if_bge.c revision 1.355 1 /* $NetBSD: if_bge.c,v 1.355 2022/06/30 16:36:11 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.355 2022/06/30 16:36:11 skrll Exp $");
83
84 #include <sys/param.h>
85
86 #include <sys/callout.h>
87 #include <sys/device.h>
88 #include <sys/malloc.h>
89 #include <sys/mbuf.h>
90 #include <sys/kernel.h>
91 #include <sys/rndsource.h>
92 #include <sys/socket.h>
93 #include <sys/sockio.h>
94 #include <sys/sysctl.h>
95 #include <sys/systm.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101 #include <net/bpf.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 /* Headers for TCP Segmentation Offload (TSO) */
111 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
112 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
113 #include <netinet/ip.h> /* for struct ip */
114 #include <netinet/tcp.h> /* for struct tcphdr */
115
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
119
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 #include <dev/mii/miidevs.h>
123 #include <dev/mii/brgphyreg.h>
124
125 #include <dev/pci/if_bgereg.h>
126 #include <dev/pci/if_bgevar.h>
127
128 #include <prop/proplib.h>
129
130 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
131
132
133 /*
134 * Tunable thresholds for rx-side bge interrupt mitigation.
135 */
136
137 /*
138 * The pairs of values below were obtained from empirical measurement
139 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
140 * interrupt for every N packets received, where N is, approximately,
141 * the second value (rx_max_bds) in each pair. The values are chosen
142 * such that moving from one pair to the succeeding pair was observed
143 * to roughly halve interrupt rate under sustained input packet load.
144 * The values were empirically chosen to avoid overflowing internal
145 * limits on the bcm5700: increasing rx_ticks much beyond 600
146 * results in internal wrapping and higher interrupt rates.
147 * The limit of 46 frames was chosen to match NFS workloads.
148 *
149 * These values also work well on bcm5701, bcm5704C, and (less
150 * tested) bcm5703. On other chipsets, (including the Altima chip
151 * family), the larger values may overflow internal chip limits,
152 * leading to increasing interrupt rates rather than lower interrupt
153 * rates.
154 *
155 * Applications using heavy interrupt mitigation (interrupting every
156 * 32 or 46 frames) in both directions may need to increase the TCP
157 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
158 * full link bandwidth, due to ACKs and window updates lingering
159 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
160 */
161 static const struct bge_load_rx_thresh {
162 int rx_ticks;
163 int rx_max_bds; }
164 bge_rx_threshes[] = {
165 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
166 { 32, 2 },
167 { 50, 4 },
168 { 100, 8 },
169 { 192, 16 },
170 { 416, 32 },
171 { 598, 46 }
172 };
173 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
174
175 /* XXX patchable; should be sysctl'able */
176 static int bge_auto_thresh = 1;
177 static int bge_rx_thresh_lvl;
178
179 static int bge_rxthresh_nodenum;
180
181 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
182
183 static uint32_t bge_chipid(const struct pci_attach_args *);
184 static int bge_can_use_msi(struct bge_softc *);
185 static int bge_probe(device_t, cfdata_t, void *);
186 static void bge_attach(device_t, device_t, void *);
187 static int bge_detach(device_t, int);
188 static void bge_release_resources(struct bge_softc *);
189
190 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
191 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
195
196 static void bge_txeof(struct bge_softc *);
197 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
198 static void bge_rxeof(struct bge_softc *);
199
200 static void bge_asf_driver_up (struct bge_softc *);
201 static void bge_tick(void *);
202 static void bge_stats_update(struct bge_softc *);
203 static void bge_stats_update_regs(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
205
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ifflags_cb(struct ethercom *);
209 static int bge_ioctl(struct ifnet *, u_long, void *);
210 static int bge_init(struct ifnet *);
211 static void bge_stop(struct ifnet *, int);
212 static void bge_watchdog(struct ifnet *);
213 static int bge_ifmedia_upd(struct ifnet *);
214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215
216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
218
219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
221 static void bge_setmulti(struct bge_softc *);
222
223 static void bge_handle_events(struct bge_softc *);
224 static int bge_alloc_jumbo_mem(struct bge_softc *);
225 #if 0 /* XXX */
226 static void bge_free_jumbo_mem(struct bge_softc *);
227 #endif
228 static void *bge_jalloc(struct bge_softc *);
229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
231 bus_dmamap_t);
232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int bge_init_rx_ring_std(struct bge_softc *);
234 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_tx_ring(struct bge_softc *m, bool);
238 static int bge_init_tx_ring(struct bge_softc *);
239
240 static int bge_chipinit(struct bge_softc *);
241 static int bge_blockinit(struct bge_softc *);
242 static int bge_phy_addr(struct bge_softc *);
243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
244 static void bge_writemem_ind(struct bge_softc *, int, int);
245 static void bge_writembx(struct bge_softc *, int, int);
246 static void bge_writembx_flush(struct bge_softc *, int, int);
247 static void bge_writemem_direct(struct bge_softc *, int, int);
248 static void bge_writereg_ind(struct bge_softc *, int, int);
249 static void bge_set_max_readrq(struct bge_softc *);
250
251 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
252 static int bge_miibus_writereg(device_t, int, int, uint16_t);
253 static void bge_miibus_statchg(struct ifnet *);
254
255 #define BGE_RESET_SHUTDOWN 0
256 #define BGE_RESET_START 1
257 #define BGE_RESET_SUSPEND 2
258 static void bge_sig_post_reset(struct bge_softc *, int);
259 static void bge_sig_legacy(struct bge_softc *, int);
260 static void bge_sig_pre_reset(struct bge_softc *, int);
261 static void bge_wait_for_event_ack(struct bge_softc *);
262 static void bge_stop_fw(struct bge_softc *);
263 static int bge_reset(struct bge_softc *);
264 static void bge_link_upd(struct bge_softc *);
265 static void bge_sysctl_init(struct bge_softc *);
266 static int bge_sysctl_verify(SYSCTLFN_PROTO);
267
268 static void bge_ape_lock_init(struct bge_softc *);
269 static void bge_ape_read_fw_ver(struct bge_softc *);
270 static int bge_ape_lock(struct bge_softc *, int);
271 static void bge_ape_unlock(struct bge_softc *, int);
272 static void bge_ape_send_event(struct bge_softc *, uint32_t);
273 static void bge_ape_driver_state_change(struct bge_softc *, int);
274
275 #ifdef BGE_DEBUG
276 #define DPRINTF(x) if (bgedebug) printf x
277 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
278 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
279 int bgedebug = 0;
280 int bge_tso_debug = 0;
281 void bge_debug_info(struct bge_softc *);
282 #else
283 #define DPRINTF(x)
284 #define DPRINTFN(n, x)
285 #define BGE_TSO_PRINTF(x)
286 #endif
287
288 #ifdef BGE_EVENT_COUNTERS
289 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
290 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
291 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
292 #else
293 #define BGE_EVCNT_INCR(ev) /* nothing */
294 #define BGE_EVCNT_ADD(ev, val) /* nothing */
295 #define BGE_EVCNT_UPD(ev, val) /* nothing */
296 #endif
297
298 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
299 /*
300 * The BCM5700 documentation seems to indicate that the hardware still has the
301 * Alteon vendor ID burned into it, though it should always be overridden by
302 * the value in the EEPROM. We'll check for it anyway.
303 */
304 static const struct bge_product {
305 pci_vendor_id_t bp_vendor;
306 pci_product_id_t bp_product;
307 const char *bp_name;
308 } bge_products[] = {
309 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
310 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
311 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
312 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
313 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
314 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
315 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
316 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
317 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
318 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
319 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
320 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
321 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
322 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
323 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
324 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
325 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
326 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
327 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
328 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
329 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
330 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
331 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
332 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
333 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
334 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
335 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
336 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
337 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
338 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
339 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
340 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
341 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
342 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
343 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
344 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
345 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
346 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
347 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
348 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
349 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
350 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
351 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
352 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
353 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
354 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
355 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
356 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
357 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
358 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
359 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
360 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
361 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
362 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
363 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
364 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
365 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
366 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
367 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
368 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
369 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
370 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
371 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
372 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
373 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
374 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
375 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
376 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
377 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
378 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
379 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
380 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
381 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
382 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
383 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
384 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
385 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
386 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
387 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
388 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
389 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
390 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
391 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
392 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
393 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
394 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
395 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
396 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
397 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
398 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
399 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
400 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
401 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
402 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
403 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
404 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
405 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
406 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
407 { 0, 0, NULL },
408 };
409
410 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
411 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
412 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
413 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
414 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
415 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
416 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
417 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
418 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
419
420 static const struct bge_revision {
421 uint32_t br_chipid;
422 const char *br_name;
423 } bge_revisions[] = {
424 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
425 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
426 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
427 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
428 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
429 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
430 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
431 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
432 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
433 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
434 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
435 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
436 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
437 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
438 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
439 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
440 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
441 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
442 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
443 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
444 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
445 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
446 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
447 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
448 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
449 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
450 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
451 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
452 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
453 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
454 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
455 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
456 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
457 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
458 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
459 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
460 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
461 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
462 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
463 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
464 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
465 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
466 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
467 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
468 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
469 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
470 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
471 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
472 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
473 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
474 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
475 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
476 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
477 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
478 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
479 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
480 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
481 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
482 /* 5754 and 5787 share the same ASIC ID */
483 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
484 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
485 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
486 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
487 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
488 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
489 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
490 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
491 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
492 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
493 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
494
495 { 0, NULL }
496 };
497
498 /*
499 * Some defaults for major revisions, so that newer steppings
500 * that we don't know about have a shot at working.
501 */
502 static const struct bge_revision bge_majorrevs[] = {
503 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
504 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
505 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
506 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
507 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
508 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
509 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
510 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
511 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
512 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
513 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
514 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
515 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
516 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
517 /* 5754 and 5787 share the same ASIC ID */
518 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
519 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
520 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
521 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
522 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
523 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
524 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
525 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
526 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
527
528 { 0, NULL }
529 };
530
531 static int bge_allow_asf = 1;
532
533 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
534 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
535
536 static uint32_t
537 bge_readmem_ind(struct bge_softc *sc, int off)
538 {
539 pcireg_t val;
540
541 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
542 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
543 return 0;
544
545 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
546 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
547 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
548 return val;
549 }
550
551 static void
552 bge_writemem_ind(struct bge_softc *sc, int off, int val)
553 {
554
555 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
556 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
557 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
558 }
559
560 /*
561 * PCI Express only
562 */
563 static void
564 bge_set_max_readrq(struct bge_softc *sc)
565 {
566 pcireg_t val;
567
568 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
569 + PCIE_DCSR);
570 val &= ~PCIE_DCSR_MAX_READ_REQ;
571 switch (sc->bge_expmrq) {
572 case 2048:
573 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
574 break;
575 case 4096:
576 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
577 break;
578 default:
579 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
580 break;
581 }
582 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
583 + PCIE_DCSR, val);
584 }
585
586 #ifdef notdef
587 static uint32_t
588 bge_readreg_ind(struct bge_softc *sc, int off)
589 {
590 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
591 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
592 }
593 #endif
594
595 static void
596 bge_writereg_ind(struct bge_softc *sc, int off, int val)
597 {
598 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
599 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
600 }
601
602 static void
603 bge_writemem_direct(struct bge_softc *sc, int off, int val)
604 {
605 CSR_WRITE_4(sc, off, val);
606 }
607
608 static void
609 bge_writembx(struct bge_softc *sc, int off, int val)
610 {
611 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
612 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
613
614 CSR_WRITE_4(sc, off, val);
615 }
616
617 static void
618 bge_writembx_flush(struct bge_softc *sc, int off, int val)
619 {
620 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
621 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
622
623 CSR_WRITE_4_FLUSH(sc, off, val);
624 }
625
626 /*
627 * Clear all stale locks and select the lock for this driver instance.
628 */
629 void
630 bge_ape_lock_init(struct bge_softc *sc)
631 {
632 struct pci_attach_args *pa = &(sc->bge_pa);
633 uint32_t bit, regbase;
634 int i;
635
636 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
637 regbase = BGE_APE_LOCK_GRANT;
638 else
639 regbase = BGE_APE_PER_LOCK_GRANT;
640
641 /* Clear any stale locks. */
642 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
643 switch (i) {
644 case BGE_APE_LOCK_PHY0:
645 case BGE_APE_LOCK_PHY1:
646 case BGE_APE_LOCK_PHY2:
647 case BGE_APE_LOCK_PHY3:
648 bit = BGE_APE_LOCK_GRANT_DRIVER0;
649 break;
650 default:
651 if (pa->pa_function == 0)
652 bit = BGE_APE_LOCK_GRANT_DRIVER0;
653 else
654 bit = (1 << pa->pa_function);
655 }
656 APE_WRITE_4(sc, regbase + 4 * i, bit);
657 }
658
659 /* Select the PHY lock based on the device's function number. */
660 switch (pa->pa_function) {
661 case 0:
662 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
663 break;
664 case 1:
665 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
666 break;
667 case 2:
668 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
669 break;
670 case 3:
671 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
672 break;
673 default:
674 printf("%s: PHY lock not supported on function\n",
675 device_xname(sc->bge_dev));
676 break;
677 }
678 }
679
680 /*
681 * Check for APE firmware, set flags, and print version info.
682 */
683 void
684 bge_ape_read_fw_ver(struct bge_softc *sc)
685 {
686 const char *fwtype;
687 uint32_t apedata, features;
688
689 /* Check for a valid APE signature in shared memory. */
690 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
691 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
692 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
693 return;
694 }
695
696 /* Check if APE firmware is running. */
697 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
698 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
699 printf("%s: APE signature found but FW status not ready! "
700 "0x%08x\n", device_xname(sc->bge_dev), apedata);
701 return;
702 }
703
704 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
705
706 /* Fetch the APE firwmare type and version. */
707 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
708 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
709 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
710 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
711 fwtype = "NCSI";
712 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
713 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
714 fwtype = "DASH";
715 } else
716 fwtype = "UNKN";
717
718 /* Print the APE firmware version. */
719 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
720 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
721 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
722 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
723 (apedata & BGE_APE_FW_VERSION_BLDMSK));
724 }
725
726 int
727 bge_ape_lock(struct bge_softc *sc, int locknum)
728 {
729 struct pci_attach_args *pa = &(sc->bge_pa);
730 uint32_t bit, gnt, req, status;
731 int i, off;
732
733 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
734 return (0);
735
736 /* Lock request/grant registers have different bases. */
737 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
738 req = BGE_APE_LOCK_REQ;
739 gnt = BGE_APE_LOCK_GRANT;
740 } else {
741 req = BGE_APE_PER_LOCK_REQ;
742 gnt = BGE_APE_PER_LOCK_GRANT;
743 }
744
745 off = 4 * locknum;
746
747 switch (locknum) {
748 case BGE_APE_LOCK_GPIO:
749 /* Lock required when using GPIO. */
750 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
751 return (0);
752 if (pa->pa_function == 0)
753 bit = BGE_APE_LOCK_REQ_DRIVER0;
754 else
755 bit = (1 << pa->pa_function);
756 break;
757 case BGE_APE_LOCK_GRC:
758 /* Lock required to reset the device. */
759 if (pa->pa_function == 0)
760 bit = BGE_APE_LOCK_REQ_DRIVER0;
761 else
762 bit = (1 << pa->pa_function);
763 break;
764 case BGE_APE_LOCK_MEM:
765 /* Lock required when accessing certain APE memory. */
766 if (pa->pa_function == 0)
767 bit = BGE_APE_LOCK_REQ_DRIVER0;
768 else
769 bit = (1 << pa->pa_function);
770 break;
771 case BGE_APE_LOCK_PHY0:
772 case BGE_APE_LOCK_PHY1:
773 case BGE_APE_LOCK_PHY2:
774 case BGE_APE_LOCK_PHY3:
775 /* Lock required when accessing PHYs. */
776 bit = BGE_APE_LOCK_REQ_DRIVER0;
777 break;
778 default:
779 return (EINVAL);
780 }
781
782 /* Request a lock. */
783 APE_WRITE_4_FLUSH(sc, req + off, bit);
784
785 /* Wait up to 1 second to acquire lock. */
786 for (i = 0; i < 20000; i++) {
787 status = APE_READ_4(sc, gnt + off);
788 if (status == bit)
789 break;
790 DELAY(50);
791 }
792
793 /* Handle any errors. */
794 if (status != bit) {
795 printf("%s: APE lock %d request failed! "
796 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
797 device_xname(sc->bge_dev),
798 locknum, req + off, bit & 0xFFFF, gnt + off,
799 status & 0xFFFF);
800 /* Revoke the lock request. */
801 APE_WRITE_4(sc, gnt + off, bit);
802 return (EBUSY);
803 }
804
805 return (0);
806 }
807
808 void
809 bge_ape_unlock(struct bge_softc *sc, int locknum)
810 {
811 struct pci_attach_args *pa = &(sc->bge_pa);
812 uint32_t bit, gnt;
813 int off;
814
815 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
816 return;
817
818 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
819 gnt = BGE_APE_LOCK_GRANT;
820 else
821 gnt = BGE_APE_PER_LOCK_GRANT;
822
823 off = 4 * locknum;
824
825 switch (locknum) {
826 case BGE_APE_LOCK_GPIO:
827 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
828 return;
829 if (pa->pa_function == 0)
830 bit = BGE_APE_LOCK_GRANT_DRIVER0;
831 else
832 bit = (1 << pa->pa_function);
833 break;
834 case BGE_APE_LOCK_GRC:
835 if (pa->pa_function == 0)
836 bit = BGE_APE_LOCK_GRANT_DRIVER0;
837 else
838 bit = (1 << pa->pa_function);
839 break;
840 case BGE_APE_LOCK_MEM:
841 if (pa->pa_function == 0)
842 bit = BGE_APE_LOCK_GRANT_DRIVER0;
843 else
844 bit = (1 << pa->pa_function);
845 break;
846 case BGE_APE_LOCK_PHY0:
847 case BGE_APE_LOCK_PHY1:
848 case BGE_APE_LOCK_PHY2:
849 case BGE_APE_LOCK_PHY3:
850 bit = BGE_APE_LOCK_GRANT_DRIVER0;
851 break;
852 default:
853 return;
854 }
855
856 /* Write and flush for consecutive bge_ape_lock() */
857 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
858 }
859
860 /*
861 * Send an event to the APE firmware.
862 */
863 void
864 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
865 {
866 uint32_t apedata;
867 int i;
868
869 /* NCSI does not support APE events. */
870 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
871 return;
872
873 /* Wait up to 1ms for APE to service previous event. */
874 for (i = 10; i > 0; i--) {
875 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
876 break;
877 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
878 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
879 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
880 BGE_APE_EVENT_STATUS_EVENT_PENDING);
881 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
882 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
883 break;
884 }
885 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
886 DELAY(100);
887 }
888 if (i == 0) {
889 printf("%s: APE event 0x%08x send timed out\n",
890 device_xname(sc->bge_dev), event);
891 }
892 }
893
894 void
895 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
896 {
897 uint32_t apedata, event;
898
899 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
900 return;
901
902 switch (kind) {
903 case BGE_RESET_START:
904 /* If this is the first load, clear the load counter. */
905 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
906 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
907 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
908 else {
909 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
910 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
911 }
912 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
913 BGE_APE_HOST_SEG_SIG_MAGIC);
914 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
915 BGE_APE_HOST_SEG_LEN_MAGIC);
916
917 /* Add some version info if bge(4) supports it. */
918 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
919 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
920 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
921 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
922 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
923 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
924 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
925 BGE_APE_HOST_DRVR_STATE_START);
926 event = BGE_APE_EVENT_STATUS_STATE_START;
927 break;
928 case BGE_RESET_SHUTDOWN:
929 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
930 BGE_APE_HOST_DRVR_STATE_UNLOAD);
931 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
932 break;
933 case BGE_RESET_SUSPEND:
934 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
935 break;
936 default:
937 return;
938 }
939
940 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
941 BGE_APE_EVENT_STATUS_STATE_CHNGE);
942 }
943
944 static uint8_t
945 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
946 {
947 uint32_t access, byte = 0;
948 int i;
949
950 /* Lock. */
951 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
952 for (i = 0; i < 8000; i++) {
953 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
954 break;
955 DELAY(20);
956 }
957 if (i == 8000)
958 return 1;
959
960 /* Enable access. */
961 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
962 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
963
964 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
965 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
966 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
967 DELAY(10);
968 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
969 DELAY(10);
970 break;
971 }
972 }
973
974 if (i == BGE_TIMEOUT * 10) {
975 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
976 return 1;
977 }
978
979 /* Get result. */
980 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
981
982 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
983
984 /* Disable access. */
985 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
986
987 /* Unlock. */
988 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
989
990 return 0;
991 }
992
993 /*
994 * Read a sequence of bytes from NVRAM.
995 */
996 static int
997 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
998 {
999 int error = 0, i;
1000 uint8_t byte = 0;
1001
1002 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1003 return 1;
1004
1005 for (i = 0; i < cnt; i++) {
1006 error = bge_nvram_getbyte(sc, off + i, &byte);
1007 if (error)
1008 break;
1009 *(dest + i) = byte;
1010 }
1011
1012 return (error ? 1 : 0);
1013 }
1014
1015 /*
1016 * Read a byte of data stored in the EEPROM at address 'addr.' The
1017 * BCM570x supports both the traditional bitbang interface and an
1018 * auto access interface for reading the EEPROM. We use the auto
1019 * access method.
1020 */
1021 static uint8_t
1022 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1023 {
1024 int i;
1025 uint32_t byte = 0;
1026
1027 /*
1028 * Enable use of auto EEPROM access so we can avoid
1029 * having to use the bitbang method.
1030 */
1031 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1032
1033 /* Reset the EEPROM, load the clock period. */
1034 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1035 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1036 DELAY(20);
1037
1038 /* Issue the read EEPROM command. */
1039 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1040
1041 /* Wait for completion */
1042 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1043 DELAY(10);
1044 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1045 break;
1046 }
1047
1048 if (i == BGE_TIMEOUT * 10) {
1049 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1050 return 1;
1051 }
1052
1053 /* Get result. */
1054 byte = CSR_READ_4(sc, BGE_EE_DATA);
1055
1056 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1057
1058 return 0;
1059 }
1060
1061 /*
1062 * Read a sequence of bytes from the EEPROM.
1063 */
1064 static int
1065 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1066 {
1067 int error = 0, i;
1068 uint8_t byte = 0;
1069 char *dest = destv;
1070
1071 for (i = 0; i < cnt; i++) {
1072 error = bge_eeprom_getbyte(sc, off + i, &byte);
1073 if (error)
1074 break;
1075 *(dest + i) = byte;
1076 }
1077
1078 return (error ? 1 : 0);
1079 }
1080
1081 static int
1082 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1083 {
1084 struct bge_softc * const sc = device_private(dev);
1085 uint32_t data;
1086 uint32_t autopoll;
1087 int rv = 0;
1088 int i;
1089
1090 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1091 return -1;
1092
1093 /* Reading with autopolling on may trigger PCI errors */
1094 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1095 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1096 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1097 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1098 DELAY(80);
1099 }
1100
1101 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1102 BGE_MIPHY(phy) | BGE_MIREG(reg));
1103
1104 for (i = 0; i < BGE_TIMEOUT; i++) {
1105 delay(10);
1106 data = CSR_READ_4(sc, BGE_MI_COMM);
1107 if (!(data & BGE_MICOMM_BUSY)) {
1108 DELAY(5);
1109 data = CSR_READ_4(sc, BGE_MI_COMM);
1110 break;
1111 }
1112 }
1113
1114 if (i == BGE_TIMEOUT) {
1115 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1116 rv = ETIMEDOUT;
1117 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1118 /* XXX This error occurs on some devices while attaching. */
1119 aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1120 rv = EIO;
1121 } else
1122 *val = data & BGE_MICOMM_DATA;
1123
1124 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1125 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1126 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1127 DELAY(80);
1128 }
1129
1130 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1131
1132 return rv;
1133 }
1134
1135 static int
1136 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1137 {
1138 struct bge_softc * const sc = device_private(dev);
1139 uint32_t data, autopoll;
1140 int rv = 0;
1141 int i;
1142
1143 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1144 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1145 return 0;
1146
1147 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1148 return -1;
1149
1150 /* Reading with autopolling on may trigger PCI errors */
1151 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1152 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1153 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1154 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1155 DELAY(80);
1156 }
1157
1158 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1159 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1160
1161 for (i = 0; i < BGE_TIMEOUT; i++) {
1162 delay(10);
1163 data = CSR_READ_4(sc, BGE_MI_COMM);
1164 if (!(data & BGE_MICOMM_BUSY)) {
1165 delay(5);
1166 data = CSR_READ_4(sc, BGE_MI_COMM);
1167 break;
1168 }
1169 }
1170
1171 if (i == BGE_TIMEOUT) {
1172 aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1173 rv = ETIMEDOUT;
1174 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1175 aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1176 rv = EIO;
1177 }
1178
1179 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1180 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1181 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1182 delay(80);
1183 }
1184
1185 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1186
1187 if (i == BGE_TIMEOUT) {
1188 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1189 return ETIMEDOUT;
1190 }
1191
1192 return rv;
1193 }
1194
1195 static void
1196 bge_miibus_statchg(struct ifnet *ifp)
1197 {
1198 struct bge_softc * const sc = ifp->if_softc;
1199 struct mii_data *mii = &sc->bge_mii;
1200 uint32_t mac_mode, rx_mode, tx_mode;
1201
1202 /*
1203 * Get flow control negotiation result.
1204 */
1205 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1206 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1207 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1208
1209 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1210 mii->mii_media_status & IFM_ACTIVE &&
1211 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1212 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1213 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1214 (!(mii->mii_media_status & IFM_ACTIVE) ||
1215 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1216 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1217
1218 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1219 return;
1220
1221 /* Set the port mode (MII/GMII) to match the link speed. */
1222 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1223 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1224 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1225 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1226 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1227 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1228 mac_mode |= BGE_PORTMODE_GMII;
1229 else
1230 mac_mode |= BGE_PORTMODE_MII;
1231
1232 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1233 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1234 if ((mii->mii_media_active & IFM_FDX) != 0) {
1235 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1236 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1237 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1238 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1239 } else
1240 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1241
1242 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1243 DELAY(40);
1244 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1245 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1246 }
1247
1248 /*
1249 * Update rx threshold levels to values in a particular slot
1250 * of the interrupt-mitigation table bge_rx_threshes.
1251 */
1252 static void
1253 bge_set_thresh(struct ifnet *ifp, int lvl)
1254 {
1255 struct bge_softc * const sc = ifp->if_softc;
1256 int s;
1257
1258 /* For now, just save the new Rx-intr thresholds and record
1259 * that a threshold update is pending. Updating the hardware
1260 * registers here (even at splhigh()) is observed to
1261 * occasionally cause glitches where Rx-interrupts are not
1262 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1263 */
1264 s = splnet();
1265 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1266 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1267 sc->bge_pending_rxintr_change = 1;
1268 splx(s);
1269 }
1270
1271
1272 /*
1273 * Update Rx thresholds of all bge devices
1274 */
1275 static void
1276 bge_update_all_threshes(int lvl)
1277 {
1278 struct ifnet *ifp;
1279 const char * const namebuf = "bge";
1280 int namelen;
1281 int s;
1282
1283 if (lvl < 0)
1284 lvl = 0;
1285 else if (lvl >= NBGE_RX_THRESH)
1286 lvl = NBGE_RX_THRESH - 1;
1287
1288 namelen = strlen(namebuf);
1289 /*
1290 * Now search all the interfaces for this name/number
1291 */
1292 s = pserialize_read_enter();
1293 IFNET_READER_FOREACH(ifp) {
1294 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1295 continue;
1296 /* We got a match: update if doing auto-threshold-tuning */
1297 if (bge_auto_thresh)
1298 bge_set_thresh(ifp, lvl);
1299 }
1300 pserialize_read_exit(s);
1301 }
1302
1303 /*
1304 * Handle events that have triggered interrupts.
1305 */
1306 static void
1307 bge_handle_events(struct bge_softc *sc)
1308 {
1309
1310 return;
1311 }
1312
1313 /*
1314 * Memory management for jumbo frames.
1315 */
1316
1317 static int
1318 bge_alloc_jumbo_mem(struct bge_softc *sc)
1319 {
1320 char *ptr, *kva;
1321 bus_dma_segment_t seg;
1322 int i, rseg, state, error;
1323 struct bge_jpool_entry *entry;
1324
1325 state = error = 0;
1326
1327 /* Grab a big chunk o' storage. */
1328 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1329 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1330 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1331 return ENOBUFS;
1332 }
1333
1334 state = 1;
1335 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1336 BUS_DMA_NOWAIT)) {
1337 aprint_error_dev(sc->bge_dev,
1338 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1339 error = ENOBUFS;
1340 goto out;
1341 }
1342
1343 state = 2;
1344 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1345 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1346 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1347 error = ENOBUFS;
1348 goto out;
1349 }
1350
1351 state = 3;
1352 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1353 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1354 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1355 error = ENOBUFS;
1356 goto out;
1357 }
1358
1359 state = 4;
1360 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1361 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1362
1363 SLIST_INIT(&sc->bge_jfree_listhead);
1364 SLIST_INIT(&sc->bge_jinuse_listhead);
1365
1366 /*
1367 * Now divide it up into 9K pieces and save the addresses
1368 * in an array.
1369 */
1370 ptr = sc->bge_cdata.bge_jumbo_buf;
1371 for (i = 0; i < BGE_JSLOTS; i++) {
1372 sc->bge_cdata.bge_jslots[i] = ptr;
1373 ptr += BGE_JLEN;
1374 entry = malloc(sizeof(struct bge_jpool_entry),
1375 M_DEVBUF, M_WAITOK);
1376 entry->slot = i;
1377 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1378 entry, jpool_entries);
1379 }
1380 out:
1381 if (error != 0) {
1382 switch (state) {
1383 case 4:
1384 bus_dmamap_unload(sc->bge_dmatag,
1385 sc->bge_cdata.bge_rx_jumbo_map);
1386 /* FALLTHROUGH */
1387 case 3:
1388 bus_dmamap_destroy(sc->bge_dmatag,
1389 sc->bge_cdata.bge_rx_jumbo_map);
1390 /* FALLTHROUGH */
1391 case 2:
1392 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1393 /* FALLTHROUGH */
1394 case 1:
1395 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1396 break;
1397 default:
1398 break;
1399 }
1400 }
1401
1402 return error;
1403 }
1404
1405 /*
1406 * Allocate a jumbo buffer.
1407 */
1408 static void *
1409 bge_jalloc(struct bge_softc *sc)
1410 {
1411 struct bge_jpool_entry *entry;
1412
1413 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1414
1415 if (entry == NULL) {
1416 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1417 return NULL;
1418 }
1419
1420 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1421 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1422 return (sc->bge_cdata.bge_jslots[entry->slot]);
1423 }
1424
1425 /*
1426 * Release a jumbo buffer.
1427 */
1428 static void
1429 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1430 {
1431 struct bge_jpool_entry *entry;
1432 struct bge_softc * const sc = arg;
1433 int i, s;
1434
1435 if (sc == NULL)
1436 panic("bge_jfree: can't find softc pointer!");
1437
1438 /* calculate the slot this buffer belongs to */
1439
1440 i = ((char *)buf
1441 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1442
1443 if ((i < 0) || (i >= BGE_JSLOTS))
1444 panic("bge_jfree: asked to free buffer that we don't manage!");
1445
1446 s = splvm();
1447 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1448 if (entry == NULL)
1449 panic("bge_jfree: buffer not in use!");
1450 entry->slot = i;
1451 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1452 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1453
1454 if (__predict_true(m != NULL))
1455 pool_cache_put(mb_cache, m);
1456 splx(s);
1457 }
1458
1459
1460 /*
1461 * Initialize a standard receive ring descriptor.
1462 */
1463 static int
1464 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1465 bus_dmamap_t dmamap)
1466 {
1467 struct mbuf *m_new = NULL;
1468 struct bge_rx_bd *r;
1469 int error;
1470
1471 if (dmamap == NULL)
1472 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1473
1474 if (dmamap == NULL) {
1475 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1476 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1477 if (error != 0)
1478 return error;
1479 }
1480
1481 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1482
1483 if (m == NULL) {
1484 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1485 if (m_new == NULL)
1486 return ENOBUFS;
1487
1488 MCLGET(m_new, M_DONTWAIT);
1489 if (!(m_new->m_flags & M_EXT)) {
1490 m_freem(m_new);
1491 return ENOBUFS;
1492 }
1493 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1494
1495 } else {
1496 m_new = m;
1497 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1498 m_new->m_data = m_new->m_ext.ext_buf;
1499 }
1500 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1501 m_adj(m_new, ETHER_ALIGN);
1502 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1503 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1504 m_freem(m_new);
1505 return ENOBUFS;
1506 }
1507 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1508 BUS_DMASYNC_PREREAD);
1509
1510 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1511 r = &sc->bge_rdata->bge_rx_std_ring[i];
1512 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1513 r->bge_flags = BGE_RXBDFLAG_END;
1514 r->bge_len = m_new->m_len;
1515 r->bge_idx = i;
1516
1517 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1518 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1519 i * sizeof (struct bge_rx_bd),
1520 sizeof (struct bge_rx_bd),
1521 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1522
1523 return 0;
1524 }
1525
1526 /*
1527 * Initialize a jumbo receive ring descriptor. This allocates
1528 * a jumbo buffer from the pool managed internally by the driver.
1529 */
1530 static int
1531 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1532 {
1533 struct mbuf *m_new = NULL;
1534 struct bge_rx_bd *r;
1535 void *buf = NULL;
1536
1537 if (m == NULL) {
1538
1539 /* Allocate the mbuf. */
1540 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1541 if (m_new == NULL)
1542 return ENOBUFS;
1543
1544 /* Allocate the jumbo buffer */
1545 buf = bge_jalloc(sc);
1546 if (buf == NULL) {
1547 m_freem(m_new);
1548 aprint_error_dev(sc->bge_dev,
1549 "jumbo allocation failed -- packet dropped!\n");
1550 return ENOBUFS;
1551 }
1552
1553 /* Attach the buffer to the mbuf. */
1554 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1555 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1556 bge_jfree, sc);
1557 m_new->m_flags |= M_EXT_RW;
1558 } else {
1559 m_new = m;
1560 buf = m_new->m_data = m_new->m_ext.ext_buf;
1561 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1562 }
1563 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1564 m_adj(m_new, ETHER_ALIGN);
1565 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1566 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1567 BGE_JLEN, BUS_DMASYNC_PREREAD);
1568 /* Set up the descriptor. */
1569 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1570 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1571 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1572 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1573 r->bge_len = m_new->m_len;
1574 r->bge_idx = i;
1575
1576 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1577 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1578 i * sizeof (struct bge_rx_bd),
1579 sizeof (struct bge_rx_bd),
1580 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1581
1582 return 0;
1583 }
1584
1585 /*
1586 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1587 * that's 1MB or memory, which is a lot. For now, we fill only the first
1588 * 256 ring entries and hope that our CPU is fast enough to keep up with
1589 * the NIC.
1590 */
1591 static int
1592 bge_init_rx_ring_std(struct bge_softc *sc)
1593 {
1594 int i;
1595
1596 if (sc->bge_flags & BGEF_RXRING_VALID)
1597 return 0;
1598
1599 for (i = 0; i < BGE_SSLOTS; i++) {
1600 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1601 return ENOBUFS;
1602 }
1603
1604 sc->bge_std = i - 1;
1605 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1606
1607 sc->bge_flags |= BGEF_RXRING_VALID;
1608
1609 return 0;
1610 }
1611
1612 static void
1613 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1614 {
1615 int i;
1616
1617 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1618 return;
1619
1620 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1621 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1622 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1623 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1624 if (disable) {
1625 bus_dmamap_destroy(sc->bge_dmatag,
1626 sc->bge_cdata.bge_rx_std_map[i]);
1627 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1628 }
1629 }
1630 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1631 sizeof(struct bge_rx_bd));
1632 }
1633
1634 sc->bge_flags &= ~BGEF_RXRING_VALID;
1635 }
1636
1637 static int
1638 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1639 {
1640 int i;
1641 volatile struct bge_rcb *rcb;
1642
1643 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1644 return 0;
1645
1646 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1647 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1648 return ENOBUFS;
1649 }
1650
1651 sc->bge_jumbo = i - 1;
1652 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1653
1654 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1655 rcb->bge_maxlen_flags = 0;
1656 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1657
1658 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1659
1660 return 0;
1661 }
1662
1663 static void
1664 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1665 {
1666 int i;
1667
1668 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1669 return;
1670
1671 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1672 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1673 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1674 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1675 }
1676 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1677 sizeof(struct bge_rx_bd));
1678 }
1679
1680 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1681 }
1682
1683 static void
1684 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1685 {
1686 int i;
1687 struct txdmamap_pool_entry *dma;
1688
1689 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1690 return;
1691
1692 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1693 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1694 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1695 sc->bge_cdata.bge_tx_chain[i] = NULL;
1696 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1697 link);
1698 sc->txdma[i] = 0;
1699 }
1700 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1701 sizeof(struct bge_tx_bd));
1702 }
1703
1704 if (disable) {
1705 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1706 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1707 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1708 if (sc->bge_dma64) {
1709 bus_dmamap_destroy(sc->bge_dmatag32,
1710 dma->dmamap32);
1711 }
1712 free(dma, M_DEVBUF);
1713 }
1714 SLIST_INIT(&sc->txdma_list);
1715 }
1716
1717 sc->bge_flags &= ~BGEF_TXRING_VALID;
1718 }
1719
1720 static int
1721 bge_init_tx_ring(struct bge_softc *sc)
1722 {
1723 struct ifnet * const ifp = &sc->ethercom.ec_if;
1724 int i;
1725 bus_dmamap_t dmamap, dmamap32;
1726 bus_size_t maxsegsz;
1727 struct txdmamap_pool_entry *dma;
1728
1729 if (sc->bge_flags & BGEF_TXRING_VALID)
1730 return 0;
1731
1732 sc->bge_txcnt = 0;
1733 sc->bge_tx_saved_considx = 0;
1734
1735 /* Initialize transmit producer index for host-memory send ring. */
1736 sc->bge_tx_prodidx = 0;
1737 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1738 /* 5700 b2 errata */
1739 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1740 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1741
1742 /* NIC-memory send ring not used; initialize to zero. */
1743 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1744 /* 5700 b2 errata */
1745 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1746 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1747
1748 /* Limit DMA segment size for some chips */
1749 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1750 (ifp->if_mtu <= ETHERMTU))
1751 maxsegsz = 2048;
1752 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1753 maxsegsz = 4096;
1754 else
1755 maxsegsz = ETHER_MAX_LEN_JUMBO;
1756
1757 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1758 goto alloc_done;
1759
1760 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1761 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1762 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1763 &dmamap))
1764 return ENOBUFS;
1765 if (dmamap == NULL)
1766 panic("dmamap NULL in bge_init_tx_ring");
1767 if (sc->bge_dma64) {
1768 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1769 BGE_NTXSEG, maxsegsz, 0,
1770 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1771 &dmamap32)) {
1772 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1773 return ENOBUFS;
1774 }
1775 if (dmamap32 == NULL)
1776 panic("dmamap32 NULL in bge_init_tx_ring");
1777 } else
1778 dmamap32 = dmamap;
1779 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1780 if (dma == NULL) {
1781 aprint_error_dev(sc->bge_dev,
1782 "can't alloc txdmamap_pool_entry\n");
1783 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1784 if (sc->bge_dma64)
1785 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1786 return ENOMEM;
1787 }
1788 dma->dmamap = dmamap;
1789 dma->dmamap32 = dmamap32;
1790 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1791 }
1792 alloc_done:
1793 sc->bge_flags |= BGEF_TXRING_VALID;
1794
1795 return 0;
1796 }
1797
1798 static void
1799 bge_setmulti(struct bge_softc *sc)
1800 {
1801 struct ethercom * const ec = &sc->ethercom;
1802 struct ifnet * const ifp = &ec->ec_if;
1803 struct ether_multi *enm;
1804 struct ether_multistep step;
1805 uint32_t hashes[4] = { 0, 0, 0, 0 };
1806 uint32_t h;
1807 int i;
1808
1809 if (ifp->if_flags & IFF_PROMISC)
1810 goto allmulti;
1811
1812 /* Now program new ones. */
1813 ETHER_LOCK(ec);
1814 ETHER_FIRST_MULTI(step, ec, enm);
1815 while (enm != NULL) {
1816 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1817 /*
1818 * We must listen to a range of multicast addresses.
1819 * For now, just accept all multicasts, rather than
1820 * trying to set only those filter bits needed to match
1821 * the range. (At this time, the only use of address
1822 * ranges is for IP multicast routing, for which the
1823 * range is big enough to require all bits set.)
1824 */
1825 ETHER_UNLOCK(ec);
1826 goto allmulti;
1827 }
1828
1829 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1830
1831 /* Just want the 7 least-significant bits. */
1832 h &= 0x7f;
1833
1834 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1835 ETHER_NEXT_MULTI(step, enm);
1836 }
1837 ETHER_UNLOCK(ec);
1838
1839 ifp->if_flags &= ~IFF_ALLMULTI;
1840 goto setit;
1841
1842 allmulti:
1843 ifp->if_flags |= IFF_ALLMULTI;
1844 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1845
1846 setit:
1847 for (i = 0; i < 4; i++)
1848 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1849 }
1850
1851 static void
1852 bge_sig_pre_reset(struct bge_softc *sc, int type)
1853 {
1854
1855 /*
1856 * Some chips don't like this so only do this if ASF is enabled
1857 */
1858 if (sc->bge_asf_mode)
1859 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1860
1861 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1862 switch (type) {
1863 case BGE_RESET_START:
1864 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1865 BGE_FW_DRV_STATE_START);
1866 break;
1867 case BGE_RESET_SHUTDOWN:
1868 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1869 BGE_FW_DRV_STATE_UNLOAD);
1870 break;
1871 case BGE_RESET_SUSPEND:
1872 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1873 BGE_FW_DRV_STATE_SUSPEND);
1874 break;
1875 }
1876 }
1877
1878 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1879 bge_ape_driver_state_change(sc, type);
1880 }
1881
1882 static void
1883 bge_sig_post_reset(struct bge_softc *sc, int type)
1884 {
1885
1886 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1887 switch (type) {
1888 case BGE_RESET_START:
1889 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1890 BGE_FW_DRV_STATE_START_DONE);
1891 /* START DONE */
1892 break;
1893 case BGE_RESET_SHUTDOWN:
1894 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1895 BGE_FW_DRV_STATE_UNLOAD_DONE);
1896 break;
1897 }
1898 }
1899
1900 if (type == BGE_RESET_SHUTDOWN)
1901 bge_ape_driver_state_change(sc, type);
1902 }
1903
1904 static void
1905 bge_sig_legacy(struct bge_softc *sc, int type)
1906 {
1907
1908 if (sc->bge_asf_mode) {
1909 switch (type) {
1910 case BGE_RESET_START:
1911 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1912 BGE_FW_DRV_STATE_START);
1913 break;
1914 case BGE_RESET_SHUTDOWN:
1915 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1916 BGE_FW_DRV_STATE_UNLOAD);
1917 break;
1918 }
1919 }
1920 }
1921
1922 static void
1923 bge_wait_for_event_ack(struct bge_softc *sc)
1924 {
1925 int i;
1926
1927 /* wait up to 2500usec */
1928 for (i = 0; i < 250; i++) {
1929 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1930 BGE_RX_CPU_DRV_EVENT))
1931 break;
1932 DELAY(10);
1933 }
1934 }
1935
1936 static void
1937 bge_stop_fw(struct bge_softc *sc)
1938 {
1939
1940 if (sc->bge_asf_mode) {
1941 bge_wait_for_event_ack(sc);
1942
1943 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1944 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1945 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1946
1947 bge_wait_for_event_ack(sc);
1948 }
1949 }
1950
1951 static int
1952 bge_poll_fw(struct bge_softc *sc)
1953 {
1954 uint32_t val;
1955 int i;
1956
1957 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1958 for (i = 0; i < BGE_TIMEOUT; i++) {
1959 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1960 if (val & BGE_VCPU_STATUS_INIT_DONE)
1961 break;
1962 DELAY(100);
1963 }
1964 if (i >= BGE_TIMEOUT) {
1965 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1966 return -1;
1967 }
1968 } else {
1969 /*
1970 * Poll the value location we just wrote until
1971 * we see the 1's complement of the magic number.
1972 * This indicates that the firmware initialization
1973 * is complete.
1974 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1975 */
1976 for (i = 0; i < BGE_TIMEOUT; i++) {
1977 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1978 if (val == ~BGE_SRAM_FW_MB_MAGIC)
1979 break;
1980 DELAY(10);
1981 }
1982
1983 if ((i >= BGE_TIMEOUT)
1984 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1985 aprint_error_dev(sc->bge_dev,
1986 "firmware handshake timed out, val = %x\n", val);
1987 return -1;
1988 }
1989 }
1990
1991 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1992 /* tg3 says we have to wait extra time */
1993 delay(10 * 1000);
1994 }
1995
1996 return 0;
1997 }
1998
1999 int
2000 bge_phy_addr(struct bge_softc *sc)
2001 {
2002 struct pci_attach_args *pa = &(sc->bge_pa);
2003 int phy_addr = 1;
2004
2005 /*
2006 * PHY address mapping for various devices.
2007 *
2008 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2009 * ---------+-------+-------+-------+-------+
2010 * BCM57XX | 1 | X | X | X |
2011 * BCM5704 | 1 | X | 1 | X |
2012 * BCM5717 | 1 | 8 | 2 | 9 |
2013 * BCM5719 | 1 | 8 | 2 | 9 |
2014 * BCM5720 | 1 | 8 | 2 | 9 |
2015 *
2016 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2017 * ---------+-------+-------+-------+-------+
2018 * BCM57XX | X | X | X | X |
2019 * BCM5704 | X | X | X | X |
2020 * BCM5717 | X | X | X | X |
2021 * BCM5719 | 3 | 10 | 4 | 11 |
2022 * BCM5720 | X | X | X | X |
2023 *
2024 * Other addresses may respond but they are not
2025 * IEEE compliant PHYs and should be ignored.
2026 */
2027 switch (BGE_ASICREV(sc->bge_chipid)) {
2028 case BGE_ASICREV_BCM5717:
2029 case BGE_ASICREV_BCM5719:
2030 case BGE_ASICREV_BCM5720:
2031 phy_addr = pa->pa_function;
2032 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2033 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2034 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2035 } else {
2036 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2037 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2038 }
2039 }
2040
2041 return phy_addr;
2042 }
2043
2044 /*
2045 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2046 * self-test results.
2047 */
2048 static int
2049 bge_chipinit(struct bge_softc *sc)
2050 {
2051 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2052 int i;
2053
2054 /* Set endianness before we access any non-PCI registers. */
2055 misc_ctl = BGE_INIT;
2056 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2057 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2058 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2059 misc_ctl);
2060
2061 /*
2062 * Clear the MAC statistics block in the NIC's
2063 * internal memory.
2064 */
2065 for (i = BGE_STATS_BLOCK;
2066 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2067 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2068
2069 for (i = BGE_STATUS_BLOCK;
2070 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2071 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2072
2073 /* 5717 workaround from tg3 */
2074 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2075 /* Save */
2076 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2077
2078 /* Temporary modify MODE_CTL to control TLP */
2079 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2080 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2081
2082 /* Control TLP */
2083 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2084 BGE_TLP_PHYCTL1);
2085 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2086 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2087
2088 /* Restore */
2089 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2090 }
2091
2092 if (BGE_IS_57765_FAMILY(sc)) {
2093 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2094 /* Save */
2095 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2096
2097 /* Temporary modify MODE_CTL to control TLP */
2098 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2099 CSR_WRITE_4(sc, BGE_MODE_CTL,
2100 reg | BGE_MODECTL_PCIE_TLPADDR1);
2101
2102 /* Control TLP */
2103 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2104 BGE_TLP_PHYCTL5);
2105 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2106 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2107
2108 /* Restore */
2109 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2110 }
2111 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2112 /*
2113 * For the 57766 and non Ax versions of 57765, bootcode
2114 * needs to setup the PCIE Fast Training Sequence (FTS)
2115 * value to prevent transmit hangs.
2116 */
2117 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2118 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2119 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2120
2121 /* Save */
2122 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2123
2124 /* Temporary modify MODE_CTL to control TLP */
2125 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2126 CSR_WRITE_4(sc, BGE_MODE_CTL,
2127 reg | BGE_MODECTL_PCIE_TLPADDR0);
2128
2129 /* Control TLP */
2130 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2131 BGE_TLP_FTSMAX);
2132 reg &= ~BGE_TLP_FTSMAX_MSK;
2133 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2134 reg | BGE_TLP_FTSMAX_VAL);
2135
2136 /* Restore */
2137 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2138 }
2139
2140 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2141 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2142 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2143 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2144 }
2145
2146 /* Set up the PCI DMA control register. */
2147 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2148 if (sc->bge_flags & BGEF_PCIE) {
2149 /* Read watermark not used, 128 bytes for write. */
2150 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2151 device_xname(sc->bge_dev)));
2152 if (sc->bge_mps >= 256)
2153 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2154 else
2155 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2156 } else if (sc->bge_flags & BGEF_PCIX) {
2157 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2158 device_xname(sc->bge_dev)));
2159 /* PCI-X bus */
2160 if (BGE_IS_5714_FAMILY(sc)) {
2161 /* 256 bytes for read and write. */
2162 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2163 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2164
2165 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2166 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2167 else
2168 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2169 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2170 /*
2171 * In the BCM5703, the DMA read watermark should
2172 * be set to less than or equal to the maximum
2173 * memory read byte count of the PCI-X command
2174 * register.
2175 */
2176 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2177 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2178 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2179 /* 1536 bytes for read, 384 bytes for write. */
2180 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2181 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2182 } else {
2183 /* 384 bytes for read and write. */
2184 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2185 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2186 (0x0F);
2187 }
2188
2189 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2190 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2191 uint32_t tmp;
2192
2193 /* Set ONEDMA_ATONCE for hardware workaround. */
2194 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2195 if (tmp == 6 || tmp == 7)
2196 dma_rw_ctl |=
2197 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2198
2199 /* Set PCI-X DMA write workaround. */
2200 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2201 }
2202 } else {
2203 /* Conventional PCI bus: 256 bytes for read and write. */
2204 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2205 device_xname(sc->bge_dev)));
2206 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2207 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2208
2209 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2210 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2211 dma_rw_ctl |= 0x0F;
2212 }
2213
2214 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2215 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2216 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2217 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2218
2219 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2220 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2221 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2222
2223 if (BGE_IS_57765_PLUS(sc)) {
2224 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2225 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2226 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2227
2228 /*
2229 * Enable HW workaround for controllers that misinterpret
2230 * a status tag update and leave interrupts permanently
2231 * disabled.
2232 */
2233 if (!BGE_IS_57765_FAMILY(sc) &&
2234 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2235 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2236 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2237 }
2238
2239 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2240 dma_rw_ctl);
2241
2242 /*
2243 * Set up general mode register.
2244 */
2245 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2246 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2247 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2248 /* Retain Host-2-BMC settings written by APE firmware. */
2249 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2250 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2251 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2252 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2253 }
2254 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2255 BGE_MODECTL_TX_NO_PHDR_CSUM;
2256
2257 /*
2258 * BCM5701 B5 have a bug causing data corruption when using
2259 * 64-bit DMA reads, which can be terminated early and then
2260 * completed later as 32-bit accesses, in combination with
2261 * certain bridges.
2262 */
2263 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2264 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2265 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2266
2267 /*
2268 * Tell the firmware the driver is running
2269 */
2270 if (sc->bge_asf_mode & ASF_STACKUP)
2271 mode_ctl |= BGE_MODECTL_STACKUP;
2272
2273 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2274
2275 /*
2276 * Disable memory write invalidate. Apparently it is not supported
2277 * properly by these devices.
2278 */
2279 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2280 PCI_COMMAND_INVALIDATE_ENABLE);
2281
2282 #ifdef __brokenalpha__
2283 /*
2284 * Must insure that we do not cross an 8K (bytes) boundary
2285 * for DMA reads. Our highest limit is 1K bytes. This is a
2286 * restriction on some ALPHA platforms with early revision
2287 * 21174 PCI chipsets, such as the AlphaPC 164lx
2288 */
2289 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2290 #endif
2291
2292 /* Set the timer prescaler (always 66MHz) */
2293 CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2294
2295 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2296 DELAY(40); /* XXX */
2297
2298 /* Put PHY into ready state */
2299 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2300 DELAY(40);
2301 }
2302
2303 return 0;
2304 }
2305
2306 static int
2307 bge_blockinit(struct bge_softc *sc)
2308 {
2309 volatile struct bge_rcb *rcb;
2310 bus_size_t rcb_addr;
2311 struct ifnet * const ifp = &sc->ethercom.ec_if;
2312 bge_hostaddr taddr;
2313 uint32_t dmactl, rdmareg, mimode, val;
2314 int i, limit;
2315
2316 /*
2317 * Initialize the memory window pointer register so that
2318 * we can access the first 32K of internal NIC RAM. This will
2319 * allow us to set up the TX send ring RCBs and the RX return
2320 * ring RCBs, plus other things which live in NIC memory.
2321 */
2322 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2323
2324 if (!BGE_IS_5705_PLUS(sc)) {
2325 /* 57XX step 33 */
2326 /* Configure mbuf memory pool */
2327 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2328
2329 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2330 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2331 else
2332 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2333
2334 /* 57XX step 34 */
2335 /* Configure DMA resource pool */
2336 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2337 BGE_DMA_DESCRIPTORS);
2338 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2339 }
2340
2341 /* 5718 step 11, 57XX step 35 */
2342 /*
2343 * Configure mbuf pool watermarks. New broadcom docs strongly
2344 * recommend these.
2345 */
2346 if (BGE_IS_5717_PLUS(sc)) {
2347 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2348 if (ifp->if_mtu > ETHERMTU) {
2349 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2350 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2351 } else {
2352 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2353 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2354 }
2355 } else if (BGE_IS_5705_PLUS(sc)) {
2356 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2357
2358 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2359 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2360 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2361 } else {
2362 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2363 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2364 }
2365 } else {
2366 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2367 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2368 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2369 }
2370
2371 /* 57XX step 36 */
2372 /* Configure DMA resource watermarks */
2373 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2374 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2375
2376 /* 5718 step 13, 57XX step 38 */
2377 /* Enable buffer manager */
2378 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2379 /*
2380 * Change the arbitration algorithm of TXMBUF read request to
2381 * round-robin instead of priority based for BCM5719. When
2382 * TXFIFO is almost empty, RDMA will hold its request until
2383 * TXFIFO is not almost empty.
2384 */
2385 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2386 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2387 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2388 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2389 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2390 val |= BGE_BMANMODE_LOMBUF_ATTN;
2391 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2392
2393 /* 57XX step 39 */
2394 /* Poll for buffer manager start indication */
2395 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2396 DELAY(10);
2397 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2398 break;
2399 }
2400
2401 if (i == BGE_TIMEOUT * 2) {
2402 aprint_error_dev(sc->bge_dev,
2403 "buffer manager failed to start\n");
2404 return ENXIO;
2405 }
2406
2407 /* 57XX step 40 */
2408 /* Enable flow-through queues */
2409 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2410 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2411
2412 /* Wait until queue initialization is complete */
2413 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2414 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2415 break;
2416 DELAY(10);
2417 }
2418
2419 if (i == BGE_TIMEOUT * 2) {
2420 aprint_error_dev(sc->bge_dev,
2421 "flow-through queue init failed\n");
2422 return ENXIO;
2423 }
2424
2425 /*
2426 * Summary of rings supported by the controller:
2427 *
2428 * Standard Receive Producer Ring
2429 * - This ring is used to feed receive buffers for "standard"
2430 * sized frames (typically 1536 bytes) to the controller.
2431 *
2432 * Jumbo Receive Producer Ring
2433 * - This ring is used to feed receive buffers for jumbo sized
2434 * frames (i.e. anything bigger than the "standard" frames)
2435 * to the controller.
2436 *
2437 * Mini Receive Producer Ring
2438 * - This ring is used to feed receive buffers for "mini"
2439 * sized frames to the controller.
2440 * - This feature required external memory for the controller
2441 * but was never used in a production system. Should always
2442 * be disabled.
2443 *
2444 * Receive Return Ring
2445 * - After the controller has placed an incoming frame into a
2446 * receive buffer that buffer is moved into a receive return
2447 * ring. The driver is then responsible to passing the
2448 * buffer up to the stack. Many versions of the controller
2449 * support multiple RR rings.
2450 *
2451 * Send Ring
2452 * - This ring is used for outgoing frames. Many versions of
2453 * the controller support multiple send rings.
2454 */
2455
2456 /* 5718 step 15, 57XX step 41 */
2457 /* Initialize the standard RX ring control block */
2458 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2459 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2460 /* 5718 step 16 */
2461 if (BGE_IS_57765_PLUS(sc)) {
2462 /*
2463 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2464 * Bits 15-2 : Maximum RX frame size
2465 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2466 * Bit 0 : Reserved
2467 */
2468 rcb->bge_maxlen_flags =
2469 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2470 } else if (BGE_IS_5705_PLUS(sc)) {
2471 /*
2472 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2473 * Bits 15-2 : Reserved (should be 0)
2474 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2475 * Bit 0 : Reserved
2476 */
2477 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2478 } else {
2479 /*
2480 * Ring size is always XXX entries
2481 * Bits 31-16: Maximum RX frame size
2482 * Bits 15-2 : Reserved (should be 0)
2483 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2484 * Bit 0 : Reserved
2485 */
2486 rcb->bge_maxlen_flags =
2487 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2488 }
2489 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2490 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2491 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2492 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2493 else
2494 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2495 /* Write the standard receive producer ring control block. */
2496 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2497 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2498 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2499 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2500
2501 /* Reset the standard receive producer ring producer index. */
2502 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2503
2504 /* 57XX step 42 */
2505 /*
2506 * Initialize the jumbo RX ring control block
2507 * We set the 'ring disabled' bit in the flags
2508 * field until we're actually ready to start
2509 * using this ring (i.e. once we set the MTU
2510 * high enough to require it).
2511 */
2512 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2513 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2514 BGE_HOSTADDR(rcb->bge_hostaddr,
2515 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2516 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2517 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2518 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2519 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2520 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2521 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2522 else
2523 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2524 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2525 rcb->bge_hostaddr.bge_addr_hi);
2526 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2527 rcb->bge_hostaddr.bge_addr_lo);
2528 /* Program the jumbo receive producer ring RCB parameters. */
2529 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2530 rcb->bge_maxlen_flags);
2531 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2532 /* Reset the jumbo receive producer ring producer index. */
2533 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2534 }
2535
2536 /* 57XX step 43 */
2537 /* Disable the mini receive producer ring RCB. */
2538 if (BGE_IS_5700_FAMILY(sc)) {
2539 /* Set up dummy disabled mini ring RCB */
2540 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2541 rcb->bge_maxlen_flags =
2542 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2543 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2544 rcb->bge_maxlen_flags);
2545 /* Reset the mini receive producer ring producer index. */
2546 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2547
2548 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2549 offsetof(struct bge_ring_data, bge_info),
2550 sizeof (struct bge_gib),
2551 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2552 }
2553
2554 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2555 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2556 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2557 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2558 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2559 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2560 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2561 }
2562 /* 5718 step 14, 57XX step 44 */
2563 /*
2564 * The BD ring replenish thresholds control how often the
2565 * hardware fetches new BD's from the producer rings in host
2566 * memory. Setting the value too low on a busy system can
2567 * starve the hardware and recue the throughpout.
2568 *
2569 * Set the BD ring replenish thresholds. The recommended
2570 * values are 1/8th the number of descriptors allocated to
2571 * each ring, but since we try to avoid filling the entire
2572 * ring we set these to the minimal value of 8. This needs to
2573 * be done on several of the supported chip revisions anyway,
2574 * to work around HW bugs.
2575 */
2576 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2577 if (BGE_IS_JUMBO_CAPABLE(sc))
2578 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2579
2580 /* 5718 step 18 */
2581 if (BGE_IS_5717_PLUS(sc)) {
2582 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2583 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2584 }
2585
2586 /* 57XX step 45 */
2587 /*
2588 * Disable all send rings by setting the 'ring disabled' bit
2589 * in the flags field of all the TX send ring control blocks,
2590 * located in NIC memory.
2591 */
2592 if (BGE_IS_5700_FAMILY(sc)) {
2593 /* 5700 to 5704 had 16 send rings. */
2594 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2595 } else if (BGE_IS_5717_PLUS(sc)) {
2596 limit = BGE_TX_RINGS_5717_MAX;
2597 } else if (BGE_IS_57765_FAMILY(sc) ||
2598 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2599 limit = BGE_TX_RINGS_57765_MAX;
2600 } else
2601 limit = 1;
2602 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2603 for (i = 0; i < limit; i++) {
2604 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2605 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2606 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2607 rcb_addr += sizeof(struct bge_rcb);
2608 }
2609
2610 /* 57XX step 46 and 47 */
2611 /* Configure send ring RCB 0 (we use only the first ring) */
2612 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2613 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2614 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2615 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2616 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2617 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2618 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2619 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2620 else
2621 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2622 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2623 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2624 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2625
2626 /* 57XX step 48 */
2627 /*
2628 * Disable all receive return rings by setting the
2629 * 'ring diabled' bit in the flags field of all the receive
2630 * return ring control blocks, located in NIC memory.
2631 */
2632 if (BGE_IS_5717_PLUS(sc)) {
2633 /* Should be 17, use 16 until we get an SRAM map. */
2634 limit = 16;
2635 } else if (BGE_IS_5700_FAMILY(sc))
2636 limit = BGE_RX_RINGS_MAX;
2637 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2638 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2639 BGE_IS_57765_FAMILY(sc))
2640 limit = 4;
2641 else
2642 limit = 1;
2643 /* Disable all receive return rings */
2644 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2645 for (i = 0; i < limit; i++) {
2646 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2647 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2648 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2649 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2650 BGE_RCB_FLAG_RING_DISABLED));
2651 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2652 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2653 (i * (sizeof(uint64_t))), 0);
2654 rcb_addr += sizeof(struct bge_rcb);
2655 }
2656
2657 /* 57XX step 49 */
2658 /*
2659 * Set up receive return ring 0. Note that the NIC address
2660 * for RX return rings is 0x0. The return rings live entirely
2661 * within the host, so the nicaddr field in the RCB isn't used.
2662 */
2663 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2664 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2665 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2666 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2667 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2668 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2669 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2670
2671 /* 5718 step 24, 57XX step 53 */
2672 /* Set random backoff seed for TX */
2673 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2674 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2675 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2676 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2677 BGE_TX_BACKOFF_SEED_MASK);
2678
2679 /* 5718 step 26, 57XX step 55 */
2680 /* Set inter-packet gap */
2681 val = 0x2620;
2682 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2683 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2684 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2685 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2686 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2687
2688 /* 5718 step 27, 57XX step 56 */
2689 /*
2690 * Specify which ring to use for packets that don't match
2691 * any RX rules.
2692 */
2693 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2694
2695 /* 5718 step 28, 57XX step 57 */
2696 /*
2697 * Configure number of RX lists. One interrupt distribution
2698 * list, sixteen active lists, one bad frames class.
2699 */
2700 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2701
2702 /* 5718 step 29, 57XX step 58 */
2703 /* Inialize RX list placement stats mask. */
2704 if (BGE_IS_575X_PLUS(sc)) {
2705 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2706 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2707 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2708 } else
2709 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2710
2711 /* 5718 step 30, 57XX step 59 */
2712 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2713
2714 /* 5718 step 33, 57XX step 62 */
2715 /* Disable host coalescing until we get it set up */
2716 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2717
2718 /* 5718 step 34, 57XX step 63 */
2719 /* Poll to make sure it's shut down. */
2720 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2721 DELAY(10);
2722 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2723 break;
2724 }
2725
2726 if (i == BGE_TIMEOUT * 2) {
2727 aprint_error_dev(sc->bge_dev,
2728 "host coalescing engine failed to idle\n");
2729 return ENXIO;
2730 }
2731
2732 /* 5718 step 35, 36, 37 */
2733 /* Set up host coalescing defaults */
2734 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2735 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2736 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2737 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2738 if (!(BGE_IS_5705_PLUS(sc))) {
2739 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2740 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2741 }
2742 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2743 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2744
2745 /* Set up address of statistics block */
2746 if (BGE_IS_5700_FAMILY(sc)) {
2747 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2748 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2749 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2750 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2751 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2752 }
2753
2754 /* 5718 step 38 */
2755 /* Set up address of status block */
2756 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2757 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2758 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2759 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2760 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2761 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2762
2763 /* Set up status block size. */
2764 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2765 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2766 val = BGE_STATBLKSZ_FULL;
2767 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2768 } else {
2769 val = BGE_STATBLKSZ_32BYTE;
2770 bzero(&sc->bge_rdata->bge_status_block, 32);
2771 }
2772
2773 /* 5718 step 39, 57XX step 73 */
2774 /* Turn on host coalescing state machine */
2775 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2776
2777 /* 5718 step 40, 57XX step 74 */
2778 /* Turn on RX BD completion state machine and enable attentions */
2779 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2780 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2781
2782 /* 5718 step 41, 57XX step 75 */
2783 /* Turn on RX list placement state machine */
2784 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2785
2786 /* 57XX step 76 */
2787 /* Turn on RX list selector state machine. */
2788 if (!(BGE_IS_5705_PLUS(sc)))
2789 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2790
2791 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2792 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2793 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2794 BGE_MACMODE_FRMHDR_DMA_ENB;
2795
2796 if (sc->bge_flags & BGEF_FIBER_TBI)
2797 val |= BGE_PORTMODE_TBI;
2798 else if (sc->bge_flags & BGEF_FIBER_MII)
2799 val |= BGE_PORTMODE_GMII;
2800 else
2801 val |= BGE_PORTMODE_MII;
2802
2803 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2804 /* Allow APE to send/receive frames. */
2805 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2806 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2807
2808 /* Turn on DMA, clear stats */
2809 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2810 /* 5718 step 44 */
2811 DELAY(40);
2812
2813 /* 5718 step 45, 57XX step 79 */
2814 /* Set misc. local control, enable interrupts on attentions */
2815 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2816 if (BGE_IS_5717_PLUS(sc)) {
2817 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2818 /* 5718 step 46 */
2819 DELAY(100);
2820 }
2821
2822 /* 57XX step 81 */
2823 /* Turn on DMA completion state machine */
2824 if (!(BGE_IS_5705_PLUS(sc)))
2825 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2826
2827 /* 5718 step 47, 57XX step 82 */
2828 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2829
2830 /* 5718 step 48 */
2831 /* Enable host coalescing bug fix. */
2832 if (BGE_IS_5755_PLUS(sc))
2833 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2834
2835 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2836 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2837
2838 /* Turn on write DMA state machine */
2839 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2840 /* 5718 step 49 */
2841 DELAY(40);
2842
2843 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2844
2845 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2846 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2847
2848 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2849 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2850 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2851 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2852 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2853 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2854
2855 if (sc->bge_flags & BGEF_PCIE)
2856 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2857 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2858 if (ifp->if_mtu <= ETHERMTU)
2859 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2860 }
2861 if (sc->bge_flags & BGEF_TSO) {
2862 val |= BGE_RDMAMODE_TSO4_ENABLE;
2863 if (BGE_IS_5717_PLUS(sc))
2864 val |= BGE_RDMAMODE_TSO6_ENABLE;
2865 }
2866
2867 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2868 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2869 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2870 BGE_RDMAMODE_H2BNC_VLAN_DET;
2871 /*
2872 * Allow multiple outstanding read requests from
2873 * non-LSO read DMA engine.
2874 */
2875 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2876 }
2877
2878 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2879 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2880 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2881 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2882 BGE_IS_57765_PLUS(sc)) {
2883 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2884 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2885 else
2886 rdmareg = BGE_RDMA_RSRVCTRL;
2887 dmactl = CSR_READ_4(sc, rdmareg);
2888 /*
2889 * Adjust tx margin to prevent TX data corruption and
2890 * fix internal FIFO overflow.
2891 */
2892 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2893 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2894 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2895 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2896 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2897 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2898 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2899 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2900 }
2901 /*
2902 * Enable fix for read DMA FIFO overruns.
2903 * The fix is to limit the number of RX BDs
2904 * the hardware would fetch at a time.
2905 */
2906 CSR_WRITE_4(sc, rdmareg, dmactl |
2907 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2908 }
2909
2910 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2911 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2912 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2913 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2914 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2915 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2916 /*
2917 * Allow 4KB burst length reads for non-LSO frames.
2918 * Enable 512B burst length reads for buffer descriptors.
2919 */
2920 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2921 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2922 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2923 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2924 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2925 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2926 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2927 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2928 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2929 }
2930 /* Turn on read DMA state machine */
2931 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2932 /* 5718 step 52 */
2933 delay(40);
2934
2935 if (sc->bge_flags & BGEF_RDMA_BUG) {
2936 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2937 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2938 if ((val & 0xFFFF) > BGE_FRAMELEN)
2939 break;
2940 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2941 break;
2942 }
2943 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2944 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2945 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2946 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2947 else
2948 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2949 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2950 }
2951 }
2952
2953 /* 5718 step 56, 57XX step 84 */
2954 /* Turn on RX data completion state machine */
2955 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2956
2957 /* Turn on RX data and RX BD initiator state machine */
2958 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2959
2960 /* 57XX step 85 */
2961 /* Turn on Mbuf cluster free state machine */
2962 if (!BGE_IS_5705_PLUS(sc))
2963 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2964
2965 /* 5718 step 57, 57XX step 86 */
2966 /* Turn on send data completion state machine */
2967 val = BGE_SDCMODE_ENABLE;
2968 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2969 val |= BGE_SDCMODE_CDELAY;
2970 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2971
2972 /* 5718 step 58 */
2973 /* Turn on send BD completion state machine */
2974 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2975
2976 /* 57XX step 88 */
2977 /* Turn on RX BD initiator state machine */
2978 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2979
2980 /* 5718 step 60, 57XX step 90 */
2981 /* Turn on send data initiator state machine */
2982 if (sc->bge_flags & BGEF_TSO) {
2983 /* XXX: magic value from Linux driver */
2984 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2985 BGE_SDIMODE_HW_LSO_PRE_DMA);
2986 } else
2987 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2988
2989 /* 5718 step 61, 57XX step 91 */
2990 /* Turn on send BD initiator state machine */
2991 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2992
2993 /* 5718 step 62, 57XX step 92 */
2994 /* Turn on send BD selector state machine */
2995 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2996
2997 /* 5718 step 31, 57XX step 60 */
2998 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2999 /* 5718 step 32, 57XX step 61 */
3000 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3001 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3002
3003 /* ack/clear link change events */
3004 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3005 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3006 BGE_MACSTAT_LINK_CHANGED);
3007 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3008
3009 /*
3010 * Enable attention when the link has changed state for
3011 * devices that use auto polling.
3012 */
3013 if (sc->bge_flags & BGEF_FIBER_TBI) {
3014 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3015 } else {
3016 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3017 mimode = BGE_MIMODE_500KHZ_CONST;
3018 else
3019 mimode = BGE_MIMODE_BASE;
3020 /* 5718 step 68. 5718 step 69 (optionally). */
3021 if (BGE_IS_5700_FAMILY(sc) ||
3022 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3023 mimode |= BGE_MIMODE_AUTOPOLL;
3024 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3025 }
3026 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3027 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3028 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3029 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3030 BGE_EVTENB_MI_INTERRUPT);
3031 }
3032
3033 /*
3034 * Clear any pending link state attention.
3035 * Otherwise some link state change events may be lost until attention
3036 * is cleared by bge_intr() -> bge_link_upd() sequence.
3037 * It's not necessary on newer BCM chips - perhaps enabling link
3038 * state change attentions implies clearing pending attention.
3039 */
3040 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3041 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3042 BGE_MACSTAT_LINK_CHANGED);
3043
3044 /* Enable link state change attentions. */
3045 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3046
3047 return 0;
3048 }
3049
3050 static const struct bge_revision *
3051 bge_lookup_rev(uint32_t chipid)
3052 {
3053 const struct bge_revision *br;
3054
3055 for (br = bge_revisions; br->br_name != NULL; br++) {
3056 if (br->br_chipid == chipid)
3057 return br;
3058 }
3059
3060 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3061 if (br->br_chipid == BGE_ASICREV(chipid))
3062 return br;
3063 }
3064
3065 return NULL;
3066 }
3067
3068 static const struct bge_product *
3069 bge_lookup(const struct pci_attach_args *pa)
3070 {
3071 const struct bge_product *bp;
3072
3073 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3074 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3075 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3076 return bp;
3077 }
3078
3079 return NULL;
3080 }
3081
3082 static uint32_t
3083 bge_chipid(const struct pci_attach_args *pa)
3084 {
3085 uint32_t id;
3086
3087 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3088 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3089
3090 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3091 switch (PCI_PRODUCT(pa->pa_id)) {
3092 case PCI_PRODUCT_BROADCOM_BCM5717:
3093 case PCI_PRODUCT_BROADCOM_BCM5718:
3094 case PCI_PRODUCT_BROADCOM_BCM5719:
3095 case PCI_PRODUCT_BROADCOM_BCM5720:
3096 case PCI_PRODUCT_BROADCOM_BCM5725:
3097 case PCI_PRODUCT_BROADCOM_BCM5727:
3098 case PCI_PRODUCT_BROADCOM_BCM5762:
3099 case PCI_PRODUCT_BROADCOM_BCM57764:
3100 case PCI_PRODUCT_BROADCOM_BCM57767:
3101 case PCI_PRODUCT_BROADCOM_BCM57787:
3102 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3103 BGE_PCI_GEN2_PRODID_ASICREV);
3104 break;
3105 case PCI_PRODUCT_BROADCOM_BCM57761:
3106 case PCI_PRODUCT_BROADCOM_BCM57762:
3107 case PCI_PRODUCT_BROADCOM_BCM57765:
3108 case PCI_PRODUCT_BROADCOM_BCM57766:
3109 case PCI_PRODUCT_BROADCOM_BCM57781:
3110 case PCI_PRODUCT_BROADCOM_BCM57782:
3111 case PCI_PRODUCT_BROADCOM_BCM57785:
3112 case PCI_PRODUCT_BROADCOM_BCM57786:
3113 case PCI_PRODUCT_BROADCOM_BCM57791:
3114 case PCI_PRODUCT_BROADCOM_BCM57795:
3115 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3116 BGE_PCI_GEN15_PRODID_ASICREV);
3117 break;
3118 default:
3119 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3120 BGE_PCI_PRODID_ASICREV);
3121 break;
3122 }
3123 }
3124
3125 return id;
3126 }
3127
3128 /*
3129 * Return true if MSI can be used with this device.
3130 */
3131 static int
3132 bge_can_use_msi(struct bge_softc *sc)
3133 {
3134 int can_use_msi = 0;
3135
3136 switch (BGE_ASICREV(sc->bge_chipid)) {
3137 case BGE_ASICREV_BCM5714_A0:
3138 case BGE_ASICREV_BCM5714:
3139 /*
3140 * Apparently, MSI doesn't work when these chips are
3141 * configured in single-port mode.
3142 */
3143 break;
3144 case BGE_ASICREV_BCM5750:
3145 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3146 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3147 can_use_msi = 1;
3148 break;
3149 default:
3150 if (BGE_IS_575X_PLUS(sc))
3151 can_use_msi = 1;
3152 }
3153 return (can_use_msi);
3154 }
3155
3156 /*
3157 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3158 * against our list and return its name if we find a match. Note
3159 * that since the Broadcom controller contains VPD support, we
3160 * can get the device name string from the controller itself instead
3161 * of the compiled-in string. This is a little slow, but it guarantees
3162 * we'll always announce the right product name.
3163 */
3164 static int
3165 bge_probe(device_t parent, cfdata_t match, void *aux)
3166 {
3167 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3168
3169 if (bge_lookup(pa) != NULL)
3170 return 1;
3171
3172 return 0;
3173 }
3174
3175 static void
3176 bge_attach(device_t parent, device_t self, void *aux)
3177 {
3178 struct bge_softc * const sc = device_private(self);
3179 struct pci_attach_args * const pa = aux;
3180 prop_dictionary_t dict;
3181 const struct bge_product *bp;
3182 const struct bge_revision *br;
3183 pci_chipset_tag_t pc;
3184 const char *intrstr = NULL;
3185 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3186 uint32_t command;
3187 struct ifnet *ifp;
3188 struct mii_data * const mii = &sc->bge_mii;
3189 uint32_t misccfg, mimode, macmode;
3190 void * kva;
3191 u_char eaddr[ETHER_ADDR_LEN];
3192 pcireg_t memtype, subid, reg;
3193 bus_addr_t memaddr;
3194 uint32_t pm_ctl;
3195 bool no_seeprom;
3196 int capmask, trys;
3197 int mii_flags;
3198 int map_flags;
3199 char intrbuf[PCI_INTRSTR_LEN];
3200
3201 bp = bge_lookup(pa);
3202 KASSERT(bp != NULL);
3203
3204 sc->sc_pc = pa->pa_pc;
3205 sc->sc_pcitag = pa->pa_tag;
3206 sc->bge_dev = self;
3207
3208 sc->bge_pa = *pa;
3209 pc = sc->sc_pc;
3210 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3211
3212 aprint_naive(": Ethernet controller\n");
3213 aprint_normal(": %s Ethernet\n", bp->bp_name);
3214
3215 /*
3216 * Map control/status registers.
3217 */
3218 DPRINTFN(5, ("Map control/status regs\n"));
3219 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3220 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3221 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3222 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3223
3224 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3225 aprint_error_dev(sc->bge_dev,
3226 "failed to enable memory mapping!\n");
3227 return;
3228 }
3229
3230 DPRINTFN(5, ("pci_mem_find\n"));
3231 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3232 switch (memtype) {
3233 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3234 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3235 #if 0
3236 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3237 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3238 &memaddr, &sc->bge_bsize) == 0)
3239 break;
3240 #else
3241 /*
3242 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3243 * system get NMI on boot (PR#48451). This problem might not be
3244 * the driver's bug but our PCI common part's bug. Until we
3245 * find a real reason, we ignore the prefetchable bit.
3246 */
3247 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3248 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3249 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3250 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3251 map_flags, &sc->bge_bhandle) == 0) {
3252 sc->bge_btag = pa->pa_memt;
3253 break;
3254 }
3255 }
3256 #endif
3257 /* FALLTHROUGH */
3258 default:
3259 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3260 return;
3261 }
3262
3263 /* Save various chip information. */
3264 sc->bge_chipid = bge_chipid(pa);
3265 sc->bge_phy_addr = bge_phy_addr(sc);
3266
3267 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3268 &sc->bge_pciecap, NULL) != 0) {
3269 /* PCIe */
3270 sc->bge_flags |= BGEF_PCIE;
3271 /* Extract supported maximum payload size. */
3272 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3273 sc->bge_pciecap + PCIE_DCAP);
3274 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3275 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3276 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3277 sc->bge_expmrq = 2048;
3278 else
3279 sc->bge_expmrq = 4096;
3280 bge_set_max_readrq(sc);
3281 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3282 /* PCIe without PCIe cap */
3283 sc->bge_flags |= BGEF_PCIE;
3284 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3285 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3286 /* PCI-X */
3287 sc->bge_flags |= BGEF_PCIX;
3288 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3289 &sc->bge_pcixcap, NULL) == 0)
3290 aprint_error_dev(sc->bge_dev,
3291 "unable to find PCIX capability\n");
3292 }
3293
3294 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3295 /*
3296 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3297 * can clobber the chip's PCI config-space power control
3298 * registers, leaving the card in D3 powersave state. We do
3299 * not have memory-mapped registers in this state, so force
3300 * device into D0 state before starting initialization.
3301 */
3302 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3303 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3304 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3305 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3306 DELAY(1000); /* 27 usec is allegedly sufficient */
3307 }
3308
3309 /* Save chipset family. */
3310 switch (BGE_ASICREV(sc->bge_chipid)) {
3311 case BGE_ASICREV_BCM5717:
3312 case BGE_ASICREV_BCM5719:
3313 case BGE_ASICREV_BCM5720:
3314 sc->bge_flags |= BGEF_5717_PLUS;
3315 /* FALLTHROUGH */
3316 case BGE_ASICREV_BCM5762:
3317 case BGE_ASICREV_BCM57765:
3318 case BGE_ASICREV_BCM57766:
3319 if (!BGE_IS_5717_PLUS(sc))
3320 sc->bge_flags |= BGEF_57765_FAMILY;
3321 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3322 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3323 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3324 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3325 /*
3326 * Enable work around for DMA engine miscalculation
3327 * of TXMBUF available space.
3328 */
3329 sc->bge_flags |= BGEF_RDMA_BUG;
3330
3331 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3332 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3333 /* Jumbo frame on BCM5719 A0 does not work. */
3334 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3335 }
3336 }
3337 break;
3338 case BGE_ASICREV_BCM5755:
3339 case BGE_ASICREV_BCM5761:
3340 case BGE_ASICREV_BCM5784:
3341 case BGE_ASICREV_BCM5785:
3342 case BGE_ASICREV_BCM5787:
3343 case BGE_ASICREV_BCM57780:
3344 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3345 break;
3346 case BGE_ASICREV_BCM5700:
3347 case BGE_ASICREV_BCM5701:
3348 case BGE_ASICREV_BCM5703:
3349 case BGE_ASICREV_BCM5704:
3350 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3351 break;
3352 case BGE_ASICREV_BCM5714_A0:
3353 case BGE_ASICREV_BCM5780:
3354 case BGE_ASICREV_BCM5714:
3355 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3356 /* FALLTHROUGH */
3357 case BGE_ASICREV_BCM5750:
3358 case BGE_ASICREV_BCM5752:
3359 case BGE_ASICREV_BCM5906:
3360 sc->bge_flags |= BGEF_575X_PLUS;
3361 /* FALLTHROUGH */
3362 case BGE_ASICREV_BCM5705:
3363 sc->bge_flags |= BGEF_5705_PLUS;
3364 break;
3365 }
3366
3367 /* Identify chips with APE processor. */
3368 switch (BGE_ASICREV(sc->bge_chipid)) {
3369 case BGE_ASICREV_BCM5717:
3370 case BGE_ASICREV_BCM5719:
3371 case BGE_ASICREV_BCM5720:
3372 case BGE_ASICREV_BCM5761:
3373 case BGE_ASICREV_BCM5762:
3374 sc->bge_flags |= BGEF_APE;
3375 break;
3376 }
3377
3378 /*
3379 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3380 * not actually a MAC controller bug but an issue with the embedded
3381 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3382 */
3383 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3384 sc->bge_flags |= BGEF_40BIT_BUG;
3385
3386 /* Chips with APE need BAR2 access for APE registers/memory. */
3387 if ((sc->bge_flags & BGEF_APE) != 0) {
3388 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3389 #if 0
3390 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3391 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3392 &sc->bge_apesize)) {
3393 aprint_error_dev(sc->bge_dev,
3394 "couldn't map BAR2 memory\n");
3395 return;
3396 }
3397 #else
3398 /*
3399 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3400 * system get NMI on boot (PR#48451). This problem might not be
3401 * the driver's bug but our PCI common part's bug. Until we
3402 * find a real reason, we ignore the prefetchable bit.
3403 */
3404 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3405 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3406 aprint_error_dev(sc->bge_dev,
3407 "couldn't map BAR2 memory\n");
3408 return;
3409 }
3410
3411 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3412 if (bus_space_map(pa->pa_memt, memaddr,
3413 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3414 aprint_error_dev(sc->bge_dev,
3415 "couldn't map BAR2 memory\n");
3416 return;
3417 }
3418 sc->bge_apetag = pa->pa_memt;
3419 #endif
3420
3421 /* Enable APE register/memory access by host driver. */
3422 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3423 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3424 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3425 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3426 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3427
3428 bge_ape_lock_init(sc);
3429 bge_ape_read_fw_ver(sc);
3430 }
3431
3432 /* Identify the chips that use an CPMU. */
3433 if (BGE_IS_5717_PLUS(sc) ||
3434 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3435 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3436 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3437 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3438 sc->bge_flags |= BGEF_CPMU_PRESENT;
3439
3440 /*
3441 * When using the BCM5701 in PCI-X mode, data corruption has
3442 * been observed in the first few bytes of some received packets.
3443 * Aligning the packet buffer in memory eliminates the corruption.
3444 * Unfortunately, this misaligns the packet payloads. On platforms
3445 * which do not support unaligned accesses, we will realign the
3446 * payloads by copying the received packets.
3447 */
3448 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3449 sc->bge_flags & BGEF_PCIX)
3450 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3451
3452 if (BGE_IS_5700_FAMILY(sc))
3453 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3454
3455 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3456 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3457
3458 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3459 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3460 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3461 sc->bge_flags |= BGEF_IS_5788;
3462
3463 /*
3464 * Some controllers seem to require a special firmware to use
3465 * TSO. But the firmware is not available to FreeBSD and Linux
3466 * claims that the TSO performed by the firmware is slower than
3467 * hardware based TSO. Moreover the firmware based TSO has one
3468 * known bug which can't handle TSO if ethernet header + IP/TCP
3469 * header is greater than 80 bytes. The workaround for the TSO
3470 * bug exist but it seems it's too expensive than not using
3471 * TSO at all. Some hardwares also have the TSO bug so limit
3472 * the TSO to the controllers that are not affected TSO issues
3473 * (e.g. 5755 or higher).
3474 */
3475 if (BGE_IS_5755_PLUS(sc)) {
3476 /*
3477 * BCM5754 and BCM5787 shares the same ASIC id so
3478 * explicit device id check is required.
3479 */
3480 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3481 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3482 sc->bge_flags |= BGEF_TSO;
3483 /* TSO on BCM5719 A0 does not work. */
3484 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3485 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3486 sc->bge_flags &= ~BGEF_TSO;
3487 }
3488
3489 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3490 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3491 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3492 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3493 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3494 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3495 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3496 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3497 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3498 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3499 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3500 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3501 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3502 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3503 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3504 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3505 /* These chips are 10/100 only. */
3506 capmask &= ~BMSR_EXTSTAT;
3507 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3508 }
3509
3510 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3511 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3512 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3513 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3514 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3515
3516 /* Set various PHY bug flags. */
3517 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3518 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3519 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3520 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3521 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3522 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3523 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3524 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3525 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3526 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3527 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3528 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3529 if (BGE_IS_5705_PLUS(sc) &&
3530 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3531 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3532 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3533 !BGE_IS_57765_PLUS(sc)) {
3534 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3535 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3536 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3537 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3538 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3539 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3540 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3541 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3542 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3543 } else
3544 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3545 }
3546
3547 /*
3548 * SEEPROM check.
3549 * First check if firmware knows we do not have SEEPROM.
3550 */
3551 if (prop_dictionary_get_bool(device_properties(self),
3552 "without-seeprom", &no_seeprom) && no_seeprom)
3553 sc->bge_flags |= BGEF_NO_EEPROM;
3554
3555 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3556 sc->bge_flags |= BGEF_NO_EEPROM;
3557
3558 /* Now check the 'ROM failed' bit on the RX CPU */
3559 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3560 sc->bge_flags |= BGEF_NO_EEPROM;
3561
3562 sc->bge_asf_mode = 0;
3563 /* No ASF if APE present. */
3564 if ((sc->bge_flags & BGEF_APE) == 0) {
3565 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3566 BGE_SRAM_DATA_SIG_MAGIC)) {
3567 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3568 BGE_HWCFG_ASF) {
3569 sc->bge_asf_mode |= ASF_ENABLE;
3570 sc->bge_asf_mode |= ASF_STACKUP;
3571 if (BGE_IS_575X_PLUS(sc))
3572 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3573 }
3574 }
3575 }
3576
3577 int counts[PCI_INTR_TYPE_SIZE] = {
3578 [PCI_INTR_TYPE_INTX] = 1,
3579 [PCI_INTR_TYPE_MSI] = 1,
3580 [PCI_INTR_TYPE_MSIX] = 1,
3581 };
3582 int max_type = PCI_INTR_TYPE_MSIX;
3583
3584 if (!bge_can_use_msi(sc)) {
3585 /* MSI broken, allow only INTx */
3586 max_type = PCI_INTR_TYPE_INTX;
3587 }
3588
3589 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3590 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3591 return;
3592 }
3593
3594 DPRINTFN(5, ("pci_intr_string\n"));
3595 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3596 sizeof(intrbuf));
3597 DPRINTFN(5, ("pci_intr_establish\n"));
3598 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3599 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3600 if (sc->bge_intrhand == NULL) {
3601 pci_intr_release(pc, sc->bge_pihp, 1);
3602 sc->bge_pihp = NULL;
3603
3604 aprint_error_dev(self, "couldn't establish interrupt");
3605 if (intrstr != NULL)
3606 aprint_error(" at %s", intrstr);
3607 aprint_error("\n");
3608 return;
3609 }
3610 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3611
3612 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3613 case PCI_INTR_TYPE_MSIX:
3614 case PCI_INTR_TYPE_MSI:
3615 KASSERT(bge_can_use_msi(sc));
3616 sc->bge_flags |= BGEF_MSI;
3617 break;
3618 default:
3619 /* nothing to do */
3620 break;
3621 }
3622
3623 /*
3624 * All controllers except BCM5700 supports tagged status but
3625 * we use tagged status only for MSI case on BCM5717. Otherwise
3626 * MSI on BCM5717 does not work.
3627 */
3628 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3629 sc->bge_flags |= BGEF_TAGGED_STATUS;
3630
3631 /*
3632 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3633 * lock in bge_reset().
3634 */
3635 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3636 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3637 delay(1000);
3638 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3639
3640 bge_stop_fw(sc);
3641 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3642 if (bge_reset(sc))
3643 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3644
3645 /*
3646 * Read the hardware config word in the first 32k of NIC internal
3647 * memory, or fall back to the config word in the EEPROM.
3648 * Note: on some BCM5700 cards, this value appears to be unset.
3649 */
3650 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3651 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3652 BGE_SRAM_DATA_SIG_MAGIC) {
3653 uint32_t tmp;
3654
3655 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3656 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3657 BGE_SRAM_DATA_VER_SHIFT;
3658 if ((0 < tmp) && (tmp < 0x100))
3659 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3660 if (sc->bge_flags & BGEF_PCIE)
3661 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3662 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3663 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3664 if (BGE_IS_5717_PLUS(sc))
3665 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3666 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3667 bge_read_eeprom(sc, (void *)&hwcfg,
3668 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3669 hwcfg = be32toh(hwcfg);
3670 }
3671 aprint_normal_dev(sc->bge_dev,
3672 "HW config %08x, %08x, %08x, %08x %08x\n",
3673 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3674
3675 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3676 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3677
3678 if (bge_chipinit(sc)) {
3679 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3680 bge_release_resources(sc);
3681 return;
3682 }
3683
3684 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3685 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3686 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3687 DELAY(100);
3688 }
3689
3690 /* Set MI_MODE */
3691 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3692 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3693 mimode |= BGE_MIMODE_500KHZ_CONST;
3694 else
3695 mimode |= BGE_MIMODE_BASE;
3696 CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3697 DELAY(80);
3698
3699 /*
3700 * Get station address from the EEPROM.
3701 */
3702 if (bge_get_eaddr(sc, eaddr)) {
3703 aprint_error_dev(sc->bge_dev,
3704 "failed to read station address\n");
3705 bge_release_resources(sc);
3706 return;
3707 }
3708
3709 br = bge_lookup_rev(sc->bge_chipid);
3710
3711 if (br == NULL) {
3712 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3713 sc->bge_chipid);
3714 } else {
3715 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3716 br->br_name, sc->bge_chipid);
3717 }
3718 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3719
3720 /* Allocate the general information block and ring buffers. */
3721 if (pci_dma64_available(pa)) {
3722 sc->bge_dmatag = pa->pa_dmat64;
3723 sc->bge_dmatag32 = pa->pa_dmat;
3724 sc->bge_dma64 = true;
3725 } else {
3726 sc->bge_dmatag = pa->pa_dmat;
3727 sc->bge_dmatag32 = pa->pa_dmat;
3728 sc->bge_dma64 = false;
3729 }
3730
3731 /* 40bit DMA workaround */
3732 if (sizeof(bus_addr_t) > 4) {
3733 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3734 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3735
3736 if (bus_dmatag_subregion(olddmatag, 0,
3737 (bus_addr_t)__MASK(40),
3738 &(sc->bge_dmatag), BUS_DMA_NOWAIT) != 0) {
3739 aprint_error_dev(self,
3740 "WARNING: failed to restrict dma range,"
3741 " falling back to parent bus dma range\n");
3742 sc->bge_dmatag = olddmatag;
3743 }
3744 }
3745 }
3746 SLIST_INIT(&sc->txdma_list);
3747 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3748 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3749 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3750 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3751 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3752 return;
3753 }
3754 DPRINTFN(5, ("bus_dmamem_map\n"));
3755 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3756 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3757 BUS_DMA_NOWAIT)) {
3758 aprint_error_dev(sc->bge_dev,
3759 "can't map DMA buffers (%zu bytes)\n",
3760 sizeof(struct bge_ring_data));
3761 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3762 sc->bge_ring_rseg);
3763 return;
3764 }
3765 DPRINTFN(5, ("bus_dmamem_create\n"));
3766 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3767 sizeof(struct bge_ring_data), 0,
3768 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3769 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3770 bus_dmamem_unmap(sc->bge_dmatag, kva,
3771 sizeof(struct bge_ring_data));
3772 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3773 sc->bge_ring_rseg);
3774 return;
3775 }
3776 DPRINTFN(5, ("bus_dmamem_load\n"));
3777 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3778 sizeof(struct bge_ring_data), NULL,
3779 BUS_DMA_NOWAIT)) {
3780 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3781 bus_dmamem_unmap(sc->bge_dmatag, kva,
3782 sizeof(struct bge_ring_data));
3783 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3784 sc->bge_ring_rseg);
3785 return;
3786 }
3787
3788 DPRINTFN(5, ("bzero\n"));
3789 sc->bge_rdata = (struct bge_ring_data *)kva;
3790
3791 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3792
3793 /* Try to allocate memory for jumbo buffers. */
3794 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3795 if (bge_alloc_jumbo_mem(sc)) {
3796 aprint_error_dev(sc->bge_dev,
3797 "jumbo buffer allocation failed\n");
3798 } else
3799 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3800 }
3801
3802 /* Set default tuneable values. */
3803 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3804 sc->bge_rx_coal_ticks = 150;
3805 sc->bge_rx_max_coal_bds = 64;
3806 sc->bge_tx_coal_ticks = 300;
3807 sc->bge_tx_max_coal_bds = 400;
3808 if (BGE_IS_5705_PLUS(sc)) {
3809 sc->bge_tx_coal_ticks = (12 * 5);
3810 sc->bge_tx_max_coal_bds = (12 * 5);
3811 aprint_verbose_dev(sc->bge_dev,
3812 "setting short Tx thresholds\n");
3813 }
3814
3815 if (BGE_IS_5717_PLUS(sc))
3816 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3817 else if (BGE_IS_5705_PLUS(sc))
3818 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3819 else
3820 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3821
3822 /* Set up ifnet structure */
3823 ifp = &sc->ethercom.ec_if;
3824 ifp->if_softc = sc;
3825 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3826 ifp->if_ioctl = bge_ioctl;
3827 ifp->if_stop = bge_stop;
3828 ifp->if_start = bge_start;
3829 ifp->if_init = bge_init;
3830 ifp->if_watchdog = bge_watchdog;
3831 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3832 IFQ_SET_READY(&ifp->if_snd);
3833 DPRINTFN(5, ("strcpy if_xname\n"));
3834 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3835
3836 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3837 sc->ethercom.ec_if.if_capabilities |=
3838 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3839 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3840 sc->ethercom.ec_if.if_capabilities |=
3841 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3842 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3843 #endif
3844 sc->ethercom.ec_capabilities |=
3845 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3846 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3847
3848 if (sc->bge_flags & BGEF_TSO)
3849 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3850
3851 /*
3852 * Do MII setup.
3853 */
3854 DPRINTFN(5, ("mii setup\n"));
3855 mii->mii_ifp = ifp;
3856 mii->mii_readreg = bge_miibus_readreg;
3857 mii->mii_writereg = bge_miibus_writereg;
3858 mii->mii_statchg = bge_miibus_statchg;
3859
3860 /*
3861 * Figure out what sort of media we have by checking the hardware
3862 * config word. Note: on some BCM5700 cards, this value appears to be
3863 * unset. If that's the case, we have to rely on identifying the NIC
3864 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3865 * The SysKonnect SK-9D41 is a 1000baseSX card.
3866 */
3867 if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3868 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3869 if (BGE_IS_5705_PLUS(sc)) {
3870 sc->bge_flags |= BGEF_FIBER_MII;
3871 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3872 } else
3873 sc->bge_flags |= BGEF_FIBER_TBI;
3874 }
3875
3876 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3877 if (BGE_IS_JUMBO_CAPABLE(sc))
3878 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3879
3880 /* set phyflags and chipid before mii_attach() */
3881 dict = device_properties(self);
3882 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3883 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3884
3885 macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3886 macmode &= ~BGE_MACMODE_PORTMODE;
3887 /* Initialize ifmedia structures. */
3888 if (sc->bge_flags & BGEF_FIBER_TBI) {
3889 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3890 macmode | BGE_PORTMODE_TBI);
3891 DELAY(40);
3892
3893 sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
3894 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3895 bge_ifmedia_sts);
3896 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3897 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3898 0, NULL);
3899 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3900 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3901 /* Pretend the user requested this setting */
3902 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3903 } else {
3904 uint16_t phyreg;
3905 int rv;
3906 /*
3907 * Do transceiver setup and tell the firmware the
3908 * driver is down so we can try to get access the
3909 * probe if ASF is running. Retry a couple of times
3910 * if we get a conflict with the ASF firmware accessing
3911 * the PHY.
3912 */
3913 if (sc->bge_flags & BGEF_FIBER_MII)
3914 macmode |= BGE_PORTMODE_GMII;
3915 else
3916 macmode |= BGE_PORTMODE_MII;
3917 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3918 DELAY(40);
3919
3920 /*
3921 * Do transceiver setup and tell the firmware the
3922 * driver is down so we can try to get access the
3923 * probe if ASF is running. Retry a couple of times
3924 * if we get a conflict with the ASF firmware accessing
3925 * the PHY.
3926 */
3927 trys = 0;
3928 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3929 sc->ethercom.ec_mii = mii;
3930 ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3931 bge_ifmedia_sts);
3932 mii_flags = MIIF_DOPAUSE;
3933 if (sc->bge_flags & BGEF_FIBER_MII)
3934 mii_flags |= MIIF_HAVEFIBER;
3935 again:
3936 bge_asf_driver_up(sc);
3937 rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
3938 MII_BMCR, &phyreg);
3939 if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
3940 int i;
3941
3942 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
3943 MII_BMCR, BMCR_RESET);
3944 /* Wait up to 500ms for it to complete. */
3945 for (i = 0; i < 500; i++) {
3946 bge_miibus_readreg(sc->bge_dev,
3947 sc->bge_phy_addr, MII_BMCR, &phyreg);
3948 if ((phyreg & BMCR_RESET) == 0)
3949 break;
3950 DELAY(1000);
3951 }
3952 }
3953
3954 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
3955 MII_OFFSET_ANY, mii_flags);
3956
3957 if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
3958 goto again;
3959
3960 if (LIST_EMPTY(&mii->mii_phys)) {
3961 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3962 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
3963 0, NULL);
3964 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
3965 } else
3966 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
3967
3968 /*
3969 * Now tell the firmware we are going up after probing the PHY
3970 */
3971 if (sc->bge_asf_mode & ASF_STACKUP)
3972 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3973 }
3974
3975 /*
3976 * Call MI attach routine.
3977 */
3978 DPRINTFN(5, ("if_attach\n"));
3979 if_attach(ifp);
3980 if_deferred_start_init(ifp, NULL);
3981 DPRINTFN(5, ("ether_ifattach\n"));
3982 ether_ifattach(ifp, eaddr);
3983 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3984 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3985 RND_TYPE_NET, RND_FLAG_DEFAULT);
3986 #ifdef BGE_EVENT_COUNTERS
3987 /*
3988 * Attach event counters.
3989 */
3990 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3991 NULL, device_xname(sc->bge_dev), "intr");
3992 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3993 NULL, device_xname(sc->bge_dev), "intr_spurious");
3994 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3995 NULL, device_xname(sc->bge_dev), "intr_spurious2");
3996 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3997 NULL, device_xname(sc->bge_dev), "tx_xoff");
3998 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3999 NULL, device_xname(sc->bge_dev), "tx_xon");
4000 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4001 NULL, device_xname(sc->bge_dev), "rx_xoff");
4002 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4003 NULL, device_xname(sc->bge_dev), "rx_xon");
4004 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4005 NULL, device_xname(sc->bge_dev), "rx_macctl");
4006 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4007 NULL, device_xname(sc->bge_dev), "xoffentered");
4008 #endif /* BGE_EVENT_COUNTERS */
4009 DPRINTFN(5, ("callout_init\n"));
4010 callout_init(&sc->bge_timeout, 0);
4011 callout_setfunc(&sc->bge_timeout, bge_tick, sc);
4012
4013 if (pmf_device_register(self, NULL, NULL))
4014 pmf_class_network_register(self, ifp);
4015 else
4016 aprint_error_dev(self, "couldn't establish power handler\n");
4017
4018 bge_sysctl_init(sc);
4019
4020 #ifdef BGE_DEBUG
4021 bge_debug_info(sc);
4022 #endif
4023 }
4024
4025 /*
4026 * Stop all chip I/O so that the kernel's probe routines don't
4027 * get confused by errant DMAs when rebooting.
4028 */
4029 static int
4030 bge_detach(device_t self, int flags __unused)
4031 {
4032 struct bge_softc * const sc = device_private(self);
4033 struct ifnet * const ifp = &sc->ethercom.ec_if;
4034 int s;
4035
4036 s = splnet();
4037 /* Stop the interface. Callouts are stopped in it. */
4038 bge_stop(ifp, 1);
4039 splx(s);
4040
4041 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4042
4043 ether_ifdetach(ifp);
4044 if_detach(ifp);
4045
4046 /* Delete all remaining media. */
4047 ifmedia_fini(&sc->bge_mii.mii_media);
4048
4049 bge_release_resources(sc);
4050
4051 return 0;
4052 }
4053
4054 static void
4055 bge_release_resources(struct bge_softc *sc)
4056 {
4057
4058 /* Detach sysctl */
4059 if (sc->bge_log != NULL)
4060 sysctl_teardown(&sc->bge_log);
4061
4062 #ifdef BGE_EVENT_COUNTERS
4063 /* Detach event counters. */
4064 evcnt_detach(&sc->bge_ev_intr);
4065 evcnt_detach(&sc->bge_ev_intr_spurious);
4066 evcnt_detach(&sc->bge_ev_intr_spurious2);
4067 evcnt_detach(&sc->bge_ev_tx_xoff);
4068 evcnt_detach(&sc->bge_ev_tx_xon);
4069 evcnt_detach(&sc->bge_ev_rx_xoff);
4070 evcnt_detach(&sc->bge_ev_rx_xon);
4071 evcnt_detach(&sc->bge_ev_rx_macctl);
4072 evcnt_detach(&sc->bge_ev_xoffentered);
4073 #endif /* BGE_EVENT_COUNTERS */
4074
4075 /* Disestablish the interrupt handler */
4076 if (sc->bge_intrhand != NULL) {
4077 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4078 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4079 sc->bge_intrhand = NULL;
4080 }
4081
4082 if (sc->bge_dmatag != NULL) {
4083 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4084 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4085 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4086 sizeof(struct bge_ring_data));
4087 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4088 sc->bge_ring_rseg);
4089 }
4090
4091 /* Unmap the device registers */
4092 if (sc->bge_bsize != 0) {
4093 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4094 sc->bge_bsize = 0;
4095 }
4096
4097 /* Unmap the APE registers */
4098 if (sc->bge_apesize != 0) {
4099 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4100 sc->bge_apesize);
4101 sc->bge_apesize = 0;
4102 }
4103 }
4104
4105 static int
4106 bge_reset(struct bge_softc *sc)
4107 {
4108 uint32_t cachesize, command;
4109 uint32_t reset, mac_mode, mac_mode_mask;
4110 pcireg_t devctl, reg;
4111 int i, val;
4112 void (*write_op)(struct bge_softc *, int, int);
4113
4114 /* Make mask for BGE_MAC_MODE register. */
4115 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4116 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4117 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4118 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4119 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4120
4121 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4122 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4123 if (sc->bge_flags & BGEF_PCIE)
4124 write_op = bge_writemem_direct;
4125 else
4126 write_op = bge_writemem_ind;
4127 } else
4128 write_op = bge_writereg_ind;
4129
4130 /* 57XX step 4 */
4131 /* Acquire the NVM lock */
4132 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4133 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4134 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4135 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4136 for (i = 0; i < 8000; i++) {
4137 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4138 BGE_NVRAMSWARB_GNT1)
4139 break;
4140 DELAY(20);
4141 }
4142 if (i == 8000) {
4143 printf("%s: NVRAM lock timedout!\n",
4144 device_xname(sc->bge_dev));
4145 }
4146 }
4147
4148 /* Take APE lock when performing reset. */
4149 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4150
4151 /* 57XX step 3 */
4152 /* Save some important PCI state. */
4153 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4154 /* 5718 reset step 3 */
4155 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4156
4157 /* 5718 reset step 5, 57XX step 5b-5d */
4158 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4159 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4160 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4161
4162 /* XXX ???: Disable fastboot on controllers that support it. */
4163 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4164 BGE_IS_5755_PLUS(sc))
4165 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4166
4167 /* 5718 reset step 2, 57XX step 6 */
4168 /*
4169 * Write the magic number to SRAM at offset 0xB50.
4170 * When firmware finishes its initialization it will
4171 * write ~BGE_MAGIC_NUMBER to the same location.
4172 */
4173 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4174
4175 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4176 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4177 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4178 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4179 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4180 }
4181
4182 /* 5718 reset step 6, 57XX step 7 */
4183 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4184 /*
4185 * XXX: from FreeBSD/Linux; no documentation
4186 */
4187 if (sc->bge_flags & BGEF_PCIE) {
4188 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4189 !BGE_IS_57765_PLUS(sc) &&
4190 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4191 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4192 /* PCI Express 1.0 system */
4193 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4194 BGE_PHY_PCIE_SCRAM_MODE);
4195 }
4196 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4197 /*
4198 * Prevent PCI Express link training
4199 * during global reset.
4200 */
4201 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4202 reset |= (1 << 29);
4203 }
4204 }
4205
4206 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4207 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4208 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4209 i | BGE_VCPU_STATUS_DRV_RESET);
4210 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4211 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4212 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4213 }
4214
4215 /*
4216 * Set GPHY Power Down Override to leave GPHY
4217 * powered up in D0 uninitialized.
4218 */
4219 if (BGE_IS_5705_PLUS(sc) &&
4220 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4221 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4222
4223 /* Issue global reset */
4224 write_op(sc, BGE_MISC_CFG, reset);
4225
4226 /* 5718 reset step 7, 57XX step 8 */
4227 if (sc->bge_flags & BGEF_PCIE)
4228 delay(100*1000); /* too big */
4229 else
4230 delay(1000);
4231
4232 if (sc->bge_flags & BGEF_PCIE) {
4233 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4234 DELAY(500000);
4235 /* XXX: Magic Numbers */
4236 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4237 BGE_PCI_UNKNOWN0);
4238 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4239 BGE_PCI_UNKNOWN0,
4240 reg | (1 << 15));
4241 }
4242 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4243 sc->bge_pciecap + PCIE_DCSR);
4244 /* Clear enable no snoop and disable relaxed ordering. */
4245 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4246 PCIE_DCSR_ENA_NO_SNOOP);
4247
4248 /* Set PCIE max payload size to 128 for older PCIe devices */
4249 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4250 devctl &= ~(0x00e0);
4251 /* Clear device status register. Write 1b to clear */
4252 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4253 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4254 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4255 sc->bge_pciecap + PCIE_DCSR, devctl);
4256 bge_set_max_readrq(sc);
4257 }
4258
4259 /* From Linux: dummy read to flush PCI posted writes */
4260 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4261
4262 /*
4263 * Reset some of the PCI state that got zapped by reset
4264 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4265 * set, too.
4266 */
4267 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4268 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4269 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4270 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4271 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4272 (sc->bge_flags & BGEF_PCIX) != 0)
4273 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4274 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4275 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4276 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4277 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4278 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4279 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4280 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4281
4282 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4283 if (sc->bge_flags & BGEF_PCIX) {
4284 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4285 + PCIX_CMD);
4286 /* Set max memory read byte count to 2K */
4287 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4288 reg &= ~PCIX_CMD_BYTECNT_MASK;
4289 reg |= PCIX_CMD_BCNT_2048;
4290 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4291 /*
4292 * For 5704, set max outstanding split transaction
4293 * field to 0 (0 means it supports 1 request)
4294 */
4295 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4296 | PCIX_CMD_BYTECNT_MASK);
4297 reg |= PCIX_CMD_BCNT_2048;
4298 }
4299 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4300 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4301 }
4302
4303 /* 5718 reset step 10, 57XX step 12 */
4304 /* Enable memory arbiter. */
4305 if (BGE_IS_5714_FAMILY(sc)) {
4306 val = CSR_READ_4(sc, BGE_MARB_MODE);
4307 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4308 } else
4309 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4310
4311 /* XXX 5721, 5751 and 5752 */
4312 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4313 /* Step 19: */
4314 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4315 /* Step 20: */
4316 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4317 }
4318
4319 /* 5718 reset step 12, 57XX step 15 and 16 */
4320 /* Fix up byte swapping */
4321 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4322
4323 /* 5718 reset step 13, 57XX step 17 */
4324 /* Poll until the firmware initialization is complete */
4325 bge_poll_fw(sc);
4326
4327 /* 57XX step 21 */
4328 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4329 pcireg_t msidata;
4330
4331 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4332 BGE_PCI_MSI_DATA);
4333 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4334 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4335 msidata);
4336 }
4337
4338 /* 57XX step 18 */
4339 /* Write mac mode. */
4340 val = CSR_READ_4(sc, BGE_MAC_MODE);
4341 /* Restore mac_mode_mask's bits using mac_mode */
4342 val = (val & ~mac_mode_mask) | mac_mode;
4343 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4344 DELAY(40);
4345
4346 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4347
4348 /*
4349 * The 5704 in TBI mode apparently needs some special
4350 * adjustment to insure the SERDES drive level is set
4351 * to 1.2V.
4352 */
4353 if (sc->bge_flags & BGEF_FIBER_TBI &&
4354 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4355 uint32_t serdescfg;
4356
4357 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4358 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4359 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4360 }
4361
4362 if (sc->bge_flags & BGEF_PCIE &&
4363 !BGE_IS_57765_PLUS(sc) &&
4364 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4365 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4366 uint32_t v;
4367
4368 /* Enable PCI Express bug fix */
4369 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4370 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4371 v | BGE_TLP_DATA_FIFO_PROTECT);
4372 }
4373
4374 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4375 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4376 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4377
4378 return 0;
4379 }
4380
4381 /*
4382 * Frame reception handling. This is called if there's a frame
4383 * on the receive return list.
4384 *
4385 * Note: we have to be able to handle two possibilities here:
4386 * 1) the frame is from the jumbo receive ring
4387 * 2) the frame is from the standard receive ring
4388 */
4389
4390 static void
4391 bge_rxeof(struct bge_softc *sc)
4392 {
4393 struct ifnet *ifp;
4394 uint16_t rx_prod, rx_cons;
4395 int stdcnt = 0, jumbocnt = 0;
4396 bus_dmamap_t dmamap;
4397 bus_addr_t offset, toff;
4398 bus_size_t tlen;
4399 int tosync;
4400
4401 rx_cons = sc->bge_rx_saved_considx;
4402 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4403
4404 /* Nothing to do */
4405 if (rx_cons == rx_prod)
4406 return;
4407
4408 ifp = &sc->ethercom.ec_if;
4409
4410 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4411 offsetof(struct bge_ring_data, bge_status_block),
4412 sizeof (struct bge_status_block),
4413 BUS_DMASYNC_POSTREAD);
4414
4415 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4416 tosync = rx_prod - rx_cons;
4417
4418 if (tosync != 0)
4419 rnd_add_uint32(&sc->rnd_source, tosync);
4420
4421 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4422
4423 if (tosync < 0) {
4424 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4425 sizeof (struct bge_rx_bd);
4426 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4427 toff, tlen, BUS_DMASYNC_POSTREAD);
4428 tosync = -tosync;
4429 }
4430
4431 if (tosync != 0) {
4432 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4433 offset, tosync * sizeof (struct bge_rx_bd),
4434 BUS_DMASYNC_POSTREAD);
4435 }
4436
4437 while (rx_cons != rx_prod) {
4438 struct bge_rx_bd *cur_rx;
4439 uint32_t rxidx;
4440 struct mbuf *m = NULL;
4441
4442 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4443
4444 rxidx = cur_rx->bge_idx;
4445 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4446
4447 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4448 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4449 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4450 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4451 jumbocnt++;
4452 bus_dmamap_sync(sc->bge_dmatag,
4453 sc->bge_cdata.bge_rx_jumbo_map,
4454 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4455 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4456 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4457 if_statinc(ifp, if_ierrors);
4458 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4459 continue;
4460 }
4461 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4462 NULL)== ENOBUFS) {
4463 if_statinc(ifp, if_ierrors);
4464 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4465 continue;
4466 }
4467 } else {
4468 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4469 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4470
4471 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4472 stdcnt++;
4473 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4474 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4475 if (dmamap == NULL) {
4476 if_statinc(ifp, if_ierrors);
4477 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4478 continue;
4479 }
4480 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4481 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4482 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4483 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4484 if_statinc(ifp, if_ierrors);
4485 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4486 continue;
4487 }
4488 if (bge_newbuf_std(sc, sc->bge_std,
4489 NULL, dmamap) == ENOBUFS) {
4490 if_statinc(ifp, if_ierrors);
4491 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4492 continue;
4493 }
4494 }
4495
4496 #ifndef __NO_STRICT_ALIGNMENT
4497 /*
4498 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4499 * the Rx buffer has the layer-2 header unaligned.
4500 * If our CPU requires alignment, re-align by copying.
4501 */
4502 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4503 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4504 cur_rx->bge_len);
4505 m->m_data += ETHER_ALIGN;
4506 }
4507 #endif
4508
4509 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4510 m_set_rcvif(m, ifp);
4511
4512 bge_rxcsum(sc, cur_rx, m);
4513
4514 /*
4515 * If we received a packet with a vlan tag, pass it
4516 * to vlan_input() instead of ether_input().
4517 */
4518 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4519 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4520
4521 if_percpuq_enqueue(ifp->if_percpuq, m);
4522 }
4523
4524 sc->bge_rx_saved_considx = rx_cons;
4525 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4526 if (stdcnt)
4527 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4528 if (jumbocnt)
4529 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4530 }
4531
4532 static void
4533 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4534 {
4535
4536 if (BGE_IS_57765_PLUS(sc)) {
4537 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4538 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4539 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4540 if ((cur_rx->bge_error_flag &
4541 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4542 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4543 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4544 m->m_pkthdr.csum_data =
4545 cur_rx->bge_tcp_udp_csum;
4546 m->m_pkthdr.csum_flags |=
4547 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4548 }
4549 }
4550 } else {
4551 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4552 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4553 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4554 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4555 /*
4556 * Rx transport checksum-offload may also
4557 * have bugs with packets which, when transmitted,
4558 * were `runts' requiring padding.
4559 */
4560 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4561 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4562 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4563 m->m_pkthdr.csum_data =
4564 cur_rx->bge_tcp_udp_csum;
4565 m->m_pkthdr.csum_flags |=
4566 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4567 }
4568 }
4569 }
4570
4571 static void
4572 bge_txeof(struct bge_softc *sc)
4573 {
4574 struct bge_tx_bd *cur_tx = NULL;
4575 struct ifnet *ifp;
4576 struct txdmamap_pool_entry *dma;
4577 bus_addr_t offset, toff;
4578 bus_size_t tlen;
4579 int tosync;
4580 struct mbuf *m;
4581
4582 ifp = &sc->ethercom.ec_if;
4583
4584 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4585 offsetof(struct bge_ring_data, bge_status_block),
4586 sizeof (struct bge_status_block),
4587 BUS_DMASYNC_POSTREAD);
4588
4589 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4590 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4591 sc->bge_tx_saved_considx;
4592
4593 if (tosync != 0)
4594 rnd_add_uint32(&sc->rnd_source, tosync);
4595
4596 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4597
4598 if (tosync < 0) {
4599 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4600 sizeof (struct bge_tx_bd);
4601 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4602 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4603 tosync = -tosync;
4604 }
4605
4606 if (tosync != 0) {
4607 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4608 offset, tosync * sizeof (struct bge_tx_bd),
4609 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4610 }
4611
4612 /*
4613 * Go through our tx ring and free mbufs for those
4614 * frames that have been sent.
4615 */
4616 while (sc->bge_tx_saved_considx !=
4617 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4618 uint32_t idx = 0;
4619
4620 idx = sc->bge_tx_saved_considx;
4621 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4622 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4623 if_statinc(ifp, if_opackets);
4624 m = sc->bge_cdata.bge_tx_chain[idx];
4625 if (m != NULL) {
4626 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4627 dma = sc->txdma[idx];
4628 if (dma->is_dma32) {
4629 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4630 0, dma->dmamap32->dm_mapsize,
4631 BUS_DMASYNC_POSTWRITE);
4632 bus_dmamap_unload(
4633 sc->bge_dmatag32, dma->dmamap32);
4634 } else {
4635 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4636 0, dma->dmamap->dm_mapsize,
4637 BUS_DMASYNC_POSTWRITE);
4638 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4639 }
4640 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4641 sc->txdma[idx] = NULL;
4642
4643 m_freem(m);
4644 }
4645 sc->bge_txcnt--;
4646 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4647 ifp->if_timer = 0;
4648 }
4649
4650 if (cur_tx != NULL)
4651 ifp->if_flags &= ~IFF_OACTIVE;
4652 }
4653
4654 static int
4655 bge_intr(void *xsc)
4656 {
4657 struct bge_softc * const sc = xsc;
4658 struct ifnet * const ifp = &sc->ethercom.ec_if;
4659 uint32_t pcistate, statusword, statustag;
4660 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4661
4662
4663 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4664 if (BGE_IS_5717_PLUS(sc))
4665 intrmask = 0;
4666
4667 /* It is possible for the interrupt to arrive before
4668 * the status block is updated prior to the interrupt.
4669 * Reading the PCI State register will confirm whether the
4670 * interrupt is ours and will flush the status block.
4671 */
4672 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4673
4674 /* read status word from status block */
4675 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4676 offsetof(struct bge_ring_data, bge_status_block),
4677 sizeof (struct bge_status_block),
4678 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4679 statusword = sc->bge_rdata->bge_status_block.bge_status;
4680 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4681
4682 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4683 if (sc->bge_lasttag == statustag &&
4684 (~pcistate & intrmask)) {
4685 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4686 return (0);
4687 }
4688 sc->bge_lasttag = statustag;
4689 } else {
4690 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4691 !(~pcistate & intrmask)) {
4692 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4693 return (0);
4694 }
4695 statustag = 0;
4696 }
4697 /* Ack interrupt and stop others from occurring. */
4698 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4699 BGE_EVCNT_INCR(sc->bge_ev_intr);
4700
4701 /* clear status word */
4702 sc->bge_rdata->bge_status_block.bge_status = 0;
4703
4704 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4705 offsetof(struct bge_ring_data, bge_status_block),
4706 sizeof (struct bge_status_block),
4707 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4708
4709 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4710 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4711 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4712 bge_link_upd(sc);
4713
4714 if (ifp->if_flags & IFF_RUNNING) {
4715 /* Check RX return ring producer/consumer */
4716 bge_rxeof(sc);
4717
4718 /* Check TX ring producer/consumer */
4719 bge_txeof(sc);
4720 }
4721
4722 if (sc->bge_pending_rxintr_change) {
4723 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4724 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4725
4726 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4727 DELAY(10);
4728 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4729
4730 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4731 DELAY(10);
4732 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4733
4734 sc->bge_pending_rxintr_change = 0;
4735 }
4736 bge_handle_events(sc);
4737
4738 /* Re-enable interrupts. */
4739 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4740
4741 if (ifp->if_flags & IFF_RUNNING)
4742 if_schedule_deferred_start(ifp);
4743
4744 return 1;
4745 }
4746
4747 static void
4748 bge_asf_driver_up(struct bge_softc *sc)
4749 {
4750 if (sc->bge_asf_mode & ASF_STACKUP) {
4751 /* Send ASF heartbeat aprox. every 2s */
4752 if (sc->bge_asf_count)
4753 sc->bge_asf_count --;
4754 else {
4755 sc->bge_asf_count = 2;
4756
4757 bge_wait_for_event_ack(sc);
4758
4759 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4760 BGE_FW_CMD_DRV_ALIVE3);
4761 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4762 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4763 BGE_FW_HB_TIMEOUT_SEC);
4764 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4765 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4766 BGE_RX_CPU_DRV_EVENT);
4767 }
4768 }
4769 }
4770
4771 static void
4772 bge_tick(void *xsc)
4773 {
4774 struct bge_softc * const sc = xsc;
4775 struct mii_data * const mii = &sc->bge_mii;
4776 int s;
4777
4778 s = splnet();
4779
4780 if (BGE_IS_5705_PLUS(sc))
4781 bge_stats_update_regs(sc);
4782 else
4783 bge_stats_update(sc);
4784
4785 if (sc->bge_flags & BGEF_FIBER_TBI) {
4786 /*
4787 * Since in TBI mode auto-polling can't be used we should poll
4788 * link status manually. Here we register pending link event
4789 * and trigger interrupt.
4790 */
4791 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4792 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4793 } else {
4794 /*
4795 * Do not touch PHY if we have link up. This could break
4796 * IPMI/ASF mode or produce extra input errors.
4797 * (extra input errors was reported for bcm5701 & bcm5704).
4798 */
4799 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4800 mii_tick(mii);
4801 }
4802
4803 bge_asf_driver_up(sc);
4804
4805 if (!sc->bge_detaching)
4806 callout_schedule(&sc->bge_timeout, hz);
4807
4808 splx(s);
4809 }
4810
4811 static void
4812 bge_stats_update_regs(struct bge_softc *sc)
4813 {
4814 struct ifnet *const ifp = &sc->ethercom.ec_if;
4815
4816 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4817
4818 if_statadd_ref(nsr, if_collisions,
4819 CSR_READ_4(sc, BGE_MAC_STATS +
4820 offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
4821
4822 /*
4823 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4824 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4825 * (silicon bug). There's no reliable workaround so just
4826 * ignore the counter
4827 */
4828 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4829 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4830 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4831 if_statadd_ref(nsr, if_ierrors,
4832 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4833 }
4834 if_statadd_ref(nsr, if_ierrors,
4835 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
4836 if_statadd_ref(nsr, if_ierrors,
4837 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
4838
4839 IF_STAT_PUTREF(ifp);
4840
4841 if (sc->bge_flags & BGEF_RDMA_BUG) {
4842 uint32_t val, ucast, mcast, bcast;
4843
4844 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4845 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4846 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4847 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4848 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4849 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4850
4851 /*
4852 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4853 * frames, it's safe to disable workaround for DMA engine's
4854 * miscalculation of TXMBUF space.
4855 */
4856 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4857 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4858 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4859 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4860 else
4861 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4862 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4863 sc->bge_flags &= ~BGEF_RDMA_BUG;
4864 }
4865 }
4866 }
4867
4868 static void
4869 bge_stats_update(struct bge_softc *sc)
4870 {
4871 struct ifnet * const ifp = &sc->ethercom.ec_if;
4872 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4873
4874 #define READ_STAT(sc, stats, stat) \
4875 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4876
4877 uint64_t collisions =
4878 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4879 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4880 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4881 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
4882
4883 if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
4884 sc->bge_if_collisions = collisions;
4885
4886
4887 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4888 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4889 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4890 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4891 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4892 READ_STAT(sc, stats,
4893 xoffPauseFramesReceived.bge_addr_lo));
4894 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4895 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4896 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4897 READ_STAT(sc, stats,
4898 macControlFramesReceived.bge_addr_lo));
4899 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4900 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4901
4902 #undef READ_STAT
4903
4904 #ifdef notdef
4905 ifp->if_collisions +=
4906 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4907 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4908 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4909 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4910 ifp->if_collisions;
4911 #endif
4912 }
4913
4914 /*
4915 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4916 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4917 * but when such padded frames employ the bge IP/TCP checksum offload,
4918 * the hardware checksum assist gives incorrect results (possibly
4919 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4920 * If we pad such runts with zeros, the onboard checksum comes out correct.
4921 */
4922 static inline int
4923 bge_cksum_pad(struct mbuf *pkt)
4924 {
4925 struct mbuf *last = NULL;
4926 int padlen;
4927
4928 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4929
4930 /* if there's only the packet-header and we can pad there, use it. */
4931 if (pkt->m_pkthdr.len == pkt->m_len &&
4932 M_TRAILINGSPACE(pkt) >= padlen) {
4933 last = pkt;
4934 } else {
4935 /*
4936 * Walk packet chain to find last mbuf. We will either
4937 * pad there, or append a new mbuf and pad it
4938 * (thus perhaps avoiding the bcm5700 dma-min bug).
4939 */
4940 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4941 continue; /* do nothing */
4942 }
4943
4944 /* `last' now points to last in chain. */
4945 if (M_TRAILINGSPACE(last) < padlen) {
4946 /* Allocate new empty mbuf, pad it. Compact later. */
4947 struct mbuf *n;
4948 MGET(n, M_DONTWAIT, MT_DATA);
4949 if (n == NULL)
4950 return ENOBUFS;
4951 n->m_len = 0;
4952 last->m_next = n;
4953 last = n;
4954 }
4955 }
4956
4957 KDASSERT(!M_READONLY(last));
4958 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4959
4960 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4961 memset(mtod(last, char *) + last->m_len, 0, padlen);
4962 last->m_len += padlen;
4963 pkt->m_pkthdr.len += padlen;
4964 return 0;
4965 }
4966
4967 /*
4968 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4969 */
4970 static inline int
4971 bge_compact_dma_runt(struct mbuf *pkt)
4972 {
4973 struct mbuf *m, *prev;
4974 int totlen;
4975
4976 prev = NULL;
4977 totlen = 0;
4978
4979 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
4980 int mlen = m->m_len;
4981 int shortfall = 8 - mlen ;
4982
4983 totlen += mlen;
4984 if (mlen == 0)
4985 continue;
4986 if (mlen >= 8)
4987 continue;
4988
4989 /* If we get here, mbuf data is too small for DMA engine.
4990 * Try to fix by shuffling data to prev or next in chain.
4991 * If that fails, do a compacting deep-copy of the whole chain.
4992 */
4993
4994 /* Internal frag. If fits in prev, copy it there. */
4995 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4996 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4997 prev->m_len += mlen;
4998 m->m_len = 0;
4999 /* XXX stitch chain */
5000 prev->m_next = m_free(m);
5001 m = prev;
5002 continue;
5003 } else if (m->m_next != NULL &&
5004 M_TRAILINGSPACE(m) >= shortfall &&
5005 m->m_next->m_len >= (8 + shortfall)) {
5006 /* m is writable and have enough data in next, pull up. */
5007
5008 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5009 shortfall);
5010 m->m_len += shortfall;
5011 m->m_next->m_len -= shortfall;
5012 m->m_next->m_data += shortfall;
5013 } else if (m->m_next == NULL || 1) {
5014 /* Got a runt at the very end of the packet.
5015 * borrow data from the tail of the preceding mbuf and
5016 * update its length in-place. (The original data is
5017 * still valid, so we can do this even if prev is not
5018 * writable.)
5019 */
5020
5021 /*
5022 * If we'd make prev a runt, just move all of its data.
5023 */
5024 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5025 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5026
5027 if ((prev->m_len - shortfall) < 8)
5028 shortfall = prev->m_len;
5029
5030 #ifdef notyet /* just do the safe slow thing for now */
5031 if (!M_READONLY(m)) {
5032 if (M_LEADINGSPACE(m) < shorfall) {
5033 void *m_dat;
5034 m_dat = M_BUFADDR(m);
5035 memmove(m_dat, mtod(m, void*),
5036 m->m_len);
5037 m->m_data = m_dat;
5038 }
5039 } else
5040 #endif /* just do the safe slow thing */
5041 {
5042 struct mbuf * n = NULL;
5043 int newprevlen = prev->m_len - shortfall;
5044
5045 MGET(n, M_NOWAIT, MT_DATA);
5046 if (n == NULL)
5047 return ENOBUFS;
5048 KASSERT(m->m_len + shortfall < MLEN
5049 /*,
5050 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5051
5052 /* first copy the data we're stealing from prev */
5053 memcpy(n->m_data, prev->m_data + newprevlen,
5054 shortfall);
5055
5056 /* update prev->m_len accordingly */
5057 prev->m_len -= shortfall;
5058
5059 /* copy data from runt m */
5060 memcpy(n->m_data + shortfall, m->m_data,
5061 m->m_len);
5062
5063 /* n holds what we stole from prev, plus m */
5064 n->m_len = shortfall + m->m_len;
5065
5066 /* stitch n into chain and free m */
5067 n->m_next = m->m_next;
5068 prev->m_next = n;
5069 /* KASSERT(m->m_next == NULL); */
5070 m->m_next = NULL;
5071 m_free(m);
5072 m = n; /* for continuing loop */
5073 }
5074 }
5075 }
5076 return 0;
5077 }
5078
5079 /*
5080 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5081 * pointers to descriptors.
5082 */
5083 static int
5084 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5085 {
5086 struct ifnet * const ifp = &sc->ethercom.ec_if;
5087 struct bge_tx_bd *f, *prev_f;
5088 uint32_t frag, cur;
5089 uint16_t csum_flags = 0;
5090 uint16_t txbd_tso_flags = 0;
5091 struct txdmamap_pool_entry *dma;
5092 bus_dmamap_t dmamap;
5093 bus_dma_tag_t dmatag;
5094 int i = 0;
5095 int use_tso, maxsegsize, error;
5096 bool have_vtag;
5097 uint16_t vtag;
5098 bool remap;
5099
5100 if (m_head->m_pkthdr.csum_flags) {
5101 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5102 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5103 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5104 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5105 }
5106
5107 /*
5108 * If we were asked to do an outboard checksum, and the NIC
5109 * has the bug where it sometimes adds in the Ethernet padding,
5110 * explicitly pad with zeros so the cksum will be correct either way.
5111 * (For now, do this for all chip versions, until newer
5112 * are confirmed to not require the workaround.)
5113 */
5114 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5115 #ifdef notyet
5116 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5117 #endif
5118 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5119 goto check_dma_bug;
5120
5121 if (bge_cksum_pad(m_head) != 0)
5122 return ENOBUFS;
5123
5124 check_dma_bug:
5125 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5126 goto doit;
5127
5128 /*
5129 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5130 * less than eight bytes. If we encounter a teeny mbuf
5131 * at the end of a chain, we can pad. Otherwise, copy.
5132 */
5133 if (bge_compact_dma_runt(m_head) != 0)
5134 return ENOBUFS;
5135
5136 doit:
5137 dma = SLIST_FIRST(&sc->txdma_list);
5138 if (dma == NULL) {
5139 ifp->if_flags |= IFF_OACTIVE;
5140 return ENOBUFS;
5141 }
5142 dmamap = dma->dmamap;
5143 dmatag = sc->bge_dmatag;
5144 dma->is_dma32 = false;
5145
5146 /*
5147 * Set up any necessary TSO state before we start packing...
5148 */
5149 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5150 if (!use_tso) {
5151 maxsegsize = 0;
5152 } else { /* TSO setup */
5153 unsigned mss;
5154 struct ether_header *eh;
5155 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5156 unsigned bge_hlen;
5157 struct mbuf * m0 = m_head;
5158 struct ip *ip;
5159 struct tcphdr *th;
5160 int iphl, hlen;
5161
5162 /*
5163 * XXX It would be nice if the mbuf pkthdr had offset
5164 * fields for the protocol headers.
5165 */
5166
5167 eh = mtod(m0, struct ether_header *);
5168 switch (htons(eh->ether_type)) {
5169 case ETHERTYPE_IP:
5170 offset = ETHER_HDR_LEN;
5171 break;
5172
5173 case ETHERTYPE_VLAN:
5174 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5175 break;
5176
5177 default:
5178 /*
5179 * Don't support this protocol or encapsulation.
5180 */
5181 return ENOBUFS;
5182 }
5183
5184 /*
5185 * TCP/IP headers are in the first mbuf; we can do
5186 * this the easy way.
5187 */
5188 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5189 hlen = iphl + offset;
5190 if (__predict_false(m0->m_len <
5191 (hlen + sizeof(struct tcphdr)))) {
5192
5193 aprint_error_dev(sc->bge_dev,
5194 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5195 "not handled yet\n",
5196 m0->m_len, hlen+ sizeof(struct tcphdr));
5197 #ifdef NOTYET
5198 /*
5199 * XXX jonathan (at) NetBSD.org: untested.
5200 * how to force this branch to be taken?
5201 */
5202 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5203
5204 m_copydata(m0, offset, sizeof(ip), &ip);
5205 m_copydata(m0, hlen, sizeof(th), &th);
5206
5207 ip.ip_len = 0;
5208
5209 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5210 sizeof(ip.ip_len), &ip.ip_len);
5211
5212 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5213 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5214
5215 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5216 sizeof(th.th_sum), &th.th_sum);
5217
5218 hlen += th.th_off << 2;
5219 iptcp_opt_words = hlen;
5220 #else
5221 /*
5222 * if_wm "hard" case not yet supported, can we not
5223 * mandate it out of existence?
5224 */
5225 (void) ip; (void)th; (void) ip_tcp_hlen;
5226
5227 return ENOBUFS;
5228 #endif
5229 } else {
5230 ip = (struct ip *) (mtod(m0, char *) + offset);
5231 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5232 ip_tcp_hlen = iphl + (th->th_off << 2);
5233
5234 /* Total IP/TCP options, in 32-bit words */
5235 iptcp_opt_words = (ip_tcp_hlen
5236 - sizeof(struct tcphdr)
5237 - sizeof(struct ip)) >> 2;
5238 }
5239 if (BGE_IS_575X_PLUS(sc)) {
5240 th->th_sum = 0;
5241 csum_flags = 0;
5242 } else {
5243 /*
5244 * XXX jonathan (at) NetBSD.org: 5705 untested.
5245 * Requires TSO firmware patch for 5701/5703/5704.
5246 */
5247 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5248 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5249 }
5250
5251 mss = m_head->m_pkthdr.segsz;
5252 txbd_tso_flags |=
5253 BGE_TXBDFLAG_CPU_PRE_DMA |
5254 BGE_TXBDFLAG_CPU_POST_DMA;
5255
5256 /*
5257 * Our NIC TSO-assist assumes TSO has standard, optionless
5258 * IPv4 and TCP headers, which total 40 bytes. By default,
5259 * the NIC copies 40 bytes of IP/TCP header from the
5260 * supplied header into the IP/TCP header portion of
5261 * each post-TSO-segment. If the supplied packet has IP or
5262 * TCP options, we need to tell the NIC to copy those extra
5263 * bytes into each post-TSO header, in addition to the normal
5264 * 40-byte IP/TCP header (and to leave space accordingly).
5265 * Unfortunately, the driver encoding of option length
5266 * varies across different ASIC families.
5267 */
5268 tcp_seg_flags = 0;
5269 bge_hlen = ip_tcp_hlen >> 2;
5270 if (BGE_IS_5717_PLUS(sc)) {
5271 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5272 txbd_tso_flags |=
5273 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5274 } else if (BGE_IS_5705_PLUS(sc)) {
5275 tcp_seg_flags = bge_hlen << 11;
5276 } else {
5277 /* XXX iptcp_opt_words or bge_hlen ? */
5278 txbd_tso_flags |= iptcp_opt_words << 12;
5279 }
5280 maxsegsize = mss | tcp_seg_flags;
5281 ip->ip_len = htons(mss + ip_tcp_hlen);
5282 ip->ip_sum = 0;
5283
5284 } /* TSO setup */
5285
5286 have_vtag = vlan_has_tag(m_head);
5287 if (have_vtag)
5288 vtag = vlan_get_tag(m_head);
5289
5290 /*
5291 * Start packing the mbufs in this chain into
5292 * the fragment pointers. Stop when we run out
5293 * of fragments or hit the end of the mbuf chain.
5294 */
5295 remap = true;
5296 load_again:
5297 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5298 if (__predict_false(error)) {
5299 if (error == EFBIG && remap) {
5300 struct mbuf *m;
5301 remap = false;
5302 m = m_defrag(m_head, M_NOWAIT);
5303 if (m != NULL) {
5304 KASSERT(m == m_head);
5305 goto load_again;
5306 }
5307 }
5308 return error;
5309 }
5310 /*
5311 * Sanity check: avoid coming within 16 descriptors
5312 * of the end of the ring.
5313 */
5314 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5315 BGE_TSO_PRINTF(("%s: "
5316 " dmamap_load_mbuf too close to ring wrap\n",
5317 device_xname(sc->bge_dev)));
5318 goto fail_unload;
5319 }
5320
5321 /* Iterate over dmap-map fragments. */
5322 f = prev_f = NULL;
5323 cur = frag = *txidx;
5324
5325 for (i = 0; i < dmamap->dm_nsegs; i++) {
5326 f = &sc->bge_rdata->bge_tx_ring[frag];
5327 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5328 break;
5329
5330 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5331 f->bge_len = dmamap->dm_segs[i].ds_len;
5332 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5333 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5334 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5335 (prev_f != NULL &&
5336 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5337 ) {
5338 /*
5339 * watchdog timeout issue was observed with TSO,
5340 * limiting DMA address space to 32bits seems to
5341 * address the issue.
5342 */
5343 bus_dmamap_unload(dmatag, dmamap);
5344 dmatag = sc->bge_dmatag32;
5345 dmamap = dma->dmamap32;
5346 dma->is_dma32 = true;
5347 remap = true;
5348 goto load_again;
5349 }
5350
5351 /*
5352 * For 5751 and follow-ons, for TSO we must turn
5353 * off checksum-assist flag in the tx-descr, and
5354 * supply the ASIC-revision-specific encoding
5355 * of TSO flags and segsize.
5356 */
5357 if (use_tso) {
5358 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5359 f->bge_rsvd = maxsegsize;
5360 f->bge_flags = csum_flags | txbd_tso_flags;
5361 } else {
5362 f->bge_rsvd = 0;
5363 f->bge_flags =
5364 (csum_flags | txbd_tso_flags) & 0x0fff;
5365 }
5366 } else {
5367 f->bge_rsvd = 0;
5368 f->bge_flags = csum_flags;
5369 }
5370
5371 if (have_vtag) {
5372 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5373 f->bge_vlan_tag = vtag;
5374 } else {
5375 f->bge_vlan_tag = 0;
5376 }
5377 prev_f = f;
5378 cur = frag;
5379 BGE_INC(frag, BGE_TX_RING_CNT);
5380 }
5381
5382 if (i < dmamap->dm_nsegs) {
5383 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5384 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5385 goto fail_unload;
5386 }
5387
5388 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5389 BUS_DMASYNC_PREWRITE);
5390
5391 if (frag == sc->bge_tx_saved_considx) {
5392 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5393 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5394
5395 goto fail_unload;
5396 }
5397
5398 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5399 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5400 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5401 sc->txdma[cur] = dma;
5402 sc->bge_txcnt += dmamap->dm_nsegs;
5403
5404 *txidx = frag;
5405
5406 return 0;
5407
5408 fail_unload:
5409 bus_dmamap_unload(dmatag, dmamap);
5410 ifp->if_flags |= IFF_OACTIVE;
5411
5412 return ENOBUFS;
5413 }
5414
5415 /*
5416 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5417 * to the mbuf data regions directly in the transmit descriptors.
5418 */
5419 static void
5420 bge_start(struct ifnet *ifp)
5421 {
5422 struct bge_softc * const sc = ifp->if_softc;
5423 struct mbuf *m_head = NULL;
5424 struct mbuf *m;
5425 uint32_t prodidx;
5426 int pkts = 0;
5427 int error;
5428
5429 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5430 return;
5431
5432 prodidx = sc->bge_tx_prodidx;
5433
5434 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5435 IFQ_POLL(&ifp->if_snd, m_head);
5436 if (m_head == NULL)
5437 break;
5438
5439 #if 0
5440 /*
5441 * XXX
5442 * safety overkill. If this is a fragmented packet chain
5443 * with delayed TCP/UDP checksums, then only encapsulate
5444 * it if we have enough descriptors to handle the entire
5445 * chain at once.
5446 * (paranoia -- may not actually be needed)
5447 */
5448 if (m_head->m_flags & M_FIRSTFRAG &&
5449 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5450 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5451 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5452 ifp->if_flags |= IFF_OACTIVE;
5453 break;
5454 }
5455 }
5456 #endif
5457
5458 /*
5459 * Pack the data into the transmit ring. If we
5460 * don't have room, set the OACTIVE flag and wait
5461 * for the NIC to drain the ring.
5462 */
5463 error = bge_encap(sc, m_head, &prodidx);
5464 if (__predict_false(error)) {
5465 if (ifp->if_flags & IFF_OACTIVE) {
5466 /* just wait for the transmit ring to drain */
5467 break;
5468 }
5469 IFQ_DEQUEUE(&ifp->if_snd, m);
5470 KASSERT(m == m_head);
5471 m_freem(m_head);
5472 continue;
5473 }
5474
5475 /* now we are committed to transmit the packet */
5476 IFQ_DEQUEUE(&ifp->if_snd, m);
5477 KASSERT(m == m_head);
5478 pkts++;
5479
5480 /*
5481 * If there's a BPF listener, bounce a copy of this frame
5482 * to him.
5483 */
5484 bpf_mtap(ifp, m_head, BPF_D_OUT);
5485 }
5486 if (pkts == 0)
5487 return;
5488
5489 /* Transmit */
5490 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5491 /* 5700 b2 errata */
5492 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5493 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5494
5495 sc->bge_tx_prodidx = prodidx;
5496
5497 /*
5498 * Set a timeout in case the chip goes out to lunch.
5499 */
5500 ifp->if_timer = 5;
5501 }
5502
5503 static int
5504 bge_init(struct ifnet *ifp)
5505 {
5506 struct bge_softc * const sc = ifp->if_softc;
5507 const uint16_t *m;
5508 uint32_t mode, reg;
5509 int s, error = 0;
5510
5511 s = splnet();
5512
5513 ifp = &sc->ethercom.ec_if;
5514
5515 /* Cancel pending I/O and flush buffers. */
5516 bge_stop(ifp, 0);
5517
5518 bge_stop_fw(sc);
5519 bge_sig_pre_reset(sc, BGE_RESET_START);
5520 bge_reset(sc);
5521 bge_sig_legacy(sc, BGE_RESET_START);
5522
5523 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5524 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5525 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5526 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5527 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5528
5529 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5530 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5531 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5532 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5533
5534 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5535 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5536 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5537 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5538
5539 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5540 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5541 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5542 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5543 }
5544
5545 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5546 pcireg_t aercap;
5547
5548 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5549 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5550 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5551 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5552 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5553
5554 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5555 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5556 | BGE_PCIE_EIDLE_DELAY_13CLK;
5557 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5558
5559 /* Clear correctable error */
5560 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5561 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5562 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5563 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5564
5565 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5566 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5567 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5568 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5569 }
5570
5571 bge_sig_post_reset(sc, BGE_RESET_START);
5572
5573 bge_chipinit(sc);
5574
5575 /*
5576 * Init the various state machines, ring
5577 * control blocks and firmware.
5578 */
5579 error = bge_blockinit(sc);
5580 if (error != 0) {
5581 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5582 error);
5583 splx(s);
5584 return error;
5585 }
5586
5587 ifp = &sc->ethercom.ec_if;
5588
5589 /* 5718 step 25, 57XX step 54 */
5590 /* Specify MTU. */
5591 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5592 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5593
5594 /* 5718 step 23 */
5595 /* Load our MAC address. */
5596 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5597 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5598 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5599 ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5600
5601 /* Enable or disable promiscuous mode as needed. */
5602 if (ifp->if_flags & IFF_PROMISC)
5603 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5604 else
5605 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5606
5607 /* Program multicast filter. */
5608 bge_setmulti(sc);
5609
5610 /* Init RX ring. */
5611 bge_init_rx_ring_std(sc);
5612
5613 /*
5614 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5615 * memory to insure that the chip has in fact read the first
5616 * entry of the ring.
5617 */
5618 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5619 uint32_t v, i;
5620 for (i = 0; i < 10; i++) {
5621 DELAY(20);
5622 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5623 if (v == (MCLBYTES - ETHER_ALIGN))
5624 break;
5625 }
5626 if (i == 10)
5627 aprint_error_dev(sc->bge_dev,
5628 "5705 A0 chip failed to load RX ring\n");
5629 }
5630
5631 /* Init jumbo RX ring. */
5632 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5633 bge_init_rx_ring_jumbo(sc);
5634
5635 /* Init our RX return ring index */
5636 sc->bge_rx_saved_considx = 0;
5637
5638 /* Init TX ring. */
5639 bge_init_tx_ring(sc);
5640
5641 /* 5718 step 63, 57XX step 94 */
5642 /* Enable TX MAC state machine lockup fix. */
5643 mode = CSR_READ_4(sc, BGE_TX_MODE);
5644 if (BGE_IS_5755_PLUS(sc) ||
5645 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5646 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5647 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5648 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5649 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5650 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5651 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5652 }
5653
5654 /* Turn on transmitter */
5655 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5656 /* 5718 step 64 */
5657 DELAY(100);
5658
5659 /* 5718 step 65, 57XX step 95 */
5660 /* Turn on receiver */
5661 mode = CSR_READ_4(sc, BGE_RX_MODE);
5662 if (BGE_IS_5755_PLUS(sc))
5663 mode |= BGE_RXMODE_IPV6_ENABLE;
5664 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5665 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5666 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5667 /* 5718 step 66 */
5668 DELAY(10);
5669
5670 /* 5718 step 12, 57XX step 37 */
5671 /*
5672 * XXX Doucments of 5718 series and 577xx say the recommended value
5673 * is 1, but tg3 set 1 only on 57765 series.
5674 */
5675 if (BGE_IS_57765_PLUS(sc))
5676 reg = 1;
5677 else
5678 reg = 2;
5679 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5680
5681 /* Tell firmware we're alive. */
5682 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5683
5684 /* Enable host interrupts. */
5685 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5686 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5687 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5688
5689 if ((error = bge_ifmedia_upd(ifp)) != 0)
5690 goto out;
5691
5692 ifp->if_flags |= IFF_RUNNING;
5693 ifp->if_flags &= ~IFF_OACTIVE;
5694
5695 callout_schedule(&sc->bge_timeout, hz);
5696
5697 out:
5698 sc->bge_if_flags = ifp->if_flags;
5699 splx(s);
5700
5701 return error;
5702 }
5703
5704 /*
5705 * Set media options.
5706 */
5707 static int
5708 bge_ifmedia_upd(struct ifnet *ifp)
5709 {
5710 struct bge_softc * const sc = ifp->if_softc;
5711 struct mii_data * const mii = &sc->bge_mii;
5712 struct ifmedia * const ifm = &sc->bge_ifmedia;
5713 int rc;
5714
5715 /* If this is a 1000baseX NIC, enable the TBI port. */
5716 if (sc->bge_flags & BGEF_FIBER_TBI) {
5717 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5718 return EINVAL;
5719 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5720 case IFM_AUTO:
5721 /*
5722 * The BCM5704 ASIC appears to have a special
5723 * mechanism for programming the autoneg
5724 * advertisement registers in TBI mode.
5725 */
5726 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5727 uint32_t sgdig;
5728 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5729 if (sgdig & BGE_SGDIGSTS_DONE) {
5730 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5731 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5732 sgdig |= BGE_SGDIGCFG_AUTO |
5733 BGE_SGDIGCFG_PAUSE_CAP |
5734 BGE_SGDIGCFG_ASYM_PAUSE;
5735 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5736 sgdig | BGE_SGDIGCFG_SEND);
5737 DELAY(5);
5738 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5739 sgdig);
5740 }
5741 }
5742 break;
5743 case IFM_1000_SX:
5744 if ((ifm->ifm_media & IFM_FDX) != 0) {
5745 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5746 BGE_MACMODE_HALF_DUPLEX);
5747 } else {
5748 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5749 BGE_MACMODE_HALF_DUPLEX);
5750 }
5751 DELAY(40);
5752 break;
5753 default:
5754 return EINVAL;
5755 }
5756 /* XXX 802.3x flow control for 1000BASE-SX */
5757 return 0;
5758 }
5759
5760 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5761 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5762 uint32_t reg;
5763
5764 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5765 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5766 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5767 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5768 }
5769 }
5770
5771 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5772 if ((rc = mii_mediachg(mii)) == ENXIO)
5773 return 0;
5774
5775 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5776 uint32_t reg;
5777
5778 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5779 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5780 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5781 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5782 delay(40);
5783 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5784 }
5785 }
5786
5787 /*
5788 * Force an interrupt so that we will call bge_link_upd
5789 * if needed and clear any pending link state attention.
5790 * Without this we are not getting any further interrupts
5791 * for link state changes and thus will not UP the link and
5792 * not be able to send in bge_start. The only way to get
5793 * things working was to receive a packet and get a RX intr.
5794 */
5795 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5796 sc->bge_flags & BGEF_IS_5788)
5797 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5798 else
5799 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5800
5801 return rc;
5802 }
5803
5804 /*
5805 * Report current media status.
5806 */
5807 static void
5808 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5809 {
5810 struct bge_softc * const sc = ifp->if_softc;
5811 struct mii_data * const mii = &sc->bge_mii;
5812
5813 if (sc->bge_flags & BGEF_FIBER_TBI) {
5814 ifmr->ifm_status = IFM_AVALID;
5815 ifmr->ifm_active = IFM_ETHER;
5816 if (CSR_READ_4(sc, BGE_MAC_STS) &
5817 BGE_MACSTAT_TBI_PCS_SYNCHED)
5818 ifmr->ifm_status |= IFM_ACTIVE;
5819 ifmr->ifm_active |= IFM_1000_SX;
5820 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5821 ifmr->ifm_active |= IFM_HDX;
5822 else
5823 ifmr->ifm_active |= IFM_FDX;
5824 return;
5825 }
5826
5827 mii_pollstat(mii);
5828 ifmr->ifm_status = mii->mii_media_status;
5829 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5830 sc->bge_flowflags;
5831 }
5832
5833 static int
5834 bge_ifflags_cb(struct ethercom *ec)
5835 {
5836 struct ifnet * const ifp = &ec->ec_if;
5837 struct bge_softc * const sc = ifp->if_softc;
5838 u_short change = ifp->if_flags ^ sc->bge_if_flags;
5839
5840 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
5841 return ENETRESET;
5842 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5843 return 0;
5844
5845 if ((ifp->if_flags & IFF_PROMISC) == 0)
5846 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5847 else
5848 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5849
5850 bge_setmulti(sc);
5851
5852 sc->bge_if_flags = ifp->if_flags;
5853 return 0;
5854 }
5855
5856 static int
5857 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5858 {
5859 struct bge_softc * const sc = ifp->if_softc;
5860 struct ifreq * const ifr = (struct ifreq *) data;
5861 int s, error = 0;
5862 struct mii_data *mii;
5863
5864 s = splnet();
5865
5866 switch (command) {
5867 case SIOCSIFMEDIA:
5868 /* XXX Flow control is not supported for 1000BASE-SX */
5869 if (sc->bge_flags & BGEF_FIBER_TBI) {
5870 ifr->ifr_media &= ~IFM_ETH_FMASK;
5871 sc->bge_flowflags = 0;
5872 }
5873
5874 /* Flow control requires full-duplex mode. */
5875 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5876 (ifr->ifr_media & IFM_FDX) == 0) {
5877 ifr->ifr_media &= ~IFM_ETH_FMASK;
5878 }
5879 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5880 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5881 /* We can do both TXPAUSE and RXPAUSE. */
5882 ifr->ifr_media |=
5883 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5884 }
5885 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5886 }
5887
5888 if (sc->bge_flags & BGEF_FIBER_TBI) {
5889 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5890 command);
5891 } else {
5892 mii = &sc->bge_mii;
5893 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5894 command);
5895 }
5896 break;
5897 default:
5898 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5899 break;
5900
5901 error = 0;
5902
5903 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5904 ;
5905 else if (ifp->if_flags & IFF_RUNNING)
5906 bge_setmulti(sc);
5907 break;
5908 }
5909
5910 splx(s);
5911
5912 return error;
5913 }
5914
5915 static void
5916 bge_watchdog(struct ifnet *ifp)
5917 {
5918 struct bge_softc * const sc = ifp->if_softc;
5919 uint32_t status;
5920
5921 /* If pause frames are active then don't reset the hardware. */
5922 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5923 status = CSR_READ_4(sc, BGE_RX_STS);
5924 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5925 /*
5926 * If link partner has us in XOFF state then wait for
5927 * the condition to clear.
5928 */
5929 CSR_WRITE_4(sc, BGE_RX_STS, status);
5930 ifp->if_timer = 5;
5931 return;
5932 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5933 (status & BGE_RXSTAT_RCVD_XON) != 0) {
5934 /*
5935 * If link partner has us in XOFF state then wait for
5936 * the condition to clear.
5937 */
5938 CSR_WRITE_4(sc, BGE_RX_STS, status);
5939 ifp->if_timer = 5;
5940 return;
5941 }
5942 /*
5943 * Any other condition is unexpected and the controller
5944 * should be reset.
5945 */
5946 }
5947
5948 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5949
5950 ifp->if_flags &= ~IFF_RUNNING;
5951 bge_init(ifp);
5952
5953 if_statinc(ifp, if_oerrors);
5954 }
5955
5956 static void
5957 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5958 {
5959 int i;
5960
5961 BGE_CLRBIT_FLUSH(sc, reg, bit);
5962
5963 for (i = 0; i < 1000; i++) {
5964 delay(100);
5965 if ((CSR_READ_4(sc, reg) & bit) == 0)
5966 return;
5967 }
5968
5969 /*
5970 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5971 * on some environment (and once after boot?)
5972 */
5973 if (reg != BGE_SRS_MODE)
5974 aprint_error_dev(sc->bge_dev,
5975 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5976 (u_long)reg, bit);
5977 }
5978
5979 /*
5980 * Stop the adapter and free any mbufs allocated to the
5981 * RX and TX lists.
5982 */
5983 static void
5984 bge_stop(struct ifnet *ifp, int disable)
5985 {
5986 struct bge_softc * const sc = ifp->if_softc;
5987
5988 if (disable) {
5989 sc->bge_detaching = 1;
5990 callout_halt(&sc->bge_timeout, NULL);
5991 } else
5992 callout_stop(&sc->bge_timeout);
5993
5994 /* Disable host interrupts. */
5995 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5996 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5997
5998 /*
5999 * Tell firmware we're shutting down.
6000 */
6001 bge_stop_fw(sc);
6002 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6003
6004 /*
6005 * Disable all of the receiver blocks.
6006 */
6007 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6008 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6009 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6010 if (BGE_IS_5700_FAMILY(sc))
6011 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6012 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6013 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6014 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6015
6016 /*
6017 * Disable all of the transmit blocks.
6018 */
6019 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6020 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6021 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6022 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6023 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6024 if (BGE_IS_5700_FAMILY(sc))
6025 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6026 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6027
6028 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6029 delay(40);
6030
6031 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6032
6033 /*
6034 * Shut down all of the memory managers and related
6035 * state machines.
6036 */
6037 /* 5718 step 5a,5b */
6038 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6039 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6040 if (BGE_IS_5700_FAMILY(sc))
6041 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6042
6043 /* 5718 step 5c,5d */
6044 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6045 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6046
6047 if (BGE_IS_5700_FAMILY(sc)) {
6048 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6049 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6050 }
6051
6052 bge_reset(sc);
6053 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6054 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6055
6056 /*
6057 * Keep the ASF firmware running if up.
6058 */
6059 if (sc->bge_asf_mode & ASF_STACKUP)
6060 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6061 else
6062 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6063
6064 /* Free the RX lists. */
6065 bge_free_rx_ring_std(sc, disable);
6066
6067 /* Free jumbo RX list. */
6068 if (BGE_IS_JUMBO_CAPABLE(sc))
6069 bge_free_rx_ring_jumbo(sc);
6070
6071 /* Free TX buffers. */
6072 bge_free_tx_ring(sc, disable);
6073
6074 /*
6075 * Isolate/power down the PHY.
6076 */
6077 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6078 mii_down(&sc->bge_mii);
6079
6080 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6081
6082 /* Clear MAC's link state (PHY may still have link UP). */
6083 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6084
6085 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6086 }
6087
6088 static void
6089 bge_link_upd(struct bge_softc *sc)
6090 {
6091 struct ifnet * const ifp = &sc->ethercom.ec_if;
6092 struct mii_data * const mii = &sc->bge_mii;
6093 uint32_t status;
6094 uint16_t phyval;
6095 int link;
6096
6097 /* Clear 'pending link event' flag */
6098 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6099
6100 /*
6101 * Process link state changes.
6102 * Grrr. The link status word in the status block does
6103 * not work correctly on the BCM5700 rev AX and BX chips,
6104 * according to all available information. Hence, we have
6105 * to enable MII interrupts in order to properly obtain
6106 * async link changes. Unfortunately, this also means that
6107 * we have to read the MAC status register to detect link
6108 * changes, thereby adding an additional register access to
6109 * the interrupt handler.
6110 */
6111
6112 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6113 status = CSR_READ_4(sc, BGE_MAC_STS);
6114 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6115 mii_pollstat(mii);
6116
6117 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6118 mii->mii_media_status & IFM_ACTIVE &&
6119 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6120 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6121 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6122 (!(mii->mii_media_status & IFM_ACTIVE) ||
6123 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6124 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6125
6126 /* Clear the interrupt */
6127 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6128 BGE_EVTENB_MI_INTERRUPT);
6129 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6130 BRGPHY_MII_ISR, &phyval);
6131 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6132 BRGPHY_MII_IMR, BRGPHY_INTRS);
6133 }
6134 return;
6135 }
6136
6137 if (sc->bge_flags & BGEF_FIBER_TBI) {
6138 status = CSR_READ_4(sc, BGE_MAC_STS);
6139 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6140 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6141 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6142 if (BGE_ASICREV(sc->bge_chipid)
6143 == BGE_ASICREV_BCM5704) {
6144 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6145 BGE_MACMODE_TBI_SEND_CFGS);
6146 DELAY(40);
6147 }
6148 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6149 if_link_state_change(ifp, LINK_STATE_UP);
6150 }
6151 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6152 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6153 if_link_state_change(ifp, LINK_STATE_DOWN);
6154 }
6155 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6156 /*
6157 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6158 * bit in status word always set. Workaround this bug by
6159 * reading PHY link status directly.
6160 */
6161 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6162 BGE_STS_LINK : 0;
6163
6164 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6165 mii_pollstat(mii);
6166
6167 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6168 mii->mii_media_status & IFM_ACTIVE &&
6169 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6170 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6171 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6172 (!(mii->mii_media_status & IFM_ACTIVE) ||
6173 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6174 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6175 }
6176 } else {
6177 /*
6178 * For controllers that call mii_tick, we have to poll
6179 * link status.
6180 */
6181 mii_pollstat(mii);
6182 }
6183
6184 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6185 uint32_t reg, scale;
6186
6187 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6188 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6189 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6190 scale = 65;
6191 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6192 scale = 6;
6193 else
6194 scale = 12;
6195
6196 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6197 ~BGE_MISCCFG_TIMER_PRESCALER;
6198 reg |= scale << 1;
6199 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6200 }
6201 /* Clear the attention */
6202 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6203 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6204 BGE_MACSTAT_LINK_CHANGED);
6205 }
6206
6207 static int
6208 bge_sysctl_verify(SYSCTLFN_ARGS)
6209 {
6210 int error, t;
6211 struct sysctlnode node;
6212
6213 node = *rnode;
6214 t = *(int*)rnode->sysctl_data;
6215 node.sysctl_data = &t;
6216 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6217 if (error || newp == NULL)
6218 return error;
6219
6220 #if 0
6221 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6222 node.sysctl_num, rnode->sysctl_num));
6223 #endif
6224
6225 if (node.sysctl_num == bge_rxthresh_nodenum) {
6226 if (t < 0 || t >= NBGE_RX_THRESH)
6227 return EINVAL;
6228 bge_update_all_threshes(t);
6229 } else
6230 return EINVAL;
6231
6232 *(int*)rnode->sysctl_data = t;
6233
6234 return 0;
6235 }
6236
6237 /*
6238 * Set up sysctl(3) MIB, hw.bge.*.
6239 */
6240 static void
6241 bge_sysctl_init(struct bge_softc *sc)
6242 {
6243 int rc, bge_root_num;
6244 const struct sysctlnode *node;
6245
6246 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6247 0, CTLTYPE_NODE, "bge",
6248 SYSCTL_DESCR("BGE interface controls"),
6249 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6250 goto out;
6251 }
6252
6253 bge_root_num = node->sysctl_num;
6254
6255 /* BGE Rx interrupt mitigation level */
6256 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6257 CTLFLAG_READWRITE,
6258 CTLTYPE_INT, "rx_lvl",
6259 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6260 bge_sysctl_verify, 0,
6261 &bge_rx_thresh_lvl,
6262 0, CTL_HW, bge_root_num, CTL_CREATE,
6263 CTL_EOL)) != 0) {
6264 goto out;
6265 }
6266
6267 bge_rxthresh_nodenum = node->sysctl_num;
6268
6269 return;
6270
6271 out:
6272 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6273 }
6274
6275 #ifdef BGE_DEBUG
6276 void
6277 bge_debug_info(struct bge_softc *sc)
6278 {
6279
6280 printf("Hardware Flags:\n");
6281 if (BGE_IS_57765_PLUS(sc))
6282 printf(" - 57765 Plus\n");
6283 if (BGE_IS_5717_PLUS(sc))
6284 printf(" - 5717 Plus\n");
6285 if (BGE_IS_5755_PLUS(sc))
6286 printf(" - 5755 Plus\n");
6287 if (BGE_IS_575X_PLUS(sc))
6288 printf(" - 575X Plus\n");
6289 if (BGE_IS_5705_PLUS(sc))
6290 printf(" - 5705 Plus\n");
6291 if (BGE_IS_5714_FAMILY(sc))
6292 printf(" - 5714 Family\n");
6293 if (BGE_IS_5700_FAMILY(sc))
6294 printf(" - 5700 Family\n");
6295 if (sc->bge_flags & BGEF_IS_5788)
6296 printf(" - 5788\n");
6297 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6298 printf(" - Supports Jumbo Frames\n");
6299 if (sc->bge_flags & BGEF_NO_EEPROM)
6300 printf(" - No EEPROM\n");
6301 if (sc->bge_flags & BGEF_PCIX)
6302 printf(" - PCI-X Bus\n");
6303 if (sc->bge_flags & BGEF_PCIE)
6304 printf(" - PCI Express Bus\n");
6305 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6306 printf(" - RX Alignment Bug\n");
6307 if (sc->bge_flags & BGEF_APE)
6308 printf(" - APE\n");
6309 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6310 printf(" - CPMU\n");
6311 if (sc->bge_flags & BGEF_TSO)
6312 printf(" - TSO\n");
6313 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6314 printf(" - TAGGED_STATUS\n");
6315
6316 /* PHY related */
6317 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6318 printf(" - No 3 LEDs\n");
6319 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6320 printf(" - CRC bug\n");
6321 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6322 printf(" - ADC bug\n");
6323 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6324 printf(" - 5704 A0 bug\n");
6325 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6326 printf(" - jitter bug\n");
6327 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6328 printf(" - BER bug\n");
6329 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6330 printf(" - adjust trim\n");
6331 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6332 printf(" - no wirespeed\n");
6333
6334 /* ASF related */
6335 if (sc->bge_asf_mode & ASF_ENABLE)
6336 printf(" - ASF enable\n");
6337 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6338 printf(" - ASF new handshake\n");
6339 if (sc->bge_asf_mode & ASF_STACKUP)
6340 printf(" - ASF stackup\n");
6341 }
6342 #endif /* BGE_DEBUG */
6343
6344 static int
6345 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6346 {
6347 prop_dictionary_t dict;
6348 prop_data_t ea;
6349
6350 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6351 return 1;
6352
6353 dict = device_properties(sc->bge_dev);
6354 ea = prop_dictionary_get(dict, "mac-address");
6355 if (ea != NULL) {
6356 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6357 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6358 memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
6359 return 0;
6360 }
6361
6362 return 1;
6363 }
6364
6365 static int
6366 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6367 {
6368 uint32_t mac_addr;
6369
6370 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6371 if ((mac_addr >> 16) == 0x484b) {
6372 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6373 ether_addr[1] = (uint8_t)mac_addr;
6374 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6375 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6376 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6377 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6378 ether_addr[5] = (uint8_t)mac_addr;
6379 return 0;
6380 }
6381 return 1;
6382 }
6383
6384 static int
6385 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6386 {
6387 int mac_offset = BGE_EE_MAC_OFFSET;
6388
6389 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6390 mac_offset = BGE_EE_MAC_OFFSET_5906;
6391
6392 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6393 ETHER_ADDR_LEN));
6394 }
6395
6396 static int
6397 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6398 {
6399
6400 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6401 return 1;
6402
6403 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6404 ETHER_ADDR_LEN));
6405 }
6406
6407 static int
6408 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6409 {
6410 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6411 /* NOTE: Order is critical */
6412 bge_get_eaddr_fw,
6413 bge_get_eaddr_mem,
6414 bge_get_eaddr_nvram,
6415 bge_get_eaddr_eeprom,
6416 NULL
6417 };
6418 const bge_eaddr_fcn_t *func;
6419
6420 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6421 if ((*func)(sc, eaddr) == 0)
6422 break;
6423 }
6424 return (*func == NULL ? ENXIO : 0);
6425 }
6426