if_bge.c revision 1.357 1 /* $NetBSD: if_bge.c,v 1.357 2022/06/30 19:06:35 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.357 2022/06/30 19:06:35 skrll Exp $");
83
84 #include <sys/param.h>
85
86 #include <sys/callout.h>
87 #include <sys/device.h>
88 #include <sys/malloc.h>
89 #include <sys/mbuf.h>
90 #include <sys/kernel.h>
91 #include <sys/rndsource.h>
92 #include <sys/socket.h>
93 #include <sys/sockio.h>
94 #include <sys/sysctl.h>
95 #include <sys/systm.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101 #include <net/bpf.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 /* Headers for TCP Segmentation Offload (TSO) */
111 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
112 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
113 #include <netinet/ip.h> /* for struct ip */
114 #include <netinet/tcp.h> /* for struct tcphdr */
115
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
119
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 #include <dev/mii/miidevs.h>
123 #include <dev/mii/brgphyreg.h>
124
125 #include <dev/pci/if_bgereg.h>
126 #include <dev/pci/if_bgevar.h>
127
128 #include <prop/proplib.h>
129
130 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
131
132
133 /*
134 * Tunable thresholds for rx-side bge interrupt mitigation.
135 */
136
137 /*
138 * The pairs of values below were obtained from empirical measurement
139 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
140 * interrupt for every N packets received, where N is, approximately,
141 * the second value (rx_max_bds) in each pair. The values are chosen
142 * such that moving from one pair to the succeeding pair was observed
143 * to roughly halve interrupt rate under sustained input packet load.
144 * The values were empirically chosen to avoid overflowing internal
145 * limits on the bcm5700: increasing rx_ticks much beyond 600
146 * results in internal wrapping and higher interrupt rates.
147 * The limit of 46 frames was chosen to match NFS workloads.
148 *
149 * These values also work well on bcm5701, bcm5704C, and (less
150 * tested) bcm5703. On other chipsets, (including the Altima chip
151 * family), the larger values may overflow internal chip limits,
152 * leading to increasing interrupt rates rather than lower interrupt
153 * rates.
154 *
155 * Applications using heavy interrupt mitigation (interrupting every
156 * 32 or 46 frames) in both directions may need to increase the TCP
157 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
158 * full link bandwidth, due to ACKs and window updates lingering
159 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
160 */
161 static const struct bge_load_rx_thresh {
162 int rx_ticks;
163 int rx_max_bds; }
164 bge_rx_threshes[] = {
165 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
166 { 32, 2 },
167 { 50, 4 },
168 { 100, 8 },
169 { 192, 16 },
170 { 416, 32 },
171 { 598, 46 }
172 };
173 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
174
175 /* XXX patchable; should be sysctl'able */
176 static int bge_auto_thresh = 1;
177 static int bge_rx_thresh_lvl;
178
179 static int bge_rxthresh_nodenum;
180
181 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
182
183 static uint32_t bge_chipid(const struct pci_attach_args *);
184 static int bge_can_use_msi(struct bge_softc *);
185 static int bge_probe(device_t, cfdata_t, void *);
186 static void bge_attach(device_t, device_t, void *);
187 static int bge_detach(device_t, int);
188 static void bge_release_resources(struct bge_softc *);
189
190 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
191 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
195
196 static void bge_txeof(struct bge_softc *);
197 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
198 static void bge_rxeof(struct bge_softc *);
199
200 static void bge_asf_driver_up (struct bge_softc *);
201 static void bge_tick(void *);
202 static void bge_stats_update(struct bge_softc *);
203 static void bge_stats_update_regs(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
205
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ifflags_cb(struct ethercom *);
209 static int bge_ioctl(struct ifnet *, u_long, void *);
210 static int bge_init(struct ifnet *);
211 static void bge_stop(struct ifnet *, int);
212 static void bge_watchdog(struct ifnet *);
213 static int bge_ifmedia_upd(struct ifnet *);
214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215
216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
218
219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
221 static void bge_setmulti(struct bge_softc *);
222
223 static void bge_handle_events(struct bge_softc *);
224 static int bge_alloc_jumbo_mem(struct bge_softc *);
225 #if 0 /* XXX */
226 static void bge_free_jumbo_mem(struct bge_softc *);
227 #endif
228 static void *bge_jalloc(struct bge_softc *);
229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
231 bus_dmamap_t);
232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int bge_init_rx_ring_std(struct bge_softc *);
234 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_tx_ring(struct bge_softc *m, bool);
238 static int bge_init_tx_ring(struct bge_softc *);
239
240 static int bge_chipinit(struct bge_softc *);
241 static int bge_blockinit(struct bge_softc *);
242 static int bge_phy_addr(struct bge_softc *);
243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
244 static void bge_writemem_ind(struct bge_softc *, int, int);
245 static void bge_writembx(struct bge_softc *, int, int);
246 static void bge_writembx_flush(struct bge_softc *, int, int);
247 static void bge_writemem_direct(struct bge_softc *, int, int);
248 static void bge_writereg_ind(struct bge_softc *, int, int);
249 static void bge_set_max_readrq(struct bge_softc *);
250
251 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
252 static int bge_miibus_writereg(device_t, int, int, uint16_t);
253 static void bge_miibus_statchg(struct ifnet *);
254
255 #define BGE_RESET_SHUTDOWN 0
256 #define BGE_RESET_START 1
257 #define BGE_RESET_SUSPEND 2
258 static void bge_sig_post_reset(struct bge_softc *, int);
259 static void bge_sig_legacy(struct bge_softc *, int);
260 static void bge_sig_pre_reset(struct bge_softc *, int);
261 static void bge_wait_for_event_ack(struct bge_softc *);
262 static void bge_stop_fw(struct bge_softc *);
263 static int bge_reset(struct bge_softc *);
264 static void bge_link_upd(struct bge_softc *);
265 static void bge_sysctl_init(struct bge_softc *);
266 static int bge_sysctl_verify(SYSCTLFN_PROTO);
267
268 static void bge_ape_lock_init(struct bge_softc *);
269 static void bge_ape_read_fw_ver(struct bge_softc *);
270 static int bge_ape_lock(struct bge_softc *, int);
271 static void bge_ape_unlock(struct bge_softc *, int);
272 static void bge_ape_send_event(struct bge_softc *, uint32_t);
273 static void bge_ape_driver_state_change(struct bge_softc *, int);
274
275 #ifdef BGE_DEBUG
276 #define DPRINTF(x) if (bgedebug) printf x
277 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
278 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
279 int bgedebug = 0;
280 int bge_tso_debug = 0;
281 void bge_debug_info(struct bge_softc *);
282 #else
283 #define DPRINTF(x)
284 #define DPRINTFN(n, x)
285 #define BGE_TSO_PRINTF(x)
286 #endif
287
288 #ifdef BGE_EVENT_COUNTERS
289 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
290 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
291 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
292 #else
293 #define BGE_EVCNT_INCR(ev) /* nothing */
294 #define BGE_EVCNT_ADD(ev, val) /* nothing */
295 #define BGE_EVCNT_UPD(ev, val) /* nothing */
296 #endif
297
298 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
299 /*
300 * The BCM5700 documentation seems to indicate that the hardware still has the
301 * Alteon vendor ID burned into it, though it should always be overridden by
302 * the value in the EEPROM. We'll check for it anyway.
303 */
304 static const struct bge_product {
305 pci_vendor_id_t bp_vendor;
306 pci_product_id_t bp_product;
307 const char *bp_name;
308 } bge_products[] = {
309 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
310 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
311 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
312 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
313 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
314 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
315 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
316 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
317 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
318 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
319 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
320 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
321 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
322 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
323 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
324 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
325 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
326 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
327 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
328 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
329 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
330 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
331 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
332 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
333 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
334 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
335 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
336 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
337 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
338 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
339 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
340 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
341 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
342 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
343 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
344 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
345 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
346 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
347 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
348 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
349 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
350 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
351 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
352 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
353 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
354 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
355 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
356 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
357 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
358 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
359 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
360 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
361 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
362 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
363 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
364 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
365 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
366 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
367 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
368 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
369 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
370 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
371 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
372 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
373 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
374 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
375 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
376 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
377 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
378 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
379 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
380 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
381 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
382 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
383 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
384 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
385 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
386 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
387 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
388 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
389 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
390 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
391 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
392 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
393 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
394 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
395 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
396 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
397 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
398 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
399 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
400 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
401 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
402 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
403 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
404 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
405 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
406 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
407 { 0, 0, NULL },
408 };
409
410 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
411 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
412 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
413 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
414 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
415 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
416 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
417 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
418 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
419
420 static const struct bge_revision {
421 uint32_t br_chipid;
422 const char *br_name;
423 } bge_revisions[] = {
424 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
425 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
426 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
427 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
428 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
429 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
430 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
431 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
432 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
433 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
434 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
435 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
436 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
437 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
438 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
439 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
440 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
441 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
442 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
443 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
444 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
445 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
446 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
447 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
448 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
449 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
450 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
451 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
452 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
453 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
454 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
455 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
456 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
457 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
458 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
459 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
460 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
461 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
462 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
463 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
464 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
465 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
466 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
467 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
468 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
469 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
470 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
471 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
472 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
473 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
474 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
475 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
476 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
477 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
478 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
479 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
480 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
481 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
482 /* 5754 and 5787 share the same ASIC ID */
483 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
484 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
485 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
486 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
487 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
488 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
489 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
490 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
491 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
492 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
493 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
494
495 { 0, NULL }
496 };
497
498 /*
499 * Some defaults for major revisions, so that newer steppings
500 * that we don't know about have a shot at working.
501 */
502 static const struct bge_revision bge_majorrevs[] = {
503 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
504 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
505 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
506 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
507 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
508 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
509 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
510 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
511 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
512 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
513 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
514 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
515 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
516 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
517 /* 5754 and 5787 share the same ASIC ID */
518 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
519 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
520 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
521 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
522 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
523 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
524 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
525 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
526 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
527
528 { 0, NULL }
529 };
530
531 static int bge_allow_asf = 1;
532
533 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
534 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
535
536 static uint32_t
537 bge_readmem_ind(struct bge_softc *sc, int off)
538 {
539 pcireg_t val;
540
541 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
542 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
543 return 0;
544
545 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
546 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
547 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
548 return val;
549 }
550
551 static void
552 bge_writemem_ind(struct bge_softc *sc, int off, int val)
553 {
554
555 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
556 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
557 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
558 }
559
560 /*
561 * PCI Express only
562 */
563 static void
564 bge_set_max_readrq(struct bge_softc *sc)
565 {
566 pcireg_t val;
567
568 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
569 + PCIE_DCSR);
570 val &= ~PCIE_DCSR_MAX_READ_REQ;
571 switch (sc->bge_expmrq) {
572 case 2048:
573 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
574 break;
575 case 4096:
576 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
577 break;
578 default:
579 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
580 break;
581 }
582 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
583 + PCIE_DCSR, val);
584 }
585
586 #ifdef notdef
587 static uint32_t
588 bge_readreg_ind(struct bge_softc *sc, int off)
589 {
590 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
591 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
592 }
593 #endif
594
595 static void
596 bge_writereg_ind(struct bge_softc *sc, int off, int val)
597 {
598 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
599 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
600 }
601
602 static void
603 bge_writemem_direct(struct bge_softc *sc, int off, int val)
604 {
605 CSR_WRITE_4(sc, off, val);
606 }
607
608 static void
609 bge_writembx(struct bge_softc *sc, int off, int val)
610 {
611 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
612 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
613
614 CSR_WRITE_4(sc, off, val);
615 }
616
617 static void
618 bge_writembx_flush(struct bge_softc *sc, int off, int val)
619 {
620 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
621 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
622
623 CSR_WRITE_4_FLUSH(sc, off, val);
624 }
625
626 /*
627 * Clear all stale locks and select the lock for this driver instance.
628 */
629 void
630 bge_ape_lock_init(struct bge_softc *sc)
631 {
632 struct pci_attach_args *pa = &(sc->bge_pa);
633 uint32_t bit, regbase;
634 int i;
635
636 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
637 regbase = BGE_APE_LOCK_GRANT;
638 else
639 regbase = BGE_APE_PER_LOCK_GRANT;
640
641 /* Clear any stale locks. */
642 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
643 switch (i) {
644 case BGE_APE_LOCK_PHY0:
645 case BGE_APE_LOCK_PHY1:
646 case BGE_APE_LOCK_PHY2:
647 case BGE_APE_LOCK_PHY3:
648 bit = BGE_APE_LOCK_GRANT_DRIVER0;
649 break;
650 default:
651 if (pa->pa_function == 0)
652 bit = BGE_APE_LOCK_GRANT_DRIVER0;
653 else
654 bit = (1 << pa->pa_function);
655 }
656 APE_WRITE_4(sc, regbase + 4 * i, bit);
657 }
658
659 /* Select the PHY lock based on the device's function number. */
660 switch (pa->pa_function) {
661 case 0:
662 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
663 break;
664 case 1:
665 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
666 break;
667 case 2:
668 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
669 break;
670 case 3:
671 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
672 break;
673 default:
674 printf("%s: PHY lock not supported on function\n",
675 device_xname(sc->bge_dev));
676 break;
677 }
678 }
679
680 /*
681 * Check for APE firmware, set flags, and print version info.
682 */
683 void
684 bge_ape_read_fw_ver(struct bge_softc *sc)
685 {
686 const char *fwtype;
687 uint32_t apedata, features;
688
689 /* Check for a valid APE signature in shared memory. */
690 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
691 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
692 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
693 return;
694 }
695
696 /* Check if APE firmware is running. */
697 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
698 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
699 printf("%s: APE signature found but FW status not ready! "
700 "0x%08x\n", device_xname(sc->bge_dev), apedata);
701 return;
702 }
703
704 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
705
706 /* Fetch the APE firwmare type and version. */
707 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
708 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
709 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
710 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
711 fwtype = "NCSI";
712 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
713 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
714 fwtype = "DASH";
715 } else
716 fwtype = "UNKN";
717
718 /* Print the APE firmware version. */
719 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
720 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
721 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
722 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
723 (apedata & BGE_APE_FW_VERSION_BLDMSK));
724 }
725
726 int
727 bge_ape_lock(struct bge_softc *sc, int locknum)
728 {
729 struct pci_attach_args *pa = &(sc->bge_pa);
730 uint32_t bit, gnt, req, status;
731 int i, off;
732
733 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
734 return (0);
735
736 /* Lock request/grant registers have different bases. */
737 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
738 req = BGE_APE_LOCK_REQ;
739 gnt = BGE_APE_LOCK_GRANT;
740 } else {
741 req = BGE_APE_PER_LOCK_REQ;
742 gnt = BGE_APE_PER_LOCK_GRANT;
743 }
744
745 off = 4 * locknum;
746
747 switch (locknum) {
748 case BGE_APE_LOCK_GPIO:
749 /* Lock required when using GPIO. */
750 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
751 return (0);
752 if (pa->pa_function == 0)
753 bit = BGE_APE_LOCK_REQ_DRIVER0;
754 else
755 bit = (1 << pa->pa_function);
756 break;
757 case BGE_APE_LOCK_GRC:
758 /* Lock required to reset the device. */
759 if (pa->pa_function == 0)
760 bit = BGE_APE_LOCK_REQ_DRIVER0;
761 else
762 bit = (1 << pa->pa_function);
763 break;
764 case BGE_APE_LOCK_MEM:
765 /* Lock required when accessing certain APE memory. */
766 if (pa->pa_function == 0)
767 bit = BGE_APE_LOCK_REQ_DRIVER0;
768 else
769 bit = (1 << pa->pa_function);
770 break;
771 case BGE_APE_LOCK_PHY0:
772 case BGE_APE_LOCK_PHY1:
773 case BGE_APE_LOCK_PHY2:
774 case BGE_APE_LOCK_PHY3:
775 /* Lock required when accessing PHYs. */
776 bit = BGE_APE_LOCK_REQ_DRIVER0;
777 break;
778 default:
779 return (EINVAL);
780 }
781
782 /* Request a lock. */
783 APE_WRITE_4_FLUSH(sc, req + off, bit);
784
785 /* Wait up to 1 second to acquire lock. */
786 for (i = 0; i < 20000; i++) {
787 status = APE_READ_4(sc, gnt + off);
788 if (status == bit)
789 break;
790 DELAY(50);
791 }
792
793 /* Handle any errors. */
794 if (status != bit) {
795 printf("%s: APE lock %d request failed! "
796 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
797 device_xname(sc->bge_dev),
798 locknum, req + off, bit & 0xFFFF, gnt + off,
799 status & 0xFFFF);
800 /* Revoke the lock request. */
801 APE_WRITE_4(sc, gnt + off, bit);
802 return (EBUSY);
803 }
804
805 return (0);
806 }
807
808 void
809 bge_ape_unlock(struct bge_softc *sc, int locknum)
810 {
811 struct pci_attach_args *pa = &(sc->bge_pa);
812 uint32_t bit, gnt;
813 int off;
814
815 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
816 return;
817
818 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
819 gnt = BGE_APE_LOCK_GRANT;
820 else
821 gnt = BGE_APE_PER_LOCK_GRANT;
822
823 off = 4 * locknum;
824
825 switch (locknum) {
826 case BGE_APE_LOCK_GPIO:
827 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
828 return;
829 if (pa->pa_function == 0)
830 bit = BGE_APE_LOCK_GRANT_DRIVER0;
831 else
832 bit = (1 << pa->pa_function);
833 break;
834 case BGE_APE_LOCK_GRC:
835 if (pa->pa_function == 0)
836 bit = BGE_APE_LOCK_GRANT_DRIVER0;
837 else
838 bit = (1 << pa->pa_function);
839 break;
840 case BGE_APE_LOCK_MEM:
841 if (pa->pa_function == 0)
842 bit = BGE_APE_LOCK_GRANT_DRIVER0;
843 else
844 bit = (1 << pa->pa_function);
845 break;
846 case BGE_APE_LOCK_PHY0:
847 case BGE_APE_LOCK_PHY1:
848 case BGE_APE_LOCK_PHY2:
849 case BGE_APE_LOCK_PHY3:
850 bit = BGE_APE_LOCK_GRANT_DRIVER0;
851 break;
852 default:
853 return;
854 }
855
856 /* Write and flush for consecutive bge_ape_lock() */
857 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
858 }
859
860 /*
861 * Send an event to the APE firmware.
862 */
863 void
864 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
865 {
866 uint32_t apedata;
867 int i;
868
869 /* NCSI does not support APE events. */
870 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
871 return;
872
873 /* Wait up to 1ms for APE to service previous event. */
874 for (i = 10; i > 0; i--) {
875 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
876 break;
877 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
878 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
879 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
880 BGE_APE_EVENT_STATUS_EVENT_PENDING);
881 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
882 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
883 break;
884 }
885 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
886 DELAY(100);
887 }
888 if (i == 0) {
889 printf("%s: APE event 0x%08x send timed out\n",
890 device_xname(sc->bge_dev), event);
891 }
892 }
893
894 void
895 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
896 {
897 uint32_t apedata, event;
898
899 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
900 return;
901
902 switch (kind) {
903 case BGE_RESET_START:
904 /* If this is the first load, clear the load counter. */
905 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
906 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
907 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
908 else {
909 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
910 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
911 }
912 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
913 BGE_APE_HOST_SEG_SIG_MAGIC);
914 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
915 BGE_APE_HOST_SEG_LEN_MAGIC);
916
917 /* Add some version info if bge(4) supports it. */
918 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
919 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
920 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
921 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
922 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
923 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
924 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
925 BGE_APE_HOST_DRVR_STATE_START);
926 event = BGE_APE_EVENT_STATUS_STATE_START;
927 break;
928 case BGE_RESET_SHUTDOWN:
929 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
930 BGE_APE_HOST_DRVR_STATE_UNLOAD);
931 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
932 break;
933 case BGE_RESET_SUSPEND:
934 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
935 break;
936 default:
937 return;
938 }
939
940 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
941 BGE_APE_EVENT_STATUS_STATE_CHNGE);
942 }
943
944 static uint8_t
945 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
946 {
947 uint32_t access, byte = 0;
948 int i;
949
950 /* Lock. */
951 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
952 for (i = 0; i < 8000; i++) {
953 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
954 break;
955 DELAY(20);
956 }
957 if (i == 8000)
958 return 1;
959
960 /* Enable access. */
961 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
962 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
963
964 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
965 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
966 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
967 DELAY(10);
968 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
969 DELAY(10);
970 break;
971 }
972 }
973
974 if (i == BGE_TIMEOUT * 10) {
975 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
976 return 1;
977 }
978
979 /* Get result. */
980 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
981
982 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
983
984 /* Disable access. */
985 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
986
987 /* Unlock. */
988 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
989
990 return 0;
991 }
992
993 /*
994 * Read a sequence of bytes from NVRAM.
995 */
996 static int
997 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
998 {
999 int error = 0, i;
1000 uint8_t byte = 0;
1001
1002 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1003 return 1;
1004
1005 for (i = 0; i < cnt; i++) {
1006 error = bge_nvram_getbyte(sc, off + i, &byte);
1007 if (error)
1008 break;
1009 *(dest + i) = byte;
1010 }
1011
1012 return (error ? 1 : 0);
1013 }
1014
1015 /*
1016 * Read a byte of data stored in the EEPROM at address 'addr.' The
1017 * BCM570x supports both the traditional bitbang interface and an
1018 * auto access interface for reading the EEPROM. We use the auto
1019 * access method.
1020 */
1021 static uint8_t
1022 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1023 {
1024 int i;
1025 uint32_t byte = 0;
1026
1027 /*
1028 * Enable use of auto EEPROM access so we can avoid
1029 * having to use the bitbang method.
1030 */
1031 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1032
1033 /* Reset the EEPROM, load the clock period. */
1034 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1035 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1036 DELAY(20);
1037
1038 /* Issue the read EEPROM command. */
1039 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1040
1041 /* Wait for completion */
1042 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1043 DELAY(10);
1044 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1045 break;
1046 }
1047
1048 if (i == BGE_TIMEOUT * 10) {
1049 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1050 return 1;
1051 }
1052
1053 /* Get result. */
1054 byte = CSR_READ_4(sc, BGE_EE_DATA);
1055
1056 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1057
1058 return 0;
1059 }
1060
1061 /*
1062 * Read a sequence of bytes from the EEPROM.
1063 */
1064 static int
1065 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1066 {
1067 int error = 0, i;
1068 uint8_t byte = 0;
1069 char *dest = destv;
1070
1071 for (i = 0; i < cnt; i++) {
1072 error = bge_eeprom_getbyte(sc, off + i, &byte);
1073 if (error)
1074 break;
1075 *(dest + i) = byte;
1076 }
1077
1078 return (error ? 1 : 0);
1079 }
1080
1081 static int
1082 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1083 {
1084 struct bge_softc * const sc = device_private(dev);
1085 uint32_t data;
1086 uint32_t autopoll;
1087 int rv = 0;
1088 int i;
1089
1090 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1091 return -1;
1092
1093 /* Reading with autopolling on may trigger PCI errors */
1094 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1095 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1096 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1097 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1098 DELAY(80);
1099 }
1100
1101 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1102 BGE_MIPHY(phy) | BGE_MIREG(reg));
1103
1104 for (i = 0; i < BGE_TIMEOUT; i++) {
1105 delay(10);
1106 data = CSR_READ_4(sc, BGE_MI_COMM);
1107 if (!(data & BGE_MICOMM_BUSY)) {
1108 DELAY(5);
1109 data = CSR_READ_4(sc, BGE_MI_COMM);
1110 break;
1111 }
1112 }
1113
1114 if (i == BGE_TIMEOUT) {
1115 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1116 rv = ETIMEDOUT;
1117 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1118 /* XXX This error occurs on some devices while attaching. */
1119 aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1120 rv = EIO;
1121 } else
1122 *val = data & BGE_MICOMM_DATA;
1123
1124 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1125 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1126 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1127 DELAY(80);
1128 }
1129
1130 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1131
1132 return rv;
1133 }
1134
1135 static int
1136 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1137 {
1138 struct bge_softc * const sc = device_private(dev);
1139 uint32_t data, autopoll;
1140 int rv = 0;
1141 int i;
1142
1143 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1144 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1145 return 0;
1146
1147 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1148 return -1;
1149
1150 /* Reading with autopolling on may trigger PCI errors */
1151 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1152 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1153 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1154 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1155 DELAY(80);
1156 }
1157
1158 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1159 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1160
1161 for (i = 0; i < BGE_TIMEOUT; i++) {
1162 delay(10);
1163 data = CSR_READ_4(sc, BGE_MI_COMM);
1164 if (!(data & BGE_MICOMM_BUSY)) {
1165 delay(5);
1166 data = CSR_READ_4(sc, BGE_MI_COMM);
1167 break;
1168 }
1169 }
1170
1171 if (i == BGE_TIMEOUT) {
1172 aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1173 rv = ETIMEDOUT;
1174 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1175 aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1176 rv = EIO;
1177 }
1178
1179 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1180 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1181 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1182 delay(80);
1183 }
1184
1185 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1186
1187 if (i == BGE_TIMEOUT) {
1188 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1189 return ETIMEDOUT;
1190 }
1191
1192 return rv;
1193 }
1194
1195 static void
1196 bge_miibus_statchg(struct ifnet *ifp)
1197 {
1198 struct bge_softc * const sc = ifp->if_softc;
1199 struct mii_data *mii = &sc->bge_mii;
1200 uint32_t mac_mode, rx_mode, tx_mode;
1201
1202 /*
1203 * Get flow control negotiation result.
1204 */
1205 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1206 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1207 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1208
1209 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1210 mii->mii_media_status & IFM_ACTIVE &&
1211 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1212 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1213 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1214 (!(mii->mii_media_status & IFM_ACTIVE) ||
1215 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1216 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1217
1218 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1219 return;
1220
1221 /* Set the port mode (MII/GMII) to match the link speed. */
1222 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1223 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1224 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1225 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1226 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1227 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1228 mac_mode |= BGE_PORTMODE_GMII;
1229 else
1230 mac_mode |= BGE_PORTMODE_MII;
1231
1232 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1233 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1234 if ((mii->mii_media_active & IFM_FDX) != 0) {
1235 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1236 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1237 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1238 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1239 } else
1240 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1241
1242 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1243 DELAY(40);
1244 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1245 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1246 }
1247
1248 /*
1249 * Update rx threshold levels to values in a particular slot
1250 * of the interrupt-mitigation table bge_rx_threshes.
1251 */
1252 static void
1253 bge_set_thresh(struct ifnet *ifp, int lvl)
1254 {
1255 struct bge_softc * const sc = ifp->if_softc;
1256 int s;
1257
1258 /*
1259 * For now, just save the new Rx-intr thresholds and record
1260 * that a threshold update is pending. Updating the hardware
1261 * registers here (even at splhigh()) is observed to
1262 * occasionally cause glitches where Rx-interrupts are not
1263 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1264 */
1265 s = splnet();
1266 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1267 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1268 sc->bge_pending_rxintr_change = 1;
1269 splx(s);
1270 }
1271
1272
1273 /*
1274 * Update Rx thresholds of all bge devices
1275 */
1276 static void
1277 bge_update_all_threshes(int lvl)
1278 {
1279 struct ifnet *ifp;
1280 const char * const namebuf = "bge";
1281 int namelen;
1282 int s;
1283
1284 if (lvl < 0)
1285 lvl = 0;
1286 else if (lvl >= NBGE_RX_THRESH)
1287 lvl = NBGE_RX_THRESH - 1;
1288
1289 namelen = strlen(namebuf);
1290 /*
1291 * Now search all the interfaces for this name/number
1292 */
1293 s = pserialize_read_enter();
1294 IFNET_READER_FOREACH(ifp) {
1295 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1296 continue;
1297 /* We got a match: update if doing auto-threshold-tuning */
1298 if (bge_auto_thresh)
1299 bge_set_thresh(ifp, lvl);
1300 }
1301 pserialize_read_exit(s);
1302 }
1303
1304 /*
1305 * Handle events that have triggered interrupts.
1306 */
1307 static void
1308 bge_handle_events(struct bge_softc *sc)
1309 {
1310
1311 return;
1312 }
1313
1314 /*
1315 * Memory management for jumbo frames.
1316 */
1317
1318 static int
1319 bge_alloc_jumbo_mem(struct bge_softc *sc)
1320 {
1321 char *ptr, *kva;
1322 bus_dma_segment_t seg;
1323 int i, rseg, state, error;
1324 struct bge_jpool_entry *entry;
1325
1326 state = error = 0;
1327
1328 /* Grab a big chunk o' storage. */
1329 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1330 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1331 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1332 return ENOBUFS;
1333 }
1334
1335 state = 1;
1336 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1337 BUS_DMA_NOWAIT)) {
1338 aprint_error_dev(sc->bge_dev,
1339 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1340 error = ENOBUFS;
1341 goto out;
1342 }
1343
1344 state = 2;
1345 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1346 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1347 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1348 error = ENOBUFS;
1349 goto out;
1350 }
1351
1352 state = 3;
1353 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1354 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1355 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1356 error = ENOBUFS;
1357 goto out;
1358 }
1359
1360 state = 4;
1361 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1362 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1363
1364 SLIST_INIT(&sc->bge_jfree_listhead);
1365 SLIST_INIT(&sc->bge_jinuse_listhead);
1366
1367 /*
1368 * Now divide it up into 9K pieces and save the addresses
1369 * in an array.
1370 */
1371 ptr = sc->bge_cdata.bge_jumbo_buf;
1372 for (i = 0; i < BGE_JSLOTS; i++) {
1373 sc->bge_cdata.bge_jslots[i] = ptr;
1374 ptr += BGE_JLEN;
1375 entry = malloc(sizeof(struct bge_jpool_entry),
1376 M_DEVBUF, M_WAITOK);
1377 entry->slot = i;
1378 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1379 entry, jpool_entries);
1380 }
1381 out:
1382 if (error != 0) {
1383 switch (state) {
1384 case 4:
1385 bus_dmamap_unload(sc->bge_dmatag,
1386 sc->bge_cdata.bge_rx_jumbo_map);
1387 /* FALLTHROUGH */
1388 case 3:
1389 bus_dmamap_destroy(sc->bge_dmatag,
1390 sc->bge_cdata.bge_rx_jumbo_map);
1391 /* FALLTHROUGH */
1392 case 2:
1393 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1394 /* FALLTHROUGH */
1395 case 1:
1396 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1397 break;
1398 default:
1399 break;
1400 }
1401 }
1402
1403 return error;
1404 }
1405
1406 /*
1407 * Allocate a jumbo buffer.
1408 */
1409 static void *
1410 bge_jalloc(struct bge_softc *sc)
1411 {
1412 struct bge_jpool_entry *entry;
1413
1414 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1415
1416 if (entry == NULL) {
1417 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1418 return NULL;
1419 }
1420
1421 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1422 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1423 return (sc->bge_cdata.bge_jslots[entry->slot]);
1424 }
1425
1426 /*
1427 * Release a jumbo buffer.
1428 */
1429 static void
1430 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1431 {
1432 struct bge_jpool_entry *entry;
1433 struct bge_softc * const sc = arg;
1434 int i, s;
1435
1436 if (sc == NULL)
1437 panic("bge_jfree: can't find softc pointer!");
1438
1439 /* calculate the slot this buffer belongs to */
1440
1441 i = ((char *)buf
1442 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1443
1444 if ((i < 0) || (i >= BGE_JSLOTS))
1445 panic("bge_jfree: asked to free buffer that we don't manage!");
1446
1447 s = splvm();
1448 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1449 if (entry == NULL)
1450 panic("bge_jfree: buffer not in use!");
1451 entry->slot = i;
1452 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1453 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1454
1455 if (__predict_true(m != NULL))
1456 pool_cache_put(mb_cache, m);
1457 splx(s);
1458 }
1459
1460
1461 /*
1462 * Initialize a standard receive ring descriptor.
1463 */
1464 static int
1465 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1466 bus_dmamap_t dmamap)
1467 {
1468 struct mbuf *m_new = NULL;
1469 struct bge_rx_bd *r;
1470 int error;
1471
1472 if (dmamap == NULL)
1473 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1474
1475 if (dmamap == NULL) {
1476 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1477 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1478 if (error != 0)
1479 return error;
1480 }
1481
1482 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1483
1484 if (m == NULL) {
1485 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1486 if (m_new == NULL)
1487 return ENOBUFS;
1488
1489 MCLGET(m_new, M_DONTWAIT);
1490 if (!(m_new->m_flags & M_EXT)) {
1491 m_freem(m_new);
1492 return ENOBUFS;
1493 }
1494 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1495
1496 } else {
1497 m_new = m;
1498 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1499 m_new->m_data = m_new->m_ext.ext_buf;
1500 }
1501 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1502 m_adj(m_new, ETHER_ALIGN);
1503 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1504 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1505 m_freem(m_new);
1506 return ENOBUFS;
1507 }
1508 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1509 BUS_DMASYNC_PREREAD);
1510
1511 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1512 r = &sc->bge_rdata->bge_rx_std_ring[i];
1513 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1514 r->bge_flags = BGE_RXBDFLAG_END;
1515 r->bge_len = m_new->m_len;
1516 r->bge_idx = i;
1517
1518 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1519 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1520 i * sizeof (struct bge_rx_bd),
1521 sizeof (struct bge_rx_bd),
1522 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1523
1524 return 0;
1525 }
1526
1527 /*
1528 * Initialize a jumbo receive ring descriptor. This allocates
1529 * a jumbo buffer from the pool managed internally by the driver.
1530 */
1531 static int
1532 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1533 {
1534 struct mbuf *m_new = NULL;
1535 struct bge_rx_bd *r;
1536 void *buf = NULL;
1537
1538 if (m == NULL) {
1539
1540 /* Allocate the mbuf. */
1541 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1542 if (m_new == NULL)
1543 return ENOBUFS;
1544
1545 /* Allocate the jumbo buffer */
1546 buf = bge_jalloc(sc);
1547 if (buf == NULL) {
1548 m_freem(m_new);
1549 aprint_error_dev(sc->bge_dev,
1550 "jumbo allocation failed -- packet dropped!\n");
1551 return ENOBUFS;
1552 }
1553
1554 /* Attach the buffer to the mbuf. */
1555 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1556 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1557 bge_jfree, sc);
1558 m_new->m_flags |= M_EXT_RW;
1559 } else {
1560 m_new = m;
1561 buf = m_new->m_data = m_new->m_ext.ext_buf;
1562 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1563 }
1564 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1565 m_adj(m_new, ETHER_ALIGN);
1566 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1567 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1568 BGE_JLEN, BUS_DMASYNC_PREREAD);
1569 /* Set up the descriptor. */
1570 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1571 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1572 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1573 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1574 r->bge_len = m_new->m_len;
1575 r->bge_idx = i;
1576
1577 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1578 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1579 i * sizeof (struct bge_rx_bd),
1580 sizeof (struct bge_rx_bd),
1581 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1582
1583 return 0;
1584 }
1585
1586 /*
1587 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1588 * that's 1MB or memory, which is a lot. For now, we fill only the first
1589 * 256 ring entries and hope that our CPU is fast enough to keep up with
1590 * the NIC.
1591 */
1592 static int
1593 bge_init_rx_ring_std(struct bge_softc *sc)
1594 {
1595 int i;
1596
1597 if (sc->bge_flags & BGEF_RXRING_VALID)
1598 return 0;
1599
1600 for (i = 0; i < BGE_SSLOTS; i++) {
1601 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1602 return ENOBUFS;
1603 }
1604
1605 sc->bge_std = i - 1;
1606 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1607
1608 sc->bge_flags |= BGEF_RXRING_VALID;
1609
1610 return 0;
1611 }
1612
1613 static void
1614 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1615 {
1616 int i;
1617
1618 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1619 return;
1620
1621 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1622 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1623 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1624 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1625 if (disable) {
1626 bus_dmamap_destroy(sc->bge_dmatag,
1627 sc->bge_cdata.bge_rx_std_map[i]);
1628 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1629 }
1630 }
1631 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1632 sizeof(struct bge_rx_bd));
1633 }
1634
1635 sc->bge_flags &= ~BGEF_RXRING_VALID;
1636 }
1637
1638 static int
1639 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1640 {
1641 int i;
1642 volatile struct bge_rcb *rcb;
1643
1644 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1645 return 0;
1646
1647 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1648 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1649 return ENOBUFS;
1650 }
1651
1652 sc->bge_jumbo = i - 1;
1653 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1654
1655 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1656 rcb->bge_maxlen_flags = 0;
1657 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1658
1659 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1660
1661 return 0;
1662 }
1663
1664 static void
1665 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1666 {
1667 int i;
1668
1669 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1670 return;
1671
1672 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1673 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1674 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1675 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1676 }
1677 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1678 sizeof(struct bge_rx_bd));
1679 }
1680
1681 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1682 }
1683
1684 static void
1685 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1686 {
1687 int i;
1688 struct txdmamap_pool_entry *dma;
1689
1690 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1691 return;
1692
1693 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1694 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1695 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1696 sc->bge_cdata.bge_tx_chain[i] = NULL;
1697 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1698 link);
1699 sc->txdma[i] = 0;
1700 }
1701 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1702 sizeof(struct bge_tx_bd));
1703 }
1704
1705 if (disable) {
1706 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1707 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1708 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1709 if (sc->bge_dma64) {
1710 bus_dmamap_destroy(sc->bge_dmatag32,
1711 dma->dmamap32);
1712 }
1713 free(dma, M_DEVBUF);
1714 }
1715 SLIST_INIT(&sc->txdma_list);
1716 }
1717
1718 sc->bge_flags &= ~BGEF_TXRING_VALID;
1719 }
1720
1721 static int
1722 bge_init_tx_ring(struct bge_softc *sc)
1723 {
1724 struct ifnet * const ifp = &sc->ethercom.ec_if;
1725 int i;
1726 bus_dmamap_t dmamap, dmamap32;
1727 bus_size_t maxsegsz;
1728 struct txdmamap_pool_entry *dma;
1729
1730 if (sc->bge_flags & BGEF_TXRING_VALID)
1731 return 0;
1732
1733 sc->bge_txcnt = 0;
1734 sc->bge_tx_saved_considx = 0;
1735
1736 /* Initialize transmit producer index for host-memory send ring. */
1737 sc->bge_tx_prodidx = 0;
1738 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1739 /* 5700 b2 errata */
1740 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1741 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1742
1743 /* NIC-memory send ring not used; initialize to zero. */
1744 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1745 /* 5700 b2 errata */
1746 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1747 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1748
1749 /* Limit DMA segment size for some chips */
1750 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1751 (ifp->if_mtu <= ETHERMTU))
1752 maxsegsz = 2048;
1753 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1754 maxsegsz = 4096;
1755 else
1756 maxsegsz = ETHER_MAX_LEN_JUMBO;
1757
1758 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1759 goto alloc_done;
1760
1761 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1762 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1763 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1764 &dmamap))
1765 return ENOBUFS;
1766 if (dmamap == NULL)
1767 panic("dmamap NULL in bge_init_tx_ring");
1768 if (sc->bge_dma64) {
1769 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1770 BGE_NTXSEG, maxsegsz, 0,
1771 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1772 &dmamap32)) {
1773 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1774 return ENOBUFS;
1775 }
1776 if (dmamap32 == NULL)
1777 panic("dmamap32 NULL in bge_init_tx_ring");
1778 } else
1779 dmamap32 = dmamap;
1780 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1781 if (dma == NULL) {
1782 aprint_error_dev(sc->bge_dev,
1783 "can't alloc txdmamap_pool_entry\n");
1784 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1785 if (sc->bge_dma64)
1786 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1787 return ENOMEM;
1788 }
1789 dma->dmamap = dmamap;
1790 dma->dmamap32 = dmamap32;
1791 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1792 }
1793 alloc_done:
1794 sc->bge_flags |= BGEF_TXRING_VALID;
1795
1796 return 0;
1797 }
1798
1799 static void
1800 bge_setmulti(struct bge_softc *sc)
1801 {
1802 struct ethercom * const ec = &sc->ethercom;
1803 struct ifnet * const ifp = &ec->ec_if;
1804 struct ether_multi *enm;
1805 struct ether_multistep step;
1806 uint32_t hashes[4] = { 0, 0, 0, 0 };
1807 uint32_t h;
1808 int i;
1809
1810 if (ifp->if_flags & IFF_PROMISC)
1811 goto allmulti;
1812
1813 /* Now program new ones. */
1814 ETHER_LOCK(ec);
1815 ETHER_FIRST_MULTI(step, ec, enm);
1816 while (enm != NULL) {
1817 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1818 /*
1819 * We must listen to a range of multicast addresses.
1820 * For now, just accept all multicasts, rather than
1821 * trying to set only those filter bits needed to match
1822 * the range. (At this time, the only use of address
1823 * ranges is for IP multicast routing, for which the
1824 * range is big enough to require all bits set.)
1825 */
1826 ETHER_UNLOCK(ec);
1827 goto allmulti;
1828 }
1829
1830 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1831
1832 /* Just want the 7 least-significant bits. */
1833 h &= 0x7f;
1834
1835 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1836 ETHER_NEXT_MULTI(step, enm);
1837 }
1838 ETHER_UNLOCK(ec);
1839
1840 ifp->if_flags &= ~IFF_ALLMULTI;
1841 goto setit;
1842
1843 allmulti:
1844 ifp->if_flags |= IFF_ALLMULTI;
1845 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1846
1847 setit:
1848 for (i = 0; i < 4; i++)
1849 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1850 }
1851
1852 static void
1853 bge_sig_pre_reset(struct bge_softc *sc, int type)
1854 {
1855
1856 /*
1857 * Some chips don't like this so only do this if ASF is enabled
1858 */
1859 if (sc->bge_asf_mode)
1860 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1861
1862 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1863 switch (type) {
1864 case BGE_RESET_START:
1865 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1866 BGE_FW_DRV_STATE_START);
1867 break;
1868 case BGE_RESET_SHUTDOWN:
1869 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1870 BGE_FW_DRV_STATE_UNLOAD);
1871 break;
1872 case BGE_RESET_SUSPEND:
1873 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1874 BGE_FW_DRV_STATE_SUSPEND);
1875 break;
1876 }
1877 }
1878
1879 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1880 bge_ape_driver_state_change(sc, type);
1881 }
1882
1883 static void
1884 bge_sig_post_reset(struct bge_softc *sc, int type)
1885 {
1886
1887 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1888 switch (type) {
1889 case BGE_RESET_START:
1890 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1891 BGE_FW_DRV_STATE_START_DONE);
1892 /* START DONE */
1893 break;
1894 case BGE_RESET_SHUTDOWN:
1895 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1896 BGE_FW_DRV_STATE_UNLOAD_DONE);
1897 break;
1898 }
1899 }
1900
1901 if (type == BGE_RESET_SHUTDOWN)
1902 bge_ape_driver_state_change(sc, type);
1903 }
1904
1905 static void
1906 bge_sig_legacy(struct bge_softc *sc, int type)
1907 {
1908
1909 if (sc->bge_asf_mode) {
1910 switch (type) {
1911 case BGE_RESET_START:
1912 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1913 BGE_FW_DRV_STATE_START);
1914 break;
1915 case BGE_RESET_SHUTDOWN:
1916 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1917 BGE_FW_DRV_STATE_UNLOAD);
1918 break;
1919 }
1920 }
1921 }
1922
1923 static void
1924 bge_wait_for_event_ack(struct bge_softc *sc)
1925 {
1926 int i;
1927
1928 /* wait up to 2500usec */
1929 for (i = 0; i < 250; i++) {
1930 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1931 BGE_RX_CPU_DRV_EVENT))
1932 break;
1933 DELAY(10);
1934 }
1935 }
1936
1937 static void
1938 bge_stop_fw(struct bge_softc *sc)
1939 {
1940
1941 if (sc->bge_asf_mode) {
1942 bge_wait_for_event_ack(sc);
1943
1944 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1945 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1946 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1947
1948 bge_wait_for_event_ack(sc);
1949 }
1950 }
1951
1952 static int
1953 bge_poll_fw(struct bge_softc *sc)
1954 {
1955 uint32_t val;
1956 int i;
1957
1958 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1959 for (i = 0; i < BGE_TIMEOUT; i++) {
1960 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1961 if (val & BGE_VCPU_STATUS_INIT_DONE)
1962 break;
1963 DELAY(100);
1964 }
1965 if (i >= BGE_TIMEOUT) {
1966 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1967 return -1;
1968 }
1969 } else {
1970 /*
1971 * Poll the value location we just wrote until
1972 * we see the 1's complement of the magic number.
1973 * This indicates that the firmware initialization
1974 * is complete.
1975 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1976 */
1977 for (i = 0; i < BGE_TIMEOUT; i++) {
1978 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1979 if (val == ~BGE_SRAM_FW_MB_MAGIC)
1980 break;
1981 DELAY(10);
1982 }
1983
1984 if ((i >= BGE_TIMEOUT)
1985 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1986 aprint_error_dev(sc->bge_dev,
1987 "firmware handshake timed out, val = %x\n", val);
1988 return -1;
1989 }
1990 }
1991
1992 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1993 /* tg3 says we have to wait extra time */
1994 delay(10 * 1000);
1995 }
1996
1997 return 0;
1998 }
1999
2000 int
2001 bge_phy_addr(struct bge_softc *sc)
2002 {
2003 struct pci_attach_args *pa = &(sc->bge_pa);
2004 int phy_addr = 1;
2005
2006 /*
2007 * PHY address mapping for various devices.
2008 *
2009 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2010 * ---------+-------+-------+-------+-------+
2011 * BCM57XX | 1 | X | X | X |
2012 * BCM5704 | 1 | X | 1 | X |
2013 * BCM5717 | 1 | 8 | 2 | 9 |
2014 * BCM5719 | 1 | 8 | 2 | 9 |
2015 * BCM5720 | 1 | 8 | 2 | 9 |
2016 *
2017 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2018 * ---------+-------+-------+-------+-------+
2019 * BCM57XX | X | X | X | X |
2020 * BCM5704 | X | X | X | X |
2021 * BCM5717 | X | X | X | X |
2022 * BCM5719 | 3 | 10 | 4 | 11 |
2023 * BCM5720 | X | X | X | X |
2024 *
2025 * Other addresses may respond but they are not
2026 * IEEE compliant PHYs and should be ignored.
2027 */
2028 switch (BGE_ASICREV(sc->bge_chipid)) {
2029 case BGE_ASICREV_BCM5717:
2030 case BGE_ASICREV_BCM5719:
2031 case BGE_ASICREV_BCM5720:
2032 phy_addr = pa->pa_function;
2033 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2034 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2035 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2036 } else {
2037 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2038 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2039 }
2040 }
2041
2042 return phy_addr;
2043 }
2044
2045 /*
2046 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2047 * self-test results.
2048 */
2049 static int
2050 bge_chipinit(struct bge_softc *sc)
2051 {
2052 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2053 int i;
2054
2055 /* Set endianness before we access any non-PCI registers. */
2056 misc_ctl = BGE_INIT;
2057 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2058 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2059 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2060 misc_ctl);
2061
2062 /*
2063 * Clear the MAC statistics block in the NIC's
2064 * internal memory.
2065 */
2066 for (i = BGE_STATS_BLOCK;
2067 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2068 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2069
2070 for (i = BGE_STATUS_BLOCK;
2071 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2072 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2073
2074 /* 5717 workaround from tg3 */
2075 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2076 /* Save */
2077 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2078
2079 /* Temporary modify MODE_CTL to control TLP */
2080 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2081 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2082
2083 /* Control TLP */
2084 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2085 BGE_TLP_PHYCTL1);
2086 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2087 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2088
2089 /* Restore */
2090 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2091 }
2092
2093 if (BGE_IS_57765_FAMILY(sc)) {
2094 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2095 /* Save */
2096 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2097
2098 /* Temporary modify MODE_CTL to control TLP */
2099 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2100 CSR_WRITE_4(sc, BGE_MODE_CTL,
2101 reg | BGE_MODECTL_PCIE_TLPADDR1);
2102
2103 /* Control TLP */
2104 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2105 BGE_TLP_PHYCTL5);
2106 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2107 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2108
2109 /* Restore */
2110 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2111 }
2112 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2113 /*
2114 * For the 57766 and non Ax versions of 57765, bootcode
2115 * needs to setup the PCIE Fast Training Sequence (FTS)
2116 * value to prevent transmit hangs.
2117 */
2118 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2119 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2120 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2121
2122 /* Save */
2123 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2124
2125 /* Temporary modify MODE_CTL to control TLP */
2126 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2127 CSR_WRITE_4(sc, BGE_MODE_CTL,
2128 reg | BGE_MODECTL_PCIE_TLPADDR0);
2129
2130 /* Control TLP */
2131 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2132 BGE_TLP_FTSMAX);
2133 reg &= ~BGE_TLP_FTSMAX_MSK;
2134 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2135 reg | BGE_TLP_FTSMAX_VAL);
2136
2137 /* Restore */
2138 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2139 }
2140
2141 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2142 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2143 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2144 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2145 }
2146
2147 /* Set up the PCI DMA control register. */
2148 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2149 if (sc->bge_flags & BGEF_PCIE) {
2150 /* Read watermark not used, 128 bytes for write. */
2151 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2152 device_xname(sc->bge_dev)));
2153 if (sc->bge_mps >= 256)
2154 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2155 else
2156 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2157 } else if (sc->bge_flags & BGEF_PCIX) {
2158 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2159 device_xname(sc->bge_dev)));
2160 /* PCI-X bus */
2161 if (BGE_IS_5714_FAMILY(sc)) {
2162 /* 256 bytes for read and write. */
2163 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2164 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2165
2166 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2167 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2168 else
2169 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2170 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2171 /*
2172 * In the BCM5703, the DMA read watermark should
2173 * be set to less than or equal to the maximum
2174 * memory read byte count of the PCI-X command
2175 * register.
2176 */
2177 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2178 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2179 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2180 /* 1536 bytes for read, 384 bytes for write. */
2181 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2182 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2183 } else {
2184 /* 384 bytes for read and write. */
2185 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2186 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2187 (0x0F);
2188 }
2189
2190 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2191 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2192 uint32_t tmp;
2193
2194 /* Set ONEDMA_ATONCE for hardware workaround. */
2195 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2196 if (tmp == 6 || tmp == 7)
2197 dma_rw_ctl |=
2198 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2199
2200 /* Set PCI-X DMA write workaround. */
2201 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2202 }
2203 } else {
2204 /* Conventional PCI bus: 256 bytes for read and write. */
2205 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2206 device_xname(sc->bge_dev)));
2207 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2208 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2209
2210 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2211 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2212 dma_rw_ctl |= 0x0F;
2213 }
2214
2215 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2216 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2217 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2218 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2219
2220 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2221 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2222 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2223
2224 if (BGE_IS_57765_PLUS(sc)) {
2225 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2226 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2227 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2228
2229 /*
2230 * Enable HW workaround for controllers that misinterpret
2231 * a status tag update and leave interrupts permanently
2232 * disabled.
2233 */
2234 if (!BGE_IS_57765_FAMILY(sc) &&
2235 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2236 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2237 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2238 }
2239
2240 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2241 dma_rw_ctl);
2242
2243 /*
2244 * Set up general mode register.
2245 */
2246 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2247 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2248 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2249 /* Retain Host-2-BMC settings written by APE firmware. */
2250 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2251 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2252 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2253 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2254 }
2255 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2256 BGE_MODECTL_TX_NO_PHDR_CSUM;
2257
2258 /*
2259 * BCM5701 B5 have a bug causing data corruption when using
2260 * 64-bit DMA reads, which can be terminated early and then
2261 * completed later as 32-bit accesses, in combination with
2262 * certain bridges.
2263 */
2264 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2265 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2266 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2267
2268 /*
2269 * Tell the firmware the driver is running
2270 */
2271 if (sc->bge_asf_mode & ASF_STACKUP)
2272 mode_ctl |= BGE_MODECTL_STACKUP;
2273
2274 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2275
2276 /*
2277 * Disable memory write invalidate. Apparently it is not supported
2278 * properly by these devices.
2279 */
2280 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2281 PCI_COMMAND_INVALIDATE_ENABLE);
2282
2283 #ifdef __brokenalpha__
2284 /*
2285 * Must insure that we do not cross an 8K (bytes) boundary
2286 * for DMA reads. Our highest limit is 1K bytes. This is a
2287 * restriction on some ALPHA platforms with early revision
2288 * 21174 PCI chipsets, such as the AlphaPC 164lx
2289 */
2290 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2291 #endif
2292
2293 /* Set the timer prescaler (always 66MHz) */
2294 CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2295
2296 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2297 DELAY(40); /* XXX */
2298
2299 /* Put PHY into ready state */
2300 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2301 DELAY(40);
2302 }
2303
2304 return 0;
2305 }
2306
2307 static int
2308 bge_blockinit(struct bge_softc *sc)
2309 {
2310 volatile struct bge_rcb *rcb;
2311 bus_size_t rcb_addr;
2312 struct ifnet * const ifp = &sc->ethercom.ec_if;
2313 bge_hostaddr taddr;
2314 uint32_t dmactl, rdmareg, mimode, val;
2315 int i, limit;
2316
2317 /*
2318 * Initialize the memory window pointer register so that
2319 * we can access the first 32K of internal NIC RAM. This will
2320 * allow us to set up the TX send ring RCBs and the RX return
2321 * ring RCBs, plus other things which live in NIC memory.
2322 */
2323 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2324
2325 if (!BGE_IS_5705_PLUS(sc)) {
2326 /* 57XX step 33 */
2327 /* Configure mbuf memory pool */
2328 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2329
2330 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2331 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2332 else
2333 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2334
2335 /* 57XX step 34 */
2336 /* Configure DMA resource pool */
2337 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2338 BGE_DMA_DESCRIPTORS);
2339 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2340 }
2341
2342 /* 5718 step 11, 57XX step 35 */
2343 /*
2344 * Configure mbuf pool watermarks. New broadcom docs strongly
2345 * recommend these.
2346 */
2347 if (BGE_IS_5717_PLUS(sc)) {
2348 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2349 if (ifp->if_mtu > ETHERMTU) {
2350 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2351 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2352 } else {
2353 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2354 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2355 }
2356 } else if (BGE_IS_5705_PLUS(sc)) {
2357 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2358
2359 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2360 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2361 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2362 } else {
2363 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2364 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2365 }
2366 } else {
2367 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2368 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2369 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2370 }
2371
2372 /* 57XX step 36 */
2373 /* Configure DMA resource watermarks */
2374 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2375 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2376
2377 /* 5718 step 13, 57XX step 38 */
2378 /* Enable buffer manager */
2379 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2380 /*
2381 * Change the arbitration algorithm of TXMBUF read request to
2382 * round-robin instead of priority based for BCM5719. When
2383 * TXFIFO is almost empty, RDMA will hold its request until
2384 * TXFIFO is not almost empty.
2385 */
2386 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2387 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2388 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2389 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2390 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2391 val |= BGE_BMANMODE_LOMBUF_ATTN;
2392 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2393
2394 /* 57XX step 39 */
2395 /* Poll for buffer manager start indication */
2396 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2397 DELAY(10);
2398 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2399 break;
2400 }
2401
2402 if (i == BGE_TIMEOUT * 2) {
2403 aprint_error_dev(sc->bge_dev,
2404 "buffer manager failed to start\n");
2405 return ENXIO;
2406 }
2407
2408 /* 57XX step 40 */
2409 /* Enable flow-through queues */
2410 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2411 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2412
2413 /* Wait until queue initialization is complete */
2414 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2415 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2416 break;
2417 DELAY(10);
2418 }
2419
2420 if (i == BGE_TIMEOUT * 2) {
2421 aprint_error_dev(sc->bge_dev,
2422 "flow-through queue init failed\n");
2423 return ENXIO;
2424 }
2425
2426 /*
2427 * Summary of rings supported by the controller:
2428 *
2429 * Standard Receive Producer Ring
2430 * - This ring is used to feed receive buffers for "standard"
2431 * sized frames (typically 1536 bytes) to the controller.
2432 *
2433 * Jumbo Receive Producer Ring
2434 * - This ring is used to feed receive buffers for jumbo sized
2435 * frames (i.e. anything bigger than the "standard" frames)
2436 * to the controller.
2437 *
2438 * Mini Receive Producer Ring
2439 * - This ring is used to feed receive buffers for "mini"
2440 * sized frames to the controller.
2441 * - This feature required external memory for the controller
2442 * but was never used in a production system. Should always
2443 * be disabled.
2444 *
2445 * Receive Return Ring
2446 * - After the controller has placed an incoming frame into a
2447 * receive buffer that buffer is moved into a receive return
2448 * ring. The driver is then responsible to passing the
2449 * buffer up to the stack. Many versions of the controller
2450 * support multiple RR rings.
2451 *
2452 * Send Ring
2453 * - This ring is used for outgoing frames. Many versions of
2454 * the controller support multiple send rings.
2455 */
2456
2457 /* 5718 step 15, 57XX step 41 */
2458 /* Initialize the standard RX ring control block */
2459 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2460 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2461 /* 5718 step 16 */
2462 if (BGE_IS_57765_PLUS(sc)) {
2463 /*
2464 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2465 * Bits 15-2 : Maximum RX frame size
2466 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2467 * Bit 0 : Reserved
2468 */
2469 rcb->bge_maxlen_flags =
2470 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2471 } else if (BGE_IS_5705_PLUS(sc)) {
2472 /*
2473 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2474 * Bits 15-2 : Reserved (should be 0)
2475 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2476 * Bit 0 : Reserved
2477 */
2478 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2479 } else {
2480 /*
2481 * Ring size is always XXX entries
2482 * Bits 31-16: Maximum RX frame size
2483 * Bits 15-2 : Reserved (should be 0)
2484 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2485 * Bit 0 : Reserved
2486 */
2487 rcb->bge_maxlen_flags =
2488 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2489 }
2490 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2491 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2492 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2493 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2494 else
2495 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2496 /* Write the standard receive producer ring control block. */
2497 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2498 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2499 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2500 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2501
2502 /* Reset the standard receive producer ring producer index. */
2503 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2504
2505 /* 57XX step 42 */
2506 /*
2507 * Initialize the jumbo RX ring control block
2508 * We set the 'ring disabled' bit in the flags
2509 * field until we're actually ready to start
2510 * using this ring (i.e. once we set the MTU
2511 * high enough to require it).
2512 */
2513 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2514 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2515 BGE_HOSTADDR(rcb->bge_hostaddr,
2516 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2517 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2518 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2519 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2520 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2521 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2522 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2523 else
2524 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2525 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2526 rcb->bge_hostaddr.bge_addr_hi);
2527 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2528 rcb->bge_hostaddr.bge_addr_lo);
2529 /* Program the jumbo receive producer ring RCB parameters. */
2530 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2531 rcb->bge_maxlen_flags);
2532 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2533 /* Reset the jumbo receive producer ring producer index. */
2534 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2535 }
2536
2537 /* 57XX step 43 */
2538 /* Disable the mini receive producer ring RCB. */
2539 if (BGE_IS_5700_FAMILY(sc)) {
2540 /* Set up dummy disabled mini ring RCB */
2541 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2542 rcb->bge_maxlen_flags =
2543 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2544 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2545 rcb->bge_maxlen_flags);
2546 /* Reset the mini receive producer ring producer index. */
2547 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2548
2549 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2550 offsetof(struct bge_ring_data, bge_info),
2551 sizeof (struct bge_gib),
2552 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2553 }
2554
2555 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2556 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2557 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2558 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2559 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2560 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2561 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2562 }
2563 /* 5718 step 14, 57XX step 44 */
2564 /*
2565 * The BD ring replenish thresholds control how often the
2566 * hardware fetches new BD's from the producer rings in host
2567 * memory. Setting the value too low on a busy system can
2568 * starve the hardware and recue the throughpout.
2569 *
2570 * Set the BD ring replenish thresholds. The recommended
2571 * values are 1/8th the number of descriptors allocated to
2572 * each ring, but since we try to avoid filling the entire
2573 * ring we set these to the minimal value of 8. This needs to
2574 * be done on several of the supported chip revisions anyway,
2575 * to work around HW bugs.
2576 */
2577 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2578 if (BGE_IS_JUMBO_CAPABLE(sc))
2579 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2580
2581 /* 5718 step 18 */
2582 if (BGE_IS_5717_PLUS(sc)) {
2583 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2584 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2585 }
2586
2587 /* 57XX step 45 */
2588 /*
2589 * Disable all send rings by setting the 'ring disabled' bit
2590 * in the flags field of all the TX send ring control blocks,
2591 * located in NIC memory.
2592 */
2593 if (BGE_IS_5700_FAMILY(sc)) {
2594 /* 5700 to 5704 had 16 send rings. */
2595 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2596 } else if (BGE_IS_5717_PLUS(sc)) {
2597 limit = BGE_TX_RINGS_5717_MAX;
2598 } else if (BGE_IS_57765_FAMILY(sc) ||
2599 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2600 limit = BGE_TX_RINGS_57765_MAX;
2601 } else
2602 limit = 1;
2603 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2604 for (i = 0; i < limit; i++) {
2605 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2606 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2607 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2608 rcb_addr += sizeof(struct bge_rcb);
2609 }
2610
2611 /* 57XX step 46 and 47 */
2612 /* Configure send ring RCB 0 (we use only the first ring) */
2613 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2614 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2615 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2616 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2617 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2618 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2619 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2620 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2621 else
2622 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2623 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2624 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2625 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2626
2627 /* 57XX step 48 */
2628 /*
2629 * Disable all receive return rings by setting the
2630 * 'ring diabled' bit in the flags field of all the receive
2631 * return ring control blocks, located in NIC memory.
2632 */
2633 if (BGE_IS_5717_PLUS(sc)) {
2634 /* Should be 17, use 16 until we get an SRAM map. */
2635 limit = 16;
2636 } else if (BGE_IS_5700_FAMILY(sc))
2637 limit = BGE_RX_RINGS_MAX;
2638 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2639 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2640 BGE_IS_57765_FAMILY(sc))
2641 limit = 4;
2642 else
2643 limit = 1;
2644 /* Disable all receive return rings */
2645 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2646 for (i = 0; i < limit; i++) {
2647 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2648 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2649 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2650 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2651 BGE_RCB_FLAG_RING_DISABLED));
2652 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2653 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2654 (i * (sizeof(uint64_t))), 0);
2655 rcb_addr += sizeof(struct bge_rcb);
2656 }
2657
2658 /* 57XX step 49 */
2659 /*
2660 * Set up receive return ring 0. Note that the NIC address
2661 * for RX return rings is 0x0. The return rings live entirely
2662 * within the host, so the nicaddr field in the RCB isn't used.
2663 */
2664 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2665 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2666 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2667 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2668 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2669 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2670 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2671
2672 /* 5718 step 24, 57XX step 53 */
2673 /* Set random backoff seed for TX */
2674 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2675 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2676 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2677 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2678 BGE_TX_BACKOFF_SEED_MASK);
2679
2680 /* 5718 step 26, 57XX step 55 */
2681 /* Set inter-packet gap */
2682 val = 0x2620;
2683 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2684 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2685 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2686 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2687 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2688
2689 /* 5718 step 27, 57XX step 56 */
2690 /*
2691 * Specify which ring to use for packets that don't match
2692 * any RX rules.
2693 */
2694 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2695
2696 /* 5718 step 28, 57XX step 57 */
2697 /*
2698 * Configure number of RX lists. One interrupt distribution
2699 * list, sixteen active lists, one bad frames class.
2700 */
2701 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2702
2703 /* 5718 step 29, 57XX step 58 */
2704 /* Inialize RX list placement stats mask. */
2705 if (BGE_IS_575X_PLUS(sc)) {
2706 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2707 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2708 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2709 } else
2710 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2711
2712 /* 5718 step 30, 57XX step 59 */
2713 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2714
2715 /* 5718 step 33, 57XX step 62 */
2716 /* Disable host coalescing until we get it set up */
2717 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2718
2719 /* 5718 step 34, 57XX step 63 */
2720 /* Poll to make sure it's shut down. */
2721 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2722 DELAY(10);
2723 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2724 break;
2725 }
2726
2727 if (i == BGE_TIMEOUT * 2) {
2728 aprint_error_dev(sc->bge_dev,
2729 "host coalescing engine failed to idle\n");
2730 return ENXIO;
2731 }
2732
2733 /* 5718 step 35, 36, 37 */
2734 /* Set up host coalescing defaults */
2735 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2736 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2737 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2738 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2739 if (!(BGE_IS_5705_PLUS(sc))) {
2740 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2741 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2742 }
2743 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2744 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2745
2746 /* Set up address of statistics block */
2747 if (BGE_IS_5700_FAMILY(sc)) {
2748 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2749 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2750 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2751 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2752 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2753 }
2754
2755 /* 5718 step 38 */
2756 /* Set up address of status block */
2757 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2758 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2759 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2760 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2761 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2762 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2763
2764 /* Set up status block size. */
2765 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2766 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2767 val = BGE_STATBLKSZ_FULL;
2768 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2769 } else {
2770 val = BGE_STATBLKSZ_32BYTE;
2771 bzero(&sc->bge_rdata->bge_status_block, 32);
2772 }
2773
2774 /* 5718 step 39, 57XX step 73 */
2775 /* Turn on host coalescing state machine */
2776 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2777
2778 /* 5718 step 40, 57XX step 74 */
2779 /* Turn on RX BD completion state machine and enable attentions */
2780 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2781 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2782
2783 /* 5718 step 41, 57XX step 75 */
2784 /* Turn on RX list placement state machine */
2785 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2786
2787 /* 57XX step 76 */
2788 /* Turn on RX list selector state machine. */
2789 if (!(BGE_IS_5705_PLUS(sc)))
2790 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2791
2792 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2793 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2794 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2795 BGE_MACMODE_FRMHDR_DMA_ENB;
2796
2797 if (sc->bge_flags & BGEF_FIBER_TBI)
2798 val |= BGE_PORTMODE_TBI;
2799 else if (sc->bge_flags & BGEF_FIBER_MII)
2800 val |= BGE_PORTMODE_GMII;
2801 else
2802 val |= BGE_PORTMODE_MII;
2803
2804 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2805 /* Allow APE to send/receive frames. */
2806 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2807 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2808
2809 /* Turn on DMA, clear stats */
2810 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2811 /* 5718 step 44 */
2812 DELAY(40);
2813
2814 /* 5718 step 45, 57XX step 79 */
2815 /* Set misc. local control, enable interrupts on attentions */
2816 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2817 if (BGE_IS_5717_PLUS(sc)) {
2818 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2819 /* 5718 step 46 */
2820 DELAY(100);
2821 }
2822
2823 /* 57XX step 81 */
2824 /* Turn on DMA completion state machine */
2825 if (!(BGE_IS_5705_PLUS(sc)))
2826 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2827
2828 /* 5718 step 47, 57XX step 82 */
2829 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2830
2831 /* 5718 step 48 */
2832 /* Enable host coalescing bug fix. */
2833 if (BGE_IS_5755_PLUS(sc))
2834 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2835
2836 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2837 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2838
2839 /* Turn on write DMA state machine */
2840 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2841 /* 5718 step 49 */
2842 DELAY(40);
2843
2844 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2845
2846 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2847 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2848
2849 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2850 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2851 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2852 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2853 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2854 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2855
2856 if (sc->bge_flags & BGEF_PCIE)
2857 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2858 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2859 if (ifp->if_mtu <= ETHERMTU)
2860 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2861 }
2862 if (sc->bge_flags & BGEF_TSO) {
2863 val |= BGE_RDMAMODE_TSO4_ENABLE;
2864 if (BGE_IS_5717_PLUS(sc))
2865 val |= BGE_RDMAMODE_TSO6_ENABLE;
2866 }
2867
2868 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2869 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2870 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2871 BGE_RDMAMODE_H2BNC_VLAN_DET;
2872 /*
2873 * Allow multiple outstanding read requests from
2874 * non-LSO read DMA engine.
2875 */
2876 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2877 }
2878
2879 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2880 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2881 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2882 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2883 BGE_IS_57765_PLUS(sc)) {
2884 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2885 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2886 else
2887 rdmareg = BGE_RDMA_RSRVCTRL;
2888 dmactl = CSR_READ_4(sc, rdmareg);
2889 /*
2890 * Adjust tx margin to prevent TX data corruption and
2891 * fix internal FIFO overflow.
2892 */
2893 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2894 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2895 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2896 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2897 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2898 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2899 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2900 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2901 }
2902 /*
2903 * Enable fix for read DMA FIFO overruns.
2904 * The fix is to limit the number of RX BDs
2905 * the hardware would fetch at a time.
2906 */
2907 CSR_WRITE_4(sc, rdmareg, dmactl |
2908 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2909 }
2910
2911 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2912 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2913 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2914 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2915 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2916 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2917 /*
2918 * Allow 4KB burst length reads for non-LSO frames.
2919 * Enable 512B burst length reads for buffer descriptors.
2920 */
2921 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2922 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2923 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2924 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2925 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2926 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2927 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2928 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2929 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2930 }
2931 /* Turn on read DMA state machine */
2932 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2933 /* 5718 step 52 */
2934 delay(40);
2935
2936 if (sc->bge_flags & BGEF_RDMA_BUG) {
2937 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2938 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2939 if ((val & 0xFFFF) > BGE_FRAMELEN)
2940 break;
2941 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2942 break;
2943 }
2944 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2945 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2946 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2947 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2948 else
2949 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2950 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2951 }
2952 }
2953
2954 /* 5718 step 56, 57XX step 84 */
2955 /* Turn on RX data completion state machine */
2956 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2957
2958 /* Turn on RX data and RX BD initiator state machine */
2959 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2960
2961 /* 57XX step 85 */
2962 /* Turn on Mbuf cluster free state machine */
2963 if (!BGE_IS_5705_PLUS(sc))
2964 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2965
2966 /* 5718 step 57, 57XX step 86 */
2967 /* Turn on send data completion state machine */
2968 val = BGE_SDCMODE_ENABLE;
2969 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2970 val |= BGE_SDCMODE_CDELAY;
2971 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2972
2973 /* 5718 step 58 */
2974 /* Turn on send BD completion state machine */
2975 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2976
2977 /* 57XX step 88 */
2978 /* Turn on RX BD initiator state machine */
2979 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2980
2981 /* 5718 step 60, 57XX step 90 */
2982 /* Turn on send data initiator state machine */
2983 if (sc->bge_flags & BGEF_TSO) {
2984 /* XXX: magic value from Linux driver */
2985 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2986 BGE_SDIMODE_HW_LSO_PRE_DMA);
2987 } else
2988 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2989
2990 /* 5718 step 61, 57XX step 91 */
2991 /* Turn on send BD initiator state machine */
2992 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2993
2994 /* 5718 step 62, 57XX step 92 */
2995 /* Turn on send BD selector state machine */
2996 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2997
2998 /* 5718 step 31, 57XX step 60 */
2999 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3000 /* 5718 step 32, 57XX step 61 */
3001 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3002 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3003
3004 /* ack/clear link change events */
3005 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3006 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3007 BGE_MACSTAT_LINK_CHANGED);
3008 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3009
3010 /*
3011 * Enable attention when the link has changed state for
3012 * devices that use auto polling.
3013 */
3014 if (sc->bge_flags & BGEF_FIBER_TBI) {
3015 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3016 } else {
3017 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3018 mimode = BGE_MIMODE_500KHZ_CONST;
3019 else
3020 mimode = BGE_MIMODE_BASE;
3021 /* 5718 step 68. 5718 step 69 (optionally). */
3022 if (BGE_IS_5700_FAMILY(sc) ||
3023 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3024 mimode |= BGE_MIMODE_AUTOPOLL;
3025 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3026 }
3027 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3028 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3029 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3030 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3031 BGE_EVTENB_MI_INTERRUPT);
3032 }
3033
3034 /*
3035 * Clear any pending link state attention.
3036 * Otherwise some link state change events may be lost until attention
3037 * is cleared by bge_intr() -> bge_link_upd() sequence.
3038 * It's not necessary on newer BCM chips - perhaps enabling link
3039 * state change attentions implies clearing pending attention.
3040 */
3041 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3042 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3043 BGE_MACSTAT_LINK_CHANGED);
3044
3045 /* Enable link state change attentions. */
3046 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3047
3048 return 0;
3049 }
3050
3051 static const struct bge_revision *
3052 bge_lookup_rev(uint32_t chipid)
3053 {
3054 const struct bge_revision *br;
3055
3056 for (br = bge_revisions; br->br_name != NULL; br++) {
3057 if (br->br_chipid == chipid)
3058 return br;
3059 }
3060
3061 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3062 if (br->br_chipid == BGE_ASICREV(chipid))
3063 return br;
3064 }
3065
3066 return NULL;
3067 }
3068
3069 static const struct bge_product *
3070 bge_lookup(const struct pci_attach_args *pa)
3071 {
3072 const struct bge_product *bp;
3073
3074 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3075 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3076 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3077 return bp;
3078 }
3079
3080 return NULL;
3081 }
3082
3083 static uint32_t
3084 bge_chipid(const struct pci_attach_args *pa)
3085 {
3086 uint32_t id;
3087
3088 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3089 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3090
3091 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3092 switch (PCI_PRODUCT(pa->pa_id)) {
3093 case PCI_PRODUCT_BROADCOM_BCM5717:
3094 case PCI_PRODUCT_BROADCOM_BCM5718:
3095 case PCI_PRODUCT_BROADCOM_BCM5719:
3096 case PCI_PRODUCT_BROADCOM_BCM5720:
3097 case PCI_PRODUCT_BROADCOM_BCM5725:
3098 case PCI_PRODUCT_BROADCOM_BCM5727:
3099 case PCI_PRODUCT_BROADCOM_BCM5762:
3100 case PCI_PRODUCT_BROADCOM_BCM57764:
3101 case PCI_PRODUCT_BROADCOM_BCM57767:
3102 case PCI_PRODUCT_BROADCOM_BCM57787:
3103 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3104 BGE_PCI_GEN2_PRODID_ASICREV);
3105 break;
3106 case PCI_PRODUCT_BROADCOM_BCM57761:
3107 case PCI_PRODUCT_BROADCOM_BCM57762:
3108 case PCI_PRODUCT_BROADCOM_BCM57765:
3109 case PCI_PRODUCT_BROADCOM_BCM57766:
3110 case PCI_PRODUCT_BROADCOM_BCM57781:
3111 case PCI_PRODUCT_BROADCOM_BCM57782:
3112 case PCI_PRODUCT_BROADCOM_BCM57785:
3113 case PCI_PRODUCT_BROADCOM_BCM57786:
3114 case PCI_PRODUCT_BROADCOM_BCM57791:
3115 case PCI_PRODUCT_BROADCOM_BCM57795:
3116 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3117 BGE_PCI_GEN15_PRODID_ASICREV);
3118 break;
3119 default:
3120 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3121 BGE_PCI_PRODID_ASICREV);
3122 break;
3123 }
3124 }
3125
3126 return id;
3127 }
3128
3129 /*
3130 * Return true if MSI can be used with this device.
3131 */
3132 static int
3133 bge_can_use_msi(struct bge_softc *sc)
3134 {
3135 int can_use_msi = 0;
3136
3137 switch (BGE_ASICREV(sc->bge_chipid)) {
3138 case BGE_ASICREV_BCM5714_A0:
3139 case BGE_ASICREV_BCM5714:
3140 /*
3141 * Apparently, MSI doesn't work when these chips are
3142 * configured in single-port mode.
3143 */
3144 break;
3145 case BGE_ASICREV_BCM5750:
3146 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3147 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3148 can_use_msi = 1;
3149 break;
3150 default:
3151 if (BGE_IS_575X_PLUS(sc))
3152 can_use_msi = 1;
3153 }
3154 return (can_use_msi);
3155 }
3156
3157 /*
3158 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3159 * against our list and return its name if we find a match. Note
3160 * that since the Broadcom controller contains VPD support, we
3161 * can get the device name string from the controller itself instead
3162 * of the compiled-in string. This is a little slow, but it guarantees
3163 * we'll always announce the right product name.
3164 */
3165 static int
3166 bge_probe(device_t parent, cfdata_t match, void *aux)
3167 {
3168 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3169
3170 if (bge_lookup(pa) != NULL)
3171 return 1;
3172
3173 return 0;
3174 }
3175
3176 static void
3177 bge_attach(device_t parent, device_t self, void *aux)
3178 {
3179 struct bge_softc * const sc = device_private(self);
3180 struct pci_attach_args * const pa = aux;
3181 prop_dictionary_t dict;
3182 const struct bge_product *bp;
3183 const struct bge_revision *br;
3184 pci_chipset_tag_t pc;
3185 const char *intrstr = NULL;
3186 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3187 uint32_t command;
3188 struct ifnet *ifp;
3189 struct mii_data * const mii = &sc->bge_mii;
3190 uint32_t misccfg, mimode, macmode;
3191 void * kva;
3192 u_char eaddr[ETHER_ADDR_LEN];
3193 pcireg_t memtype, subid, reg;
3194 bus_addr_t memaddr;
3195 uint32_t pm_ctl;
3196 bool no_seeprom;
3197 int capmask, trys;
3198 int mii_flags;
3199 int map_flags;
3200 char intrbuf[PCI_INTRSTR_LEN];
3201
3202 bp = bge_lookup(pa);
3203 KASSERT(bp != NULL);
3204
3205 sc->sc_pc = pa->pa_pc;
3206 sc->sc_pcitag = pa->pa_tag;
3207 sc->bge_dev = self;
3208
3209 sc->bge_pa = *pa;
3210 pc = sc->sc_pc;
3211 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3212
3213 aprint_naive(": Ethernet controller\n");
3214 aprint_normal(": %s Ethernet\n", bp->bp_name);
3215
3216 /*
3217 * Map control/status registers.
3218 */
3219 DPRINTFN(5, ("Map control/status regs\n"));
3220 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3221 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3222 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3223 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3224
3225 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3226 aprint_error_dev(sc->bge_dev,
3227 "failed to enable memory mapping!\n");
3228 return;
3229 }
3230
3231 DPRINTFN(5, ("pci_mem_find\n"));
3232 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3233 switch (memtype) {
3234 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3235 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3236 #if 0
3237 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3238 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3239 &memaddr, &sc->bge_bsize) == 0)
3240 break;
3241 #else
3242 /*
3243 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3244 * system get NMI on boot (PR#48451). This problem might not be
3245 * the driver's bug but our PCI common part's bug. Until we
3246 * find a real reason, we ignore the prefetchable bit.
3247 */
3248 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3249 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3250 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3251 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3252 map_flags, &sc->bge_bhandle) == 0) {
3253 sc->bge_btag = pa->pa_memt;
3254 break;
3255 }
3256 }
3257 #endif
3258 /* FALLTHROUGH */
3259 default:
3260 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3261 return;
3262 }
3263
3264 /* Save various chip information. */
3265 sc->bge_chipid = bge_chipid(pa);
3266 sc->bge_phy_addr = bge_phy_addr(sc);
3267
3268 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3269 &sc->bge_pciecap, NULL) != 0) {
3270 /* PCIe */
3271 sc->bge_flags |= BGEF_PCIE;
3272 /* Extract supported maximum payload size. */
3273 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3274 sc->bge_pciecap + PCIE_DCAP);
3275 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3276 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3277 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3278 sc->bge_expmrq = 2048;
3279 else
3280 sc->bge_expmrq = 4096;
3281 bge_set_max_readrq(sc);
3282 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3283 /* PCIe without PCIe cap */
3284 sc->bge_flags |= BGEF_PCIE;
3285 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3286 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3287 /* PCI-X */
3288 sc->bge_flags |= BGEF_PCIX;
3289 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3290 &sc->bge_pcixcap, NULL) == 0)
3291 aprint_error_dev(sc->bge_dev,
3292 "unable to find PCIX capability\n");
3293 }
3294
3295 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3296 /*
3297 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3298 * can clobber the chip's PCI config-space power control
3299 * registers, leaving the card in D3 powersave state. We do
3300 * not have memory-mapped registers in this state, so force
3301 * device into D0 state before starting initialization.
3302 */
3303 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3304 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3305 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3306 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3307 DELAY(1000); /* 27 usec is allegedly sufficient */
3308 }
3309
3310 /* Save chipset family. */
3311 switch (BGE_ASICREV(sc->bge_chipid)) {
3312 case BGE_ASICREV_BCM5717:
3313 case BGE_ASICREV_BCM5719:
3314 case BGE_ASICREV_BCM5720:
3315 sc->bge_flags |= BGEF_5717_PLUS;
3316 /* FALLTHROUGH */
3317 case BGE_ASICREV_BCM5762:
3318 case BGE_ASICREV_BCM57765:
3319 case BGE_ASICREV_BCM57766:
3320 if (!BGE_IS_5717_PLUS(sc))
3321 sc->bge_flags |= BGEF_57765_FAMILY;
3322 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3323 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3324 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3325 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3326 /*
3327 * Enable work around for DMA engine miscalculation
3328 * of TXMBUF available space.
3329 */
3330 sc->bge_flags |= BGEF_RDMA_BUG;
3331
3332 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3333 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3334 /* Jumbo frame on BCM5719 A0 does not work. */
3335 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3336 }
3337 }
3338 break;
3339 case BGE_ASICREV_BCM5755:
3340 case BGE_ASICREV_BCM5761:
3341 case BGE_ASICREV_BCM5784:
3342 case BGE_ASICREV_BCM5785:
3343 case BGE_ASICREV_BCM5787:
3344 case BGE_ASICREV_BCM57780:
3345 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3346 break;
3347 case BGE_ASICREV_BCM5700:
3348 case BGE_ASICREV_BCM5701:
3349 case BGE_ASICREV_BCM5703:
3350 case BGE_ASICREV_BCM5704:
3351 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3352 break;
3353 case BGE_ASICREV_BCM5714_A0:
3354 case BGE_ASICREV_BCM5780:
3355 case BGE_ASICREV_BCM5714:
3356 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3357 /* FALLTHROUGH */
3358 case BGE_ASICREV_BCM5750:
3359 case BGE_ASICREV_BCM5752:
3360 case BGE_ASICREV_BCM5906:
3361 sc->bge_flags |= BGEF_575X_PLUS;
3362 /* FALLTHROUGH */
3363 case BGE_ASICREV_BCM5705:
3364 sc->bge_flags |= BGEF_5705_PLUS;
3365 break;
3366 }
3367
3368 /* Identify chips with APE processor. */
3369 switch (BGE_ASICREV(sc->bge_chipid)) {
3370 case BGE_ASICREV_BCM5717:
3371 case BGE_ASICREV_BCM5719:
3372 case BGE_ASICREV_BCM5720:
3373 case BGE_ASICREV_BCM5761:
3374 case BGE_ASICREV_BCM5762:
3375 sc->bge_flags |= BGEF_APE;
3376 break;
3377 }
3378
3379 /*
3380 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3381 * not actually a MAC controller bug but an issue with the embedded
3382 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3383 */
3384 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3385 sc->bge_flags |= BGEF_40BIT_BUG;
3386
3387 /* Chips with APE need BAR2 access for APE registers/memory. */
3388 if ((sc->bge_flags & BGEF_APE) != 0) {
3389 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3390 #if 0
3391 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3392 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3393 &sc->bge_apesize)) {
3394 aprint_error_dev(sc->bge_dev,
3395 "couldn't map BAR2 memory\n");
3396 return;
3397 }
3398 #else
3399 /*
3400 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3401 * system get NMI on boot (PR#48451). This problem might not be
3402 * the driver's bug but our PCI common part's bug. Until we
3403 * find a real reason, we ignore the prefetchable bit.
3404 */
3405 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3406 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3407 aprint_error_dev(sc->bge_dev,
3408 "couldn't map BAR2 memory\n");
3409 return;
3410 }
3411
3412 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3413 if (bus_space_map(pa->pa_memt, memaddr,
3414 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3415 aprint_error_dev(sc->bge_dev,
3416 "couldn't map BAR2 memory\n");
3417 return;
3418 }
3419 sc->bge_apetag = pa->pa_memt;
3420 #endif
3421
3422 /* Enable APE register/memory access by host driver. */
3423 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3424 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3425 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3426 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3427 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3428
3429 bge_ape_lock_init(sc);
3430 bge_ape_read_fw_ver(sc);
3431 }
3432
3433 /* Identify the chips that use an CPMU. */
3434 if (BGE_IS_5717_PLUS(sc) ||
3435 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3436 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3437 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3438 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3439 sc->bge_flags |= BGEF_CPMU_PRESENT;
3440
3441 /*
3442 * When using the BCM5701 in PCI-X mode, data corruption has
3443 * been observed in the first few bytes of some received packets.
3444 * Aligning the packet buffer in memory eliminates the corruption.
3445 * Unfortunately, this misaligns the packet payloads. On platforms
3446 * which do not support unaligned accesses, we will realign the
3447 * payloads by copying the received packets.
3448 */
3449 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3450 sc->bge_flags & BGEF_PCIX)
3451 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3452
3453 if (BGE_IS_5700_FAMILY(sc))
3454 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3455
3456 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3457 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3458
3459 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3460 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3461 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3462 sc->bge_flags |= BGEF_IS_5788;
3463
3464 /*
3465 * Some controllers seem to require a special firmware to use
3466 * TSO. But the firmware is not available to FreeBSD and Linux
3467 * claims that the TSO performed by the firmware is slower than
3468 * hardware based TSO. Moreover the firmware based TSO has one
3469 * known bug which can't handle TSO if ethernet header + IP/TCP
3470 * header is greater than 80 bytes. The workaround for the TSO
3471 * bug exist but it seems it's too expensive than not using
3472 * TSO at all. Some hardwares also have the TSO bug so limit
3473 * the TSO to the controllers that are not affected TSO issues
3474 * (e.g. 5755 or higher).
3475 */
3476 if (BGE_IS_5755_PLUS(sc)) {
3477 /*
3478 * BCM5754 and BCM5787 shares the same ASIC id so
3479 * explicit device id check is required.
3480 */
3481 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3482 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3483 sc->bge_flags |= BGEF_TSO;
3484 /* TSO on BCM5719 A0 does not work. */
3485 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3486 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3487 sc->bge_flags &= ~BGEF_TSO;
3488 }
3489
3490 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3491 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3492 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3493 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3494 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3495 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3496 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3497 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3498 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3499 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3500 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3501 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3502 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3503 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3504 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3505 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3506 /* These chips are 10/100 only. */
3507 capmask &= ~BMSR_EXTSTAT;
3508 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3509 }
3510
3511 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3512 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3513 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3514 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3515 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3516
3517 /* Set various PHY bug flags. */
3518 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3519 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3520 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3521 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3522 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3523 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3524 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3525 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3526 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3527 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3528 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3529 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3530 if (BGE_IS_5705_PLUS(sc) &&
3531 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3532 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3533 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3534 !BGE_IS_57765_PLUS(sc)) {
3535 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3536 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3537 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3538 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3539 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3540 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3541 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3542 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3543 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3544 } else
3545 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3546 }
3547
3548 /*
3549 * SEEPROM check.
3550 * First check if firmware knows we do not have SEEPROM.
3551 */
3552 if (prop_dictionary_get_bool(device_properties(self),
3553 "without-seeprom", &no_seeprom) && no_seeprom)
3554 sc->bge_flags |= BGEF_NO_EEPROM;
3555
3556 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3557 sc->bge_flags |= BGEF_NO_EEPROM;
3558
3559 /* Now check the 'ROM failed' bit on the RX CPU */
3560 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3561 sc->bge_flags |= BGEF_NO_EEPROM;
3562
3563 sc->bge_asf_mode = 0;
3564 /* No ASF if APE present. */
3565 if ((sc->bge_flags & BGEF_APE) == 0) {
3566 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3567 BGE_SRAM_DATA_SIG_MAGIC)) {
3568 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3569 BGE_HWCFG_ASF) {
3570 sc->bge_asf_mode |= ASF_ENABLE;
3571 sc->bge_asf_mode |= ASF_STACKUP;
3572 if (BGE_IS_575X_PLUS(sc))
3573 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3574 }
3575 }
3576 }
3577
3578 int counts[PCI_INTR_TYPE_SIZE] = {
3579 [PCI_INTR_TYPE_INTX] = 1,
3580 [PCI_INTR_TYPE_MSI] = 1,
3581 [PCI_INTR_TYPE_MSIX] = 1,
3582 };
3583 int max_type = PCI_INTR_TYPE_MSIX;
3584
3585 if (!bge_can_use_msi(sc)) {
3586 /* MSI broken, allow only INTx */
3587 max_type = PCI_INTR_TYPE_INTX;
3588 }
3589
3590 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3591 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3592 return;
3593 }
3594
3595 DPRINTFN(5, ("pci_intr_string\n"));
3596 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3597 sizeof(intrbuf));
3598 DPRINTFN(5, ("pci_intr_establish\n"));
3599 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3600 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3601 if (sc->bge_intrhand == NULL) {
3602 pci_intr_release(pc, sc->bge_pihp, 1);
3603 sc->bge_pihp = NULL;
3604
3605 aprint_error_dev(self, "couldn't establish interrupt");
3606 if (intrstr != NULL)
3607 aprint_error(" at %s", intrstr);
3608 aprint_error("\n");
3609 return;
3610 }
3611 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3612
3613 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3614 case PCI_INTR_TYPE_MSIX:
3615 case PCI_INTR_TYPE_MSI:
3616 KASSERT(bge_can_use_msi(sc));
3617 sc->bge_flags |= BGEF_MSI;
3618 break;
3619 default:
3620 /* nothing to do */
3621 break;
3622 }
3623
3624 /*
3625 * All controllers except BCM5700 supports tagged status but
3626 * we use tagged status only for MSI case on BCM5717. Otherwise
3627 * MSI on BCM5717 does not work.
3628 */
3629 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3630 sc->bge_flags |= BGEF_TAGGED_STATUS;
3631
3632 /*
3633 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3634 * lock in bge_reset().
3635 */
3636 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3637 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3638 delay(1000);
3639 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3640
3641 bge_stop_fw(sc);
3642 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3643 if (bge_reset(sc))
3644 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3645
3646 /*
3647 * Read the hardware config word in the first 32k of NIC internal
3648 * memory, or fall back to the config word in the EEPROM.
3649 * Note: on some BCM5700 cards, this value appears to be unset.
3650 */
3651 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3652 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3653 BGE_SRAM_DATA_SIG_MAGIC) {
3654 uint32_t tmp;
3655
3656 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3657 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3658 BGE_SRAM_DATA_VER_SHIFT;
3659 if ((0 < tmp) && (tmp < 0x100))
3660 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3661 if (sc->bge_flags & BGEF_PCIE)
3662 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3663 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3664 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3665 if (BGE_IS_5717_PLUS(sc))
3666 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3667 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3668 bge_read_eeprom(sc, (void *)&hwcfg,
3669 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3670 hwcfg = be32toh(hwcfg);
3671 }
3672 aprint_normal_dev(sc->bge_dev,
3673 "HW config %08x, %08x, %08x, %08x %08x\n",
3674 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3675
3676 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3677 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3678
3679 if (bge_chipinit(sc)) {
3680 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3681 bge_release_resources(sc);
3682 return;
3683 }
3684
3685 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3686 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3687 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3688 DELAY(100);
3689 }
3690
3691 /* Set MI_MODE */
3692 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3693 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3694 mimode |= BGE_MIMODE_500KHZ_CONST;
3695 else
3696 mimode |= BGE_MIMODE_BASE;
3697 CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3698 DELAY(80);
3699
3700 /*
3701 * Get station address from the EEPROM.
3702 */
3703 if (bge_get_eaddr(sc, eaddr)) {
3704 aprint_error_dev(sc->bge_dev,
3705 "failed to read station address\n");
3706 bge_release_resources(sc);
3707 return;
3708 }
3709
3710 br = bge_lookup_rev(sc->bge_chipid);
3711
3712 if (br == NULL) {
3713 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3714 sc->bge_chipid);
3715 } else {
3716 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3717 br->br_name, sc->bge_chipid);
3718 }
3719 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3720
3721 /* Allocate the general information block and ring buffers. */
3722 if (pci_dma64_available(pa)) {
3723 sc->bge_dmatag = pa->pa_dmat64;
3724 sc->bge_dmatag32 = pa->pa_dmat;
3725 sc->bge_dma64 = true;
3726 } else {
3727 sc->bge_dmatag = pa->pa_dmat;
3728 sc->bge_dmatag32 = pa->pa_dmat;
3729 sc->bge_dma64 = false;
3730 }
3731
3732 /* 40bit DMA workaround */
3733 if (sizeof(bus_addr_t) > 4) {
3734 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3735 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3736
3737 if (bus_dmatag_subregion(olddmatag, 0,
3738 (bus_addr_t)__MASK(40),
3739 &(sc->bge_dmatag), BUS_DMA_NOWAIT) != 0) {
3740 aprint_error_dev(self,
3741 "WARNING: failed to restrict dma range,"
3742 " falling back to parent bus dma range\n");
3743 sc->bge_dmatag = olddmatag;
3744 }
3745 }
3746 }
3747 SLIST_INIT(&sc->txdma_list);
3748 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3749 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3750 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3751 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3752 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3753 return;
3754 }
3755 DPRINTFN(5, ("bus_dmamem_map\n"));
3756 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3757 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3758 BUS_DMA_NOWAIT)) {
3759 aprint_error_dev(sc->bge_dev,
3760 "can't map DMA buffers (%zu bytes)\n",
3761 sizeof(struct bge_ring_data));
3762 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3763 sc->bge_ring_rseg);
3764 return;
3765 }
3766 DPRINTFN(5, ("bus_dmamem_create\n"));
3767 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3768 sizeof(struct bge_ring_data), 0,
3769 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3770 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3771 bus_dmamem_unmap(sc->bge_dmatag, kva,
3772 sizeof(struct bge_ring_data));
3773 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3774 sc->bge_ring_rseg);
3775 return;
3776 }
3777 DPRINTFN(5, ("bus_dmamem_load\n"));
3778 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3779 sizeof(struct bge_ring_data), NULL,
3780 BUS_DMA_NOWAIT)) {
3781 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3782 bus_dmamem_unmap(sc->bge_dmatag, kva,
3783 sizeof(struct bge_ring_data));
3784 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3785 sc->bge_ring_rseg);
3786 return;
3787 }
3788
3789 DPRINTFN(5, ("bzero\n"));
3790 sc->bge_rdata = (struct bge_ring_data *)kva;
3791
3792 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3793
3794 /* Try to allocate memory for jumbo buffers. */
3795 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3796 if (bge_alloc_jumbo_mem(sc)) {
3797 aprint_error_dev(sc->bge_dev,
3798 "jumbo buffer allocation failed\n");
3799 } else
3800 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3801 }
3802
3803 /* Set default tuneable values. */
3804 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3805 sc->bge_rx_coal_ticks = 150;
3806 sc->bge_rx_max_coal_bds = 64;
3807 sc->bge_tx_coal_ticks = 300;
3808 sc->bge_tx_max_coal_bds = 400;
3809 if (BGE_IS_5705_PLUS(sc)) {
3810 sc->bge_tx_coal_ticks = (12 * 5);
3811 sc->bge_tx_max_coal_bds = (12 * 5);
3812 aprint_verbose_dev(sc->bge_dev,
3813 "setting short Tx thresholds\n");
3814 }
3815
3816 if (BGE_IS_5717_PLUS(sc))
3817 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3818 else if (BGE_IS_5705_PLUS(sc))
3819 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3820 else
3821 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3822
3823 /* Set up ifnet structure */
3824 ifp = &sc->ethercom.ec_if;
3825 ifp->if_softc = sc;
3826 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3827 ifp->if_ioctl = bge_ioctl;
3828 ifp->if_stop = bge_stop;
3829 ifp->if_start = bge_start;
3830 ifp->if_init = bge_init;
3831 ifp->if_watchdog = bge_watchdog;
3832 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3833 IFQ_SET_READY(&ifp->if_snd);
3834 DPRINTFN(5, ("strcpy if_xname\n"));
3835 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3836
3837 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3838 sc->ethercom.ec_if.if_capabilities |=
3839 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3840 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3841 sc->ethercom.ec_if.if_capabilities |=
3842 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3843 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3844 #endif
3845 sc->ethercom.ec_capabilities |=
3846 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3847 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3848
3849 if (sc->bge_flags & BGEF_TSO)
3850 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3851
3852 /*
3853 * Do MII setup.
3854 */
3855 DPRINTFN(5, ("mii setup\n"));
3856 mii->mii_ifp = ifp;
3857 mii->mii_readreg = bge_miibus_readreg;
3858 mii->mii_writereg = bge_miibus_writereg;
3859 mii->mii_statchg = bge_miibus_statchg;
3860
3861 /*
3862 * Figure out what sort of media we have by checking the hardware
3863 * config word. Note: on some BCM5700 cards, this value appears to be
3864 * unset. If that's the case, we have to rely on identifying the NIC
3865 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3866 * The SysKonnect SK-9D41 is a 1000baseSX card.
3867 */
3868 if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3869 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3870 if (BGE_IS_5705_PLUS(sc)) {
3871 sc->bge_flags |= BGEF_FIBER_MII;
3872 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3873 } else
3874 sc->bge_flags |= BGEF_FIBER_TBI;
3875 }
3876
3877 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3878 if (BGE_IS_JUMBO_CAPABLE(sc))
3879 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3880
3881 /* set phyflags and chipid before mii_attach() */
3882 dict = device_properties(self);
3883 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3884 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3885
3886 macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3887 macmode &= ~BGE_MACMODE_PORTMODE;
3888 /* Initialize ifmedia structures. */
3889 if (sc->bge_flags & BGEF_FIBER_TBI) {
3890 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3891 macmode | BGE_PORTMODE_TBI);
3892 DELAY(40);
3893
3894 sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
3895 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3896 bge_ifmedia_sts);
3897 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3898 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3899 0, NULL);
3900 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3901 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3902 /* Pretend the user requested this setting */
3903 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3904 } else {
3905 uint16_t phyreg;
3906 int rv;
3907 /*
3908 * Do transceiver setup and tell the firmware the
3909 * driver is down so we can try to get access the
3910 * probe if ASF is running. Retry a couple of times
3911 * if we get a conflict with the ASF firmware accessing
3912 * the PHY.
3913 */
3914 if (sc->bge_flags & BGEF_FIBER_MII)
3915 macmode |= BGE_PORTMODE_GMII;
3916 else
3917 macmode |= BGE_PORTMODE_MII;
3918 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3919 DELAY(40);
3920
3921 /*
3922 * Do transceiver setup and tell the firmware the
3923 * driver is down so we can try to get access the
3924 * probe if ASF is running. Retry a couple of times
3925 * if we get a conflict with the ASF firmware accessing
3926 * the PHY.
3927 */
3928 trys = 0;
3929 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3930 sc->ethercom.ec_mii = mii;
3931 ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3932 bge_ifmedia_sts);
3933 mii_flags = MIIF_DOPAUSE;
3934 if (sc->bge_flags & BGEF_FIBER_MII)
3935 mii_flags |= MIIF_HAVEFIBER;
3936 again:
3937 bge_asf_driver_up(sc);
3938 rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
3939 MII_BMCR, &phyreg);
3940 if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
3941 int i;
3942
3943 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
3944 MII_BMCR, BMCR_RESET);
3945 /* Wait up to 500ms for it to complete. */
3946 for (i = 0; i < 500; i++) {
3947 bge_miibus_readreg(sc->bge_dev,
3948 sc->bge_phy_addr, MII_BMCR, &phyreg);
3949 if ((phyreg & BMCR_RESET) == 0)
3950 break;
3951 DELAY(1000);
3952 }
3953 }
3954
3955 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
3956 MII_OFFSET_ANY, mii_flags);
3957
3958 if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
3959 goto again;
3960
3961 if (LIST_EMPTY(&mii->mii_phys)) {
3962 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3963 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
3964 0, NULL);
3965 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
3966 } else
3967 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
3968
3969 /*
3970 * Now tell the firmware we are going up after probing the PHY
3971 */
3972 if (sc->bge_asf_mode & ASF_STACKUP)
3973 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3974 }
3975
3976 /*
3977 * Call MI attach routine.
3978 */
3979 DPRINTFN(5, ("if_attach\n"));
3980 if_attach(ifp);
3981 if_deferred_start_init(ifp, NULL);
3982 DPRINTFN(5, ("ether_ifattach\n"));
3983 ether_ifattach(ifp, eaddr);
3984 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3985 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3986 RND_TYPE_NET, RND_FLAG_DEFAULT);
3987 #ifdef BGE_EVENT_COUNTERS
3988 /*
3989 * Attach event counters.
3990 */
3991 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3992 NULL, device_xname(sc->bge_dev), "intr");
3993 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3994 NULL, device_xname(sc->bge_dev), "intr_spurious");
3995 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3996 NULL, device_xname(sc->bge_dev), "intr_spurious2");
3997 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3998 NULL, device_xname(sc->bge_dev), "tx_xoff");
3999 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4000 NULL, device_xname(sc->bge_dev), "tx_xon");
4001 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4002 NULL, device_xname(sc->bge_dev), "rx_xoff");
4003 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4004 NULL, device_xname(sc->bge_dev), "rx_xon");
4005 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4006 NULL, device_xname(sc->bge_dev), "rx_macctl");
4007 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4008 NULL, device_xname(sc->bge_dev), "xoffentered");
4009 #endif /* BGE_EVENT_COUNTERS */
4010 DPRINTFN(5, ("callout_init\n"));
4011 callout_init(&sc->bge_timeout, 0);
4012 callout_setfunc(&sc->bge_timeout, bge_tick, sc);
4013
4014 if (pmf_device_register(self, NULL, NULL))
4015 pmf_class_network_register(self, ifp);
4016 else
4017 aprint_error_dev(self, "couldn't establish power handler\n");
4018
4019 bge_sysctl_init(sc);
4020
4021 #ifdef BGE_DEBUG
4022 bge_debug_info(sc);
4023 #endif
4024 }
4025
4026 /*
4027 * Stop all chip I/O so that the kernel's probe routines don't
4028 * get confused by errant DMAs when rebooting.
4029 */
4030 static int
4031 bge_detach(device_t self, int flags __unused)
4032 {
4033 struct bge_softc * const sc = device_private(self);
4034 struct ifnet * const ifp = &sc->ethercom.ec_if;
4035 int s;
4036
4037 s = splnet();
4038 /* Stop the interface. Callouts are stopped in it. */
4039 bge_stop(ifp, 1);
4040 splx(s);
4041
4042 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4043
4044 ether_ifdetach(ifp);
4045 if_detach(ifp);
4046
4047 /* Delete all remaining media. */
4048 ifmedia_fini(&sc->bge_mii.mii_media);
4049
4050 bge_release_resources(sc);
4051
4052 return 0;
4053 }
4054
4055 static void
4056 bge_release_resources(struct bge_softc *sc)
4057 {
4058
4059 /* Detach sysctl */
4060 if (sc->bge_log != NULL)
4061 sysctl_teardown(&sc->bge_log);
4062
4063 #ifdef BGE_EVENT_COUNTERS
4064 /* Detach event counters. */
4065 evcnt_detach(&sc->bge_ev_intr);
4066 evcnt_detach(&sc->bge_ev_intr_spurious);
4067 evcnt_detach(&sc->bge_ev_intr_spurious2);
4068 evcnt_detach(&sc->bge_ev_tx_xoff);
4069 evcnt_detach(&sc->bge_ev_tx_xon);
4070 evcnt_detach(&sc->bge_ev_rx_xoff);
4071 evcnt_detach(&sc->bge_ev_rx_xon);
4072 evcnt_detach(&sc->bge_ev_rx_macctl);
4073 evcnt_detach(&sc->bge_ev_xoffentered);
4074 #endif /* BGE_EVENT_COUNTERS */
4075
4076 /* Disestablish the interrupt handler */
4077 if (sc->bge_intrhand != NULL) {
4078 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4079 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4080 sc->bge_intrhand = NULL;
4081 }
4082
4083 if (sc->bge_dmatag != NULL) {
4084 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4085 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4086 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4087 sizeof(struct bge_ring_data));
4088 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4089 sc->bge_ring_rseg);
4090 }
4091
4092 /* Unmap the device registers */
4093 if (sc->bge_bsize != 0) {
4094 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4095 sc->bge_bsize = 0;
4096 }
4097
4098 /* Unmap the APE registers */
4099 if (sc->bge_apesize != 0) {
4100 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4101 sc->bge_apesize);
4102 sc->bge_apesize = 0;
4103 }
4104 }
4105
4106 static int
4107 bge_reset(struct bge_softc *sc)
4108 {
4109 uint32_t cachesize, command;
4110 uint32_t reset, mac_mode, mac_mode_mask;
4111 pcireg_t devctl, reg;
4112 int i, val;
4113 void (*write_op)(struct bge_softc *, int, int);
4114
4115 /* Make mask for BGE_MAC_MODE register. */
4116 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4117 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4118 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4119 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4120 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4121
4122 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4123 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4124 if (sc->bge_flags & BGEF_PCIE)
4125 write_op = bge_writemem_direct;
4126 else
4127 write_op = bge_writemem_ind;
4128 } else
4129 write_op = bge_writereg_ind;
4130
4131 /* 57XX step 4 */
4132 /* Acquire the NVM lock */
4133 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4134 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4135 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4136 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4137 for (i = 0; i < 8000; i++) {
4138 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4139 BGE_NVRAMSWARB_GNT1)
4140 break;
4141 DELAY(20);
4142 }
4143 if (i == 8000) {
4144 printf("%s: NVRAM lock timedout!\n",
4145 device_xname(sc->bge_dev));
4146 }
4147 }
4148
4149 /* Take APE lock when performing reset. */
4150 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4151
4152 /* 57XX step 3 */
4153 /* Save some important PCI state. */
4154 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4155 /* 5718 reset step 3 */
4156 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4157
4158 /* 5718 reset step 5, 57XX step 5b-5d */
4159 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4160 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4161 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4162
4163 /* XXX ???: Disable fastboot on controllers that support it. */
4164 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4165 BGE_IS_5755_PLUS(sc))
4166 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4167
4168 /* 5718 reset step 2, 57XX step 6 */
4169 /*
4170 * Write the magic number to SRAM at offset 0xB50.
4171 * When firmware finishes its initialization it will
4172 * write ~BGE_MAGIC_NUMBER to the same location.
4173 */
4174 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4175
4176 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4177 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4178 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4179 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4180 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4181 }
4182
4183 /* 5718 reset step 6, 57XX step 7 */
4184 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4185 /*
4186 * XXX: from FreeBSD/Linux; no documentation
4187 */
4188 if (sc->bge_flags & BGEF_PCIE) {
4189 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4190 !BGE_IS_57765_PLUS(sc) &&
4191 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4192 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4193 /* PCI Express 1.0 system */
4194 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4195 BGE_PHY_PCIE_SCRAM_MODE);
4196 }
4197 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4198 /*
4199 * Prevent PCI Express link training
4200 * during global reset.
4201 */
4202 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4203 reset |= (1 << 29);
4204 }
4205 }
4206
4207 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4208 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4209 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4210 i | BGE_VCPU_STATUS_DRV_RESET);
4211 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4212 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4213 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4214 }
4215
4216 /*
4217 * Set GPHY Power Down Override to leave GPHY
4218 * powered up in D0 uninitialized.
4219 */
4220 if (BGE_IS_5705_PLUS(sc) &&
4221 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4222 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4223
4224 /* Issue global reset */
4225 write_op(sc, BGE_MISC_CFG, reset);
4226
4227 /* 5718 reset step 7, 57XX step 8 */
4228 if (sc->bge_flags & BGEF_PCIE)
4229 delay(100*1000); /* too big */
4230 else
4231 delay(1000);
4232
4233 if (sc->bge_flags & BGEF_PCIE) {
4234 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4235 DELAY(500000);
4236 /* XXX: Magic Numbers */
4237 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4238 BGE_PCI_UNKNOWN0);
4239 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4240 BGE_PCI_UNKNOWN0,
4241 reg | (1 << 15));
4242 }
4243 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4244 sc->bge_pciecap + PCIE_DCSR);
4245 /* Clear enable no snoop and disable relaxed ordering. */
4246 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4247 PCIE_DCSR_ENA_NO_SNOOP);
4248
4249 /* Set PCIE max payload size to 128 for older PCIe devices */
4250 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4251 devctl &= ~(0x00e0);
4252 /* Clear device status register. Write 1b to clear */
4253 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4254 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4255 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4256 sc->bge_pciecap + PCIE_DCSR, devctl);
4257 bge_set_max_readrq(sc);
4258 }
4259
4260 /* From Linux: dummy read to flush PCI posted writes */
4261 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4262
4263 /*
4264 * Reset some of the PCI state that got zapped by reset
4265 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4266 * set, too.
4267 */
4268 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4269 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4270 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4271 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4272 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4273 (sc->bge_flags & BGEF_PCIX) != 0)
4274 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4275 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4276 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4277 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4278 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4279 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4280 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4281 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4282
4283 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4284 if (sc->bge_flags & BGEF_PCIX) {
4285 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4286 + PCIX_CMD);
4287 /* Set max memory read byte count to 2K */
4288 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4289 reg &= ~PCIX_CMD_BYTECNT_MASK;
4290 reg |= PCIX_CMD_BCNT_2048;
4291 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4292 /*
4293 * For 5704, set max outstanding split transaction
4294 * field to 0 (0 means it supports 1 request)
4295 */
4296 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4297 | PCIX_CMD_BYTECNT_MASK);
4298 reg |= PCIX_CMD_BCNT_2048;
4299 }
4300 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4301 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4302 }
4303
4304 /* 5718 reset step 10, 57XX step 12 */
4305 /* Enable memory arbiter. */
4306 if (BGE_IS_5714_FAMILY(sc)) {
4307 val = CSR_READ_4(sc, BGE_MARB_MODE);
4308 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4309 } else
4310 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4311
4312 /* XXX 5721, 5751 and 5752 */
4313 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4314 /* Step 19: */
4315 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4316 /* Step 20: */
4317 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4318 }
4319
4320 /* 5718 reset step 12, 57XX step 15 and 16 */
4321 /* Fix up byte swapping */
4322 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4323
4324 /* 5718 reset step 13, 57XX step 17 */
4325 /* Poll until the firmware initialization is complete */
4326 bge_poll_fw(sc);
4327
4328 /* 57XX step 21 */
4329 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4330 pcireg_t msidata;
4331
4332 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4333 BGE_PCI_MSI_DATA);
4334 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4335 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4336 msidata);
4337 }
4338
4339 /* 57XX step 18 */
4340 /* Write mac mode. */
4341 val = CSR_READ_4(sc, BGE_MAC_MODE);
4342 /* Restore mac_mode_mask's bits using mac_mode */
4343 val = (val & ~mac_mode_mask) | mac_mode;
4344 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4345 DELAY(40);
4346
4347 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4348
4349 /*
4350 * The 5704 in TBI mode apparently needs some special
4351 * adjustment to insure the SERDES drive level is set
4352 * to 1.2V.
4353 */
4354 if (sc->bge_flags & BGEF_FIBER_TBI &&
4355 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4356 uint32_t serdescfg;
4357
4358 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4359 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4360 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4361 }
4362
4363 if (sc->bge_flags & BGEF_PCIE &&
4364 !BGE_IS_57765_PLUS(sc) &&
4365 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4366 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4367 uint32_t v;
4368
4369 /* Enable PCI Express bug fix */
4370 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4371 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4372 v | BGE_TLP_DATA_FIFO_PROTECT);
4373 }
4374
4375 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4376 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4377 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4378
4379 return 0;
4380 }
4381
4382 /*
4383 * Frame reception handling. This is called if there's a frame
4384 * on the receive return list.
4385 *
4386 * Note: we have to be able to handle two possibilities here:
4387 * 1) the frame is from the jumbo receive ring
4388 * 2) the frame is from the standard receive ring
4389 */
4390
4391 static void
4392 bge_rxeof(struct bge_softc *sc)
4393 {
4394 struct ifnet *ifp;
4395 uint16_t rx_prod, rx_cons;
4396 int stdcnt = 0, jumbocnt = 0;
4397 bus_dmamap_t dmamap;
4398 bus_addr_t offset, toff;
4399 bus_size_t tlen;
4400 int tosync;
4401
4402 rx_cons = sc->bge_rx_saved_considx;
4403 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4404
4405 /* Nothing to do */
4406 if (rx_cons == rx_prod)
4407 return;
4408
4409 ifp = &sc->ethercom.ec_if;
4410
4411 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4412 offsetof(struct bge_ring_data, bge_status_block),
4413 sizeof (struct bge_status_block),
4414 BUS_DMASYNC_POSTREAD);
4415
4416 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4417 tosync = rx_prod - rx_cons;
4418
4419 if (tosync != 0)
4420 rnd_add_uint32(&sc->rnd_source, tosync);
4421
4422 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4423
4424 if (tosync < 0) {
4425 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4426 sizeof (struct bge_rx_bd);
4427 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4428 toff, tlen, BUS_DMASYNC_POSTREAD);
4429 tosync = -tosync;
4430 }
4431
4432 if (tosync != 0) {
4433 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4434 offset, tosync * sizeof (struct bge_rx_bd),
4435 BUS_DMASYNC_POSTREAD);
4436 }
4437
4438 while (rx_cons != rx_prod) {
4439 struct bge_rx_bd *cur_rx;
4440 uint32_t rxidx;
4441 struct mbuf *m = NULL;
4442
4443 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4444
4445 rxidx = cur_rx->bge_idx;
4446 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4447
4448 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4449 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4450 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4451 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4452 jumbocnt++;
4453 bus_dmamap_sync(sc->bge_dmatag,
4454 sc->bge_cdata.bge_rx_jumbo_map,
4455 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4456 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4457 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4458 if_statinc(ifp, if_ierrors);
4459 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4460 continue;
4461 }
4462 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4463 NULL)== ENOBUFS) {
4464 if_statinc(ifp, if_ierrors);
4465 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4466 continue;
4467 }
4468 } else {
4469 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4470 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4471
4472 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4473 stdcnt++;
4474 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4475 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4476 if (dmamap == NULL) {
4477 if_statinc(ifp, if_ierrors);
4478 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4479 continue;
4480 }
4481 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4482 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4483 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4484 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4485 if_statinc(ifp, if_ierrors);
4486 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4487 continue;
4488 }
4489 if (bge_newbuf_std(sc, sc->bge_std,
4490 NULL, dmamap) == ENOBUFS) {
4491 if_statinc(ifp, if_ierrors);
4492 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4493 continue;
4494 }
4495 }
4496
4497 #ifndef __NO_STRICT_ALIGNMENT
4498 /*
4499 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4500 * the Rx buffer has the layer-2 header unaligned.
4501 * If our CPU requires alignment, re-align by copying.
4502 */
4503 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4504 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4505 cur_rx->bge_len);
4506 m->m_data += ETHER_ALIGN;
4507 }
4508 #endif
4509
4510 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4511 m_set_rcvif(m, ifp);
4512
4513 bge_rxcsum(sc, cur_rx, m);
4514
4515 /*
4516 * If we received a packet with a vlan tag, pass it
4517 * to vlan_input() instead of ether_input().
4518 */
4519 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4520 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4521
4522 if_percpuq_enqueue(ifp->if_percpuq, m);
4523 }
4524
4525 sc->bge_rx_saved_considx = rx_cons;
4526 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4527 if (stdcnt)
4528 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4529 if (jumbocnt)
4530 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4531 }
4532
4533 static void
4534 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4535 {
4536
4537 if (BGE_IS_57765_PLUS(sc)) {
4538 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4539 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4540 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4541 if ((cur_rx->bge_error_flag &
4542 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4543 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4544 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4545 m->m_pkthdr.csum_data =
4546 cur_rx->bge_tcp_udp_csum;
4547 m->m_pkthdr.csum_flags |=
4548 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4549 }
4550 }
4551 } else {
4552 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4553 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4554 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4555 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4556 /*
4557 * Rx transport checksum-offload may also
4558 * have bugs with packets which, when transmitted,
4559 * were `runts' requiring padding.
4560 */
4561 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4562 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4563 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4564 m->m_pkthdr.csum_data =
4565 cur_rx->bge_tcp_udp_csum;
4566 m->m_pkthdr.csum_flags |=
4567 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4568 }
4569 }
4570 }
4571
4572 static void
4573 bge_txeof(struct bge_softc *sc)
4574 {
4575 struct bge_tx_bd *cur_tx = NULL;
4576 struct ifnet *ifp;
4577 struct txdmamap_pool_entry *dma;
4578 bus_addr_t offset, toff;
4579 bus_size_t tlen;
4580 int tosync;
4581 struct mbuf *m;
4582
4583 ifp = &sc->ethercom.ec_if;
4584
4585 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4586 offsetof(struct bge_ring_data, bge_status_block),
4587 sizeof (struct bge_status_block),
4588 BUS_DMASYNC_POSTREAD);
4589
4590 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4591 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4592 sc->bge_tx_saved_considx;
4593
4594 if (tosync != 0)
4595 rnd_add_uint32(&sc->rnd_source, tosync);
4596
4597 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4598
4599 if (tosync < 0) {
4600 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4601 sizeof (struct bge_tx_bd);
4602 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4603 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4604 tosync = -tosync;
4605 }
4606
4607 if (tosync != 0) {
4608 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4609 offset, tosync * sizeof (struct bge_tx_bd),
4610 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4611 }
4612
4613 /*
4614 * Go through our tx ring and free mbufs for those
4615 * frames that have been sent.
4616 */
4617 while (sc->bge_tx_saved_considx !=
4618 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4619 uint32_t idx = 0;
4620
4621 idx = sc->bge_tx_saved_considx;
4622 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4623 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4624 if_statinc(ifp, if_opackets);
4625 m = sc->bge_cdata.bge_tx_chain[idx];
4626 if (m != NULL) {
4627 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4628 dma = sc->txdma[idx];
4629 if (dma->is_dma32) {
4630 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4631 0, dma->dmamap32->dm_mapsize,
4632 BUS_DMASYNC_POSTWRITE);
4633 bus_dmamap_unload(
4634 sc->bge_dmatag32, dma->dmamap32);
4635 } else {
4636 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4637 0, dma->dmamap->dm_mapsize,
4638 BUS_DMASYNC_POSTWRITE);
4639 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4640 }
4641 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4642 sc->txdma[idx] = NULL;
4643
4644 m_freem(m);
4645 }
4646 sc->bge_txcnt--;
4647 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4648 ifp->if_timer = 0;
4649 }
4650
4651 if (cur_tx != NULL)
4652 ifp->if_flags &= ~IFF_OACTIVE;
4653 }
4654
4655 static int
4656 bge_intr(void *xsc)
4657 {
4658 struct bge_softc * const sc = xsc;
4659 struct ifnet * const ifp = &sc->ethercom.ec_if;
4660 uint32_t pcistate, statusword, statustag;
4661 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4662
4663
4664 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4665 if (BGE_IS_5717_PLUS(sc))
4666 intrmask = 0;
4667
4668 /*
4669 * It is possible for the interrupt to arrive before
4670 * the status block is updated prior to the interrupt.
4671 * Reading the PCI State register will confirm whether the
4672 * interrupt is ours and will flush the status block.
4673 */
4674 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4675
4676 /* read status word from status block */
4677 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4678 offsetof(struct bge_ring_data, bge_status_block),
4679 sizeof (struct bge_status_block),
4680 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4681 statusword = sc->bge_rdata->bge_status_block.bge_status;
4682 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4683
4684 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4685 if (sc->bge_lasttag == statustag &&
4686 (~pcistate & intrmask)) {
4687 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4688 return (0);
4689 }
4690 sc->bge_lasttag = statustag;
4691 } else {
4692 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4693 !(~pcistate & intrmask)) {
4694 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4695 return (0);
4696 }
4697 statustag = 0;
4698 }
4699 /* Ack interrupt and stop others from occurring. */
4700 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4701 BGE_EVCNT_INCR(sc->bge_ev_intr);
4702
4703 /* clear status word */
4704 sc->bge_rdata->bge_status_block.bge_status = 0;
4705
4706 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4707 offsetof(struct bge_ring_data, bge_status_block),
4708 sizeof (struct bge_status_block),
4709 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4710
4711 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4712 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4713 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4714 bge_link_upd(sc);
4715
4716 if (ifp->if_flags & IFF_RUNNING) {
4717 /* Check RX return ring producer/consumer */
4718 bge_rxeof(sc);
4719
4720 /* Check TX ring producer/consumer */
4721 bge_txeof(sc);
4722 }
4723
4724 if (sc->bge_pending_rxintr_change) {
4725 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4726 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4727
4728 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4729 DELAY(10);
4730 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4731
4732 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4733 DELAY(10);
4734 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4735
4736 sc->bge_pending_rxintr_change = 0;
4737 }
4738 bge_handle_events(sc);
4739
4740 /* Re-enable interrupts. */
4741 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4742
4743 if (ifp->if_flags & IFF_RUNNING)
4744 if_schedule_deferred_start(ifp);
4745
4746 return 1;
4747 }
4748
4749 static void
4750 bge_asf_driver_up(struct bge_softc *sc)
4751 {
4752 if (sc->bge_asf_mode & ASF_STACKUP) {
4753 /* Send ASF heartbeat aprox. every 2s */
4754 if (sc->bge_asf_count)
4755 sc->bge_asf_count --;
4756 else {
4757 sc->bge_asf_count = 2;
4758
4759 bge_wait_for_event_ack(sc);
4760
4761 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4762 BGE_FW_CMD_DRV_ALIVE3);
4763 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4764 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4765 BGE_FW_HB_TIMEOUT_SEC);
4766 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4767 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4768 BGE_RX_CPU_DRV_EVENT);
4769 }
4770 }
4771 }
4772
4773 static void
4774 bge_tick(void *xsc)
4775 {
4776 struct bge_softc * const sc = xsc;
4777 struct mii_data * const mii = &sc->bge_mii;
4778 int s;
4779
4780 s = splnet();
4781
4782 if (BGE_IS_5705_PLUS(sc))
4783 bge_stats_update_regs(sc);
4784 else
4785 bge_stats_update(sc);
4786
4787 if (sc->bge_flags & BGEF_FIBER_TBI) {
4788 /*
4789 * Since in TBI mode auto-polling can't be used we should poll
4790 * link status manually. Here we register pending link event
4791 * and trigger interrupt.
4792 */
4793 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4794 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4795 } else {
4796 /*
4797 * Do not touch PHY if we have link up. This could break
4798 * IPMI/ASF mode or produce extra input errors.
4799 * (extra input errors was reported for bcm5701 & bcm5704).
4800 */
4801 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4802 mii_tick(mii);
4803 }
4804
4805 bge_asf_driver_up(sc);
4806
4807 if (!sc->bge_detaching)
4808 callout_schedule(&sc->bge_timeout, hz);
4809
4810 splx(s);
4811 }
4812
4813 static void
4814 bge_stats_update_regs(struct bge_softc *sc)
4815 {
4816 struct ifnet *const ifp = &sc->ethercom.ec_if;
4817
4818 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4819
4820 if_statadd_ref(nsr, if_collisions,
4821 CSR_READ_4(sc, BGE_MAC_STATS +
4822 offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
4823
4824 /*
4825 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4826 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4827 * (silicon bug). There's no reliable workaround so just
4828 * ignore the counter
4829 */
4830 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4831 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4832 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4833 if_statadd_ref(nsr, if_ierrors,
4834 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4835 }
4836 if_statadd_ref(nsr, if_ierrors,
4837 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
4838 if_statadd_ref(nsr, if_ierrors,
4839 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
4840
4841 IF_STAT_PUTREF(ifp);
4842
4843 if (sc->bge_flags & BGEF_RDMA_BUG) {
4844 uint32_t val, ucast, mcast, bcast;
4845
4846 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4847 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4848 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4849 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4850 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4851 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4852
4853 /*
4854 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4855 * frames, it's safe to disable workaround for DMA engine's
4856 * miscalculation of TXMBUF space.
4857 */
4858 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4859 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4860 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4861 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4862 else
4863 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4864 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4865 sc->bge_flags &= ~BGEF_RDMA_BUG;
4866 }
4867 }
4868 }
4869
4870 static void
4871 bge_stats_update(struct bge_softc *sc)
4872 {
4873 struct ifnet * const ifp = &sc->ethercom.ec_if;
4874 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4875
4876 #define READ_STAT(sc, stats, stat) \
4877 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4878
4879 uint64_t collisions =
4880 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4881 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4882 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4883 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
4884
4885 if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
4886 sc->bge_if_collisions = collisions;
4887
4888
4889 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4890 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4891 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4892 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4893 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4894 READ_STAT(sc, stats,
4895 xoffPauseFramesReceived.bge_addr_lo));
4896 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4897 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4898 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4899 READ_STAT(sc, stats,
4900 macControlFramesReceived.bge_addr_lo));
4901 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4902 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4903
4904 #undef READ_STAT
4905
4906 #ifdef notdef
4907 ifp->if_collisions +=
4908 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4909 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4910 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4911 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4912 ifp->if_collisions;
4913 #endif
4914 }
4915
4916 /*
4917 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4918 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4919 * but when such padded frames employ the bge IP/TCP checksum offload,
4920 * the hardware checksum assist gives incorrect results (possibly
4921 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4922 * If we pad such runts with zeros, the onboard checksum comes out correct.
4923 */
4924 static inline int
4925 bge_cksum_pad(struct mbuf *pkt)
4926 {
4927 struct mbuf *last = NULL;
4928 int padlen;
4929
4930 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4931
4932 /* if there's only the packet-header and we can pad there, use it. */
4933 if (pkt->m_pkthdr.len == pkt->m_len &&
4934 M_TRAILINGSPACE(pkt) >= padlen) {
4935 last = pkt;
4936 } else {
4937 /*
4938 * Walk packet chain to find last mbuf. We will either
4939 * pad there, or append a new mbuf and pad it
4940 * (thus perhaps avoiding the bcm5700 dma-min bug).
4941 */
4942 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4943 continue; /* do nothing */
4944 }
4945
4946 /* `last' now points to last in chain. */
4947 if (M_TRAILINGSPACE(last) < padlen) {
4948 /* Allocate new empty mbuf, pad it. Compact later. */
4949 struct mbuf *n;
4950 MGET(n, M_DONTWAIT, MT_DATA);
4951 if (n == NULL)
4952 return ENOBUFS;
4953 n->m_len = 0;
4954 last->m_next = n;
4955 last = n;
4956 }
4957 }
4958
4959 KDASSERT(!M_READONLY(last));
4960 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4961
4962 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4963 memset(mtod(last, char *) + last->m_len, 0, padlen);
4964 last->m_len += padlen;
4965 pkt->m_pkthdr.len += padlen;
4966 return 0;
4967 }
4968
4969 /*
4970 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4971 */
4972 static inline int
4973 bge_compact_dma_runt(struct mbuf *pkt)
4974 {
4975 struct mbuf *m, *prev;
4976 int totlen;
4977
4978 prev = NULL;
4979 totlen = 0;
4980
4981 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
4982 int mlen = m->m_len;
4983 int shortfall = 8 - mlen ;
4984
4985 totlen += mlen;
4986 if (mlen == 0)
4987 continue;
4988 if (mlen >= 8)
4989 continue;
4990
4991 /*
4992 * If we get here, mbuf data is too small for DMA engine.
4993 * Try to fix by shuffling data to prev or next in chain.
4994 * If that fails, do a compacting deep-copy of the whole chain.
4995 */
4996
4997 /* Internal frag. If fits in prev, copy it there. */
4998 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4999 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5000 prev->m_len += mlen;
5001 m->m_len = 0;
5002 /* XXX stitch chain */
5003 prev->m_next = m_free(m);
5004 m = prev;
5005 continue;
5006 } else if (m->m_next != NULL &&
5007 M_TRAILINGSPACE(m) >= shortfall &&
5008 m->m_next->m_len >= (8 + shortfall)) {
5009 /* m is writable and have enough data in next, pull up. */
5010
5011 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5012 shortfall);
5013 m->m_len += shortfall;
5014 m->m_next->m_len -= shortfall;
5015 m->m_next->m_data += shortfall;
5016 } else if (m->m_next == NULL || 1) {
5017 /*
5018 * Got a runt at the very end of the packet.
5019 * borrow data from the tail of the preceding mbuf and
5020 * update its length in-place. (The original data is
5021 * still valid, so we can do this even if prev is not
5022 * writable.)
5023 */
5024
5025 /*
5026 * If we'd make prev a runt, just move all of its data.
5027 */
5028 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5029 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5030
5031 if ((prev->m_len - shortfall) < 8)
5032 shortfall = prev->m_len;
5033
5034 #ifdef notyet /* just do the safe slow thing for now */
5035 if (!M_READONLY(m)) {
5036 if (M_LEADINGSPACE(m) < shorfall) {
5037 void *m_dat;
5038 m_dat = M_BUFADDR(m);
5039 memmove(m_dat, mtod(m, void*),
5040 m->m_len);
5041 m->m_data = m_dat;
5042 }
5043 } else
5044 #endif /* just do the safe slow thing */
5045 {
5046 struct mbuf * n = NULL;
5047 int newprevlen = prev->m_len - shortfall;
5048
5049 MGET(n, M_NOWAIT, MT_DATA);
5050 if (n == NULL)
5051 return ENOBUFS;
5052 KASSERT(m->m_len + shortfall < MLEN
5053 /*,
5054 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5055
5056 /* first copy the data we're stealing from prev */
5057 memcpy(n->m_data, prev->m_data + newprevlen,
5058 shortfall);
5059
5060 /* update prev->m_len accordingly */
5061 prev->m_len -= shortfall;
5062
5063 /* copy data from runt m */
5064 memcpy(n->m_data + shortfall, m->m_data,
5065 m->m_len);
5066
5067 /* n holds what we stole from prev, plus m */
5068 n->m_len = shortfall + m->m_len;
5069
5070 /* stitch n into chain and free m */
5071 n->m_next = m->m_next;
5072 prev->m_next = n;
5073 /* KASSERT(m->m_next == NULL); */
5074 m->m_next = NULL;
5075 m_free(m);
5076 m = n; /* for continuing loop */
5077 }
5078 }
5079 }
5080 return 0;
5081 }
5082
5083 /*
5084 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5085 * pointers to descriptors.
5086 */
5087 static int
5088 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5089 {
5090 struct ifnet * const ifp = &sc->ethercom.ec_if;
5091 struct bge_tx_bd *f, *prev_f;
5092 uint32_t frag, cur;
5093 uint16_t csum_flags = 0;
5094 uint16_t txbd_tso_flags = 0;
5095 struct txdmamap_pool_entry *dma;
5096 bus_dmamap_t dmamap;
5097 bus_dma_tag_t dmatag;
5098 int i = 0;
5099 int use_tso, maxsegsize, error;
5100 bool have_vtag;
5101 uint16_t vtag;
5102 bool remap;
5103
5104 if (m_head->m_pkthdr.csum_flags) {
5105 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5106 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5107 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5108 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5109 }
5110
5111 /*
5112 * If we were asked to do an outboard checksum, and the NIC
5113 * has the bug where it sometimes adds in the Ethernet padding,
5114 * explicitly pad with zeros so the cksum will be correct either way.
5115 * (For now, do this for all chip versions, until newer
5116 * are confirmed to not require the workaround.)
5117 */
5118 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5119 #ifdef notyet
5120 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5121 #endif
5122 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5123 goto check_dma_bug;
5124
5125 if (bge_cksum_pad(m_head) != 0)
5126 return ENOBUFS;
5127
5128 check_dma_bug:
5129 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5130 goto doit;
5131
5132 /*
5133 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5134 * less than eight bytes. If we encounter a teeny mbuf
5135 * at the end of a chain, we can pad. Otherwise, copy.
5136 */
5137 if (bge_compact_dma_runt(m_head) != 0)
5138 return ENOBUFS;
5139
5140 doit:
5141 dma = SLIST_FIRST(&sc->txdma_list);
5142 if (dma == NULL) {
5143 ifp->if_flags |= IFF_OACTIVE;
5144 return ENOBUFS;
5145 }
5146 dmamap = dma->dmamap;
5147 dmatag = sc->bge_dmatag;
5148 dma->is_dma32 = false;
5149
5150 /*
5151 * Set up any necessary TSO state before we start packing...
5152 */
5153 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5154 if (!use_tso) {
5155 maxsegsize = 0;
5156 } else { /* TSO setup */
5157 unsigned mss;
5158 struct ether_header *eh;
5159 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5160 unsigned bge_hlen;
5161 struct mbuf * m0 = m_head;
5162 struct ip *ip;
5163 struct tcphdr *th;
5164 int iphl, hlen;
5165
5166 /*
5167 * XXX It would be nice if the mbuf pkthdr had offset
5168 * fields for the protocol headers.
5169 */
5170
5171 eh = mtod(m0, struct ether_header *);
5172 switch (htons(eh->ether_type)) {
5173 case ETHERTYPE_IP:
5174 offset = ETHER_HDR_LEN;
5175 break;
5176
5177 case ETHERTYPE_VLAN:
5178 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5179 break;
5180
5181 default:
5182 /*
5183 * Don't support this protocol or encapsulation.
5184 */
5185 return ENOBUFS;
5186 }
5187
5188 /*
5189 * TCP/IP headers are in the first mbuf; we can do
5190 * this the easy way.
5191 */
5192 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5193 hlen = iphl + offset;
5194 if (__predict_false(m0->m_len <
5195 (hlen + sizeof(struct tcphdr)))) {
5196
5197 aprint_error_dev(sc->bge_dev,
5198 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5199 "not handled yet\n",
5200 m0->m_len, hlen+ sizeof(struct tcphdr));
5201 #ifdef NOTYET
5202 /*
5203 * XXX jonathan (at) NetBSD.org: untested.
5204 * how to force this branch to be taken?
5205 */
5206 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5207
5208 m_copydata(m0, offset, sizeof(ip), &ip);
5209 m_copydata(m0, hlen, sizeof(th), &th);
5210
5211 ip.ip_len = 0;
5212
5213 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5214 sizeof(ip.ip_len), &ip.ip_len);
5215
5216 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5217 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5218
5219 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5220 sizeof(th.th_sum), &th.th_sum);
5221
5222 hlen += th.th_off << 2;
5223 iptcp_opt_words = hlen;
5224 #else
5225 /*
5226 * if_wm "hard" case not yet supported, can we not
5227 * mandate it out of existence?
5228 */
5229 (void) ip; (void)th; (void) ip_tcp_hlen;
5230
5231 return ENOBUFS;
5232 #endif
5233 } else {
5234 ip = (struct ip *) (mtod(m0, char *) + offset);
5235 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5236 ip_tcp_hlen = iphl + (th->th_off << 2);
5237
5238 /* Total IP/TCP options, in 32-bit words */
5239 iptcp_opt_words = (ip_tcp_hlen
5240 - sizeof(struct tcphdr)
5241 - sizeof(struct ip)) >> 2;
5242 }
5243 if (BGE_IS_575X_PLUS(sc)) {
5244 th->th_sum = 0;
5245 csum_flags = 0;
5246 } else {
5247 /*
5248 * XXX jonathan (at) NetBSD.org: 5705 untested.
5249 * Requires TSO firmware patch for 5701/5703/5704.
5250 */
5251 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5252 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5253 }
5254
5255 mss = m_head->m_pkthdr.segsz;
5256 txbd_tso_flags |=
5257 BGE_TXBDFLAG_CPU_PRE_DMA |
5258 BGE_TXBDFLAG_CPU_POST_DMA;
5259
5260 /*
5261 * Our NIC TSO-assist assumes TSO has standard, optionless
5262 * IPv4 and TCP headers, which total 40 bytes. By default,
5263 * the NIC copies 40 bytes of IP/TCP header from the
5264 * supplied header into the IP/TCP header portion of
5265 * each post-TSO-segment. If the supplied packet has IP or
5266 * TCP options, we need to tell the NIC to copy those extra
5267 * bytes into each post-TSO header, in addition to the normal
5268 * 40-byte IP/TCP header (and to leave space accordingly).
5269 * Unfortunately, the driver encoding of option length
5270 * varies across different ASIC families.
5271 */
5272 tcp_seg_flags = 0;
5273 bge_hlen = ip_tcp_hlen >> 2;
5274 if (BGE_IS_5717_PLUS(sc)) {
5275 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5276 txbd_tso_flags |=
5277 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5278 } else if (BGE_IS_5705_PLUS(sc)) {
5279 tcp_seg_flags = bge_hlen << 11;
5280 } else {
5281 /* XXX iptcp_opt_words or bge_hlen ? */
5282 txbd_tso_flags |= iptcp_opt_words << 12;
5283 }
5284 maxsegsize = mss | tcp_seg_flags;
5285 ip->ip_len = htons(mss + ip_tcp_hlen);
5286 ip->ip_sum = 0;
5287
5288 } /* TSO setup */
5289
5290 have_vtag = vlan_has_tag(m_head);
5291 if (have_vtag)
5292 vtag = vlan_get_tag(m_head);
5293
5294 /*
5295 * Start packing the mbufs in this chain into
5296 * the fragment pointers. Stop when we run out
5297 * of fragments or hit the end of the mbuf chain.
5298 */
5299 remap = true;
5300 load_again:
5301 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5302 if (__predict_false(error)) {
5303 if (error == EFBIG && remap) {
5304 struct mbuf *m;
5305 remap = false;
5306 m = m_defrag(m_head, M_NOWAIT);
5307 if (m != NULL) {
5308 KASSERT(m == m_head);
5309 goto load_again;
5310 }
5311 }
5312 return error;
5313 }
5314 /*
5315 * Sanity check: avoid coming within 16 descriptors
5316 * of the end of the ring.
5317 */
5318 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5319 BGE_TSO_PRINTF(("%s: "
5320 " dmamap_load_mbuf too close to ring wrap\n",
5321 device_xname(sc->bge_dev)));
5322 goto fail_unload;
5323 }
5324
5325 /* Iterate over dmap-map fragments. */
5326 f = prev_f = NULL;
5327 cur = frag = *txidx;
5328
5329 for (i = 0; i < dmamap->dm_nsegs; i++) {
5330 f = &sc->bge_rdata->bge_tx_ring[frag];
5331 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5332 break;
5333
5334 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5335 f->bge_len = dmamap->dm_segs[i].ds_len;
5336 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5337 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5338 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5339 (prev_f != NULL &&
5340 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5341 ) {
5342 /*
5343 * watchdog timeout issue was observed with TSO,
5344 * limiting DMA address space to 32bits seems to
5345 * address the issue.
5346 */
5347 bus_dmamap_unload(dmatag, dmamap);
5348 dmatag = sc->bge_dmatag32;
5349 dmamap = dma->dmamap32;
5350 dma->is_dma32 = true;
5351 remap = true;
5352 goto load_again;
5353 }
5354
5355 /*
5356 * For 5751 and follow-ons, for TSO we must turn
5357 * off checksum-assist flag in the tx-descr, and
5358 * supply the ASIC-revision-specific encoding
5359 * of TSO flags and segsize.
5360 */
5361 if (use_tso) {
5362 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5363 f->bge_rsvd = maxsegsize;
5364 f->bge_flags = csum_flags | txbd_tso_flags;
5365 } else {
5366 f->bge_rsvd = 0;
5367 f->bge_flags =
5368 (csum_flags | txbd_tso_flags) & 0x0fff;
5369 }
5370 } else {
5371 f->bge_rsvd = 0;
5372 f->bge_flags = csum_flags;
5373 }
5374
5375 if (have_vtag) {
5376 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5377 f->bge_vlan_tag = vtag;
5378 } else {
5379 f->bge_vlan_tag = 0;
5380 }
5381 prev_f = f;
5382 cur = frag;
5383 BGE_INC(frag, BGE_TX_RING_CNT);
5384 }
5385
5386 if (i < dmamap->dm_nsegs) {
5387 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5388 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5389 goto fail_unload;
5390 }
5391
5392 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5393 BUS_DMASYNC_PREWRITE);
5394
5395 if (frag == sc->bge_tx_saved_considx) {
5396 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5397 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5398
5399 goto fail_unload;
5400 }
5401
5402 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5403 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5404 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5405 sc->txdma[cur] = dma;
5406 sc->bge_txcnt += dmamap->dm_nsegs;
5407
5408 *txidx = frag;
5409
5410 return 0;
5411
5412 fail_unload:
5413 bus_dmamap_unload(dmatag, dmamap);
5414 ifp->if_flags |= IFF_OACTIVE;
5415
5416 return ENOBUFS;
5417 }
5418
5419 /*
5420 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5421 * to the mbuf data regions directly in the transmit descriptors.
5422 */
5423 static void
5424 bge_start(struct ifnet *ifp)
5425 {
5426 struct bge_softc * const sc = ifp->if_softc;
5427 struct mbuf *m_head = NULL;
5428 struct mbuf *m;
5429 uint32_t prodidx;
5430 int pkts = 0;
5431 int error;
5432
5433 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5434 return;
5435
5436 prodidx = sc->bge_tx_prodidx;
5437
5438 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5439 IFQ_POLL(&ifp->if_snd, m_head);
5440 if (m_head == NULL)
5441 break;
5442
5443 #if 0
5444 /*
5445 * XXX
5446 * safety overkill. If this is a fragmented packet chain
5447 * with delayed TCP/UDP checksums, then only encapsulate
5448 * it if we have enough descriptors to handle the entire
5449 * chain at once.
5450 * (paranoia -- may not actually be needed)
5451 */
5452 if (m_head->m_flags & M_FIRSTFRAG &&
5453 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5454 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5455 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5456 ifp->if_flags |= IFF_OACTIVE;
5457 break;
5458 }
5459 }
5460 #endif
5461
5462 /*
5463 * Pack the data into the transmit ring. If we
5464 * don't have room, set the OACTIVE flag and wait
5465 * for the NIC to drain the ring.
5466 */
5467 error = bge_encap(sc, m_head, &prodidx);
5468 if (__predict_false(error)) {
5469 if (ifp->if_flags & IFF_OACTIVE) {
5470 /* just wait for the transmit ring to drain */
5471 break;
5472 }
5473 IFQ_DEQUEUE(&ifp->if_snd, m);
5474 KASSERT(m == m_head);
5475 m_freem(m_head);
5476 continue;
5477 }
5478
5479 /* now we are committed to transmit the packet */
5480 IFQ_DEQUEUE(&ifp->if_snd, m);
5481 KASSERT(m == m_head);
5482 pkts++;
5483
5484 /*
5485 * If there's a BPF listener, bounce a copy of this frame
5486 * to him.
5487 */
5488 bpf_mtap(ifp, m_head, BPF_D_OUT);
5489 }
5490 if (pkts == 0)
5491 return;
5492
5493 /* Transmit */
5494 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5495 /* 5700 b2 errata */
5496 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5497 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5498
5499 sc->bge_tx_prodidx = prodidx;
5500
5501 /*
5502 * Set a timeout in case the chip goes out to lunch.
5503 */
5504 ifp->if_timer = 5;
5505 }
5506
5507 static int
5508 bge_init(struct ifnet *ifp)
5509 {
5510 struct bge_softc * const sc = ifp->if_softc;
5511 const uint16_t *m;
5512 uint32_t mode, reg;
5513 int s, error = 0;
5514
5515 s = splnet();
5516
5517 ifp = &sc->ethercom.ec_if;
5518
5519 /* Cancel pending I/O and flush buffers. */
5520 bge_stop(ifp, 0);
5521
5522 bge_stop_fw(sc);
5523 bge_sig_pre_reset(sc, BGE_RESET_START);
5524 bge_reset(sc);
5525 bge_sig_legacy(sc, BGE_RESET_START);
5526
5527 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5528 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5529 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5530 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5531 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5532
5533 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5534 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5535 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5536 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5537
5538 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5539 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5540 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5541 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5542
5543 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5544 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5545 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5546 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5547 }
5548
5549 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5550 pcireg_t aercap;
5551
5552 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5553 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5554 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5555 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5556 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5557
5558 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5559 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5560 | BGE_PCIE_EIDLE_DELAY_13CLK;
5561 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5562
5563 /* Clear correctable error */
5564 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5565 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5566 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5567 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5568
5569 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5570 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5571 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5572 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5573 }
5574
5575 bge_sig_post_reset(sc, BGE_RESET_START);
5576
5577 bge_chipinit(sc);
5578
5579 /*
5580 * Init the various state machines, ring
5581 * control blocks and firmware.
5582 */
5583 error = bge_blockinit(sc);
5584 if (error != 0) {
5585 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5586 error);
5587 splx(s);
5588 return error;
5589 }
5590
5591 /* 5718 step 25, 57XX step 54 */
5592 /* Specify MTU. */
5593 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5594 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5595
5596 /* 5718 step 23 */
5597 /* Load our MAC address. */
5598 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5599 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5600 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5601 ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5602
5603 /* Enable or disable promiscuous mode as needed. */
5604 if (ifp->if_flags & IFF_PROMISC)
5605 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5606 else
5607 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5608
5609 /* Program multicast filter. */
5610 bge_setmulti(sc);
5611
5612 /* Init RX ring. */
5613 bge_init_rx_ring_std(sc);
5614
5615 /*
5616 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5617 * memory to insure that the chip has in fact read the first
5618 * entry of the ring.
5619 */
5620 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5621 uint32_t v, i;
5622 for (i = 0; i < 10; i++) {
5623 DELAY(20);
5624 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5625 if (v == (MCLBYTES - ETHER_ALIGN))
5626 break;
5627 }
5628 if (i == 10)
5629 aprint_error_dev(sc->bge_dev,
5630 "5705 A0 chip failed to load RX ring\n");
5631 }
5632
5633 /* Init jumbo RX ring. */
5634 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5635 bge_init_rx_ring_jumbo(sc);
5636
5637 /* Init our RX return ring index */
5638 sc->bge_rx_saved_considx = 0;
5639
5640 /* Init TX ring. */
5641 bge_init_tx_ring(sc);
5642
5643 /* 5718 step 63, 57XX step 94 */
5644 /* Enable TX MAC state machine lockup fix. */
5645 mode = CSR_READ_4(sc, BGE_TX_MODE);
5646 if (BGE_IS_5755_PLUS(sc) ||
5647 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5648 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5649 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5650 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5651 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5652 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5653 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5654 }
5655
5656 /* Turn on transmitter */
5657 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5658 /* 5718 step 64 */
5659 DELAY(100);
5660
5661 /* 5718 step 65, 57XX step 95 */
5662 /* Turn on receiver */
5663 mode = CSR_READ_4(sc, BGE_RX_MODE);
5664 if (BGE_IS_5755_PLUS(sc))
5665 mode |= BGE_RXMODE_IPV6_ENABLE;
5666 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5667 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5668 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5669 /* 5718 step 66 */
5670 DELAY(10);
5671
5672 /* 5718 step 12, 57XX step 37 */
5673 /*
5674 * XXX Doucments of 5718 series and 577xx say the recommended value
5675 * is 1, but tg3 set 1 only on 57765 series.
5676 */
5677 if (BGE_IS_57765_PLUS(sc))
5678 reg = 1;
5679 else
5680 reg = 2;
5681 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5682
5683 /* Tell firmware we're alive. */
5684 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5685
5686 /* Enable host interrupts. */
5687 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5688 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5689 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5690
5691 if ((error = bge_ifmedia_upd(ifp)) != 0)
5692 goto out;
5693
5694 ifp->if_flags |= IFF_RUNNING;
5695 ifp->if_flags &= ~IFF_OACTIVE;
5696
5697 callout_schedule(&sc->bge_timeout, hz);
5698
5699 out:
5700 sc->bge_if_flags = ifp->if_flags;
5701 splx(s);
5702
5703 return error;
5704 }
5705
5706 /*
5707 * Set media options.
5708 */
5709 static int
5710 bge_ifmedia_upd(struct ifnet *ifp)
5711 {
5712 struct bge_softc * const sc = ifp->if_softc;
5713 struct mii_data * const mii = &sc->bge_mii;
5714 struct ifmedia * const ifm = &sc->bge_ifmedia;
5715 int rc;
5716
5717 /* If this is a 1000baseX NIC, enable the TBI port. */
5718 if (sc->bge_flags & BGEF_FIBER_TBI) {
5719 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5720 return EINVAL;
5721 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5722 case IFM_AUTO:
5723 /*
5724 * The BCM5704 ASIC appears to have a special
5725 * mechanism for programming the autoneg
5726 * advertisement registers in TBI mode.
5727 */
5728 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5729 uint32_t sgdig;
5730 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5731 if (sgdig & BGE_SGDIGSTS_DONE) {
5732 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5733 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5734 sgdig |= BGE_SGDIGCFG_AUTO |
5735 BGE_SGDIGCFG_PAUSE_CAP |
5736 BGE_SGDIGCFG_ASYM_PAUSE;
5737 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5738 sgdig | BGE_SGDIGCFG_SEND);
5739 DELAY(5);
5740 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5741 sgdig);
5742 }
5743 }
5744 break;
5745 case IFM_1000_SX:
5746 if ((ifm->ifm_media & IFM_FDX) != 0) {
5747 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5748 BGE_MACMODE_HALF_DUPLEX);
5749 } else {
5750 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5751 BGE_MACMODE_HALF_DUPLEX);
5752 }
5753 DELAY(40);
5754 break;
5755 default:
5756 return EINVAL;
5757 }
5758 /* XXX 802.3x flow control for 1000BASE-SX */
5759 return 0;
5760 }
5761
5762 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5763 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5764 uint32_t reg;
5765
5766 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5767 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5768 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5769 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5770 }
5771 }
5772
5773 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5774 if ((rc = mii_mediachg(mii)) == ENXIO)
5775 return 0;
5776
5777 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5778 uint32_t reg;
5779
5780 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5781 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5782 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5783 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5784 delay(40);
5785 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5786 }
5787 }
5788
5789 /*
5790 * Force an interrupt so that we will call bge_link_upd
5791 * if needed and clear any pending link state attention.
5792 * Without this we are not getting any further interrupts
5793 * for link state changes and thus will not UP the link and
5794 * not be able to send in bge_start. The only way to get
5795 * things working was to receive a packet and get a RX intr.
5796 */
5797 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5798 sc->bge_flags & BGEF_IS_5788)
5799 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5800 else
5801 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5802
5803 return rc;
5804 }
5805
5806 /*
5807 * Report current media status.
5808 */
5809 static void
5810 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5811 {
5812 struct bge_softc * const sc = ifp->if_softc;
5813 struct mii_data * const mii = &sc->bge_mii;
5814
5815 if (sc->bge_flags & BGEF_FIBER_TBI) {
5816 ifmr->ifm_status = IFM_AVALID;
5817 ifmr->ifm_active = IFM_ETHER;
5818 if (CSR_READ_4(sc, BGE_MAC_STS) &
5819 BGE_MACSTAT_TBI_PCS_SYNCHED)
5820 ifmr->ifm_status |= IFM_ACTIVE;
5821 ifmr->ifm_active |= IFM_1000_SX;
5822 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5823 ifmr->ifm_active |= IFM_HDX;
5824 else
5825 ifmr->ifm_active |= IFM_FDX;
5826 return;
5827 }
5828
5829 mii_pollstat(mii);
5830 ifmr->ifm_status = mii->mii_media_status;
5831 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5832 sc->bge_flowflags;
5833 }
5834
5835 static int
5836 bge_ifflags_cb(struct ethercom *ec)
5837 {
5838 struct ifnet * const ifp = &ec->ec_if;
5839 struct bge_softc * const sc = ifp->if_softc;
5840 u_short change = ifp->if_flags ^ sc->bge_if_flags;
5841
5842 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
5843 return ENETRESET;
5844 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5845 return 0;
5846
5847 if ((ifp->if_flags & IFF_PROMISC) == 0)
5848 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5849 else
5850 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5851
5852 bge_setmulti(sc);
5853
5854 sc->bge_if_flags = ifp->if_flags;
5855 return 0;
5856 }
5857
5858 static int
5859 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5860 {
5861 struct bge_softc * const sc = ifp->if_softc;
5862 struct ifreq * const ifr = (struct ifreq *) data;
5863 int s, error = 0;
5864 struct mii_data *mii;
5865
5866 s = splnet();
5867
5868 switch (command) {
5869 case SIOCSIFMEDIA:
5870 /* XXX Flow control is not supported for 1000BASE-SX */
5871 if (sc->bge_flags & BGEF_FIBER_TBI) {
5872 ifr->ifr_media &= ~IFM_ETH_FMASK;
5873 sc->bge_flowflags = 0;
5874 }
5875
5876 /* Flow control requires full-duplex mode. */
5877 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5878 (ifr->ifr_media & IFM_FDX) == 0) {
5879 ifr->ifr_media &= ~IFM_ETH_FMASK;
5880 }
5881 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5882 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5883 /* We can do both TXPAUSE and RXPAUSE. */
5884 ifr->ifr_media |=
5885 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5886 }
5887 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5888 }
5889
5890 if (sc->bge_flags & BGEF_FIBER_TBI) {
5891 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5892 command);
5893 } else {
5894 mii = &sc->bge_mii;
5895 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5896 command);
5897 }
5898 break;
5899 default:
5900 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5901 break;
5902
5903 error = 0;
5904
5905 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5906 ;
5907 else if (ifp->if_flags & IFF_RUNNING)
5908 bge_setmulti(sc);
5909 break;
5910 }
5911
5912 splx(s);
5913
5914 return error;
5915 }
5916
5917 static void
5918 bge_watchdog(struct ifnet *ifp)
5919 {
5920 struct bge_softc * const sc = ifp->if_softc;
5921 uint32_t status;
5922
5923 /* If pause frames are active then don't reset the hardware. */
5924 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5925 status = CSR_READ_4(sc, BGE_RX_STS);
5926 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5927 /*
5928 * If link partner has us in XOFF state then wait for
5929 * the condition to clear.
5930 */
5931 CSR_WRITE_4(sc, BGE_RX_STS, status);
5932 ifp->if_timer = 5;
5933 return;
5934 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5935 (status & BGE_RXSTAT_RCVD_XON) != 0) {
5936 /*
5937 * If link partner has us in XOFF state then wait for
5938 * the condition to clear.
5939 */
5940 CSR_WRITE_4(sc, BGE_RX_STS, status);
5941 ifp->if_timer = 5;
5942 return;
5943 }
5944 /*
5945 * Any other condition is unexpected and the controller
5946 * should be reset.
5947 */
5948 }
5949
5950 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5951
5952 ifp->if_flags &= ~IFF_RUNNING;
5953 bge_init(ifp);
5954
5955 if_statinc(ifp, if_oerrors);
5956 }
5957
5958 static void
5959 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5960 {
5961 int i;
5962
5963 BGE_CLRBIT_FLUSH(sc, reg, bit);
5964
5965 for (i = 0; i < 1000; i++) {
5966 delay(100);
5967 if ((CSR_READ_4(sc, reg) & bit) == 0)
5968 return;
5969 }
5970
5971 /*
5972 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5973 * on some environment (and once after boot?)
5974 */
5975 if (reg != BGE_SRS_MODE)
5976 aprint_error_dev(sc->bge_dev,
5977 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5978 (u_long)reg, bit);
5979 }
5980
5981 /*
5982 * Stop the adapter and free any mbufs allocated to the
5983 * RX and TX lists.
5984 */
5985 static void
5986 bge_stop(struct ifnet *ifp, int disable)
5987 {
5988 struct bge_softc * const sc = ifp->if_softc;
5989
5990 if (disable) {
5991 sc->bge_detaching = 1;
5992 callout_halt(&sc->bge_timeout, NULL);
5993 } else
5994 callout_stop(&sc->bge_timeout);
5995
5996 /* Disable host interrupts. */
5997 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5998 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5999
6000 /*
6001 * Tell firmware we're shutting down.
6002 */
6003 bge_stop_fw(sc);
6004 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6005
6006 /*
6007 * Disable all of the receiver blocks.
6008 */
6009 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6010 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6011 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6012 if (BGE_IS_5700_FAMILY(sc))
6013 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6014 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6015 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6016 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6017
6018 /*
6019 * Disable all of the transmit blocks.
6020 */
6021 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6022 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6023 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6024 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6025 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6026 if (BGE_IS_5700_FAMILY(sc))
6027 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6028 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6029
6030 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6031 delay(40);
6032
6033 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6034
6035 /*
6036 * Shut down all of the memory managers and related
6037 * state machines.
6038 */
6039 /* 5718 step 5a,5b */
6040 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6041 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6042 if (BGE_IS_5700_FAMILY(sc))
6043 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6044
6045 /* 5718 step 5c,5d */
6046 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6047 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6048
6049 if (BGE_IS_5700_FAMILY(sc)) {
6050 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6051 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6052 }
6053
6054 bge_reset(sc);
6055 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6056 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6057
6058 /*
6059 * Keep the ASF firmware running if up.
6060 */
6061 if (sc->bge_asf_mode & ASF_STACKUP)
6062 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6063 else
6064 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6065
6066 /* Free the RX lists. */
6067 bge_free_rx_ring_std(sc, disable);
6068
6069 /* Free jumbo RX list. */
6070 if (BGE_IS_JUMBO_CAPABLE(sc))
6071 bge_free_rx_ring_jumbo(sc);
6072
6073 /* Free TX buffers. */
6074 bge_free_tx_ring(sc, disable);
6075
6076 /*
6077 * Isolate/power down the PHY.
6078 */
6079 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6080 mii_down(&sc->bge_mii);
6081
6082 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6083
6084 /* Clear MAC's link state (PHY may still have link UP). */
6085 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6086
6087 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6088 }
6089
6090 static void
6091 bge_link_upd(struct bge_softc *sc)
6092 {
6093 struct ifnet * const ifp = &sc->ethercom.ec_if;
6094 struct mii_data * const mii = &sc->bge_mii;
6095 uint32_t status;
6096 uint16_t phyval;
6097 int link;
6098
6099 /* Clear 'pending link event' flag */
6100 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6101
6102 /*
6103 * Process link state changes.
6104 * Grrr. The link status word in the status block does
6105 * not work correctly on the BCM5700 rev AX and BX chips,
6106 * according to all available information. Hence, we have
6107 * to enable MII interrupts in order to properly obtain
6108 * async link changes. Unfortunately, this also means that
6109 * we have to read the MAC status register to detect link
6110 * changes, thereby adding an additional register access to
6111 * the interrupt handler.
6112 */
6113
6114 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6115 status = CSR_READ_4(sc, BGE_MAC_STS);
6116 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6117 mii_pollstat(mii);
6118
6119 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6120 mii->mii_media_status & IFM_ACTIVE &&
6121 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6122 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6123 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6124 (!(mii->mii_media_status & IFM_ACTIVE) ||
6125 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6126 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6127
6128 /* Clear the interrupt */
6129 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6130 BGE_EVTENB_MI_INTERRUPT);
6131 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6132 BRGPHY_MII_ISR, &phyval);
6133 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6134 BRGPHY_MII_IMR, BRGPHY_INTRS);
6135 }
6136 return;
6137 }
6138
6139 if (sc->bge_flags & BGEF_FIBER_TBI) {
6140 status = CSR_READ_4(sc, BGE_MAC_STS);
6141 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6142 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6143 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6144 if (BGE_ASICREV(sc->bge_chipid)
6145 == BGE_ASICREV_BCM5704) {
6146 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6147 BGE_MACMODE_TBI_SEND_CFGS);
6148 DELAY(40);
6149 }
6150 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6151 if_link_state_change(ifp, LINK_STATE_UP);
6152 }
6153 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6154 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6155 if_link_state_change(ifp, LINK_STATE_DOWN);
6156 }
6157 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6158 /*
6159 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6160 * bit in status word always set. Workaround this bug by
6161 * reading PHY link status directly.
6162 */
6163 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6164 BGE_STS_LINK : 0;
6165
6166 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6167 mii_pollstat(mii);
6168
6169 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6170 mii->mii_media_status & IFM_ACTIVE &&
6171 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6172 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6173 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6174 (!(mii->mii_media_status & IFM_ACTIVE) ||
6175 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6176 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6177 }
6178 } else {
6179 /*
6180 * For controllers that call mii_tick, we have to poll
6181 * link status.
6182 */
6183 mii_pollstat(mii);
6184 }
6185
6186 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6187 uint32_t reg, scale;
6188
6189 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6190 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6191 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6192 scale = 65;
6193 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6194 scale = 6;
6195 else
6196 scale = 12;
6197
6198 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6199 ~BGE_MISCCFG_TIMER_PRESCALER;
6200 reg |= scale << 1;
6201 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6202 }
6203 /* Clear the attention */
6204 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6205 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6206 BGE_MACSTAT_LINK_CHANGED);
6207 }
6208
6209 static int
6210 bge_sysctl_verify(SYSCTLFN_ARGS)
6211 {
6212 int error, t;
6213 struct sysctlnode node;
6214
6215 node = *rnode;
6216 t = *(int*)rnode->sysctl_data;
6217 node.sysctl_data = &t;
6218 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6219 if (error || newp == NULL)
6220 return error;
6221
6222 #if 0
6223 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6224 node.sysctl_num, rnode->sysctl_num));
6225 #endif
6226
6227 if (node.sysctl_num == bge_rxthresh_nodenum) {
6228 if (t < 0 || t >= NBGE_RX_THRESH)
6229 return EINVAL;
6230 bge_update_all_threshes(t);
6231 } else
6232 return EINVAL;
6233
6234 *(int*)rnode->sysctl_data = t;
6235
6236 return 0;
6237 }
6238
6239 /*
6240 * Set up sysctl(3) MIB, hw.bge.*.
6241 */
6242 static void
6243 bge_sysctl_init(struct bge_softc *sc)
6244 {
6245 int rc, bge_root_num;
6246 const struct sysctlnode *node;
6247
6248 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6249 0, CTLTYPE_NODE, "bge",
6250 SYSCTL_DESCR("BGE interface controls"),
6251 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6252 goto out;
6253 }
6254
6255 bge_root_num = node->sysctl_num;
6256
6257 /* BGE Rx interrupt mitigation level */
6258 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6259 CTLFLAG_READWRITE,
6260 CTLTYPE_INT, "rx_lvl",
6261 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6262 bge_sysctl_verify, 0,
6263 &bge_rx_thresh_lvl,
6264 0, CTL_HW, bge_root_num, CTL_CREATE,
6265 CTL_EOL)) != 0) {
6266 goto out;
6267 }
6268
6269 bge_rxthresh_nodenum = node->sysctl_num;
6270
6271 return;
6272
6273 out:
6274 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6275 }
6276
6277 #ifdef BGE_DEBUG
6278 void
6279 bge_debug_info(struct bge_softc *sc)
6280 {
6281
6282 printf("Hardware Flags:\n");
6283 if (BGE_IS_57765_PLUS(sc))
6284 printf(" - 57765 Plus\n");
6285 if (BGE_IS_5717_PLUS(sc))
6286 printf(" - 5717 Plus\n");
6287 if (BGE_IS_5755_PLUS(sc))
6288 printf(" - 5755 Plus\n");
6289 if (BGE_IS_575X_PLUS(sc))
6290 printf(" - 575X Plus\n");
6291 if (BGE_IS_5705_PLUS(sc))
6292 printf(" - 5705 Plus\n");
6293 if (BGE_IS_5714_FAMILY(sc))
6294 printf(" - 5714 Family\n");
6295 if (BGE_IS_5700_FAMILY(sc))
6296 printf(" - 5700 Family\n");
6297 if (sc->bge_flags & BGEF_IS_5788)
6298 printf(" - 5788\n");
6299 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6300 printf(" - Supports Jumbo Frames\n");
6301 if (sc->bge_flags & BGEF_NO_EEPROM)
6302 printf(" - No EEPROM\n");
6303 if (sc->bge_flags & BGEF_PCIX)
6304 printf(" - PCI-X Bus\n");
6305 if (sc->bge_flags & BGEF_PCIE)
6306 printf(" - PCI Express Bus\n");
6307 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6308 printf(" - RX Alignment Bug\n");
6309 if (sc->bge_flags & BGEF_APE)
6310 printf(" - APE\n");
6311 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6312 printf(" - CPMU\n");
6313 if (sc->bge_flags & BGEF_TSO)
6314 printf(" - TSO\n");
6315 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6316 printf(" - TAGGED_STATUS\n");
6317
6318 /* PHY related */
6319 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6320 printf(" - No 3 LEDs\n");
6321 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6322 printf(" - CRC bug\n");
6323 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6324 printf(" - ADC bug\n");
6325 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6326 printf(" - 5704 A0 bug\n");
6327 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6328 printf(" - jitter bug\n");
6329 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6330 printf(" - BER bug\n");
6331 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6332 printf(" - adjust trim\n");
6333 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6334 printf(" - no wirespeed\n");
6335
6336 /* ASF related */
6337 if (sc->bge_asf_mode & ASF_ENABLE)
6338 printf(" - ASF enable\n");
6339 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6340 printf(" - ASF new handshake\n");
6341 if (sc->bge_asf_mode & ASF_STACKUP)
6342 printf(" - ASF stackup\n");
6343 }
6344 #endif /* BGE_DEBUG */
6345
6346 static int
6347 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6348 {
6349 prop_dictionary_t dict;
6350 prop_data_t ea;
6351
6352 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6353 return 1;
6354
6355 dict = device_properties(sc->bge_dev);
6356 ea = prop_dictionary_get(dict, "mac-address");
6357 if (ea != NULL) {
6358 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6359 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6360 memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
6361 return 0;
6362 }
6363
6364 return 1;
6365 }
6366
6367 static int
6368 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6369 {
6370 uint32_t mac_addr;
6371
6372 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6373 if ((mac_addr >> 16) == 0x484b) {
6374 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6375 ether_addr[1] = (uint8_t)mac_addr;
6376 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6377 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6378 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6379 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6380 ether_addr[5] = (uint8_t)mac_addr;
6381 return 0;
6382 }
6383 return 1;
6384 }
6385
6386 static int
6387 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6388 {
6389 int mac_offset = BGE_EE_MAC_OFFSET;
6390
6391 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6392 mac_offset = BGE_EE_MAC_OFFSET_5906;
6393
6394 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6395 ETHER_ADDR_LEN));
6396 }
6397
6398 static int
6399 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6400 {
6401
6402 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6403 return 1;
6404
6405 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6406 ETHER_ADDR_LEN));
6407 }
6408
6409 static int
6410 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6411 {
6412 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6413 /* NOTE: Order is critical */
6414 bge_get_eaddr_fw,
6415 bge_get_eaddr_mem,
6416 bge_get_eaddr_nvram,
6417 bge_get_eaddr_eeprom,
6418 NULL
6419 };
6420 const bge_eaddr_fcn_t *func;
6421
6422 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6423 if ((*func)(sc, eaddr) == 0)
6424 break;
6425 }
6426 return (*func == NULL ? ENXIO : 0);
6427 }
6428