(&sc->bge_ev_rx_xoff);
4071 evcnt_detach(&sc->bge_ev_rx_xon);
4072 evcnt_detach(&sc->bge_ev_rx_macctl);
4073 evcnt_detach(&sc->bge_ev_xoffentered);
4074 #endif /* BGE_EVENT_COUNTERS */
4075
4076 /* Disestablish the interrupt handler */
4077 if (sc->bge_intrhand != NULL) {
4078 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4079 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4080 sc->bge_intrhand = NULL;
4081 }
4082
4083 if (sc->bge_dmatag != NULL) {
4084 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4085 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4086 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4087 sizeof(struct bge_ring_data));
4088 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4089 sc->bge_ring_rseg);
4090 }
4091
4092 /* Unmap the device registers */
4093 if (sc->bge_bsize != 0) {
4094 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4095 sc->bge_bsize = 0;
4096 }
4097
4098 /* Unmap the APE registers */
4099 if (sc->bge_apesize != 0) {
4100 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4101 sc->bge_apesize);
4102 sc->bge_apesize = 0;
4103 }
4104 }
4105
4106 static int
4107 bge_reset(struct bge_softc *sc)
4108 {
4109 uint32_t cachesize, command;
4110 uint32_t reset, mac_mode, mac_mode_mask;
4111 pcireg_t devctl, reg;
4112 int i, val;
4113 void (*write_op)(struct bge_softc *, int, int);
4114
4115 /* Make mask for BGE_MAC_MODE register. */
4116 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4117 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4118 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4119 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4120 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4121
4122 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4123 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4124 if (sc->bge_flags & BGEF_PCIE)
4125 write_op = bge_writemem_direct;
4126 else
4127 write_op = bge_writemem_ind;
4128 } else
4129 write_op = bge_writereg_ind;
4130
4131 /* 57XX step 4 */
4132 /* Acquire the NVM lock */
4133 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4134 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4135 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4136 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4137 for (i = 0; i < 8000; i++) {
4138 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4139 BGE_NVRAMSWARB_GNT1)
4140 break;
4141 DELAY(20);
4142 }
4143 if (i == 8000) {
4144 printf("%s: NVRAM lock timedout!\n",
4145 device_xname(sc->bge_dev));
4146 }
4147 }
4148
4149 /* Take APE lock when performing reset. */
4150 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4151
4152 /* 57XX step 3 */
4153 /* Save some important PCI state. */
4154 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4155 /* 5718 reset step 3 */
4156 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4157
4158 /* 5718 reset step 5, 57XX step 5b-5d */
4159 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4160 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4161 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4162
4163 /* XXX ???: Disable fastboot on controllers that support it. */
4164 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4165 BGE_IS_5755_PLUS(sc))
4166 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4167
4168 /* 5718 reset step 2, 57XX step 6 */
4169 /*
4170 * Write the magic number to SRAM at offset 0xB50.
4171 * When firmware finishes its initialization it will
4172 * write ~BGE_MAGIC_NUMBER to the same location.
4173 */
4174 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4175
4176 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4177 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4178 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4179 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4180 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4181 }
4182
4183 /* 5718 reset step 6, 57XX step 7 */
4184 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4185 /*
4186 * XXX: from FreeBSD/Linux; no documentation
4187 */
4188 if (sc->bge_flags & BGEF_PCIE) {
4189 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4190 !BGE_IS_57765_PLUS(sc) &&
4191 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4192 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4193 /* PCI Express 1.0 system */
4194 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4195 BGE_PHY_PCIE_SCRAM_MODE);
4196 }
4197 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4198 /*
4199 * Prevent PCI Express link training
4200 * during global reset.
4201 */
4202 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4203 reset |= (1 << 29);
4204 }
4205 }
4206
4207 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4208 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4209 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4210 i | BGE_VCPU_STATUS_DRV_RESET);
4211 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4212 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4213 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4214 }
4215
4216 /*
4217 * Set GPHY Power Down Override to leave GPHY
4218 * powered up in D0 uninitialized.
4219 */
4220 if (BGE_IS_5705_PLUS(sc) &&
4221 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4222 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4223
4224 /* Issue global reset */
4225 write_op(sc, BGE_MISC_CFG, reset);
4226
4227 /* 5718 reset step 7, 57XX step 8 */
4228 if (sc->bge_flags & BGEF_PCIE)
4229 delay(100*1000); /* too big */
4230 else
4231 delay(1000);
4232
4233 if (sc->bge_flags & BGEF_PCIE) {
4234 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4235 DELAY(500000);
4236 /* XXX: Magic Numbers */
4237 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4238 BGE_PCI_UNKNOWN0);
4239 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4240 BGE_PCI_UNKNOWN0,
4241 reg | (1 << 15));
4242 }
4243 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4244 sc->bge_pciecap + PCIE_DCSR);
4245 /* Clear enable no snoop and disable relaxed ordering. */
4246 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4247 PCIE_DCSR_ENA_NO_SNOOP);
4248
4249 /* Set PCIE max payload size to 128 for older PCIe devices */
4250 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4251 devctl &= ~(0x00e0);
4252 /* Clear device status register. Write 1b to clear */
4253 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4254 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4255 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4256 sc->bge_pciecap + PCIE_DCSR, devctl);
4257 bge_set_max_readrq(sc);
4258 }
4259
4260 /* From Linux: dummy read to flush PCI posted writes */
4261 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4262
4263 /*
4264 * Reset some of the PCI state that got zapped by reset
4265 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4266 * set, too.
4267 */
4268 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4269 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4270 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4271 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4272 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4273 (sc->bge_flags & BGEF_PCIX) != 0)
4274 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4275 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4276 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4277 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4278 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4279 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4280 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4281 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4282
4283 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4284 if (sc->bge_flags & BGEF_PCIX) {
4285 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4286 + PCIX_CMD);
4287 /* Set max memory read byte count to 2K */
4288 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4289 reg &= ~PCIX_CMD_BYTECNT_MASK;
4290 reg |= PCIX_CMD_BCNT_2048;
4291 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4292 /*
4293 * For 5704, set max outstanding split transaction
4294 * field to 0 (0 means it supports 1 request)
4295 */
4296 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4297 | PCIX_CMD_BYTECNT_MASK);
4298 reg |= PCIX_CMD_BCNT_2048;
4299 }
4300 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4301 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4302 }
4303
4304 /* 5718 reset step 10, 57XX step 12 */
4305 /* Enable memory arbiter. */
4306 if (BGE_IS_5714_FAMILY(sc)) {
4307 val = CSR_READ_4(sc, BGE_MARB_MODE);
4308 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4309 } else
4310 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4311
4312 /* XXX 5721, 5751 and 5752 */
4313 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4314 /* Step 19: */
4315 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4316 /* Step 20: */
4317 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4318 }
4319
4320 /* 5718 reset step 12, 57XX step 15 and 16 */
4321 /* Fix up byte swapping */
4322 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4323
4324 /* 5718 reset step 13, 57XX step 17 */
4325 /* Poll until the firmware initialization is complete */
4326 bge_poll_fw(sc);
4327
4328 /* 57XX step 21 */
4329 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4330 pcireg_t msidata;
4331
4332 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4333 BGE_PCI_MSI_DATA);
4334 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4335 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4336 msidata);
4337 }
4338
4339 /* 57XX step 18 */
4340 /* Write mac mode. */
4341 val = CSR_READ_4(sc, BGE_MAC_MODE);
4342 /* Restore mac_mode_mask's bits using mac_mode */
4343 val = (val & ~mac_mode_mask) | mac_mode;
4344 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4345 DELAY(40);
4346
4347 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4348
4349 /*
4350 * The 5704 in TBI mode apparently needs some special
4351 * adjustment to insure the SERDES drive level is set
4352 * to 1.2V.
4353 */
4354 if (sc->bge_flags & BGEF_FIBER_TBI &&
4355 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4356 uint32_t serdescfg;
4357
4358 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4359 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4360 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4361 }
4362
4363 if (sc->bge_flags & BGEF_PCIE &&
4364 !BGE_IS_57765_PLUS(sc) &&
4365 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4366 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4367 uint32_t v;
4368
4369 /* Enable PCI Express bug fix */
4370 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4371 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4372 v | BGE_TLP_DATA_FIFO_PROTECT);
4373 }
4374
4375 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4376 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4377 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4378
4379 return 0;
4380 }
4381
4382 /*
4383 * Frame reception handling. This is called if there's a frame
4384 * on the receive return list.
4385 *
4386 * Note: we have to be able to handle two possibilities here:
4387 * 1) the frame is from the jumbo receive ring
4388 * 2) the frame is from the standard receive ring
4389 */
4390
4391 static void
4392 bge_rxeof(struct bge_softc *sc)
4393 {
4394 struct ifnet *ifp;
4395 uint16_t rx_prod, rx_cons;
4396 int stdcnt = 0, jumbocnt = 0;
4397 bus_dmamap_t dmamap;
4398 bus_addr_t offset, toff;
4399 bus_size_t tlen;
4400 int tosync;
4401
4402 rx_cons = sc->bge_rx_saved_considx;
4403 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4404
4405 /* Nothing to do */
4406 if (rx_cons == rx_prod)
4407 return;
4408
4409 ifp = &sc->ethercom.ec_if;
4410
4411 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4412 offsetof(struct bge_ring_data, bge_status_block),
4413 sizeof (struct bge_status_block),
4414 BUS_DMASYNC_POSTREAD);
4415
4416 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4417 tosync = rx_prod - rx_cons;
4418
4419 if (tosync != 0)
4420 rnd_add_uint32(&sc->rnd_source, tosync);
4421
4422 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4423
4424 if (tosync < 0) {
4425 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4426 sizeof (struct bge_rx_bd);
4427 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4428 toff, tlen, BUS_DMASYNC_POSTREAD);
4429 tosync = -tosync;
4430 }
4431
4432 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4433 offset, tosync * sizeof (struct bge_rx_bd),
4434 BUS_DMASYNC_POSTREAD);
4435
4436 while (rx_cons != rx_prod) {
4437 struct bge_rx_bd *cur_rx;
4438 uint32_t rxidx;
4439 struct mbuf *m = NULL;
4440
4441 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4442
4443 rxidx = cur_rx->bge_idx;
4444 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4445
4446 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4447 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4448 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4449 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4450 jumbocnt++;
4451 bus_dmamap_sync(sc->bge_dmatag,
4452 sc->bge_cdata.bge_rx_jumbo_map,
4453 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4454 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4455 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4456 ifp->if_ierrors++;
4457 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4458 continue;
4459 }
4460 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4461 NULL)== ENOBUFS) {
4462 ifp->if_ierrors++;
4463 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4464 continue;
4465 }
4466 } else {
4467 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4468 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4469
4470 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4471 stdcnt++;
4472 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4473 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4474 if (dmamap == NULL) {
4475 ifp->if_ierrors++;
4476 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4477 continue;
4478 }
4479 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4480 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4481 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4482 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4483 ifp->if_ierrors++;
4484 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4485 continue;
4486 }
4487 if (bge_newbuf_std(sc, sc->bge_std,
4488 NULL, dmamap) == ENOBUFS) {
4489 ifp->if_ierrors++;
4490 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4491 continue;
4492 }
4493 }
4494
4495 #ifndef __NO_STRICT_ALIGNMENT
4496 /*
4497 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4498 * the Rx buffer has the layer-2 header unaligned.
4499 * If our CPU requires alignment, re-align by copying.
4500 */
4501 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4502 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4503 cur_rx->bge_len);
4504 m->m_data += ETHER_ALIGN;
4505 }
4506 #endif
4507
4508 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4509 m_set_rcvif(m, ifp);
4510
4511 bge_rxcsum(sc, cur_rx, m);
4512
4513 /*
4514 * If we received a packet with a vlan tag, pass it
4515 * to vlan_input() instead of ether_input().
4516 */
4517 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4518 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4519
4520 if_percpuq_enqueue(ifp->if_percpuq, m);
4521 }
4522
4523 sc->bge_rx_saved_considx = rx_cons;
4524 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4525 if (stdcnt)
4526 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4527 if (jumbocnt)
4528 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4529 }
4530
4531 static void
4532 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4533 {
4534
4535 if (BGE_IS_57765_PLUS(sc)) {
4536 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4537 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4538 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4539 if ((cur_rx->bge_error_flag &
4540 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4541 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4542 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4543 m->m_pkthdr.csum_data =
4544 cur_rx->bge_tcp_udp_csum;
4545 m->m_pkthdr.csum_flags |=
4546 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4547 }
4548 }
4549 } else {
4550 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4551 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4552 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4553 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4554 /*
4555 * Rx transport checksum-offload may also
4556 * have bugs with packets which, when transmitted,
4557 * were `runts' requiring padding.
4558 */
4559 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4560 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4561 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4562 m->m_pkthdr.csum_data =
4563 cur_rx->bge_tcp_udp_csum;
4564 m->m_pkthdr.csum_flags |=
4565 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4566 }
4567 }
4568 }
4569
4570 static void
4571 bge_txeof(struct bge_softc *sc)
4572 {
4573 struct bge_tx_bd *cur_tx = NULL;
4574 struct ifnet *ifp;
4575 struct txdmamap_pool_entry *dma;
4576 bus_addr_t offset, toff;
4577 bus_size_t tlen;
4578 int tosync;
4579 struct mbuf *m;
4580
4581 ifp = &sc->ethercom.ec_if;
4582
4583 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4584 offsetof(struct bge_ring_data, bge_status_block),
4585 sizeof (struct bge_status_block),
4586 BUS_DMASYNC_POSTREAD);
4587
4588 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4589 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4590 sc->bge_tx_saved_considx;
4591
4592 if (tosync != 0)
4593 rnd_add_uint32(&sc->rnd_source, tosync);
4594
4595 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4596
4597 if (tosync < 0) {
4598 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4599 sizeof (struct bge_tx_bd);
4600 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4601 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4602 tosync = -tosync;
4603 }
4604
4605 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4606 offset, tosync * sizeof (struct bge_tx_bd),
4607 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4608
4609 /*
4610 * Go through our tx ring and free mbufs for those
4611 * frames that have been sent.
4612 */
4613 while (sc->bge_tx_saved_considx !=
4614 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4615 uint32_t idx = 0;
4616
4617 idx = sc->bge_tx_saved_considx;
4618 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4619 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4620 ifp->if_opackets++;
4621 m = sc->bge_cdata.bge_tx_chain[idx];
4622 if (m != NULL) {
4623 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4624 dma = sc->txdma[idx];
4625 if (dma->is_dma32) {
4626 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4627 0, dma->dmamap32->dm_mapsize,
4628 BUS_DMASYNC_POSTWRITE);
4629 bus_dmamap_unload(
4630 sc->bge_dmatag32, dma->dmamap32);
4631 } else {
4632 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4633 0, dma->dmamap->dm_mapsize,
4634 BUS_DMASYNC_POSTWRITE);
4635 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4636 }
4637 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4638 sc->txdma[idx] = NULL;
4639
4640 m_freem(m);
4641 }
4642 sc->bge_txcnt--;
4643 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4644 ifp->if_timer = 0;
4645 }
4646
4647 if (cur_tx != NULL)
4648 ifp->if_flags &= ~IFF_OACTIVE;
4649 }
4650
4651 static int
4652 bge_intr(void *xsc)
4653 {
4654 struct bge_softc *sc;
4655 struct ifnet *ifp;
4656 uint32_t pcistate, statusword, statustag;
4657 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4658
4659 sc = xsc;
4660 ifp = &sc->ethercom.ec_if;
4661
4662 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4663 if (BGE_IS_5717_PLUS(sc))
4664 intrmask = 0;
4665
4666 /* It is possible for the interrupt to arrive before
4667 * the status block is updated prior to the interrupt.
4668 * Reading the PCI State register will confirm whether the
4669 * interrupt is ours and will flush the status block.
4670 */
4671 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4672
4673 /* read status word from status block */
4674 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4675 offsetof(struct bge_ring_data, bge_status_block),
4676 sizeof (struct bge_status_block),
4677 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4678 statusword = sc->bge_rdata->bge_status_block.bge_status;
4679 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4680
4681 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4682 if (sc->bge_lasttag == statustag &&
4683 (~pcistate & intrmask)) {
4684 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4685 return (0);
4686 }
4687 sc->bge_lasttag = statustag;
4688 } else {
4689 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4690 !(~pcistate & intrmask)) {
4691 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4692 return (0);
4693 }
4694 statustag = 0;
4695 }
4696 /* Ack interrupt and stop others from occurring. */
4697 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4698 BGE_EVCNT_INCR(sc->bge_ev_intr);
4699
4700 /* clear status word */
4701 sc->bge_rdata->bge_status_block.bge_status = 0;
4702
4703 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4704 offsetof(struct bge_ring_data, bge_status_block),
4705 sizeof (struct bge_status_block),
4706 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4707
4708 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4709 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4710 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4711 bge_link_upd(sc);
4712
4713 if (ifp->if_flags & IFF_RUNNING) {
4714 /* Check RX return ring producer/consumer */
4715 bge_rxeof(sc);
4716
4717 /* Check TX ring producer/consumer */
4718 bge_txeof(sc);
4719 }
4720
4721 if (sc->bge_pending_rxintr_change) {
4722 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4723 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4724
4725 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4726 DELAY(10);
4727 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4728
4729 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4730 DELAY(10);
4731 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4732
4733 sc->bge_pending_rxintr_change = 0;
4734 }
4735 bge_handle_events(sc);
4736
4737 /* Re-enable interrupts. */
4738 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4739
4740 if (ifp->if_flags & IFF_RUNNING)
4741 if_schedule_deferred_start(ifp);
4742
4743 return 1;
4744 }
4745
4746 static void
4747 bge_asf_driver_up(struct bge_softc *sc)
4748 {
4749 if (sc->bge_asf_mode & ASF_STACKUP) {
4750 /* Send ASF heartbeat aprox. every 2s */
4751 if (sc->bge_asf_count)
4752 sc->bge_asf_count --;
4753 else {
4754 sc->bge_asf_count = 2;
4755
4756 bge_wait_for_event_ack(sc);
4757
4758 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4759 BGE_FW_CMD_DRV_ALIVE3);
4760 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4761 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4762 BGE_FW_HB_TIMEOUT_SEC);
4763 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4764 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4765 BGE_RX_CPU_DRV_EVENT);
4766 }
4767 }
4768 }
4769
4770 static void
4771 bge_tick(void *xsc)
4772 {
4773 struct bge_softc *sc = xsc;
4774 struct mii_data *mii = &sc->bge_mii;
4775 int s;
4776
4777 s = splnet();
4778
4779 if (BGE_IS_5705_PLUS(sc))
4780 bge_stats_update_regs(sc);
4781 else
4782 bge_stats_update(sc);
4783
4784 if (sc->bge_flags & BGEF_FIBER_TBI) {
4785 /*
4786 * Since in TBI mode auto-polling can't be used we should poll
4787 * link status manually. Here we register pending link event
4788 * and trigger interrupt.
4789 */
4790 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4791 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4792 } else {
4793 /*
4794 * Do not touch PHY if we have link up. This could break
4795 * IPMI/ASF mode or produce extra input errors.
4796 * (extra input errors was reported for bcm5701 & bcm5704).
4797 */
4798 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4799 mii_tick(mii);
4800 }
4801
4802 bge_asf_driver_up(sc);
4803
4804 if (!sc->bge_detaching)
4805 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4806
4807 splx(s);
4808 }
4809
4810 static void
4811 bge_stats_update_regs(struct bge_softc *sc)
4812 {
4813 struct ifnet *ifp = &sc->ethercom.ec_if;
4814
4815 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4816 offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4817
4818 /*
4819 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4820 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4821 * (silicon bug). There's no reliable workaround so just
4822 * ignore the counter
4823 */
4824 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4825 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4826 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4827 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4828 }
4829 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4830 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4831
4832 if (sc->bge_flags & BGEF_RDMA_BUG) {
4833 uint32_t val, ucast, mcast, bcast;
4834
4835 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4836 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4837 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4838 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4839 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4840 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4841
4842 /*
4843 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4844 * frames, it's safe to disable workaround for DMA engine's
4845 * miscalculation of TXMBUF space.
4846 */
4847 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4848 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4849 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4850 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4851 else
4852 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4853 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4854 sc->bge_flags &= ~BGEF_RDMA_BUG;
4855 }
4856 }
4857 }
4858
4859 static void
4860 bge_stats_update(struct bge_softc *sc)
4861 {
4862 struct ifnet *ifp = &sc->ethercom.ec_if;
4863 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4864
4865 #define READ_STAT(sc, stats, stat) \
4866 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4867
4868 ifp->if_collisions +=
4869 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4870 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4871 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4872 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4873 ifp->if_collisions;
4874
4875 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4876 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4877 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4878 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4879 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4880 READ_STAT(sc, stats,
4881 xoffPauseFramesReceived.bge_addr_lo));
4882 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4883 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4884 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4885 READ_STAT(sc, stats,
4886 macControlFramesReceived.bge_addr_lo));
4887 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4888 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4889
4890 #undef READ_STAT
4891
4892 #ifdef notdef
4893 ifp->if_collisions +=
4894 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4895 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4896 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4897 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4898 ifp->if_collisions;
4899 #endif
4900 }
4901
4902 /*
4903 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4904 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4905 * but when such padded frames employ the bge IP/TCP checksum offload,
4906 * the hardware checksum assist gives incorrect results (possibly
4907 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4908 * If we pad such runts with zeros, the onboard checksum comes out correct.
4909 */
4910 static inline int
4911 bge_cksum_pad(struct mbuf *pkt)
4912 {
4913 struct mbuf *last = NULL;
4914 int padlen;
4915
4916 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4917
4918 /* if there's only the packet-header and we can pad there, use it. */
4919 if (pkt->m_pkthdr.len == pkt->m_len &&
4920 M_TRAILINGSPACE(pkt) >= padlen) {
4921 last = pkt;
4922 } else {
4923 /*
4924 * Walk packet chain to find last mbuf. We will either
4925 * pad there, or append a new mbuf and pad it
4926 * (thus perhaps avoiding the bcm5700 dma-min bug).
4927 */
4928 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4929 continue; /* do nothing */
4930 }
4931
4932 /* `last' now points to last in chain. */
4933 if (M_TRAILINGSPACE(last) < padlen) {
4934 /* Allocate new empty mbuf, pad it. Compact later. */
4935 struct mbuf *n;
4936 MGET(n, M_DONTWAIT, MT_DATA);
4937 if (n == NULL)
4938 return ENOBUFS;
4939 n->m_len = 0;
4940 last->m_next = n;
4941 last = n;
4942 }
4943 }
4944
4945 KDASSERT(!M_READONLY(last));
4946 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4947
4948 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4949 memset(mtod(last, char *) + last->m_len, 0, padlen);
4950 last->m_len += padlen;
4951 pkt->m_pkthdr.len += padlen;
4952 return 0;
4953 }
4954
4955 /*
4956 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4957 */
4958 static inline int
4959 bge_compact_dma_runt(struct mbuf *pkt)
4960 {
4961 struct mbuf *m, *prev;
4962 int totlen;
4963
4964 prev = NULL;
4965 totlen = 0;
4966
4967 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
4968 int mlen = m->m_len;
4969 int shortfall = 8 - mlen ;
4970
4971 totlen += mlen;
4972 if (mlen == 0)
4973 continue;
4974 if (mlen >= 8)
4975 continue;
4976
4977 /* If we get here, mbuf data is too small for DMA engine.
4978 * Try to fix by shuffling data to prev or next in chain.
4979 * If that fails, do a compacting deep-copy of the whole chain.
4980 */
4981
4982 /* Internal frag. If fits in prev, copy it there. */
4983 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4984 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4985 prev->m_len += mlen;
4986 m->m_len = 0;
4987 /* XXX stitch chain */
4988 prev->m_next = m_free(m);
4989 m = prev;
4990 continue;
4991 } else if (m->m_next != NULL &&
4992 M_TRAILINGSPACE(m) >= shortfall &&
4993 m->m_next->m_len >= (8 + shortfall)) {
4994 /* m is writable and have enough data in next, pull up. */
4995
4996 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4997 shortfall);
4998 m->m_len += shortfall;
4999 m->m_next->m_len -= shortfall;
5000 m->m_next->m_data += shortfall;
5001 } else if (m->m_next == NULL || 1) {
5002 /* Got a runt at the very end of the packet.
5003 * borrow data from the tail of the preceding mbuf and
5004 * update its length in-place. (The original data is
5005 * still valid, so we can do this even if prev is not
5006 * writable.)
5007 */
5008
5009 /*
5010 * If we'd make prev a runt, just move all of its data.
5011 */
5012 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5013 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5014
5015 if ((prev->m_len - shortfall) < 8)
5016 shortfall = prev->m_len;
5017
5018 #ifdef notyet /* just do the safe slow thing for now */
5019 if (!M_READONLY(m)) {
5020 if (M_LEADINGSPACE(m) < shorfall) {
5021 void *m_dat;
5022 m_dat = M_BUFADDR(m);
5023 memmove(m_dat, mtod(m, void*),
5024 m->m_len);
5025 m->m_data = m_dat;
5026 }
5027 } else
5028 #endif /* just do the safe slow thing */
5029 {
5030 struct mbuf * n = NULL;
5031 int newprevlen = prev->m_len - shortfall;
5032
5033 MGET(n, M_NOWAIT, MT_DATA);
5034 if (n == NULL)
5035 return ENOBUFS;
5036 KASSERT(m->m_len + shortfall < MLEN
5037 /*,
5038 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5039
5040 /* first copy the data we're stealing from prev */
5041 memcpy(n->m_data, prev->m_data + newprevlen,
5042 shortfall);
5043
5044 /* update prev->m_len accordingly */
5045 prev->m_len -= shortfall;
5046
5047 /* copy data from runt m */
5048 memcpy(n->m_data + shortfall, m->m_data,
5049 m->m_len);
5050
5051 /* n holds what we stole from prev, plus m */
5052 n->m_len = shortfall + m->m_len;
5053
5054 /* stitch n into chain and free m */
5055 n->m_next = m->m_next;
5056 prev->m_next = n;
5057 /* KASSERT(m->m_next == NULL); */
5058 m->m_next = NULL;
5059 m_free(m);
5060 m = n; /* for continuing loop */
5061 }
5062 }
5063 }
5064 return 0;
5065 }
5066
5067 /*
5068 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5069 * pointers to descriptors.
5070 */
5071 static int
5072 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5073 {
5074 struct ifnet *ifp = &sc->ethercom.ec_if;
5075 struct bge_tx_bd *f, *prev_f;
5076 uint32_t frag, cur;
5077 uint16_t csum_flags = 0;
5078 uint16_t txbd_tso_flags = 0;
5079 struct txdmamap_pool_entry *dma;
5080 bus_dmamap_t dmamap;
5081 bus_dma_tag_t dmatag;
5082 int i = 0;
5083 int use_tso, maxsegsize, error;
5084 bool have_vtag;
5085 uint16_t vtag;
5086 bool remap;
5087
5088 if (m_head->m_pkthdr.csum_flags) {
5089 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5090 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5091 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5092 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5093 }
5094
5095 /*
5096 * If we were asked to do an outboard checksum, and the NIC
5097 * has the bug where it sometimes adds in the Ethernet padding,
5098 * explicitly pad with zeros so the cksum will be correct either way.
5099 * (For now, do this for all chip versions, until newer
5100 * are confirmed to not require the workaround.)
5101 */
5102 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5103 #ifdef notyet
5104 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5105 #endif
5106 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5107 goto check_dma_bug;
5108
5109 if (bge_cksum_pad(m_head) != 0)
5110 return ENOBUFS;
5111
5112 check_dma_bug:
5113 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5114 goto doit;
5115
5116 /*
5117 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5118 * less than eight bytes. If we encounter a teeny mbuf
5119 * at the end of a chain, we can pad. Otherwise, copy.
5120 */
5121 if (bge_compact_dma_runt(m_head) != 0)
5122 return ENOBUFS;
5123
5124 doit:
5125 dma = SLIST_FIRST(&sc->txdma_list);
5126 if (dma == NULL) {
5127 ifp->if_flags |= IFF_OACTIVE;
5128 return ENOBUFS;
5129 }
5130 dmamap = dma->dmamap;
5131 dmatag = sc->bge_dmatag;
5132 dma->is_dma32 = false;
5133
5134 /*
5135 * Set up any necessary TSO state before we start packing...
5136 */
5137 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5138 if (!use_tso) {
5139 maxsegsize = 0;
5140 } else { /* TSO setup */
5141 unsigned mss;
5142 struct ether_header *eh;
5143 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5144 unsigned bge_hlen;
5145 struct mbuf * m0 = m_head;
5146 struct ip *ip;
5147 struct tcphdr *th;
5148 int iphl, hlen;
5149
5150 /*
5151 * XXX It would be nice if the mbuf pkthdr had offset
5152 * fields for the protocol headers.
5153 */
5154
5155 eh = mtod(m0, struct ether_header *);
5156 switch (htons(eh->ether_type)) {
5157 case ETHERTYPE_IP:
5158 offset = ETHER_HDR_LEN;
5159 break;
5160
5161 case ETHERTYPE_VLAN:
5162 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5163 break;
5164
5165 default:
5166 /*
5167 * Don't support this protocol or encapsulation.
5168 */
5169 return ENOBUFS;
5170 }
5171
5172 /*
5173 * TCP/IP headers are in the first mbuf; we can do
5174 * this the easy way.
5175 */
5176 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5177 hlen = iphl + offset;
5178 if (__predict_false(m0->m_len <
5179 (hlen + sizeof(struct tcphdr)))) {
5180
5181 aprint_error_dev(sc->bge_dev,
5182 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5183 "not handled yet\n",
5184 m0->m_len, hlen+ sizeof(struct tcphdr));
5185 #ifdef NOTYET
5186 /*
5187 * XXX jonathan (at) NetBSD.org: untested.
5188 * how to force this branch to be taken?
5189 */
5190 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5191
5192 m_copydata(m0, offset, sizeof(ip), &ip);
5193 m_copydata(m0, hlen, sizeof(th), &th);
5194
5195 ip.ip_len = 0;
5196
5197 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5198 sizeof(ip.ip_len), &ip.ip_len);
5199
5200 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5201 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5202
5203 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5204 sizeof(th.th_sum), &th.th_sum);
5205
5206 hlen += th.th_off << 2;
5207 iptcp_opt_words = hlen;
5208 #else
5209 /*
5210 * if_wm "hard" case not yet supported, can we not
5211 * mandate it out of existence?
5212 */
5213 (void) ip; (void)th; (void) ip_tcp_hlen;
5214
5215 return ENOBUFS;
5216 #endif
5217 } else {
5218 ip = (struct ip *) (mtod(m0, char *) + offset);
5219 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5220 ip_tcp_hlen = iphl + (th->th_off << 2);
5221
5222 /* Total IP/TCP options, in 32-bit words */
5223 iptcp_opt_words = (ip_tcp_hlen
5224 - sizeof(struct tcphdr)
5225 - sizeof(struct ip)) >> 2;
5226 }
5227 if (BGE_IS_575X_PLUS(sc)) {
5228 th->th_sum = 0;
5229 csum_flags = 0;
5230 } else {
5231 /*
5232 * XXX jonathan (at) NetBSD.org: 5705 untested.
5233 * Requires TSO firmware patch for 5701/5703/5704.
5234 */
5235 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5236 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5237 }
5238
5239 mss = m_head->m_pkthdr.segsz;
5240 txbd_tso_flags |=
5241 BGE_TXBDFLAG_CPU_PRE_DMA |
5242 BGE_TXBDFLAG_CPU_POST_DMA;
5243
5244 /*
5245 * Our NIC TSO-assist assumes TSO has standard, optionless
5246 * IPv4 and TCP headers, which total 40 bytes. By default,
5247 * the NIC copies 40 bytes of IP/TCP header from the
5248 * supplied header into the IP/TCP header portion of
5249 * each post-TSO-segment. If the supplied packet has IP or
5250 * TCP options, we need to tell the NIC to copy those extra
5251 * bytes into each post-TSO header, in addition to the normal
5252 * 40-byte IP/TCP header (and to leave space accordingly).
5253 * Unfortunately, the driver encoding of option length
5254 * varies across different ASIC families.
5255 */
5256 tcp_seg_flags = 0;
5257 bge_hlen = ip_tcp_hlen >> 2;
5258 if (BGE_IS_5717_PLUS(sc)) {
5259 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5260 txbd_tso_flags |=
5261 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5262 } else if (BGE_IS_5705_PLUS(sc)) {
5263 tcp_seg_flags = bge_hlen << 11;
5264 } else {
5265 /* XXX iptcp_opt_words or bge_hlen ? */
5266 txbd_tso_flags |= iptcp_opt_words << 12;
5267 }
5268 maxsegsize = mss | tcp_seg_flags;
5269 ip->ip_len = htons(mss + ip_tcp_hlen);
5270 ip->ip_sum = 0;
5271
5272 } /* TSO setup */
5273
5274 have_vtag = vlan_has_tag(m_head);
5275 if (have_vtag)
5276 vtag = vlan_get_tag(m_head);
5277
5278 /*
5279 * Start packing the mbufs in this chain into
5280 * the fragment pointers. Stop when we run out
5281 * of fragments or hit the end of the mbuf chain.
5282 */
5283 remap = true;
5284 load_again:
5285 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5286 if (__predict_false(error)) {
5287 if (error == EFBIG && remap) {
5288 struct mbuf *m;
5289 remap = false;
5290 m = m_defrag(m_head, M_NOWAIT);
5291 if (m != NULL) {
5292 KASSERT(m == m_head);
5293 goto load_again;
5294 }
5295 }
5296 return error;
5297 }
5298 /*
5299 * Sanity check: avoid coming within 16 descriptors
5300 * of the end of the ring.
5301 */
5302 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5303 BGE_TSO_PRINTF(("%s: "
5304 " dmamap_load_mbuf too close to ring wrap\n",
5305 device_xname(sc->bge_dev)));
5306 goto fail_unload;
5307 }
5308
5309 /* Iterate over dmap-map fragments. */
5310 f = prev_f = NULL;
5311 cur = frag = *txidx;
5312
5313 for (i = 0; i < dmamap->dm_nsegs; i++) {
5314 f = &sc->bge_rdata->bge_tx_ring[frag];
5315 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5316 break;
5317
5318 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5319 f->bge_len = dmamap->dm_segs[i].ds_len;
5320 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5321 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5322 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5323 (prev_f != NULL &&
5324 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5325 ) {
5326 /*
5327 * watchdog timeout issue was observed with TSO,
5328 * limiting DMA address space to 32bits seems to
5329 * address the issue.
5330 */
5331 bus_dmamap_unload(dmatag, dmamap);
5332 dmatag = sc->bge_dmatag32;
5333 dmamap = dma->dmamap32;
5334 dma->is_dma32 = true;
5335 remap = true;
5336 goto load_again;
5337 }
5338
5339 /*
5340 * For 5751 and follow-ons, for TSO we must turn
5341 * off checksum-assist flag in the tx-descr, and
5342 * supply the ASIC-revision-specific encoding
5343 * of TSO flags and segsize.
5344 */
5345 if (use_tso) {
5346 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5347 f->bge_rsvd = maxsegsize;
5348 f->bge_flags = csum_flags | txbd_tso_flags;
5349 } else {
5350 f->bge_rsvd = 0;
5351 f->bge_flags =
5352 (csum_flags | txbd_tso_flags) & 0x0fff;
5353 }
5354 } else {
5355 f->bge_rsvd = 0;
5356 f->bge_flags = csum_flags;
5357 }
5358
5359 if (have_vtag) {
5360 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5361 f->bge_vlan_tag = vtag;
5362 } else {
5363 f->bge_vlan_tag = 0;
5364 }
5365 prev_f = f;
5366 cur = frag;
5367 BGE_INC(frag, BGE_TX_RING_CNT);
5368 }
5369
5370 if (i < dmamap->dm_nsegs) {
5371 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5372 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5373 goto fail_unload;
5374 }
5375
5376 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5377 BUS_DMASYNC_PREWRITE);
5378
5379 if (frag == sc->bge_tx_saved_considx) {
5380 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5381 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5382
5383 goto fail_unload;
5384 }
5385
5386 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5387 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5388 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5389 sc->txdma[cur] = dma;
5390 sc->bge_txcnt += dmamap->dm_nsegs;
5391
5392 *txidx = frag;
5393
5394 return 0;
5395
5396 fail_unload:
5397 bus_dmamap_unload(dmatag, dmamap);
5398 ifp->if_flags |= IFF_OACTIVE;
5399
5400 return ENOBUFS;
5401 }
5402
5403 /*
5404 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5405 * to the mbuf data regions directly in the transmit descriptors.
5406 */
5407 static void
5408 bge_start(struct ifnet *ifp)
5409 {
5410 struct bge_softc *sc;
5411 struct mbuf *m_head = NULL;
5412 struct mbuf *m;
5413 uint32_t prodidx;
5414 int pkts = 0;
5415 int error;
5416
5417 sc = ifp->if_softc;
5418
5419 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5420 return;
5421
5422 prodidx = sc->bge_tx_prodidx;
5423
5424 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5425 IFQ_POLL(&ifp->if_snd, m_head);
5426 if (m_head == NULL)
5427 break;
5428
5429 #if 0
5430 /*
5431 * XXX
5432 * safety overkill. If this is a fragmented packet chain
5433 * with delayed TCP/UDP checksums, then only encapsulate
5434 * it if we have enough descriptors to handle the entire
5435 * chain at once.
5436 * (paranoia -- may not actually be needed)
5437 */
5438 if (m_head->m_flags & M_FIRSTFRAG &&
5439 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5440 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5441 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5442 ifp->if_flags |= IFF_OACTIVE;
5443 break;
5444 }
5445 }
5446 #endif
5447
5448 /*
5449 * Pack the data into the transmit ring. If we
5450 * don't have room, set the OACTIVE flag and wait
5451 * for the NIC to drain the ring.
5452 */
5453 error = bge_encap(sc, m_head, &prodidx);
5454 if (__predict_false(error)) {
5455 if (ifp->if_flags & IFF_OACTIVE) {
5456 /* just wait for the transmit ring to drain */
5457 break;
5458 }
5459 IFQ_DEQUEUE(&ifp->if_snd, m);
5460 KASSERT(m == m_head);
5461 m_freem(m_head);
5462 continue;
5463 }
5464
5465 /* now we are committed to transmit the packet */
5466 IFQ_DEQUEUE(&ifp->if_snd, m);
5467 KASSERT(m == m_head);
5468 pkts++;
5469
5470 /*
5471 * If there's a BPF listener, bounce a copy of this frame
5472 * to him.
5473 */
5474 bpf_mtap(ifp, m_head, BPF_D_OUT);
5475 }
5476 if (pkts == 0)
5477 return;
5478
5479 /* Transmit */
5480 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5481 /* 5700 b2 errata */
5482 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5483 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5484
5485 sc->bge_tx_prodidx = prodidx;
5486
5487 /*
5488 * Set a timeout in case the chip goes out to lunch.
5489 */
5490 ifp->if_timer = 5;
5491 }
5492
5493 static int
5494 bge_init(struct ifnet *ifp)
5495 {
5496 struct bge_softc *sc = ifp->if_softc;
5497 const uint16_t *m;
5498 uint32_t mode, reg;
5499 int s, error = 0;
5500
5501 s = splnet();
5502
5503 ifp = &sc->ethercom.ec_if;
5504
5505 /* Cancel pending I/O and flush buffers. */
5506 bge_stop(ifp, 0);
5507
5508 bge_stop_fw(sc);
5509 bge_sig_pre_reset(sc, BGE_RESET_START);
5510 bge_reset(sc);
5511 bge_sig_legacy(sc, BGE_RESET_START);
5512
5513 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5514 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5515 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5516 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5517 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5518
5519 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5520 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5521 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5522 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5523
5524 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5525 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5526 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5527 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5528
5529 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5530 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5531 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5532 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5533 }
5534
5535 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5536 pcireg_t aercap;
5537
5538 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5539 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5540 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5541 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5542 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5543
5544 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5545 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5546 | BGE_PCIE_EIDLE_DELAY_13CLK;
5547 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5548
5549 /* Clear correctable error */
5550 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5551 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5552 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5553 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5554
5555 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5556 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5557 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5558 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5559 }
5560
5561 bge_sig_post_reset(sc, BGE_RESET_START);
5562
5563 bge_chipinit(sc);
5564
5565 /*
5566 * Init the various state machines, ring
5567 * control blocks and firmware.
5568 */
5569 error = bge_blockinit(sc);
5570 if (error != 0) {
5571 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5572 error);
5573 splx(s);
5574 return error;
5575 }
5576
5577 ifp = &sc->ethercom.ec_if;
5578
5579 /* 5718 step 25, 57XX step 54 */
5580 /* Specify MTU. */
5581 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5582 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5583
5584 /* 5718 step 23 */
5585 /* Load our MAC address. */
5586 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5587 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5588 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5589 ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5590
5591 /* Enable or disable promiscuous mode as needed. */
5592 if (ifp->if_flags & IFF_PROMISC)
5593 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5594 else
5595 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5596
5597 /* Program multicast filter. */
5598 bge_setmulti(sc);
5599
5600 /* Init RX ring. */
5601 bge_init_rx_ring_std(sc);
5602
5603 /*
5604 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5605 * memory to insure that the chip has in fact read the first
5606 * entry of the ring.
5607 */
5608 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5609 uint32_t v, i;
5610 for (i = 0; i < 10; i++) {
5611 DELAY(20);
5612 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5613 if (v == (MCLBYTES - ETHER_ALIGN))
5614 break;
5615 }
5616 if (i == 10)
5617 aprint_error_dev(sc->bge_dev,
5618 "5705 A0 chip failed to load RX ring\n");
5619 }
5620
5621 /* Init jumbo RX ring. */
5622 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5623 bge_init_rx_ring_jumbo(sc);
5624
5625 /* Init our RX return ring index */
5626 sc->bge_rx_saved_considx = 0;
5627
5628 /* Init TX ring. */
5629 bge_init_tx_ring(sc);
5630
5631 /* 5718 step 63, 57XX step 94 */
5632 /* Enable TX MAC state machine lockup fix. */
5633 mode = CSR_READ_4(sc, BGE_TX_MODE);
5634 if (BGE_IS_5755_PLUS(sc) ||
5635 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5636 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5637 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5638 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5639 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5640 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5641 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5642 }
5643
5644 /* Turn on transmitter */
5645 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5646 /* 5718 step 64 */
5647 DELAY(100);
5648
5649 /* 5718 step 65, 57XX step 95 */
5650 /* Turn on receiver */
5651 mode = CSR_READ_4(sc, BGE_RX_MODE);
5652 if (BGE_IS_5755_PLUS(sc))
5653 mode |= BGE_RXMODE_IPV6_ENABLE;
5654 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5655 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5656 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5657 /* 5718 step 66 */
5658 DELAY(10);
5659
5660 /* 5718 step 12, 57XX step 37 */
5661 /*
5662 * XXX Doucments of 5718 series and 577xx say the recommended value
5663 * is 1, but tg3 set 1 only on 57765 series.
5664 */
5665 if (BGE_IS_57765_PLUS(sc))
5666 reg = 1;
5667 else
5668 reg = 2;
5669 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5670
5671 /* Tell firmware we're alive. */
5672 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5673
5674 /* Enable host interrupts. */
5675 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5676 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5677 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5678
5679 if ((error = bge_ifmedia_upd(ifp)) != 0)
5680 goto out;
5681
5682 ifp->if_flags |= IFF_RUNNING;
5683 ifp->if_flags &= ~IFF_OACTIVE;
5684
5685 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5686
5687 out:
5688 sc->bge_if_flags = ifp->if_flags;
5689 splx(s);
5690
5691 return error;
5692 }
5693
5694 /*
5695 * Set media options.
5696 */
5697 static int
5698 bge_ifmedia_upd(struct ifnet *ifp)
5699 {
5700 struct bge_softc *sc = ifp->if_softc;
5701 struct mii_data *mii = &sc->bge_mii;
5702 struct ifmedia *ifm = &sc->bge_ifmedia;
5703 int rc;
5704
5705 /* If this is a 1000baseX NIC, enable the TBI port. */
5706 if (sc->bge_flags & BGEF_FIBER_TBI) {
5707 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5708 return EINVAL;
5709 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5710 case IFM_AUTO:
5711 /*
5712 * The BCM5704 ASIC appears to have a special
5713 * mechanism for programming the autoneg
5714 * advertisement registers in TBI mode.
5715 */
5716 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5717 uint32_t sgdig;
5718 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5719 if (sgdig & BGE_SGDIGSTS_DONE) {
5720 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5721 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5722 sgdig |= BGE_SGDIGCFG_AUTO |
5723 BGE_SGDIGCFG_PAUSE_CAP |
5724 BGE_SGDIGCFG_ASYM_PAUSE;
5725 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5726 sgdig | BGE_SGDIGCFG_SEND);
5727 DELAY(5);
5728 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5729 sgdig);
5730 }
5731 }
5732 break;
5733 case IFM_1000_SX:
5734 if ((ifm->ifm_media & IFM_FDX) != 0) {
5735 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5736 BGE_MACMODE_HALF_DUPLEX);
5737 } else {
5738 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5739 BGE_MACMODE_HALF_DUPLEX);
5740 }
5741 DELAY(40);
5742 break;
5743 default:
5744 return EINVAL;
5745 }
5746 /* XXX 802.3x flow control for 1000BASE-SX */
5747 return 0;
5748 }
5749
5750 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5751 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5752 uint32_t reg;
5753
5754 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5755 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5756 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5757 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5758 }
5759 }
5760
5761 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5762 if ((rc = mii_mediachg(mii)) == ENXIO)
5763 return 0;
5764
5765 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5766 uint32_t reg;
5767
5768 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5769 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5770 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5771 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5772 delay(40);
5773 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5774 }
5775 }
5776
5777 /*
5778 * Force an interrupt so that we will call bge_link_upd
5779 * if needed and clear any pending link state attention.
5780 * Without this we are not getting any further interrupts
5781 * for link state changes and thus will not UP the link and
5782 * not be able to send in bge_start. The only way to get
5783 * things working was to receive a packet and get a RX intr.
5784 */
5785 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5786 sc->bge_flags & BGEF_IS_5788)
5787 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5788 else
5789 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5790
5791 return rc;
5792 }
5793
5794 /*
5795 * Report current media status.
5796 */
5797 static void
5798 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5799 {
5800 struct bge_softc *sc = ifp->if_softc;
5801 struct mii_data *mii = &sc->bge_mii;
5802
5803 if (sc->bge_flags & BGEF_FIBER_TBI) {
5804 ifmr->ifm_status = IFM_AVALID;
5805 ifmr->ifm_active = IFM_ETHER;
5806 if (CSR_READ_4(sc, BGE_MAC_STS) &
5807 BGE_MACSTAT_TBI_PCS_SYNCHED)
5808 ifmr->ifm_status |= IFM_ACTIVE;
5809 ifmr->ifm_active |= IFM_1000_SX;
5810 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5811 ifmr->ifm_active |= IFM_HDX;
5812 else
5813 ifmr->ifm_active |= IFM_FDX;
5814 return;
5815 }
5816
5817 mii_pollstat(mii);
5818 ifmr->ifm_status = mii->mii_media_status;
5819 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5820 sc->bge_flowflags;
5821 }
5822
5823 static int
5824 bge_ifflags_cb(struct ethercom *ec)
5825 {
5826 struct ifnet *ifp = &ec->ec_if;
5827 struct bge_softc *sc = ifp->if_softc;
5828 u_short change = ifp->if_flags ^ sc->bge_if_flags;
5829
5830 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
5831 return ENETRESET;
5832 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5833 return 0;
5834
5835 if ((ifp->if_flags & IFF_PROMISC) == 0)
5836 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5837 else
5838 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5839
5840 bge_setmulti(sc);
5841
5842 sc->bge_if_flags = ifp->if_flags;
5843 return 0;
5844 }
5845
5846 static int
5847 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5848 {
5849 struct bge_softc *sc = ifp->if_softc;
5850 struct ifreq *ifr = (struct ifreq *) data;
5851 int s, error = 0;
5852 struct mii_data *mii;
5853
5854 s = splnet();
5855
5856 switch (command) {
5857 case SIOCSIFMEDIA:
5858 /* XXX Flow control is not supported for 1000BASE-SX */
5859 if (sc->bge_flags & BGEF_FIBER_TBI) {
5860 ifr->ifr_media &= ~IFM_ETH_FMASK;
5861 sc->bge_flowflags = 0;
5862 }
5863
5864 /* Flow control requires full-duplex mode. */
5865 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5866 (ifr->ifr_media & IFM_FDX) == 0) {
5867 ifr->ifr_media &= ~IFM_ETH_FMASK;
5868 }
5869 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5870 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5871 /* We can do both TXPAUSE and RXPAUSE. */
5872 ifr->ifr_media |=
5873 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5874 }
5875 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5876 }
5877
5878 if (sc->bge_flags & BGEF_FIBER_TBI) {
5879 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5880 command);
5881 } else {
5882 mii = &sc->bge_mii;
5883 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5884 command);
5885 }
5886 break;
5887 default:
5888 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5889 break;
5890
5891 error = 0;
5892
5893 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5894 ;
5895 else if (ifp->if_flags & IFF_RUNNING)
5896 bge_setmulti(sc);
5897 break;
5898 }
5899
5900 splx(s);
5901
5902 return error;
5903 }
5904
5905 static void
5906 bge_watchdog(struct ifnet *ifp)
5907 {
5908 struct bge_softc *sc;
5909 uint32_t status;
5910
5911 sc = ifp->if_softc;
5912
5913 /* If pause frames are active then don't reset the hardware. */
5914 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5915 status = CSR_READ_4(sc, BGE_RX_STS);
5916 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5917 /*
5918 * If link partner has us in XOFF state then wait for
5919 * the condition to clear.
5920 */
5921 CSR_WRITE_4(sc, BGE_RX_STS, status);
5922 ifp->if_timer = 5;
5923 return;
5924 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5925 (status & BGE_RXSTAT_RCVD_XON) != 0) {
5926 /*
5927 * If link partner has us in XOFF state then wait for
5928 * the condition to clear.
5929 */
5930 CSR_WRITE_4(sc, BGE_RX_STS, status);
5931 ifp->if_timer = 5;
5932 return;
5933 }
5934 /*
5935 * Any other condition is unexpected and the controller
5936 * should be reset.
5937 */
5938 }
5939
5940 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5941
5942 ifp->if_flags &= ~IFF_RUNNING;
5943 bge_init(ifp);
5944
5945 ifp->if_oerrors++;
5946 }
5947
5948 static void
5949 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5950 {
5951 int i;
5952
5953 BGE_CLRBIT_FLUSH(sc, reg, bit);
5954
5955 for (i = 0; i < 1000; i++) {
5956 delay(100);
5957 if ((CSR_READ_4(sc, reg) & bit) == 0)
5958 return;
5959 }
5960
5961 /*
5962 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5963 * on some environment (and once after boot?)
5964 */
5965 if (reg != BGE_SRS_MODE)
5966 aprint_error_dev(sc->bge_dev,
5967 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5968 (u_long)reg, bit);
5969 }
5970
5971 /*
5972 * Stop the adapter and free any mbufs allocated to the
5973 * RX and TX lists.
5974 */
5975 static void
5976 bge_stop(struct ifnet *ifp, int disable)
5977 {
5978 struct bge_softc *sc = ifp->if_softc;
5979
5980 if (disable) {
5981 sc->bge_detaching = 1;
5982 callout_halt(&sc->bge_timeout, NULL);
5983 } else
5984 callout_stop(&sc->bge_timeout);
5985
5986 /* Disable host interrupts. */
5987 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5988 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5989
5990 /*
5991 * Tell firmware we're shutting down.
5992 */
5993 bge_stop_fw(sc);
5994 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5995
5996 /*
5997 * Disable all of the receiver blocks.
5998 */
5999 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6000 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6001 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6002 if (BGE_IS_5700_FAMILY(sc))
6003 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6004 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6005 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6006 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6007
6008 /*
6009 * Disable all of the transmit blocks.
6010 */
6011 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6012 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6013 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6014 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6015 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6016 if (BGE_IS_5700_FAMILY(sc))
6017 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6018 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6019
6020 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6021 delay(40);
6022
6023 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6024
6025 /*
6026 * Shut down all of the memory managers and related
6027 * state machines.
6028 */
6029 /* 5718 step 5a,5b */
6030 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6031 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6032 if (BGE_IS_5700_FAMILY(sc))
6033 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6034
6035 /* 5718 step 5c,5d */
6036 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6037 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6038
6039 if (BGE_IS_5700_FAMILY(sc)) {
6040 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6041 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6042 }
6043
6044 bge_reset(sc);
6045 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6046 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6047
6048 /*
6049 * Keep the ASF firmware running if up.
6050 */
6051 if (sc->bge_asf_mode & ASF_STACKUP)
6052 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6053 else
6054 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6055
6056 /* Free the RX lists. */
6057 bge_free_rx_ring_std(sc, disable);
6058
6059 /* Free jumbo RX list. */
6060 if (BGE_IS_JUMBO_CAPABLE(sc))
6061 bge_free_rx_ring_jumbo(sc);
6062
6063 /* Free TX buffers. */
6064 bge_free_tx_ring(sc, disable);
6065
6066 /*
6067 * Isolate/power down the PHY.
6068 */
6069 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6070 mii_down(&sc->bge_mii);
6071
6072 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6073
6074 /* Clear MAC's link state (PHY may still have link UP). */
6075 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6076
6077 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6078 }
6079
6080 static void
6081 bge_link_upd(struct bge_softc *sc)
6082 {
6083 struct ifnet *ifp = &sc->ethercom.ec_if;
6084 struct mii_data *mii = &sc->bge_mii;
6085 uint32_t status;
6086 uint16_t phyval;
6087 int link;
6088
6089 /* Clear 'pending link event' flag */
6090 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6091
6092 /*
6093 * Process link state changes.
6094 * Grrr. The link status word in the status block does
6095 * not work correctly on the BCM5700 rev AX and BX chips,
6096 * according to all available information. Hence, we have
6097 * to enable MII interrupts in order to properly obtain
6098 * async link changes. Unfortunately, this also means that
6099 * we have to read the MAC status register to detect link
6100 * changes, thereby adding an additional register access to
6101 * the interrupt handler.
6102 */
6103
6104 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6105 status = CSR_READ_4(sc, BGE_MAC_STS);
6106 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6107 mii_pollstat(mii);
6108
6109 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6110 mii->mii_media_status & IFM_ACTIVE &&
6111 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6112 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6113 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6114 (!(mii->mii_media_status & IFM_ACTIVE) ||
6115 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6116 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6117
6118 /* Clear the interrupt */
6119 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6120 BGE_EVTENB_MI_INTERRUPT);
6121 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6122 BRGPHY_MII_ISR, &phyval);
6123 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6124 BRGPHY_MII_IMR, BRGPHY_INTRS);
6125 }
6126 return;
6127 }
6128
6129 if (sc->bge_flags & BGEF_FIBER_TBI) {
6130 status = CSR_READ_4(sc, BGE_MAC_STS);
6131 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6132 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6133 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6134 if (BGE_ASICREV(sc->bge_chipid)
6135 == BGE_ASICREV_BCM5704) {
6136 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6137 BGE_MACMODE_TBI_SEND_CFGS);
6138 DELAY(40);
6139 }
6140 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6141 if_link_state_change(ifp, LINK_STATE_UP);
6142 }
6143 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6144 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6145 if_link_state_change(ifp, LINK_STATE_DOWN);
6146 }
6147 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6148 /*
6149 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6150 * bit in status word always set. Workaround this bug by
6151 * reading PHY link status directly.
6152 */
6153 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6154 BGE_STS_LINK : 0;
6155
6156 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6157 mii_pollstat(mii);
6158
6159 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6160 mii->mii_media_status & IFM_ACTIVE &&
6161 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6162 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6163 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6164 (!(mii->mii_media_status & IFM_ACTIVE) ||
6165 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6166 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6167 }
6168 } else {
6169 /*
6170 * For controllers that call mii_tick, we have to poll
6171 * link status.
6172 */
6173 mii_pollstat(mii);
6174 }
6175
6176 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6177 uint32_t reg, scale;
6178
6179 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6180 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6181 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6182 scale = 65;
6183 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6184 scale = 6;
6185 else
6186 scale = 12;
6187
6188 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6189 ~BGE_MISCCFG_TIMER_PRESCALER;
6190 reg |= scale << 1;
6191 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6192 }
6193 /* Clear the attention */
6194 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6195 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6196 BGE_MACSTAT_LINK_CHANGED);
6197 }
6198
6199 static int
6200 bge_sysctl_verify(SYSCTLFN_ARGS)
6201 {
6202 int error, t;
6203 struct sysctlnode node;
6204
6205 node = *rnode;
6206 t = *(int*)rnode->sysctl_data;
6207 node.sysctl_data = &t;
6208 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6209 if (error || newp == NULL)
6210 return error;
6211
6212 #if 0
6213 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6214 node.sysctl_num, rnode->sysctl_num));
6215 #endif
6216
6217 if (node.sysctl_num == bge_rxthresh_nodenum) {
6218 if (t < 0 || t >= NBGE_RX_THRESH)
6219 return EINVAL;
6220 bge_update_all_threshes(t);
6221 } else
6222 return EINVAL;
6223
6224 *(int*)rnode->sysctl_data = t;
6225
6226 return 0;
6227 }
6228
6229 /*
6230 * Set up sysctl(3) MIB, hw.bge.*.
6231 */
6232 static void
6233 bge_sysctl_init(struct bge_softc *sc)
6234 {
6235 int rc, bge_root_num;
6236 const struct sysctlnode *node;
6237
6238 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6239 0, CTLTYPE_NODE, "bge",
6240 SYSCTL_DESCR("BGE interface controls"),
6241 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6242 goto out;
6243 }
6244
6245 bge_root_num = node->sysctl_num;
6246
6247 /* BGE Rx interrupt mitigation level */
6248 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6249 CTLFLAG_READWRITE,
6250 CTLTYPE_INT, "rx_lvl",
6251 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6252 bge_sysctl_verify, 0,
6253 &bge_rx_thresh_lvl,
6254 0, CTL_HW, bge_root_num, CTL_CREATE,
6255 CTL_EOL)) != 0) {
6256 goto out;
6257 }
6258
6259 bge_rxthresh_nodenum = node->sysctl_num;
6260
6261 return;
6262
6263 out:
6264 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6265 }
6266
6267 #ifdef BGE_DEBUG
6268 void
6269 bge_debug_info(struct bge_softc *sc)
6270 {
6271
6272 printf("Hardware Flags:\n");
6273 if (BGE_IS_57765_PLUS(sc))
6274 printf(" - 57765 Plus\n");
6275 if (BGE_IS_5717_PLUS(sc))
6276 printf(" - 5717 Plus\n");
6277 if (BGE_IS_5755_PLUS(sc))
6278 printf(" - 5755 Plus\n");
6279 if (BGE_IS_575X_PLUS(sc))
6280 printf(" - 575X Plus\n");
6281 if (BGE_IS_5705_PLUS(sc))
6282 printf(" - 5705 Plus\n");
6283 if (BGE_IS_5714_FAMILY(sc))
6284 printf(" - 5714 Family\n");
6285 if (BGE_IS_5700_FAMILY(sc))
6286 printf(" - 5700 Family\n");
6287 if (sc->bge_flags & BGEF_IS_5788)
6288 printf(" - 5788\n");
6289 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6290 printf(" - Supports Jumbo Frames\n");
6291 if (sc->bge_flags & BGEF_NO_EEPROM)
6292 printf(" - No EEPROM\n");
6293 if (sc->bge_flags & BGEF_PCIX)
6294 printf(" - PCI-X Bus\n");
6295 if (sc->bge_flags & BGEF_PCIE)
6296 printf(" - PCI Express Bus\n");
6297 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6298 printf(" - RX Alignment Bug\n");
6299 if (sc->bge_flags & BGEF_APE)
6300 printf(" - APE\n");
6301 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6302 printf(" - CPMU\n");
6303 if (sc->bge_flags & BGEF_TSO)
6304 printf(" - TSO\n");
6305 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6306 printf(" - TAGGED_STATUS\n");
6307
6308 /* PHY related */
6309 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6310 printf(" - No 3 LEDs\n");
6311 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6312 printf(" - CRC bug\n");
6313 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6314 printf(" - ADC bug\n");
6315 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6316 printf(" - 5704 A0 bug\n");
6317 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6318 printf(" - jitter bug\n");
6319 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6320 printf(" - BER bug\n");
6321 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6322 printf(" - adjust trim\n");
6323 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6324 printf(" - no wirespeed\n");
6325
6326 /* ASF related */
6327 if (sc->bge_asf_mode & ASF_ENABLE)
6328 printf(" - ASF enable\n");
6329 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6330 printf(" - ASF new handshake\n");
6331 if (sc->bge_asf_mode & ASF_STACKUP)
6332 printf(" - ASF stackup\n");
6333 }
6334 #endif /* BGE_DEBUG */
6335
6336 static int
6337 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6338 {
6339 prop_dictionary_t dict;
6340 prop_data_t ea;
6341
6342 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6343 return 1;
6344
6345 dict = device_properties(sc->bge_dev);
6346 ea = prop_dictionary_get(dict, "mac-address");
6347 if (ea != NULL) {
6348 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6349 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6350 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6351 return 0;
6352 }
6353
6354 return 1;
6355 }
6356
6357 static int
6358 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6359 {
6360 uint32_t mac_addr;
6361
6362 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6363 if ((mac_addr >> 16) == 0x484b) {
6364 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6365 ether_addr[1] = (uint8_t)mac_addr;
6366 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6367 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6368 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6369 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6370 ether_addr[5] = (uint8_t)mac_addr;
6371 return 0;
6372 }
6373 return 1;
6374 }
6375
6376 static int
6377 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6378 {
6379 int mac_offset = BGE_EE_MAC_OFFSET;
6380
6381 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6382 mac_offset = BGE_EE_MAC_OFFSET_5906;
6383
6384 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6385 ETHER_ADDR_LEN));
6386 }
6387
6388 static int
6389 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6390 {
6391
6392 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6393 return 1;
6394
6395 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6396 ETHER_ADDR_LEN));
6397 }
6398
6399 static int
6400 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6401 {
6402 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6403 /* NOTE: Order is critical */
6404 bge_get_eaddr_fw,
6405 bge_get_eaddr_mem,
6406 bge_get_eaddr_nvram,
6407 bge_get_eaddr_eeprom,
6408 NULL
6409 };
6410 const bge_eaddr_fcn_t *func;
6411
6412 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6413 if ((*func)(sc, eaddr) == 0)
6414 break;
6415 }
6416 return (*func == NULL ? ENXIO : 0);
6417 }
6418