if_bge.c revision 1.367 1 /* $NetBSD: if_bge.c,v 1.367 2022/07/26 14:53:12 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.367 2022/07/26 14:53:12 skrll Exp $");
83
84 #include <sys/param.h>
85
86 #include <sys/callout.h>
87 #include <sys/device.h>
88 #include <sys/kernel.h>
89 #include <sys/kmem.h>
90 #include <sys/mbuf.h>
91 #include <sys/rndsource.h>
92 #include <sys/socket.h>
93 #include <sys/sockio.h>
94 #include <sys/sysctl.h>
95 #include <sys/systm.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101 #include <net/bpf.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 /* Headers for TCP Segmentation Offload (TSO) */
111 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
112 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
113 #include <netinet/ip.h> /* for struct ip */
114 #include <netinet/tcp.h> /* for struct tcphdr */
115
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
119
120 #include <dev/mii/mii.h>
121 #include <dev/mii/miivar.h>
122 #include <dev/mii/miidevs.h>
123 #include <dev/mii/brgphyreg.h>
124
125 #include <dev/pci/if_bgereg.h>
126 #include <dev/pci/if_bgevar.h>
127
128 #include <prop/proplib.h>
129
130 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
131
132
133 /*
134 * Tunable thresholds for rx-side bge interrupt mitigation.
135 */
136
137 /*
138 * The pairs of values below were obtained from empirical measurement
139 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
140 * interrupt for every N packets received, where N is, approximately,
141 * the second value (rx_max_bds) in each pair. The values are chosen
142 * such that moving from one pair to the succeeding pair was observed
143 * to roughly halve interrupt rate under sustained input packet load.
144 * The values were empirically chosen to avoid overflowing internal
145 * limits on the bcm5700: increasing rx_ticks much beyond 600
146 * results in internal wrapping and higher interrupt rates.
147 * The limit of 46 frames was chosen to match NFS workloads.
148 *
149 * These values also work well on bcm5701, bcm5704C, and (less
150 * tested) bcm5703. On other chipsets, (including the Altima chip
151 * family), the larger values may overflow internal chip limits,
152 * leading to increasing interrupt rates rather than lower interrupt
153 * rates.
154 *
155 * Applications using heavy interrupt mitigation (interrupting every
156 * 32 or 46 frames) in both directions may need to increase the TCP
157 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
158 * full link bandwidth, due to ACKs and window updates lingering
159 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
160 */
161 static const struct bge_load_rx_thresh {
162 int rx_ticks;
163 int rx_max_bds; }
164 bge_rx_threshes[] = {
165 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
166 { 32, 2 },
167 { 50, 4 },
168 { 100, 8 },
169 { 192, 16 },
170 { 416, 32 },
171 { 598, 46 }
172 };
173 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
174
175 /* XXX patchable; should be sysctl'able */
176 static int bge_auto_thresh = 1;
177 static int bge_rx_thresh_lvl;
178
179 static int bge_rxthresh_nodenum;
180
181 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
182
183 static uint32_t bge_chipid(const struct pci_attach_args *);
184 static int bge_can_use_msi(struct bge_softc *);
185 static int bge_probe(device_t, cfdata_t, void *);
186 static void bge_attach(device_t, device_t, void *);
187 static int bge_detach(device_t, int);
188 static void bge_release_resources(struct bge_softc *);
189
190 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
191 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
195
196 static void bge_txeof(struct bge_softc *);
197 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
198 static void bge_rxeof(struct bge_softc *);
199
200 static void bge_asf_driver_up (struct bge_softc *);
201 static void bge_tick(void *);
202 static void bge_stats_update(struct bge_softc *);
203 static void bge_stats_update_regs(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
205
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ifflags_cb(struct ethercom *);
209 static int bge_ioctl(struct ifnet *, u_long, void *);
210 static int bge_init(struct ifnet *);
211 static void bge_stop(struct ifnet *, int);
212 static void bge_watchdog(struct ifnet *);
213 static int bge_ifmedia_upd(struct ifnet *);
214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215
216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
218
219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
221 static void bge_setmulti(struct bge_softc *);
222
223 static void bge_handle_events(struct bge_softc *);
224 static int bge_alloc_jumbo_mem(struct bge_softc *);
225 #if 0 /* XXX */
226 static void bge_free_jumbo_mem(struct bge_softc *);
227 #endif
228 static void *bge_jalloc(struct bge_softc *);
229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
231 bus_dmamap_t);
232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int bge_init_rx_ring_std(struct bge_softc *);
234 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_tx_ring(struct bge_softc *m, bool);
238 static int bge_init_tx_ring(struct bge_softc *);
239
240 static int bge_chipinit(struct bge_softc *);
241 static int bge_blockinit(struct bge_softc *);
242 static int bge_phy_addr(struct bge_softc *);
243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
244 static void bge_writemem_ind(struct bge_softc *, int, int);
245 static void bge_writembx(struct bge_softc *, int, int);
246 static void bge_writembx_flush(struct bge_softc *, int, int);
247 static void bge_writemem_direct(struct bge_softc *, int, int);
248 static void bge_writereg_ind(struct bge_softc *, int, int);
249 static void bge_set_max_readrq(struct bge_softc *);
250
251 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
252 static int bge_miibus_writereg(device_t, int, int, uint16_t);
253 static void bge_miibus_statchg(struct ifnet *);
254
255 #define BGE_RESET_SHUTDOWN 0
256 #define BGE_RESET_START 1
257 #define BGE_RESET_SUSPEND 2
258 static void bge_sig_post_reset(struct bge_softc *, int);
259 static void bge_sig_legacy(struct bge_softc *, int);
260 static void bge_sig_pre_reset(struct bge_softc *, int);
261 static void bge_wait_for_event_ack(struct bge_softc *);
262 static void bge_stop_fw(struct bge_softc *);
263 static int bge_reset(struct bge_softc *);
264 static void bge_link_upd(struct bge_softc *);
265 static void bge_sysctl_init(struct bge_softc *);
266 static int bge_sysctl_verify(SYSCTLFN_PROTO);
267
268 static void bge_ape_lock_init(struct bge_softc *);
269 static void bge_ape_read_fw_ver(struct bge_softc *);
270 static int bge_ape_lock(struct bge_softc *, int);
271 static void bge_ape_unlock(struct bge_softc *, int);
272 static void bge_ape_send_event(struct bge_softc *, uint32_t);
273 static void bge_ape_driver_state_change(struct bge_softc *, int);
274
275 #ifdef BGE_DEBUG
276 #define DPRINTF(x) if (bgedebug) printf x
277 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
278 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
279 int bgedebug = 0;
280 int bge_tso_debug = 0;
281 void bge_debug_info(struct bge_softc *);
282 #else
283 #define DPRINTF(x)
284 #define DPRINTFN(n, x)
285 #define BGE_TSO_PRINTF(x)
286 #endif
287
288 #ifdef BGE_EVENT_COUNTERS
289 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
290 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
291 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
292 #else
293 #define BGE_EVCNT_INCR(ev) /* nothing */
294 #define BGE_EVCNT_ADD(ev, val) /* nothing */
295 #define BGE_EVCNT_UPD(ev, val) /* nothing */
296 #endif
297
298 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
299 /*
300 * The BCM5700 documentation seems to indicate that the hardware still has the
301 * Alteon vendor ID burned into it, though it should always be overridden by
302 * the value in the EEPROM. We'll check for it anyway.
303 */
304 static const struct bge_product {
305 pci_vendor_id_t bp_vendor;
306 pci_product_id_t bp_product;
307 const char *bp_name;
308 } bge_products[] = {
309 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
310 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
311 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
312 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
313 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
314 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
315 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
316 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
317 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
318 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
319 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
320 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
321 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
322 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
323 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
324 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
325 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
326 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
327 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
328 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
329 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
330 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
331 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
332 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
333 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
334 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
335 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
336 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
337 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
338 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
339 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
340 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
341 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
342 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
343 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
344 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
345 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
346 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
347 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
348 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
349 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
350 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
351 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
352 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
353 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
354 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
355 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
356 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
357 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
358 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
359 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
360 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
361 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
362 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
363 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
364 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
365 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
366 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
367 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
368 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
369 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
370 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
371 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
372 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
373 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
374 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
375 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
376 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
377 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
378 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
379 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
380 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
381 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
382 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
383 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
384 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
385 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
386 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
387 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
388 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
389 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
390 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
391 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
392 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
393 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
394 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
395 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
396 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
397 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
398 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
399 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
400 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
401 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
402 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
403 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
404 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
405 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
406 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
407 { 0, 0, NULL },
408 };
409
410 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
411 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
412 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
413 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
414 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
415 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
416 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
417 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
418 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
419
420 static const struct bge_revision {
421 uint32_t br_chipid;
422 const char *br_name;
423 } bge_revisions[] = {
424 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
425 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
426 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
427 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
428 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
429 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
430 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
431 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
432 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
433 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
434 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
435 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
436 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
437 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
438 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
439 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
440 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
441 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
442 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
443 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
444 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
445 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
446 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
447 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
448 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
449 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
450 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
451 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
452 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
453 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
454 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
455 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
456 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
457 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
458 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
459 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
460 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
461 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
462 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
463 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
464 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
465 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
466 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
467 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
468 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
469 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
470 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
471 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
472 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
473 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
474 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
475 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
476 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
477 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
478 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
479 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
480 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
481 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
482 /* 5754 and 5787 share the same ASIC ID */
483 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
484 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
485 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
486 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
487 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
488 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
489 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
490 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
491 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
492 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
493 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
494
495 { 0, NULL }
496 };
497
498 /*
499 * Some defaults for major revisions, so that newer steppings
500 * that we don't know about have a shot at working.
501 */
502 static const struct bge_revision bge_majorrevs[] = {
503 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
504 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
505 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
506 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
507 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
508 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
509 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
510 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
511 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
512 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
513 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
514 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
515 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
516 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
517 /* 5754 and 5787 share the same ASIC ID */
518 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
519 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
520 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
521 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
522 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
523 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
524 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
525 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
526 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
527
528 { 0, NULL }
529 };
530
531 static int bge_allow_asf = 1;
532
533 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
534 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
535
536 static uint32_t
537 bge_readmem_ind(struct bge_softc *sc, int off)
538 {
539 pcireg_t val;
540
541 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
542 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
543 return 0;
544
545 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
546 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
547 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
548 return val;
549 }
550
551 static void
552 bge_writemem_ind(struct bge_softc *sc, int off, int val)
553 {
554
555 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
556 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
557 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
558 }
559
560 /*
561 * PCI Express only
562 */
563 static void
564 bge_set_max_readrq(struct bge_softc *sc)
565 {
566 pcireg_t val;
567
568 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
569 + PCIE_DCSR);
570 val &= ~PCIE_DCSR_MAX_READ_REQ;
571 switch (sc->bge_expmrq) {
572 case 2048:
573 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
574 break;
575 case 4096:
576 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
577 break;
578 default:
579 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
580 break;
581 }
582 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
583 + PCIE_DCSR, val);
584 }
585
586 #ifdef notdef
587 static uint32_t
588 bge_readreg_ind(struct bge_softc *sc, int off)
589 {
590 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
591 return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
592 }
593 #endif
594
595 static void
596 bge_writereg_ind(struct bge_softc *sc, int off, int val)
597 {
598 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
599 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
600 }
601
602 static void
603 bge_writemem_direct(struct bge_softc *sc, int off, int val)
604 {
605 CSR_WRITE_4(sc, off, val);
606 }
607
608 static void
609 bge_writembx(struct bge_softc *sc, int off, int val)
610 {
611 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
612 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
613
614 CSR_WRITE_4(sc, off, val);
615 }
616
617 static void
618 bge_writembx_flush(struct bge_softc *sc, int off, int val)
619 {
620 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
621 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
622
623 CSR_WRITE_4_FLUSH(sc, off, val);
624 }
625
626 /*
627 * Clear all stale locks and select the lock for this driver instance.
628 */
629 void
630 bge_ape_lock_init(struct bge_softc *sc)
631 {
632 struct pci_attach_args *pa = &(sc->bge_pa);
633 uint32_t bit, regbase;
634 int i;
635
636 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
637 regbase = BGE_APE_LOCK_GRANT;
638 else
639 regbase = BGE_APE_PER_LOCK_GRANT;
640
641 /* Clear any stale locks. */
642 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
643 switch (i) {
644 case BGE_APE_LOCK_PHY0:
645 case BGE_APE_LOCK_PHY1:
646 case BGE_APE_LOCK_PHY2:
647 case BGE_APE_LOCK_PHY3:
648 bit = BGE_APE_LOCK_GRANT_DRIVER0;
649 break;
650 default:
651 if (pa->pa_function == 0)
652 bit = BGE_APE_LOCK_GRANT_DRIVER0;
653 else
654 bit = (1 << pa->pa_function);
655 }
656 APE_WRITE_4(sc, regbase + 4 * i, bit);
657 }
658
659 /* Select the PHY lock based on the device's function number. */
660 switch (pa->pa_function) {
661 case 0:
662 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
663 break;
664 case 1:
665 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
666 break;
667 case 2:
668 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
669 break;
670 case 3:
671 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
672 break;
673 default:
674 printf("%s: PHY lock not supported on function\n",
675 device_xname(sc->bge_dev));
676 break;
677 }
678 }
679
680 /*
681 * Check for APE firmware, set flags, and print version info.
682 */
683 void
684 bge_ape_read_fw_ver(struct bge_softc *sc)
685 {
686 const char *fwtype;
687 uint32_t apedata, features;
688
689 /* Check for a valid APE signature in shared memory. */
690 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
691 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
692 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
693 return;
694 }
695
696 /* Check if APE firmware is running. */
697 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
698 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
699 printf("%s: APE signature found but FW status not ready! "
700 "0x%08x\n", device_xname(sc->bge_dev), apedata);
701 return;
702 }
703
704 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
705
706 /* Fetch the APE firwmare type and version. */
707 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
708 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
709 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
710 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
711 fwtype = "NCSI";
712 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
713 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
714 fwtype = "DASH";
715 } else
716 fwtype = "UNKN";
717
718 /* Print the APE firmware version. */
719 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
720 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
721 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
722 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
723 (apedata & BGE_APE_FW_VERSION_BLDMSK));
724 }
725
726 int
727 bge_ape_lock(struct bge_softc *sc, int locknum)
728 {
729 struct pci_attach_args *pa = &(sc->bge_pa);
730 uint32_t bit, gnt, req, status;
731 int i, off;
732
733 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
734 return 0;
735
736 /* Lock request/grant registers have different bases. */
737 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
738 req = BGE_APE_LOCK_REQ;
739 gnt = BGE_APE_LOCK_GRANT;
740 } else {
741 req = BGE_APE_PER_LOCK_REQ;
742 gnt = BGE_APE_PER_LOCK_GRANT;
743 }
744
745 off = 4 * locknum;
746
747 switch (locknum) {
748 case BGE_APE_LOCK_GPIO:
749 /* Lock required when using GPIO. */
750 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
751 return 0;
752 if (pa->pa_function == 0)
753 bit = BGE_APE_LOCK_REQ_DRIVER0;
754 else
755 bit = (1 << pa->pa_function);
756 break;
757 case BGE_APE_LOCK_GRC:
758 /* Lock required to reset the device. */
759 if (pa->pa_function == 0)
760 bit = BGE_APE_LOCK_REQ_DRIVER0;
761 else
762 bit = (1 << pa->pa_function);
763 break;
764 case BGE_APE_LOCK_MEM:
765 /* Lock required when accessing certain APE memory. */
766 if (pa->pa_function == 0)
767 bit = BGE_APE_LOCK_REQ_DRIVER0;
768 else
769 bit = (1 << pa->pa_function);
770 break;
771 case BGE_APE_LOCK_PHY0:
772 case BGE_APE_LOCK_PHY1:
773 case BGE_APE_LOCK_PHY2:
774 case BGE_APE_LOCK_PHY3:
775 /* Lock required when accessing PHYs. */
776 bit = BGE_APE_LOCK_REQ_DRIVER0;
777 break;
778 default:
779 return EINVAL;
780 }
781
782 /* Request a lock. */
783 APE_WRITE_4_FLUSH(sc, req + off, bit);
784
785 /* Wait up to 1 second to acquire lock. */
786 for (i = 0; i < 20000; i++) {
787 status = APE_READ_4(sc, gnt + off);
788 if (status == bit)
789 break;
790 DELAY(50);
791 }
792
793 /* Handle any errors. */
794 if (status != bit) {
795 printf("%s: APE lock %d request failed! "
796 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
797 device_xname(sc->bge_dev),
798 locknum, req + off, bit & 0xFFFF, gnt + off,
799 status & 0xFFFF);
800 /* Revoke the lock request. */
801 APE_WRITE_4(sc, gnt + off, bit);
802 return EBUSY;
803 }
804
805 return 0;
806 }
807
808 void
809 bge_ape_unlock(struct bge_softc *sc, int locknum)
810 {
811 struct pci_attach_args *pa = &(sc->bge_pa);
812 uint32_t bit, gnt;
813 int off;
814
815 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
816 return;
817
818 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
819 gnt = BGE_APE_LOCK_GRANT;
820 else
821 gnt = BGE_APE_PER_LOCK_GRANT;
822
823 off = 4 * locknum;
824
825 switch (locknum) {
826 case BGE_APE_LOCK_GPIO:
827 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
828 return;
829 if (pa->pa_function == 0)
830 bit = BGE_APE_LOCK_GRANT_DRIVER0;
831 else
832 bit = (1 << pa->pa_function);
833 break;
834 case BGE_APE_LOCK_GRC:
835 if (pa->pa_function == 0)
836 bit = BGE_APE_LOCK_GRANT_DRIVER0;
837 else
838 bit = (1 << pa->pa_function);
839 break;
840 case BGE_APE_LOCK_MEM:
841 if (pa->pa_function == 0)
842 bit = BGE_APE_LOCK_GRANT_DRIVER0;
843 else
844 bit = (1 << pa->pa_function);
845 break;
846 case BGE_APE_LOCK_PHY0:
847 case BGE_APE_LOCK_PHY1:
848 case BGE_APE_LOCK_PHY2:
849 case BGE_APE_LOCK_PHY3:
850 bit = BGE_APE_LOCK_GRANT_DRIVER0;
851 break;
852 default:
853 return;
854 }
855
856 /* Write and flush for consecutive bge_ape_lock() */
857 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
858 }
859
860 /*
861 * Send an event to the APE firmware.
862 */
863 void
864 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
865 {
866 uint32_t apedata;
867 int i;
868
869 /* NCSI does not support APE events. */
870 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
871 return;
872
873 /* Wait up to 1ms for APE to service previous event. */
874 for (i = 10; i > 0; i--) {
875 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
876 break;
877 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
878 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
879 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
880 BGE_APE_EVENT_STATUS_EVENT_PENDING);
881 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
882 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
883 break;
884 }
885 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
886 DELAY(100);
887 }
888 if (i == 0) {
889 printf("%s: APE event 0x%08x send timed out\n",
890 device_xname(sc->bge_dev), event);
891 }
892 }
893
894 void
895 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
896 {
897 uint32_t apedata, event;
898
899 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
900 return;
901
902 switch (kind) {
903 case BGE_RESET_START:
904 /* If this is the first load, clear the load counter. */
905 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
906 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
907 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
908 else {
909 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
910 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
911 }
912 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
913 BGE_APE_HOST_SEG_SIG_MAGIC);
914 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
915 BGE_APE_HOST_SEG_LEN_MAGIC);
916
917 /* Add some version info if bge(4) supports it. */
918 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
919 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
920 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
921 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
922 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
923 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
924 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
925 BGE_APE_HOST_DRVR_STATE_START);
926 event = BGE_APE_EVENT_STATUS_STATE_START;
927 break;
928 case BGE_RESET_SHUTDOWN:
929 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
930 BGE_APE_HOST_DRVR_STATE_UNLOAD);
931 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
932 break;
933 case BGE_RESET_SUSPEND:
934 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
935 break;
936 default:
937 return;
938 }
939
940 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
941 BGE_APE_EVENT_STATUS_STATE_CHNGE);
942 }
943
944 static uint8_t
945 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
946 {
947 uint32_t access, byte = 0;
948 int i;
949
950 /* Lock. */
951 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
952 for (i = 0; i < 8000; i++) {
953 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
954 break;
955 DELAY(20);
956 }
957 if (i == 8000)
958 return 1;
959
960 /* Enable access. */
961 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
962 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
963
964 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
965 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
966 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
967 DELAY(10);
968 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
969 DELAY(10);
970 break;
971 }
972 }
973
974 if (i == BGE_TIMEOUT * 10) {
975 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
976 return 1;
977 }
978
979 /* Get result. */
980 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
981
982 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
983
984 /* Disable access. */
985 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
986
987 /* Unlock. */
988 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
989
990 return 0;
991 }
992
993 /*
994 * Read a sequence of bytes from NVRAM.
995 */
996 static int
997 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
998 {
999 int error = 0, i;
1000 uint8_t byte = 0;
1001
1002 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1003 return 1;
1004
1005 for (i = 0; i < cnt; i++) {
1006 error = bge_nvram_getbyte(sc, off + i, &byte);
1007 if (error)
1008 break;
1009 *(dest + i) = byte;
1010 }
1011
1012 return error ? 1 : 0;
1013 }
1014
1015 /*
1016 * Read a byte of data stored in the EEPROM at address 'addr.' The
1017 * BCM570x supports both the traditional bitbang interface and an
1018 * auto access interface for reading the EEPROM. We use the auto
1019 * access method.
1020 */
1021 static uint8_t
1022 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1023 {
1024 int i;
1025 uint32_t byte = 0;
1026
1027 /*
1028 * Enable use of auto EEPROM access so we can avoid
1029 * having to use the bitbang method.
1030 */
1031 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1032
1033 /* Reset the EEPROM, load the clock period. */
1034 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1035 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1036 DELAY(20);
1037
1038 /* Issue the read EEPROM command. */
1039 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1040
1041 /* Wait for completion */
1042 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1043 DELAY(10);
1044 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1045 break;
1046 }
1047
1048 if (i == BGE_TIMEOUT * 10) {
1049 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1050 return 1;
1051 }
1052
1053 /* Get result. */
1054 byte = CSR_READ_4(sc, BGE_EE_DATA);
1055
1056 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1057
1058 return 0;
1059 }
1060
1061 /*
1062 * Read a sequence of bytes from the EEPROM.
1063 */
1064 static int
1065 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1066 {
1067 int error = 0, i;
1068 uint8_t byte = 0;
1069 char *dest = destv;
1070
1071 for (i = 0; i < cnt; i++) {
1072 error = bge_eeprom_getbyte(sc, off + i, &byte);
1073 if (error)
1074 break;
1075 *(dest + i) = byte;
1076 }
1077
1078 return error ? 1 : 0;
1079 }
1080
1081 static int
1082 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1083 {
1084 struct bge_softc * const sc = device_private(dev);
1085 uint32_t data;
1086 uint32_t autopoll;
1087 int rv = 0;
1088 int i;
1089
1090 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1091 return -1;
1092
1093 /* Reading with autopolling on may trigger PCI errors */
1094 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1095 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1096 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1097 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1098 DELAY(80);
1099 }
1100
1101 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1102 BGE_MIPHY(phy) | BGE_MIREG(reg));
1103
1104 for (i = 0; i < BGE_TIMEOUT; i++) {
1105 delay(10);
1106 data = CSR_READ_4(sc, BGE_MI_COMM);
1107 if (!(data & BGE_MICOMM_BUSY)) {
1108 DELAY(5);
1109 data = CSR_READ_4(sc, BGE_MI_COMM);
1110 break;
1111 }
1112 }
1113
1114 if (i == BGE_TIMEOUT) {
1115 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1116 rv = ETIMEDOUT;
1117 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1118 /* XXX This error occurs on some devices while attaching. */
1119 aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1120 rv = EIO;
1121 } else
1122 *val = data & BGE_MICOMM_DATA;
1123
1124 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1125 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1126 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1127 DELAY(80);
1128 }
1129
1130 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1131
1132 return rv;
1133 }
1134
1135 static int
1136 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1137 {
1138 struct bge_softc * const sc = device_private(dev);
1139 uint32_t data, autopoll;
1140 int rv = 0;
1141 int i;
1142
1143 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1144 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1145 return 0;
1146
1147 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1148 return -1;
1149
1150 /* Reading with autopolling on may trigger PCI errors */
1151 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1152 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1153 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1154 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1155 DELAY(80);
1156 }
1157
1158 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1159 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1160
1161 for (i = 0; i < BGE_TIMEOUT; i++) {
1162 delay(10);
1163 data = CSR_READ_4(sc, BGE_MI_COMM);
1164 if (!(data & BGE_MICOMM_BUSY)) {
1165 delay(5);
1166 data = CSR_READ_4(sc, BGE_MI_COMM);
1167 break;
1168 }
1169 }
1170
1171 if (i == BGE_TIMEOUT) {
1172 aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1173 rv = ETIMEDOUT;
1174 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1175 aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1176 rv = EIO;
1177 }
1178
1179 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1180 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1181 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1182 delay(80);
1183 }
1184
1185 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1186
1187 return rv;
1188 }
1189
1190 static void
1191 bge_miibus_statchg(struct ifnet *ifp)
1192 {
1193 struct bge_softc * const sc = ifp->if_softc;
1194 struct mii_data *mii = &sc->bge_mii;
1195 uint32_t mac_mode, rx_mode, tx_mode;
1196
1197 /*
1198 * Get flow control negotiation result.
1199 */
1200 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1201 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1202 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1203
1204 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1205 mii->mii_media_status & IFM_ACTIVE &&
1206 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1207 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1208 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1209 (!(mii->mii_media_status & IFM_ACTIVE) ||
1210 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1211 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1212
1213 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1214 return;
1215
1216 /* Set the port mode (MII/GMII) to match the link speed. */
1217 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1218 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1219 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1220 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1221 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1222 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1223 mac_mode |= BGE_PORTMODE_GMII;
1224 else
1225 mac_mode |= BGE_PORTMODE_MII;
1226
1227 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1228 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1229 if ((mii->mii_media_active & IFM_FDX) != 0) {
1230 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1231 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1232 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1233 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1234 } else
1235 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1236
1237 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1238 DELAY(40);
1239 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1240 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1241 }
1242
1243 /*
1244 * Update rx threshold levels to values in a particular slot
1245 * of the interrupt-mitigation table bge_rx_threshes.
1246 */
1247 static void
1248 bge_set_thresh(struct ifnet *ifp, int lvl)
1249 {
1250 struct bge_softc * const sc = ifp->if_softc;
1251 int s;
1252
1253 /*
1254 * For now, just save the new Rx-intr thresholds and record
1255 * that a threshold update is pending. Updating the hardware
1256 * registers here (even at splhigh()) is observed to
1257 * occasionally cause glitches where Rx-interrupts are not
1258 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1259 */
1260 s = splnet();
1261 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1262 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1263 sc->bge_pending_rxintr_change = 1;
1264 splx(s);
1265 }
1266
1267
1268 /*
1269 * Update Rx thresholds of all bge devices
1270 */
1271 static void
1272 bge_update_all_threshes(int lvl)
1273 {
1274 const char * const namebuf = "bge";
1275 const size_t namelen = strlen(namebuf);
1276 struct ifnet *ifp;
1277
1278 if (lvl < 0)
1279 lvl = 0;
1280 else if (lvl >= NBGE_RX_THRESH)
1281 lvl = NBGE_RX_THRESH - 1;
1282
1283 /*
1284 * Now search all the interfaces for this name/number
1285 */
1286 int s = pserialize_read_enter();
1287 IFNET_READER_FOREACH(ifp) {
1288 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1289 continue;
1290 /* We got a match: update if doing auto-threshold-tuning */
1291 if (bge_auto_thresh)
1292 bge_set_thresh(ifp, lvl);
1293 }
1294 pserialize_read_exit(s);
1295 }
1296
1297 /*
1298 * Handle events that have triggered interrupts.
1299 */
1300 static void
1301 bge_handle_events(struct bge_softc *sc)
1302 {
1303
1304 return;
1305 }
1306
1307 /*
1308 * Memory management for jumbo frames.
1309 */
1310
1311 static int
1312 bge_alloc_jumbo_mem(struct bge_softc *sc)
1313 {
1314 char *ptr, *kva;
1315 bus_dma_segment_t seg;
1316 int i, rseg, state, error;
1317 struct bge_jpool_entry *entry;
1318
1319 state = error = 0;
1320
1321 /* Grab a big chunk o' storage. */
1322 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1323 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1324 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1325 return ENOBUFS;
1326 }
1327
1328 state = 1;
1329 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1330 BUS_DMA_NOWAIT)) {
1331 aprint_error_dev(sc->bge_dev,
1332 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1333 error = ENOBUFS;
1334 goto out;
1335 }
1336
1337 state = 2;
1338 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1339 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1340 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1341 error = ENOBUFS;
1342 goto out;
1343 }
1344
1345 state = 3;
1346 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1347 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1348 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1349 error = ENOBUFS;
1350 goto out;
1351 }
1352
1353 state = 4;
1354 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1355 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1356
1357 SLIST_INIT(&sc->bge_jfree_listhead);
1358 SLIST_INIT(&sc->bge_jinuse_listhead);
1359
1360 /*
1361 * Now divide it up into 9K pieces and save the addresses
1362 * in an array.
1363 */
1364 ptr = sc->bge_cdata.bge_jumbo_buf;
1365 for (i = 0; i < BGE_JSLOTS; i++) {
1366 sc->bge_cdata.bge_jslots[i] = ptr;
1367 ptr += BGE_JLEN;
1368 entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
1369 entry->slot = i;
1370 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1371 entry, jpool_entries);
1372 }
1373 out:
1374 if (error != 0) {
1375 switch (state) {
1376 case 4:
1377 bus_dmamap_unload(sc->bge_dmatag,
1378 sc->bge_cdata.bge_rx_jumbo_map);
1379 /* FALLTHROUGH */
1380 case 3:
1381 bus_dmamap_destroy(sc->bge_dmatag,
1382 sc->bge_cdata.bge_rx_jumbo_map);
1383 /* FALLTHROUGH */
1384 case 2:
1385 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1386 /* FALLTHROUGH */
1387 case 1:
1388 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1389 break;
1390 default:
1391 break;
1392 }
1393 }
1394
1395 return error;
1396 }
1397
1398 /*
1399 * Allocate a jumbo buffer.
1400 */
1401 static void *
1402 bge_jalloc(struct bge_softc *sc)
1403 {
1404 struct bge_jpool_entry *entry;
1405
1406 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1407
1408 if (entry == NULL) {
1409 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1410 return NULL;
1411 }
1412
1413 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1414 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1415 return sc->bge_cdata.bge_jslots[entry->slot];
1416 }
1417
1418 /*
1419 * Release a jumbo buffer.
1420 */
1421 static void
1422 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1423 {
1424 struct bge_jpool_entry *entry;
1425 struct bge_softc * const sc = arg;
1426 int i, s;
1427
1428 if (sc == NULL)
1429 panic("bge_jfree: can't find softc pointer!");
1430
1431 /* calculate the slot this buffer belongs to */
1432
1433 i = ((char *)buf
1434 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1435
1436 if ((i < 0) || (i >= BGE_JSLOTS))
1437 panic("bge_jfree: asked to free buffer that we don't manage!");
1438
1439 s = splvm();
1440 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1441 if (entry == NULL)
1442 panic("bge_jfree: buffer not in use!");
1443 entry->slot = i;
1444 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1445 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1446
1447 if (__predict_true(m != NULL))
1448 pool_cache_put(mb_cache, m);
1449 splx(s);
1450 }
1451
1452
1453 /*
1454 * Initialize a standard receive ring descriptor.
1455 */
1456 static int
1457 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1458 bus_dmamap_t dmamap)
1459 {
1460 struct mbuf *m_new = NULL;
1461 struct bge_rx_bd *r;
1462 int error;
1463
1464 if (dmamap == NULL)
1465 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1466
1467 if (dmamap == NULL) {
1468 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1469 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1470 if (error != 0)
1471 return error;
1472 }
1473
1474 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1475
1476 if (m == NULL) {
1477 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1478 if (m_new == NULL)
1479 return ENOBUFS;
1480
1481 MCLGET(m_new, M_DONTWAIT);
1482 if (!(m_new->m_flags & M_EXT)) {
1483 m_freem(m_new);
1484 return ENOBUFS;
1485 }
1486 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1487
1488 } else {
1489 m_new = m;
1490 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1491 m_new->m_data = m_new->m_ext.ext_buf;
1492 }
1493 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1494 m_adj(m_new, ETHER_ALIGN);
1495 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1496 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1497 m_freem(m_new);
1498 return ENOBUFS;
1499 }
1500 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1501 BUS_DMASYNC_PREREAD);
1502
1503 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1504 r = &sc->bge_rdata->bge_rx_std_ring[i];
1505 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1506 r->bge_flags = BGE_RXBDFLAG_END;
1507 r->bge_len = m_new->m_len;
1508 r->bge_idx = i;
1509
1510 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1511 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1512 i * sizeof(struct bge_rx_bd),
1513 sizeof(struct bge_rx_bd),
1514 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1515
1516 return 0;
1517 }
1518
1519 /*
1520 * Initialize a jumbo receive ring descriptor. This allocates
1521 * a jumbo buffer from the pool managed internally by the driver.
1522 */
1523 static int
1524 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1525 {
1526 struct mbuf *m_new = NULL;
1527 struct bge_rx_bd *r;
1528 void *buf = NULL;
1529
1530 if (m == NULL) {
1531
1532 /* Allocate the mbuf. */
1533 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1534 if (m_new == NULL)
1535 return ENOBUFS;
1536
1537 /* Allocate the jumbo buffer */
1538 buf = bge_jalloc(sc);
1539 if (buf == NULL) {
1540 m_freem(m_new);
1541 aprint_error_dev(sc->bge_dev,
1542 "jumbo allocation failed -- packet dropped!\n");
1543 return ENOBUFS;
1544 }
1545
1546 /* Attach the buffer to the mbuf. */
1547 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1548 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1549 bge_jfree, sc);
1550 m_new->m_flags |= M_EXT_RW;
1551 } else {
1552 m_new = m;
1553 buf = m_new->m_data = m_new->m_ext.ext_buf;
1554 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1555 }
1556 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1557 m_adj(m_new, ETHER_ALIGN);
1558 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1559 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1560 BGE_JLEN, BUS_DMASYNC_PREREAD);
1561 /* Set up the descriptor. */
1562 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1563 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1564 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1565 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1566 r->bge_len = m_new->m_len;
1567 r->bge_idx = i;
1568
1569 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1570 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1571 i * sizeof(struct bge_rx_bd),
1572 sizeof(struct bge_rx_bd),
1573 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1574
1575 return 0;
1576 }
1577
1578 /*
1579 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1580 * that's 1MB or memory, which is a lot. For now, we fill only the first
1581 * 256 ring entries and hope that our CPU is fast enough to keep up with
1582 * the NIC.
1583 */
1584 static int
1585 bge_init_rx_ring_std(struct bge_softc *sc)
1586 {
1587 int i;
1588
1589 if (sc->bge_flags & BGEF_RXRING_VALID)
1590 return 0;
1591
1592 for (i = 0; i < BGE_SSLOTS; i++) {
1593 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1594 return ENOBUFS;
1595 }
1596
1597 sc->bge_std = i - 1;
1598 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1599
1600 sc->bge_flags |= BGEF_RXRING_VALID;
1601
1602 return 0;
1603 }
1604
1605 static void
1606 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1607 {
1608 int i;
1609
1610 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1611 return;
1612
1613 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1614 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1615 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1616 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1617 if (disable) {
1618 bus_dmamap_destroy(sc->bge_dmatag,
1619 sc->bge_cdata.bge_rx_std_map[i]);
1620 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1621 }
1622 }
1623 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1624 sizeof(struct bge_rx_bd));
1625 }
1626
1627 sc->bge_flags &= ~BGEF_RXRING_VALID;
1628 }
1629
1630 static int
1631 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1632 {
1633 int i;
1634 volatile struct bge_rcb *rcb;
1635
1636 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1637 return 0;
1638
1639 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1640 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1641 return ENOBUFS;
1642 }
1643
1644 sc->bge_jumbo = i - 1;
1645 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1646
1647 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1648 rcb->bge_maxlen_flags = 0;
1649 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1650
1651 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1652
1653 return 0;
1654 }
1655
1656 static void
1657 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1658 {
1659 int i;
1660
1661 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1662 return;
1663
1664 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1665 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1666 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1667 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1668 }
1669 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1670 sizeof(struct bge_rx_bd));
1671 }
1672
1673 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1674 }
1675
1676 static void
1677 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1678 {
1679 int i;
1680 struct txdmamap_pool_entry *dma;
1681
1682 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1683 return;
1684
1685 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1686 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1687 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1688 sc->bge_cdata.bge_tx_chain[i] = NULL;
1689 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1690 link);
1691 sc->txdma[i] = 0;
1692 }
1693 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1694 sizeof(struct bge_tx_bd));
1695 }
1696
1697 if (disable) {
1698 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1699 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1700 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1701 if (sc->bge_dma64) {
1702 bus_dmamap_destroy(sc->bge_dmatag32,
1703 dma->dmamap32);
1704 }
1705 kmem_free(dma, sizeof(*dma));
1706 }
1707 SLIST_INIT(&sc->txdma_list);
1708 }
1709
1710 sc->bge_flags &= ~BGEF_TXRING_VALID;
1711 }
1712
1713 static int
1714 bge_init_tx_ring(struct bge_softc *sc)
1715 {
1716 struct ifnet * const ifp = &sc->ethercom.ec_if;
1717 int i;
1718 bus_dmamap_t dmamap, dmamap32;
1719 bus_size_t maxsegsz;
1720 struct txdmamap_pool_entry *dma;
1721
1722 if (sc->bge_flags & BGEF_TXRING_VALID)
1723 return 0;
1724
1725 sc->bge_txcnt = 0;
1726 sc->bge_tx_saved_considx = 0;
1727
1728 /* Initialize transmit producer index for host-memory send ring. */
1729 sc->bge_tx_prodidx = 0;
1730 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1731 /* 5700 b2 errata */
1732 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1733 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1734
1735 /* NIC-memory send ring not used; initialize to zero. */
1736 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1737 /* 5700 b2 errata */
1738 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1739 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1740
1741 /* Limit DMA segment size for some chips */
1742 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1743 (ifp->if_mtu <= ETHERMTU))
1744 maxsegsz = 2048;
1745 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1746 maxsegsz = 4096;
1747 else
1748 maxsegsz = ETHER_MAX_LEN_JUMBO;
1749
1750 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1751 goto alloc_done;
1752
1753 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1754 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1755 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1756 &dmamap))
1757 return ENOBUFS;
1758 if (dmamap == NULL)
1759 panic("dmamap NULL in bge_init_tx_ring");
1760 if (sc->bge_dma64) {
1761 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1762 BGE_NTXSEG, maxsegsz, 0,
1763 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1764 &dmamap32)) {
1765 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1766 return ENOBUFS;
1767 }
1768 if (dmamap32 == NULL)
1769 panic("dmamap32 NULL in bge_init_tx_ring");
1770 } else
1771 dmamap32 = dmamap;
1772 dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
1773 if (dma == NULL) {
1774 aprint_error_dev(sc->bge_dev,
1775 "can't alloc txdmamap_pool_entry\n");
1776 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1777 if (sc->bge_dma64)
1778 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1779 return ENOMEM;
1780 }
1781 dma->dmamap = dmamap;
1782 dma->dmamap32 = dmamap32;
1783 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1784 }
1785 alloc_done:
1786 sc->bge_flags |= BGEF_TXRING_VALID;
1787
1788 return 0;
1789 }
1790
1791 static void
1792 bge_setmulti(struct bge_softc *sc)
1793 {
1794 struct ethercom * const ec = &sc->ethercom;
1795 struct ifnet * const ifp = &ec->ec_if;
1796 struct ether_multi *enm;
1797 struct ether_multistep step;
1798 uint32_t hashes[4] = { 0, 0, 0, 0 };
1799 uint32_t h;
1800 int i;
1801
1802 if (ifp->if_flags & IFF_PROMISC)
1803 goto allmulti;
1804
1805 /* Now program new ones. */
1806 ETHER_LOCK(ec);
1807 ETHER_FIRST_MULTI(step, ec, enm);
1808 while (enm != NULL) {
1809 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1810 /*
1811 * We must listen to a range of multicast addresses.
1812 * For now, just accept all multicasts, rather than
1813 * trying to set only those filter bits needed to match
1814 * the range. (At this time, the only use of address
1815 * ranges is for IP multicast routing, for which the
1816 * range is big enough to require all bits set.)
1817 */
1818 ETHER_UNLOCK(ec);
1819 goto allmulti;
1820 }
1821
1822 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1823
1824 /* Just want the 7 least-significant bits. */
1825 h &= 0x7f;
1826
1827 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1828 ETHER_NEXT_MULTI(step, enm);
1829 }
1830 ETHER_UNLOCK(ec);
1831
1832 ifp->if_flags &= ~IFF_ALLMULTI;
1833 goto setit;
1834
1835 allmulti:
1836 ifp->if_flags |= IFF_ALLMULTI;
1837 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1838
1839 setit:
1840 for (i = 0; i < 4; i++)
1841 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1842 }
1843
1844 static void
1845 bge_sig_pre_reset(struct bge_softc *sc, int type)
1846 {
1847
1848 /*
1849 * Some chips don't like this so only do this if ASF is enabled
1850 */
1851 if (sc->bge_asf_mode)
1852 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1853
1854 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1855 switch (type) {
1856 case BGE_RESET_START:
1857 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1858 BGE_FW_DRV_STATE_START);
1859 break;
1860 case BGE_RESET_SHUTDOWN:
1861 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1862 BGE_FW_DRV_STATE_UNLOAD);
1863 break;
1864 case BGE_RESET_SUSPEND:
1865 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1866 BGE_FW_DRV_STATE_SUSPEND);
1867 break;
1868 }
1869 }
1870
1871 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1872 bge_ape_driver_state_change(sc, type);
1873 }
1874
1875 static void
1876 bge_sig_post_reset(struct bge_softc *sc, int type)
1877 {
1878
1879 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1880 switch (type) {
1881 case BGE_RESET_START:
1882 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1883 BGE_FW_DRV_STATE_START_DONE);
1884 /* START DONE */
1885 break;
1886 case BGE_RESET_SHUTDOWN:
1887 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1888 BGE_FW_DRV_STATE_UNLOAD_DONE);
1889 break;
1890 }
1891 }
1892
1893 if (type == BGE_RESET_SHUTDOWN)
1894 bge_ape_driver_state_change(sc, type);
1895 }
1896
1897 static void
1898 bge_sig_legacy(struct bge_softc *sc, int type)
1899 {
1900
1901 if (sc->bge_asf_mode) {
1902 switch (type) {
1903 case BGE_RESET_START:
1904 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1905 BGE_FW_DRV_STATE_START);
1906 break;
1907 case BGE_RESET_SHUTDOWN:
1908 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1909 BGE_FW_DRV_STATE_UNLOAD);
1910 break;
1911 }
1912 }
1913 }
1914
1915 static void
1916 bge_wait_for_event_ack(struct bge_softc *sc)
1917 {
1918 int i;
1919
1920 /* wait up to 2500usec */
1921 for (i = 0; i < 250; i++) {
1922 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1923 BGE_RX_CPU_DRV_EVENT))
1924 break;
1925 DELAY(10);
1926 }
1927 }
1928
1929 static void
1930 bge_stop_fw(struct bge_softc *sc)
1931 {
1932
1933 if (sc->bge_asf_mode) {
1934 bge_wait_for_event_ack(sc);
1935
1936 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1937 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1938 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1939
1940 bge_wait_for_event_ack(sc);
1941 }
1942 }
1943
1944 static int
1945 bge_poll_fw(struct bge_softc *sc)
1946 {
1947 uint32_t val;
1948 int i;
1949
1950 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1951 for (i = 0; i < BGE_TIMEOUT; i++) {
1952 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1953 if (val & BGE_VCPU_STATUS_INIT_DONE)
1954 break;
1955 DELAY(100);
1956 }
1957 if (i >= BGE_TIMEOUT) {
1958 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1959 return -1;
1960 }
1961 } else {
1962 /*
1963 * Poll the value location we just wrote until
1964 * we see the 1's complement of the magic number.
1965 * This indicates that the firmware initialization
1966 * is complete.
1967 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1968 */
1969 for (i = 0; i < BGE_TIMEOUT; i++) {
1970 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1971 if (val == ~BGE_SRAM_FW_MB_MAGIC)
1972 break;
1973 DELAY(10);
1974 }
1975
1976 if ((i >= BGE_TIMEOUT)
1977 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1978 aprint_error_dev(sc->bge_dev,
1979 "firmware handshake timed out, val = %x\n", val);
1980 return -1;
1981 }
1982 }
1983
1984 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1985 /* tg3 says we have to wait extra time */
1986 delay(10 * 1000);
1987 }
1988
1989 return 0;
1990 }
1991
1992 int
1993 bge_phy_addr(struct bge_softc *sc)
1994 {
1995 struct pci_attach_args *pa = &(sc->bge_pa);
1996 int phy_addr = 1;
1997
1998 /*
1999 * PHY address mapping for various devices.
2000 *
2001 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2002 * ---------+-------+-------+-------+-------+
2003 * BCM57XX | 1 | X | X | X |
2004 * BCM5704 | 1 | X | 1 | X |
2005 * BCM5717 | 1 | 8 | 2 | 9 |
2006 * BCM5719 | 1 | 8 | 2 | 9 |
2007 * BCM5720 | 1 | 8 | 2 | 9 |
2008 *
2009 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2010 * ---------+-------+-------+-------+-------+
2011 * BCM57XX | X | X | X | X |
2012 * BCM5704 | X | X | X | X |
2013 * BCM5717 | X | X | X | X |
2014 * BCM5719 | 3 | 10 | 4 | 11 |
2015 * BCM5720 | X | X | X | X |
2016 *
2017 * Other addresses may respond but they are not
2018 * IEEE compliant PHYs and should be ignored.
2019 */
2020 switch (BGE_ASICREV(sc->bge_chipid)) {
2021 case BGE_ASICREV_BCM5717:
2022 case BGE_ASICREV_BCM5719:
2023 case BGE_ASICREV_BCM5720:
2024 phy_addr = pa->pa_function;
2025 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2026 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2027 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2028 } else {
2029 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2030 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2031 }
2032 }
2033
2034 return phy_addr;
2035 }
2036
2037 /*
2038 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2039 * self-test results.
2040 */
2041 static int
2042 bge_chipinit(struct bge_softc *sc)
2043 {
2044 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2045 int i;
2046
2047 /* Set endianness before we access any non-PCI registers. */
2048 misc_ctl = BGE_INIT;
2049 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2050 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2051 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2052 misc_ctl);
2053
2054 /*
2055 * Clear the MAC statistics block in the NIC's
2056 * internal memory.
2057 */
2058 for (i = BGE_STATS_BLOCK;
2059 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2060 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2061
2062 for (i = BGE_STATUS_BLOCK;
2063 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2064 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2065
2066 /* 5717 workaround from tg3 */
2067 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2068 /* Save */
2069 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2070
2071 /* Temporary modify MODE_CTL to control TLP */
2072 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2073 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2074
2075 /* Control TLP */
2076 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2077 BGE_TLP_PHYCTL1);
2078 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2079 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2080
2081 /* Restore */
2082 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2083 }
2084
2085 if (BGE_IS_57765_FAMILY(sc)) {
2086 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2087 /* Save */
2088 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2089
2090 /* Temporary modify MODE_CTL to control TLP */
2091 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2092 CSR_WRITE_4(sc, BGE_MODE_CTL,
2093 reg | BGE_MODECTL_PCIE_TLPADDR1);
2094
2095 /* Control TLP */
2096 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2097 BGE_TLP_PHYCTL5);
2098 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2099 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2100
2101 /* Restore */
2102 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2103 }
2104 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2105 /*
2106 * For the 57766 and non Ax versions of 57765, bootcode
2107 * needs to setup the PCIE Fast Training Sequence (FTS)
2108 * value to prevent transmit hangs.
2109 */
2110 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2111 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2112 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2113
2114 /* Save */
2115 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2116
2117 /* Temporary modify MODE_CTL to control TLP */
2118 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2119 CSR_WRITE_4(sc, BGE_MODE_CTL,
2120 reg | BGE_MODECTL_PCIE_TLPADDR0);
2121
2122 /* Control TLP */
2123 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2124 BGE_TLP_FTSMAX);
2125 reg &= ~BGE_TLP_FTSMAX_MSK;
2126 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2127 reg | BGE_TLP_FTSMAX_VAL);
2128
2129 /* Restore */
2130 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2131 }
2132
2133 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2134 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2135 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2136 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2137 }
2138
2139 /* Set up the PCI DMA control register. */
2140 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2141 if (sc->bge_flags & BGEF_PCIE) {
2142 /* Read watermark not used, 128 bytes for write. */
2143 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2144 device_xname(sc->bge_dev)));
2145 if (sc->bge_mps >= 256)
2146 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2147 else
2148 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2149 } else if (sc->bge_flags & BGEF_PCIX) {
2150 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2151 device_xname(sc->bge_dev)));
2152 /* PCI-X bus */
2153 if (BGE_IS_5714_FAMILY(sc)) {
2154 /* 256 bytes for read and write. */
2155 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2156 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2157
2158 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2159 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2160 else
2161 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2162 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2163 /*
2164 * In the BCM5703, the DMA read watermark should
2165 * be set to less than or equal to the maximum
2166 * memory read byte count of the PCI-X command
2167 * register.
2168 */
2169 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2170 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2171 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2172 /* 1536 bytes for read, 384 bytes for write. */
2173 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2174 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2175 } else {
2176 /* 384 bytes for read and write. */
2177 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2178 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2179 (0x0F);
2180 }
2181
2182 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2183 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2184 uint32_t tmp;
2185
2186 /* Set ONEDMA_ATONCE for hardware workaround. */
2187 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2188 if (tmp == 6 || tmp == 7)
2189 dma_rw_ctl |=
2190 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2191
2192 /* Set PCI-X DMA write workaround. */
2193 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2194 }
2195 } else {
2196 /* Conventional PCI bus: 256 bytes for read and write. */
2197 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2198 device_xname(sc->bge_dev)));
2199 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2200 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2201
2202 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2203 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2204 dma_rw_ctl |= 0x0F;
2205 }
2206
2207 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2208 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2209 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2210 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2211
2212 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2213 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2214 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2215
2216 if (BGE_IS_57765_PLUS(sc)) {
2217 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2218 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2219 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2220
2221 /*
2222 * Enable HW workaround for controllers that misinterpret
2223 * a status tag update and leave interrupts permanently
2224 * disabled.
2225 */
2226 if (!BGE_IS_57765_FAMILY(sc) &&
2227 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2228 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2229 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2230 }
2231
2232 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2233 dma_rw_ctl);
2234
2235 /*
2236 * Set up general mode register.
2237 */
2238 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2239 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2240 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2241 /* Retain Host-2-BMC settings written by APE firmware. */
2242 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2243 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2244 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2245 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2246 }
2247 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2248 BGE_MODECTL_TX_NO_PHDR_CSUM;
2249
2250 /*
2251 * BCM5701 B5 have a bug causing data corruption when using
2252 * 64-bit DMA reads, which can be terminated early and then
2253 * completed later as 32-bit accesses, in combination with
2254 * certain bridges.
2255 */
2256 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2257 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2258 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2259
2260 /*
2261 * Tell the firmware the driver is running
2262 */
2263 if (sc->bge_asf_mode & ASF_STACKUP)
2264 mode_ctl |= BGE_MODECTL_STACKUP;
2265
2266 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2267
2268 /*
2269 * Disable memory write invalidate. Apparently it is not supported
2270 * properly by these devices.
2271 */
2272 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2273 PCI_COMMAND_INVALIDATE_ENABLE);
2274
2275 #ifdef __brokenalpha__
2276 /*
2277 * Must insure that we do not cross an 8K (bytes) boundary
2278 * for DMA reads. Our highest limit is 1K bytes. This is a
2279 * restriction on some ALPHA platforms with early revision
2280 * 21174 PCI chipsets, such as the AlphaPC 164lx
2281 */
2282 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2283 #endif
2284
2285 /* Set the timer prescaler (always 66MHz) */
2286 CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2287
2288 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2289 DELAY(40); /* XXX */
2290
2291 /* Put PHY into ready state */
2292 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2293 DELAY(40);
2294 }
2295
2296 return 0;
2297 }
2298
2299 static int
2300 bge_blockinit(struct bge_softc *sc)
2301 {
2302 volatile struct bge_rcb *rcb;
2303 bus_size_t rcb_addr;
2304 struct ifnet * const ifp = &sc->ethercom.ec_if;
2305 bge_hostaddr taddr;
2306 uint32_t dmactl, rdmareg, mimode, val;
2307 int i, limit;
2308
2309 /*
2310 * Initialize the memory window pointer register so that
2311 * we can access the first 32K of internal NIC RAM. This will
2312 * allow us to set up the TX send ring RCBs and the RX return
2313 * ring RCBs, plus other things which live in NIC memory.
2314 */
2315 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2316
2317 if (!BGE_IS_5705_PLUS(sc)) {
2318 /* 57XX step 33 */
2319 /* Configure mbuf memory pool */
2320 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2321
2322 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2323 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2324 else
2325 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2326
2327 /* 57XX step 34 */
2328 /* Configure DMA resource pool */
2329 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2330 BGE_DMA_DESCRIPTORS);
2331 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2332 }
2333
2334 /* 5718 step 11, 57XX step 35 */
2335 /*
2336 * Configure mbuf pool watermarks. New broadcom docs strongly
2337 * recommend these.
2338 */
2339 if (BGE_IS_5717_PLUS(sc)) {
2340 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2341 if (ifp->if_mtu > ETHERMTU) {
2342 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2343 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2344 } else {
2345 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2346 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2347 }
2348 } else if (BGE_IS_5705_PLUS(sc)) {
2349 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2350
2351 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2352 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2353 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2354 } else {
2355 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2356 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2357 }
2358 } else {
2359 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2360 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2361 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2362 }
2363
2364 /* 57XX step 36 */
2365 /* Configure DMA resource watermarks */
2366 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2367 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2368
2369 /* 5718 step 13, 57XX step 38 */
2370 /* Enable buffer manager */
2371 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2372 /*
2373 * Change the arbitration algorithm of TXMBUF read request to
2374 * round-robin instead of priority based for BCM5719. When
2375 * TXFIFO is almost empty, RDMA will hold its request until
2376 * TXFIFO is not almost empty.
2377 */
2378 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2379 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2380 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2381 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2382 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2383 val |= BGE_BMANMODE_LOMBUF_ATTN;
2384 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2385
2386 /* 57XX step 39 */
2387 /* Poll for buffer manager start indication */
2388 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2389 DELAY(10);
2390 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2391 break;
2392 }
2393
2394 if (i == BGE_TIMEOUT * 2) {
2395 aprint_error_dev(sc->bge_dev,
2396 "buffer manager failed to start\n");
2397 return ENXIO;
2398 }
2399
2400 /* 57XX step 40 */
2401 /* Enable flow-through queues */
2402 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2403 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2404
2405 /* Wait until queue initialization is complete */
2406 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2407 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2408 break;
2409 DELAY(10);
2410 }
2411
2412 if (i == BGE_TIMEOUT * 2) {
2413 aprint_error_dev(sc->bge_dev,
2414 "flow-through queue init failed\n");
2415 return ENXIO;
2416 }
2417
2418 /*
2419 * Summary of rings supported by the controller:
2420 *
2421 * Standard Receive Producer Ring
2422 * - This ring is used to feed receive buffers for "standard"
2423 * sized frames (typically 1536 bytes) to the controller.
2424 *
2425 * Jumbo Receive Producer Ring
2426 * - This ring is used to feed receive buffers for jumbo sized
2427 * frames (i.e. anything bigger than the "standard" frames)
2428 * to the controller.
2429 *
2430 * Mini Receive Producer Ring
2431 * - This ring is used to feed receive buffers for "mini"
2432 * sized frames to the controller.
2433 * - This feature required external memory for the controller
2434 * but was never used in a production system. Should always
2435 * be disabled.
2436 *
2437 * Receive Return Ring
2438 * - After the controller has placed an incoming frame into a
2439 * receive buffer that buffer is moved into a receive return
2440 * ring. The driver is then responsible to passing the
2441 * buffer up to the stack. Many versions of the controller
2442 * support multiple RR rings.
2443 *
2444 * Send Ring
2445 * - This ring is used for outgoing frames. Many versions of
2446 * the controller support multiple send rings.
2447 */
2448
2449 /* 5718 step 15, 57XX step 41 */
2450 /* Initialize the standard RX ring control block */
2451 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2452 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2453 /* 5718 step 16 */
2454 if (BGE_IS_57765_PLUS(sc)) {
2455 /*
2456 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2457 * Bits 15-2 : Maximum RX frame size
2458 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2459 * Bit 0 : Reserved
2460 */
2461 rcb->bge_maxlen_flags =
2462 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2463 } else if (BGE_IS_5705_PLUS(sc)) {
2464 /*
2465 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2466 * Bits 15-2 : Reserved (should be 0)
2467 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2468 * Bit 0 : Reserved
2469 */
2470 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2471 } else {
2472 /*
2473 * Ring size is always XXX entries
2474 * Bits 31-16: Maximum RX frame size
2475 * Bits 15-2 : Reserved (should be 0)
2476 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2477 * Bit 0 : Reserved
2478 */
2479 rcb->bge_maxlen_flags =
2480 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2481 }
2482 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2483 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2484 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2485 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2486 else
2487 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2488 /* Write the standard receive producer ring control block. */
2489 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2490 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2491 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2492 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2493
2494 /* Reset the standard receive producer ring producer index. */
2495 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2496
2497 /* 57XX step 42 */
2498 /*
2499 * Initialize the jumbo RX ring control block
2500 * We set the 'ring disabled' bit in the flags
2501 * field until we're actually ready to start
2502 * using this ring (i.e. once we set the MTU
2503 * high enough to require it).
2504 */
2505 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2506 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2507 BGE_HOSTADDR(rcb->bge_hostaddr,
2508 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2509 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2510 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2511 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2512 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2513 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2514 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2515 else
2516 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2517 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2518 rcb->bge_hostaddr.bge_addr_hi);
2519 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2520 rcb->bge_hostaddr.bge_addr_lo);
2521 /* Program the jumbo receive producer ring RCB parameters. */
2522 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2523 rcb->bge_maxlen_flags);
2524 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2525 /* Reset the jumbo receive producer ring producer index. */
2526 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2527 }
2528
2529 /* 57XX step 43 */
2530 /* Disable the mini receive producer ring RCB. */
2531 if (BGE_IS_5700_FAMILY(sc)) {
2532 /* Set up dummy disabled mini ring RCB */
2533 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2534 rcb->bge_maxlen_flags =
2535 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2536 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2537 rcb->bge_maxlen_flags);
2538 /* Reset the mini receive producer ring producer index. */
2539 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2540
2541 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2542 offsetof(struct bge_ring_data, bge_info),
2543 sizeof(struct bge_gib),
2544 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2545 }
2546
2547 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2548 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2549 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2550 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2551 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2552 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2553 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2554 }
2555 /* 5718 step 14, 57XX step 44 */
2556 /*
2557 * The BD ring replenish thresholds control how often the
2558 * hardware fetches new BD's from the producer rings in host
2559 * memory. Setting the value too low on a busy system can
2560 * starve the hardware and recue the throughpout.
2561 *
2562 * Set the BD ring replenish thresholds. The recommended
2563 * values are 1/8th the number of descriptors allocated to
2564 * each ring, but since we try to avoid filling the entire
2565 * ring we set these to the minimal value of 8. This needs to
2566 * be done on several of the supported chip revisions anyway,
2567 * to work around HW bugs.
2568 */
2569 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2570 if (BGE_IS_JUMBO_CAPABLE(sc))
2571 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2572
2573 /* 5718 step 18 */
2574 if (BGE_IS_5717_PLUS(sc)) {
2575 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2576 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2577 }
2578
2579 /* 57XX step 45 */
2580 /*
2581 * Disable all send rings by setting the 'ring disabled' bit
2582 * in the flags field of all the TX send ring control blocks,
2583 * located in NIC memory.
2584 */
2585 if (BGE_IS_5700_FAMILY(sc)) {
2586 /* 5700 to 5704 had 16 send rings. */
2587 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2588 } else if (BGE_IS_5717_PLUS(sc)) {
2589 limit = BGE_TX_RINGS_5717_MAX;
2590 } else if (BGE_IS_57765_FAMILY(sc) ||
2591 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2592 limit = BGE_TX_RINGS_57765_MAX;
2593 } else
2594 limit = 1;
2595 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2596 for (i = 0; i < limit; i++) {
2597 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2598 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2599 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2600 rcb_addr += sizeof(struct bge_rcb);
2601 }
2602
2603 /* 57XX step 46 and 47 */
2604 /* Configure send ring RCB 0 (we use only the first ring) */
2605 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2606 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2607 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2608 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2609 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2610 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2611 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2612 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2613 else
2614 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2615 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2616 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2617 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2618
2619 /* 57XX step 48 */
2620 /*
2621 * Disable all receive return rings by setting the
2622 * 'ring diabled' bit in the flags field of all the receive
2623 * return ring control blocks, located in NIC memory.
2624 */
2625 if (BGE_IS_5717_PLUS(sc)) {
2626 /* Should be 17, use 16 until we get an SRAM map. */
2627 limit = 16;
2628 } else if (BGE_IS_5700_FAMILY(sc))
2629 limit = BGE_RX_RINGS_MAX;
2630 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2631 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2632 BGE_IS_57765_FAMILY(sc))
2633 limit = 4;
2634 else
2635 limit = 1;
2636 /* Disable all receive return rings */
2637 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2638 for (i = 0; i < limit; i++) {
2639 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2640 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2641 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2642 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2643 BGE_RCB_FLAG_RING_DISABLED));
2644 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2645 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2646 (i * (sizeof(uint64_t))), 0);
2647 rcb_addr += sizeof(struct bge_rcb);
2648 }
2649
2650 /* 57XX step 49 */
2651 /*
2652 * Set up receive return ring 0. Note that the NIC address
2653 * for RX return rings is 0x0. The return rings live entirely
2654 * within the host, so the nicaddr field in the RCB isn't used.
2655 */
2656 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2657 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2658 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2659 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2660 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2661 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2662 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2663
2664 /* 5718 step 24, 57XX step 53 */
2665 /* Set random backoff seed for TX */
2666 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2667 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2668 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2669 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2670 BGE_TX_BACKOFF_SEED_MASK);
2671
2672 /* 5718 step 26, 57XX step 55 */
2673 /* Set inter-packet gap */
2674 val = 0x2620;
2675 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2676 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2677 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2678 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2679 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2680
2681 /* 5718 step 27, 57XX step 56 */
2682 /*
2683 * Specify which ring to use for packets that don't match
2684 * any RX rules.
2685 */
2686 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2687
2688 /* 5718 step 28, 57XX step 57 */
2689 /*
2690 * Configure number of RX lists. One interrupt distribution
2691 * list, sixteen active lists, one bad frames class.
2692 */
2693 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2694
2695 /* 5718 step 29, 57XX step 58 */
2696 /* Inialize RX list placement stats mask. */
2697 if (BGE_IS_575X_PLUS(sc)) {
2698 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2699 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2700 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2701 } else
2702 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2703
2704 /* 5718 step 30, 57XX step 59 */
2705 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2706
2707 /* 5718 step 33, 57XX step 62 */
2708 /* Disable host coalescing until we get it set up */
2709 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2710
2711 /* 5718 step 34, 57XX step 63 */
2712 /* Poll to make sure it's shut down. */
2713 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2714 DELAY(10);
2715 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2716 break;
2717 }
2718
2719 if (i == BGE_TIMEOUT * 2) {
2720 aprint_error_dev(sc->bge_dev,
2721 "host coalescing engine failed to idle\n");
2722 return ENXIO;
2723 }
2724
2725 /* 5718 step 35, 36, 37 */
2726 /* Set up host coalescing defaults */
2727 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2728 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2729 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2730 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2731 if (!(BGE_IS_5705_PLUS(sc))) {
2732 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2733 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2734 }
2735 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2736 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2737
2738 /* Set up address of statistics block */
2739 if (BGE_IS_5700_FAMILY(sc)) {
2740 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2741 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2742 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2743 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2744 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2745 }
2746
2747 /* 5718 step 38 */
2748 /* Set up address of status block */
2749 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2750 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2751 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2752 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2753 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2754 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2755
2756 /* Set up status block size. */
2757 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2758 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2759 val = BGE_STATBLKSZ_FULL;
2760 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2761 } else {
2762 val = BGE_STATBLKSZ_32BYTE;
2763 bzero(&sc->bge_rdata->bge_status_block, 32);
2764 }
2765
2766 /* 5718 step 39, 57XX step 73 */
2767 /* Turn on host coalescing state machine */
2768 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2769
2770 /* 5718 step 40, 57XX step 74 */
2771 /* Turn on RX BD completion state machine and enable attentions */
2772 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2773 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2774
2775 /* 5718 step 41, 57XX step 75 */
2776 /* Turn on RX list placement state machine */
2777 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2778
2779 /* 57XX step 76 */
2780 /* Turn on RX list selector state machine. */
2781 if (!(BGE_IS_5705_PLUS(sc)))
2782 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2783
2784 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2785 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2786 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2787 BGE_MACMODE_FRMHDR_DMA_ENB;
2788
2789 if (sc->bge_flags & BGEF_FIBER_TBI)
2790 val |= BGE_PORTMODE_TBI;
2791 else if (sc->bge_flags & BGEF_FIBER_MII)
2792 val |= BGE_PORTMODE_GMII;
2793 else
2794 val |= BGE_PORTMODE_MII;
2795
2796 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2797 /* Allow APE to send/receive frames. */
2798 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2799 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2800
2801 /* Turn on DMA, clear stats */
2802 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2803 /* 5718 step 44 */
2804 DELAY(40);
2805
2806 /* 5718 step 45, 57XX step 79 */
2807 /* Set misc. local control, enable interrupts on attentions */
2808 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2809 if (BGE_IS_5717_PLUS(sc)) {
2810 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2811 /* 5718 step 46 */
2812 DELAY(100);
2813 }
2814
2815 /* 57XX step 81 */
2816 /* Turn on DMA completion state machine */
2817 if (!(BGE_IS_5705_PLUS(sc)))
2818 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2819
2820 /* 5718 step 47, 57XX step 82 */
2821 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2822
2823 /* 5718 step 48 */
2824 /* Enable host coalescing bug fix. */
2825 if (BGE_IS_5755_PLUS(sc))
2826 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2827
2828 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2829 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2830
2831 /* Turn on write DMA state machine */
2832 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2833 /* 5718 step 49 */
2834 DELAY(40);
2835
2836 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2837
2838 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2839 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2840
2841 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2842 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2843 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2844 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2845 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2846 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2847
2848 if (sc->bge_flags & BGEF_PCIE)
2849 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2850 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2851 if (ifp->if_mtu <= ETHERMTU)
2852 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2853 }
2854 if (sc->bge_flags & BGEF_TSO) {
2855 val |= BGE_RDMAMODE_TSO4_ENABLE;
2856 if (BGE_IS_5717_PLUS(sc))
2857 val |= BGE_RDMAMODE_TSO6_ENABLE;
2858 }
2859
2860 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2861 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2862 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2863 BGE_RDMAMODE_H2BNC_VLAN_DET;
2864 /*
2865 * Allow multiple outstanding read requests from
2866 * non-LSO read DMA engine.
2867 */
2868 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2869 }
2870
2871 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2872 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2873 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2874 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2875 BGE_IS_57765_PLUS(sc)) {
2876 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2877 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2878 else
2879 rdmareg = BGE_RDMA_RSRVCTRL;
2880 dmactl = CSR_READ_4(sc, rdmareg);
2881 /*
2882 * Adjust tx margin to prevent TX data corruption and
2883 * fix internal FIFO overflow.
2884 */
2885 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2886 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2887 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2888 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2889 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2890 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2891 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2892 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2893 }
2894 /*
2895 * Enable fix for read DMA FIFO overruns.
2896 * The fix is to limit the number of RX BDs
2897 * the hardware would fetch at a time.
2898 */
2899 CSR_WRITE_4(sc, rdmareg, dmactl |
2900 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2901 }
2902
2903 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2904 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2905 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2906 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2907 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2908 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2909 /*
2910 * Allow 4KB burst length reads for non-LSO frames.
2911 * Enable 512B burst length reads for buffer descriptors.
2912 */
2913 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2914 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2915 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2916 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2917 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2918 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2919 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2920 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2921 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2922 }
2923 /* Turn on read DMA state machine */
2924 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2925 /* 5718 step 52 */
2926 delay(40);
2927
2928 if (sc->bge_flags & BGEF_RDMA_BUG) {
2929 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2930 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2931 if ((val & 0xFFFF) > BGE_FRAMELEN)
2932 break;
2933 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2934 break;
2935 }
2936 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2937 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2938 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2939 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2940 else
2941 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2942 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2943 }
2944 }
2945
2946 /* 5718 step 56, 57XX step 84 */
2947 /* Turn on RX data completion state machine */
2948 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2949
2950 /* Turn on RX data and RX BD initiator state machine */
2951 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2952
2953 /* 57XX step 85 */
2954 /* Turn on Mbuf cluster free state machine */
2955 if (!BGE_IS_5705_PLUS(sc))
2956 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2957
2958 /* 5718 step 57, 57XX step 86 */
2959 /* Turn on send data completion state machine */
2960 val = BGE_SDCMODE_ENABLE;
2961 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2962 val |= BGE_SDCMODE_CDELAY;
2963 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2964
2965 /* 5718 step 58 */
2966 /* Turn on send BD completion state machine */
2967 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2968
2969 /* 57XX step 88 */
2970 /* Turn on RX BD initiator state machine */
2971 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2972
2973 /* 5718 step 60, 57XX step 90 */
2974 /* Turn on send data initiator state machine */
2975 if (sc->bge_flags & BGEF_TSO) {
2976 /* XXX: magic value from Linux driver */
2977 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2978 BGE_SDIMODE_HW_LSO_PRE_DMA);
2979 } else
2980 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2981
2982 /* 5718 step 61, 57XX step 91 */
2983 /* Turn on send BD initiator state machine */
2984 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2985
2986 /* 5718 step 62, 57XX step 92 */
2987 /* Turn on send BD selector state machine */
2988 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2989
2990 /* 5718 step 31, 57XX step 60 */
2991 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2992 /* 5718 step 32, 57XX step 61 */
2993 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2994 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2995
2996 /* ack/clear link change events */
2997 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2998 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2999 BGE_MACSTAT_LINK_CHANGED);
3000 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3001
3002 /*
3003 * Enable attention when the link has changed state for
3004 * devices that use auto polling.
3005 */
3006 if (sc->bge_flags & BGEF_FIBER_TBI) {
3007 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3008 } else {
3009 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3010 mimode = BGE_MIMODE_500KHZ_CONST;
3011 else
3012 mimode = BGE_MIMODE_BASE;
3013 /* 5718 step 68. 5718 step 69 (optionally). */
3014 if (BGE_IS_5700_FAMILY(sc) ||
3015 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3016 mimode |= BGE_MIMODE_AUTOPOLL;
3017 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3018 }
3019 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3020 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3021 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3022 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3023 BGE_EVTENB_MI_INTERRUPT);
3024 }
3025
3026 /*
3027 * Clear any pending link state attention.
3028 * Otherwise some link state change events may be lost until attention
3029 * is cleared by bge_intr() -> bge_link_upd() sequence.
3030 * It's not necessary on newer BCM chips - perhaps enabling link
3031 * state change attentions implies clearing pending attention.
3032 */
3033 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3034 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3035 BGE_MACSTAT_LINK_CHANGED);
3036
3037 /* Enable link state change attentions. */
3038 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3039
3040 return 0;
3041 }
3042
3043 static const struct bge_revision *
3044 bge_lookup_rev(uint32_t chipid)
3045 {
3046 const struct bge_revision *br;
3047
3048 for (br = bge_revisions; br->br_name != NULL; br++) {
3049 if (br->br_chipid == chipid)
3050 return br;
3051 }
3052
3053 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3054 if (br->br_chipid == BGE_ASICREV(chipid))
3055 return br;
3056 }
3057
3058 return NULL;
3059 }
3060
3061 static const struct bge_product *
3062 bge_lookup(const struct pci_attach_args *pa)
3063 {
3064 const struct bge_product *bp;
3065
3066 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3067 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3068 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3069 return bp;
3070 }
3071
3072 return NULL;
3073 }
3074
3075 static uint32_t
3076 bge_chipid(const struct pci_attach_args *pa)
3077 {
3078 uint32_t id;
3079
3080 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3081 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3082
3083 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3084 switch (PCI_PRODUCT(pa->pa_id)) {
3085 case PCI_PRODUCT_BROADCOM_BCM5717:
3086 case PCI_PRODUCT_BROADCOM_BCM5718:
3087 case PCI_PRODUCT_BROADCOM_BCM5719:
3088 case PCI_PRODUCT_BROADCOM_BCM5720:
3089 case PCI_PRODUCT_BROADCOM_BCM5725:
3090 case PCI_PRODUCT_BROADCOM_BCM5727:
3091 case PCI_PRODUCT_BROADCOM_BCM5762:
3092 case PCI_PRODUCT_BROADCOM_BCM57764:
3093 case PCI_PRODUCT_BROADCOM_BCM57767:
3094 case PCI_PRODUCT_BROADCOM_BCM57787:
3095 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3096 BGE_PCI_GEN2_PRODID_ASICREV);
3097 break;
3098 case PCI_PRODUCT_BROADCOM_BCM57761:
3099 case PCI_PRODUCT_BROADCOM_BCM57762:
3100 case PCI_PRODUCT_BROADCOM_BCM57765:
3101 case PCI_PRODUCT_BROADCOM_BCM57766:
3102 case PCI_PRODUCT_BROADCOM_BCM57781:
3103 case PCI_PRODUCT_BROADCOM_BCM57782:
3104 case PCI_PRODUCT_BROADCOM_BCM57785:
3105 case PCI_PRODUCT_BROADCOM_BCM57786:
3106 case PCI_PRODUCT_BROADCOM_BCM57791:
3107 case PCI_PRODUCT_BROADCOM_BCM57795:
3108 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3109 BGE_PCI_GEN15_PRODID_ASICREV);
3110 break;
3111 default:
3112 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3113 BGE_PCI_PRODID_ASICREV);
3114 break;
3115 }
3116 }
3117
3118 return id;
3119 }
3120
3121 /*
3122 * Return true if MSI can be used with this device.
3123 */
3124 static int
3125 bge_can_use_msi(struct bge_softc *sc)
3126 {
3127 int can_use_msi = 0;
3128
3129 switch (BGE_ASICREV(sc->bge_chipid)) {
3130 case BGE_ASICREV_BCM5714_A0:
3131 case BGE_ASICREV_BCM5714:
3132 /*
3133 * Apparently, MSI doesn't work when these chips are
3134 * configured in single-port mode.
3135 */
3136 break;
3137 case BGE_ASICREV_BCM5750:
3138 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3139 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3140 can_use_msi = 1;
3141 break;
3142 default:
3143 if (BGE_IS_575X_PLUS(sc))
3144 can_use_msi = 1;
3145 }
3146 return can_use_msi;
3147 }
3148
3149 /*
3150 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3151 * against our list and return its name if we find a match. Note
3152 * that since the Broadcom controller contains VPD support, we
3153 * can get the device name string from the controller itself instead
3154 * of the compiled-in string. This is a little slow, but it guarantees
3155 * we'll always announce the right product name.
3156 */
3157 static int
3158 bge_probe(device_t parent, cfdata_t match, void *aux)
3159 {
3160 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3161
3162 if (bge_lookup(pa) != NULL)
3163 return 1;
3164
3165 return 0;
3166 }
3167
3168 static void
3169 bge_attach(device_t parent, device_t self, void *aux)
3170 {
3171 struct bge_softc * const sc = device_private(self);
3172 struct pci_attach_args * const pa = aux;
3173 prop_dictionary_t dict;
3174 const struct bge_product *bp;
3175 const struct bge_revision *br;
3176 pci_chipset_tag_t pc;
3177 const char *intrstr = NULL;
3178 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3179 uint32_t command;
3180 struct ifnet *ifp;
3181 struct mii_data * const mii = &sc->bge_mii;
3182 uint32_t misccfg, mimode, macmode;
3183 void * kva;
3184 u_char eaddr[ETHER_ADDR_LEN];
3185 pcireg_t memtype, subid, reg;
3186 bus_addr_t memaddr;
3187 uint32_t pm_ctl;
3188 bool no_seeprom;
3189 int capmask, trys;
3190 int mii_flags;
3191 int map_flags;
3192 char intrbuf[PCI_INTRSTR_LEN];
3193
3194 bp = bge_lookup(pa);
3195 KASSERT(bp != NULL);
3196
3197 sc->sc_pc = pa->pa_pc;
3198 sc->sc_pcitag = pa->pa_tag;
3199 sc->bge_dev = self;
3200
3201 sc->bge_pa = *pa;
3202 pc = sc->sc_pc;
3203 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3204
3205 aprint_naive(": Ethernet controller\n");
3206 aprint_normal(": %s Ethernet\n", bp->bp_name);
3207
3208 /*
3209 * Map control/status registers.
3210 */
3211 DPRINTFN(5, ("Map control/status regs\n"));
3212 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3213 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3214 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3215 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3216
3217 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3218 aprint_error_dev(sc->bge_dev,
3219 "failed to enable memory mapping!\n");
3220 return;
3221 }
3222
3223 DPRINTFN(5, ("pci_mem_find\n"));
3224 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3225 switch (memtype) {
3226 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3227 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3228 #if 0
3229 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3230 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3231 &memaddr, &sc->bge_bsize) == 0)
3232 break;
3233 #else
3234 /*
3235 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3236 * system get NMI on boot (PR#48451). This problem might not be
3237 * the driver's bug but our PCI common part's bug. Until we
3238 * find a real reason, we ignore the prefetchable bit.
3239 */
3240 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3241 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3242 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3243 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3244 map_flags, &sc->bge_bhandle) == 0) {
3245 sc->bge_btag = pa->pa_memt;
3246 break;
3247 }
3248 }
3249 #endif
3250 /* FALLTHROUGH */
3251 default:
3252 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3253 return;
3254 }
3255
3256 /* Save various chip information. */
3257 sc->bge_chipid = bge_chipid(pa);
3258 sc->bge_phy_addr = bge_phy_addr(sc);
3259
3260 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3261 &sc->bge_pciecap, NULL) != 0) {
3262 /* PCIe */
3263 sc->bge_flags |= BGEF_PCIE;
3264 /* Extract supported maximum payload size. */
3265 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3266 sc->bge_pciecap + PCIE_DCAP);
3267 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3268 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3269 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3270 sc->bge_expmrq = 2048;
3271 else
3272 sc->bge_expmrq = 4096;
3273 bge_set_max_readrq(sc);
3274 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3275 /* PCIe without PCIe cap */
3276 sc->bge_flags |= BGEF_PCIE;
3277 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3278 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3279 /* PCI-X */
3280 sc->bge_flags |= BGEF_PCIX;
3281 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3282 &sc->bge_pcixcap, NULL) == 0)
3283 aprint_error_dev(sc->bge_dev,
3284 "unable to find PCIX capability\n");
3285 }
3286
3287 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3288 /*
3289 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3290 * can clobber the chip's PCI config-space power control
3291 * registers, leaving the card in D3 powersave state. We do
3292 * not have memory-mapped registers in this state, so force
3293 * device into D0 state before starting initialization.
3294 */
3295 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3296 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3297 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3298 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3299 DELAY(1000); /* 27 usec is allegedly sufficient */
3300 }
3301
3302 /* Save chipset family. */
3303 switch (BGE_ASICREV(sc->bge_chipid)) {
3304 case BGE_ASICREV_BCM5717:
3305 case BGE_ASICREV_BCM5719:
3306 case BGE_ASICREV_BCM5720:
3307 sc->bge_flags |= BGEF_5717_PLUS;
3308 /* FALLTHROUGH */
3309 case BGE_ASICREV_BCM5762:
3310 case BGE_ASICREV_BCM57765:
3311 case BGE_ASICREV_BCM57766:
3312 if (!BGE_IS_5717_PLUS(sc))
3313 sc->bge_flags |= BGEF_57765_FAMILY;
3314 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3315 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3316 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3317 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3318 /*
3319 * Enable work around for DMA engine miscalculation
3320 * of TXMBUF available space.
3321 */
3322 sc->bge_flags |= BGEF_RDMA_BUG;
3323
3324 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3325 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3326 /* Jumbo frame on BCM5719 A0 does not work. */
3327 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3328 }
3329 }
3330 break;
3331 case BGE_ASICREV_BCM5755:
3332 case BGE_ASICREV_BCM5761:
3333 case BGE_ASICREV_BCM5784:
3334 case BGE_ASICREV_BCM5785:
3335 case BGE_ASICREV_BCM5787:
3336 case BGE_ASICREV_BCM57780:
3337 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3338 break;
3339 case BGE_ASICREV_BCM5700:
3340 case BGE_ASICREV_BCM5701:
3341 case BGE_ASICREV_BCM5703:
3342 case BGE_ASICREV_BCM5704:
3343 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3344 break;
3345 case BGE_ASICREV_BCM5714_A0:
3346 case BGE_ASICREV_BCM5780:
3347 case BGE_ASICREV_BCM5714:
3348 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3349 /* FALLTHROUGH */
3350 case BGE_ASICREV_BCM5750:
3351 case BGE_ASICREV_BCM5752:
3352 case BGE_ASICREV_BCM5906:
3353 sc->bge_flags |= BGEF_575X_PLUS;
3354 /* FALLTHROUGH */
3355 case BGE_ASICREV_BCM5705:
3356 sc->bge_flags |= BGEF_5705_PLUS;
3357 break;
3358 }
3359
3360 /* Identify chips with APE processor. */
3361 switch (BGE_ASICREV(sc->bge_chipid)) {
3362 case BGE_ASICREV_BCM5717:
3363 case BGE_ASICREV_BCM5719:
3364 case BGE_ASICREV_BCM5720:
3365 case BGE_ASICREV_BCM5761:
3366 case BGE_ASICREV_BCM5762:
3367 sc->bge_flags |= BGEF_APE;
3368 break;
3369 }
3370
3371 /*
3372 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3373 * not actually a MAC controller bug but an issue with the embedded
3374 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3375 */
3376 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3377 sc->bge_flags |= BGEF_40BIT_BUG;
3378
3379 /* Chips with APE need BAR2 access for APE registers/memory. */
3380 if ((sc->bge_flags & BGEF_APE) != 0) {
3381 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3382 #if 0
3383 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3384 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3385 &sc->bge_apesize)) {
3386 aprint_error_dev(sc->bge_dev,
3387 "couldn't map BAR2 memory\n");
3388 return;
3389 }
3390 #else
3391 /*
3392 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3393 * system get NMI on boot (PR#48451). This problem might not be
3394 * the driver's bug but our PCI common part's bug. Until we
3395 * find a real reason, we ignore the prefetchable bit.
3396 */
3397 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3398 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3399 aprint_error_dev(sc->bge_dev,
3400 "couldn't map BAR2 memory\n");
3401 return;
3402 }
3403
3404 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3405 if (bus_space_map(pa->pa_memt, memaddr,
3406 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3407 aprint_error_dev(sc->bge_dev,
3408 "couldn't map BAR2 memory\n");
3409 return;
3410 }
3411 sc->bge_apetag = pa->pa_memt;
3412 #endif
3413
3414 /* Enable APE register/memory access by host driver. */
3415 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3416 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3417 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3418 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3419 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3420
3421 bge_ape_lock_init(sc);
3422 bge_ape_read_fw_ver(sc);
3423 }
3424
3425 /* Identify the chips that use an CPMU. */
3426 if (BGE_IS_5717_PLUS(sc) ||
3427 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3428 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3429 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3430 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3431 sc->bge_flags |= BGEF_CPMU_PRESENT;
3432
3433 /*
3434 * When using the BCM5701 in PCI-X mode, data corruption has
3435 * been observed in the first few bytes of some received packets.
3436 * Aligning the packet buffer in memory eliminates the corruption.
3437 * Unfortunately, this misaligns the packet payloads. On platforms
3438 * which do not support unaligned accesses, we will realign the
3439 * payloads by copying the received packets.
3440 */
3441 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3442 sc->bge_flags & BGEF_PCIX)
3443 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3444
3445 if (BGE_IS_5700_FAMILY(sc))
3446 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3447
3448 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3449 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3450
3451 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3452 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3453 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3454 sc->bge_flags |= BGEF_IS_5788;
3455
3456 /*
3457 * Some controllers seem to require a special firmware to use
3458 * TSO. But the firmware is not available to FreeBSD and Linux
3459 * claims that the TSO performed by the firmware is slower than
3460 * hardware based TSO. Moreover the firmware based TSO has one
3461 * known bug which can't handle TSO if ethernet header + IP/TCP
3462 * header is greater than 80 bytes. The workaround for the TSO
3463 * bug exist but it seems it's too expensive than not using
3464 * TSO at all. Some hardwares also have the TSO bug so limit
3465 * the TSO to the controllers that are not affected TSO issues
3466 * (e.g. 5755 or higher).
3467 */
3468 if (BGE_IS_5755_PLUS(sc)) {
3469 /*
3470 * BCM5754 and BCM5787 shares the same ASIC id so
3471 * explicit device id check is required.
3472 */
3473 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3474 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3475 sc->bge_flags |= BGEF_TSO;
3476 /* TSO on BCM5719 A0 does not work. */
3477 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3478 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3479 sc->bge_flags &= ~BGEF_TSO;
3480 }
3481
3482 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3483 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3484 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3485 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3486 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3487 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3488 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3489 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3490 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3491 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3492 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3493 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3494 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3495 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3496 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3497 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3498 /* These chips are 10/100 only. */
3499 capmask &= ~BMSR_EXTSTAT;
3500 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3501 }
3502
3503 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3504 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3505 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3506 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3507 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3508
3509 /* Set various PHY bug flags. */
3510 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3511 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3512 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3513 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3514 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3515 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3516 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3517 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3518 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3519 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3520 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3521 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3522 if (BGE_IS_5705_PLUS(sc) &&
3523 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3524 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3525 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3526 !BGE_IS_57765_PLUS(sc)) {
3527 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3528 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3529 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3530 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3531 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3532 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3533 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3534 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3535 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3536 } else
3537 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3538 }
3539
3540 /*
3541 * SEEPROM check.
3542 * First check if firmware knows we do not have SEEPROM.
3543 */
3544 if (prop_dictionary_get_bool(device_properties(self),
3545 "without-seeprom", &no_seeprom) && no_seeprom)
3546 sc->bge_flags |= BGEF_NO_EEPROM;
3547
3548 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3549 sc->bge_flags |= BGEF_NO_EEPROM;
3550
3551 /* Now check the 'ROM failed' bit on the RX CPU */
3552 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3553 sc->bge_flags |= BGEF_NO_EEPROM;
3554
3555 sc->bge_asf_mode = 0;
3556 /* No ASF if APE present. */
3557 if ((sc->bge_flags & BGEF_APE) == 0) {
3558 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3559 BGE_SRAM_DATA_SIG_MAGIC)) {
3560 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3561 BGE_HWCFG_ASF) {
3562 sc->bge_asf_mode |= ASF_ENABLE;
3563 sc->bge_asf_mode |= ASF_STACKUP;
3564 if (BGE_IS_575X_PLUS(sc))
3565 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3566 }
3567 }
3568 }
3569
3570 int counts[PCI_INTR_TYPE_SIZE] = {
3571 [PCI_INTR_TYPE_INTX] = 1,
3572 [PCI_INTR_TYPE_MSI] = 1,
3573 [PCI_INTR_TYPE_MSIX] = 1,
3574 };
3575 int max_type = PCI_INTR_TYPE_MSIX;
3576
3577 if (!bge_can_use_msi(sc)) {
3578 /* MSI broken, allow only INTx */
3579 max_type = PCI_INTR_TYPE_INTX;
3580 }
3581
3582 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3583 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3584 return;
3585 }
3586
3587 DPRINTFN(5, ("pci_intr_string\n"));
3588 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3589 sizeof(intrbuf));
3590 DPRINTFN(5, ("pci_intr_establish\n"));
3591 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3592 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3593 if (sc->bge_intrhand == NULL) {
3594 pci_intr_release(pc, sc->bge_pihp, 1);
3595 sc->bge_pihp = NULL;
3596
3597 aprint_error_dev(self, "couldn't establish interrupt");
3598 if (intrstr != NULL)
3599 aprint_error(" at %s", intrstr);
3600 aprint_error("\n");
3601 return;
3602 }
3603 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3604
3605 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3606 case PCI_INTR_TYPE_MSIX:
3607 case PCI_INTR_TYPE_MSI:
3608 KASSERT(bge_can_use_msi(sc));
3609 sc->bge_flags |= BGEF_MSI;
3610 break;
3611 default:
3612 /* nothing to do */
3613 break;
3614 }
3615
3616 /*
3617 * All controllers except BCM5700 supports tagged status but
3618 * we use tagged status only for MSI case on BCM5717. Otherwise
3619 * MSI on BCM5717 does not work.
3620 */
3621 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3622 sc->bge_flags |= BGEF_TAGGED_STATUS;
3623
3624 /*
3625 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3626 * lock in bge_reset().
3627 */
3628 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3629 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3630 delay(1000);
3631 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3632
3633 bge_stop_fw(sc);
3634 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3635 if (bge_reset(sc))
3636 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3637
3638 /*
3639 * Read the hardware config word in the first 32k of NIC internal
3640 * memory, or fall back to the config word in the EEPROM.
3641 * Note: on some BCM5700 cards, this value appears to be unset.
3642 */
3643 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3644 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3645 BGE_SRAM_DATA_SIG_MAGIC) {
3646 uint32_t tmp;
3647
3648 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3649 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3650 BGE_SRAM_DATA_VER_SHIFT;
3651 if ((0 < tmp) && (tmp < 0x100))
3652 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3653 if (sc->bge_flags & BGEF_PCIE)
3654 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3655 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3656 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3657 if (BGE_IS_5717_PLUS(sc))
3658 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3659 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3660 bge_read_eeprom(sc, (void *)&hwcfg,
3661 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3662 hwcfg = be32toh(hwcfg);
3663 }
3664 aprint_normal_dev(sc->bge_dev,
3665 "HW config %08x, %08x, %08x, %08x %08x\n",
3666 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3667
3668 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3669 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3670
3671 if (bge_chipinit(sc)) {
3672 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3673 bge_release_resources(sc);
3674 return;
3675 }
3676
3677 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3678 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3679 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3680 DELAY(100);
3681 }
3682
3683 /* Set MI_MODE */
3684 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3685 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3686 mimode |= BGE_MIMODE_500KHZ_CONST;
3687 else
3688 mimode |= BGE_MIMODE_BASE;
3689 CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3690 DELAY(80);
3691
3692 /*
3693 * Get station address from the EEPROM.
3694 */
3695 if (bge_get_eaddr(sc, eaddr)) {
3696 aprint_error_dev(sc->bge_dev,
3697 "failed to read station address\n");
3698 bge_release_resources(sc);
3699 return;
3700 }
3701
3702 br = bge_lookup_rev(sc->bge_chipid);
3703
3704 if (br == NULL) {
3705 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3706 sc->bge_chipid);
3707 } else {
3708 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3709 br->br_name, sc->bge_chipid);
3710 }
3711 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3712
3713 /* Allocate the general information block and ring buffers. */
3714 if (pci_dma64_available(pa)) {
3715 sc->bge_dmatag = pa->pa_dmat64;
3716 sc->bge_dmatag32 = pa->pa_dmat;
3717 sc->bge_dma64 = true;
3718 } else {
3719 sc->bge_dmatag = pa->pa_dmat;
3720 sc->bge_dmatag32 = pa->pa_dmat;
3721 sc->bge_dma64 = false;
3722 }
3723
3724 /* 40bit DMA workaround */
3725 if (sizeof(bus_addr_t) > 4) {
3726 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3727 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3728
3729 if (bus_dmatag_subregion(olddmatag, 0,
3730 (bus_addr_t)__MASK(40),
3731 &(sc->bge_dmatag), BUS_DMA_NOWAIT) != 0) {
3732 aprint_error_dev(self,
3733 "WARNING: failed to restrict dma range,"
3734 " falling back to parent bus dma range\n");
3735 sc->bge_dmatag = olddmatag;
3736 }
3737 }
3738 }
3739 SLIST_INIT(&sc->txdma_list);
3740 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3741 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3742 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3743 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3744 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3745 return;
3746 }
3747 DPRINTFN(5, ("bus_dmamem_map\n"));
3748 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3749 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3750 BUS_DMA_NOWAIT)) {
3751 aprint_error_dev(sc->bge_dev,
3752 "can't map DMA buffers (%zu bytes)\n",
3753 sizeof(struct bge_ring_data));
3754 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3755 sc->bge_ring_rseg);
3756 return;
3757 }
3758 DPRINTFN(5, ("bus_dmamem_create\n"));
3759 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3760 sizeof(struct bge_ring_data), 0,
3761 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3762 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3763 bus_dmamem_unmap(sc->bge_dmatag, kva,
3764 sizeof(struct bge_ring_data));
3765 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3766 sc->bge_ring_rseg);
3767 return;
3768 }
3769 DPRINTFN(5, ("bus_dmamem_load\n"));
3770 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3771 sizeof(struct bge_ring_data), NULL,
3772 BUS_DMA_NOWAIT)) {
3773 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3774 bus_dmamem_unmap(sc->bge_dmatag, kva,
3775 sizeof(struct bge_ring_data));
3776 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3777 sc->bge_ring_rseg);
3778 return;
3779 }
3780
3781 DPRINTFN(5, ("bzero\n"));
3782 sc->bge_rdata = (struct bge_ring_data *)kva;
3783
3784 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3785
3786 /* Try to allocate memory for jumbo buffers. */
3787 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3788 if (bge_alloc_jumbo_mem(sc)) {
3789 aprint_error_dev(sc->bge_dev,
3790 "jumbo buffer allocation failed\n");
3791 } else
3792 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3793 }
3794
3795 /* Set default tuneable values. */
3796 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3797 sc->bge_rx_coal_ticks = 150;
3798 sc->bge_rx_max_coal_bds = 64;
3799 sc->bge_tx_coal_ticks = 300;
3800 sc->bge_tx_max_coal_bds = 400;
3801 if (BGE_IS_5705_PLUS(sc)) {
3802 sc->bge_tx_coal_ticks = (12 * 5);
3803 sc->bge_tx_max_coal_bds = (12 * 5);
3804 aprint_verbose_dev(sc->bge_dev,
3805 "setting short Tx thresholds\n");
3806 }
3807
3808 if (BGE_IS_5717_PLUS(sc))
3809 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3810 else if (BGE_IS_5705_PLUS(sc))
3811 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3812 else
3813 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3814
3815 /* Set up ifnet structure */
3816 ifp = &sc->ethercom.ec_if;
3817 ifp->if_softc = sc;
3818 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3819 ifp->if_ioctl = bge_ioctl;
3820 ifp->if_stop = bge_stop;
3821 ifp->if_start = bge_start;
3822 ifp->if_init = bge_init;
3823 ifp->if_watchdog = bge_watchdog;
3824 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3825 IFQ_SET_READY(&ifp->if_snd);
3826 DPRINTFN(5, ("strcpy if_xname\n"));
3827 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3828
3829 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3830 sc->ethercom.ec_if.if_capabilities |=
3831 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3832 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3833 sc->ethercom.ec_if.if_capabilities |=
3834 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3835 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3836 #endif
3837 sc->ethercom.ec_capabilities |=
3838 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3839 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3840
3841 if (sc->bge_flags & BGEF_TSO)
3842 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3843
3844 /*
3845 * Do MII setup.
3846 */
3847 DPRINTFN(5, ("mii setup\n"));
3848 mii->mii_ifp = ifp;
3849 mii->mii_readreg = bge_miibus_readreg;
3850 mii->mii_writereg = bge_miibus_writereg;
3851 mii->mii_statchg = bge_miibus_statchg;
3852
3853 /*
3854 * Figure out what sort of media we have by checking the hardware
3855 * config word. Note: on some BCM5700 cards, this value appears to be
3856 * unset. If that's the case, we have to rely on identifying the NIC
3857 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3858 * The SysKonnect SK-9D41 is a 1000baseSX card.
3859 */
3860 if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3861 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3862 if (BGE_IS_5705_PLUS(sc)) {
3863 sc->bge_flags |= BGEF_FIBER_MII;
3864 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3865 } else
3866 sc->bge_flags |= BGEF_FIBER_TBI;
3867 }
3868
3869 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3870 if (BGE_IS_JUMBO_CAPABLE(sc))
3871 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3872
3873 /* set phyflags and chipid before mii_attach() */
3874 dict = device_properties(self);
3875 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3876 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3877
3878 macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3879 macmode &= ~BGE_MACMODE_PORTMODE;
3880 /* Initialize ifmedia structures. */
3881 if (sc->bge_flags & BGEF_FIBER_TBI) {
3882 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3883 macmode | BGE_PORTMODE_TBI);
3884 DELAY(40);
3885
3886 sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
3887 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3888 bge_ifmedia_sts);
3889 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3890 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3891 0, NULL);
3892 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3893 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3894 /* Pretend the user requested this setting */
3895 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3896 } else {
3897 uint16_t phyreg;
3898 int rv;
3899 /*
3900 * Do transceiver setup and tell the firmware the
3901 * driver is down so we can try to get access the
3902 * probe if ASF is running. Retry a couple of times
3903 * if we get a conflict with the ASF firmware accessing
3904 * the PHY.
3905 */
3906 if (sc->bge_flags & BGEF_FIBER_MII)
3907 macmode |= BGE_PORTMODE_GMII;
3908 else
3909 macmode |= BGE_PORTMODE_MII;
3910 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3911 DELAY(40);
3912
3913 /*
3914 * Do transceiver setup and tell the firmware the
3915 * driver is down so we can try to get access the
3916 * probe if ASF is running. Retry a couple of times
3917 * if we get a conflict with the ASF firmware accessing
3918 * the PHY.
3919 */
3920 trys = 0;
3921 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3922 sc->ethercom.ec_mii = mii;
3923 ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3924 bge_ifmedia_sts);
3925 mii_flags = MIIF_DOPAUSE;
3926 if (sc->bge_flags & BGEF_FIBER_MII)
3927 mii_flags |= MIIF_HAVEFIBER;
3928 again:
3929 bge_asf_driver_up(sc);
3930 rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
3931 MII_BMCR, &phyreg);
3932 if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
3933 int i;
3934
3935 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
3936 MII_BMCR, BMCR_RESET);
3937 /* Wait up to 500ms for it to complete. */
3938 for (i = 0; i < 500; i++) {
3939 bge_miibus_readreg(sc->bge_dev,
3940 sc->bge_phy_addr, MII_BMCR, &phyreg);
3941 if ((phyreg & BMCR_RESET) == 0)
3942 break;
3943 DELAY(1000);
3944 }
3945 }
3946
3947 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
3948 MII_OFFSET_ANY, mii_flags);
3949
3950 if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
3951 goto again;
3952
3953 if (LIST_EMPTY(&mii->mii_phys)) {
3954 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3955 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
3956 0, NULL);
3957 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
3958 } else
3959 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
3960
3961 /*
3962 * Now tell the firmware we are going up after probing the PHY
3963 */
3964 if (sc->bge_asf_mode & ASF_STACKUP)
3965 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3966 }
3967
3968 /*
3969 * Call MI attach routine.
3970 */
3971 DPRINTFN(5, ("if_attach\n"));
3972 if_attach(ifp);
3973 if_deferred_start_init(ifp, NULL);
3974 DPRINTFN(5, ("ether_ifattach\n"));
3975 ether_ifattach(ifp, eaddr);
3976 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3977 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3978 RND_TYPE_NET, RND_FLAG_DEFAULT);
3979 #ifdef BGE_EVENT_COUNTERS
3980 /*
3981 * Attach event counters.
3982 */
3983 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3984 NULL, device_xname(sc->bge_dev), "intr");
3985 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3986 NULL, device_xname(sc->bge_dev), "intr_spurious");
3987 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3988 NULL, device_xname(sc->bge_dev), "intr_spurious2");
3989 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3990 NULL, device_xname(sc->bge_dev), "tx_xoff");
3991 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3992 NULL, device_xname(sc->bge_dev), "tx_xon");
3993 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3994 NULL, device_xname(sc->bge_dev), "rx_xoff");
3995 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3996 NULL, device_xname(sc->bge_dev), "rx_xon");
3997 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3998 NULL, device_xname(sc->bge_dev), "rx_macctl");
3999 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4000 NULL, device_xname(sc->bge_dev), "xoffentered");
4001 #endif /* BGE_EVENT_COUNTERS */
4002 DPRINTFN(5, ("callout_init\n"));
4003 callout_init(&sc->bge_timeout, 0);
4004 callout_setfunc(&sc->bge_timeout, bge_tick, sc);
4005
4006 if (pmf_device_register(self, NULL, NULL))
4007 pmf_class_network_register(self, ifp);
4008 else
4009 aprint_error_dev(self, "couldn't establish power handler\n");
4010
4011 bge_sysctl_init(sc);
4012
4013 #ifdef BGE_DEBUG
4014 bge_debug_info(sc);
4015 #endif
4016 }
4017
4018 /*
4019 * Stop all chip I/O so that the kernel's probe routines don't
4020 * get confused by errant DMAs when rebooting.
4021 */
4022 static int
4023 bge_detach(device_t self, int flags __unused)
4024 {
4025 struct bge_softc * const sc = device_private(self);
4026 struct ifnet * const ifp = &sc->ethercom.ec_if;
4027 int s;
4028
4029 s = splnet();
4030 /* Stop the interface. Callouts are stopped in it. */
4031 bge_stop(ifp, 1);
4032 splx(s);
4033
4034 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4035
4036 ether_ifdetach(ifp);
4037 if_detach(ifp);
4038
4039 /* Delete all remaining media. */
4040 ifmedia_fini(&sc->bge_mii.mii_media);
4041
4042 bge_release_resources(sc);
4043
4044 return 0;
4045 }
4046
4047 static void
4048 bge_release_resources(struct bge_softc *sc)
4049 {
4050
4051 /* Detach sysctl */
4052 if (sc->bge_log != NULL)
4053 sysctl_teardown(&sc->bge_log);
4054
4055 #ifdef BGE_EVENT_COUNTERS
4056 /* Detach event counters. */
4057 evcnt_detach(&sc->bge_ev_intr);
4058 evcnt_detach(&sc->bge_ev_intr_spurious);
4059 evcnt_detach(&sc->bge_ev_intr_spurious2);
4060 evcnt_detach(&sc->bge_ev_tx_xoff);
4061 evcnt_detach(&sc->bge_ev_tx_xon);
4062 evcnt_detach(&sc->bge_ev_rx_xoff);
4063 evcnt_detach(&sc->bge_ev_rx_xon);
4064 evcnt_detach(&sc->bge_ev_rx_macctl);
4065 evcnt_detach(&sc->bge_ev_xoffentered);
4066 #endif /* BGE_EVENT_COUNTERS */
4067
4068 /* Disestablish the interrupt handler */
4069 if (sc->bge_intrhand != NULL) {
4070 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4071 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4072 sc->bge_intrhand = NULL;
4073 }
4074
4075 if (sc->bge_dmatag != NULL) {
4076 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4077 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4078 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4079 sizeof(struct bge_ring_data));
4080 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4081 sc->bge_ring_rseg);
4082 }
4083
4084 /* Unmap the device registers */
4085 if (sc->bge_bsize != 0) {
4086 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4087 sc->bge_bsize = 0;
4088 }
4089
4090 /* Unmap the APE registers */
4091 if (sc->bge_apesize != 0) {
4092 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4093 sc->bge_apesize);
4094 sc->bge_apesize = 0;
4095 }
4096 }
4097
4098 static int
4099 bge_reset(struct bge_softc *sc)
4100 {
4101 uint32_t cachesize, command;
4102 uint32_t reset, mac_mode, mac_mode_mask;
4103 pcireg_t devctl, reg;
4104 int i, val;
4105 void (*write_op)(struct bge_softc *, int, int);
4106
4107 /* Make mask for BGE_MAC_MODE register. */
4108 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4109 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4110 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4111 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4112 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4113
4114 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4115 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4116 if (sc->bge_flags & BGEF_PCIE)
4117 write_op = bge_writemem_direct;
4118 else
4119 write_op = bge_writemem_ind;
4120 } else
4121 write_op = bge_writereg_ind;
4122
4123 /* 57XX step 4 */
4124 /* Acquire the NVM lock */
4125 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4126 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4127 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4128 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4129 for (i = 0; i < 8000; i++) {
4130 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4131 BGE_NVRAMSWARB_GNT1)
4132 break;
4133 DELAY(20);
4134 }
4135 if (i == 8000) {
4136 printf("%s: NVRAM lock timedout!\n",
4137 device_xname(sc->bge_dev));
4138 }
4139 }
4140
4141 /* Take APE lock when performing reset. */
4142 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4143
4144 /* 57XX step 3 */
4145 /* Save some important PCI state. */
4146 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4147 /* 5718 reset step 3 */
4148 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4149
4150 /* 5718 reset step 5, 57XX step 5b-5d */
4151 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4152 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4153 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4154
4155 /* XXX ???: Disable fastboot on controllers that support it. */
4156 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4157 BGE_IS_5755_PLUS(sc))
4158 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4159
4160 /* 5718 reset step 2, 57XX step 6 */
4161 /*
4162 * Write the magic number to SRAM at offset 0xB50.
4163 * When firmware finishes its initialization it will
4164 * write ~BGE_MAGIC_NUMBER to the same location.
4165 */
4166 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4167
4168 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4169 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4170 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4171 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4172 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4173 }
4174
4175 /* 5718 reset step 6, 57XX step 7 */
4176 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4177 /*
4178 * XXX: from FreeBSD/Linux; no documentation
4179 */
4180 if (sc->bge_flags & BGEF_PCIE) {
4181 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4182 !BGE_IS_57765_PLUS(sc) &&
4183 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4184 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4185 /* PCI Express 1.0 system */
4186 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4187 BGE_PHY_PCIE_SCRAM_MODE);
4188 }
4189 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4190 /*
4191 * Prevent PCI Express link training
4192 * during global reset.
4193 */
4194 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4195 reset |= (1 << 29);
4196 }
4197 }
4198
4199 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4200 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4201 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4202 i | BGE_VCPU_STATUS_DRV_RESET);
4203 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4204 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4205 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4206 }
4207
4208 /*
4209 * Set GPHY Power Down Override to leave GPHY
4210 * powered up in D0 uninitialized.
4211 */
4212 if (BGE_IS_5705_PLUS(sc) &&
4213 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4214 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4215
4216 /* Issue global reset */
4217 write_op(sc, BGE_MISC_CFG, reset);
4218
4219 /* 5718 reset step 7, 57XX step 8 */
4220 if (sc->bge_flags & BGEF_PCIE)
4221 delay(100*1000); /* too big */
4222 else
4223 delay(1000);
4224
4225 if (sc->bge_flags & BGEF_PCIE) {
4226 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4227 DELAY(500000);
4228 /* XXX: Magic Numbers */
4229 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4230 BGE_PCI_UNKNOWN0);
4231 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4232 BGE_PCI_UNKNOWN0,
4233 reg | (1 << 15));
4234 }
4235 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4236 sc->bge_pciecap + PCIE_DCSR);
4237 /* Clear enable no snoop and disable relaxed ordering. */
4238 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4239 PCIE_DCSR_ENA_NO_SNOOP);
4240
4241 /* Set PCIE max payload size to 128 for older PCIe devices */
4242 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4243 devctl &= ~(0x00e0);
4244 /* Clear device status register. Write 1b to clear */
4245 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4246 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4247 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4248 sc->bge_pciecap + PCIE_DCSR, devctl);
4249 bge_set_max_readrq(sc);
4250 }
4251
4252 /* From Linux: dummy read to flush PCI posted writes */
4253 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4254
4255 /*
4256 * Reset some of the PCI state that got zapped by reset
4257 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4258 * set, too.
4259 */
4260 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4261 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4262 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4263 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4264 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4265 (sc->bge_flags & BGEF_PCIX) != 0)
4266 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4267 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4268 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4269 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4270 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4271 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4272 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4273 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4274
4275 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4276 if (sc->bge_flags & BGEF_PCIX) {
4277 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4278 + PCIX_CMD);
4279 /* Set max memory read byte count to 2K */
4280 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4281 reg &= ~PCIX_CMD_BYTECNT_MASK;
4282 reg |= PCIX_CMD_BCNT_2048;
4283 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4284 /*
4285 * For 5704, set max outstanding split transaction
4286 * field to 0 (0 means it supports 1 request)
4287 */
4288 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4289 | PCIX_CMD_BYTECNT_MASK);
4290 reg |= PCIX_CMD_BCNT_2048;
4291 }
4292 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4293 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4294 }
4295
4296 /* 5718 reset step 10, 57XX step 12 */
4297 /* Enable memory arbiter. */
4298 if (BGE_IS_5714_FAMILY(sc)) {
4299 val = CSR_READ_4(sc, BGE_MARB_MODE);
4300 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4301 } else
4302 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4303
4304 /* XXX 5721, 5751 and 5752 */
4305 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4306 /* Step 19: */
4307 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4308 /* Step 20: */
4309 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4310 }
4311
4312 /* 5718 reset step 12, 57XX step 15 and 16 */
4313 /* Fix up byte swapping */
4314 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4315
4316 /* 5718 reset step 13, 57XX step 17 */
4317 /* Poll until the firmware initialization is complete */
4318 bge_poll_fw(sc);
4319
4320 /* 57XX step 21 */
4321 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4322 pcireg_t msidata;
4323
4324 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4325 BGE_PCI_MSI_DATA);
4326 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4327 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4328 msidata);
4329 }
4330
4331 /* 57XX step 18 */
4332 /* Write mac mode. */
4333 val = CSR_READ_4(sc, BGE_MAC_MODE);
4334 /* Restore mac_mode_mask's bits using mac_mode */
4335 val = (val & ~mac_mode_mask) | mac_mode;
4336 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4337 DELAY(40);
4338
4339 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4340
4341 /*
4342 * The 5704 in TBI mode apparently needs some special
4343 * adjustment to insure the SERDES drive level is set
4344 * to 1.2V.
4345 */
4346 if (sc->bge_flags & BGEF_FIBER_TBI &&
4347 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4348 uint32_t serdescfg;
4349
4350 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4351 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4352 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4353 }
4354
4355 if (sc->bge_flags & BGEF_PCIE &&
4356 !BGE_IS_57765_PLUS(sc) &&
4357 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4358 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4359 uint32_t v;
4360
4361 /* Enable PCI Express bug fix */
4362 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4363 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4364 v | BGE_TLP_DATA_FIFO_PROTECT);
4365 }
4366
4367 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4368 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4369 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4370
4371 return 0;
4372 }
4373
4374 /*
4375 * Frame reception handling. This is called if there's a frame
4376 * on the receive return list.
4377 *
4378 * Note: we have to be able to handle two possibilities here:
4379 * 1) the frame is from the jumbo receive ring
4380 * 2) the frame is from the standard receive ring
4381 */
4382
4383 static void
4384 bge_rxeof(struct bge_softc *sc)
4385 {
4386 struct ifnet * const ifp = &sc->ethercom.ec_if;
4387 uint16_t rx_prod, rx_cons;
4388 int stdcnt = 0, jumbocnt = 0;
4389 bus_dmamap_t dmamap;
4390 bus_addr_t offset, toff;
4391 bus_size_t tlen;
4392 int tosync;
4393
4394 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4395 offsetof(struct bge_ring_data, bge_status_block),
4396 sizeof(struct bge_status_block),
4397 BUS_DMASYNC_POSTREAD);
4398
4399 rx_cons = sc->bge_rx_saved_considx;
4400 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4401
4402 /* Nothing to do */
4403 if (rx_cons == rx_prod)
4404 return;
4405
4406 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4407 tosync = rx_prod - rx_cons;
4408
4409 if (tosync != 0)
4410 rnd_add_uint32(&sc->rnd_source, tosync);
4411
4412 toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
4413
4414 if (tosync < 0) {
4415 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4416 sizeof(struct bge_rx_bd);
4417 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4418 toff, tlen, BUS_DMASYNC_POSTREAD);
4419 tosync = -tosync;
4420 }
4421
4422 if (tosync != 0) {
4423 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4424 offset, tosync * sizeof(struct bge_rx_bd),
4425 BUS_DMASYNC_POSTREAD);
4426 }
4427
4428 while (rx_cons != rx_prod) {
4429 struct bge_rx_bd *cur_rx;
4430 uint32_t rxidx;
4431 struct mbuf *m = NULL;
4432
4433 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4434
4435 rxidx = cur_rx->bge_idx;
4436 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4437
4438 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4439 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4440 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4441 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4442 jumbocnt++;
4443 bus_dmamap_sync(sc->bge_dmatag,
4444 sc->bge_cdata.bge_rx_jumbo_map,
4445 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4446 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4447 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4448 if_statinc(ifp, if_ierrors);
4449 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4450 continue;
4451 }
4452 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4453 NULL) == ENOBUFS) {
4454 if_statinc(ifp, if_ierrors);
4455 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4456 continue;
4457 }
4458 } else {
4459 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4460 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4461
4462 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4463 stdcnt++;
4464 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4465 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4466 if (dmamap == NULL) {
4467 if_statinc(ifp, if_ierrors);
4468 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4469 continue;
4470 }
4471 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4472 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4473 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4474 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4475 if_statinc(ifp, if_ierrors);
4476 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4477 continue;
4478 }
4479 if (bge_newbuf_std(sc, sc->bge_std,
4480 NULL, dmamap) == ENOBUFS) {
4481 if_statinc(ifp, if_ierrors);
4482 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4483 continue;
4484 }
4485 }
4486
4487 #ifndef __NO_STRICT_ALIGNMENT
4488 /*
4489 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4490 * the Rx buffer has the layer-2 header unaligned.
4491 * If our CPU requires alignment, re-align by copying.
4492 */
4493 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4494 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4495 cur_rx->bge_len);
4496 m->m_data += ETHER_ALIGN;
4497 }
4498 #endif
4499
4500 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4501 m_set_rcvif(m, ifp);
4502
4503 bge_rxcsum(sc, cur_rx, m);
4504
4505 /*
4506 * If we received a packet with a vlan tag, pass it
4507 * to vlan_input() instead of ether_input().
4508 */
4509 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4510 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4511
4512 if_percpuq_enqueue(ifp->if_percpuq, m);
4513 }
4514
4515 sc->bge_rx_saved_considx = rx_cons;
4516 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4517 if (stdcnt)
4518 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4519 if (jumbocnt)
4520 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4521 }
4522
4523 static void
4524 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4525 {
4526
4527 if (BGE_IS_57765_PLUS(sc)) {
4528 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4529 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4530 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4531 if ((cur_rx->bge_error_flag &
4532 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4533 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4534 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4535 m->m_pkthdr.csum_data =
4536 cur_rx->bge_tcp_udp_csum;
4537 m->m_pkthdr.csum_flags |=
4538 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4539 }
4540 }
4541 } else {
4542 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4543 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4544 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4545 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4546 /*
4547 * Rx transport checksum-offload may also
4548 * have bugs with packets which, when transmitted,
4549 * were `runts' requiring padding.
4550 */
4551 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4552 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4553 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4554 m->m_pkthdr.csum_data =
4555 cur_rx->bge_tcp_udp_csum;
4556 m->m_pkthdr.csum_flags |=
4557 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4558 }
4559 }
4560 }
4561
4562 static void
4563 bge_txeof(struct bge_softc *sc)
4564 {
4565 struct ifnet * const ifp = &sc->ethercom.ec_if;
4566 struct bge_tx_bd *cur_tx = NULL;
4567 struct txdmamap_pool_entry *dma;
4568 bus_addr_t offset, toff;
4569 bus_size_t tlen;
4570 int tosync;
4571 struct mbuf *m;
4572
4573 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4574 offsetof(struct bge_ring_data, bge_status_block),
4575 sizeof(struct bge_status_block),
4576 BUS_DMASYNC_POSTREAD);
4577
4578 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4579 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4580 sc->bge_tx_saved_considx;
4581
4582 if (tosync != 0)
4583 rnd_add_uint32(&sc->rnd_source, tosync);
4584
4585 toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
4586
4587 if (tosync < 0) {
4588 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4589 sizeof(struct bge_tx_bd);
4590 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4591 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4592 tosync = -tosync;
4593 }
4594
4595 if (tosync != 0) {
4596 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4597 offset, tosync * sizeof(struct bge_tx_bd),
4598 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4599 }
4600
4601 /*
4602 * Go through our tx ring and free mbufs for those
4603 * frames that have been sent.
4604 */
4605 while (sc->bge_tx_saved_considx !=
4606 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4607 uint32_t idx = sc->bge_tx_saved_considx;
4608 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4609 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4610 if_statinc(ifp, if_opackets);
4611 m = sc->bge_cdata.bge_tx_chain[idx];
4612 if (m != NULL) {
4613 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4614 dma = sc->txdma[idx];
4615 if (dma->is_dma32) {
4616 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4617 0, dma->dmamap32->dm_mapsize,
4618 BUS_DMASYNC_POSTWRITE);
4619 bus_dmamap_unload(
4620 sc->bge_dmatag32, dma->dmamap32);
4621 } else {
4622 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4623 0, dma->dmamap->dm_mapsize,
4624 BUS_DMASYNC_POSTWRITE);
4625 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4626 }
4627 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4628 sc->txdma[idx] = NULL;
4629
4630 m_freem(m);
4631 }
4632 sc->bge_txcnt--;
4633 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4634 ifp->if_timer = 0;
4635 }
4636
4637 if (cur_tx != NULL)
4638 ifp->if_flags &= ~IFF_OACTIVE;
4639 }
4640
4641 static int
4642 bge_intr(void *xsc)
4643 {
4644 struct bge_softc * const sc = xsc;
4645 struct ifnet * const ifp = &sc->ethercom.ec_if;
4646 uint32_t pcistate, statusword, statustag;
4647 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4648
4649
4650 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4651 if (BGE_IS_5717_PLUS(sc))
4652 intrmask = 0;
4653
4654 /*
4655 * It is possible for the interrupt to arrive before
4656 * the status block is updated prior to the interrupt.
4657 * Reading the PCI State register will confirm whether the
4658 * interrupt is ours and will flush the status block.
4659 */
4660 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4661
4662 /* read status word from status block */
4663 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4664 offsetof(struct bge_ring_data, bge_status_block),
4665 sizeof(struct bge_status_block),
4666 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4667 statusword = sc->bge_rdata->bge_status_block.bge_status;
4668 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4669
4670 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4671 if (sc->bge_lasttag == statustag &&
4672 (~pcistate & intrmask)) {
4673 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4674 return 0;
4675 }
4676 sc->bge_lasttag = statustag;
4677 } else {
4678 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4679 !(~pcistate & intrmask)) {
4680 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4681 return 0;
4682 }
4683 statustag = 0;
4684 }
4685 /* Ack interrupt and stop others from occurring. */
4686 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4687 BGE_EVCNT_INCR(sc->bge_ev_intr);
4688
4689 /* clear status word */
4690 sc->bge_rdata->bge_status_block.bge_status = 0;
4691
4692 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4693 offsetof(struct bge_ring_data, bge_status_block),
4694 sizeof(struct bge_status_block),
4695 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4696
4697 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4698 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4699 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4700 bge_link_upd(sc);
4701
4702 if (ifp->if_flags & IFF_RUNNING) {
4703 /* Check RX return ring producer/consumer */
4704 bge_rxeof(sc);
4705
4706 /* Check TX ring producer/consumer */
4707 bge_txeof(sc);
4708 }
4709
4710 if (sc->bge_pending_rxintr_change) {
4711 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4712 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4713
4714 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4715 DELAY(10);
4716 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4717
4718 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4719 DELAY(10);
4720 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4721
4722 sc->bge_pending_rxintr_change = 0;
4723 }
4724 bge_handle_events(sc);
4725
4726 /* Re-enable interrupts. */
4727 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4728
4729 if (ifp->if_flags & IFF_RUNNING)
4730 if_schedule_deferred_start(ifp);
4731
4732 return 1;
4733 }
4734
4735 static void
4736 bge_asf_driver_up(struct bge_softc *sc)
4737 {
4738 if (sc->bge_asf_mode & ASF_STACKUP) {
4739 /* Send ASF heartbeat aprox. every 2s */
4740 if (sc->bge_asf_count)
4741 sc->bge_asf_count --;
4742 else {
4743 sc->bge_asf_count = 2;
4744
4745 bge_wait_for_event_ack(sc);
4746
4747 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4748 BGE_FW_CMD_DRV_ALIVE3);
4749 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4750 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4751 BGE_FW_HB_TIMEOUT_SEC);
4752 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4753 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4754 BGE_RX_CPU_DRV_EVENT);
4755 }
4756 }
4757 }
4758
4759 static void
4760 bge_tick(void *xsc)
4761 {
4762 struct bge_softc * const sc = xsc;
4763 struct mii_data * const mii = &sc->bge_mii;
4764 int s;
4765
4766 s = splnet();
4767
4768 if (BGE_IS_5705_PLUS(sc))
4769 bge_stats_update_regs(sc);
4770 else
4771 bge_stats_update(sc);
4772
4773 if (sc->bge_flags & BGEF_FIBER_TBI) {
4774 /*
4775 * Since in TBI mode auto-polling can't be used we should poll
4776 * link status manually. Here we register pending link event
4777 * and trigger interrupt.
4778 */
4779 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4780 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4781 } else {
4782 /*
4783 * Do not touch PHY if we have link up. This could break
4784 * IPMI/ASF mode or produce extra input errors.
4785 * (extra input errors was reported for bcm5701 & bcm5704).
4786 */
4787 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4788 mii_tick(mii);
4789 }
4790
4791 bge_asf_driver_up(sc);
4792
4793 if (!sc->bge_detaching)
4794 callout_schedule(&sc->bge_timeout, hz);
4795
4796 splx(s);
4797 }
4798
4799 static void
4800 bge_stats_update_regs(struct bge_softc *sc)
4801 {
4802 struct ifnet *const ifp = &sc->ethercom.ec_if;
4803
4804 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4805
4806 if_statadd_ref(nsr, if_collisions,
4807 CSR_READ_4(sc, BGE_MAC_STATS +
4808 offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
4809
4810 /*
4811 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4812 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4813 * (silicon bug). There's no reliable workaround so just
4814 * ignore the counter
4815 */
4816 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4817 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4818 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4819 if_statadd_ref(nsr, if_ierrors,
4820 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4821 }
4822 if_statadd_ref(nsr, if_ierrors,
4823 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
4824 if_statadd_ref(nsr, if_ierrors,
4825 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
4826
4827 IF_STAT_PUTREF(ifp);
4828
4829 if (sc->bge_flags & BGEF_RDMA_BUG) {
4830 uint32_t val, ucast, mcast, bcast;
4831
4832 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4833 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4834 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4835 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4836 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4837 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4838
4839 /*
4840 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4841 * frames, it's safe to disable workaround for DMA engine's
4842 * miscalculation of TXMBUF space.
4843 */
4844 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4845 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4846 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4847 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4848 else
4849 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4850 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4851 sc->bge_flags &= ~BGEF_RDMA_BUG;
4852 }
4853 }
4854 }
4855
4856 static void
4857 bge_stats_update(struct bge_softc *sc)
4858 {
4859 struct ifnet * const ifp = &sc->ethercom.ec_if;
4860 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4861
4862 #define READ_STAT(sc, stats, stat) \
4863 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4864
4865 uint64_t collisions =
4866 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4867 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4868 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4869 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
4870
4871 if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
4872 sc->bge_if_collisions = collisions;
4873
4874
4875 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4876 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4877 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4878 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4879 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4880 READ_STAT(sc, stats,
4881 xoffPauseFramesReceived.bge_addr_lo));
4882 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4883 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4884 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4885 READ_STAT(sc, stats,
4886 macControlFramesReceived.bge_addr_lo));
4887 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4888 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4889
4890 #undef READ_STAT
4891
4892 #ifdef notdef
4893 ifp->if_collisions +=
4894 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4895 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4896 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4897 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4898 ifp->if_collisions;
4899 #endif
4900 }
4901
4902 /*
4903 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4904 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4905 * but when such padded frames employ the bge IP/TCP checksum offload,
4906 * the hardware checksum assist gives incorrect results (possibly
4907 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4908 * If we pad such runts with zeros, the onboard checksum comes out correct.
4909 */
4910 static inline int
4911 bge_cksum_pad(struct mbuf *pkt)
4912 {
4913 struct mbuf *last = NULL;
4914 int padlen;
4915
4916 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4917
4918 /* if there's only the packet-header and we can pad there, use it. */
4919 if (pkt->m_pkthdr.len == pkt->m_len &&
4920 M_TRAILINGSPACE(pkt) >= padlen) {
4921 last = pkt;
4922 } else {
4923 /*
4924 * Walk packet chain to find last mbuf. We will either
4925 * pad there, or append a new mbuf and pad it
4926 * (thus perhaps avoiding the bcm5700 dma-min bug).
4927 */
4928 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4929 continue; /* do nothing */
4930 }
4931
4932 /* `last' now points to last in chain. */
4933 if (M_TRAILINGSPACE(last) < padlen) {
4934 /* Allocate new empty mbuf, pad it. Compact later. */
4935 struct mbuf *n;
4936 MGET(n, M_DONTWAIT, MT_DATA);
4937 if (n == NULL)
4938 return ENOBUFS;
4939 n->m_len = 0;
4940 last->m_next = n;
4941 last = n;
4942 }
4943 }
4944
4945 KDASSERT(!M_READONLY(last));
4946 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4947
4948 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4949 memset(mtod(last, char *) + last->m_len, 0, padlen);
4950 last->m_len += padlen;
4951 pkt->m_pkthdr.len += padlen;
4952 return 0;
4953 }
4954
4955 /*
4956 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4957 */
4958 static inline int
4959 bge_compact_dma_runt(struct mbuf *pkt)
4960 {
4961 struct mbuf *m, *prev;
4962 int totlen;
4963
4964 prev = NULL;
4965 totlen = 0;
4966
4967 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
4968 int mlen = m->m_len;
4969 int shortfall = 8 - mlen ;
4970
4971 totlen += mlen;
4972 if (mlen == 0)
4973 continue;
4974 if (mlen >= 8)
4975 continue;
4976
4977 /*
4978 * If we get here, mbuf data is too small for DMA engine.
4979 * Try to fix by shuffling data to prev or next in chain.
4980 * If that fails, do a compacting deep-copy of the whole chain.
4981 */
4982
4983 /* Internal frag. If fits in prev, copy it there. */
4984 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4985 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4986 prev->m_len += mlen;
4987 m->m_len = 0;
4988 /* XXX stitch chain */
4989 prev->m_next = m_free(m);
4990 m = prev;
4991 continue;
4992 } else if (m->m_next != NULL &&
4993 M_TRAILINGSPACE(m) >= shortfall &&
4994 m->m_next->m_len >= (8 + shortfall)) {
4995 /* m is writable and have enough data in next, pull up. */
4996
4997 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4998 shortfall);
4999 m->m_len += shortfall;
5000 m->m_next->m_len -= shortfall;
5001 m->m_next->m_data += shortfall;
5002 } else if (m->m_next == NULL || 1) {
5003 /*
5004 * Got a runt at the very end of the packet.
5005 * borrow data from the tail of the preceding mbuf and
5006 * update its length in-place. (The original data is
5007 * still valid, so we can do this even if prev is not
5008 * writable.)
5009 */
5010
5011 /*
5012 * If we'd make prev a runt, just move all of its data.
5013 */
5014 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5015 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5016
5017 if ((prev->m_len - shortfall) < 8)
5018 shortfall = prev->m_len;
5019
5020 #ifdef notyet /* just do the safe slow thing for now */
5021 if (!M_READONLY(m)) {
5022 if (M_LEADINGSPACE(m) < shorfall) {
5023 void *m_dat;
5024 m_dat = M_BUFADDR(m);
5025 memmove(m_dat, mtod(m, void*),
5026 m->m_len);
5027 m->m_data = m_dat;
5028 }
5029 } else
5030 #endif /* just do the safe slow thing */
5031 {
5032 struct mbuf * n = NULL;
5033 int newprevlen = prev->m_len - shortfall;
5034
5035 MGET(n, M_NOWAIT, MT_DATA);
5036 if (n == NULL)
5037 return ENOBUFS;
5038 KASSERT(m->m_len + shortfall < MLEN
5039 /*,
5040 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5041
5042 /* first copy the data we're stealing from prev */
5043 memcpy(n->m_data, prev->m_data + newprevlen,
5044 shortfall);
5045
5046 /* update prev->m_len accordingly */
5047 prev->m_len -= shortfall;
5048
5049 /* copy data from runt m */
5050 memcpy(n->m_data + shortfall, m->m_data,
5051 m->m_len);
5052
5053 /* n holds what we stole from prev, plus m */
5054 n->m_len = shortfall + m->m_len;
5055
5056 /* stitch n into chain and free m */
5057 n->m_next = m->m_next;
5058 prev->m_next = n;
5059 /* KASSERT(m->m_next == NULL); */
5060 m->m_next = NULL;
5061 m_free(m);
5062 m = n; /* for continuing loop */
5063 }
5064 }
5065 }
5066 return 0;
5067 }
5068
5069 /*
5070 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5071 * pointers to descriptors.
5072 */
5073 static int
5074 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5075 {
5076 struct ifnet * const ifp = &sc->ethercom.ec_if;
5077 struct bge_tx_bd *f, *prev_f;
5078 uint32_t frag, cur;
5079 uint16_t csum_flags = 0;
5080 uint16_t txbd_tso_flags = 0;
5081 struct txdmamap_pool_entry *dma;
5082 bus_dmamap_t dmamap;
5083 bus_dma_tag_t dmatag;
5084 int i = 0;
5085 int use_tso, maxsegsize, error;
5086 bool have_vtag;
5087 uint16_t vtag;
5088 bool remap;
5089
5090 if (m_head->m_pkthdr.csum_flags) {
5091 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5092 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5093 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5094 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5095 }
5096
5097 /*
5098 * If we were asked to do an outboard checksum, and the NIC
5099 * has the bug where it sometimes adds in the Ethernet padding,
5100 * explicitly pad with zeros so the cksum will be correct either way.
5101 * (For now, do this for all chip versions, until newer
5102 * are confirmed to not require the workaround.)
5103 */
5104 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5105 #ifdef notyet
5106 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5107 #endif
5108 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5109 goto check_dma_bug;
5110
5111 if (bge_cksum_pad(m_head) != 0)
5112 return ENOBUFS;
5113
5114 check_dma_bug:
5115 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5116 goto doit;
5117
5118 /*
5119 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5120 * less than eight bytes. If we encounter a teeny mbuf
5121 * at the end of a chain, we can pad. Otherwise, copy.
5122 */
5123 if (bge_compact_dma_runt(m_head) != 0)
5124 return ENOBUFS;
5125
5126 doit:
5127 dma = SLIST_FIRST(&sc->txdma_list);
5128 if (dma == NULL) {
5129 ifp->if_flags |= IFF_OACTIVE;
5130 return ENOBUFS;
5131 }
5132 dmamap = dma->dmamap;
5133 dmatag = sc->bge_dmatag;
5134 dma->is_dma32 = false;
5135
5136 /*
5137 * Set up any necessary TSO state before we start packing...
5138 */
5139 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5140 if (!use_tso) {
5141 maxsegsize = 0;
5142 } else { /* TSO setup */
5143 unsigned mss;
5144 struct ether_header *eh;
5145 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5146 unsigned bge_hlen;
5147 struct mbuf * m0 = m_head;
5148 struct ip *ip;
5149 struct tcphdr *th;
5150 int iphl, hlen;
5151
5152 /*
5153 * XXX It would be nice if the mbuf pkthdr had offset
5154 * fields for the protocol headers.
5155 */
5156
5157 eh = mtod(m0, struct ether_header *);
5158 switch (htons(eh->ether_type)) {
5159 case ETHERTYPE_IP:
5160 offset = ETHER_HDR_LEN;
5161 break;
5162
5163 case ETHERTYPE_VLAN:
5164 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5165 break;
5166
5167 default:
5168 /*
5169 * Don't support this protocol or encapsulation.
5170 */
5171 return ENOBUFS;
5172 }
5173
5174 /*
5175 * TCP/IP headers are in the first mbuf; we can do
5176 * this the easy way.
5177 */
5178 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5179 hlen = iphl + offset;
5180 if (__predict_false(m0->m_len <
5181 (hlen + sizeof(struct tcphdr)))) {
5182
5183 aprint_error_dev(sc->bge_dev,
5184 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5185 "not handled yet\n",
5186 m0->m_len, hlen+ sizeof(struct tcphdr));
5187 #ifdef NOTYET
5188 /*
5189 * XXX jonathan (at) NetBSD.org: untested.
5190 * how to force this branch to be taken?
5191 */
5192 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5193
5194 m_copydata(m0, offset, sizeof(ip), &ip);
5195 m_copydata(m0, hlen, sizeof(th), &th);
5196
5197 ip.ip_len = 0;
5198
5199 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5200 sizeof(ip.ip_len), &ip.ip_len);
5201
5202 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5203 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5204
5205 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5206 sizeof(th.th_sum), &th.th_sum);
5207
5208 hlen += th.th_off << 2;
5209 iptcp_opt_words = hlen;
5210 #else
5211 /*
5212 * if_wm "hard" case not yet supported, can we not
5213 * mandate it out of existence?
5214 */
5215 (void) ip; (void)th; (void) ip_tcp_hlen;
5216
5217 return ENOBUFS;
5218 #endif
5219 } else {
5220 ip = (struct ip *) (mtod(m0, char *) + offset);
5221 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5222 ip_tcp_hlen = iphl + (th->th_off << 2);
5223
5224 /* Total IP/TCP options, in 32-bit words */
5225 iptcp_opt_words = (ip_tcp_hlen
5226 - sizeof(struct tcphdr)
5227 - sizeof(struct ip)) >> 2;
5228 }
5229 if (BGE_IS_575X_PLUS(sc)) {
5230 th->th_sum = 0;
5231 csum_flags = 0;
5232 } else {
5233 /*
5234 * XXX jonathan (at) NetBSD.org: 5705 untested.
5235 * Requires TSO firmware patch for 5701/5703/5704.
5236 */
5237 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5238 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5239 }
5240
5241 mss = m_head->m_pkthdr.segsz;
5242 txbd_tso_flags |=
5243 BGE_TXBDFLAG_CPU_PRE_DMA |
5244 BGE_TXBDFLAG_CPU_POST_DMA;
5245
5246 /*
5247 * Our NIC TSO-assist assumes TSO has standard, optionless
5248 * IPv4 and TCP headers, which total 40 bytes. By default,
5249 * the NIC copies 40 bytes of IP/TCP header from the
5250 * supplied header into the IP/TCP header portion of
5251 * each post-TSO-segment. If the supplied packet has IP or
5252 * TCP options, we need to tell the NIC to copy those extra
5253 * bytes into each post-TSO header, in addition to the normal
5254 * 40-byte IP/TCP header (and to leave space accordingly).
5255 * Unfortunately, the driver encoding of option length
5256 * varies across different ASIC families.
5257 */
5258 tcp_seg_flags = 0;
5259 bge_hlen = ip_tcp_hlen >> 2;
5260 if (BGE_IS_5717_PLUS(sc)) {
5261 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5262 txbd_tso_flags |=
5263 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5264 } else if (BGE_IS_5705_PLUS(sc)) {
5265 tcp_seg_flags = bge_hlen << 11;
5266 } else {
5267 /* XXX iptcp_opt_words or bge_hlen ? */
5268 txbd_tso_flags |= iptcp_opt_words << 12;
5269 }
5270 maxsegsize = mss | tcp_seg_flags;
5271 ip->ip_len = htons(mss + ip_tcp_hlen);
5272 ip->ip_sum = 0;
5273
5274 } /* TSO setup */
5275
5276 have_vtag = vlan_has_tag(m_head);
5277 if (have_vtag)
5278 vtag = vlan_get_tag(m_head);
5279
5280 /*
5281 * Start packing the mbufs in this chain into
5282 * the fragment pointers. Stop when we run out
5283 * of fragments or hit the end of the mbuf chain.
5284 */
5285 remap = true;
5286 load_again:
5287 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5288 if (__predict_false(error)) {
5289 if (error == EFBIG && remap) {
5290 struct mbuf *m;
5291 remap = false;
5292 m = m_defrag(m_head, M_NOWAIT);
5293 if (m != NULL) {
5294 KASSERT(m == m_head);
5295 goto load_again;
5296 }
5297 }
5298 return error;
5299 }
5300 /*
5301 * Sanity check: avoid coming within 16 descriptors
5302 * of the end of the ring.
5303 */
5304 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5305 BGE_TSO_PRINTF(("%s: "
5306 " dmamap_load_mbuf too close to ring wrap\n",
5307 device_xname(sc->bge_dev)));
5308 goto fail_unload;
5309 }
5310
5311 /* Iterate over dmap-map fragments. */
5312 f = prev_f = NULL;
5313 cur = frag = *txidx;
5314
5315 for (i = 0; i < dmamap->dm_nsegs; i++) {
5316 f = &sc->bge_rdata->bge_tx_ring[frag];
5317 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5318 break;
5319
5320 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5321 f->bge_len = dmamap->dm_segs[i].ds_len;
5322 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5323 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5324 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5325 (prev_f != NULL &&
5326 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5327 ) {
5328 /*
5329 * watchdog timeout issue was observed with TSO,
5330 * limiting DMA address space to 32bits seems to
5331 * address the issue.
5332 */
5333 bus_dmamap_unload(dmatag, dmamap);
5334 dmatag = sc->bge_dmatag32;
5335 dmamap = dma->dmamap32;
5336 dma->is_dma32 = true;
5337 remap = true;
5338 goto load_again;
5339 }
5340
5341 /*
5342 * For 5751 and follow-ons, for TSO we must turn
5343 * off checksum-assist flag in the tx-descr, and
5344 * supply the ASIC-revision-specific encoding
5345 * of TSO flags and segsize.
5346 */
5347 if (use_tso) {
5348 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5349 f->bge_rsvd = maxsegsize;
5350 f->bge_flags = csum_flags | txbd_tso_flags;
5351 } else {
5352 f->bge_rsvd = 0;
5353 f->bge_flags =
5354 (csum_flags | txbd_tso_flags) & 0x0fff;
5355 }
5356 } else {
5357 f->bge_rsvd = 0;
5358 f->bge_flags = csum_flags;
5359 }
5360
5361 if (have_vtag) {
5362 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5363 f->bge_vlan_tag = vtag;
5364 } else {
5365 f->bge_vlan_tag = 0;
5366 }
5367 prev_f = f;
5368 cur = frag;
5369 BGE_INC(frag, BGE_TX_RING_CNT);
5370 }
5371
5372 if (i < dmamap->dm_nsegs) {
5373 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5374 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5375 goto fail_unload;
5376 }
5377
5378 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5379 BUS_DMASYNC_PREWRITE);
5380
5381 if (frag == sc->bge_tx_saved_considx) {
5382 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5383 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5384
5385 goto fail_unload;
5386 }
5387
5388 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5389 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5390 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5391 sc->txdma[cur] = dma;
5392 sc->bge_txcnt += dmamap->dm_nsegs;
5393
5394 *txidx = frag;
5395
5396 return 0;
5397
5398 fail_unload:
5399 bus_dmamap_unload(dmatag, dmamap);
5400 ifp->if_flags |= IFF_OACTIVE;
5401
5402 return ENOBUFS;
5403 }
5404
5405 /*
5406 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5407 * to the mbuf data regions directly in the transmit descriptors.
5408 */
5409 static void
5410 bge_start(struct ifnet *ifp)
5411 {
5412 struct bge_softc * const sc = ifp->if_softc;
5413 struct mbuf *m_head = NULL;
5414 struct mbuf *m;
5415 uint32_t prodidx;
5416 int pkts = 0;
5417 int error;
5418
5419 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5420 return;
5421
5422 prodidx = sc->bge_tx_prodidx;
5423
5424 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5425 IFQ_POLL(&ifp->if_snd, m_head);
5426 if (m_head == NULL)
5427 break;
5428
5429 #if 0
5430 /*
5431 * XXX
5432 * safety overkill. If this is a fragmented packet chain
5433 * with delayed TCP/UDP checksums, then only encapsulate
5434 * it if we have enough descriptors to handle the entire
5435 * chain at once.
5436 * (paranoia -- may not actually be needed)
5437 */
5438 if (m_head->m_flags & M_FIRSTFRAG &&
5439 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5440 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5441 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5442 ifp->if_flags |= IFF_OACTIVE;
5443 break;
5444 }
5445 }
5446 #endif
5447
5448 /*
5449 * Pack the data into the transmit ring. If we
5450 * don't have room, set the OACTIVE flag and wait
5451 * for the NIC to drain the ring.
5452 */
5453 error = bge_encap(sc, m_head, &prodidx);
5454 if (__predict_false(error)) {
5455 if (ifp->if_flags & IFF_OACTIVE) {
5456 /* just wait for the transmit ring to drain */
5457 break;
5458 }
5459 IFQ_DEQUEUE(&ifp->if_snd, m);
5460 KASSERT(m == m_head);
5461 m_freem(m_head);
5462 continue;
5463 }
5464
5465 /* now we are committed to transmit the packet */
5466 IFQ_DEQUEUE(&ifp->if_snd, m);
5467 KASSERT(m == m_head);
5468 pkts++;
5469
5470 /*
5471 * If there's a BPF listener, bounce a copy of this frame
5472 * to him.
5473 */
5474 bpf_mtap(ifp, m_head, BPF_D_OUT);
5475 }
5476 if (pkts == 0)
5477 return;
5478
5479 /* Transmit */
5480 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5481 /* 5700 b2 errata */
5482 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5483 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5484
5485 sc->bge_tx_prodidx = prodidx;
5486
5487 /*
5488 * Set a timeout in case the chip goes out to lunch.
5489 */
5490 ifp->if_timer = 5;
5491 }
5492
5493 static int
5494 bge_init(struct ifnet *ifp)
5495 {
5496 struct bge_softc * const sc = ifp->if_softc;
5497 const uint16_t *m;
5498 uint32_t mode, reg;
5499 int s, error = 0;
5500
5501 s = splnet();
5502
5503 KASSERT(ifp == &sc->ethercom.ec_if);
5504
5505 /* Cancel pending I/O and flush buffers. */
5506 bge_stop(ifp, 0);
5507
5508 bge_stop_fw(sc);
5509 bge_sig_pre_reset(sc, BGE_RESET_START);
5510 bge_reset(sc);
5511 bge_sig_legacy(sc, BGE_RESET_START);
5512
5513 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5514 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5515 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5516 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5517 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5518
5519 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5520 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5521 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5522 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5523
5524 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5525 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5526 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5527 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5528
5529 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5530 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5531 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5532 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5533 }
5534
5535 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5536 pcireg_t aercap;
5537
5538 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5539 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5540 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5541 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5542 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5543
5544 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5545 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5546 | BGE_PCIE_EIDLE_DELAY_13CLK;
5547 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5548
5549 /* Clear correctable error */
5550 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5551 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5552 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5553 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5554
5555 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5556 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5557 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5558 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5559 }
5560
5561 bge_sig_post_reset(sc, BGE_RESET_START);
5562
5563 bge_chipinit(sc);
5564
5565 /*
5566 * Init the various state machines, ring
5567 * control blocks and firmware.
5568 */
5569 error = bge_blockinit(sc);
5570 if (error != 0) {
5571 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5572 error);
5573 splx(s);
5574 return error;
5575 }
5576
5577 /* 5718 step 25, 57XX step 54 */
5578 /* Specify MTU. */
5579 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5580 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5581
5582 /* 5718 step 23 */
5583 /* Load our MAC address. */
5584 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5585 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5586 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5587 ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5588
5589 /* Enable or disable promiscuous mode as needed. */
5590 if (ifp->if_flags & IFF_PROMISC)
5591 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5592 else
5593 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5594
5595 /* Program multicast filter. */
5596 bge_setmulti(sc);
5597
5598 /* Init RX ring. */
5599 bge_init_rx_ring_std(sc);
5600
5601 /*
5602 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5603 * memory to insure that the chip has in fact read the first
5604 * entry of the ring.
5605 */
5606 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5607 uint32_t v, i;
5608 for (i = 0; i < 10; i++) {
5609 DELAY(20);
5610 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5611 if (v == (MCLBYTES - ETHER_ALIGN))
5612 break;
5613 }
5614 if (i == 10)
5615 aprint_error_dev(sc->bge_dev,
5616 "5705 A0 chip failed to load RX ring\n");
5617 }
5618
5619 /* Init jumbo RX ring. */
5620 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5621 bge_init_rx_ring_jumbo(sc);
5622
5623 /* Init our RX return ring index */
5624 sc->bge_rx_saved_considx = 0;
5625
5626 /* Init TX ring. */
5627 bge_init_tx_ring(sc);
5628
5629 /* 5718 step 63, 57XX step 94 */
5630 /* Enable TX MAC state machine lockup fix. */
5631 mode = CSR_READ_4(sc, BGE_TX_MODE);
5632 if (BGE_IS_5755_PLUS(sc) ||
5633 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5634 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5635 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5636 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5637 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5638 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5639 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5640 }
5641
5642 /* Turn on transmitter */
5643 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5644 /* 5718 step 64 */
5645 DELAY(100);
5646
5647 /* 5718 step 65, 57XX step 95 */
5648 /* Turn on receiver */
5649 mode = CSR_READ_4(sc, BGE_RX_MODE);
5650 if (BGE_IS_5755_PLUS(sc))
5651 mode |= BGE_RXMODE_IPV6_ENABLE;
5652 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5653 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5654 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5655 /* 5718 step 66 */
5656 DELAY(10);
5657
5658 /* 5718 step 12, 57XX step 37 */
5659 /*
5660 * XXX Doucments of 5718 series and 577xx say the recommended value
5661 * is 1, but tg3 set 1 only on 57765 series.
5662 */
5663 if (BGE_IS_57765_PLUS(sc))
5664 reg = 1;
5665 else
5666 reg = 2;
5667 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5668
5669 /* Tell firmware we're alive. */
5670 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5671
5672 /* Enable host interrupts. */
5673 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5674 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5675 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5676
5677 if ((error = bge_ifmedia_upd(ifp)) != 0)
5678 goto out;
5679
5680 ifp->if_flags |= IFF_RUNNING;
5681 ifp->if_flags &= ~IFF_OACTIVE;
5682
5683 callout_schedule(&sc->bge_timeout, hz);
5684
5685 out:
5686 sc->bge_if_flags = ifp->if_flags;
5687 splx(s);
5688
5689 return error;
5690 }
5691
5692 /*
5693 * Set media options.
5694 */
5695 static int
5696 bge_ifmedia_upd(struct ifnet *ifp)
5697 {
5698 struct bge_softc * const sc = ifp->if_softc;
5699 struct mii_data * const mii = &sc->bge_mii;
5700 struct ifmedia * const ifm = &sc->bge_ifmedia;
5701 int rc;
5702
5703 /* If this is a 1000baseX NIC, enable the TBI port. */
5704 if (sc->bge_flags & BGEF_FIBER_TBI) {
5705 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5706 return EINVAL;
5707 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5708 case IFM_AUTO:
5709 /*
5710 * The BCM5704 ASIC appears to have a special
5711 * mechanism for programming the autoneg
5712 * advertisement registers in TBI mode.
5713 */
5714 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5715 uint32_t sgdig;
5716 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5717 if (sgdig & BGE_SGDIGSTS_DONE) {
5718 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5719 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5720 sgdig |= BGE_SGDIGCFG_AUTO |
5721 BGE_SGDIGCFG_PAUSE_CAP |
5722 BGE_SGDIGCFG_ASYM_PAUSE;
5723 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5724 sgdig | BGE_SGDIGCFG_SEND);
5725 DELAY(5);
5726 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5727 sgdig);
5728 }
5729 }
5730 break;
5731 case IFM_1000_SX:
5732 if ((ifm->ifm_media & IFM_FDX) != 0) {
5733 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5734 BGE_MACMODE_HALF_DUPLEX);
5735 } else {
5736 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5737 BGE_MACMODE_HALF_DUPLEX);
5738 }
5739 DELAY(40);
5740 break;
5741 default:
5742 return EINVAL;
5743 }
5744 /* XXX 802.3x flow control for 1000BASE-SX */
5745 return 0;
5746 }
5747
5748 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5749 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5750 uint32_t reg;
5751
5752 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5753 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5754 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5755 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5756 }
5757 }
5758
5759 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5760 if ((rc = mii_mediachg(mii)) == ENXIO)
5761 return 0;
5762
5763 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5764 uint32_t reg;
5765
5766 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5767 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5768 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5769 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5770 delay(40);
5771 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5772 }
5773 }
5774
5775 /*
5776 * Force an interrupt so that we will call bge_link_upd
5777 * if needed and clear any pending link state attention.
5778 * Without this we are not getting any further interrupts
5779 * for link state changes and thus will not UP the link and
5780 * not be able to send in bge_start. The only way to get
5781 * things working was to receive a packet and get a RX intr.
5782 */
5783 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5784 sc->bge_flags & BGEF_IS_5788)
5785 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5786 else
5787 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5788
5789 return rc;
5790 }
5791
5792 /*
5793 * Report current media status.
5794 */
5795 static void
5796 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5797 {
5798 struct bge_softc * const sc = ifp->if_softc;
5799 struct mii_data * const mii = &sc->bge_mii;
5800
5801 if (sc->bge_flags & BGEF_FIBER_TBI) {
5802 ifmr->ifm_status = IFM_AVALID;
5803 ifmr->ifm_active = IFM_ETHER;
5804 if (CSR_READ_4(sc, BGE_MAC_STS) &
5805 BGE_MACSTAT_TBI_PCS_SYNCHED)
5806 ifmr->ifm_status |= IFM_ACTIVE;
5807 ifmr->ifm_active |= IFM_1000_SX;
5808 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5809 ifmr->ifm_active |= IFM_HDX;
5810 else
5811 ifmr->ifm_active |= IFM_FDX;
5812 return;
5813 }
5814
5815 mii_pollstat(mii);
5816 ifmr->ifm_status = mii->mii_media_status;
5817 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5818 sc->bge_flowflags;
5819 }
5820
5821 static int
5822 bge_ifflags_cb(struct ethercom *ec)
5823 {
5824 struct ifnet * const ifp = &ec->ec_if;
5825 struct bge_softc * const sc = ifp->if_softc;
5826 u_short change = ifp->if_flags ^ sc->bge_if_flags;
5827
5828 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
5829 return ENETRESET;
5830 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5831 return 0;
5832
5833 if ((ifp->if_flags & IFF_PROMISC) == 0)
5834 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5835 else
5836 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5837
5838 bge_setmulti(sc);
5839
5840 sc->bge_if_flags = ifp->if_flags;
5841 return 0;
5842 }
5843
5844 static int
5845 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5846 {
5847 struct bge_softc * const sc = ifp->if_softc;
5848 struct ifreq * const ifr = (struct ifreq *) data;
5849 int s, error = 0;
5850 struct mii_data *mii;
5851
5852 s = splnet();
5853
5854 switch (command) {
5855 case SIOCSIFMEDIA:
5856 /* XXX Flow control is not supported for 1000BASE-SX */
5857 if (sc->bge_flags & BGEF_FIBER_TBI) {
5858 ifr->ifr_media &= ~IFM_ETH_FMASK;
5859 sc->bge_flowflags = 0;
5860 }
5861
5862 /* Flow control requires full-duplex mode. */
5863 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5864 (ifr->ifr_media & IFM_FDX) == 0) {
5865 ifr->ifr_media &= ~IFM_ETH_FMASK;
5866 }
5867 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5868 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5869 /* We can do both TXPAUSE and RXPAUSE. */
5870 ifr->ifr_media |=
5871 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5872 }
5873 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5874 }
5875
5876 if (sc->bge_flags & BGEF_FIBER_TBI) {
5877 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5878 command);
5879 } else {
5880 mii = &sc->bge_mii;
5881 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5882 command);
5883 }
5884 break;
5885 default:
5886 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5887 break;
5888
5889 error = 0;
5890
5891 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5892 ;
5893 else if (ifp->if_flags & IFF_RUNNING)
5894 bge_setmulti(sc);
5895 break;
5896 }
5897
5898 splx(s);
5899
5900 return error;
5901 }
5902
5903 static void
5904 bge_watchdog(struct ifnet *ifp)
5905 {
5906 struct bge_softc * const sc = ifp->if_softc;
5907 uint32_t status;
5908
5909 /* If pause frames are active then don't reset the hardware. */
5910 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5911 status = CSR_READ_4(sc, BGE_RX_STS);
5912 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5913 /*
5914 * If link partner has us in XOFF state then wait for
5915 * the condition to clear.
5916 */
5917 CSR_WRITE_4(sc, BGE_RX_STS, status);
5918 ifp->if_timer = 5;
5919 return;
5920 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5921 (status & BGE_RXSTAT_RCVD_XON) != 0) {
5922 /*
5923 * If link partner has us in XOFF state then wait for
5924 * the condition to clear.
5925 */
5926 CSR_WRITE_4(sc, BGE_RX_STS, status);
5927 ifp->if_timer = 5;
5928 return;
5929 }
5930 /*
5931 * Any other condition is unexpected and the controller
5932 * should be reset.
5933 */
5934 }
5935
5936 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5937
5938 ifp->if_flags &= ~IFF_RUNNING;
5939 bge_init(ifp);
5940
5941 if_statinc(ifp, if_oerrors);
5942 }
5943
5944 static void
5945 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5946 {
5947 int i;
5948
5949 BGE_CLRBIT_FLUSH(sc, reg, bit);
5950
5951 for (i = 0; i < 1000; i++) {
5952 delay(100);
5953 if ((CSR_READ_4(sc, reg) & bit) == 0)
5954 return;
5955 }
5956
5957 /*
5958 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5959 * on some environment (and once after boot?)
5960 */
5961 if (reg != BGE_SRS_MODE)
5962 aprint_error_dev(sc->bge_dev,
5963 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5964 (u_long)reg, bit);
5965 }
5966
5967 /*
5968 * Stop the adapter and free any mbufs allocated to the
5969 * RX and TX lists.
5970 */
5971 static void
5972 bge_stop(struct ifnet *ifp, int disable)
5973 {
5974 struct bge_softc * const sc = ifp->if_softc;
5975
5976 if (disable) {
5977 sc->bge_detaching = 1;
5978 callout_halt(&sc->bge_timeout, NULL);
5979 } else
5980 callout_stop(&sc->bge_timeout);
5981
5982 /* Disable host interrupts. */
5983 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5984 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5985
5986 /*
5987 * Tell firmware we're shutting down.
5988 */
5989 bge_stop_fw(sc);
5990 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5991
5992 /*
5993 * Disable all of the receiver blocks.
5994 */
5995 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5996 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5997 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5998 if (BGE_IS_5700_FAMILY(sc))
5999 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6000 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6001 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6002 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6003
6004 /*
6005 * Disable all of the transmit blocks.
6006 */
6007 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6008 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6009 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6010 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6011 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6012 if (BGE_IS_5700_FAMILY(sc))
6013 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6014 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6015
6016 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6017 delay(40);
6018
6019 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6020
6021 /*
6022 * Shut down all of the memory managers and related
6023 * state machines.
6024 */
6025 /* 5718 step 5a,5b */
6026 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6027 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6028 if (BGE_IS_5700_FAMILY(sc))
6029 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6030
6031 /* 5718 step 5c,5d */
6032 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6033 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6034
6035 if (BGE_IS_5700_FAMILY(sc)) {
6036 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6037 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6038 }
6039
6040 bge_reset(sc);
6041 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6042 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6043
6044 /*
6045 * Keep the ASF firmware running if up.
6046 */
6047 if (sc->bge_asf_mode & ASF_STACKUP)
6048 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6049 else
6050 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6051
6052 /* Free the RX lists. */
6053 bge_free_rx_ring_std(sc, disable);
6054
6055 /* Free jumbo RX list. */
6056 if (BGE_IS_JUMBO_CAPABLE(sc))
6057 bge_free_rx_ring_jumbo(sc);
6058
6059 /* Free TX buffers. */
6060 bge_free_tx_ring(sc, disable);
6061
6062 /*
6063 * Isolate/power down the PHY.
6064 */
6065 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6066 mii_down(&sc->bge_mii);
6067
6068 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6069
6070 /* Clear MAC's link state (PHY may still have link UP). */
6071 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6072
6073 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6074 }
6075
6076 static void
6077 bge_link_upd(struct bge_softc *sc)
6078 {
6079 struct ifnet * const ifp = &sc->ethercom.ec_if;
6080 struct mii_data * const mii = &sc->bge_mii;
6081 uint32_t status;
6082 uint16_t phyval;
6083 int link;
6084
6085 /* Clear 'pending link event' flag */
6086 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6087
6088 /*
6089 * Process link state changes.
6090 * Grrr. The link status word in the status block does
6091 * not work correctly on the BCM5700 rev AX and BX chips,
6092 * according to all available information. Hence, we have
6093 * to enable MII interrupts in order to properly obtain
6094 * async link changes. Unfortunately, this also means that
6095 * we have to read the MAC status register to detect link
6096 * changes, thereby adding an additional register access to
6097 * the interrupt handler.
6098 */
6099
6100 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6101 status = CSR_READ_4(sc, BGE_MAC_STS);
6102 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6103 mii_pollstat(mii);
6104
6105 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6106 mii->mii_media_status & IFM_ACTIVE &&
6107 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6108 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6109 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6110 (!(mii->mii_media_status & IFM_ACTIVE) ||
6111 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6112 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6113
6114 /* Clear the interrupt */
6115 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6116 BGE_EVTENB_MI_INTERRUPT);
6117 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6118 BRGPHY_MII_ISR, &phyval);
6119 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6120 BRGPHY_MII_IMR, BRGPHY_INTRS);
6121 }
6122 return;
6123 }
6124
6125 if (sc->bge_flags & BGEF_FIBER_TBI) {
6126 status = CSR_READ_4(sc, BGE_MAC_STS);
6127 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6128 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6129 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6130 if (BGE_ASICREV(sc->bge_chipid)
6131 == BGE_ASICREV_BCM5704) {
6132 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6133 BGE_MACMODE_TBI_SEND_CFGS);
6134 DELAY(40);
6135 }
6136 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6137 if_link_state_change(ifp, LINK_STATE_UP);
6138 }
6139 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6140 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6141 if_link_state_change(ifp, LINK_STATE_DOWN);
6142 }
6143 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6144 /*
6145 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6146 * bit in status word always set. Workaround this bug by
6147 * reading PHY link status directly.
6148 */
6149 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6150 BGE_STS_LINK : 0;
6151
6152 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6153 mii_pollstat(mii);
6154
6155 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6156 mii->mii_media_status & IFM_ACTIVE &&
6157 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6158 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6159 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6160 (!(mii->mii_media_status & IFM_ACTIVE) ||
6161 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6162 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6163 }
6164 } else {
6165 /*
6166 * For controllers that call mii_tick, we have to poll
6167 * link status.
6168 */
6169 mii_pollstat(mii);
6170 }
6171
6172 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6173 uint32_t reg, scale;
6174
6175 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6176 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6177 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6178 scale = 65;
6179 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6180 scale = 6;
6181 else
6182 scale = 12;
6183
6184 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6185 ~BGE_MISCCFG_TIMER_PRESCALER;
6186 reg |= scale << 1;
6187 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6188 }
6189 /* Clear the attention */
6190 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6191 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6192 BGE_MACSTAT_LINK_CHANGED);
6193 }
6194
6195 static int
6196 bge_sysctl_verify(SYSCTLFN_ARGS)
6197 {
6198 int error, t;
6199 struct sysctlnode node;
6200
6201 node = *rnode;
6202 t = *(int*)rnode->sysctl_data;
6203 node.sysctl_data = &t;
6204 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6205 if (error || newp == NULL)
6206 return error;
6207
6208 #if 0
6209 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6210 node.sysctl_num, rnode->sysctl_num));
6211 #endif
6212
6213 if (node.sysctl_num == bge_rxthresh_nodenum) {
6214 if (t < 0 || t >= NBGE_RX_THRESH)
6215 return EINVAL;
6216 bge_update_all_threshes(t);
6217 } else
6218 return EINVAL;
6219
6220 *(int*)rnode->sysctl_data = t;
6221
6222 return 0;
6223 }
6224
6225 /*
6226 * Set up sysctl(3) MIB, hw.bge.*.
6227 */
6228 static void
6229 bge_sysctl_init(struct bge_softc *sc)
6230 {
6231 int rc, bge_root_num;
6232 const struct sysctlnode *node;
6233
6234 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6235 0, CTLTYPE_NODE, "bge",
6236 SYSCTL_DESCR("BGE interface controls"),
6237 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6238 goto out;
6239 }
6240
6241 bge_root_num = node->sysctl_num;
6242
6243 /* BGE Rx interrupt mitigation level */
6244 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6245 CTLFLAG_READWRITE,
6246 CTLTYPE_INT, "rx_lvl",
6247 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6248 bge_sysctl_verify, 0,
6249 &bge_rx_thresh_lvl,
6250 0, CTL_HW, bge_root_num, CTL_CREATE,
6251 CTL_EOL)) != 0) {
6252 goto out;
6253 }
6254
6255 bge_rxthresh_nodenum = node->sysctl_num;
6256
6257 return;
6258
6259 out:
6260 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6261 }
6262
6263 #ifdef BGE_DEBUG
6264 void
6265 bge_debug_info(struct bge_softc *sc)
6266 {
6267
6268 printf("Hardware Flags:\n");
6269 if (BGE_IS_57765_PLUS(sc))
6270 printf(" - 57765 Plus\n");
6271 if (BGE_IS_5717_PLUS(sc))
6272 printf(" - 5717 Plus\n");
6273 if (BGE_IS_5755_PLUS(sc))
6274 printf(" - 5755 Plus\n");
6275 if (BGE_IS_575X_PLUS(sc))
6276 printf(" - 575X Plus\n");
6277 if (BGE_IS_5705_PLUS(sc))
6278 printf(" - 5705 Plus\n");
6279 if (BGE_IS_5714_FAMILY(sc))
6280 printf(" - 5714 Family\n");
6281 if (BGE_IS_5700_FAMILY(sc))
6282 printf(" - 5700 Family\n");
6283 if (sc->bge_flags & BGEF_IS_5788)
6284 printf(" - 5788\n");
6285 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6286 printf(" - Supports Jumbo Frames\n");
6287 if (sc->bge_flags & BGEF_NO_EEPROM)
6288 printf(" - No EEPROM\n");
6289 if (sc->bge_flags & BGEF_PCIX)
6290 printf(" - PCI-X Bus\n");
6291 if (sc->bge_flags & BGEF_PCIE)
6292 printf(" - PCI Express Bus\n");
6293 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6294 printf(" - RX Alignment Bug\n");
6295 if (sc->bge_flags & BGEF_APE)
6296 printf(" - APE\n");
6297 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6298 printf(" - CPMU\n");
6299 if (sc->bge_flags & BGEF_TSO)
6300 printf(" - TSO\n");
6301 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6302 printf(" - TAGGED_STATUS\n");
6303
6304 /* PHY related */
6305 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6306 printf(" - No 3 LEDs\n");
6307 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6308 printf(" - CRC bug\n");
6309 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6310 printf(" - ADC bug\n");
6311 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6312 printf(" - 5704 A0 bug\n");
6313 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6314 printf(" - jitter bug\n");
6315 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6316 printf(" - BER bug\n");
6317 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6318 printf(" - adjust trim\n");
6319 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6320 printf(" - no wirespeed\n");
6321
6322 /* ASF related */
6323 if (sc->bge_asf_mode & ASF_ENABLE)
6324 printf(" - ASF enable\n");
6325 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6326 printf(" - ASF new handshake\n");
6327 if (sc->bge_asf_mode & ASF_STACKUP)
6328 printf(" - ASF stackup\n");
6329 }
6330 #endif /* BGE_DEBUG */
6331
6332 static int
6333 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6334 {
6335 prop_dictionary_t dict;
6336 prop_data_t ea;
6337
6338 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6339 return 1;
6340
6341 dict = device_properties(sc->bge_dev);
6342 ea = prop_dictionary_get(dict, "mac-address");
6343 if (ea != NULL) {
6344 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6345 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6346 memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
6347 return 0;
6348 }
6349
6350 return 1;
6351 }
6352
6353 static int
6354 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6355 {
6356 uint32_t mac_addr;
6357
6358 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6359 if ((mac_addr >> 16) == 0x484b) {
6360 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6361 ether_addr[1] = (uint8_t)mac_addr;
6362 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6363 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6364 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6365 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6366 ether_addr[5] = (uint8_t)mac_addr;
6367 return 0;
6368 }
6369 return 1;
6370 }
6371
6372 static int
6373 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6374 {
6375 int mac_offset = BGE_EE_MAC_OFFSET;
6376
6377 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6378 mac_offset = BGE_EE_MAC_OFFSET_5906;
6379
6380 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6381 ETHER_ADDR_LEN));
6382 }
6383
6384 static int
6385 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6386 {
6387
6388 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6389 return 1;
6390
6391 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6392 ETHER_ADDR_LEN));
6393 }
6394
6395 static int
6396 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6397 {
6398 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6399 /* NOTE: Order is critical */
6400 bge_get_eaddr_fw,
6401 bge_get_eaddr_mem,
6402 bge_get_eaddr_nvram,
6403 bge_get_eaddr_eeprom,
6404 NULL
6405 };
6406 const bge_eaddr_fcn_t *func;
6407
6408 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6409 if ((*func)(sc, eaddr) == 0)
6410 break;
6411 }
6412 return *func == NULL ? ENXIO : 0;
6413 }
6414