Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.367
      1 /*	$NetBSD: if_bge.c,v 1.367 2022/07/26 14:53:12 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.367 2022/07/26 14:53:12 skrll Exp $");
     83 
     84 #include <sys/param.h>
     85 
     86 #include <sys/callout.h>
     87 #include <sys/device.h>
     88 #include <sys/kernel.h>
     89 #include <sys/kmem.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/rndsource.h>
     92 #include <sys/socket.h>
     93 #include <sys/sockio.h>
     94 #include <sys/sysctl.h>
     95 #include <sys/systm.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 #include <net/bpf.h>
    102 
    103 #ifdef INET
    104 #include <netinet/in.h>
    105 #include <netinet/in_systm.h>
    106 #include <netinet/in_var.h>
    107 #include <netinet/ip.h>
    108 #endif
    109 
    110 /* Headers for TCP Segmentation Offload (TSO) */
    111 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    112 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    113 #include <netinet/ip.h>			/* for struct ip */
    114 #include <netinet/tcp.h>		/* for struct tcphdr */
    115 
    116 #include <dev/pci/pcireg.h>
    117 #include <dev/pci/pcivar.h>
    118 #include <dev/pci/pcidevs.h>
    119 
    120 #include <dev/mii/mii.h>
    121 #include <dev/mii/miivar.h>
    122 #include <dev/mii/miidevs.h>
    123 #include <dev/mii/brgphyreg.h>
    124 
    125 #include <dev/pci/if_bgereg.h>
    126 #include <dev/pci/if_bgevar.h>
    127 
    128 #include <prop/proplib.h>
    129 
    130 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    131 
    132 
    133 /*
    134  * Tunable thresholds for rx-side bge interrupt mitigation.
    135  */
    136 
    137 /*
    138  * The pairs of values below were obtained from empirical measurement
    139  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    140  * interrupt for every N packets received, where N is, approximately,
    141  * the second value (rx_max_bds) in each pair.  The values are chosen
    142  * such that moving from one pair to the succeeding pair was observed
    143  * to roughly halve interrupt rate under sustained input packet load.
    144  * The values were empirically chosen to avoid overflowing internal
    145  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    146  * results in internal wrapping and higher interrupt rates.
    147  * The limit of 46 frames was chosen to match NFS workloads.
    148  *
    149  * These values also work well on bcm5701, bcm5704C, and (less
    150  * tested) bcm5703.  On other chipsets, (including the Altima chip
    151  * family), the larger values may overflow internal chip limits,
    152  * leading to increasing interrupt rates rather than lower interrupt
    153  * rates.
    154  *
    155  * Applications using heavy interrupt mitigation (interrupting every
    156  * 32 or 46 frames) in both directions may need to increase the TCP
    157  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    158  * full link bandwidth, due to ACKs and window updates lingering
    159  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    160  */
    161 static const struct bge_load_rx_thresh {
    162 	int rx_ticks;
    163 	int rx_max_bds; }
    164 bge_rx_threshes[] = {
    165 	{ 16,	1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    166 	{ 32,	2 },
    167 	{ 50,	4 },
    168 	{ 100,	8 },
    169 	{ 192, 16 },
    170 	{ 416, 32 },
    171 	{ 598, 46 }
    172 };
    173 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    174 
    175 /* XXX patchable; should be sysctl'able */
    176 static int bge_auto_thresh = 1;
    177 static int bge_rx_thresh_lvl;
    178 
    179 static int bge_rxthresh_nodenum;
    180 
    181 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    182 
    183 static uint32_t bge_chipid(const struct pci_attach_args *);
    184 static int bge_can_use_msi(struct bge_softc *);
    185 static int bge_probe(device_t, cfdata_t, void *);
    186 static void bge_attach(device_t, device_t, void *);
    187 static int bge_detach(device_t, int);
    188 static void bge_release_resources(struct bge_softc *);
    189 
    190 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    191 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    192 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    195 
    196 static void bge_txeof(struct bge_softc *);
    197 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    198 static void bge_rxeof(struct bge_softc *);
    199 
    200 static void bge_asf_driver_up (struct bge_softc *);
    201 static void bge_tick(void *);
    202 static void bge_stats_update(struct bge_softc *);
    203 static void bge_stats_update_regs(struct bge_softc *);
    204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    205 
    206 static int bge_intr(void *);
    207 static void bge_start(struct ifnet *);
    208 static int bge_ifflags_cb(struct ethercom *);
    209 static int bge_ioctl(struct ifnet *, u_long, void *);
    210 static int bge_init(struct ifnet *);
    211 static void bge_stop(struct ifnet *, int);
    212 static void bge_watchdog(struct ifnet *);
    213 static int bge_ifmedia_upd(struct ifnet *);
    214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    215 
    216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    218 
    219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    221 static void bge_setmulti(struct bge_softc *);
    222 
    223 static void bge_handle_events(struct bge_softc *);
    224 static int bge_alloc_jumbo_mem(struct bge_softc *);
    225 #if 0 /* XXX */
    226 static void bge_free_jumbo_mem(struct bge_softc *);
    227 #endif
    228 static void *bge_jalloc(struct bge_softc *);
    229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    231 			       bus_dmamap_t);
    232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    233 static int bge_init_rx_ring_std(struct bge_softc *);
    234 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
    235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    237 static void bge_free_tx_ring(struct bge_softc *m, bool);
    238 static int bge_init_tx_ring(struct bge_softc *);
    239 
    240 static int bge_chipinit(struct bge_softc *);
    241 static int bge_blockinit(struct bge_softc *);
    242 static int bge_phy_addr(struct bge_softc *);
    243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    244 static void bge_writemem_ind(struct bge_softc *, int, int);
    245 static void bge_writembx(struct bge_softc *, int, int);
    246 static void bge_writembx_flush(struct bge_softc *, int, int);
    247 static void bge_writemem_direct(struct bge_softc *, int, int);
    248 static void bge_writereg_ind(struct bge_softc *, int, int);
    249 static void bge_set_max_readrq(struct bge_softc *);
    250 
    251 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
    252 static int bge_miibus_writereg(device_t, int, int, uint16_t);
    253 static void bge_miibus_statchg(struct ifnet *);
    254 
    255 #define BGE_RESET_SHUTDOWN	0
    256 #define	BGE_RESET_START		1
    257 #define	BGE_RESET_SUSPEND	2
    258 static void bge_sig_post_reset(struct bge_softc *, int);
    259 static void bge_sig_legacy(struct bge_softc *, int);
    260 static void bge_sig_pre_reset(struct bge_softc *, int);
    261 static void bge_wait_for_event_ack(struct bge_softc *);
    262 static void bge_stop_fw(struct bge_softc *);
    263 static int bge_reset(struct bge_softc *);
    264 static void bge_link_upd(struct bge_softc *);
    265 static void bge_sysctl_init(struct bge_softc *);
    266 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    267 
    268 static void bge_ape_lock_init(struct bge_softc *);
    269 static void bge_ape_read_fw_ver(struct bge_softc *);
    270 static int bge_ape_lock(struct bge_softc *, int);
    271 static void bge_ape_unlock(struct bge_softc *, int);
    272 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    273 static void bge_ape_driver_state_change(struct bge_softc *, int);
    274 
    275 #ifdef BGE_DEBUG
    276 #define DPRINTF(x)	if (bgedebug) printf x
    277 #define DPRINTFN(n, x)	if (bgedebug >= (n)) printf x
    278 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    279 int	bgedebug = 0;
    280 int	bge_tso_debug = 0;
    281 void		bge_debug_info(struct bge_softc *);
    282 #else
    283 #define DPRINTF(x)
    284 #define DPRINTFN(n, x)
    285 #define BGE_TSO_PRINTF(x)
    286 #endif
    287 
    288 #ifdef BGE_EVENT_COUNTERS
    289 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    290 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    291 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    292 #else
    293 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    294 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    295 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    296 #endif
    297 
    298 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
    299 /*
    300  * The BCM5700 documentation seems to indicate that the hardware still has the
    301  * Alteon vendor ID burned into it, though it should always be overridden by
    302  * the value in the EEPROM.  We'll check for it anyway.
    303  */
    304 static const struct bge_product {
    305 	pci_vendor_id_t		bp_vendor;
    306 	pci_product_id_t	bp_product;
    307 	const char		*bp_name;
    308 } bge_products[] = {
    309 	{ VIDDID(ALTEON,   BCM5700),	"Broadcom BCM5700 Gigabit" },
    310 	{ VIDDID(ALTEON,   BCM5701),	"Broadcom BCM5701 Gigabit" },
    311 	{ VIDDID(ALTIMA,   AC1000),	"Altima AC1000 Gigabit" },
    312 	{ VIDDID(ALTIMA,   AC1001),	"Altima AC1001 Gigabit" },
    313 	{ VIDDID(ALTIMA,   AC1003),	"Altima AC1003 Gigabit" },
    314 	{ VIDDID(ALTIMA,   AC9100),	"Altima AC9100 Gigabit" },
    315 	{ VIDDID(APPLE,	   BCM5701),	"APPLE BCM5701 Gigabit" },
    316 	{ VIDDID(BROADCOM, BCM5700),	"Broadcom BCM5700 Gigabit" },
    317 	{ VIDDID(BROADCOM, BCM5701),	"Broadcom BCM5701 Gigabit" },
    318 	{ VIDDID(BROADCOM, BCM5702),	"Broadcom BCM5702 Gigabit" },
    319 	{ VIDDID(BROADCOM, BCM5702FE),	"Broadcom BCM5702FE Fast" },
    320 	{ VIDDID(BROADCOM, BCM5702X),	"Broadcom BCM5702X Gigabit" },
    321 	{ VIDDID(BROADCOM, BCM5703),	"Broadcom BCM5703 Gigabit" },
    322 	{ VIDDID(BROADCOM, BCM5703X),	"Broadcom BCM5703X Gigabit" },
    323 	{ VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
    324 	{ VIDDID(BROADCOM, BCM5704C),	"Broadcom BCM5704C Dual Gigabit" },
    325 	{ VIDDID(BROADCOM, BCM5704S),	"Broadcom BCM5704S Dual Gigabit" },
    326 	{ VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
    327 	{ VIDDID(BROADCOM, BCM5705),	"Broadcom BCM5705 Gigabit" },
    328 	{ VIDDID(BROADCOM, BCM5705F),	"Broadcom BCM5705F Gigabit" },
    329 	{ VIDDID(BROADCOM, BCM5705K),	"Broadcom BCM5705K Gigabit" },
    330 	{ VIDDID(BROADCOM, BCM5705M),	"Broadcom BCM5705M Gigabit" },
    331 	{ VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
    332 	{ VIDDID(BROADCOM, BCM5714),	"Broadcom BCM5714 Gigabit" },
    333 	{ VIDDID(BROADCOM, BCM5714S),	"Broadcom BCM5714S Gigabit" },
    334 	{ VIDDID(BROADCOM, BCM5715),	"Broadcom BCM5715 Gigabit" },
    335 	{ VIDDID(BROADCOM, BCM5715S),	"Broadcom BCM5715S Gigabit" },
    336 	{ VIDDID(BROADCOM, BCM5717),	"Broadcom BCM5717 Gigabit" },
    337 	{ VIDDID(BROADCOM, BCM5717C),	"Broadcom BCM5717 Gigabit" },
    338 	{ VIDDID(BROADCOM, BCM5718),	"Broadcom BCM5718 Gigabit" },
    339 	{ VIDDID(BROADCOM, BCM5719),	"Broadcom BCM5719 Gigabit" },
    340 	{ VIDDID(BROADCOM, BCM5720),	"Broadcom BCM5720 Gigabit" },
    341 	{ VIDDID(BROADCOM, BCM5721),	"Broadcom BCM5721 Gigabit" },
    342 	{ VIDDID(BROADCOM, BCM5722),	"Broadcom BCM5722 Gigabit" },
    343 	{ VIDDID(BROADCOM, BCM5723),	"Broadcom BCM5723 Gigabit" },
    344 	{ VIDDID(BROADCOM, BCM5725),	"Broadcom BCM5725 Gigabit" },
    345 	{ VIDDID(BROADCOM, BCM5727),	"Broadcom BCM5727 Gigabit" },
    346 	{ VIDDID(BROADCOM, BCM5750),	"Broadcom BCM5750 Gigabit" },
    347 	{ VIDDID(BROADCOM, BCM5751),	"Broadcom BCM5751 Gigabit" },
    348 	{ VIDDID(BROADCOM, BCM5751F),	"Broadcom BCM5751F Gigabit" },
    349 	{ VIDDID(BROADCOM, BCM5751M),	"Broadcom BCM5751M Gigabit" },
    350 	{ VIDDID(BROADCOM, BCM5752),	"Broadcom BCM5752 Gigabit" },
    351 	{ VIDDID(BROADCOM, BCM5752M),	"Broadcom BCM5752M Gigabit" },
    352 	{ VIDDID(BROADCOM, BCM5753),	"Broadcom BCM5753 Gigabit" },
    353 	{ VIDDID(BROADCOM, BCM5753F),	"Broadcom BCM5753F Gigabit" },
    354 	{ VIDDID(BROADCOM, BCM5753M),	"Broadcom BCM5753M Gigabit" },
    355 	{ VIDDID(BROADCOM, BCM5754),	"Broadcom BCM5754 Gigabit" },
    356 	{ VIDDID(BROADCOM, BCM5754M),	"Broadcom BCM5754M Gigabit" },
    357 	{ VIDDID(BROADCOM, BCM5755),	"Broadcom BCM5755 Gigabit" },
    358 	{ VIDDID(BROADCOM, BCM5755M),	"Broadcom BCM5755M Gigabit" },
    359 	{ VIDDID(BROADCOM, BCM5756),	"Broadcom BCM5756 Gigabit" },
    360 	{ VIDDID(BROADCOM, BCM5761),	"Broadcom BCM5761 Gigabit" },
    361 	{ VIDDID(BROADCOM, BCM5761E),	"Broadcom BCM5761E Gigabit" },
    362 	{ VIDDID(BROADCOM, BCM5761S),	"Broadcom BCM5761S Gigabit" },
    363 	{ VIDDID(BROADCOM, BCM5761SE),	"Broadcom BCM5761SE Gigabit" },
    364 	{ VIDDID(BROADCOM, BCM5762),	"Broadcom BCM5762 Gigabit" },
    365 	{ VIDDID(BROADCOM, BCM5764),	"Broadcom BCM5764 Gigabit" },
    366 	{ VIDDID(BROADCOM, BCM5780),	"Broadcom BCM5780 Gigabit" },
    367 	{ VIDDID(BROADCOM, BCM5780S),	"Broadcom BCM5780S Gigabit" },
    368 	{ VIDDID(BROADCOM, BCM5781),	"Broadcom BCM5781 Gigabit" },
    369 	{ VIDDID(BROADCOM, BCM5782),	"Broadcom BCM5782 Gigabit" },
    370 	{ VIDDID(BROADCOM, BCM5784M),	"BCM5784M NetLink 1000baseT" },
    371 	{ VIDDID(BROADCOM, BCM5785F),	"BCM5785F NetLink 10/100" },
    372 	{ VIDDID(BROADCOM, BCM5785G),	"BCM5785G NetLink 1000baseT" },
    373 	{ VIDDID(BROADCOM, BCM5786),	"Broadcom BCM5786 Gigabit" },
    374 	{ VIDDID(BROADCOM, BCM5787),	"Broadcom BCM5787 Gigabit" },
    375 	{ VIDDID(BROADCOM, BCM5787F),	"Broadcom BCM5787F 10/100" },
    376 	{ VIDDID(BROADCOM, BCM5787M),	"Broadcom BCM5787M Gigabit" },
    377 	{ VIDDID(BROADCOM, BCM5788),	"Broadcom BCM5788 Gigabit" },
    378 	{ VIDDID(BROADCOM, BCM5789),	"Broadcom BCM5789 Gigabit" },
    379 	{ VIDDID(BROADCOM, BCM5901),	"Broadcom BCM5901 Fast" },
    380 	{ VIDDID(BROADCOM, BCM5901A2),	"Broadcom BCM5901A2 Fast" },
    381 	{ VIDDID(BROADCOM, BCM5903M),	"Broadcom BCM5903M Fast" },
    382 	{ VIDDID(BROADCOM, BCM5906),	"Broadcom BCM5906 Fast" },
    383 	{ VIDDID(BROADCOM, BCM5906M),	"Broadcom BCM5906M Fast" },
    384 	{ VIDDID(BROADCOM, BCM57760),	"Broadcom BCM57760 Gigabit" },
    385 	{ VIDDID(BROADCOM, BCM57761),	"Broadcom BCM57761 Gigabit" },
    386 	{ VIDDID(BROADCOM, BCM57762),	"Broadcom BCM57762 Gigabit" },
    387 	{ VIDDID(BROADCOM, BCM57764),	"Broadcom BCM57764 Gigabit" },
    388 	{ VIDDID(BROADCOM, BCM57765),	"Broadcom BCM57765 Gigabit" },
    389 	{ VIDDID(BROADCOM, BCM57766),	"Broadcom BCM57766 Gigabit" },
    390 	{ VIDDID(BROADCOM, BCM57767),	"Broadcom BCM57767 Gigabit" },
    391 	{ VIDDID(BROADCOM, BCM57780),	"Broadcom BCM57780 Gigabit" },
    392 	{ VIDDID(BROADCOM, BCM57781),	"Broadcom BCM57781 Gigabit" },
    393 	{ VIDDID(BROADCOM, BCM57782),	"Broadcom BCM57782 Gigabit" },
    394 	{ VIDDID(BROADCOM, BCM57785),	"Broadcom BCM57785 Gigabit" },
    395 	{ VIDDID(BROADCOM, BCM57786),	"Broadcom BCM57786 Gigabit" },
    396 	{ VIDDID(BROADCOM, BCM57787),	"Broadcom BCM57787 Gigabit" },
    397 	{ VIDDID(BROADCOM, BCM57788),	"Broadcom BCM57788 Gigabit" },
    398 	{ VIDDID(BROADCOM, BCM57790),	"Broadcom BCM57790 Gigabit" },
    399 	{ VIDDID(BROADCOM, BCM57791),	"Broadcom BCM57791 Gigabit" },
    400 	{ VIDDID(BROADCOM, BCM57795),	"Broadcom BCM57795 Gigabit" },
    401 	{ VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
    402 	{ VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
    403 	{ VIDDID(3COM, 3C996),		"3Com 3c996 Gigabit" },
    404 	{ VIDDID(FUJITSU4, PW008GE4),	"Fujitsu PW008GE4 Gigabit" },
    405 	{ VIDDID(FUJITSU4, PW008GE5),	"Fujitsu PW008GE5 Gigabit" },
    406 	{ VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
    407 	{ 0, 0, NULL },
    408 };
    409 
    410 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
    411 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
    412 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
    413 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
    414 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
    415 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
    416 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
    417 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
    418 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
    419 
    420 static const struct bge_revision {
    421 	uint32_t		br_chipid;
    422 	const char		*br_name;
    423 } bge_revisions[] = {
    424 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    425 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    426 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    427 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    428 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    429 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    430 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    431 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    432 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    433 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    434 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    435 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    436 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    437 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    438 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    439 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    440 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    441 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    442 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    443 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    444 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    445 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    446 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    447 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    448 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    449 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    450 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    451 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    452 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    453 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    454 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    455 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    456 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    457 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    458 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    459 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    460 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    461 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    462 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    463 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    464 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    465 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    466 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    467 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    468 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    469 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    470 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    471 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    472 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    473 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    474 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    475 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    476 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    477 	{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
    478 	{ BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
    479 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    480 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    481 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
    482 	/* 5754 and 5787 share the same ASIC ID */
    483 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    484 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    485 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    486 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    487 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    488 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    489 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    490 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    491 	{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
    492 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    493 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    494 
    495 	{ 0, NULL }
    496 };
    497 
    498 /*
    499  * Some defaults for major revisions, so that newer steppings
    500  * that we don't know about have a shot at working.
    501  */
    502 static const struct bge_revision bge_majorrevs[] = {
    503 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    504 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    505 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    506 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    507 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    508 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    509 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    510 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    511 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    512 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    513 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    514 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    515 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    516 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    517 	/* 5754 and 5787 share the same ASIC ID */
    518 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    519 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    520 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    521 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    522 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    523 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    524 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    525 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    526 	{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
    527 
    528 	{ 0, NULL }
    529 };
    530 
    531 static int bge_allow_asf = 1;
    532 
    533 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    534     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    535 
    536 static uint32_t
    537 bge_readmem_ind(struct bge_softc *sc, int off)
    538 {
    539 	pcireg_t val;
    540 
    541 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    542 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    543 		return 0;
    544 
    545 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    546 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    547 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    548 	return val;
    549 }
    550 
    551 static void
    552 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    553 {
    554 
    555 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    556 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    557 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    558 }
    559 
    560 /*
    561  * PCI Express only
    562  */
    563 static void
    564 bge_set_max_readrq(struct bge_softc *sc)
    565 {
    566 	pcireg_t val;
    567 
    568 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    569 	    + PCIE_DCSR);
    570 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    571 	switch (sc->bge_expmrq) {
    572 	case 2048:
    573 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    574 		break;
    575 	case 4096:
    576 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    577 		break;
    578 	default:
    579 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    580 		break;
    581 	}
    582 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    583 	    + PCIE_DCSR, val);
    584 }
    585 
    586 #ifdef notdef
    587 static uint32_t
    588 bge_readreg_ind(struct bge_softc *sc, int off)
    589 {
    590 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    591 	return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
    592 }
    593 #endif
    594 
    595 static void
    596 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    597 {
    598 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    599 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    600 }
    601 
    602 static void
    603 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    604 {
    605 	CSR_WRITE_4(sc, off, val);
    606 }
    607 
    608 static void
    609 bge_writembx(struct bge_softc *sc, int off, int val)
    610 {
    611 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    612 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    613 
    614 	CSR_WRITE_4(sc, off, val);
    615 }
    616 
    617 static void
    618 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    619 {
    620 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    621 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    622 
    623 	CSR_WRITE_4_FLUSH(sc, off, val);
    624 }
    625 
    626 /*
    627  * Clear all stale locks and select the lock for this driver instance.
    628  */
    629 void
    630 bge_ape_lock_init(struct bge_softc *sc)
    631 {
    632 	struct pci_attach_args *pa = &(sc->bge_pa);
    633 	uint32_t bit, regbase;
    634 	int i;
    635 
    636 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    637 		regbase = BGE_APE_LOCK_GRANT;
    638 	else
    639 		regbase = BGE_APE_PER_LOCK_GRANT;
    640 
    641 	/* Clear any stale locks. */
    642 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    643 		switch (i) {
    644 		case BGE_APE_LOCK_PHY0:
    645 		case BGE_APE_LOCK_PHY1:
    646 		case BGE_APE_LOCK_PHY2:
    647 		case BGE_APE_LOCK_PHY3:
    648 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    649 			break;
    650 		default:
    651 			if (pa->pa_function == 0)
    652 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    653 			else
    654 				bit = (1 << pa->pa_function);
    655 		}
    656 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    657 	}
    658 
    659 	/* Select the PHY lock based on the device's function number. */
    660 	switch (pa->pa_function) {
    661 	case 0:
    662 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    663 		break;
    664 	case 1:
    665 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    666 		break;
    667 	case 2:
    668 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    669 		break;
    670 	case 3:
    671 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    672 		break;
    673 	default:
    674 		printf("%s: PHY lock not supported on function\n",
    675 		    device_xname(sc->bge_dev));
    676 		break;
    677 	}
    678 }
    679 
    680 /*
    681  * Check for APE firmware, set flags, and print version info.
    682  */
    683 void
    684 bge_ape_read_fw_ver(struct bge_softc *sc)
    685 {
    686 	const char *fwtype;
    687 	uint32_t apedata, features;
    688 
    689 	/* Check for a valid APE signature in shared memory. */
    690 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    691 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    692 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    693 		return;
    694 	}
    695 
    696 	/* Check if APE firmware is running. */
    697 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    698 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    699 		printf("%s: APE signature found but FW status not ready! "
    700 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    701 		return;
    702 	}
    703 
    704 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    705 
    706 	/* Fetch the APE firwmare type and version. */
    707 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    708 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    709 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    710 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    711 		fwtype = "NCSI";
    712 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    713 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    714 		fwtype = "DASH";
    715 	} else
    716 		fwtype = "UNKN";
    717 
    718 	/* Print the APE firmware version. */
    719 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
    720 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    721 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    722 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    723 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    724 }
    725 
    726 int
    727 bge_ape_lock(struct bge_softc *sc, int locknum)
    728 {
    729 	struct pci_attach_args *pa = &(sc->bge_pa);
    730 	uint32_t bit, gnt, req, status;
    731 	int i, off;
    732 
    733 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    734 		return 0;
    735 
    736 	/* Lock request/grant registers have different bases. */
    737 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    738 		req = BGE_APE_LOCK_REQ;
    739 		gnt = BGE_APE_LOCK_GRANT;
    740 	} else {
    741 		req = BGE_APE_PER_LOCK_REQ;
    742 		gnt = BGE_APE_PER_LOCK_GRANT;
    743 	}
    744 
    745 	off = 4 * locknum;
    746 
    747 	switch (locknum) {
    748 	case BGE_APE_LOCK_GPIO:
    749 		/* Lock required when using GPIO. */
    750 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    751 			return 0;
    752 		if (pa->pa_function == 0)
    753 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    754 		else
    755 			bit = (1 << pa->pa_function);
    756 		break;
    757 	case BGE_APE_LOCK_GRC:
    758 		/* Lock required to reset the device. */
    759 		if (pa->pa_function == 0)
    760 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    761 		else
    762 			bit = (1 << pa->pa_function);
    763 		break;
    764 	case BGE_APE_LOCK_MEM:
    765 		/* Lock required when accessing certain APE memory. */
    766 		if (pa->pa_function == 0)
    767 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    768 		else
    769 			bit = (1 << pa->pa_function);
    770 		break;
    771 	case BGE_APE_LOCK_PHY0:
    772 	case BGE_APE_LOCK_PHY1:
    773 	case BGE_APE_LOCK_PHY2:
    774 	case BGE_APE_LOCK_PHY3:
    775 		/* Lock required when accessing PHYs. */
    776 		bit = BGE_APE_LOCK_REQ_DRIVER0;
    777 		break;
    778 	default:
    779 		return EINVAL;
    780 	}
    781 
    782 	/* Request a lock. */
    783 	APE_WRITE_4_FLUSH(sc, req + off, bit);
    784 
    785 	/* Wait up to 1 second to acquire lock. */
    786 	for (i = 0; i < 20000; i++) {
    787 		status = APE_READ_4(sc, gnt + off);
    788 		if (status == bit)
    789 			break;
    790 		DELAY(50);
    791 	}
    792 
    793 	/* Handle any errors. */
    794 	if (status != bit) {
    795 		printf("%s: APE lock %d request failed! "
    796 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
    797 		    device_xname(sc->bge_dev),
    798 		    locknum, req + off, bit & 0xFFFF, gnt + off,
    799 		    status & 0xFFFF);
    800 		/* Revoke the lock request. */
    801 		APE_WRITE_4(sc, gnt + off, bit);
    802 		return EBUSY;
    803 	}
    804 
    805 	return 0;
    806 }
    807 
    808 void
    809 bge_ape_unlock(struct bge_softc *sc, int locknum)
    810 {
    811 	struct pci_attach_args *pa = &(sc->bge_pa);
    812 	uint32_t bit, gnt;
    813 	int off;
    814 
    815 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    816 		return;
    817 
    818 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    819 		gnt = BGE_APE_LOCK_GRANT;
    820 	else
    821 		gnt = BGE_APE_PER_LOCK_GRANT;
    822 
    823 	off = 4 * locknum;
    824 
    825 	switch (locknum) {
    826 	case BGE_APE_LOCK_GPIO:
    827 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    828 			return;
    829 		if (pa->pa_function == 0)
    830 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    831 		else
    832 			bit = (1 << pa->pa_function);
    833 		break;
    834 	case BGE_APE_LOCK_GRC:
    835 		if (pa->pa_function == 0)
    836 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    837 		else
    838 			bit = (1 << pa->pa_function);
    839 		break;
    840 	case BGE_APE_LOCK_MEM:
    841 		if (pa->pa_function == 0)
    842 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    843 		else
    844 			bit = (1 << pa->pa_function);
    845 		break;
    846 	case BGE_APE_LOCK_PHY0:
    847 	case BGE_APE_LOCK_PHY1:
    848 	case BGE_APE_LOCK_PHY2:
    849 	case BGE_APE_LOCK_PHY3:
    850 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
    851 		break;
    852 	default:
    853 		return;
    854 	}
    855 
    856 	/* Write and flush for consecutive bge_ape_lock() */
    857 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
    858 }
    859 
    860 /*
    861  * Send an event to the APE firmware.
    862  */
    863 void
    864 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
    865 {
    866 	uint32_t apedata;
    867 	int i;
    868 
    869 	/* NCSI does not support APE events. */
    870 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    871 		return;
    872 
    873 	/* Wait up to 1ms for APE to service previous event. */
    874 	for (i = 10; i > 0; i--) {
    875 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
    876 			break;
    877 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
    878 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
    879 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
    880 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
    881 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    882 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
    883 			break;
    884 		}
    885 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    886 		DELAY(100);
    887 	}
    888 	if (i == 0) {
    889 		printf("%s: APE event 0x%08x send timed out\n",
    890 		    device_xname(sc->bge_dev), event);
    891 	}
    892 }
    893 
    894 void
    895 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
    896 {
    897 	uint32_t apedata, event;
    898 
    899 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    900 		return;
    901 
    902 	switch (kind) {
    903 	case BGE_RESET_START:
    904 		/* If this is the first load, clear the load counter. */
    905 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
    906 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
    907 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
    908 		else {
    909 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
    910 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
    911 		}
    912 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
    913 		    BGE_APE_HOST_SEG_SIG_MAGIC);
    914 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
    915 		    BGE_APE_HOST_SEG_LEN_MAGIC);
    916 
    917 		/* Add some version info if bge(4) supports it. */
    918 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
    919 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
    920 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
    921 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
    922 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
    923 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
    924 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    925 		    BGE_APE_HOST_DRVR_STATE_START);
    926 		event = BGE_APE_EVENT_STATUS_STATE_START;
    927 		break;
    928 	case BGE_RESET_SHUTDOWN:
    929 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    930 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
    931 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
    932 		break;
    933 	case BGE_RESET_SUSPEND:
    934 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
    935 		break;
    936 	default:
    937 		return;
    938 	}
    939 
    940 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
    941 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
    942 }
    943 
    944 static uint8_t
    945 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    946 {
    947 	uint32_t access, byte = 0;
    948 	int i;
    949 
    950 	/* Lock. */
    951 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    952 	for (i = 0; i < 8000; i++) {
    953 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    954 			break;
    955 		DELAY(20);
    956 	}
    957 	if (i == 8000)
    958 		return 1;
    959 
    960 	/* Enable access. */
    961 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    962 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    963 
    964 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    965 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    966 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    967 		DELAY(10);
    968 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    969 			DELAY(10);
    970 			break;
    971 		}
    972 	}
    973 
    974 	if (i == BGE_TIMEOUT * 10) {
    975 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    976 		return 1;
    977 	}
    978 
    979 	/* Get result. */
    980 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    981 
    982 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    983 
    984 	/* Disable access. */
    985 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    986 
    987 	/* Unlock. */
    988 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    989 
    990 	return 0;
    991 }
    992 
    993 /*
    994  * Read a sequence of bytes from NVRAM.
    995  */
    996 static int
    997 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    998 {
    999 	int error = 0, i;
   1000 	uint8_t byte = 0;
   1001 
   1002 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1003 		return 1;
   1004 
   1005 	for (i = 0; i < cnt; i++) {
   1006 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1007 		if (error)
   1008 			break;
   1009 		*(dest + i) = byte;
   1010 	}
   1011 
   1012 	return error ? 1 : 0;
   1013 }
   1014 
   1015 /*
   1016  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1017  * BCM570x supports both the traditional bitbang interface and an
   1018  * auto access interface for reading the EEPROM. We use the auto
   1019  * access method.
   1020  */
   1021 static uint8_t
   1022 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1023 {
   1024 	int i;
   1025 	uint32_t byte = 0;
   1026 
   1027 	/*
   1028 	 * Enable use of auto EEPROM access so we can avoid
   1029 	 * having to use the bitbang method.
   1030 	 */
   1031 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1032 
   1033 	/* Reset the EEPROM, load the clock period. */
   1034 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   1035 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1036 	DELAY(20);
   1037 
   1038 	/* Issue the read EEPROM command. */
   1039 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1040 
   1041 	/* Wait for completion */
   1042 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1043 		DELAY(10);
   1044 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1045 			break;
   1046 	}
   1047 
   1048 	if (i == BGE_TIMEOUT * 10) {
   1049 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1050 		return 1;
   1051 	}
   1052 
   1053 	/* Get result. */
   1054 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1055 
   1056 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1057 
   1058 	return 0;
   1059 }
   1060 
   1061 /*
   1062  * Read a sequence of bytes from the EEPROM.
   1063  */
   1064 static int
   1065 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1066 {
   1067 	int error = 0, i;
   1068 	uint8_t byte = 0;
   1069 	char *dest = destv;
   1070 
   1071 	for (i = 0; i < cnt; i++) {
   1072 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1073 		if (error)
   1074 			break;
   1075 		*(dest + i) = byte;
   1076 	}
   1077 
   1078 	return error ? 1 : 0;
   1079 }
   1080 
   1081 static int
   1082 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
   1083 {
   1084 	struct bge_softc * const sc = device_private(dev);
   1085 	uint32_t data;
   1086 	uint32_t autopoll;
   1087 	int rv = 0;
   1088 	int i;
   1089 
   1090 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1091 		return -1;
   1092 
   1093 	/* Reading with autopolling on may trigger PCI errors */
   1094 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1095 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1096 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1097 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1098 		DELAY(80);
   1099 	}
   1100 
   1101 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1102 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1103 
   1104 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1105 		delay(10);
   1106 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1107 		if (!(data & BGE_MICOMM_BUSY)) {
   1108 			DELAY(5);
   1109 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1110 			break;
   1111 		}
   1112 	}
   1113 
   1114 	if (i == BGE_TIMEOUT) {
   1115 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1116 		rv = ETIMEDOUT;
   1117 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1118 		/* XXX This error occurs on some devices while attaching. */
   1119 		aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
   1120 		rv = EIO;
   1121 	} else
   1122 		*val = data & BGE_MICOMM_DATA;
   1123 
   1124 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1125 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1126 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1127 		DELAY(80);
   1128 	}
   1129 
   1130 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1131 
   1132 	return rv;
   1133 }
   1134 
   1135 static int
   1136 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
   1137 {
   1138 	struct bge_softc * const sc = device_private(dev);
   1139 	uint32_t data, autopoll;
   1140 	int rv = 0;
   1141 	int i;
   1142 
   1143 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1144 	    (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
   1145 		return 0;
   1146 
   1147 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1148 		return -1;
   1149 
   1150 	/* Reading with autopolling on may trigger PCI errors */
   1151 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1152 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1153 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1154 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1155 		DELAY(80);
   1156 	}
   1157 
   1158 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1159 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1160 
   1161 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1162 		delay(10);
   1163 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1164 		if (!(data & BGE_MICOMM_BUSY)) {
   1165 			delay(5);
   1166 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1167 			break;
   1168 		}
   1169 	}
   1170 
   1171 	if (i == BGE_TIMEOUT) {
   1172 		aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
   1173 		rv = ETIMEDOUT;
   1174 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1175 		aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
   1176 		rv = EIO;
   1177 	}
   1178 
   1179 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1180 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1181 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1182 		delay(80);
   1183 	}
   1184 
   1185 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1186 
   1187 	return rv;
   1188 }
   1189 
   1190 static void
   1191 bge_miibus_statchg(struct ifnet *ifp)
   1192 {
   1193 	struct bge_softc * const sc = ifp->if_softc;
   1194 	struct mii_data *mii = &sc->bge_mii;
   1195 	uint32_t mac_mode, rx_mode, tx_mode;
   1196 
   1197 	/*
   1198 	 * Get flow control negotiation result.
   1199 	 */
   1200 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1201 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
   1202 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1203 
   1204 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1205 	    mii->mii_media_status & IFM_ACTIVE &&
   1206 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   1207 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
   1208 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1209 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
   1210 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   1211 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   1212 
   1213 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   1214 		return;
   1215 
   1216 	/* Set the port mode (MII/GMII) to match the link speed. */
   1217 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1218 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1219 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1220 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1221 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1222 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1223 		mac_mode |= BGE_PORTMODE_GMII;
   1224 	else
   1225 		mac_mode |= BGE_PORTMODE_MII;
   1226 
   1227 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1228 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1229 	if ((mii->mii_media_active & IFM_FDX) != 0) {
   1230 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1231 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1232 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1233 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1234 	} else
   1235 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1236 
   1237 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1238 	DELAY(40);
   1239 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1240 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1241 }
   1242 
   1243 /*
   1244  * Update rx threshold levels to values in a particular slot
   1245  * of the interrupt-mitigation table bge_rx_threshes.
   1246  */
   1247 static void
   1248 bge_set_thresh(struct ifnet *ifp, int lvl)
   1249 {
   1250 	struct bge_softc * const sc = ifp->if_softc;
   1251 	int s;
   1252 
   1253 	/*
   1254 	 * For now, just save the new Rx-intr thresholds and record
   1255 	 * that a threshold update is pending.  Updating the hardware
   1256 	 * registers here (even at splhigh()) is observed to
   1257 	 * occasionally cause glitches where Rx-interrupts are not
   1258 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1259 	 */
   1260 	s = splnet();
   1261 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1262 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1263 	sc->bge_pending_rxintr_change = 1;
   1264 	splx(s);
   1265 }
   1266 
   1267 
   1268 /*
   1269  * Update Rx thresholds of all bge devices
   1270  */
   1271 static void
   1272 bge_update_all_threshes(int lvl)
   1273 {
   1274 	const char * const namebuf = "bge";
   1275 	const size_t namelen = strlen(namebuf);
   1276 	struct ifnet *ifp;
   1277 
   1278 	if (lvl < 0)
   1279 		lvl = 0;
   1280 	else if (lvl >= NBGE_RX_THRESH)
   1281 		lvl = NBGE_RX_THRESH - 1;
   1282 
   1283 	/*
   1284 	 * Now search all the interfaces for this name/number
   1285 	 */
   1286 	int s = pserialize_read_enter();
   1287 	IFNET_READER_FOREACH(ifp) {
   1288 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1289 			continue;
   1290 		/* We got a match: update if doing auto-threshold-tuning */
   1291 		if (bge_auto_thresh)
   1292 			bge_set_thresh(ifp, lvl);
   1293 	}
   1294 	pserialize_read_exit(s);
   1295 }
   1296 
   1297 /*
   1298  * Handle events that have triggered interrupts.
   1299  */
   1300 static void
   1301 bge_handle_events(struct bge_softc *sc)
   1302 {
   1303 
   1304 	return;
   1305 }
   1306 
   1307 /*
   1308  * Memory management for jumbo frames.
   1309  */
   1310 
   1311 static int
   1312 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1313 {
   1314 	char *ptr, *kva;
   1315 	bus_dma_segment_t	seg;
   1316 	int		i, rseg, state, error;
   1317 	struct bge_jpool_entry	 *entry;
   1318 
   1319 	state = error = 0;
   1320 
   1321 	/* Grab a big chunk o' storage. */
   1322 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1323 	    &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1324 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1325 		return ENOBUFS;
   1326 	}
   1327 
   1328 	state = 1;
   1329 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1330 	    BUS_DMA_NOWAIT)) {
   1331 		aprint_error_dev(sc->bge_dev,
   1332 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1333 		error = ENOBUFS;
   1334 		goto out;
   1335 	}
   1336 
   1337 	state = 2;
   1338 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1339 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1340 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1341 		error = ENOBUFS;
   1342 		goto out;
   1343 	}
   1344 
   1345 	state = 3;
   1346 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1347 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1348 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1349 		error = ENOBUFS;
   1350 		goto out;
   1351 	}
   1352 
   1353 	state = 4;
   1354 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1355 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1356 
   1357 	SLIST_INIT(&sc->bge_jfree_listhead);
   1358 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1359 
   1360 	/*
   1361 	 * Now divide it up into 9K pieces and save the addresses
   1362 	 * in an array.
   1363 	 */
   1364 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1365 	for (i = 0; i < BGE_JSLOTS; i++) {
   1366 		sc->bge_cdata.bge_jslots[i] = ptr;
   1367 		ptr += BGE_JLEN;
   1368 		entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
   1369 		entry->slot = i;
   1370 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1371 				 entry, jpool_entries);
   1372 	}
   1373 out:
   1374 	if (error != 0) {
   1375 		switch (state) {
   1376 		case 4:
   1377 			bus_dmamap_unload(sc->bge_dmatag,
   1378 			    sc->bge_cdata.bge_rx_jumbo_map);
   1379 			/* FALLTHROUGH */
   1380 		case 3:
   1381 			bus_dmamap_destroy(sc->bge_dmatag,
   1382 			    sc->bge_cdata.bge_rx_jumbo_map);
   1383 			/* FALLTHROUGH */
   1384 		case 2:
   1385 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1386 			/* FALLTHROUGH */
   1387 		case 1:
   1388 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1389 			break;
   1390 		default:
   1391 			break;
   1392 		}
   1393 	}
   1394 
   1395 	return error;
   1396 }
   1397 
   1398 /*
   1399  * Allocate a jumbo buffer.
   1400  */
   1401 static void *
   1402 bge_jalloc(struct bge_softc *sc)
   1403 {
   1404 	struct bge_jpool_entry	 *entry;
   1405 
   1406 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1407 
   1408 	if (entry == NULL) {
   1409 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1410 		return NULL;
   1411 	}
   1412 
   1413 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1414 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1415 	return sc->bge_cdata.bge_jslots[entry->slot];
   1416 }
   1417 
   1418 /*
   1419  * Release a jumbo buffer.
   1420  */
   1421 static void
   1422 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1423 {
   1424 	struct bge_jpool_entry *entry;
   1425 	struct bge_softc * const sc = arg;
   1426 	int i, s;
   1427 
   1428 	if (sc == NULL)
   1429 		panic("bge_jfree: can't find softc pointer!");
   1430 
   1431 	/* calculate the slot this buffer belongs to */
   1432 
   1433 	i = ((char *)buf
   1434 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1435 
   1436 	if ((i < 0) || (i >= BGE_JSLOTS))
   1437 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1438 
   1439 	s = splvm();
   1440 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1441 	if (entry == NULL)
   1442 		panic("bge_jfree: buffer not in use!");
   1443 	entry->slot = i;
   1444 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1445 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1446 
   1447 	if (__predict_true(m != NULL))
   1448 		pool_cache_put(mb_cache, m);
   1449 	splx(s);
   1450 }
   1451 
   1452 
   1453 /*
   1454  * Initialize a standard receive ring descriptor.
   1455  */
   1456 static int
   1457 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1458     bus_dmamap_t dmamap)
   1459 {
   1460 	struct mbuf		*m_new = NULL;
   1461 	struct bge_rx_bd	*r;
   1462 	int			error;
   1463 
   1464 	if (dmamap == NULL)
   1465 		dmamap = sc->bge_cdata.bge_rx_std_map[i];
   1466 
   1467 	if (dmamap == NULL) {
   1468 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1469 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1470 		if (error != 0)
   1471 			return error;
   1472 	}
   1473 
   1474 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1475 
   1476 	if (m == NULL) {
   1477 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1478 		if (m_new == NULL)
   1479 			return ENOBUFS;
   1480 
   1481 		MCLGET(m_new, M_DONTWAIT);
   1482 		if (!(m_new->m_flags & M_EXT)) {
   1483 			m_freem(m_new);
   1484 			return ENOBUFS;
   1485 		}
   1486 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1487 
   1488 	} else {
   1489 		m_new = m;
   1490 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1491 		m_new->m_data = m_new->m_ext.ext_buf;
   1492 	}
   1493 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1494 	    m_adj(m_new, ETHER_ALIGN);
   1495 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1496 	    BUS_DMA_READ | BUS_DMA_NOWAIT)) {
   1497 		m_freem(m_new);
   1498 		return ENOBUFS;
   1499 	}
   1500 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1501 	    BUS_DMASYNC_PREREAD);
   1502 
   1503 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1504 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1505 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1506 	r->bge_flags = BGE_RXBDFLAG_END;
   1507 	r->bge_len = m_new->m_len;
   1508 	r->bge_idx = i;
   1509 
   1510 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1511 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1512 		i * sizeof(struct bge_rx_bd),
   1513 	    sizeof(struct bge_rx_bd),
   1514 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1515 
   1516 	return 0;
   1517 }
   1518 
   1519 /*
   1520  * Initialize a jumbo receive ring descriptor. This allocates
   1521  * a jumbo buffer from the pool managed internally by the driver.
   1522  */
   1523 static int
   1524 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1525 {
   1526 	struct mbuf *m_new = NULL;
   1527 	struct bge_rx_bd *r;
   1528 	void *buf = NULL;
   1529 
   1530 	if (m == NULL) {
   1531 
   1532 		/* Allocate the mbuf. */
   1533 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1534 		if (m_new == NULL)
   1535 			return ENOBUFS;
   1536 
   1537 		/* Allocate the jumbo buffer */
   1538 		buf = bge_jalloc(sc);
   1539 		if (buf == NULL) {
   1540 			m_freem(m_new);
   1541 			aprint_error_dev(sc->bge_dev,
   1542 			    "jumbo allocation failed -- packet dropped!\n");
   1543 			return ENOBUFS;
   1544 		}
   1545 
   1546 		/* Attach the buffer to the mbuf. */
   1547 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1548 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1549 		    bge_jfree, sc);
   1550 		m_new->m_flags |= M_EXT_RW;
   1551 	} else {
   1552 		m_new = m;
   1553 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1554 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1555 	}
   1556 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1557 	    m_adj(m_new, ETHER_ALIGN);
   1558 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1559 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   1560 	    BGE_JLEN, BUS_DMASYNC_PREREAD);
   1561 	/* Set up the descriptor. */
   1562 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1563 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1564 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1565 	r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
   1566 	r->bge_len = m_new->m_len;
   1567 	r->bge_idx = i;
   1568 
   1569 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1570 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1571 		i * sizeof(struct bge_rx_bd),
   1572 	    sizeof(struct bge_rx_bd),
   1573 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1574 
   1575 	return 0;
   1576 }
   1577 
   1578 /*
   1579  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1580  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1581  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1582  * the NIC.
   1583  */
   1584 static int
   1585 bge_init_rx_ring_std(struct bge_softc *sc)
   1586 {
   1587 	int i;
   1588 
   1589 	if (sc->bge_flags & BGEF_RXRING_VALID)
   1590 		return 0;
   1591 
   1592 	for (i = 0; i < BGE_SSLOTS; i++) {
   1593 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1594 			return ENOBUFS;
   1595 	}
   1596 
   1597 	sc->bge_std = i - 1;
   1598 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1599 
   1600 	sc->bge_flags |= BGEF_RXRING_VALID;
   1601 
   1602 	return 0;
   1603 }
   1604 
   1605 static void
   1606 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
   1607 {
   1608 	int i;
   1609 
   1610 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
   1611 		return;
   1612 
   1613 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1614 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1615 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1616 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1617 			if (disable) {
   1618 				bus_dmamap_destroy(sc->bge_dmatag,
   1619 				    sc->bge_cdata.bge_rx_std_map[i]);
   1620 				sc->bge_cdata.bge_rx_std_map[i] = NULL;
   1621 			}
   1622 		}
   1623 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1624 		    sizeof(struct bge_rx_bd));
   1625 	}
   1626 
   1627 	sc->bge_flags &= ~BGEF_RXRING_VALID;
   1628 }
   1629 
   1630 static int
   1631 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1632 {
   1633 	int i;
   1634 	volatile struct bge_rcb *rcb;
   1635 
   1636 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
   1637 		return 0;
   1638 
   1639 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1640 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1641 			return ENOBUFS;
   1642 	}
   1643 
   1644 	sc->bge_jumbo = i - 1;
   1645 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
   1646 
   1647 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1648 	rcb->bge_maxlen_flags = 0;
   1649 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1650 
   1651 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1652 
   1653 	return 0;
   1654 }
   1655 
   1656 static void
   1657 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1658 {
   1659 	int i;
   1660 
   1661 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
   1662 		return;
   1663 
   1664 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1665 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1666 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1667 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1668 		}
   1669 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1670 		    sizeof(struct bge_rx_bd));
   1671 	}
   1672 
   1673 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
   1674 }
   1675 
   1676 static void
   1677 bge_free_tx_ring(struct bge_softc *sc, bool disable)
   1678 {
   1679 	int i;
   1680 	struct txdmamap_pool_entry *dma;
   1681 
   1682 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
   1683 		return;
   1684 
   1685 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1686 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1687 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1688 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1689 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1690 					    link);
   1691 			sc->txdma[i] = 0;
   1692 		}
   1693 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1694 		    sizeof(struct bge_tx_bd));
   1695 	}
   1696 
   1697 	if (disable) {
   1698 		while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1699 			SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1700 			bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1701 			if (sc->bge_dma64) {
   1702 				bus_dmamap_destroy(sc->bge_dmatag32,
   1703 				    dma->dmamap32);
   1704 			}
   1705 			kmem_free(dma, sizeof(*dma));
   1706 		}
   1707 		SLIST_INIT(&sc->txdma_list);
   1708 	}
   1709 
   1710 	sc->bge_flags &= ~BGEF_TXRING_VALID;
   1711 }
   1712 
   1713 static int
   1714 bge_init_tx_ring(struct bge_softc *sc)
   1715 {
   1716 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   1717 	int i;
   1718 	bus_dmamap_t dmamap, dmamap32;
   1719 	bus_size_t maxsegsz;
   1720 	struct txdmamap_pool_entry *dma;
   1721 
   1722 	if (sc->bge_flags & BGEF_TXRING_VALID)
   1723 		return 0;
   1724 
   1725 	sc->bge_txcnt = 0;
   1726 	sc->bge_tx_saved_considx = 0;
   1727 
   1728 	/* Initialize transmit producer index for host-memory send ring. */
   1729 	sc->bge_tx_prodidx = 0;
   1730 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1731 	/* 5700 b2 errata */
   1732 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1733 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1734 
   1735 	/* NIC-memory send ring not used; initialize to zero. */
   1736 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1737 	/* 5700 b2 errata */
   1738 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1739 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1740 
   1741 	/* Limit DMA segment size for some chips */
   1742 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
   1743 	    (ifp->if_mtu <= ETHERMTU))
   1744 		maxsegsz = 2048;
   1745 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   1746 		maxsegsz = 4096;
   1747 	else
   1748 		maxsegsz = ETHER_MAX_LEN_JUMBO;
   1749 
   1750 	if (SLIST_FIRST(&sc->txdma_list) != NULL)
   1751 		goto alloc_done;
   1752 
   1753 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1754 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1755 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1756 		    &dmamap))
   1757 			return ENOBUFS;
   1758 		if (dmamap == NULL)
   1759 			panic("dmamap NULL in bge_init_tx_ring");
   1760 		if (sc->bge_dma64) {
   1761 			if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
   1762 			    BGE_NTXSEG, maxsegsz, 0,
   1763 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1764 			    &dmamap32)) {
   1765 				bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1766 				return ENOBUFS;
   1767 			}
   1768 			if (dmamap32 == NULL)
   1769 				panic("dmamap32 NULL in bge_init_tx_ring");
   1770 		} else
   1771 			dmamap32 = dmamap;
   1772 		dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
   1773 		if (dma == NULL) {
   1774 			aprint_error_dev(sc->bge_dev,
   1775 			    "can't alloc txdmamap_pool_entry\n");
   1776 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1777 			if (sc->bge_dma64)
   1778 				bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
   1779 			return ENOMEM;
   1780 		}
   1781 		dma->dmamap = dmamap;
   1782 		dma->dmamap32 = dmamap32;
   1783 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1784 	}
   1785 alloc_done:
   1786 	sc->bge_flags |= BGEF_TXRING_VALID;
   1787 
   1788 	return 0;
   1789 }
   1790 
   1791 static void
   1792 bge_setmulti(struct bge_softc *sc)
   1793 {
   1794 	struct ethercom * const ec = &sc->ethercom;
   1795 	struct ifnet * const ifp = &ec->ec_if;
   1796 	struct ether_multi	*enm;
   1797 	struct ether_multistep	step;
   1798 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1799 	uint32_t		h;
   1800 	int			i;
   1801 
   1802 	if (ifp->if_flags & IFF_PROMISC)
   1803 		goto allmulti;
   1804 
   1805 	/* Now program new ones. */
   1806 	ETHER_LOCK(ec);
   1807 	ETHER_FIRST_MULTI(step, ec, enm);
   1808 	while (enm != NULL) {
   1809 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1810 			/*
   1811 			 * We must listen to a range of multicast addresses.
   1812 			 * For now, just accept all multicasts, rather than
   1813 			 * trying to set only those filter bits needed to match
   1814 			 * the range.  (At this time, the only use of address
   1815 			 * ranges is for IP multicast routing, for which the
   1816 			 * range is big enough to require all bits set.)
   1817 			 */
   1818 			ETHER_UNLOCK(ec);
   1819 			goto allmulti;
   1820 		}
   1821 
   1822 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1823 
   1824 		/* Just want the 7 least-significant bits. */
   1825 		h &= 0x7f;
   1826 
   1827 		hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
   1828 		ETHER_NEXT_MULTI(step, enm);
   1829 	}
   1830 	ETHER_UNLOCK(ec);
   1831 
   1832 	ifp->if_flags &= ~IFF_ALLMULTI;
   1833 	goto setit;
   1834 
   1835  allmulti:
   1836 	ifp->if_flags |= IFF_ALLMULTI;
   1837 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1838 
   1839  setit:
   1840 	for (i = 0; i < 4; i++)
   1841 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1842 }
   1843 
   1844 static void
   1845 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1846 {
   1847 
   1848 	/*
   1849 	 * Some chips don't like this so only do this if ASF is enabled
   1850 	 */
   1851 	if (sc->bge_asf_mode)
   1852 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   1853 
   1854 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1855 		switch (type) {
   1856 		case BGE_RESET_START:
   1857 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1858 			    BGE_FW_DRV_STATE_START);
   1859 			break;
   1860 		case BGE_RESET_SHUTDOWN:
   1861 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1862 			    BGE_FW_DRV_STATE_UNLOAD);
   1863 			break;
   1864 		case BGE_RESET_SUSPEND:
   1865 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1866 			    BGE_FW_DRV_STATE_SUSPEND);
   1867 			break;
   1868 		}
   1869 	}
   1870 
   1871 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   1872 		bge_ape_driver_state_change(sc, type);
   1873 }
   1874 
   1875 static void
   1876 bge_sig_post_reset(struct bge_softc *sc, int type)
   1877 {
   1878 
   1879 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1880 		switch (type) {
   1881 		case BGE_RESET_START:
   1882 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1883 			    BGE_FW_DRV_STATE_START_DONE);
   1884 			/* START DONE */
   1885 			break;
   1886 		case BGE_RESET_SHUTDOWN:
   1887 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1888 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   1889 			break;
   1890 		}
   1891 	}
   1892 
   1893 	if (type == BGE_RESET_SHUTDOWN)
   1894 		bge_ape_driver_state_change(sc, type);
   1895 }
   1896 
   1897 static void
   1898 bge_sig_legacy(struct bge_softc *sc, int type)
   1899 {
   1900 
   1901 	if (sc->bge_asf_mode) {
   1902 		switch (type) {
   1903 		case BGE_RESET_START:
   1904 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1905 			    BGE_FW_DRV_STATE_START);
   1906 			break;
   1907 		case BGE_RESET_SHUTDOWN:
   1908 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1909 			    BGE_FW_DRV_STATE_UNLOAD);
   1910 			break;
   1911 		}
   1912 	}
   1913 }
   1914 
   1915 static void
   1916 bge_wait_for_event_ack(struct bge_softc *sc)
   1917 {
   1918 	int i;
   1919 
   1920 	/* wait up to 2500usec */
   1921 	for (i = 0; i < 250; i++) {
   1922 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   1923 			BGE_RX_CPU_DRV_EVENT))
   1924 			break;
   1925 		DELAY(10);
   1926 	}
   1927 }
   1928 
   1929 static void
   1930 bge_stop_fw(struct bge_softc *sc)
   1931 {
   1932 
   1933 	if (sc->bge_asf_mode) {
   1934 		bge_wait_for_event_ack(sc);
   1935 
   1936 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   1937 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   1938 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   1939 
   1940 		bge_wait_for_event_ack(sc);
   1941 	}
   1942 }
   1943 
   1944 static int
   1945 bge_poll_fw(struct bge_softc *sc)
   1946 {
   1947 	uint32_t val;
   1948 	int i;
   1949 
   1950 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1951 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1952 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1953 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1954 				break;
   1955 			DELAY(100);
   1956 		}
   1957 		if (i >= BGE_TIMEOUT) {
   1958 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   1959 			return -1;
   1960 		}
   1961 	} else {
   1962 		/*
   1963 		 * Poll the value location we just wrote until
   1964 		 * we see the 1's complement of the magic number.
   1965 		 * This indicates that the firmware initialization
   1966 		 * is complete.
   1967 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   1968 		 */
   1969 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1970 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   1971 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   1972 				break;
   1973 			DELAY(10);
   1974 		}
   1975 
   1976 		if ((i >= BGE_TIMEOUT)
   1977 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
   1978 			aprint_error_dev(sc->bge_dev,
   1979 			    "firmware handshake timed out, val = %x\n", val);
   1980 			return -1;
   1981 		}
   1982 	}
   1983 
   1984 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   1985 		/* tg3 says we have to wait extra time */
   1986 		delay(10 * 1000);
   1987 	}
   1988 
   1989 	return 0;
   1990 }
   1991 
   1992 int
   1993 bge_phy_addr(struct bge_softc *sc)
   1994 {
   1995 	struct pci_attach_args *pa = &(sc->bge_pa);
   1996 	int phy_addr = 1;
   1997 
   1998 	/*
   1999 	 * PHY address mapping for various devices.
   2000 	 *
   2001 	 *	    | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2002 	 * ---------+-------+-------+-------+-------+
   2003 	 * BCM57XX  |	1   |	X   |	X   |	X   |
   2004 	 * BCM5704  |	1   |	X   |	1   |	X   |
   2005 	 * BCM5717  |	1   |	8   |	2   |	9   |
   2006 	 * BCM5719  |	1   |	8   |	2   |	9   |
   2007 	 * BCM5720  |	1   |	8   |	2   |	9   |
   2008 	 *
   2009 	 *	    | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2010 	 * ---------+-------+-------+-------+-------+
   2011 	 * BCM57XX  |	X   |	X   |	X   |	X   |
   2012 	 * BCM5704  |	X   |	X   |	X   |	X   |
   2013 	 * BCM5717  |	X   |	X   |	X   |	X   |
   2014 	 * BCM5719  |	3   |	10  |	4   |	11  |
   2015 	 * BCM5720  |	X   |	X   |	X   |	X   |
   2016 	 *
   2017 	 * Other addresses may respond but they are not
   2018 	 * IEEE compliant PHYs and should be ignored.
   2019 	 */
   2020 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2021 	case BGE_ASICREV_BCM5717:
   2022 	case BGE_ASICREV_BCM5719:
   2023 	case BGE_ASICREV_BCM5720:
   2024 		phy_addr = pa->pa_function;
   2025 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2026 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2027 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2028 		} else {
   2029 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2030 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2031 		}
   2032 	}
   2033 
   2034 	return phy_addr;
   2035 }
   2036 
   2037 /*
   2038  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2039  * self-test results.
   2040  */
   2041 static int
   2042 bge_chipinit(struct bge_softc *sc)
   2043 {
   2044 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
   2045 	int i;
   2046 
   2047 	/* Set endianness before we access any non-PCI registers. */
   2048 	misc_ctl = BGE_INIT;
   2049 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   2050 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
   2051 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2052 	    misc_ctl);
   2053 
   2054 	/*
   2055 	 * Clear the MAC statistics block in the NIC's
   2056 	 * internal memory.
   2057 	 */
   2058 	for (i = BGE_STATS_BLOCK;
   2059 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2060 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2061 
   2062 	for (i = BGE_STATUS_BLOCK;
   2063 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2064 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2065 
   2066 	/* 5717 workaround from tg3 */
   2067 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2068 		/* Save */
   2069 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2070 
   2071 		/* Temporary modify MODE_CTL to control TLP */
   2072 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2073 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2074 
   2075 		/* Control TLP */
   2076 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2077 		    BGE_TLP_PHYCTL1);
   2078 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2079 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2080 
   2081 		/* Restore */
   2082 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2083 	}
   2084 
   2085 	if (BGE_IS_57765_FAMILY(sc)) {
   2086 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2087 			/* Save */
   2088 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2089 
   2090 			/* Temporary modify MODE_CTL to control TLP */
   2091 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2092 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2093 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2094 
   2095 			/* Control TLP */
   2096 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2097 			    BGE_TLP_PHYCTL5);
   2098 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2099 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2100 
   2101 			/* Restore */
   2102 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2103 		}
   2104 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2105 			/*
   2106 			 * For the 57766 and non Ax versions of 57765, bootcode
   2107 			 * needs to setup the PCIE Fast Training Sequence (FTS)
   2108 			 * value to prevent transmit hangs.
   2109 			 */
   2110 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2111 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2112 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2113 
   2114 			/* Save */
   2115 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2116 
   2117 			/* Temporary modify MODE_CTL to control TLP */
   2118 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2119 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2120 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2121 
   2122 			/* Control TLP */
   2123 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2124 			    BGE_TLP_FTSMAX);
   2125 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2126 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2127 			    reg | BGE_TLP_FTSMAX_VAL);
   2128 
   2129 			/* Restore */
   2130 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2131 		}
   2132 
   2133 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2134 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2135 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2136 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2137 	}
   2138 
   2139 	/* Set up the PCI DMA control register. */
   2140 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2141 	if (sc->bge_flags & BGEF_PCIE) {
   2142 		/* Read watermark not used, 128 bytes for write. */
   2143 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2144 		    device_xname(sc->bge_dev)));
   2145 		if (sc->bge_mps >= 256)
   2146 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2147 		else
   2148 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2149 	} else if (sc->bge_flags & BGEF_PCIX) {
   2150 		DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2151 		    device_xname(sc->bge_dev)));
   2152 		/* PCI-X bus */
   2153 		if (BGE_IS_5714_FAMILY(sc)) {
   2154 			/* 256 bytes for read and write. */
   2155 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2156 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2157 
   2158 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2159 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2160 			else
   2161 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2162 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   2163 			/*
   2164 			 * In the BCM5703, the DMA read watermark should
   2165 			 * be set to less than or equal to the maximum
   2166 			 * memory read byte count of the PCI-X command
   2167 			 * register.
   2168 			 */
   2169 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
   2170 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2171 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2172 			/* 1536 bytes for read, 384 bytes for write. */
   2173 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2174 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2175 		} else {
   2176 			/* 384 bytes for read and write. */
   2177 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2178 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2179 			    (0x0F);
   2180 		}
   2181 
   2182 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2183 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2184 			uint32_t tmp;
   2185 
   2186 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2187 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2188 			if (tmp == 6 || tmp == 7)
   2189 				dma_rw_ctl |=
   2190 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2191 
   2192 			/* Set PCI-X DMA write workaround. */
   2193 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2194 		}
   2195 	} else {
   2196 		/* Conventional PCI bus: 256 bytes for read and write. */
   2197 		DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2198 		    device_xname(sc->bge_dev)));
   2199 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2200 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2201 
   2202 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2203 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2204 			dma_rw_ctl |= 0x0F;
   2205 	}
   2206 
   2207 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2208 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2209 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2210 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2211 
   2212 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2213 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2214 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2215 
   2216 	if (BGE_IS_57765_PLUS(sc)) {
   2217 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2218 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2219 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2220 
   2221 		/*
   2222 		 * Enable HW workaround for controllers that misinterpret
   2223 		 * a status tag update and leave interrupts permanently
   2224 		 * disabled.
   2225 		 */
   2226 		if (!BGE_IS_57765_FAMILY(sc) &&
   2227 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2228 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
   2229 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2230 	}
   2231 
   2232 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2233 	    dma_rw_ctl);
   2234 
   2235 	/*
   2236 	 * Set up general mode register.
   2237 	 */
   2238 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2239 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2240 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2241 		/* Retain Host-2-BMC settings written by APE firmware. */
   2242 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2243 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2244 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2245 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2246 	}
   2247 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2248 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2249 
   2250 	/*
   2251 	 * BCM5701 B5 have a bug causing data corruption when using
   2252 	 * 64-bit DMA reads, which can be terminated early and then
   2253 	 * completed later as 32-bit accesses, in combination with
   2254 	 * certain bridges.
   2255 	 */
   2256 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2257 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2258 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2259 
   2260 	/*
   2261 	 * Tell the firmware the driver is running
   2262 	 */
   2263 	if (sc->bge_asf_mode & ASF_STACKUP)
   2264 		mode_ctl |= BGE_MODECTL_STACKUP;
   2265 
   2266 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2267 
   2268 	/*
   2269 	 * Disable memory write invalidate.  Apparently it is not supported
   2270 	 * properly by these devices.
   2271 	 */
   2272 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2273 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2274 
   2275 #ifdef __brokenalpha__
   2276 	/*
   2277 	 * Must insure that we do not cross an 8K (bytes) boundary
   2278 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2279 	 * restriction on some ALPHA platforms with early revision
   2280 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2281 	 */
   2282 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2283 #endif
   2284 
   2285 	/* Set the timer prescaler (always 66MHz) */
   2286 	CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2287 
   2288 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2289 		DELAY(40);	/* XXX */
   2290 
   2291 		/* Put PHY into ready state */
   2292 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2293 		DELAY(40);
   2294 	}
   2295 
   2296 	return 0;
   2297 }
   2298 
   2299 static int
   2300 bge_blockinit(struct bge_softc *sc)
   2301 {
   2302 	volatile struct bge_rcb	 *rcb;
   2303 	bus_size_t rcb_addr;
   2304 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   2305 	bge_hostaddr taddr;
   2306 	uint32_t	dmactl, rdmareg, mimode, val;
   2307 	int		i, limit;
   2308 
   2309 	/*
   2310 	 * Initialize the memory window pointer register so that
   2311 	 * we can access the first 32K of internal NIC RAM. This will
   2312 	 * allow us to set up the TX send ring RCBs and the RX return
   2313 	 * ring RCBs, plus other things which live in NIC memory.
   2314 	 */
   2315 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2316 
   2317 	if (!BGE_IS_5705_PLUS(sc)) {
   2318 		/* 57XX step 33 */
   2319 		/* Configure mbuf memory pool */
   2320 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
   2321 
   2322 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2323 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2324 		else
   2325 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2326 
   2327 		/* 57XX step 34 */
   2328 		/* Configure DMA resource pool */
   2329 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2330 		    BGE_DMA_DESCRIPTORS);
   2331 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2332 	}
   2333 
   2334 	/* 5718 step 11, 57XX step 35 */
   2335 	/*
   2336 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2337 	 * recommend these.
   2338 	 */
   2339 	if (BGE_IS_5717_PLUS(sc)) {
   2340 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2341 		if (ifp->if_mtu > ETHERMTU) {
   2342 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
   2343 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
   2344 		} else {
   2345 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2346 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2347 		}
   2348 	} else if (BGE_IS_5705_PLUS(sc)) {
   2349 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2350 
   2351 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2352 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2353 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2354 		} else {
   2355 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2356 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2357 		}
   2358 	} else {
   2359 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2360 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2361 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2362 	}
   2363 
   2364 	/* 57XX step 36 */
   2365 	/* Configure DMA resource watermarks */
   2366 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2367 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2368 
   2369 	/* 5718 step 13, 57XX step 38 */
   2370 	/* Enable buffer manager */
   2371 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2372 	/*
   2373 	 * Change the arbitration algorithm of TXMBUF read request to
   2374 	 * round-robin instead of priority based for BCM5719.  When
   2375 	 * TXFIFO is almost empty, RDMA will hold its request until
   2376 	 * TXFIFO is not almost empty.
   2377 	 */
   2378 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2379 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2380 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2381 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2382 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2383 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2384 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2385 
   2386 	/* 57XX step 39 */
   2387 	/* Poll for buffer manager start indication */
   2388 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2389 		DELAY(10);
   2390 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2391 			break;
   2392 	}
   2393 
   2394 	if (i == BGE_TIMEOUT * 2) {
   2395 		aprint_error_dev(sc->bge_dev,
   2396 		    "buffer manager failed to start\n");
   2397 		return ENXIO;
   2398 	}
   2399 
   2400 	/* 57XX step 40 */
   2401 	/* Enable flow-through queues */
   2402 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2403 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2404 
   2405 	/* Wait until queue initialization is complete */
   2406 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2407 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2408 			break;
   2409 		DELAY(10);
   2410 	}
   2411 
   2412 	if (i == BGE_TIMEOUT * 2) {
   2413 		aprint_error_dev(sc->bge_dev,
   2414 		    "flow-through queue init failed\n");
   2415 		return ENXIO;
   2416 	}
   2417 
   2418 	/*
   2419 	 * Summary of rings supported by the controller:
   2420 	 *
   2421 	 * Standard Receive Producer Ring
   2422 	 * - This ring is used to feed receive buffers for "standard"
   2423 	 *   sized frames (typically 1536 bytes) to the controller.
   2424 	 *
   2425 	 * Jumbo Receive Producer Ring
   2426 	 * - This ring is used to feed receive buffers for jumbo sized
   2427 	 *   frames (i.e. anything bigger than the "standard" frames)
   2428 	 *   to the controller.
   2429 	 *
   2430 	 * Mini Receive Producer Ring
   2431 	 * - This ring is used to feed receive buffers for "mini"
   2432 	 *   sized frames to the controller.
   2433 	 * - This feature required external memory for the controller
   2434 	 *   but was never used in a production system.  Should always
   2435 	 *   be disabled.
   2436 	 *
   2437 	 * Receive Return Ring
   2438 	 * - After the controller has placed an incoming frame into a
   2439 	 *   receive buffer that buffer is moved into a receive return
   2440 	 *   ring.  The driver is then responsible to passing the
   2441 	 *   buffer up to the stack.  Many versions of the controller
   2442 	 *   support multiple RR rings.
   2443 	 *
   2444 	 * Send Ring
   2445 	 * - This ring is used for outgoing frames.  Many versions of
   2446 	 *   the controller support multiple send rings.
   2447 	 */
   2448 
   2449 	/* 5718 step 15, 57XX step 41 */
   2450 	/* Initialize the standard RX ring control block */
   2451 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2452 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2453 	/* 5718 step 16 */
   2454 	if (BGE_IS_57765_PLUS(sc)) {
   2455 		/*
   2456 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2457 		 * Bits 15-2 : Maximum RX frame size
   2458 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2459 		 * Bit 0     : Reserved
   2460 		 */
   2461 		rcb->bge_maxlen_flags =
   2462 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2463 	} else if (BGE_IS_5705_PLUS(sc)) {
   2464 		/*
   2465 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2466 		 * Bits 15-2 : Reserved (should be 0)
   2467 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2468 		 * Bit 0     : Reserved
   2469 		 */
   2470 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2471 	} else {
   2472 		/*
   2473 		 * Ring size is always XXX entries
   2474 		 * Bits 31-16: Maximum RX frame size
   2475 		 * Bits 15-2 : Reserved (should be 0)
   2476 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2477 		 * Bit 0     : Reserved
   2478 		 */
   2479 		rcb->bge_maxlen_flags =
   2480 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2481 	}
   2482 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2483 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2484 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2485 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2486 	else
   2487 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2488 	/* Write the standard receive producer ring control block. */
   2489 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2490 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2491 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2492 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2493 
   2494 	/* Reset the standard receive producer ring producer index. */
   2495 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2496 
   2497 	/* 57XX step 42 */
   2498 	/*
   2499 	 * Initialize the jumbo RX ring control block
   2500 	 * We set the 'ring disabled' bit in the flags
   2501 	 * field until we're actually ready to start
   2502 	 * using this ring (i.e. once we set the MTU
   2503 	 * high enough to require it).
   2504 	 */
   2505 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2506 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2507 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2508 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2509 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2510 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2511 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2512 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2513 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2514 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2515 		else
   2516 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2517 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2518 		    rcb->bge_hostaddr.bge_addr_hi);
   2519 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2520 		    rcb->bge_hostaddr.bge_addr_lo);
   2521 		/* Program the jumbo receive producer ring RCB parameters. */
   2522 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2523 		    rcb->bge_maxlen_flags);
   2524 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2525 		/* Reset the jumbo receive producer ring producer index. */
   2526 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2527 	}
   2528 
   2529 	/* 57XX step 43 */
   2530 	/* Disable the mini receive producer ring RCB. */
   2531 	if (BGE_IS_5700_FAMILY(sc)) {
   2532 		/* Set up dummy disabled mini ring RCB */
   2533 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2534 		rcb->bge_maxlen_flags =
   2535 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2536 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2537 		    rcb->bge_maxlen_flags);
   2538 		/* Reset the mini receive producer ring producer index. */
   2539 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2540 
   2541 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2542 		    offsetof(struct bge_ring_data, bge_info),
   2543 		    sizeof(struct bge_gib),
   2544 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2545 	}
   2546 
   2547 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2548 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2549 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2550 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2551 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2552 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2553 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2554 	}
   2555 	/* 5718 step 14, 57XX step 44 */
   2556 	/*
   2557 	 * The BD ring replenish thresholds control how often the
   2558 	 * hardware fetches new BD's from the producer rings in host
   2559 	 * memory.  Setting the value too low on a busy system can
   2560 	 * starve the hardware and recue the throughpout.
   2561 	 *
   2562 	 * Set the BD ring replenish thresholds. The recommended
   2563 	 * values are 1/8th the number of descriptors allocated to
   2564 	 * each ring, but since we try to avoid filling the entire
   2565 	 * ring we set these to the minimal value of 8.  This needs to
   2566 	 * be done on several of the supported chip revisions anyway,
   2567 	 * to work around HW bugs.
   2568 	 */
   2569 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2570 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2571 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2572 
   2573 	/* 5718 step 18 */
   2574 	if (BGE_IS_5717_PLUS(sc)) {
   2575 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2576 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2577 	}
   2578 
   2579 	/* 57XX step 45 */
   2580 	/*
   2581 	 * Disable all send rings by setting the 'ring disabled' bit
   2582 	 * in the flags field of all the TX send ring control blocks,
   2583 	 * located in NIC memory.
   2584 	 */
   2585 	if (BGE_IS_5700_FAMILY(sc)) {
   2586 		/* 5700 to 5704 had 16 send rings. */
   2587 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2588 	} else if (BGE_IS_5717_PLUS(sc)) {
   2589 		limit = BGE_TX_RINGS_5717_MAX;
   2590 	} else if (BGE_IS_57765_FAMILY(sc) ||
   2591 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2592 		limit = BGE_TX_RINGS_57765_MAX;
   2593 	} else
   2594 		limit = 1;
   2595 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2596 	for (i = 0; i < limit; i++) {
   2597 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2598 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2599 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2600 		rcb_addr += sizeof(struct bge_rcb);
   2601 	}
   2602 
   2603 	/* 57XX step 46 and 47 */
   2604 	/* Configure send ring RCB 0 (we use only the first ring) */
   2605 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2606 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2607 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2608 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2609 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2610 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2611 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2612 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2613 	else
   2614 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2615 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2616 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2617 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2618 
   2619 	/* 57XX step 48 */
   2620 	/*
   2621 	 * Disable all receive return rings by setting the
   2622 	 * 'ring diabled' bit in the flags field of all the receive
   2623 	 * return ring control blocks, located in NIC memory.
   2624 	 */
   2625 	if (BGE_IS_5717_PLUS(sc)) {
   2626 		/* Should be 17, use 16 until we get an SRAM map. */
   2627 		limit = 16;
   2628 	} else if (BGE_IS_5700_FAMILY(sc))
   2629 		limit = BGE_RX_RINGS_MAX;
   2630 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2631 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
   2632 	    BGE_IS_57765_FAMILY(sc))
   2633 		limit = 4;
   2634 	else
   2635 		limit = 1;
   2636 	/* Disable all receive return rings */
   2637 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2638 	for (i = 0; i < limit; i++) {
   2639 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2640 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2641 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2642 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2643 			BGE_RCB_FLAG_RING_DISABLED));
   2644 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2645 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2646 		    (i * (sizeof(uint64_t))), 0);
   2647 		rcb_addr += sizeof(struct bge_rcb);
   2648 	}
   2649 
   2650 	/* 57XX step 49 */
   2651 	/*
   2652 	 * Set up receive return ring 0.  Note that the NIC address
   2653 	 * for RX return rings is 0x0.  The return rings live entirely
   2654 	 * within the host, so the nicaddr field in the RCB isn't used.
   2655 	 */
   2656 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2657 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2658 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2659 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2660 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2661 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2662 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2663 
   2664 	/* 5718 step 24, 57XX step 53 */
   2665 	/* Set random backoff seed for TX */
   2666 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2667 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2668 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2669 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2670 	    BGE_TX_BACKOFF_SEED_MASK);
   2671 
   2672 	/* 5718 step 26, 57XX step 55 */
   2673 	/* Set inter-packet gap */
   2674 	val = 0x2620;
   2675 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2676 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2677 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2678 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2679 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2680 
   2681 	/* 5718 step 27, 57XX step 56 */
   2682 	/*
   2683 	 * Specify which ring to use for packets that don't match
   2684 	 * any RX rules.
   2685 	 */
   2686 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2687 
   2688 	/* 5718 step 28, 57XX step 57 */
   2689 	/*
   2690 	 * Configure number of RX lists. One interrupt distribution
   2691 	 * list, sixteen active lists, one bad frames class.
   2692 	 */
   2693 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2694 
   2695 	/* 5718 step 29, 57XX step 58 */
   2696 	/* Inialize RX list placement stats mask. */
   2697 	if (BGE_IS_575X_PLUS(sc)) {
   2698 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2699 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2700 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2701 	} else
   2702 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2703 
   2704 	/* 5718 step 30, 57XX step 59 */
   2705 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2706 
   2707 	/* 5718 step 33, 57XX step 62 */
   2708 	/* Disable host coalescing until we get it set up */
   2709 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2710 
   2711 	/* 5718 step 34, 57XX step 63 */
   2712 	/* Poll to make sure it's shut down. */
   2713 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2714 		DELAY(10);
   2715 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2716 			break;
   2717 	}
   2718 
   2719 	if (i == BGE_TIMEOUT * 2) {
   2720 		aprint_error_dev(sc->bge_dev,
   2721 		    "host coalescing engine failed to idle\n");
   2722 		return ENXIO;
   2723 	}
   2724 
   2725 	/* 5718 step 35, 36, 37 */
   2726 	/* Set up host coalescing defaults */
   2727 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2728 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2729 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2730 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2731 	if (!(BGE_IS_5705_PLUS(sc))) {
   2732 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2733 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2734 	}
   2735 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2736 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2737 
   2738 	/* Set up address of statistics block */
   2739 	if (BGE_IS_5700_FAMILY(sc)) {
   2740 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2741 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2742 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2743 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2744 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2745 	}
   2746 
   2747 	/* 5718 step 38 */
   2748 	/* Set up address of status block */
   2749 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2750 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2751 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2752 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2753 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2754 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2755 
   2756 	/* Set up status block size. */
   2757 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2758 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2759 		val = BGE_STATBLKSZ_FULL;
   2760 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2761 	} else {
   2762 		val = BGE_STATBLKSZ_32BYTE;
   2763 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2764 	}
   2765 
   2766 	/* 5718 step 39, 57XX step 73 */
   2767 	/* Turn on host coalescing state machine */
   2768 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2769 
   2770 	/* 5718 step 40, 57XX step 74 */
   2771 	/* Turn on RX BD completion state machine and enable attentions */
   2772 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2773 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2774 
   2775 	/* 5718 step 41, 57XX step 75 */
   2776 	/* Turn on RX list placement state machine */
   2777 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2778 
   2779 	/* 57XX step 76 */
   2780 	/* Turn on RX list selector state machine. */
   2781 	if (!(BGE_IS_5705_PLUS(sc)))
   2782 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2783 
   2784 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2785 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2786 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2787 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2788 
   2789 	if (sc->bge_flags & BGEF_FIBER_TBI)
   2790 		val |= BGE_PORTMODE_TBI;
   2791 	else if (sc->bge_flags & BGEF_FIBER_MII)
   2792 		val |= BGE_PORTMODE_GMII;
   2793 	else
   2794 		val |= BGE_PORTMODE_MII;
   2795 
   2796 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   2797 	/* Allow APE to send/receive frames. */
   2798 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2799 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2800 
   2801 	/* Turn on DMA, clear stats */
   2802 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2803 	/* 5718 step 44 */
   2804 	DELAY(40);
   2805 
   2806 	/* 5718 step 45, 57XX step 79 */
   2807 	/* Set misc. local control, enable interrupts on attentions */
   2808 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2809 	if (BGE_IS_5717_PLUS(sc)) {
   2810 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2811 		/* 5718 step 46 */
   2812 		DELAY(100);
   2813 	}
   2814 
   2815 	/* 57XX step 81 */
   2816 	/* Turn on DMA completion state machine */
   2817 	if (!(BGE_IS_5705_PLUS(sc)))
   2818 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2819 
   2820 	/* 5718 step 47, 57XX step 82 */
   2821 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2822 
   2823 	/* 5718 step 48 */
   2824 	/* Enable host coalescing bug fix. */
   2825 	if (BGE_IS_5755_PLUS(sc))
   2826 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2827 
   2828 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2829 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2830 
   2831 	/* Turn on write DMA state machine */
   2832 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2833 	/* 5718 step 49 */
   2834 	DELAY(40);
   2835 
   2836 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2837 
   2838 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   2839 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2840 
   2841 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2842 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2843 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2844 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2845 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2846 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2847 
   2848 	if (sc->bge_flags & BGEF_PCIE)
   2849 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2850 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2851 		if (ifp->if_mtu <= ETHERMTU)
   2852 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
   2853 	}
   2854 	if (sc->bge_flags & BGEF_TSO) {
   2855 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2856 		if (BGE_IS_5717_PLUS(sc))
   2857 			val |= BGE_RDMAMODE_TSO6_ENABLE;
   2858 	}
   2859 
   2860 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2861 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2862 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   2863 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   2864 		/*
   2865 		 * Allow multiple outstanding read requests from
   2866 		 * non-LSO read DMA engine.
   2867 		 */
   2868 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2869 	}
   2870 
   2871 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2872 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2873 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2874 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   2875 	    BGE_IS_57765_PLUS(sc)) {
   2876 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2877 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
   2878 		else
   2879 			rdmareg = BGE_RDMA_RSRVCTRL;
   2880 		dmactl = CSR_READ_4(sc, rdmareg);
   2881 		/*
   2882 		 * Adjust tx margin to prevent TX data corruption and
   2883 		 * fix internal FIFO overflow.
   2884 		 */
   2885 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2886 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2887 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   2888 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   2889 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   2890 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   2891 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   2892 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   2893 		}
   2894 		/*
   2895 		 * Enable fix for read DMA FIFO overruns.
   2896 		 * The fix is to limit the number of RX BDs
   2897 		 * the hardware would fetch at a time.
   2898 		 */
   2899 		CSR_WRITE_4(sc, rdmareg, dmactl |
   2900 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   2901 	}
   2902 
   2903 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   2904 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2905 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2906 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2907 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2908 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2909 		/*
   2910 		 * Allow 4KB burst length reads for non-LSO frames.
   2911 		 * Enable 512B burst length reads for buffer descriptors.
   2912 		 */
   2913 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2914 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2915 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   2916 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2917 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2918 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
   2919 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
   2920 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2921 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2922 	}
   2923 	/* Turn on read DMA state machine */
   2924 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   2925 	/* 5718 step 52 */
   2926 	delay(40);
   2927 
   2928 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   2929 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
   2930 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
   2931 			if ((val & 0xFFFF) > BGE_FRAMELEN)
   2932 				break;
   2933 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
   2934 				break;
   2935 		}
   2936 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
   2937 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   2938 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2939 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
   2940 			else
   2941 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
   2942 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   2943 		}
   2944 	}
   2945 
   2946 	/* 5718 step 56, 57XX step 84 */
   2947 	/* Turn on RX data completion state machine */
   2948 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2949 
   2950 	/* Turn on RX data and RX BD initiator state machine */
   2951 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2952 
   2953 	/* 57XX step 85 */
   2954 	/* Turn on Mbuf cluster free state machine */
   2955 	if (!BGE_IS_5705_PLUS(sc))
   2956 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2957 
   2958 	/* 5718 step 57, 57XX step 86 */
   2959 	/* Turn on send data completion state machine */
   2960 	val = BGE_SDCMODE_ENABLE;
   2961 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2962 		val |= BGE_SDCMODE_CDELAY;
   2963 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2964 
   2965 	/* 5718 step 58 */
   2966 	/* Turn on send BD completion state machine */
   2967 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2968 
   2969 	/* 57XX step 88 */
   2970 	/* Turn on RX BD initiator state machine */
   2971 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2972 
   2973 	/* 5718 step 60, 57XX step 90 */
   2974 	/* Turn on send data initiator state machine */
   2975 	if (sc->bge_flags & BGEF_TSO) {
   2976 		/* XXX: magic value from Linux driver */
   2977 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   2978 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   2979 	} else
   2980 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2981 
   2982 	/* 5718 step 61, 57XX step 91 */
   2983 	/* Turn on send BD initiator state machine */
   2984 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2985 
   2986 	/* 5718 step 62, 57XX step 92 */
   2987 	/* Turn on send BD selector state machine */
   2988 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2989 
   2990 	/* 5718 step 31, 57XX step 60 */
   2991 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2992 	/* 5718 step 32, 57XX step 61 */
   2993 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2994 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2995 
   2996 	/* ack/clear link change events */
   2997 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2998 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2999 	    BGE_MACSTAT_LINK_CHANGED);
   3000 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3001 
   3002 	/*
   3003 	 * Enable attention when the link has changed state for
   3004 	 * devices that use auto polling.
   3005 	 */
   3006 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3007 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3008 	} else {
   3009 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3010 			mimode = BGE_MIMODE_500KHZ_CONST;
   3011 		else
   3012 			mimode = BGE_MIMODE_BASE;
   3013 		/* 5718 step 68. 5718 step 69 (optionally). */
   3014 		if (BGE_IS_5700_FAMILY(sc) ||
   3015 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
   3016 			mimode |= BGE_MIMODE_AUTOPOLL;
   3017 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3018 		}
   3019 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3020 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3021 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3022 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3023 			    BGE_EVTENB_MI_INTERRUPT);
   3024 	}
   3025 
   3026 	/*
   3027 	 * Clear any pending link state attention.
   3028 	 * Otherwise some link state change events may be lost until attention
   3029 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3030 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3031 	 * state change attentions implies clearing pending attention.
   3032 	 */
   3033 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3034 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3035 	    BGE_MACSTAT_LINK_CHANGED);
   3036 
   3037 	/* Enable link state change attentions. */
   3038 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3039 
   3040 	return 0;
   3041 }
   3042 
   3043 static const struct bge_revision *
   3044 bge_lookup_rev(uint32_t chipid)
   3045 {
   3046 	const struct bge_revision *br;
   3047 
   3048 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3049 		if (br->br_chipid == chipid)
   3050 			return br;
   3051 	}
   3052 
   3053 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3054 		if (br->br_chipid == BGE_ASICREV(chipid))
   3055 			return br;
   3056 	}
   3057 
   3058 	return NULL;
   3059 }
   3060 
   3061 static const struct bge_product *
   3062 bge_lookup(const struct pci_attach_args *pa)
   3063 {
   3064 	const struct bge_product *bp;
   3065 
   3066 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3067 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3068 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3069 			return bp;
   3070 	}
   3071 
   3072 	return NULL;
   3073 }
   3074 
   3075 static uint32_t
   3076 bge_chipid(const struct pci_attach_args *pa)
   3077 {
   3078 	uint32_t id;
   3079 
   3080 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3081 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3082 
   3083 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3084 		switch (PCI_PRODUCT(pa->pa_id)) {
   3085 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3086 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3087 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3088 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3089 		case PCI_PRODUCT_BROADCOM_BCM5725:
   3090 		case PCI_PRODUCT_BROADCOM_BCM5727:
   3091 		case PCI_PRODUCT_BROADCOM_BCM5762:
   3092 		case PCI_PRODUCT_BROADCOM_BCM57764:
   3093 		case PCI_PRODUCT_BROADCOM_BCM57767:
   3094 		case PCI_PRODUCT_BROADCOM_BCM57787:
   3095 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3096 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3097 			break;
   3098 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3099 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3100 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3101 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3102 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3103 		case PCI_PRODUCT_BROADCOM_BCM57782:
   3104 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3105 		case PCI_PRODUCT_BROADCOM_BCM57786:
   3106 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3107 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3108 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3109 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3110 			break;
   3111 		default:
   3112 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3113 			    BGE_PCI_PRODID_ASICREV);
   3114 			break;
   3115 		}
   3116 	}
   3117 
   3118 	return id;
   3119 }
   3120 
   3121 /*
   3122  * Return true if MSI can be used with this device.
   3123  */
   3124 static int
   3125 bge_can_use_msi(struct bge_softc *sc)
   3126 {
   3127 	int can_use_msi = 0;
   3128 
   3129 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3130 	case BGE_ASICREV_BCM5714_A0:
   3131 	case BGE_ASICREV_BCM5714:
   3132 		/*
   3133 		 * Apparently, MSI doesn't work when these chips are
   3134 		 * configured in single-port mode.
   3135 		 */
   3136 		break;
   3137 	case BGE_ASICREV_BCM5750:
   3138 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
   3139 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
   3140 			can_use_msi = 1;
   3141 		break;
   3142 	default:
   3143 		if (BGE_IS_575X_PLUS(sc))
   3144 			can_use_msi = 1;
   3145 	}
   3146 	return can_use_msi;
   3147 }
   3148 
   3149 /*
   3150  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3151  * against our list and return its name if we find a match. Note
   3152  * that since the Broadcom controller contains VPD support, we
   3153  * can get the device name string from the controller itself instead
   3154  * of the compiled-in string. This is a little slow, but it guarantees
   3155  * we'll always announce the right product name.
   3156  */
   3157 static int
   3158 bge_probe(device_t parent, cfdata_t match, void *aux)
   3159 {
   3160 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3161 
   3162 	if (bge_lookup(pa) != NULL)
   3163 		return 1;
   3164 
   3165 	return 0;
   3166 }
   3167 
   3168 static void
   3169 bge_attach(device_t parent, device_t self, void *aux)
   3170 {
   3171 	struct bge_softc * const sc = device_private(self);
   3172 	struct pci_attach_args * const pa = aux;
   3173 	prop_dictionary_t dict;
   3174 	const struct bge_product *bp;
   3175 	const struct bge_revision *br;
   3176 	pci_chipset_tag_t	pc;
   3177 	const char		*intrstr = NULL;
   3178 	uint32_t		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
   3179 	uint32_t		command;
   3180 	struct ifnet		*ifp;
   3181 	struct mii_data * const mii = &sc->bge_mii;
   3182 	uint32_t		misccfg, mimode, macmode;
   3183 	void *			kva;
   3184 	u_char			eaddr[ETHER_ADDR_LEN];
   3185 	pcireg_t		memtype, subid, reg;
   3186 	bus_addr_t		memaddr;
   3187 	uint32_t		pm_ctl;
   3188 	bool			no_seeprom;
   3189 	int			capmask, trys;
   3190 	int			mii_flags;
   3191 	int			map_flags;
   3192 	char intrbuf[PCI_INTRSTR_LEN];
   3193 
   3194 	bp = bge_lookup(pa);
   3195 	KASSERT(bp != NULL);
   3196 
   3197 	sc->sc_pc = pa->pa_pc;
   3198 	sc->sc_pcitag = pa->pa_tag;
   3199 	sc->bge_dev = self;
   3200 
   3201 	sc->bge_pa = *pa;
   3202 	pc = sc->sc_pc;
   3203 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3204 
   3205 	aprint_naive(": Ethernet controller\n");
   3206 	aprint_normal(": %s Ethernet\n", bp->bp_name);
   3207 
   3208 	/*
   3209 	 * Map control/status registers.
   3210 	 */
   3211 	DPRINTFN(5, ("Map control/status regs\n"));
   3212 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3213 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3214 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3215 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3216 
   3217 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3218 		aprint_error_dev(sc->bge_dev,
   3219 		    "failed to enable memory mapping!\n");
   3220 		return;
   3221 	}
   3222 
   3223 	DPRINTFN(5, ("pci_mem_find\n"));
   3224 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3225 	switch (memtype) {
   3226 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3227 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3228 #if 0
   3229 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3230 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3231 		    &memaddr, &sc->bge_bsize) == 0)
   3232 			break;
   3233 #else
   3234 		/*
   3235 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3236 		 * system get NMI on boot (PR#48451). This problem might not be
   3237 		 * the driver's bug but our PCI common part's bug. Until we
   3238 		 * find a real reason, we ignore the prefetchable bit.
   3239 		 */
   3240 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
   3241 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
   3242 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3243 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
   3244 			    map_flags, &sc->bge_bhandle) == 0) {
   3245 				sc->bge_btag = pa->pa_memt;
   3246 				break;
   3247 			}
   3248 		}
   3249 #endif
   3250 		/* FALLTHROUGH */
   3251 	default:
   3252 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3253 		return;
   3254 	}
   3255 
   3256 	/* Save various chip information. */
   3257 	sc->bge_chipid = bge_chipid(pa);
   3258 	sc->bge_phy_addr = bge_phy_addr(sc);
   3259 
   3260 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3261 	    &sc->bge_pciecap, NULL) != 0) {
   3262 		/* PCIe */
   3263 		sc->bge_flags |= BGEF_PCIE;
   3264 		/* Extract supported maximum payload size. */
   3265 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3266 		    sc->bge_pciecap + PCIE_DCAP);
   3267 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3268 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3269 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3270 			sc->bge_expmrq = 2048;
   3271 		else
   3272 			sc->bge_expmrq = 4096;
   3273 		bge_set_max_readrq(sc);
   3274 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
   3275 		/* PCIe without PCIe cap */
   3276 		sc->bge_flags |= BGEF_PCIE;
   3277 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3278 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3279 		/* PCI-X */
   3280 		sc->bge_flags |= BGEF_PCIX;
   3281 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3282 			&sc->bge_pcixcap, NULL) == 0)
   3283 			aprint_error_dev(sc->bge_dev,
   3284 			    "unable to find PCIX capability\n");
   3285 	}
   3286 
   3287 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3288 		/*
   3289 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3290 		 * can clobber the chip's PCI config-space power control
   3291 		 * registers, leaving the card in D3 powersave state. We do
   3292 		 * not have memory-mapped registers in this state, so force
   3293 		 * device into D0 state before starting initialization.
   3294 		 */
   3295 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3296 		pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
   3297 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3298 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3299 		DELAY(1000);	/* 27 usec is allegedly sufficient */
   3300 	}
   3301 
   3302 	/* Save chipset family. */
   3303 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3304 	case BGE_ASICREV_BCM5717:
   3305 	case BGE_ASICREV_BCM5719:
   3306 	case BGE_ASICREV_BCM5720:
   3307 		sc->bge_flags |= BGEF_5717_PLUS;
   3308 		/* FALLTHROUGH */
   3309 	case BGE_ASICREV_BCM5762:
   3310 	case BGE_ASICREV_BCM57765:
   3311 	case BGE_ASICREV_BCM57766:
   3312 		if (!BGE_IS_5717_PLUS(sc))
   3313 			sc->bge_flags |= BGEF_57765_FAMILY;
   3314 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
   3315 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
   3316 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3317 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3318 			/*
   3319 			 * Enable work around for DMA engine miscalculation
   3320 			 * of TXMBUF available space.
   3321 			 */
   3322 			sc->bge_flags |= BGEF_RDMA_BUG;
   3323 
   3324 			if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3325 			    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
   3326 				/* Jumbo frame on BCM5719 A0 does not work. */
   3327 				sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
   3328 			}
   3329 		}
   3330 		break;
   3331 	case BGE_ASICREV_BCM5755:
   3332 	case BGE_ASICREV_BCM5761:
   3333 	case BGE_ASICREV_BCM5784:
   3334 	case BGE_ASICREV_BCM5785:
   3335 	case BGE_ASICREV_BCM5787:
   3336 	case BGE_ASICREV_BCM57780:
   3337 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
   3338 		break;
   3339 	case BGE_ASICREV_BCM5700:
   3340 	case BGE_ASICREV_BCM5701:
   3341 	case BGE_ASICREV_BCM5703:
   3342 	case BGE_ASICREV_BCM5704:
   3343 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
   3344 		break;
   3345 	case BGE_ASICREV_BCM5714_A0:
   3346 	case BGE_ASICREV_BCM5780:
   3347 	case BGE_ASICREV_BCM5714:
   3348 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
   3349 		/* FALLTHROUGH */
   3350 	case BGE_ASICREV_BCM5750:
   3351 	case BGE_ASICREV_BCM5752:
   3352 	case BGE_ASICREV_BCM5906:
   3353 		sc->bge_flags |= BGEF_575X_PLUS;
   3354 		/* FALLTHROUGH */
   3355 	case BGE_ASICREV_BCM5705:
   3356 		sc->bge_flags |= BGEF_5705_PLUS;
   3357 		break;
   3358 	}
   3359 
   3360 	/* Identify chips with APE processor. */
   3361 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3362 	case BGE_ASICREV_BCM5717:
   3363 	case BGE_ASICREV_BCM5719:
   3364 	case BGE_ASICREV_BCM5720:
   3365 	case BGE_ASICREV_BCM5761:
   3366 	case BGE_ASICREV_BCM5762:
   3367 		sc->bge_flags |= BGEF_APE;
   3368 		break;
   3369 	}
   3370 
   3371 	/*
   3372 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
   3373 	 * not actually a MAC controller bug but an issue with the embedded
   3374 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
   3375 	 */
   3376 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
   3377 		sc->bge_flags |= BGEF_40BIT_BUG;
   3378 
   3379 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3380 	if ((sc->bge_flags & BGEF_APE) != 0) {
   3381 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3382 #if 0
   3383 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3384 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3385 			&sc->bge_apesize)) {
   3386 			aprint_error_dev(sc->bge_dev,
   3387 			    "couldn't map BAR2 memory\n");
   3388 			return;
   3389 		}
   3390 #else
   3391 		/*
   3392 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3393 		 * system get NMI on boot (PR#48451). This problem might not be
   3394 		 * the driver's bug but our PCI common part's bug. Until we
   3395 		 * find a real reason, we ignore the prefetchable bit.
   3396 		 */
   3397 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
   3398 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
   3399 			aprint_error_dev(sc->bge_dev,
   3400 			    "couldn't map BAR2 memory\n");
   3401 			return;
   3402 		}
   3403 
   3404 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3405 		if (bus_space_map(pa->pa_memt, memaddr,
   3406 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
   3407 			aprint_error_dev(sc->bge_dev,
   3408 			    "couldn't map BAR2 memory\n");
   3409 			return;
   3410 		}
   3411 		sc->bge_apetag = pa->pa_memt;
   3412 #endif
   3413 
   3414 		/* Enable APE register/memory access by host driver. */
   3415 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3416 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3417 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3418 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3419 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3420 
   3421 		bge_ape_lock_init(sc);
   3422 		bge_ape_read_fw_ver(sc);
   3423 	}
   3424 
   3425 	/* Identify the chips that use an CPMU. */
   3426 	if (BGE_IS_5717_PLUS(sc) ||
   3427 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3428 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3429 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3430 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3431 		sc->bge_flags |= BGEF_CPMU_PRESENT;
   3432 
   3433 	/*
   3434 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3435 	 * been observed in the first few bytes of some received packets.
   3436 	 * Aligning the packet buffer in memory eliminates the corruption.
   3437 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3438 	 * which do not support unaligned accesses, we will realign the
   3439 	 * payloads by copying the received packets.
   3440 	 */
   3441 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3442 	    sc->bge_flags & BGEF_PCIX)
   3443 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
   3444 
   3445 	if (BGE_IS_5700_FAMILY(sc))
   3446 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
   3447 
   3448 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3449 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3450 
   3451 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3452 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3453 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3454 		sc->bge_flags |= BGEF_IS_5788;
   3455 
   3456 	/*
   3457 	 * Some controllers seem to require a special firmware to use
   3458 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3459 	 * claims that the TSO performed by the firmware is slower than
   3460 	 * hardware based TSO. Moreover the firmware based TSO has one
   3461 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3462 	 * header is greater than 80 bytes. The workaround for the TSO
   3463 	 * bug exist but it seems it's too expensive than not using
   3464 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3465 	 * the TSO to the controllers that are not affected TSO issues
   3466 	 * (e.g. 5755 or higher).
   3467 	 */
   3468 	if (BGE_IS_5755_PLUS(sc)) {
   3469 		/*
   3470 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3471 		 * explicit device id check is required.
   3472 		 */
   3473 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3474 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3475 			sc->bge_flags |= BGEF_TSO;
   3476 		/* TSO on BCM5719 A0 does not work. */
   3477 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3478 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3479 			sc->bge_flags &= ~BGEF_TSO;
   3480 	}
   3481 
   3482 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3483 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3484 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3485 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3486 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3487 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3488 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3489 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3490 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3491 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3492 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3493 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3494 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3495 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3496 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3497 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3498 		/* These chips are 10/100 only. */
   3499 		capmask &= ~BMSR_EXTSTAT;
   3500 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3501 	}
   3502 
   3503 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3504 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3505 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3506 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3507 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3508 
   3509 	/* Set various PHY bug flags. */
   3510 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3511 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3512 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
   3513 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3514 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3515 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
   3516 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3517 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
   3518 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3519 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3520 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3521 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
   3522 	if (BGE_IS_5705_PLUS(sc) &&
   3523 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3524 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3525 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3526 	    !BGE_IS_57765_PLUS(sc)) {
   3527 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3528 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3529 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3530 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3531 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3532 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3533 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
   3534 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3535 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
   3536 		} else
   3537 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
   3538 	}
   3539 
   3540 	/*
   3541 	 * SEEPROM check.
   3542 	 * First check if firmware knows we do not have SEEPROM.
   3543 	 */
   3544 	if (prop_dictionary_get_bool(device_properties(self),
   3545 	    "without-seeprom", &no_seeprom) && no_seeprom)
   3546 		sc->bge_flags |= BGEF_NO_EEPROM;
   3547 
   3548 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3549 		sc->bge_flags |= BGEF_NO_EEPROM;
   3550 
   3551 	/* Now check the 'ROM failed' bit on the RX CPU */
   3552 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3553 		sc->bge_flags |= BGEF_NO_EEPROM;
   3554 
   3555 	sc->bge_asf_mode = 0;
   3556 	/* No ASF if APE present. */
   3557 	if ((sc->bge_flags & BGEF_APE) == 0) {
   3558 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3559 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3560 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3561 			    BGE_HWCFG_ASF) {
   3562 				sc->bge_asf_mode |= ASF_ENABLE;
   3563 				sc->bge_asf_mode |= ASF_STACKUP;
   3564 				if (BGE_IS_575X_PLUS(sc))
   3565 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3566 			}
   3567 		}
   3568 	}
   3569 
   3570 	int counts[PCI_INTR_TYPE_SIZE] = {
   3571 		[PCI_INTR_TYPE_INTX] = 1,
   3572 		[PCI_INTR_TYPE_MSI] = 1,
   3573 		[PCI_INTR_TYPE_MSIX] = 1,
   3574 	};
   3575 	int max_type = PCI_INTR_TYPE_MSIX;
   3576 
   3577 	if (!bge_can_use_msi(sc)) {
   3578 		/* MSI broken, allow only INTx */
   3579 		max_type = PCI_INTR_TYPE_INTX;
   3580 	}
   3581 
   3582 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
   3583 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
   3584 		return;
   3585 	}
   3586 
   3587 	DPRINTFN(5, ("pci_intr_string\n"));
   3588 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
   3589 	    sizeof(intrbuf));
   3590 	DPRINTFN(5, ("pci_intr_establish\n"));
   3591 	sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
   3592 	    IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
   3593 	if (sc->bge_intrhand == NULL) {
   3594 		pci_intr_release(pc, sc->bge_pihp, 1);
   3595 		sc->bge_pihp = NULL;
   3596 
   3597 		aprint_error_dev(self, "couldn't establish interrupt");
   3598 		if (intrstr != NULL)
   3599 			aprint_error(" at %s", intrstr);
   3600 		aprint_error("\n");
   3601 		return;
   3602 	}
   3603 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3604 
   3605 	switch (pci_intr_type(pc, sc->bge_pihp[0])) {
   3606 	case PCI_INTR_TYPE_MSIX:
   3607 	case PCI_INTR_TYPE_MSI:
   3608 		KASSERT(bge_can_use_msi(sc));
   3609 		sc->bge_flags |= BGEF_MSI;
   3610 		break;
   3611 	default:
   3612 		/* nothing to do */
   3613 		break;
   3614 	}
   3615 
   3616 	/*
   3617 	 * All controllers except BCM5700 supports tagged status but
   3618 	 * we use tagged status only for MSI case on BCM5717. Otherwise
   3619 	 * MSI on BCM5717 does not work.
   3620 	 */
   3621 	if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
   3622 		sc->bge_flags |= BGEF_TAGGED_STATUS;
   3623 
   3624 	/*
   3625 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3626 	 * lock in bge_reset().
   3627 	 */
   3628 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   3629 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3630 	delay(1000);
   3631 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3632 
   3633 	bge_stop_fw(sc);
   3634 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   3635 	if (bge_reset(sc))
   3636 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3637 
   3638 	/*
   3639 	 * Read the hardware config word in the first 32k of NIC internal
   3640 	 * memory, or fall back to the config word in the EEPROM.
   3641 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3642 	 */
   3643 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
   3644 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3645 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3646 		uint32_t tmp;
   3647 
   3648 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3649 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3650 		    BGE_SRAM_DATA_VER_SHIFT;
   3651 		if ((0 < tmp) && (tmp < 0x100))
   3652 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3653 		if (sc->bge_flags & BGEF_PCIE)
   3654 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3655 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3656 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3657 		if (BGE_IS_5717_PLUS(sc))
   3658 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
   3659 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
   3660 		bge_read_eeprom(sc, (void *)&hwcfg,
   3661 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3662 		hwcfg = be32toh(hwcfg);
   3663 	}
   3664 	aprint_normal_dev(sc->bge_dev,
   3665 	    "HW config %08x, %08x, %08x, %08x %08x\n",
   3666 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
   3667 
   3668 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   3669 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   3670 
   3671 	if (bge_chipinit(sc)) {
   3672 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3673 		bge_release_resources(sc);
   3674 		return;
   3675 	}
   3676 
   3677 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   3678 		BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
   3679 		    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
   3680 		DELAY(100);
   3681 	}
   3682 
   3683 	/* Set MI_MODE */
   3684 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3685 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3686 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3687 	else
   3688 		mimode |= BGE_MIMODE_BASE;
   3689 	CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
   3690 	DELAY(80);
   3691 
   3692 	/*
   3693 	 * Get station address from the EEPROM.
   3694 	 */
   3695 	if (bge_get_eaddr(sc, eaddr)) {
   3696 		aprint_error_dev(sc->bge_dev,
   3697 		    "failed to read station address\n");
   3698 		bge_release_resources(sc);
   3699 		return;
   3700 	}
   3701 
   3702 	br = bge_lookup_rev(sc->bge_chipid);
   3703 
   3704 	if (br == NULL) {
   3705 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3706 		    sc->bge_chipid);
   3707 	} else {
   3708 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3709 		    br->br_name, sc->bge_chipid);
   3710 	}
   3711 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3712 
   3713 	/* Allocate the general information block and ring buffers. */
   3714 	if (pci_dma64_available(pa)) {
   3715 		sc->bge_dmatag = pa->pa_dmat64;
   3716 		sc->bge_dmatag32 = pa->pa_dmat;
   3717 		sc->bge_dma64 = true;
   3718 	} else {
   3719 		sc->bge_dmatag = pa->pa_dmat;
   3720 		sc->bge_dmatag32 = pa->pa_dmat;
   3721 		sc->bge_dma64 = false;
   3722 	}
   3723 
   3724 	/* 40bit DMA workaround */
   3725 	if (sizeof(bus_addr_t) > 4) {
   3726 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
   3727 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
   3728 
   3729 			if (bus_dmatag_subregion(olddmatag, 0,
   3730 			    (bus_addr_t)__MASK(40),
   3731 			    &(sc->bge_dmatag), BUS_DMA_NOWAIT) != 0) {
   3732 				aprint_error_dev(self,
   3733 				    "WARNING: failed to restrict dma range,"
   3734 				    " falling back to parent bus dma range\n");
   3735 				sc->bge_dmatag = olddmatag;
   3736 			}
   3737 		}
   3738 	}
   3739 	SLIST_INIT(&sc->txdma_list);
   3740 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3741 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3742 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3743 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
   3744 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3745 		return;
   3746 	}
   3747 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3748 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3749 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3750 			   BUS_DMA_NOWAIT)) {
   3751 		aprint_error_dev(sc->bge_dev,
   3752 		    "can't map DMA buffers (%zu bytes)\n",
   3753 		    sizeof(struct bge_ring_data));
   3754 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3755 		    sc->bge_ring_rseg);
   3756 		return;
   3757 	}
   3758 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3759 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3760 	    sizeof(struct bge_ring_data), 0,
   3761 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3762 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3763 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3764 				 sizeof(struct bge_ring_data));
   3765 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3766 		    sc->bge_ring_rseg);
   3767 		return;
   3768 	}
   3769 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3770 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3771 			    sizeof(struct bge_ring_data), NULL,
   3772 			    BUS_DMA_NOWAIT)) {
   3773 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3774 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3775 				 sizeof(struct bge_ring_data));
   3776 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3777 		    sc->bge_ring_rseg);
   3778 		return;
   3779 	}
   3780 
   3781 	DPRINTFN(5, ("bzero\n"));
   3782 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3783 
   3784 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3785 
   3786 	/* Try to allocate memory for jumbo buffers. */
   3787 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3788 		if (bge_alloc_jumbo_mem(sc)) {
   3789 			aprint_error_dev(sc->bge_dev,
   3790 			    "jumbo buffer allocation failed\n");
   3791 		} else
   3792 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3793 	}
   3794 
   3795 	/* Set default tuneable values. */
   3796 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3797 	sc->bge_rx_coal_ticks = 150;
   3798 	sc->bge_rx_max_coal_bds = 64;
   3799 	sc->bge_tx_coal_ticks = 300;
   3800 	sc->bge_tx_max_coal_bds = 400;
   3801 	if (BGE_IS_5705_PLUS(sc)) {
   3802 		sc->bge_tx_coal_ticks = (12 * 5);
   3803 		sc->bge_tx_max_coal_bds = (12 * 5);
   3804 			aprint_verbose_dev(sc->bge_dev,
   3805 			    "setting short Tx thresholds\n");
   3806 	}
   3807 
   3808 	if (BGE_IS_5717_PLUS(sc))
   3809 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3810 	else if (BGE_IS_5705_PLUS(sc))
   3811 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3812 	else
   3813 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3814 
   3815 	/* Set up ifnet structure */
   3816 	ifp = &sc->ethercom.ec_if;
   3817 	ifp->if_softc = sc;
   3818 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3819 	ifp->if_ioctl = bge_ioctl;
   3820 	ifp->if_stop = bge_stop;
   3821 	ifp->if_start = bge_start;
   3822 	ifp->if_init = bge_init;
   3823 	ifp->if_watchdog = bge_watchdog;
   3824 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3825 	IFQ_SET_READY(&ifp->if_snd);
   3826 	DPRINTFN(5, ("strcpy if_xname\n"));
   3827 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3828 
   3829 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3830 		sc->ethercom.ec_if.if_capabilities |=
   3831 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3832 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3833 		sc->ethercom.ec_if.if_capabilities |=
   3834 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3835 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3836 #endif
   3837 	sc->ethercom.ec_capabilities |=
   3838 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3839 	sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
   3840 
   3841 	if (sc->bge_flags & BGEF_TSO)
   3842 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3843 
   3844 	/*
   3845 	 * Do MII setup.
   3846 	 */
   3847 	DPRINTFN(5, ("mii setup\n"));
   3848 	mii->mii_ifp = ifp;
   3849 	mii->mii_readreg = bge_miibus_readreg;
   3850 	mii->mii_writereg = bge_miibus_writereg;
   3851 	mii->mii_statchg = bge_miibus_statchg;
   3852 
   3853 	/*
   3854 	 * Figure out what sort of media we have by checking the hardware
   3855 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   3856 	 * unset. If that's the case, we have to rely on identifying the NIC
   3857 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   3858 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   3859 	 */
   3860 	if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
   3861 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3862 		if (BGE_IS_5705_PLUS(sc)) {
   3863 			sc->bge_flags |= BGEF_FIBER_MII;
   3864 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3865 		} else
   3866 			sc->bge_flags |= BGEF_FIBER_TBI;
   3867 	}
   3868 
   3869 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
   3870 	if (BGE_IS_JUMBO_CAPABLE(sc))
   3871 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
   3872 
   3873 	/* set phyflags and chipid before mii_attach() */
   3874 	dict = device_properties(self);
   3875 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
   3876 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3877 
   3878 	macmode = CSR_READ_4(sc, BGE_MAC_MODE);
   3879 	macmode &= ~BGE_MACMODE_PORTMODE;
   3880 	/* Initialize ifmedia structures. */
   3881 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3882 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
   3883 		    macmode | BGE_PORTMODE_TBI);
   3884 		DELAY(40);
   3885 
   3886 		sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
   3887 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3888 		    bge_ifmedia_sts);
   3889 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3890 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
   3891 			    0, NULL);
   3892 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3893 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3894 		/* Pretend the user requested this setting */
   3895 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3896 	} else {
   3897 		uint16_t phyreg;
   3898 		int rv;
   3899 		/*
   3900 		 * Do transceiver setup and tell the firmware the
   3901 		 * driver is down so we can try to get access the
   3902 		 * probe if ASF is running.  Retry a couple of times
   3903 		 * if we get a conflict with the ASF firmware accessing
   3904 		 * the PHY.
   3905 		 */
   3906 		if (sc->bge_flags & BGEF_FIBER_MII)
   3907 			macmode |= BGE_PORTMODE_GMII;
   3908 		else
   3909 			macmode |= BGE_PORTMODE_MII;
   3910 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
   3911 		DELAY(40);
   3912 
   3913 		/*
   3914 		 * Do transceiver setup and tell the firmware the
   3915 		 * driver is down so we can try to get access the
   3916 		 * probe if ASF is running.  Retry a couple of times
   3917 		 * if we get a conflict with the ASF firmware accessing
   3918 		 * the PHY.
   3919 		 */
   3920 		trys = 0;
   3921 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3922 		sc->ethercom.ec_mii = mii;
   3923 		ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
   3924 			     bge_ifmedia_sts);
   3925 		mii_flags = MIIF_DOPAUSE;
   3926 		if (sc->bge_flags & BGEF_FIBER_MII)
   3927 			mii_flags |= MIIF_HAVEFIBER;
   3928 again:
   3929 		bge_asf_driver_up(sc);
   3930 		rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   3931 		    MII_BMCR, &phyreg);
   3932 		if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
   3933 			int i;
   3934 
   3935 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   3936 			    MII_BMCR, BMCR_RESET);
   3937 			/* Wait up to 500ms for it to complete. */
   3938 			for (i = 0; i < 500; i++) {
   3939 				bge_miibus_readreg(sc->bge_dev,
   3940 				    sc->bge_phy_addr, MII_BMCR, &phyreg);
   3941 				if ((phyreg & BMCR_RESET) == 0)
   3942 					break;
   3943 				DELAY(1000);
   3944 			}
   3945 		}
   3946 
   3947 		mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
   3948 		    MII_OFFSET_ANY, mii_flags);
   3949 
   3950 		if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
   3951 			goto again;
   3952 
   3953 		if (LIST_EMPTY(&mii->mii_phys)) {
   3954 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3955 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
   3956 			    0, NULL);
   3957 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
   3958 		} else
   3959 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   3960 
   3961 		/*
   3962 		 * Now tell the firmware we are going up after probing the PHY
   3963 		 */
   3964 		if (sc->bge_asf_mode & ASF_STACKUP)
   3965 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3966 	}
   3967 
   3968 	/*
   3969 	 * Call MI attach routine.
   3970 	 */
   3971 	DPRINTFN(5, ("if_attach\n"));
   3972 	if_attach(ifp);
   3973 	if_deferred_start_init(ifp, NULL);
   3974 	DPRINTFN(5, ("ether_ifattach\n"));
   3975 	ether_ifattach(ifp, eaddr);
   3976 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3977 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3978 		RND_TYPE_NET, RND_FLAG_DEFAULT);
   3979 #ifdef BGE_EVENT_COUNTERS
   3980 	/*
   3981 	 * Attach event counters.
   3982 	 */
   3983 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3984 	    NULL, device_xname(sc->bge_dev), "intr");
   3985 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
   3986 	    NULL, device_xname(sc->bge_dev), "intr_spurious");
   3987 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
   3988 	    NULL, device_xname(sc->bge_dev), "intr_spurious2");
   3989 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3990 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3991 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3992 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3993 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3994 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3995 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3996 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3997 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3998 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3999 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   4000 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   4001 #endif /* BGE_EVENT_COUNTERS */
   4002 	DPRINTFN(5, ("callout_init\n"));
   4003 	callout_init(&sc->bge_timeout, 0);
   4004 	callout_setfunc(&sc->bge_timeout, bge_tick, sc);
   4005 
   4006 	if (pmf_device_register(self, NULL, NULL))
   4007 		pmf_class_network_register(self, ifp);
   4008 	else
   4009 		aprint_error_dev(self, "couldn't establish power handler\n");
   4010 
   4011 	bge_sysctl_init(sc);
   4012 
   4013 #ifdef BGE_DEBUG
   4014 	bge_debug_info(sc);
   4015 #endif
   4016 }
   4017 
   4018 /*
   4019  * Stop all chip I/O so that the kernel's probe routines don't
   4020  * get confused by errant DMAs when rebooting.
   4021  */
   4022 static int
   4023 bge_detach(device_t self, int flags __unused)
   4024 {
   4025 	struct bge_softc * const sc = device_private(self);
   4026 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4027 	int s;
   4028 
   4029 	s = splnet();
   4030 	/* Stop the interface. Callouts are stopped in it. */
   4031 	bge_stop(ifp, 1);
   4032 	splx(s);
   4033 
   4034 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   4035 
   4036 	ether_ifdetach(ifp);
   4037 	if_detach(ifp);
   4038 
   4039 	/* Delete all remaining media. */
   4040 	ifmedia_fini(&sc->bge_mii.mii_media);
   4041 
   4042 	bge_release_resources(sc);
   4043 
   4044 	return 0;
   4045 }
   4046 
   4047 static void
   4048 bge_release_resources(struct bge_softc *sc)
   4049 {
   4050 
   4051 	/* Detach sysctl */
   4052 	if (sc->bge_log != NULL)
   4053 		sysctl_teardown(&sc->bge_log);
   4054 
   4055 #ifdef BGE_EVENT_COUNTERS
   4056 	/* Detach event counters. */
   4057 	evcnt_detach(&sc->bge_ev_intr);
   4058 	evcnt_detach(&sc->bge_ev_intr_spurious);
   4059 	evcnt_detach(&sc->bge_ev_intr_spurious2);
   4060 	evcnt_detach(&sc->bge_ev_tx_xoff);
   4061 	evcnt_detach(&sc->bge_ev_tx_xon);
   4062 	evcnt_detach(&sc->bge_ev_rx_xoff);
   4063 	evcnt_detach(&sc->bge_ev_rx_xon);
   4064 	evcnt_detach(&sc->bge_ev_rx_macctl);
   4065 	evcnt_detach(&sc->bge_ev_xoffentered);
   4066 #endif /* BGE_EVENT_COUNTERS */
   4067 
   4068 	/* Disestablish the interrupt handler */
   4069 	if (sc->bge_intrhand != NULL) {
   4070 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   4071 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
   4072 		sc->bge_intrhand = NULL;
   4073 	}
   4074 
   4075 	if (sc->bge_dmatag != NULL) {
   4076 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   4077 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   4078 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   4079 		    sizeof(struct bge_ring_data));
   4080 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   4081 		    sc->bge_ring_rseg);
   4082 	}
   4083 
   4084 	/* Unmap the device registers */
   4085 	if (sc->bge_bsize != 0) {
   4086 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   4087 		sc->bge_bsize = 0;
   4088 	}
   4089 
   4090 	/* Unmap the APE registers */
   4091 	if (sc->bge_apesize != 0) {
   4092 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   4093 		    sc->bge_apesize);
   4094 		sc->bge_apesize = 0;
   4095 	}
   4096 }
   4097 
   4098 static int
   4099 bge_reset(struct bge_softc *sc)
   4100 {
   4101 	uint32_t cachesize, command;
   4102 	uint32_t reset, mac_mode, mac_mode_mask;
   4103 	pcireg_t devctl, reg;
   4104 	int i, val;
   4105 	void (*write_op)(struct bge_softc *, int, int);
   4106 
   4107 	/* Make mask for BGE_MAC_MODE register. */
   4108 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   4109 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4110 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   4111 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   4112 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   4113 
   4114 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   4115 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   4116 		if (sc->bge_flags & BGEF_PCIE)
   4117 			write_op = bge_writemem_direct;
   4118 		else
   4119 			write_op = bge_writemem_ind;
   4120 	} else
   4121 		write_op = bge_writereg_ind;
   4122 
   4123 	/* 57XX step 4 */
   4124 	/* Acquire the NVM lock */
   4125 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
   4126 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4127 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4128 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4129 		for (i = 0; i < 8000; i++) {
   4130 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4131 			    BGE_NVRAMSWARB_GNT1)
   4132 				break;
   4133 			DELAY(20);
   4134 		}
   4135 		if (i == 8000) {
   4136 			printf("%s: NVRAM lock timedout!\n",
   4137 			    device_xname(sc->bge_dev));
   4138 		}
   4139 	}
   4140 
   4141 	/* Take APE lock when performing reset. */
   4142 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4143 
   4144 	/* 57XX step 3 */
   4145 	/* Save some important PCI state. */
   4146 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4147 	/* 5718 reset step 3 */
   4148 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4149 
   4150 	/* 5718 reset step 5, 57XX step 5b-5d */
   4151 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4152 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4153 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4154 
   4155 	/* XXX ???: Disable fastboot on controllers that support it. */
   4156 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4157 	    BGE_IS_5755_PLUS(sc))
   4158 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4159 
   4160 	/* 5718 reset step 2, 57XX step 6 */
   4161 	/*
   4162 	 * Write the magic number to SRAM at offset 0xB50.
   4163 	 * When firmware finishes its initialization it will
   4164 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4165 	 */
   4166 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4167 
   4168 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   4169 		val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   4170 		val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   4171 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   4172 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
   4173 	}
   4174 
   4175 	/* 5718 reset step 6, 57XX step 7 */
   4176 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4177 	/*
   4178 	 * XXX: from FreeBSD/Linux; no documentation
   4179 	 */
   4180 	if (sc->bge_flags & BGEF_PCIE) {
   4181 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
   4182 		    !BGE_IS_57765_PLUS(sc) &&
   4183 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4184 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4185 			/* PCI Express 1.0 system */
   4186 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4187 			    BGE_PHY_PCIE_SCRAM_MODE);
   4188 		}
   4189 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4190 			/*
   4191 			 * Prevent PCI Express link training
   4192 			 * during global reset.
   4193 			 */
   4194 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4195 			reset |= (1 << 29);
   4196 		}
   4197 	}
   4198 
   4199 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4200 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4201 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4202 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4203 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4204 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4205 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4206 	}
   4207 
   4208 	/*
   4209 	 * Set GPHY Power Down Override to leave GPHY
   4210 	 * powered up in D0 uninitialized.
   4211 	 */
   4212 	if (BGE_IS_5705_PLUS(sc) &&
   4213 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4214 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4215 
   4216 	/* Issue global reset */
   4217 	write_op(sc, BGE_MISC_CFG, reset);
   4218 
   4219 	/* 5718 reset step 7, 57XX step 8 */
   4220 	if (sc->bge_flags & BGEF_PCIE)
   4221 		delay(100*1000); /* too big */
   4222 	else
   4223 		delay(1000);
   4224 
   4225 	if (sc->bge_flags & BGEF_PCIE) {
   4226 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4227 			DELAY(500000);
   4228 			/* XXX: Magic Numbers */
   4229 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4230 			    BGE_PCI_UNKNOWN0);
   4231 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4232 			    BGE_PCI_UNKNOWN0,
   4233 			    reg | (1 << 15));
   4234 		}
   4235 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4236 		    sc->bge_pciecap + PCIE_DCSR);
   4237 		/* Clear enable no snoop and disable relaxed ordering. */
   4238 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4239 		    PCIE_DCSR_ENA_NO_SNOOP);
   4240 
   4241 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4242 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4243 			devctl &= ~(0x00e0);
   4244 		/* Clear device status register. Write 1b to clear */
   4245 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4246 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4247 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4248 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4249 		bge_set_max_readrq(sc);
   4250 	}
   4251 
   4252 	/* From Linux: dummy read to flush PCI posted writes */
   4253 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4254 
   4255 	/*
   4256 	 * Reset some of the PCI state that got zapped by reset
   4257 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4258 	 * set, too.
   4259 	 */
   4260 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4261 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4262 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4263 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4264 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4265 	    (sc->bge_flags & BGEF_PCIX) != 0)
   4266 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4267 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4268 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4269 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4270 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4271 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4272 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4273 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4274 
   4275 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
   4276 	if (sc->bge_flags & BGEF_PCIX) {
   4277 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4278 		    + PCIX_CMD);
   4279 		/* Set max memory read byte count to 2K */
   4280 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   4281 			reg &= ~PCIX_CMD_BYTECNT_MASK;
   4282 			reg |= PCIX_CMD_BCNT_2048;
   4283 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
   4284 			/*
   4285 			 * For 5704, set max outstanding split transaction
   4286 			 * field to 0 (0 means it supports 1 request)
   4287 			 */
   4288 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
   4289 			    | PCIX_CMD_BYTECNT_MASK);
   4290 			reg |= PCIX_CMD_BCNT_2048;
   4291 		}
   4292 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4293 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4294 	}
   4295 
   4296 	/* 5718 reset step 10, 57XX step 12 */
   4297 	/* Enable memory arbiter. */
   4298 	if (BGE_IS_5714_FAMILY(sc)) {
   4299 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4300 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4301 	} else
   4302 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4303 
   4304 	/* XXX 5721, 5751 and 5752 */
   4305 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4306 		/* Step 19: */
   4307 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4308 		/* Step 20: */
   4309 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4310 	}
   4311 
   4312 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4313 	/* Fix up byte swapping */
   4314 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4315 
   4316 	/* 5718 reset step 13, 57XX step 17 */
   4317 	/* Poll until the firmware initialization is complete */
   4318 	bge_poll_fw(sc);
   4319 
   4320 	/* 57XX step 21 */
   4321 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4322 		pcireg_t msidata;
   4323 
   4324 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4325 		    BGE_PCI_MSI_DATA);
   4326 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4327 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4328 		    msidata);
   4329 	}
   4330 
   4331 	/* 57XX step 18 */
   4332 	/* Write mac mode. */
   4333 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4334 	/* Restore mac_mode_mask's bits using mac_mode */
   4335 	val = (val & ~mac_mode_mask) | mac_mode;
   4336 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4337 	DELAY(40);
   4338 
   4339 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4340 
   4341 	/*
   4342 	 * The 5704 in TBI mode apparently needs some special
   4343 	 * adjustment to insure the SERDES drive level is set
   4344 	 * to 1.2V.
   4345 	 */
   4346 	if (sc->bge_flags & BGEF_FIBER_TBI &&
   4347 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4348 		uint32_t serdescfg;
   4349 
   4350 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4351 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4352 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4353 	}
   4354 
   4355 	if (sc->bge_flags & BGEF_PCIE &&
   4356 	    !BGE_IS_57765_PLUS(sc) &&
   4357 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4358 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4359 		uint32_t v;
   4360 
   4361 		/* Enable PCI Express bug fix */
   4362 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4363 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4364 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4365 	}
   4366 
   4367 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4368 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4369 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4370 
   4371 	return 0;
   4372 }
   4373 
   4374 /*
   4375  * Frame reception handling. This is called if there's a frame
   4376  * on the receive return list.
   4377  *
   4378  * Note: we have to be able to handle two possibilities here:
   4379  * 1) the frame is from the jumbo receive ring
   4380  * 2) the frame is from the standard receive ring
   4381  */
   4382 
   4383 static void
   4384 bge_rxeof(struct bge_softc *sc)
   4385 {
   4386 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4387 	uint16_t rx_prod, rx_cons;
   4388 	int stdcnt = 0, jumbocnt = 0;
   4389 	bus_dmamap_t dmamap;
   4390 	bus_addr_t offset, toff;
   4391 	bus_size_t tlen;
   4392 	int tosync;
   4393 
   4394 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4395 	    offsetof(struct bge_ring_data, bge_status_block),
   4396 	    sizeof(struct bge_status_block),
   4397 	    BUS_DMASYNC_POSTREAD);
   4398 
   4399 	rx_cons = sc->bge_rx_saved_considx;
   4400 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4401 
   4402 	/* Nothing to do */
   4403 	if (rx_cons == rx_prod)
   4404 		return;
   4405 
   4406 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4407 	tosync = rx_prod - rx_cons;
   4408 
   4409 	if (tosync != 0)
   4410 		rnd_add_uint32(&sc->rnd_source, tosync);
   4411 
   4412 	toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
   4413 
   4414 	if (tosync < 0) {
   4415 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4416 		    sizeof(struct bge_rx_bd);
   4417 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4418 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4419 		tosync = -tosync;
   4420 	}
   4421 
   4422 	if (tosync != 0) {
   4423 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4424 		    offset, tosync * sizeof(struct bge_rx_bd),
   4425 		    BUS_DMASYNC_POSTREAD);
   4426 	}
   4427 
   4428 	while (rx_cons != rx_prod) {
   4429 		struct bge_rx_bd	*cur_rx;
   4430 		uint32_t		rxidx;
   4431 		struct mbuf		*m = NULL;
   4432 
   4433 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4434 
   4435 		rxidx = cur_rx->bge_idx;
   4436 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4437 
   4438 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4439 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4440 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4441 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4442 			jumbocnt++;
   4443 			bus_dmamap_sync(sc->bge_dmatag,
   4444 			    sc->bge_cdata.bge_rx_jumbo_map,
   4445 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4446 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4447 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4448 				if_statinc(ifp, if_ierrors);
   4449 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4450 				continue;
   4451 			}
   4452 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4453 					     NULL) == ENOBUFS) {
   4454 				if_statinc(ifp, if_ierrors);
   4455 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4456 				continue;
   4457 			}
   4458 		} else {
   4459 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   4460 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4461 
   4462 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4463 			stdcnt++;
   4464 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4465 			sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
   4466 			if (dmamap == NULL) {
   4467 				if_statinc(ifp, if_ierrors);
   4468 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4469 				continue;
   4470 			}
   4471 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4472 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4473 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4474 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4475 				if_statinc(ifp, if_ierrors);
   4476 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4477 				continue;
   4478 			}
   4479 			if (bge_newbuf_std(sc, sc->bge_std,
   4480 			    NULL, dmamap) == ENOBUFS) {
   4481 				if_statinc(ifp, if_ierrors);
   4482 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4483 				continue;
   4484 			}
   4485 		}
   4486 
   4487 #ifndef __NO_STRICT_ALIGNMENT
   4488 		/*
   4489 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4490 		 * the Rx buffer has the layer-2 header unaligned.
   4491 		 * If our CPU requires alignment, re-align by copying.
   4492 		 */
   4493 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
   4494 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4495 				cur_rx->bge_len);
   4496 			m->m_data += ETHER_ALIGN;
   4497 		}
   4498 #endif
   4499 
   4500 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4501 		m_set_rcvif(m, ifp);
   4502 
   4503 		bge_rxcsum(sc, cur_rx, m);
   4504 
   4505 		/*
   4506 		 * If we received a packet with a vlan tag, pass it
   4507 		 * to vlan_input() instead of ether_input().
   4508 		 */
   4509 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   4510 			vlan_set_tag(m, cur_rx->bge_vlan_tag);
   4511 
   4512 		if_percpuq_enqueue(ifp->if_percpuq, m);
   4513 	}
   4514 
   4515 	sc->bge_rx_saved_considx = rx_cons;
   4516 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4517 	if (stdcnt)
   4518 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   4519 	if (jumbocnt)
   4520 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4521 }
   4522 
   4523 static void
   4524 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4525 {
   4526 
   4527 	if (BGE_IS_57765_PLUS(sc)) {
   4528 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4529 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4530 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4531 			if ((cur_rx->bge_error_flag &
   4532 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4533 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4534 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4535 				m->m_pkthdr.csum_data =
   4536 				    cur_rx->bge_tcp_udp_csum;
   4537 				m->m_pkthdr.csum_flags |=
   4538 				    (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
   4539 			}
   4540 		}
   4541 	} else {
   4542 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4543 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4544 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4545 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4546 		/*
   4547 		 * Rx transport checksum-offload may also
   4548 		 * have bugs with packets which, when transmitted,
   4549 		 * were `runts' requiring padding.
   4550 		 */
   4551 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4552 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4553 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4554 			m->m_pkthdr.csum_data =
   4555 			    cur_rx->bge_tcp_udp_csum;
   4556 			m->m_pkthdr.csum_flags |=
   4557 			    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
   4558 		}
   4559 	}
   4560 }
   4561 
   4562 static void
   4563 bge_txeof(struct bge_softc *sc)
   4564 {
   4565 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4566 	struct bge_tx_bd *cur_tx = NULL;
   4567 	struct txdmamap_pool_entry *dma;
   4568 	bus_addr_t offset, toff;
   4569 	bus_size_t tlen;
   4570 	int tosync;
   4571 	struct mbuf *m;
   4572 
   4573 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4574 	    offsetof(struct bge_ring_data, bge_status_block),
   4575 	    sizeof(struct bge_status_block),
   4576 	    BUS_DMASYNC_POSTREAD);
   4577 
   4578 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4579 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   4580 	    sc->bge_tx_saved_considx;
   4581 
   4582 	if (tosync != 0)
   4583 		rnd_add_uint32(&sc->rnd_source, tosync);
   4584 
   4585 	toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
   4586 
   4587 	if (tosync < 0) {
   4588 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4589 		    sizeof(struct bge_tx_bd);
   4590 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4591 		    toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4592 		tosync = -tosync;
   4593 	}
   4594 
   4595 	if (tosync != 0) {
   4596 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4597 		    offset, tosync * sizeof(struct bge_tx_bd),
   4598 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4599 	}
   4600 
   4601 	/*
   4602 	 * Go through our tx ring and free mbufs for those
   4603 	 * frames that have been sent.
   4604 	 */
   4605 	while (sc->bge_tx_saved_considx !=
   4606 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   4607 		uint32_t idx = sc->bge_tx_saved_considx;
   4608 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4609 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4610 			if_statinc(ifp, if_opackets);
   4611 		m = sc->bge_cdata.bge_tx_chain[idx];
   4612 		if (m != NULL) {
   4613 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4614 			dma = sc->txdma[idx];
   4615 			if (dma->is_dma32) {
   4616 				bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
   4617 				    0, dma->dmamap32->dm_mapsize,
   4618 				    BUS_DMASYNC_POSTWRITE);
   4619 				bus_dmamap_unload(
   4620 				    sc->bge_dmatag32, dma->dmamap32);
   4621 			} else {
   4622 				bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
   4623 				    0, dma->dmamap->dm_mapsize,
   4624 				    BUS_DMASYNC_POSTWRITE);
   4625 				bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4626 			}
   4627 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4628 			sc->txdma[idx] = NULL;
   4629 
   4630 			m_freem(m);
   4631 		}
   4632 		sc->bge_txcnt--;
   4633 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4634 		ifp->if_timer = 0;
   4635 	}
   4636 
   4637 	if (cur_tx != NULL)
   4638 		ifp->if_flags &= ~IFF_OACTIVE;
   4639 }
   4640 
   4641 static int
   4642 bge_intr(void *xsc)
   4643 {
   4644 	struct bge_softc * const sc = xsc;
   4645 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4646 	uint32_t pcistate, statusword, statustag;
   4647 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4648 
   4649 
   4650 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4651 	if (BGE_IS_5717_PLUS(sc))
   4652 		intrmask = 0;
   4653 
   4654 	/*
   4655 	 * It is possible for the interrupt to arrive before
   4656 	 * the status block is updated prior to the interrupt.
   4657 	 * Reading the PCI State register will confirm whether the
   4658 	 * interrupt is ours and will flush the status block.
   4659 	 */
   4660 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
   4661 
   4662 	/* read status word from status block */
   4663 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4664 	    offsetof(struct bge_ring_data, bge_status_block),
   4665 	    sizeof(struct bge_status_block),
   4666 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4667 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4668 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
   4669 
   4670 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
   4671 		if (sc->bge_lasttag == statustag &&
   4672 		    (~pcistate & intrmask)) {
   4673 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
   4674 			return 0;
   4675 		}
   4676 		sc->bge_lasttag = statustag;
   4677 	} else {
   4678 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
   4679 		    !(~pcistate & intrmask)) {
   4680 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
   4681 			return 0;
   4682 		}
   4683 		statustag = 0;
   4684 	}
   4685 	/* Ack interrupt and stop others from occurring. */
   4686 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4687 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   4688 
   4689 	/* clear status word */
   4690 	sc->bge_rdata->bge_status_block.bge_status = 0;
   4691 
   4692 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4693 	    offsetof(struct bge_ring_data, bge_status_block),
   4694 	    sizeof(struct bge_status_block),
   4695 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4696 
   4697 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4698 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4699 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4700 		bge_link_upd(sc);
   4701 
   4702 	if (ifp->if_flags & IFF_RUNNING) {
   4703 		/* Check RX return ring producer/consumer */
   4704 		bge_rxeof(sc);
   4705 
   4706 		/* Check TX ring producer/consumer */
   4707 		bge_txeof(sc);
   4708 	}
   4709 
   4710 	if (sc->bge_pending_rxintr_change) {
   4711 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4712 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4713 
   4714 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4715 		DELAY(10);
   4716 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4717 
   4718 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4719 		DELAY(10);
   4720 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4721 
   4722 		sc->bge_pending_rxintr_change = 0;
   4723 	}
   4724 	bge_handle_events(sc);
   4725 
   4726 	/* Re-enable interrupts. */
   4727 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
   4728 
   4729 	if (ifp->if_flags & IFF_RUNNING)
   4730 		if_schedule_deferred_start(ifp);
   4731 
   4732 	return 1;
   4733 }
   4734 
   4735 static void
   4736 bge_asf_driver_up(struct bge_softc *sc)
   4737 {
   4738 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4739 		/* Send ASF heartbeat aprox. every 2s */
   4740 		if (sc->bge_asf_count)
   4741 			sc->bge_asf_count --;
   4742 		else {
   4743 			sc->bge_asf_count = 2;
   4744 
   4745 			bge_wait_for_event_ack(sc);
   4746 
   4747 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4748 			    BGE_FW_CMD_DRV_ALIVE3);
   4749 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4750 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4751 			    BGE_FW_HB_TIMEOUT_SEC);
   4752 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4753 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4754 			    BGE_RX_CPU_DRV_EVENT);
   4755 		}
   4756 	}
   4757 }
   4758 
   4759 static void
   4760 bge_tick(void *xsc)
   4761 {
   4762 	struct bge_softc * const sc = xsc;
   4763 	struct mii_data * const mii = &sc->bge_mii;
   4764 	int s;
   4765 
   4766 	s = splnet();
   4767 
   4768 	if (BGE_IS_5705_PLUS(sc))
   4769 		bge_stats_update_regs(sc);
   4770 	else
   4771 		bge_stats_update(sc);
   4772 
   4773 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4774 		/*
   4775 		 * Since in TBI mode auto-polling can't be used we should poll
   4776 		 * link status manually. Here we register pending link event
   4777 		 * and trigger interrupt.
   4778 		 */
   4779 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4780 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4781 	} else {
   4782 		/*
   4783 		 * Do not touch PHY if we have link up. This could break
   4784 		 * IPMI/ASF mode or produce extra input errors.
   4785 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4786 		 */
   4787 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4788 			mii_tick(mii);
   4789 	}
   4790 
   4791 	bge_asf_driver_up(sc);
   4792 
   4793 	if (!sc->bge_detaching)
   4794 		callout_schedule(&sc->bge_timeout, hz);
   4795 
   4796 	splx(s);
   4797 }
   4798 
   4799 static void
   4800 bge_stats_update_regs(struct bge_softc *sc)
   4801 {
   4802 	struct ifnet *const ifp = &sc->ethercom.ec_if;
   4803 
   4804 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4805 
   4806 	if_statadd_ref(nsr, if_collisions,
   4807 	    CSR_READ_4(sc, BGE_MAC_STATS +
   4808 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
   4809 
   4810 	/*
   4811 	 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
   4812 	 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
   4813 	 * (silicon bug). There's no reliable workaround so just
   4814 	 * ignore the counter
   4815 	 */
   4816 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   4817 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
   4818 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
   4819 		if_statadd_ref(nsr, if_ierrors,
   4820 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
   4821 	}
   4822 	if_statadd_ref(nsr, if_ierrors,
   4823 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
   4824 	if_statadd_ref(nsr, if_ierrors,
   4825 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
   4826 
   4827 	IF_STAT_PUTREF(ifp);
   4828 
   4829 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   4830 		uint32_t val, ucast, mcast, bcast;
   4831 
   4832 		ucast = CSR_READ_4(sc, BGE_MAC_STATS +
   4833 		    offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
   4834 		mcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4835 		    offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
   4836 		bcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4837 		    offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
   4838 
   4839 		/*
   4840 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
   4841 		 * frames, it's safe to disable workaround for DMA engine's
   4842 		 * miscalculation of TXMBUF space.
   4843 		 */
   4844 		if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
   4845 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   4846 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   4847 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
   4848 			else
   4849 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
   4850 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   4851 			sc->bge_flags &= ~BGEF_RDMA_BUG;
   4852 		}
   4853 	}
   4854 }
   4855 
   4856 static void
   4857 bge_stats_update(struct bge_softc *sc)
   4858 {
   4859 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4860 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4861 
   4862 #define READ_STAT(sc, stats, stat) \
   4863 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4864 
   4865 	uint64_t collisions =
   4866 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4867 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4868 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4869 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
   4870 
   4871 	if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
   4872 	sc->bge_if_collisions = collisions;
   4873 
   4874 
   4875 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4876 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4877 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4878 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4879 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4880 		      READ_STAT(sc, stats,
   4881 				xoffPauseFramesReceived.bge_addr_lo));
   4882 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4883 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4884 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4885 		      READ_STAT(sc, stats,
   4886 				macControlFramesReceived.bge_addr_lo));
   4887 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4888 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4889 
   4890 #undef READ_STAT
   4891 
   4892 #ifdef notdef
   4893 	ifp->if_collisions +=
   4894 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   4895 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   4896 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   4897 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   4898 	   ifp->if_collisions;
   4899 #endif
   4900 }
   4901 
   4902 /*
   4903  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4904  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4905  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4906  * the hardware checksum assist gives incorrect results (possibly
   4907  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4908  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4909  */
   4910 static inline int
   4911 bge_cksum_pad(struct mbuf *pkt)
   4912 {
   4913 	struct mbuf *last = NULL;
   4914 	int padlen;
   4915 
   4916 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4917 
   4918 	/* if there's only the packet-header and we can pad there, use it. */
   4919 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4920 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4921 		last = pkt;
   4922 	} else {
   4923 		/*
   4924 		 * Walk packet chain to find last mbuf. We will either
   4925 		 * pad there, or append a new mbuf and pad it
   4926 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4927 		 */
   4928 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4929 			continue; /* do nothing */
   4930 		}
   4931 
   4932 		/* `last' now points to last in chain. */
   4933 		if (M_TRAILINGSPACE(last) < padlen) {
   4934 			/* Allocate new empty mbuf, pad it. Compact later. */
   4935 			struct mbuf *n;
   4936 			MGET(n, M_DONTWAIT, MT_DATA);
   4937 			if (n == NULL)
   4938 				return ENOBUFS;
   4939 			n->m_len = 0;
   4940 			last->m_next = n;
   4941 			last = n;
   4942 		}
   4943 	}
   4944 
   4945 	KDASSERT(!M_READONLY(last));
   4946 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4947 
   4948 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4949 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4950 	last->m_len += padlen;
   4951 	pkt->m_pkthdr.len += padlen;
   4952 	return 0;
   4953 }
   4954 
   4955 /*
   4956  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   4957  */
   4958 static inline int
   4959 bge_compact_dma_runt(struct mbuf *pkt)
   4960 {
   4961 	struct mbuf	*m, *prev;
   4962 	int		totlen;
   4963 
   4964 	prev = NULL;
   4965 	totlen = 0;
   4966 
   4967 	for (m = pkt; m != NULL; prev = m, m = m->m_next) {
   4968 		int mlen = m->m_len;
   4969 		int shortfall = 8 - mlen ;
   4970 
   4971 		totlen += mlen;
   4972 		if (mlen == 0)
   4973 			continue;
   4974 		if (mlen >= 8)
   4975 			continue;
   4976 
   4977 		/*
   4978 		 * If we get here, mbuf data is too small for DMA engine.
   4979 		 * Try to fix by shuffling data to prev or next in chain.
   4980 		 * If that fails, do a compacting deep-copy of the whole chain.
   4981 		 */
   4982 
   4983 		/* Internal frag. If fits in prev, copy it there. */
   4984 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   4985 			memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   4986 			prev->m_len += mlen;
   4987 			m->m_len = 0;
   4988 			/* XXX stitch chain */
   4989 			prev->m_next = m_free(m);
   4990 			m = prev;
   4991 			continue;
   4992 		} else if (m->m_next != NULL &&
   4993 			    M_TRAILINGSPACE(m) >= shortfall &&
   4994 			    m->m_next->m_len >= (8 + shortfall)) {
   4995 		    /* m is writable and have enough data in next, pull up. */
   4996 
   4997 			memcpy(m->m_data + m->m_len, m->m_next->m_data,
   4998 			    shortfall);
   4999 			m->m_len += shortfall;
   5000 			m->m_next->m_len -= shortfall;
   5001 			m->m_next->m_data += shortfall;
   5002 		} else if (m->m_next == NULL || 1) {
   5003 			/*
   5004 			 * Got a runt at the very end of the packet.
   5005 			 * borrow data from the tail of the preceding mbuf and
   5006 			 * update its length in-place. (The original data is
   5007 			 * still valid, so we can do this even if prev is not
   5008 			 * writable.)
   5009 			 */
   5010 
   5011 			/*
   5012 			 * If we'd make prev a runt, just move all of its data.
   5013 			 */
   5014 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   5015 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   5016 
   5017 			if ((prev->m_len - shortfall) < 8)
   5018 				shortfall = prev->m_len;
   5019 
   5020 #ifdef notyet	/* just do the safe slow thing for now */
   5021 			if (!M_READONLY(m)) {
   5022 				if (M_LEADINGSPACE(m) < shorfall) {
   5023 					void *m_dat;
   5024 					m_dat = M_BUFADDR(m);
   5025 					memmove(m_dat, mtod(m, void*),
   5026 					    m->m_len);
   5027 					m->m_data = m_dat;
   5028 				}
   5029 			} else
   5030 #endif	/* just do the safe slow thing */
   5031 			{
   5032 				struct mbuf * n = NULL;
   5033 				int newprevlen = prev->m_len - shortfall;
   5034 
   5035 				MGET(n, M_NOWAIT, MT_DATA);
   5036 				if (n == NULL)
   5037 				   return ENOBUFS;
   5038 				KASSERT(m->m_len + shortfall < MLEN
   5039 					/*,
   5040 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   5041 
   5042 				/* first copy the data we're stealing from prev */
   5043 				memcpy(n->m_data, prev->m_data + newprevlen,
   5044 				    shortfall);
   5045 
   5046 				/* update prev->m_len accordingly */
   5047 				prev->m_len -= shortfall;
   5048 
   5049 				/* copy data from runt m */
   5050 				memcpy(n->m_data + shortfall, m->m_data,
   5051 				    m->m_len);
   5052 
   5053 				/* n holds what we stole from prev, plus m */
   5054 				n->m_len = shortfall + m->m_len;
   5055 
   5056 				/* stitch n into chain and free m */
   5057 				n->m_next = m->m_next;
   5058 				prev->m_next = n;
   5059 				/* KASSERT(m->m_next == NULL); */
   5060 				m->m_next = NULL;
   5061 				m_free(m);
   5062 				m = n;	/* for continuing loop */
   5063 			}
   5064 		}
   5065 	}
   5066 	return 0;
   5067 }
   5068 
   5069 /*
   5070  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   5071  * pointers to descriptors.
   5072  */
   5073 static int
   5074 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   5075 {
   5076 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   5077 	struct bge_tx_bd	*f, *prev_f;
   5078 	uint32_t		frag, cur;
   5079 	uint16_t		csum_flags = 0;
   5080 	uint16_t		txbd_tso_flags = 0;
   5081 	struct txdmamap_pool_entry *dma;
   5082 	bus_dmamap_t dmamap;
   5083 	bus_dma_tag_t dmatag;
   5084 	int			i = 0;
   5085 	int			use_tso, maxsegsize, error;
   5086 	bool			have_vtag;
   5087 	uint16_t		vtag;
   5088 	bool			remap;
   5089 
   5090 	if (m_head->m_pkthdr.csum_flags) {
   5091 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5092 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   5093 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
   5094 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   5095 	}
   5096 
   5097 	/*
   5098 	 * If we were asked to do an outboard checksum, and the NIC
   5099 	 * has the bug where it sometimes adds in the Ethernet padding,
   5100 	 * explicitly pad with zeros so the cksum will be correct either way.
   5101 	 * (For now, do this for all chip versions, until newer
   5102 	 * are confirmed to not require the workaround.)
   5103 	 */
   5104 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   5105 #ifdef notyet
   5106 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   5107 #endif
   5108 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   5109 		goto check_dma_bug;
   5110 
   5111 	if (bge_cksum_pad(m_head) != 0)
   5112 		return ENOBUFS;
   5113 
   5114 check_dma_bug:
   5115 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   5116 		goto doit;
   5117 
   5118 	/*
   5119 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   5120 	 * less than eight bytes.  If we encounter a teeny mbuf
   5121 	 * at the end of a chain, we can pad.  Otherwise, copy.
   5122 	 */
   5123 	if (bge_compact_dma_runt(m_head) != 0)
   5124 		return ENOBUFS;
   5125 
   5126 doit:
   5127 	dma = SLIST_FIRST(&sc->txdma_list);
   5128 	if (dma == NULL) {
   5129 		ifp->if_flags |= IFF_OACTIVE;
   5130 		return ENOBUFS;
   5131 	}
   5132 	dmamap = dma->dmamap;
   5133 	dmatag = sc->bge_dmatag;
   5134 	dma->is_dma32 = false;
   5135 
   5136 	/*
   5137 	 * Set up any necessary TSO state before we start packing...
   5138 	 */
   5139 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   5140 	if (!use_tso) {
   5141 		maxsegsize = 0;
   5142 	} else {	/* TSO setup */
   5143 		unsigned  mss;
   5144 		struct ether_header *eh;
   5145 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   5146 		unsigned bge_hlen;
   5147 		struct mbuf * m0 = m_head;
   5148 		struct ip *ip;
   5149 		struct tcphdr *th;
   5150 		int iphl, hlen;
   5151 
   5152 		/*
   5153 		 * XXX It would be nice if the mbuf pkthdr had offset
   5154 		 * fields for the protocol headers.
   5155 		 */
   5156 
   5157 		eh = mtod(m0, struct ether_header *);
   5158 		switch (htons(eh->ether_type)) {
   5159 		case ETHERTYPE_IP:
   5160 			offset = ETHER_HDR_LEN;
   5161 			break;
   5162 
   5163 		case ETHERTYPE_VLAN:
   5164 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   5165 			break;
   5166 
   5167 		default:
   5168 			/*
   5169 			 * Don't support this protocol or encapsulation.
   5170 			 */
   5171 			return ENOBUFS;
   5172 		}
   5173 
   5174 		/*
   5175 		 * TCP/IP headers are in the first mbuf; we can do
   5176 		 * this the easy way.
   5177 		 */
   5178 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   5179 		hlen = iphl + offset;
   5180 		if (__predict_false(m0->m_len <
   5181 				    (hlen + sizeof(struct tcphdr)))) {
   5182 
   5183 			aprint_error_dev(sc->bge_dev,
   5184 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   5185 			    "not handled yet\n",
   5186 			    m0->m_len, hlen+ sizeof(struct tcphdr));
   5187 #ifdef NOTYET
   5188 			/*
   5189 			 * XXX jonathan (at) NetBSD.org: untested.
   5190 			 * how to force this branch to be taken?
   5191 			 */
   5192 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
   5193 
   5194 			m_copydata(m0, offset, sizeof(ip), &ip);
   5195 			m_copydata(m0, hlen, sizeof(th), &th);
   5196 
   5197 			ip.ip_len = 0;
   5198 
   5199 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   5200 			    sizeof(ip.ip_len), &ip.ip_len);
   5201 
   5202 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   5203 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   5204 
   5205 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   5206 			    sizeof(th.th_sum), &th.th_sum);
   5207 
   5208 			hlen += th.th_off << 2;
   5209 			iptcp_opt_words	= hlen;
   5210 #else
   5211 			/*
   5212 			 * if_wm "hard" case not yet supported, can we not
   5213 			 * mandate it out of existence?
   5214 			 */
   5215 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5216 
   5217 			return ENOBUFS;
   5218 #endif
   5219 		} else {
   5220 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5221 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5222 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5223 
   5224 			/* Total IP/TCP options, in 32-bit words */
   5225 			iptcp_opt_words = (ip_tcp_hlen
   5226 					   - sizeof(struct tcphdr)
   5227 					   - sizeof(struct ip)) >> 2;
   5228 		}
   5229 		if (BGE_IS_575X_PLUS(sc)) {
   5230 			th->th_sum = 0;
   5231 			csum_flags = 0;
   5232 		} else {
   5233 			/*
   5234 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5235 			 * Requires TSO firmware patch for 5701/5703/5704.
   5236 			 */
   5237 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5238 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5239 		}
   5240 
   5241 		mss = m_head->m_pkthdr.segsz;
   5242 		txbd_tso_flags |=
   5243 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5244 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5245 
   5246 		/*
   5247 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5248 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5249 		 * the NIC copies 40 bytes of IP/TCP header from the
   5250 		 * supplied header into the IP/TCP header portion of
   5251 		 * each post-TSO-segment. If the supplied packet has IP or
   5252 		 * TCP options, we need to tell the NIC to copy those extra
   5253 		 * bytes into each  post-TSO header, in addition to the normal
   5254 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5255 		 * Unfortunately, the driver encoding of option length
   5256 		 * varies across different ASIC families.
   5257 		 */
   5258 		tcp_seg_flags = 0;
   5259 		bge_hlen = ip_tcp_hlen >> 2;
   5260 		if (BGE_IS_5717_PLUS(sc)) {
   5261 			tcp_seg_flags = (bge_hlen & 0x3) << 14;
   5262 			txbd_tso_flags |=
   5263 			    ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
   5264 		} else if (BGE_IS_5705_PLUS(sc)) {
   5265 			tcp_seg_flags = bge_hlen << 11;
   5266 		} else {
   5267 			/* XXX iptcp_opt_words or bge_hlen ? */
   5268 			txbd_tso_flags |= iptcp_opt_words << 12;
   5269 		}
   5270 		maxsegsize = mss | tcp_seg_flags;
   5271 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5272 		ip->ip_sum = 0;
   5273 
   5274 	}	/* TSO setup */
   5275 
   5276 	have_vtag = vlan_has_tag(m_head);
   5277 	if (have_vtag)
   5278 		vtag = vlan_get_tag(m_head);
   5279 
   5280 	/*
   5281 	 * Start packing the mbufs in this chain into
   5282 	 * the fragment pointers. Stop when we run out
   5283 	 * of fragments or hit the end of the mbuf chain.
   5284 	 */
   5285 	remap = true;
   5286 load_again:
   5287 	error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
   5288 	if (__predict_false(error)) {
   5289 		if (error == EFBIG && remap) {
   5290 			struct mbuf *m;
   5291 			remap = false;
   5292 			m = m_defrag(m_head, M_NOWAIT);
   5293 			if (m != NULL) {
   5294 				KASSERT(m == m_head);
   5295 				goto load_again;
   5296 			}
   5297 		}
   5298 		return error;
   5299 	}
   5300 	/*
   5301 	 * Sanity check: avoid coming within 16 descriptors
   5302 	 * of the end of the ring.
   5303 	 */
   5304 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5305 		BGE_TSO_PRINTF(("%s: "
   5306 		    " dmamap_load_mbuf too close to ring wrap\n",
   5307 		    device_xname(sc->bge_dev)));
   5308 		goto fail_unload;
   5309 	}
   5310 
   5311 	/* Iterate over dmap-map fragments. */
   5312 	f = prev_f = NULL;
   5313 	cur = frag = *txidx;
   5314 
   5315 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5316 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5317 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5318 			break;
   5319 
   5320 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5321 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5322 		if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
   5323 		    (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
   5324 		    ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
   5325 		    (prev_f != NULL &&
   5326 		     prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
   5327 		   ) {
   5328 			/*
   5329 			 * watchdog timeout issue was observed with TSO,
   5330 			 * limiting DMA address space to 32bits seems to
   5331 			 * address the issue.
   5332 			 */
   5333 			bus_dmamap_unload(dmatag, dmamap);
   5334 			dmatag = sc->bge_dmatag32;
   5335 			dmamap = dma->dmamap32;
   5336 			dma->is_dma32 = true;
   5337 			remap = true;
   5338 			goto load_again;
   5339 		}
   5340 
   5341 		/*
   5342 		 * For 5751 and follow-ons, for TSO we must turn
   5343 		 * off checksum-assist flag in the tx-descr, and
   5344 		 * supply the ASIC-revision-specific encoding
   5345 		 * of TSO flags and segsize.
   5346 		 */
   5347 		if (use_tso) {
   5348 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5349 				f->bge_rsvd = maxsegsize;
   5350 				f->bge_flags = csum_flags | txbd_tso_flags;
   5351 			} else {
   5352 				f->bge_rsvd = 0;
   5353 				f->bge_flags =
   5354 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5355 			}
   5356 		} else {
   5357 			f->bge_rsvd = 0;
   5358 			f->bge_flags = csum_flags;
   5359 		}
   5360 
   5361 		if (have_vtag) {
   5362 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5363 			f->bge_vlan_tag = vtag;
   5364 		} else {
   5365 			f->bge_vlan_tag = 0;
   5366 		}
   5367 		prev_f = f;
   5368 		cur = frag;
   5369 		BGE_INC(frag, BGE_TX_RING_CNT);
   5370 	}
   5371 
   5372 	if (i < dmamap->dm_nsegs) {
   5373 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5374 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5375 		goto fail_unload;
   5376 	}
   5377 
   5378 	bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
   5379 	    BUS_DMASYNC_PREWRITE);
   5380 
   5381 	if (frag == sc->bge_tx_saved_considx) {
   5382 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5383 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5384 
   5385 		goto fail_unload;
   5386 	}
   5387 
   5388 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5389 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5390 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5391 	sc->txdma[cur] = dma;
   5392 	sc->bge_txcnt += dmamap->dm_nsegs;
   5393 
   5394 	*txidx = frag;
   5395 
   5396 	return 0;
   5397 
   5398 fail_unload:
   5399 	bus_dmamap_unload(dmatag, dmamap);
   5400 	ifp->if_flags |= IFF_OACTIVE;
   5401 
   5402 	return ENOBUFS;
   5403 }
   5404 
   5405 /*
   5406  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5407  * to the mbuf data regions directly in the transmit descriptors.
   5408  */
   5409 static void
   5410 bge_start(struct ifnet *ifp)
   5411 {
   5412 	struct bge_softc * const sc = ifp->if_softc;
   5413 	struct mbuf *m_head = NULL;
   5414 	struct mbuf *m;
   5415 	uint32_t prodidx;
   5416 	int pkts = 0;
   5417 	int error;
   5418 
   5419 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   5420 		return;
   5421 
   5422 	prodidx = sc->bge_tx_prodidx;
   5423 
   5424 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5425 		IFQ_POLL(&ifp->if_snd, m_head);
   5426 		if (m_head == NULL)
   5427 			break;
   5428 
   5429 #if 0
   5430 		/*
   5431 		 * XXX
   5432 		 * safety overkill.  If this is a fragmented packet chain
   5433 		 * with delayed TCP/UDP checksums, then only encapsulate
   5434 		 * it if we have enough descriptors to handle the entire
   5435 		 * chain at once.
   5436 		 * (paranoia -- may not actually be needed)
   5437 		 */
   5438 		if (m_head->m_flags & M_FIRSTFRAG &&
   5439 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5440 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5441 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5442 				ifp->if_flags |= IFF_OACTIVE;
   5443 				break;
   5444 			}
   5445 		}
   5446 #endif
   5447 
   5448 		/*
   5449 		 * Pack the data into the transmit ring. If we
   5450 		 * don't have room, set the OACTIVE flag and wait
   5451 		 * for the NIC to drain the ring.
   5452 		 */
   5453 		error = bge_encap(sc, m_head, &prodidx);
   5454 		if (__predict_false(error)) {
   5455 			if (ifp->if_flags & IFF_OACTIVE) {
   5456 				/* just wait for the transmit ring to drain */
   5457 				break;
   5458 			}
   5459 			IFQ_DEQUEUE(&ifp->if_snd, m);
   5460 			KASSERT(m == m_head);
   5461 			m_freem(m_head);
   5462 			continue;
   5463 		}
   5464 
   5465 		/* now we are committed to transmit the packet */
   5466 		IFQ_DEQUEUE(&ifp->if_snd, m);
   5467 		KASSERT(m == m_head);
   5468 		pkts++;
   5469 
   5470 		/*
   5471 		 * If there's a BPF listener, bounce a copy of this frame
   5472 		 * to him.
   5473 		 */
   5474 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5475 	}
   5476 	if (pkts == 0)
   5477 		return;
   5478 
   5479 	/* Transmit */
   5480 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5481 	/* 5700 b2 errata */
   5482 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5483 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5484 
   5485 	sc->bge_tx_prodidx = prodidx;
   5486 
   5487 	/*
   5488 	 * Set a timeout in case the chip goes out to lunch.
   5489 	 */
   5490 	ifp->if_timer = 5;
   5491 }
   5492 
   5493 static int
   5494 bge_init(struct ifnet *ifp)
   5495 {
   5496 	struct bge_softc * const sc = ifp->if_softc;
   5497 	const uint16_t *m;
   5498 	uint32_t mode, reg;
   5499 	int s, error = 0;
   5500 
   5501 	s = splnet();
   5502 
   5503 	KASSERT(ifp == &sc->ethercom.ec_if);
   5504 
   5505 	/* Cancel pending I/O and flush buffers. */
   5506 	bge_stop(ifp, 0);
   5507 
   5508 	bge_stop_fw(sc);
   5509 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5510 	bge_reset(sc);
   5511 	bge_sig_legacy(sc, BGE_RESET_START);
   5512 
   5513 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5514 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5515 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
   5516 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
   5517 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5518 
   5519 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   5520 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
   5521 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   5522 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   5523 
   5524 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
   5525 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
   5526 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
   5527 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
   5528 
   5529 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
   5530 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
   5531 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
   5532 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
   5533 	}
   5534 
   5535 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   5536 		pcireg_t aercap;
   5537 
   5538 		reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
   5539 		reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
   5540 		    | BGE_PCIE_PWRMNG_L1THRESH_4MS
   5541 		    | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
   5542 		CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
   5543 
   5544 		reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
   5545 		reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
   5546 		    | BGE_PCIE_EIDLE_DELAY_13CLK;
   5547 		CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
   5548 
   5549 		/* Clear correctable error */
   5550 		if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
   5551 		    PCI_EXTCAP_AER, &aercap, NULL) != 0)
   5552 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   5553 			    aercap + PCI_AER_COR_STATUS, 0xffffffff);
   5554 
   5555 		reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   5556 		reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   5557 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   5558 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
   5559 	}
   5560 
   5561 	bge_sig_post_reset(sc, BGE_RESET_START);
   5562 
   5563 	bge_chipinit(sc);
   5564 
   5565 	/*
   5566 	 * Init the various state machines, ring
   5567 	 * control blocks and firmware.
   5568 	 */
   5569 	error = bge_blockinit(sc);
   5570 	if (error != 0) {
   5571 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5572 		    error);
   5573 		splx(s);
   5574 		return error;
   5575 	}
   5576 
   5577 	/* 5718 step 25, 57XX step 54 */
   5578 	/* Specify MTU. */
   5579 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5580 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5581 
   5582 	/* 5718 step 23 */
   5583 	/* Load our MAC address. */
   5584 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5585 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5586 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
   5587 	    ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
   5588 
   5589 	/* Enable or disable promiscuous mode as needed. */
   5590 	if (ifp->if_flags & IFF_PROMISC)
   5591 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5592 	else
   5593 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5594 
   5595 	/* Program multicast filter. */
   5596 	bge_setmulti(sc);
   5597 
   5598 	/* Init RX ring. */
   5599 	bge_init_rx_ring_std(sc);
   5600 
   5601 	/*
   5602 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5603 	 * memory to insure that the chip has in fact read the first
   5604 	 * entry of the ring.
   5605 	 */
   5606 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5607 		uint32_t		v, i;
   5608 		for (i = 0; i < 10; i++) {
   5609 			DELAY(20);
   5610 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5611 			if (v == (MCLBYTES - ETHER_ALIGN))
   5612 				break;
   5613 		}
   5614 		if (i == 10)
   5615 			aprint_error_dev(sc->bge_dev,
   5616 			    "5705 A0 chip failed to load RX ring\n");
   5617 	}
   5618 
   5619 	/* Init jumbo RX ring. */
   5620 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5621 		bge_init_rx_ring_jumbo(sc);
   5622 
   5623 	/* Init our RX return ring index */
   5624 	sc->bge_rx_saved_considx = 0;
   5625 
   5626 	/* Init TX ring. */
   5627 	bge_init_tx_ring(sc);
   5628 
   5629 	/* 5718 step 63, 57XX step 94 */
   5630 	/* Enable TX MAC state machine lockup fix. */
   5631 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5632 	if (BGE_IS_5755_PLUS(sc) ||
   5633 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5634 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5635 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   5636 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   5637 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5638 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5639 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5640 	}
   5641 
   5642 	/* Turn on transmitter */
   5643 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5644 	/* 5718 step 64 */
   5645 	DELAY(100);
   5646 
   5647 	/* 5718 step 65, 57XX step 95 */
   5648 	/* Turn on receiver */
   5649 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5650 	if (BGE_IS_5755_PLUS(sc))
   5651 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5652 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   5653 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
   5654 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5655 	/* 5718 step 66 */
   5656 	DELAY(10);
   5657 
   5658 	/* 5718 step 12, 57XX step 37 */
   5659 	/*
   5660 	 * XXX Doucments of 5718 series and 577xx say the recommended value
   5661 	 * is 1, but tg3 set 1 only on 57765 series.
   5662 	 */
   5663 	if (BGE_IS_57765_PLUS(sc))
   5664 		reg = 1;
   5665 	else
   5666 		reg = 2;
   5667 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
   5668 
   5669 	/* Tell firmware we're alive. */
   5670 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5671 
   5672 	/* Enable host interrupts. */
   5673 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5674 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5675 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5676 
   5677 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5678 		goto out;
   5679 
   5680 	ifp->if_flags |= IFF_RUNNING;
   5681 	ifp->if_flags &= ~IFF_OACTIVE;
   5682 
   5683 	callout_schedule(&sc->bge_timeout, hz);
   5684 
   5685 out:
   5686 	sc->bge_if_flags = ifp->if_flags;
   5687 	splx(s);
   5688 
   5689 	return error;
   5690 }
   5691 
   5692 /*
   5693  * Set media options.
   5694  */
   5695 static int
   5696 bge_ifmedia_upd(struct ifnet *ifp)
   5697 {
   5698 	struct bge_softc * const sc = ifp->if_softc;
   5699 	struct mii_data * const mii = &sc->bge_mii;
   5700 	struct ifmedia * const ifm = &sc->bge_ifmedia;
   5701 	int rc;
   5702 
   5703 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5704 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5705 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5706 			return EINVAL;
   5707 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5708 		case IFM_AUTO:
   5709 			/*
   5710 			 * The BCM5704 ASIC appears to have a special
   5711 			 * mechanism for programming the autoneg
   5712 			 * advertisement registers in TBI mode.
   5713 			 */
   5714 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5715 				uint32_t sgdig;
   5716 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5717 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5718 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5719 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5720 					sgdig |= BGE_SGDIGCFG_AUTO |
   5721 					    BGE_SGDIGCFG_PAUSE_CAP |
   5722 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5723 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5724 					    sgdig | BGE_SGDIGCFG_SEND);
   5725 					DELAY(5);
   5726 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5727 					    sgdig);
   5728 				}
   5729 			}
   5730 			break;
   5731 		case IFM_1000_SX:
   5732 			if ((ifm->ifm_media & IFM_FDX) != 0) {
   5733 				BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   5734 				    BGE_MACMODE_HALF_DUPLEX);
   5735 			} else {
   5736 				BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
   5737 				    BGE_MACMODE_HALF_DUPLEX);
   5738 			}
   5739 			DELAY(40);
   5740 			break;
   5741 		default:
   5742 			return EINVAL;
   5743 		}
   5744 		/* XXX 802.3x flow control for 1000BASE-SX */
   5745 		return 0;
   5746 	}
   5747 
   5748 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
   5749 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
   5750 		uint32_t reg;
   5751 
   5752 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5753 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
   5754 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
   5755 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5756 		}
   5757 	}
   5758 
   5759 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5760 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5761 		return 0;
   5762 
   5763 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5764 		uint32_t reg;
   5765 
   5766 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
   5767 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
   5768 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
   5769 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
   5770 			delay(40);
   5771 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
   5772 		}
   5773 	}
   5774 
   5775 	/*
   5776 	 * Force an interrupt so that we will call bge_link_upd
   5777 	 * if needed and clear any pending link state attention.
   5778 	 * Without this we are not getting any further interrupts
   5779 	 * for link state changes and thus will not UP the link and
   5780 	 * not be able to send in bge_start. The only way to get
   5781 	 * things working was to receive a packet and get a RX intr.
   5782 	 */
   5783 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5784 	    sc->bge_flags & BGEF_IS_5788)
   5785 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5786 	else
   5787 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5788 
   5789 	return rc;
   5790 }
   5791 
   5792 /*
   5793  * Report current media status.
   5794  */
   5795 static void
   5796 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5797 {
   5798 	struct bge_softc * const sc = ifp->if_softc;
   5799 	struct mii_data * const mii = &sc->bge_mii;
   5800 
   5801 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5802 		ifmr->ifm_status = IFM_AVALID;
   5803 		ifmr->ifm_active = IFM_ETHER;
   5804 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5805 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5806 			ifmr->ifm_status |= IFM_ACTIVE;
   5807 		ifmr->ifm_active |= IFM_1000_SX;
   5808 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5809 			ifmr->ifm_active |= IFM_HDX;
   5810 		else
   5811 			ifmr->ifm_active |= IFM_FDX;
   5812 		return;
   5813 	}
   5814 
   5815 	mii_pollstat(mii);
   5816 	ifmr->ifm_status = mii->mii_media_status;
   5817 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5818 	    sc->bge_flowflags;
   5819 }
   5820 
   5821 static int
   5822 bge_ifflags_cb(struct ethercom *ec)
   5823 {
   5824 	struct ifnet * const ifp = &ec->ec_if;
   5825 	struct bge_softc * const sc = ifp->if_softc;
   5826 	u_short change = ifp->if_flags ^ sc->bge_if_flags;
   5827 
   5828 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
   5829 		return ENETRESET;
   5830 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   5831 		return 0;
   5832 
   5833 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   5834 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5835 	else
   5836 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5837 
   5838 	bge_setmulti(sc);
   5839 
   5840 	sc->bge_if_flags = ifp->if_flags;
   5841 	return 0;
   5842 }
   5843 
   5844 static int
   5845 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5846 {
   5847 	struct bge_softc * const sc = ifp->if_softc;
   5848 	struct ifreq * const ifr = (struct ifreq *) data;
   5849 	int s, error = 0;
   5850 	struct mii_data *mii;
   5851 
   5852 	s = splnet();
   5853 
   5854 	switch (command) {
   5855 	case SIOCSIFMEDIA:
   5856 		/* XXX Flow control is not supported for 1000BASE-SX */
   5857 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5858 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5859 			sc->bge_flowflags = 0;
   5860 		}
   5861 
   5862 		/* Flow control requires full-duplex mode. */
   5863 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5864 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5865 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5866 		}
   5867 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5868 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5869 				/* We can do both TXPAUSE and RXPAUSE. */
   5870 				ifr->ifr_media |=
   5871 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5872 			}
   5873 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5874 		}
   5875 
   5876 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5877 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5878 			    command);
   5879 		} else {
   5880 			mii = &sc->bge_mii;
   5881 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5882 			    command);
   5883 		}
   5884 		break;
   5885 	default:
   5886 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5887 			break;
   5888 
   5889 		error = 0;
   5890 
   5891 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   5892 			;
   5893 		else if (ifp->if_flags & IFF_RUNNING)
   5894 			bge_setmulti(sc);
   5895 		break;
   5896 	}
   5897 
   5898 	splx(s);
   5899 
   5900 	return error;
   5901 }
   5902 
   5903 static void
   5904 bge_watchdog(struct ifnet *ifp)
   5905 {
   5906 	struct bge_softc * const sc = ifp->if_softc;
   5907 	uint32_t status;
   5908 
   5909 	/* If pause frames are active then don't reset the hardware. */
   5910 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
   5911 		status = CSR_READ_4(sc, BGE_RX_STS);
   5912 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
   5913 			/*
   5914 			 * If link partner has us in XOFF state then wait for
   5915 			 * the condition to clear.
   5916 			 */
   5917 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   5918 			ifp->if_timer = 5;
   5919 			return;
   5920 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
   5921 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
   5922 			/*
   5923 			 * If link partner has us in XOFF state then wait for
   5924 			 * the condition to clear.
   5925 			 */
   5926 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   5927 			ifp->if_timer = 5;
   5928 			return;
   5929 		}
   5930 		/*
   5931 		 * Any other condition is unexpected and the controller
   5932 		 * should be reset.
   5933 		 */
   5934 	}
   5935 
   5936 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   5937 
   5938 	ifp->if_flags &= ~IFF_RUNNING;
   5939 	bge_init(ifp);
   5940 
   5941 	if_statinc(ifp, if_oerrors);
   5942 }
   5943 
   5944 static void
   5945 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   5946 {
   5947 	int i;
   5948 
   5949 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   5950 
   5951 	for (i = 0; i < 1000; i++) {
   5952 		delay(100);
   5953 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   5954 			return;
   5955 	}
   5956 
   5957 	/*
   5958 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   5959 	 * on some environment (and once after boot?)
   5960 	 */
   5961 	if (reg != BGE_SRS_MODE)
   5962 		aprint_error_dev(sc->bge_dev,
   5963 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   5964 		    (u_long)reg, bit);
   5965 }
   5966 
   5967 /*
   5968  * Stop the adapter and free any mbufs allocated to the
   5969  * RX and TX lists.
   5970  */
   5971 static void
   5972 bge_stop(struct ifnet *ifp, int disable)
   5973 {
   5974 	struct bge_softc * const sc = ifp->if_softc;
   5975 
   5976 	if (disable) {
   5977 		sc->bge_detaching = 1;
   5978 		callout_halt(&sc->bge_timeout, NULL);
   5979 	} else
   5980 		callout_stop(&sc->bge_timeout);
   5981 
   5982 	/* Disable host interrupts. */
   5983 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5984 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   5985 
   5986 	/*
   5987 	 * Tell firmware we're shutting down.
   5988 	 */
   5989 	bge_stop_fw(sc);
   5990 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   5991 
   5992 	/*
   5993 	 * Disable all of the receiver blocks.
   5994 	 */
   5995 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   5996 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   5997 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   5998 	if (BGE_IS_5700_FAMILY(sc))
   5999 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   6000 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   6001 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   6002 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   6003 
   6004 	/*
   6005 	 * Disable all of the transmit blocks.
   6006 	 */
   6007 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   6008 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   6009 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   6010 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   6011 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   6012 	if (BGE_IS_5700_FAMILY(sc))
   6013 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   6014 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   6015 
   6016 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   6017 	delay(40);
   6018 
   6019 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   6020 
   6021 	/*
   6022 	 * Shut down all of the memory managers and related
   6023 	 * state machines.
   6024 	 */
   6025 	/* 5718 step 5a,5b */
   6026 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   6027 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   6028 	if (BGE_IS_5700_FAMILY(sc))
   6029 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   6030 
   6031 	/* 5718 step 5c,5d */
   6032 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   6033 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   6034 
   6035 	if (BGE_IS_5700_FAMILY(sc)) {
   6036 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   6037 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   6038 	}
   6039 
   6040 	bge_reset(sc);
   6041 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   6042 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   6043 
   6044 	/*
   6045 	 * Keep the ASF firmware running if up.
   6046 	 */
   6047 	if (sc->bge_asf_mode & ASF_STACKUP)
   6048 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6049 	else
   6050 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6051 
   6052 	/* Free the RX lists. */
   6053 	bge_free_rx_ring_std(sc, disable);
   6054 
   6055 	/* Free jumbo RX list. */
   6056 	if (BGE_IS_JUMBO_CAPABLE(sc))
   6057 		bge_free_rx_ring_jumbo(sc);
   6058 
   6059 	/* Free TX buffers. */
   6060 	bge_free_tx_ring(sc, disable);
   6061 
   6062 	/*
   6063 	 * Isolate/power down the PHY.
   6064 	 */
   6065 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
   6066 		mii_down(&sc->bge_mii);
   6067 
   6068 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   6069 
   6070 	/* Clear MAC's link state (PHY may still have link UP). */
   6071 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6072 
   6073 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   6074 }
   6075 
   6076 static void
   6077 bge_link_upd(struct bge_softc *sc)
   6078 {
   6079 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   6080 	struct mii_data * const mii = &sc->bge_mii;
   6081 	uint32_t status;
   6082 	uint16_t phyval;
   6083 	int link;
   6084 
   6085 	/* Clear 'pending link event' flag */
   6086 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   6087 
   6088 	/*
   6089 	 * Process link state changes.
   6090 	 * Grrr. The link status word in the status block does
   6091 	 * not work correctly on the BCM5700 rev AX and BX chips,
   6092 	 * according to all available information. Hence, we have
   6093 	 * to enable MII interrupts in order to properly obtain
   6094 	 * async link changes. Unfortunately, this also means that
   6095 	 * we have to read the MAC status register to detect link
   6096 	 * changes, thereby adding an additional register access to
   6097 	 * the interrupt handler.
   6098 	 */
   6099 
   6100 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   6101 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6102 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   6103 			mii_pollstat(mii);
   6104 
   6105 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6106 			    mii->mii_media_status & IFM_ACTIVE &&
   6107 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6108 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6109 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6110 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6111 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6112 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6113 
   6114 			/* Clear the interrupt */
   6115 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   6116 			    BGE_EVTENB_MI_INTERRUPT);
   6117 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   6118 			    BRGPHY_MII_ISR, &phyval);
   6119 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   6120 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   6121 		}
   6122 		return;
   6123 	}
   6124 
   6125 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   6126 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6127 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   6128 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6129 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6130 				if (BGE_ASICREV(sc->bge_chipid)
   6131 				    == BGE_ASICREV_BCM5704) {
   6132 					BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   6133 					    BGE_MACMODE_TBI_SEND_CFGS);
   6134 					DELAY(40);
   6135 				}
   6136 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   6137 				if_link_state_change(ifp, LINK_STATE_UP);
   6138 			}
   6139 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6140 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6141 			if_link_state_change(ifp, LINK_STATE_DOWN);
   6142 		}
   6143 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   6144 		/*
   6145 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   6146 		 * bit in status word always set. Workaround this bug by
   6147 		 * reading PHY link status directly.
   6148 		 */
   6149 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   6150 		    BGE_STS_LINK : 0;
   6151 
   6152 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   6153 			mii_pollstat(mii);
   6154 
   6155 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6156 			    mii->mii_media_status & IFM_ACTIVE &&
   6157 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6158 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6159 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6160 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6161 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6162 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6163 		}
   6164 	} else {
   6165 		/*
   6166 		 * For controllers that call mii_tick, we have to poll
   6167 		 * link status.
   6168 		 */
   6169 		mii_pollstat(mii);
   6170 	}
   6171 
   6172 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   6173 		uint32_t reg, scale;
   6174 
   6175 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
   6176 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
   6177 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
   6178 			scale = 65;
   6179 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
   6180 			scale = 6;
   6181 		else
   6182 			scale = 12;
   6183 
   6184 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
   6185 		    ~BGE_MISCCFG_TIMER_PRESCALER;
   6186 		reg |= scale << 1;
   6187 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
   6188 	}
   6189 	/* Clear the attention */
   6190 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   6191 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   6192 	    BGE_MACSTAT_LINK_CHANGED);
   6193 }
   6194 
   6195 static int
   6196 bge_sysctl_verify(SYSCTLFN_ARGS)
   6197 {
   6198 	int error, t;
   6199 	struct sysctlnode node;
   6200 
   6201 	node = *rnode;
   6202 	t = *(int*)rnode->sysctl_data;
   6203 	node.sysctl_data = &t;
   6204 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   6205 	if (error || newp == NULL)
   6206 		return error;
   6207 
   6208 #if 0
   6209 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   6210 	    node.sysctl_num, rnode->sysctl_num));
   6211 #endif
   6212 
   6213 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   6214 		if (t < 0 || t >= NBGE_RX_THRESH)
   6215 			return EINVAL;
   6216 		bge_update_all_threshes(t);
   6217 	} else
   6218 		return EINVAL;
   6219 
   6220 	*(int*)rnode->sysctl_data = t;
   6221 
   6222 	return 0;
   6223 }
   6224 
   6225 /*
   6226  * Set up sysctl(3) MIB, hw.bge.*.
   6227  */
   6228 static void
   6229 bge_sysctl_init(struct bge_softc *sc)
   6230 {
   6231 	int rc, bge_root_num;
   6232 	const struct sysctlnode *node;
   6233 
   6234 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6235 	    0, CTLTYPE_NODE, "bge",
   6236 	    SYSCTL_DESCR("BGE interface controls"),
   6237 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   6238 		goto out;
   6239 	}
   6240 
   6241 	bge_root_num = node->sysctl_num;
   6242 
   6243 	/* BGE Rx interrupt mitigation level */
   6244 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6245 	    CTLFLAG_READWRITE,
   6246 	    CTLTYPE_INT, "rx_lvl",
   6247 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   6248 	    bge_sysctl_verify, 0,
   6249 	    &bge_rx_thresh_lvl,
   6250 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   6251 	    CTL_EOL)) != 0) {
   6252 		goto out;
   6253 	}
   6254 
   6255 	bge_rxthresh_nodenum = node->sysctl_num;
   6256 
   6257 	return;
   6258 
   6259 out:
   6260 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   6261 }
   6262 
   6263 #ifdef BGE_DEBUG
   6264 void
   6265 bge_debug_info(struct bge_softc *sc)
   6266 {
   6267 
   6268 	printf("Hardware Flags:\n");
   6269 	if (BGE_IS_57765_PLUS(sc))
   6270 		printf(" - 57765 Plus\n");
   6271 	if (BGE_IS_5717_PLUS(sc))
   6272 		printf(" - 5717 Plus\n");
   6273 	if (BGE_IS_5755_PLUS(sc))
   6274 		printf(" - 5755 Plus\n");
   6275 	if (BGE_IS_575X_PLUS(sc))
   6276 		printf(" - 575X Plus\n");
   6277 	if (BGE_IS_5705_PLUS(sc))
   6278 		printf(" - 5705 Plus\n");
   6279 	if (BGE_IS_5714_FAMILY(sc))
   6280 		printf(" - 5714 Family\n");
   6281 	if (BGE_IS_5700_FAMILY(sc))
   6282 		printf(" - 5700 Family\n");
   6283 	if (sc->bge_flags & BGEF_IS_5788)
   6284 		printf(" - 5788\n");
   6285 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
   6286 		printf(" - Supports Jumbo Frames\n");
   6287 	if (sc->bge_flags & BGEF_NO_EEPROM)
   6288 		printf(" - No EEPROM\n");
   6289 	if (sc->bge_flags & BGEF_PCIX)
   6290 		printf(" - PCI-X Bus\n");
   6291 	if (sc->bge_flags & BGEF_PCIE)
   6292 		printf(" - PCI Express Bus\n");
   6293 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
   6294 		printf(" - RX Alignment Bug\n");
   6295 	if (sc->bge_flags & BGEF_APE)
   6296 		printf(" - APE\n");
   6297 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
   6298 		printf(" - CPMU\n");
   6299 	if (sc->bge_flags & BGEF_TSO)
   6300 		printf(" - TSO\n");
   6301 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   6302 		printf(" - TAGGED_STATUS\n");
   6303 
   6304 	/* PHY related */
   6305 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
   6306 		printf(" - No 3 LEDs\n");
   6307 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
   6308 		printf(" - CRC bug\n");
   6309 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
   6310 		printf(" - ADC bug\n");
   6311 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
   6312 		printf(" - 5704 A0 bug\n");
   6313 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
   6314 		printf(" - jitter bug\n");
   6315 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
   6316 		printf(" - BER bug\n");
   6317 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
   6318 		printf(" - adjust trim\n");
   6319 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
   6320 		printf(" - no wirespeed\n");
   6321 
   6322 	/* ASF related */
   6323 	if (sc->bge_asf_mode & ASF_ENABLE)
   6324 		printf(" - ASF enable\n");
   6325 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
   6326 		printf(" - ASF new handshake\n");
   6327 	if (sc->bge_asf_mode & ASF_STACKUP)
   6328 		printf(" - ASF stackup\n");
   6329 }
   6330 #endif /* BGE_DEBUG */
   6331 
   6332 static int
   6333 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   6334 {
   6335 	prop_dictionary_t dict;
   6336 	prop_data_t ea;
   6337 
   6338 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
   6339 		return 1;
   6340 
   6341 	dict = device_properties(sc->bge_dev);
   6342 	ea = prop_dictionary_get(dict, "mac-address");
   6343 	if (ea != NULL) {
   6344 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   6345 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   6346 		memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
   6347 		return 0;
   6348 	}
   6349 
   6350 	return 1;
   6351 }
   6352 
   6353 static int
   6354 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   6355 {
   6356 	uint32_t mac_addr;
   6357 
   6358 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   6359 	if ((mac_addr >> 16) == 0x484b) {
   6360 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   6361 		ether_addr[1] = (uint8_t)mac_addr;
   6362 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   6363 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   6364 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   6365 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   6366 		ether_addr[5] = (uint8_t)mac_addr;
   6367 		return 0;
   6368 	}
   6369 	return 1;
   6370 }
   6371 
   6372 static int
   6373 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   6374 {
   6375 	int mac_offset = BGE_EE_MAC_OFFSET;
   6376 
   6377 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6378 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   6379 
   6380 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   6381 	    ETHER_ADDR_LEN));
   6382 }
   6383 
   6384 static int
   6385 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   6386 {
   6387 
   6388 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6389 		return 1;
   6390 
   6391 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   6392 	   ETHER_ADDR_LEN));
   6393 }
   6394 
   6395 static int
   6396 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6397 {
   6398 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6399 		/* NOTE: Order is critical */
   6400 		bge_get_eaddr_fw,
   6401 		bge_get_eaddr_mem,
   6402 		bge_get_eaddr_nvram,
   6403 		bge_get_eaddr_eeprom,
   6404 		NULL
   6405 	};
   6406 	const bge_eaddr_fcn_t *func;
   6407 
   6408 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6409 		if ((*func)(sc, eaddr) == 0)
   6410 			break;
   6411 	}
   6412 	return *func == NULL ? ENXIO : 0;
   6413 }
   6414