Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.37
      1 /*	$NetBSD: if_bge.c,v 1.37 2003/03/07 18:57:53 jonathan Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include "bpfilter.h"
     82 #include "vlan.h"
     83 
     84 #include <sys/param.h>
     85 #include <sys/systm.h>
     86 #include <sys/callout.h>
     87 #include <sys/sockio.h>
     88 #include <sys/mbuf.h>
     89 #include <sys/malloc.h>
     90 #include <sys/kernel.h>
     91 #include <sys/device.h>
     92 #include <sys/socket.h>
     93 
     94 #include <net/if.h>
     95 #include <net/if_dl.h>
     96 #include <net/if_media.h>
     97 #include <net/if_ether.h>
     98 
     99 #ifdef INET
    100 #include <netinet/in.h>
    101 #include <netinet/in_systm.h>
    102 #include <netinet/in_var.h>
    103 #include <netinet/ip.h>
    104 #endif
    105 
    106 #if NBPFILTER > 0
    107 #include <net/bpf.h>
    108 #endif
    109 
    110 #include <dev/pci/pcireg.h>
    111 #include <dev/pci/pcivar.h>
    112 #include <dev/pci/pcidevs.h>
    113 
    114 #include <dev/mii/mii.h>
    115 #include <dev/mii/miivar.h>
    116 #include <dev/mii/miidevs.h>
    117 #include <dev/mii/brgphyreg.h>
    118 
    119 #include <dev/pci/if_bgereg.h>
    120 
    121 #include <uvm/uvm_extern.h>
    122 
    123 int bge_probe(struct device *, struct cfdata *, void *);
    124 void bge_attach(struct device *, struct device *, void *);
    125 void bge_release_resources(struct bge_softc *);
    126 void bge_txeof(struct bge_softc *);
    127 void bge_rxeof(struct bge_softc *);
    128 
    129 void bge_tick(void *);
    130 void bge_stats_update(struct bge_softc *);
    131 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    132 
    133 int bge_intr(void *);
    134 void bge_start(struct ifnet *);
    135 int bge_ioctl(struct ifnet *, u_long, caddr_t);
    136 int bge_init(struct ifnet *);
    137 void bge_stop(struct bge_softc *);
    138 void bge_watchdog(struct ifnet *);
    139 void bge_shutdown(void *);
    140 int bge_ifmedia_upd(struct ifnet *);
    141 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    142 
    143 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
    144 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
    145 
    146 void bge_setmulti(struct bge_softc *);
    147 
    148 void bge_handle_events(struct bge_softc *);
    149 int bge_alloc_jumbo_mem(struct bge_softc *);
    150 void bge_free_jumbo_mem(struct bge_softc *);
    151 void *bge_jalloc(struct bge_softc *);
    152 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
    153 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
    154 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    155 int bge_init_rx_ring_std(struct bge_softc *);
    156 void bge_free_rx_ring_std(struct bge_softc *);
    157 int bge_init_rx_ring_jumbo(struct bge_softc *);
    158 void bge_free_rx_ring_jumbo(struct bge_softc *);
    159 void bge_free_tx_ring(struct bge_softc *);
    160 int bge_init_tx_ring(struct bge_softc *);
    161 
    162 int bge_chipinit(struct bge_softc *);
    163 int bge_blockinit(struct bge_softc *);
    164 int bge_setpowerstate(struct bge_softc *, int);
    165 
    166 #ifdef notdef
    167 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
    168 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
    169 void bge_vpd_read(struct bge_softc *);
    170 #endif
    171 
    172 u_int32_t bge_readmem_ind(struct bge_softc *, int);
    173 void bge_writemem_ind(struct bge_softc *, int, int);
    174 #ifdef notdef
    175 u_int32_t bge_readreg_ind(struct bge_softc *, int);
    176 #endif
    177 void bge_writereg_ind(struct bge_softc *, int, int);
    178 
    179 int bge_miibus_readreg(struct device *, int, int);
    180 void bge_miibus_writereg(struct device *, int, int, int);
    181 void bge_miibus_statchg(struct device *);
    182 
    183 void bge_reset(struct bge_softc *);
    184 
    185 void bge_dump_status(struct bge_softc *);
    186 void bge_dump_rxbd(struct bge_rx_bd *);
    187 
    188 #define BGE_DEBUG
    189 #ifdef BGE_DEBUG
    190 #define DPRINTF(x)	if (bgedebug) printf x
    191 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    192 int	bgedebug = 0;
    193 #else
    194 #define DPRINTF(x)
    195 #define DPRINTFN(n,x)
    196 #endif
    197 
    198 /* Various chip quirks. */
    199 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    200 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    201 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    202 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    203 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    204 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    205 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    206 
    207 /* following bugs are common to bcm5700 rev B, all flavours */
    208 #define BGE_QUIRK_5700_COMMON \
    209 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    210 
    211 CFATTACH_DECL(bge, sizeof(struct bge_softc),
    212     bge_probe, bge_attach, NULL, NULL);
    213 
    214 u_int32_t
    215 bge_readmem_ind(sc, off)
    216 	struct bge_softc *sc;
    217 	int off;
    218 {
    219 	struct pci_attach_args	*pa = &(sc->bge_pa);
    220 	pcireg_t val;
    221 
    222 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    223 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    224 	return val;
    225 }
    226 
    227 void
    228 bge_writemem_ind(sc, off, val)
    229 	struct bge_softc *sc;
    230 	int off, val;
    231 {
    232 	struct pci_attach_args	*pa = &(sc->bge_pa);
    233 
    234 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    235 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    236 }
    237 
    238 #ifdef notdef
    239 u_int32_t
    240 bge_readreg_ind(sc, off)
    241 	struct bge_softc *sc;
    242 	int off;
    243 {
    244 	struct pci_attach_args	*pa = &(sc->bge_pa);
    245 
    246 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    247 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    248 }
    249 #endif
    250 
    251 void
    252 bge_writereg_ind(sc, off, val)
    253 	struct bge_softc *sc;
    254 	int off, val;
    255 {
    256 	struct pci_attach_args	*pa = &(sc->bge_pa);
    257 
    258 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    259 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    260 }
    261 
    262 #ifdef notdef
    263 u_int8_t
    264 bge_vpd_readbyte(sc, addr)
    265 	struct bge_softc *sc;
    266 	int addr;
    267 {
    268 	int i;
    269 	u_int32_t val;
    270 	struct pci_attach_args	*pa = &(sc->bge_pa);
    271 
    272 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    273 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    274 		DELAY(10);
    275 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    276 		    BGE_VPD_FLAG)
    277 			break;
    278 	}
    279 
    280 	if (i == BGE_TIMEOUT) {
    281 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    282 		return(0);
    283 	}
    284 
    285 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    286 
    287 	return((val >> ((addr % 4) * 8)) & 0xFF);
    288 }
    289 
    290 void
    291 bge_vpd_read_res(sc, res, addr)
    292 	struct bge_softc *sc;
    293 	struct vpd_res *res;
    294 	int addr;
    295 {
    296 	int i;
    297 	u_int8_t *ptr;
    298 
    299 	ptr = (u_int8_t *)res;
    300 	for (i = 0; i < sizeof(struct vpd_res); i++)
    301 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    302 }
    303 
    304 void
    305 bge_vpd_read(sc)
    306 	struct bge_softc *sc;
    307 {
    308 	int pos = 0, i;
    309 	struct vpd_res res;
    310 
    311 	if (sc->bge_vpd_prodname != NULL)
    312 		free(sc->bge_vpd_prodname, M_DEVBUF);
    313 	if (sc->bge_vpd_readonly != NULL)
    314 		free(sc->bge_vpd_readonly, M_DEVBUF);
    315 	sc->bge_vpd_prodname = NULL;
    316 	sc->bge_vpd_readonly = NULL;
    317 
    318 	bge_vpd_read_res(sc, &res, pos);
    319 
    320 	if (res.vr_id != VPD_RES_ID) {
    321 		printf("%s: bad VPD resource id: expected %x got %x\n",
    322 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    323 		return;
    324 	}
    325 
    326 	pos += sizeof(res);
    327 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    328 	if (sc->bge_vpd_prodname == NULL)
    329 		panic("bge_vpd_read");
    330 	for (i = 0; i < res.vr_len; i++)
    331 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    332 	sc->bge_vpd_prodname[i] = '\0';
    333 	pos += i;
    334 
    335 	bge_vpd_read_res(sc, &res, pos);
    336 
    337 	if (res.vr_id != VPD_RES_READ) {
    338 		printf("%s: bad VPD resource id: expected %x got %x\n",
    339 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    340 		return;
    341 	}
    342 
    343 	pos += sizeof(res);
    344 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    345 	if (sc->bge_vpd_readonly == NULL)
    346 		panic("bge_vpd_read");
    347 	for (i = 0; i < res.vr_len + 1; i++)
    348 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    349 }
    350 #endif
    351 
    352 /*
    353  * Read a byte of data stored in the EEPROM at address 'addr.' The
    354  * BCM570x supports both the traditional bitbang interface and an
    355  * auto access interface for reading the EEPROM. We use the auto
    356  * access method.
    357  */
    358 u_int8_t
    359 bge_eeprom_getbyte(sc, addr, dest)
    360 	struct bge_softc *sc;
    361 	int addr;
    362 	u_int8_t *dest;
    363 {
    364 	int i;
    365 	u_int32_t byte = 0;
    366 
    367 	/*
    368 	 * Enable use of auto EEPROM access so we can avoid
    369 	 * having to use the bitbang method.
    370 	 */
    371 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    372 
    373 	/* Reset the EEPROM, load the clock period. */
    374 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    375 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    376 	DELAY(20);
    377 
    378 	/* Issue the read EEPROM command. */
    379 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    380 
    381 	/* Wait for completion */
    382 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    383 		DELAY(10);
    384 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    385 			break;
    386 	}
    387 
    388 	if (i == BGE_TIMEOUT) {
    389 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    390 		return(0);
    391 	}
    392 
    393 	/* Get result. */
    394 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    395 
    396 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    397 
    398 	return(0);
    399 }
    400 
    401 /*
    402  * Read a sequence of bytes from the EEPROM.
    403  */
    404 int
    405 bge_read_eeprom(sc, dest, off, cnt)
    406 	struct bge_softc *sc;
    407 	caddr_t dest;
    408 	int off;
    409 	int cnt;
    410 {
    411 	int err = 0, i;
    412 	u_int8_t byte = 0;
    413 
    414 	for (i = 0; i < cnt; i++) {
    415 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    416 		if (err)
    417 			break;
    418 		*(dest + i) = byte;
    419 	}
    420 
    421 	return(err ? 1 : 0);
    422 }
    423 
    424 int
    425 bge_miibus_readreg(dev, phy, reg)
    426 	struct device *dev;
    427 	int phy, reg;
    428 {
    429 	struct bge_softc *sc = (struct bge_softc *)dev;
    430 	struct ifnet *ifp;
    431 	u_int32_t val;
    432 	u_int32_t saved_autopoll;
    433 	int i;
    434 
    435 	ifp = &sc->ethercom.ec_if;
    436 
    437 	/*
    438 	 * Several chips with builtin PHYs will incorrectly answer to
    439 	 * other PHY instances than the builtin PHY at id 1.
    440 	 */
    441 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    442 		return(0);
    443 
    444 	/* Reading with autopolling on may trigger PCI errors */
    445 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    446 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    447 		CSR_WRITE_4(sc, BGE_MI_MODE,
    448 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    449 		DELAY(40);
    450 	}
    451 
    452 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    453 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    454 
    455 	for (i = 0; i < BGE_TIMEOUT; i++) {
    456 		val = CSR_READ_4(sc, BGE_MI_COMM);
    457 		if (!(val & BGE_MICOMM_BUSY))
    458 			break;
    459 		delay(10);
    460 	}
    461 
    462 	if (i == BGE_TIMEOUT) {
    463 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    464 		val = 0;
    465 		goto done;
    466 	}
    467 
    468 	val = CSR_READ_4(sc, BGE_MI_COMM);
    469 
    470 done:
    471 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    472 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    473 		DELAY(40);
    474 	}
    475 
    476 	if (val & BGE_MICOMM_READFAIL)
    477 		return(0);
    478 
    479 	return(val & 0xFFFF);
    480 }
    481 
    482 void
    483 bge_miibus_writereg(dev, phy, reg, val)
    484 	struct device *dev;
    485 	int phy, reg, val;
    486 {
    487 	struct bge_softc *sc = (struct bge_softc *)dev;
    488 	u_int32_t saved_autopoll;
    489 	int i;
    490 
    491 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    492 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    493 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    494 		delay(40);
    495 		CSR_WRITE_4(sc, BGE_MI_MODE,
    496 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    497 		delay(10); /* 40 usec is supposed to be adequate */
    498 	}
    499 
    500 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    501 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    502 
    503 	for (i = 0; i < BGE_TIMEOUT; i++) {
    504 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    505 			break;
    506 		delay(10);
    507 	}
    508 
    509 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    510 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    511 		delay(40);
    512 	}
    513 
    514 	if (i == BGE_TIMEOUT) {
    515 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    516 	}
    517 }
    518 
    519 void
    520 bge_miibus_statchg(dev)
    521 	struct device *dev;
    522 {
    523 	struct bge_softc *sc = (struct bge_softc *)dev;
    524 	struct mii_data *mii = &sc->bge_mii;
    525 
    526 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    527 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    528 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    529 	} else {
    530 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    531 	}
    532 
    533 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    534 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    535 	} else {
    536 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    537 	}
    538 }
    539 
    540 /*
    541  * Handle events that have triggered interrupts.
    542  */
    543 void
    544 bge_handle_events(sc)
    545 	struct bge_softc		*sc;
    546 {
    547 
    548 	return;
    549 }
    550 
    551 /*
    552  * Memory management for jumbo frames.
    553  */
    554 
    555 int
    556 bge_alloc_jumbo_mem(sc)
    557 	struct bge_softc		*sc;
    558 {
    559 	caddr_t			ptr, kva;
    560 	bus_dma_segment_t	seg;
    561 	int		i, rseg, state, error;
    562 	struct bge_jpool_entry   *entry;
    563 
    564 	state = error = 0;
    565 
    566 	/* Grab a big chunk o' storage. */
    567 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    568 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    569 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    570 		return ENOBUFS;
    571 	}
    572 
    573 	state = 1;
    574 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    575 	    BUS_DMA_NOWAIT)) {
    576 		printf("%s: can't map dma buffers (%d bytes)\n",
    577 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    578 		error = ENOBUFS;
    579 		goto out;
    580 	}
    581 
    582 	state = 2;
    583 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    584 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    585 		printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
    586 		error = ENOBUFS;
    587 		goto out;
    588 	}
    589 
    590 	state = 3;
    591 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    592 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    593 		printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
    594 		error = ENOBUFS;
    595 		goto out;
    596 	}
    597 
    598 	state = 4;
    599 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    600 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
    601 
    602 	SLIST_INIT(&sc->bge_jfree_listhead);
    603 	SLIST_INIT(&sc->bge_jinuse_listhead);
    604 
    605 	/*
    606 	 * Now divide it up into 9K pieces and save the addresses
    607 	 * in an array.
    608 	 */
    609 	ptr = sc->bge_cdata.bge_jumbo_buf;
    610 	for (i = 0; i < BGE_JSLOTS; i++) {
    611 		sc->bge_cdata.bge_jslots[i] = ptr;
    612 		ptr += BGE_JLEN;
    613 		entry = malloc(sizeof(struct bge_jpool_entry),
    614 		    M_DEVBUF, M_NOWAIT);
    615 		if (entry == NULL) {
    616 			printf("%s: no memory for jumbo buffer queue!\n",
    617 			    sc->bge_dev.dv_xname);
    618 			error = ENOBUFS;
    619 			goto out;
    620 		}
    621 		entry->slot = i;
    622 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    623 				 entry, jpool_entries);
    624 	}
    625 out:
    626 	if (error != 0) {
    627 		switch (state) {
    628 		case 4:
    629 			bus_dmamap_unload(sc->bge_dmatag,
    630 			    sc->bge_cdata.bge_rx_jumbo_map);
    631 		case 3:
    632 			bus_dmamap_destroy(sc->bge_dmatag,
    633 			    sc->bge_cdata.bge_rx_jumbo_map);
    634 		case 2:
    635 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    636 		case 1:
    637 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    638 			break;
    639 		default:
    640 			break;
    641 		}
    642 	}
    643 
    644 	return error;
    645 }
    646 
    647 /*
    648  * Allocate a jumbo buffer.
    649  */
    650 void *
    651 bge_jalloc(sc)
    652 	struct bge_softc		*sc;
    653 {
    654 	struct bge_jpool_entry   *entry;
    655 
    656 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    657 
    658 	if (entry == NULL) {
    659 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    660 		return(NULL);
    661 	}
    662 
    663 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    664 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    665 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    666 }
    667 
    668 /*
    669  * Release a jumbo buffer.
    670  */
    671 void
    672 bge_jfree(m, buf, size, arg)
    673 	struct mbuf	*m;
    674 	caddr_t		buf;
    675 	size_t		size;
    676 	void		*arg;
    677 {
    678 	struct bge_jpool_entry *entry;
    679 	struct bge_softc *sc;
    680 	int i, s;
    681 
    682 	/* Extract the softc struct pointer. */
    683 	sc = (struct bge_softc *)arg;
    684 
    685 	if (sc == NULL)
    686 		panic("bge_jfree: can't find softc pointer!");
    687 
    688 	/* calculate the slot this buffer belongs to */
    689 
    690 	i = ((caddr_t)buf
    691 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    692 
    693 	if ((i < 0) || (i >= BGE_JSLOTS))
    694 		panic("bge_jfree: asked to free buffer that we don't manage!");
    695 
    696 	s = splvm();
    697 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    698 	if (entry == NULL)
    699 		panic("bge_jfree: buffer not in use!");
    700 	entry->slot = i;
    701 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    702 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    703 
    704 	if (__predict_true(m != NULL))
    705   		pool_cache_put(&mbpool_cache, m);
    706 	splx(s);
    707 }
    708 
    709 
    710 /*
    711  * Intialize a standard receive ring descriptor.
    712  */
    713 int
    714 bge_newbuf_std(sc, i, m, dmamap)
    715 	struct bge_softc	*sc;
    716 	int			i;
    717 	struct mbuf		*m;
    718 	bus_dmamap_t dmamap;
    719 {
    720 	struct mbuf		*m_new = NULL;
    721 	struct bge_rx_bd	*r;
    722 	int			error;
    723 
    724 	if (dmamap == NULL) {
    725 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    726 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    727 		if (error != 0)
    728 			return error;
    729 	}
    730 
    731 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    732 
    733 	if (m == NULL) {
    734 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    735 		if (m_new == NULL) {
    736 			return(ENOBUFS);
    737 		}
    738 
    739 		MCLGET(m_new, M_DONTWAIT);
    740 		if (!(m_new->m_flags & M_EXT)) {
    741 			m_freem(m_new);
    742 			return(ENOBUFS);
    743 		}
    744 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    745 		if (!sc->bge_rx_alignment_bug)
    746 		    m_adj(m_new, ETHER_ALIGN);
    747 
    748 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    749 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    750 			return(ENOBUFS);
    751 	} else {
    752 		m_new = m;
    753 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    754 		m_new->m_data = m_new->m_ext.ext_buf;
    755 		if (!sc->bge_rx_alignment_bug)
    756 		    m_adj(m_new, ETHER_ALIGN);
    757 	}
    758 
    759 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    760 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    761 	bge_set_hostaddr(&r->bge_addr,
    762 	    dmamap->dm_segs[0].ds_addr);
    763 	r->bge_flags = BGE_RXBDFLAG_END;
    764 	r->bge_len = m_new->m_len;
    765 	r->bge_idx = i;
    766 
    767 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    768 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    769 		i * sizeof (struct bge_rx_bd),
    770 	    sizeof (struct bge_rx_bd),
    771 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    772 
    773 	return(0);
    774 }
    775 
    776 /*
    777  * Initialize a jumbo receive ring descriptor. This allocates
    778  * a jumbo buffer from the pool managed internally by the driver.
    779  */
    780 int
    781 bge_newbuf_jumbo(sc, i, m)
    782 	struct bge_softc *sc;
    783 	int i;
    784 	struct mbuf *m;
    785 {
    786 	struct mbuf *m_new = NULL;
    787 	struct bge_rx_bd *r;
    788 
    789 	if (m == NULL) {
    790 		caddr_t			*buf = NULL;
    791 
    792 		/* Allocate the mbuf. */
    793 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    794 		if (m_new == NULL) {
    795 			return(ENOBUFS);
    796 		}
    797 
    798 		/* Allocate the jumbo buffer */
    799 		buf = bge_jalloc(sc);
    800 		if (buf == NULL) {
    801 			m_freem(m_new);
    802 			printf("%s: jumbo allocation failed "
    803 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    804 			return(ENOBUFS);
    805 		}
    806 
    807 		/* Attach the buffer to the mbuf. */
    808 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    809 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    810 		    bge_jfree, sc);
    811 	} else {
    812 		m_new = m;
    813 		m_new->m_data = m_new->m_ext.ext_buf;
    814 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    815 	}
    816 
    817 	if (!sc->bge_rx_alignment_bug)
    818 	    m_adj(m_new, ETHER_ALIGN);
    819 	/* Set up the descriptor. */
    820 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    821 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    822 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    823 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    824 	r->bge_len = m_new->m_len;
    825 	r->bge_idx = i;
    826 
    827 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    828 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    829 		i * sizeof (struct bge_rx_bd),
    830 	    sizeof (struct bge_rx_bd),
    831 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    832 
    833 	return(0);
    834 }
    835 
    836 /*
    837  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    838  * that's 1MB or memory, which is a lot. For now, we fill only the first
    839  * 256 ring entries and hope that our CPU is fast enough to keep up with
    840  * the NIC.
    841  */
    842 int
    843 bge_init_rx_ring_std(sc)
    844 	struct bge_softc *sc;
    845 {
    846 	int i;
    847 
    848 	if (sc->bge_flags & BGE_RXRING_VALID)
    849 		return 0;
    850 
    851 	for (i = 0; i < BGE_SSLOTS; i++) {
    852 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    853 			return(ENOBUFS);
    854 	}
    855 
    856 	sc->bge_std = i - 1;
    857 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
    858 
    859 	sc->bge_flags |= BGE_RXRING_VALID;
    860 
    861 	return(0);
    862 }
    863 
    864 void
    865 bge_free_rx_ring_std(sc)
    866 	struct bge_softc *sc;
    867 {
    868 	int i;
    869 
    870 	if (!(sc->bge_flags & BGE_RXRING_VALID))
    871 		return;
    872 
    873 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
    874 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
    875 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
    876 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
    877 			bus_dmamap_destroy(sc->bge_dmatag,
    878 			    sc->bge_cdata.bge_rx_std_map[i]);
    879 		}
    880 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
    881 		    sizeof(struct bge_rx_bd));
    882 	}
    883 
    884 	sc->bge_flags &= ~BGE_RXRING_VALID;
    885 }
    886 
    887 int
    888 bge_init_rx_ring_jumbo(sc)
    889 	struct bge_softc *sc;
    890 {
    891 	int i;
    892 	volatile struct bge_rcb *rcb;
    893 
    894 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    895 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
    896 			return(ENOBUFS);
    897 	};
    898 
    899 	sc->bge_jumbo = i - 1;
    900 
    901 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
    902 	rcb->bge_maxlen_flags = 0;
    903 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
    904 
    905 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
    906 
    907 	return(0);
    908 }
    909 
    910 void
    911 bge_free_rx_ring_jumbo(sc)
    912 	struct bge_softc *sc;
    913 {
    914 	int i;
    915 
    916 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
    917 		return;
    918 
    919 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    920 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
    921 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
    922 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
    923 		}
    924 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
    925 		    sizeof(struct bge_rx_bd));
    926 	}
    927 
    928 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
    929 }
    930 
    931 void
    932 bge_free_tx_ring(sc)
    933 	struct bge_softc *sc;
    934 {
    935 	int i, freed;
    936 	struct txdmamap_pool_entry *dma;
    937 
    938 	if (!(sc->bge_flags & BGE_TXRING_VALID))
    939 		return;
    940 
    941 	freed = 0;
    942 
    943 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
    944 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
    945 			freed++;
    946 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
    947 			sc->bge_cdata.bge_tx_chain[i] = NULL;
    948 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
    949 					    link);
    950 			sc->txdma[i] = 0;
    951 		}
    952 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
    953 		    sizeof(struct bge_tx_bd));
    954 	}
    955 
    956 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
    957 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
    958 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
    959 		free(dma, M_DEVBUF);
    960 	}
    961 
    962 	sc->bge_flags &= ~BGE_TXRING_VALID;
    963 }
    964 
    965 int
    966 bge_init_tx_ring(sc)
    967 	struct bge_softc *sc;
    968 {
    969 	int i;
    970 	bus_dmamap_t dmamap;
    971 	struct txdmamap_pool_entry *dma;
    972 
    973 	if (sc->bge_flags & BGE_TXRING_VALID)
    974 		return 0;
    975 
    976 	sc->bge_txcnt = 0;
    977 	sc->bge_tx_saved_considx = 0;
    978 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    979 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
    980 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    981 
    982 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
    983 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
    984 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    985 
    986 	SLIST_INIT(&sc->txdma_list);
    987 	for (i = 0; i < BGE_RSLOTS; i++) {
    988 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
    989 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
    990 		    &dmamap))
    991 			return(ENOBUFS);
    992 		if (dmamap == NULL)
    993 			panic("dmamap NULL in bge_init_tx_ring");
    994 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
    995 		if (dma == NULL) {
    996 			printf("%s: can't alloc txdmamap_pool_entry\n",
    997 			    sc->bge_dev.dv_xname);
    998 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
    999 			return (ENOMEM);
   1000 		}
   1001 		dma->dmamap = dmamap;
   1002 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1003 	}
   1004 
   1005 	sc->bge_flags |= BGE_TXRING_VALID;
   1006 
   1007 	return(0);
   1008 }
   1009 
   1010 void
   1011 bge_setmulti(sc)
   1012 	struct bge_softc *sc;
   1013 {
   1014 	struct ethercom		*ac = &sc->ethercom;
   1015 	struct ifnet		*ifp = &ac->ec_if;
   1016 	struct ether_multi	*enm;
   1017 	struct ether_multistep  step;
   1018 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1019 	u_int32_t		h;
   1020 	int			i;
   1021 
   1022 	if (ifp->if_flags & IFF_PROMISC)
   1023 		goto allmulti;
   1024 
   1025 	/* Now program new ones. */
   1026 	ETHER_FIRST_MULTI(step, ac, enm);
   1027 	while (enm != NULL) {
   1028 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1029 			/*
   1030 			 * We must listen to a range of multicast addresses.
   1031 			 * For now, just accept all multicasts, rather than
   1032 			 * trying to set only those filter bits needed to match
   1033 			 * the range.  (At this time, the only use of address
   1034 			 * ranges is for IP multicast routing, for which the
   1035 			 * range is big enough to require all bits set.)
   1036 			 */
   1037 			goto allmulti;
   1038 		}
   1039 
   1040 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1041 
   1042 		/* Just want the 7 least-significant bits. */
   1043 		h &= 0x7f;
   1044 
   1045 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1046 		ETHER_NEXT_MULTI(step, enm);
   1047 	}
   1048 
   1049 	ifp->if_flags &= ~IFF_ALLMULTI;
   1050 	goto setit;
   1051 
   1052  allmulti:
   1053 	ifp->if_flags |= IFF_ALLMULTI;
   1054 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1055 
   1056  setit:
   1057 	for (i = 0; i < 4; i++)
   1058 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1059 }
   1060 
   1061 const int bge_swapbits[] = {
   1062 	0,
   1063 	BGE_MODECTL_BYTESWAP_DATA,
   1064 	BGE_MODECTL_WORDSWAP_DATA,
   1065 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1066 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1067 
   1068 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1069 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1070 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1071 
   1072 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1073 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1074 
   1075 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1076 
   1077 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1078 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1079 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1080 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1081 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1082 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1083 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1084 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1085 
   1086 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1087 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1088 };
   1089 
   1090 int bge_swapindex = 0;
   1091 
   1092 /*
   1093  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1094  * self-test results.
   1095  */
   1096 int
   1097 bge_chipinit(sc)
   1098 	struct bge_softc *sc;
   1099 {
   1100 	u_int32_t		cachesize;
   1101 	int			i;
   1102 	u_int32_t		dma_rw_ctl;
   1103 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1104 
   1105 
   1106 	/* Set endianness before we access any non-PCI registers. */
   1107 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1108 	    BGE_INIT);
   1109 
   1110 	/* Set power state to D0. */
   1111 	bge_setpowerstate(sc, 0);
   1112 
   1113 	/*
   1114 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1115 	 * self-tests passed.
   1116 	 */
   1117 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1118 		printf("%s: RX CPU self-diagnostics failed!\n",
   1119 		    sc->bge_dev.dv_xname);
   1120 		return(ENODEV);
   1121 	}
   1122 
   1123 	/* Clear the MAC control register */
   1124 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1125 
   1126 	/*
   1127 	 * Clear the MAC statistics block in the NIC's
   1128 	 * internal memory.
   1129 	 */
   1130 	for (i = BGE_STATS_BLOCK;
   1131 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1132 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1133 
   1134 	for (i = BGE_STATUS_BLOCK;
   1135 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1136 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1137 
   1138 	/* Set up the PCI DMA control register. */
   1139 	if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
   1140 	    BGE_PCISTATE_PCI_BUSMODE) {
   1141 		/* Conventional PCI bus */
   1142 	  	DPRINTFN(4, ("(%s: PCI 2.2 dma setting)\n", sc->bge_dev.dv_xname));
   1143 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1144 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1145 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1146 		   (0x0F));
   1147 	} else {
   1148 	  	DPRINTFN(4, ("(:%s: PCI-X dma setting)\n", sc->bge_dev.dv_xname));
   1149 		/* PCI-X bus */
   1150 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1151 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1152 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1153 		    (0x0F);
   1154 		/*
   1155 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1156 		 * for hardware bugs, which means we should also clear
   1157 		 * the low-order MINDMA bits.  In addition, the 5704
   1158 		 * uses a different encoding of read/write watermarks.
   1159 		 */
   1160 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0) {
   1161 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1162 			  /* should be 0x1f0000 */
   1163 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1164 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1165 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1166 		}
   1167 		else if ((sc->bge_asicrev >> 28) ==
   1168 			 (BGE_ASICREV_BCM5703_A0 >> 28)) {
   1169 			dma_rw_ctl &=  0xfffffff0;
   1170 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1171 		}
   1172 	}
   1173 
   1174 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1175 
   1176 	/*
   1177 	 * Set up general mode register.
   1178 	 */
   1179 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1180 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1181 		    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
   1182 		    BGE_MODECTL_RX_NO_PHDR_CSUM);
   1183 
   1184 	/* Get cache line size. */
   1185 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1186 
   1187 	/*
   1188 	 * Avoid violating PCI spec on certain chip revs.
   1189 	 */
   1190 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1191 	    PCIM_CMD_MWIEN) {
   1192 		switch(cachesize) {
   1193 		case 1:
   1194 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1195 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1196 			break;
   1197 		case 2:
   1198 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1199 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1200 			break;
   1201 		case 4:
   1202 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1203 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1204 			break;
   1205 		case 8:
   1206 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1207 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1208 			break;
   1209 		case 16:
   1210 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1211 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1212 			break;
   1213 		case 32:
   1214 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1215 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1216 			break;
   1217 		case 64:
   1218 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1219 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1220 			break;
   1221 		default:
   1222 		/* Disable PCI memory write and invalidate. */
   1223 #if 0
   1224 			if (bootverbose)
   1225 				printf("%s: cache line size %d not "
   1226 				    "supported; disabling PCI MWI\n",
   1227 				    sc->bge_dev.dv_xname, cachesize);
   1228 #endif
   1229 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1230 			    PCIM_CMD_MWIEN);
   1231 			break;
   1232 		}
   1233 	}
   1234 
   1235 	/*
   1236 	 * Disable memory write invalidate.  Apparently it is not supported
   1237 	 * properly by these devices.
   1238 	 */
   1239 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1240 
   1241 
   1242 #ifdef __brokenalpha__
   1243 	/*
   1244 	 * Must insure that we do not cross an 8K (bytes) boundary
   1245 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1246 	 * restriction on some ALPHA platforms with early revision
   1247 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1248 	 */
   1249 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1250 #endif
   1251 
   1252 	/* Set the timer prescaler (always 66MHz) */
   1253 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1254 
   1255 	return(0);
   1256 }
   1257 
   1258 int
   1259 bge_blockinit(sc)
   1260 	struct bge_softc *sc;
   1261 {
   1262 	volatile struct bge_rcb		*rcb;
   1263 	bus_size_t		rcb_addr;
   1264 	int			i;
   1265 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1266 	bge_hostaddr		taddr;
   1267 
   1268 	/*
   1269 	 * Initialize the memory window pointer register so that
   1270 	 * we can access the first 32K of internal NIC RAM. This will
   1271 	 * allow us to set up the TX send ring RCBs and the RX return
   1272 	 * ring RCBs, plus other things which live in NIC memory.
   1273 	 */
   1274 
   1275 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1276 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1277 
   1278 	/* Configure mbuf memory pool */
   1279 	if (sc->bge_extram) {
   1280 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
   1281 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1282 	} else {
   1283 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
   1284 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1285 	}
   1286 
   1287 	/* Configure DMA resource pool */
   1288 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
   1289 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1290 
   1291 	/* Configure mbuf pool watermarks */
   1292 #ifdef ORIG_WPAUL_VALUES
   1293 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1294 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1295 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1296 #else
   1297 	/* new broadcom docs strongly recommend these: */
   1298 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1299 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1300 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1301 #endif
   1302 
   1303 	/* Configure DMA resource watermarks */
   1304 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1305 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1306 
   1307 	/* Enable buffer manager */
   1308 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1309 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1310 
   1311 	/* Poll for buffer manager start indication */
   1312 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1313 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1314 			break;
   1315 		DELAY(10);
   1316 	}
   1317 
   1318 	if (i == BGE_TIMEOUT) {
   1319 		printf("%s: buffer manager failed to start\n",
   1320 		    sc->bge_dev.dv_xname);
   1321 		return(ENXIO);
   1322 	}
   1323 
   1324 	/* Enable flow-through queues */
   1325 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1326 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1327 
   1328 	/* Wait until queue initialization is complete */
   1329 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1330 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1331 			break;
   1332 		DELAY(10);
   1333 	}
   1334 
   1335 	if (i == BGE_TIMEOUT) {
   1336 		printf("%s: flow-through queue init failed\n",
   1337 		    sc->bge_dev.dv_xname);
   1338 		return(ENXIO);
   1339 	}
   1340 
   1341 	/* Initialize the standard RX ring control block */
   1342 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1343 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1344 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1345 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1346 	if (sc->bge_extram)
   1347 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1348 	else
   1349 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1350 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1351 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1352 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1353 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1354 
   1355 	/*
   1356 	 * Initialize the jumbo RX ring control block
   1357 	 * We set the 'ring disabled' bit in the flags
   1358 	 * field until we're actually ready to start
   1359 	 * using this ring (i.e. once we set the MTU
   1360 	 * high enough to require it).
   1361 	 */
   1362 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1363 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1364 	    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1365 	rcb->bge_maxlen_flags =
   1366 	   BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED);
   1367 	if (sc->bge_extram)
   1368 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1369 	else
   1370 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1371 
   1372 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1373 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1374 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1375 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1376 
   1377 	/* Set up dummy disabled mini ring RCB */
   1378 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1379 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1380 	    BGE_RCB_FLAG_RING_DISABLED);
   1381 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1382 
   1383 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1384 	    offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
   1385 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1386 
   1387 	/*
   1388 	 * Set the BD ring replentish thresholds. The recommended
   1389 	 * values are 1/8th the number of descriptors allocated to
   1390 	 * each ring.
   1391 	 */
   1392 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1393 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1394 
   1395 	/*
   1396 	 * Disable all unused send rings by setting the 'ring disabled'
   1397 	 * bit in the flags field of all the TX send ring control blocks.
   1398 	 * These are located in NIC memory.
   1399 	 */
   1400 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1401 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1402 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1403 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1404 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1405 		rcb_addr += sizeof(struct bge_rcb);
   1406 	}
   1407 
   1408 	/* Configure TX RCB 0 (we use only the first ring) */
   1409 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1410 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1411 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1412 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1413 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1414 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1415 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1416 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1417 
   1418 	/* Disable all unused RX return rings */
   1419 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1420 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1421 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1422 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1423 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1424 			    BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,
   1425                                      BGE_RCB_FLAG_RING_DISABLED));
   1426 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1427 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1428 		    (i * (sizeof(u_int64_t))), 0);
   1429 		rcb_addr += sizeof(struct bge_rcb);
   1430 	}
   1431 
   1432 	/* Initialize RX ring indexes */
   1433 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1434 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1435 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1436 
   1437 	/*
   1438 	 * Set up RX return ring 0
   1439 	 * Note that the NIC address for RX return rings is 0x00000000.
   1440 	 * The return rings live entirely within the host, so the
   1441 	 * nicaddr field in the RCB isn't used.
   1442 	 */
   1443 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1444 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1445 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1446 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1447 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1448 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1449 	    BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,0));
   1450 
   1451 	/* Set random backoff seed for TX */
   1452 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1453 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1454 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1455 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1456 	    BGE_TX_BACKOFF_SEED_MASK);
   1457 
   1458 	/* Set inter-packet gap */
   1459 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1460 
   1461 	/*
   1462 	 * Specify which ring to use for packets that don't match
   1463 	 * any RX rules.
   1464 	 */
   1465 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1466 
   1467 	/*
   1468 	 * Configure number of RX lists. One interrupt distribution
   1469 	 * list, sixteen active lists, one bad frames class.
   1470 	 */
   1471 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1472 
   1473 	/* Inialize RX list placement stats mask. */
   1474 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1475 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1476 
   1477 	/* Disable host coalescing until we get it set up */
   1478 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1479 
   1480 	/* Poll to make sure it's shut down. */
   1481 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1482 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1483 			break;
   1484 		DELAY(10);
   1485 	}
   1486 
   1487 	if (i == BGE_TIMEOUT) {
   1488 		printf("%s: host coalescing engine failed to idle\n",
   1489 		    sc->bge_dev.dv_xname);
   1490 		return(ENXIO);
   1491 	}
   1492 
   1493 	/* Set up host coalescing defaults */
   1494 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1495 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1496 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1497 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1498 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1499 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1500 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1501 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1502 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1503 
   1504 	/* Set up address of statistics block */
   1505 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1506 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1507 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1508 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1509 
   1510 	/* Set up address of status block */
   1511 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1512 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1513 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1514 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1515 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1516 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1517 
   1518 	/* Turn on host coalescing state machine */
   1519 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1520 
   1521 	/* Turn on RX BD completion state machine and enable attentions */
   1522 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1523 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1524 
   1525 	/* Turn on RX list placement state machine */
   1526 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1527 
   1528 	/* Turn on RX list selector state machine. */
   1529 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1530 
   1531 	/* Turn on DMA, clear stats */
   1532 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1533 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1534 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1535 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1536 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1537 
   1538 	/* Set misc. local control, enable interrupts on attentions */
   1539 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1540 
   1541 #ifdef notdef
   1542 	/* Assert GPIO pins for PHY reset */
   1543 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1544 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1545 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1546 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1547 #endif
   1548 
   1549 #if defined(not_quite_yet)
   1550 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1551 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
   1552 		sc->bge_local_ctrl_reg |=
   1553 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1554 	}
   1555 #endif
   1556 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1557 
   1558 	/* Turn on DMA completion state machine */
   1559 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1560 
   1561 	/* Turn on write DMA state machine */
   1562 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1563 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1564 
   1565 	/* Turn on read DMA state machine */
   1566 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
   1567 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
   1568 
   1569 	/* Turn on RX data completion state machine */
   1570 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1571 
   1572 	/* Turn on RX BD initiator state machine */
   1573 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1574 
   1575 	/* Turn on RX data and RX BD initiator state machine */
   1576 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1577 
   1578 	/* Turn on Mbuf cluster free state machine */
   1579 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1580 
   1581 	/* Turn on send BD completion state machine */
   1582 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1583 
   1584 	/* Turn on send data completion state machine */
   1585 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1586 
   1587 	/* Turn on send data initiator state machine */
   1588 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1589 
   1590 	/* Turn on send BD initiator state machine */
   1591 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1592 
   1593 	/* Turn on send BD selector state machine */
   1594 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1595 
   1596 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1597 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1598 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1599 
   1600 	/* init LED register */
   1601 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
   1602 
   1603 	/* ack/clear link change events */
   1604 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1605 	    BGE_MACSTAT_CFG_CHANGED);
   1606 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1607 
   1608 	/* Enable PHY auto polling (for MII/GMII only) */
   1609 	if (sc->bge_tbi) {
   1610 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1611  	} else {
   1612 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1613 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1614 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1615 			    BGE_EVTENB_MI_INTERRUPT);
   1616 	}
   1617 
   1618 	/* Enable link state change attentions. */
   1619 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1620 
   1621 	return(0);
   1622 }
   1623 
   1624 static const struct bge_revision {
   1625 	uint32_t		br_asicrev;
   1626 	uint32_t		br_quirks;
   1627 	const char		*br_name;
   1628 } bge_revisions[] = {
   1629 	{ BGE_ASICREV_BCM5700_A0,
   1630 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1631 	  "BCM5700 A0" },
   1632 
   1633 	{ BGE_ASICREV_BCM5700_A1,
   1634 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1635 	  "BCM5700 A1" },
   1636 
   1637 	{ BGE_ASICREV_BCM5700_B0,
   1638 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1639 	  "BCM5700 B0" },
   1640 
   1641 	{ BGE_ASICREV_BCM5700_B1,
   1642 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1643 	  "BCM5700 B1" },
   1644 
   1645 	{ BGE_ASICREV_BCM5700_B2,
   1646 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1647 	  "BCM5700 B2" },
   1648 
   1649 	/* This is treated like a BCM5700 Bx */
   1650 	{ BGE_ASICREV_BCM5700_ALTIMA,
   1651 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1652 	  "BCM5700 Altima" },
   1653 
   1654 	{ BGE_ASICREV_BCM5700_C0,
   1655 	  0,
   1656 	  "BCM5700 C0" },
   1657 
   1658 	{ BGE_ASICREV_BCM5701_A0,
   1659 	  0, /*XXX really, just not known */
   1660 	  "BCM5701 A0" },
   1661 
   1662 	{ BGE_ASICREV_BCM5701_B0,
   1663 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1664 	  "BCM5701 B0" },
   1665 
   1666 	{ BGE_ASICREV_BCM5701_B2,
   1667 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1668 	  "BCM5701 B2" },
   1669 
   1670 	{ BGE_ASICREV_BCM5701_B5,
   1671 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1672 	  "BCM5701 B5" },
   1673 
   1674 	{ BGE_ASICREV_BCM5703_A0,
   1675 	  0,
   1676 	  "BCM5703 A0" },
   1677 
   1678 	{ BGE_ASICREV_BCM5703_A1,
   1679 	  0,
   1680 	  "BCM5703 A1" },
   1681 
   1682 	{ BGE_ASICREV_BCM5703_A2,
   1683 	  BGE_QUIRK_ONLY_PHY_1,
   1684 	  "BCM5703 A2" },
   1685 
   1686 	{ BGE_ASICREV_BCM5704_A0,
   1687   	  BGE_QUIRK_ONLY_PHY_1,
   1688 	  "BCM5704 A0" },
   1689 
   1690 	{ 0, 0, NULL }
   1691 };
   1692 
   1693 static const struct bge_revision *
   1694 bge_lookup_rev(uint32_t asicrev)
   1695 {
   1696 	const struct bge_revision *br;
   1697 
   1698 	for (br = bge_revisions; br->br_name != NULL; br++) {
   1699 		if (br->br_asicrev == asicrev)
   1700 			return (br);
   1701 	}
   1702 
   1703 	return (NULL);
   1704 }
   1705 
   1706 static const struct bge_product {
   1707 	pci_vendor_id_t		bp_vendor;
   1708 	pci_product_id_t	bp_product;
   1709 	const char		*bp_name;
   1710 } bge_products[] = {
   1711 	/*
   1712 	 * The BCM5700 documentation seems to indicate that the hardware
   1713 	 * still has the Alteon vendor ID burned into it, though it
   1714 	 * should always be overridden by the value in the EEPROM.  We'll
   1715 	 * check for it anyway.
   1716 	 */
   1717 	{ PCI_VENDOR_ALTEON,
   1718 	  PCI_PRODUCT_ALTEON_BCM5700,
   1719 	  "Broadcom BCM5700 Gigabit Ethernet" },
   1720 	{ PCI_VENDOR_ALTEON,
   1721 	  PCI_PRODUCT_ALTEON_BCM5701,
   1722 	  "Broadcom BCM5701 Gigabit Ethernet" },
   1723 
   1724 	{ PCI_VENDOR_ALTIMA,
   1725 	  PCI_PRODUCT_ALTIMA_AC1000,
   1726 	  "Altima AC1000 Gigabit Ethernet" },
   1727 	{ PCI_VENDOR_ALTIMA,
   1728 	  PCI_PRODUCT_ALTIMA_AC1001,
   1729 	  "Altima AC1001 Gigabit Ethernet" },
   1730 	{ PCI_VENDOR_ALTIMA,
   1731 	  PCI_PRODUCT_ALTIMA_AC9100,
   1732 	  "Altima AC9100 Gigabit Ethernet" },
   1733 
   1734 	{ PCI_VENDOR_BROADCOM,
   1735 	  PCI_PRODUCT_BROADCOM_BCM5700,
   1736 	  "Broadcom BCM5700 Gigabit Ethernet" },
   1737 	{ PCI_VENDOR_BROADCOM,
   1738 	  PCI_PRODUCT_BROADCOM_BCM5701,
   1739 	  "Broadcom BCM5701 Gigabit Ethernet" },
   1740 	{ PCI_VENDOR_BROADCOM,
   1741 	  PCI_PRODUCT_BROADCOM_BCM5702,
   1742 	  "Broadcom BCM5702 Gigabit Ethernet" },
   1743 	{ PCI_VENDOR_BROADCOM,
   1744 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   1745 	  "Broadcom BCM5702X Gigabit Ethernet" },
   1746 	{ PCI_VENDOR_BROADCOM,
   1747 	  PCI_PRODUCT_BROADCOM_BCM5703,
   1748 	  "Broadcom BCM5703 Gigabit Ethernet" },
   1749 	{ PCI_VENDOR_BROADCOM,
   1750 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   1751 	  "Broadcom BCM5703X Gigabit Ethernet" },
   1752    	{ PCI_VENDOR_BROADCOM,
   1753 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   1754 	  "Broadcom BCM5704C Dual Gigabit Ethernet" },
   1755    	{ PCI_VENDOR_BROADCOM,
   1756 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   1757 	  "Broadcom BCM5704S Dual Gigabit Ethernet" },
   1758 
   1759 
   1760 	{ PCI_VENDOR_SCHNEIDERKOCH,
   1761 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   1762 	  "SysKonnect SK-9Dx1 Gigabit Ethernet" },
   1763 
   1764 	{ PCI_VENDOR_3COM,
   1765 	  PCI_PRODUCT_3COM_3C996,
   1766 	  "3Com 3c996 Gigabit Ethernet" },
   1767 
   1768 	{ 0,
   1769 	  0,
   1770 	  NULL },
   1771 };
   1772 
   1773 static const struct bge_product *
   1774 bge_lookup(const struct pci_attach_args *pa)
   1775 {
   1776 	const struct bge_product *bp;
   1777 
   1778 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   1779 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   1780 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   1781 			return (bp);
   1782 	}
   1783 
   1784 	return (NULL);
   1785 }
   1786 
   1787 int
   1788 bge_setpowerstate(sc, powerlevel)
   1789 	struct bge_softc *sc;
   1790 	int powerlevel;
   1791 {
   1792 #ifdef NOTYET
   1793 	u_int32_t pm_ctl = 0;
   1794 
   1795 	/* XXX FIXME: make sure indirect accesses enabled? */
   1796 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   1797 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   1798 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   1799 
   1800 	/* clear the PME_assert bit and power state bits, enable PME */
   1801 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   1802 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   1803 	pm_ctl |= (1 << 8);
   1804 
   1805 	if (powerlevel == 0) {
   1806 		pm_ctl |= PCIM_PSTAT_D0;
   1807 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   1808 		    pm_ctl, 2);
   1809 		DELAY(10000);
   1810 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1811 		DELAY(10000);
   1812 
   1813 #ifdef NOTYET
   1814 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   1815 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   1816 #endif
   1817 		DELAY(40); DELAY(40); DELAY(40);
   1818 		DELAY(10000);	/* above not quite adequate on 5700 */
   1819 		return 0;
   1820 	}
   1821 
   1822 
   1823 	/*
   1824 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   1825 	 * GMII gpio pins. Example code assumes all hardware vendors
   1826 	 * followed Broadom's sample pcb layout. Until we verify that
   1827 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   1828 	 */
   1829 	printf("%s: power state %d unimplemented; check GPIO pins\n",
   1830 	       sc->bge_dev.dv_xname, powerlevel);
   1831 #endif
   1832 	return EOPNOTSUPP;
   1833 }
   1834 
   1835 
   1836 /*
   1837  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   1838  * against our list and return its name if we find a match. Note
   1839  * that since the Broadcom controller contains VPD support, we
   1840  * can get the device name string from the controller itself instead
   1841  * of the compiled-in string. This is a little slow, but it guarantees
   1842  * we'll always announce the right product name.
   1843  */
   1844 int
   1845 bge_probe(parent, match, aux)
   1846 	struct device *parent;
   1847 	struct cfdata *match;
   1848 	void *aux;
   1849 {
   1850 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1851 
   1852 	if (bge_lookup(pa) != NULL)
   1853 		return (1);
   1854 
   1855 	return (0);
   1856 }
   1857 
   1858 void
   1859 bge_attach(parent, self, aux)
   1860 	struct device *parent, *self;
   1861 	void *aux;
   1862 {
   1863 	struct bge_softc	*sc = (struct bge_softc *)self;
   1864 	struct pci_attach_args	*pa = aux;
   1865 	const struct bge_product *bp;
   1866 	const struct bge_revision *br;
   1867 	pci_chipset_tag_t	pc = pa->pa_pc;
   1868 	pci_intr_handle_t	ih;
   1869 	const char		*intrstr = NULL;
   1870 	bus_dma_segment_t	seg;
   1871 	int			rseg;
   1872 	u_int32_t		hwcfg = 0;
   1873 	u_int32_t		mac_addr = 0;
   1874 	u_int32_t		command;
   1875 	struct ifnet		*ifp;
   1876 	caddr_t			kva;
   1877 	u_char			eaddr[ETHER_ADDR_LEN];
   1878 	pcireg_t		memtype;
   1879 	bus_addr_t		memaddr;
   1880 	bus_size_t		memsize;
   1881 	u_int32_t		pm_ctl;
   1882 
   1883 	bp = bge_lookup(pa);
   1884 	KASSERT(bp != NULL);
   1885 
   1886 	sc->bge_pa = *pa;
   1887 
   1888 	aprint_naive(": Ethernet controller\n");
   1889 	aprint_normal(": %s\n", bp->bp_name);
   1890 
   1891 	/*
   1892 	 * Map control/status registers.
   1893 	 */
   1894 	DPRINTFN(5, ("Map control/status regs\n"));
   1895 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1896 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   1897 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1898 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1899 
   1900 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1901 		aprint_error("%s: failed to enable memory mapping!\n",
   1902 		    sc->bge_dev.dv_xname);
   1903 		return;
   1904 	}
   1905 
   1906 	DPRINTFN(5, ("pci_mem_find\n"));
   1907 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   1908  	switch (memtype) {
   1909 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1910 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1911 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   1912 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   1913 		    &memaddr, &memsize) == 0)
   1914 			break;
   1915 	default:
   1916 		aprint_error("%s: can't find mem space\n",
   1917 		    sc->bge_dev.dv_xname);
   1918 		return;
   1919 	}
   1920 
   1921 	DPRINTFN(5, ("pci_intr_map\n"));
   1922 	if (pci_intr_map(pa, &ih)) {
   1923 		aprint_error("%s: couldn't map interrupt\n",
   1924 		    sc->bge_dev.dv_xname);
   1925 		return;
   1926 	}
   1927 
   1928 	DPRINTFN(5, ("pci_intr_string\n"));
   1929 	intrstr = pci_intr_string(pc, ih);
   1930 
   1931 	DPRINTFN(5, ("pci_intr_establish\n"));
   1932 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   1933 
   1934 	if (sc->bge_intrhand == NULL) {
   1935 		aprint_error("%s: couldn't establish interrupt",
   1936 		    sc->bge_dev.dv_xname);
   1937 		if (intrstr != NULL)
   1938 			aprint_normal(" at %s", intrstr);
   1939 		aprint_normal("\n");
   1940 		return;
   1941 	}
   1942 	aprint_normal("%s: interrupting at %s\n",
   1943 	    sc->bge_dev.dv_xname, intrstr);
   1944 
   1945 	/*
   1946 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   1947 	 * can clobber the chip's PCI config-space power control registers,
   1948 	 * leaving the card in D3 powersave state.
   1949 	 * We do not have memory-mapped registers in this state,
   1950 	 * so force device into D0 state before starting initialization.
   1951 	 */
   1952 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
   1953 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   1954 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   1955 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   1956 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   1957 
   1958 	/* Try to reset the chip. */
   1959 	DPRINTFN(5, ("bge_reset\n"));
   1960 	bge_reset(sc);
   1961 
   1962 	if (bge_chipinit(sc)) {
   1963 		aprint_error("%s: chip initialization failed\n",
   1964 		    sc->bge_dev.dv_xname);
   1965 		bge_release_resources(sc);
   1966 		return;
   1967 	}
   1968 
   1969 	/*
   1970 	 * Get station address from the EEPROM.
   1971 	 */
   1972 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   1973 	if ((mac_addr >> 16) == 0x484b) {
   1974 		eaddr[0] = (u_char)(mac_addr >> 8);
   1975 		eaddr[1] = (u_char)(mac_addr >> 0);
   1976 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   1977 		eaddr[2] = (u_char)(mac_addr >> 24);
   1978 		eaddr[3] = (u_char)(mac_addr >> 16);
   1979 		eaddr[4] = (u_char)(mac_addr >> 8);
   1980 		eaddr[5] = (u_char)(mac_addr >> 0);
   1981 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
   1982 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   1983 		aprint_error("%s: failed to read station address\n",
   1984 		    sc->bge_dev.dv_xname);
   1985 		bge_release_resources(sc);
   1986 		return;
   1987 	}
   1988 
   1989 	/*
   1990 	 * Save ASIC rev.  Look up any quirks associated with this
   1991 	 * ASIC.
   1992 	 */
   1993 	sc->bge_asicrev =
   1994 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   1995 	    BGE_PCIMISCCTL_ASICREV;
   1996 	br = bge_lookup_rev(sc->bge_asicrev);
   1997 
   1998 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
   1999 	if (br == NULL) {
   2000 		aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
   2001 		sc->bge_quirks = 0;
   2002 	} else {
   2003 		aprint_normal("ASIC %s", br->br_name);
   2004 		sc->bge_quirks = br->br_quirks;
   2005 	}
   2006 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2007 
   2008 	/* Allocate the general information block and ring buffers. */
   2009 	sc->bge_dmatag = pa->pa_dmat;
   2010 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2011 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2012 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2013 		aprint_error("%s: can't alloc rx buffers\n",
   2014 		    sc->bge_dev.dv_xname);
   2015 		return;
   2016 	}
   2017 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2018 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2019 			   sizeof(struct bge_ring_data), &kva,
   2020 			   BUS_DMA_NOWAIT)) {
   2021 		aprint_error("%s: can't map dma buffers (%d bytes)\n",
   2022 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   2023 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2024 		return;
   2025 	}
   2026 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2027 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2028 	    sizeof(struct bge_ring_data), 0,
   2029 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2030 		aprint_error("%s: can't create dma map\n",
   2031 		    sc->bge_dev.dv_xname);
   2032 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2033 				 sizeof(struct bge_ring_data));
   2034 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2035 		return;
   2036 	}
   2037 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2038 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2039 			    sizeof(struct bge_ring_data), NULL,
   2040 			    BUS_DMA_NOWAIT)) {
   2041 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2042 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2043 				 sizeof(struct bge_ring_data));
   2044 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2045 		return;
   2046 	}
   2047 
   2048 	DPRINTFN(5, ("bzero\n"));
   2049 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2050 
   2051 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2052 
   2053 	/* Try to allocate memory for jumbo buffers. */
   2054 	if (bge_alloc_jumbo_mem(sc)) {
   2055 		aprint_error("%s: jumbo buffer allocation failed\n",
   2056 		    sc->bge_dev.dv_xname);
   2057 	} else
   2058 		sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2059 
   2060 	/* Set default tuneable values. */
   2061 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2062 	sc->bge_rx_coal_ticks = 150;
   2063 	sc->bge_rx_max_coal_bds = 64;
   2064 #ifdef ORIG_WPAUL_VALUES
   2065 	sc->bge_tx_coal_ticks = 150;
   2066 	sc->bge_tx_max_coal_bds = 128;
   2067 #else
   2068 	sc->bge_tx_coal_ticks = 300;
   2069 	sc->bge_tx_max_coal_bds = 400;
   2070 #endif
   2071 
   2072 	/* Set up ifnet structure */
   2073 	ifp = &sc->ethercom.ec_if;
   2074 	ifp->if_softc = sc;
   2075 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2076 	ifp->if_ioctl = bge_ioctl;
   2077 	ifp->if_start = bge_start;
   2078 	ifp->if_init = bge_init;
   2079 	ifp->if_watchdog = bge_watchdog;
   2080 	IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
   2081 	IFQ_SET_READY(&ifp->if_snd);
   2082 	DPRINTFN(5, ("bcopy\n"));
   2083 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   2084 
   2085 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2086 		sc->ethercom.ec_if.if_capabilities |=
   2087 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   2088 	sc->ethercom.ec_capabilities |=
   2089 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2090 
   2091 	/*
   2092 	 * Do MII setup.
   2093 	 */
   2094 	DPRINTFN(5, ("mii setup\n"));
   2095 	sc->bge_mii.mii_ifp = ifp;
   2096 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2097 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2098 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2099 
   2100 	/*
   2101 	 * Figure out what sort of media we have by checking the
   2102 	 * hardware config word in the first 32k of NIC internal memory,
   2103 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2104 	 * cards, this value appears to be unset. If that's the
   2105 	 * case, we have to rely on identifying the NIC by its PCI
   2106 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2107 	 */
   2108 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2109 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2110 	} else {
   2111 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
   2112 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2113 		hwcfg = be32toh(hwcfg);
   2114 	}
   2115 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2116 		sc->bge_tbi = 1;
   2117 
   2118 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2119 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   2120 	    SK_SUBSYSID_9D41)
   2121 		sc->bge_tbi = 1;
   2122 
   2123 	if (sc->bge_tbi) {
   2124 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2125 		    bge_ifmedia_sts);
   2126 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2127 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2128 			    0, NULL);
   2129 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2130 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2131 	} else {
   2132 		/*
   2133 		 * Do transceiver setup.
   2134 		 */
   2135 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2136 			     bge_ifmedia_sts);
   2137 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2138 			   MII_PHY_ANY, MII_OFFSET_ANY, 0);
   2139 
   2140 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   2141 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   2142 			ifmedia_add(&sc->bge_mii.mii_media,
   2143 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2144 			ifmedia_set(&sc->bge_mii.mii_media,
   2145 				    IFM_ETHER|IFM_MANUAL);
   2146 		} else
   2147 			ifmedia_set(&sc->bge_mii.mii_media,
   2148 				    IFM_ETHER|IFM_AUTO);
   2149 	}
   2150 
   2151 	/*
   2152 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2153 	 * been observed in the first few bytes of some received packets.
   2154 	 * Aligning the packet buffer in memory eliminates the corruption.
   2155 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2156 	 * which do not support unaligned accesses, we will realign the
   2157 	 * payloads by copying the received packets.
   2158 	 */
   2159 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2160 		/* If in PCI-X mode, work around the alignment bug. */
   2161 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
   2162                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2163                          BGE_PCISTATE_PCI_BUSSPEED)
   2164 		sc->bge_rx_alignment_bug = 1;
   2165         }
   2166 
   2167 	/*
   2168 	 * Call MI attach routine.
   2169 	 */
   2170 	DPRINTFN(5, ("if_attach\n"));
   2171 	if_attach(ifp);
   2172 	DPRINTFN(5, ("ether_ifattach\n"));
   2173 	ether_ifattach(ifp, eaddr);
   2174 	DPRINTFN(5, ("callout_init\n"));
   2175 	callout_init(&sc->bge_timeout);
   2176 }
   2177 
   2178 void
   2179 bge_release_resources(sc)
   2180 	struct bge_softc *sc;
   2181 {
   2182 	if (sc->bge_vpd_prodname != NULL)
   2183 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2184 
   2185 	if (sc->bge_vpd_readonly != NULL)
   2186 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2187 }
   2188 
   2189 void
   2190 bge_reset(sc)
   2191 	struct bge_softc *sc;
   2192 {
   2193 	struct pci_attach_args *pa = &sc->bge_pa;
   2194 	u_int32_t cachesize, command, pcistate;
   2195 	int i, val = 0;
   2196 
   2197 	/* Save some important PCI state. */
   2198 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   2199 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   2200 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   2201 
   2202 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2203 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2204 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2205 
   2206 	/* Issue global reset */
   2207 	bge_writereg_ind(sc, BGE_MISC_CFG,
   2208 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
   2209 
   2210 	DELAY(1000);
   2211 
   2212 	/* Reset some of the PCI state that got zapped by reset */
   2213 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2214 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2215 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2216 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   2217 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   2218 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2219 
   2220 	/* Enable memory arbiter. */
   2221 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2222 
   2223 	/*
   2224 	 * Prevent PXE restart: write a magic number to the
   2225 	 * general communications memory at 0xB50.
   2226 	 */
   2227 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2228 
   2229 	/*
   2230 	 * Poll the value location we just wrote until
   2231 	 * we see the 1's complement of the magic number.
   2232 	 * This indicates that the firmware initialization
   2233 	 * is complete.
   2234 	 */
   2235 	for (i = 0; i < 750; i++) {
   2236 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2237 		if (val == ~BGE_MAGIC_NUMBER)
   2238 			break;
   2239 		DELAY(1000);
   2240 	}
   2241 
   2242 	if (i == 750) {
   2243 		printf("%s: firmware handshake timed out, val = %x\n",
   2244 		    sc->bge_dev.dv_xname, val);
   2245 		return;
   2246 	}
   2247 
   2248 	/*
   2249 	 * XXX Wait for the value of the PCISTATE register to
   2250 	 * return to its original pre-reset state. This is a
   2251 	 * fairly good indicator of reset completion. If we don't
   2252 	 * wait for the reset to fully complete, trying to read
   2253 	 * from the device's non-PCI registers may yield garbage
   2254 	 * results.
   2255 	 */
   2256 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2257 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
   2258 		    pcistate)
   2259 			break;
   2260 		DELAY(10);
   2261 	}
   2262 
   2263 	/* Enable memory arbiter. */
   2264 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2265 
   2266 	/* Fix up byte swapping */
   2267 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2268 
   2269 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2270 
   2271 	DELAY(10000);
   2272 }
   2273 
   2274 /*
   2275  * Frame reception handling. This is called if there's a frame
   2276  * on the receive return list.
   2277  *
   2278  * Note: we have to be able to handle two possibilities here:
   2279  * 1) the frame is from the jumbo recieve ring
   2280  * 2) the frame is from the standard receive ring
   2281  */
   2282 
   2283 void
   2284 bge_rxeof(sc)
   2285 	struct bge_softc *sc;
   2286 {
   2287 	struct ifnet *ifp;
   2288 	int stdcnt = 0, jumbocnt = 0;
   2289 	int have_tag = 0;
   2290 	u_int16_t vlan_tag = 0;
   2291 	bus_dmamap_t dmamap;
   2292 	bus_addr_t offset, toff;
   2293 	bus_size_t tlen;
   2294 	int tosync;
   2295 
   2296 	ifp = &sc->ethercom.ec_if;
   2297 
   2298 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2299 	    offsetof(struct bge_ring_data, bge_status_block),
   2300 	    sizeof (struct bge_status_block),
   2301 	    BUS_DMASYNC_POSTREAD);
   2302 
   2303 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2304 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2305 	    sc->bge_rx_saved_considx;
   2306 
   2307 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2308 
   2309 	if (tosync < 0) {
   2310 		tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
   2311 		    sizeof (struct bge_rx_bd);
   2312 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2313 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2314 		tosync = -tosync;
   2315 	}
   2316 
   2317 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2318 	    offset, tosync * sizeof (struct bge_rx_bd),
   2319 	    BUS_DMASYNC_POSTREAD);
   2320 
   2321 	while(sc->bge_rx_saved_considx !=
   2322 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2323 		struct bge_rx_bd	*cur_rx;
   2324 		u_int32_t		rxidx;
   2325 		struct mbuf		*m = NULL;
   2326 
   2327 		cur_rx = &sc->bge_rdata->
   2328 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2329 
   2330 		rxidx = cur_rx->bge_idx;
   2331 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
   2332 
   2333 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   2334 			have_tag = 1;
   2335 			vlan_tag = cur_rx->bge_vlan_tag;
   2336 		}
   2337 
   2338 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2339 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2340 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2341 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2342 			jumbocnt++;
   2343 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2344 				ifp->if_ierrors++;
   2345 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2346 				continue;
   2347 			}
   2348 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2349 					     NULL)== ENOBUFS) {
   2350 				ifp->if_ierrors++;
   2351 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2352 				continue;
   2353 			}
   2354 		} else {
   2355 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2356 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2357 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2358 			stdcnt++;
   2359 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2360 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2361 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2362 				ifp->if_ierrors++;
   2363 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2364 				continue;
   2365 			}
   2366 			if (bge_newbuf_std(sc, sc->bge_std,
   2367 			    NULL, dmamap) == ENOBUFS) {
   2368 				ifp->if_ierrors++;
   2369 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2370 				continue;
   2371 			}
   2372 		}
   2373 
   2374 		ifp->if_ipackets++;
   2375 #ifndef __NO_STRICT_ALIGNMENT
   2376                 /*
   2377                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2378                  * the Rx buffer has the layer-2 header unaligned.
   2379                  * If our CPU requires alignment, re-align by copying.
   2380                  */
   2381 		if (sc->bge_rx_alignment_bug) {
   2382 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
   2383                                 cur_rx->bge_len);
   2384 			m->m_data += ETHER_ALIGN;
   2385 		}
   2386 #endif
   2387 
   2388 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
   2389 		m->m_pkthdr.rcvif = ifp;
   2390 
   2391 #if NBPFILTER > 0
   2392 		/*
   2393 		 * Handle BPF listeners. Let the BPF user see the packet.
   2394 		 */
   2395 		if (ifp->if_bpf)
   2396 			bpf_mtap(ifp->if_bpf, m);
   2397 #endif
   2398 
   2399 		if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
   2400 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2401 			if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2402 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2403 #if 0	/* XXX appears to be broken */
   2404 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   2405 				m->m_pkthdr.csum_data =
   2406 				    cur_rx->bge_tcp_udp_csum;
   2407 				m->m_pkthdr.csum_flags |=
   2408 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
   2409 			}
   2410 #endif
   2411 		}
   2412 
   2413 		/*
   2414 		 * If we received a packet with a vlan tag, pass it
   2415 		 * to vlan_input() instead of ether_input().
   2416 		 */
   2417 		if (have_tag) {
   2418 			struct m_tag *mtag;
   2419 
   2420 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   2421 			    M_NOWAIT);
   2422 			if (mtag != NULL) {
   2423 				*(u_int *)(mtag + 1) = vlan_tag;
   2424 				m_tag_prepend(m, mtag);
   2425 				have_tag = vlan_tag = 0;
   2426 			} else {
   2427 				printf("%s: no mbuf for tag\n", ifp->if_xname);
   2428 				m_freem(m);
   2429 				have_tag = vlan_tag = 0;
   2430 				continue;
   2431 			}
   2432 		}
   2433 		(*ifp->if_input)(ifp, m);
   2434 	}
   2435 
   2436 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   2437 	if (stdcnt)
   2438 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   2439 	if (jumbocnt)
   2440 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   2441 }
   2442 
   2443 void
   2444 bge_txeof(sc)
   2445 	struct bge_softc *sc;
   2446 {
   2447 	struct bge_tx_bd *cur_tx = NULL;
   2448 	struct ifnet *ifp;
   2449 	struct txdmamap_pool_entry *dma;
   2450 	bus_addr_t offset, toff;
   2451 	bus_size_t tlen;
   2452 	int tosync;
   2453 	struct mbuf *m;
   2454 
   2455 	ifp = &sc->ethercom.ec_if;
   2456 
   2457 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2458 	    offsetof(struct bge_ring_data, bge_status_block),
   2459 	    sizeof (struct bge_status_block),
   2460 	    BUS_DMASYNC_POSTREAD);
   2461 
   2462 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   2463 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   2464 	    sc->bge_tx_saved_considx;
   2465 
   2466 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   2467 
   2468 	if (tosync < 0) {
   2469 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   2470 		    sizeof (struct bge_tx_bd);
   2471 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2472 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2473 		tosync = -tosync;
   2474 	}
   2475 
   2476 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2477 	    offset, tosync * sizeof (struct bge_tx_bd),
   2478 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2479 
   2480 	/*
   2481 	 * Go through our tx ring and free mbufs for those
   2482 	 * frames that have been sent.
   2483 	 */
   2484 	while (sc->bge_tx_saved_considx !=
   2485 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   2486 		u_int32_t		idx = 0;
   2487 
   2488 		idx = sc->bge_tx_saved_considx;
   2489 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   2490 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   2491 			ifp->if_opackets++;
   2492 		m = sc->bge_cdata.bge_tx_chain[idx];
   2493 		if (m != NULL) {
   2494 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   2495 			dma = sc->txdma[idx];
   2496 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   2497 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2498 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   2499 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2500 			sc->txdma[idx] = NULL;
   2501 
   2502 			m_freem(m);
   2503 		}
   2504 		sc->bge_txcnt--;
   2505 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   2506 		ifp->if_timer = 0;
   2507 	}
   2508 
   2509 	if (cur_tx != NULL)
   2510 		ifp->if_flags &= ~IFF_OACTIVE;
   2511 }
   2512 
   2513 int
   2514 bge_intr(xsc)
   2515 	void *xsc;
   2516 {
   2517 	struct bge_softc *sc;
   2518 	struct ifnet *ifp;
   2519 
   2520 	sc = xsc;
   2521 	ifp = &sc->ethercom.ec_if;
   2522 
   2523 #ifdef notdef
   2524 	/* Avoid this for now -- checking this register is expensive. */
   2525 	/* Make sure this is really our interrupt. */
   2526 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   2527 		return (0);
   2528 #endif
   2529 	/* Ack interrupt and stop others from occuring. */
   2530 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   2531 
   2532 	/*
   2533 	 * Process link state changes.
   2534 	 * Grrr. The link status word in the status block does
   2535 	 * not work correctly on the BCM5700 rev AX and BX chips,
   2536 	 * according to all avaibable information. Hence, we have
   2537 	 * to enable MII interrupts in order to properly obtain
   2538 	 * async link changes. Unfortunately, this also means that
   2539 	 * we have to read the MAC status register to detect link
   2540 	 * changes, thereby adding an additional register access to
   2541 	 * the interrupt handler.
   2542 	 */
   2543 
   2544 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   2545 		u_int32_t		status;
   2546 
   2547 		status = CSR_READ_4(sc, BGE_MAC_STS);
   2548 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   2549 			sc->bge_link = 0;
   2550 			callout_stop(&sc->bge_timeout);
   2551 			bge_tick(sc);
   2552 			/* Clear the interrupt */
   2553 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2554 			    BGE_EVTENB_MI_INTERRUPT);
   2555 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   2556 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   2557 			    BRGPHY_INTRS);
   2558 		}
   2559 	} else {
   2560 		if (sc->bge_rdata->bge_status_block.bge_status &
   2561 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   2562 			sc->bge_link = 0;
   2563 			callout_stop(&sc->bge_timeout);
   2564 			bge_tick(sc);
   2565 			/* Clear the interrupt */
   2566 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   2567 			    BGE_MACSTAT_CFG_CHANGED);
   2568 		}
   2569 	}
   2570 
   2571 	if (ifp->if_flags & IFF_RUNNING) {
   2572 		/* Check RX return ring producer/consumer */
   2573 		bge_rxeof(sc);
   2574 
   2575 		/* Check TX ring producer/consumer */
   2576 		bge_txeof(sc);
   2577 	}
   2578 
   2579 	bge_handle_events(sc);
   2580 
   2581 	/* Re-enable interrupts. */
   2582 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2583 
   2584 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   2585 		bge_start(ifp);
   2586 
   2587 	return (1);
   2588 }
   2589 
   2590 void
   2591 bge_tick(xsc)
   2592 	void *xsc;
   2593 {
   2594 	struct bge_softc *sc = xsc;
   2595 	struct mii_data *mii = &sc->bge_mii;
   2596 	struct ifmedia *ifm = NULL;
   2597 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2598 	int s;
   2599 
   2600 	s = splnet();
   2601 
   2602 	bge_stats_update(sc);
   2603 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2604 	if (sc->bge_link) {
   2605 		splx(s);
   2606 		return;
   2607 	}
   2608 
   2609 	if (sc->bge_tbi) {
   2610 		ifm = &sc->bge_ifmedia;
   2611 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   2612 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   2613 			sc->bge_link++;
   2614 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   2615 			printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
   2616 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2617 				bge_start(ifp);
   2618 		}
   2619 		splx(s);
   2620 		return;
   2621 	}
   2622 
   2623 	mii_tick(mii);
   2624 
   2625 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   2626 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   2627 		sc->bge_link++;
   2628 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   2629 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   2630 			printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
   2631 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2632 			bge_start(ifp);
   2633 	}
   2634 
   2635 	splx(s);
   2636 }
   2637 
   2638 void
   2639 bge_stats_update(sc)
   2640 	struct bge_softc *sc;
   2641 {
   2642 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2643 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   2644 
   2645 #define READ_STAT(sc, stats, stat) \
   2646 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   2647 
   2648 	ifp->if_collisions +=
   2649 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   2650 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   2651 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   2652 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   2653 	  ifp->if_collisions;
   2654 
   2655 #undef READ_STAT
   2656 
   2657 #ifdef notdef
   2658 	ifp->if_collisions +=
   2659 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   2660 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   2661 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   2662 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   2663 	   ifp->if_collisions;
   2664 #endif
   2665 }
   2666 
   2667 /*
   2668  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   2669  * pointers to descriptors.
   2670  */
   2671 int
   2672 bge_encap(sc, m_head, txidx)
   2673 	struct bge_softc *sc;
   2674 	struct mbuf *m_head;
   2675 	u_int32_t *txidx;
   2676 {
   2677 	struct bge_tx_bd	*f = NULL;
   2678 	u_int32_t		frag, cur, cnt = 0;
   2679 	u_int16_t		csum_flags = 0;
   2680 	struct txdmamap_pool_entry *dma;
   2681 	bus_dmamap_t dmamap;
   2682 	int			i = 0;
   2683 	struct m_tag		*mtag;
   2684 	struct mbuf		*prev, *m;
   2685 	int			totlen, prevlen;
   2686 
   2687 	cur = frag = *txidx;
   2688 
   2689 	if (m_head->m_pkthdr.csum_flags) {
   2690 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   2691 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   2692 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   2693 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   2694 	}
   2695 
   2696 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   2697 		goto doit;
   2698 	/*
   2699 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   2700 	 * less than eight bytes.  If we encounter a teeny mbuf
   2701 	 * at the end of a chain, we can pad.  Otherwise, copy.
   2702 	 */
   2703 	prev = NULL;
   2704 	totlen = 0;
   2705 	for (m = m_head; m != NULL; prev = m,m = m->m_next) {
   2706 		int mlen = m->m_len;
   2707 
   2708 		totlen += mlen;
   2709 		if (mlen == 0) {
   2710 			/* print a warning? */
   2711 			continue;
   2712 		}
   2713 		if (mlen >= 8)
   2714 			continue;
   2715 
   2716 		/* If we get here, mbuf data is too small for DMA engine. */
   2717 		if (m->m_next != 0) {
   2718 			  /* Internal frag. If fits in prev, copy it there. */
   2719 			  if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
   2720 			      !M_READONLY(prev)) {
   2721 			  	bcopy(m->m_data,
   2722 				      prev->m_data+prev->m_len,
   2723 				      mlen);
   2724 				prev->m_len += mlen;
   2725 				m->m_len = 0;
   2726 				MFREE(m, prev->m_next); /* XXX stitch chain */
   2727 				m = prev;
   2728 				continue;
   2729 			  } else {
   2730 				struct mbuf *n;
   2731 				/* slow copy */
   2732 slowcopy:
   2733 			  	n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
   2734 				m_freem(m_head);
   2735 				if (n == 0)
   2736 					return 0;
   2737 				m_head  = n;
   2738 				goto doit;
   2739 			  }
   2740 		} else if ((totlen -mlen +8) >= 1500) {
   2741 			goto slowcopy;
   2742 		}
   2743 		prevlen = m->m_len;
   2744 	}
   2745 
   2746 doit:
   2747 	dma = SLIST_FIRST(&sc->txdma_list);
   2748 	if (dma == NULL)
   2749 		return ENOBUFS;
   2750 	dmamap = dma->dmamap;
   2751 
   2752 	/*
   2753 	 * Start packing the mbufs in this chain into
   2754 	 * the fragment pointers. Stop when we run out
   2755 	 * of fragments or hit the end of the mbuf chain.
   2756 	 */
   2757 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   2758 	    BUS_DMA_NOWAIT))
   2759 		return(ENOBUFS);
   2760 
   2761 	mtag = sc->ethercom.ec_nvlans ?
   2762 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   2763 
   2764 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2765 		f = &sc->bge_rdata->bge_tx_ring[frag];
   2766 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   2767 			break;
   2768 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   2769 		f->bge_len = dmamap->dm_segs[i].ds_len;
   2770 		f->bge_flags = csum_flags;
   2771 
   2772 		if (mtag != NULL) {
   2773 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   2774 			f->bge_vlan_tag = *(u_int *)(mtag + 1);
   2775 		} else {
   2776 			f->bge_vlan_tag = 0;
   2777 		}
   2778 		/*
   2779 		 * Sanity check: avoid coming within 16 descriptors
   2780 		 * of the end of the ring.
   2781 		 */
   2782 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
   2783 			return(ENOBUFS);
   2784 		cur = frag;
   2785 		BGE_INC(frag, BGE_TX_RING_CNT);
   2786 		cnt++;
   2787 	}
   2788 
   2789 	if (i < dmamap->dm_nsegs)
   2790 		return ENOBUFS;
   2791 
   2792 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   2793 	    BUS_DMASYNC_PREWRITE);
   2794 
   2795 	if (frag == sc->bge_tx_saved_considx)
   2796 		return(ENOBUFS);
   2797 
   2798 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   2799 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   2800 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   2801 	sc->txdma[cur] = dma;
   2802 	sc->bge_txcnt += cnt;
   2803 
   2804 	*txidx = frag;
   2805 
   2806 	return(0);
   2807 }
   2808 
   2809 /*
   2810  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   2811  * to the mbuf data regions directly in the transmit descriptors.
   2812  */
   2813 void
   2814 bge_start(ifp)
   2815 	struct ifnet *ifp;
   2816 {
   2817 	struct bge_softc *sc;
   2818 	struct mbuf *m_head = NULL;
   2819 	u_int32_t prodidx = 0;
   2820 	int pkts = 0;
   2821 
   2822 	sc = ifp->if_softc;
   2823 
   2824 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   2825 		return;
   2826 
   2827 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
   2828 
   2829 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   2830 		IFQ_POLL(&ifp->if_snd, m_head);
   2831 		if (m_head == NULL)
   2832 			break;
   2833 
   2834 #if 0
   2835 		/*
   2836 		 * XXX
   2837 		 * safety overkill.  If this is a fragmented packet chain
   2838 		 * with delayed TCP/UDP checksums, then only encapsulate
   2839 		 * it if we have enough descriptors to handle the entire
   2840 		 * chain at once.
   2841 		 * (paranoia -- may not actually be needed)
   2842 		 */
   2843 		if (m_head->m_flags & M_FIRSTFRAG &&
   2844 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   2845 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   2846 			    m_head->m_pkthdr.csum_data + 16) {
   2847 				ifp->if_flags |= IFF_OACTIVE;
   2848 				break;
   2849 			}
   2850 		}
   2851 #endif
   2852 
   2853 		/*
   2854 		 * Pack the data into the transmit ring. If we
   2855 		 * don't have room, set the OACTIVE flag and wait
   2856 		 * for the NIC to drain the ring.
   2857 		 */
   2858 		if (bge_encap(sc, m_head, &prodidx)) {
   2859 			ifp->if_flags |= IFF_OACTIVE;
   2860 			break;
   2861 		}
   2862 
   2863 		/* now we are committed to transmit the packet */
   2864 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   2865 		pkts++;
   2866 
   2867 #if NBPFILTER > 0
   2868 		/*
   2869 		 * If there's a BPF listener, bounce a copy of this frame
   2870 		 * to him.
   2871 		 */
   2872 		if (ifp->if_bpf)
   2873 			bpf_mtap(ifp->if_bpf, m_head);
   2874 #endif
   2875 	}
   2876 	if (pkts == 0)
   2877 		return;
   2878 
   2879 	/* Transmit */
   2880 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   2881 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   2882 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   2883 
   2884 	/*
   2885 	 * Set a timeout in case the chip goes out to lunch.
   2886 	 */
   2887 	ifp->if_timer = 5;
   2888 }
   2889 
   2890 int
   2891 bge_init(ifp)
   2892 	struct ifnet *ifp;
   2893 {
   2894 	struct bge_softc *sc = ifp->if_softc;
   2895 	u_int16_t *m;
   2896 	int s, error;
   2897 
   2898 	s = splnet();
   2899 
   2900 	ifp = &sc->ethercom.ec_if;
   2901 
   2902 	/* Cancel pending I/O and flush buffers. */
   2903 	bge_stop(sc);
   2904 	bge_reset(sc);
   2905 	bge_chipinit(sc);
   2906 
   2907 	/*
   2908 	 * Init the various state machines, ring
   2909 	 * control blocks and firmware.
   2910 	 */
   2911 	error = bge_blockinit(sc);
   2912 	if (error != 0) {
   2913 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   2914 		    error);
   2915 		splx(s);
   2916 		return error;
   2917 	}
   2918 
   2919 	ifp = &sc->ethercom.ec_if;
   2920 
   2921 	/* Specify MTU. */
   2922 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   2923 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
   2924 
   2925 	/* Load our MAC address. */
   2926 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   2927 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   2928 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   2929 
   2930 	/* Enable or disable promiscuous mode as needed. */
   2931 	if (ifp->if_flags & IFF_PROMISC) {
   2932 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   2933 	} else {
   2934 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   2935 	}
   2936 
   2937 	/* Program multicast filter. */
   2938 	bge_setmulti(sc);
   2939 
   2940 	/* Init RX ring. */
   2941 	bge_init_rx_ring_std(sc);
   2942 
   2943 	/* Init jumbo RX ring. */
   2944 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2945 		bge_init_rx_ring_jumbo(sc);
   2946 
   2947 	/* Init our RX return ring index */
   2948 	sc->bge_rx_saved_considx = 0;
   2949 
   2950 	/* Init TX ring. */
   2951 	bge_init_tx_ring(sc);
   2952 
   2953 	/* Turn on transmitter */
   2954 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   2955 
   2956 	/* Turn on receiver */
   2957 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   2958 
   2959 	/* Tell firmware we're alive. */
   2960 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   2961 
   2962 	/* Enable host interrupts. */
   2963 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   2964 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   2965 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2966 
   2967 	bge_ifmedia_upd(ifp);
   2968 
   2969 	ifp->if_flags |= IFF_RUNNING;
   2970 	ifp->if_flags &= ~IFF_OACTIVE;
   2971 
   2972 	splx(s);
   2973 
   2974 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2975 
   2976 	return 0;
   2977 }
   2978 
   2979 /*
   2980  * Set media options.
   2981  */
   2982 int
   2983 bge_ifmedia_upd(ifp)
   2984 	struct ifnet *ifp;
   2985 {
   2986 	struct bge_softc *sc = ifp->if_softc;
   2987 	struct mii_data *mii = &sc->bge_mii;
   2988 	struct ifmedia *ifm = &sc->bge_ifmedia;
   2989 
   2990 	/* If this is a 1000baseX NIC, enable the TBI port. */
   2991 	if (sc->bge_tbi) {
   2992 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   2993 			return(EINVAL);
   2994 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   2995 		case IFM_AUTO:
   2996 			break;
   2997 		case IFM_1000_SX:
   2998 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   2999 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3000 				    BGE_MACMODE_HALF_DUPLEX);
   3001 			} else {
   3002 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3003 				    BGE_MACMODE_HALF_DUPLEX);
   3004 			}
   3005 			break;
   3006 		default:
   3007 			return(EINVAL);
   3008 		}
   3009 		return(0);
   3010 	}
   3011 
   3012 	sc->bge_link = 0;
   3013 	mii_mediachg(mii);
   3014 
   3015 	return(0);
   3016 }
   3017 
   3018 /*
   3019  * Report current media status.
   3020  */
   3021 void
   3022 bge_ifmedia_sts(ifp, ifmr)
   3023 	struct ifnet *ifp;
   3024 	struct ifmediareq *ifmr;
   3025 {
   3026 	struct bge_softc *sc = ifp->if_softc;
   3027 	struct mii_data *mii = &sc->bge_mii;
   3028 
   3029 	if (sc->bge_tbi) {
   3030 		ifmr->ifm_status = IFM_AVALID;
   3031 		ifmr->ifm_active = IFM_ETHER;
   3032 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3033 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   3034 			ifmr->ifm_status |= IFM_ACTIVE;
   3035 		ifmr->ifm_active |= IFM_1000_SX;
   3036 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   3037 			ifmr->ifm_active |= IFM_HDX;
   3038 		else
   3039 			ifmr->ifm_active |= IFM_FDX;
   3040 		return;
   3041 	}
   3042 
   3043 	mii_pollstat(mii);
   3044 	ifmr->ifm_active = mii->mii_media_active;
   3045 	ifmr->ifm_status = mii->mii_media_status;
   3046 }
   3047 
   3048 int
   3049 bge_ioctl(ifp, command, data)
   3050 	struct ifnet *ifp;
   3051 	u_long command;
   3052 	caddr_t data;
   3053 {
   3054 	struct bge_softc *sc = ifp->if_softc;
   3055 	struct ifreq *ifr = (struct ifreq *) data;
   3056 	int s, error = 0;
   3057 	struct mii_data *mii;
   3058 
   3059 	s = splnet();
   3060 
   3061 	switch(command) {
   3062 	case SIOCSIFFLAGS:
   3063 		if (ifp->if_flags & IFF_UP) {
   3064 			/*
   3065 			 * If only the state of the PROMISC flag changed,
   3066 			 * then just use the 'set promisc mode' command
   3067 			 * instead of reinitializing the entire NIC. Doing
   3068 			 * a full re-init means reloading the firmware and
   3069 			 * waiting for it to start up, which may take a
   3070 			 * second or two.
   3071 			 */
   3072 			if (ifp->if_flags & IFF_RUNNING &&
   3073 			    ifp->if_flags & IFF_PROMISC &&
   3074 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   3075 				BGE_SETBIT(sc, BGE_RX_MODE,
   3076 				    BGE_RXMODE_RX_PROMISC);
   3077 			} else if (ifp->if_flags & IFF_RUNNING &&
   3078 			    !(ifp->if_flags & IFF_PROMISC) &&
   3079 			    sc->bge_if_flags & IFF_PROMISC) {
   3080 				BGE_CLRBIT(sc, BGE_RX_MODE,
   3081 				    BGE_RXMODE_RX_PROMISC);
   3082 			} else
   3083 				bge_init(ifp);
   3084 		} else {
   3085 			if (ifp->if_flags & IFF_RUNNING) {
   3086 				bge_stop(sc);
   3087 			}
   3088 		}
   3089 		sc->bge_if_flags = ifp->if_flags;
   3090 		error = 0;
   3091 		break;
   3092 	case SIOCSIFMEDIA:
   3093 	case SIOCGIFMEDIA:
   3094 		if (sc->bge_tbi) {
   3095 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   3096 			    command);
   3097 		} else {
   3098 			mii = &sc->bge_mii;
   3099 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   3100 			    command);
   3101 		}
   3102 		error = 0;
   3103 		break;
   3104 	default:
   3105 		error = ether_ioctl(ifp, command, data);
   3106 		if (error == ENETRESET) {
   3107 			bge_setmulti(sc);
   3108 			error = 0;
   3109 		}
   3110 		break;
   3111 	}
   3112 
   3113 	splx(s);
   3114 
   3115 	return(error);
   3116 }
   3117 
   3118 void
   3119 bge_watchdog(ifp)
   3120 	struct ifnet *ifp;
   3121 {
   3122 	struct bge_softc *sc;
   3123 
   3124 	sc = ifp->if_softc;
   3125 
   3126 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   3127 
   3128 	ifp->if_flags &= ~IFF_RUNNING;
   3129 	bge_init(ifp);
   3130 
   3131 	ifp->if_oerrors++;
   3132 }
   3133 
   3134 static void
   3135 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   3136 {
   3137 	int i;
   3138 
   3139 	BGE_CLRBIT(sc, reg, bit);
   3140 
   3141 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3142 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   3143 			return;
   3144 		delay(100);
   3145 	}
   3146 
   3147 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
   3148 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
   3149 }
   3150 
   3151 /*
   3152  * Stop the adapter and free any mbufs allocated to the
   3153  * RX and TX lists.
   3154  */
   3155 void
   3156 bge_stop(sc)
   3157 	struct bge_softc *sc;
   3158 {
   3159 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3160 
   3161 	callout_stop(&sc->bge_timeout);
   3162 
   3163 	/*
   3164 	 * Disable all of the receiver blocks
   3165 	 */
   3166 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3167 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3168 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   3169 	bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   3170 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   3171 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3172 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   3173 
   3174 	/*
   3175 	 * Disable all of the transmit blocks
   3176 	 */
   3177 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3178 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3179 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3180 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   3181 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   3182 	bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   3183 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3184 
   3185 	/*
   3186 	 * Shut down all of the memory managers and related
   3187 	 * state machines.
   3188 	 */
   3189 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   3190 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   3191 	bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3192 
   3193 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   3194 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   3195 
   3196 	bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   3197 	bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   3198 
   3199 	/* Disable host interrupts. */
   3200 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3201 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3202 
   3203 	/*
   3204 	 * Tell firmware we're shutting down.
   3205 	 */
   3206 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3207 
   3208 	/* Free the RX lists. */
   3209 	bge_free_rx_ring_std(sc);
   3210 
   3211 	/* Free jumbo RX list. */
   3212 	bge_free_rx_ring_jumbo(sc);
   3213 
   3214 	/* Free TX buffers. */
   3215 	bge_free_tx_ring(sc);
   3216 
   3217 	/*
   3218 	 * Isolate/power down the PHY.
   3219 	 */
   3220 	if (!sc->bge_tbi)
   3221 		mii_down(&sc->bge_mii);
   3222 
   3223 	sc->bge_link = 0;
   3224 
   3225 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   3226 
   3227 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3228 }
   3229 
   3230 /*
   3231  * Stop all chip I/O so that the kernel's probe routines don't
   3232  * get confused by errant DMAs when rebooting.
   3233  */
   3234 void
   3235 bge_shutdown(xsc)
   3236 	void *xsc;
   3237 {
   3238 	struct bge_softc *sc = (struct bge_softc *)xsc;
   3239 
   3240 	bge_stop(sc);
   3241 	bge_reset(sc);
   3242 }
   3243