if_bge.c revision 1.371 1 /* $NetBSD: if_bge.c,v 1.371 2022/08/07 08:24:23 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.371 2022/08/07 08:24:23 skrll Exp $");
83
84 #include <sys/param.h>
85 #include <sys/types.h>
86
87 #include <sys/callout.h>
88 #include <sys/device.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mbuf.h>
92 #include <sys/rndsource.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/sysctl.h>
96 #include <sys/systm.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 #include <net/bpf.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119 #include <dev/pci/pcidevs.h>
120
121 #include <dev/mii/mii.h>
122 #include <dev/mii/miivar.h>
123 #include <dev/mii/miidevs.h>
124 #include <dev/mii/brgphyreg.h>
125
126 #include <dev/pci/if_bgereg.h>
127 #include <dev/pci/if_bgevar.h>
128
129 #include <prop/proplib.h>
130
131 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
132
133
134 /*
135 * Tunable thresholds for rx-side bge interrupt mitigation.
136 */
137
138 /*
139 * The pairs of values below were obtained from empirical measurement
140 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
141 * interrupt for every N packets received, where N is, approximately,
142 * the second value (rx_max_bds) in each pair. The values are chosen
143 * such that moving from one pair to the succeeding pair was observed
144 * to roughly halve interrupt rate under sustained input packet load.
145 * The values were empirically chosen to avoid overflowing internal
146 * limits on the bcm5700: increasing rx_ticks much beyond 600
147 * results in internal wrapping and higher interrupt rates.
148 * The limit of 46 frames was chosen to match NFS workloads.
149 *
150 * These values also work well on bcm5701, bcm5704C, and (less
151 * tested) bcm5703. On other chipsets, (including the Altima chip
152 * family), the larger values may overflow internal chip limits,
153 * leading to increasing interrupt rates rather than lower interrupt
154 * rates.
155 *
156 * Applications using heavy interrupt mitigation (interrupting every
157 * 32 or 46 frames) in both directions may need to increase the TCP
158 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
159 * full link bandwidth, due to ACKs and window updates lingering
160 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
161 */
162 static const struct bge_load_rx_thresh {
163 int rx_ticks;
164 int rx_max_bds; }
165 bge_rx_threshes[] = {
166 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
167 { 32, 2 },
168 { 50, 4 },
169 { 100, 8 },
170 { 192, 16 },
171 { 416, 32 },
172 { 598, 46 }
173 };
174 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
175
176 /* XXX patchable; should be sysctl'able */
177 static int bge_auto_thresh = 1;
178 static int bge_rx_thresh_lvl;
179
180 static int bge_rxthresh_nodenum;
181
182 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
183
184 static uint32_t bge_chipid(const struct pci_attach_args *);
185 static int bge_can_use_msi(struct bge_softc *);
186 static int bge_probe(device_t, cfdata_t, void *);
187 static void bge_attach(device_t, device_t, void *);
188 static int bge_detach(device_t, int);
189 static void bge_release_resources(struct bge_softc *);
190
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
199 static void bge_rxeof(struct bge_softc *);
200
201 static void bge_asf_driver_up (struct bge_softc *);
202 static void bge_tick(void *);
203 static void bge_stats_update(struct bge_softc *);
204 static void bge_stats_update_regs(struct bge_softc *);
205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206
207 static int bge_intr(void *);
208 static void bge_start(struct ifnet *);
209 static int bge_ifflags_cb(struct ethercom *);
210 static int bge_ioctl(struct ifnet *, u_long, void *);
211 static int bge_init(struct ifnet *);
212 static void bge_stop(struct ifnet *, int);
213 static void bge_watchdog(struct ifnet *);
214 static int bge_ifmedia_upd(struct ifnet *);
215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216
217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
219
220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
222 static void bge_setmulti(struct bge_softc *);
223
224 static void bge_handle_events(struct bge_softc *);
225 static int bge_alloc_jumbo_mem(struct bge_softc *);
226 #if 0 /* XXX */
227 static void bge_free_jumbo_mem(struct bge_softc *);
228 #endif
229 static void *bge_jalloc(struct bge_softc *);
230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
232 bus_dmamap_t);
233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
234 static int bge_init_rx_ring_std(struct bge_softc *);
235 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_tx_ring(struct bge_softc *m, bool);
239 static int bge_init_tx_ring(struct bge_softc *);
240
241 static int bge_chipinit(struct bge_softc *);
242 static int bge_blockinit(struct bge_softc *);
243 static int bge_phy_addr(struct bge_softc *);
244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
245 static void bge_writemem_ind(struct bge_softc *, int, int);
246 static void bge_writembx(struct bge_softc *, int, int);
247 static void bge_writembx_flush(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251
252 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
253 static int bge_miibus_writereg(device_t, int, int, uint16_t);
254 static void bge_miibus_statchg(struct ifnet *);
255
256 #define BGE_RESET_SHUTDOWN 0
257 #define BGE_RESET_START 1
258 #define BGE_RESET_SUSPEND 2
259 static void bge_sig_post_reset(struct bge_softc *, int);
260 static void bge_sig_legacy(struct bge_softc *, int);
261 static void bge_sig_pre_reset(struct bge_softc *, int);
262 static void bge_wait_for_event_ack(struct bge_softc *);
263 static void bge_stop_fw(struct bge_softc *);
264 static int bge_reset(struct bge_softc *);
265 static void bge_link_upd(struct bge_softc *);
266 static void bge_sysctl_init(struct bge_softc *);
267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
268
269 static void bge_ape_lock_init(struct bge_softc *);
270 static void bge_ape_read_fw_ver(struct bge_softc *);
271 static int bge_ape_lock(struct bge_softc *, int);
272 static void bge_ape_unlock(struct bge_softc *, int);
273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
274 static void bge_ape_driver_state_change(struct bge_softc *, int);
275
276 #ifdef BGE_DEBUG
277 #define DPRINTF(x) if (bgedebug) printf x
278 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
279 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
280 int bgedebug = 0;
281 int bge_tso_debug = 0;
282 void bge_debug_info(struct bge_softc *);
283 #else
284 #define DPRINTF(x)
285 #define DPRINTFN(n, x)
286 #define BGE_TSO_PRINTF(x)
287 #endif
288
289 #ifdef BGE_EVENT_COUNTERS
290 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
291 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
292 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
293 #else
294 #define BGE_EVCNT_INCR(ev) /* nothing */
295 #define BGE_EVCNT_ADD(ev, val) /* nothing */
296 #define BGE_EVCNT_UPD(ev, val) /* nothing */
297 #endif
298
299 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
300 /*
301 * The BCM5700 documentation seems to indicate that the hardware still has the
302 * Alteon vendor ID burned into it, though it should always be overridden by
303 * the value in the EEPROM. We'll check for it anyway.
304 */
305 static const struct bge_product {
306 pci_vendor_id_t bp_vendor;
307 pci_product_id_t bp_product;
308 const char *bp_name;
309 } bge_products[] = {
310 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
311 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
312 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
313 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
314 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
315 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
316 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
317 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
318 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
319 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
320 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
321 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
322 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
323 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
324 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
325 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
326 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
327 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
328 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
329 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
330 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
331 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
332 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
333 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
334 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
335 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
336 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
337 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
338 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
339 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
340 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
341 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
342 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
343 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
344 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
345 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
346 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
347 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
348 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
349 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
350 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
351 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
352 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
353 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
354 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
355 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
356 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
357 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
358 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
359 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
360 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
361 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
362 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
363 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
364 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
365 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
366 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
367 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
368 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
369 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
370 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
371 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
372 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
373 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
374 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
375 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
376 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
377 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
378 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
379 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
380 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
381 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
382 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
383 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
384 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
385 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
386 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
387 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
388 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
389 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
390 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
391 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
392 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
393 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
394 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
395 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
396 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
397 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
398 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
399 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
400 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
401 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
402 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
403 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
404 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
405 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
406 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
407 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
408 { 0, 0, NULL },
409 };
410
411 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
412 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
413 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
414 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
415 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
416 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
417 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
418 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
419 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
420
421 static const struct bge_revision {
422 uint32_t br_chipid;
423 const char *br_name;
424 } bge_revisions[] = {
425 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
426 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
427 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
428 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
429 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
430 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
431 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
432 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
433 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
434 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
435 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
436 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
437 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
438 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
439 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
440 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
441 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
442 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
443 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
444 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
445 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
446 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
447 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
448 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
449 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
450 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
451 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
452 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
453 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
454 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
455 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
456 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
457 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
458 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
459 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
460 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
461 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
462 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
463 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
464 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
465 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
466 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
467 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
468 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
469 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
470 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
471 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
472 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
473 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
474 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
475 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
476 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
477 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
478 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
479 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
480 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
481 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
482 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
483 /* 5754 and 5787 share the same ASIC ID */
484 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
485 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
486 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
487 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
488 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
489 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
490 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
491 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
492 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
493 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
494 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
495
496 { 0, NULL }
497 };
498
499 /*
500 * Some defaults for major revisions, so that newer steppings
501 * that we don't know about have a shot at working.
502 */
503 static const struct bge_revision bge_majorrevs[] = {
504 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
505 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
506 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
507 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
508 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
509 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
510 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
511 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
512 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
513 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
514 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
515 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
516 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
517 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
518 /* 5754 and 5787 share the same ASIC ID */
519 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
520 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
521 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
522 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
523 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
524 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
525 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
526 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
527 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
528
529 { 0, NULL }
530 };
531
532 static int bge_allow_asf = 1;
533
534 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
535 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
536
537 static uint32_t
538 bge_readmem_ind(struct bge_softc *sc, int off)
539 {
540 pcireg_t val;
541
542 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
543 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
544 return 0;
545
546 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
547 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
548 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
549 return val;
550 }
551
552 static void
553 bge_writemem_ind(struct bge_softc *sc, int off, int val)
554 {
555
556 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
557 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
558 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
559 }
560
561 /*
562 * PCI Express only
563 */
564 static void
565 bge_set_max_readrq(struct bge_softc *sc)
566 {
567 pcireg_t val;
568
569 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
570 + PCIE_DCSR);
571 val &= ~PCIE_DCSR_MAX_READ_REQ;
572 switch (sc->bge_expmrq) {
573 case 2048:
574 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
575 break;
576 case 4096:
577 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
578 break;
579 default:
580 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
581 break;
582 }
583 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
584 + PCIE_DCSR, val);
585 }
586
587 #ifdef notdef
588 static uint32_t
589 bge_readreg_ind(struct bge_softc *sc, int off)
590 {
591 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
592 return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
593 }
594 #endif
595
596 static void
597 bge_writereg_ind(struct bge_softc *sc, int off, int val)
598 {
599 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
600 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
601 }
602
603 static void
604 bge_writemem_direct(struct bge_softc *sc, int off, int val)
605 {
606 CSR_WRITE_4(sc, off, val);
607 }
608
609 static void
610 bge_writembx(struct bge_softc *sc, int off, int val)
611 {
612 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
613 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
614
615 CSR_WRITE_4(sc, off, val);
616 }
617
618 static void
619 bge_writembx_flush(struct bge_softc *sc, int off, int val)
620 {
621 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
622 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
623
624 CSR_WRITE_4_FLUSH(sc, off, val);
625 }
626
627 /*
628 * Clear all stale locks and select the lock for this driver instance.
629 */
630 void
631 bge_ape_lock_init(struct bge_softc *sc)
632 {
633 struct pci_attach_args *pa = &(sc->bge_pa);
634 uint32_t bit, regbase;
635 int i;
636
637 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
638 regbase = BGE_APE_LOCK_GRANT;
639 else
640 regbase = BGE_APE_PER_LOCK_GRANT;
641
642 /* Clear any stale locks. */
643 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
644 switch (i) {
645 case BGE_APE_LOCK_PHY0:
646 case BGE_APE_LOCK_PHY1:
647 case BGE_APE_LOCK_PHY2:
648 case BGE_APE_LOCK_PHY3:
649 bit = BGE_APE_LOCK_GRANT_DRIVER0;
650 break;
651 default:
652 if (pa->pa_function == 0)
653 bit = BGE_APE_LOCK_GRANT_DRIVER0;
654 else
655 bit = (1 << pa->pa_function);
656 }
657 APE_WRITE_4(sc, regbase + 4 * i, bit);
658 }
659
660 /* Select the PHY lock based on the device's function number. */
661 switch (pa->pa_function) {
662 case 0:
663 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
664 break;
665 case 1:
666 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
667 break;
668 case 2:
669 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
670 break;
671 case 3:
672 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
673 break;
674 default:
675 printf("%s: PHY lock not supported on function\n",
676 device_xname(sc->bge_dev));
677 break;
678 }
679 }
680
681 /*
682 * Check for APE firmware, set flags, and print version info.
683 */
684 void
685 bge_ape_read_fw_ver(struct bge_softc *sc)
686 {
687 const char *fwtype;
688 uint32_t apedata, features;
689
690 /* Check for a valid APE signature in shared memory. */
691 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
692 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
693 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
694 return;
695 }
696
697 /* Check if APE firmware is running. */
698 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
699 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
700 printf("%s: APE signature found but FW status not ready! "
701 "0x%08x\n", device_xname(sc->bge_dev), apedata);
702 return;
703 }
704
705 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
706
707 /* Fetch the APE firwmare type and version. */
708 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
709 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
710 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
711 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
712 fwtype = "NCSI";
713 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
714 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
715 fwtype = "DASH";
716 } else
717 fwtype = "UNKN";
718
719 /* Print the APE firmware version. */
720 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
721 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
722 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
723 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
724 (apedata & BGE_APE_FW_VERSION_BLDMSK));
725 }
726
727 int
728 bge_ape_lock(struct bge_softc *sc, int locknum)
729 {
730 struct pci_attach_args *pa = &(sc->bge_pa);
731 uint32_t bit, gnt, req, status;
732 int i, off;
733
734 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
735 return 0;
736
737 /* Lock request/grant registers have different bases. */
738 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
739 req = BGE_APE_LOCK_REQ;
740 gnt = BGE_APE_LOCK_GRANT;
741 } else {
742 req = BGE_APE_PER_LOCK_REQ;
743 gnt = BGE_APE_PER_LOCK_GRANT;
744 }
745
746 off = 4 * locknum;
747
748 switch (locknum) {
749 case BGE_APE_LOCK_GPIO:
750 /* Lock required when using GPIO. */
751 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
752 return 0;
753 if (pa->pa_function == 0)
754 bit = BGE_APE_LOCK_REQ_DRIVER0;
755 else
756 bit = (1 << pa->pa_function);
757 break;
758 case BGE_APE_LOCK_GRC:
759 /* Lock required to reset the device. */
760 if (pa->pa_function == 0)
761 bit = BGE_APE_LOCK_REQ_DRIVER0;
762 else
763 bit = (1 << pa->pa_function);
764 break;
765 case BGE_APE_LOCK_MEM:
766 /* Lock required when accessing certain APE memory. */
767 if (pa->pa_function == 0)
768 bit = BGE_APE_LOCK_REQ_DRIVER0;
769 else
770 bit = (1 << pa->pa_function);
771 break;
772 case BGE_APE_LOCK_PHY0:
773 case BGE_APE_LOCK_PHY1:
774 case BGE_APE_LOCK_PHY2:
775 case BGE_APE_LOCK_PHY3:
776 /* Lock required when accessing PHYs. */
777 bit = BGE_APE_LOCK_REQ_DRIVER0;
778 break;
779 default:
780 return EINVAL;
781 }
782
783 /* Request a lock. */
784 APE_WRITE_4_FLUSH(sc, req + off, bit);
785
786 /* Wait up to 1 second to acquire lock. */
787 for (i = 0; i < 20000; i++) {
788 status = APE_READ_4(sc, gnt + off);
789 if (status == bit)
790 break;
791 DELAY(50);
792 }
793
794 /* Handle any errors. */
795 if (status != bit) {
796 printf("%s: APE lock %d request failed! "
797 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
798 device_xname(sc->bge_dev),
799 locknum, req + off, bit & 0xFFFF, gnt + off,
800 status & 0xFFFF);
801 /* Revoke the lock request. */
802 APE_WRITE_4(sc, gnt + off, bit);
803 return EBUSY;
804 }
805
806 return 0;
807 }
808
809 void
810 bge_ape_unlock(struct bge_softc *sc, int locknum)
811 {
812 struct pci_attach_args *pa = &(sc->bge_pa);
813 uint32_t bit, gnt;
814 int off;
815
816 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
817 return;
818
819 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
820 gnt = BGE_APE_LOCK_GRANT;
821 else
822 gnt = BGE_APE_PER_LOCK_GRANT;
823
824 off = 4 * locknum;
825
826 switch (locknum) {
827 case BGE_APE_LOCK_GPIO:
828 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
829 return;
830 if (pa->pa_function == 0)
831 bit = BGE_APE_LOCK_GRANT_DRIVER0;
832 else
833 bit = (1 << pa->pa_function);
834 break;
835 case BGE_APE_LOCK_GRC:
836 if (pa->pa_function == 0)
837 bit = BGE_APE_LOCK_GRANT_DRIVER0;
838 else
839 bit = (1 << pa->pa_function);
840 break;
841 case BGE_APE_LOCK_MEM:
842 if (pa->pa_function == 0)
843 bit = BGE_APE_LOCK_GRANT_DRIVER0;
844 else
845 bit = (1 << pa->pa_function);
846 break;
847 case BGE_APE_LOCK_PHY0:
848 case BGE_APE_LOCK_PHY1:
849 case BGE_APE_LOCK_PHY2:
850 case BGE_APE_LOCK_PHY3:
851 bit = BGE_APE_LOCK_GRANT_DRIVER0;
852 break;
853 default:
854 return;
855 }
856
857 /* Write and flush for consecutive bge_ape_lock() */
858 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
859 }
860
861 /*
862 * Send an event to the APE firmware.
863 */
864 void
865 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
866 {
867 uint32_t apedata;
868 int i;
869
870 /* NCSI does not support APE events. */
871 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
872 return;
873
874 /* Wait up to 1ms for APE to service previous event. */
875 for (i = 10; i > 0; i--) {
876 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
877 break;
878 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
879 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
880 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
881 BGE_APE_EVENT_STATUS_EVENT_PENDING);
882 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
883 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
884 break;
885 }
886 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
887 DELAY(100);
888 }
889 if (i == 0) {
890 printf("%s: APE event 0x%08x send timed out\n",
891 device_xname(sc->bge_dev), event);
892 }
893 }
894
895 void
896 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
897 {
898 uint32_t apedata, event;
899
900 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
901 return;
902
903 switch (kind) {
904 case BGE_RESET_START:
905 /* If this is the first load, clear the load counter. */
906 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
907 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
908 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
909 else {
910 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
911 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
912 }
913 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
914 BGE_APE_HOST_SEG_SIG_MAGIC);
915 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
916 BGE_APE_HOST_SEG_LEN_MAGIC);
917
918 /* Add some version info if bge(4) supports it. */
919 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
920 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
921 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
922 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
923 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
924 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
925 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
926 BGE_APE_HOST_DRVR_STATE_START);
927 event = BGE_APE_EVENT_STATUS_STATE_START;
928 break;
929 case BGE_RESET_SHUTDOWN:
930 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
931 BGE_APE_HOST_DRVR_STATE_UNLOAD);
932 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
933 break;
934 case BGE_RESET_SUSPEND:
935 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
936 break;
937 default:
938 return;
939 }
940
941 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
942 BGE_APE_EVENT_STATUS_STATE_CHNGE);
943 }
944
945 static uint8_t
946 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
947 {
948 uint32_t access, byte = 0;
949 int i;
950
951 /* Lock. */
952 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
953 for (i = 0; i < 8000; i++) {
954 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
955 break;
956 DELAY(20);
957 }
958 if (i == 8000)
959 return 1;
960
961 /* Enable access. */
962 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
963 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
964
965 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
966 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
967 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
968 DELAY(10);
969 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
970 DELAY(10);
971 break;
972 }
973 }
974
975 if (i == BGE_TIMEOUT * 10) {
976 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
977 return 1;
978 }
979
980 /* Get result. */
981 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
982
983 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
984
985 /* Disable access. */
986 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
987
988 /* Unlock. */
989 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
990
991 return 0;
992 }
993
994 /*
995 * Read a sequence of bytes from NVRAM.
996 */
997 static int
998 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
999 {
1000 int error = 0, i;
1001 uint8_t byte = 0;
1002
1003 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1004 return 1;
1005
1006 for (i = 0; i < cnt; i++) {
1007 error = bge_nvram_getbyte(sc, off + i, &byte);
1008 if (error)
1009 break;
1010 *(dest + i) = byte;
1011 }
1012
1013 return error ? 1 : 0;
1014 }
1015
1016 /*
1017 * Read a byte of data stored in the EEPROM at address 'addr.' The
1018 * BCM570x supports both the traditional bitbang interface and an
1019 * auto access interface for reading the EEPROM. We use the auto
1020 * access method.
1021 */
1022 static uint8_t
1023 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1024 {
1025 int i;
1026 uint32_t byte = 0;
1027
1028 /*
1029 * Enable use of auto EEPROM access so we can avoid
1030 * having to use the bitbang method.
1031 */
1032 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1033
1034 /* Reset the EEPROM, load the clock period. */
1035 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1036 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1037 DELAY(20);
1038
1039 /* Issue the read EEPROM command. */
1040 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1041
1042 /* Wait for completion */
1043 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1044 DELAY(10);
1045 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1046 break;
1047 }
1048
1049 if (i == BGE_TIMEOUT * 10) {
1050 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1051 return 1;
1052 }
1053
1054 /* Get result. */
1055 byte = CSR_READ_4(sc, BGE_EE_DATA);
1056
1057 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1058
1059 return 0;
1060 }
1061
1062 /*
1063 * Read a sequence of bytes from the EEPROM.
1064 */
1065 static int
1066 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1067 {
1068 int error = 0, i;
1069 uint8_t byte = 0;
1070 char *dest = destv;
1071
1072 for (i = 0; i < cnt; i++) {
1073 error = bge_eeprom_getbyte(sc, off + i, &byte);
1074 if (error)
1075 break;
1076 *(dest + i) = byte;
1077 }
1078
1079 return error ? 1 : 0;
1080 }
1081
1082 static int
1083 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1084 {
1085 struct bge_softc * const sc = device_private(dev);
1086 uint32_t data;
1087 uint32_t autopoll;
1088 int rv = 0;
1089 int i;
1090
1091 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1092 return -1;
1093
1094 /* Reading with autopolling on may trigger PCI errors */
1095 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1096 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1097 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1098 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1099 DELAY(80);
1100 }
1101
1102 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1103 BGE_MIPHY(phy) | BGE_MIREG(reg));
1104
1105 for (i = 0; i < BGE_TIMEOUT; i++) {
1106 delay(10);
1107 data = CSR_READ_4(sc, BGE_MI_COMM);
1108 if (!(data & BGE_MICOMM_BUSY)) {
1109 DELAY(5);
1110 data = CSR_READ_4(sc, BGE_MI_COMM);
1111 break;
1112 }
1113 }
1114
1115 if (i == BGE_TIMEOUT) {
1116 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1117 rv = ETIMEDOUT;
1118 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1119 /* XXX This error occurs on some devices while attaching. */
1120 aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1121 rv = EIO;
1122 } else
1123 *val = data & BGE_MICOMM_DATA;
1124
1125 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1126 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1127 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1128 DELAY(80);
1129 }
1130
1131 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1132
1133 return rv;
1134 }
1135
1136 static int
1137 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1138 {
1139 struct bge_softc * const sc = device_private(dev);
1140 uint32_t data, autopoll;
1141 int rv = 0;
1142 int i;
1143
1144 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1145 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1146 return 0;
1147
1148 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1149 return -1;
1150
1151 /* Reading with autopolling on may trigger PCI errors */
1152 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1153 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1154 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1155 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1156 DELAY(80);
1157 }
1158
1159 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1160 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1161
1162 for (i = 0; i < BGE_TIMEOUT; i++) {
1163 delay(10);
1164 data = CSR_READ_4(sc, BGE_MI_COMM);
1165 if (!(data & BGE_MICOMM_BUSY)) {
1166 delay(5);
1167 data = CSR_READ_4(sc, BGE_MI_COMM);
1168 break;
1169 }
1170 }
1171
1172 if (i == BGE_TIMEOUT) {
1173 aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1174 rv = ETIMEDOUT;
1175 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1176 aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1177 rv = EIO;
1178 }
1179
1180 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1181 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1182 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1183 delay(80);
1184 }
1185
1186 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1187
1188 return rv;
1189 }
1190
1191 static void
1192 bge_miibus_statchg(struct ifnet *ifp)
1193 {
1194 struct bge_softc * const sc = ifp->if_softc;
1195 struct mii_data *mii = &sc->bge_mii;
1196 uint32_t mac_mode, rx_mode, tx_mode;
1197
1198 /*
1199 * Get flow control negotiation result.
1200 */
1201 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1202 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1203 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1204
1205 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1206 mii->mii_media_status & IFM_ACTIVE &&
1207 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1208 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1209 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1210 (!(mii->mii_media_status & IFM_ACTIVE) ||
1211 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1212 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1213
1214 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1215 return;
1216
1217 /* Set the port mode (MII/GMII) to match the link speed. */
1218 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1219 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1220 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1221 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1222 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1223 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1224 mac_mode |= BGE_PORTMODE_GMII;
1225 else
1226 mac_mode |= BGE_PORTMODE_MII;
1227
1228 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1229 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1230 if ((mii->mii_media_active & IFM_FDX) != 0) {
1231 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1232 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1233 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1234 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1235 } else
1236 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1237
1238 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1239 DELAY(40);
1240 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1241 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1242 }
1243
1244 /*
1245 * Update rx threshold levels to values in a particular slot
1246 * of the interrupt-mitigation table bge_rx_threshes.
1247 */
1248 static void
1249 bge_set_thresh(struct ifnet *ifp, int lvl)
1250 {
1251 struct bge_softc * const sc = ifp->if_softc;
1252 int s;
1253
1254 /*
1255 * For now, just save the new Rx-intr thresholds and record
1256 * that a threshold update is pending. Updating the hardware
1257 * registers here (even at splhigh()) is observed to
1258 * occasionally cause glitches where Rx-interrupts are not
1259 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1260 */
1261 s = splnet();
1262 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1263 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1264 sc->bge_pending_rxintr_change = 1;
1265 splx(s);
1266 }
1267
1268
1269 /*
1270 * Update Rx thresholds of all bge devices
1271 */
1272 static void
1273 bge_update_all_threshes(int lvl)
1274 {
1275 const char * const namebuf = "bge";
1276 const size_t namelen = strlen(namebuf);
1277 struct ifnet *ifp;
1278
1279 if (lvl < 0)
1280 lvl = 0;
1281 else if (lvl >= NBGE_RX_THRESH)
1282 lvl = NBGE_RX_THRESH - 1;
1283
1284 /*
1285 * Now search all the interfaces for this name/number
1286 */
1287 int s = pserialize_read_enter();
1288 IFNET_READER_FOREACH(ifp) {
1289 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1290 continue;
1291 /* We got a match: update if doing auto-threshold-tuning */
1292 if (bge_auto_thresh)
1293 bge_set_thresh(ifp, lvl);
1294 }
1295 pserialize_read_exit(s);
1296 }
1297
1298 /*
1299 * Handle events that have triggered interrupts.
1300 */
1301 static void
1302 bge_handle_events(struct bge_softc *sc)
1303 {
1304
1305 return;
1306 }
1307
1308 /*
1309 * Memory management for jumbo frames.
1310 */
1311
1312 static int
1313 bge_alloc_jumbo_mem(struct bge_softc *sc)
1314 {
1315 char *ptr, *kva;
1316 bus_dma_segment_t seg;
1317 int i, rseg, state, error;
1318 struct bge_jpool_entry *entry;
1319
1320 state = error = 0;
1321
1322 /* Grab a big chunk o' storage. */
1323 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1324 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1325 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1326 return ENOBUFS;
1327 }
1328
1329 state = 1;
1330 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1331 BUS_DMA_NOWAIT)) {
1332 aprint_error_dev(sc->bge_dev,
1333 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1334 error = ENOBUFS;
1335 goto out;
1336 }
1337
1338 state = 2;
1339 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1340 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1341 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1342 error = ENOBUFS;
1343 goto out;
1344 }
1345
1346 state = 3;
1347 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1348 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1349 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1350 error = ENOBUFS;
1351 goto out;
1352 }
1353
1354 state = 4;
1355 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1356 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1357
1358 SLIST_INIT(&sc->bge_jfree_listhead);
1359 SLIST_INIT(&sc->bge_jinuse_listhead);
1360
1361 /*
1362 * Now divide it up into 9K pieces and save the addresses
1363 * in an array.
1364 */
1365 ptr = sc->bge_cdata.bge_jumbo_buf;
1366 for (i = 0; i < BGE_JSLOTS; i++) {
1367 sc->bge_cdata.bge_jslots[i] = ptr;
1368 ptr += BGE_JLEN;
1369 entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
1370 entry->slot = i;
1371 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1372 entry, jpool_entries);
1373 }
1374 out:
1375 if (error != 0) {
1376 switch (state) {
1377 case 4:
1378 bus_dmamap_unload(sc->bge_dmatag,
1379 sc->bge_cdata.bge_rx_jumbo_map);
1380 /* FALLTHROUGH */
1381 case 3:
1382 bus_dmamap_destroy(sc->bge_dmatag,
1383 sc->bge_cdata.bge_rx_jumbo_map);
1384 /* FALLTHROUGH */
1385 case 2:
1386 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1387 /* FALLTHROUGH */
1388 case 1:
1389 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1390 break;
1391 default:
1392 break;
1393 }
1394 }
1395
1396 return error;
1397 }
1398
1399 /*
1400 * Allocate a jumbo buffer.
1401 */
1402 static void *
1403 bge_jalloc(struct bge_softc *sc)
1404 {
1405 struct bge_jpool_entry *entry;
1406
1407 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1408
1409 if (entry == NULL) {
1410 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1411 return NULL;
1412 }
1413
1414 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1415 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1416 return sc->bge_cdata.bge_jslots[entry->slot];
1417 }
1418
1419 /*
1420 * Release a jumbo buffer.
1421 */
1422 static void
1423 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1424 {
1425 struct bge_jpool_entry *entry;
1426 struct bge_softc * const sc = arg;
1427 int s;
1428
1429 if (sc == NULL)
1430 panic("bge_jfree: can't find softc pointer!");
1431
1432 /* calculate the slot this buffer belongs to */
1433 int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1434
1435 if (i < 0 || i >= BGE_JSLOTS)
1436 panic("bge_jfree: asked to free buffer that we don't manage!");
1437
1438 s = splvm();
1439 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1440 if (entry == NULL)
1441 panic("bge_jfree: buffer not in use!");
1442 entry->slot = i;
1443 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1444 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1445
1446 if (__predict_true(m != NULL))
1447 pool_cache_put(mb_cache, m);
1448 splx(s);
1449 }
1450
1451
1452 /*
1453 * Initialize a standard receive ring descriptor.
1454 */
1455 static int
1456 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1457 bus_dmamap_t dmamap)
1458 {
1459 struct mbuf *m_new = NULL;
1460 struct bge_rx_bd *r;
1461 int error;
1462
1463 if (dmamap == NULL)
1464 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1465
1466 if (dmamap == NULL) {
1467 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1468 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1469 if (error != 0)
1470 return error;
1471 }
1472
1473 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1474
1475 if (m == NULL) {
1476 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1477 if (m_new == NULL)
1478 return ENOBUFS;
1479
1480 MCLGET(m_new, M_DONTWAIT);
1481 if (!(m_new->m_flags & M_EXT)) {
1482 m_freem(m_new);
1483 return ENOBUFS;
1484 }
1485 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1486
1487 } else {
1488 m_new = m;
1489 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1490 m_new->m_data = m_new->m_ext.ext_buf;
1491 }
1492 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1493 m_adj(m_new, ETHER_ALIGN);
1494 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1495 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1496 m_freem(m_new);
1497 return ENOBUFS;
1498 }
1499 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1500 BUS_DMASYNC_PREREAD);
1501
1502 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1503 r = &sc->bge_rdata->bge_rx_std_ring[i];
1504 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1505 r->bge_flags = BGE_RXBDFLAG_END;
1506 r->bge_len = m_new->m_len;
1507 r->bge_idx = i;
1508
1509 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1510 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1511 i * sizeof(struct bge_rx_bd),
1512 sizeof(struct bge_rx_bd),
1513 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1514
1515 return 0;
1516 }
1517
1518 /*
1519 * Initialize a jumbo receive ring descriptor. This allocates
1520 * a jumbo buffer from the pool managed internally by the driver.
1521 */
1522 static int
1523 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1524 {
1525 struct mbuf *m_new = NULL;
1526 struct bge_rx_bd *r;
1527 void *buf = NULL;
1528
1529 if (m == NULL) {
1530
1531 /* Allocate the mbuf. */
1532 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1533 if (m_new == NULL)
1534 return ENOBUFS;
1535
1536 /* Allocate the jumbo buffer */
1537 buf = bge_jalloc(sc);
1538 if (buf == NULL) {
1539 m_freem(m_new);
1540 aprint_error_dev(sc->bge_dev,
1541 "jumbo allocation failed -- packet dropped!\n");
1542 return ENOBUFS;
1543 }
1544
1545 /* Attach the buffer to the mbuf. */
1546 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1547 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1548 bge_jfree, sc);
1549 m_new->m_flags |= M_EXT_RW;
1550 } else {
1551 m_new = m;
1552 buf = m_new->m_data = m_new->m_ext.ext_buf;
1553 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1554 }
1555 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1556 m_adj(m_new, ETHER_ALIGN);
1557 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1558 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1559 BGE_JLEN, BUS_DMASYNC_PREREAD);
1560 /* Set up the descriptor. */
1561 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1562 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1563 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1564 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1565 r->bge_len = m_new->m_len;
1566 r->bge_idx = i;
1567
1568 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1569 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1570 i * sizeof(struct bge_rx_bd),
1571 sizeof(struct bge_rx_bd),
1572 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1573
1574 return 0;
1575 }
1576
1577 /*
1578 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1579 * that's 1MB or memory, which is a lot. For now, we fill only the first
1580 * 256 ring entries and hope that our CPU is fast enough to keep up with
1581 * the NIC.
1582 */
1583 static int
1584 bge_init_rx_ring_std(struct bge_softc *sc)
1585 {
1586 int i;
1587
1588 if (sc->bge_flags & BGEF_RXRING_VALID)
1589 return 0;
1590
1591 for (i = 0; i < BGE_SSLOTS; i++) {
1592 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1593 return ENOBUFS;
1594 }
1595
1596 sc->bge_std = i - 1;
1597 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1598
1599 sc->bge_flags |= BGEF_RXRING_VALID;
1600
1601 return 0;
1602 }
1603
1604 static void
1605 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1606 {
1607 int i;
1608
1609 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1610 return;
1611
1612 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1613 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1614 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1615 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1616 if (disable) {
1617 bus_dmamap_destroy(sc->bge_dmatag,
1618 sc->bge_cdata.bge_rx_std_map[i]);
1619 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1620 }
1621 }
1622 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1623 sizeof(struct bge_rx_bd));
1624 }
1625
1626 sc->bge_flags &= ~BGEF_RXRING_VALID;
1627 }
1628
1629 static int
1630 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1631 {
1632 int i;
1633 volatile struct bge_rcb *rcb;
1634
1635 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1636 return 0;
1637
1638 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1639 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1640 return ENOBUFS;
1641 }
1642
1643 sc->bge_jumbo = i - 1;
1644 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1645
1646 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1647 rcb->bge_maxlen_flags = 0;
1648 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1649
1650 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1651
1652 return 0;
1653 }
1654
1655 static void
1656 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1657 {
1658 int i;
1659
1660 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1661 return;
1662
1663 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1664 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1665 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1666 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1667 }
1668 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1669 sizeof(struct bge_rx_bd));
1670 }
1671
1672 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1673 }
1674
1675 static void
1676 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1677 {
1678 int i;
1679 struct txdmamap_pool_entry *dma;
1680
1681 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1682 return;
1683
1684 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1685 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1686 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1687 sc->bge_cdata.bge_tx_chain[i] = NULL;
1688 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1689 link);
1690 sc->txdma[i] = 0;
1691 }
1692 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1693 sizeof(struct bge_tx_bd));
1694 }
1695
1696 if (disable) {
1697 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1698 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1699 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1700 if (sc->bge_dma64) {
1701 bus_dmamap_destroy(sc->bge_dmatag32,
1702 dma->dmamap32);
1703 }
1704 kmem_free(dma, sizeof(*dma));
1705 }
1706 SLIST_INIT(&sc->txdma_list);
1707 }
1708
1709 sc->bge_flags &= ~BGEF_TXRING_VALID;
1710 }
1711
1712 static int
1713 bge_init_tx_ring(struct bge_softc *sc)
1714 {
1715 struct ifnet * const ifp = &sc->ethercom.ec_if;
1716 int i;
1717 bus_dmamap_t dmamap, dmamap32;
1718 bus_size_t maxsegsz;
1719 struct txdmamap_pool_entry *dma;
1720
1721 if (sc->bge_flags & BGEF_TXRING_VALID)
1722 return 0;
1723
1724 sc->bge_txcnt = 0;
1725 sc->bge_tx_saved_considx = 0;
1726
1727 /* Initialize transmit producer index for host-memory send ring. */
1728 sc->bge_tx_prodidx = 0;
1729 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1730 /* 5700 b2 errata */
1731 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1732 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1733
1734 /* NIC-memory send ring not used; initialize to zero. */
1735 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1736 /* 5700 b2 errata */
1737 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1738 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1739
1740 /* Limit DMA segment size for some chips */
1741 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1742 (ifp->if_mtu <= ETHERMTU))
1743 maxsegsz = 2048;
1744 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1745 maxsegsz = 4096;
1746 else
1747 maxsegsz = ETHER_MAX_LEN_JUMBO;
1748
1749 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1750 goto alloc_done;
1751
1752 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1753 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1754 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1755 &dmamap))
1756 return ENOBUFS;
1757 if (dmamap == NULL)
1758 panic("dmamap NULL in bge_init_tx_ring");
1759 if (sc->bge_dma64) {
1760 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1761 BGE_NTXSEG, maxsegsz, 0,
1762 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1763 &dmamap32)) {
1764 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1765 return ENOBUFS;
1766 }
1767 if (dmamap32 == NULL)
1768 panic("dmamap32 NULL in bge_init_tx_ring");
1769 } else
1770 dmamap32 = dmamap;
1771 dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
1772 if (dma == NULL) {
1773 aprint_error_dev(sc->bge_dev,
1774 "can't alloc txdmamap_pool_entry\n");
1775 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1776 if (sc->bge_dma64)
1777 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1778 return ENOMEM;
1779 }
1780 dma->dmamap = dmamap;
1781 dma->dmamap32 = dmamap32;
1782 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1783 }
1784 alloc_done:
1785 sc->bge_flags |= BGEF_TXRING_VALID;
1786
1787 return 0;
1788 }
1789
1790 static void
1791 bge_setmulti(struct bge_softc *sc)
1792 {
1793 struct ethercom * const ec = &sc->ethercom;
1794 struct ifnet * const ifp = &ec->ec_if;
1795 struct ether_multi *enm;
1796 struct ether_multistep step;
1797 uint32_t hashes[4] = { 0, 0, 0, 0 };
1798 uint32_t h;
1799 int i;
1800
1801 if (ifp->if_flags & IFF_PROMISC)
1802 goto allmulti;
1803
1804 /* Now program new ones. */
1805 ETHER_LOCK(ec);
1806 ETHER_FIRST_MULTI(step, ec, enm);
1807 while (enm != NULL) {
1808 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1809 /*
1810 * We must listen to a range of multicast addresses.
1811 * For now, just accept all multicasts, rather than
1812 * trying to set only those filter bits needed to match
1813 * the range. (At this time, the only use of address
1814 * ranges is for IP multicast routing, for which the
1815 * range is big enough to require all bits set.)
1816 */
1817 ETHER_UNLOCK(ec);
1818 goto allmulti;
1819 }
1820
1821 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1822
1823 /* Just want the 7 least-significant bits. */
1824 h &= 0x7f;
1825
1826 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1827 ETHER_NEXT_MULTI(step, enm);
1828 }
1829 ETHER_UNLOCK(ec);
1830
1831 ifp->if_flags &= ~IFF_ALLMULTI;
1832 goto setit;
1833
1834 allmulti:
1835 ifp->if_flags |= IFF_ALLMULTI;
1836 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1837
1838 setit:
1839 for (i = 0; i < 4; i++)
1840 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1841 }
1842
1843 static void
1844 bge_sig_pre_reset(struct bge_softc *sc, int type)
1845 {
1846
1847 /*
1848 * Some chips don't like this so only do this if ASF is enabled
1849 */
1850 if (sc->bge_asf_mode)
1851 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1852
1853 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1854 switch (type) {
1855 case BGE_RESET_START:
1856 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1857 BGE_FW_DRV_STATE_START);
1858 break;
1859 case BGE_RESET_SHUTDOWN:
1860 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1861 BGE_FW_DRV_STATE_UNLOAD);
1862 break;
1863 case BGE_RESET_SUSPEND:
1864 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1865 BGE_FW_DRV_STATE_SUSPEND);
1866 break;
1867 }
1868 }
1869
1870 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1871 bge_ape_driver_state_change(sc, type);
1872 }
1873
1874 static void
1875 bge_sig_post_reset(struct bge_softc *sc, int type)
1876 {
1877
1878 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1879 switch (type) {
1880 case BGE_RESET_START:
1881 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1882 BGE_FW_DRV_STATE_START_DONE);
1883 /* START DONE */
1884 break;
1885 case BGE_RESET_SHUTDOWN:
1886 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1887 BGE_FW_DRV_STATE_UNLOAD_DONE);
1888 break;
1889 }
1890 }
1891
1892 if (type == BGE_RESET_SHUTDOWN)
1893 bge_ape_driver_state_change(sc, type);
1894 }
1895
1896 static void
1897 bge_sig_legacy(struct bge_softc *sc, int type)
1898 {
1899
1900 if (sc->bge_asf_mode) {
1901 switch (type) {
1902 case BGE_RESET_START:
1903 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1904 BGE_FW_DRV_STATE_START);
1905 break;
1906 case BGE_RESET_SHUTDOWN:
1907 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1908 BGE_FW_DRV_STATE_UNLOAD);
1909 break;
1910 }
1911 }
1912 }
1913
1914 static void
1915 bge_wait_for_event_ack(struct bge_softc *sc)
1916 {
1917 int i;
1918
1919 /* wait up to 2500usec */
1920 for (i = 0; i < 250; i++) {
1921 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1922 BGE_RX_CPU_DRV_EVENT))
1923 break;
1924 DELAY(10);
1925 }
1926 }
1927
1928 static void
1929 bge_stop_fw(struct bge_softc *sc)
1930 {
1931
1932 if (sc->bge_asf_mode) {
1933 bge_wait_for_event_ack(sc);
1934
1935 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1936 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1937 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1938
1939 bge_wait_for_event_ack(sc);
1940 }
1941 }
1942
1943 static int
1944 bge_poll_fw(struct bge_softc *sc)
1945 {
1946 uint32_t val;
1947 int i;
1948
1949 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1950 for (i = 0; i < BGE_TIMEOUT; i++) {
1951 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1952 if (val & BGE_VCPU_STATUS_INIT_DONE)
1953 break;
1954 DELAY(100);
1955 }
1956 if (i >= BGE_TIMEOUT) {
1957 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1958 return -1;
1959 }
1960 } else {
1961 /*
1962 * Poll the value location we just wrote until
1963 * we see the 1's complement of the magic number.
1964 * This indicates that the firmware initialization
1965 * is complete.
1966 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1967 */
1968 for (i = 0; i < BGE_TIMEOUT; i++) {
1969 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1970 if (val == ~BGE_SRAM_FW_MB_MAGIC)
1971 break;
1972 DELAY(10);
1973 }
1974
1975 if ((i >= BGE_TIMEOUT)
1976 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1977 aprint_error_dev(sc->bge_dev,
1978 "firmware handshake timed out, val = %x\n", val);
1979 return -1;
1980 }
1981 }
1982
1983 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1984 /* tg3 says we have to wait extra time */
1985 delay(10 * 1000);
1986 }
1987
1988 return 0;
1989 }
1990
1991 int
1992 bge_phy_addr(struct bge_softc *sc)
1993 {
1994 struct pci_attach_args *pa = &(sc->bge_pa);
1995 int phy_addr = 1;
1996
1997 /*
1998 * PHY address mapping for various devices.
1999 *
2000 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2001 * ---------+-------+-------+-------+-------+
2002 * BCM57XX | 1 | X | X | X |
2003 * BCM5704 | 1 | X | 1 | X |
2004 * BCM5717 | 1 | 8 | 2 | 9 |
2005 * BCM5719 | 1 | 8 | 2 | 9 |
2006 * BCM5720 | 1 | 8 | 2 | 9 |
2007 *
2008 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2009 * ---------+-------+-------+-------+-------+
2010 * BCM57XX | X | X | X | X |
2011 * BCM5704 | X | X | X | X |
2012 * BCM5717 | X | X | X | X |
2013 * BCM5719 | 3 | 10 | 4 | 11 |
2014 * BCM5720 | X | X | X | X |
2015 *
2016 * Other addresses may respond but they are not
2017 * IEEE compliant PHYs and should be ignored.
2018 */
2019 switch (BGE_ASICREV(sc->bge_chipid)) {
2020 case BGE_ASICREV_BCM5717:
2021 case BGE_ASICREV_BCM5719:
2022 case BGE_ASICREV_BCM5720:
2023 phy_addr = pa->pa_function;
2024 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2025 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2026 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2027 } else {
2028 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2029 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2030 }
2031 }
2032
2033 return phy_addr;
2034 }
2035
2036 /*
2037 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2038 * self-test results.
2039 */
2040 static int
2041 bge_chipinit(struct bge_softc *sc)
2042 {
2043 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2044 int i;
2045
2046 /* Set endianness before we access any non-PCI registers. */
2047 misc_ctl = BGE_INIT;
2048 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2049 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2050 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2051 misc_ctl);
2052
2053 /*
2054 * Clear the MAC statistics block in the NIC's
2055 * internal memory.
2056 */
2057 for (i = BGE_STATS_BLOCK;
2058 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2059 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2060
2061 for (i = BGE_STATUS_BLOCK;
2062 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2063 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2064
2065 /* 5717 workaround from tg3 */
2066 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2067 /* Save */
2068 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2069
2070 /* Temporary modify MODE_CTL to control TLP */
2071 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2072 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2073
2074 /* Control TLP */
2075 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2076 BGE_TLP_PHYCTL1);
2077 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2078 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2079
2080 /* Restore */
2081 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2082 }
2083
2084 if (BGE_IS_57765_FAMILY(sc)) {
2085 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2086 /* Save */
2087 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2088
2089 /* Temporary modify MODE_CTL to control TLP */
2090 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2091 CSR_WRITE_4(sc, BGE_MODE_CTL,
2092 reg | BGE_MODECTL_PCIE_TLPADDR1);
2093
2094 /* Control TLP */
2095 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2096 BGE_TLP_PHYCTL5);
2097 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2098 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2099
2100 /* Restore */
2101 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2102 }
2103 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2104 /*
2105 * For the 57766 and non Ax versions of 57765, bootcode
2106 * needs to setup the PCIE Fast Training Sequence (FTS)
2107 * value to prevent transmit hangs.
2108 */
2109 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2110 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2111 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2112
2113 /* Save */
2114 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2115
2116 /* Temporary modify MODE_CTL to control TLP */
2117 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2118 CSR_WRITE_4(sc, BGE_MODE_CTL,
2119 reg | BGE_MODECTL_PCIE_TLPADDR0);
2120
2121 /* Control TLP */
2122 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2123 BGE_TLP_FTSMAX);
2124 reg &= ~BGE_TLP_FTSMAX_MSK;
2125 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2126 reg | BGE_TLP_FTSMAX_VAL);
2127
2128 /* Restore */
2129 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2130 }
2131
2132 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2133 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2134 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2135 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2136 }
2137
2138 /* Set up the PCI DMA control register. */
2139 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2140 if (sc->bge_flags & BGEF_PCIE) {
2141 /* Read watermark not used, 128 bytes for write. */
2142 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2143 device_xname(sc->bge_dev)));
2144 if (sc->bge_mps >= 256)
2145 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2146 else
2147 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2148 } else if (sc->bge_flags & BGEF_PCIX) {
2149 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2150 device_xname(sc->bge_dev)));
2151 /* PCI-X bus */
2152 if (BGE_IS_5714_FAMILY(sc)) {
2153 /* 256 bytes for read and write. */
2154 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2155 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2156
2157 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2158 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2159 else
2160 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2161 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2162 /*
2163 * In the BCM5703, the DMA read watermark should
2164 * be set to less than or equal to the maximum
2165 * memory read byte count of the PCI-X command
2166 * register.
2167 */
2168 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2169 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2170 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2171 /* 1536 bytes for read, 384 bytes for write. */
2172 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2173 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2174 } else {
2175 /* 384 bytes for read and write. */
2176 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2177 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2178 (0x0F);
2179 }
2180
2181 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2182 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2183 uint32_t tmp;
2184
2185 /* Set ONEDMA_ATONCE for hardware workaround. */
2186 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2187 if (tmp == 6 || tmp == 7)
2188 dma_rw_ctl |=
2189 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2190
2191 /* Set PCI-X DMA write workaround. */
2192 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2193 }
2194 } else {
2195 /* Conventional PCI bus: 256 bytes for read and write. */
2196 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2197 device_xname(sc->bge_dev)));
2198 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2199 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2200
2201 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2202 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2203 dma_rw_ctl |= 0x0F;
2204 }
2205
2206 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2207 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2208 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2209 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2210
2211 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2212 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2213 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2214
2215 if (BGE_IS_57765_PLUS(sc)) {
2216 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2217 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2218 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2219
2220 /*
2221 * Enable HW workaround for controllers that misinterpret
2222 * a status tag update and leave interrupts permanently
2223 * disabled.
2224 */
2225 if (!BGE_IS_57765_FAMILY(sc) &&
2226 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2227 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2228 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2229 }
2230
2231 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2232 dma_rw_ctl);
2233
2234 /*
2235 * Set up general mode register.
2236 */
2237 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2238 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2239 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2240 /* Retain Host-2-BMC settings written by APE firmware. */
2241 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2242 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2243 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2244 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2245 }
2246 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2247 BGE_MODECTL_TX_NO_PHDR_CSUM;
2248
2249 /*
2250 * BCM5701 B5 have a bug causing data corruption when using
2251 * 64-bit DMA reads, which can be terminated early and then
2252 * completed later as 32-bit accesses, in combination with
2253 * certain bridges.
2254 */
2255 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2256 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2257 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2258
2259 /*
2260 * Tell the firmware the driver is running
2261 */
2262 if (sc->bge_asf_mode & ASF_STACKUP)
2263 mode_ctl |= BGE_MODECTL_STACKUP;
2264
2265 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2266
2267 /*
2268 * Disable memory write invalidate. Apparently it is not supported
2269 * properly by these devices.
2270 */
2271 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2272 PCI_COMMAND_INVALIDATE_ENABLE);
2273
2274 #ifdef __brokenalpha__
2275 /*
2276 * Must insure that we do not cross an 8K (bytes) boundary
2277 * for DMA reads. Our highest limit is 1K bytes. This is a
2278 * restriction on some ALPHA platforms with early revision
2279 * 21174 PCI chipsets, such as the AlphaPC 164lx
2280 */
2281 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2282 #endif
2283
2284 /* Set the timer prescaler (always 66MHz) */
2285 CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2286
2287 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2288 DELAY(40); /* XXX */
2289
2290 /* Put PHY into ready state */
2291 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2292 DELAY(40);
2293 }
2294
2295 return 0;
2296 }
2297
2298 static int
2299 bge_blockinit(struct bge_softc *sc)
2300 {
2301 volatile struct bge_rcb *rcb;
2302 bus_size_t rcb_addr;
2303 struct ifnet * const ifp = &sc->ethercom.ec_if;
2304 bge_hostaddr taddr;
2305 uint32_t dmactl, rdmareg, mimode, val;
2306 int i, limit;
2307
2308 /*
2309 * Initialize the memory window pointer register so that
2310 * we can access the first 32K of internal NIC RAM. This will
2311 * allow us to set up the TX send ring RCBs and the RX return
2312 * ring RCBs, plus other things which live in NIC memory.
2313 */
2314 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2315
2316 if (!BGE_IS_5705_PLUS(sc)) {
2317 /* 57XX step 33 */
2318 /* Configure mbuf memory pool */
2319 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2320
2321 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2322 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2323 else
2324 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2325
2326 /* 57XX step 34 */
2327 /* Configure DMA resource pool */
2328 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2329 BGE_DMA_DESCRIPTORS);
2330 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2331 }
2332
2333 /* 5718 step 11, 57XX step 35 */
2334 /*
2335 * Configure mbuf pool watermarks. New broadcom docs strongly
2336 * recommend these.
2337 */
2338 if (BGE_IS_5717_PLUS(sc)) {
2339 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2340 if (ifp->if_mtu > ETHERMTU) {
2341 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2342 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2343 } else {
2344 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2345 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2346 }
2347 } else if (BGE_IS_5705_PLUS(sc)) {
2348 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2349
2350 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2351 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2352 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2353 } else {
2354 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2355 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2356 }
2357 } else {
2358 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2359 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2360 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2361 }
2362
2363 /* 57XX step 36 */
2364 /* Configure DMA resource watermarks */
2365 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2366 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2367
2368 /* 5718 step 13, 57XX step 38 */
2369 /* Enable buffer manager */
2370 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2371 /*
2372 * Change the arbitration algorithm of TXMBUF read request to
2373 * round-robin instead of priority based for BCM5719. When
2374 * TXFIFO is almost empty, RDMA will hold its request until
2375 * TXFIFO is not almost empty.
2376 */
2377 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2378 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2379 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2380 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2381 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2382 val |= BGE_BMANMODE_LOMBUF_ATTN;
2383 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2384
2385 /* 57XX step 39 */
2386 /* Poll for buffer manager start indication */
2387 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2388 DELAY(10);
2389 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2390 break;
2391 }
2392
2393 if (i == BGE_TIMEOUT * 2) {
2394 aprint_error_dev(sc->bge_dev,
2395 "buffer manager failed to start\n");
2396 return ENXIO;
2397 }
2398
2399 /* 57XX step 40 */
2400 /* Enable flow-through queues */
2401 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2402 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2403
2404 /* Wait until queue initialization is complete */
2405 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2406 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2407 break;
2408 DELAY(10);
2409 }
2410
2411 if (i == BGE_TIMEOUT * 2) {
2412 aprint_error_dev(sc->bge_dev,
2413 "flow-through queue init failed\n");
2414 return ENXIO;
2415 }
2416
2417 /*
2418 * Summary of rings supported by the controller:
2419 *
2420 * Standard Receive Producer Ring
2421 * - This ring is used to feed receive buffers for "standard"
2422 * sized frames (typically 1536 bytes) to the controller.
2423 *
2424 * Jumbo Receive Producer Ring
2425 * - This ring is used to feed receive buffers for jumbo sized
2426 * frames (i.e. anything bigger than the "standard" frames)
2427 * to the controller.
2428 *
2429 * Mini Receive Producer Ring
2430 * - This ring is used to feed receive buffers for "mini"
2431 * sized frames to the controller.
2432 * - This feature required external memory for the controller
2433 * but was never used in a production system. Should always
2434 * be disabled.
2435 *
2436 * Receive Return Ring
2437 * - After the controller has placed an incoming frame into a
2438 * receive buffer that buffer is moved into a receive return
2439 * ring. The driver is then responsible to passing the
2440 * buffer up to the stack. Many versions of the controller
2441 * support multiple RR rings.
2442 *
2443 * Send Ring
2444 * - This ring is used for outgoing frames. Many versions of
2445 * the controller support multiple send rings.
2446 */
2447
2448 /* 5718 step 15, 57XX step 41 */
2449 /* Initialize the standard RX ring control block */
2450 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2451 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2452 /* 5718 step 16 */
2453 if (BGE_IS_57765_PLUS(sc)) {
2454 /*
2455 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2456 * Bits 15-2 : Maximum RX frame size
2457 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2458 * Bit 0 : Reserved
2459 */
2460 rcb->bge_maxlen_flags =
2461 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2462 } else if (BGE_IS_5705_PLUS(sc)) {
2463 /*
2464 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2465 * Bits 15-2 : Reserved (should be 0)
2466 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2467 * Bit 0 : Reserved
2468 */
2469 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2470 } else {
2471 /*
2472 * Ring size is always XXX entries
2473 * Bits 31-16: Maximum RX frame size
2474 * Bits 15-2 : Reserved (should be 0)
2475 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2476 * Bit 0 : Reserved
2477 */
2478 rcb->bge_maxlen_flags =
2479 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2480 }
2481 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2482 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2483 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2484 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2485 else
2486 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2487 /* Write the standard receive producer ring control block. */
2488 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2489 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2490 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2491 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2492
2493 /* Reset the standard receive producer ring producer index. */
2494 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2495
2496 /* 57XX step 42 */
2497 /*
2498 * Initialize the jumbo RX ring control block
2499 * We set the 'ring disabled' bit in the flags
2500 * field until we're actually ready to start
2501 * using this ring (i.e. once we set the MTU
2502 * high enough to require it).
2503 */
2504 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2505 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2506 BGE_HOSTADDR(rcb->bge_hostaddr,
2507 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2508 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2509 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2510 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2511 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2512 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2513 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2514 else
2515 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2516 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2517 rcb->bge_hostaddr.bge_addr_hi);
2518 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2519 rcb->bge_hostaddr.bge_addr_lo);
2520 /* Program the jumbo receive producer ring RCB parameters. */
2521 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2522 rcb->bge_maxlen_flags);
2523 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2524 /* Reset the jumbo receive producer ring producer index. */
2525 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2526 }
2527
2528 /* 57XX step 43 */
2529 /* Disable the mini receive producer ring RCB. */
2530 if (BGE_IS_5700_FAMILY(sc)) {
2531 /* Set up dummy disabled mini ring RCB */
2532 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2533 rcb->bge_maxlen_flags =
2534 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2535 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2536 rcb->bge_maxlen_flags);
2537 /* Reset the mini receive producer ring producer index. */
2538 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2539
2540 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2541 offsetof(struct bge_ring_data, bge_info),
2542 sizeof(struct bge_gib),
2543 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2544 }
2545
2546 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2547 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2548 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2549 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2550 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2551 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2552 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2553 }
2554 /* 5718 step 14, 57XX step 44 */
2555 /*
2556 * The BD ring replenish thresholds control how often the
2557 * hardware fetches new BD's from the producer rings in host
2558 * memory. Setting the value too low on a busy system can
2559 * starve the hardware and recue the throughpout.
2560 *
2561 * Set the BD ring replenish thresholds. The recommended
2562 * values are 1/8th the number of descriptors allocated to
2563 * each ring, but since we try to avoid filling the entire
2564 * ring we set these to the minimal value of 8. This needs to
2565 * be done on several of the supported chip revisions anyway,
2566 * to work around HW bugs.
2567 */
2568 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2569 if (BGE_IS_JUMBO_CAPABLE(sc))
2570 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2571
2572 /* 5718 step 18 */
2573 if (BGE_IS_5717_PLUS(sc)) {
2574 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2575 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2576 }
2577
2578 /* 57XX step 45 */
2579 /*
2580 * Disable all send rings by setting the 'ring disabled' bit
2581 * in the flags field of all the TX send ring control blocks,
2582 * located in NIC memory.
2583 */
2584 if (BGE_IS_5700_FAMILY(sc)) {
2585 /* 5700 to 5704 had 16 send rings. */
2586 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2587 } else if (BGE_IS_5717_PLUS(sc)) {
2588 limit = BGE_TX_RINGS_5717_MAX;
2589 } else if (BGE_IS_57765_FAMILY(sc) ||
2590 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2591 limit = BGE_TX_RINGS_57765_MAX;
2592 } else
2593 limit = 1;
2594 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2595 for (i = 0; i < limit; i++) {
2596 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2597 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2598 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2599 rcb_addr += sizeof(struct bge_rcb);
2600 }
2601
2602 /* 57XX step 46 and 47 */
2603 /* Configure send ring RCB 0 (we use only the first ring) */
2604 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2605 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2606 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2607 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2608 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2609 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2610 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2611 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2612 else
2613 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2614 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2615 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2616 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2617
2618 /* 57XX step 48 */
2619 /*
2620 * Disable all receive return rings by setting the
2621 * 'ring diabled' bit in the flags field of all the receive
2622 * return ring control blocks, located in NIC memory.
2623 */
2624 if (BGE_IS_5717_PLUS(sc)) {
2625 /* Should be 17, use 16 until we get an SRAM map. */
2626 limit = 16;
2627 } else if (BGE_IS_5700_FAMILY(sc))
2628 limit = BGE_RX_RINGS_MAX;
2629 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2630 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2631 BGE_IS_57765_FAMILY(sc))
2632 limit = 4;
2633 else
2634 limit = 1;
2635 /* Disable all receive return rings */
2636 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2637 for (i = 0; i < limit; i++) {
2638 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2639 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2640 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2641 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2642 BGE_RCB_FLAG_RING_DISABLED));
2643 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2644 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2645 (i * (sizeof(uint64_t))), 0);
2646 rcb_addr += sizeof(struct bge_rcb);
2647 }
2648
2649 /* 57XX step 49 */
2650 /*
2651 * Set up receive return ring 0. Note that the NIC address
2652 * for RX return rings is 0x0. The return rings live entirely
2653 * within the host, so the nicaddr field in the RCB isn't used.
2654 */
2655 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2656 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2657 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2658 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2659 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2660 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2661 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2662
2663 /* 5718 step 24, 57XX step 53 */
2664 /* Set random backoff seed for TX */
2665 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2666 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2667 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2668 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2669 BGE_TX_BACKOFF_SEED_MASK);
2670
2671 /* 5718 step 26, 57XX step 55 */
2672 /* Set inter-packet gap */
2673 val = 0x2620;
2674 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2675 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2676 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2677 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2678 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2679
2680 /* 5718 step 27, 57XX step 56 */
2681 /*
2682 * Specify which ring to use for packets that don't match
2683 * any RX rules.
2684 */
2685 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2686
2687 /* 5718 step 28, 57XX step 57 */
2688 /*
2689 * Configure number of RX lists. One interrupt distribution
2690 * list, sixteen active lists, one bad frames class.
2691 */
2692 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2693
2694 /* 5718 step 29, 57XX step 58 */
2695 /* Inialize RX list placement stats mask. */
2696 if (BGE_IS_575X_PLUS(sc)) {
2697 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2698 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2699 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2700 } else
2701 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2702
2703 /* 5718 step 30, 57XX step 59 */
2704 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2705
2706 /* 5718 step 33, 57XX step 62 */
2707 /* Disable host coalescing until we get it set up */
2708 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2709
2710 /* 5718 step 34, 57XX step 63 */
2711 /* Poll to make sure it's shut down. */
2712 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2713 DELAY(10);
2714 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2715 break;
2716 }
2717
2718 if (i == BGE_TIMEOUT * 2) {
2719 aprint_error_dev(sc->bge_dev,
2720 "host coalescing engine failed to idle\n");
2721 return ENXIO;
2722 }
2723
2724 /* 5718 step 35, 36, 37 */
2725 /* Set up host coalescing defaults */
2726 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2727 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2728 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2729 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2730 if (!(BGE_IS_5705_PLUS(sc))) {
2731 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2732 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2733 }
2734 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2735 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2736
2737 /* Set up address of statistics block */
2738 if (BGE_IS_5700_FAMILY(sc)) {
2739 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2740 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2741 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2742 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2743 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2744 }
2745
2746 /* 5718 step 38 */
2747 /* Set up address of status block */
2748 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2749 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2750 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2751 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2752 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2753 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2754
2755 /* Set up status block size. */
2756 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2757 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2758 val = BGE_STATBLKSZ_FULL;
2759 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2760 } else {
2761 val = BGE_STATBLKSZ_32BYTE;
2762 bzero(&sc->bge_rdata->bge_status_block, 32);
2763 }
2764
2765 /* 5718 step 39, 57XX step 73 */
2766 /* Turn on host coalescing state machine */
2767 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2768
2769 /* 5718 step 40, 57XX step 74 */
2770 /* Turn on RX BD completion state machine and enable attentions */
2771 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2772 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2773
2774 /* 5718 step 41, 57XX step 75 */
2775 /* Turn on RX list placement state machine */
2776 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2777
2778 /* 57XX step 76 */
2779 /* Turn on RX list selector state machine. */
2780 if (!(BGE_IS_5705_PLUS(sc)))
2781 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2782
2783 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2784 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2785 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2786 BGE_MACMODE_FRMHDR_DMA_ENB;
2787
2788 if (sc->bge_flags & BGEF_FIBER_TBI)
2789 val |= BGE_PORTMODE_TBI;
2790 else if (sc->bge_flags & BGEF_FIBER_MII)
2791 val |= BGE_PORTMODE_GMII;
2792 else
2793 val |= BGE_PORTMODE_MII;
2794
2795 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2796 /* Allow APE to send/receive frames. */
2797 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2798 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2799
2800 /* Turn on DMA, clear stats */
2801 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2802 /* 5718 step 44 */
2803 DELAY(40);
2804
2805 /* 5718 step 45, 57XX step 79 */
2806 /* Set misc. local control, enable interrupts on attentions */
2807 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2808 if (BGE_IS_5717_PLUS(sc)) {
2809 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2810 /* 5718 step 46 */
2811 DELAY(100);
2812 }
2813
2814 /* 57XX step 81 */
2815 /* Turn on DMA completion state machine */
2816 if (!(BGE_IS_5705_PLUS(sc)))
2817 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2818
2819 /* 5718 step 47, 57XX step 82 */
2820 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2821
2822 /* 5718 step 48 */
2823 /* Enable host coalescing bug fix. */
2824 if (BGE_IS_5755_PLUS(sc))
2825 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2826
2827 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2828 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2829
2830 /* Turn on write DMA state machine */
2831 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2832 /* 5718 step 49 */
2833 DELAY(40);
2834
2835 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2836
2837 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2838 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2839
2840 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2841 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2842 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2843 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2844 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2845 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2846
2847 if (sc->bge_flags & BGEF_PCIE)
2848 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2849 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2850 if (ifp->if_mtu <= ETHERMTU)
2851 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2852 }
2853 if (sc->bge_flags & BGEF_TSO) {
2854 val |= BGE_RDMAMODE_TSO4_ENABLE;
2855 if (BGE_IS_5717_PLUS(sc))
2856 val |= BGE_RDMAMODE_TSO6_ENABLE;
2857 }
2858
2859 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2860 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2861 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2862 BGE_RDMAMODE_H2BNC_VLAN_DET;
2863 /*
2864 * Allow multiple outstanding read requests from
2865 * non-LSO read DMA engine.
2866 */
2867 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2868 }
2869
2870 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2871 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2872 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2873 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2874 BGE_IS_57765_PLUS(sc)) {
2875 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2876 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2877 else
2878 rdmareg = BGE_RDMA_RSRVCTRL;
2879 dmactl = CSR_READ_4(sc, rdmareg);
2880 /*
2881 * Adjust tx margin to prevent TX data corruption and
2882 * fix internal FIFO overflow.
2883 */
2884 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2885 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2886 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2887 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2888 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2889 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2890 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2891 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2892 }
2893 /*
2894 * Enable fix for read DMA FIFO overruns.
2895 * The fix is to limit the number of RX BDs
2896 * the hardware would fetch at a time.
2897 */
2898 CSR_WRITE_4(sc, rdmareg, dmactl |
2899 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2900 }
2901
2902 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2903 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2904 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2905 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2906 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2907 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2908 /*
2909 * Allow 4KB burst length reads for non-LSO frames.
2910 * Enable 512B burst length reads for buffer descriptors.
2911 */
2912 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2913 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2914 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2915 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2916 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2917 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2918 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2919 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2920 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2921 }
2922 /* Turn on read DMA state machine */
2923 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2924 /* 5718 step 52 */
2925 delay(40);
2926
2927 if (sc->bge_flags & BGEF_RDMA_BUG) {
2928 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2929 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2930 if ((val & 0xFFFF) > BGE_FRAMELEN)
2931 break;
2932 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2933 break;
2934 }
2935 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2936 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2937 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2938 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2939 else
2940 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2941 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2942 }
2943 }
2944
2945 /* 5718 step 56, 57XX step 84 */
2946 /* Turn on RX data completion state machine */
2947 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2948
2949 /* Turn on RX data and RX BD initiator state machine */
2950 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2951
2952 /* 57XX step 85 */
2953 /* Turn on Mbuf cluster free state machine */
2954 if (!BGE_IS_5705_PLUS(sc))
2955 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2956
2957 /* 5718 step 57, 57XX step 86 */
2958 /* Turn on send data completion state machine */
2959 val = BGE_SDCMODE_ENABLE;
2960 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2961 val |= BGE_SDCMODE_CDELAY;
2962 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2963
2964 /* 5718 step 58 */
2965 /* Turn on send BD completion state machine */
2966 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2967
2968 /* 57XX step 88 */
2969 /* Turn on RX BD initiator state machine */
2970 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2971
2972 /* 5718 step 60, 57XX step 90 */
2973 /* Turn on send data initiator state machine */
2974 if (sc->bge_flags & BGEF_TSO) {
2975 /* XXX: magic value from Linux driver */
2976 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2977 BGE_SDIMODE_HW_LSO_PRE_DMA);
2978 } else
2979 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2980
2981 /* 5718 step 61, 57XX step 91 */
2982 /* Turn on send BD initiator state machine */
2983 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2984
2985 /* 5718 step 62, 57XX step 92 */
2986 /* Turn on send BD selector state machine */
2987 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2988
2989 /* 5718 step 31, 57XX step 60 */
2990 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2991 /* 5718 step 32, 57XX step 61 */
2992 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2993 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2994
2995 /* ack/clear link change events */
2996 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2997 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2998 BGE_MACSTAT_LINK_CHANGED);
2999 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3000
3001 /*
3002 * Enable attention when the link has changed state for
3003 * devices that use auto polling.
3004 */
3005 if (sc->bge_flags & BGEF_FIBER_TBI) {
3006 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3007 } else {
3008 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3009 mimode = BGE_MIMODE_500KHZ_CONST;
3010 else
3011 mimode = BGE_MIMODE_BASE;
3012 /* 5718 step 68. 5718 step 69 (optionally). */
3013 if (BGE_IS_5700_FAMILY(sc) ||
3014 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3015 mimode |= BGE_MIMODE_AUTOPOLL;
3016 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3017 }
3018 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3019 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3020 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3021 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3022 BGE_EVTENB_MI_INTERRUPT);
3023 }
3024
3025 /*
3026 * Clear any pending link state attention.
3027 * Otherwise some link state change events may be lost until attention
3028 * is cleared by bge_intr() -> bge_link_upd() sequence.
3029 * It's not necessary on newer BCM chips - perhaps enabling link
3030 * state change attentions implies clearing pending attention.
3031 */
3032 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3033 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3034 BGE_MACSTAT_LINK_CHANGED);
3035
3036 /* Enable link state change attentions. */
3037 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3038
3039 return 0;
3040 }
3041
3042 static const struct bge_revision *
3043 bge_lookup_rev(uint32_t chipid)
3044 {
3045 const struct bge_revision *br;
3046
3047 for (br = bge_revisions; br->br_name != NULL; br++) {
3048 if (br->br_chipid == chipid)
3049 return br;
3050 }
3051
3052 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3053 if (br->br_chipid == BGE_ASICREV(chipid))
3054 return br;
3055 }
3056
3057 return NULL;
3058 }
3059
3060 static const struct bge_product *
3061 bge_lookup(const struct pci_attach_args *pa)
3062 {
3063 const struct bge_product *bp;
3064
3065 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3066 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3067 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3068 return bp;
3069 }
3070
3071 return NULL;
3072 }
3073
3074 static uint32_t
3075 bge_chipid(const struct pci_attach_args *pa)
3076 {
3077 uint32_t id;
3078
3079 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3080 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3081
3082 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3083 switch (PCI_PRODUCT(pa->pa_id)) {
3084 case PCI_PRODUCT_BROADCOM_BCM5717:
3085 case PCI_PRODUCT_BROADCOM_BCM5718:
3086 case PCI_PRODUCT_BROADCOM_BCM5719:
3087 case PCI_PRODUCT_BROADCOM_BCM5720:
3088 case PCI_PRODUCT_BROADCOM_BCM5725:
3089 case PCI_PRODUCT_BROADCOM_BCM5727:
3090 case PCI_PRODUCT_BROADCOM_BCM5762:
3091 case PCI_PRODUCT_BROADCOM_BCM57764:
3092 case PCI_PRODUCT_BROADCOM_BCM57767:
3093 case PCI_PRODUCT_BROADCOM_BCM57787:
3094 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3095 BGE_PCI_GEN2_PRODID_ASICREV);
3096 break;
3097 case PCI_PRODUCT_BROADCOM_BCM57761:
3098 case PCI_PRODUCT_BROADCOM_BCM57762:
3099 case PCI_PRODUCT_BROADCOM_BCM57765:
3100 case PCI_PRODUCT_BROADCOM_BCM57766:
3101 case PCI_PRODUCT_BROADCOM_BCM57781:
3102 case PCI_PRODUCT_BROADCOM_BCM57782:
3103 case PCI_PRODUCT_BROADCOM_BCM57785:
3104 case PCI_PRODUCT_BROADCOM_BCM57786:
3105 case PCI_PRODUCT_BROADCOM_BCM57791:
3106 case PCI_PRODUCT_BROADCOM_BCM57795:
3107 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3108 BGE_PCI_GEN15_PRODID_ASICREV);
3109 break;
3110 default:
3111 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3112 BGE_PCI_PRODID_ASICREV);
3113 break;
3114 }
3115 }
3116
3117 return id;
3118 }
3119
3120 /*
3121 * Return true if MSI can be used with this device.
3122 */
3123 static int
3124 bge_can_use_msi(struct bge_softc *sc)
3125 {
3126 int can_use_msi = 0;
3127
3128 switch (BGE_ASICREV(sc->bge_chipid)) {
3129 case BGE_ASICREV_BCM5714_A0:
3130 case BGE_ASICREV_BCM5714:
3131 /*
3132 * Apparently, MSI doesn't work when these chips are
3133 * configured in single-port mode.
3134 */
3135 break;
3136 case BGE_ASICREV_BCM5750:
3137 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3138 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3139 can_use_msi = 1;
3140 break;
3141 default:
3142 if (BGE_IS_575X_PLUS(sc))
3143 can_use_msi = 1;
3144 }
3145 return can_use_msi;
3146 }
3147
3148 /*
3149 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3150 * against our list and return its name if we find a match. Note
3151 * that since the Broadcom controller contains VPD support, we
3152 * can get the device name string from the controller itself instead
3153 * of the compiled-in string. This is a little slow, but it guarantees
3154 * we'll always announce the right product name.
3155 */
3156 static int
3157 bge_probe(device_t parent, cfdata_t match, void *aux)
3158 {
3159 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3160
3161 if (bge_lookup(pa) != NULL)
3162 return 1;
3163
3164 return 0;
3165 }
3166
3167 static void
3168 bge_attach(device_t parent, device_t self, void *aux)
3169 {
3170 struct bge_softc * const sc = device_private(self);
3171 struct pci_attach_args * const pa = aux;
3172 prop_dictionary_t dict;
3173 const struct bge_product *bp;
3174 const struct bge_revision *br;
3175 pci_chipset_tag_t pc;
3176 const char *intrstr = NULL;
3177 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3178 uint32_t command;
3179 struct ifnet *ifp;
3180 struct mii_data * const mii = &sc->bge_mii;
3181 uint32_t misccfg, mimode, macmode;
3182 void * kva;
3183 u_char eaddr[ETHER_ADDR_LEN];
3184 pcireg_t memtype, subid, reg;
3185 bus_addr_t memaddr;
3186 uint32_t pm_ctl;
3187 bool no_seeprom;
3188 int capmask, trys;
3189 int mii_flags;
3190 int map_flags;
3191 char intrbuf[PCI_INTRSTR_LEN];
3192
3193 bp = bge_lookup(pa);
3194 KASSERT(bp != NULL);
3195
3196 sc->sc_pc = pa->pa_pc;
3197 sc->sc_pcitag = pa->pa_tag;
3198 sc->bge_dev = self;
3199
3200 sc->bge_pa = *pa;
3201 pc = sc->sc_pc;
3202 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3203
3204 aprint_naive(": Ethernet controller\n");
3205 aprint_normal(": %s Ethernet\n", bp->bp_name);
3206
3207 /*
3208 * Map control/status registers.
3209 */
3210 DPRINTFN(5, ("Map control/status regs\n"));
3211 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3212 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3213 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3214 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3215
3216 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3217 aprint_error_dev(sc->bge_dev,
3218 "failed to enable memory mapping!\n");
3219 return;
3220 }
3221
3222 DPRINTFN(5, ("pci_mem_find\n"));
3223 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3224 switch (memtype) {
3225 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3226 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3227 #if 0
3228 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3229 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3230 &memaddr, &sc->bge_bsize) == 0)
3231 break;
3232 #else
3233 /*
3234 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3235 * system get NMI on boot (PR#48451). This problem might not be
3236 * the driver's bug but our PCI common part's bug. Until we
3237 * find a real reason, we ignore the prefetchable bit.
3238 */
3239 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3240 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3241 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3242 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3243 map_flags, &sc->bge_bhandle) == 0) {
3244 sc->bge_btag = pa->pa_memt;
3245 break;
3246 }
3247 }
3248 #endif
3249 /* FALLTHROUGH */
3250 default:
3251 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3252 return;
3253 }
3254
3255 /* Save various chip information. */
3256 sc->bge_chipid = bge_chipid(pa);
3257 sc->bge_phy_addr = bge_phy_addr(sc);
3258
3259 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3260 &sc->bge_pciecap, NULL) != 0) {
3261 /* PCIe */
3262 sc->bge_flags |= BGEF_PCIE;
3263 /* Extract supported maximum payload size. */
3264 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3265 sc->bge_pciecap + PCIE_DCAP);
3266 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3267 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3268 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3269 sc->bge_expmrq = 2048;
3270 else
3271 sc->bge_expmrq = 4096;
3272 bge_set_max_readrq(sc);
3273 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3274 /* PCIe without PCIe cap */
3275 sc->bge_flags |= BGEF_PCIE;
3276 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3277 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3278 /* PCI-X */
3279 sc->bge_flags |= BGEF_PCIX;
3280 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3281 &sc->bge_pcixcap, NULL) == 0)
3282 aprint_error_dev(sc->bge_dev,
3283 "unable to find PCIX capability\n");
3284 }
3285
3286 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3287 /*
3288 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3289 * can clobber the chip's PCI config-space power control
3290 * registers, leaving the card in D3 powersave state. We do
3291 * not have memory-mapped registers in this state, so force
3292 * device into D0 state before starting initialization.
3293 */
3294 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3295 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3296 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3297 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3298 DELAY(1000); /* 27 usec is allegedly sufficient */
3299 }
3300
3301 /* Save chipset family. */
3302 switch (BGE_ASICREV(sc->bge_chipid)) {
3303 case BGE_ASICREV_BCM5717:
3304 case BGE_ASICREV_BCM5719:
3305 case BGE_ASICREV_BCM5720:
3306 sc->bge_flags |= BGEF_5717_PLUS;
3307 /* FALLTHROUGH */
3308 case BGE_ASICREV_BCM5762:
3309 case BGE_ASICREV_BCM57765:
3310 case BGE_ASICREV_BCM57766:
3311 if (!BGE_IS_5717_PLUS(sc))
3312 sc->bge_flags |= BGEF_57765_FAMILY;
3313 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3314 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3315 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3316 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3317 /*
3318 * Enable work around for DMA engine miscalculation
3319 * of TXMBUF available space.
3320 */
3321 sc->bge_flags |= BGEF_RDMA_BUG;
3322
3323 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3324 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3325 /* Jumbo frame on BCM5719 A0 does not work. */
3326 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3327 }
3328 }
3329 break;
3330 case BGE_ASICREV_BCM5755:
3331 case BGE_ASICREV_BCM5761:
3332 case BGE_ASICREV_BCM5784:
3333 case BGE_ASICREV_BCM5785:
3334 case BGE_ASICREV_BCM5787:
3335 case BGE_ASICREV_BCM57780:
3336 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3337 break;
3338 case BGE_ASICREV_BCM5700:
3339 case BGE_ASICREV_BCM5701:
3340 case BGE_ASICREV_BCM5703:
3341 case BGE_ASICREV_BCM5704:
3342 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3343 break;
3344 case BGE_ASICREV_BCM5714_A0:
3345 case BGE_ASICREV_BCM5780:
3346 case BGE_ASICREV_BCM5714:
3347 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3348 /* FALLTHROUGH */
3349 case BGE_ASICREV_BCM5750:
3350 case BGE_ASICREV_BCM5752:
3351 case BGE_ASICREV_BCM5906:
3352 sc->bge_flags |= BGEF_575X_PLUS;
3353 /* FALLTHROUGH */
3354 case BGE_ASICREV_BCM5705:
3355 sc->bge_flags |= BGEF_5705_PLUS;
3356 break;
3357 }
3358
3359 /* Identify chips with APE processor. */
3360 switch (BGE_ASICREV(sc->bge_chipid)) {
3361 case BGE_ASICREV_BCM5717:
3362 case BGE_ASICREV_BCM5719:
3363 case BGE_ASICREV_BCM5720:
3364 case BGE_ASICREV_BCM5761:
3365 case BGE_ASICREV_BCM5762:
3366 sc->bge_flags |= BGEF_APE;
3367 break;
3368 }
3369
3370 /*
3371 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3372 * not actually a MAC controller bug but an issue with the embedded
3373 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3374 */
3375 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3376 sc->bge_flags |= BGEF_40BIT_BUG;
3377
3378 /* Chips with APE need BAR2 access for APE registers/memory. */
3379 if ((sc->bge_flags & BGEF_APE) != 0) {
3380 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3381 #if 0
3382 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3383 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3384 &sc->bge_apesize)) {
3385 aprint_error_dev(sc->bge_dev,
3386 "couldn't map BAR2 memory\n");
3387 return;
3388 }
3389 #else
3390 /*
3391 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3392 * system get NMI on boot (PR#48451). This problem might not be
3393 * the driver's bug but our PCI common part's bug. Until we
3394 * find a real reason, we ignore the prefetchable bit.
3395 */
3396 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3397 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3398 aprint_error_dev(sc->bge_dev,
3399 "couldn't map BAR2 memory\n");
3400 return;
3401 }
3402
3403 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3404 if (bus_space_map(pa->pa_memt, memaddr,
3405 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3406 aprint_error_dev(sc->bge_dev,
3407 "couldn't map BAR2 memory\n");
3408 return;
3409 }
3410 sc->bge_apetag = pa->pa_memt;
3411 #endif
3412
3413 /* Enable APE register/memory access by host driver. */
3414 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3415 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3416 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3417 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3418 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3419
3420 bge_ape_lock_init(sc);
3421 bge_ape_read_fw_ver(sc);
3422 }
3423
3424 /* Identify the chips that use an CPMU. */
3425 if (BGE_IS_5717_PLUS(sc) ||
3426 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3427 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3428 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3429 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3430 sc->bge_flags |= BGEF_CPMU_PRESENT;
3431
3432 /*
3433 * When using the BCM5701 in PCI-X mode, data corruption has
3434 * been observed in the first few bytes of some received packets.
3435 * Aligning the packet buffer in memory eliminates the corruption.
3436 * Unfortunately, this misaligns the packet payloads. On platforms
3437 * which do not support unaligned accesses, we will realign the
3438 * payloads by copying the received packets.
3439 */
3440 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3441 sc->bge_flags & BGEF_PCIX)
3442 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3443
3444 if (BGE_IS_5700_FAMILY(sc))
3445 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3446
3447 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3448 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3449
3450 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3451 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3452 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3453 sc->bge_flags |= BGEF_IS_5788;
3454
3455 /*
3456 * Some controllers seem to require a special firmware to use
3457 * TSO. But the firmware is not available to FreeBSD and Linux
3458 * claims that the TSO performed by the firmware is slower than
3459 * hardware based TSO. Moreover the firmware based TSO has one
3460 * known bug which can't handle TSO if ethernet header + IP/TCP
3461 * header is greater than 80 bytes. The workaround for the TSO
3462 * bug exist but it seems it's too expensive than not using
3463 * TSO at all. Some hardwares also have the TSO bug so limit
3464 * the TSO to the controllers that are not affected TSO issues
3465 * (e.g. 5755 or higher).
3466 */
3467 if (BGE_IS_5755_PLUS(sc)) {
3468 /*
3469 * BCM5754 and BCM5787 shares the same ASIC id so
3470 * explicit device id check is required.
3471 */
3472 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3473 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3474 sc->bge_flags |= BGEF_TSO;
3475 /* TSO on BCM5719 A0 does not work. */
3476 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3477 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3478 sc->bge_flags &= ~BGEF_TSO;
3479 }
3480
3481 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3482 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3483 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3484 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3485 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3486 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3487 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3488 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3489 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3490 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3491 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3492 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3493 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3494 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3495 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3496 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3497 /* These chips are 10/100 only. */
3498 capmask &= ~BMSR_EXTSTAT;
3499 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3500 }
3501
3502 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3503 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3504 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3505 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3506 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3507
3508 /* Set various PHY bug flags. */
3509 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3510 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3511 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3512 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3513 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3514 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3515 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3516 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3517 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3518 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3519 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3520 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3521 if (BGE_IS_5705_PLUS(sc) &&
3522 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3523 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3524 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3525 !BGE_IS_57765_PLUS(sc)) {
3526 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3527 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3528 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3529 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3530 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3531 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3532 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3533 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3534 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3535 } else
3536 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3537 }
3538
3539 /*
3540 * SEEPROM check.
3541 * First check if firmware knows we do not have SEEPROM.
3542 */
3543 if (prop_dictionary_get_bool(device_properties(self),
3544 "without-seeprom", &no_seeprom) && no_seeprom)
3545 sc->bge_flags |= BGEF_NO_EEPROM;
3546
3547 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3548 sc->bge_flags |= BGEF_NO_EEPROM;
3549
3550 /* Now check the 'ROM failed' bit on the RX CPU */
3551 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3552 sc->bge_flags |= BGEF_NO_EEPROM;
3553
3554 sc->bge_asf_mode = 0;
3555 /* No ASF if APE present. */
3556 if ((sc->bge_flags & BGEF_APE) == 0) {
3557 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3558 BGE_SRAM_DATA_SIG_MAGIC)) {
3559 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3560 BGE_HWCFG_ASF) {
3561 sc->bge_asf_mode |= ASF_ENABLE;
3562 sc->bge_asf_mode |= ASF_STACKUP;
3563 if (BGE_IS_575X_PLUS(sc))
3564 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3565 }
3566 }
3567 }
3568
3569 int counts[PCI_INTR_TYPE_SIZE] = {
3570 [PCI_INTR_TYPE_INTX] = 1,
3571 [PCI_INTR_TYPE_MSI] = 1,
3572 [PCI_INTR_TYPE_MSIX] = 1,
3573 };
3574 int max_type = PCI_INTR_TYPE_MSIX;
3575
3576 if (!bge_can_use_msi(sc)) {
3577 /* MSI broken, allow only INTx */
3578 max_type = PCI_INTR_TYPE_INTX;
3579 }
3580
3581 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3582 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3583 return;
3584 }
3585
3586 DPRINTFN(5, ("pci_intr_string\n"));
3587 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3588 sizeof(intrbuf));
3589 DPRINTFN(5, ("pci_intr_establish\n"));
3590 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3591 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3592 if (sc->bge_intrhand == NULL) {
3593 pci_intr_release(pc, sc->bge_pihp, 1);
3594 sc->bge_pihp = NULL;
3595
3596 aprint_error_dev(self, "couldn't establish interrupt");
3597 if (intrstr != NULL)
3598 aprint_error(" at %s", intrstr);
3599 aprint_error("\n");
3600 return;
3601 }
3602 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3603
3604 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3605 case PCI_INTR_TYPE_MSIX:
3606 case PCI_INTR_TYPE_MSI:
3607 KASSERT(bge_can_use_msi(sc));
3608 sc->bge_flags |= BGEF_MSI;
3609 break;
3610 default:
3611 /* nothing to do */
3612 break;
3613 }
3614
3615 /*
3616 * All controllers except BCM5700 supports tagged status but
3617 * we use tagged status only for MSI case on BCM5717. Otherwise
3618 * MSI on BCM5717 does not work.
3619 */
3620 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3621 sc->bge_flags |= BGEF_TAGGED_STATUS;
3622
3623 /*
3624 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3625 * lock in bge_reset().
3626 */
3627 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3628 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3629 delay(1000);
3630 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3631
3632 bge_stop_fw(sc);
3633 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3634 if (bge_reset(sc))
3635 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3636
3637 /*
3638 * Read the hardware config word in the first 32k of NIC internal
3639 * memory, or fall back to the config word in the EEPROM.
3640 * Note: on some BCM5700 cards, this value appears to be unset.
3641 */
3642 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3643 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3644 BGE_SRAM_DATA_SIG_MAGIC) {
3645 uint32_t tmp;
3646
3647 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3648 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3649 BGE_SRAM_DATA_VER_SHIFT;
3650 if ((0 < tmp) && (tmp < 0x100))
3651 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3652 if (sc->bge_flags & BGEF_PCIE)
3653 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3654 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3655 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3656 if (BGE_IS_5717_PLUS(sc))
3657 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3658 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3659 bge_read_eeprom(sc, (void *)&hwcfg,
3660 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3661 hwcfg = be32toh(hwcfg);
3662 }
3663 aprint_normal_dev(sc->bge_dev,
3664 "HW config %08x, %08x, %08x, %08x %08x\n",
3665 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3666
3667 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3668 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3669
3670 if (bge_chipinit(sc)) {
3671 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3672 bge_release_resources(sc);
3673 return;
3674 }
3675
3676 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3677 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3678 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3679 DELAY(100);
3680 }
3681
3682 /* Set MI_MODE */
3683 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3684 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3685 mimode |= BGE_MIMODE_500KHZ_CONST;
3686 else
3687 mimode |= BGE_MIMODE_BASE;
3688 CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3689 DELAY(80);
3690
3691 /*
3692 * Get station address from the EEPROM.
3693 */
3694 if (bge_get_eaddr(sc, eaddr)) {
3695 aprint_error_dev(sc->bge_dev,
3696 "failed to read station address\n");
3697 bge_release_resources(sc);
3698 return;
3699 }
3700
3701 br = bge_lookup_rev(sc->bge_chipid);
3702
3703 if (br == NULL) {
3704 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3705 sc->bge_chipid);
3706 } else {
3707 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3708 br->br_name, sc->bge_chipid);
3709 }
3710 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3711
3712 /* Allocate the general information block and ring buffers. */
3713 if (pci_dma64_available(pa)) {
3714 sc->bge_dmatag = pa->pa_dmat64;
3715 sc->bge_dmatag32 = pa->pa_dmat;
3716 sc->bge_dma64 = true;
3717 } else {
3718 sc->bge_dmatag = pa->pa_dmat;
3719 sc->bge_dmatag32 = pa->pa_dmat;
3720 sc->bge_dma64 = false;
3721 }
3722
3723 /* 40bit DMA workaround */
3724 if (sizeof(bus_addr_t) > 4) {
3725 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3726 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3727
3728 if (bus_dmatag_subregion(olddmatag, 0,
3729 (bus_addr_t)__MASK(40),
3730 &(sc->bge_dmatag), BUS_DMA_NOWAIT) != 0) {
3731 aprint_error_dev(self,
3732 "WARNING: failed to restrict dma range,"
3733 " falling back to parent bus dma range\n");
3734 sc->bge_dmatag = olddmatag;
3735 }
3736 }
3737 }
3738 SLIST_INIT(&sc->txdma_list);
3739 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3740 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3741 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3742 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3743 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3744 return;
3745 }
3746 DPRINTFN(5, ("bus_dmamem_map\n"));
3747 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3748 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3749 BUS_DMA_NOWAIT)) {
3750 aprint_error_dev(sc->bge_dev,
3751 "can't map DMA buffers (%zu bytes)\n",
3752 sizeof(struct bge_ring_data));
3753 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3754 sc->bge_ring_rseg);
3755 return;
3756 }
3757 DPRINTFN(5, ("bus_dmamem_create\n"));
3758 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3759 sizeof(struct bge_ring_data), 0,
3760 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3761 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3762 bus_dmamem_unmap(sc->bge_dmatag, kva,
3763 sizeof(struct bge_ring_data));
3764 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3765 sc->bge_ring_rseg);
3766 return;
3767 }
3768 DPRINTFN(5, ("bus_dmamem_load\n"));
3769 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3770 sizeof(struct bge_ring_data), NULL,
3771 BUS_DMA_NOWAIT)) {
3772 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3773 bus_dmamem_unmap(sc->bge_dmatag, kva,
3774 sizeof(struct bge_ring_data));
3775 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3776 sc->bge_ring_rseg);
3777 return;
3778 }
3779
3780 DPRINTFN(5, ("bzero\n"));
3781 sc->bge_rdata = (struct bge_ring_data *)kva;
3782
3783 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3784
3785 /* Try to allocate memory for jumbo buffers. */
3786 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3787 if (bge_alloc_jumbo_mem(sc)) {
3788 aprint_error_dev(sc->bge_dev,
3789 "jumbo buffer allocation failed\n");
3790 } else
3791 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3792 }
3793
3794 /* Set default tuneable values. */
3795 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3796 sc->bge_rx_coal_ticks = 150;
3797 sc->bge_rx_max_coal_bds = 64;
3798 sc->bge_tx_coal_ticks = 300;
3799 sc->bge_tx_max_coal_bds = 400;
3800 if (BGE_IS_5705_PLUS(sc)) {
3801 sc->bge_tx_coal_ticks = (12 * 5);
3802 sc->bge_tx_max_coal_bds = (12 * 5);
3803 aprint_verbose_dev(sc->bge_dev,
3804 "setting short Tx thresholds\n");
3805 }
3806
3807 if (BGE_IS_5717_PLUS(sc))
3808 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3809 else if (BGE_IS_5705_PLUS(sc))
3810 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3811 else
3812 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3813
3814 /* Set up ifnet structure */
3815 ifp = &sc->ethercom.ec_if;
3816 ifp->if_softc = sc;
3817 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3818 ifp->if_ioctl = bge_ioctl;
3819 ifp->if_stop = bge_stop;
3820 ifp->if_start = bge_start;
3821 ifp->if_init = bge_init;
3822 ifp->if_watchdog = bge_watchdog;
3823 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3824 IFQ_SET_READY(&ifp->if_snd);
3825 DPRINTFN(5, ("strcpy if_xname\n"));
3826 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3827
3828 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3829 sc->ethercom.ec_if.if_capabilities |=
3830 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3831 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3832 sc->ethercom.ec_if.if_capabilities |=
3833 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3834 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3835 #endif
3836 sc->ethercom.ec_capabilities |=
3837 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3838 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3839
3840 if (sc->bge_flags & BGEF_TSO)
3841 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3842
3843 /*
3844 * Do MII setup.
3845 */
3846 DPRINTFN(5, ("mii setup\n"));
3847 mii->mii_ifp = ifp;
3848 mii->mii_readreg = bge_miibus_readreg;
3849 mii->mii_writereg = bge_miibus_writereg;
3850 mii->mii_statchg = bge_miibus_statchg;
3851
3852 /*
3853 * Figure out what sort of media we have by checking the hardware
3854 * config word. Note: on some BCM5700 cards, this value appears to be
3855 * unset. If that's the case, we have to rely on identifying the NIC
3856 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3857 * The SysKonnect SK-9D41 is a 1000baseSX card.
3858 */
3859 if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3860 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3861 if (BGE_IS_5705_PLUS(sc)) {
3862 sc->bge_flags |= BGEF_FIBER_MII;
3863 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3864 } else
3865 sc->bge_flags |= BGEF_FIBER_TBI;
3866 }
3867
3868 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3869 if (BGE_IS_JUMBO_CAPABLE(sc))
3870 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3871
3872 /* set phyflags and chipid before mii_attach() */
3873 dict = device_properties(self);
3874 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3875 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3876
3877 macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3878 macmode &= ~BGE_MACMODE_PORTMODE;
3879 /* Initialize ifmedia structures. */
3880 if (sc->bge_flags & BGEF_FIBER_TBI) {
3881 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3882 macmode | BGE_PORTMODE_TBI);
3883 DELAY(40);
3884
3885 sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
3886 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3887 bge_ifmedia_sts);
3888 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3889 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3890 0, NULL);
3891 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3892 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3893 /* Pretend the user requested this setting */
3894 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3895 } else {
3896 uint16_t phyreg;
3897 int rv;
3898 /*
3899 * Do transceiver setup and tell the firmware the
3900 * driver is down so we can try to get access the
3901 * probe if ASF is running. Retry a couple of times
3902 * if we get a conflict with the ASF firmware accessing
3903 * the PHY.
3904 */
3905 if (sc->bge_flags & BGEF_FIBER_MII)
3906 macmode |= BGE_PORTMODE_GMII;
3907 else
3908 macmode |= BGE_PORTMODE_MII;
3909 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3910 DELAY(40);
3911
3912 /*
3913 * Do transceiver setup and tell the firmware the
3914 * driver is down so we can try to get access the
3915 * probe if ASF is running. Retry a couple of times
3916 * if we get a conflict with the ASF firmware accessing
3917 * the PHY.
3918 */
3919 trys = 0;
3920 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3921 sc->ethercom.ec_mii = mii;
3922 ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3923 bge_ifmedia_sts);
3924 mii_flags = MIIF_DOPAUSE;
3925 if (sc->bge_flags & BGEF_FIBER_MII)
3926 mii_flags |= MIIF_HAVEFIBER;
3927 again:
3928 bge_asf_driver_up(sc);
3929 rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
3930 MII_BMCR, &phyreg);
3931 if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
3932 int i;
3933
3934 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
3935 MII_BMCR, BMCR_RESET);
3936 /* Wait up to 500ms for it to complete. */
3937 for (i = 0; i < 500; i++) {
3938 bge_miibus_readreg(sc->bge_dev,
3939 sc->bge_phy_addr, MII_BMCR, &phyreg);
3940 if ((phyreg & BMCR_RESET) == 0)
3941 break;
3942 DELAY(1000);
3943 }
3944 }
3945
3946 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
3947 MII_OFFSET_ANY, mii_flags);
3948
3949 if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
3950 goto again;
3951
3952 if (LIST_EMPTY(&mii->mii_phys)) {
3953 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3954 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
3955 0, NULL);
3956 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
3957 } else
3958 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
3959
3960 /*
3961 * Now tell the firmware we are going up after probing the PHY
3962 */
3963 if (sc->bge_asf_mode & ASF_STACKUP)
3964 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3965 }
3966
3967 /*
3968 * Call MI attach routine.
3969 */
3970 DPRINTFN(5, ("if_attach\n"));
3971 if_attach(ifp);
3972 if_deferred_start_init(ifp, NULL);
3973 DPRINTFN(5, ("ether_ifattach\n"));
3974 ether_ifattach(ifp, eaddr);
3975 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3976 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3977 RND_TYPE_NET, RND_FLAG_DEFAULT);
3978 #ifdef BGE_EVENT_COUNTERS
3979 /*
3980 * Attach event counters.
3981 */
3982 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3983 NULL, device_xname(sc->bge_dev), "intr");
3984 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3985 NULL, device_xname(sc->bge_dev), "intr_spurious");
3986 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3987 NULL, device_xname(sc->bge_dev), "intr_spurious2");
3988 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3989 NULL, device_xname(sc->bge_dev), "tx_xoff");
3990 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3991 NULL, device_xname(sc->bge_dev), "tx_xon");
3992 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3993 NULL, device_xname(sc->bge_dev), "rx_xoff");
3994 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3995 NULL, device_xname(sc->bge_dev), "rx_xon");
3996 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3997 NULL, device_xname(sc->bge_dev), "rx_macctl");
3998 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3999 NULL, device_xname(sc->bge_dev), "xoffentered");
4000 #endif /* BGE_EVENT_COUNTERS */
4001 DPRINTFN(5, ("callout_init\n"));
4002 callout_init(&sc->bge_timeout, 0);
4003 callout_setfunc(&sc->bge_timeout, bge_tick, sc);
4004
4005 if (pmf_device_register(self, NULL, NULL))
4006 pmf_class_network_register(self, ifp);
4007 else
4008 aprint_error_dev(self, "couldn't establish power handler\n");
4009
4010 bge_sysctl_init(sc);
4011
4012 #ifdef BGE_DEBUG
4013 bge_debug_info(sc);
4014 #endif
4015 }
4016
4017 /*
4018 * Stop all chip I/O so that the kernel's probe routines don't
4019 * get confused by errant DMAs when rebooting.
4020 */
4021 static int
4022 bge_detach(device_t self, int flags __unused)
4023 {
4024 struct bge_softc * const sc = device_private(self);
4025 struct ifnet * const ifp = &sc->ethercom.ec_if;
4026 int s;
4027
4028 s = splnet();
4029 /* Stop the interface. Callouts are stopped in it. */
4030 bge_stop(ifp, 1);
4031 splx(s);
4032
4033 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4034
4035 ether_ifdetach(ifp);
4036 if_detach(ifp);
4037
4038 /* Delete all remaining media. */
4039 ifmedia_fini(&sc->bge_mii.mii_media);
4040
4041 bge_release_resources(sc);
4042
4043 return 0;
4044 }
4045
4046 static void
4047 bge_release_resources(struct bge_softc *sc)
4048 {
4049
4050 /* Detach sysctl */
4051 if (sc->bge_log != NULL)
4052 sysctl_teardown(&sc->bge_log);
4053
4054 #ifdef BGE_EVENT_COUNTERS
4055 /* Detach event counters. */
4056 evcnt_detach(&sc->bge_ev_intr);
4057 evcnt_detach(&sc->bge_ev_intr_spurious);
4058 evcnt_detach(&sc->bge_ev_intr_spurious2);
4059 evcnt_detach(&sc->bge_ev_tx_xoff);
4060 evcnt_detach(&sc->bge_ev_tx_xon);
4061 evcnt_detach(&sc->bge_ev_rx_xoff);
4062 evcnt_detach(&sc->bge_ev_rx_xon);
4063 evcnt_detach(&sc->bge_ev_rx_macctl);
4064 evcnt_detach(&sc->bge_ev_xoffentered);
4065 #endif /* BGE_EVENT_COUNTERS */
4066
4067 /* Disestablish the interrupt handler */
4068 if (sc->bge_intrhand != NULL) {
4069 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4070 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4071 sc->bge_intrhand = NULL;
4072 }
4073
4074 if (sc->bge_dmatag != NULL) {
4075 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4076 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4077 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4078 sizeof(struct bge_ring_data));
4079 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4080 sc->bge_ring_rseg);
4081 }
4082
4083 /* Unmap the device registers */
4084 if (sc->bge_bsize != 0) {
4085 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4086 sc->bge_bsize = 0;
4087 }
4088
4089 /* Unmap the APE registers */
4090 if (sc->bge_apesize != 0) {
4091 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4092 sc->bge_apesize);
4093 sc->bge_apesize = 0;
4094 }
4095 }
4096
4097 static int
4098 bge_reset(struct bge_softc *sc)
4099 {
4100 uint32_t cachesize, command;
4101 uint32_t reset, mac_mode, mac_mode_mask;
4102 pcireg_t devctl, reg;
4103 int i, val;
4104 void (*write_op)(struct bge_softc *, int, int);
4105
4106 /* Make mask for BGE_MAC_MODE register. */
4107 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4108 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4109 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4110 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4111 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4112
4113 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4114 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4115 if (sc->bge_flags & BGEF_PCIE)
4116 write_op = bge_writemem_direct;
4117 else
4118 write_op = bge_writemem_ind;
4119 } else
4120 write_op = bge_writereg_ind;
4121
4122 /* 57XX step 4 */
4123 /* Acquire the NVM lock */
4124 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4125 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4126 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4127 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4128 for (i = 0; i < 8000; i++) {
4129 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4130 BGE_NVRAMSWARB_GNT1)
4131 break;
4132 DELAY(20);
4133 }
4134 if (i == 8000) {
4135 printf("%s: NVRAM lock timedout!\n",
4136 device_xname(sc->bge_dev));
4137 }
4138 }
4139
4140 /* Take APE lock when performing reset. */
4141 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4142
4143 /* 57XX step 3 */
4144 /* Save some important PCI state. */
4145 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4146 /* 5718 reset step 3 */
4147 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4148
4149 /* 5718 reset step 5, 57XX step 5b-5d */
4150 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4151 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4152 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4153
4154 /* XXX ???: Disable fastboot on controllers that support it. */
4155 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4156 BGE_IS_5755_PLUS(sc))
4157 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4158
4159 /* 5718 reset step 2, 57XX step 6 */
4160 /*
4161 * Write the magic number to SRAM at offset 0xB50.
4162 * When firmware finishes its initialization it will
4163 * write ~BGE_MAGIC_NUMBER to the same location.
4164 */
4165 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4166
4167 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4168 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4169 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4170 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4171 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4172 }
4173
4174 /* 5718 reset step 6, 57XX step 7 */
4175 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4176 /*
4177 * XXX: from FreeBSD/Linux; no documentation
4178 */
4179 if (sc->bge_flags & BGEF_PCIE) {
4180 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4181 !BGE_IS_57765_PLUS(sc) &&
4182 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4183 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4184 /* PCI Express 1.0 system */
4185 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4186 BGE_PHY_PCIE_SCRAM_MODE);
4187 }
4188 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4189 /*
4190 * Prevent PCI Express link training
4191 * during global reset.
4192 */
4193 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4194 reset |= (1 << 29);
4195 }
4196 }
4197
4198 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4199 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4200 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4201 i | BGE_VCPU_STATUS_DRV_RESET);
4202 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4203 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4204 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4205 }
4206
4207 /*
4208 * Set GPHY Power Down Override to leave GPHY
4209 * powered up in D0 uninitialized.
4210 */
4211 if (BGE_IS_5705_PLUS(sc) &&
4212 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4213 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4214
4215 /* Issue global reset */
4216 write_op(sc, BGE_MISC_CFG, reset);
4217
4218 /* 5718 reset step 7, 57XX step 8 */
4219 if (sc->bge_flags & BGEF_PCIE)
4220 delay(100*1000); /* too big */
4221 else
4222 delay(1000);
4223
4224 if (sc->bge_flags & BGEF_PCIE) {
4225 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4226 DELAY(500000);
4227 /* XXX: Magic Numbers */
4228 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4229 BGE_PCI_UNKNOWN0);
4230 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4231 BGE_PCI_UNKNOWN0,
4232 reg | (1 << 15));
4233 }
4234 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4235 sc->bge_pciecap + PCIE_DCSR);
4236 /* Clear enable no snoop and disable relaxed ordering. */
4237 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4238 PCIE_DCSR_ENA_NO_SNOOP);
4239
4240 /* Set PCIE max payload size to 128 for older PCIe devices */
4241 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4242 devctl &= ~(0x00e0);
4243 /* Clear device status register. Write 1b to clear */
4244 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4245 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4246 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4247 sc->bge_pciecap + PCIE_DCSR, devctl);
4248 bge_set_max_readrq(sc);
4249 }
4250
4251 /* From Linux: dummy read to flush PCI posted writes */
4252 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4253
4254 /*
4255 * Reset some of the PCI state that got zapped by reset
4256 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4257 * set, too.
4258 */
4259 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4260 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4261 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4262 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4263 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4264 (sc->bge_flags & BGEF_PCIX) != 0)
4265 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4266 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4267 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4268 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4269 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4270 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4271 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4272 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4273
4274 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4275 if (sc->bge_flags & BGEF_PCIX) {
4276 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4277 + PCIX_CMD);
4278 /* Set max memory read byte count to 2K */
4279 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4280 reg &= ~PCIX_CMD_BYTECNT_MASK;
4281 reg |= PCIX_CMD_BCNT_2048;
4282 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4283 /*
4284 * For 5704, set max outstanding split transaction
4285 * field to 0 (0 means it supports 1 request)
4286 */
4287 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4288 | PCIX_CMD_BYTECNT_MASK);
4289 reg |= PCIX_CMD_BCNT_2048;
4290 }
4291 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4292 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4293 }
4294
4295 /* 5718 reset step 10, 57XX step 12 */
4296 /* Enable memory arbiter. */
4297 if (BGE_IS_5714_FAMILY(sc)) {
4298 val = CSR_READ_4(sc, BGE_MARB_MODE);
4299 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4300 } else
4301 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4302
4303 /* XXX 5721, 5751 and 5752 */
4304 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4305 /* Step 19: */
4306 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4307 /* Step 20: */
4308 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4309 }
4310
4311 /* 5718 reset step 12, 57XX step 15 and 16 */
4312 /* Fix up byte swapping */
4313 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4314
4315 /* 5718 reset step 13, 57XX step 17 */
4316 /* Poll until the firmware initialization is complete */
4317 bge_poll_fw(sc);
4318
4319 /* 57XX step 21 */
4320 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4321 pcireg_t msidata;
4322
4323 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4324 BGE_PCI_MSI_DATA);
4325 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4326 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4327 msidata);
4328 }
4329
4330 /* 57XX step 18 */
4331 /* Write mac mode. */
4332 val = CSR_READ_4(sc, BGE_MAC_MODE);
4333 /* Restore mac_mode_mask's bits using mac_mode */
4334 val = (val & ~mac_mode_mask) | mac_mode;
4335 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4336 DELAY(40);
4337
4338 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4339
4340 /*
4341 * The 5704 in TBI mode apparently needs some special
4342 * adjustment to insure the SERDES drive level is set
4343 * to 1.2V.
4344 */
4345 if (sc->bge_flags & BGEF_FIBER_TBI &&
4346 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4347 uint32_t serdescfg;
4348
4349 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4350 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4351 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4352 }
4353
4354 if (sc->bge_flags & BGEF_PCIE &&
4355 !BGE_IS_57765_PLUS(sc) &&
4356 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4357 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4358 uint32_t v;
4359
4360 /* Enable PCI Express bug fix */
4361 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4362 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4363 v | BGE_TLP_DATA_FIFO_PROTECT);
4364 }
4365
4366 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4367 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4368 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4369
4370 return 0;
4371 }
4372
4373 /*
4374 * Frame reception handling. This is called if there's a frame
4375 * on the receive return list.
4376 *
4377 * Note: we have to be able to handle two possibilities here:
4378 * 1) the frame is from the jumbo receive ring
4379 * 2) the frame is from the standard receive ring
4380 */
4381
4382 static void
4383 bge_rxeof(struct bge_softc *sc)
4384 {
4385 struct ifnet * const ifp = &sc->ethercom.ec_if;
4386 uint16_t rx_prod, rx_cons;
4387 int stdcnt = 0, jumbocnt = 0;
4388 bus_dmamap_t dmamap;
4389 bus_addr_t offset, toff;
4390 bus_size_t tlen;
4391 int tosync;
4392
4393 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4394 offsetof(struct bge_ring_data, bge_status_block),
4395 sizeof(struct bge_status_block),
4396 BUS_DMASYNC_POSTREAD);
4397
4398 rx_cons = sc->bge_rx_saved_considx;
4399 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4400
4401 /* Nothing to do */
4402 if (rx_cons == rx_prod)
4403 return;
4404
4405 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4406 tosync = rx_prod - rx_cons;
4407
4408 if (tosync != 0)
4409 rnd_add_uint32(&sc->rnd_source, tosync);
4410
4411 toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
4412
4413 if (tosync < 0) {
4414 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4415 sizeof(struct bge_rx_bd);
4416 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4417 toff, tlen, BUS_DMASYNC_POSTREAD);
4418 tosync = -tosync;
4419 }
4420
4421 if (tosync != 0) {
4422 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4423 offset, tosync * sizeof(struct bge_rx_bd),
4424 BUS_DMASYNC_POSTREAD);
4425 }
4426
4427 while (rx_cons != rx_prod) {
4428 struct bge_rx_bd *cur_rx;
4429 uint32_t rxidx;
4430 struct mbuf *m = NULL;
4431
4432 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4433
4434 rxidx = cur_rx->bge_idx;
4435 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4436
4437 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4438 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4439 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4440 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4441 jumbocnt++;
4442 bus_dmamap_sync(sc->bge_dmatag,
4443 sc->bge_cdata.bge_rx_jumbo_map,
4444 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4445 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4446 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4447 if_statinc(ifp, if_ierrors);
4448 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4449 continue;
4450 }
4451 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4452 NULL) == ENOBUFS) {
4453 if_statinc(ifp, if_ierrors);
4454 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4455 continue;
4456 }
4457 } else {
4458 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4459 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4460
4461 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4462 stdcnt++;
4463 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4464 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4465 if (dmamap == NULL) {
4466 if_statinc(ifp, if_ierrors);
4467 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4468 continue;
4469 }
4470 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4471 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4472 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4473 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4474 if_statinc(ifp, if_ierrors);
4475 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4476 continue;
4477 }
4478 if (bge_newbuf_std(sc, sc->bge_std,
4479 NULL, dmamap) == ENOBUFS) {
4480 if_statinc(ifp, if_ierrors);
4481 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4482 continue;
4483 }
4484 }
4485
4486 #ifndef __NO_STRICT_ALIGNMENT
4487 /*
4488 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4489 * the Rx buffer has the layer-2 header unaligned.
4490 * If our CPU requires alignment, re-align by copying.
4491 */
4492 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4493 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4494 cur_rx->bge_len);
4495 m->m_data += ETHER_ALIGN;
4496 }
4497 #endif
4498
4499 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4500 m_set_rcvif(m, ifp);
4501
4502 bge_rxcsum(sc, cur_rx, m);
4503
4504 /*
4505 * If we received a packet with a vlan tag, pass it
4506 * to vlan_input() instead of ether_input().
4507 */
4508 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4509 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4510
4511 if_percpuq_enqueue(ifp->if_percpuq, m);
4512 }
4513
4514 sc->bge_rx_saved_considx = rx_cons;
4515 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4516 if (stdcnt)
4517 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4518 if (jumbocnt)
4519 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4520 }
4521
4522 static void
4523 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4524 {
4525
4526 if (BGE_IS_57765_PLUS(sc)) {
4527 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4528 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4529 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4530 if ((cur_rx->bge_error_flag &
4531 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4532 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4533 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4534 m->m_pkthdr.csum_data =
4535 cur_rx->bge_tcp_udp_csum;
4536 m->m_pkthdr.csum_flags |=
4537 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4538 }
4539 }
4540 } else {
4541 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4542 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4543 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4544 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4545 /*
4546 * Rx transport checksum-offload may also
4547 * have bugs with packets which, when transmitted,
4548 * were `runts' requiring padding.
4549 */
4550 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4551 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4552 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4553 m->m_pkthdr.csum_data =
4554 cur_rx->bge_tcp_udp_csum;
4555 m->m_pkthdr.csum_flags |=
4556 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4557 }
4558 }
4559 }
4560
4561 static void
4562 bge_txeof(struct bge_softc *sc)
4563 {
4564 struct ifnet * const ifp = &sc->ethercom.ec_if;
4565 struct bge_tx_bd *cur_tx = NULL;
4566 struct txdmamap_pool_entry *dma;
4567 bus_addr_t offset, toff;
4568 bus_size_t tlen;
4569 int tosync;
4570 struct mbuf *m;
4571
4572 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4573 offsetof(struct bge_ring_data, bge_status_block),
4574 sizeof(struct bge_status_block),
4575 BUS_DMASYNC_POSTREAD);
4576
4577 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4578 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4579 sc->bge_tx_saved_considx;
4580
4581 if (tosync != 0)
4582 rnd_add_uint32(&sc->rnd_source, tosync);
4583
4584 toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
4585
4586 if (tosync < 0) {
4587 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4588 sizeof(struct bge_tx_bd);
4589 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4590 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4591 tosync = -tosync;
4592 }
4593
4594 if (tosync != 0) {
4595 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4596 offset, tosync * sizeof(struct bge_tx_bd),
4597 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4598 }
4599
4600 /*
4601 * Go through our tx ring and free mbufs for those
4602 * frames that have been sent.
4603 */
4604 while (sc->bge_tx_saved_considx !=
4605 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4606 uint32_t idx = sc->bge_tx_saved_considx;
4607 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4608 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4609 if_statinc(ifp, if_opackets);
4610 m = sc->bge_cdata.bge_tx_chain[idx];
4611 if (m != NULL) {
4612 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4613 dma = sc->txdma[idx];
4614 if (dma->is_dma32) {
4615 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4616 0, dma->dmamap32->dm_mapsize,
4617 BUS_DMASYNC_POSTWRITE);
4618 bus_dmamap_unload(
4619 sc->bge_dmatag32, dma->dmamap32);
4620 } else {
4621 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4622 0, dma->dmamap->dm_mapsize,
4623 BUS_DMASYNC_POSTWRITE);
4624 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4625 }
4626 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4627 sc->txdma[idx] = NULL;
4628
4629 m_freem(m);
4630 }
4631 sc->bge_txcnt--;
4632 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4633 ifp->if_timer = 0;
4634 }
4635
4636 if (cur_tx != NULL)
4637 ifp->if_flags &= ~IFF_OACTIVE;
4638 }
4639
4640 static int
4641 bge_intr(void *xsc)
4642 {
4643 struct bge_softc * const sc = xsc;
4644 struct ifnet * const ifp = &sc->ethercom.ec_if;
4645 uint32_t pcistate, statusword, statustag;
4646 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4647
4648
4649 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4650 if (BGE_IS_5717_PLUS(sc))
4651 intrmask = 0;
4652
4653 /*
4654 * It is possible for the interrupt to arrive before
4655 * the status block is updated prior to the interrupt.
4656 * Reading the PCI State register will confirm whether the
4657 * interrupt is ours and will flush the status block.
4658 */
4659 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4660
4661 /* read status word from status block */
4662 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4663 offsetof(struct bge_ring_data, bge_status_block),
4664 sizeof(struct bge_status_block),
4665 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4666 statusword = sc->bge_rdata->bge_status_block.bge_status;
4667 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4668
4669 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4670 if (sc->bge_lasttag == statustag &&
4671 (~pcistate & intrmask)) {
4672 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4673 return 0;
4674 }
4675 sc->bge_lasttag = statustag;
4676 } else {
4677 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4678 !(~pcistate & intrmask)) {
4679 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4680 return 0;
4681 }
4682 statustag = 0;
4683 }
4684 /* Ack interrupt and stop others from occurring. */
4685 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4686 BGE_EVCNT_INCR(sc->bge_ev_intr);
4687
4688 /* clear status word */
4689 sc->bge_rdata->bge_status_block.bge_status = 0;
4690
4691 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4692 offsetof(struct bge_ring_data, bge_status_block),
4693 sizeof(struct bge_status_block),
4694 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4695
4696 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4697 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4698 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4699 bge_link_upd(sc);
4700
4701 if (ifp->if_flags & IFF_RUNNING) {
4702 /* Check RX return ring producer/consumer */
4703 bge_rxeof(sc);
4704
4705 /* Check TX ring producer/consumer */
4706 bge_txeof(sc);
4707 }
4708
4709 if (sc->bge_pending_rxintr_change) {
4710 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4711 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4712
4713 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4714 DELAY(10);
4715 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4716
4717 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4718 DELAY(10);
4719 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4720
4721 sc->bge_pending_rxintr_change = 0;
4722 }
4723 bge_handle_events(sc);
4724
4725 /* Re-enable interrupts. */
4726 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4727
4728 if (ifp->if_flags & IFF_RUNNING)
4729 if_schedule_deferred_start(ifp);
4730
4731 return 1;
4732 }
4733
4734 static void
4735 bge_asf_driver_up(struct bge_softc *sc)
4736 {
4737 if (sc->bge_asf_mode & ASF_STACKUP) {
4738 /* Send ASF heartbeat aprox. every 2s */
4739 if (sc->bge_asf_count)
4740 sc->bge_asf_count --;
4741 else {
4742 sc->bge_asf_count = 2;
4743
4744 bge_wait_for_event_ack(sc);
4745
4746 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4747 BGE_FW_CMD_DRV_ALIVE3);
4748 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4749 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4750 BGE_FW_HB_TIMEOUT_SEC);
4751 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4752 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4753 BGE_RX_CPU_DRV_EVENT);
4754 }
4755 }
4756 }
4757
4758 static void
4759 bge_tick(void *xsc)
4760 {
4761 struct bge_softc * const sc = xsc;
4762 struct mii_data * const mii = &sc->bge_mii;
4763 int s;
4764
4765 s = splnet();
4766
4767 if (BGE_IS_5705_PLUS(sc))
4768 bge_stats_update_regs(sc);
4769 else
4770 bge_stats_update(sc);
4771
4772 if (sc->bge_flags & BGEF_FIBER_TBI) {
4773 /*
4774 * Since in TBI mode auto-polling can't be used we should poll
4775 * link status manually. Here we register pending link event
4776 * and trigger interrupt.
4777 */
4778 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4779 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4780 } else {
4781 /*
4782 * Do not touch PHY if we have link up. This could break
4783 * IPMI/ASF mode or produce extra input errors.
4784 * (extra input errors was reported for bcm5701 & bcm5704).
4785 */
4786 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4787 mii_tick(mii);
4788 }
4789
4790 bge_asf_driver_up(sc);
4791
4792 if (!sc->bge_detaching)
4793 callout_schedule(&sc->bge_timeout, hz);
4794
4795 splx(s);
4796 }
4797
4798 static void
4799 bge_stats_update_regs(struct bge_softc *sc)
4800 {
4801 struct ifnet *const ifp = &sc->ethercom.ec_if;
4802
4803 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4804
4805 if_statadd_ref(nsr, if_collisions,
4806 CSR_READ_4(sc, BGE_MAC_STATS +
4807 offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
4808
4809 /*
4810 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4811 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4812 * (silicon bug). There's no reliable workaround so just
4813 * ignore the counter
4814 */
4815 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4816 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4817 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4818 if_statadd_ref(nsr, if_ierrors,
4819 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4820 }
4821 if_statadd_ref(nsr, if_ierrors,
4822 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
4823 if_statadd_ref(nsr, if_ierrors,
4824 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
4825
4826 IF_STAT_PUTREF(ifp);
4827
4828 if (sc->bge_flags & BGEF_RDMA_BUG) {
4829 uint32_t val, ucast, mcast, bcast;
4830
4831 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4832 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4833 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4834 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4835 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4836 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4837
4838 /*
4839 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4840 * frames, it's safe to disable workaround for DMA engine's
4841 * miscalculation of TXMBUF space.
4842 */
4843 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4844 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4845 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4846 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4847 else
4848 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4849 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4850 sc->bge_flags &= ~BGEF_RDMA_BUG;
4851 }
4852 }
4853 }
4854
4855 static void
4856 bge_stats_update(struct bge_softc *sc)
4857 {
4858 struct ifnet * const ifp = &sc->ethercom.ec_if;
4859 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4860
4861 #define READ_STAT(sc, stats, stat) \
4862 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4863
4864 uint64_t collisions =
4865 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4866 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4867 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4868 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
4869
4870 if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
4871 sc->bge_if_collisions = collisions;
4872
4873
4874 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4875 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4876 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4877 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4878 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4879 READ_STAT(sc, stats,
4880 xoffPauseFramesReceived.bge_addr_lo));
4881 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4882 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4883 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4884 READ_STAT(sc, stats,
4885 macControlFramesReceived.bge_addr_lo));
4886 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4887 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4888
4889 #undef READ_STAT
4890
4891 #ifdef notdef
4892 ifp->if_collisions +=
4893 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4894 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4895 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4896 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4897 ifp->if_collisions;
4898 #endif
4899 }
4900
4901 /*
4902 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4903 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4904 * but when such padded frames employ the bge IP/TCP checksum offload,
4905 * the hardware checksum assist gives incorrect results (possibly
4906 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4907 * If we pad such runts with zeros, the onboard checksum comes out correct.
4908 */
4909 static inline int
4910 bge_cksum_pad(struct mbuf *pkt)
4911 {
4912 struct mbuf *last = NULL;
4913 int padlen;
4914
4915 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4916
4917 /* if there's only the packet-header and we can pad there, use it. */
4918 if (pkt->m_pkthdr.len == pkt->m_len &&
4919 M_TRAILINGSPACE(pkt) >= padlen) {
4920 last = pkt;
4921 } else {
4922 /*
4923 * Walk packet chain to find last mbuf. We will either
4924 * pad there, or append a new mbuf and pad it
4925 * (thus perhaps avoiding the bcm5700 dma-min bug).
4926 */
4927 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4928 continue; /* do nothing */
4929 }
4930
4931 /* `last' now points to last in chain. */
4932 if (M_TRAILINGSPACE(last) < padlen) {
4933 /* Allocate new empty mbuf, pad it. Compact later. */
4934 struct mbuf *n;
4935 MGET(n, M_DONTWAIT, MT_DATA);
4936 if (n == NULL)
4937 return ENOBUFS;
4938 n->m_len = 0;
4939 last->m_next = n;
4940 last = n;
4941 }
4942 }
4943
4944 KDASSERT(!M_READONLY(last));
4945 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4946
4947 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4948 memset(mtod(last, char *) + last->m_len, 0, padlen);
4949 last->m_len += padlen;
4950 pkt->m_pkthdr.len += padlen;
4951 return 0;
4952 }
4953
4954 /*
4955 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4956 */
4957 static inline int
4958 bge_compact_dma_runt(struct mbuf *pkt)
4959 {
4960 struct mbuf *m, *prev;
4961 int totlen;
4962
4963 prev = NULL;
4964 totlen = 0;
4965
4966 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
4967 int mlen = m->m_len;
4968 int shortfall = 8 - mlen ;
4969
4970 totlen += mlen;
4971 if (mlen == 0)
4972 continue;
4973 if (mlen >= 8)
4974 continue;
4975
4976 /*
4977 * If we get here, mbuf data is too small for DMA engine.
4978 * Try to fix by shuffling data to prev or next in chain.
4979 * If that fails, do a compacting deep-copy of the whole chain.
4980 */
4981
4982 /* Internal frag. If fits in prev, copy it there. */
4983 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4984 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4985 prev->m_len += mlen;
4986 m->m_len = 0;
4987 /* XXX stitch chain */
4988 prev->m_next = m_free(m);
4989 m = prev;
4990 continue;
4991 } else if (m->m_next != NULL &&
4992 M_TRAILINGSPACE(m) >= shortfall &&
4993 m->m_next->m_len >= (8 + shortfall)) {
4994 /* m is writable and have enough data in next, pull up. */
4995
4996 memcpy(m->m_data + m->m_len, m->m_next->m_data,
4997 shortfall);
4998 m->m_len += shortfall;
4999 m->m_next->m_len -= shortfall;
5000 m->m_next->m_data += shortfall;
5001 } else if (m->m_next == NULL || 1) {
5002 /*
5003 * Got a runt at the very end of the packet.
5004 * borrow data from the tail of the preceding mbuf and
5005 * update its length in-place. (The original data is
5006 * still valid, so we can do this even if prev is not
5007 * writable.)
5008 */
5009
5010 /*
5011 * If we'd make prev a runt, just move all of its data.
5012 */
5013 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5014 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5015
5016 if ((prev->m_len - shortfall) < 8)
5017 shortfall = prev->m_len;
5018
5019 #ifdef notyet /* just do the safe slow thing for now */
5020 if (!M_READONLY(m)) {
5021 if (M_LEADINGSPACE(m) < shorfall) {
5022 void *m_dat;
5023 m_dat = M_BUFADDR(m);
5024 memmove(m_dat, mtod(m, void*),
5025 m->m_len);
5026 m->m_data = m_dat;
5027 }
5028 } else
5029 #endif /* just do the safe slow thing */
5030 {
5031 struct mbuf * n = NULL;
5032 int newprevlen = prev->m_len - shortfall;
5033
5034 MGET(n, M_NOWAIT, MT_DATA);
5035 if (n == NULL)
5036 return ENOBUFS;
5037 KASSERT(m->m_len + shortfall < MLEN
5038 /*,
5039 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5040
5041 /* first copy the data we're stealing from prev */
5042 memcpy(n->m_data, prev->m_data + newprevlen,
5043 shortfall);
5044
5045 /* update prev->m_len accordingly */
5046 prev->m_len -= shortfall;
5047
5048 /* copy data from runt m */
5049 memcpy(n->m_data + shortfall, m->m_data,
5050 m->m_len);
5051
5052 /* n holds what we stole from prev, plus m */
5053 n->m_len = shortfall + m->m_len;
5054
5055 /* stitch n into chain and free m */
5056 n->m_next = m->m_next;
5057 prev->m_next = n;
5058 /* KASSERT(m->m_next == NULL); */
5059 m->m_next = NULL;
5060 m_free(m);
5061 m = n; /* for continuing loop */
5062 }
5063 }
5064 }
5065 return 0;
5066 }
5067
5068 /*
5069 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5070 * pointers to descriptors.
5071 */
5072 static int
5073 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5074 {
5075 struct ifnet * const ifp = &sc->ethercom.ec_if;
5076 struct bge_tx_bd *f, *prev_f;
5077 uint32_t frag, cur;
5078 uint16_t csum_flags = 0;
5079 uint16_t txbd_tso_flags = 0;
5080 struct txdmamap_pool_entry *dma;
5081 bus_dmamap_t dmamap;
5082 bus_dma_tag_t dmatag;
5083 int i = 0;
5084 int use_tso, maxsegsize, error;
5085 bool have_vtag;
5086 uint16_t vtag;
5087 bool remap;
5088
5089 if (m_head->m_pkthdr.csum_flags) {
5090 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5091 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5092 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5093 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5094 }
5095
5096 /*
5097 * If we were asked to do an outboard checksum, and the NIC
5098 * has the bug where it sometimes adds in the Ethernet padding,
5099 * explicitly pad with zeros so the cksum will be correct either way.
5100 * (For now, do this for all chip versions, until newer
5101 * are confirmed to not require the workaround.)
5102 */
5103 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5104 #ifdef notyet
5105 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5106 #endif
5107 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5108 goto check_dma_bug;
5109
5110 if (bge_cksum_pad(m_head) != 0)
5111 return ENOBUFS;
5112
5113 check_dma_bug:
5114 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5115 goto doit;
5116
5117 /*
5118 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5119 * less than eight bytes. If we encounter a teeny mbuf
5120 * at the end of a chain, we can pad. Otherwise, copy.
5121 */
5122 if (bge_compact_dma_runt(m_head) != 0)
5123 return ENOBUFS;
5124
5125 doit:
5126 dma = SLIST_FIRST(&sc->txdma_list);
5127 if (dma == NULL) {
5128 ifp->if_flags |= IFF_OACTIVE;
5129 return ENOBUFS;
5130 }
5131 dmamap = dma->dmamap;
5132 dmatag = sc->bge_dmatag;
5133 dma->is_dma32 = false;
5134
5135 /*
5136 * Set up any necessary TSO state before we start packing...
5137 */
5138 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5139 if (!use_tso) {
5140 maxsegsize = 0;
5141 } else { /* TSO setup */
5142 unsigned mss;
5143 struct ether_header *eh;
5144 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5145 unsigned bge_hlen;
5146 struct mbuf * m0 = m_head;
5147 struct ip *ip;
5148 struct tcphdr *th;
5149 int iphl, hlen;
5150
5151 /*
5152 * XXX It would be nice if the mbuf pkthdr had offset
5153 * fields for the protocol headers.
5154 */
5155
5156 eh = mtod(m0, struct ether_header *);
5157 switch (htons(eh->ether_type)) {
5158 case ETHERTYPE_IP:
5159 offset = ETHER_HDR_LEN;
5160 break;
5161
5162 case ETHERTYPE_VLAN:
5163 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5164 break;
5165
5166 default:
5167 /*
5168 * Don't support this protocol or encapsulation.
5169 */
5170 return ENOBUFS;
5171 }
5172
5173 /*
5174 * TCP/IP headers are in the first mbuf; we can do
5175 * this the easy way.
5176 */
5177 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5178 hlen = iphl + offset;
5179 if (__predict_false(m0->m_len <
5180 (hlen + sizeof(struct tcphdr)))) {
5181
5182 aprint_error_dev(sc->bge_dev,
5183 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5184 "not handled yet\n",
5185 m0->m_len, hlen+ sizeof(struct tcphdr));
5186 #ifdef NOTYET
5187 /*
5188 * XXX jonathan (at) NetBSD.org: untested.
5189 * how to force this branch to be taken?
5190 */
5191 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5192
5193 m_copydata(m0, offset, sizeof(ip), &ip);
5194 m_copydata(m0, hlen, sizeof(th), &th);
5195
5196 ip.ip_len = 0;
5197
5198 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5199 sizeof(ip.ip_len), &ip.ip_len);
5200
5201 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5202 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5203
5204 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5205 sizeof(th.th_sum), &th.th_sum);
5206
5207 hlen += th.th_off << 2;
5208 iptcp_opt_words = hlen;
5209 #else
5210 /*
5211 * if_wm "hard" case not yet supported, can we not
5212 * mandate it out of existence?
5213 */
5214 (void) ip; (void)th; (void) ip_tcp_hlen;
5215
5216 return ENOBUFS;
5217 #endif
5218 } else {
5219 ip = (struct ip *) (mtod(m0, char *) + offset);
5220 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5221 ip_tcp_hlen = iphl + (th->th_off << 2);
5222
5223 /* Total IP/TCP options, in 32-bit words */
5224 iptcp_opt_words = (ip_tcp_hlen
5225 - sizeof(struct tcphdr)
5226 - sizeof(struct ip)) >> 2;
5227 }
5228 if (BGE_IS_575X_PLUS(sc)) {
5229 th->th_sum = 0;
5230 csum_flags = 0;
5231 } else {
5232 /*
5233 * XXX jonathan (at) NetBSD.org: 5705 untested.
5234 * Requires TSO firmware patch for 5701/5703/5704.
5235 */
5236 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5237 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5238 }
5239
5240 mss = m_head->m_pkthdr.segsz;
5241 txbd_tso_flags |=
5242 BGE_TXBDFLAG_CPU_PRE_DMA |
5243 BGE_TXBDFLAG_CPU_POST_DMA;
5244
5245 /*
5246 * Our NIC TSO-assist assumes TSO has standard, optionless
5247 * IPv4 and TCP headers, which total 40 bytes. By default,
5248 * the NIC copies 40 bytes of IP/TCP header from the
5249 * supplied header into the IP/TCP header portion of
5250 * each post-TSO-segment. If the supplied packet has IP or
5251 * TCP options, we need to tell the NIC to copy those extra
5252 * bytes into each post-TSO header, in addition to the normal
5253 * 40-byte IP/TCP header (and to leave space accordingly).
5254 * Unfortunately, the driver encoding of option length
5255 * varies across different ASIC families.
5256 */
5257 tcp_seg_flags = 0;
5258 bge_hlen = ip_tcp_hlen >> 2;
5259 if (BGE_IS_5717_PLUS(sc)) {
5260 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5261 txbd_tso_flags |=
5262 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5263 } else if (BGE_IS_5705_PLUS(sc)) {
5264 tcp_seg_flags = bge_hlen << 11;
5265 } else {
5266 /* XXX iptcp_opt_words or bge_hlen ? */
5267 txbd_tso_flags |= iptcp_opt_words << 12;
5268 }
5269 maxsegsize = mss | tcp_seg_flags;
5270 ip->ip_len = htons(mss + ip_tcp_hlen);
5271 ip->ip_sum = 0;
5272
5273 } /* TSO setup */
5274
5275 have_vtag = vlan_has_tag(m_head);
5276 if (have_vtag)
5277 vtag = vlan_get_tag(m_head);
5278
5279 /*
5280 * Start packing the mbufs in this chain into
5281 * the fragment pointers. Stop when we run out
5282 * of fragments or hit the end of the mbuf chain.
5283 */
5284 remap = true;
5285 load_again:
5286 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5287 if (__predict_false(error)) {
5288 if (error == EFBIG && remap) {
5289 struct mbuf *m;
5290 remap = false;
5291 m = m_defrag(m_head, M_NOWAIT);
5292 if (m != NULL) {
5293 KASSERT(m == m_head);
5294 goto load_again;
5295 }
5296 }
5297 return error;
5298 }
5299 /*
5300 * Sanity check: avoid coming within 16 descriptors
5301 * of the end of the ring.
5302 */
5303 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5304 BGE_TSO_PRINTF(("%s: "
5305 " dmamap_load_mbuf too close to ring wrap\n",
5306 device_xname(sc->bge_dev)));
5307 goto fail_unload;
5308 }
5309
5310 /* Iterate over dmap-map fragments. */
5311 f = prev_f = NULL;
5312 cur = frag = *txidx;
5313
5314 for (i = 0; i < dmamap->dm_nsegs; i++) {
5315 f = &sc->bge_rdata->bge_tx_ring[frag];
5316 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5317 break;
5318
5319 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5320 f->bge_len = dmamap->dm_segs[i].ds_len;
5321 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5322 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5323 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5324 (prev_f != NULL &&
5325 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5326 ) {
5327 /*
5328 * watchdog timeout issue was observed with TSO,
5329 * limiting DMA address space to 32bits seems to
5330 * address the issue.
5331 */
5332 bus_dmamap_unload(dmatag, dmamap);
5333 dmatag = sc->bge_dmatag32;
5334 dmamap = dma->dmamap32;
5335 dma->is_dma32 = true;
5336 remap = true;
5337 goto load_again;
5338 }
5339
5340 /*
5341 * For 5751 and follow-ons, for TSO we must turn
5342 * off checksum-assist flag in the tx-descr, and
5343 * supply the ASIC-revision-specific encoding
5344 * of TSO flags and segsize.
5345 */
5346 if (use_tso) {
5347 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5348 f->bge_rsvd = maxsegsize;
5349 f->bge_flags = csum_flags | txbd_tso_flags;
5350 } else {
5351 f->bge_rsvd = 0;
5352 f->bge_flags =
5353 (csum_flags | txbd_tso_flags) & 0x0fff;
5354 }
5355 } else {
5356 f->bge_rsvd = 0;
5357 f->bge_flags = csum_flags;
5358 }
5359
5360 if (have_vtag) {
5361 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5362 f->bge_vlan_tag = vtag;
5363 } else {
5364 f->bge_vlan_tag = 0;
5365 }
5366 prev_f = f;
5367 cur = frag;
5368 BGE_INC(frag, BGE_TX_RING_CNT);
5369 }
5370
5371 if (i < dmamap->dm_nsegs) {
5372 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5373 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5374 goto fail_unload;
5375 }
5376
5377 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5378 BUS_DMASYNC_PREWRITE);
5379
5380 if (frag == sc->bge_tx_saved_considx) {
5381 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5382 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5383
5384 goto fail_unload;
5385 }
5386
5387 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5388 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5389 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5390 sc->txdma[cur] = dma;
5391 sc->bge_txcnt += dmamap->dm_nsegs;
5392
5393 *txidx = frag;
5394
5395 return 0;
5396
5397 fail_unload:
5398 bus_dmamap_unload(dmatag, dmamap);
5399 ifp->if_flags |= IFF_OACTIVE;
5400
5401 return ENOBUFS;
5402 }
5403
5404 /*
5405 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5406 * to the mbuf data regions directly in the transmit descriptors.
5407 */
5408 static void
5409 bge_start(struct ifnet *ifp)
5410 {
5411 struct bge_softc * const sc = ifp->if_softc;
5412 struct mbuf *m_head = NULL;
5413 struct mbuf *m;
5414 uint32_t prodidx;
5415 int pkts = 0;
5416 int error;
5417
5418 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5419 return;
5420
5421 prodidx = sc->bge_tx_prodidx;
5422
5423 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5424 IFQ_POLL(&ifp->if_snd, m_head);
5425 if (m_head == NULL)
5426 break;
5427
5428 #if 0
5429 /*
5430 * XXX
5431 * safety overkill. If this is a fragmented packet chain
5432 * with delayed TCP/UDP checksums, then only encapsulate
5433 * it if we have enough descriptors to handle the entire
5434 * chain at once.
5435 * (paranoia -- may not actually be needed)
5436 */
5437 if (m_head->m_flags & M_FIRSTFRAG &&
5438 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5439 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5440 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5441 ifp->if_flags |= IFF_OACTIVE;
5442 break;
5443 }
5444 }
5445 #endif
5446
5447 /*
5448 * Pack the data into the transmit ring. If we
5449 * don't have room, set the OACTIVE flag and wait
5450 * for the NIC to drain the ring.
5451 */
5452 error = bge_encap(sc, m_head, &prodidx);
5453 if (__predict_false(error)) {
5454 if (ifp->if_flags & IFF_OACTIVE) {
5455 /* just wait for the transmit ring to drain */
5456 break;
5457 }
5458 IFQ_DEQUEUE(&ifp->if_snd, m);
5459 KASSERT(m == m_head);
5460 m_freem(m_head);
5461 continue;
5462 }
5463
5464 /* now we are committed to transmit the packet */
5465 IFQ_DEQUEUE(&ifp->if_snd, m);
5466 KASSERT(m == m_head);
5467 pkts++;
5468
5469 /*
5470 * If there's a BPF listener, bounce a copy of this frame
5471 * to him.
5472 */
5473 bpf_mtap(ifp, m_head, BPF_D_OUT);
5474 }
5475 if (pkts == 0)
5476 return;
5477
5478 /* Transmit */
5479 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5480 /* 5700 b2 errata */
5481 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5482 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5483
5484 sc->bge_tx_prodidx = prodidx;
5485
5486 /*
5487 * Set a timeout in case the chip goes out to lunch.
5488 */
5489 ifp->if_timer = 5;
5490 }
5491
5492 static int
5493 bge_init(struct ifnet *ifp)
5494 {
5495 struct bge_softc * const sc = ifp->if_softc;
5496 const uint16_t *m;
5497 uint32_t mode, reg;
5498 int s, error = 0;
5499
5500 s = splnet();
5501
5502 KASSERT(ifp == &sc->ethercom.ec_if);
5503
5504 /* Cancel pending I/O and flush buffers. */
5505 bge_stop(ifp, 0);
5506
5507 bge_stop_fw(sc);
5508 bge_sig_pre_reset(sc, BGE_RESET_START);
5509 bge_reset(sc);
5510 bge_sig_legacy(sc, BGE_RESET_START);
5511
5512 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5513 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5514 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5515 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5516 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5517
5518 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5519 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5520 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5521 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5522
5523 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5524 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5525 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5526 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5527
5528 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5529 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5530 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5531 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5532 }
5533
5534 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5535 pcireg_t aercap;
5536
5537 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5538 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5539 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5540 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5541 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5542
5543 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5544 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5545 | BGE_PCIE_EIDLE_DELAY_13CLK;
5546 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5547
5548 /* Clear correctable error */
5549 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5550 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5551 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5552 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5553
5554 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5555 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5556 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5557 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5558 }
5559
5560 bge_sig_post_reset(sc, BGE_RESET_START);
5561
5562 bge_chipinit(sc);
5563
5564 /*
5565 * Init the various state machines, ring
5566 * control blocks and firmware.
5567 */
5568 error = bge_blockinit(sc);
5569 if (error != 0) {
5570 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5571 error);
5572 splx(s);
5573 return error;
5574 }
5575
5576 /* 5718 step 25, 57XX step 54 */
5577 /* Specify MTU. */
5578 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5579 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5580
5581 /* 5718 step 23 */
5582 /* Load our MAC address. */
5583 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5584 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5585 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5586 ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5587
5588 /* Enable or disable promiscuous mode as needed. */
5589 if (ifp->if_flags & IFF_PROMISC)
5590 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5591 else
5592 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5593
5594 /* Program multicast filter. */
5595 bge_setmulti(sc);
5596
5597 /* Init RX ring. */
5598 bge_init_rx_ring_std(sc);
5599
5600 /*
5601 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5602 * memory to insure that the chip has in fact read the first
5603 * entry of the ring.
5604 */
5605 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5606 uint32_t v, i;
5607 for (i = 0; i < 10; i++) {
5608 DELAY(20);
5609 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5610 if (v == (MCLBYTES - ETHER_ALIGN))
5611 break;
5612 }
5613 if (i == 10)
5614 aprint_error_dev(sc->bge_dev,
5615 "5705 A0 chip failed to load RX ring\n");
5616 }
5617
5618 /* Init jumbo RX ring. */
5619 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5620 bge_init_rx_ring_jumbo(sc);
5621
5622 /* Init our RX return ring index */
5623 sc->bge_rx_saved_considx = 0;
5624
5625 /* Init TX ring. */
5626 bge_init_tx_ring(sc);
5627
5628 /* 5718 step 63, 57XX step 94 */
5629 /* Enable TX MAC state machine lockup fix. */
5630 mode = CSR_READ_4(sc, BGE_TX_MODE);
5631 if (BGE_IS_5755_PLUS(sc) ||
5632 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5633 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5634 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5635 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5636 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5637 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5638 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5639 }
5640
5641 /* Turn on transmitter */
5642 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5643 /* 5718 step 64 */
5644 DELAY(100);
5645
5646 /* 5718 step 65, 57XX step 95 */
5647 /* Turn on receiver */
5648 mode = CSR_READ_4(sc, BGE_RX_MODE);
5649 if (BGE_IS_5755_PLUS(sc))
5650 mode |= BGE_RXMODE_IPV6_ENABLE;
5651 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5652 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5653 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5654 /* 5718 step 66 */
5655 DELAY(10);
5656
5657 /* 5718 step 12, 57XX step 37 */
5658 /*
5659 * XXX Doucments of 5718 series and 577xx say the recommended value
5660 * is 1, but tg3 set 1 only on 57765 series.
5661 */
5662 if (BGE_IS_57765_PLUS(sc))
5663 reg = 1;
5664 else
5665 reg = 2;
5666 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5667
5668 /* Tell firmware we're alive. */
5669 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5670
5671 /* Enable host interrupts. */
5672 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5673 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5674 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5675
5676 if ((error = bge_ifmedia_upd(ifp)) != 0)
5677 goto out;
5678
5679 ifp->if_flags |= IFF_RUNNING;
5680 ifp->if_flags &= ~IFF_OACTIVE;
5681
5682 callout_schedule(&sc->bge_timeout, hz);
5683
5684 out:
5685 sc->bge_if_flags = ifp->if_flags;
5686 splx(s);
5687
5688 return error;
5689 }
5690
5691 /*
5692 * Set media options.
5693 */
5694 static int
5695 bge_ifmedia_upd(struct ifnet *ifp)
5696 {
5697 struct bge_softc * const sc = ifp->if_softc;
5698 struct mii_data * const mii = &sc->bge_mii;
5699 struct ifmedia * const ifm = &sc->bge_ifmedia;
5700 int rc;
5701
5702 /* If this is a 1000baseX NIC, enable the TBI port. */
5703 if (sc->bge_flags & BGEF_FIBER_TBI) {
5704 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5705 return EINVAL;
5706 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5707 case IFM_AUTO:
5708 /*
5709 * The BCM5704 ASIC appears to have a special
5710 * mechanism for programming the autoneg
5711 * advertisement registers in TBI mode.
5712 */
5713 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5714 uint32_t sgdig;
5715 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5716 if (sgdig & BGE_SGDIGSTS_DONE) {
5717 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5718 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5719 sgdig |= BGE_SGDIGCFG_AUTO |
5720 BGE_SGDIGCFG_PAUSE_CAP |
5721 BGE_SGDIGCFG_ASYM_PAUSE;
5722 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5723 sgdig | BGE_SGDIGCFG_SEND);
5724 DELAY(5);
5725 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5726 sgdig);
5727 }
5728 }
5729 break;
5730 case IFM_1000_SX:
5731 if ((ifm->ifm_media & IFM_FDX) != 0) {
5732 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5733 BGE_MACMODE_HALF_DUPLEX);
5734 } else {
5735 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5736 BGE_MACMODE_HALF_DUPLEX);
5737 }
5738 DELAY(40);
5739 break;
5740 default:
5741 return EINVAL;
5742 }
5743 /* XXX 802.3x flow control for 1000BASE-SX */
5744 return 0;
5745 }
5746
5747 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5748 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5749 uint32_t reg;
5750
5751 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5752 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5753 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5754 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5755 }
5756 }
5757
5758 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5759 if ((rc = mii_mediachg(mii)) == ENXIO)
5760 return 0;
5761
5762 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5763 uint32_t reg;
5764
5765 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5766 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5767 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5768 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5769 delay(40);
5770 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5771 }
5772 }
5773
5774 /*
5775 * Force an interrupt so that we will call bge_link_upd
5776 * if needed and clear any pending link state attention.
5777 * Without this we are not getting any further interrupts
5778 * for link state changes and thus will not UP the link and
5779 * not be able to send in bge_start. The only way to get
5780 * things working was to receive a packet and get a RX intr.
5781 */
5782 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5783 sc->bge_flags & BGEF_IS_5788)
5784 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5785 else
5786 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5787
5788 return rc;
5789 }
5790
5791 /*
5792 * Report current media status.
5793 */
5794 static void
5795 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5796 {
5797 struct bge_softc * const sc = ifp->if_softc;
5798 struct mii_data * const mii = &sc->bge_mii;
5799
5800 if (sc->bge_flags & BGEF_FIBER_TBI) {
5801 ifmr->ifm_status = IFM_AVALID;
5802 ifmr->ifm_active = IFM_ETHER;
5803 if (CSR_READ_4(sc, BGE_MAC_STS) &
5804 BGE_MACSTAT_TBI_PCS_SYNCHED)
5805 ifmr->ifm_status |= IFM_ACTIVE;
5806 ifmr->ifm_active |= IFM_1000_SX;
5807 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5808 ifmr->ifm_active |= IFM_HDX;
5809 else
5810 ifmr->ifm_active |= IFM_FDX;
5811 return;
5812 }
5813
5814 mii_pollstat(mii);
5815 ifmr->ifm_status = mii->mii_media_status;
5816 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5817 sc->bge_flowflags;
5818 }
5819
5820 static int
5821 bge_ifflags_cb(struct ethercom *ec)
5822 {
5823 struct ifnet * const ifp = &ec->ec_if;
5824 struct bge_softc * const sc = ifp->if_softc;
5825 u_short change = ifp->if_flags ^ sc->bge_if_flags;
5826
5827 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
5828 return ENETRESET;
5829 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5830 return 0;
5831
5832 if ((ifp->if_flags & IFF_PROMISC) == 0)
5833 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5834 else
5835 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5836
5837 bge_setmulti(sc);
5838
5839 sc->bge_if_flags = ifp->if_flags;
5840 return 0;
5841 }
5842
5843 static int
5844 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5845 {
5846 struct bge_softc * const sc = ifp->if_softc;
5847 struct ifreq * const ifr = (struct ifreq *) data;
5848 int s, error = 0;
5849 struct mii_data *mii;
5850
5851 s = splnet();
5852
5853 switch (command) {
5854 case SIOCSIFMEDIA:
5855 /* XXX Flow control is not supported for 1000BASE-SX */
5856 if (sc->bge_flags & BGEF_FIBER_TBI) {
5857 ifr->ifr_media &= ~IFM_ETH_FMASK;
5858 sc->bge_flowflags = 0;
5859 }
5860
5861 /* Flow control requires full-duplex mode. */
5862 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5863 (ifr->ifr_media & IFM_FDX) == 0) {
5864 ifr->ifr_media &= ~IFM_ETH_FMASK;
5865 }
5866 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5867 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5868 /* We can do both TXPAUSE and RXPAUSE. */
5869 ifr->ifr_media |=
5870 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5871 }
5872 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5873 }
5874
5875 if (sc->bge_flags & BGEF_FIBER_TBI) {
5876 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5877 command);
5878 } else {
5879 mii = &sc->bge_mii;
5880 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5881 command);
5882 }
5883 break;
5884 default:
5885 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5886 break;
5887
5888 error = 0;
5889
5890 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5891 ;
5892 else if (ifp->if_flags & IFF_RUNNING)
5893 bge_setmulti(sc);
5894 break;
5895 }
5896
5897 splx(s);
5898
5899 return error;
5900 }
5901
5902 static void
5903 bge_watchdog(struct ifnet *ifp)
5904 {
5905 struct bge_softc * const sc = ifp->if_softc;
5906 uint32_t status;
5907
5908 /* If pause frames are active then don't reset the hardware. */
5909 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5910 status = CSR_READ_4(sc, BGE_RX_STS);
5911 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5912 /*
5913 * If link partner has us in XOFF state then wait for
5914 * the condition to clear.
5915 */
5916 CSR_WRITE_4(sc, BGE_RX_STS, status);
5917 ifp->if_timer = 5;
5918 return;
5919 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5920 (status & BGE_RXSTAT_RCVD_XON) != 0) {
5921 /*
5922 * If link partner has us in XOFF state then wait for
5923 * the condition to clear.
5924 */
5925 CSR_WRITE_4(sc, BGE_RX_STS, status);
5926 ifp->if_timer = 5;
5927 return;
5928 }
5929 /*
5930 * Any other condition is unexpected and the controller
5931 * should be reset.
5932 */
5933 }
5934
5935 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5936
5937 ifp->if_flags &= ~IFF_RUNNING;
5938 bge_init(ifp);
5939
5940 if_statinc(ifp, if_oerrors);
5941 }
5942
5943 static void
5944 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5945 {
5946 int i;
5947
5948 BGE_CLRBIT_FLUSH(sc, reg, bit);
5949
5950 for (i = 0; i < 1000; i++) {
5951 delay(100);
5952 if ((CSR_READ_4(sc, reg) & bit) == 0)
5953 return;
5954 }
5955
5956 /*
5957 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5958 * on some environment (and once after boot?)
5959 */
5960 if (reg != BGE_SRS_MODE)
5961 aprint_error_dev(sc->bge_dev,
5962 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5963 (u_long)reg, bit);
5964 }
5965
5966 /*
5967 * Stop the adapter and free any mbufs allocated to the
5968 * RX and TX lists.
5969 */
5970 static void
5971 bge_stop(struct ifnet *ifp, int disable)
5972 {
5973 struct bge_softc * const sc = ifp->if_softc;
5974
5975 if (disable) {
5976 sc->bge_detaching = 1;
5977 callout_halt(&sc->bge_timeout, NULL);
5978 } else
5979 callout_stop(&sc->bge_timeout);
5980
5981 /* Disable host interrupts. */
5982 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5983 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5984
5985 /*
5986 * Tell firmware we're shutting down.
5987 */
5988 bge_stop_fw(sc);
5989 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5990
5991 /*
5992 * Disable all of the receiver blocks.
5993 */
5994 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5995 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5996 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5997 if (BGE_IS_5700_FAMILY(sc))
5998 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5999 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6000 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6001 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6002
6003 /*
6004 * Disable all of the transmit blocks.
6005 */
6006 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6007 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6008 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6009 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6010 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6011 if (BGE_IS_5700_FAMILY(sc))
6012 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6013 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6014
6015 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6016 delay(40);
6017
6018 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6019
6020 /*
6021 * Shut down all of the memory managers and related
6022 * state machines.
6023 */
6024 /* 5718 step 5a,5b */
6025 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6026 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6027 if (BGE_IS_5700_FAMILY(sc))
6028 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6029
6030 /* 5718 step 5c,5d */
6031 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6032 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6033
6034 if (BGE_IS_5700_FAMILY(sc)) {
6035 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6036 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6037 }
6038
6039 bge_reset(sc);
6040 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6041 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6042
6043 /*
6044 * Keep the ASF firmware running if up.
6045 */
6046 if (sc->bge_asf_mode & ASF_STACKUP)
6047 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6048 else
6049 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6050
6051 /* Free the RX lists. */
6052 bge_free_rx_ring_std(sc, disable);
6053
6054 /* Free jumbo RX list. */
6055 if (BGE_IS_JUMBO_CAPABLE(sc))
6056 bge_free_rx_ring_jumbo(sc);
6057
6058 /* Free TX buffers. */
6059 bge_free_tx_ring(sc, disable);
6060
6061 /*
6062 * Isolate/power down the PHY.
6063 */
6064 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6065 mii_down(&sc->bge_mii);
6066
6067 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6068
6069 /* Clear MAC's link state (PHY may still have link UP). */
6070 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6071
6072 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6073 }
6074
6075 static void
6076 bge_link_upd(struct bge_softc *sc)
6077 {
6078 struct ifnet * const ifp = &sc->ethercom.ec_if;
6079 struct mii_data * const mii = &sc->bge_mii;
6080 uint32_t status;
6081 uint16_t phyval;
6082 int link;
6083
6084 /* Clear 'pending link event' flag */
6085 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6086
6087 /*
6088 * Process link state changes.
6089 * Grrr. The link status word in the status block does
6090 * not work correctly on the BCM5700 rev AX and BX chips,
6091 * according to all available information. Hence, we have
6092 * to enable MII interrupts in order to properly obtain
6093 * async link changes. Unfortunately, this also means that
6094 * we have to read the MAC status register to detect link
6095 * changes, thereby adding an additional register access to
6096 * the interrupt handler.
6097 */
6098
6099 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6100 status = CSR_READ_4(sc, BGE_MAC_STS);
6101 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6102 mii_pollstat(mii);
6103
6104 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6105 mii->mii_media_status & IFM_ACTIVE &&
6106 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6107 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6108 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6109 (!(mii->mii_media_status & IFM_ACTIVE) ||
6110 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6111 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6112
6113 /* Clear the interrupt */
6114 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6115 BGE_EVTENB_MI_INTERRUPT);
6116 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6117 BRGPHY_MII_ISR, &phyval);
6118 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6119 BRGPHY_MII_IMR, BRGPHY_INTRS);
6120 }
6121 return;
6122 }
6123
6124 if (sc->bge_flags & BGEF_FIBER_TBI) {
6125 status = CSR_READ_4(sc, BGE_MAC_STS);
6126 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6127 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6128 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6129 if (BGE_ASICREV(sc->bge_chipid)
6130 == BGE_ASICREV_BCM5704) {
6131 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6132 BGE_MACMODE_TBI_SEND_CFGS);
6133 DELAY(40);
6134 }
6135 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6136 if_link_state_change(ifp, LINK_STATE_UP);
6137 }
6138 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6139 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6140 if_link_state_change(ifp, LINK_STATE_DOWN);
6141 }
6142 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6143 /*
6144 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6145 * bit in status word always set. Workaround this bug by
6146 * reading PHY link status directly.
6147 */
6148 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6149 BGE_STS_LINK : 0;
6150
6151 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6152 mii_pollstat(mii);
6153
6154 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6155 mii->mii_media_status & IFM_ACTIVE &&
6156 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6157 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6158 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6159 (!(mii->mii_media_status & IFM_ACTIVE) ||
6160 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6161 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6162 }
6163 } else {
6164 /*
6165 * For controllers that call mii_tick, we have to poll
6166 * link status.
6167 */
6168 mii_pollstat(mii);
6169 }
6170
6171 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6172 uint32_t reg, scale;
6173
6174 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6175 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6176 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6177 scale = 65;
6178 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6179 scale = 6;
6180 else
6181 scale = 12;
6182
6183 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6184 ~BGE_MISCCFG_TIMER_PRESCALER;
6185 reg |= scale << 1;
6186 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6187 }
6188 /* Clear the attention */
6189 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6190 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6191 BGE_MACSTAT_LINK_CHANGED);
6192 }
6193
6194 static int
6195 bge_sysctl_verify(SYSCTLFN_ARGS)
6196 {
6197 int error, t;
6198 struct sysctlnode node;
6199
6200 node = *rnode;
6201 t = *(int*)rnode->sysctl_data;
6202 node.sysctl_data = &t;
6203 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6204 if (error || newp == NULL)
6205 return error;
6206
6207 #if 0
6208 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6209 node.sysctl_num, rnode->sysctl_num));
6210 #endif
6211
6212 if (node.sysctl_num == bge_rxthresh_nodenum) {
6213 if (t < 0 || t >= NBGE_RX_THRESH)
6214 return EINVAL;
6215 bge_update_all_threshes(t);
6216 } else
6217 return EINVAL;
6218
6219 *(int*)rnode->sysctl_data = t;
6220
6221 return 0;
6222 }
6223
6224 /*
6225 * Set up sysctl(3) MIB, hw.bge.*.
6226 */
6227 static void
6228 bge_sysctl_init(struct bge_softc *sc)
6229 {
6230 int rc, bge_root_num;
6231 const struct sysctlnode *node;
6232
6233 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6234 0, CTLTYPE_NODE, "bge",
6235 SYSCTL_DESCR("BGE interface controls"),
6236 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6237 goto out;
6238 }
6239
6240 bge_root_num = node->sysctl_num;
6241
6242 /* BGE Rx interrupt mitigation level */
6243 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6244 CTLFLAG_READWRITE,
6245 CTLTYPE_INT, "rx_lvl",
6246 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6247 bge_sysctl_verify, 0,
6248 &bge_rx_thresh_lvl,
6249 0, CTL_HW, bge_root_num, CTL_CREATE,
6250 CTL_EOL)) != 0) {
6251 goto out;
6252 }
6253
6254 bge_rxthresh_nodenum = node->sysctl_num;
6255
6256 return;
6257
6258 out:
6259 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6260 }
6261
6262 #ifdef BGE_DEBUG
6263 void
6264 bge_debug_info(struct bge_softc *sc)
6265 {
6266
6267 printf("Hardware Flags:\n");
6268 if (BGE_IS_57765_PLUS(sc))
6269 printf(" - 57765 Plus\n");
6270 if (BGE_IS_5717_PLUS(sc))
6271 printf(" - 5717 Plus\n");
6272 if (BGE_IS_5755_PLUS(sc))
6273 printf(" - 5755 Plus\n");
6274 if (BGE_IS_575X_PLUS(sc))
6275 printf(" - 575X Plus\n");
6276 if (BGE_IS_5705_PLUS(sc))
6277 printf(" - 5705 Plus\n");
6278 if (BGE_IS_5714_FAMILY(sc))
6279 printf(" - 5714 Family\n");
6280 if (BGE_IS_5700_FAMILY(sc))
6281 printf(" - 5700 Family\n");
6282 if (sc->bge_flags & BGEF_IS_5788)
6283 printf(" - 5788\n");
6284 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6285 printf(" - Supports Jumbo Frames\n");
6286 if (sc->bge_flags & BGEF_NO_EEPROM)
6287 printf(" - No EEPROM\n");
6288 if (sc->bge_flags & BGEF_PCIX)
6289 printf(" - PCI-X Bus\n");
6290 if (sc->bge_flags & BGEF_PCIE)
6291 printf(" - PCI Express Bus\n");
6292 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6293 printf(" - RX Alignment Bug\n");
6294 if (sc->bge_flags & BGEF_APE)
6295 printf(" - APE\n");
6296 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6297 printf(" - CPMU\n");
6298 if (sc->bge_flags & BGEF_TSO)
6299 printf(" - TSO\n");
6300 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6301 printf(" - TAGGED_STATUS\n");
6302
6303 /* PHY related */
6304 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6305 printf(" - No 3 LEDs\n");
6306 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6307 printf(" - CRC bug\n");
6308 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6309 printf(" - ADC bug\n");
6310 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6311 printf(" - 5704 A0 bug\n");
6312 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6313 printf(" - jitter bug\n");
6314 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6315 printf(" - BER bug\n");
6316 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6317 printf(" - adjust trim\n");
6318 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6319 printf(" - no wirespeed\n");
6320
6321 /* ASF related */
6322 if (sc->bge_asf_mode & ASF_ENABLE)
6323 printf(" - ASF enable\n");
6324 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6325 printf(" - ASF new handshake\n");
6326 if (sc->bge_asf_mode & ASF_STACKUP)
6327 printf(" - ASF stackup\n");
6328 }
6329 #endif /* BGE_DEBUG */
6330
6331 static int
6332 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6333 {
6334 prop_dictionary_t dict;
6335 prop_data_t ea;
6336
6337 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6338 return 1;
6339
6340 dict = device_properties(sc->bge_dev);
6341 ea = prop_dictionary_get(dict, "mac-address");
6342 if (ea != NULL) {
6343 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6344 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6345 memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
6346 return 0;
6347 }
6348
6349 return 1;
6350 }
6351
6352 static int
6353 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6354 {
6355 uint32_t mac_addr;
6356
6357 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6358 if ((mac_addr >> 16) == 0x484b) {
6359 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6360 ether_addr[1] = (uint8_t)mac_addr;
6361 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6362 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6363 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6364 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6365 ether_addr[5] = (uint8_t)mac_addr;
6366 return 0;
6367 }
6368 return 1;
6369 }
6370
6371 static int
6372 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6373 {
6374 int mac_offset = BGE_EE_MAC_OFFSET;
6375
6376 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6377 mac_offset = BGE_EE_MAC_OFFSET_5906;
6378
6379 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6380 ETHER_ADDR_LEN));
6381 }
6382
6383 static int
6384 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6385 {
6386
6387 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6388 return 1;
6389
6390 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6391 ETHER_ADDR_LEN));
6392 }
6393
6394 static int
6395 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6396 {
6397 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6398 /* NOTE: Order is critical */
6399 bge_get_eaddr_fw,
6400 bge_get_eaddr_mem,
6401 bge_get_eaddr_nvram,
6402 bge_get_eaddr_eeprom,
6403 NULL
6404 };
6405 const bge_eaddr_fcn_t *func;
6406
6407 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6408 if ((*func)(sc, eaddr) == 0)
6409 break;
6410 }
6411 return *func == NULL ? ENXIO : 0;
6412 }
6413