if_bge.c revision 1.35 1 /* $NetBSD: if_bge.c,v 1.35 2003/03/06 20:53:05 jonathan Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include "bpfilter.h"
82 #include "vlan.h"
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #ifdef INET
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip.h>
104 #endif
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/miidevs.h>
117 #include <dev/mii/brgphyreg.h>
118
119 #include <dev/pci/if_bgereg.h>
120
121 #include <uvm/uvm_extern.h>
122
123 int bge_probe(struct device *, struct cfdata *, void *);
124 void bge_attach(struct device *, struct device *, void *);
125 void bge_release_resources(struct bge_softc *);
126 void bge_txeof(struct bge_softc *);
127 void bge_rxeof(struct bge_softc *);
128
129 void bge_tick(void *);
130 void bge_stats_update(struct bge_softc *);
131 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
132
133 int bge_intr(void *);
134 void bge_start(struct ifnet *);
135 int bge_ioctl(struct ifnet *, u_long, caddr_t);
136 int bge_init(struct ifnet *);
137 void bge_stop(struct bge_softc *);
138 void bge_watchdog(struct ifnet *);
139 void bge_shutdown(void *);
140 int bge_ifmedia_upd(struct ifnet *);
141 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
142
143 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
144 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
145
146 void bge_setmulti(struct bge_softc *);
147
148 void bge_handle_events(struct bge_softc *);
149 int bge_alloc_jumbo_mem(struct bge_softc *);
150 void bge_free_jumbo_mem(struct bge_softc *);
151 void *bge_jalloc(struct bge_softc *);
152 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
153 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
154 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
155 int bge_init_rx_ring_std(struct bge_softc *);
156 void bge_free_rx_ring_std(struct bge_softc *);
157 int bge_init_rx_ring_jumbo(struct bge_softc *);
158 void bge_free_rx_ring_jumbo(struct bge_softc *);
159 void bge_free_tx_ring(struct bge_softc *);
160 int bge_init_tx_ring(struct bge_softc *);
161
162 int bge_chipinit(struct bge_softc *);
163 int bge_blockinit(struct bge_softc *);
164 int bge_setpowerstate(struct bge_softc *, int);
165
166 #ifdef notdef
167 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
168 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
169 void bge_vpd_read(struct bge_softc *);
170 #endif
171
172 u_int32_t bge_readmem_ind(struct bge_softc *, int);
173 void bge_writemem_ind(struct bge_softc *, int, int);
174 #ifdef notdef
175 u_int32_t bge_readreg_ind(struct bge_softc *, int);
176 #endif
177 void bge_writereg_ind(struct bge_softc *, int, int);
178
179 int bge_miibus_readreg(struct device *, int, int);
180 void bge_miibus_writereg(struct device *, int, int, int);
181 void bge_miibus_statchg(struct device *);
182
183 void bge_reset(struct bge_softc *);
184
185 void bge_dump_status(struct bge_softc *);
186 void bge_dump_rxbd(struct bge_rx_bd *);
187
188 #define BGE_DEBUG
189 #ifdef BGE_DEBUG
190 #define DPRINTF(x) if (bgedebug) printf x
191 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
192 int bgedebug = 0;
193 #else
194 #define DPRINTF(x)
195 #define DPRINTFN(n,x)
196 #endif
197
198 /* Various chip quirks. */
199 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
200 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
201 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
202 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
203 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
204 #define BGE_QUIRK_PRODUCER_BUG 0x00000011
205
206 /* following bugs are common to bcm5700 rev B, all flavours */
207 #define BGE_QUIRK_5700_COMMON \
208 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
209
210 CFATTACH_DECL(bge, sizeof(struct bge_softc),
211 bge_probe, bge_attach, NULL, NULL);
212
213 u_int32_t
214 bge_readmem_ind(sc, off)
215 struct bge_softc *sc;
216 int off;
217 {
218 struct pci_attach_args *pa = &(sc->bge_pa);
219 pcireg_t val;
220
221 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
222 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
223 return val;
224 }
225
226 void
227 bge_writemem_ind(sc, off, val)
228 struct bge_softc *sc;
229 int off, val;
230 {
231 struct pci_attach_args *pa = &(sc->bge_pa);
232
233 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
234 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
235 }
236
237 #ifdef notdef
238 u_int32_t
239 bge_readreg_ind(sc, off)
240 struct bge_softc *sc;
241 int off;
242 {
243 struct pci_attach_args *pa = &(sc->bge_pa);
244
245 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
246 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
247 }
248 #endif
249
250 void
251 bge_writereg_ind(sc, off, val)
252 struct bge_softc *sc;
253 int off, val;
254 {
255 struct pci_attach_args *pa = &(sc->bge_pa);
256
257 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
258 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
259 }
260
261 #ifdef notdef
262 u_int8_t
263 bge_vpd_readbyte(sc, addr)
264 struct bge_softc *sc;
265 int addr;
266 {
267 int i;
268 u_int32_t val;
269 struct pci_attach_args *pa = &(sc->bge_pa);
270
271 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
272 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
273 DELAY(10);
274 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
275 BGE_VPD_FLAG)
276 break;
277 }
278
279 if (i == BGE_TIMEOUT) {
280 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
281 return(0);
282 }
283
284 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
285
286 return((val >> ((addr % 4) * 8)) & 0xFF);
287 }
288
289 void
290 bge_vpd_read_res(sc, res, addr)
291 struct bge_softc *sc;
292 struct vpd_res *res;
293 int addr;
294 {
295 int i;
296 u_int8_t *ptr;
297
298 ptr = (u_int8_t *)res;
299 for (i = 0; i < sizeof(struct vpd_res); i++)
300 ptr[i] = bge_vpd_readbyte(sc, i + addr);
301 }
302
303 void
304 bge_vpd_read(sc)
305 struct bge_softc *sc;
306 {
307 int pos = 0, i;
308 struct vpd_res res;
309
310 if (sc->bge_vpd_prodname != NULL)
311 free(sc->bge_vpd_prodname, M_DEVBUF);
312 if (sc->bge_vpd_readonly != NULL)
313 free(sc->bge_vpd_readonly, M_DEVBUF);
314 sc->bge_vpd_prodname = NULL;
315 sc->bge_vpd_readonly = NULL;
316
317 bge_vpd_read_res(sc, &res, pos);
318
319 if (res.vr_id != VPD_RES_ID) {
320 printf("%s: bad VPD resource id: expected %x got %x\n",
321 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
322 return;
323 }
324
325 pos += sizeof(res);
326 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
327 if (sc->bge_vpd_prodname == NULL)
328 panic("bge_vpd_read");
329 for (i = 0; i < res.vr_len; i++)
330 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
331 sc->bge_vpd_prodname[i] = '\0';
332 pos += i;
333
334 bge_vpd_read_res(sc, &res, pos);
335
336 if (res.vr_id != VPD_RES_READ) {
337 printf("%s: bad VPD resource id: expected %x got %x\n",
338 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
339 return;
340 }
341
342 pos += sizeof(res);
343 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
344 if (sc->bge_vpd_readonly == NULL)
345 panic("bge_vpd_read");
346 for (i = 0; i < res.vr_len + 1; i++)
347 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
348 }
349 #endif
350
351 /*
352 * Read a byte of data stored in the EEPROM at address 'addr.' The
353 * BCM570x supports both the traditional bitbang interface and an
354 * auto access interface for reading the EEPROM. We use the auto
355 * access method.
356 */
357 u_int8_t
358 bge_eeprom_getbyte(sc, addr, dest)
359 struct bge_softc *sc;
360 int addr;
361 u_int8_t *dest;
362 {
363 int i;
364 u_int32_t byte = 0;
365
366 /*
367 * Enable use of auto EEPROM access so we can avoid
368 * having to use the bitbang method.
369 */
370 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
371
372 /* Reset the EEPROM, load the clock period. */
373 CSR_WRITE_4(sc, BGE_EE_ADDR,
374 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
375 DELAY(20);
376
377 /* Issue the read EEPROM command. */
378 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
379
380 /* Wait for completion */
381 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
382 DELAY(10);
383 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
384 break;
385 }
386
387 if (i == BGE_TIMEOUT) {
388 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
389 return(0);
390 }
391
392 /* Get result. */
393 byte = CSR_READ_4(sc, BGE_EE_DATA);
394
395 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
396
397 return(0);
398 }
399
400 /*
401 * Read a sequence of bytes from the EEPROM.
402 */
403 int
404 bge_read_eeprom(sc, dest, off, cnt)
405 struct bge_softc *sc;
406 caddr_t dest;
407 int off;
408 int cnt;
409 {
410 int err = 0, i;
411 u_int8_t byte = 0;
412
413 for (i = 0; i < cnt; i++) {
414 err = bge_eeprom_getbyte(sc, off + i, &byte);
415 if (err)
416 break;
417 *(dest + i) = byte;
418 }
419
420 return(err ? 1 : 0);
421 }
422
423 int
424 bge_miibus_readreg(dev, phy, reg)
425 struct device *dev;
426 int phy, reg;
427 {
428 struct bge_softc *sc = (struct bge_softc *)dev;
429 struct ifnet *ifp;
430 u_int32_t val;
431 u_int32_t saved_autopoll;
432 int i;
433
434 ifp = &sc->ethercom.ec_if;
435
436 /*
437 * Several chips with builtin PHYs will incorrectly answer to
438 * other PHY instances than the builtin PHY at id 1.
439 */
440 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
441 return(0);
442
443 /* Reading with autopolling on may trigger PCI errors */
444 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
445 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
446 CSR_WRITE_4(sc, BGE_MI_MODE,
447 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
448 DELAY(40);
449 }
450
451 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
452 BGE_MIPHY(phy)|BGE_MIREG(reg));
453
454 for (i = 0; i < BGE_TIMEOUT; i++) {
455 val = CSR_READ_4(sc, BGE_MI_COMM);
456 if (!(val & BGE_MICOMM_BUSY))
457 break;
458 delay(10);
459 }
460
461 if (i == BGE_TIMEOUT) {
462 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
463 val = 0;
464 goto done;
465 }
466
467 val = CSR_READ_4(sc, BGE_MI_COMM);
468
469 done:
470 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
471 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
472 DELAY(40);
473 }
474
475 if (val & BGE_MICOMM_READFAIL)
476 return(0);
477
478 return(val & 0xFFFF);
479 }
480
481 void
482 bge_miibus_writereg(dev, phy, reg, val)
483 struct device *dev;
484 int phy, reg, val;
485 {
486 struct bge_softc *sc = (struct bge_softc *)dev;
487 u_int32_t saved_autopoll;
488 int i;
489
490 /* Touching the PHY while autopolling is on may trigger PCI errors */
491 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
492 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
493 delay(40);
494 CSR_WRITE_4(sc, BGE_MI_MODE,
495 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
496 delay(10); /* 40 usec is supposed to be adequate */
497 }
498
499 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
500 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
501
502 for (i = 0; i < BGE_TIMEOUT; i++) {
503 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
504 break;
505 delay(10);
506 }
507
508 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
509 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
510 delay(40);
511 }
512
513 if (i == BGE_TIMEOUT) {
514 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
515 }
516 }
517
518 void
519 bge_miibus_statchg(dev)
520 struct device *dev;
521 {
522 struct bge_softc *sc = (struct bge_softc *)dev;
523 struct mii_data *mii = &sc->bge_mii;
524
525 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
526 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
527 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
528 } else {
529 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
530 }
531
532 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
533 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
534 } else {
535 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
536 }
537 }
538
539 /*
540 * Handle events that have triggered interrupts.
541 */
542 void
543 bge_handle_events(sc)
544 struct bge_softc *sc;
545 {
546
547 return;
548 }
549
550 /*
551 * Memory management for jumbo frames.
552 */
553
554 int
555 bge_alloc_jumbo_mem(sc)
556 struct bge_softc *sc;
557 {
558 caddr_t ptr, kva;
559 bus_dma_segment_t seg;
560 int i, rseg, state, error;
561 struct bge_jpool_entry *entry;
562
563 state = error = 0;
564
565 /* Grab a big chunk o' storage. */
566 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
567 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
568 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
569 return ENOBUFS;
570 }
571
572 state = 1;
573 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
574 BUS_DMA_NOWAIT)) {
575 printf("%s: can't map dma buffers (%d bytes)\n",
576 sc->bge_dev.dv_xname, (int)BGE_JMEM);
577 error = ENOBUFS;
578 goto out;
579 }
580
581 state = 2;
582 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
583 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
584 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
585 error = ENOBUFS;
586 goto out;
587 }
588
589 state = 3;
590 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
591 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
592 printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
593 error = ENOBUFS;
594 goto out;
595 }
596
597 state = 4;
598 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
599 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
600
601 SLIST_INIT(&sc->bge_jfree_listhead);
602 SLIST_INIT(&sc->bge_jinuse_listhead);
603
604 /*
605 * Now divide it up into 9K pieces and save the addresses
606 * in an array.
607 */
608 ptr = sc->bge_cdata.bge_jumbo_buf;
609 for (i = 0; i < BGE_JSLOTS; i++) {
610 sc->bge_cdata.bge_jslots[i] = ptr;
611 ptr += BGE_JLEN;
612 entry = malloc(sizeof(struct bge_jpool_entry),
613 M_DEVBUF, M_NOWAIT);
614 if (entry == NULL) {
615 printf("%s: no memory for jumbo buffer queue!\n",
616 sc->bge_dev.dv_xname);
617 error = ENOBUFS;
618 goto out;
619 }
620 entry->slot = i;
621 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
622 entry, jpool_entries);
623 }
624 out:
625 if (error != 0) {
626 switch (state) {
627 case 4:
628 bus_dmamap_unload(sc->bge_dmatag,
629 sc->bge_cdata.bge_rx_jumbo_map);
630 case 3:
631 bus_dmamap_destroy(sc->bge_dmatag,
632 sc->bge_cdata.bge_rx_jumbo_map);
633 case 2:
634 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
635 case 1:
636 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
637 break;
638 default:
639 break;
640 }
641 }
642
643 return error;
644 }
645
646 /*
647 * Allocate a jumbo buffer.
648 */
649 void *
650 bge_jalloc(sc)
651 struct bge_softc *sc;
652 {
653 struct bge_jpool_entry *entry;
654
655 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
656
657 if (entry == NULL) {
658 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
659 return(NULL);
660 }
661
662 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
663 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
664 return(sc->bge_cdata.bge_jslots[entry->slot]);
665 }
666
667 /*
668 * Release a jumbo buffer.
669 */
670 void
671 bge_jfree(m, buf, size, arg)
672 struct mbuf *m;
673 caddr_t buf;
674 size_t size;
675 void *arg;
676 {
677 struct bge_jpool_entry *entry;
678 struct bge_softc *sc;
679 int i, s;
680
681 /* Extract the softc struct pointer. */
682 sc = (struct bge_softc *)arg;
683
684 if (sc == NULL)
685 panic("bge_jfree: can't find softc pointer!");
686
687 /* calculate the slot this buffer belongs to */
688
689 i = ((caddr_t)buf
690 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
691
692 if ((i < 0) || (i >= BGE_JSLOTS))
693 panic("bge_jfree: asked to free buffer that we don't manage!");
694
695 s = splvm();
696 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
697 if (entry == NULL)
698 panic("bge_jfree: buffer not in use!");
699 entry->slot = i;
700 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
701 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
702
703 if (__predict_true(m != NULL))
704 pool_cache_put(&mbpool_cache, m);
705 splx(s);
706 }
707
708
709 /*
710 * Intialize a standard receive ring descriptor.
711 */
712 int
713 bge_newbuf_std(sc, i, m, dmamap)
714 struct bge_softc *sc;
715 int i;
716 struct mbuf *m;
717 bus_dmamap_t dmamap;
718 {
719 struct mbuf *m_new = NULL;
720 struct bge_rx_bd *r;
721 int error;
722
723 if (dmamap == NULL) {
724 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
725 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
726 if (error != 0)
727 return error;
728 }
729
730 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
731
732 if (m == NULL) {
733 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
734 if (m_new == NULL) {
735 return(ENOBUFS);
736 }
737
738 MCLGET(m_new, M_DONTWAIT);
739 if (!(m_new->m_flags & M_EXT)) {
740 m_freem(m_new);
741 return(ENOBUFS);
742 }
743 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
744 m_adj(m_new, ETHER_ALIGN);
745
746 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
747 BUS_DMA_READ|BUS_DMA_NOWAIT))
748 return(ENOBUFS);
749 } else {
750 m_new = m;
751 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
752 m_new->m_data = m_new->m_ext.ext_buf;
753 m_adj(m_new, ETHER_ALIGN);
754 }
755
756 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
757 r = &sc->bge_rdata->bge_rx_std_ring[i];
758 bge_set_hostaddr(&r->bge_addr,
759 dmamap->dm_segs[0].ds_addr);
760 r->bge_flags = BGE_RXBDFLAG_END;
761 r->bge_len = m_new->m_len;
762 r->bge_idx = i;
763
764 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
765 offsetof(struct bge_ring_data, bge_rx_std_ring) +
766 i * sizeof (struct bge_rx_bd),
767 sizeof (struct bge_rx_bd),
768 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
769
770 return(0);
771 }
772
773 /*
774 * Initialize a jumbo receive ring descriptor. This allocates
775 * a jumbo buffer from the pool managed internally by the driver.
776 */
777 int
778 bge_newbuf_jumbo(sc, i, m)
779 struct bge_softc *sc;
780 int i;
781 struct mbuf *m;
782 {
783 struct mbuf *m_new = NULL;
784 struct bge_rx_bd *r;
785
786 if (m == NULL) {
787 caddr_t *buf = NULL;
788
789 /* Allocate the mbuf. */
790 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
791 if (m_new == NULL) {
792 return(ENOBUFS);
793 }
794
795 /* Allocate the jumbo buffer */
796 buf = bge_jalloc(sc);
797 if (buf == NULL) {
798 m_freem(m_new);
799 printf("%s: jumbo allocation failed "
800 "-- packet dropped!\n", sc->bge_dev.dv_xname);
801 return(ENOBUFS);
802 }
803
804 /* Attach the buffer to the mbuf. */
805 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
806 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
807 bge_jfree, sc);
808 } else {
809 m_new = m;
810 m_new->m_data = m_new->m_ext.ext_buf;
811 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
812 }
813
814 m_adj(m_new, ETHER_ALIGN);
815 /* Set up the descriptor. */
816 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
817 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
818 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
819 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
820 r->bge_len = m_new->m_len;
821 r->bge_idx = i;
822
823 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
824 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
825 i * sizeof (struct bge_rx_bd),
826 sizeof (struct bge_rx_bd),
827 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
828
829 return(0);
830 }
831
832 /*
833 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
834 * that's 1MB or memory, which is a lot. For now, we fill only the first
835 * 256 ring entries and hope that our CPU is fast enough to keep up with
836 * the NIC.
837 */
838 int
839 bge_init_rx_ring_std(sc)
840 struct bge_softc *sc;
841 {
842 int i;
843
844 if (sc->bge_flags & BGE_RXRING_VALID)
845 return 0;
846
847 for (i = 0; i < BGE_SSLOTS; i++) {
848 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
849 return(ENOBUFS);
850 }
851
852 sc->bge_std = i - 1;
853 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
854
855 sc->bge_flags |= BGE_RXRING_VALID;
856
857 return(0);
858 }
859
860 void
861 bge_free_rx_ring_std(sc)
862 struct bge_softc *sc;
863 {
864 int i;
865
866 if (!(sc->bge_flags & BGE_RXRING_VALID))
867 return;
868
869 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
870 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
871 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
872 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
873 bus_dmamap_destroy(sc->bge_dmatag,
874 sc->bge_cdata.bge_rx_std_map[i]);
875 }
876 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
877 sizeof(struct bge_rx_bd));
878 }
879
880 sc->bge_flags &= ~BGE_RXRING_VALID;
881 }
882
883 int
884 bge_init_rx_ring_jumbo(sc)
885 struct bge_softc *sc;
886 {
887 int i;
888 volatile struct bge_rcb *rcb;
889
890 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
891 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
892 return(ENOBUFS);
893 };
894
895 sc->bge_jumbo = i - 1;
896
897 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
898 rcb->bge_maxlen_flags = 0;
899 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
900
901 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
902
903 return(0);
904 }
905
906 void
907 bge_free_rx_ring_jumbo(sc)
908 struct bge_softc *sc;
909 {
910 int i;
911
912 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
913 return;
914
915 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
916 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
917 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
918 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
919 }
920 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
921 sizeof(struct bge_rx_bd));
922 }
923
924 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
925 }
926
927 void
928 bge_free_tx_ring(sc)
929 struct bge_softc *sc;
930 {
931 int i, freed;
932 struct txdmamap_pool_entry *dma;
933
934 if (!(sc->bge_flags & BGE_TXRING_VALID))
935 return;
936
937 freed = 0;
938
939 for (i = 0; i < BGE_TX_RING_CNT; i++) {
940 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
941 freed++;
942 m_freem(sc->bge_cdata.bge_tx_chain[i]);
943 sc->bge_cdata.bge_tx_chain[i] = NULL;
944 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
945 link);
946 sc->txdma[i] = 0;
947 }
948 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
949 sizeof(struct bge_tx_bd));
950 }
951
952 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
953 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
954 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
955 free(dma, M_DEVBUF);
956 }
957
958 sc->bge_flags &= ~BGE_TXRING_VALID;
959 }
960
961 int
962 bge_init_tx_ring(sc)
963 struct bge_softc *sc;
964 {
965 int i;
966 bus_dmamap_t dmamap;
967 struct txdmamap_pool_entry *dma;
968
969 if (sc->bge_flags & BGE_TXRING_VALID)
970 return 0;
971
972 sc->bge_txcnt = 0;
973 sc->bge_tx_saved_considx = 0;
974 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
975 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
976 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
977
978 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
979 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
980 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
981
982 SLIST_INIT(&sc->txdma_list);
983 for (i = 0; i < BGE_RSLOTS; i++) {
984 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
985 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
986 &dmamap))
987 return(ENOBUFS);
988 if (dmamap == NULL)
989 panic("dmamap NULL in bge_init_tx_ring");
990 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
991 if (dma == NULL) {
992 printf("%s: can't alloc txdmamap_pool_entry\n",
993 sc->bge_dev.dv_xname);
994 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
995 return (ENOMEM);
996 }
997 dma->dmamap = dmamap;
998 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
999 }
1000
1001 sc->bge_flags |= BGE_TXRING_VALID;
1002
1003 return(0);
1004 }
1005
1006 void
1007 bge_setmulti(sc)
1008 struct bge_softc *sc;
1009 {
1010 struct ethercom *ac = &sc->ethercom;
1011 struct ifnet *ifp = &ac->ec_if;
1012 struct ether_multi *enm;
1013 struct ether_multistep step;
1014 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1015 u_int32_t h;
1016 int i;
1017
1018 if (ifp->if_flags & IFF_PROMISC)
1019 goto allmulti;
1020
1021 /* Now program new ones. */
1022 ETHER_FIRST_MULTI(step, ac, enm);
1023 while (enm != NULL) {
1024 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1025 /*
1026 * We must listen to a range of multicast addresses.
1027 * For now, just accept all multicasts, rather than
1028 * trying to set only those filter bits needed to match
1029 * the range. (At this time, the only use of address
1030 * ranges is for IP multicast routing, for which the
1031 * range is big enough to require all bits set.)
1032 */
1033 goto allmulti;
1034 }
1035
1036 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1037
1038 /* Just want the 7 least-significant bits. */
1039 h &= 0x7f;
1040
1041 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1042 ETHER_NEXT_MULTI(step, enm);
1043 }
1044
1045 ifp->if_flags &= ~IFF_ALLMULTI;
1046 goto setit;
1047
1048 allmulti:
1049 ifp->if_flags |= IFF_ALLMULTI;
1050 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1051
1052 setit:
1053 for (i = 0; i < 4; i++)
1054 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1055 }
1056
1057 const int bge_swapbits[] = {
1058 0,
1059 BGE_MODECTL_BYTESWAP_DATA,
1060 BGE_MODECTL_WORDSWAP_DATA,
1061 BGE_MODECTL_BYTESWAP_NONFRAME,
1062 BGE_MODECTL_WORDSWAP_NONFRAME,
1063
1064 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1065 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1066 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1067
1068 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1069 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1070
1071 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1072
1073 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1074 BGE_MODECTL_BYTESWAP_NONFRAME,
1075 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1076 BGE_MODECTL_WORDSWAP_NONFRAME,
1077 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1078 BGE_MODECTL_WORDSWAP_NONFRAME,
1079 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1080 BGE_MODECTL_WORDSWAP_NONFRAME,
1081
1082 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1083 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1084 };
1085
1086 int bge_swapindex = 0;
1087
1088 /*
1089 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1090 * self-test results.
1091 */
1092 int
1093 bge_chipinit(sc)
1094 struct bge_softc *sc;
1095 {
1096 u_int32_t cachesize;
1097 int i;
1098 u_int32_t dma_rw_ctl;
1099 struct pci_attach_args *pa = &(sc->bge_pa);
1100
1101
1102 /* Set endianness before we access any non-PCI registers. */
1103 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1104 BGE_INIT);
1105
1106 /* Set power state to D0. */
1107 bge_setpowerstate(sc, 0);
1108
1109 /*
1110 * Check the 'ROM failed' bit on the RX CPU to see if
1111 * self-tests passed.
1112 */
1113 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1114 printf("%s: RX CPU self-diagnostics failed!\n",
1115 sc->bge_dev.dv_xname);
1116 return(ENODEV);
1117 }
1118
1119 /* Clear the MAC control register */
1120 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1121
1122 /*
1123 * Clear the MAC statistics block in the NIC's
1124 * internal memory.
1125 */
1126 for (i = BGE_STATS_BLOCK;
1127 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1128 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1129
1130 for (i = BGE_STATUS_BLOCK;
1131 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1132 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1133
1134 /* Set up the PCI DMA control register. */
1135 if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1136 BGE_PCISTATE_PCI_BUSMODE) {
1137 /* Conventional PCI bus */
1138 DPRINTFN(4, ("(%s: PCI 2.2 dma setting)\n", sc->bge_dev.dv_xname));
1139 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1140 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1141 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1142 (0x0F));
1143 } else {
1144 DPRINTFN(4, ("(:%s: PCI-X dma setting)\n", sc->bge_dev.dv_xname));
1145 /* PCI-X bus */
1146 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1147 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1148 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1149 (0x0F);
1150 /*
1151 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1152 * for hardware bugs, which means we should also clear
1153 * the low-order MINDMA bits. In addition, the 5704
1154 * uses a different encoding of read/write watermarks.
1155 */
1156 if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0) {
1157 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1158 /* should be 0x1f0000 */
1159 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1160 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1161 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1162 }
1163 else if ((sc->bge_asicrev >> 28) ==
1164 (BGE_ASICREV_BCM5703_A0 >> 28)) {
1165 dma_rw_ctl &= 0xfffffff0;
1166 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1167 }
1168 }
1169
1170 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1171
1172 /*
1173 * Set up general mode register.
1174 */
1175 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1176 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1177 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1178 BGE_MODECTL_RX_NO_PHDR_CSUM);
1179
1180 /* Get cache line size. */
1181 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1182
1183 /*
1184 * Avoid violating PCI spec on certain chip revs.
1185 */
1186 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1187 PCIM_CMD_MWIEN) {
1188 switch(cachesize) {
1189 case 1:
1190 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1191 BGE_PCI_WRITE_BNDRY_16BYTES);
1192 break;
1193 case 2:
1194 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1195 BGE_PCI_WRITE_BNDRY_32BYTES);
1196 break;
1197 case 4:
1198 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1199 BGE_PCI_WRITE_BNDRY_64BYTES);
1200 break;
1201 case 8:
1202 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1203 BGE_PCI_WRITE_BNDRY_128BYTES);
1204 break;
1205 case 16:
1206 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1207 BGE_PCI_WRITE_BNDRY_256BYTES);
1208 break;
1209 case 32:
1210 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1211 BGE_PCI_WRITE_BNDRY_512BYTES);
1212 break;
1213 case 64:
1214 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1215 BGE_PCI_WRITE_BNDRY_1024BYTES);
1216 break;
1217 default:
1218 /* Disable PCI memory write and invalidate. */
1219 #if 0
1220 if (bootverbose)
1221 printf("%s: cache line size %d not "
1222 "supported; disabling PCI MWI\n",
1223 sc->bge_dev.dv_xname, cachesize);
1224 #endif
1225 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1226 PCIM_CMD_MWIEN);
1227 break;
1228 }
1229 }
1230
1231 /*
1232 * Disable memory write invalidate. Apparently it is not supported
1233 * properly by these devices.
1234 */
1235 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1236
1237
1238 #ifdef __brokenalpha__
1239 /*
1240 * Must insure that we do not cross an 8K (bytes) boundary
1241 * for DMA reads. Our highest limit is 1K bytes. This is a
1242 * restriction on some ALPHA platforms with early revision
1243 * 21174 PCI chipsets, such as the AlphaPC 164lx
1244 */
1245 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1246 #endif
1247
1248 /* Set the timer prescaler (always 66MHz) */
1249 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1250
1251 return(0);
1252 }
1253
1254 int
1255 bge_blockinit(sc)
1256 struct bge_softc *sc;
1257 {
1258 volatile struct bge_rcb *rcb;
1259 bus_size_t rcb_addr;
1260 int i;
1261 struct ifnet *ifp = &sc->ethercom.ec_if;
1262 bge_hostaddr taddr;
1263
1264 /*
1265 * Initialize the memory window pointer register so that
1266 * we can access the first 32K of internal NIC RAM. This will
1267 * allow us to set up the TX send ring RCBs and the RX return
1268 * ring RCBs, plus other things which live in NIC memory.
1269 */
1270
1271 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1272 BGE_PCI_MEMWIN_BASEADDR, 0);
1273
1274 /* Configure mbuf memory pool */
1275 if (sc->bge_extram) {
1276 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1277 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1278 } else {
1279 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1280 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1281 }
1282
1283 /* Configure DMA resource pool */
1284 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1285 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1286
1287 /* Configure mbuf pool watermarks */
1288 #ifdef ORIG_WPAUL_VALUES
1289 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1290 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1291 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1292 #else
1293 /* new broadcom docs strongly recommend these: */
1294 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1295 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1296 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1297 #endif
1298
1299 /* Configure DMA resource watermarks */
1300 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1301 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1302
1303 /* Enable buffer manager */
1304 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1305 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1306
1307 /* Poll for buffer manager start indication */
1308 for (i = 0; i < BGE_TIMEOUT; i++) {
1309 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1310 break;
1311 DELAY(10);
1312 }
1313
1314 if (i == BGE_TIMEOUT) {
1315 printf("%s: buffer manager failed to start\n",
1316 sc->bge_dev.dv_xname);
1317 return(ENXIO);
1318 }
1319
1320 /* Enable flow-through queues */
1321 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1322 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1323
1324 /* Wait until queue initialization is complete */
1325 for (i = 0; i < BGE_TIMEOUT; i++) {
1326 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1327 break;
1328 DELAY(10);
1329 }
1330
1331 if (i == BGE_TIMEOUT) {
1332 printf("%s: flow-through queue init failed\n",
1333 sc->bge_dev.dv_xname);
1334 return(ENXIO);
1335 }
1336
1337 /* Initialize the standard RX ring control block */
1338 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1339 bge_set_hostaddr(&rcb->bge_hostaddr,
1340 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1341 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1342 if (sc->bge_extram)
1343 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1344 else
1345 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1346 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1347 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1348 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1349 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1350
1351 /*
1352 * Initialize the jumbo RX ring control block
1353 * We set the 'ring disabled' bit in the flags
1354 * field until we're actually ready to start
1355 * using this ring (i.e. once we set the MTU
1356 * high enough to require it).
1357 */
1358 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1359 bge_set_hostaddr(&rcb->bge_hostaddr,
1360 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1361 rcb->bge_maxlen_flags =
1362 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED);
1363 if (sc->bge_extram)
1364 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1365 else
1366 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1367
1368 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1369 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1370 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1371 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1372
1373 /* Set up dummy disabled mini ring RCB */
1374 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1375 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1376 BGE_RCB_FLAG_RING_DISABLED);
1377 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1378
1379 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1380 offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1381 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1382
1383 /*
1384 * Set the BD ring replentish thresholds. The recommended
1385 * values are 1/8th the number of descriptors allocated to
1386 * each ring.
1387 */
1388 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1389 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1390
1391 /*
1392 * Disable all unused send rings by setting the 'ring disabled'
1393 * bit in the flags field of all the TX send ring control blocks.
1394 * These are located in NIC memory.
1395 */
1396 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1397 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1398 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1399 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1400 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1401 rcb_addr += sizeof(struct bge_rcb);
1402 }
1403
1404 /* Configure TX RCB 0 (we use only the first ring) */
1405 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1406 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1407 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1408 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1409 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1410 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1411 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1412 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1413
1414 /* Disable all unused RX return rings */
1415 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1416 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1417 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1418 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1419 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1420 BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,
1421 BGE_RCB_FLAG_RING_DISABLED));
1422 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1423 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1424 (i * (sizeof(u_int64_t))), 0);
1425 rcb_addr += sizeof(struct bge_rcb);
1426 }
1427
1428 /* Initialize RX ring indexes */
1429 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1430 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1431 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1432
1433 /*
1434 * Set up RX return ring 0
1435 * Note that the NIC address for RX return rings is 0x00000000.
1436 * The return rings live entirely within the host, so the
1437 * nicaddr field in the RCB isn't used.
1438 */
1439 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1440 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1441 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1442 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1443 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1444 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1445 BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,0));
1446
1447 /* Set random backoff seed for TX */
1448 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1449 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1450 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1451 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1452 BGE_TX_BACKOFF_SEED_MASK);
1453
1454 /* Set inter-packet gap */
1455 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1456
1457 /*
1458 * Specify which ring to use for packets that don't match
1459 * any RX rules.
1460 */
1461 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1462
1463 /*
1464 * Configure number of RX lists. One interrupt distribution
1465 * list, sixteen active lists, one bad frames class.
1466 */
1467 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1468
1469 /* Inialize RX list placement stats mask. */
1470 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1471 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1472
1473 /* Disable host coalescing until we get it set up */
1474 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1475
1476 /* Poll to make sure it's shut down. */
1477 for (i = 0; i < BGE_TIMEOUT; i++) {
1478 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1479 break;
1480 DELAY(10);
1481 }
1482
1483 if (i == BGE_TIMEOUT) {
1484 printf("%s: host coalescing engine failed to idle\n",
1485 sc->bge_dev.dv_xname);
1486 return(ENXIO);
1487 }
1488
1489 /* Set up host coalescing defaults */
1490 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1491 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1492 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1493 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1494 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1495 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1496 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1497 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1498 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1499
1500 /* Set up address of statistics block */
1501 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1502 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1503 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1504 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1505
1506 /* Set up address of status block */
1507 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1508 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1509 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1510 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1511 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1512 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1513
1514 /* Turn on host coalescing state machine */
1515 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1516
1517 /* Turn on RX BD completion state machine and enable attentions */
1518 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1519 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1520
1521 /* Turn on RX list placement state machine */
1522 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1523
1524 /* Turn on RX list selector state machine. */
1525 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1526
1527 /* Turn on DMA, clear stats */
1528 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1529 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1530 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1531 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1532 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1533
1534 /* Set misc. local control, enable interrupts on attentions */
1535 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1536
1537 #ifdef notdef
1538 /* Assert GPIO pins for PHY reset */
1539 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1540 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1541 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1542 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1543 #endif
1544
1545 #if defined(not_quite_yet)
1546 /* Linux driver enables enable gpio pin #1 on 5700s */
1547 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
1548 sc->bge_local_ctrl_reg |=
1549 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1550 }
1551 #endif
1552 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1553
1554 /* Turn on DMA completion state machine */
1555 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1556
1557 /* Turn on write DMA state machine */
1558 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1559 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1560
1561 /* Turn on read DMA state machine */
1562 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1563 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1564
1565 /* Turn on RX data completion state machine */
1566 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1567
1568 /* Turn on RX BD initiator state machine */
1569 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1570
1571 /* Turn on RX data and RX BD initiator state machine */
1572 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1573
1574 /* Turn on Mbuf cluster free state machine */
1575 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1576
1577 /* Turn on send BD completion state machine */
1578 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1579
1580 /* Turn on send data completion state machine */
1581 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1582
1583 /* Turn on send data initiator state machine */
1584 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1585
1586 /* Turn on send BD initiator state machine */
1587 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1588
1589 /* Turn on send BD selector state machine */
1590 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1591
1592 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1593 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1594 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1595
1596 /* init LED register */
1597 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1598
1599 /* ack/clear link change events */
1600 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1601 BGE_MACSTAT_CFG_CHANGED);
1602 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1603
1604 /* Enable PHY auto polling (for MII/GMII only) */
1605 if (sc->bge_tbi) {
1606 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1607 } else {
1608 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1609 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1610 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1611 BGE_EVTENB_MI_INTERRUPT);
1612 }
1613
1614 /* Enable link state change attentions. */
1615 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1616
1617 return(0);
1618 }
1619
1620 static const struct bge_revision {
1621 uint32_t br_asicrev;
1622 uint32_t br_quirks;
1623 const char *br_name;
1624 } bge_revisions[] = {
1625 { BGE_ASICREV_BCM5700_A0,
1626 BGE_QUIRK_LINK_STATE_BROKEN,
1627 "BCM5700 A0" },
1628
1629 { BGE_ASICREV_BCM5700_A1,
1630 BGE_QUIRK_LINK_STATE_BROKEN,
1631 "BCM5700 A1" },
1632
1633 { BGE_ASICREV_BCM5700_B0,
1634 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1635 "BCM5700 B0" },
1636
1637 { BGE_ASICREV_BCM5700_B1,
1638 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1639 "BCM5700 B1" },
1640
1641 { BGE_ASICREV_BCM5700_B2,
1642 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1643 "BCM5700 B2" },
1644
1645 /* This is treated like a BCM5700 Bx */
1646 { BGE_ASICREV_BCM5700_ALTIMA,
1647 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1648 "BCM5700 Altima" },
1649
1650 { BGE_ASICREV_BCM5700_C0,
1651 0,
1652 "BCM5700 C0" },
1653
1654 { BGE_ASICREV_BCM5701_A0,
1655 0,
1656 "BCM5701 A0" },
1657
1658 { BGE_ASICREV_BCM5701_B0,
1659 0,
1660 "BCM5701 B0" },
1661
1662 { BGE_ASICREV_BCM5701_B2,
1663 0,
1664 "BCM5701 B2" },
1665
1666 { BGE_ASICREV_BCM5701_B5,
1667 BGE_QUIRK_ONLY_PHY_1,
1668 "BCM5701 B5" },
1669
1670 { BGE_ASICREV_BCM5703_A0,
1671 0,
1672 "BCM5703 A0" },
1673
1674 { BGE_ASICREV_BCM5703_A1,
1675 0,
1676 "BCM5703 A1" },
1677
1678 { BGE_ASICREV_BCM5703_A2,
1679 BGE_QUIRK_ONLY_PHY_1,
1680 "BCM5703 A2" },
1681
1682 { BGE_ASICREV_BCM5704_A0,
1683 BGE_QUIRK_ONLY_PHY_1,
1684 "BCM5704 A0" },
1685
1686 { 0, 0, NULL }
1687 };
1688
1689 static const struct bge_revision *
1690 bge_lookup_rev(uint32_t asicrev)
1691 {
1692 const struct bge_revision *br;
1693
1694 for (br = bge_revisions; br->br_name != NULL; br++) {
1695 if (br->br_asicrev == asicrev)
1696 return (br);
1697 }
1698
1699 return (NULL);
1700 }
1701
1702 static const struct bge_product {
1703 pci_vendor_id_t bp_vendor;
1704 pci_product_id_t bp_product;
1705 const char *bp_name;
1706 } bge_products[] = {
1707 /*
1708 * The BCM5700 documentation seems to indicate that the hardware
1709 * still has the Alteon vendor ID burned into it, though it
1710 * should always be overridden by the value in the EEPROM. We'll
1711 * check for it anyway.
1712 */
1713 { PCI_VENDOR_ALTEON,
1714 PCI_PRODUCT_ALTEON_BCM5700,
1715 "Broadcom BCM5700 Gigabit Ethernet" },
1716 { PCI_VENDOR_ALTEON,
1717 PCI_PRODUCT_ALTEON_BCM5701,
1718 "Broadcom BCM5701 Gigabit Ethernet" },
1719
1720 { PCI_VENDOR_ALTIMA,
1721 PCI_PRODUCT_ALTIMA_AC1000,
1722 "Altima AC1000 Gigabit Ethernet" },
1723 { PCI_VENDOR_ALTIMA,
1724 PCI_PRODUCT_ALTIMA_AC1001,
1725 "Altima AC1001 Gigabit Ethernet" },
1726 { PCI_VENDOR_ALTIMA,
1727 PCI_PRODUCT_ALTIMA_AC9100,
1728 "Altima AC9100 Gigabit Ethernet" },
1729
1730 { PCI_VENDOR_BROADCOM,
1731 PCI_PRODUCT_BROADCOM_BCM5700,
1732 "Broadcom BCM5700 Gigabit Ethernet" },
1733 { PCI_VENDOR_BROADCOM,
1734 PCI_PRODUCT_BROADCOM_BCM5701,
1735 "Broadcom BCM5701 Gigabit Ethernet" },
1736 { PCI_VENDOR_BROADCOM,
1737 PCI_PRODUCT_BROADCOM_BCM5702,
1738 "Broadcom BCM5702 Gigabit Ethernet" },
1739 { PCI_VENDOR_BROADCOM,
1740 PCI_PRODUCT_BROADCOM_BCM5702X,
1741 "Broadcom BCM5702X Gigabit Ethernet" },
1742 { PCI_VENDOR_BROADCOM,
1743 PCI_PRODUCT_BROADCOM_BCM5703,
1744 "Broadcom BCM5703 Gigabit Ethernet" },
1745 { PCI_VENDOR_BROADCOM,
1746 PCI_PRODUCT_BROADCOM_BCM5703X,
1747 "Broadcom BCM5703X Gigabit Ethernet" },
1748 { PCI_VENDOR_BROADCOM,
1749 PCI_PRODUCT_BROADCOM_BCM5704C,
1750 "Broadcom BCM5704C Dual Gigabit Ethernet" },
1751 { PCI_VENDOR_BROADCOM,
1752 PCI_PRODUCT_BROADCOM_BCM5704S,
1753 "Broadcom BCM5704S Dual Gigabit Ethernet" },
1754
1755
1756 { PCI_VENDOR_SCHNEIDERKOCH,
1757 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1758 "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1759
1760 { PCI_VENDOR_3COM,
1761 PCI_PRODUCT_3COM_3C996,
1762 "3Com 3c996 Gigabit Ethernet" },
1763
1764 { 0,
1765 0,
1766 NULL },
1767 };
1768
1769 static const struct bge_product *
1770 bge_lookup(const struct pci_attach_args *pa)
1771 {
1772 const struct bge_product *bp;
1773
1774 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1775 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1776 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1777 return (bp);
1778 }
1779
1780 return (NULL);
1781 }
1782
1783 int
1784 bge_setpowerstate(sc, powerlevel)
1785 struct bge_softc *sc;
1786 int powerlevel;
1787 {
1788 #ifdef NOTYET
1789 u_int32_t pm_ctl = 0;
1790
1791 /* XXX FIXME: make sure indirect accesses enabled? */
1792 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1793 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1794 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1795
1796 /* clear the PME_assert bit and power state bits, enable PME */
1797 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1798 pm_ctl &= ~PCIM_PSTAT_DMASK;
1799 pm_ctl |= (1 << 8);
1800
1801 if (powerlevel == 0) {
1802 pm_ctl |= PCIM_PSTAT_D0;
1803 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1804 pm_ctl, 2);
1805 DELAY(10000);
1806 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1807 DELAY(10000);
1808
1809 #ifdef NOTYET
1810 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1811 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1812 #endif
1813 DELAY(40); DELAY(40); DELAY(40);
1814 DELAY(10000); /* above not quite adequate on 5700 */
1815 return 0;
1816 }
1817
1818
1819 /*
1820 * Entering ACPI power states D1-D3 is achieved by wiggling
1821 * GMII gpio pins. Example code assumes all hardware vendors
1822 * followed Broadom's sample pcb layout. Until we verify that
1823 * for all supported OEM cards, states D1-D3 are unsupported.
1824 */
1825 printf("%s: power state %d unimplemented; check GPIO pins\n",
1826 sc->bge_dev.dv_xname, powerlevel);
1827 #endif
1828 return EOPNOTSUPP;
1829 }
1830
1831
1832 /*
1833 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1834 * against our list and return its name if we find a match. Note
1835 * that since the Broadcom controller contains VPD support, we
1836 * can get the device name string from the controller itself instead
1837 * of the compiled-in string. This is a little slow, but it guarantees
1838 * we'll always announce the right product name.
1839 */
1840 int
1841 bge_probe(parent, match, aux)
1842 struct device *parent;
1843 struct cfdata *match;
1844 void *aux;
1845 {
1846 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1847
1848 if (bge_lookup(pa) != NULL)
1849 return (1);
1850
1851 return (0);
1852 }
1853
1854 void
1855 bge_attach(parent, self, aux)
1856 struct device *parent, *self;
1857 void *aux;
1858 {
1859 struct bge_softc *sc = (struct bge_softc *)self;
1860 struct pci_attach_args *pa = aux;
1861 const struct bge_product *bp;
1862 const struct bge_revision *br;
1863 pci_chipset_tag_t pc = pa->pa_pc;
1864 pci_intr_handle_t ih;
1865 const char *intrstr = NULL;
1866 bus_dma_segment_t seg;
1867 int rseg;
1868 u_int32_t hwcfg = 0;
1869 u_int32_t mac_addr = 0;
1870 u_int32_t command;
1871 struct ifnet *ifp;
1872 caddr_t kva;
1873 u_char eaddr[ETHER_ADDR_LEN];
1874 pcireg_t memtype;
1875 bus_addr_t memaddr;
1876 bus_size_t memsize;
1877 u_int32_t pm_ctl;
1878
1879 bp = bge_lookup(pa);
1880 KASSERT(bp != NULL);
1881
1882 sc->bge_pa = *pa;
1883
1884 aprint_naive(": Ethernet controller\n");
1885 aprint_normal(": %s\n", bp->bp_name);
1886
1887 /*
1888 * Map control/status registers.
1889 */
1890 DPRINTFN(5, ("Map control/status regs\n"));
1891 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1892 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1893 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1894 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1895
1896 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1897 aprint_error("%s: failed to enable memory mapping!\n",
1898 sc->bge_dev.dv_xname);
1899 return;
1900 }
1901
1902 DPRINTFN(5, ("pci_mem_find\n"));
1903 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1904 switch (memtype) {
1905 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1906 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1907 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1908 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1909 &memaddr, &memsize) == 0)
1910 break;
1911 default:
1912 aprint_error("%s: can't find mem space\n",
1913 sc->bge_dev.dv_xname);
1914 return;
1915 }
1916
1917 DPRINTFN(5, ("pci_intr_map\n"));
1918 if (pci_intr_map(pa, &ih)) {
1919 aprint_error("%s: couldn't map interrupt\n",
1920 sc->bge_dev.dv_xname);
1921 return;
1922 }
1923
1924 DPRINTFN(5, ("pci_intr_string\n"));
1925 intrstr = pci_intr_string(pc, ih);
1926
1927 DPRINTFN(5, ("pci_intr_establish\n"));
1928 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1929
1930 if (sc->bge_intrhand == NULL) {
1931 aprint_error("%s: couldn't establish interrupt",
1932 sc->bge_dev.dv_xname);
1933 if (intrstr != NULL)
1934 aprint_normal(" at %s", intrstr);
1935 aprint_normal("\n");
1936 return;
1937 }
1938 aprint_normal("%s: interrupting at %s\n",
1939 sc->bge_dev.dv_xname, intrstr);
1940
1941 /*
1942 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
1943 * can clobber the chip's PCI config-space power control registers,
1944 * leaving the card in D3 powersave state.
1945 * We do not have memory-mapped registers in this state,
1946 * so force device into D0 state before starting initialization.
1947 */
1948 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
1949 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
1950 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
1951 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
1952 DELAY(1000); /* 27 usec is allegedly sufficent */
1953
1954 /* Try to reset the chip. */
1955 DPRINTFN(5, ("bge_reset\n"));
1956 bge_reset(sc);
1957
1958 if (bge_chipinit(sc)) {
1959 aprint_error("%s: chip initialization failed\n",
1960 sc->bge_dev.dv_xname);
1961 bge_release_resources(sc);
1962 return;
1963 }
1964
1965 /*
1966 * Get station address from the EEPROM.
1967 */
1968 mac_addr = bge_readmem_ind(sc, 0x0c14);
1969 if ((mac_addr >> 16) == 0x484b) {
1970 eaddr[0] = (u_char)(mac_addr >> 8);
1971 eaddr[1] = (u_char)(mac_addr >> 0);
1972 mac_addr = bge_readmem_ind(sc, 0x0c18);
1973 eaddr[2] = (u_char)(mac_addr >> 24);
1974 eaddr[3] = (u_char)(mac_addr >> 16);
1975 eaddr[4] = (u_char)(mac_addr >> 8);
1976 eaddr[5] = (u_char)(mac_addr >> 0);
1977 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
1978 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1979 aprint_error("%s: failed to read station address\n",
1980 sc->bge_dev.dv_xname);
1981 bge_release_resources(sc);
1982 return;
1983 }
1984
1985 /*
1986 * Save ASIC rev. Look up any quirks associated with this
1987 * ASIC.
1988 */
1989 sc->bge_asicrev =
1990 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
1991 BGE_PCIMISCCTL_ASICREV;
1992 br = bge_lookup_rev(sc->bge_asicrev);
1993
1994 aprint_normal("%s: ", sc->bge_dev.dv_xname);
1995 if (br == NULL) {
1996 aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
1997 sc->bge_quirks = 0;
1998 } else {
1999 aprint_normal("ASIC %s", br->br_name);
2000 sc->bge_quirks = br->br_quirks;
2001 }
2002 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2003
2004 /* Allocate the general information block and ring buffers. */
2005 sc->bge_dmatag = pa->pa_dmat;
2006 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2007 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2008 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2009 aprint_error("%s: can't alloc rx buffers\n",
2010 sc->bge_dev.dv_xname);
2011 return;
2012 }
2013 DPRINTFN(5, ("bus_dmamem_map\n"));
2014 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2015 sizeof(struct bge_ring_data), &kva,
2016 BUS_DMA_NOWAIT)) {
2017 aprint_error("%s: can't map dma buffers (%d bytes)\n",
2018 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2019 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2020 return;
2021 }
2022 DPRINTFN(5, ("bus_dmamem_create\n"));
2023 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2024 sizeof(struct bge_ring_data), 0,
2025 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2026 aprint_error("%s: can't create dma map\n",
2027 sc->bge_dev.dv_xname);
2028 bus_dmamem_unmap(sc->bge_dmatag, kva,
2029 sizeof(struct bge_ring_data));
2030 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2031 return;
2032 }
2033 DPRINTFN(5, ("bus_dmamem_load\n"));
2034 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2035 sizeof(struct bge_ring_data), NULL,
2036 BUS_DMA_NOWAIT)) {
2037 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2038 bus_dmamem_unmap(sc->bge_dmatag, kva,
2039 sizeof(struct bge_ring_data));
2040 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2041 return;
2042 }
2043
2044 DPRINTFN(5, ("bzero\n"));
2045 sc->bge_rdata = (struct bge_ring_data *)kva;
2046
2047 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2048
2049 /* Try to allocate memory for jumbo buffers. */
2050 if (bge_alloc_jumbo_mem(sc)) {
2051 aprint_error("%s: jumbo buffer allocation failed\n",
2052 sc->bge_dev.dv_xname);
2053 } else
2054 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2055
2056 /* Set default tuneable values. */
2057 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2058 sc->bge_rx_coal_ticks = 150;
2059 sc->bge_rx_max_coal_bds = 64;
2060 #ifdef ORIG_WPAUL_VALUES
2061 sc->bge_tx_coal_ticks = 150;
2062 sc->bge_tx_max_coal_bds = 128;
2063 #else
2064 sc->bge_tx_coal_ticks = 300;
2065 sc->bge_tx_max_coal_bds = 400;
2066 #endif
2067
2068 /* Set up ifnet structure */
2069 ifp = &sc->ethercom.ec_if;
2070 ifp->if_softc = sc;
2071 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2072 ifp->if_ioctl = bge_ioctl;
2073 ifp->if_start = bge_start;
2074 ifp->if_init = bge_init;
2075 ifp->if_watchdog = bge_watchdog;
2076 IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2077 IFQ_SET_READY(&ifp->if_snd);
2078 DPRINTFN(5, ("bcopy\n"));
2079 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2080
2081 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2082 sc->ethercom.ec_if.if_capabilities |=
2083 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2084 sc->ethercom.ec_capabilities |=
2085 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2086
2087 /*
2088 * Do MII setup.
2089 */
2090 DPRINTFN(5, ("mii setup\n"));
2091 sc->bge_mii.mii_ifp = ifp;
2092 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2093 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2094 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2095
2096 /*
2097 * Figure out what sort of media we have by checking the
2098 * hardware config word in the first 32k of NIC internal memory,
2099 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2100 * cards, this value appears to be unset. If that's the
2101 * case, we have to rely on identifying the NIC by its PCI
2102 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2103 */
2104 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2105 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2106 } else {
2107 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2108 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2109 hwcfg = be32toh(hwcfg);
2110 }
2111 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2112 sc->bge_tbi = 1;
2113
2114 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2115 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2116 SK_SUBSYSID_9D41)
2117 sc->bge_tbi = 1;
2118
2119 if (sc->bge_tbi) {
2120 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2121 bge_ifmedia_sts);
2122 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2123 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2124 0, NULL);
2125 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2126 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2127 } else {
2128 /*
2129 * Do transceiver setup.
2130 */
2131 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2132 bge_ifmedia_sts);
2133 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2134 MII_PHY_ANY, MII_OFFSET_ANY, 0);
2135
2136 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2137 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2138 ifmedia_add(&sc->bge_mii.mii_media,
2139 IFM_ETHER|IFM_MANUAL, 0, NULL);
2140 ifmedia_set(&sc->bge_mii.mii_media,
2141 IFM_ETHER|IFM_MANUAL);
2142 } else
2143 ifmedia_set(&sc->bge_mii.mii_media,
2144 IFM_ETHER|IFM_AUTO);
2145 }
2146
2147 /*
2148 * Call MI attach routine.
2149 */
2150 DPRINTFN(5, ("if_attach\n"));
2151 if_attach(ifp);
2152 DPRINTFN(5, ("ether_ifattach\n"));
2153 ether_ifattach(ifp, eaddr);
2154 DPRINTFN(5, ("callout_init\n"));
2155 callout_init(&sc->bge_timeout);
2156 }
2157
2158 void
2159 bge_release_resources(sc)
2160 struct bge_softc *sc;
2161 {
2162 if (sc->bge_vpd_prodname != NULL)
2163 free(sc->bge_vpd_prodname, M_DEVBUF);
2164
2165 if (sc->bge_vpd_readonly != NULL)
2166 free(sc->bge_vpd_readonly, M_DEVBUF);
2167 }
2168
2169 void
2170 bge_reset(sc)
2171 struct bge_softc *sc;
2172 {
2173 struct pci_attach_args *pa = &sc->bge_pa;
2174 u_int32_t cachesize, command, pcistate;
2175 int i, val = 0;
2176
2177 /* Save some important PCI state. */
2178 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2179 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2180 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2181
2182 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2183 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2184 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2185
2186 /* Issue global reset */
2187 bge_writereg_ind(sc, BGE_MISC_CFG,
2188 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2189
2190 DELAY(1000);
2191
2192 /* Reset some of the PCI state that got zapped by reset */
2193 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2194 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2195 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2196 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2197 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2198 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2199
2200 /* Enable memory arbiter. */
2201 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2202
2203 /*
2204 * Prevent PXE restart: write a magic number to the
2205 * general communications memory at 0xB50.
2206 */
2207 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2208
2209 /*
2210 * Poll the value location we just wrote until
2211 * we see the 1's complement of the magic number.
2212 * This indicates that the firmware initialization
2213 * is complete.
2214 */
2215 for (i = 0; i < 750; i++) {
2216 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2217 if (val == ~BGE_MAGIC_NUMBER)
2218 break;
2219 DELAY(1000);
2220 }
2221
2222 if (i == 750) {
2223 printf("%s: firmware handshake timed out, val = %x\n",
2224 sc->bge_dev.dv_xname, val);
2225 return;
2226 }
2227
2228 /*
2229 * XXX Wait for the value of the PCISTATE register to
2230 * return to its original pre-reset state. This is a
2231 * fairly good indicator of reset completion. If we don't
2232 * wait for the reset to fully complete, trying to read
2233 * from the device's non-PCI registers may yield garbage
2234 * results.
2235 */
2236 for (i = 0; i < BGE_TIMEOUT; i++) {
2237 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2238 pcistate)
2239 break;
2240 DELAY(10);
2241 }
2242
2243 /* Enable memory arbiter. */
2244 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2245
2246 /* Fix up byte swapping */
2247 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2248
2249 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2250
2251 DELAY(10000);
2252 }
2253
2254 /*
2255 * Frame reception handling. This is called if there's a frame
2256 * on the receive return list.
2257 *
2258 * Note: we have to be able to handle two possibilities here:
2259 * 1) the frame is from the jumbo recieve ring
2260 * 2) the frame is from the standard receive ring
2261 */
2262
2263 void
2264 bge_rxeof(sc)
2265 struct bge_softc *sc;
2266 {
2267 struct ifnet *ifp;
2268 int stdcnt = 0, jumbocnt = 0;
2269 int have_tag = 0;
2270 u_int16_t vlan_tag = 0;
2271 bus_dmamap_t dmamap;
2272 bus_addr_t offset, toff;
2273 bus_size_t tlen;
2274 int tosync;
2275
2276 ifp = &sc->ethercom.ec_if;
2277
2278 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2279 offsetof(struct bge_ring_data, bge_status_block),
2280 sizeof (struct bge_status_block),
2281 BUS_DMASYNC_POSTREAD);
2282
2283 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2284 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2285 sc->bge_rx_saved_considx;
2286
2287 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2288
2289 if (tosync < 0) {
2290 tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
2291 sizeof (struct bge_rx_bd);
2292 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2293 toff, tlen, BUS_DMASYNC_POSTREAD);
2294 tosync = -tosync;
2295 }
2296
2297 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2298 offset, tosync * sizeof (struct bge_rx_bd),
2299 BUS_DMASYNC_POSTREAD);
2300
2301 while(sc->bge_rx_saved_considx !=
2302 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2303 struct bge_rx_bd *cur_rx;
2304 u_int32_t rxidx;
2305 struct mbuf *m = NULL;
2306
2307 cur_rx = &sc->bge_rdata->
2308 bge_rx_return_ring[sc->bge_rx_saved_considx];
2309
2310 rxidx = cur_rx->bge_idx;
2311 BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2312
2313 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2314 have_tag = 1;
2315 vlan_tag = cur_rx->bge_vlan_tag;
2316 }
2317
2318 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2319 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2320 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2321 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2322 jumbocnt++;
2323 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2324 ifp->if_ierrors++;
2325 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2326 continue;
2327 }
2328 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2329 NULL)== ENOBUFS) {
2330 ifp->if_ierrors++;
2331 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2332 continue;
2333 }
2334 } else {
2335 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2336 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2337 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2338 stdcnt++;
2339 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2340 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2341 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2342 ifp->if_ierrors++;
2343 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2344 continue;
2345 }
2346 if (bge_newbuf_std(sc, sc->bge_std,
2347 NULL, dmamap) == ENOBUFS) {
2348 ifp->if_ierrors++;
2349 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2350 continue;
2351 }
2352 }
2353
2354 ifp->if_ipackets++;
2355 m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2356 m->m_pkthdr.rcvif = ifp;
2357
2358 #if NBPFILTER > 0
2359 /*
2360 * Handle BPF listeners. Let the BPF user see the packet.
2361 */
2362 if (ifp->if_bpf)
2363 bpf_mtap(ifp->if_bpf, m);
2364 #endif
2365
2366 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
2367 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2368 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2369 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2370 #if 0 /* XXX appears to be broken */
2371 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2372 m->m_pkthdr.csum_data =
2373 cur_rx->bge_tcp_udp_csum;
2374 m->m_pkthdr.csum_flags |=
2375 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2376 }
2377 #endif
2378 }
2379
2380 /*
2381 * If we received a packet with a vlan tag, pass it
2382 * to vlan_input() instead of ether_input().
2383 */
2384 if (have_tag) {
2385 struct m_tag *mtag;
2386
2387 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2388 M_NOWAIT);
2389 if (mtag != NULL) {
2390 *(u_int *)(mtag + 1) = vlan_tag;
2391 m_tag_prepend(m, mtag);
2392 have_tag = vlan_tag = 0;
2393 } else {
2394 printf("%s: no mbuf for tag\n", ifp->if_xname);
2395 m_freem(m);
2396 have_tag = vlan_tag = 0;
2397 continue;
2398 }
2399 }
2400 (*ifp->if_input)(ifp, m);
2401 }
2402
2403 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2404 if (stdcnt)
2405 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2406 if (jumbocnt)
2407 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2408 }
2409
2410 void
2411 bge_txeof(sc)
2412 struct bge_softc *sc;
2413 {
2414 struct bge_tx_bd *cur_tx = NULL;
2415 struct ifnet *ifp;
2416 struct txdmamap_pool_entry *dma;
2417 bus_addr_t offset, toff;
2418 bus_size_t tlen;
2419 int tosync;
2420 struct mbuf *m;
2421
2422 ifp = &sc->ethercom.ec_if;
2423
2424 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2425 offsetof(struct bge_ring_data, bge_status_block),
2426 sizeof (struct bge_status_block),
2427 BUS_DMASYNC_POSTREAD);
2428
2429 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2430 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2431 sc->bge_tx_saved_considx;
2432
2433 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2434
2435 if (tosync < 0) {
2436 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2437 sizeof (struct bge_tx_bd);
2438 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2439 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2440 tosync = -tosync;
2441 }
2442
2443 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2444 offset, tosync * sizeof (struct bge_tx_bd),
2445 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2446
2447 /*
2448 * Go through our tx ring and free mbufs for those
2449 * frames that have been sent.
2450 */
2451 while (sc->bge_tx_saved_considx !=
2452 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2453 u_int32_t idx = 0;
2454
2455 idx = sc->bge_tx_saved_considx;
2456 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2457 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2458 ifp->if_opackets++;
2459 m = sc->bge_cdata.bge_tx_chain[idx];
2460 if (m != NULL) {
2461 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2462 dma = sc->txdma[idx];
2463 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2464 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2465 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2466 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2467 sc->txdma[idx] = NULL;
2468
2469 m_freem(m);
2470 }
2471 sc->bge_txcnt--;
2472 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2473 ifp->if_timer = 0;
2474 }
2475
2476 if (cur_tx != NULL)
2477 ifp->if_flags &= ~IFF_OACTIVE;
2478 }
2479
2480 int
2481 bge_intr(xsc)
2482 void *xsc;
2483 {
2484 struct bge_softc *sc;
2485 struct ifnet *ifp;
2486
2487 sc = xsc;
2488 ifp = &sc->ethercom.ec_if;
2489
2490 #ifdef notdef
2491 /* Avoid this for now -- checking this register is expensive. */
2492 /* Make sure this is really our interrupt. */
2493 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2494 return (0);
2495 #endif
2496 /* Ack interrupt and stop others from occuring. */
2497 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2498
2499 /*
2500 * Process link state changes.
2501 * Grrr. The link status word in the status block does
2502 * not work correctly on the BCM5700 rev AX and BX chips,
2503 * according to all avaibable information. Hence, we have
2504 * to enable MII interrupts in order to properly obtain
2505 * async link changes. Unfortunately, this also means that
2506 * we have to read the MAC status register to detect link
2507 * changes, thereby adding an additional register access to
2508 * the interrupt handler.
2509 */
2510
2511 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2512 u_int32_t status;
2513
2514 status = CSR_READ_4(sc, BGE_MAC_STS);
2515 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2516 sc->bge_link = 0;
2517 callout_stop(&sc->bge_timeout);
2518 bge_tick(sc);
2519 /* Clear the interrupt */
2520 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2521 BGE_EVTENB_MI_INTERRUPT);
2522 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2523 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2524 BRGPHY_INTRS);
2525 }
2526 } else {
2527 if (sc->bge_rdata->bge_status_block.bge_status &
2528 BGE_STATFLAG_LINKSTATE_CHANGED) {
2529 sc->bge_link = 0;
2530 callout_stop(&sc->bge_timeout);
2531 bge_tick(sc);
2532 /* Clear the interrupt */
2533 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2534 BGE_MACSTAT_CFG_CHANGED);
2535 }
2536 }
2537
2538 if (ifp->if_flags & IFF_RUNNING) {
2539 /* Check RX return ring producer/consumer */
2540 bge_rxeof(sc);
2541
2542 /* Check TX ring producer/consumer */
2543 bge_txeof(sc);
2544 }
2545
2546 bge_handle_events(sc);
2547
2548 /* Re-enable interrupts. */
2549 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2550
2551 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2552 bge_start(ifp);
2553
2554 return (1);
2555 }
2556
2557 void
2558 bge_tick(xsc)
2559 void *xsc;
2560 {
2561 struct bge_softc *sc = xsc;
2562 struct mii_data *mii = &sc->bge_mii;
2563 struct ifmedia *ifm = NULL;
2564 struct ifnet *ifp = &sc->ethercom.ec_if;
2565 int s;
2566
2567 s = splnet();
2568
2569 bge_stats_update(sc);
2570 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2571 if (sc->bge_link) {
2572 splx(s);
2573 return;
2574 }
2575
2576 if (sc->bge_tbi) {
2577 ifm = &sc->bge_ifmedia;
2578 if (CSR_READ_4(sc, BGE_MAC_STS) &
2579 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2580 sc->bge_link++;
2581 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2582 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2583 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2584 bge_start(ifp);
2585 }
2586 splx(s);
2587 return;
2588 }
2589
2590 mii_tick(mii);
2591
2592 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2593 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2594 sc->bge_link++;
2595 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2596 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2597 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2598 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2599 bge_start(ifp);
2600 }
2601
2602 splx(s);
2603 }
2604
2605 void
2606 bge_stats_update(sc)
2607 struct bge_softc *sc;
2608 {
2609 struct ifnet *ifp = &sc->ethercom.ec_if;
2610 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2611
2612 #define READ_STAT(sc, stats, stat) \
2613 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2614
2615 ifp->if_collisions +=
2616 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2617 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2618 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2619 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2620 ifp->if_collisions;
2621
2622 #undef READ_STAT
2623
2624 #ifdef notdef
2625 ifp->if_collisions +=
2626 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2627 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2628 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2629 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2630 ifp->if_collisions;
2631 #endif
2632 }
2633
2634 /*
2635 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2636 * pointers to descriptors.
2637 */
2638 int
2639 bge_encap(sc, m_head, txidx)
2640 struct bge_softc *sc;
2641 struct mbuf *m_head;
2642 u_int32_t *txidx;
2643 {
2644 struct bge_tx_bd *f = NULL;
2645 u_int32_t frag, cur, cnt = 0;
2646 u_int16_t csum_flags = 0;
2647 struct txdmamap_pool_entry *dma;
2648 bus_dmamap_t dmamap;
2649 int i = 0;
2650 struct m_tag *mtag;
2651 struct mbuf *prev, *m;
2652 int totlen, prevlen;
2653
2654 cur = frag = *txidx;
2655
2656 if (m_head->m_pkthdr.csum_flags) {
2657 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2658 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2659 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2660 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2661 }
2662
2663 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
2664 goto doit;
2665 /*
2666 * bcm5700 Revision B silicon cannot handle DMA descriptors with
2667 * less than eight bytes. If we encounter a teeny mbuf
2668 * at the end of a chain, we can pad. Otherwise, copy.
2669 */
2670 prev = NULL;
2671 totlen = 0;
2672 for (m = m_head; m != NULL; prev = m,m = m->m_next) {
2673 int mlen = m->m_len;
2674
2675 totlen += mlen;
2676 if (mlen == 0) {
2677 /* print a warning? */
2678 continue;
2679 }
2680 if (mlen >= 8)
2681 continue;
2682
2683 /* If we get here, mbuf data is too small for DMA engine. */
2684 if (m->m_next != 0) {
2685 /* Internal frag. If fits in prev, copy it there. */
2686 if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
2687 !M_READONLY(prev)) {
2688 bcopy(m->m_data,
2689 prev->m_data+prev->m_len,
2690 mlen);
2691 prev->m_len += mlen;
2692 m->m_len = 0;
2693 MFREE(m, prev->m_next); /* XXX stitch chain */
2694 m = prev;
2695 continue;
2696 } else {
2697 struct mbuf *n;
2698 /* slow copy */
2699 slowcopy:
2700 n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
2701 m_freem(m_head);
2702 if (n == 0)
2703 return 0;
2704 m_head = n;
2705 goto doit;
2706 }
2707 } else if ((totlen -mlen +8) >= 1500) {
2708 goto slowcopy;
2709 }
2710 prevlen = m->m_len;
2711 }
2712
2713 doit:
2714 dma = SLIST_FIRST(&sc->txdma_list);
2715 if (dma == NULL)
2716 return ENOBUFS;
2717 dmamap = dma->dmamap;
2718
2719 /*
2720 * Start packing the mbufs in this chain into
2721 * the fragment pointers. Stop when we run out
2722 * of fragments or hit the end of the mbuf chain.
2723 */
2724 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2725 BUS_DMA_NOWAIT))
2726 return(ENOBUFS);
2727
2728 mtag = sc->ethercom.ec_nvlans ?
2729 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
2730
2731 for (i = 0; i < dmamap->dm_nsegs; i++) {
2732 f = &sc->bge_rdata->bge_tx_ring[frag];
2733 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2734 break;
2735 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2736 f->bge_len = dmamap->dm_segs[i].ds_len;
2737 f->bge_flags = csum_flags;
2738
2739 if (mtag != NULL) {
2740 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2741 f->bge_vlan_tag = *(u_int *)(mtag + 1);
2742 } else {
2743 f->bge_vlan_tag = 0;
2744 }
2745 /*
2746 * Sanity check: avoid coming within 16 descriptors
2747 * of the end of the ring.
2748 */
2749 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2750 return(ENOBUFS);
2751 cur = frag;
2752 BGE_INC(frag, BGE_TX_RING_CNT);
2753 cnt++;
2754 }
2755
2756 if (i < dmamap->dm_nsegs)
2757 return ENOBUFS;
2758
2759 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2760 BUS_DMASYNC_PREWRITE);
2761
2762 if (frag == sc->bge_tx_saved_considx)
2763 return(ENOBUFS);
2764
2765 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2766 sc->bge_cdata.bge_tx_chain[cur] = m_head;
2767 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2768 sc->txdma[cur] = dma;
2769 sc->bge_txcnt += cnt;
2770
2771 *txidx = frag;
2772
2773 return(0);
2774 }
2775
2776 /*
2777 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2778 * to the mbuf data regions directly in the transmit descriptors.
2779 */
2780 void
2781 bge_start(ifp)
2782 struct ifnet *ifp;
2783 {
2784 struct bge_softc *sc;
2785 struct mbuf *m_head = NULL;
2786 u_int32_t prodidx = 0;
2787 int pkts = 0;
2788
2789 sc = ifp->if_softc;
2790
2791 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2792 return;
2793
2794 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2795
2796 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2797 IFQ_POLL(&ifp->if_snd, m_head);
2798 if (m_head == NULL)
2799 break;
2800
2801 #if 0
2802 /*
2803 * XXX
2804 * safety overkill. If this is a fragmented packet chain
2805 * with delayed TCP/UDP checksums, then only encapsulate
2806 * it if we have enough descriptors to handle the entire
2807 * chain at once.
2808 * (paranoia -- may not actually be needed)
2809 */
2810 if (m_head->m_flags & M_FIRSTFRAG &&
2811 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2812 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2813 m_head->m_pkthdr.csum_data + 16) {
2814 ifp->if_flags |= IFF_OACTIVE;
2815 break;
2816 }
2817 }
2818 #endif
2819
2820 /*
2821 * Pack the data into the transmit ring. If we
2822 * don't have room, set the OACTIVE flag and wait
2823 * for the NIC to drain the ring.
2824 */
2825 if (bge_encap(sc, m_head, &prodidx)) {
2826 ifp->if_flags |= IFF_OACTIVE;
2827 break;
2828 }
2829
2830 /* now we are committed to transmit the packet */
2831 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2832 pkts++;
2833
2834 #if NBPFILTER > 0
2835 /*
2836 * If there's a BPF listener, bounce a copy of this frame
2837 * to him.
2838 */
2839 if (ifp->if_bpf)
2840 bpf_mtap(ifp->if_bpf, m_head);
2841 #endif
2842 }
2843 if (pkts == 0)
2844 return;
2845
2846 /* Transmit */
2847 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2848 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
2849 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2850
2851 /*
2852 * Set a timeout in case the chip goes out to lunch.
2853 */
2854 ifp->if_timer = 5;
2855 }
2856
2857 int
2858 bge_init(ifp)
2859 struct ifnet *ifp;
2860 {
2861 struct bge_softc *sc = ifp->if_softc;
2862 u_int16_t *m;
2863 int s, error;
2864
2865 s = splnet();
2866
2867 ifp = &sc->ethercom.ec_if;
2868
2869 /* Cancel pending I/O and flush buffers. */
2870 bge_stop(sc);
2871 bge_reset(sc);
2872 bge_chipinit(sc);
2873
2874 /*
2875 * Init the various state machines, ring
2876 * control blocks and firmware.
2877 */
2878 error = bge_blockinit(sc);
2879 if (error != 0) {
2880 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2881 error);
2882 splx(s);
2883 return error;
2884 }
2885
2886 ifp = &sc->ethercom.ec_if;
2887
2888 /* Specify MTU. */
2889 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2890 ETHER_HDR_LEN + ETHER_CRC_LEN);
2891
2892 /* Load our MAC address. */
2893 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2894 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2895 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2896
2897 /* Enable or disable promiscuous mode as needed. */
2898 if (ifp->if_flags & IFF_PROMISC) {
2899 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2900 } else {
2901 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2902 }
2903
2904 /* Program multicast filter. */
2905 bge_setmulti(sc);
2906
2907 /* Init RX ring. */
2908 bge_init_rx_ring_std(sc);
2909
2910 /* Init jumbo RX ring. */
2911 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2912 bge_init_rx_ring_jumbo(sc);
2913
2914 /* Init our RX return ring index */
2915 sc->bge_rx_saved_considx = 0;
2916
2917 /* Init TX ring. */
2918 bge_init_tx_ring(sc);
2919
2920 /* Turn on transmitter */
2921 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2922
2923 /* Turn on receiver */
2924 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2925
2926 /* Tell firmware we're alive. */
2927 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2928
2929 /* Enable host interrupts. */
2930 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2931 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2932 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2933
2934 bge_ifmedia_upd(ifp);
2935
2936 ifp->if_flags |= IFF_RUNNING;
2937 ifp->if_flags &= ~IFF_OACTIVE;
2938
2939 splx(s);
2940
2941 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2942
2943 return 0;
2944 }
2945
2946 /*
2947 * Set media options.
2948 */
2949 int
2950 bge_ifmedia_upd(ifp)
2951 struct ifnet *ifp;
2952 {
2953 struct bge_softc *sc = ifp->if_softc;
2954 struct mii_data *mii = &sc->bge_mii;
2955 struct ifmedia *ifm = &sc->bge_ifmedia;
2956
2957 /* If this is a 1000baseX NIC, enable the TBI port. */
2958 if (sc->bge_tbi) {
2959 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2960 return(EINVAL);
2961 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2962 case IFM_AUTO:
2963 break;
2964 case IFM_1000_SX:
2965 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2966 BGE_CLRBIT(sc, BGE_MAC_MODE,
2967 BGE_MACMODE_HALF_DUPLEX);
2968 } else {
2969 BGE_SETBIT(sc, BGE_MAC_MODE,
2970 BGE_MACMODE_HALF_DUPLEX);
2971 }
2972 break;
2973 default:
2974 return(EINVAL);
2975 }
2976 return(0);
2977 }
2978
2979 sc->bge_link = 0;
2980 mii_mediachg(mii);
2981
2982 return(0);
2983 }
2984
2985 /*
2986 * Report current media status.
2987 */
2988 void
2989 bge_ifmedia_sts(ifp, ifmr)
2990 struct ifnet *ifp;
2991 struct ifmediareq *ifmr;
2992 {
2993 struct bge_softc *sc = ifp->if_softc;
2994 struct mii_data *mii = &sc->bge_mii;
2995
2996 if (sc->bge_tbi) {
2997 ifmr->ifm_status = IFM_AVALID;
2998 ifmr->ifm_active = IFM_ETHER;
2999 if (CSR_READ_4(sc, BGE_MAC_STS) &
3000 BGE_MACSTAT_TBI_PCS_SYNCHED)
3001 ifmr->ifm_status |= IFM_ACTIVE;
3002 ifmr->ifm_active |= IFM_1000_SX;
3003 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3004 ifmr->ifm_active |= IFM_HDX;
3005 else
3006 ifmr->ifm_active |= IFM_FDX;
3007 return;
3008 }
3009
3010 mii_pollstat(mii);
3011 ifmr->ifm_active = mii->mii_media_active;
3012 ifmr->ifm_status = mii->mii_media_status;
3013 }
3014
3015 int
3016 bge_ioctl(ifp, command, data)
3017 struct ifnet *ifp;
3018 u_long command;
3019 caddr_t data;
3020 {
3021 struct bge_softc *sc = ifp->if_softc;
3022 struct ifreq *ifr = (struct ifreq *) data;
3023 int s, error = 0;
3024 struct mii_data *mii;
3025
3026 s = splnet();
3027
3028 switch(command) {
3029 case SIOCSIFFLAGS:
3030 if (ifp->if_flags & IFF_UP) {
3031 /*
3032 * If only the state of the PROMISC flag changed,
3033 * then just use the 'set promisc mode' command
3034 * instead of reinitializing the entire NIC. Doing
3035 * a full re-init means reloading the firmware and
3036 * waiting for it to start up, which may take a
3037 * second or two.
3038 */
3039 if (ifp->if_flags & IFF_RUNNING &&
3040 ifp->if_flags & IFF_PROMISC &&
3041 !(sc->bge_if_flags & IFF_PROMISC)) {
3042 BGE_SETBIT(sc, BGE_RX_MODE,
3043 BGE_RXMODE_RX_PROMISC);
3044 } else if (ifp->if_flags & IFF_RUNNING &&
3045 !(ifp->if_flags & IFF_PROMISC) &&
3046 sc->bge_if_flags & IFF_PROMISC) {
3047 BGE_CLRBIT(sc, BGE_RX_MODE,
3048 BGE_RXMODE_RX_PROMISC);
3049 } else
3050 bge_init(ifp);
3051 } else {
3052 if (ifp->if_flags & IFF_RUNNING) {
3053 bge_stop(sc);
3054 }
3055 }
3056 sc->bge_if_flags = ifp->if_flags;
3057 error = 0;
3058 break;
3059 case SIOCSIFMEDIA:
3060 case SIOCGIFMEDIA:
3061 if (sc->bge_tbi) {
3062 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3063 command);
3064 } else {
3065 mii = &sc->bge_mii;
3066 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3067 command);
3068 }
3069 error = 0;
3070 break;
3071 default:
3072 error = ether_ioctl(ifp, command, data);
3073 if (error == ENETRESET) {
3074 bge_setmulti(sc);
3075 error = 0;
3076 }
3077 break;
3078 }
3079
3080 splx(s);
3081
3082 return(error);
3083 }
3084
3085 void
3086 bge_watchdog(ifp)
3087 struct ifnet *ifp;
3088 {
3089 struct bge_softc *sc;
3090
3091 sc = ifp->if_softc;
3092
3093 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3094
3095 ifp->if_flags &= ~IFF_RUNNING;
3096 bge_init(ifp);
3097
3098 ifp->if_oerrors++;
3099 }
3100
3101 static void
3102 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3103 {
3104 int i;
3105
3106 BGE_CLRBIT(sc, reg, bit);
3107
3108 for (i = 0; i < BGE_TIMEOUT; i++) {
3109 if ((CSR_READ_4(sc, reg) & bit) == 0)
3110 return;
3111 delay(100);
3112 }
3113
3114 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3115 sc->bge_dev.dv_xname, (u_long) reg, bit);
3116 }
3117
3118 /*
3119 * Stop the adapter and free any mbufs allocated to the
3120 * RX and TX lists.
3121 */
3122 void
3123 bge_stop(sc)
3124 struct bge_softc *sc;
3125 {
3126 struct ifnet *ifp = &sc->ethercom.ec_if;
3127
3128 callout_stop(&sc->bge_timeout);
3129
3130 /*
3131 * Disable all of the receiver blocks
3132 */
3133 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3134 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3135 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3136 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3137 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3138 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3139 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3140
3141 /*
3142 * Disable all of the transmit blocks
3143 */
3144 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3145 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3146 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3147 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3148 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3149 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3150 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3151
3152 /*
3153 * Shut down all of the memory managers and related
3154 * state machines.
3155 */
3156 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3157 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3158 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3159
3160 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3161 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3162
3163 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3164 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3165
3166 /* Disable host interrupts. */
3167 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3168 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3169
3170 /*
3171 * Tell firmware we're shutting down.
3172 */
3173 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3174
3175 /* Free the RX lists. */
3176 bge_free_rx_ring_std(sc);
3177
3178 /* Free jumbo RX list. */
3179 bge_free_rx_ring_jumbo(sc);
3180
3181 /* Free TX buffers. */
3182 bge_free_tx_ring(sc);
3183
3184 /*
3185 * Isolate/power down the PHY.
3186 */
3187 if (!sc->bge_tbi)
3188 mii_down(&sc->bge_mii);
3189
3190 sc->bge_link = 0;
3191
3192 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3193
3194 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3195 }
3196
3197 /*
3198 * Stop all chip I/O so that the kernel's probe routines don't
3199 * get confused by errant DMAs when rebooting.
3200 */
3201 void
3202 bge_shutdown(xsc)
3203 void *xsc;
3204 {
3205 struct bge_softc *sc = (struct bge_softc *)xsc;
3206
3207 bge_stop(sc);
3208 bge_reset(sc);
3209 }
3210