if_bge.c revision 1.37 1 /* $NetBSD: if_bge.c,v 1.37 2003/03/07 18:57:53 jonathan Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include "bpfilter.h"
82 #include "vlan.h"
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #ifdef INET
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip.h>
104 #endif
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/miidevs.h>
117 #include <dev/mii/brgphyreg.h>
118
119 #include <dev/pci/if_bgereg.h>
120
121 #include <uvm/uvm_extern.h>
122
123 int bge_probe(struct device *, struct cfdata *, void *);
124 void bge_attach(struct device *, struct device *, void *);
125 void bge_release_resources(struct bge_softc *);
126 void bge_txeof(struct bge_softc *);
127 void bge_rxeof(struct bge_softc *);
128
129 void bge_tick(void *);
130 void bge_stats_update(struct bge_softc *);
131 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
132
133 int bge_intr(void *);
134 void bge_start(struct ifnet *);
135 int bge_ioctl(struct ifnet *, u_long, caddr_t);
136 int bge_init(struct ifnet *);
137 void bge_stop(struct bge_softc *);
138 void bge_watchdog(struct ifnet *);
139 void bge_shutdown(void *);
140 int bge_ifmedia_upd(struct ifnet *);
141 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
142
143 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
144 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
145
146 void bge_setmulti(struct bge_softc *);
147
148 void bge_handle_events(struct bge_softc *);
149 int bge_alloc_jumbo_mem(struct bge_softc *);
150 void bge_free_jumbo_mem(struct bge_softc *);
151 void *bge_jalloc(struct bge_softc *);
152 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
153 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
154 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
155 int bge_init_rx_ring_std(struct bge_softc *);
156 void bge_free_rx_ring_std(struct bge_softc *);
157 int bge_init_rx_ring_jumbo(struct bge_softc *);
158 void bge_free_rx_ring_jumbo(struct bge_softc *);
159 void bge_free_tx_ring(struct bge_softc *);
160 int bge_init_tx_ring(struct bge_softc *);
161
162 int bge_chipinit(struct bge_softc *);
163 int bge_blockinit(struct bge_softc *);
164 int bge_setpowerstate(struct bge_softc *, int);
165
166 #ifdef notdef
167 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
168 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
169 void bge_vpd_read(struct bge_softc *);
170 #endif
171
172 u_int32_t bge_readmem_ind(struct bge_softc *, int);
173 void bge_writemem_ind(struct bge_softc *, int, int);
174 #ifdef notdef
175 u_int32_t bge_readreg_ind(struct bge_softc *, int);
176 #endif
177 void bge_writereg_ind(struct bge_softc *, int, int);
178
179 int bge_miibus_readreg(struct device *, int, int);
180 void bge_miibus_writereg(struct device *, int, int, int);
181 void bge_miibus_statchg(struct device *);
182
183 void bge_reset(struct bge_softc *);
184
185 void bge_dump_status(struct bge_softc *);
186 void bge_dump_rxbd(struct bge_rx_bd *);
187
188 #define BGE_DEBUG
189 #ifdef BGE_DEBUG
190 #define DPRINTF(x) if (bgedebug) printf x
191 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
192 int bgedebug = 0;
193 #else
194 #define DPRINTF(x)
195 #define DPRINTFN(n,x)
196 #endif
197
198 /* Various chip quirks. */
199 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
200 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
201 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
202 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
203 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
204 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
205 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
206
207 /* following bugs are common to bcm5700 rev B, all flavours */
208 #define BGE_QUIRK_5700_COMMON \
209 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
210
211 CFATTACH_DECL(bge, sizeof(struct bge_softc),
212 bge_probe, bge_attach, NULL, NULL);
213
214 u_int32_t
215 bge_readmem_ind(sc, off)
216 struct bge_softc *sc;
217 int off;
218 {
219 struct pci_attach_args *pa = &(sc->bge_pa);
220 pcireg_t val;
221
222 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
223 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
224 return val;
225 }
226
227 void
228 bge_writemem_ind(sc, off, val)
229 struct bge_softc *sc;
230 int off, val;
231 {
232 struct pci_attach_args *pa = &(sc->bge_pa);
233
234 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
235 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
236 }
237
238 #ifdef notdef
239 u_int32_t
240 bge_readreg_ind(sc, off)
241 struct bge_softc *sc;
242 int off;
243 {
244 struct pci_attach_args *pa = &(sc->bge_pa);
245
246 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
247 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
248 }
249 #endif
250
251 void
252 bge_writereg_ind(sc, off, val)
253 struct bge_softc *sc;
254 int off, val;
255 {
256 struct pci_attach_args *pa = &(sc->bge_pa);
257
258 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
259 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
260 }
261
262 #ifdef notdef
263 u_int8_t
264 bge_vpd_readbyte(sc, addr)
265 struct bge_softc *sc;
266 int addr;
267 {
268 int i;
269 u_int32_t val;
270 struct pci_attach_args *pa = &(sc->bge_pa);
271
272 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
273 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
274 DELAY(10);
275 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
276 BGE_VPD_FLAG)
277 break;
278 }
279
280 if (i == BGE_TIMEOUT) {
281 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
282 return(0);
283 }
284
285 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
286
287 return((val >> ((addr % 4) * 8)) & 0xFF);
288 }
289
290 void
291 bge_vpd_read_res(sc, res, addr)
292 struct bge_softc *sc;
293 struct vpd_res *res;
294 int addr;
295 {
296 int i;
297 u_int8_t *ptr;
298
299 ptr = (u_int8_t *)res;
300 for (i = 0; i < sizeof(struct vpd_res); i++)
301 ptr[i] = bge_vpd_readbyte(sc, i + addr);
302 }
303
304 void
305 bge_vpd_read(sc)
306 struct bge_softc *sc;
307 {
308 int pos = 0, i;
309 struct vpd_res res;
310
311 if (sc->bge_vpd_prodname != NULL)
312 free(sc->bge_vpd_prodname, M_DEVBUF);
313 if (sc->bge_vpd_readonly != NULL)
314 free(sc->bge_vpd_readonly, M_DEVBUF);
315 sc->bge_vpd_prodname = NULL;
316 sc->bge_vpd_readonly = NULL;
317
318 bge_vpd_read_res(sc, &res, pos);
319
320 if (res.vr_id != VPD_RES_ID) {
321 printf("%s: bad VPD resource id: expected %x got %x\n",
322 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
323 return;
324 }
325
326 pos += sizeof(res);
327 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
328 if (sc->bge_vpd_prodname == NULL)
329 panic("bge_vpd_read");
330 for (i = 0; i < res.vr_len; i++)
331 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
332 sc->bge_vpd_prodname[i] = '\0';
333 pos += i;
334
335 bge_vpd_read_res(sc, &res, pos);
336
337 if (res.vr_id != VPD_RES_READ) {
338 printf("%s: bad VPD resource id: expected %x got %x\n",
339 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
340 return;
341 }
342
343 pos += sizeof(res);
344 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
345 if (sc->bge_vpd_readonly == NULL)
346 panic("bge_vpd_read");
347 for (i = 0; i < res.vr_len + 1; i++)
348 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
349 }
350 #endif
351
352 /*
353 * Read a byte of data stored in the EEPROM at address 'addr.' The
354 * BCM570x supports both the traditional bitbang interface and an
355 * auto access interface for reading the EEPROM. We use the auto
356 * access method.
357 */
358 u_int8_t
359 bge_eeprom_getbyte(sc, addr, dest)
360 struct bge_softc *sc;
361 int addr;
362 u_int8_t *dest;
363 {
364 int i;
365 u_int32_t byte = 0;
366
367 /*
368 * Enable use of auto EEPROM access so we can avoid
369 * having to use the bitbang method.
370 */
371 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
372
373 /* Reset the EEPROM, load the clock period. */
374 CSR_WRITE_4(sc, BGE_EE_ADDR,
375 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
376 DELAY(20);
377
378 /* Issue the read EEPROM command. */
379 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
380
381 /* Wait for completion */
382 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
383 DELAY(10);
384 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
385 break;
386 }
387
388 if (i == BGE_TIMEOUT) {
389 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
390 return(0);
391 }
392
393 /* Get result. */
394 byte = CSR_READ_4(sc, BGE_EE_DATA);
395
396 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
397
398 return(0);
399 }
400
401 /*
402 * Read a sequence of bytes from the EEPROM.
403 */
404 int
405 bge_read_eeprom(sc, dest, off, cnt)
406 struct bge_softc *sc;
407 caddr_t dest;
408 int off;
409 int cnt;
410 {
411 int err = 0, i;
412 u_int8_t byte = 0;
413
414 for (i = 0; i < cnt; i++) {
415 err = bge_eeprom_getbyte(sc, off + i, &byte);
416 if (err)
417 break;
418 *(dest + i) = byte;
419 }
420
421 return(err ? 1 : 0);
422 }
423
424 int
425 bge_miibus_readreg(dev, phy, reg)
426 struct device *dev;
427 int phy, reg;
428 {
429 struct bge_softc *sc = (struct bge_softc *)dev;
430 struct ifnet *ifp;
431 u_int32_t val;
432 u_int32_t saved_autopoll;
433 int i;
434
435 ifp = &sc->ethercom.ec_if;
436
437 /*
438 * Several chips with builtin PHYs will incorrectly answer to
439 * other PHY instances than the builtin PHY at id 1.
440 */
441 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
442 return(0);
443
444 /* Reading with autopolling on may trigger PCI errors */
445 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
446 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
447 CSR_WRITE_4(sc, BGE_MI_MODE,
448 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
449 DELAY(40);
450 }
451
452 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
453 BGE_MIPHY(phy)|BGE_MIREG(reg));
454
455 for (i = 0; i < BGE_TIMEOUT; i++) {
456 val = CSR_READ_4(sc, BGE_MI_COMM);
457 if (!(val & BGE_MICOMM_BUSY))
458 break;
459 delay(10);
460 }
461
462 if (i == BGE_TIMEOUT) {
463 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
464 val = 0;
465 goto done;
466 }
467
468 val = CSR_READ_4(sc, BGE_MI_COMM);
469
470 done:
471 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
472 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
473 DELAY(40);
474 }
475
476 if (val & BGE_MICOMM_READFAIL)
477 return(0);
478
479 return(val & 0xFFFF);
480 }
481
482 void
483 bge_miibus_writereg(dev, phy, reg, val)
484 struct device *dev;
485 int phy, reg, val;
486 {
487 struct bge_softc *sc = (struct bge_softc *)dev;
488 u_int32_t saved_autopoll;
489 int i;
490
491 /* Touching the PHY while autopolling is on may trigger PCI errors */
492 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
493 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
494 delay(40);
495 CSR_WRITE_4(sc, BGE_MI_MODE,
496 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
497 delay(10); /* 40 usec is supposed to be adequate */
498 }
499
500 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
501 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
502
503 for (i = 0; i < BGE_TIMEOUT; i++) {
504 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
505 break;
506 delay(10);
507 }
508
509 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
510 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
511 delay(40);
512 }
513
514 if (i == BGE_TIMEOUT) {
515 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
516 }
517 }
518
519 void
520 bge_miibus_statchg(dev)
521 struct device *dev;
522 {
523 struct bge_softc *sc = (struct bge_softc *)dev;
524 struct mii_data *mii = &sc->bge_mii;
525
526 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
527 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
528 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
529 } else {
530 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
531 }
532
533 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
534 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
535 } else {
536 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
537 }
538 }
539
540 /*
541 * Handle events that have triggered interrupts.
542 */
543 void
544 bge_handle_events(sc)
545 struct bge_softc *sc;
546 {
547
548 return;
549 }
550
551 /*
552 * Memory management for jumbo frames.
553 */
554
555 int
556 bge_alloc_jumbo_mem(sc)
557 struct bge_softc *sc;
558 {
559 caddr_t ptr, kva;
560 bus_dma_segment_t seg;
561 int i, rseg, state, error;
562 struct bge_jpool_entry *entry;
563
564 state = error = 0;
565
566 /* Grab a big chunk o' storage. */
567 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
568 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
569 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
570 return ENOBUFS;
571 }
572
573 state = 1;
574 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
575 BUS_DMA_NOWAIT)) {
576 printf("%s: can't map dma buffers (%d bytes)\n",
577 sc->bge_dev.dv_xname, (int)BGE_JMEM);
578 error = ENOBUFS;
579 goto out;
580 }
581
582 state = 2;
583 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
584 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
585 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
586 error = ENOBUFS;
587 goto out;
588 }
589
590 state = 3;
591 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
592 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
593 printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
594 error = ENOBUFS;
595 goto out;
596 }
597
598 state = 4;
599 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
600 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
601
602 SLIST_INIT(&sc->bge_jfree_listhead);
603 SLIST_INIT(&sc->bge_jinuse_listhead);
604
605 /*
606 * Now divide it up into 9K pieces and save the addresses
607 * in an array.
608 */
609 ptr = sc->bge_cdata.bge_jumbo_buf;
610 for (i = 0; i < BGE_JSLOTS; i++) {
611 sc->bge_cdata.bge_jslots[i] = ptr;
612 ptr += BGE_JLEN;
613 entry = malloc(sizeof(struct bge_jpool_entry),
614 M_DEVBUF, M_NOWAIT);
615 if (entry == NULL) {
616 printf("%s: no memory for jumbo buffer queue!\n",
617 sc->bge_dev.dv_xname);
618 error = ENOBUFS;
619 goto out;
620 }
621 entry->slot = i;
622 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
623 entry, jpool_entries);
624 }
625 out:
626 if (error != 0) {
627 switch (state) {
628 case 4:
629 bus_dmamap_unload(sc->bge_dmatag,
630 sc->bge_cdata.bge_rx_jumbo_map);
631 case 3:
632 bus_dmamap_destroy(sc->bge_dmatag,
633 sc->bge_cdata.bge_rx_jumbo_map);
634 case 2:
635 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
636 case 1:
637 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
638 break;
639 default:
640 break;
641 }
642 }
643
644 return error;
645 }
646
647 /*
648 * Allocate a jumbo buffer.
649 */
650 void *
651 bge_jalloc(sc)
652 struct bge_softc *sc;
653 {
654 struct bge_jpool_entry *entry;
655
656 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
657
658 if (entry == NULL) {
659 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
660 return(NULL);
661 }
662
663 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
664 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
665 return(sc->bge_cdata.bge_jslots[entry->slot]);
666 }
667
668 /*
669 * Release a jumbo buffer.
670 */
671 void
672 bge_jfree(m, buf, size, arg)
673 struct mbuf *m;
674 caddr_t buf;
675 size_t size;
676 void *arg;
677 {
678 struct bge_jpool_entry *entry;
679 struct bge_softc *sc;
680 int i, s;
681
682 /* Extract the softc struct pointer. */
683 sc = (struct bge_softc *)arg;
684
685 if (sc == NULL)
686 panic("bge_jfree: can't find softc pointer!");
687
688 /* calculate the slot this buffer belongs to */
689
690 i = ((caddr_t)buf
691 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
692
693 if ((i < 0) || (i >= BGE_JSLOTS))
694 panic("bge_jfree: asked to free buffer that we don't manage!");
695
696 s = splvm();
697 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
698 if (entry == NULL)
699 panic("bge_jfree: buffer not in use!");
700 entry->slot = i;
701 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
702 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
703
704 if (__predict_true(m != NULL))
705 pool_cache_put(&mbpool_cache, m);
706 splx(s);
707 }
708
709
710 /*
711 * Intialize a standard receive ring descriptor.
712 */
713 int
714 bge_newbuf_std(sc, i, m, dmamap)
715 struct bge_softc *sc;
716 int i;
717 struct mbuf *m;
718 bus_dmamap_t dmamap;
719 {
720 struct mbuf *m_new = NULL;
721 struct bge_rx_bd *r;
722 int error;
723
724 if (dmamap == NULL) {
725 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
726 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
727 if (error != 0)
728 return error;
729 }
730
731 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
732
733 if (m == NULL) {
734 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
735 if (m_new == NULL) {
736 return(ENOBUFS);
737 }
738
739 MCLGET(m_new, M_DONTWAIT);
740 if (!(m_new->m_flags & M_EXT)) {
741 m_freem(m_new);
742 return(ENOBUFS);
743 }
744 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
745 if (!sc->bge_rx_alignment_bug)
746 m_adj(m_new, ETHER_ALIGN);
747
748 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
749 BUS_DMA_READ|BUS_DMA_NOWAIT))
750 return(ENOBUFS);
751 } else {
752 m_new = m;
753 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
754 m_new->m_data = m_new->m_ext.ext_buf;
755 if (!sc->bge_rx_alignment_bug)
756 m_adj(m_new, ETHER_ALIGN);
757 }
758
759 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
760 r = &sc->bge_rdata->bge_rx_std_ring[i];
761 bge_set_hostaddr(&r->bge_addr,
762 dmamap->dm_segs[0].ds_addr);
763 r->bge_flags = BGE_RXBDFLAG_END;
764 r->bge_len = m_new->m_len;
765 r->bge_idx = i;
766
767 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
768 offsetof(struct bge_ring_data, bge_rx_std_ring) +
769 i * sizeof (struct bge_rx_bd),
770 sizeof (struct bge_rx_bd),
771 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
772
773 return(0);
774 }
775
776 /*
777 * Initialize a jumbo receive ring descriptor. This allocates
778 * a jumbo buffer from the pool managed internally by the driver.
779 */
780 int
781 bge_newbuf_jumbo(sc, i, m)
782 struct bge_softc *sc;
783 int i;
784 struct mbuf *m;
785 {
786 struct mbuf *m_new = NULL;
787 struct bge_rx_bd *r;
788
789 if (m == NULL) {
790 caddr_t *buf = NULL;
791
792 /* Allocate the mbuf. */
793 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
794 if (m_new == NULL) {
795 return(ENOBUFS);
796 }
797
798 /* Allocate the jumbo buffer */
799 buf = bge_jalloc(sc);
800 if (buf == NULL) {
801 m_freem(m_new);
802 printf("%s: jumbo allocation failed "
803 "-- packet dropped!\n", sc->bge_dev.dv_xname);
804 return(ENOBUFS);
805 }
806
807 /* Attach the buffer to the mbuf. */
808 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
809 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
810 bge_jfree, sc);
811 } else {
812 m_new = m;
813 m_new->m_data = m_new->m_ext.ext_buf;
814 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
815 }
816
817 if (!sc->bge_rx_alignment_bug)
818 m_adj(m_new, ETHER_ALIGN);
819 /* Set up the descriptor. */
820 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
821 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
822 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
823 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
824 r->bge_len = m_new->m_len;
825 r->bge_idx = i;
826
827 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
828 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
829 i * sizeof (struct bge_rx_bd),
830 sizeof (struct bge_rx_bd),
831 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
832
833 return(0);
834 }
835
836 /*
837 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
838 * that's 1MB or memory, which is a lot. For now, we fill only the first
839 * 256 ring entries and hope that our CPU is fast enough to keep up with
840 * the NIC.
841 */
842 int
843 bge_init_rx_ring_std(sc)
844 struct bge_softc *sc;
845 {
846 int i;
847
848 if (sc->bge_flags & BGE_RXRING_VALID)
849 return 0;
850
851 for (i = 0; i < BGE_SSLOTS; i++) {
852 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
853 return(ENOBUFS);
854 }
855
856 sc->bge_std = i - 1;
857 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
858
859 sc->bge_flags |= BGE_RXRING_VALID;
860
861 return(0);
862 }
863
864 void
865 bge_free_rx_ring_std(sc)
866 struct bge_softc *sc;
867 {
868 int i;
869
870 if (!(sc->bge_flags & BGE_RXRING_VALID))
871 return;
872
873 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
874 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
875 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
876 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
877 bus_dmamap_destroy(sc->bge_dmatag,
878 sc->bge_cdata.bge_rx_std_map[i]);
879 }
880 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
881 sizeof(struct bge_rx_bd));
882 }
883
884 sc->bge_flags &= ~BGE_RXRING_VALID;
885 }
886
887 int
888 bge_init_rx_ring_jumbo(sc)
889 struct bge_softc *sc;
890 {
891 int i;
892 volatile struct bge_rcb *rcb;
893
894 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
895 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
896 return(ENOBUFS);
897 };
898
899 sc->bge_jumbo = i - 1;
900
901 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
902 rcb->bge_maxlen_flags = 0;
903 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
904
905 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
906
907 return(0);
908 }
909
910 void
911 bge_free_rx_ring_jumbo(sc)
912 struct bge_softc *sc;
913 {
914 int i;
915
916 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
917 return;
918
919 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
920 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
921 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
922 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
923 }
924 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
925 sizeof(struct bge_rx_bd));
926 }
927
928 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
929 }
930
931 void
932 bge_free_tx_ring(sc)
933 struct bge_softc *sc;
934 {
935 int i, freed;
936 struct txdmamap_pool_entry *dma;
937
938 if (!(sc->bge_flags & BGE_TXRING_VALID))
939 return;
940
941 freed = 0;
942
943 for (i = 0; i < BGE_TX_RING_CNT; i++) {
944 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
945 freed++;
946 m_freem(sc->bge_cdata.bge_tx_chain[i]);
947 sc->bge_cdata.bge_tx_chain[i] = NULL;
948 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
949 link);
950 sc->txdma[i] = 0;
951 }
952 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
953 sizeof(struct bge_tx_bd));
954 }
955
956 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
957 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
958 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
959 free(dma, M_DEVBUF);
960 }
961
962 sc->bge_flags &= ~BGE_TXRING_VALID;
963 }
964
965 int
966 bge_init_tx_ring(sc)
967 struct bge_softc *sc;
968 {
969 int i;
970 bus_dmamap_t dmamap;
971 struct txdmamap_pool_entry *dma;
972
973 if (sc->bge_flags & BGE_TXRING_VALID)
974 return 0;
975
976 sc->bge_txcnt = 0;
977 sc->bge_tx_saved_considx = 0;
978 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
979 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
980 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
981
982 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
983 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
984 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
985
986 SLIST_INIT(&sc->txdma_list);
987 for (i = 0; i < BGE_RSLOTS; i++) {
988 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
989 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
990 &dmamap))
991 return(ENOBUFS);
992 if (dmamap == NULL)
993 panic("dmamap NULL in bge_init_tx_ring");
994 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
995 if (dma == NULL) {
996 printf("%s: can't alloc txdmamap_pool_entry\n",
997 sc->bge_dev.dv_xname);
998 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
999 return (ENOMEM);
1000 }
1001 dma->dmamap = dmamap;
1002 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1003 }
1004
1005 sc->bge_flags |= BGE_TXRING_VALID;
1006
1007 return(0);
1008 }
1009
1010 void
1011 bge_setmulti(sc)
1012 struct bge_softc *sc;
1013 {
1014 struct ethercom *ac = &sc->ethercom;
1015 struct ifnet *ifp = &ac->ec_if;
1016 struct ether_multi *enm;
1017 struct ether_multistep step;
1018 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1019 u_int32_t h;
1020 int i;
1021
1022 if (ifp->if_flags & IFF_PROMISC)
1023 goto allmulti;
1024
1025 /* Now program new ones. */
1026 ETHER_FIRST_MULTI(step, ac, enm);
1027 while (enm != NULL) {
1028 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1029 /*
1030 * We must listen to a range of multicast addresses.
1031 * For now, just accept all multicasts, rather than
1032 * trying to set only those filter bits needed to match
1033 * the range. (At this time, the only use of address
1034 * ranges is for IP multicast routing, for which the
1035 * range is big enough to require all bits set.)
1036 */
1037 goto allmulti;
1038 }
1039
1040 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1041
1042 /* Just want the 7 least-significant bits. */
1043 h &= 0x7f;
1044
1045 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1046 ETHER_NEXT_MULTI(step, enm);
1047 }
1048
1049 ifp->if_flags &= ~IFF_ALLMULTI;
1050 goto setit;
1051
1052 allmulti:
1053 ifp->if_flags |= IFF_ALLMULTI;
1054 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1055
1056 setit:
1057 for (i = 0; i < 4; i++)
1058 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1059 }
1060
1061 const int bge_swapbits[] = {
1062 0,
1063 BGE_MODECTL_BYTESWAP_DATA,
1064 BGE_MODECTL_WORDSWAP_DATA,
1065 BGE_MODECTL_BYTESWAP_NONFRAME,
1066 BGE_MODECTL_WORDSWAP_NONFRAME,
1067
1068 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1069 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1070 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1071
1072 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1073 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1074
1075 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1076
1077 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1078 BGE_MODECTL_BYTESWAP_NONFRAME,
1079 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1080 BGE_MODECTL_WORDSWAP_NONFRAME,
1081 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1082 BGE_MODECTL_WORDSWAP_NONFRAME,
1083 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1084 BGE_MODECTL_WORDSWAP_NONFRAME,
1085
1086 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1087 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1088 };
1089
1090 int bge_swapindex = 0;
1091
1092 /*
1093 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1094 * self-test results.
1095 */
1096 int
1097 bge_chipinit(sc)
1098 struct bge_softc *sc;
1099 {
1100 u_int32_t cachesize;
1101 int i;
1102 u_int32_t dma_rw_ctl;
1103 struct pci_attach_args *pa = &(sc->bge_pa);
1104
1105
1106 /* Set endianness before we access any non-PCI registers. */
1107 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1108 BGE_INIT);
1109
1110 /* Set power state to D0. */
1111 bge_setpowerstate(sc, 0);
1112
1113 /*
1114 * Check the 'ROM failed' bit on the RX CPU to see if
1115 * self-tests passed.
1116 */
1117 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1118 printf("%s: RX CPU self-diagnostics failed!\n",
1119 sc->bge_dev.dv_xname);
1120 return(ENODEV);
1121 }
1122
1123 /* Clear the MAC control register */
1124 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1125
1126 /*
1127 * Clear the MAC statistics block in the NIC's
1128 * internal memory.
1129 */
1130 for (i = BGE_STATS_BLOCK;
1131 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1132 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1133
1134 for (i = BGE_STATUS_BLOCK;
1135 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1136 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1137
1138 /* Set up the PCI DMA control register. */
1139 if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1140 BGE_PCISTATE_PCI_BUSMODE) {
1141 /* Conventional PCI bus */
1142 DPRINTFN(4, ("(%s: PCI 2.2 dma setting)\n", sc->bge_dev.dv_xname));
1143 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1144 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1145 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1146 (0x0F));
1147 } else {
1148 DPRINTFN(4, ("(:%s: PCI-X dma setting)\n", sc->bge_dev.dv_xname));
1149 /* PCI-X bus */
1150 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1151 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1152 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1153 (0x0F);
1154 /*
1155 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1156 * for hardware bugs, which means we should also clear
1157 * the low-order MINDMA bits. In addition, the 5704
1158 * uses a different encoding of read/write watermarks.
1159 */
1160 if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0) {
1161 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1162 /* should be 0x1f0000 */
1163 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1164 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1165 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1166 }
1167 else if ((sc->bge_asicrev >> 28) ==
1168 (BGE_ASICREV_BCM5703_A0 >> 28)) {
1169 dma_rw_ctl &= 0xfffffff0;
1170 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1171 }
1172 }
1173
1174 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1175
1176 /*
1177 * Set up general mode register.
1178 */
1179 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1180 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1181 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1182 BGE_MODECTL_RX_NO_PHDR_CSUM);
1183
1184 /* Get cache line size. */
1185 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1186
1187 /*
1188 * Avoid violating PCI spec on certain chip revs.
1189 */
1190 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1191 PCIM_CMD_MWIEN) {
1192 switch(cachesize) {
1193 case 1:
1194 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1195 BGE_PCI_WRITE_BNDRY_16BYTES);
1196 break;
1197 case 2:
1198 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1199 BGE_PCI_WRITE_BNDRY_32BYTES);
1200 break;
1201 case 4:
1202 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1203 BGE_PCI_WRITE_BNDRY_64BYTES);
1204 break;
1205 case 8:
1206 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1207 BGE_PCI_WRITE_BNDRY_128BYTES);
1208 break;
1209 case 16:
1210 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1211 BGE_PCI_WRITE_BNDRY_256BYTES);
1212 break;
1213 case 32:
1214 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1215 BGE_PCI_WRITE_BNDRY_512BYTES);
1216 break;
1217 case 64:
1218 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1219 BGE_PCI_WRITE_BNDRY_1024BYTES);
1220 break;
1221 default:
1222 /* Disable PCI memory write and invalidate. */
1223 #if 0
1224 if (bootverbose)
1225 printf("%s: cache line size %d not "
1226 "supported; disabling PCI MWI\n",
1227 sc->bge_dev.dv_xname, cachesize);
1228 #endif
1229 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1230 PCIM_CMD_MWIEN);
1231 break;
1232 }
1233 }
1234
1235 /*
1236 * Disable memory write invalidate. Apparently it is not supported
1237 * properly by these devices.
1238 */
1239 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1240
1241
1242 #ifdef __brokenalpha__
1243 /*
1244 * Must insure that we do not cross an 8K (bytes) boundary
1245 * for DMA reads. Our highest limit is 1K bytes. This is a
1246 * restriction on some ALPHA platforms with early revision
1247 * 21174 PCI chipsets, such as the AlphaPC 164lx
1248 */
1249 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1250 #endif
1251
1252 /* Set the timer prescaler (always 66MHz) */
1253 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1254
1255 return(0);
1256 }
1257
1258 int
1259 bge_blockinit(sc)
1260 struct bge_softc *sc;
1261 {
1262 volatile struct bge_rcb *rcb;
1263 bus_size_t rcb_addr;
1264 int i;
1265 struct ifnet *ifp = &sc->ethercom.ec_if;
1266 bge_hostaddr taddr;
1267
1268 /*
1269 * Initialize the memory window pointer register so that
1270 * we can access the first 32K of internal NIC RAM. This will
1271 * allow us to set up the TX send ring RCBs and the RX return
1272 * ring RCBs, plus other things which live in NIC memory.
1273 */
1274
1275 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1276 BGE_PCI_MEMWIN_BASEADDR, 0);
1277
1278 /* Configure mbuf memory pool */
1279 if (sc->bge_extram) {
1280 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1281 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1282 } else {
1283 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1284 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1285 }
1286
1287 /* Configure DMA resource pool */
1288 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1289 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1290
1291 /* Configure mbuf pool watermarks */
1292 #ifdef ORIG_WPAUL_VALUES
1293 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1294 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1295 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1296 #else
1297 /* new broadcom docs strongly recommend these: */
1298 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1299 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1300 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1301 #endif
1302
1303 /* Configure DMA resource watermarks */
1304 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1305 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1306
1307 /* Enable buffer manager */
1308 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1309 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1310
1311 /* Poll for buffer manager start indication */
1312 for (i = 0; i < BGE_TIMEOUT; i++) {
1313 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1314 break;
1315 DELAY(10);
1316 }
1317
1318 if (i == BGE_TIMEOUT) {
1319 printf("%s: buffer manager failed to start\n",
1320 sc->bge_dev.dv_xname);
1321 return(ENXIO);
1322 }
1323
1324 /* Enable flow-through queues */
1325 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1326 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1327
1328 /* Wait until queue initialization is complete */
1329 for (i = 0; i < BGE_TIMEOUT; i++) {
1330 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1331 break;
1332 DELAY(10);
1333 }
1334
1335 if (i == BGE_TIMEOUT) {
1336 printf("%s: flow-through queue init failed\n",
1337 sc->bge_dev.dv_xname);
1338 return(ENXIO);
1339 }
1340
1341 /* Initialize the standard RX ring control block */
1342 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1343 bge_set_hostaddr(&rcb->bge_hostaddr,
1344 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1345 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1346 if (sc->bge_extram)
1347 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1348 else
1349 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1350 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1351 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1352 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1353 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1354
1355 /*
1356 * Initialize the jumbo RX ring control block
1357 * We set the 'ring disabled' bit in the flags
1358 * field until we're actually ready to start
1359 * using this ring (i.e. once we set the MTU
1360 * high enough to require it).
1361 */
1362 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1363 bge_set_hostaddr(&rcb->bge_hostaddr,
1364 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1365 rcb->bge_maxlen_flags =
1366 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED);
1367 if (sc->bge_extram)
1368 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1369 else
1370 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1371
1372 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1373 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1374 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1375 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1376
1377 /* Set up dummy disabled mini ring RCB */
1378 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1379 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1380 BGE_RCB_FLAG_RING_DISABLED);
1381 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1382
1383 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1384 offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1385 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1386
1387 /*
1388 * Set the BD ring replentish thresholds. The recommended
1389 * values are 1/8th the number of descriptors allocated to
1390 * each ring.
1391 */
1392 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1393 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1394
1395 /*
1396 * Disable all unused send rings by setting the 'ring disabled'
1397 * bit in the flags field of all the TX send ring control blocks.
1398 * These are located in NIC memory.
1399 */
1400 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1401 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1402 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1403 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1404 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1405 rcb_addr += sizeof(struct bge_rcb);
1406 }
1407
1408 /* Configure TX RCB 0 (we use only the first ring) */
1409 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1410 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1411 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1412 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1413 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1414 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1415 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1416 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1417
1418 /* Disable all unused RX return rings */
1419 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1420 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1421 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1422 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1423 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1424 BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,
1425 BGE_RCB_FLAG_RING_DISABLED));
1426 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1427 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1428 (i * (sizeof(u_int64_t))), 0);
1429 rcb_addr += sizeof(struct bge_rcb);
1430 }
1431
1432 /* Initialize RX ring indexes */
1433 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1434 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1435 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1436
1437 /*
1438 * Set up RX return ring 0
1439 * Note that the NIC address for RX return rings is 0x00000000.
1440 * The return rings live entirely within the host, so the
1441 * nicaddr field in the RCB isn't used.
1442 */
1443 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1444 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1445 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1446 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1447 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1448 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1449 BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,0));
1450
1451 /* Set random backoff seed for TX */
1452 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1453 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1454 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1455 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1456 BGE_TX_BACKOFF_SEED_MASK);
1457
1458 /* Set inter-packet gap */
1459 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1460
1461 /*
1462 * Specify which ring to use for packets that don't match
1463 * any RX rules.
1464 */
1465 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1466
1467 /*
1468 * Configure number of RX lists. One interrupt distribution
1469 * list, sixteen active lists, one bad frames class.
1470 */
1471 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1472
1473 /* Inialize RX list placement stats mask. */
1474 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1475 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1476
1477 /* Disable host coalescing until we get it set up */
1478 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1479
1480 /* Poll to make sure it's shut down. */
1481 for (i = 0; i < BGE_TIMEOUT; i++) {
1482 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1483 break;
1484 DELAY(10);
1485 }
1486
1487 if (i == BGE_TIMEOUT) {
1488 printf("%s: host coalescing engine failed to idle\n",
1489 sc->bge_dev.dv_xname);
1490 return(ENXIO);
1491 }
1492
1493 /* Set up host coalescing defaults */
1494 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1495 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1496 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1497 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1498 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1499 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1500 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1501 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1502 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1503
1504 /* Set up address of statistics block */
1505 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1506 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1507 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1508 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1509
1510 /* Set up address of status block */
1511 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1512 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1513 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1514 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1515 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1516 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1517
1518 /* Turn on host coalescing state machine */
1519 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1520
1521 /* Turn on RX BD completion state machine and enable attentions */
1522 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1523 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1524
1525 /* Turn on RX list placement state machine */
1526 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1527
1528 /* Turn on RX list selector state machine. */
1529 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1530
1531 /* Turn on DMA, clear stats */
1532 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1533 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1534 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1535 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1536 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1537
1538 /* Set misc. local control, enable interrupts on attentions */
1539 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1540
1541 #ifdef notdef
1542 /* Assert GPIO pins for PHY reset */
1543 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1544 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1545 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1546 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1547 #endif
1548
1549 #if defined(not_quite_yet)
1550 /* Linux driver enables enable gpio pin #1 on 5700s */
1551 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
1552 sc->bge_local_ctrl_reg |=
1553 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1554 }
1555 #endif
1556 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1557
1558 /* Turn on DMA completion state machine */
1559 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1560
1561 /* Turn on write DMA state machine */
1562 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1563 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1564
1565 /* Turn on read DMA state machine */
1566 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1567 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1568
1569 /* Turn on RX data completion state machine */
1570 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1571
1572 /* Turn on RX BD initiator state machine */
1573 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1574
1575 /* Turn on RX data and RX BD initiator state machine */
1576 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1577
1578 /* Turn on Mbuf cluster free state machine */
1579 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1580
1581 /* Turn on send BD completion state machine */
1582 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1583
1584 /* Turn on send data completion state machine */
1585 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1586
1587 /* Turn on send data initiator state machine */
1588 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1589
1590 /* Turn on send BD initiator state machine */
1591 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1592
1593 /* Turn on send BD selector state machine */
1594 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1595
1596 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1597 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1598 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1599
1600 /* init LED register */
1601 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1602
1603 /* ack/clear link change events */
1604 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1605 BGE_MACSTAT_CFG_CHANGED);
1606 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1607
1608 /* Enable PHY auto polling (for MII/GMII only) */
1609 if (sc->bge_tbi) {
1610 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1611 } else {
1612 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1613 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1614 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1615 BGE_EVTENB_MI_INTERRUPT);
1616 }
1617
1618 /* Enable link state change attentions. */
1619 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1620
1621 return(0);
1622 }
1623
1624 static const struct bge_revision {
1625 uint32_t br_asicrev;
1626 uint32_t br_quirks;
1627 const char *br_name;
1628 } bge_revisions[] = {
1629 { BGE_ASICREV_BCM5700_A0,
1630 BGE_QUIRK_LINK_STATE_BROKEN,
1631 "BCM5700 A0" },
1632
1633 { BGE_ASICREV_BCM5700_A1,
1634 BGE_QUIRK_LINK_STATE_BROKEN,
1635 "BCM5700 A1" },
1636
1637 { BGE_ASICREV_BCM5700_B0,
1638 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1639 "BCM5700 B0" },
1640
1641 { BGE_ASICREV_BCM5700_B1,
1642 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1643 "BCM5700 B1" },
1644
1645 { BGE_ASICREV_BCM5700_B2,
1646 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1647 "BCM5700 B2" },
1648
1649 /* This is treated like a BCM5700 Bx */
1650 { BGE_ASICREV_BCM5700_ALTIMA,
1651 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1652 "BCM5700 Altima" },
1653
1654 { BGE_ASICREV_BCM5700_C0,
1655 0,
1656 "BCM5700 C0" },
1657
1658 { BGE_ASICREV_BCM5701_A0,
1659 0, /*XXX really, just not known */
1660 "BCM5701 A0" },
1661
1662 { BGE_ASICREV_BCM5701_B0,
1663 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1664 "BCM5701 B0" },
1665
1666 { BGE_ASICREV_BCM5701_B2,
1667 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1668 "BCM5701 B2" },
1669
1670 { BGE_ASICREV_BCM5701_B5,
1671 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1672 "BCM5701 B5" },
1673
1674 { BGE_ASICREV_BCM5703_A0,
1675 0,
1676 "BCM5703 A0" },
1677
1678 { BGE_ASICREV_BCM5703_A1,
1679 0,
1680 "BCM5703 A1" },
1681
1682 { BGE_ASICREV_BCM5703_A2,
1683 BGE_QUIRK_ONLY_PHY_1,
1684 "BCM5703 A2" },
1685
1686 { BGE_ASICREV_BCM5704_A0,
1687 BGE_QUIRK_ONLY_PHY_1,
1688 "BCM5704 A0" },
1689
1690 { 0, 0, NULL }
1691 };
1692
1693 static const struct bge_revision *
1694 bge_lookup_rev(uint32_t asicrev)
1695 {
1696 const struct bge_revision *br;
1697
1698 for (br = bge_revisions; br->br_name != NULL; br++) {
1699 if (br->br_asicrev == asicrev)
1700 return (br);
1701 }
1702
1703 return (NULL);
1704 }
1705
1706 static const struct bge_product {
1707 pci_vendor_id_t bp_vendor;
1708 pci_product_id_t bp_product;
1709 const char *bp_name;
1710 } bge_products[] = {
1711 /*
1712 * The BCM5700 documentation seems to indicate that the hardware
1713 * still has the Alteon vendor ID burned into it, though it
1714 * should always be overridden by the value in the EEPROM. We'll
1715 * check for it anyway.
1716 */
1717 { PCI_VENDOR_ALTEON,
1718 PCI_PRODUCT_ALTEON_BCM5700,
1719 "Broadcom BCM5700 Gigabit Ethernet" },
1720 { PCI_VENDOR_ALTEON,
1721 PCI_PRODUCT_ALTEON_BCM5701,
1722 "Broadcom BCM5701 Gigabit Ethernet" },
1723
1724 { PCI_VENDOR_ALTIMA,
1725 PCI_PRODUCT_ALTIMA_AC1000,
1726 "Altima AC1000 Gigabit Ethernet" },
1727 { PCI_VENDOR_ALTIMA,
1728 PCI_PRODUCT_ALTIMA_AC1001,
1729 "Altima AC1001 Gigabit Ethernet" },
1730 { PCI_VENDOR_ALTIMA,
1731 PCI_PRODUCT_ALTIMA_AC9100,
1732 "Altima AC9100 Gigabit Ethernet" },
1733
1734 { PCI_VENDOR_BROADCOM,
1735 PCI_PRODUCT_BROADCOM_BCM5700,
1736 "Broadcom BCM5700 Gigabit Ethernet" },
1737 { PCI_VENDOR_BROADCOM,
1738 PCI_PRODUCT_BROADCOM_BCM5701,
1739 "Broadcom BCM5701 Gigabit Ethernet" },
1740 { PCI_VENDOR_BROADCOM,
1741 PCI_PRODUCT_BROADCOM_BCM5702,
1742 "Broadcom BCM5702 Gigabit Ethernet" },
1743 { PCI_VENDOR_BROADCOM,
1744 PCI_PRODUCT_BROADCOM_BCM5702X,
1745 "Broadcom BCM5702X Gigabit Ethernet" },
1746 { PCI_VENDOR_BROADCOM,
1747 PCI_PRODUCT_BROADCOM_BCM5703,
1748 "Broadcom BCM5703 Gigabit Ethernet" },
1749 { PCI_VENDOR_BROADCOM,
1750 PCI_PRODUCT_BROADCOM_BCM5703X,
1751 "Broadcom BCM5703X Gigabit Ethernet" },
1752 { PCI_VENDOR_BROADCOM,
1753 PCI_PRODUCT_BROADCOM_BCM5704C,
1754 "Broadcom BCM5704C Dual Gigabit Ethernet" },
1755 { PCI_VENDOR_BROADCOM,
1756 PCI_PRODUCT_BROADCOM_BCM5704S,
1757 "Broadcom BCM5704S Dual Gigabit Ethernet" },
1758
1759
1760 { PCI_VENDOR_SCHNEIDERKOCH,
1761 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1762 "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1763
1764 { PCI_VENDOR_3COM,
1765 PCI_PRODUCT_3COM_3C996,
1766 "3Com 3c996 Gigabit Ethernet" },
1767
1768 { 0,
1769 0,
1770 NULL },
1771 };
1772
1773 static const struct bge_product *
1774 bge_lookup(const struct pci_attach_args *pa)
1775 {
1776 const struct bge_product *bp;
1777
1778 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1779 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1780 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1781 return (bp);
1782 }
1783
1784 return (NULL);
1785 }
1786
1787 int
1788 bge_setpowerstate(sc, powerlevel)
1789 struct bge_softc *sc;
1790 int powerlevel;
1791 {
1792 #ifdef NOTYET
1793 u_int32_t pm_ctl = 0;
1794
1795 /* XXX FIXME: make sure indirect accesses enabled? */
1796 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1797 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1798 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1799
1800 /* clear the PME_assert bit and power state bits, enable PME */
1801 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1802 pm_ctl &= ~PCIM_PSTAT_DMASK;
1803 pm_ctl |= (1 << 8);
1804
1805 if (powerlevel == 0) {
1806 pm_ctl |= PCIM_PSTAT_D0;
1807 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1808 pm_ctl, 2);
1809 DELAY(10000);
1810 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1811 DELAY(10000);
1812
1813 #ifdef NOTYET
1814 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1815 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1816 #endif
1817 DELAY(40); DELAY(40); DELAY(40);
1818 DELAY(10000); /* above not quite adequate on 5700 */
1819 return 0;
1820 }
1821
1822
1823 /*
1824 * Entering ACPI power states D1-D3 is achieved by wiggling
1825 * GMII gpio pins. Example code assumes all hardware vendors
1826 * followed Broadom's sample pcb layout. Until we verify that
1827 * for all supported OEM cards, states D1-D3 are unsupported.
1828 */
1829 printf("%s: power state %d unimplemented; check GPIO pins\n",
1830 sc->bge_dev.dv_xname, powerlevel);
1831 #endif
1832 return EOPNOTSUPP;
1833 }
1834
1835
1836 /*
1837 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1838 * against our list and return its name if we find a match. Note
1839 * that since the Broadcom controller contains VPD support, we
1840 * can get the device name string from the controller itself instead
1841 * of the compiled-in string. This is a little slow, but it guarantees
1842 * we'll always announce the right product name.
1843 */
1844 int
1845 bge_probe(parent, match, aux)
1846 struct device *parent;
1847 struct cfdata *match;
1848 void *aux;
1849 {
1850 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1851
1852 if (bge_lookup(pa) != NULL)
1853 return (1);
1854
1855 return (0);
1856 }
1857
1858 void
1859 bge_attach(parent, self, aux)
1860 struct device *parent, *self;
1861 void *aux;
1862 {
1863 struct bge_softc *sc = (struct bge_softc *)self;
1864 struct pci_attach_args *pa = aux;
1865 const struct bge_product *bp;
1866 const struct bge_revision *br;
1867 pci_chipset_tag_t pc = pa->pa_pc;
1868 pci_intr_handle_t ih;
1869 const char *intrstr = NULL;
1870 bus_dma_segment_t seg;
1871 int rseg;
1872 u_int32_t hwcfg = 0;
1873 u_int32_t mac_addr = 0;
1874 u_int32_t command;
1875 struct ifnet *ifp;
1876 caddr_t kva;
1877 u_char eaddr[ETHER_ADDR_LEN];
1878 pcireg_t memtype;
1879 bus_addr_t memaddr;
1880 bus_size_t memsize;
1881 u_int32_t pm_ctl;
1882
1883 bp = bge_lookup(pa);
1884 KASSERT(bp != NULL);
1885
1886 sc->bge_pa = *pa;
1887
1888 aprint_naive(": Ethernet controller\n");
1889 aprint_normal(": %s\n", bp->bp_name);
1890
1891 /*
1892 * Map control/status registers.
1893 */
1894 DPRINTFN(5, ("Map control/status regs\n"));
1895 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1896 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1897 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1898 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1899
1900 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1901 aprint_error("%s: failed to enable memory mapping!\n",
1902 sc->bge_dev.dv_xname);
1903 return;
1904 }
1905
1906 DPRINTFN(5, ("pci_mem_find\n"));
1907 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1908 switch (memtype) {
1909 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1910 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1911 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1912 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1913 &memaddr, &memsize) == 0)
1914 break;
1915 default:
1916 aprint_error("%s: can't find mem space\n",
1917 sc->bge_dev.dv_xname);
1918 return;
1919 }
1920
1921 DPRINTFN(5, ("pci_intr_map\n"));
1922 if (pci_intr_map(pa, &ih)) {
1923 aprint_error("%s: couldn't map interrupt\n",
1924 sc->bge_dev.dv_xname);
1925 return;
1926 }
1927
1928 DPRINTFN(5, ("pci_intr_string\n"));
1929 intrstr = pci_intr_string(pc, ih);
1930
1931 DPRINTFN(5, ("pci_intr_establish\n"));
1932 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1933
1934 if (sc->bge_intrhand == NULL) {
1935 aprint_error("%s: couldn't establish interrupt",
1936 sc->bge_dev.dv_xname);
1937 if (intrstr != NULL)
1938 aprint_normal(" at %s", intrstr);
1939 aprint_normal("\n");
1940 return;
1941 }
1942 aprint_normal("%s: interrupting at %s\n",
1943 sc->bge_dev.dv_xname, intrstr);
1944
1945 /*
1946 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
1947 * can clobber the chip's PCI config-space power control registers,
1948 * leaving the card in D3 powersave state.
1949 * We do not have memory-mapped registers in this state,
1950 * so force device into D0 state before starting initialization.
1951 */
1952 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
1953 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
1954 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
1955 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
1956 DELAY(1000); /* 27 usec is allegedly sufficent */
1957
1958 /* Try to reset the chip. */
1959 DPRINTFN(5, ("bge_reset\n"));
1960 bge_reset(sc);
1961
1962 if (bge_chipinit(sc)) {
1963 aprint_error("%s: chip initialization failed\n",
1964 sc->bge_dev.dv_xname);
1965 bge_release_resources(sc);
1966 return;
1967 }
1968
1969 /*
1970 * Get station address from the EEPROM.
1971 */
1972 mac_addr = bge_readmem_ind(sc, 0x0c14);
1973 if ((mac_addr >> 16) == 0x484b) {
1974 eaddr[0] = (u_char)(mac_addr >> 8);
1975 eaddr[1] = (u_char)(mac_addr >> 0);
1976 mac_addr = bge_readmem_ind(sc, 0x0c18);
1977 eaddr[2] = (u_char)(mac_addr >> 24);
1978 eaddr[3] = (u_char)(mac_addr >> 16);
1979 eaddr[4] = (u_char)(mac_addr >> 8);
1980 eaddr[5] = (u_char)(mac_addr >> 0);
1981 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
1982 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1983 aprint_error("%s: failed to read station address\n",
1984 sc->bge_dev.dv_xname);
1985 bge_release_resources(sc);
1986 return;
1987 }
1988
1989 /*
1990 * Save ASIC rev. Look up any quirks associated with this
1991 * ASIC.
1992 */
1993 sc->bge_asicrev =
1994 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
1995 BGE_PCIMISCCTL_ASICREV;
1996 br = bge_lookup_rev(sc->bge_asicrev);
1997
1998 aprint_normal("%s: ", sc->bge_dev.dv_xname);
1999 if (br == NULL) {
2000 aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
2001 sc->bge_quirks = 0;
2002 } else {
2003 aprint_normal("ASIC %s", br->br_name);
2004 sc->bge_quirks = br->br_quirks;
2005 }
2006 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2007
2008 /* Allocate the general information block and ring buffers. */
2009 sc->bge_dmatag = pa->pa_dmat;
2010 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2011 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2012 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2013 aprint_error("%s: can't alloc rx buffers\n",
2014 sc->bge_dev.dv_xname);
2015 return;
2016 }
2017 DPRINTFN(5, ("bus_dmamem_map\n"));
2018 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2019 sizeof(struct bge_ring_data), &kva,
2020 BUS_DMA_NOWAIT)) {
2021 aprint_error("%s: can't map dma buffers (%d bytes)\n",
2022 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2023 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2024 return;
2025 }
2026 DPRINTFN(5, ("bus_dmamem_create\n"));
2027 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2028 sizeof(struct bge_ring_data), 0,
2029 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2030 aprint_error("%s: can't create dma map\n",
2031 sc->bge_dev.dv_xname);
2032 bus_dmamem_unmap(sc->bge_dmatag, kva,
2033 sizeof(struct bge_ring_data));
2034 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2035 return;
2036 }
2037 DPRINTFN(5, ("bus_dmamem_load\n"));
2038 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2039 sizeof(struct bge_ring_data), NULL,
2040 BUS_DMA_NOWAIT)) {
2041 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2042 bus_dmamem_unmap(sc->bge_dmatag, kva,
2043 sizeof(struct bge_ring_data));
2044 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2045 return;
2046 }
2047
2048 DPRINTFN(5, ("bzero\n"));
2049 sc->bge_rdata = (struct bge_ring_data *)kva;
2050
2051 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2052
2053 /* Try to allocate memory for jumbo buffers. */
2054 if (bge_alloc_jumbo_mem(sc)) {
2055 aprint_error("%s: jumbo buffer allocation failed\n",
2056 sc->bge_dev.dv_xname);
2057 } else
2058 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2059
2060 /* Set default tuneable values. */
2061 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2062 sc->bge_rx_coal_ticks = 150;
2063 sc->bge_rx_max_coal_bds = 64;
2064 #ifdef ORIG_WPAUL_VALUES
2065 sc->bge_tx_coal_ticks = 150;
2066 sc->bge_tx_max_coal_bds = 128;
2067 #else
2068 sc->bge_tx_coal_ticks = 300;
2069 sc->bge_tx_max_coal_bds = 400;
2070 #endif
2071
2072 /* Set up ifnet structure */
2073 ifp = &sc->ethercom.ec_if;
2074 ifp->if_softc = sc;
2075 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2076 ifp->if_ioctl = bge_ioctl;
2077 ifp->if_start = bge_start;
2078 ifp->if_init = bge_init;
2079 ifp->if_watchdog = bge_watchdog;
2080 IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2081 IFQ_SET_READY(&ifp->if_snd);
2082 DPRINTFN(5, ("bcopy\n"));
2083 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2084
2085 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2086 sc->ethercom.ec_if.if_capabilities |=
2087 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2088 sc->ethercom.ec_capabilities |=
2089 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2090
2091 /*
2092 * Do MII setup.
2093 */
2094 DPRINTFN(5, ("mii setup\n"));
2095 sc->bge_mii.mii_ifp = ifp;
2096 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2097 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2098 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2099
2100 /*
2101 * Figure out what sort of media we have by checking the
2102 * hardware config word in the first 32k of NIC internal memory,
2103 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2104 * cards, this value appears to be unset. If that's the
2105 * case, we have to rely on identifying the NIC by its PCI
2106 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2107 */
2108 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2109 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2110 } else {
2111 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2112 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2113 hwcfg = be32toh(hwcfg);
2114 }
2115 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2116 sc->bge_tbi = 1;
2117
2118 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2119 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2120 SK_SUBSYSID_9D41)
2121 sc->bge_tbi = 1;
2122
2123 if (sc->bge_tbi) {
2124 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2125 bge_ifmedia_sts);
2126 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2127 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2128 0, NULL);
2129 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2130 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2131 } else {
2132 /*
2133 * Do transceiver setup.
2134 */
2135 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2136 bge_ifmedia_sts);
2137 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2138 MII_PHY_ANY, MII_OFFSET_ANY, 0);
2139
2140 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2141 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2142 ifmedia_add(&sc->bge_mii.mii_media,
2143 IFM_ETHER|IFM_MANUAL, 0, NULL);
2144 ifmedia_set(&sc->bge_mii.mii_media,
2145 IFM_ETHER|IFM_MANUAL);
2146 } else
2147 ifmedia_set(&sc->bge_mii.mii_media,
2148 IFM_ETHER|IFM_AUTO);
2149 }
2150
2151 /*
2152 * When using the BCM5701 in PCI-X mode, data corruption has
2153 * been observed in the first few bytes of some received packets.
2154 * Aligning the packet buffer in memory eliminates the corruption.
2155 * Unfortunately, this misaligns the packet payloads. On platforms
2156 * which do not support unaligned accesses, we will realign the
2157 * payloads by copying the received packets.
2158 */
2159 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2160 /* If in PCI-X mode, work around the alignment bug. */
2161 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2162 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2163 BGE_PCISTATE_PCI_BUSSPEED)
2164 sc->bge_rx_alignment_bug = 1;
2165 }
2166
2167 /*
2168 * Call MI attach routine.
2169 */
2170 DPRINTFN(5, ("if_attach\n"));
2171 if_attach(ifp);
2172 DPRINTFN(5, ("ether_ifattach\n"));
2173 ether_ifattach(ifp, eaddr);
2174 DPRINTFN(5, ("callout_init\n"));
2175 callout_init(&sc->bge_timeout);
2176 }
2177
2178 void
2179 bge_release_resources(sc)
2180 struct bge_softc *sc;
2181 {
2182 if (sc->bge_vpd_prodname != NULL)
2183 free(sc->bge_vpd_prodname, M_DEVBUF);
2184
2185 if (sc->bge_vpd_readonly != NULL)
2186 free(sc->bge_vpd_readonly, M_DEVBUF);
2187 }
2188
2189 void
2190 bge_reset(sc)
2191 struct bge_softc *sc;
2192 {
2193 struct pci_attach_args *pa = &sc->bge_pa;
2194 u_int32_t cachesize, command, pcistate;
2195 int i, val = 0;
2196
2197 /* Save some important PCI state. */
2198 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2199 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2200 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2201
2202 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2203 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2204 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2205
2206 /* Issue global reset */
2207 bge_writereg_ind(sc, BGE_MISC_CFG,
2208 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2209
2210 DELAY(1000);
2211
2212 /* Reset some of the PCI state that got zapped by reset */
2213 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2214 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2215 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2216 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2217 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2218 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2219
2220 /* Enable memory arbiter. */
2221 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2222
2223 /*
2224 * Prevent PXE restart: write a magic number to the
2225 * general communications memory at 0xB50.
2226 */
2227 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2228
2229 /*
2230 * Poll the value location we just wrote until
2231 * we see the 1's complement of the magic number.
2232 * This indicates that the firmware initialization
2233 * is complete.
2234 */
2235 for (i = 0; i < 750; i++) {
2236 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2237 if (val == ~BGE_MAGIC_NUMBER)
2238 break;
2239 DELAY(1000);
2240 }
2241
2242 if (i == 750) {
2243 printf("%s: firmware handshake timed out, val = %x\n",
2244 sc->bge_dev.dv_xname, val);
2245 return;
2246 }
2247
2248 /*
2249 * XXX Wait for the value of the PCISTATE register to
2250 * return to its original pre-reset state. This is a
2251 * fairly good indicator of reset completion. If we don't
2252 * wait for the reset to fully complete, trying to read
2253 * from the device's non-PCI registers may yield garbage
2254 * results.
2255 */
2256 for (i = 0; i < BGE_TIMEOUT; i++) {
2257 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2258 pcistate)
2259 break;
2260 DELAY(10);
2261 }
2262
2263 /* Enable memory arbiter. */
2264 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2265
2266 /* Fix up byte swapping */
2267 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2268
2269 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2270
2271 DELAY(10000);
2272 }
2273
2274 /*
2275 * Frame reception handling. This is called if there's a frame
2276 * on the receive return list.
2277 *
2278 * Note: we have to be able to handle two possibilities here:
2279 * 1) the frame is from the jumbo recieve ring
2280 * 2) the frame is from the standard receive ring
2281 */
2282
2283 void
2284 bge_rxeof(sc)
2285 struct bge_softc *sc;
2286 {
2287 struct ifnet *ifp;
2288 int stdcnt = 0, jumbocnt = 0;
2289 int have_tag = 0;
2290 u_int16_t vlan_tag = 0;
2291 bus_dmamap_t dmamap;
2292 bus_addr_t offset, toff;
2293 bus_size_t tlen;
2294 int tosync;
2295
2296 ifp = &sc->ethercom.ec_if;
2297
2298 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2299 offsetof(struct bge_ring_data, bge_status_block),
2300 sizeof (struct bge_status_block),
2301 BUS_DMASYNC_POSTREAD);
2302
2303 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2304 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2305 sc->bge_rx_saved_considx;
2306
2307 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2308
2309 if (tosync < 0) {
2310 tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
2311 sizeof (struct bge_rx_bd);
2312 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2313 toff, tlen, BUS_DMASYNC_POSTREAD);
2314 tosync = -tosync;
2315 }
2316
2317 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2318 offset, tosync * sizeof (struct bge_rx_bd),
2319 BUS_DMASYNC_POSTREAD);
2320
2321 while(sc->bge_rx_saved_considx !=
2322 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2323 struct bge_rx_bd *cur_rx;
2324 u_int32_t rxidx;
2325 struct mbuf *m = NULL;
2326
2327 cur_rx = &sc->bge_rdata->
2328 bge_rx_return_ring[sc->bge_rx_saved_considx];
2329
2330 rxidx = cur_rx->bge_idx;
2331 BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2332
2333 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2334 have_tag = 1;
2335 vlan_tag = cur_rx->bge_vlan_tag;
2336 }
2337
2338 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2339 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2340 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2341 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2342 jumbocnt++;
2343 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2344 ifp->if_ierrors++;
2345 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2346 continue;
2347 }
2348 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2349 NULL)== ENOBUFS) {
2350 ifp->if_ierrors++;
2351 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2352 continue;
2353 }
2354 } else {
2355 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2356 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2357 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2358 stdcnt++;
2359 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2360 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2361 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2362 ifp->if_ierrors++;
2363 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2364 continue;
2365 }
2366 if (bge_newbuf_std(sc, sc->bge_std,
2367 NULL, dmamap) == ENOBUFS) {
2368 ifp->if_ierrors++;
2369 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2370 continue;
2371 }
2372 }
2373
2374 ifp->if_ipackets++;
2375 #ifndef __NO_STRICT_ALIGNMENT
2376 /*
2377 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2378 * the Rx buffer has the layer-2 header unaligned.
2379 * If our CPU requires alignment, re-align by copying.
2380 */
2381 if (sc->bge_rx_alignment_bug) {
2382 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2383 cur_rx->bge_len);
2384 m->m_data += ETHER_ALIGN;
2385 }
2386 #endif
2387
2388 m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2389 m->m_pkthdr.rcvif = ifp;
2390
2391 #if NBPFILTER > 0
2392 /*
2393 * Handle BPF listeners. Let the BPF user see the packet.
2394 */
2395 if (ifp->if_bpf)
2396 bpf_mtap(ifp->if_bpf, m);
2397 #endif
2398
2399 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
2400 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2401 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2402 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2403 #if 0 /* XXX appears to be broken */
2404 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2405 m->m_pkthdr.csum_data =
2406 cur_rx->bge_tcp_udp_csum;
2407 m->m_pkthdr.csum_flags |=
2408 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2409 }
2410 #endif
2411 }
2412
2413 /*
2414 * If we received a packet with a vlan tag, pass it
2415 * to vlan_input() instead of ether_input().
2416 */
2417 if (have_tag) {
2418 struct m_tag *mtag;
2419
2420 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2421 M_NOWAIT);
2422 if (mtag != NULL) {
2423 *(u_int *)(mtag + 1) = vlan_tag;
2424 m_tag_prepend(m, mtag);
2425 have_tag = vlan_tag = 0;
2426 } else {
2427 printf("%s: no mbuf for tag\n", ifp->if_xname);
2428 m_freem(m);
2429 have_tag = vlan_tag = 0;
2430 continue;
2431 }
2432 }
2433 (*ifp->if_input)(ifp, m);
2434 }
2435
2436 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2437 if (stdcnt)
2438 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2439 if (jumbocnt)
2440 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2441 }
2442
2443 void
2444 bge_txeof(sc)
2445 struct bge_softc *sc;
2446 {
2447 struct bge_tx_bd *cur_tx = NULL;
2448 struct ifnet *ifp;
2449 struct txdmamap_pool_entry *dma;
2450 bus_addr_t offset, toff;
2451 bus_size_t tlen;
2452 int tosync;
2453 struct mbuf *m;
2454
2455 ifp = &sc->ethercom.ec_if;
2456
2457 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2458 offsetof(struct bge_ring_data, bge_status_block),
2459 sizeof (struct bge_status_block),
2460 BUS_DMASYNC_POSTREAD);
2461
2462 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2463 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2464 sc->bge_tx_saved_considx;
2465
2466 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2467
2468 if (tosync < 0) {
2469 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2470 sizeof (struct bge_tx_bd);
2471 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2472 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2473 tosync = -tosync;
2474 }
2475
2476 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2477 offset, tosync * sizeof (struct bge_tx_bd),
2478 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2479
2480 /*
2481 * Go through our tx ring and free mbufs for those
2482 * frames that have been sent.
2483 */
2484 while (sc->bge_tx_saved_considx !=
2485 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2486 u_int32_t idx = 0;
2487
2488 idx = sc->bge_tx_saved_considx;
2489 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2490 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2491 ifp->if_opackets++;
2492 m = sc->bge_cdata.bge_tx_chain[idx];
2493 if (m != NULL) {
2494 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2495 dma = sc->txdma[idx];
2496 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2497 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2498 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2499 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2500 sc->txdma[idx] = NULL;
2501
2502 m_freem(m);
2503 }
2504 sc->bge_txcnt--;
2505 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2506 ifp->if_timer = 0;
2507 }
2508
2509 if (cur_tx != NULL)
2510 ifp->if_flags &= ~IFF_OACTIVE;
2511 }
2512
2513 int
2514 bge_intr(xsc)
2515 void *xsc;
2516 {
2517 struct bge_softc *sc;
2518 struct ifnet *ifp;
2519
2520 sc = xsc;
2521 ifp = &sc->ethercom.ec_if;
2522
2523 #ifdef notdef
2524 /* Avoid this for now -- checking this register is expensive. */
2525 /* Make sure this is really our interrupt. */
2526 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2527 return (0);
2528 #endif
2529 /* Ack interrupt and stop others from occuring. */
2530 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2531
2532 /*
2533 * Process link state changes.
2534 * Grrr. The link status word in the status block does
2535 * not work correctly on the BCM5700 rev AX and BX chips,
2536 * according to all avaibable information. Hence, we have
2537 * to enable MII interrupts in order to properly obtain
2538 * async link changes. Unfortunately, this also means that
2539 * we have to read the MAC status register to detect link
2540 * changes, thereby adding an additional register access to
2541 * the interrupt handler.
2542 */
2543
2544 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2545 u_int32_t status;
2546
2547 status = CSR_READ_4(sc, BGE_MAC_STS);
2548 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2549 sc->bge_link = 0;
2550 callout_stop(&sc->bge_timeout);
2551 bge_tick(sc);
2552 /* Clear the interrupt */
2553 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2554 BGE_EVTENB_MI_INTERRUPT);
2555 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2556 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2557 BRGPHY_INTRS);
2558 }
2559 } else {
2560 if (sc->bge_rdata->bge_status_block.bge_status &
2561 BGE_STATFLAG_LINKSTATE_CHANGED) {
2562 sc->bge_link = 0;
2563 callout_stop(&sc->bge_timeout);
2564 bge_tick(sc);
2565 /* Clear the interrupt */
2566 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2567 BGE_MACSTAT_CFG_CHANGED);
2568 }
2569 }
2570
2571 if (ifp->if_flags & IFF_RUNNING) {
2572 /* Check RX return ring producer/consumer */
2573 bge_rxeof(sc);
2574
2575 /* Check TX ring producer/consumer */
2576 bge_txeof(sc);
2577 }
2578
2579 bge_handle_events(sc);
2580
2581 /* Re-enable interrupts. */
2582 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2583
2584 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2585 bge_start(ifp);
2586
2587 return (1);
2588 }
2589
2590 void
2591 bge_tick(xsc)
2592 void *xsc;
2593 {
2594 struct bge_softc *sc = xsc;
2595 struct mii_data *mii = &sc->bge_mii;
2596 struct ifmedia *ifm = NULL;
2597 struct ifnet *ifp = &sc->ethercom.ec_if;
2598 int s;
2599
2600 s = splnet();
2601
2602 bge_stats_update(sc);
2603 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2604 if (sc->bge_link) {
2605 splx(s);
2606 return;
2607 }
2608
2609 if (sc->bge_tbi) {
2610 ifm = &sc->bge_ifmedia;
2611 if (CSR_READ_4(sc, BGE_MAC_STS) &
2612 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2613 sc->bge_link++;
2614 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2615 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2616 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2617 bge_start(ifp);
2618 }
2619 splx(s);
2620 return;
2621 }
2622
2623 mii_tick(mii);
2624
2625 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2626 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2627 sc->bge_link++;
2628 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2629 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2630 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2631 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2632 bge_start(ifp);
2633 }
2634
2635 splx(s);
2636 }
2637
2638 void
2639 bge_stats_update(sc)
2640 struct bge_softc *sc;
2641 {
2642 struct ifnet *ifp = &sc->ethercom.ec_if;
2643 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2644
2645 #define READ_STAT(sc, stats, stat) \
2646 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2647
2648 ifp->if_collisions +=
2649 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2650 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2651 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2652 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2653 ifp->if_collisions;
2654
2655 #undef READ_STAT
2656
2657 #ifdef notdef
2658 ifp->if_collisions +=
2659 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2660 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2661 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2662 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2663 ifp->if_collisions;
2664 #endif
2665 }
2666
2667 /*
2668 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2669 * pointers to descriptors.
2670 */
2671 int
2672 bge_encap(sc, m_head, txidx)
2673 struct bge_softc *sc;
2674 struct mbuf *m_head;
2675 u_int32_t *txidx;
2676 {
2677 struct bge_tx_bd *f = NULL;
2678 u_int32_t frag, cur, cnt = 0;
2679 u_int16_t csum_flags = 0;
2680 struct txdmamap_pool_entry *dma;
2681 bus_dmamap_t dmamap;
2682 int i = 0;
2683 struct m_tag *mtag;
2684 struct mbuf *prev, *m;
2685 int totlen, prevlen;
2686
2687 cur = frag = *txidx;
2688
2689 if (m_head->m_pkthdr.csum_flags) {
2690 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2691 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2692 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2693 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2694 }
2695
2696 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
2697 goto doit;
2698 /*
2699 * bcm5700 Revision B silicon cannot handle DMA descriptors with
2700 * less than eight bytes. If we encounter a teeny mbuf
2701 * at the end of a chain, we can pad. Otherwise, copy.
2702 */
2703 prev = NULL;
2704 totlen = 0;
2705 for (m = m_head; m != NULL; prev = m,m = m->m_next) {
2706 int mlen = m->m_len;
2707
2708 totlen += mlen;
2709 if (mlen == 0) {
2710 /* print a warning? */
2711 continue;
2712 }
2713 if (mlen >= 8)
2714 continue;
2715
2716 /* If we get here, mbuf data is too small for DMA engine. */
2717 if (m->m_next != 0) {
2718 /* Internal frag. If fits in prev, copy it there. */
2719 if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
2720 !M_READONLY(prev)) {
2721 bcopy(m->m_data,
2722 prev->m_data+prev->m_len,
2723 mlen);
2724 prev->m_len += mlen;
2725 m->m_len = 0;
2726 MFREE(m, prev->m_next); /* XXX stitch chain */
2727 m = prev;
2728 continue;
2729 } else {
2730 struct mbuf *n;
2731 /* slow copy */
2732 slowcopy:
2733 n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
2734 m_freem(m_head);
2735 if (n == 0)
2736 return 0;
2737 m_head = n;
2738 goto doit;
2739 }
2740 } else if ((totlen -mlen +8) >= 1500) {
2741 goto slowcopy;
2742 }
2743 prevlen = m->m_len;
2744 }
2745
2746 doit:
2747 dma = SLIST_FIRST(&sc->txdma_list);
2748 if (dma == NULL)
2749 return ENOBUFS;
2750 dmamap = dma->dmamap;
2751
2752 /*
2753 * Start packing the mbufs in this chain into
2754 * the fragment pointers. Stop when we run out
2755 * of fragments or hit the end of the mbuf chain.
2756 */
2757 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2758 BUS_DMA_NOWAIT))
2759 return(ENOBUFS);
2760
2761 mtag = sc->ethercom.ec_nvlans ?
2762 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
2763
2764 for (i = 0; i < dmamap->dm_nsegs; i++) {
2765 f = &sc->bge_rdata->bge_tx_ring[frag];
2766 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2767 break;
2768 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2769 f->bge_len = dmamap->dm_segs[i].ds_len;
2770 f->bge_flags = csum_flags;
2771
2772 if (mtag != NULL) {
2773 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2774 f->bge_vlan_tag = *(u_int *)(mtag + 1);
2775 } else {
2776 f->bge_vlan_tag = 0;
2777 }
2778 /*
2779 * Sanity check: avoid coming within 16 descriptors
2780 * of the end of the ring.
2781 */
2782 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2783 return(ENOBUFS);
2784 cur = frag;
2785 BGE_INC(frag, BGE_TX_RING_CNT);
2786 cnt++;
2787 }
2788
2789 if (i < dmamap->dm_nsegs)
2790 return ENOBUFS;
2791
2792 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2793 BUS_DMASYNC_PREWRITE);
2794
2795 if (frag == sc->bge_tx_saved_considx)
2796 return(ENOBUFS);
2797
2798 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2799 sc->bge_cdata.bge_tx_chain[cur] = m_head;
2800 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2801 sc->txdma[cur] = dma;
2802 sc->bge_txcnt += cnt;
2803
2804 *txidx = frag;
2805
2806 return(0);
2807 }
2808
2809 /*
2810 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2811 * to the mbuf data regions directly in the transmit descriptors.
2812 */
2813 void
2814 bge_start(ifp)
2815 struct ifnet *ifp;
2816 {
2817 struct bge_softc *sc;
2818 struct mbuf *m_head = NULL;
2819 u_int32_t prodidx = 0;
2820 int pkts = 0;
2821
2822 sc = ifp->if_softc;
2823
2824 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2825 return;
2826
2827 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2828
2829 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2830 IFQ_POLL(&ifp->if_snd, m_head);
2831 if (m_head == NULL)
2832 break;
2833
2834 #if 0
2835 /*
2836 * XXX
2837 * safety overkill. If this is a fragmented packet chain
2838 * with delayed TCP/UDP checksums, then only encapsulate
2839 * it if we have enough descriptors to handle the entire
2840 * chain at once.
2841 * (paranoia -- may not actually be needed)
2842 */
2843 if (m_head->m_flags & M_FIRSTFRAG &&
2844 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2845 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2846 m_head->m_pkthdr.csum_data + 16) {
2847 ifp->if_flags |= IFF_OACTIVE;
2848 break;
2849 }
2850 }
2851 #endif
2852
2853 /*
2854 * Pack the data into the transmit ring. If we
2855 * don't have room, set the OACTIVE flag and wait
2856 * for the NIC to drain the ring.
2857 */
2858 if (bge_encap(sc, m_head, &prodidx)) {
2859 ifp->if_flags |= IFF_OACTIVE;
2860 break;
2861 }
2862
2863 /* now we are committed to transmit the packet */
2864 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2865 pkts++;
2866
2867 #if NBPFILTER > 0
2868 /*
2869 * If there's a BPF listener, bounce a copy of this frame
2870 * to him.
2871 */
2872 if (ifp->if_bpf)
2873 bpf_mtap(ifp->if_bpf, m_head);
2874 #endif
2875 }
2876 if (pkts == 0)
2877 return;
2878
2879 /* Transmit */
2880 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2881 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
2882 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2883
2884 /*
2885 * Set a timeout in case the chip goes out to lunch.
2886 */
2887 ifp->if_timer = 5;
2888 }
2889
2890 int
2891 bge_init(ifp)
2892 struct ifnet *ifp;
2893 {
2894 struct bge_softc *sc = ifp->if_softc;
2895 u_int16_t *m;
2896 int s, error;
2897
2898 s = splnet();
2899
2900 ifp = &sc->ethercom.ec_if;
2901
2902 /* Cancel pending I/O and flush buffers. */
2903 bge_stop(sc);
2904 bge_reset(sc);
2905 bge_chipinit(sc);
2906
2907 /*
2908 * Init the various state machines, ring
2909 * control blocks and firmware.
2910 */
2911 error = bge_blockinit(sc);
2912 if (error != 0) {
2913 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2914 error);
2915 splx(s);
2916 return error;
2917 }
2918
2919 ifp = &sc->ethercom.ec_if;
2920
2921 /* Specify MTU. */
2922 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2923 ETHER_HDR_LEN + ETHER_CRC_LEN);
2924
2925 /* Load our MAC address. */
2926 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2927 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2928 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2929
2930 /* Enable or disable promiscuous mode as needed. */
2931 if (ifp->if_flags & IFF_PROMISC) {
2932 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2933 } else {
2934 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2935 }
2936
2937 /* Program multicast filter. */
2938 bge_setmulti(sc);
2939
2940 /* Init RX ring. */
2941 bge_init_rx_ring_std(sc);
2942
2943 /* Init jumbo RX ring. */
2944 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2945 bge_init_rx_ring_jumbo(sc);
2946
2947 /* Init our RX return ring index */
2948 sc->bge_rx_saved_considx = 0;
2949
2950 /* Init TX ring. */
2951 bge_init_tx_ring(sc);
2952
2953 /* Turn on transmitter */
2954 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2955
2956 /* Turn on receiver */
2957 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2958
2959 /* Tell firmware we're alive. */
2960 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2961
2962 /* Enable host interrupts. */
2963 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2964 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2965 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2966
2967 bge_ifmedia_upd(ifp);
2968
2969 ifp->if_flags |= IFF_RUNNING;
2970 ifp->if_flags &= ~IFF_OACTIVE;
2971
2972 splx(s);
2973
2974 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2975
2976 return 0;
2977 }
2978
2979 /*
2980 * Set media options.
2981 */
2982 int
2983 bge_ifmedia_upd(ifp)
2984 struct ifnet *ifp;
2985 {
2986 struct bge_softc *sc = ifp->if_softc;
2987 struct mii_data *mii = &sc->bge_mii;
2988 struct ifmedia *ifm = &sc->bge_ifmedia;
2989
2990 /* If this is a 1000baseX NIC, enable the TBI port. */
2991 if (sc->bge_tbi) {
2992 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2993 return(EINVAL);
2994 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2995 case IFM_AUTO:
2996 break;
2997 case IFM_1000_SX:
2998 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2999 BGE_CLRBIT(sc, BGE_MAC_MODE,
3000 BGE_MACMODE_HALF_DUPLEX);
3001 } else {
3002 BGE_SETBIT(sc, BGE_MAC_MODE,
3003 BGE_MACMODE_HALF_DUPLEX);
3004 }
3005 break;
3006 default:
3007 return(EINVAL);
3008 }
3009 return(0);
3010 }
3011
3012 sc->bge_link = 0;
3013 mii_mediachg(mii);
3014
3015 return(0);
3016 }
3017
3018 /*
3019 * Report current media status.
3020 */
3021 void
3022 bge_ifmedia_sts(ifp, ifmr)
3023 struct ifnet *ifp;
3024 struct ifmediareq *ifmr;
3025 {
3026 struct bge_softc *sc = ifp->if_softc;
3027 struct mii_data *mii = &sc->bge_mii;
3028
3029 if (sc->bge_tbi) {
3030 ifmr->ifm_status = IFM_AVALID;
3031 ifmr->ifm_active = IFM_ETHER;
3032 if (CSR_READ_4(sc, BGE_MAC_STS) &
3033 BGE_MACSTAT_TBI_PCS_SYNCHED)
3034 ifmr->ifm_status |= IFM_ACTIVE;
3035 ifmr->ifm_active |= IFM_1000_SX;
3036 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3037 ifmr->ifm_active |= IFM_HDX;
3038 else
3039 ifmr->ifm_active |= IFM_FDX;
3040 return;
3041 }
3042
3043 mii_pollstat(mii);
3044 ifmr->ifm_active = mii->mii_media_active;
3045 ifmr->ifm_status = mii->mii_media_status;
3046 }
3047
3048 int
3049 bge_ioctl(ifp, command, data)
3050 struct ifnet *ifp;
3051 u_long command;
3052 caddr_t data;
3053 {
3054 struct bge_softc *sc = ifp->if_softc;
3055 struct ifreq *ifr = (struct ifreq *) data;
3056 int s, error = 0;
3057 struct mii_data *mii;
3058
3059 s = splnet();
3060
3061 switch(command) {
3062 case SIOCSIFFLAGS:
3063 if (ifp->if_flags & IFF_UP) {
3064 /*
3065 * If only the state of the PROMISC flag changed,
3066 * then just use the 'set promisc mode' command
3067 * instead of reinitializing the entire NIC. Doing
3068 * a full re-init means reloading the firmware and
3069 * waiting for it to start up, which may take a
3070 * second or two.
3071 */
3072 if (ifp->if_flags & IFF_RUNNING &&
3073 ifp->if_flags & IFF_PROMISC &&
3074 !(sc->bge_if_flags & IFF_PROMISC)) {
3075 BGE_SETBIT(sc, BGE_RX_MODE,
3076 BGE_RXMODE_RX_PROMISC);
3077 } else if (ifp->if_flags & IFF_RUNNING &&
3078 !(ifp->if_flags & IFF_PROMISC) &&
3079 sc->bge_if_flags & IFF_PROMISC) {
3080 BGE_CLRBIT(sc, BGE_RX_MODE,
3081 BGE_RXMODE_RX_PROMISC);
3082 } else
3083 bge_init(ifp);
3084 } else {
3085 if (ifp->if_flags & IFF_RUNNING) {
3086 bge_stop(sc);
3087 }
3088 }
3089 sc->bge_if_flags = ifp->if_flags;
3090 error = 0;
3091 break;
3092 case SIOCSIFMEDIA:
3093 case SIOCGIFMEDIA:
3094 if (sc->bge_tbi) {
3095 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3096 command);
3097 } else {
3098 mii = &sc->bge_mii;
3099 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3100 command);
3101 }
3102 error = 0;
3103 break;
3104 default:
3105 error = ether_ioctl(ifp, command, data);
3106 if (error == ENETRESET) {
3107 bge_setmulti(sc);
3108 error = 0;
3109 }
3110 break;
3111 }
3112
3113 splx(s);
3114
3115 return(error);
3116 }
3117
3118 void
3119 bge_watchdog(ifp)
3120 struct ifnet *ifp;
3121 {
3122 struct bge_softc *sc;
3123
3124 sc = ifp->if_softc;
3125
3126 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3127
3128 ifp->if_flags &= ~IFF_RUNNING;
3129 bge_init(ifp);
3130
3131 ifp->if_oerrors++;
3132 }
3133
3134 static void
3135 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3136 {
3137 int i;
3138
3139 BGE_CLRBIT(sc, reg, bit);
3140
3141 for (i = 0; i < BGE_TIMEOUT; i++) {
3142 if ((CSR_READ_4(sc, reg) & bit) == 0)
3143 return;
3144 delay(100);
3145 }
3146
3147 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3148 sc->bge_dev.dv_xname, (u_long) reg, bit);
3149 }
3150
3151 /*
3152 * Stop the adapter and free any mbufs allocated to the
3153 * RX and TX lists.
3154 */
3155 void
3156 bge_stop(sc)
3157 struct bge_softc *sc;
3158 {
3159 struct ifnet *ifp = &sc->ethercom.ec_if;
3160
3161 callout_stop(&sc->bge_timeout);
3162
3163 /*
3164 * Disable all of the receiver blocks
3165 */
3166 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3167 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3168 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3169 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3170 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3171 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3172 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3173
3174 /*
3175 * Disable all of the transmit blocks
3176 */
3177 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3178 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3179 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3180 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3181 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3182 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3183 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3184
3185 /*
3186 * Shut down all of the memory managers and related
3187 * state machines.
3188 */
3189 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3190 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3191 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3192
3193 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3194 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3195
3196 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3197 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3198
3199 /* Disable host interrupts. */
3200 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3201 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3202
3203 /*
3204 * Tell firmware we're shutting down.
3205 */
3206 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3207
3208 /* Free the RX lists. */
3209 bge_free_rx_ring_std(sc);
3210
3211 /* Free jumbo RX list. */
3212 bge_free_rx_ring_jumbo(sc);
3213
3214 /* Free TX buffers. */
3215 bge_free_tx_ring(sc);
3216
3217 /*
3218 * Isolate/power down the PHY.
3219 */
3220 if (!sc->bge_tbi)
3221 mii_down(&sc->bge_mii);
3222
3223 sc->bge_link = 0;
3224
3225 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3226
3227 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3228 }
3229
3230 /*
3231 * Stop all chip I/O so that the kernel's probe routines don't
3232 * get confused by errant DMAs when rebooting.
3233 */
3234 void
3235 bge_shutdown(xsc)
3236 void *xsc;
3237 {
3238 struct bge_softc *sc = (struct bge_softc *)xsc;
3239
3240 bge_stop(sc);
3241 bge_reset(sc);
3242 }
3243