if_bge.c revision 1.360 1 /* $NetBSD: if_bge.c,v 1.360 2022/07/02 08:31:43 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.360 2022/07/02 08:31:43 skrll Exp $");
83
84 #include <sys/param.h>
85
86 #include <sys/callout.h>
87 #include <sys/device.h>
88 #include <sys/malloc.h>
89 #include <sys/mbuf.h>
90 #include <sys/kernel.h>
91 #include <sys/rndsource.h>
92 #include <sys/socket.h>
93 #include <sys/sockio.h>
94 #include <sys/sysctl.h>
95 #include <sys/systm.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101 #include <net/bpf.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 /* Headers for TCP Segmentation Offload (TSO) */
111 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
112 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
113 #include <netinet/ip.h> /* for struct ip */
114 #include <netinet/tcp.h> /* for struct tcphdr */
115
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
119
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 #include <dev/mii/miidevs.h>
123 #include <dev/mii/brgphyreg.h>
124
125 #include <dev/pci/if_bgereg.h>
126 #include <dev/pci/if_bgevar.h>
127
128 #include <prop/proplib.h>
129
130 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
131
132
133 /*
134 * Tunable thresholds for rx-side bge interrupt mitigation.
135 */
136
137 /*
138 * The pairs of values below were obtained from empirical measurement
139 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
140 * interrupt for every N packets received, where N is, approximately,
141 * the second value (rx_max_bds) in each pair. The values are chosen
142 * such that moving from one pair to the succeeding pair was observed
143 * to roughly halve interrupt rate under sustained input packet load.
144 * The values were empirically chosen to avoid overflowing internal
145 * limits on the bcm5700: increasing rx_ticks much beyond 600
146 * results in internal wrapping and higher interrupt rates.
147 * The limit of 46 frames was chosen to match NFS workloads.
148 *
149 * These values also work well on bcm5701, bcm5704C, and (less
150 * tested) bcm5703. On other chipsets, (including the Altima chip
151 * family), the larger values may overflow internal chip limits,
152 * leading to increasing interrupt rates rather than lower interrupt
153 * rates.
154 *
155 * Applications using heavy interrupt mitigation (interrupting every
156 * 32 or 46 frames) in both directions may need to increase the TCP
157 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
158 * full link bandwidth, due to ACKs and window updates lingering
159 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
160 */
161 static const struct bge_load_rx_thresh {
162 int rx_ticks;
163 int rx_max_bds; }
164 bge_rx_threshes[] = {
165 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
166 { 32, 2 },
167 { 50, 4 },
168 { 100, 8 },
169 { 192, 16 },
170 { 416, 32 },
171 { 598, 46 }
172 };
173 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
174
175 /* XXX patchable; should be sysctl'able */
176 static int bge_auto_thresh = 1;
177 static int bge_rx_thresh_lvl;
178
179 static int bge_rxthresh_nodenum;
180
181 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
182
183 static uint32_t bge_chipid(const struct pci_attach_args *);
184 static int bge_can_use_msi(struct bge_softc *);
185 static int bge_probe(device_t, cfdata_t, void *);
186 static void bge_attach(device_t, device_t, void *);
187 static int bge_detach(device_t, int);
188 static void bge_release_resources(struct bge_softc *);
189
190 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
191 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
195
196 static void bge_txeof(struct bge_softc *);
197 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
198 static void bge_rxeof(struct bge_softc *);
199
200 static void bge_asf_driver_up (struct bge_softc *);
201 static void bge_tick(void *);
202 static void bge_stats_update(struct bge_softc *);
203 static void bge_stats_update_regs(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
205
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ifflags_cb(struct ethercom *);
209 static int bge_ioctl(struct ifnet *, u_long, void *);
210 static int bge_init(struct ifnet *);
211 static void bge_stop(struct ifnet *, int);
212 static void bge_watchdog(struct ifnet *);
213 static int bge_ifmedia_upd(struct ifnet *);
214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215
216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
218
219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
221 static void bge_setmulti(struct bge_softc *);
222
223 static void bge_handle_events(struct bge_softc *);
224 static int bge_alloc_jumbo_mem(struct bge_softc *);
225 #if 0 /* XXX */
226 static void bge_free_jumbo_mem(struct bge_softc *);
227 #endif
228 static void *bge_jalloc(struct bge_softc *);
229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
231 bus_dmamap_t);
232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int bge_init_rx_ring_std(struct bge_softc *);
234 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_tx_ring(struct bge_softc *m, bool);
238 static int bge_init_tx_ring(struct bge_softc *);
239
240 static int bge_chipinit(struct bge_softc *);
241 static int bge_blockinit(struct bge_softc *);
242 static int bge_phy_addr(struct bge_softc *);
243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
244 static void bge_writemem_ind(struct bge_softc *, int, int);
245 static void bge_writembx(struct bge_softc *, int, int);
246 static void bge_writembx_flush(struct bge_softc *, int, int);
247 static void bge_writemem_direct(struct bge_softc *, int, int);
248 static void bge_writereg_ind(struct bge_softc *, int, int);
249 static void bge_set_max_readrq(struct bge_softc *);
250
251 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
252 static int bge_miibus_writereg(device_t, int, int, uint16_t);
253 static void bge_miibus_statchg(struct ifnet *);
254
255 #define BGE_RESET_SHUTDOWN 0
256 #define BGE_RESET_START 1
257 #define BGE_RESET_SUSPEND 2
258 static void bge_sig_post_reset(struct bge_softc *, int);
259 static void bge_sig_legacy(struct bge_softc *, int);
260 static void bge_sig_pre_reset(struct bge_softc *, int);
261 static void bge_wait_for_event_ack(struct bge_softc *);
262 static void bge_stop_fw(struct bge_softc *);
263 static int bge_reset(struct bge_softc *);
264 static void bge_link_upd(struct bge_softc *);
265 static void bge_sysctl_init(struct bge_softc *);
266 static int bge_sysctl_verify(SYSCTLFN_PROTO);
267
268 static void bge_ape_lock_init(struct bge_softc *);
269 static void bge_ape_read_fw_ver(struct bge_softc *);
270 static int bge_ape_lock(struct bge_softc *, int);
271 static void bge_ape_unlock(struct bge_softc *, int);
272 static void bge_ape_send_event(struct bge_softc *, uint32_t);
273 static void bge_ape_driver_state_change(struct bge_softc *, int);
274
275 #ifdef BGE_DEBUG
276 #define DPRINTF(x) if (bgedebug) printf x
277 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
278 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
279 int bgedebug = 0;
280 int bge_tso_debug = 0;
281 void bge_debug_info(struct bge_softc *);
282 #else
283 #define DPRINTF(x)
284 #define DPRINTFN(n, x)
285 #define BGE_TSO_PRINTF(x)
286 #endif
287
288 #ifdef BGE_EVENT_COUNTERS
289 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
290 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
291 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
292 #else
293 #define BGE_EVCNT_INCR(ev) /* nothing */
294 #define BGE_EVCNT_ADD(ev, val) /* nothing */
295 #define BGE_EVCNT_UPD(ev, val) /* nothing */
296 #endif
297
298 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
299 /*
300 * The BCM5700 documentation seems to indicate that the hardware still has the
301 * Alteon vendor ID burned into it, though it should always be overridden by
302 * the value in the EEPROM. We'll check for it anyway.
303 */
304 static const struct bge_product {
305 pci_vendor_id_t bp_vendor;
306 pci_product_id_t bp_product;
307 const char *bp_name;
308 } bge_products[] = {
309 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
310 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
311 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
312 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
313 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
314 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
315 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
316 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
317 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
318 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
319 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
320 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
321 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
322 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
323 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
324 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
325 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
326 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
327 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
328 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
329 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
330 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
331 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
332 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
333 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
334 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
335 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
336 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
337 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
338 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
339 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
340 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
341 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
342 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
343 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
344 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
345 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
346 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
347 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
348 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
349 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
350 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
351 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
352 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
353 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
354 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
355 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
356 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
357 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
358 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
359 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
360 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
361 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
362 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
363 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
364 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
365 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
366 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
367 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
368 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
369 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
370 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
371 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
372 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
373 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
374 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
375 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
376 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
377 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
378 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
379 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
380 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
381 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
382 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
383 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
384 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
385 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
386 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
387 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
388 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
389 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
390 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
391 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
392 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
393 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
394 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
395 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
396 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
397 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
398 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
399 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
400 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
401 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
402 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
403 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
404 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
405 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
406 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
407 { 0, 0, NULL },
408 };
409
410 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
411 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
412 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
413 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
414 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
415 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
416 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
417 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
418 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
419
420 static const struct bge_revision {
421 uint32_t br_chipid;
422 const char *br_name;
423 } bge_revisions[] = {
424 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
425 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
426 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
427 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
428 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
429 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
430 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
431 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
432 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
433 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
434 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
435 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
436 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
437 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
438 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
439 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
440 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
441 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
442 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
443 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
444 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
445 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
446 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
447 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
448 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
449 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
450 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
451 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
452 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
453 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
454 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
455 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
456 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
457 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
458 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
459 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
460 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
461 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
462 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
463 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
464 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
465 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
466 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
467 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
468 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
469 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
470 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
471 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
472 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
473 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
474 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
475 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
476 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
477 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
478 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
479 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
480 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
481 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
482 /* 5754 and 5787 share the same ASIC ID */
483 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
484 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
485 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
486 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
487 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
488 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
489 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
490 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
491 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
492 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
493 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
494
495 { 0, NULL }
496 };
497
498 /*
499 * Some defaults for major revisions, so that newer steppings
500 * that we don't know about have a shot at working.
501 */
502 static const struct bge_revision bge_majorrevs[] = {
503 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
504 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
505 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
506 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
507 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
508 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
509 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
510 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
511 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
512 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
513 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
514 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
515 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
516 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
517 /* 5754 and 5787 share the same ASIC ID */
518 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
519 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
520 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
521 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
522 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
523 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
524 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
525 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
526 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
527
528 { 0, NULL }
529 };
530
531 static int bge_allow_asf = 1;
532
533 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
534 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
535
536 static uint32_t
537 bge_readmem_ind(struct bge_softc *sc, int off)
538 {
539 pcireg_t val;
540
541 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
542 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
543 return 0;
544
545 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
546 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
547 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
548 return val;
549 }
550
551 static void
552 bge_writemem_ind(struct bge_softc *sc, int off, int val)
553 {
554
555 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
556 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
557 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
558 }
559
560 /*
561 * PCI Express only
562 */
563 static void
564 bge_set_max_readrq(struct bge_softc *sc)
565 {
566 pcireg_t val;
567
568 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
569 + PCIE_DCSR);
570 val &= ~PCIE_DCSR_MAX_READ_REQ;
571 switch (sc->bge_expmrq) {
572 case 2048:
573 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
574 break;
575 case 4096:
576 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
577 break;
578 default:
579 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
580 break;
581 }
582 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
583 + PCIE_DCSR, val);
584 }
585
586 #ifdef notdef
587 static uint32_t
588 bge_readreg_ind(struct bge_softc *sc, int off)
589 {
590 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
591 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
592 }
593 #endif
594
595 static void
596 bge_writereg_ind(struct bge_softc *sc, int off, int val)
597 {
598 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
599 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
600 }
601
602 static void
603 bge_writemem_direct(struct bge_softc *sc, int off, int val)
604 {
605 CSR_WRITE_4(sc, off, val);
606 }
607
608 static void
609 bge_writembx(struct bge_softc *sc, int off, int val)
610 {
611 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
612 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
613
614 CSR_WRITE_4(sc, off, val);
615 }
616
617 static void
618 bge_writembx_flush(struct bge_softc *sc, int off, int val)
619 {
620 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
621 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
622
623 CSR_WRITE_4_FLUSH(sc, off, val);
624 }
625
626 /*
627 * Clear all stale locks and select the lock for this driver instance.
628 */
629 void
630 bge_ape_lock_init(struct bge_softc *sc)
631 {
632 struct pci_attach_args *pa = &(sc->bge_pa);
633 uint32_t bit, regbase;
634 int i;
635
636 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
637 regbase = BGE_APE_LOCK_GRANT;
638 else
639 regbase = BGE_APE_PER_LOCK_GRANT;
640
641 /* Clear any stale locks. */
642 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
643 switch (i) {
644 case BGE_APE_LOCK_PHY0:
645 case BGE_APE_LOCK_PHY1:
646 case BGE_APE_LOCK_PHY2:
647 case BGE_APE_LOCK_PHY3:
648 bit = BGE_APE_LOCK_GRANT_DRIVER0;
649 break;
650 default:
651 if (pa->pa_function == 0)
652 bit = BGE_APE_LOCK_GRANT_DRIVER0;
653 else
654 bit = (1 << pa->pa_function);
655 }
656 APE_WRITE_4(sc, regbase + 4 * i, bit);
657 }
658
659 /* Select the PHY lock based on the device's function number. */
660 switch (pa->pa_function) {
661 case 0:
662 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
663 break;
664 case 1:
665 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
666 break;
667 case 2:
668 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
669 break;
670 case 3:
671 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
672 break;
673 default:
674 printf("%s: PHY lock not supported on function\n",
675 device_xname(sc->bge_dev));
676 break;
677 }
678 }
679
680 /*
681 * Check for APE firmware, set flags, and print version info.
682 */
683 void
684 bge_ape_read_fw_ver(struct bge_softc *sc)
685 {
686 const char *fwtype;
687 uint32_t apedata, features;
688
689 /* Check for a valid APE signature in shared memory. */
690 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
691 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
692 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
693 return;
694 }
695
696 /* Check if APE firmware is running. */
697 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
698 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
699 printf("%s: APE signature found but FW status not ready! "
700 "0x%08x\n", device_xname(sc->bge_dev), apedata);
701 return;
702 }
703
704 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
705
706 /* Fetch the APE firwmare type and version. */
707 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
708 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
709 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
710 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
711 fwtype = "NCSI";
712 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
713 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
714 fwtype = "DASH";
715 } else
716 fwtype = "UNKN";
717
718 /* Print the APE firmware version. */
719 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
720 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
721 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
722 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
723 (apedata & BGE_APE_FW_VERSION_BLDMSK));
724 }
725
726 int
727 bge_ape_lock(struct bge_softc *sc, int locknum)
728 {
729 struct pci_attach_args *pa = &(sc->bge_pa);
730 uint32_t bit, gnt, req, status;
731 int i, off;
732
733 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
734 return (0);
735
736 /* Lock request/grant registers have different bases. */
737 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
738 req = BGE_APE_LOCK_REQ;
739 gnt = BGE_APE_LOCK_GRANT;
740 } else {
741 req = BGE_APE_PER_LOCK_REQ;
742 gnt = BGE_APE_PER_LOCK_GRANT;
743 }
744
745 off = 4 * locknum;
746
747 switch (locknum) {
748 case BGE_APE_LOCK_GPIO:
749 /* Lock required when using GPIO. */
750 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
751 return (0);
752 if (pa->pa_function == 0)
753 bit = BGE_APE_LOCK_REQ_DRIVER0;
754 else
755 bit = (1 << pa->pa_function);
756 break;
757 case BGE_APE_LOCK_GRC:
758 /* Lock required to reset the device. */
759 if (pa->pa_function == 0)
760 bit = BGE_APE_LOCK_REQ_DRIVER0;
761 else
762 bit = (1 << pa->pa_function);
763 break;
764 case BGE_APE_LOCK_MEM:
765 /* Lock required when accessing certain APE memory. */
766 if (pa->pa_function == 0)
767 bit = BGE_APE_LOCK_REQ_DRIVER0;
768 else
769 bit = (1 << pa->pa_function);
770 break;
771 case BGE_APE_LOCK_PHY0:
772 case BGE_APE_LOCK_PHY1:
773 case BGE_APE_LOCK_PHY2:
774 case BGE_APE_LOCK_PHY3:
775 /* Lock required when accessing PHYs. */
776 bit = BGE_APE_LOCK_REQ_DRIVER0;
777 break;
778 default:
779 return (EINVAL);
780 }
781
782 /* Request a lock. */
783 APE_WRITE_4_FLUSH(sc, req + off, bit);
784
785 /* Wait up to 1 second to acquire lock. */
786 for (i = 0; i < 20000; i++) {
787 status = APE_READ_4(sc, gnt + off);
788 if (status == bit)
789 break;
790 DELAY(50);
791 }
792
793 /* Handle any errors. */
794 if (status != bit) {
795 printf("%s: APE lock %d request failed! "
796 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
797 device_xname(sc->bge_dev),
798 locknum, req + off, bit & 0xFFFF, gnt + off,
799 status & 0xFFFF);
800 /* Revoke the lock request. */
801 APE_WRITE_4(sc, gnt + off, bit);
802 return (EBUSY);
803 }
804
805 return (0);
806 }
807
808 void
809 bge_ape_unlock(struct bge_softc *sc, int locknum)
810 {
811 struct pci_attach_args *pa = &(sc->bge_pa);
812 uint32_t bit, gnt;
813 int off;
814
815 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
816 return;
817
818 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
819 gnt = BGE_APE_LOCK_GRANT;
820 else
821 gnt = BGE_APE_PER_LOCK_GRANT;
822
823 off = 4 * locknum;
824
825 switch (locknum) {
826 case BGE_APE_LOCK_GPIO:
827 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
828 return;
829 if (pa->pa_function == 0)
830 bit = BGE_APE_LOCK_GRANT_DRIVER0;
831 else
832 bit = (1 << pa->pa_function);
833 break;
834 case BGE_APE_LOCK_GRC:
835 if (pa->pa_function == 0)
836 bit = BGE_APE_LOCK_GRANT_DRIVER0;
837 else
838 bit = (1 << pa->pa_function);
839 break;
840 case BGE_APE_LOCK_MEM:
841 if (pa->pa_function == 0)
842 bit = BGE_APE_LOCK_GRANT_DRIVER0;
843 else
844 bit = (1 << pa->pa_function);
845 break;
846 case BGE_APE_LOCK_PHY0:
847 case BGE_APE_LOCK_PHY1:
848 case BGE_APE_LOCK_PHY2:
849 case BGE_APE_LOCK_PHY3:
850 bit = BGE_APE_LOCK_GRANT_DRIVER0;
851 break;
852 default:
853 return;
854 }
855
856 /* Write and flush for consecutive bge_ape_lock() */
857 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
858 }
859
860 /*
861 * Send an event to the APE firmware.
862 */
863 void
864 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
865 {
866 uint32_t apedata;
867 int i;
868
869 /* NCSI does not support APE events. */
870 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
871 return;
872
873 /* Wait up to 1ms for APE to service previous event. */
874 for (i = 10; i > 0; i--) {
875 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
876 break;
877 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
878 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
879 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
880 BGE_APE_EVENT_STATUS_EVENT_PENDING);
881 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
882 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
883 break;
884 }
885 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
886 DELAY(100);
887 }
888 if (i == 0) {
889 printf("%s: APE event 0x%08x send timed out\n",
890 device_xname(sc->bge_dev), event);
891 }
892 }
893
894 void
895 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
896 {
897 uint32_t apedata, event;
898
899 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
900 return;
901
902 switch (kind) {
903 case BGE_RESET_START:
904 /* If this is the first load, clear the load counter. */
905 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
906 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
907 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
908 else {
909 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
910 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
911 }
912 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
913 BGE_APE_HOST_SEG_SIG_MAGIC);
914 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
915 BGE_APE_HOST_SEG_LEN_MAGIC);
916
917 /* Add some version info if bge(4) supports it. */
918 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
919 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
920 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
921 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
922 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
923 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
924 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
925 BGE_APE_HOST_DRVR_STATE_START);
926 event = BGE_APE_EVENT_STATUS_STATE_START;
927 break;
928 case BGE_RESET_SHUTDOWN:
929 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
930 BGE_APE_HOST_DRVR_STATE_UNLOAD);
931 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
932 break;
933 case BGE_RESET_SUSPEND:
934 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
935 break;
936 default:
937 return;
938 }
939
940 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
941 BGE_APE_EVENT_STATUS_STATE_CHNGE);
942 }
943
944 static uint8_t
945 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
946 {
947 uint32_t access, byte = 0;
948 int i;
949
950 /* Lock. */
951 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
952 for (i = 0; i < 8000; i++) {
953 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
954 break;
955 DELAY(20);
956 }
957 if (i == 8000)
958 return 1;
959
960 /* Enable access. */
961 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
962 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
963
964 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
965 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
966 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
967 DELAY(10);
968 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
969 DELAY(10);
970 break;
971 }
972 }
973
974 if (i == BGE_TIMEOUT * 10) {
975 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
976 return 1;
977 }
978
979 /* Get result. */
980 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
981
982 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
983
984 /* Disable access. */
985 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
986
987 /* Unlock. */
988 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
989
990 return 0;
991 }
992
993 /*
994 * Read a sequence of bytes from NVRAM.
995 */
996 static int
997 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
998 {
999 int error = 0, i;
1000 uint8_t byte = 0;
1001
1002 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1003 return 1;
1004
1005 for (i = 0; i < cnt; i++) {
1006 error = bge_nvram_getbyte(sc, off + i, &byte);
1007 if (error)
1008 break;
1009 *(dest + i) = byte;
1010 }
1011
1012 return (error ? 1 : 0);
1013 }
1014
1015 /*
1016 * Read a byte of data stored in the EEPROM at address 'addr.' The
1017 * BCM570x supports both the traditional bitbang interface and an
1018 * auto access interface for reading the EEPROM. We use the auto
1019 * access method.
1020 */
1021 static uint8_t
1022 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1023 {
1024 int i;
1025 uint32_t byte = 0;
1026
1027 /*
1028 * Enable use of auto EEPROM access so we can avoid
1029 * having to use the bitbang method.
1030 */
1031 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1032
1033 /* Reset the EEPROM, load the clock period. */
1034 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1035 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1036 DELAY(20);
1037
1038 /* Issue the read EEPROM command. */
1039 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1040
1041 /* Wait for completion */
1042 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1043 DELAY(10);
1044 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1045 break;
1046 }
1047
1048 if (i == BGE_TIMEOUT * 10) {
1049 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1050 return 1;
1051 }
1052
1053 /* Get result. */
1054 byte = CSR_READ_4(sc, BGE_EE_DATA);
1055
1056 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1057
1058 return 0;
1059 }
1060
1061 /*
1062 * Read a sequence of bytes from the EEPROM.
1063 */
1064 static int
1065 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1066 {
1067 int error = 0, i;
1068 uint8_t byte = 0;
1069 char *dest = destv;
1070
1071 for (i = 0; i < cnt; i++) {
1072 error = bge_eeprom_getbyte(sc, off + i, &byte);
1073 if (error)
1074 break;
1075 *(dest + i) = byte;
1076 }
1077
1078 return (error ? 1 : 0);
1079 }
1080
1081 static int
1082 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1083 {
1084 struct bge_softc * const sc = device_private(dev);
1085 uint32_t data;
1086 uint32_t autopoll;
1087 int rv = 0;
1088 int i;
1089
1090 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1091 return -1;
1092
1093 /* Reading with autopolling on may trigger PCI errors */
1094 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1095 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1096 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1097 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1098 DELAY(80);
1099 }
1100
1101 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1102 BGE_MIPHY(phy) | BGE_MIREG(reg));
1103
1104 for (i = 0; i < BGE_TIMEOUT; i++) {
1105 delay(10);
1106 data = CSR_READ_4(sc, BGE_MI_COMM);
1107 if (!(data & BGE_MICOMM_BUSY)) {
1108 DELAY(5);
1109 data = CSR_READ_4(sc, BGE_MI_COMM);
1110 break;
1111 }
1112 }
1113
1114 if (i == BGE_TIMEOUT) {
1115 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1116 rv = ETIMEDOUT;
1117 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1118 /* XXX This error occurs on some devices while attaching. */
1119 aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1120 rv = EIO;
1121 } else
1122 *val = data & BGE_MICOMM_DATA;
1123
1124 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1125 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1126 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1127 DELAY(80);
1128 }
1129
1130 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1131
1132 return rv;
1133 }
1134
1135 static int
1136 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1137 {
1138 struct bge_softc * const sc = device_private(dev);
1139 uint32_t data, autopoll;
1140 int rv = 0;
1141 int i;
1142
1143 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1144 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1145 return 0;
1146
1147 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1148 return -1;
1149
1150 /* Reading with autopolling on may trigger PCI errors */
1151 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1152 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1153 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1154 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1155 DELAY(80);
1156 }
1157
1158 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1159 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1160
1161 for (i = 0; i < BGE_TIMEOUT; i++) {
1162 delay(10);
1163 data = CSR_READ_4(sc, BGE_MI_COMM);
1164 if (!(data & BGE_MICOMM_BUSY)) {
1165 delay(5);
1166 data = CSR_READ_4(sc, BGE_MI_COMM);
1167 break;
1168 }
1169 }
1170
1171 if (i == BGE_TIMEOUT) {
1172 aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1173 rv = ETIMEDOUT;
1174 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1175 aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1176 rv = EIO;
1177 }
1178
1179 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1180 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1181 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1182 delay(80);
1183 }
1184
1185 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1186
1187 if (i == BGE_TIMEOUT) {
1188 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1189 return ETIMEDOUT;
1190 }
1191
1192 return rv;
1193 }
1194
1195 static void
1196 bge_miibus_statchg(struct ifnet *ifp)
1197 {
1198 struct bge_softc * const sc = ifp->if_softc;
1199 struct mii_data *mii = &sc->bge_mii;
1200 uint32_t mac_mode, rx_mode, tx_mode;
1201
1202 /*
1203 * Get flow control negotiation result.
1204 */
1205 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1206 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1207 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1208
1209 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1210 mii->mii_media_status & IFM_ACTIVE &&
1211 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1212 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1213 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1214 (!(mii->mii_media_status & IFM_ACTIVE) ||
1215 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1216 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1217
1218 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1219 return;
1220
1221 /* Set the port mode (MII/GMII) to match the link speed. */
1222 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1223 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1224 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1225 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1226 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1227 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1228 mac_mode |= BGE_PORTMODE_GMII;
1229 else
1230 mac_mode |= BGE_PORTMODE_MII;
1231
1232 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1233 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1234 if ((mii->mii_media_active & IFM_FDX) != 0) {
1235 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1236 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1237 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1238 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1239 } else
1240 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1241
1242 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1243 DELAY(40);
1244 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1245 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1246 }
1247
1248 /*
1249 * Update rx threshold levels to values in a particular slot
1250 * of the interrupt-mitigation table bge_rx_threshes.
1251 */
1252 static void
1253 bge_set_thresh(struct ifnet *ifp, int lvl)
1254 {
1255 struct bge_softc * const sc = ifp->if_softc;
1256 int s;
1257
1258 /*
1259 * For now, just save the new Rx-intr thresholds and record
1260 * that a threshold update is pending. Updating the hardware
1261 * registers here (even at splhigh()) is observed to
1262 * occasionally cause glitches where Rx-interrupts are not
1263 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1264 */
1265 s = splnet();
1266 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1267 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1268 sc->bge_pending_rxintr_change = 1;
1269 splx(s);
1270 }
1271
1272
1273 /*
1274 * Update Rx thresholds of all bge devices
1275 */
1276 static void
1277 bge_update_all_threshes(int lvl)
1278 {
1279 const char * const namebuf = "bge";
1280 const size_t namelen = strlen(namebuf);
1281 struct ifnet *ifp;
1282
1283 if (lvl < 0)
1284 lvl = 0;
1285 else if (lvl >= NBGE_RX_THRESH)
1286 lvl = NBGE_RX_THRESH - 1;
1287
1288 /*
1289 * Now search all the interfaces for this name/number
1290 */
1291 int s = pserialize_read_enter();
1292 IFNET_READER_FOREACH(ifp) {
1293 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1294 continue;
1295 /* We got a match: update if doing auto-threshold-tuning */
1296 if (bge_auto_thresh)
1297 bge_set_thresh(ifp, lvl);
1298 }
1299 pserialize_read_exit(s);
1300 }
1301
1302 /*
1303 * Handle events that have triggered interrupts.
1304 */
1305 static void
1306 bge_handle_events(struct bge_softc *sc)
1307 {
1308
1309 return;
1310 }
1311
1312 /*
1313 * Memory management for jumbo frames.
1314 */
1315
1316 static int
1317 bge_alloc_jumbo_mem(struct bge_softc *sc)
1318 {
1319 char *ptr, *kva;
1320 bus_dma_segment_t seg;
1321 int i, rseg, state, error;
1322 struct bge_jpool_entry *entry;
1323
1324 state = error = 0;
1325
1326 /* Grab a big chunk o' storage. */
1327 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1328 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1329 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1330 return ENOBUFS;
1331 }
1332
1333 state = 1;
1334 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1335 BUS_DMA_NOWAIT)) {
1336 aprint_error_dev(sc->bge_dev,
1337 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1338 error = ENOBUFS;
1339 goto out;
1340 }
1341
1342 state = 2;
1343 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1344 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1345 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1346 error = ENOBUFS;
1347 goto out;
1348 }
1349
1350 state = 3;
1351 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1352 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1353 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1354 error = ENOBUFS;
1355 goto out;
1356 }
1357
1358 state = 4;
1359 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1360 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1361
1362 SLIST_INIT(&sc->bge_jfree_listhead);
1363 SLIST_INIT(&sc->bge_jinuse_listhead);
1364
1365 /*
1366 * Now divide it up into 9K pieces and save the addresses
1367 * in an array.
1368 */
1369 ptr = sc->bge_cdata.bge_jumbo_buf;
1370 for (i = 0; i < BGE_JSLOTS; i++) {
1371 sc->bge_cdata.bge_jslots[i] = ptr;
1372 ptr += BGE_JLEN;
1373 entry = malloc(sizeof(struct bge_jpool_entry),
1374 M_DEVBUF, M_WAITOK);
1375 entry->slot = i;
1376 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1377 entry, jpool_entries);
1378 }
1379 out:
1380 if (error != 0) {
1381 switch (state) {
1382 case 4:
1383 bus_dmamap_unload(sc->bge_dmatag,
1384 sc->bge_cdata.bge_rx_jumbo_map);
1385 /* FALLTHROUGH */
1386 case 3:
1387 bus_dmamap_destroy(sc->bge_dmatag,
1388 sc->bge_cdata.bge_rx_jumbo_map);
1389 /* FALLTHROUGH */
1390 case 2:
1391 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1392 /* FALLTHROUGH */
1393 case 1:
1394 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1395 break;
1396 default:
1397 break;
1398 }
1399 }
1400
1401 return error;
1402 }
1403
1404 /*
1405 * Allocate a jumbo buffer.
1406 */
1407 static void *
1408 bge_jalloc(struct bge_softc *sc)
1409 {
1410 struct bge_jpool_entry *entry;
1411
1412 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1413
1414 if (entry == NULL) {
1415 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1416 return NULL;
1417 }
1418
1419 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1420 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1421 return (sc->bge_cdata.bge_jslots[entry->slot]);
1422 }
1423
1424 /*
1425 * Release a jumbo buffer.
1426 */
1427 static void
1428 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1429 {
1430 struct bge_jpool_entry *entry;
1431 struct bge_softc * const sc = arg;
1432 int i, s;
1433
1434 if (sc == NULL)
1435 panic("bge_jfree: can't find softc pointer!");
1436
1437 /* calculate the slot this buffer belongs to */
1438
1439 i = ((char *)buf
1440 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1441
1442 if ((i < 0) || (i >= BGE_JSLOTS))
1443 panic("bge_jfree: asked to free buffer that we don't manage!");
1444
1445 s = splvm();
1446 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1447 if (entry == NULL)
1448 panic("bge_jfree: buffer not in use!");
1449 entry->slot = i;
1450 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1451 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1452
1453 if (__predict_true(m != NULL))
1454 pool_cache_put(mb_cache, m);
1455 splx(s);
1456 }
1457
1458
1459 /*
1460 * Initialize a standard receive ring descriptor.
1461 */
1462 static int
1463 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1464 bus_dmamap_t dmamap)
1465 {
1466 struct mbuf *m_new = NULL;
1467 struct bge_rx_bd *r;
1468 int error;
1469
1470 if (dmamap == NULL)
1471 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1472
1473 if (dmamap == NULL) {
1474 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1475 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1476 if (error != 0)
1477 return error;
1478 }
1479
1480 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1481
1482 if (m == NULL) {
1483 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1484 if (m_new == NULL)
1485 return ENOBUFS;
1486
1487 MCLGET(m_new, M_DONTWAIT);
1488 if (!(m_new->m_flags & M_EXT)) {
1489 m_freem(m_new);
1490 return ENOBUFS;
1491 }
1492 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1493
1494 } else {
1495 m_new = m;
1496 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1497 m_new->m_data = m_new->m_ext.ext_buf;
1498 }
1499 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1500 m_adj(m_new, ETHER_ALIGN);
1501 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1502 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1503 m_freem(m_new);
1504 return ENOBUFS;
1505 }
1506 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1507 BUS_DMASYNC_PREREAD);
1508
1509 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1510 r = &sc->bge_rdata->bge_rx_std_ring[i];
1511 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1512 r->bge_flags = BGE_RXBDFLAG_END;
1513 r->bge_len = m_new->m_len;
1514 r->bge_idx = i;
1515
1516 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1517 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1518 i * sizeof (struct bge_rx_bd),
1519 sizeof (struct bge_rx_bd),
1520 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1521
1522 return 0;
1523 }
1524
1525 /*
1526 * Initialize a jumbo receive ring descriptor. This allocates
1527 * a jumbo buffer from the pool managed internally by the driver.
1528 */
1529 static int
1530 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1531 {
1532 struct mbuf *m_new = NULL;
1533 struct bge_rx_bd *r;
1534 void *buf = NULL;
1535
1536 if (m == NULL) {
1537
1538 /* Allocate the mbuf. */
1539 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1540 if (m_new == NULL)
1541 return ENOBUFS;
1542
1543 /* Allocate the jumbo buffer */
1544 buf = bge_jalloc(sc);
1545 if (buf == NULL) {
1546 m_freem(m_new);
1547 aprint_error_dev(sc->bge_dev,
1548 "jumbo allocation failed -- packet dropped!\n");
1549 return ENOBUFS;
1550 }
1551
1552 /* Attach the buffer to the mbuf. */
1553 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1554 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1555 bge_jfree, sc);
1556 m_new->m_flags |= M_EXT_RW;
1557 } else {
1558 m_new = m;
1559 buf = m_new->m_data = m_new->m_ext.ext_buf;
1560 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1561 }
1562 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1563 m_adj(m_new, ETHER_ALIGN);
1564 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1565 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1566 BGE_JLEN, BUS_DMASYNC_PREREAD);
1567 /* Set up the descriptor. */
1568 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1569 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1570 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1571 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1572 r->bge_len = m_new->m_len;
1573 r->bge_idx = i;
1574
1575 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1576 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1577 i * sizeof (struct bge_rx_bd),
1578 sizeof (struct bge_rx_bd),
1579 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1580
1581 return 0;
1582 }
1583
1584 /*
1585 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1586 * that's 1MB or memory, which is a lot. For now, we fill only the first
1587 * 256 ring entries and hope that our CPU is fast enough to keep up with
1588 * the NIC.
1589 */
1590 static int
1591 bge_init_rx_ring_std(struct bge_softc *sc)
1592 {
1593 int i;
1594
1595 if (sc->bge_flags & BGEF_RXRING_VALID)
1596 return 0;
1597
1598 for (i = 0; i < BGE_SSLOTS; i++) {
1599 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1600 return ENOBUFS;
1601 }
1602
1603 sc->bge_std = i - 1;
1604 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1605
1606 sc->bge_flags |= BGEF_RXRING_VALID;
1607
1608 return 0;
1609 }
1610
1611 static void
1612 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1613 {
1614 int i;
1615
1616 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1617 return;
1618
1619 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1620 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1621 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1622 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1623 if (disable) {
1624 bus_dmamap_destroy(sc->bge_dmatag,
1625 sc->bge_cdata.bge_rx_std_map[i]);
1626 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1627 }
1628 }
1629 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1630 sizeof(struct bge_rx_bd));
1631 }
1632
1633 sc->bge_flags &= ~BGEF_RXRING_VALID;
1634 }
1635
1636 static int
1637 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1638 {
1639 int i;
1640 volatile struct bge_rcb *rcb;
1641
1642 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1643 return 0;
1644
1645 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1646 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1647 return ENOBUFS;
1648 }
1649
1650 sc->bge_jumbo = i - 1;
1651 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1652
1653 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1654 rcb->bge_maxlen_flags = 0;
1655 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1656
1657 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1658
1659 return 0;
1660 }
1661
1662 static void
1663 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1664 {
1665 int i;
1666
1667 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1668 return;
1669
1670 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1671 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1672 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1673 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1674 }
1675 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1676 sizeof(struct bge_rx_bd));
1677 }
1678
1679 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1680 }
1681
1682 static void
1683 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1684 {
1685 int i;
1686 struct txdmamap_pool_entry *dma;
1687
1688 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1689 return;
1690
1691 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1692 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1693 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1694 sc->bge_cdata.bge_tx_chain[i] = NULL;
1695 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1696 link);
1697 sc->txdma[i] = 0;
1698 }
1699 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1700 sizeof(struct bge_tx_bd));
1701 }
1702
1703 if (disable) {
1704 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1705 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1706 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1707 if (sc->bge_dma64) {
1708 bus_dmamap_destroy(sc->bge_dmatag32,
1709 dma->dmamap32);
1710 }
1711 free(dma, M_DEVBUF);
1712 }
1713 SLIST_INIT(&sc->txdma_list);
1714 }
1715
1716 sc->bge_flags &= ~BGEF_TXRING_VALID;
1717 }
1718
1719 static int
1720 bge_init_tx_ring(struct bge_softc *sc)
1721 {
1722 struct ifnet * const ifp = &sc->ethercom.ec_if;
1723 int i;
1724 bus_dmamap_t dmamap, dmamap32;
1725 bus_size_t maxsegsz;
1726 struct txdmamap_pool_entry *dma;
1727
1728 if (sc->bge_flags & BGEF_TXRING_VALID)
1729 return 0;
1730
1731 sc->bge_txcnt = 0;
1732 sc->bge_tx_saved_considx = 0;
1733
1734 /* Initialize transmit producer index for host-memory send ring. */
1735 sc->bge_tx_prodidx = 0;
1736 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1737 /* 5700 b2 errata */
1738 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1739 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1740
1741 /* NIC-memory send ring not used; initialize to zero. */
1742 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1743 /* 5700 b2 errata */
1744 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1745 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1746
1747 /* Limit DMA segment size for some chips */
1748 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1749 (ifp->if_mtu <= ETHERMTU))
1750 maxsegsz = 2048;
1751 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1752 maxsegsz = 4096;
1753 else
1754 maxsegsz = ETHER_MAX_LEN_JUMBO;
1755
1756 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1757 goto alloc_done;
1758
1759 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1760 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1761 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1762 &dmamap))
1763 return ENOBUFS;
1764 if (dmamap == NULL)
1765 panic("dmamap NULL in bge_init_tx_ring");
1766 if (sc->bge_dma64) {
1767 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1768 BGE_NTXSEG, maxsegsz, 0,
1769 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1770 &dmamap32)) {
1771 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1772 return ENOBUFS;
1773 }
1774 if (dmamap32 == NULL)
1775 panic("dmamap32 NULL in bge_init_tx_ring");
1776 } else
1777 dmamap32 = dmamap;
1778 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1779 if (dma == NULL) {
1780 aprint_error_dev(sc->bge_dev,
1781 "can't alloc txdmamap_pool_entry\n");
1782 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1783 if (sc->bge_dma64)
1784 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1785 return ENOMEM;
1786 }
1787 dma->dmamap = dmamap;
1788 dma->dmamap32 = dmamap32;
1789 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1790 }
1791 alloc_done:
1792 sc->bge_flags |= BGEF_TXRING_VALID;
1793
1794 return 0;
1795 }
1796
1797 static void
1798 bge_setmulti(struct bge_softc *sc)
1799 {
1800 struct ethercom * const ec = &sc->ethercom;
1801 struct ifnet * const ifp = &ec->ec_if;
1802 struct ether_multi *enm;
1803 struct ether_multistep step;
1804 uint32_t hashes[4] = { 0, 0, 0, 0 };
1805 uint32_t h;
1806 int i;
1807
1808 if (ifp->if_flags & IFF_PROMISC)
1809 goto allmulti;
1810
1811 /* Now program new ones. */
1812 ETHER_LOCK(ec);
1813 ETHER_FIRST_MULTI(step, ec, enm);
1814 while (enm != NULL) {
1815 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1816 /*
1817 * We must listen to a range of multicast addresses.
1818 * For now, just accept all multicasts, rather than
1819 * trying to set only those filter bits needed to match
1820 * the range. (At this time, the only use of address
1821 * ranges is for IP multicast routing, for which the
1822 * range is big enough to require all bits set.)
1823 */
1824 ETHER_UNLOCK(ec);
1825 goto allmulti;
1826 }
1827
1828 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1829
1830 /* Just want the 7 least-significant bits. */
1831 h &= 0x7f;
1832
1833 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1834 ETHER_NEXT_MULTI(step, enm);
1835 }
1836 ETHER_UNLOCK(ec);
1837
1838 ifp->if_flags &= ~IFF_ALLMULTI;
1839 goto setit;
1840
1841 allmulti:
1842 ifp->if_flags |= IFF_ALLMULTI;
1843 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1844
1845 setit:
1846 for (i = 0; i < 4; i++)
1847 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1848 }
1849
1850 static void
1851 bge_sig_pre_reset(struct bge_softc *sc, int type)
1852 {
1853
1854 /*
1855 * Some chips don't like this so only do this if ASF is enabled
1856 */
1857 if (sc->bge_asf_mode)
1858 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1859
1860 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1861 switch (type) {
1862 case BGE_RESET_START:
1863 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1864 BGE_FW_DRV_STATE_START);
1865 break;
1866 case BGE_RESET_SHUTDOWN:
1867 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1868 BGE_FW_DRV_STATE_UNLOAD);
1869 break;
1870 case BGE_RESET_SUSPEND:
1871 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1872 BGE_FW_DRV_STATE_SUSPEND);
1873 break;
1874 }
1875 }
1876
1877 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1878 bge_ape_driver_state_change(sc, type);
1879 }
1880
1881 static void
1882 bge_sig_post_reset(struct bge_softc *sc, int type)
1883 {
1884
1885 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1886 switch (type) {
1887 case BGE_RESET_START:
1888 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1889 BGE_FW_DRV_STATE_START_DONE);
1890 /* START DONE */
1891 break;
1892 case BGE_RESET_SHUTDOWN:
1893 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1894 BGE_FW_DRV_STATE_UNLOAD_DONE);
1895 break;
1896 }
1897 }
1898
1899 if (type == BGE_RESET_SHUTDOWN)
1900 bge_ape_driver_state_change(sc, type);
1901 }
1902
1903 static void
1904 bge_sig_legacy(struct bge_softc *sc, int type)
1905 {
1906
1907 if (sc->bge_asf_mode) {
1908 switch (type) {
1909 case BGE_RESET_START:
1910 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1911 BGE_FW_DRV_STATE_START);
1912 break;
1913 case BGE_RESET_SHUTDOWN:
1914 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1915 BGE_FW_DRV_STATE_UNLOAD);
1916 break;
1917 }
1918 }
1919 }
1920
1921 static void
1922 bge_wait_for_event_ack(struct bge_softc *sc)
1923 {
1924 int i;
1925
1926 /* wait up to 2500usec */
1927 for (i = 0; i < 250; i++) {
1928 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1929 BGE_RX_CPU_DRV_EVENT))
1930 break;
1931 DELAY(10);
1932 }
1933 }
1934
1935 static void
1936 bge_stop_fw(struct bge_softc *sc)
1937 {
1938
1939 if (sc->bge_asf_mode) {
1940 bge_wait_for_event_ack(sc);
1941
1942 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1943 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1944 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1945
1946 bge_wait_for_event_ack(sc);
1947 }
1948 }
1949
1950 static int
1951 bge_poll_fw(struct bge_softc *sc)
1952 {
1953 uint32_t val;
1954 int i;
1955
1956 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1957 for (i = 0; i < BGE_TIMEOUT; i++) {
1958 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1959 if (val & BGE_VCPU_STATUS_INIT_DONE)
1960 break;
1961 DELAY(100);
1962 }
1963 if (i >= BGE_TIMEOUT) {
1964 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1965 return -1;
1966 }
1967 } else {
1968 /*
1969 * Poll the value location we just wrote until
1970 * we see the 1's complement of the magic number.
1971 * This indicates that the firmware initialization
1972 * is complete.
1973 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1974 */
1975 for (i = 0; i < BGE_TIMEOUT; i++) {
1976 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1977 if (val == ~BGE_SRAM_FW_MB_MAGIC)
1978 break;
1979 DELAY(10);
1980 }
1981
1982 if ((i >= BGE_TIMEOUT)
1983 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1984 aprint_error_dev(sc->bge_dev,
1985 "firmware handshake timed out, val = %x\n", val);
1986 return -1;
1987 }
1988 }
1989
1990 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1991 /* tg3 says we have to wait extra time */
1992 delay(10 * 1000);
1993 }
1994
1995 return 0;
1996 }
1997
1998 int
1999 bge_phy_addr(struct bge_softc *sc)
2000 {
2001 struct pci_attach_args *pa = &(sc->bge_pa);
2002 int phy_addr = 1;
2003
2004 /*
2005 * PHY address mapping for various devices.
2006 *
2007 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2008 * ---------+-------+-------+-------+-------+
2009 * BCM57XX | 1 | X | X | X |
2010 * BCM5704 | 1 | X | 1 | X |
2011 * BCM5717 | 1 | 8 | 2 | 9 |
2012 * BCM5719 | 1 | 8 | 2 | 9 |
2013 * BCM5720 | 1 | 8 | 2 | 9 |
2014 *
2015 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2016 * ---------+-------+-------+-------+-------+
2017 * BCM57XX | X | X | X | X |
2018 * BCM5704 | X | X | X | X |
2019 * BCM5717 | X | X | X | X |
2020 * BCM5719 | 3 | 10 | 4 | 11 |
2021 * BCM5720 | X | X | X | X |
2022 *
2023 * Other addresses may respond but they are not
2024 * IEEE compliant PHYs and should be ignored.
2025 */
2026 switch (BGE_ASICREV(sc->bge_chipid)) {
2027 case BGE_ASICREV_BCM5717:
2028 case BGE_ASICREV_BCM5719:
2029 case BGE_ASICREV_BCM5720:
2030 phy_addr = pa->pa_function;
2031 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2032 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2033 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2034 } else {
2035 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2036 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2037 }
2038 }
2039
2040 return phy_addr;
2041 }
2042
2043 /*
2044 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2045 * self-test results.
2046 */
2047 static int
2048 bge_chipinit(struct bge_softc *sc)
2049 {
2050 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2051 int i;
2052
2053 /* Set endianness before we access any non-PCI registers. */
2054 misc_ctl = BGE_INIT;
2055 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2056 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2057 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2058 misc_ctl);
2059
2060 /*
2061 * Clear the MAC statistics block in the NIC's
2062 * internal memory.
2063 */
2064 for (i = BGE_STATS_BLOCK;
2065 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2066 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2067
2068 for (i = BGE_STATUS_BLOCK;
2069 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2070 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2071
2072 /* 5717 workaround from tg3 */
2073 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2074 /* Save */
2075 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2076
2077 /* Temporary modify MODE_CTL to control TLP */
2078 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2079 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2080
2081 /* Control TLP */
2082 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2083 BGE_TLP_PHYCTL1);
2084 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2085 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2086
2087 /* Restore */
2088 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2089 }
2090
2091 if (BGE_IS_57765_FAMILY(sc)) {
2092 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2093 /* Save */
2094 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2095
2096 /* Temporary modify MODE_CTL to control TLP */
2097 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2098 CSR_WRITE_4(sc, BGE_MODE_CTL,
2099 reg | BGE_MODECTL_PCIE_TLPADDR1);
2100
2101 /* Control TLP */
2102 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2103 BGE_TLP_PHYCTL5);
2104 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2105 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2106
2107 /* Restore */
2108 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2109 }
2110 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2111 /*
2112 * For the 57766 and non Ax versions of 57765, bootcode
2113 * needs to setup the PCIE Fast Training Sequence (FTS)
2114 * value to prevent transmit hangs.
2115 */
2116 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2117 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2118 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2119
2120 /* Save */
2121 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2122
2123 /* Temporary modify MODE_CTL to control TLP */
2124 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2125 CSR_WRITE_4(sc, BGE_MODE_CTL,
2126 reg | BGE_MODECTL_PCIE_TLPADDR0);
2127
2128 /* Control TLP */
2129 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2130 BGE_TLP_FTSMAX);
2131 reg &= ~BGE_TLP_FTSMAX_MSK;
2132 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2133 reg | BGE_TLP_FTSMAX_VAL);
2134
2135 /* Restore */
2136 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2137 }
2138
2139 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2140 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2141 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2142 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2143 }
2144
2145 /* Set up the PCI DMA control register. */
2146 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2147 if (sc->bge_flags & BGEF_PCIE) {
2148 /* Read watermark not used, 128 bytes for write. */
2149 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2150 device_xname(sc->bge_dev)));
2151 if (sc->bge_mps >= 256)
2152 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2153 else
2154 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2155 } else if (sc->bge_flags & BGEF_PCIX) {
2156 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2157 device_xname(sc->bge_dev)));
2158 /* PCI-X bus */
2159 if (BGE_IS_5714_FAMILY(sc)) {
2160 /* 256 bytes for read and write. */
2161 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2162 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2163
2164 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2165 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2166 else
2167 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2168 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2169 /*
2170 * In the BCM5703, the DMA read watermark should
2171 * be set to less than or equal to the maximum
2172 * memory read byte count of the PCI-X command
2173 * register.
2174 */
2175 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2176 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2177 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2178 /* 1536 bytes for read, 384 bytes for write. */
2179 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2180 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2181 } else {
2182 /* 384 bytes for read and write. */
2183 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2184 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2185 (0x0F);
2186 }
2187
2188 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2189 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2190 uint32_t tmp;
2191
2192 /* Set ONEDMA_ATONCE for hardware workaround. */
2193 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2194 if (tmp == 6 || tmp == 7)
2195 dma_rw_ctl |=
2196 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2197
2198 /* Set PCI-X DMA write workaround. */
2199 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2200 }
2201 } else {
2202 /* Conventional PCI bus: 256 bytes for read and write. */
2203 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2204 device_xname(sc->bge_dev)));
2205 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2206 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2207
2208 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2209 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2210 dma_rw_ctl |= 0x0F;
2211 }
2212
2213 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2214 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2215 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2216 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2217
2218 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2219 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2220 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2221
2222 if (BGE_IS_57765_PLUS(sc)) {
2223 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2224 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2225 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2226
2227 /*
2228 * Enable HW workaround for controllers that misinterpret
2229 * a status tag update and leave interrupts permanently
2230 * disabled.
2231 */
2232 if (!BGE_IS_57765_FAMILY(sc) &&
2233 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2234 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2235 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2236 }
2237
2238 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2239 dma_rw_ctl);
2240
2241 /*
2242 * Set up general mode register.
2243 */
2244 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2245 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2246 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2247 /* Retain Host-2-BMC settings written by APE firmware. */
2248 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2249 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2250 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2251 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2252 }
2253 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2254 BGE_MODECTL_TX_NO_PHDR_CSUM;
2255
2256 /*
2257 * BCM5701 B5 have a bug causing data corruption when using
2258 * 64-bit DMA reads, which can be terminated early and then
2259 * completed later as 32-bit accesses, in combination with
2260 * certain bridges.
2261 */
2262 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2263 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2264 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2265
2266 /*
2267 * Tell the firmware the driver is running
2268 */
2269 if (sc->bge_asf_mode & ASF_STACKUP)
2270 mode_ctl |= BGE_MODECTL_STACKUP;
2271
2272 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2273
2274 /*
2275 * Disable memory write invalidate. Apparently it is not supported
2276 * properly by these devices.
2277 */
2278 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2279 PCI_COMMAND_INVALIDATE_ENABLE);
2280
2281 #ifdef __brokenalpha__
2282 /*
2283 * Must insure that we do not cross an 8K (bytes) boundary
2284 * for DMA reads. Our highest limit is 1K bytes. This is a
2285 * restriction on some ALPHA platforms with early revision
2286 * 21174 PCI chipsets, such as the AlphaPC 164lx
2287 */
2288 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2289 #endif
2290
2291 /* Set the timer prescaler (always 66MHz) */
2292 CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2293
2294 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2295 DELAY(40); /* XXX */
2296
2297 /* Put PHY into ready state */
2298 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2299 DELAY(40);
2300 }
2301
2302 return 0;
2303 }
2304
2305 static int
2306 bge_blockinit(struct bge_softc *sc)
2307 {
2308 volatile struct bge_rcb *rcb;
2309 bus_size_t rcb_addr;
2310 struct ifnet * const ifp = &sc->ethercom.ec_if;
2311 bge_hostaddr taddr;
2312 uint32_t dmactl, rdmareg, mimode, val;
2313 int i, limit;
2314
2315 /*
2316 * Initialize the memory window pointer register so that
2317 * we can access the first 32K of internal NIC RAM. This will
2318 * allow us to set up the TX send ring RCBs and the RX return
2319 * ring RCBs, plus other things which live in NIC memory.
2320 */
2321 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2322
2323 if (!BGE_IS_5705_PLUS(sc)) {
2324 /* 57XX step 33 */
2325 /* Configure mbuf memory pool */
2326 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2327
2328 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2329 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2330 else
2331 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2332
2333 /* 57XX step 34 */
2334 /* Configure DMA resource pool */
2335 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2336 BGE_DMA_DESCRIPTORS);
2337 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2338 }
2339
2340 /* 5718 step 11, 57XX step 35 */
2341 /*
2342 * Configure mbuf pool watermarks. New broadcom docs strongly
2343 * recommend these.
2344 */
2345 if (BGE_IS_5717_PLUS(sc)) {
2346 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2347 if (ifp->if_mtu > ETHERMTU) {
2348 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2349 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2350 } else {
2351 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2352 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2353 }
2354 } else if (BGE_IS_5705_PLUS(sc)) {
2355 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2356
2357 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2358 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2359 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2360 } else {
2361 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2362 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2363 }
2364 } else {
2365 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2366 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2367 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2368 }
2369
2370 /* 57XX step 36 */
2371 /* Configure DMA resource watermarks */
2372 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2373 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2374
2375 /* 5718 step 13, 57XX step 38 */
2376 /* Enable buffer manager */
2377 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2378 /*
2379 * Change the arbitration algorithm of TXMBUF read request to
2380 * round-robin instead of priority based for BCM5719. When
2381 * TXFIFO is almost empty, RDMA will hold its request until
2382 * TXFIFO is not almost empty.
2383 */
2384 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2385 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2386 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2387 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2388 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2389 val |= BGE_BMANMODE_LOMBUF_ATTN;
2390 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2391
2392 /* 57XX step 39 */
2393 /* Poll for buffer manager start indication */
2394 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2395 DELAY(10);
2396 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2397 break;
2398 }
2399
2400 if (i == BGE_TIMEOUT * 2) {
2401 aprint_error_dev(sc->bge_dev,
2402 "buffer manager failed to start\n");
2403 return ENXIO;
2404 }
2405
2406 /* 57XX step 40 */
2407 /* Enable flow-through queues */
2408 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2409 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2410
2411 /* Wait until queue initialization is complete */
2412 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2413 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2414 break;
2415 DELAY(10);
2416 }
2417
2418 if (i == BGE_TIMEOUT * 2) {
2419 aprint_error_dev(sc->bge_dev,
2420 "flow-through queue init failed\n");
2421 return ENXIO;
2422 }
2423
2424 /*
2425 * Summary of rings supported by the controller:
2426 *
2427 * Standard Receive Producer Ring
2428 * - This ring is used to feed receive buffers for "standard"
2429 * sized frames (typically 1536 bytes) to the controller.
2430 *
2431 * Jumbo Receive Producer Ring
2432 * - This ring is used to feed receive buffers for jumbo sized
2433 * frames (i.e. anything bigger than the "standard" frames)
2434 * to the controller.
2435 *
2436 * Mini Receive Producer Ring
2437 * - This ring is used to feed receive buffers for "mini"
2438 * sized frames to the controller.
2439 * - This feature required external memory for the controller
2440 * but was never used in a production system. Should always
2441 * be disabled.
2442 *
2443 * Receive Return Ring
2444 * - After the controller has placed an incoming frame into a
2445 * receive buffer that buffer is moved into a receive return
2446 * ring. The driver is then responsible to passing the
2447 * buffer up to the stack. Many versions of the controller
2448 * support multiple RR rings.
2449 *
2450 * Send Ring
2451 * - This ring is used for outgoing frames. Many versions of
2452 * the controller support multiple send rings.
2453 */
2454
2455 /* 5718 step 15, 57XX step 41 */
2456 /* Initialize the standard RX ring control block */
2457 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2458 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2459 /* 5718 step 16 */
2460 if (BGE_IS_57765_PLUS(sc)) {
2461 /*
2462 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2463 * Bits 15-2 : Maximum RX frame size
2464 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2465 * Bit 0 : Reserved
2466 */
2467 rcb->bge_maxlen_flags =
2468 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2469 } else if (BGE_IS_5705_PLUS(sc)) {
2470 /*
2471 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2472 * Bits 15-2 : Reserved (should be 0)
2473 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2474 * Bit 0 : Reserved
2475 */
2476 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2477 } else {
2478 /*
2479 * Ring size is always XXX entries
2480 * Bits 31-16: Maximum RX frame size
2481 * Bits 15-2 : Reserved (should be 0)
2482 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2483 * Bit 0 : Reserved
2484 */
2485 rcb->bge_maxlen_flags =
2486 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2487 }
2488 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2489 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2490 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2491 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2492 else
2493 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2494 /* Write the standard receive producer ring control block. */
2495 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2496 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2497 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2498 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2499
2500 /* Reset the standard receive producer ring producer index. */
2501 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2502
2503 /* 57XX step 42 */
2504 /*
2505 * Initialize the jumbo RX ring control block
2506 * We set the 'ring disabled' bit in the flags
2507 * field until we're actually ready to start
2508 * using this ring (i.e. once we set the MTU
2509 * high enough to require it).
2510 */
2511 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2512 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2513 BGE_HOSTADDR(rcb->bge_hostaddr,
2514 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2515 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2516 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2517 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2518 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2519 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2520 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2521 else
2522 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2523 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2524 rcb->bge_hostaddr.bge_addr_hi);
2525 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2526 rcb->bge_hostaddr.bge_addr_lo);
2527 /* Program the jumbo receive producer ring RCB parameters. */
2528 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2529 rcb->bge_maxlen_flags);
2530 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2531 /* Reset the jumbo receive producer ring producer index. */
2532 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2533 }
2534
2535 /* 57XX step 43 */
2536 /* Disable the mini receive producer ring RCB. */
2537 if (BGE_IS_5700_FAMILY(sc)) {
2538 /* Set up dummy disabled mini ring RCB */
2539 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2540 rcb->bge_maxlen_flags =
2541 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2542 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2543 rcb->bge_maxlen_flags);
2544 /* Reset the mini receive producer ring producer index. */
2545 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2546
2547 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2548 offsetof(struct bge_ring_data, bge_info),
2549 sizeof (struct bge_gib),
2550 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2551 }
2552
2553 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2554 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2555 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2556 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2557 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2558 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2559 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2560 }
2561 /* 5718 step 14, 57XX step 44 */
2562 /*
2563 * The BD ring replenish thresholds control how often the
2564 * hardware fetches new BD's from the producer rings in host
2565 * memory. Setting the value too low on a busy system can
2566 * starve the hardware and recue the throughpout.
2567 *
2568 * Set the BD ring replenish thresholds. The recommended
2569 * values are 1/8th the number of descriptors allocated to
2570 * each ring, but since we try to avoid filling the entire
2571 * ring we set these to the minimal value of 8. This needs to
2572 * be done on several of the supported chip revisions anyway,
2573 * to work around HW bugs.
2574 */
2575 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2576 if (BGE_IS_JUMBO_CAPABLE(sc))
2577 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2578
2579 /* 5718 step 18 */
2580 if (BGE_IS_5717_PLUS(sc)) {
2581 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2582 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2583 }
2584
2585 /* 57XX step 45 */
2586 /*
2587 * Disable all send rings by setting the 'ring disabled' bit
2588 * in the flags field of all the TX send ring control blocks,
2589 * located in NIC memory.
2590 */
2591 if (BGE_IS_5700_FAMILY(sc)) {
2592 /* 5700 to 5704 had 16 send rings. */
2593 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2594 } else if (BGE_IS_5717_PLUS(sc)) {
2595 limit = BGE_TX_RINGS_5717_MAX;
2596 } else if (BGE_IS_57765_FAMILY(sc) ||
2597 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2598 limit = BGE_TX_RINGS_57765_MAX;
2599 } else
2600 limit = 1;
2601 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2602 for (i = 0; i < limit; i++) {
2603 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2604 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2605 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2606 rcb_addr += sizeof(struct bge_rcb);
2607 }
2608
2609 /* 57XX step 46 and 47 */
2610 /* Configure send ring RCB 0 (we use only the first ring) */
2611 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2612 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2613 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2614 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2615 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2616 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2617 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2618 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2619 else
2620 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2621 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2622 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2623 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2624
2625 /* 57XX step 48 */
2626 /*
2627 * Disable all receive return rings by setting the
2628 * 'ring diabled' bit in the flags field of all the receive
2629 * return ring control blocks, located in NIC memory.
2630 */
2631 if (BGE_IS_5717_PLUS(sc)) {
2632 /* Should be 17, use 16 until we get an SRAM map. */
2633 limit = 16;
2634 } else if (BGE_IS_5700_FAMILY(sc))
2635 limit = BGE_RX_RINGS_MAX;
2636 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2637 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2638 BGE_IS_57765_FAMILY(sc))
2639 limit = 4;
2640 else
2641 limit = 1;
2642 /* Disable all receive return rings */
2643 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2644 for (i = 0; i < limit; i++) {
2645 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2646 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2647 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2648 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2649 BGE_RCB_FLAG_RING_DISABLED));
2650 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2651 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2652 (i * (sizeof(uint64_t))), 0);
2653 rcb_addr += sizeof(struct bge_rcb);
2654 }
2655
2656 /* 57XX step 49 */
2657 /*
2658 * Set up receive return ring 0. Note that the NIC address
2659 * for RX return rings is 0x0. The return rings live entirely
2660 * within the host, so the nicaddr field in the RCB isn't used.
2661 */
2662 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2663 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2664 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2665 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2666 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2667 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2668 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2669
2670 /* 5718 step 24, 57XX step 53 */
2671 /* Set random backoff seed for TX */
2672 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2673 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2674 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2675 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2676 BGE_TX_BACKOFF_SEED_MASK);
2677
2678 /* 5718 step 26, 57XX step 55 */
2679 /* Set inter-packet gap */
2680 val = 0x2620;
2681 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2682 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2683 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2684 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2685 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2686
2687 /* 5718 step 27, 57XX step 56 */
2688 /*
2689 * Specify which ring to use for packets that don't match
2690 * any RX rules.
2691 */
2692 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2693
2694 /* 5718 step 28, 57XX step 57 */
2695 /*
2696 * Configure number of RX lists. One interrupt distribution
2697 * list, sixteen active lists, one bad frames class.
2698 */
2699 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2700
2701 /* 5718 step 29, 57XX step 58 */
2702 /* Inialize RX list placement stats mask. */
2703 if (BGE_IS_575X_PLUS(sc)) {
2704 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2705 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2706 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2707 } else
2708 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2709
2710 /* 5718 step 30, 57XX step 59 */
2711 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2712
2713 /* 5718 step 33, 57XX step 62 */
2714 /* Disable host coalescing until we get it set up */
2715 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2716
2717 /* 5718 step 34, 57XX step 63 */
2718 /* Poll to make sure it's shut down. */
2719 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2720 DELAY(10);
2721 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2722 break;
2723 }
2724
2725 if (i == BGE_TIMEOUT * 2) {
2726 aprint_error_dev(sc->bge_dev,
2727 "host coalescing engine failed to idle\n");
2728 return ENXIO;
2729 }
2730
2731 /* 5718 step 35, 36, 37 */
2732 /* Set up host coalescing defaults */
2733 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2734 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2735 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2736 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2737 if (!(BGE_IS_5705_PLUS(sc))) {
2738 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2739 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2740 }
2741 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2742 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2743
2744 /* Set up address of statistics block */
2745 if (BGE_IS_5700_FAMILY(sc)) {
2746 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2747 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2748 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2749 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2750 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2751 }
2752
2753 /* 5718 step 38 */
2754 /* Set up address of status block */
2755 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2756 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2757 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2758 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2759 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2760 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2761
2762 /* Set up status block size. */
2763 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2764 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2765 val = BGE_STATBLKSZ_FULL;
2766 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2767 } else {
2768 val = BGE_STATBLKSZ_32BYTE;
2769 bzero(&sc->bge_rdata->bge_status_block, 32);
2770 }
2771
2772 /* 5718 step 39, 57XX step 73 */
2773 /* Turn on host coalescing state machine */
2774 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2775
2776 /* 5718 step 40, 57XX step 74 */
2777 /* Turn on RX BD completion state machine and enable attentions */
2778 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2779 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2780
2781 /* 5718 step 41, 57XX step 75 */
2782 /* Turn on RX list placement state machine */
2783 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2784
2785 /* 57XX step 76 */
2786 /* Turn on RX list selector state machine. */
2787 if (!(BGE_IS_5705_PLUS(sc)))
2788 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2789
2790 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2791 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2792 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2793 BGE_MACMODE_FRMHDR_DMA_ENB;
2794
2795 if (sc->bge_flags & BGEF_FIBER_TBI)
2796 val |= BGE_PORTMODE_TBI;
2797 else if (sc->bge_flags & BGEF_FIBER_MII)
2798 val |= BGE_PORTMODE_GMII;
2799 else
2800 val |= BGE_PORTMODE_MII;
2801
2802 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2803 /* Allow APE to send/receive frames. */
2804 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2805 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2806
2807 /* Turn on DMA, clear stats */
2808 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2809 /* 5718 step 44 */
2810 DELAY(40);
2811
2812 /* 5718 step 45, 57XX step 79 */
2813 /* Set misc. local control, enable interrupts on attentions */
2814 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2815 if (BGE_IS_5717_PLUS(sc)) {
2816 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2817 /* 5718 step 46 */
2818 DELAY(100);
2819 }
2820
2821 /* 57XX step 81 */
2822 /* Turn on DMA completion state machine */
2823 if (!(BGE_IS_5705_PLUS(sc)))
2824 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2825
2826 /* 5718 step 47, 57XX step 82 */
2827 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2828
2829 /* 5718 step 48 */
2830 /* Enable host coalescing bug fix. */
2831 if (BGE_IS_5755_PLUS(sc))
2832 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2833
2834 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2835 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2836
2837 /* Turn on write DMA state machine */
2838 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2839 /* 5718 step 49 */
2840 DELAY(40);
2841
2842 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2843
2844 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2845 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2846
2847 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2848 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2849 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2850 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2851 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2852 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2853
2854 if (sc->bge_flags & BGEF_PCIE)
2855 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2856 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2857 if (ifp->if_mtu <= ETHERMTU)
2858 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2859 }
2860 if (sc->bge_flags & BGEF_TSO) {
2861 val |= BGE_RDMAMODE_TSO4_ENABLE;
2862 if (BGE_IS_5717_PLUS(sc))
2863 val |= BGE_RDMAMODE_TSO6_ENABLE;
2864 }
2865
2866 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2867 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2868 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2869 BGE_RDMAMODE_H2BNC_VLAN_DET;
2870 /*
2871 * Allow multiple outstanding read requests from
2872 * non-LSO read DMA engine.
2873 */
2874 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2875 }
2876
2877 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2878 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2879 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2880 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2881 BGE_IS_57765_PLUS(sc)) {
2882 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2883 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2884 else
2885 rdmareg = BGE_RDMA_RSRVCTRL;
2886 dmactl = CSR_READ_4(sc, rdmareg);
2887 /*
2888 * Adjust tx margin to prevent TX data corruption and
2889 * fix internal FIFO overflow.
2890 */
2891 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2892 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2893 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2894 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2895 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2896 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2897 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2898 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2899 }
2900 /*
2901 * Enable fix for read DMA FIFO overruns.
2902 * The fix is to limit the number of RX BDs
2903 * the hardware would fetch at a time.
2904 */
2905 CSR_WRITE_4(sc, rdmareg, dmactl |
2906 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2907 }
2908
2909 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2910 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2911 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2912 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2913 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2914 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2915 /*
2916 * Allow 4KB burst length reads for non-LSO frames.
2917 * Enable 512B burst length reads for buffer descriptors.
2918 */
2919 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2920 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2921 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2922 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2923 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2924 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2925 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2926 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2927 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2928 }
2929 /* Turn on read DMA state machine */
2930 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2931 /* 5718 step 52 */
2932 delay(40);
2933
2934 if (sc->bge_flags & BGEF_RDMA_BUG) {
2935 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2936 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2937 if ((val & 0xFFFF) > BGE_FRAMELEN)
2938 break;
2939 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2940 break;
2941 }
2942 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2943 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2944 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2945 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2946 else
2947 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2948 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2949 }
2950 }
2951
2952 /* 5718 step 56, 57XX step 84 */
2953 /* Turn on RX data completion state machine */
2954 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2955
2956 /* Turn on RX data and RX BD initiator state machine */
2957 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2958
2959 /* 57XX step 85 */
2960 /* Turn on Mbuf cluster free state machine */
2961 if (!BGE_IS_5705_PLUS(sc))
2962 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2963
2964 /* 5718 step 57, 57XX step 86 */
2965 /* Turn on send data completion state machine */
2966 val = BGE_SDCMODE_ENABLE;
2967 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2968 val |= BGE_SDCMODE_CDELAY;
2969 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2970
2971 /* 5718 step 58 */
2972 /* Turn on send BD completion state machine */
2973 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2974
2975 /* 57XX step 88 */
2976 /* Turn on RX BD initiator state machine */
2977 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2978
2979 /* 5718 step 60, 57XX step 90 */
2980 /* Turn on send data initiator state machine */
2981 if (sc->bge_flags & BGEF_TSO) {
2982 /* XXX: magic value from Linux driver */
2983 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2984 BGE_SDIMODE_HW_LSO_PRE_DMA);
2985 } else
2986 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2987
2988 /* 5718 step 61, 57XX step 91 */
2989 /* Turn on send BD initiator state machine */
2990 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2991
2992 /* 5718 step 62, 57XX step 92 */
2993 /* Turn on send BD selector state machine */
2994 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2995
2996 /* 5718 step 31, 57XX step 60 */
2997 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2998 /* 5718 step 32, 57XX step 61 */
2999 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3000 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3001
3002 /* ack/clear link change events */
3003 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3004 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3005 BGE_MACSTAT_LINK_CHANGED);
3006 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3007
3008 /*
3009 * Enable attention when the link has changed state for
3010 * devices that use auto polling.
3011 */
3012 if (sc->bge_flags & BGEF_FIBER_TBI) {
3013 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3014 } else {
3015 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3016 mimode = BGE_MIMODE_500KHZ_CONST;
3017 else
3018 mimode = BGE_MIMODE_BASE;
3019 /* 5718 step 68. 5718 step 69 (optionally). */
3020 if (BGE_IS_5700_FAMILY(sc) ||
3021 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3022 mimode |= BGE_MIMODE_AUTOPOLL;
3023 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3024 }
3025 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3026 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3027 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3028 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3029 BGE_EVTENB_MI_INTERRUPT);
3030 }
3031
3032 /*
3033 * Clear any pending link state attention.
3034 * Otherwise some link state change events may be lost until attention
3035 * is cleared by bge_intr() -> bge_link_upd() sequence.
3036 * It's not necessary on newer BCM chips - perhaps enabling link
3037 * state change attentions implies clearing pending attention.
3038 */
3039 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3040 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3041 BGE_MACSTAT_LINK_CHANGED);
3042
3043 /* Enable link state change attentions. */
3044 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3045
3046 return 0;
3047 }
3048
3049 static const struct bge_revision *
3050 bge_lookup_rev(uint32_t chipid)
3051 {
3052 const struct bge_revision *br;
3053
3054 for (br = bge_revisions; br->br_name != NULL; br++) {
3055 if (br->br_chipid == chipid)
3056 return br;
3057 }
3058
3059 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3060 if (br->br_chipid == BGE_ASICREV(chipid))
3061 return br;
3062 }
3063
3064 return NULL;
3065 }
3066
3067 static const struct bge_product *
3068 bge_lookup(const struct pci_attach_args *pa)
3069 {
3070 const struct bge_product *bp;
3071
3072 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3073 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3074 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3075 return bp;
3076 }
3077
3078 return NULL;
3079 }
3080
3081 static uint32_t
3082 bge_chipid(const struct pci_attach_args *pa)
3083 {
3084 uint32_t id;
3085
3086 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3087 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3088
3089 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3090 switch (PCI_PRODUCT(pa->pa_id)) {
3091 case PCI_PRODUCT_BROADCOM_BCM5717:
3092 case PCI_PRODUCT_BROADCOM_BCM5718:
3093 case PCI_PRODUCT_BROADCOM_BCM5719:
3094 case PCI_PRODUCT_BROADCOM_BCM5720:
3095 case PCI_PRODUCT_BROADCOM_BCM5725:
3096 case PCI_PRODUCT_BROADCOM_BCM5727:
3097 case PCI_PRODUCT_BROADCOM_BCM5762:
3098 case PCI_PRODUCT_BROADCOM_BCM57764:
3099 case PCI_PRODUCT_BROADCOM_BCM57767:
3100 case PCI_PRODUCT_BROADCOM_BCM57787:
3101 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3102 BGE_PCI_GEN2_PRODID_ASICREV);
3103 break;
3104 case PCI_PRODUCT_BROADCOM_BCM57761:
3105 case PCI_PRODUCT_BROADCOM_BCM57762:
3106 case PCI_PRODUCT_BROADCOM_BCM57765:
3107 case PCI_PRODUCT_BROADCOM_BCM57766:
3108 case PCI_PRODUCT_BROADCOM_BCM57781:
3109 case PCI_PRODUCT_BROADCOM_BCM57782:
3110 case PCI_PRODUCT_BROADCOM_BCM57785:
3111 case PCI_PRODUCT_BROADCOM_BCM57786:
3112 case PCI_PRODUCT_BROADCOM_BCM57791:
3113 case PCI_PRODUCT_BROADCOM_BCM57795:
3114 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3115 BGE_PCI_GEN15_PRODID_ASICREV);
3116 break;
3117 default:
3118 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3119 BGE_PCI_PRODID_ASICREV);
3120 break;
3121 }
3122 }
3123
3124 return id;
3125 }
3126
3127 /*
3128 * Return true if MSI can be used with this device.
3129 */
3130 static int
3131 bge_can_use_msi(struct bge_softc *sc)
3132 {
3133 int can_use_msi = 0;
3134
3135 switch (BGE_ASICREV(sc->bge_chipid)) {
3136 case BGE_ASICREV_BCM5714_A0:
3137 case BGE_ASICREV_BCM5714:
3138 /*
3139 * Apparently, MSI doesn't work when these chips are
3140 * configured in single-port mode.
3141 */
3142 break;
3143 case BGE_ASICREV_BCM5750:
3144 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3145 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3146 can_use_msi = 1;
3147 break;
3148 default:
3149 if (BGE_IS_575X_PLUS(sc))
3150 can_use_msi = 1;
3151 }
3152 return (can_use_msi);
3153 }
3154
3155 /*
3156 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3157 * against our list and return its name if we find a match. Note
3158 * that since the Broadcom controller contains VPD support, we
3159 * can get the device name string from the controller itself instead
3160 * of the compiled-in string. This is a little slow, but it guarantees
3161 * we'll always announce the right product name.
3162 */
3163 static int
3164 bge_probe(device_t parent, cfdata_t match, void *aux)
3165 {
3166 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3167
3168 if (bge_lookup(pa) != NULL)
3169 return 1;
3170
3171 return 0;
3172 }
3173
3174 static void
3175 bge_attach(device_t parent, device_t self, void *aux)
3176 {
3177 struct bge_softc * const sc = device_private(self);
3178 struct pci_attach_args * const pa = aux;
3179 prop_dictionary_t dict;
3180 const struct bge_product *bp;
3181 const struct bge_revision *br;
3182 pci_chipset_tag_t pc;
3183 const char *intrstr = NULL;
3184 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3185 uint32_t command;
3186 struct ifnet *ifp;
3187 struct mii_data * const mii = &sc->bge_mii;
3188 uint32_t misccfg, mimode, macmode;
3189 void * kva;
3190 u_char eaddr[ETHER_ADDR_LEN];
3191 pcireg_t memtype, subid, reg;
3192 bus_addr_t memaddr;
3193 uint32_t pm_ctl;
3194 bool no_seeprom;
3195 int capmask, trys;
3196 int mii_flags;
3197 int map_flags;
3198 char intrbuf[PCI_INTRSTR_LEN];
3199
3200 bp = bge_lookup(pa);
3201 KASSERT(bp != NULL);
3202
3203 sc->sc_pc = pa->pa_pc;
3204 sc->sc_pcitag = pa->pa_tag;
3205 sc->bge_dev = self;
3206
3207 sc->bge_pa = *pa;
3208 pc = sc->sc_pc;
3209 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3210
3211 aprint_naive(": Ethernet controller\n");
3212 aprint_normal(": %s Ethernet\n", bp->bp_name);
3213
3214 /*
3215 * Map control/status registers.
3216 */
3217 DPRINTFN(5, ("Map control/status regs\n"));
3218 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3219 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3220 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3221 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3222
3223 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3224 aprint_error_dev(sc->bge_dev,
3225 "failed to enable memory mapping!\n");
3226 return;
3227 }
3228
3229 DPRINTFN(5, ("pci_mem_find\n"));
3230 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3231 switch (memtype) {
3232 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3233 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3234 #if 0
3235 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3236 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3237 &memaddr, &sc->bge_bsize) == 0)
3238 break;
3239 #else
3240 /*
3241 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3242 * system get NMI on boot (PR#48451). This problem might not be
3243 * the driver's bug but our PCI common part's bug. Until we
3244 * find a real reason, we ignore the prefetchable bit.
3245 */
3246 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3247 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3248 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3249 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3250 map_flags, &sc->bge_bhandle) == 0) {
3251 sc->bge_btag = pa->pa_memt;
3252 break;
3253 }
3254 }
3255 #endif
3256 /* FALLTHROUGH */
3257 default:
3258 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3259 return;
3260 }
3261
3262 /* Save various chip information. */
3263 sc->bge_chipid = bge_chipid(pa);
3264 sc->bge_phy_addr = bge_phy_addr(sc);
3265
3266 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3267 &sc->bge_pciecap, NULL) != 0) {
3268 /* PCIe */
3269 sc->bge_flags |= BGEF_PCIE;
3270 /* Extract supported maximum payload size. */
3271 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3272 sc->bge_pciecap + PCIE_DCAP);
3273 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3274 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3275 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3276 sc->bge_expmrq = 2048;
3277 else
3278 sc->bge_expmrq = 4096;
3279 bge_set_max_readrq(sc);
3280 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3281 /* PCIe without PCIe cap */
3282 sc->bge_flags |= BGEF_PCIE;
3283 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3284 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3285 /* PCI-X */
3286 sc->bge_flags |= BGEF_PCIX;
3287 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3288 &sc->bge_pcixcap, NULL) == 0)
3289 aprint_error_dev(sc->bge_dev,
3290 "unable to find PCIX capability\n");
3291 }
3292
3293 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3294 /*
3295 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3296 * can clobber the chip's PCI config-space power control
3297 * registers, leaving the card in D3 powersave state. We do
3298 * not have memory-mapped registers in this state, so force
3299 * device into D0 state before starting initialization.
3300 */
3301 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3302 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3303 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3304 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3305 DELAY(1000); /* 27 usec is allegedly sufficient */
3306 }
3307
3308 /* Save chipset family. */
3309 switch (BGE_ASICREV(sc->bge_chipid)) {
3310 case BGE_ASICREV_BCM5717:
3311 case BGE_ASICREV_BCM5719:
3312 case BGE_ASICREV_BCM5720:
3313 sc->bge_flags |= BGEF_5717_PLUS;
3314 /* FALLTHROUGH */
3315 case BGE_ASICREV_BCM5762:
3316 case BGE_ASICREV_BCM57765:
3317 case BGE_ASICREV_BCM57766:
3318 if (!BGE_IS_5717_PLUS(sc))
3319 sc->bge_flags |= BGEF_57765_FAMILY;
3320 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3321 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3322 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3323 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3324 /*
3325 * Enable work around for DMA engine miscalculation
3326 * of TXMBUF available space.
3327 */
3328 sc->bge_flags |= BGEF_RDMA_BUG;
3329
3330 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3331 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3332 /* Jumbo frame on BCM5719 A0 does not work. */
3333 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3334 }
3335 }
3336 break;
3337 case BGE_ASICREV_BCM5755:
3338 case BGE_ASICREV_BCM5761:
3339 case BGE_ASICREV_BCM5784:
3340 case BGE_ASICREV_BCM5785:
3341 case BGE_ASICREV_BCM5787:
3342 case BGE_ASICREV_BCM57780:
3343 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3344 break;
3345 case BGE_ASICREV_BCM5700:
3346 case BGE_ASICREV_BCM5701:
3347 case BGE_ASICREV_BCM5703:
3348 case BGE_ASICREV_BCM5704:
3349 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3350 break;
3351 case BGE_ASICREV_BCM5714_A0:
3352 case BGE_ASICREV_BCM5780:
3353 case BGE_ASICREV_BCM5714:
3354 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3355 /* FALLTHROUGH */
3356 case BGE_ASICREV_BCM5750:
3357 case BGE_ASICREV_BCM5752:
3358 case BGE_ASICREV_BCM5906:
3359 sc->bge_flags |= BGEF_575X_PLUS;
3360 /* FALLTHROUGH */
3361 case BGE_ASICREV_BCM5705:
3362 sc->bge_flags |= BGEF_5705_PLUS;
3363 break;
3364 }
3365
3366 /* Identify chips with APE processor. */
3367 switch (BGE_ASICREV(sc->bge_chipid)) {
3368 case BGE_ASICREV_BCM5717:
3369 case BGE_ASICREV_BCM5719:
3370 case BGE_ASICREV_BCM5720:
3371 case BGE_ASICREV_BCM5761:
3372 case BGE_ASICREV_BCM5762:
3373 sc->bge_flags |= BGEF_APE;
3374 break;
3375 }
3376
3377 /*
3378 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3379 * not actually a MAC controller bug but an issue with the embedded
3380 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3381 */
3382 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3383 sc->bge_flags |= BGEF_40BIT_BUG;
3384
3385 /* Chips with APE need BAR2 access for APE registers/memory. */
3386 if ((sc->bge_flags & BGEF_APE) != 0) {
3387 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3388 #if 0
3389 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3390 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3391 &sc->bge_apesize)) {
3392 aprint_error_dev(sc->bge_dev,
3393 "couldn't map BAR2 memory\n");
3394 return;
3395 }
3396 #else
3397 /*
3398 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3399 * system get NMI on boot (PR#48451). This problem might not be
3400 * the driver's bug but our PCI common part's bug. Until we
3401 * find a real reason, we ignore the prefetchable bit.
3402 */
3403 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3404 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3405 aprint_error_dev(sc->bge_dev,
3406 "couldn't map BAR2 memory\n");
3407 return;
3408 }
3409
3410 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3411 if (bus_space_map(pa->pa_memt, memaddr,
3412 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3413 aprint_error_dev(sc->bge_dev,
3414 "couldn't map BAR2 memory\n");
3415 return;
3416 }
3417 sc->bge_apetag = pa->pa_memt;
3418 #endif
3419
3420 /* Enable APE register/memory access by host driver. */
3421 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3422 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3423 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3424 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3425 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3426
3427 bge_ape_lock_init(sc);
3428 bge_ape_read_fw_ver(sc);
3429 }
3430
3431 /* Identify the chips that use an CPMU. */
3432 if (BGE_IS_5717_PLUS(sc) ||
3433 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3434 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3435 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3436 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3437 sc->bge_flags |= BGEF_CPMU_PRESENT;
3438
3439 /*
3440 * When using the BCM5701 in PCI-X mode, data corruption has
3441 * been observed in the first few bytes of some received packets.
3442 * Aligning the packet buffer in memory eliminates the corruption.
3443 * Unfortunately, this misaligns the packet payloads. On platforms
3444 * which do not support unaligned accesses, we will realign the
3445 * payloads by copying the received packets.
3446 */
3447 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3448 sc->bge_flags & BGEF_PCIX)
3449 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3450
3451 if (BGE_IS_5700_FAMILY(sc))
3452 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3453
3454 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3455 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3456
3457 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3458 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3459 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3460 sc->bge_flags |= BGEF_IS_5788;
3461
3462 /*
3463 * Some controllers seem to require a special firmware to use
3464 * TSO. But the firmware is not available to FreeBSD and Linux
3465 * claims that the TSO performed by the firmware is slower than
3466 * hardware based TSO. Moreover the firmware based TSO has one
3467 * known bug which can't handle TSO if ethernet header + IP/TCP
3468 * header is greater than 80 bytes. The workaround for the TSO
3469 * bug exist but it seems it's too expensive than not using
3470 * TSO at all. Some hardwares also have the TSO bug so limit
3471 * the TSO to the controllers that are not affected TSO issues
3472 * (e.g. 5755 or higher).
3473 */
3474 if (BGE_IS_5755_PLUS(sc)) {
3475 /*
3476 * BCM5754 and BCM5787 shares the same ASIC id so
3477 * explicit device id check is required.
3478 */
3479 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3480 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3481 sc->bge_flags |= BGEF_TSO;
3482 /* TSO on BCM5719 A0 does not work. */
3483 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3484 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3485 sc->bge_flags &= ~BGEF_TSO;
3486 }
3487
3488 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3489 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3490 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3491 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3492 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3493 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3494 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3495 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3496 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3497 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3498 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3499 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3500 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3501 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3502 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3503 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3504 /* These chips are 10/100 only. */
3505 capmask &= ~BMSR_EXTSTAT;
3506 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3507 }
3508
3509 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3510 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3511 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3512 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3513 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3514
3515 /* Set various PHY bug flags. */
3516 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3517 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3518 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3519 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3520 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3521 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3522 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3523 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3524 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3525 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3526 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3527 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3528 if (BGE_IS_5705_PLUS(sc) &&
3529 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3530 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3531 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3532 !BGE_IS_57765_PLUS(sc)) {
3533 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3534 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3535 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3536 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3537 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3538 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3539 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3540 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3541 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3542 } else
3543 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3544 }
3545
3546 /*
3547 * SEEPROM check.
3548 * First check if firmware knows we do not have SEEPROM.
3549 */
3550 if (prop_dictionary_get_bool(device_properties(self),
3551 "without-seeprom", &no_seeprom) && no_seeprom)
3552 sc->bge_flags |= BGEF_NO_EEPROM;
3553
3554 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3555 sc->bge_flags |= BGEF_NO_EEPROM;
3556
3557 /* Now check the 'ROM failed' bit on the RX CPU */
3558 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3559 sc->bge_flags |= BGEF_NO_EEPROM;
3560
3561 sc->bge_asf_mode = 0;
3562 /* No ASF if APE present. */
3563 if ((sc->bge_flags & BGEF_APE) == 0) {
3564 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3565 BGE_SRAM_DATA_SIG_MAGIC)) {
3566 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3567 BGE_HWCFG_ASF) {
3568 sc->bge_asf_mode |= ASF_ENABLE;
3569 sc->bge_asf_mode |= ASF_STACKUP;
3570 if (BGE_IS_575X_PLUS(sc))
3571 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3572 }
3573 }
3574 }
3575
3576 int counts[PCI_INTR_TYPE_SIZE] = {
3577 [PCI_INTR_TYPE_INTX] = 1,
3578 [PCI_INTR_TYPE_MSI] = 1,
3579 [PCI_INTR_TYPE_MSIX] = 1,
3580 };
3581 int max_type = PCI_INTR_TYPE_MSIX;
3582
3583 if (!bge_can_use_msi(sc)) {
3584 /* MSI broken, allow only INTx */
3585 max_type = PCI_INTR_TYPE_INTX;
3586 }
3587
3588 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3589 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3590 return;
3591 }
3592
3593 DPRINTFN(5, ("pci_intr_string\n"));
3594 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3595 sizeof(intrbuf));
3596 DPRINTFN(5, ("pci_intr_establish\n"));
3597 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3598 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3599 if (sc->bge_intrhand == NULL) {
3600 pci_intr_release(pc, sc->bge_pihp, 1);
3601 sc->bge_pihp = NULL;
3602
3603 aprint_error_dev(self, "couldn't establish interrupt");
3604 if (intrstr != NULL)
3605 aprint_error(" at %s", intrstr);
3606 aprint_error("\n");
3607 return;
3608 }
3609 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3610
3611 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3612 case PCI_INTR_TYPE_MSIX:
3613 case PCI_INTR_TYPE_MSI:
3614 KASSERT(bge_can_use_msi(sc));
3615 sc->bge_flags |= BGEF_MSI;
3616 break;
3617 default:
3618 /* nothing to do */
3619 break;
3620 }
3621
3622 /*
3623 * All controllers except BCM5700 supports tagged status but
3624 * we use tagged status only for MSI case on BCM5717. Otherwise
3625 * MSI on BCM5717 does not work.
3626 */
3627 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3628 sc->bge_flags |= BGEF_TAGGED_STATUS;
3629
3630 /*
3631 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3632 * lock in bge_reset().
3633 */
3634 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3635 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3636 delay(1000);
3637 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3638
3639 bge_stop_fw(sc);
3640 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3641 if (bge_reset(sc))
3642 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3643
3644 /*
3645 * Read the hardware config word in the first 32k of NIC internal
3646 * memory, or fall back to the config word in the EEPROM.
3647 * Note: on some BCM5700 cards, this value appears to be unset.
3648 */
3649 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3650 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3651 BGE_SRAM_DATA_SIG_MAGIC) {
3652 uint32_t tmp;
3653
3654 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3655 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3656 BGE_SRAM_DATA_VER_SHIFT;
3657 if ((0 < tmp) && (tmp < 0x100))
3658 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3659 if (sc->bge_flags & BGEF_PCIE)
3660 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3661 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3662 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3663 if (BGE_IS_5717_PLUS(sc))
3664 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3665 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3666 bge_read_eeprom(sc, (void *)&hwcfg,
3667 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3668 hwcfg = be32toh(hwcfg);
3669 }
3670 aprint_normal_dev(sc->bge_dev,
3671 "HW config %08x, %08x, %08x, %08x %08x\n",
3672 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3673
3674 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3675 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3676
3677 if (bge_chipinit(sc)) {
3678 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3679 bge_release_resources(sc);
3680 return;
3681 }
3682
3683 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3684 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3685 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3686 DELAY(100);
3687 }
3688
3689 /* Set MI_MODE */
3690 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3691 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3692 mimode |= BGE_MIMODE_500KHZ_CONST;
3693 else
3694 mimode |= BGE_MIMODE_BASE;
3695 CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3696 DELAY(80);
3697
3698 /*
3699 * Get station address from the EEPROM.
3700 */
3701 if (bge_get_eaddr(sc, eaddr)) {
3702 aprint_error_dev(sc->bge_dev,
3703 "failed to read station address\n");
3704 bge_release_resources(sc);
3705 return;
3706 }
3707
3708 br = bge_lookup_rev(sc->bge_chipid);
3709
3710 if (br == NULL) {
3711 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3712 sc->bge_chipid);
3713 } else {
3714 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3715 br->br_name, sc->bge_chipid);
3716 }
3717 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3718
3719 /* Allocate the general information block and ring buffers. */
3720 if (pci_dma64_available(pa)) {
3721 sc->bge_dmatag = pa->pa_dmat64;
3722 sc->bge_dmatag32 = pa->pa_dmat;
3723 sc->bge_dma64 = true;
3724 } else {
3725 sc->bge_dmatag = pa->pa_dmat;
3726 sc->bge_dmatag32 = pa->pa_dmat;
3727 sc->bge_dma64 = false;
3728 }
3729
3730 /* 40bit DMA workaround */
3731 if (sizeof(bus_addr_t) > 4) {
3732 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3733 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3734
3735 if (bus_dmatag_subregion(olddmatag, 0,
3736 (bus_addr_t)__MASK(40),
3737 &(sc->bge_dmatag), BUS_DMA_NOWAIT) != 0) {
3738 aprint_error_dev(self,
3739 "WARNING: failed to restrict dma range,"
3740 " falling back to parent bus dma range\n");
3741 sc->bge_dmatag = olddmatag;
3742 }
3743 }
3744 }
3745 SLIST_INIT(&sc->txdma_list);
3746 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3747 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3748 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3749 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3750 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3751 return;
3752 }
3753 DPRINTFN(5, ("bus_dmamem_map\n"));
3754 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3755 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3756 BUS_DMA_NOWAIT)) {
3757 aprint_error_dev(sc->bge_dev,
3758 "can't map DMA buffers (%zu bytes)\n",
3759 sizeof(struct bge_ring_data));
3760 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3761 sc->bge_ring_rseg);
3762 return;
3763 }
3764 DPRINTFN(5, ("bus_dmamem_create\n"));
3765 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3766 sizeof(struct bge_ring_data), 0,
3767 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3768 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3769 bus_dmamem_unmap(sc->bge_dmatag, kva,
3770 sizeof(struct bge_ring_data));
3771 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3772 sc->bge_ring_rseg);
3773 return;
3774 }
3775 DPRINTFN(5, ("bus_dmamem_load\n"));
3776 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3777 sizeof(struct bge_ring_data), NULL,
3778 BUS_DMA_NOWAIT)) {
3779 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3780 bus_dmamem_unmap(sc->bge_dmatag, kva,
3781 sizeof(struct bge_ring_data));
3782 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3783 sc->bge_ring_rseg);
3784 return;
3785 }
3786
3787 DPRINTFN(5, ("bzero\n"));
3788 sc->bge_rdata = (struct bge_ring_data *)kva;
3789
3790 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3791
3792 /* Try to allocate memory for jumbo buffers. */
3793 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3794 if (bge_alloc_jumbo_mem(sc)) {
3795 aprint_error_dev(sc->bge_dev,
3796 "jumbo buffer allocation failed\n");
3797 } else
3798 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3799 }
3800
3801 /* Set default tuneable values. */
3802 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3803 sc->bge_rx_coal_ticks = 150;
3804 sc->bge_rx_max_coal_bds = 64;
3805 sc->bge_tx_coal_ticks = 300;
3806 sc->bge_tx_max_coal_bds = 400;
3807 if (BGE_IS_5705_PLUS(sc)) {
3808 sc->bge_tx_coal_ticks = (12 * 5);
3809 sc->bge_tx_max_coal_bds = (12 * 5);
3810 aprint_verbose_dev(sc->bge_dev,
3811 "setting short Tx thresholds\n");
3812 }
3813
3814 if (BGE_IS_5717_PLUS(sc))
3815 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3816 else if (BGE_IS_5705_PLUS(sc))
3817 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3818 else
3819 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3820
3821 /* Set up ifnet structure */
3822 ifp = &sc->ethercom.ec_if;
3823 ifp->if_softc = sc;
3824 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3825 ifp->if_ioctl = bge_ioctl;
3826 ifp->if_stop = bge_stop;
3827 ifp->if_start = bge_start;
3828 ifp->if_init = bge_init;
3829 ifp->if_watchdog = bge_watchdog;
3830 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3831 IFQ_SET_READY(&ifp->if_snd);
3832 DPRINTFN(5, ("strcpy if_xname\n"));
3833 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3834
3835 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3836 sc->ethercom.ec_if.if_capabilities |=
3837 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3838 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3839 sc->ethercom.ec_if.if_capabilities |=
3840 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3841 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3842 #endif
3843 sc->ethercom.ec_capabilities |=
3844 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3845 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3846
3847 if (sc->bge_flags & BGEF_TSO)
3848 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3849
3850 /*
3851 * Do MII setup.
3852 */
3853 DPRINTFN(5, ("mii setup\n"));
3854 mii->mii_ifp = ifp;
3855 mii->mii_readreg = bge_miibus_readreg;
3856 mii->mii_writereg = bge_miibus_writereg;
3857 mii->mii_statchg = bge_miibus_statchg;
3858
3859 /*
3860 * Figure out what sort of media we have by checking the hardware
3861 * config word. Note: on some BCM5700 cards, this value appears to be
3862 * unset. If that's the case, we have to rely on identifying the NIC
3863 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3864 * The SysKonnect SK-9D41 is a 1000baseSX card.
3865 */
3866 if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3867 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3868 if (BGE_IS_5705_PLUS(sc)) {
3869 sc->bge_flags |= BGEF_FIBER_MII;
3870 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3871 } else
3872 sc->bge_flags |= BGEF_FIBER_TBI;
3873 }
3874
3875 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3876 if (BGE_IS_JUMBO_CAPABLE(sc))
3877 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3878
3879 /* set phyflags and chipid before mii_attach() */
3880 dict = device_properties(self);
3881 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3882 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3883
3884 macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3885 macmode &= ~BGE_MACMODE_PORTMODE;
3886 /* Initialize ifmedia structures. */
3887 if (sc->bge_flags & BGEF_FIBER_TBI) {
3888 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3889 macmode | BGE_PORTMODE_TBI);
3890 DELAY(40);
3891
3892 sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
3893 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3894 bge_ifmedia_sts);
3895 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3896 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3897 0, NULL);
3898 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3899 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3900 /* Pretend the user requested this setting */
3901 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3902 } else {
3903 uint16_t phyreg;
3904 int rv;
3905 /*
3906 * Do transceiver setup and tell the firmware the
3907 * driver is down so we can try to get access the
3908 * probe if ASF is running. Retry a couple of times
3909 * if we get a conflict with the ASF firmware accessing
3910 * the PHY.
3911 */
3912 if (sc->bge_flags & BGEF_FIBER_MII)
3913 macmode |= BGE_PORTMODE_GMII;
3914 else
3915 macmode |= BGE_PORTMODE_MII;
3916 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3917 DELAY(40);
3918
3919 /*
3920 * Do transceiver setup and tell the firmware the
3921 * driver is down so we can try to get access the
3922 * probe if ASF is running. Retry a couple of times
3923 * if we get a conflict with the ASF firmware accessing
3924 * the PHY.
3925 */
3926 trys = 0;
3927 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3928 sc->ethercom.ec_mii = mii;
3929 ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3930 bge_ifmedia_sts);
3931 mii_flags = MIIF_DOPAUSE;
3932 if (sc->bge_flags & BGEF_FIBER_MII)
3933 mii_flags |= MIIF_HAVEFIBER;
3934 again:
3935 bge_asf_driver_up(sc);
3936 rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
3937 MII_BMCR, &phyreg);
3938 if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
3939 int i;
3940
3941 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
3942 MII_BMCR, BMCR_RESET);
3943 /* Wait up to 500ms for it to complete. */
3944 for (i = 0; i < 500; i++) {
3945 bge_miibus_readreg(sc->bge_dev,
3946 sc->bge_phy_addr, MII_BMCR, &phyreg);
3947 if ((phyreg & BMCR_RESET) == 0)
3948 break;
3949 DELAY(1000);
3950 }
3951 }
3952
3953 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
3954 MII_OFFSET_ANY, mii_flags);
3955
3956 if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
3957 goto again;
3958
3959 if (LIST_EMPTY(&mii->mii_phys)) {
3960 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3961 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
3962 0, NULL);
3963 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
3964 } else
3965 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
3966
3967 /*
3968 * Now tell the firmware we are going up after probing the PHY
3969 */
3970 if (sc->bge_asf_mode & ASF_STACKUP)
3971 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3972 }
3973
3974 /*
3975 * Call MI attach routine.
3976 */
3977 DPRINTFN(5, ("if_attach\n"));
3978 if_attach(ifp);
3979 if_deferred_start_init(ifp, NULL);
3980 DPRINTFN(5, ("ether_ifattach\n"));
3981 ether_ifattach(ifp, eaddr);
3982 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3983 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3984 RND_TYPE_NET, RND_FLAG_DEFAULT);
3985 #ifdef BGE_EVENT_COUNTERS
3986 /*
3987 * Attach event counters.
3988 */
3989 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3990 NULL, device_xname(sc->bge_dev), "intr");
3991 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3992 NULL, device_xname(sc->bge_dev), "intr_spurious");
3993 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3994 NULL, device_xname(sc->bge_dev), "intr_spurious2");
3995 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3996 NULL, device_xname(sc->bge_dev), "tx_xoff");
3997 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3998 NULL, device_xname(sc->bge_dev), "tx_xon");
3999 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4000 NULL, device_xname(sc->bge_dev), "rx_xoff");
4001 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4002 NULL, device_xname(sc->bge_dev), "rx_xon");
4003 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4004 NULL, device_xname(sc->bge_dev), "rx_macctl");
4005 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4006 NULL, device_xname(sc->bge_dev), "xoffentered");
4007 #endif /* BGE_EVENT_COUNTERS */
4008 DPRINTFN(5, ("callout_init\n"));
4009 callout_init(&sc->bge_timeout, 0);
4010 callout_setfunc(&sc->bge_timeout, bge_tick, sc);
4011
4012 if (pmf_device_register(self, NULL, NULL))
4013 pmf_class_network_register(self, ifp);
4014 else
4015 aprint_error_dev(self, "couldn't establish power handler\n");
4016
4017 bge_sysctl_init(sc);
4018
4019 #ifdef BGE_DEBUG
4020 bge_debug_info(sc);
4021 #endif
4022 }
4023
4024 /*
4025 * Stop all chip I/O so that the kernel's probe routines don't
4026 * get confused by errant DMAs when rebooting.
4027 */
4028 static int
4029 bge_detach(device_t self, int flags __unused)
4030 {
4031 struct bge_softc * const sc = device_private(self);
4032 struct ifnet * const ifp = &sc->ethercom.ec_if;
4033 int s;
4034
4035 s = splnet();
4036 /* Stop the interface. Callouts are stopped in it. */
4037 bge_stop(ifp, 1);
4038 splx(s);
4039
4040 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4041
4042 ether_ifdetach(ifp);
4043 if_detach(ifp);
4044
4045 /* Delete all remaining media. */
4046 ifmedia_fini(&sc->bge_mii.mii_media);
4047
4048 bge_release_resources(sc);
4049
4050 return 0;
4051 }
4052
4053 static void
4054 bge_release_resources(struct bge_softc *sc)
4055 {
4056
4057 /* Detach sysctl */
4058 if (sc->bge_log != NULL)
4059 sysctl_teardown(&sc->bge_log);
4060
4061 #ifdef BGE_EVENT_COUNTERS
4062 /* Detach event counters. */
4063 evcnt_detach(&sc->bge_ev_intr);
4064 evcnt_detach(&sc->bge_ev_intr_spurious);
4065 evcnt_detach(&sc->bge_ev_intr_spurious2);
4066 evcnt_detach(&sc->bge_ev_tx_xoff);
4067 evcnt_detach(&sc->bge_ev_tx_xon);
4068 evcnt_detach(&sc->bge_ev_rx_xoff);
4069 evcnt_detach(&sc->bge_ev_rx_xon);
4070 evcnt_detach(&sc->bge_ev_rx_macctl);
4071 evcnt_detach(&sc->bge_ev_xoffentered);
4072 #endif /* BGE_EVENT_COUNTERS */
4073
4074 /* Disestablish the interrupt handler */
4075 if (sc->bge_intrhand != NULL) {
4076 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4077 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4078 sc->bge_intrhand = NULL;
4079 }
4080
4081 if (sc->bge_dmatag != NULL) {
4082 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4083 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4084 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4085 sizeof(struct bge_ring_data));
4086 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4087 sc->bge_ring_rseg);
4088 }
4089
4090 /* Unmap the device registers */
4091 if (sc->bge_bsize != 0) {
4092 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4093 sc->bge_bsize = 0;
4094 }
4095
4096 /* Unmap the APE registers */
4097 if (sc->bge_apesize != 0) {
4098 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4099 sc->bge_apesize);
4100 sc->bge_apesize = 0;
4101 }
4102 }
4103
4104 static int
4105 bge_reset(struct bge_softc *sc)
4106 {
4107 uint32_t cachesize, command;
4108 uint32_t reset, mac_mode, mac_mode_mask;
4109 pcireg_t devctl, reg;
4110 int i, val;
4111 void (*write_op)(struct bge_softc *, int, int);
4112
4113 /* Make mask for BGE_MAC_MODE register. */
4114 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4115 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4116 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4117 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4118 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4119
4120 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4121 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4122 if (sc->bge_flags & BGEF_PCIE)
4123 write_op = bge_writemem_direct;
4124 else
4125 write_op = bge_writemem_ind;
4126 } else
4127 write_op = bge_writereg_ind;
4128
4129 /* 57XX step 4 */
4130 /* Acquire the NVM lock */
4131 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4132 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4133 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4134 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4135 for (i = 0; i < 8000; i++) {
4136 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4137 BGE_NVRAMSWARB_GNT1)
4138 break;
4139 DELAY(20);
4140 }
4141 if (i == 8000) {
4142 printf("%s: NVRAM lock timedout!\n",
4143 device_xname(sc->bge_dev));
4144 }
4145 }
4146
4147 /* Take APE lock when performing reset. */
4148 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4149
4150 /* 57XX step 3 */
4151 /* Save some important PCI state. */
4152 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4153 /* 5718 reset step 3 */
4154 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4155
4156 /* 5718 reset step 5, 57XX step 5b-5d */
4157 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4158 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4159 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4160
4161 /* XXX ???: Disable fastboot on controllers that support it. */
4162 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4163 BGE_IS_5755_PLUS(sc))
4164 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4165
4166 /* 5718 reset step 2, 57XX step 6 */
4167 /*
4168 * Write the magic number to SRAM at offset 0xB50.
4169 * When firmware finishes its initialization it will
4170 * write ~BGE_MAGIC_NUMBER to the same location.
4171 */
4172 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4173
4174 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4175 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4176 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4177 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4178 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4179 }
4180
4181 /* 5718 reset step 6, 57XX step 7 */
4182 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4183 /*
4184 * XXX: from FreeBSD/Linux; no documentation
4185 */
4186 if (sc->bge_flags & BGEF_PCIE) {
4187 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4188 !BGE_IS_57765_PLUS(sc) &&
4189 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4190 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4191 /* PCI Express 1.0 system */
4192 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4193 BGE_PHY_PCIE_SCRAM_MODE);
4194 }
4195 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4196 /*
4197 * Prevent PCI Express link training
4198 * during global reset.
4199 */
4200 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4201 reset |= (1 << 29);
4202 }
4203 }
4204
4205 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4206 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4207 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4208 i | BGE_VCPU_STATUS_DRV_RESET);
4209 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4210 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4211 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4212 }
4213
4214 /*
4215 * Set GPHY Power Down Override to leave GPHY
4216 * powered up in D0 uninitialized.
4217 */
4218 if (BGE_IS_5705_PLUS(sc) &&
4219 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4220 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4221
4222 /* Issue global reset */
4223 write_op(sc, BGE_MISC_CFG, reset);
4224
4225 /* 5718 reset step 7, 57XX step 8 */
4226 if (sc->bge_flags & BGEF_PCIE)
4227 delay(100*1000); /* too big */
4228 else
4229 delay(1000);
4230
4231 if (sc->bge_flags & BGEF_PCIE) {
4232 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4233 DELAY(500000);
4234 /* XXX: Magic Numbers */
4235 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4236 BGE_PCI_UNKNOWN0);
4237 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4238 BGE_PCI_UNKNOWN0,
4239 reg | (1 << 15));
4240 }
4241 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4242 sc->bge_pciecap + PCIE_DCSR);
4243 /* Clear enable no snoop and disable relaxed ordering. */
4244 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4245 PCIE_DCSR_ENA_NO_SNOOP);
4246
4247 /* Set PCIE max payload size to 128 for older PCIe devices */
4248 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4249 devctl &= ~(0x00e0);
4250 /* Clear device status register. Write 1b to clear */
4251 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4252 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4253 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4254 sc->bge_pciecap + PCIE_DCSR, devctl);
4255 bge_set_max_readrq(sc);
4256 }
4257
4258 /* From Linux: dummy read to flush PCI posted writes */
4259 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4260
4261 /*
4262 * Reset some of the PCI state that got zapped by reset
4263 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4264 * set, too.
4265 */
4266 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4267 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4268 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4269 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4270 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4271 (sc->bge_flags & BGEF_PCIX) != 0)
4272 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4273 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4274 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4275 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4276 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4277 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4278 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4279 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4280
4281 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4282 if (sc->bge_flags & BGEF_PCIX) {
4283 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4284 + PCIX_CMD);
4285 /* Set max memory read byte count to 2K */
4286 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4287 reg &= ~PCIX_CMD_BYTECNT_MASK;
4288 reg |= PCIX_CMD_BCNT_2048;
4289 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4290 /*
4291 * For 5704, set max outstanding split transaction
4292 * field to 0 (0 means it supports 1 request)
4293 */
4294 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4295 | PCIX_CMD_BYTECNT_MASK);
4296 reg |= PCIX_CMD_BCNT_2048;
4297 }
4298 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4299 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4300 }
4301
4302 /* 5718 reset step 10, 57XX step 12 */
4303 /* Enable memory arbiter. */
4304 if (BGE_IS_5714_FAMILY(sc)) {
4305 val = CSR_READ_4(sc, BGE_MARB_MODE);
4306 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4307 } else
4308 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4309
4310 /* XXX 5721, 5751 and 5752 */
4311 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4312 /* Step 19: */
4313 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4314 /* Step 20: */
4315 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4316 }
4317
4318 /* 5718 reset step 12, 57XX step 15 and 16 */
4319 /* Fix up byte swapping */
4320 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4321
4322 /* 5718 reset step 13, 57XX step 17 */
4323 /* Poll until the firmware initialization is complete */
4324 bge_poll_fw(sc);
4325
4326 /* 57XX step 21 */
4327 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4328 pcireg_t msidata;
4329
4330 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4331 BGE_PCI_MSI_DATA);
4332 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4333 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4334 msidata);
4335 }
4336
4337 /* 57XX step 18 */
4338 /* Write mac mode. */
4339 val = CSR_READ_4(sc, BGE_MAC_MODE);
4340 /* Restore mac_mode_mask's bits using mac_mode */
4341 val = (val & ~mac_mode_mask) | mac_mode;
4342 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4343 DELAY(40);
4344
4345 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4346
4347 /*
4348 * The 5704 in TBI mode apparently needs some special
4349 * adjustment to insure the SERDES drive level is set
4350 * to 1.2V.
4351 */
4352 if (sc->bge_flags & BGEF_FIBER_TBI &&
4353 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4354 uint32_t serdescfg;
4355
4356 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4357 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4358 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4359 }
4360
4361 if (sc->bge_flags & BGEF_PCIE &&
4362 !BGE_IS_57765_PLUS(sc) &&
4363 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4364 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4365 uint32_t v;
4366
4367 /* Enable PCI Express bug fix */
4368 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4369 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4370 v | BGE_TLP_DATA_FIFO_PROTECT);
4371 }
4372
4373 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4374 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4375 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4376
4377 return 0;
4378 }
4379
4380 /*
4381 * Frame reception handling. This is called if there's a frame
4382 * on the receive return list.
4383 *
4384 * Note: we have to be able to handle two possibilities here:
4385 * 1) the frame is from the jumbo receive ring
4386 * 2) the frame is from the standard receive ring
4387 */
4388
4389 static void
4390 bge_rxeof(struct bge_softc *sc)
4391 {
4392 struct ifnet * const ifp = &sc->ethercom.ec_if;
4393 uint16_t rx_prod, rx_cons;
4394 int stdcnt = 0, jumbocnt = 0;
4395 bus_dmamap_t dmamap;
4396 bus_addr_t offset, toff;
4397 bus_size_t tlen;
4398 int tosync;
4399
4400 rx_cons = sc->bge_rx_saved_considx;
4401 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4402
4403 /* Nothing to do */
4404 if (rx_cons == rx_prod)
4405 return;
4406
4407 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4408 offsetof(struct bge_ring_data, bge_status_block),
4409 sizeof (struct bge_status_block),
4410 BUS_DMASYNC_POSTREAD);
4411
4412 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4413 tosync = rx_prod - rx_cons;
4414
4415 if (tosync != 0)
4416 rnd_add_uint32(&sc->rnd_source, tosync);
4417
4418 toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4419
4420 if (tosync < 0) {
4421 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4422 sizeof (struct bge_rx_bd);
4423 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4424 toff, tlen, BUS_DMASYNC_POSTREAD);
4425 tosync = -tosync;
4426 }
4427
4428 if (tosync != 0) {
4429 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4430 offset, tosync * sizeof (struct bge_rx_bd),
4431 BUS_DMASYNC_POSTREAD);
4432 }
4433
4434 while (rx_cons != rx_prod) {
4435 struct bge_rx_bd *cur_rx;
4436 uint32_t rxidx;
4437 struct mbuf *m = NULL;
4438
4439 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4440
4441 rxidx = cur_rx->bge_idx;
4442 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4443
4444 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4445 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4446 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4447 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4448 jumbocnt++;
4449 bus_dmamap_sync(sc->bge_dmatag,
4450 sc->bge_cdata.bge_rx_jumbo_map,
4451 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4452 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4453 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4454 if_statinc(ifp, if_ierrors);
4455 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4456 continue;
4457 }
4458 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4459 NULL)== ENOBUFS) {
4460 if_statinc(ifp, if_ierrors);
4461 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4462 continue;
4463 }
4464 } else {
4465 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4466 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4467
4468 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4469 stdcnt++;
4470 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4471 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4472 if (dmamap == NULL) {
4473 if_statinc(ifp, if_ierrors);
4474 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4475 continue;
4476 }
4477 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4478 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4479 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4480 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4481 if_statinc(ifp, if_ierrors);
4482 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4483 continue;
4484 }
4485 if (bge_newbuf_std(sc, sc->bge_std,
4486 NULL, dmamap) == ENOBUFS) {
4487 if_statinc(ifp, if_ierrors);
4488 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4489 continue;
4490 }
4491 }
4492
4493 #ifndef __NO_STRICT_ALIGNMENT
4494 /*
4495 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4496 * the Rx buffer has the layer-2 header unaligned.
4497 * If our CPU requires alignment, re-align by copying.
4498 */
4499 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4500 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4501 cur_rx->bge_len);
4502 m->m_data += ETHER_ALIGN;
4503 }
4504 #endif
4505
4506 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4507 m_set_rcvif(m, ifp);
4508
4509 bge_rxcsum(sc, cur_rx, m);
4510
4511 /*
4512 * If we received a packet with a vlan tag, pass it
4513 * to vlan_input() instead of ether_input().
4514 */
4515 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4516 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4517
4518 if_percpuq_enqueue(ifp->if_percpuq, m);
4519 }
4520
4521 sc->bge_rx_saved_considx = rx_cons;
4522 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4523 if (stdcnt)
4524 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4525 if (jumbocnt)
4526 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4527 }
4528
4529 static void
4530 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4531 {
4532
4533 if (BGE_IS_57765_PLUS(sc)) {
4534 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4535 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4536 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4537 if ((cur_rx->bge_error_flag &
4538 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4539 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4540 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4541 m->m_pkthdr.csum_data =
4542 cur_rx->bge_tcp_udp_csum;
4543 m->m_pkthdr.csum_flags |=
4544 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4545 }
4546 }
4547 } else {
4548 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4549 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4550 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4551 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4552 /*
4553 * Rx transport checksum-offload may also
4554 * have bugs with packets which, when transmitted,
4555 * were `runts' requiring padding.
4556 */
4557 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4558 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4559 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4560 m->m_pkthdr.csum_data =
4561 cur_rx->bge_tcp_udp_csum;
4562 m->m_pkthdr.csum_flags |=
4563 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4564 }
4565 }
4566 }
4567
4568 static void
4569 bge_txeof(struct bge_softc *sc)
4570 {
4571 struct ifnet * const ifp = &sc->ethercom.ec_if;
4572 struct bge_tx_bd *cur_tx = NULL;
4573 struct txdmamap_pool_entry *dma;
4574 bus_addr_t offset, toff;
4575 bus_size_t tlen;
4576 int tosync;
4577 struct mbuf *m;
4578
4579 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4580 offsetof(struct bge_ring_data, bge_status_block),
4581 sizeof (struct bge_status_block),
4582 BUS_DMASYNC_POSTREAD);
4583
4584 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4585 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4586 sc->bge_tx_saved_considx;
4587
4588 if (tosync != 0)
4589 rnd_add_uint32(&sc->rnd_source, tosync);
4590
4591 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4592
4593 if (tosync < 0) {
4594 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4595 sizeof (struct bge_tx_bd);
4596 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4597 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4598 tosync = -tosync;
4599 }
4600
4601 if (tosync != 0) {
4602 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4603 offset, tosync * sizeof (struct bge_tx_bd),
4604 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4605 }
4606
4607 /*
4608 * Go through our tx ring and free mbufs for those
4609 * frames that have been sent.
4610 */
4611 while (sc->bge_tx_saved_considx !=
4612 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4613 uint32_t idx = sc->bge_tx_saved_considx;
4614 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4615 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4616 if_statinc(ifp, if_opackets);
4617 m = sc->bge_cdata.bge_tx_chain[idx];
4618 if (m != NULL) {
4619 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4620 dma = sc->txdma[idx];
4621 if (dma->is_dma32) {
4622 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4623 0, dma->dmamap32->dm_mapsize,
4624 BUS_DMASYNC_POSTWRITE);
4625 bus_dmamap_unload(
4626 sc->bge_dmatag32, dma->dmamap32);
4627 } else {
4628 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4629 0, dma->dmamap->dm_mapsize,
4630 BUS_DMASYNC_POSTWRITE);
4631 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4632 }
4633 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4634 sc->txdma[idx] = NULL;
4635
4636 m_freem(m);
4637 }
4638 sc->bge_txcnt--;
4639 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4640 ifp->if_timer = 0;
4641 }
4642
4643 if (cur_tx != NULL)
4644 ifp->if_flags &= ~IFF_OACTIVE;
4645 }
4646
4647 static int
4648 bge_intr(void *xsc)
4649 {
4650 struct bge_softc * const sc = xsc;
4651 struct ifnet * const ifp = &sc->ethercom.ec_if;
4652 uint32_t pcistate, statusword, statustag;
4653 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4654
4655
4656 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4657 if (BGE_IS_5717_PLUS(sc))
4658 intrmask = 0;
4659
4660 /*
4661 * It is possible for the interrupt to arrive before
4662 * the status block is updated prior to the interrupt.
4663 * Reading the PCI State register will confirm whether the
4664 * interrupt is ours and will flush the status block.
4665 */
4666 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4667
4668 /* read status word from status block */
4669 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4670 offsetof(struct bge_ring_data, bge_status_block),
4671 sizeof (struct bge_status_block),
4672 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4673 statusword = sc->bge_rdata->bge_status_block.bge_status;
4674 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4675
4676 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4677 if (sc->bge_lasttag == statustag &&
4678 (~pcistate & intrmask)) {
4679 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4680 return (0);
4681 }
4682 sc->bge_lasttag = statustag;
4683 } else {
4684 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4685 !(~pcistate & intrmask)) {
4686 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4687 return (0);
4688 }
4689 statustag = 0;
4690 }
4691 /* Ack interrupt and stop others from occurring. */
4692 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4693 BGE_EVCNT_INCR(sc->bge_ev_intr);
4694
4695 /* clear status word */
4696 sc->bge_rdata->bge_status_block.bge_status = 0;
4697
4698 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4699 offsetof(struct bge_ring_data, bge_status_block),
4700 sizeof (struct bge_status_block),
4701 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4702
4703 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4704 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4705 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4706 bge_link_upd(sc);
4707
4708 if (ifp->if_flags & IFF_RUNNING) {
4709 /* Check RX return ring producer/consumer */
4710 bge_rxeof(sc);
4711
4712 /* Check TX ring producer/consumer */
4713 bge_txeof(sc);
4714 }
4715
4716 if (sc->bge_pending_rxintr_change) {
4717 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4718 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4719
4720 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4721 DELAY(10);
4722 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4723
4724 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4725 DELAY(10);
4726 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4727
4728 sc->bge_pending_rxintr_change = 0;
4729 }
4730 bge_handle_events(sc);
4731
4732 /* Re-enable interrupts. */
4733 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4734
4735 if (ifp->if_flags & IFF_RUNNING)
4736 if_schedule_deferred_start(ifp);
4737
4738 return 1;
4739 }
4740
4741 static void
4742 bge_asf_driver_up(struct bge_softc *sc)
4743 {
4744 if (sc->bge_asf_mode & ASF_STACKUP) {
4745 /* Send ASF heartbeat aprox. every 2s */
4746 if (sc->bge_asf_count)
4747 sc->bge_asf_count --;
4748 else {
4749 sc->bge_asf_count = 2;
4750
4751 bge_wait_for_event_ack(sc);
4752
4753 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4754 BGE_FW_CMD_DRV_ALIVE3);
4755 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4756 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4757 BGE_FW_HB_TIMEOUT_SEC);
4758 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4759 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4760 BGE_RX_CPU_DRV_EVENT);
4761 }
4762 }
4763 }
4764
4765 static void
4766 bge_tick(void *xsc)
4767 {
4768 struct bge_softc * const sc = xsc;
4769 struct mii_data * const mii = &sc->bge_mii;
4770 int s;
4771
4772 s = splnet();
4773
4774 if (BGE_IS_5705_PLUS(sc))
4775 bge_stats_update_regs(sc);
4776 else
4777 bge_stats_update(sc);
4778
4779 if (sc->bge_flags & BGEF_FIBER_TBI) {
4780 /*
4781 * Since in TBI mode auto-polling can't be used we should poll
4782 * link status manually. Here we register pending link event
4783 * and trigger interrupt.
4784 */
4785 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4786 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4787 } else {
4788 /*
4789 * Do not touch PHY if we have link up. This could break
4790 * IPMI/ASF mode or produce extra input errors.
4791 * (extra input errors was reported for bcm5701 & bcm5704).
4792 */
4793 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4794 mii_tick(mii);
4795 }
4796
4797 bge_asf_driver_up(sc);
4798
4799 if (!sc->bge_detaching)
4800 callout_schedule(&sc->bge_timeout, hz);
4801
4802 splx(s);
4803 }
4804
4805 static void
4806 bge_stats_update_regs(struct bge_softc *sc)
4807 {
4808 struct ifnet *const ifp = &sc->ethercom.ec_if;
4809
4810 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4811
4812 if_statadd_ref(nsr, if_collisions,
4813 CSR_READ_4(sc, BGE_MAC_STATS +
4814 offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
4815
4816 /*
4817 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4818 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4819 * (silicon bug). There's no reliable workaround so just
4820 * ignore the counter
4821 */
4822 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4823 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4824 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4825 if_statadd_ref(nsr, if_ierrors,
4826 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4827 }
4828 if_statadd_ref(nsr, if_ierrors,
4829 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
4830 if_statadd_ref(nsr, if_ierrors,
4831 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
4832
4833 IF_STAT_PUTREF(ifp);
4834
4835 if (sc->bge_flags & BGEF_RDMA_BUG) {
4836 uint32_t val, ucast, mcast, bcast;
4837
4838 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4839 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4840 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4841 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4842 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4843 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4844
4845 /*
4846 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4847 * frames, it's safe to disable workaround for DMA engine's
4848 * miscalculation of TXMBUF space.
4849 */
4850 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4851 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4852 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4853 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4854 else
4855 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4856 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4857 sc->bge_flags &= ~BGEF_RDMA_BUG;
4858 }
4859 }
4860 }
4861
4862 static void
4863 bge_stats_update(struct bge_softc *sc)
4864 {
4865 struct ifnet * const ifp = &sc->ethercom.ec_if;
4866 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4867
4868 #define READ_STAT(sc, stats, stat) \
4869 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4870
4871 uint64_t collisions =
4872 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4873 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4874 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4875 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
4876
4877 if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
4878 sc->bge_if_collisions = collisions;
4879
4880
4881 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4882 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4883 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4884 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4885 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4886 READ_STAT(sc, stats,
4887 xoffPauseFramesReceived.bge_addr_lo));
4888 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4889 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4890 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4891 READ_STAT(sc, stats,
4892 macControlFramesReceived.bge_addr_lo));
4893 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4894 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4895
4896 #undef READ_STAT
4897
4898 #ifdef notdef
4899 ifp->if_collisions +=
4900 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4901 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4902 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4903 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4904 ifp->if_collisions;
4905 #endif
4906 }
4907
4908 /*
4909 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4910 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4911 * but when such padded frames employ the bge IP/TCP checksum offload,
4912 * the hardware checksum assist gives incorrect results (possibly
4913 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4914 * If we pad such runts with zeros, the onboard checksum comes out correct.
4915 */
4916 static inline int
4917 bge_cksum_pad(struct mbuf *pkt)
4918 {
4919 struct mbuf *last = NULL;
4920 int padlen;
4921
4922 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4923
4924 /* if there's only the packet-header and we can pad there, use it. */
4925 if (pkt->m_pkthdr.len == pkt->m_len &&
4926 M_TRAILINGSPACE(pkt) >= padlen) {
4927 last = pkt;
4928 } else {
4929 /*
4930 * Walk packet chain to find last mbuf. We will either
4931 * pad there, or append a new mbuf and pad it
4932 * (thus perhaps avoiding the bcm5700 dma-min bug).
4933 */
4934 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4935 continue; /* do nothing */
4936 }
4937
4938 /* `last' now points to last in chain. */
4939 if (M_TRAILINGSPACE(last) < padlen) {
4940 /* Allocate new empty mbuf, pad it. Compact later. */
4941 struct mbuf *n;
4942 MGET(n, M_DONTWAIT, MT_DATA);
4943 if (n == NULL)
4944 return ENOBUFS;
4945 n->m_len = 0;
4946 last->m_next = n;
4947 last = n;
4948 }
4949 }
4950
4951 KDASSERT(!M_READONLY(last));
4952 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4953
4954 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4955 memset(mtod(last, char *) + last->m_len, 0, padlen);
4956 last->m_len += padlen;
4957 pkt->m_pkthdr.len += padlen;
4958 return 0;
4959 }
4960
4961 /*
4962 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4963 */
4964 static inline int
4965 bge_compact_dma_runt(struct mbuf *pkt)
4966 {
4967 struct mbuf *m, *prev;
4968 int totlen;
4969
4970 prev = NULL;
4971 totlen = 0;
4972
4973 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
4974 int mlen = m->m_len;
4975 int shortfall = 8 - mlen ;
4976
4977 totlen += mlen;
4978 if (mlen == 0)
4979 continue;
4980 if (mlen >= 8)
4981 continue;
4982
4983 /*
4984 * If we get here, mbuf data is too small for DMA engine.
4985 * Try to fix by shuffling data to prev or next in chain.
4986 * If that fails, do a compacting deep-copy of the whole chain.
4987 */
4988
4989 /* Internal frag. If fits in prev, copy it there. */
4990 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4991 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4992 prev->m_len += mlen;
4993 m->m_len = 0;
4994 /* XXX stitch chain */
4995 prev->m_next = m_free(m);
4996 m = prev;
4997 continue;
4998 } else if (m->m_next != NULL &&
4999 M_TRAILINGSPACE(m) >= shortfall &&
5000 m->m_next->m_len >= (8 + shortfall)) {
5001 /* m is writable and have enough data in next, pull up. */
5002
5003 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5004 shortfall);
5005 m->m_len += shortfall;
5006 m->m_next->m_len -= shortfall;
5007 m->m_next->m_data += shortfall;
5008 } else if (m->m_next == NULL || 1) {
5009 /*
5010 * Got a runt at the very end of the packet.
5011 * borrow data from the tail of the preceding mbuf and
5012 * update its length in-place. (The original data is
5013 * still valid, so we can do this even if prev is not
5014 * writable.)
5015 */
5016
5017 /*
5018 * If we'd make prev a runt, just move all of its data.
5019 */
5020 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5021 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5022
5023 if ((prev->m_len - shortfall) < 8)
5024 shortfall = prev->m_len;
5025
5026 #ifdef notyet /* just do the safe slow thing for now */
5027 if (!M_READONLY(m)) {
5028 if (M_LEADINGSPACE(m) < shorfall) {
5029 void *m_dat;
5030 m_dat = M_BUFADDR(m);
5031 memmove(m_dat, mtod(m, void*),
5032 m->m_len);
5033 m->m_data = m_dat;
5034 }
5035 } else
5036 #endif /* just do the safe slow thing */
5037 {
5038 struct mbuf * n = NULL;
5039 int newprevlen = prev->m_len - shortfall;
5040
5041 MGET(n, M_NOWAIT, MT_DATA);
5042 if (n == NULL)
5043 return ENOBUFS;
5044 KASSERT(m->m_len + shortfall < MLEN
5045 /*,
5046 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5047
5048 /* first copy the data we're stealing from prev */
5049 memcpy(n->m_data, prev->m_data + newprevlen,
5050 shortfall);
5051
5052 /* update prev->m_len accordingly */
5053 prev->m_len -= shortfall;
5054
5055 /* copy data from runt m */
5056 memcpy(n->m_data + shortfall, m->m_data,
5057 m->m_len);
5058
5059 /* n holds what we stole from prev, plus m */
5060 n->m_len = shortfall + m->m_len;
5061
5062 /* stitch n into chain and free m */
5063 n->m_next = m->m_next;
5064 prev->m_next = n;
5065 /* KASSERT(m->m_next == NULL); */
5066 m->m_next = NULL;
5067 m_free(m);
5068 m = n; /* for continuing loop */
5069 }
5070 }
5071 }
5072 return 0;
5073 }
5074
5075 /*
5076 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5077 * pointers to descriptors.
5078 */
5079 static int
5080 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5081 {
5082 struct ifnet * const ifp = &sc->ethercom.ec_if;
5083 struct bge_tx_bd *f, *prev_f;
5084 uint32_t frag, cur;
5085 uint16_t csum_flags = 0;
5086 uint16_t txbd_tso_flags = 0;
5087 struct txdmamap_pool_entry *dma;
5088 bus_dmamap_t dmamap;
5089 bus_dma_tag_t dmatag;
5090 int i = 0;
5091 int use_tso, maxsegsize, error;
5092 bool have_vtag;
5093 uint16_t vtag;
5094 bool remap;
5095
5096 if (m_head->m_pkthdr.csum_flags) {
5097 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5098 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5099 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5100 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5101 }
5102
5103 /*
5104 * If we were asked to do an outboard checksum, and the NIC
5105 * has the bug where it sometimes adds in the Ethernet padding,
5106 * explicitly pad with zeros so the cksum will be correct either way.
5107 * (For now, do this for all chip versions, until newer
5108 * are confirmed to not require the workaround.)
5109 */
5110 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5111 #ifdef notyet
5112 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5113 #endif
5114 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5115 goto check_dma_bug;
5116
5117 if (bge_cksum_pad(m_head) != 0)
5118 return ENOBUFS;
5119
5120 check_dma_bug:
5121 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5122 goto doit;
5123
5124 /*
5125 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5126 * less than eight bytes. If we encounter a teeny mbuf
5127 * at the end of a chain, we can pad. Otherwise, copy.
5128 */
5129 if (bge_compact_dma_runt(m_head) != 0)
5130 return ENOBUFS;
5131
5132 doit:
5133 dma = SLIST_FIRST(&sc->txdma_list);
5134 if (dma == NULL) {
5135 ifp->if_flags |= IFF_OACTIVE;
5136 return ENOBUFS;
5137 }
5138 dmamap = dma->dmamap;
5139 dmatag = sc->bge_dmatag;
5140 dma->is_dma32 = false;
5141
5142 /*
5143 * Set up any necessary TSO state before we start packing...
5144 */
5145 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5146 if (!use_tso) {
5147 maxsegsize = 0;
5148 } else { /* TSO setup */
5149 unsigned mss;
5150 struct ether_header *eh;
5151 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5152 unsigned bge_hlen;
5153 struct mbuf * m0 = m_head;
5154 struct ip *ip;
5155 struct tcphdr *th;
5156 int iphl, hlen;
5157
5158 /*
5159 * XXX It would be nice if the mbuf pkthdr had offset
5160 * fields for the protocol headers.
5161 */
5162
5163 eh = mtod(m0, struct ether_header *);
5164 switch (htons(eh->ether_type)) {
5165 case ETHERTYPE_IP:
5166 offset = ETHER_HDR_LEN;
5167 break;
5168
5169 case ETHERTYPE_VLAN:
5170 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5171 break;
5172
5173 default:
5174 /*
5175 * Don't support this protocol or encapsulation.
5176 */
5177 return ENOBUFS;
5178 }
5179
5180 /*
5181 * TCP/IP headers are in the first mbuf; we can do
5182 * this the easy way.
5183 */
5184 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5185 hlen = iphl + offset;
5186 if (__predict_false(m0->m_len <
5187 (hlen + sizeof(struct tcphdr)))) {
5188
5189 aprint_error_dev(sc->bge_dev,
5190 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5191 "not handled yet\n",
5192 m0->m_len, hlen+ sizeof(struct tcphdr));
5193 #ifdef NOTYET
5194 /*
5195 * XXX jonathan (at) NetBSD.org: untested.
5196 * how to force this branch to be taken?
5197 */
5198 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5199
5200 m_copydata(m0, offset, sizeof(ip), &ip);
5201 m_copydata(m0, hlen, sizeof(th), &th);
5202
5203 ip.ip_len = 0;
5204
5205 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5206 sizeof(ip.ip_len), &ip.ip_len);
5207
5208 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5209 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5210
5211 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5212 sizeof(th.th_sum), &th.th_sum);
5213
5214 hlen += th.th_off << 2;
5215 iptcp_opt_words = hlen;
5216 #else
5217 /*
5218 * if_wm "hard" case not yet supported, can we not
5219 * mandate it out of existence?
5220 */
5221 (void) ip; (void)th; (void) ip_tcp_hlen;
5222
5223 return ENOBUFS;
5224 #endif
5225 } else {
5226 ip = (struct ip *) (mtod(m0, char *) + offset);
5227 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5228 ip_tcp_hlen = iphl + (th->th_off << 2);
5229
5230 /* Total IP/TCP options, in 32-bit words */
5231 iptcp_opt_words = (ip_tcp_hlen
5232 - sizeof(struct tcphdr)
5233 - sizeof(struct ip)) >> 2;
5234 }
5235 if (BGE_IS_575X_PLUS(sc)) {
5236 th->th_sum = 0;
5237 csum_flags = 0;
5238 } else {
5239 /*
5240 * XXX jonathan (at) NetBSD.org: 5705 untested.
5241 * Requires TSO firmware patch for 5701/5703/5704.
5242 */
5243 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5244 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5245 }
5246
5247 mss = m_head->m_pkthdr.segsz;
5248 txbd_tso_flags |=
5249 BGE_TXBDFLAG_CPU_PRE_DMA |
5250 BGE_TXBDFLAG_CPU_POST_DMA;
5251
5252 /*
5253 * Our NIC TSO-assist assumes TSO has standard, optionless
5254 * IPv4 and TCP headers, which total 40 bytes. By default,
5255 * the NIC copies 40 bytes of IP/TCP header from the
5256 * supplied header into the IP/TCP header portion of
5257 * each post-TSO-segment. If the supplied packet has IP or
5258 * TCP options, we need to tell the NIC to copy those extra
5259 * bytes into each post-TSO header, in addition to the normal
5260 * 40-byte IP/TCP header (and to leave space accordingly).
5261 * Unfortunately, the driver encoding of option length
5262 * varies across different ASIC families.
5263 */
5264 tcp_seg_flags = 0;
5265 bge_hlen = ip_tcp_hlen >> 2;
5266 if (BGE_IS_5717_PLUS(sc)) {
5267 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5268 txbd_tso_flags |=
5269 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5270 } else if (BGE_IS_5705_PLUS(sc)) {
5271 tcp_seg_flags = bge_hlen << 11;
5272 } else {
5273 /* XXX iptcp_opt_words or bge_hlen ? */
5274 txbd_tso_flags |= iptcp_opt_words << 12;
5275 }
5276 maxsegsize = mss | tcp_seg_flags;
5277 ip->ip_len = htons(mss + ip_tcp_hlen);
5278 ip->ip_sum = 0;
5279
5280 } /* TSO setup */
5281
5282 have_vtag = vlan_has_tag(m_head);
5283 if (have_vtag)
5284 vtag = vlan_get_tag(m_head);
5285
5286 /*
5287 * Start packing the mbufs in this chain into
5288 * the fragment pointers. Stop when we run out
5289 * of fragments or hit the end of the mbuf chain.
5290 */
5291 remap = true;
5292 load_again:
5293 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5294 if (__predict_false(error)) {
5295 if (error == EFBIG && remap) {
5296 struct mbuf *m;
5297 remap = false;
5298 m = m_defrag(m_head, M_NOWAIT);
5299 if (m != NULL) {
5300 KASSERT(m == m_head);
5301 goto load_again;
5302 }
5303 }
5304 return error;
5305 }
5306 /*
5307 * Sanity check: avoid coming within 16 descriptors
5308 * of the end of the ring.
5309 */
5310 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5311 BGE_TSO_PRINTF(("%s: "
5312 " dmamap_load_mbuf too close to ring wrap\n",
5313 device_xname(sc->bge_dev)));
5314 goto fail_unload;
5315 }
5316
5317 /* Iterate over dmap-map fragments. */
5318 f = prev_f = NULL;
5319 cur = frag = *txidx;
5320
5321 for (i = 0; i < dmamap->dm_nsegs; i++) {
5322 f = &sc->bge_rdata->bge_tx_ring[frag];
5323 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5324 break;
5325
5326 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5327 f->bge_len = dmamap->dm_segs[i].ds_len;
5328 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5329 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5330 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5331 (prev_f != NULL &&
5332 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5333 ) {
5334 /*
5335 * watchdog timeout issue was observed with TSO,
5336 * limiting DMA address space to 32bits seems to
5337 * address the issue.
5338 */
5339 bus_dmamap_unload(dmatag, dmamap);
5340 dmatag = sc->bge_dmatag32;
5341 dmamap = dma->dmamap32;
5342 dma->is_dma32 = true;
5343 remap = true;
5344 goto load_again;
5345 }
5346
5347 /*
5348 * For 5751 and follow-ons, for TSO we must turn
5349 * off checksum-assist flag in the tx-descr, and
5350 * supply the ASIC-revision-specific encoding
5351 * of TSO flags and segsize.
5352 */
5353 if (use_tso) {
5354 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5355 f->bge_rsvd = maxsegsize;
5356 f->bge_flags = csum_flags | txbd_tso_flags;
5357 } else {
5358 f->bge_rsvd = 0;
5359 f->bge_flags =
5360 (csum_flags | txbd_tso_flags) & 0x0fff;
5361 }
5362 } else {
5363 f->bge_rsvd = 0;
5364 f->bge_flags = csum_flags;
5365 }
5366
5367 if (have_vtag) {
5368 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5369 f->bge_vlan_tag = vtag;
5370 } else {
5371 f->bge_vlan_tag = 0;
5372 }
5373 prev_f = f;
5374 cur = frag;
5375 BGE_INC(frag, BGE_TX_RING_CNT);
5376 }
5377
5378 if (i < dmamap->dm_nsegs) {
5379 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5380 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5381 goto fail_unload;
5382 }
5383
5384 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5385 BUS_DMASYNC_PREWRITE);
5386
5387 if (frag == sc->bge_tx_saved_considx) {
5388 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5389 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5390
5391 goto fail_unload;
5392 }
5393
5394 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5395 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5396 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5397 sc->txdma[cur] = dma;
5398 sc->bge_txcnt += dmamap->dm_nsegs;
5399
5400 *txidx = frag;
5401
5402 return 0;
5403
5404 fail_unload:
5405 bus_dmamap_unload(dmatag, dmamap);
5406 ifp->if_flags |= IFF_OACTIVE;
5407
5408 return ENOBUFS;
5409 }
5410
5411 /*
5412 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5413 * to the mbuf data regions directly in the transmit descriptors.
5414 */
5415 static void
5416 bge_start(struct ifnet *ifp)
5417 {
5418 struct bge_softc * const sc = ifp->if_softc;
5419 struct mbuf *m_head = NULL;
5420 struct mbuf *m;
5421 uint32_t prodidx;
5422 int pkts = 0;
5423 int error;
5424
5425 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5426 return;
5427
5428 prodidx = sc->bge_tx_prodidx;
5429
5430 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5431 IFQ_POLL(&ifp->if_snd, m_head);
5432 if (m_head == NULL)
5433 break;
5434
5435 #if 0
5436 /*
5437 * XXX
5438 * safety overkill. If this is a fragmented packet chain
5439 * with delayed TCP/UDP checksums, then only encapsulate
5440 * it if we have enough descriptors to handle the entire
5441 * chain at once.
5442 * (paranoia -- may not actually be needed)
5443 */
5444 if (m_head->m_flags & M_FIRSTFRAG &&
5445 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5446 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5447 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5448 ifp->if_flags |= IFF_OACTIVE;
5449 break;
5450 }
5451 }
5452 #endif
5453
5454 /*
5455 * Pack the data into the transmit ring. If we
5456 * don't have room, set the OACTIVE flag and wait
5457 * for the NIC to drain the ring.
5458 */
5459 error = bge_encap(sc, m_head, &prodidx);
5460 if (__predict_false(error)) {
5461 if (ifp->if_flags & IFF_OACTIVE) {
5462 /* just wait for the transmit ring to drain */
5463 break;
5464 }
5465 IFQ_DEQUEUE(&ifp->if_snd, m);
5466 KASSERT(m == m_head);
5467 m_freem(m_head);
5468 continue;
5469 }
5470
5471 /* now we are committed to transmit the packet */
5472 IFQ_DEQUEUE(&ifp->if_snd, m);
5473 KASSERT(m == m_head);
5474 pkts++;
5475
5476 /*
5477 * If there's a BPF listener, bounce a copy of this frame
5478 * to him.
5479 */
5480 bpf_mtap(ifp, m_head, BPF_D_OUT);
5481 }
5482 if (pkts == 0)
5483 return;
5484
5485 /* Transmit */
5486 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5487 /* 5700 b2 errata */
5488 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5489 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5490
5491 sc->bge_tx_prodidx = prodidx;
5492
5493 /*
5494 * Set a timeout in case the chip goes out to lunch.
5495 */
5496 ifp->if_timer = 5;
5497 }
5498
5499 static int
5500 bge_init(struct ifnet *ifp)
5501 {
5502 struct bge_softc * const sc = ifp->if_softc;
5503 const uint16_t *m;
5504 uint32_t mode, reg;
5505 int s, error = 0;
5506
5507 s = splnet();
5508
5509 KASSERT(ifp == &sc->ethercom.ec_if);
5510
5511 /* Cancel pending I/O and flush buffers. */
5512 bge_stop(ifp, 0);
5513
5514 bge_stop_fw(sc);
5515 bge_sig_pre_reset(sc, BGE_RESET_START);
5516 bge_reset(sc);
5517 bge_sig_legacy(sc, BGE_RESET_START);
5518
5519 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5520 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5521 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5522 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5523 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5524
5525 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5526 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5527 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5528 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5529
5530 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5531 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5532 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5533 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5534
5535 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5536 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5537 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5538 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5539 }
5540
5541 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5542 pcireg_t aercap;
5543
5544 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5545 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5546 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5547 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5548 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5549
5550 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5551 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5552 | BGE_PCIE_EIDLE_DELAY_13CLK;
5553 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5554
5555 /* Clear correctable error */
5556 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5557 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5558 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5559 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5560
5561 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5562 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5563 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5564 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5565 }
5566
5567 bge_sig_post_reset(sc, BGE_RESET_START);
5568
5569 bge_chipinit(sc);
5570
5571 /*
5572 * Init the various state machines, ring
5573 * control blocks and firmware.
5574 */
5575 error = bge_blockinit(sc);
5576 if (error != 0) {
5577 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5578 error);
5579 splx(s);
5580 return error;
5581 }
5582
5583 /* 5718 step 25, 57XX step 54 */
5584 /* Specify MTU. */
5585 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5586 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5587
5588 /* 5718 step 23 */
5589 /* Load our MAC address. */
5590 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5591 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5592 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5593 ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5594
5595 /* Enable or disable promiscuous mode as needed. */
5596 if (ifp->if_flags & IFF_PROMISC)
5597 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5598 else
5599 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5600
5601 /* Program multicast filter. */
5602 bge_setmulti(sc);
5603
5604 /* Init RX ring. */
5605 bge_init_rx_ring_std(sc);
5606
5607 /*
5608 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5609 * memory to insure that the chip has in fact read the first
5610 * entry of the ring.
5611 */
5612 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5613 uint32_t v, i;
5614 for (i = 0; i < 10; i++) {
5615 DELAY(20);
5616 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5617 if (v == (MCLBYTES - ETHER_ALIGN))
5618 break;
5619 }
5620 if (i == 10)
5621 aprint_error_dev(sc->bge_dev,
5622 "5705 A0 chip failed to load RX ring\n");
5623 }
5624
5625 /* Init jumbo RX ring. */
5626 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5627 bge_init_rx_ring_jumbo(sc);
5628
5629 /* Init our RX return ring index */
5630 sc->bge_rx_saved_considx = 0;
5631
5632 /* Init TX ring. */
5633 bge_init_tx_ring(sc);
5634
5635 /* 5718 step 63, 57XX step 94 */
5636 /* Enable TX MAC state machine lockup fix. */
5637 mode = CSR_READ_4(sc, BGE_TX_MODE);
5638 if (BGE_IS_5755_PLUS(sc) ||
5639 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5640 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5641 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5642 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5643 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5644 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5645 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5646 }
5647
5648 /* Turn on transmitter */
5649 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5650 /* 5718 step 64 */
5651 DELAY(100);
5652
5653 /* 5718 step 65, 57XX step 95 */
5654 /* Turn on receiver */
5655 mode = CSR_READ_4(sc, BGE_RX_MODE);
5656 if (BGE_IS_5755_PLUS(sc))
5657 mode |= BGE_RXMODE_IPV6_ENABLE;
5658 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5659 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5660 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5661 /* 5718 step 66 */
5662 DELAY(10);
5663
5664 /* 5718 step 12, 57XX step 37 */
5665 /*
5666 * XXX Doucments of 5718 series and 577xx say the recommended value
5667 * is 1, but tg3 set 1 only on 57765 series.
5668 */
5669 if (BGE_IS_57765_PLUS(sc))
5670 reg = 1;
5671 else
5672 reg = 2;
5673 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5674
5675 /* Tell firmware we're alive. */
5676 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5677
5678 /* Enable host interrupts. */
5679 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5680 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5681 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5682
5683 if ((error = bge_ifmedia_upd(ifp)) != 0)
5684 goto out;
5685
5686 ifp->if_flags |= IFF_RUNNING;
5687 ifp->if_flags &= ~IFF_OACTIVE;
5688
5689 callout_schedule(&sc->bge_timeout, hz);
5690
5691 out:
5692 sc->bge_if_flags = ifp->if_flags;
5693 splx(s);
5694
5695 return error;
5696 }
5697
5698 /*
5699 * Set media options.
5700 */
5701 static int
5702 bge_ifmedia_upd(struct ifnet *ifp)
5703 {
5704 struct bge_softc * const sc = ifp->if_softc;
5705 struct mii_data * const mii = &sc->bge_mii;
5706 struct ifmedia * const ifm = &sc->bge_ifmedia;
5707 int rc;
5708
5709 /* If this is a 1000baseX NIC, enable the TBI port. */
5710 if (sc->bge_flags & BGEF_FIBER_TBI) {
5711 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5712 return EINVAL;
5713 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5714 case IFM_AUTO:
5715 /*
5716 * The BCM5704 ASIC appears to have a special
5717 * mechanism for programming the autoneg
5718 * advertisement registers in TBI mode.
5719 */
5720 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5721 uint32_t sgdig;
5722 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5723 if (sgdig & BGE_SGDIGSTS_DONE) {
5724 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5725 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5726 sgdig |= BGE_SGDIGCFG_AUTO |
5727 BGE_SGDIGCFG_PAUSE_CAP |
5728 BGE_SGDIGCFG_ASYM_PAUSE;
5729 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5730 sgdig | BGE_SGDIGCFG_SEND);
5731 DELAY(5);
5732 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5733 sgdig);
5734 }
5735 }
5736 break;
5737 case IFM_1000_SX:
5738 if ((ifm->ifm_media & IFM_FDX) != 0) {
5739 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5740 BGE_MACMODE_HALF_DUPLEX);
5741 } else {
5742 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5743 BGE_MACMODE_HALF_DUPLEX);
5744 }
5745 DELAY(40);
5746 break;
5747 default:
5748 return EINVAL;
5749 }
5750 /* XXX 802.3x flow control for 1000BASE-SX */
5751 return 0;
5752 }
5753
5754 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5755 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5756 uint32_t reg;
5757
5758 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5759 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5760 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5761 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5762 }
5763 }
5764
5765 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5766 if ((rc = mii_mediachg(mii)) == ENXIO)
5767 return 0;
5768
5769 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5770 uint32_t reg;
5771
5772 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5773 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5774 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5775 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5776 delay(40);
5777 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5778 }
5779 }
5780
5781 /*
5782 * Force an interrupt so that we will call bge_link_upd
5783 * if needed and clear any pending link state attention.
5784 * Without this we are not getting any further interrupts
5785 * for link state changes and thus will not UP the link and
5786 * not be able to send in bge_start. The only way to get
5787 * things working was to receive a packet and get a RX intr.
5788 */
5789 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5790 sc->bge_flags & BGEF_IS_5788)
5791 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5792 else
5793 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5794
5795 return rc;
5796 }
5797
5798 /*
5799 * Report current media status.
5800 */
5801 static void
5802 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5803 {
5804 struct bge_softc * const sc = ifp->if_softc;
5805 struct mii_data * const mii = &sc->bge_mii;
5806
5807 if (sc->bge_flags & BGEF_FIBER_TBI) {
5808 ifmr->ifm_status = IFM_AVALID;
5809 ifmr->ifm_active = IFM_ETHER;
5810 if (CSR_READ_4(sc, BGE_MAC_STS) &
5811 BGE_MACSTAT_TBI_PCS_SYNCHED)
5812 ifmr->ifm_status |= IFM_ACTIVE;
5813 ifmr->ifm_active |= IFM_1000_SX;
5814 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5815 ifmr->ifm_active |= IFM_HDX;
5816 else
5817 ifmr->ifm_active |= IFM_FDX;
5818 return;
5819 }
5820
5821 mii_pollstat(mii);
5822 ifmr->ifm_status = mii->mii_media_status;
5823 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5824 sc->bge_flowflags;
5825 }
5826
5827 static int
5828 bge_ifflags_cb(struct ethercom *ec)
5829 {
5830 struct ifnet * const ifp = &ec->ec_if;
5831 struct bge_softc * const sc = ifp->if_softc;
5832 u_short change = ifp->if_flags ^ sc->bge_if_flags;
5833
5834 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
5835 return ENETRESET;
5836 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5837 return 0;
5838
5839 if ((ifp->if_flags & IFF_PROMISC) == 0)
5840 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5841 else
5842 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5843
5844 bge_setmulti(sc);
5845
5846 sc->bge_if_flags = ifp->if_flags;
5847 return 0;
5848 }
5849
5850 static int
5851 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5852 {
5853 struct bge_softc * const sc = ifp->if_softc;
5854 struct ifreq * const ifr = (struct ifreq *) data;
5855 int s, error = 0;
5856 struct mii_data *mii;
5857
5858 s = splnet();
5859
5860 switch (command) {
5861 case SIOCSIFMEDIA:
5862 /* XXX Flow control is not supported for 1000BASE-SX */
5863 if (sc->bge_flags & BGEF_FIBER_TBI) {
5864 ifr->ifr_media &= ~IFM_ETH_FMASK;
5865 sc->bge_flowflags = 0;
5866 }
5867
5868 /* Flow control requires full-duplex mode. */
5869 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5870 (ifr->ifr_media & IFM_FDX) == 0) {
5871 ifr->ifr_media &= ~IFM_ETH_FMASK;
5872 }
5873 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5874 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5875 /* We can do both TXPAUSE and RXPAUSE. */
5876 ifr->ifr_media |=
5877 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5878 }
5879 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5880 }
5881
5882 if (sc->bge_flags & BGEF_FIBER_TBI) {
5883 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5884 command);
5885 } else {
5886 mii = &sc->bge_mii;
5887 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5888 command);
5889 }
5890 break;
5891 default:
5892 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5893 break;
5894
5895 error = 0;
5896
5897 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5898 ;
5899 else if (ifp->if_flags & IFF_RUNNING)
5900 bge_setmulti(sc);
5901 break;
5902 }
5903
5904 splx(s);
5905
5906 return error;
5907 }
5908
5909 static void
5910 bge_watchdog(struct ifnet *ifp)
5911 {
5912 struct bge_softc * const sc = ifp->if_softc;
5913 uint32_t status;
5914
5915 /* If pause frames are active then don't reset the hardware. */
5916 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5917 status = CSR_READ_4(sc, BGE_RX_STS);
5918 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5919 /*
5920 * If link partner has us in XOFF state then wait for
5921 * the condition to clear.
5922 */
5923 CSR_WRITE_4(sc, BGE_RX_STS, status);
5924 ifp->if_timer = 5;
5925 return;
5926 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5927 (status & BGE_RXSTAT_RCVD_XON) != 0) {
5928 /*
5929 * If link partner has us in XOFF state then wait for
5930 * the condition to clear.
5931 */
5932 CSR_WRITE_4(sc, BGE_RX_STS, status);
5933 ifp->if_timer = 5;
5934 return;
5935 }
5936 /*
5937 * Any other condition is unexpected and the controller
5938 * should be reset.
5939 */
5940 }
5941
5942 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5943
5944 ifp->if_flags &= ~IFF_RUNNING;
5945 bge_init(ifp);
5946
5947 if_statinc(ifp, if_oerrors);
5948 }
5949
5950 static void
5951 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5952 {
5953 int i;
5954
5955 BGE_CLRBIT_FLUSH(sc, reg, bit);
5956
5957 for (i = 0; i < 1000; i++) {
5958 delay(100);
5959 if ((CSR_READ_4(sc, reg) & bit) == 0)
5960 return;
5961 }
5962
5963 /*
5964 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5965 * on some environment (and once after boot?)
5966 */
5967 if (reg != BGE_SRS_MODE)
5968 aprint_error_dev(sc->bge_dev,
5969 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5970 (u_long)reg, bit);
5971 }
5972
5973 /*
5974 * Stop the adapter and free any mbufs allocated to the
5975 * RX and TX lists.
5976 */
5977 static void
5978 bge_stop(struct ifnet *ifp, int disable)
5979 {
5980 struct bge_softc * const sc = ifp->if_softc;
5981
5982 if (disable) {
5983 sc->bge_detaching = 1;
5984 callout_halt(&sc->bge_timeout, NULL);
5985 } else
5986 callout_stop(&sc->bge_timeout);
5987
5988 /* Disable host interrupts. */
5989 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5990 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5991
5992 /*
5993 * Tell firmware we're shutting down.
5994 */
5995 bge_stop_fw(sc);
5996 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5997
5998 /*
5999 * Disable all of the receiver blocks.
6000 */
6001 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6002 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6003 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6004 if (BGE_IS_5700_FAMILY(sc))
6005 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6006 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6007 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6008 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6009
6010 /*
6011 * Disable all of the transmit blocks.
6012 */
6013 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6014 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6015 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6016 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6017 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6018 if (BGE_IS_5700_FAMILY(sc))
6019 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6020 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6021
6022 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6023 delay(40);
6024
6025 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6026
6027 /*
6028 * Shut down all of the memory managers and related
6029 * state machines.
6030 */
6031 /* 5718 step 5a,5b */
6032 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6033 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6034 if (BGE_IS_5700_FAMILY(sc))
6035 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6036
6037 /* 5718 step 5c,5d */
6038 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6039 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6040
6041 if (BGE_IS_5700_FAMILY(sc)) {
6042 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6043 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6044 }
6045
6046 bge_reset(sc);
6047 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6048 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6049
6050 /*
6051 * Keep the ASF firmware running if up.
6052 */
6053 if (sc->bge_asf_mode & ASF_STACKUP)
6054 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6055 else
6056 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6057
6058 /* Free the RX lists. */
6059 bge_free_rx_ring_std(sc, disable);
6060
6061 /* Free jumbo RX list. */
6062 if (BGE_IS_JUMBO_CAPABLE(sc))
6063 bge_free_rx_ring_jumbo(sc);
6064
6065 /* Free TX buffers. */
6066 bge_free_tx_ring(sc, disable);
6067
6068 /*
6069 * Isolate/power down the PHY.
6070 */
6071 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6072 mii_down(&sc->bge_mii);
6073
6074 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6075
6076 /* Clear MAC's link state (PHY may still have link UP). */
6077 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6078
6079 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6080 }
6081
6082 static void
6083 bge_link_upd(struct bge_softc *sc)
6084 {
6085 struct ifnet * const ifp = &sc->ethercom.ec_if;
6086 struct mii_data * const mii = &sc->bge_mii;
6087 uint32_t status;
6088 uint16_t phyval;
6089 int link;
6090
6091 /* Clear 'pending link event' flag */
6092 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6093
6094 /*
6095 * Process link state changes.
6096 * Grrr. The link status word in the status block does
6097 * not work correctly on the BCM5700 rev AX and BX chips,
6098 * according to all available information. Hence, we have
6099 * to enable MII interrupts in order to properly obtain
6100 * async link changes. Unfortunately, this also means that
6101 * we have to read the MAC status register to detect link
6102 * changes, thereby adding an additional register access to
6103 * the interrupt handler.
6104 */
6105
6106 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6107 status = CSR_READ_4(sc, BGE_MAC_STS);
6108 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6109 mii_pollstat(mii);
6110
6111 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6112 mii->mii_media_status & IFM_ACTIVE &&
6113 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6114 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6115 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6116 (!(mii->mii_media_status & IFM_ACTIVE) ||
6117 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6118 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6119
6120 /* Clear the interrupt */
6121 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6122 BGE_EVTENB_MI_INTERRUPT);
6123 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6124 BRGPHY_MII_ISR, &phyval);
6125 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6126 BRGPHY_MII_IMR, BRGPHY_INTRS);
6127 }
6128 return;
6129 }
6130
6131 if (sc->bge_flags & BGEF_FIBER_TBI) {
6132 status = CSR_READ_4(sc, BGE_MAC_STS);
6133 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6134 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6135 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6136 if (BGE_ASICREV(sc->bge_chipid)
6137 == BGE_ASICREV_BCM5704) {
6138 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6139 BGE_MACMODE_TBI_SEND_CFGS);
6140 DELAY(40);
6141 }
6142 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6143 if_link_state_change(ifp, LINK_STATE_UP);
6144 }
6145 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6146 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6147 if_link_state_change(ifp, LINK_STATE_DOWN);
6148 }
6149 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6150 /*
6151 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6152 * bit in status word always set. Workaround this bug by
6153 * reading PHY link status directly.
6154 */
6155 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6156 BGE_STS_LINK : 0;
6157
6158 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6159 mii_pollstat(mii);
6160
6161 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6162 mii->mii_media_status & IFM_ACTIVE &&
6163 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6164 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6165 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6166 (!(mii->mii_media_status & IFM_ACTIVE) ||
6167 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6168 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6169 }
6170 } else {
6171 /*
6172 * For controllers that call mii_tick, we have to poll
6173 * link status.
6174 */
6175 mii_pollstat(mii);
6176 }
6177
6178 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6179 uint32_t reg, scale;
6180
6181 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6182 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6183 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6184 scale = 65;
6185 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6186 scale = 6;
6187 else
6188 scale = 12;
6189
6190 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6191 ~BGE_MISCCFG_TIMER_PRESCALER;
6192 reg |= scale << 1;
6193 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6194 }
6195 /* Clear the attention */
6196 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6197 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6198 BGE_MACSTAT_LINK_CHANGED);
6199 }
6200
6201 static int
6202 bge_sysctl_verify(SYSCTLFN_ARGS)
6203 {
6204 int error, t;
6205 struct sysctlnode node;
6206
6207 node = *rnode;
6208 t = *(int*)rnode->sysctl_data;
6209 node.sysctl_data = &t;
6210 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6211 if (error || newp == NULL)
6212 return error;
6213
6214 #if 0
6215 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6216 node.sysctl_num, rnode->sysctl_num));
6217 #endif
6218
6219 if (node.sysctl_num == bge_rxthresh_nodenum) {
6220 if (t < 0 || t >= NBGE_RX_THRESH)
6221 return EINVAL;
6222 bge_update_all_threshes(t);
6223 } else
6224 return EINVAL;
6225
6226 *(int*)rnode->sysctl_data = t;
6227
6228 return 0;
6229 }
6230
6231 /*
6232 * Set up sysctl(3) MIB, hw.bge.*.
6233 */
6234 static void
6235 bge_sysctl_init(struct bge_softc *sc)
6236 {
6237 int rc, bge_root_num;
6238 const struct sysctlnode *node;
6239
6240 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6241 0, CTLTYPE_NODE, "bge",
6242 SYSCTL_DESCR("BGE interface controls"),
6243 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6244 goto out;
6245 }
6246
6247 bge_root_num = node->sysctl_num;
6248
6249 /* BGE Rx interrupt mitigation level */
6250 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6251 CTLFLAG_READWRITE,
6252 CTLTYPE_INT, "rx_lvl",
6253 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6254 bge_sysctl_verify, 0,
6255 &bge_rx_thresh_lvl,
6256 0, CTL_HW, bge_root_num, CTL_CREATE,
6257 CTL_EOL)) != 0) {
6258 goto out;
6259 }
6260
6261 bge_rxthresh_nodenum = node->sysctl_num;
6262
6263 return;
6264
6265 out:
6266 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6267 }
6268
6269 #ifdef BGE_DEBUG
6270 void
6271 bge_debug_info(struct bge_softc *sc)
6272 {
6273
6274 printf("Hardware Flags:\n");
6275 if (BGE_IS_57765_PLUS(sc))
6276 printf(" - 57765 Plus\n");
6277 if (BGE_IS_5717_PLUS(sc))
6278 printf(" - 5717 Plus\n");
6279 if (BGE_IS_5755_PLUS(sc))
6280 printf(" - 5755 Plus\n");
6281 if (BGE_IS_575X_PLUS(sc))
6282 printf(" - 575X Plus\n");
6283 if (BGE_IS_5705_PLUS(sc))
6284 printf(" - 5705 Plus\n");
6285 if (BGE_IS_5714_FAMILY(sc))
6286 printf(" - 5714 Family\n");
6287 if (BGE_IS_5700_FAMILY(sc))
6288 printf(" - 5700 Family\n");
6289 if (sc->bge_flags & BGEF_IS_5788)
6290 printf(" - 5788\n");
6291 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6292 printf(" - Supports Jumbo Frames\n");
6293 if (sc->bge_flags & BGEF_NO_EEPROM)
6294 printf(" - No EEPROM\n");
6295 if (sc->bge_flags & BGEF_PCIX)
6296 printf(" - PCI-X Bus\n");
6297 if (sc->bge_flags & BGEF_PCIE)
6298 printf(" - PCI Express Bus\n");
6299 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6300 printf(" - RX Alignment Bug\n");
6301 if (sc->bge_flags & BGEF_APE)
6302 printf(" - APE\n");
6303 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6304 printf(" - CPMU\n");
6305 if (sc->bge_flags & BGEF_TSO)
6306 printf(" - TSO\n");
6307 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6308 printf(" - TAGGED_STATUS\n");
6309
6310 /* PHY related */
6311 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6312 printf(" - No 3 LEDs\n");
6313 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6314 printf(" - CRC bug\n");
6315 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6316 printf(" - ADC bug\n");
6317 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6318 printf(" - 5704 A0 bug\n");
6319 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6320 printf(" - jitter bug\n");
6321 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6322 printf(" - BER bug\n");
6323 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6324 printf(" - adjust trim\n");
6325 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6326 printf(" - no wirespeed\n");
6327
6328 /* ASF related */
6329 if (sc->bge_asf_mode & ASF_ENABLE)
6330 printf(" - ASF enable\n");
6331 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6332 printf(" - ASF new handshake\n");
6333 if (sc->bge_asf_mode & ASF_STACKUP)
6334 printf(" - ASF stackup\n");
6335 }
6336 #endif /* BGE_DEBUG */
6337
6338 static int
6339 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6340 {
6341 prop_dictionary_t dict;
6342 prop_data_t ea;
6343
6344 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6345 return 1;
6346
6347 dict = device_properties(sc->bge_dev);
6348 ea = prop_dictionary_get(dict, "mac-address");
6349 if (ea != NULL) {
6350 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6351 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6352 memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
6353 return 0;
6354 }
6355
6356 return 1;
6357 }
6358
6359 static int
6360 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6361 {
6362 uint32_t mac_addr;
6363
6364 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6365 if ((mac_addr >> 16) == 0x484b) {
6366 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6367 ether_addr[1] = (uint8_t)mac_addr;
6368 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6369 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6370 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6371 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6372 ether_addr[5] = (uint8_t)mac_addr;
6373 return 0;
6374 }
6375 return 1;
6376 }
6377
6378 static int
6379 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6380 {
6381 int mac_offset = BGE_EE_MAC_OFFSET;
6382
6383 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6384 mac_offset = BGE_EE_MAC_OFFSET_5906;
6385
6386 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6387 ETHER_ADDR_LEN));
6388 }
6389
6390 static int
6391 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6392 {
6393
6394 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6395 return 1;
6396
6397 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6398 ETHER_ADDR_LEN));
6399 }
6400
6401 static int
6402 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6403 {
6404 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6405 /* NOTE: Order is critical */
6406 bge_get_eaddr_fw,
6407 bge_get_eaddr_mem,
6408 bge_get_eaddr_nvram,
6409 bge_get_eaddr_eeprom,
6410 NULL
6411 };
6412 const bge_eaddr_fcn_t *func;
6413
6414 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6415 if ((*func)(sc, eaddr) == 0)
6416 break;
6417 }
6418 return (*func == NULL ? ENXIO : 0);
6419 }
6420