Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.371
      1 /*	$NetBSD: if_bge.c,v 1.371 2022/08/07 08:24:23 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.371 2022/08/07 08:24:23 skrll Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/types.h>
     86 
     87 #include <sys/callout.h>
     88 #include <sys/device.h>
     89 #include <sys/kernel.h>
     90 #include <sys/kmem.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/rndsource.h>
     93 #include <sys/socket.h>
     94 #include <sys/sockio.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/systm.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 #include <net/bpf.h>
    103 
    104 #ifdef INET
    105 #include <netinet/in.h>
    106 #include <netinet/in_systm.h>
    107 #include <netinet/in_var.h>
    108 #include <netinet/ip.h>
    109 #endif
    110 
    111 /* Headers for TCP Segmentation Offload (TSO) */
    112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    114 #include <netinet/ip.h>			/* for struct ip */
    115 #include <netinet/tcp.h>		/* for struct tcphdr */
    116 
    117 #include <dev/pci/pcireg.h>
    118 #include <dev/pci/pcivar.h>
    119 #include <dev/pci/pcidevs.h>
    120 
    121 #include <dev/mii/mii.h>
    122 #include <dev/mii/miivar.h>
    123 #include <dev/mii/miidevs.h>
    124 #include <dev/mii/brgphyreg.h>
    125 
    126 #include <dev/pci/if_bgereg.h>
    127 #include <dev/pci/if_bgevar.h>
    128 
    129 #include <prop/proplib.h>
    130 
    131 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    132 
    133 
    134 /*
    135  * Tunable thresholds for rx-side bge interrupt mitigation.
    136  */
    137 
    138 /*
    139  * The pairs of values below were obtained from empirical measurement
    140  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    141  * interrupt for every N packets received, where N is, approximately,
    142  * the second value (rx_max_bds) in each pair.  The values are chosen
    143  * such that moving from one pair to the succeeding pair was observed
    144  * to roughly halve interrupt rate under sustained input packet load.
    145  * The values were empirically chosen to avoid overflowing internal
    146  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    147  * results in internal wrapping and higher interrupt rates.
    148  * The limit of 46 frames was chosen to match NFS workloads.
    149  *
    150  * These values also work well on bcm5701, bcm5704C, and (less
    151  * tested) bcm5703.  On other chipsets, (including the Altima chip
    152  * family), the larger values may overflow internal chip limits,
    153  * leading to increasing interrupt rates rather than lower interrupt
    154  * rates.
    155  *
    156  * Applications using heavy interrupt mitigation (interrupting every
    157  * 32 or 46 frames) in both directions may need to increase the TCP
    158  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    159  * full link bandwidth, due to ACKs and window updates lingering
    160  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    161  */
    162 static const struct bge_load_rx_thresh {
    163 	int rx_ticks;
    164 	int rx_max_bds; }
    165 bge_rx_threshes[] = {
    166 	{ 16,	1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    167 	{ 32,	2 },
    168 	{ 50,	4 },
    169 	{ 100,	8 },
    170 	{ 192, 16 },
    171 	{ 416, 32 },
    172 	{ 598, 46 }
    173 };
    174 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    175 
    176 /* XXX patchable; should be sysctl'able */
    177 static int bge_auto_thresh = 1;
    178 static int bge_rx_thresh_lvl;
    179 
    180 static int bge_rxthresh_nodenum;
    181 
    182 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    183 
    184 static uint32_t bge_chipid(const struct pci_attach_args *);
    185 static int bge_can_use_msi(struct bge_softc *);
    186 static int bge_probe(device_t, cfdata_t, void *);
    187 static void bge_attach(device_t, device_t, void *);
    188 static int bge_detach(device_t, int);
    189 static void bge_release_resources(struct bge_softc *);
    190 
    191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    196 
    197 static void bge_txeof(struct bge_softc *);
    198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    199 static void bge_rxeof(struct bge_softc *);
    200 
    201 static void bge_asf_driver_up (struct bge_softc *);
    202 static void bge_tick(void *);
    203 static void bge_stats_update(struct bge_softc *);
    204 static void bge_stats_update_regs(struct bge_softc *);
    205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    206 
    207 static int bge_intr(void *);
    208 static void bge_start(struct ifnet *);
    209 static int bge_ifflags_cb(struct ethercom *);
    210 static int bge_ioctl(struct ifnet *, u_long, void *);
    211 static int bge_init(struct ifnet *);
    212 static void bge_stop(struct ifnet *, int);
    213 static void bge_watchdog(struct ifnet *);
    214 static int bge_ifmedia_upd(struct ifnet *);
    215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    216 
    217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    219 
    220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    222 static void bge_setmulti(struct bge_softc *);
    223 
    224 static void bge_handle_events(struct bge_softc *);
    225 static int bge_alloc_jumbo_mem(struct bge_softc *);
    226 #if 0 /* XXX */
    227 static void bge_free_jumbo_mem(struct bge_softc *);
    228 #endif
    229 static void *bge_jalloc(struct bge_softc *);
    230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    232 			       bus_dmamap_t);
    233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    234 static int bge_init_rx_ring_std(struct bge_softc *);
    235 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
    236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    238 static void bge_free_tx_ring(struct bge_softc *m, bool);
    239 static int bge_init_tx_ring(struct bge_softc *);
    240 
    241 static int bge_chipinit(struct bge_softc *);
    242 static int bge_blockinit(struct bge_softc *);
    243 static int bge_phy_addr(struct bge_softc *);
    244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    245 static void bge_writemem_ind(struct bge_softc *, int, int);
    246 static void bge_writembx(struct bge_softc *, int, int);
    247 static void bge_writembx_flush(struct bge_softc *, int, int);
    248 static void bge_writemem_direct(struct bge_softc *, int, int);
    249 static void bge_writereg_ind(struct bge_softc *, int, int);
    250 static void bge_set_max_readrq(struct bge_softc *);
    251 
    252 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
    253 static int bge_miibus_writereg(device_t, int, int, uint16_t);
    254 static void bge_miibus_statchg(struct ifnet *);
    255 
    256 #define BGE_RESET_SHUTDOWN	0
    257 #define	BGE_RESET_START		1
    258 #define	BGE_RESET_SUSPEND	2
    259 static void bge_sig_post_reset(struct bge_softc *, int);
    260 static void bge_sig_legacy(struct bge_softc *, int);
    261 static void bge_sig_pre_reset(struct bge_softc *, int);
    262 static void bge_wait_for_event_ack(struct bge_softc *);
    263 static void bge_stop_fw(struct bge_softc *);
    264 static int bge_reset(struct bge_softc *);
    265 static void bge_link_upd(struct bge_softc *);
    266 static void bge_sysctl_init(struct bge_softc *);
    267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    268 
    269 static void bge_ape_lock_init(struct bge_softc *);
    270 static void bge_ape_read_fw_ver(struct bge_softc *);
    271 static int bge_ape_lock(struct bge_softc *, int);
    272 static void bge_ape_unlock(struct bge_softc *, int);
    273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    274 static void bge_ape_driver_state_change(struct bge_softc *, int);
    275 
    276 #ifdef BGE_DEBUG
    277 #define DPRINTF(x)	if (bgedebug) printf x
    278 #define DPRINTFN(n, x)	if (bgedebug >= (n)) printf x
    279 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    280 int	bgedebug = 0;
    281 int	bge_tso_debug = 0;
    282 void	bge_debug_info(struct bge_softc *);
    283 #else
    284 #define DPRINTF(x)
    285 #define DPRINTFN(n, x)
    286 #define BGE_TSO_PRINTF(x)
    287 #endif
    288 
    289 #ifdef BGE_EVENT_COUNTERS
    290 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    291 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    292 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    293 #else
    294 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    295 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    296 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    297 #endif
    298 
    299 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
    300 /*
    301  * The BCM5700 documentation seems to indicate that the hardware still has the
    302  * Alteon vendor ID burned into it, though it should always be overridden by
    303  * the value in the EEPROM.  We'll check for it anyway.
    304  */
    305 static const struct bge_product {
    306 	pci_vendor_id_t		bp_vendor;
    307 	pci_product_id_t	bp_product;
    308 	const char		*bp_name;
    309 } bge_products[] = {
    310 	{ VIDDID(ALTEON,   BCM5700),	"Broadcom BCM5700 Gigabit" },
    311 	{ VIDDID(ALTEON,   BCM5701),	"Broadcom BCM5701 Gigabit" },
    312 	{ VIDDID(ALTIMA,   AC1000),	"Altima AC1000 Gigabit" },
    313 	{ VIDDID(ALTIMA,   AC1001),	"Altima AC1001 Gigabit" },
    314 	{ VIDDID(ALTIMA,   AC1003),	"Altima AC1003 Gigabit" },
    315 	{ VIDDID(ALTIMA,   AC9100),	"Altima AC9100 Gigabit" },
    316 	{ VIDDID(APPLE,	   BCM5701),	"APPLE BCM5701 Gigabit" },
    317 	{ VIDDID(BROADCOM, BCM5700),	"Broadcom BCM5700 Gigabit" },
    318 	{ VIDDID(BROADCOM, BCM5701),	"Broadcom BCM5701 Gigabit" },
    319 	{ VIDDID(BROADCOM, BCM5702),	"Broadcom BCM5702 Gigabit" },
    320 	{ VIDDID(BROADCOM, BCM5702FE),	"Broadcom BCM5702FE Fast" },
    321 	{ VIDDID(BROADCOM, BCM5702X),	"Broadcom BCM5702X Gigabit" },
    322 	{ VIDDID(BROADCOM, BCM5703),	"Broadcom BCM5703 Gigabit" },
    323 	{ VIDDID(BROADCOM, BCM5703X),	"Broadcom BCM5703X Gigabit" },
    324 	{ VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
    325 	{ VIDDID(BROADCOM, BCM5704C),	"Broadcom BCM5704C Dual Gigabit" },
    326 	{ VIDDID(BROADCOM, BCM5704S),	"Broadcom BCM5704S Dual Gigabit" },
    327 	{ VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
    328 	{ VIDDID(BROADCOM, BCM5705),	"Broadcom BCM5705 Gigabit" },
    329 	{ VIDDID(BROADCOM, BCM5705F),	"Broadcom BCM5705F Gigabit" },
    330 	{ VIDDID(BROADCOM, BCM5705K),	"Broadcom BCM5705K Gigabit" },
    331 	{ VIDDID(BROADCOM, BCM5705M),	"Broadcom BCM5705M Gigabit" },
    332 	{ VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
    333 	{ VIDDID(BROADCOM, BCM5714),	"Broadcom BCM5714 Gigabit" },
    334 	{ VIDDID(BROADCOM, BCM5714S),	"Broadcom BCM5714S Gigabit" },
    335 	{ VIDDID(BROADCOM, BCM5715),	"Broadcom BCM5715 Gigabit" },
    336 	{ VIDDID(BROADCOM, BCM5715S),	"Broadcom BCM5715S Gigabit" },
    337 	{ VIDDID(BROADCOM, BCM5717),	"Broadcom BCM5717 Gigabit" },
    338 	{ VIDDID(BROADCOM, BCM5717C),	"Broadcom BCM5717 Gigabit" },
    339 	{ VIDDID(BROADCOM, BCM5718),	"Broadcom BCM5718 Gigabit" },
    340 	{ VIDDID(BROADCOM, BCM5719),	"Broadcom BCM5719 Gigabit" },
    341 	{ VIDDID(BROADCOM, BCM5720),	"Broadcom BCM5720 Gigabit" },
    342 	{ VIDDID(BROADCOM, BCM5721),	"Broadcom BCM5721 Gigabit" },
    343 	{ VIDDID(BROADCOM, BCM5722),	"Broadcom BCM5722 Gigabit" },
    344 	{ VIDDID(BROADCOM, BCM5723),	"Broadcom BCM5723 Gigabit" },
    345 	{ VIDDID(BROADCOM, BCM5725),	"Broadcom BCM5725 Gigabit" },
    346 	{ VIDDID(BROADCOM, BCM5727),	"Broadcom BCM5727 Gigabit" },
    347 	{ VIDDID(BROADCOM, BCM5750),	"Broadcom BCM5750 Gigabit" },
    348 	{ VIDDID(BROADCOM, BCM5751),	"Broadcom BCM5751 Gigabit" },
    349 	{ VIDDID(BROADCOM, BCM5751F),	"Broadcom BCM5751F Gigabit" },
    350 	{ VIDDID(BROADCOM, BCM5751M),	"Broadcom BCM5751M Gigabit" },
    351 	{ VIDDID(BROADCOM, BCM5752),	"Broadcom BCM5752 Gigabit" },
    352 	{ VIDDID(BROADCOM, BCM5752M),	"Broadcom BCM5752M Gigabit" },
    353 	{ VIDDID(BROADCOM, BCM5753),	"Broadcom BCM5753 Gigabit" },
    354 	{ VIDDID(BROADCOM, BCM5753F),	"Broadcom BCM5753F Gigabit" },
    355 	{ VIDDID(BROADCOM, BCM5753M),	"Broadcom BCM5753M Gigabit" },
    356 	{ VIDDID(BROADCOM, BCM5754),	"Broadcom BCM5754 Gigabit" },
    357 	{ VIDDID(BROADCOM, BCM5754M),	"Broadcom BCM5754M Gigabit" },
    358 	{ VIDDID(BROADCOM, BCM5755),	"Broadcom BCM5755 Gigabit" },
    359 	{ VIDDID(BROADCOM, BCM5755M),	"Broadcom BCM5755M Gigabit" },
    360 	{ VIDDID(BROADCOM, BCM5756),	"Broadcom BCM5756 Gigabit" },
    361 	{ VIDDID(BROADCOM, BCM5761),	"Broadcom BCM5761 Gigabit" },
    362 	{ VIDDID(BROADCOM, BCM5761E),	"Broadcom BCM5761E Gigabit" },
    363 	{ VIDDID(BROADCOM, BCM5761S),	"Broadcom BCM5761S Gigabit" },
    364 	{ VIDDID(BROADCOM, BCM5761SE),	"Broadcom BCM5761SE Gigabit" },
    365 	{ VIDDID(BROADCOM, BCM5762),	"Broadcom BCM5762 Gigabit" },
    366 	{ VIDDID(BROADCOM, BCM5764),	"Broadcom BCM5764 Gigabit" },
    367 	{ VIDDID(BROADCOM, BCM5780),	"Broadcom BCM5780 Gigabit" },
    368 	{ VIDDID(BROADCOM, BCM5780S),	"Broadcom BCM5780S Gigabit" },
    369 	{ VIDDID(BROADCOM, BCM5781),	"Broadcom BCM5781 Gigabit" },
    370 	{ VIDDID(BROADCOM, BCM5782),	"Broadcom BCM5782 Gigabit" },
    371 	{ VIDDID(BROADCOM, BCM5784M),	"BCM5784M NetLink 1000baseT" },
    372 	{ VIDDID(BROADCOM, BCM5785F),	"BCM5785F NetLink 10/100" },
    373 	{ VIDDID(BROADCOM, BCM5785G),	"BCM5785G NetLink 1000baseT" },
    374 	{ VIDDID(BROADCOM, BCM5786),	"Broadcom BCM5786 Gigabit" },
    375 	{ VIDDID(BROADCOM, BCM5787),	"Broadcom BCM5787 Gigabit" },
    376 	{ VIDDID(BROADCOM, BCM5787F),	"Broadcom BCM5787F 10/100" },
    377 	{ VIDDID(BROADCOM, BCM5787M),	"Broadcom BCM5787M Gigabit" },
    378 	{ VIDDID(BROADCOM, BCM5788),	"Broadcom BCM5788 Gigabit" },
    379 	{ VIDDID(BROADCOM, BCM5789),	"Broadcom BCM5789 Gigabit" },
    380 	{ VIDDID(BROADCOM, BCM5901),	"Broadcom BCM5901 Fast" },
    381 	{ VIDDID(BROADCOM, BCM5901A2),	"Broadcom BCM5901A2 Fast" },
    382 	{ VIDDID(BROADCOM, BCM5903M),	"Broadcom BCM5903M Fast" },
    383 	{ VIDDID(BROADCOM, BCM5906),	"Broadcom BCM5906 Fast" },
    384 	{ VIDDID(BROADCOM, BCM5906M),	"Broadcom BCM5906M Fast" },
    385 	{ VIDDID(BROADCOM, BCM57760),	"Broadcom BCM57760 Gigabit" },
    386 	{ VIDDID(BROADCOM, BCM57761),	"Broadcom BCM57761 Gigabit" },
    387 	{ VIDDID(BROADCOM, BCM57762),	"Broadcom BCM57762 Gigabit" },
    388 	{ VIDDID(BROADCOM, BCM57764),	"Broadcom BCM57764 Gigabit" },
    389 	{ VIDDID(BROADCOM, BCM57765),	"Broadcom BCM57765 Gigabit" },
    390 	{ VIDDID(BROADCOM, BCM57766),	"Broadcom BCM57766 Gigabit" },
    391 	{ VIDDID(BROADCOM, BCM57767),	"Broadcom BCM57767 Gigabit" },
    392 	{ VIDDID(BROADCOM, BCM57780),	"Broadcom BCM57780 Gigabit" },
    393 	{ VIDDID(BROADCOM, BCM57781),	"Broadcom BCM57781 Gigabit" },
    394 	{ VIDDID(BROADCOM, BCM57782),	"Broadcom BCM57782 Gigabit" },
    395 	{ VIDDID(BROADCOM, BCM57785),	"Broadcom BCM57785 Gigabit" },
    396 	{ VIDDID(BROADCOM, BCM57786),	"Broadcom BCM57786 Gigabit" },
    397 	{ VIDDID(BROADCOM, BCM57787),	"Broadcom BCM57787 Gigabit" },
    398 	{ VIDDID(BROADCOM, BCM57788),	"Broadcom BCM57788 Gigabit" },
    399 	{ VIDDID(BROADCOM, BCM57790),	"Broadcom BCM57790 Gigabit" },
    400 	{ VIDDID(BROADCOM, BCM57791),	"Broadcom BCM57791 Gigabit" },
    401 	{ VIDDID(BROADCOM, BCM57795),	"Broadcom BCM57795 Gigabit" },
    402 	{ VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
    403 	{ VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
    404 	{ VIDDID(3COM, 3C996),		"3Com 3c996 Gigabit" },
    405 	{ VIDDID(FUJITSU4, PW008GE4),	"Fujitsu PW008GE4 Gigabit" },
    406 	{ VIDDID(FUJITSU4, PW008GE5),	"Fujitsu PW008GE5 Gigabit" },
    407 	{ VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
    408 	{ 0, 0, NULL },
    409 };
    410 
    411 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
    412 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
    413 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
    414 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
    415 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
    416 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
    417 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
    418 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
    419 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
    420 
    421 static const struct bge_revision {
    422 	uint32_t		br_chipid;
    423 	const char		*br_name;
    424 } bge_revisions[] = {
    425 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    426 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    427 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    428 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    429 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    430 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    431 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    432 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    433 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    434 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    435 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    436 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    437 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    438 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    439 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    440 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    441 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    442 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    443 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    444 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    445 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    446 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    447 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    448 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    449 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    450 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    451 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    452 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    453 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    454 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    455 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    456 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    457 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    458 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    459 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    460 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    461 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    462 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    463 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    464 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    465 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    466 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    467 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    468 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    469 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    470 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    471 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    472 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    473 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    474 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    475 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    476 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    477 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    478 	{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
    479 	{ BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
    480 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    481 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    482 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
    483 	/* 5754 and 5787 share the same ASIC ID */
    484 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    485 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    486 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    487 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    488 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    489 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    490 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    491 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    492 	{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
    493 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    494 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    495 
    496 	{ 0, NULL }
    497 };
    498 
    499 /*
    500  * Some defaults for major revisions, so that newer steppings
    501  * that we don't know about have a shot at working.
    502  */
    503 static const struct bge_revision bge_majorrevs[] = {
    504 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    505 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    506 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    507 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    508 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    509 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    510 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    511 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    512 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    513 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    514 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    515 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    516 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    517 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    518 	/* 5754 and 5787 share the same ASIC ID */
    519 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    520 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    521 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    522 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    523 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    524 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    525 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    526 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    527 	{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
    528 
    529 	{ 0, NULL }
    530 };
    531 
    532 static int bge_allow_asf = 1;
    533 
    534 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    535     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    536 
    537 static uint32_t
    538 bge_readmem_ind(struct bge_softc *sc, int off)
    539 {
    540 	pcireg_t val;
    541 
    542 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    543 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    544 		return 0;
    545 
    546 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    547 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    548 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    549 	return val;
    550 }
    551 
    552 static void
    553 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    554 {
    555 
    556 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    557 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    558 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    559 }
    560 
    561 /*
    562  * PCI Express only
    563  */
    564 static void
    565 bge_set_max_readrq(struct bge_softc *sc)
    566 {
    567 	pcireg_t val;
    568 
    569 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    570 	    + PCIE_DCSR);
    571 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    572 	switch (sc->bge_expmrq) {
    573 	case 2048:
    574 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    575 		break;
    576 	case 4096:
    577 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    578 		break;
    579 	default:
    580 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    581 		break;
    582 	}
    583 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    584 	    + PCIE_DCSR, val);
    585 }
    586 
    587 #ifdef notdef
    588 static uint32_t
    589 bge_readreg_ind(struct bge_softc *sc, int off)
    590 {
    591 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    592 	return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
    593 }
    594 #endif
    595 
    596 static void
    597 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    598 {
    599 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    600 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    601 }
    602 
    603 static void
    604 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    605 {
    606 	CSR_WRITE_4(sc, off, val);
    607 }
    608 
    609 static void
    610 bge_writembx(struct bge_softc *sc, int off, int val)
    611 {
    612 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    613 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    614 
    615 	CSR_WRITE_4(sc, off, val);
    616 }
    617 
    618 static void
    619 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    620 {
    621 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    622 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    623 
    624 	CSR_WRITE_4_FLUSH(sc, off, val);
    625 }
    626 
    627 /*
    628  * Clear all stale locks and select the lock for this driver instance.
    629  */
    630 void
    631 bge_ape_lock_init(struct bge_softc *sc)
    632 {
    633 	struct pci_attach_args *pa = &(sc->bge_pa);
    634 	uint32_t bit, regbase;
    635 	int i;
    636 
    637 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    638 		regbase = BGE_APE_LOCK_GRANT;
    639 	else
    640 		regbase = BGE_APE_PER_LOCK_GRANT;
    641 
    642 	/* Clear any stale locks. */
    643 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    644 		switch (i) {
    645 		case BGE_APE_LOCK_PHY0:
    646 		case BGE_APE_LOCK_PHY1:
    647 		case BGE_APE_LOCK_PHY2:
    648 		case BGE_APE_LOCK_PHY3:
    649 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    650 			break;
    651 		default:
    652 			if (pa->pa_function == 0)
    653 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    654 			else
    655 				bit = (1 << pa->pa_function);
    656 		}
    657 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    658 	}
    659 
    660 	/* Select the PHY lock based on the device's function number. */
    661 	switch (pa->pa_function) {
    662 	case 0:
    663 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    664 		break;
    665 	case 1:
    666 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    667 		break;
    668 	case 2:
    669 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    670 		break;
    671 	case 3:
    672 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    673 		break;
    674 	default:
    675 		printf("%s: PHY lock not supported on function\n",
    676 		    device_xname(sc->bge_dev));
    677 		break;
    678 	}
    679 }
    680 
    681 /*
    682  * Check for APE firmware, set flags, and print version info.
    683  */
    684 void
    685 bge_ape_read_fw_ver(struct bge_softc *sc)
    686 {
    687 	const char *fwtype;
    688 	uint32_t apedata, features;
    689 
    690 	/* Check for a valid APE signature in shared memory. */
    691 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    692 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    693 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    694 		return;
    695 	}
    696 
    697 	/* Check if APE firmware is running. */
    698 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    699 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    700 		printf("%s: APE signature found but FW status not ready! "
    701 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    702 		return;
    703 	}
    704 
    705 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    706 
    707 	/* Fetch the APE firwmare type and version. */
    708 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    709 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    710 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    711 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    712 		fwtype = "NCSI";
    713 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    714 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    715 		fwtype = "DASH";
    716 	} else
    717 		fwtype = "UNKN";
    718 
    719 	/* Print the APE firmware version. */
    720 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
    721 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    722 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    723 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    724 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    725 }
    726 
    727 int
    728 bge_ape_lock(struct bge_softc *sc, int locknum)
    729 {
    730 	struct pci_attach_args *pa = &(sc->bge_pa);
    731 	uint32_t bit, gnt, req, status;
    732 	int i, off;
    733 
    734 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    735 		return 0;
    736 
    737 	/* Lock request/grant registers have different bases. */
    738 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    739 		req = BGE_APE_LOCK_REQ;
    740 		gnt = BGE_APE_LOCK_GRANT;
    741 	} else {
    742 		req = BGE_APE_PER_LOCK_REQ;
    743 		gnt = BGE_APE_PER_LOCK_GRANT;
    744 	}
    745 
    746 	off = 4 * locknum;
    747 
    748 	switch (locknum) {
    749 	case BGE_APE_LOCK_GPIO:
    750 		/* Lock required when using GPIO. */
    751 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    752 			return 0;
    753 		if (pa->pa_function == 0)
    754 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    755 		else
    756 			bit = (1 << pa->pa_function);
    757 		break;
    758 	case BGE_APE_LOCK_GRC:
    759 		/* Lock required to reset the device. */
    760 		if (pa->pa_function == 0)
    761 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    762 		else
    763 			bit = (1 << pa->pa_function);
    764 		break;
    765 	case BGE_APE_LOCK_MEM:
    766 		/* Lock required when accessing certain APE memory. */
    767 		if (pa->pa_function == 0)
    768 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    769 		else
    770 			bit = (1 << pa->pa_function);
    771 		break;
    772 	case BGE_APE_LOCK_PHY0:
    773 	case BGE_APE_LOCK_PHY1:
    774 	case BGE_APE_LOCK_PHY2:
    775 	case BGE_APE_LOCK_PHY3:
    776 		/* Lock required when accessing PHYs. */
    777 		bit = BGE_APE_LOCK_REQ_DRIVER0;
    778 		break;
    779 	default:
    780 		return EINVAL;
    781 	}
    782 
    783 	/* Request a lock. */
    784 	APE_WRITE_4_FLUSH(sc, req + off, bit);
    785 
    786 	/* Wait up to 1 second to acquire lock. */
    787 	for (i = 0; i < 20000; i++) {
    788 		status = APE_READ_4(sc, gnt + off);
    789 		if (status == bit)
    790 			break;
    791 		DELAY(50);
    792 	}
    793 
    794 	/* Handle any errors. */
    795 	if (status != bit) {
    796 		printf("%s: APE lock %d request failed! "
    797 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
    798 		    device_xname(sc->bge_dev),
    799 		    locknum, req + off, bit & 0xFFFF, gnt + off,
    800 		    status & 0xFFFF);
    801 		/* Revoke the lock request. */
    802 		APE_WRITE_4(sc, gnt + off, bit);
    803 		return EBUSY;
    804 	}
    805 
    806 	return 0;
    807 }
    808 
    809 void
    810 bge_ape_unlock(struct bge_softc *sc, int locknum)
    811 {
    812 	struct pci_attach_args *pa = &(sc->bge_pa);
    813 	uint32_t bit, gnt;
    814 	int off;
    815 
    816 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    817 		return;
    818 
    819 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    820 		gnt = BGE_APE_LOCK_GRANT;
    821 	else
    822 		gnt = BGE_APE_PER_LOCK_GRANT;
    823 
    824 	off = 4 * locknum;
    825 
    826 	switch (locknum) {
    827 	case BGE_APE_LOCK_GPIO:
    828 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    829 			return;
    830 		if (pa->pa_function == 0)
    831 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    832 		else
    833 			bit = (1 << pa->pa_function);
    834 		break;
    835 	case BGE_APE_LOCK_GRC:
    836 		if (pa->pa_function == 0)
    837 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    838 		else
    839 			bit = (1 << pa->pa_function);
    840 		break;
    841 	case BGE_APE_LOCK_MEM:
    842 		if (pa->pa_function == 0)
    843 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    844 		else
    845 			bit = (1 << pa->pa_function);
    846 		break;
    847 	case BGE_APE_LOCK_PHY0:
    848 	case BGE_APE_LOCK_PHY1:
    849 	case BGE_APE_LOCK_PHY2:
    850 	case BGE_APE_LOCK_PHY3:
    851 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
    852 		break;
    853 	default:
    854 		return;
    855 	}
    856 
    857 	/* Write and flush for consecutive bge_ape_lock() */
    858 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
    859 }
    860 
    861 /*
    862  * Send an event to the APE firmware.
    863  */
    864 void
    865 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
    866 {
    867 	uint32_t apedata;
    868 	int i;
    869 
    870 	/* NCSI does not support APE events. */
    871 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    872 		return;
    873 
    874 	/* Wait up to 1ms for APE to service previous event. */
    875 	for (i = 10; i > 0; i--) {
    876 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
    877 			break;
    878 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
    879 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
    880 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
    881 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
    882 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    883 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
    884 			break;
    885 		}
    886 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    887 		DELAY(100);
    888 	}
    889 	if (i == 0) {
    890 		printf("%s: APE event 0x%08x send timed out\n",
    891 		    device_xname(sc->bge_dev), event);
    892 	}
    893 }
    894 
    895 void
    896 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
    897 {
    898 	uint32_t apedata, event;
    899 
    900 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    901 		return;
    902 
    903 	switch (kind) {
    904 	case BGE_RESET_START:
    905 		/* If this is the first load, clear the load counter. */
    906 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
    907 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
    908 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
    909 		else {
    910 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
    911 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
    912 		}
    913 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
    914 		    BGE_APE_HOST_SEG_SIG_MAGIC);
    915 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
    916 		    BGE_APE_HOST_SEG_LEN_MAGIC);
    917 
    918 		/* Add some version info if bge(4) supports it. */
    919 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
    920 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
    921 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
    922 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
    923 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
    924 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
    925 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    926 		    BGE_APE_HOST_DRVR_STATE_START);
    927 		event = BGE_APE_EVENT_STATUS_STATE_START;
    928 		break;
    929 	case BGE_RESET_SHUTDOWN:
    930 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    931 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
    932 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
    933 		break;
    934 	case BGE_RESET_SUSPEND:
    935 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
    936 		break;
    937 	default:
    938 		return;
    939 	}
    940 
    941 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
    942 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
    943 }
    944 
    945 static uint8_t
    946 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    947 {
    948 	uint32_t access, byte = 0;
    949 	int i;
    950 
    951 	/* Lock. */
    952 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    953 	for (i = 0; i < 8000; i++) {
    954 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    955 			break;
    956 		DELAY(20);
    957 	}
    958 	if (i == 8000)
    959 		return 1;
    960 
    961 	/* Enable access. */
    962 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    963 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    964 
    965 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    966 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    967 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    968 		DELAY(10);
    969 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    970 			DELAY(10);
    971 			break;
    972 		}
    973 	}
    974 
    975 	if (i == BGE_TIMEOUT * 10) {
    976 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    977 		return 1;
    978 	}
    979 
    980 	/* Get result. */
    981 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    982 
    983 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    984 
    985 	/* Disable access. */
    986 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    987 
    988 	/* Unlock. */
    989 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    990 
    991 	return 0;
    992 }
    993 
    994 /*
    995  * Read a sequence of bytes from NVRAM.
    996  */
    997 static int
    998 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    999 {
   1000 	int error = 0, i;
   1001 	uint8_t byte = 0;
   1002 
   1003 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1004 		return 1;
   1005 
   1006 	for (i = 0; i < cnt; i++) {
   1007 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1008 		if (error)
   1009 			break;
   1010 		*(dest + i) = byte;
   1011 	}
   1012 
   1013 	return error ? 1 : 0;
   1014 }
   1015 
   1016 /*
   1017  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1018  * BCM570x supports both the traditional bitbang interface and an
   1019  * auto access interface for reading the EEPROM. We use the auto
   1020  * access method.
   1021  */
   1022 static uint8_t
   1023 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1024 {
   1025 	int i;
   1026 	uint32_t byte = 0;
   1027 
   1028 	/*
   1029 	 * Enable use of auto EEPROM access so we can avoid
   1030 	 * having to use the bitbang method.
   1031 	 */
   1032 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1033 
   1034 	/* Reset the EEPROM, load the clock period. */
   1035 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   1036 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1037 	DELAY(20);
   1038 
   1039 	/* Issue the read EEPROM command. */
   1040 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1041 
   1042 	/* Wait for completion */
   1043 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1044 		DELAY(10);
   1045 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1046 			break;
   1047 	}
   1048 
   1049 	if (i == BGE_TIMEOUT * 10) {
   1050 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1051 		return 1;
   1052 	}
   1053 
   1054 	/* Get result. */
   1055 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1056 
   1057 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1058 
   1059 	return 0;
   1060 }
   1061 
   1062 /*
   1063  * Read a sequence of bytes from the EEPROM.
   1064  */
   1065 static int
   1066 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1067 {
   1068 	int error = 0, i;
   1069 	uint8_t byte = 0;
   1070 	char *dest = destv;
   1071 
   1072 	for (i = 0; i < cnt; i++) {
   1073 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1074 		if (error)
   1075 			break;
   1076 		*(dest + i) = byte;
   1077 	}
   1078 
   1079 	return error ? 1 : 0;
   1080 }
   1081 
   1082 static int
   1083 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
   1084 {
   1085 	struct bge_softc * const sc = device_private(dev);
   1086 	uint32_t data;
   1087 	uint32_t autopoll;
   1088 	int rv = 0;
   1089 	int i;
   1090 
   1091 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1092 		return -1;
   1093 
   1094 	/* Reading with autopolling on may trigger PCI errors */
   1095 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1096 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1097 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1098 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1099 		DELAY(80);
   1100 	}
   1101 
   1102 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1103 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1104 
   1105 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1106 		delay(10);
   1107 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1108 		if (!(data & BGE_MICOMM_BUSY)) {
   1109 			DELAY(5);
   1110 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1111 			break;
   1112 		}
   1113 	}
   1114 
   1115 	if (i == BGE_TIMEOUT) {
   1116 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1117 		rv = ETIMEDOUT;
   1118 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1119 		/* XXX This error occurs on some devices while attaching. */
   1120 		aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
   1121 		rv = EIO;
   1122 	} else
   1123 		*val = data & BGE_MICOMM_DATA;
   1124 
   1125 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1126 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1127 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1128 		DELAY(80);
   1129 	}
   1130 
   1131 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1132 
   1133 	return rv;
   1134 }
   1135 
   1136 static int
   1137 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
   1138 {
   1139 	struct bge_softc * const sc = device_private(dev);
   1140 	uint32_t data, autopoll;
   1141 	int rv = 0;
   1142 	int i;
   1143 
   1144 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1145 	    (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
   1146 		return 0;
   1147 
   1148 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1149 		return -1;
   1150 
   1151 	/* Reading with autopolling on may trigger PCI errors */
   1152 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1153 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1154 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1155 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1156 		DELAY(80);
   1157 	}
   1158 
   1159 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1160 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1161 
   1162 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1163 		delay(10);
   1164 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1165 		if (!(data & BGE_MICOMM_BUSY)) {
   1166 			delay(5);
   1167 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1168 			break;
   1169 		}
   1170 	}
   1171 
   1172 	if (i == BGE_TIMEOUT) {
   1173 		aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
   1174 		rv = ETIMEDOUT;
   1175 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1176 		aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
   1177 		rv = EIO;
   1178 	}
   1179 
   1180 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1181 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1182 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1183 		delay(80);
   1184 	}
   1185 
   1186 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1187 
   1188 	return rv;
   1189 }
   1190 
   1191 static void
   1192 bge_miibus_statchg(struct ifnet *ifp)
   1193 {
   1194 	struct bge_softc * const sc = ifp->if_softc;
   1195 	struct mii_data *mii = &sc->bge_mii;
   1196 	uint32_t mac_mode, rx_mode, tx_mode;
   1197 
   1198 	/*
   1199 	 * Get flow control negotiation result.
   1200 	 */
   1201 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1202 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
   1203 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1204 
   1205 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1206 	    mii->mii_media_status & IFM_ACTIVE &&
   1207 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   1208 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
   1209 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1210 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
   1211 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   1212 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   1213 
   1214 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   1215 		return;
   1216 
   1217 	/* Set the port mode (MII/GMII) to match the link speed. */
   1218 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1219 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1220 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1221 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1222 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1223 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1224 		mac_mode |= BGE_PORTMODE_GMII;
   1225 	else
   1226 		mac_mode |= BGE_PORTMODE_MII;
   1227 
   1228 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1229 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1230 	if ((mii->mii_media_active & IFM_FDX) != 0) {
   1231 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1232 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1233 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1234 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1235 	} else
   1236 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1237 
   1238 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1239 	DELAY(40);
   1240 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1241 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1242 }
   1243 
   1244 /*
   1245  * Update rx threshold levels to values in a particular slot
   1246  * of the interrupt-mitigation table bge_rx_threshes.
   1247  */
   1248 static void
   1249 bge_set_thresh(struct ifnet *ifp, int lvl)
   1250 {
   1251 	struct bge_softc * const sc = ifp->if_softc;
   1252 	int s;
   1253 
   1254 	/*
   1255 	 * For now, just save the new Rx-intr thresholds and record
   1256 	 * that a threshold update is pending.  Updating the hardware
   1257 	 * registers here (even at splhigh()) is observed to
   1258 	 * occasionally cause glitches where Rx-interrupts are not
   1259 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1260 	 */
   1261 	s = splnet();
   1262 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1263 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1264 	sc->bge_pending_rxintr_change = 1;
   1265 	splx(s);
   1266 }
   1267 
   1268 
   1269 /*
   1270  * Update Rx thresholds of all bge devices
   1271  */
   1272 static void
   1273 bge_update_all_threshes(int lvl)
   1274 {
   1275 	const char * const namebuf = "bge";
   1276 	const size_t namelen = strlen(namebuf);
   1277 	struct ifnet *ifp;
   1278 
   1279 	if (lvl < 0)
   1280 		lvl = 0;
   1281 	else if (lvl >= NBGE_RX_THRESH)
   1282 		lvl = NBGE_RX_THRESH - 1;
   1283 
   1284 	/*
   1285 	 * Now search all the interfaces for this name/number
   1286 	 */
   1287 	int s = pserialize_read_enter();
   1288 	IFNET_READER_FOREACH(ifp) {
   1289 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1290 			continue;
   1291 		/* We got a match: update if doing auto-threshold-tuning */
   1292 		if (bge_auto_thresh)
   1293 			bge_set_thresh(ifp, lvl);
   1294 	}
   1295 	pserialize_read_exit(s);
   1296 }
   1297 
   1298 /*
   1299  * Handle events that have triggered interrupts.
   1300  */
   1301 static void
   1302 bge_handle_events(struct bge_softc *sc)
   1303 {
   1304 
   1305 	return;
   1306 }
   1307 
   1308 /*
   1309  * Memory management for jumbo frames.
   1310  */
   1311 
   1312 static int
   1313 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1314 {
   1315 	char *ptr, *kva;
   1316 	bus_dma_segment_t	seg;
   1317 	int		i, rseg, state, error;
   1318 	struct bge_jpool_entry	 *entry;
   1319 
   1320 	state = error = 0;
   1321 
   1322 	/* Grab a big chunk o' storage. */
   1323 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1324 	    &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1325 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1326 		return ENOBUFS;
   1327 	}
   1328 
   1329 	state = 1;
   1330 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
   1331 	    BUS_DMA_NOWAIT)) {
   1332 		aprint_error_dev(sc->bge_dev,
   1333 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1334 		error = ENOBUFS;
   1335 		goto out;
   1336 	}
   1337 
   1338 	state = 2;
   1339 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1340 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1341 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1342 		error = ENOBUFS;
   1343 		goto out;
   1344 	}
   1345 
   1346 	state = 3;
   1347 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1348 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1349 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1350 		error = ENOBUFS;
   1351 		goto out;
   1352 	}
   1353 
   1354 	state = 4;
   1355 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1356 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1357 
   1358 	SLIST_INIT(&sc->bge_jfree_listhead);
   1359 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1360 
   1361 	/*
   1362 	 * Now divide it up into 9K pieces and save the addresses
   1363 	 * in an array.
   1364 	 */
   1365 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1366 	for (i = 0; i < BGE_JSLOTS; i++) {
   1367 		sc->bge_cdata.bge_jslots[i] = ptr;
   1368 		ptr += BGE_JLEN;
   1369 		entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
   1370 		entry->slot = i;
   1371 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1372 				 entry, jpool_entries);
   1373 	}
   1374 out:
   1375 	if (error != 0) {
   1376 		switch (state) {
   1377 		case 4:
   1378 			bus_dmamap_unload(sc->bge_dmatag,
   1379 			    sc->bge_cdata.bge_rx_jumbo_map);
   1380 			/* FALLTHROUGH */
   1381 		case 3:
   1382 			bus_dmamap_destroy(sc->bge_dmatag,
   1383 			    sc->bge_cdata.bge_rx_jumbo_map);
   1384 			/* FALLTHROUGH */
   1385 		case 2:
   1386 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1387 			/* FALLTHROUGH */
   1388 		case 1:
   1389 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   1390 			break;
   1391 		default:
   1392 			break;
   1393 		}
   1394 	}
   1395 
   1396 	return error;
   1397 }
   1398 
   1399 /*
   1400  * Allocate a jumbo buffer.
   1401  */
   1402 static void *
   1403 bge_jalloc(struct bge_softc *sc)
   1404 {
   1405 	struct bge_jpool_entry	 *entry;
   1406 
   1407 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1408 
   1409 	if (entry == NULL) {
   1410 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1411 		return NULL;
   1412 	}
   1413 
   1414 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1415 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1416 	return sc->bge_cdata.bge_jslots[entry->slot];
   1417 }
   1418 
   1419 /*
   1420  * Release a jumbo buffer.
   1421  */
   1422 static void
   1423 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1424 {
   1425 	struct bge_jpool_entry *entry;
   1426 	struct bge_softc * const sc = arg;
   1427 	int s;
   1428 
   1429 	if (sc == NULL)
   1430 		panic("bge_jfree: can't find softc pointer!");
   1431 
   1432 	/* calculate the slot this buffer belongs to */
   1433 	int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1434 
   1435 	if (i < 0 || i >= BGE_JSLOTS)
   1436 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1437 
   1438 	s = splvm();
   1439 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1440 	if (entry == NULL)
   1441 		panic("bge_jfree: buffer not in use!");
   1442 	entry->slot = i;
   1443 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1444 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1445 
   1446 	if (__predict_true(m != NULL))
   1447 		pool_cache_put(mb_cache, m);
   1448 	splx(s);
   1449 }
   1450 
   1451 
   1452 /*
   1453  * Initialize a standard receive ring descriptor.
   1454  */
   1455 static int
   1456 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1457     bus_dmamap_t dmamap)
   1458 {
   1459 	struct mbuf		*m_new = NULL;
   1460 	struct bge_rx_bd	*r;
   1461 	int			error;
   1462 
   1463 	if (dmamap == NULL)
   1464 		dmamap = sc->bge_cdata.bge_rx_std_map[i];
   1465 
   1466 	if (dmamap == NULL) {
   1467 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1468 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1469 		if (error != 0)
   1470 			return error;
   1471 	}
   1472 
   1473 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1474 
   1475 	if (m == NULL) {
   1476 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1477 		if (m_new == NULL)
   1478 			return ENOBUFS;
   1479 
   1480 		MCLGET(m_new, M_DONTWAIT);
   1481 		if (!(m_new->m_flags & M_EXT)) {
   1482 			m_freem(m_new);
   1483 			return ENOBUFS;
   1484 		}
   1485 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1486 
   1487 	} else {
   1488 		m_new = m;
   1489 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1490 		m_new->m_data = m_new->m_ext.ext_buf;
   1491 	}
   1492 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1493 	    m_adj(m_new, ETHER_ALIGN);
   1494 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1495 	    BUS_DMA_READ | BUS_DMA_NOWAIT)) {
   1496 		m_freem(m_new);
   1497 		return ENOBUFS;
   1498 	}
   1499 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1500 	    BUS_DMASYNC_PREREAD);
   1501 
   1502 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1503 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1504 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1505 	r->bge_flags = BGE_RXBDFLAG_END;
   1506 	r->bge_len = m_new->m_len;
   1507 	r->bge_idx = i;
   1508 
   1509 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1510 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1511 		i * sizeof(struct bge_rx_bd),
   1512 	    sizeof(struct bge_rx_bd),
   1513 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1514 
   1515 	return 0;
   1516 }
   1517 
   1518 /*
   1519  * Initialize a jumbo receive ring descriptor. This allocates
   1520  * a jumbo buffer from the pool managed internally by the driver.
   1521  */
   1522 static int
   1523 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1524 {
   1525 	struct mbuf *m_new = NULL;
   1526 	struct bge_rx_bd *r;
   1527 	void *buf = NULL;
   1528 
   1529 	if (m == NULL) {
   1530 
   1531 		/* Allocate the mbuf. */
   1532 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1533 		if (m_new == NULL)
   1534 			return ENOBUFS;
   1535 
   1536 		/* Allocate the jumbo buffer */
   1537 		buf = bge_jalloc(sc);
   1538 		if (buf == NULL) {
   1539 			m_freem(m_new);
   1540 			aprint_error_dev(sc->bge_dev,
   1541 			    "jumbo allocation failed -- packet dropped!\n");
   1542 			return ENOBUFS;
   1543 		}
   1544 
   1545 		/* Attach the buffer to the mbuf. */
   1546 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1547 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1548 		    bge_jfree, sc);
   1549 		m_new->m_flags |= M_EXT_RW;
   1550 	} else {
   1551 		m_new = m;
   1552 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1553 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1554 	}
   1555 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1556 	    m_adj(m_new, ETHER_ALIGN);
   1557 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1558 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   1559 	    BGE_JLEN, BUS_DMASYNC_PREREAD);
   1560 	/* Set up the descriptor. */
   1561 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1562 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1563 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1564 	r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
   1565 	r->bge_len = m_new->m_len;
   1566 	r->bge_idx = i;
   1567 
   1568 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1569 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1570 		i * sizeof(struct bge_rx_bd),
   1571 	    sizeof(struct bge_rx_bd),
   1572 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1573 
   1574 	return 0;
   1575 }
   1576 
   1577 /*
   1578  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1579  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1580  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1581  * the NIC.
   1582  */
   1583 static int
   1584 bge_init_rx_ring_std(struct bge_softc *sc)
   1585 {
   1586 	int i;
   1587 
   1588 	if (sc->bge_flags & BGEF_RXRING_VALID)
   1589 		return 0;
   1590 
   1591 	for (i = 0; i < BGE_SSLOTS; i++) {
   1592 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1593 			return ENOBUFS;
   1594 	}
   1595 
   1596 	sc->bge_std = i - 1;
   1597 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1598 
   1599 	sc->bge_flags |= BGEF_RXRING_VALID;
   1600 
   1601 	return 0;
   1602 }
   1603 
   1604 static void
   1605 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
   1606 {
   1607 	int i;
   1608 
   1609 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
   1610 		return;
   1611 
   1612 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1613 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1614 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1615 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1616 			if (disable) {
   1617 				bus_dmamap_destroy(sc->bge_dmatag,
   1618 				    sc->bge_cdata.bge_rx_std_map[i]);
   1619 				sc->bge_cdata.bge_rx_std_map[i] = NULL;
   1620 			}
   1621 		}
   1622 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1623 		    sizeof(struct bge_rx_bd));
   1624 	}
   1625 
   1626 	sc->bge_flags &= ~BGEF_RXRING_VALID;
   1627 }
   1628 
   1629 static int
   1630 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1631 {
   1632 	int i;
   1633 	volatile struct bge_rcb *rcb;
   1634 
   1635 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
   1636 		return 0;
   1637 
   1638 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1639 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1640 			return ENOBUFS;
   1641 	}
   1642 
   1643 	sc->bge_jumbo = i - 1;
   1644 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
   1645 
   1646 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1647 	rcb->bge_maxlen_flags = 0;
   1648 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1649 
   1650 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1651 
   1652 	return 0;
   1653 }
   1654 
   1655 static void
   1656 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1657 {
   1658 	int i;
   1659 
   1660 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
   1661 		return;
   1662 
   1663 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1664 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1665 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1666 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1667 		}
   1668 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1669 		    sizeof(struct bge_rx_bd));
   1670 	}
   1671 
   1672 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
   1673 }
   1674 
   1675 static void
   1676 bge_free_tx_ring(struct bge_softc *sc, bool disable)
   1677 {
   1678 	int i;
   1679 	struct txdmamap_pool_entry *dma;
   1680 
   1681 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
   1682 		return;
   1683 
   1684 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1685 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1686 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1687 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1688 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1689 					    link);
   1690 			sc->txdma[i] = 0;
   1691 		}
   1692 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1693 		    sizeof(struct bge_tx_bd));
   1694 	}
   1695 
   1696 	if (disable) {
   1697 		while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1698 			SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1699 			bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1700 			if (sc->bge_dma64) {
   1701 				bus_dmamap_destroy(sc->bge_dmatag32,
   1702 				    dma->dmamap32);
   1703 			}
   1704 			kmem_free(dma, sizeof(*dma));
   1705 		}
   1706 		SLIST_INIT(&sc->txdma_list);
   1707 	}
   1708 
   1709 	sc->bge_flags &= ~BGEF_TXRING_VALID;
   1710 }
   1711 
   1712 static int
   1713 bge_init_tx_ring(struct bge_softc *sc)
   1714 {
   1715 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   1716 	int i;
   1717 	bus_dmamap_t dmamap, dmamap32;
   1718 	bus_size_t maxsegsz;
   1719 	struct txdmamap_pool_entry *dma;
   1720 
   1721 	if (sc->bge_flags & BGEF_TXRING_VALID)
   1722 		return 0;
   1723 
   1724 	sc->bge_txcnt = 0;
   1725 	sc->bge_tx_saved_considx = 0;
   1726 
   1727 	/* Initialize transmit producer index for host-memory send ring. */
   1728 	sc->bge_tx_prodidx = 0;
   1729 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1730 	/* 5700 b2 errata */
   1731 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1732 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1733 
   1734 	/* NIC-memory send ring not used; initialize to zero. */
   1735 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1736 	/* 5700 b2 errata */
   1737 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1738 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1739 
   1740 	/* Limit DMA segment size for some chips */
   1741 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
   1742 	    (ifp->if_mtu <= ETHERMTU))
   1743 		maxsegsz = 2048;
   1744 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   1745 		maxsegsz = 4096;
   1746 	else
   1747 		maxsegsz = ETHER_MAX_LEN_JUMBO;
   1748 
   1749 	if (SLIST_FIRST(&sc->txdma_list) != NULL)
   1750 		goto alloc_done;
   1751 
   1752 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1753 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1754 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1755 		    &dmamap))
   1756 			return ENOBUFS;
   1757 		if (dmamap == NULL)
   1758 			panic("dmamap NULL in bge_init_tx_ring");
   1759 		if (sc->bge_dma64) {
   1760 			if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
   1761 			    BGE_NTXSEG, maxsegsz, 0,
   1762 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1763 			    &dmamap32)) {
   1764 				bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1765 				return ENOBUFS;
   1766 			}
   1767 			if (dmamap32 == NULL)
   1768 				panic("dmamap32 NULL in bge_init_tx_ring");
   1769 		} else
   1770 			dmamap32 = dmamap;
   1771 		dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
   1772 		if (dma == NULL) {
   1773 			aprint_error_dev(sc->bge_dev,
   1774 			    "can't alloc txdmamap_pool_entry\n");
   1775 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1776 			if (sc->bge_dma64)
   1777 				bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
   1778 			return ENOMEM;
   1779 		}
   1780 		dma->dmamap = dmamap;
   1781 		dma->dmamap32 = dmamap32;
   1782 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1783 	}
   1784 alloc_done:
   1785 	sc->bge_flags |= BGEF_TXRING_VALID;
   1786 
   1787 	return 0;
   1788 }
   1789 
   1790 static void
   1791 bge_setmulti(struct bge_softc *sc)
   1792 {
   1793 	struct ethercom * const ec = &sc->ethercom;
   1794 	struct ifnet * const ifp = &ec->ec_if;
   1795 	struct ether_multi	*enm;
   1796 	struct ether_multistep	step;
   1797 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1798 	uint32_t		h;
   1799 	int			i;
   1800 
   1801 	if (ifp->if_flags & IFF_PROMISC)
   1802 		goto allmulti;
   1803 
   1804 	/* Now program new ones. */
   1805 	ETHER_LOCK(ec);
   1806 	ETHER_FIRST_MULTI(step, ec, enm);
   1807 	while (enm != NULL) {
   1808 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1809 			/*
   1810 			 * We must listen to a range of multicast addresses.
   1811 			 * For now, just accept all multicasts, rather than
   1812 			 * trying to set only those filter bits needed to match
   1813 			 * the range.  (At this time, the only use of address
   1814 			 * ranges is for IP multicast routing, for which the
   1815 			 * range is big enough to require all bits set.)
   1816 			 */
   1817 			ETHER_UNLOCK(ec);
   1818 			goto allmulti;
   1819 		}
   1820 
   1821 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1822 
   1823 		/* Just want the 7 least-significant bits. */
   1824 		h &= 0x7f;
   1825 
   1826 		hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
   1827 		ETHER_NEXT_MULTI(step, enm);
   1828 	}
   1829 	ETHER_UNLOCK(ec);
   1830 
   1831 	ifp->if_flags &= ~IFF_ALLMULTI;
   1832 	goto setit;
   1833 
   1834  allmulti:
   1835 	ifp->if_flags |= IFF_ALLMULTI;
   1836 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1837 
   1838  setit:
   1839 	for (i = 0; i < 4; i++)
   1840 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1841 }
   1842 
   1843 static void
   1844 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1845 {
   1846 
   1847 	/*
   1848 	 * Some chips don't like this so only do this if ASF is enabled
   1849 	 */
   1850 	if (sc->bge_asf_mode)
   1851 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   1852 
   1853 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1854 		switch (type) {
   1855 		case BGE_RESET_START:
   1856 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1857 			    BGE_FW_DRV_STATE_START);
   1858 			break;
   1859 		case BGE_RESET_SHUTDOWN:
   1860 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1861 			    BGE_FW_DRV_STATE_UNLOAD);
   1862 			break;
   1863 		case BGE_RESET_SUSPEND:
   1864 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1865 			    BGE_FW_DRV_STATE_SUSPEND);
   1866 			break;
   1867 		}
   1868 	}
   1869 
   1870 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   1871 		bge_ape_driver_state_change(sc, type);
   1872 }
   1873 
   1874 static void
   1875 bge_sig_post_reset(struct bge_softc *sc, int type)
   1876 {
   1877 
   1878 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1879 		switch (type) {
   1880 		case BGE_RESET_START:
   1881 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1882 			    BGE_FW_DRV_STATE_START_DONE);
   1883 			/* START DONE */
   1884 			break;
   1885 		case BGE_RESET_SHUTDOWN:
   1886 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1887 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   1888 			break;
   1889 		}
   1890 	}
   1891 
   1892 	if (type == BGE_RESET_SHUTDOWN)
   1893 		bge_ape_driver_state_change(sc, type);
   1894 }
   1895 
   1896 static void
   1897 bge_sig_legacy(struct bge_softc *sc, int type)
   1898 {
   1899 
   1900 	if (sc->bge_asf_mode) {
   1901 		switch (type) {
   1902 		case BGE_RESET_START:
   1903 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1904 			    BGE_FW_DRV_STATE_START);
   1905 			break;
   1906 		case BGE_RESET_SHUTDOWN:
   1907 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1908 			    BGE_FW_DRV_STATE_UNLOAD);
   1909 			break;
   1910 		}
   1911 	}
   1912 }
   1913 
   1914 static void
   1915 bge_wait_for_event_ack(struct bge_softc *sc)
   1916 {
   1917 	int i;
   1918 
   1919 	/* wait up to 2500usec */
   1920 	for (i = 0; i < 250; i++) {
   1921 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   1922 			BGE_RX_CPU_DRV_EVENT))
   1923 			break;
   1924 		DELAY(10);
   1925 	}
   1926 }
   1927 
   1928 static void
   1929 bge_stop_fw(struct bge_softc *sc)
   1930 {
   1931 
   1932 	if (sc->bge_asf_mode) {
   1933 		bge_wait_for_event_ack(sc);
   1934 
   1935 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   1936 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   1937 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   1938 
   1939 		bge_wait_for_event_ack(sc);
   1940 	}
   1941 }
   1942 
   1943 static int
   1944 bge_poll_fw(struct bge_softc *sc)
   1945 {
   1946 	uint32_t val;
   1947 	int i;
   1948 
   1949 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1950 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1951 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1952 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1953 				break;
   1954 			DELAY(100);
   1955 		}
   1956 		if (i >= BGE_TIMEOUT) {
   1957 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   1958 			return -1;
   1959 		}
   1960 	} else {
   1961 		/*
   1962 		 * Poll the value location we just wrote until
   1963 		 * we see the 1's complement of the magic number.
   1964 		 * This indicates that the firmware initialization
   1965 		 * is complete.
   1966 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   1967 		 */
   1968 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1969 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   1970 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   1971 				break;
   1972 			DELAY(10);
   1973 		}
   1974 
   1975 		if ((i >= BGE_TIMEOUT)
   1976 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
   1977 			aprint_error_dev(sc->bge_dev,
   1978 			    "firmware handshake timed out, val = %x\n", val);
   1979 			return -1;
   1980 		}
   1981 	}
   1982 
   1983 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   1984 		/* tg3 says we have to wait extra time */
   1985 		delay(10 * 1000);
   1986 	}
   1987 
   1988 	return 0;
   1989 }
   1990 
   1991 int
   1992 bge_phy_addr(struct bge_softc *sc)
   1993 {
   1994 	struct pci_attach_args *pa = &(sc->bge_pa);
   1995 	int phy_addr = 1;
   1996 
   1997 	/*
   1998 	 * PHY address mapping for various devices.
   1999 	 *
   2000 	 *	    | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2001 	 * ---------+-------+-------+-------+-------+
   2002 	 * BCM57XX  |	1   |	X   |	X   |	X   |
   2003 	 * BCM5704  |	1   |	X   |	1   |	X   |
   2004 	 * BCM5717  |	1   |	8   |	2   |	9   |
   2005 	 * BCM5719  |	1   |	8   |	2   |	9   |
   2006 	 * BCM5720  |	1   |	8   |	2   |	9   |
   2007 	 *
   2008 	 *	    | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2009 	 * ---------+-------+-------+-------+-------+
   2010 	 * BCM57XX  |	X   |	X   |	X   |	X   |
   2011 	 * BCM5704  |	X   |	X   |	X   |	X   |
   2012 	 * BCM5717  |	X   |	X   |	X   |	X   |
   2013 	 * BCM5719  |	3   |	10  |	4   |	11  |
   2014 	 * BCM5720  |	X   |	X   |	X   |	X   |
   2015 	 *
   2016 	 * Other addresses may respond but they are not
   2017 	 * IEEE compliant PHYs and should be ignored.
   2018 	 */
   2019 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2020 	case BGE_ASICREV_BCM5717:
   2021 	case BGE_ASICREV_BCM5719:
   2022 	case BGE_ASICREV_BCM5720:
   2023 		phy_addr = pa->pa_function;
   2024 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2025 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2026 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2027 		} else {
   2028 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2029 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2030 		}
   2031 	}
   2032 
   2033 	return phy_addr;
   2034 }
   2035 
   2036 /*
   2037  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2038  * self-test results.
   2039  */
   2040 static int
   2041 bge_chipinit(struct bge_softc *sc)
   2042 {
   2043 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
   2044 	int i;
   2045 
   2046 	/* Set endianness before we access any non-PCI registers. */
   2047 	misc_ctl = BGE_INIT;
   2048 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   2049 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
   2050 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2051 	    misc_ctl);
   2052 
   2053 	/*
   2054 	 * Clear the MAC statistics block in the NIC's
   2055 	 * internal memory.
   2056 	 */
   2057 	for (i = BGE_STATS_BLOCK;
   2058 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2059 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2060 
   2061 	for (i = BGE_STATUS_BLOCK;
   2062 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2063 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2064 
   2065 	/* 5717 workaround from tg3 */
   2066 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2067 		/* Save */
   2068 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2069 
   2070 		/* Temporary modify MODE_CTL to control TLP */
   2071 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2072 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2073 
   2074 		/* Control TLP */
   2075 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2076 		    BGE_TLP_PHYCTL1);
   2077 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2078 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2079 
   2080 		/* Restore */
   2081 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2082 	}
   2083 
   2084 	if (BGE_IS_57765_FAMILY(sc)) {
   2085 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2086 			/* Save */
   2087 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2088 
   2089 			/* Temporary modify MODE_CTL to control TLP */
   2090 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2091 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2092 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2093 
   2094 			/* Control TLP */
   2095 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2096 			    BGE_TLP_PHYCTL5);
   2097 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2098 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2099 
   2100 			/* Restore */
   2101 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2102 		}
   2103 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2104 			/*
   2105 			 * For the 57766 and non Ax versions of 57765, bootcode
   2106 			 * needs to setup the PCIE Fast Training Sequence (FTS)
   2107 			 * value to prevent transmit hangs.
   2108 			 */
   2109 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2110 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2111 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2112 
   2113 			/* Save */
   2114 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2115 
   2116 			/* Temporary modify MODE_CTL to control TLP */
   2117 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2118 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2119 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2120 
   2121 			/* Control TLP */
   2122 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2123 			    BGE_TLP_FTSMAX);
   2124 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2125 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2126 			    reg | BGE_TLP_FTSMAX_VAL);
   2127 
   2128 			/* Restore */
   2129 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2130 		}
   2131 
   2132 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2133 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2134 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2135 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2136 	}
   2137 
   2138 	/* Set up the PCI DMA control register. */
   2139 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2140 	if (sc->bge_flags & BGEF_PCIE) {
   2141 		/* Read watermark not used, 128 bytes for write. */
   2142 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2143 		    device_xname(sc->bge_dev)));
   2144 		if (sc->bge_mps >= 256)
   2145 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2146 		else
   2147 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2148 	} else if (sc->bge_flags & BGEF_PCIX) {
   2149 		DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2150 		    device_xname(sc->bge_dev)));
   2151 		/* PCI-X bus */
   2152 		if (BGE_IS_5714_FAMILY(sc)) {
   2153 			/* 256 bytes for read and write. */
   2154 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2155 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2156 
   2157 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2158 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2159 			else
   2160 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2161 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   2162 			/*
   2163 			 * In the BCM5703, the DMA read watermark should
   2164 			 * be set to less than or equal to the maximum
   2165 			 * memory read byte count of the PCI-X command
   2166 			 * register.
   2167 			 */
   2168 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
   2169 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2170 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2171 			/* 1536 bytes for read, 384 bytes for write. */
   2172 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2173 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2174 		} else {
   2175 			/* 384 bytes for read and write. */
   2176 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2177 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2178 			    (0x0F);
   2179 		}
   2180 
   2181 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2182 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2183 			uint32_t tmp;
   2184 
   2185 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2186 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2187 			if (tmp == 6 || tmp == 7)
   2188 				dma_rw_ctl |=
   2189 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2190 
   2191 			/* Set PCI-X DMA write workaround. */
   2192 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2193 		}
   2194 	} else {
   2195 		/* Conventional PCI bus: 256 bytes for read and write. */
   2196 		DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2197 		    device_xname(sc->bge_dev)));
   2198 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2199 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2200 
   2201 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2202 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2203 			dma_rw_ctl |= 0x0F;
   2204 	}
   2205 
   2206 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2207 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2208 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2209 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2210 
   2211 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2212 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2213 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2214 
   2215 	if (BGE_IS_57765_PLUS(sc)) {
   2216 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2217 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2218 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2219 
   2220 		/*
   2221 		 * Enable HW workaround for controllers that misinterpret
   2222 		 * a status tag update and leave interrupts permanently
   2223 		 * disabled.
   2224 		 */
   2225 		if (!BGE_IS_57765_FAMILY(sc) &&
   2226 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2227 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
   2228 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2229 	}
   2230 
   2231 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2232 	    dma_rw_ctl);
   2233 
   2234 	/*
   2235 	 * Set up general mode register.
   2236 	 */
   2237 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2238 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2239 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2240 		/* Retain Host-2-BMC settings written by APE firmware. */
   2241 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2242 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2243 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2244 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2245 	}
   2246 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2247 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2248 
   2249 	/*
   2250 	 * BCM5701 B5 have a bug causing data corruption when using
   2251 	 * 64-bit DMA reads, which can be terminated early and then
   2252 	 * completed later as 32-bit accesses, in combination with
   2253 	 * certain bridges.
   2254 	 */
   2255 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2256 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2257 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2258 
   2259 	/*
   2260 	 * Tell the firmware the driver is running
   2261 	 */
   2262 	if (sc->bge_asf_mode & ASF_STACKUP)
   2263 		mode_ctl |= BGE_MODECTL_STACKUP;
   2264 
   2265 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2266 
   2267 	/*
   2268 	 * Disable memory write invalidate.  Apparently it is not supported
   2269 	 * properly by these devices.
   2270 	 */
   2271 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2272 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2273 
   2274 #ifdef __brokenalpha__
   2275 	/*
   2276 	 * Must insure that we do not cross an 8K (bytes) boundary
   2277 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2278 	 * restriction on some ALPHA platforms with early revision
   2279 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2280 	 */
   2281 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2282 #endif
   2283 
   2284 	/* Set the timer prescaler (always 66MHz) */
   2285 	CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2286 
   2287 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2288 		DELAY(40);	/* XXX */
   2289 
   2290 		/* Put PHY into ready state */
   2291 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2292 		DELAY(40);
   2293 	}
   2294 
   2295 	return 0;
   2296 }
   2297 
   2298 static int
   2299 bge_blockinit(struct bge_softc *sc)
   2300 {
   2301 	volatile struct bge_rcb	 *rcb;
   2302 	bus_size_t rcb_addr;
   2303 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   2304 	bge_hostaddr taddr;
   2305 	uint32_t	dmactl, rdmareg, mimode, val;
   2306 	int		i, limit;
   2307 
   2308 	/*
   2309 	 * Initialize the memory window pointer register so that
   2310 	 * we can access the first 32K of internal NIC RAM. This will
   2311 	 * allow us to set up the TX send ring RCBs and the RX return
   2312 	 * ring RCBs, plus other things which live in NIC memory.
   2313 	 */
   2314 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2315 
   2316 	if (!BGE_IS_5705_PLUS(sc)) {
   2317 		/* 57XX step 33 */
   2318 		/* Configure mbuf memory pool */
   2319 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
   2320 
   2321 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2322 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2323 		else
   2324 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2325 
   2326 		/* 57XX step 34 */
   2327 		/* Configure DMA resource pool */
   2328 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2329 		    BGE_DMA_DESCRIPTORS);
   2330 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2331 	}
   2332 
   2333 	/* 5718 step 11, 57XX step 35 */
   2334 	/*
   2335 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2336 	 * recommend these.
   2337 	 */
   2338 	if (BGE_IS_5717_PLUS(sc)) {
   2339 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2340 		if (ifp->if_mtu > ETHERMTU) {
   2341 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
   2342 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
   2343 		} else {
   2344 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2345 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2346 		}
   2347 	} else if (BGE_IS_5705_PLUS(sc)) {
   2348 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2349 
   2350 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2351 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2352 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2353 		} else {
   2354 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2355 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2356 		}
   2357 	} else {
   2358 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2359 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2360 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2361 	}
   2362 
   2363 	/* 57XX step 36 */
   2364 	/* Configure DMA resource watermarks */
   2365 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2366 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2367 
   2368 	/* 5718 step 13, 57XX step 38 */
   2369 	/* Enable buffer manager */
   2370 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2371 	/*
   2372 	 * Change the arbitration algorithm of TXMBUF read request to
   2373 	 * round-robin instead of priority based for BCM5719.  When
   2374 	 * TXFIFO is almost empty, RDMA will hold its request until
   2375 	 * TXFIFO is not almost empty.
   2376 	 */
   2377 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2378 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2379 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2380 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2381 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2382 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2383 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2384 
   2385 	/* 57XX step 39 */
   2386 	/* Poll for buffer manager start indication */
   2387 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2388 		DELAY(10);
   2389 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2390 			break;
   2391 	}
   2392 
   2393 	if (i == BGE_TIMEOUT * 2) {
   2394 		aprint_error_dev(sc->bge_dev,
   2395 		    "buffer manager failed to start\n");
   2396 		return ENXIO;
   2397 	}
   2398 
   2399 	/* 57XX step 40 */
   2400 	/* Enable flow-through queues */
   2401 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2402 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2403 
   2404 	/* Wait until queue initialization is complete */
   2405 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2406 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2407 			break;
   2408 		DELAY(10);
   2409 	}
   2410 
   2411 	if (i == BGE_TIMEOUT * 2) {
   2412 		aprint_error_dev(sc->bge_dev,
   2413 		    "flow-through queue init failed\n");
   2414 		return ENXIO;
   2415 	}
   2416 
   2417 	/*
   2418 	 * Summary of rings supported by the controller:
   2419 	 *
   2420 	 * Standard Receive Producer Ring
   2421 	 * - This ring is used to feed receive buffers for "standard"
   2422 	 *   sized frames (typically 1536 bytes) to the controller.
   2423 	 *
   2424 	 * Jumbo Receive Producer Ring
   2425 	 * - This ring is used to feed receive buffers for jumbo sized
   2426 	 *   frames (i.e. anything bigger than the "standard" frames)
   2427 	 *   to the controller.
   2428 	 *
   2429 	 * Mini Receive Producer Ring
   2430 	 * - This ring is used to feed receive buffers for "mini"
   2431 	 *   sized frames to the controller.
   2432 	 * - This feature required external memory for the controller
   2433 	 *   but was never used in a production system.  Should always
   2434 	 *   be disabled.
   2435 	 *
   2436 	 * Receive Return Ring
   2437 	 * - After the controller has placed an incoming frame into a
   2438 	 *   receive buffer that buffer is moved into a receive return
   2439 	 *   ring.  The driver is then responsible to passing the
   2440 	 *   buffer up to the stack.  Many versions of the controller
   2441 	 *   support multiple RR rings.
   2442 	 *
   2443 	 * Send Ring
   2444 	 * - This ring is used for outgoing frames.  Many versions of
   2445 	 *   the controller support multiple send rings.
   2446 	 */
   2447 
   2448 	/* 5718 step 15, 57XX step 41 */
   2449 	/* Initialize the standard RX ring control block */
   2450 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2451 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2452 	/* 5718 step 16 */
   2453 	if (BGE_IS_57765_PLUS(sc)) {
   2454 		/*
   2455 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2456 		 * Bits 15-2 : Maximum RX frame size
   2457 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2458 		 * Bit 0     : Reserved
   2459 		 */
   2460 		rcb->bge_maxlen_flags =
   2461 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2462 	} else if (BGE_IS_5705_PLUS(sc)) {
   2463 		/*
   2464 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2465 		 * Bits 15-2 : Reserved (should be 0)
   2466 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2467 		 * Bit 0     : Reserved
   2468 		 */
   2469 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2470 	} else {
   2471 		/*
   2472 		 * Ring size is always XXX entries
   2473 		 * Bits 31-16: Maximum RX frame size
   2474 		 * Bits 15-2 : Reserved (should be 0)
   2475 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2476 		 * Bit 0     : Reserved
   2477 		 */
   2478 		rcb->bge_maxlen_flags =
   2479 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2480 	}
   2481 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2482 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2483 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2484 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2485 	else
   2486 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2487 	/* Write the standard receive producer ring control block. */
   2488 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2489 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2490 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2491 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2492 
   2493 	/* Reset the standard receive producer ring producer index. */
   2494 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2495 
   2496 	/* 57XX step 42 */
   2497 	/*
   2498 	 * Initialize the jumbo RX ring control block
   2499 	 * We set the 'ring disabled' bit in the flags
   2500 	 * field until we're actually ready to start
   2501 	 * using this ring (i.e. once we set the MTU
   2502 	 * high enough to require it).
   2503 	 */
   2504 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2505 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2506 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2507 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2508 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2509 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2510 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2511 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2512 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2513 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2514 		else
   2515 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2516 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2517 		    rcb->bge_hostaddr.bge_addr_hi);
   2518 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2519 		    rcb->bge_hostaddr.bge_addr_lo);
   2520 		/* Program the jumbo receive producer ring RCB parameters. */
   2521 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2522 		    rcb->bge_maxlen_flags);
   2523 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2524 		/* Reset the jumbo receive producer ring producer index. */
   2525 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2526 	}
   2527 
   2528 	/* 57XX step 43 */
   2529 	/* Disable the mini receive producer ring RCB. */
   2530 	if (BGE_IS_5700_FAMILY(sc)) {
   2531 		/* Set up dummy disabled mini ring RCB */
   2532 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2533 		rcb->bge_maxlen_flags =
   2534 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2535 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2536 		    rcb->bge_maxlen_flags);
   2537 		/* Reset the mini receive producer ring producer index. */
   2538 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2539 
   2540 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2541 		    offsetof(struct bge_ring_data, bge_info),
   2542 		    sizeof(struct bge_gib),
   2543 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2544 	}
   2545 
   2546 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2547 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2548 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2549 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2550 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2551 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2552 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2553 	}
   2554 	/* 5718 step 14, 57XX step 44 */
   2555 	/*
   2556 	 * The BD ring replenish thresholds control how often the
   2557 	 * hardware fetches new BD's from the producer rings in host
   2558 	 * memory.  Setting the value too low on a busy system can
   2559 	 * starve the hardware and recue the throughpout.
   2560 	 *
   2561 	 * Set the BD ring replenish thresholds. The recommended
   2562 	 * values are 1/8th the number of descriptors allocated to
   2563 	 * each ring, but since we try to avoid filling the entire
   2564 	 * ring we set these to the minimal value of 8.  This needs to
   2565 	 * be done on several of the supported chip revisions anyway,
   2566 	 * to work around HW bugs.
   2567 	 */
   2568 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2569 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2570 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2571 
   2572 	/* 5718 step 18 */
   2573 	if (BGE_IS_5717_PLUS(sc)) {
   2574 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2575 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2576 	}
   2577 
   2578 	/* 57XX step 45 */
   2579 	/*
   2580 	 * Disable all send rings by setting the 'ring disabled' bit
   2581 	 * in the flags field of all the TX send ring control blocks,
   2582 	 * located in NIC memory.
   2583 	 */
   2584 	if (BGE_IS_5700_FAMILY(sc)) {
   2585 		/* 5700 to 5704 had 16 send rings. */
   2586 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2587 	} else if (BGE_IS_5717_PLUS(sc)) {
   2588 		limit = BGE_TX_RINGS_5717_MAX;
   2589 	} else if (BGE_IS_57765_FAMILY(sc) ||
   2590 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2591 		limit = BGE_TX_RINGS_57765_MAX;
   2592 	} else
   2593 		limit = 1;
   2594 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2595 	for (i = 0; i < limit; i++) {
   2596 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2597 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2598 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2599 		rcb_addr += sizeof(struct bge_rcb);
   2600 	}
   2601 
   2602 	/* 57XX step 46 and 47 */
   2603 	/* Configure send ring RCB 0 (we use only the first ring) */
   2604 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2605 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2606 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2607 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2608 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2609 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2610 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2611 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2612 	else
   2613 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2614 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2615 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2616 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2617 
   2618 	/* 57XX step 48 */
   2619 	/*
   2620 	 * Disable all receive return rings by setting the
   2621 	 * 'ring diabled' bit in the flags field of all the receive
   2622 	 * return ring control blocks, located in NIC memory.
   2623 	 */
   2624 	if (BGE_IS_5717_PLUS(sc)) {
   2625 		/* Should be 17, use 16 until we get an SRAM map. */
   2626 		limit = 16;
   2627 	} else if (BGE_IS_5700_FAMILY(sc))
   2628 		limit = BGE_RX_RINGS_MAX;
   2629 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2630 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
   2631 	    BGE_IS_57765_FAMILY(sc))
   2632 		limit = 4;
   2633 	else
   2634 		limit = 1;
   2635 	/* Disable all receive return rings */
   2636 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2637 	for (i = 0; i < limit; i++) {
   2638 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2639 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2640 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2641 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2642 			BGE_RCB_FLAG_RING_DISABLED));
   2643 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2644 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2645 		    (i * (sizeof(uint64_t))), 0);
   2646 		rcb_addr += sizeof(struct bge_rcb);
   2647 	}
   2648 
   2649 	/* 57XX step 49 */
   2650 	/*
   2651 	 * Set up receive return ring 0.  Note that the NIC address
   2652 	 * for RX return rings is 0x0.  The return rings live entirely
   2653 	 * within the host, so the nicaddr field in the RCB isn't used.
   2654 	 */
   2655 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2656 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2657 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2658 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2659 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2660 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2661 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2662 
   2663 	/* 5718 step 24, 57XX step 53 */
   2664 	/* Set random backoff seed for TX */
   2665 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2666 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2667 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2668 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2669 	    BGE_TX_BACKOFF_SEED_MASK);
   2670 
   2671 	/* 5718 step 26, 57XX step 55 */
   2672 	/* Set inter-packet gap */
   2673 	val = 0x2620;
   2674 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2675 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2676 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2677 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2678 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2679 
   2680 	/* 5718 step 27, 57XX step 56 */
   2681 	/*
   2682 	 * Specify which ring to use for packets that don't match
   2683 	 * any RX rules.
   2684 	 */
   2685 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2686 
   2687 	/* 5718 step 28, 57XX step 57 */
   2688 	/*
   2689 	 * Configure number of RX lists. One interrupt distribution
   2690 	 * list, sixteen active lists, one bad frames class.
   2691 	 */
   2692 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2693 
   2694 	/* 5718 step 29, 57XX step 58 */
   2695 	/* Inialize RX list placement stats mask. */
   2696 	if (BGE_IS_575X_PLUS(sc)) {
   2697 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2698 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2699 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2700 	} else
   2701 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2702 
   2703 	/* 5718 step 30, 57XX step 59 */
   2704 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2705 
   2706 	/* 5718 step 33, 57XX step 62 */
   2707 	/* Disable host coalescing until we get it set up */
   2708 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2709 
   2710 	/* 5718 step 34, 57XX step 63 */
   2711 	/* Poll to make sure it's shut down. */
   2712 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2713 		DELAY(10);
   2714 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2715 			break;
   2716 	}
   2717 
   2718 	if (i == BGE_TIMEOUT * 2) {
   2719 		aprint_error_dev(sc->bge_dev,
   2720 		    "host coalescing engine failed to idle\n");
   2721 		return ENXIO;
   2722 	}
   2723 
   2724 	/* 5718 step 35, 36, 37 */
   2725 	/* Set up host coalescing defaults */
   2726 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2727 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2728 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2729 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2730 	if (!(BGE_IS_5705_PLUS(sc))) {
   2731 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2732 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2733 	}
   2734 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2735 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2736 
   2737 	/* Set up address of statistics block */
   2738 	if (BGE_IS_5700_FAMILY(sc)) {
   2739 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2740 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2741 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2742 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2743 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2744 	}
   2745 
   2746 	/* 5718 step 38 */
   2747 	/* Set up address of status block */
   2748 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2749 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2750 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2751 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2752 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2753 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2754 
   2755 	/* Set up status block size. */
   2756 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2757 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2758 		val = BGE_STATBLKSZ_FULL;
   2759 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2760 	} else {
   2761 		val = BGE_STATBLKSZ_32BYTE;
   2762 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2763 	}
   2764 
   2765 	/* 5718 step 39, 57XX step 73 */
   2766 	/* Turn on host coalescing state machine */
   2767 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2768 
   2769 	/* 5718 step 40, 57XX step 74 */
   2770 	/* Turn on RX BD completion state machine and enable attentions */
   2771 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2772 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2773 
   2774 	/* 5718 step 41, 57XX step 75 */
   2775 	/* Turn on RX list placement state machine */
   2776 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2777 
   2778 	/* 57XX step 76 */
   2779 	/* Turn on RX list selector state machine. */
   2780 	if (!(BGE_IS_5705_PLUS(sc)))
   2781 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2782 
   2783 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2784 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2785 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2786 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2787 
   2788 	if (sc->bge_flags & BGEF_FIBER_TBI)
   2789 		val |= BGE_PORTMODE_TBI;
   2790 	else if (sc->bge_flags & BGEF_FIBER_MII)
   2791 		val |= BGE_PORTMODE_GMII;
   2792 	else
   2793 		val |= BGE_PORTMODE_MII;
   2794 
   2795 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   2796 	/* Allow APE to send/receive frames. */
   2797 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2798 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2799 
   2800 	/* Turn on DMA, clear stats */
   2801 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2802 	/* 5718 step 44 */
   2803 	DELAY(40);
   2804 
   2805 	/* 5718 step 45, 57XX step 79 */
   2806 	/* Set misc. local control, enable interrupts on attentions */
   2807 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2808 	if (BGE_IS_5717_PLUS(sc)) {
   2809 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2810 		/* 5718 step 46 */
   2811 		DELAY(100);
   2812 	}
   2813 
   2814 	/* 57XX step 81 */
   2815 	/* Turn on DMA completion state machine */
   2816 	if (!(BGE_IS_5705_PLUS(sc)))
   2817 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2818 
   2819 	/* 5718 step 47, 57XX step 82 */
   2820 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2821 
   2822 	/* 5718 step 48 */
   2823 	/* Enable host coalescing bug fix. */
   2824 	if (BGE_IS_5755_PLUS(sc))
   2825 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2826 
   2827 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2828 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2829 
   2830 	/* Turn on write DMA state machine */
   2831 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2832 	/* 5718 step 49 */
   2833 	DELAY(40);
   2834 
   2835 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2836 
   2837 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   2838 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2839 
   2840 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2841 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2842 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2843 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2844 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2845 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2846 
   2847 	if (sc->bge_flags & BGEF_PCIE)
   2848 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2849 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2850 		if (ifp->if_mtu <= ETHERMTU)
   2851 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
   2852 	}
   2853 	if (sc->bge_flags & BGEF_TSO) {
   2854 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2855 		if (BGE_IS_5717_PLUS(sc))
   2856 			val |= BGE_RDMAMODE_TSO6_ENABLE;
   2857 	}
   2858 
   2859 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2860 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2861 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   2862 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   2863 		/*
   2864 		 * Allow multiple outstanding read requests from
   2865 		 * non-LSO read DMA engine.
   2866 		 */
   2867 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2868 	}
   2869 
   2870 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2871 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2872 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2873 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   2874 	    BGE_IS_57765_PLUS(sc)) {
   2875 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2876 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
   2877 		else
   2878 			rdmareg = BGE_RDMA_RSRVCTRL;
   2879 		dmactl = CSR_READ_4(sc, rdmareg);
   2880 		/*
   2881 		 * Adjust tx margin to prevent TX data corruption and
   2882 		 * fix internal FIFO overflow.
   2883 		 */
   2884 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2885 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2886 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   2887 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   2888 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   2889 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   2890 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   2891 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   2892 		}
   2893 		/*
   2894 		 * Enable fix for read DMA FIFO overruns.
   2895 		 * The fix is to limit the number of RX BDs
   2896 		 * the hardware would fetch at a time.
   2897 		 */
   2898 		CSR_WRITE_4(sc, rdmareg, dmactl |
   2899 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   2900 	}
   2901 
   2902 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   2903 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2904 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2905 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2906 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2907 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2908 		/*
   2909 		 * Allow 4KB burst length reads for non-LSO frames.
   2910 		 * Enable 512B burst length reads for buffer descriptors.
   2911 		 */
   2912 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2913 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2914 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   2915 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2916 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2917 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
   2918 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
   2919 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2920 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2921 	}
   2922 	/* Turn on read DMA state machine */
   2923 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   2924 	/* 5718 step 52 */
   2925 	delay(40);
   2926 
   2927 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   2928 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
   2929 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
   2930 			if ((val & 0xFFFF) > BGE_FRAMELEN)
   2931 				break;
   2932 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
   2933 				break;
   2934 		}
   2935 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
   2936 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   2937 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2938 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
   2939 			else
   2940 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
   2941 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   2942 		}
   2943 	}
   2944 
   2945 	/* 5718 step 56, 57XX step 84 */
   2946 	/* Turn on RX data completion state machine */
   2947 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2948 
   2949 	/* Turn on RX data and RX BD initiator state machine */
   2950 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2951 
   2952 	/* 57XX step 85 */
   2953 	/* Turn on Mbuf cluster free state machine */
   2954 	if (!BGE_IS_5705_PLUS(sc))
   2955 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2956 
   2957 	/* 5718 step 57, 57XX step 86 */
   2958 	/* Turn on send data completion state machine */
   2959 	val = BGE_SDCMODE_ENABLE;
   2960 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2961 		val |= BGE_SDCMODE_CDELAY;
   2962 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2963 
   2964 	/* 5718 step 58 */
   2965 	/* Turn on send BD completion state machine */
   2966 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2967 
   2968 	/* 57XX step 88 */
   2969 	/* Turn on RX BD initiator state machine */
   2970 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2971 
   2972 	/* 5718 step 60, 57XX step 90 */
   2973 	/* Turn on send data initiator state machine */
   2974 	if (sc->bge_flags & BGEF_TSO) {
   2975 		/* XXX: magic value from Linux driver */
   2976 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   2977 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   2978 	} else
   2979 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2980 
   2981 	/* 5718 step 61, 57XX step 91 */
   2982 	/* Turn on send BD initiator state machine */
   2983 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   2984 
   2985 	/* 5718 step 62, 57XX step 92 */
   2986 	/* Turn on send BD selector state machine */
   2987 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   2988 
   2989 	/* 5718 step 31, 57XX step 60 */
   2990 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   2991 	/* 5718 step 32, 57XX step 61 */
   2992 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   2993 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   2994 
   2995 	/* ack/clear link change events */
   2996 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   2997 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   2998 	    BGE_MACSTAT_LINK_CHANGED);
   2999 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3000 
   3001 	/*
   3002 	 * Enable attention when the link has changed state for
   3003 	 * devices that use auto polling.
   3004 	 */
   3005 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3006 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3007 	} else {
   3008 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3009 			mimode = BGE_MIMODE_500KHZ_CONST;
   3010 		else
   3011 			mimode = BGE_MIMODE_BASE;
   3012 		/* 5718 step 68. 5718 step 69 (optionally). */
   3013 		if (BGE_IS_5700_FAMILY(sc) ||
   3014 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
   3015 			mimode |= BGE_MIMODE_AUTOPOLL;
   3016 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3017 		}
   3018 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3019 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3020 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3021 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3022 			    BGE_EVTENB_MI_INTERRUPT);
   3023 	}
   3024 
   3025 	/*
   3026 	 * Clear any pending link state attention.
   3027 	 * Otherwise some link state change events may be lost until attention
   3028 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3029 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3030 	 * state change attentions implies clearing pending attention.
   3031 	 */
   3032 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3033 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3034 	    BGE_MACSTAT_LINK_CHANGED);
   3035 
   3036 	/* Enable link state change attentions. */
   3037 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3038 
   3039 	return 0;
   3040 }
   3041 
   3042 static const struct bge_revision *
   3043 bge_lookup_rev(uint32_t chipid)
   3044 {
   3045 	const struct bge_revision *br;
   3046 
   3047 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3048 		if (br->br_chipid == chipid)
   3049 			return br;
   3050 	}
   3051 
   3052 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3053 		if (br->br_chipid == BGE_ASICREV(chipid))
   3054 			return br;
   3055 	}
   3056 
   3057 	return NULL;
   3058 }
   3059 
   3060 static const struct bge_product *
   3061 bge_lookup(const struct pci_attach_args *pa)
   3062 {
   3063 	const struct bge_product *bp;
   3064 
   3065 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3066 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3067 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3068 			return bp;
   3069 	}
   3070 
   3071 	return NULL;
   3072 }
   3073 
   3074 static uint32_t
   3075 bge_chipid(const struct pci_attach_args *pa)
   3076 {
   3077 	uint32_t id;
   3078 
   3079 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3080 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3081 
   3082 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3083 		switch (PCI_PRODUCT(pa->pa_id)) {
   3084 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3085 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3086 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3087 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3088 		case PCI_PRODUCT_BROADCOM_BCM5725:
   3089 		case PCI_PRODUCT_BROADCOM_BCM5727:
   3090 		case PCI_PRODUCT_BROADCOM_BCM5762:
   3091 		case PCI_PRODUCT_BROADCOM_BCM57764:
   3092 		case PCI_PRODUCT_BROADCOM_BCM57767:
   3093 		case PCI_PRODUCT_BROADCOM_BCM57787:
   3094 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3095 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3096 			break;
   3097 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3098 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3099 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3100 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3101 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3102 		case PCI_PRODUCT_BROADCOM_BCM57782:
   3103 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3104 		case PCI_PRODUCT_BROADCOM_BCM57786:
   3105 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3106 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3107 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3108 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3109 			break;
   3110 		default:
   3111 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3112 			    BGE_PCI_PRODID_ASICREV);
   3113 			break;
   3114 		}
   3115 	}
   3116 
   3117 	return id;
   3118 }
   3119 
   3120 /*
   3121  * Return true if MSI can be used with this device.
   3122  */
   3123 static int
   3124 bge_can_use_msi(struct bge_softc *sc)
   3125 {
   3126 	int can_use_msi = 0;
   3127 
   3128 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3129 	case BGE_ASICREV_BCM5714_A0:
   3130 	case BGE_ASICREV_BCM5714:
   3131 		/*
   3132 		 * Apparently, MSI doesn't work when these chips are
   3133 		 * configured in single-port mode.
   3134 		 */
   3135 		break;
   3136 	case BGE_ASICREV_BCM5750:
   3137 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
   3138 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
   3139 			can_use_msi = 1;
   3140 		break;
   3141 	default:
   3142 		if (BGE_IS_575X_PLUS(sc))
   3143 			can_use_msi = 1;
   3144 	}
   3145 	return can_use_msi;
   3146 }
   3147 
   3148 /*
   3149  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3150  * against our list and return its name if we find a match. Note
   3151  * that since the Broadcom controller contains VPD support, we
   3152  * can get the device name string from the controller itself instead
   3153  * of the compiled-in string. This is a little slow, but it guarantees
   3154  * we'll always announce the right product name.
   3155  */
   3156 static int
   3157 bge_probe(device_t parent, cfdata_t match, void *aux)
   3158 {
   3159 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3160 
   3161 	if (bge_lookup(pa) != NULL)
   3162 		return 1;
   3163 
   3164 	return 0;
   3165 }
   3166 
   3167 static void
   3168 bge_attach(device_t parent, device_t self, void *aux)
   3169 {
   3170 	struct bge_softc * const sc = device_private(self);
   3171 	struct pci_attach_args * const pa = aux;
   3172 	prop_dictionary_t dict;
   3173 	const struct bge_product *bp;
   3174 	const struct bge_revision *br;
   3175 	pci_chipset_tag_t	pc;
   3176 	const char		*intrstr = NULL;
   3177 	uint32_t		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
   3178 	uint32_t		command;
   3179 	struct ifnet		*ifp;
   3180 	struct mii_data * const mii = &sc->bge_mii;
   3181 	uint32_t		misccfg, mimode, macmode;
   3182 	void *			kva;
   3183 	u_char			eaddr[ETHER_ADDR_LEN];
   3184 	pcireg_t		memtype, subid, reg;
   3185 	bus_addr_t		memaddr;
   3186 	uint32_t		pm_ctl;
   3187 	bool			no_seeprom;
   3188 	int			capmask, trys;
   3189 	int			mii_flags;
   3190 	int			map_flags;
   3191 	char intrbuf[PCI_INTRSTR_LEN];
   3192 
   3193 	bp = bge_lookup(pa);
   3194 	KASSERT(bp != NULL);
   3195 
   3196 	sc->sc_pc = pa->pa_pc;
   3197 	sc->sc_pcitag = pa->pa_tag;
   3198 	sc->bge_dev = self;
   3199 
   3200 	sc->bge_pa = *pa;
   3201 	pc = sc->sc_pc;
   3202 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3203 
   3204 	aprint_naive(": Ethernet controller\n");
   3205 	aprint_normal(": %s Ethernet\n", bp->bp_name);
   3206 
   3207 	/*
   3208 	 * Map control/status registers.
   3209 	 */
   3210 	DPRINTFN(5, ("Map control/status regs\n"));
   3211 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3212 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3213 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3214 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3215 
   3216 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3217 		aprint_error_dev(sc->bge_dev,
   3218 		    "failed to enable memory mapping!\n");
   3219 		return;
   3220 	}
   3221 
   3222 	DPRINTFN(5, ("pci_mem_find\n"));
   3223 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3224 	switch (memtype) {
   3225 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3226 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3227 #if 0
   3228 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3229 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3230 		    &memaddr, &sc->bge_bsize) == 0)
   3231 			break;
   3232 #else
   3233 		/*
   3234 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3235 		 * system get NMI on boot (PR#48451). This problem might not be
   3236 		 * the driver's bug but our PCI common part's bug. Until we
   3237 		 * find a real reason, we ignore the prefetchable bit.
   3238 		 */
   3239 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
   3240 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
   3241 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3242 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
   3243 			    map_flags, &sc->bge_bhandle) == 0) {
   3244 				sc->bge_btag = pa->pa_memt;
   3245 				break;
   3246 			}
   3247 		}
   3248 #endif
   3249 		/* FALLTHROUGH */
   3250 	default:
   3251 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3252 		return;
   3253 	}
   3254 
   3255 	/* Save various chip information. */
   3256 	sc->bge_chipid = bge_chipid(pa);
   3257 	sc->bge_phy_addr = bge_phy_addr(sc);
   3258 
   3259 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3260 	    &sc->bge_pciecap, NULL) != 0) {
   3261 		/* PCIe */
   3262 		sc->bge_flags |= BGEF_PCIE;
   3263 		/* Extract supported maximum payload size. */
   3264 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3265 		    sc->bge_pciecap + PCIE_DCAP);
   3266 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3267 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3268 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3269 			sc->bge_expmrq = 2048;
   3270 		else
   3271 			sc->bge_expmrq = 4096;
   3272 		bge_set_max_readrq(sc);
   3273 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
   3274 		/* PCIe without PCIe cap */
   3275 		sc->bge_flags |= BGEF_PCIE;
   3276 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3277 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3278 		/* PCI-X */
   3279 		sc->bge_flags |= BGEF_PCIX;
   3280 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3281 			&sc->bge_pcixcap, NULL) == 0)
   3282 			aprint_error_dev(sc->bge_dev,
   3283 			    "unable to find PCIX capability\n");
   3284 	}
   3285 
   3286 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3287 		/*
   3288 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3289 		 * can clobber the chip's PCI config-space power control
   3290 		 * registers, leaving the card in D3 powersave state. We do
   3291 		 * not have memory-mapped registers in this state, so force
   3292 		 * device into D0 state before starting initialization.
   3293 		 */
   3294 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3295 		pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
   3296 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3297 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3298 		DELAY(1000);	/* 27 usec is allegedly sufficient */
   3299 	}
   3300 
   3301 	/* Save chipset family. */
   3302 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3303 	case BGE_ASICREV_BCM5717:
   3304 	case BGE_ASICREV_BCM5719:
   3305 	case BGE_ASICREV_BCM5720:
   3306 		sc->bge_flags |= BGEF_5717_PLUS;
   3307 		/* FALLTHROUGH */
   3308 	case BGE_ASICREV_BCM5762:
   3309 	case BGE_ASICREV_BCM57765:
   3310 	case BGE_ASICREV_BCM57766:
   3311 		if (!BGE_IS_5717_PLUS(sc))
   3312 			sc->bge_flags |= BGEF_57765_FAMILY;
   3313 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
   3314 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
   3315 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3316 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3317 			/*
   3318 			 * Enable work around for DMA engine miscalculation
   3319 			 * of TXMBUF available space.
   3320 			 */
   3321 			sc->bge_flags |= BGEF_RDMA_BUG;
   3322 
   3323 			if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3324 			    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
   3325 				/* Jumbo frame on BCM5719 A0 does not work. */
   3326 				sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
   3327 			}
   3328 		}
   3329 		break;
   3330 	case BGE_ASICREV_BCM5755:
   3331 	case BGE_ASICREV_BCM5761:
   3332 	case BGE_ASICREV_BCM5784:
   3333 	case BGE_ASICREV_BCM5785:
   3334 	case BGE_ASICREV_BCM5787:
   3335 	case BGE_ASICREV_BCM57780:
   3336 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
   3337 		break;
   3338 	case BGE_ASICREV_BCM5700:
   3339 	case BGE_ASICREV_BCM5701:
   3340 	case BGE_ASICREV_BCM5703:
   3341 	case BGE_ASICREV_BCM5704:
   3342 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
   3343 		break;
   3344 	case BGE_ASICREV_BCM5714_A0:
   3345 	case BGE_ASICREV_BCM5780:
   3346 	case BGE_ASICREV_BCM5714:
   3347 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
   3348 		/* FALLTHROUGH */
   3349 	case BGE_ASICREV_BCM5750:
   3350 	case BGE_ASICREV_BCM5752:
   3351 	case BGE_ASICREV_BCM5906:
   3352 		sc->bge_flags |= BGEF_575X_PLUS;
   3353 		/* FALLTHROUGH */
   3354 	case BGE_ASICREV_BCM5705:
   3355 		sc->bge_flags |= BGEF_5705_PLUS;
   3356 		break;
   3357 	}
   3358 
   3359 	/* Identify chips with APE processor. */
   3360 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3361 	case BGE_ASICREV_BCM5717:
   3362 	case BGE_ASICREV_BCM5719:
   3363 	case BGE_ASICREV_BCM5720:
   3364 	case BGE_ASICREV_BCM5761:
   3365 	case BGE_ASICREV_BCM5762:
   3366 		sc->bge_flags |= BGEF_APE;
   3367 		break;
   3368 	}
   3369 
   3370 	/*
   3371 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
   3372 	 * not actually a MAC controller bug but an issue with the embedded
   3373 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
   3374 	 */
   3375 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
   3376 		sc->bge_flags |= BGEF_40BIT_BUG;
   3377 
   3378 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3379 	if ((sc->bge_flags & BGEF_APE) != 0) {
   3380 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3381 #if 0
   3382 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3383 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3384 			&sc->bge_apesize)) {
   3385 			aprint_error_dev(sc->bge_dev,
   3386 			    "couldn't map BAR2 memory\n");
   3387 			return;
   3388 		}
   3389 #else
   3390 		/*
   3391 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3392 		 * system get NMI on boot (PR#48451). This problem might not be
   3393 		 * the driver's bug but our PCI common part's bug. Until we
   3394 		 * find a real reason, we ignore the prefetchable bit.
   3395 		 */
   3396 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
   3397 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
   3398 			aprint_error_dev(sc->bge_dev,
   3399 			    "couldn't map BAR2 memory\n");
   3400 			return;
   3401 		}
   3402 
   3403 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3404 		if (bus_space_map(pa->pa_memt, memaddr,
   3405 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
   3406 			aprint_error_dev(sc->bge_dev,
   3407 			    "couldn't map BAR2 memory\n");
   3408 			return;
   3409 		}
   3410 		sc->bge_apetag = pa->pa_memt;
   3411 #endif
   3412 
   3413 		/* Enable APE register/memory access by host driver. */
   3414 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3415 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3416 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3417 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3418 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3419 
   3420 		bge_ape_lock_init(sc);
   3421 		bge_ape_read_fw_ver(sc);
   3422 	}
   3423 
   3424 	/* Identify the chips that use an CPMU. */
   3425 	if (BGE_IS_5717_PLUS(sc) ||
   3426 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3427 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3428 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3429 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3430 		sc->bge_flags |= BGEF_CPMU_PRESENT;
   3431 
   3432 	/*
   3433 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3434 	 * been observed in the first few bytes of some received packets.
   3435 	 * Aligning the packet buffer in memory eliminates the corruption.
   3436 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3437 	 * which do not support unaligned accesses, we will realign the
   3438 	 * payloads by copying the received packets.
   3439 	 */
   3440 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3441 	    sc->bge_flags & BGEF_PCIX)
   3442 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
   3443 
   3444 	if (BGE_IS_5700_FAMILY(sc))
   3445 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
   3446 
   3447 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3448 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3449 
   3450 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3451 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3452 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3453 		sc->bge_flags |= BGEF_IS_5788;
   3454 
   3455 	/*
   3456 	 * Some controllers seem to require a special firmware to use
   3457 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3458 	 * claims that the TSO performed by the firmware is slower than
   3459 	 * hardware based TSO. Moreover the firmware based TSO has one
   3460 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3461 	 * header is greater than 80 bytes. The workaround for the TSO
   3462 	 * bug exist but it seems it's too expensive than not using
   3463 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3464 	 * the TSO to the controllers that are not affected TSO issues
   3465 	 * (e.g. 5755 or higher).
   3466 	 */
   3467 	if (BGE_IS_5755_PLUS(sc)) {
   3468 		/*
   3469 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3470 		 * explicit device id check is required.
   3471 		 */
   3472 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3473 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3474 			sc->bge_flags |= BGEF_TSO;
   3475 		/* TSO on BCM5719 A0 does not work. */
   3476 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3477 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3478 			sc->bge_flags &= ~BGEF_TSO;
   3479 	}
   3480 
   3481 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3482 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3483 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3484 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3485 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3486 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3487 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3488 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3489 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3490 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3491 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3492 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3493 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3494 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3495 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3496 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3497 		/* These chips are 10/100 only. */
   3498 		capmask &= ~BMSR_EXTSTAT;
   3499 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3500 	}
   3501 
   3502 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3503 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3504 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3505 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3506 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3507 
   3508 	/* Set various PHY bug flags. */
   3509 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3510 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3511 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
   3512 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3513 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3514 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
   3515 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3516 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
   3517 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3518 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3519 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3520 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
   3521 	if (BGE_IS_5705_PLUS(sc) &&
   3522 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3523 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3524 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3525 	    !BGE_IS_57765_PLUS(sc)) {
   3526 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3527 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3528 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3529 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3530 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3531 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3532 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
   3533 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3534 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
   3535 		} else
   3536 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
   3537 	}
   3538 
   3539 	/*
   3540 	 * SEEPROM check.
   3541 	 * First check if firmware knows we do not have SEEPROM.
   3542 	 */
   3543 	if (prop_dictionary_get_bool(device_properties(self),
   3544 	    "without-seeprom", &no_seeprom) && no_seeprom)
   3545 		sc->bge_flags |= BGEF_NO_EEPROM;
   3546 
   3547 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3548 		sc->bge_flags |= BGEF_NO_EEPROM;
   3549 
   3550 	/* Now check the 'ROM failed' bit on the RX CPU */
   3551 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3552 		sc->bge_flags |= BGEF_NO_EEPROM;
   3553 
   3554 	sc->bge_asf_mode = 0;
   3555 	/* No ASF if APE present. */
   3556 	if ((sc->bge_flags & BGEF_APE) == 0) {
   3557 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3558 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3559 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3560 			    BGE_HWCFG_ASF) {
   3561 				sc->bge_asf_mode |= ASF_ENABLE;
   3562 				sc->bge_asf_mode |= ASF_STACKUP;
   3563 				if (BGE_IS_575X_PLUS(sc))
   3564 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3565 			}
   3566 		}
   3567 	}
   3568 
   3569 	int counts[PCI_INTR_TYPE_SIZE] = {
   3570 		[PCI_INTR_TYPE_INTX] = 1,
   3571 		[PCI_INTR_TYPE_MSI] = 1,
   3572 		[PCI_INTR_TYPE_MSIX] = 1,
   3573 	};
   3574 	int max_type = PCI_INTR_TYPE_MSIX;
   3575 
   3576 	if (!bge_can_use_msi(sc)) {
   3577 		/* MSI broken, allow only INTx */
   3578 		max_type = PCI_INTR_TYPE_INTX;
   3579 	}
   3580 
   3581 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
   3582 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
   3583 		return;
   3584 	}
   3585 
   3586 	DPRINTFN(5, ("pci_intr_string\n"));
   3587 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
   3588 	    sizeof(intrbuf));
   3589 	DPRINTFN(5, ("pci_intr_establish\n"));
   3590 	sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
   3591 	    IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
   3592 	if (sc->bge_intrhand == NULL) {
   3593 		pci_intr_release(pc, sc->bge_pihp, 1);
   3594 		sc->bge_pihp = NULL;
   3595 
   3596 		aprint_error_dev(self, "couldn't establish interrupt");
   3597 		if (intrstr != NULL)
   3598 			aprint_error(" at %s", intrstr);
   3599 		aprint_error("\n");
   3600 		return;
   3601 	}
   3602 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3603 
   3604 	switch (pci_intr_type(pc, sc->bge_pihp[0])) {
   3605 	case PCI_INTR_TYPE_MSIX:
   3606 	case PCI_INTR_TYPE_MSI:
   3607 		KASSERT(bge_can_use_msi(sc));
   3608 		sc->bge_flags |= BGEF_MSI;
   3609 		break;
   3610 	default:
   3611 		/* nothing to do */
   3612 		break;
   3613 	}
   3614 
   3615 	/*
   3616 	 * All controllers except BCM5700 supports tagged status but
   3617 	 * we use tagged status only for MSI case on BCM5717. Otherwise
   3618 	 * MSI on BCM5717 does not work.
   3619 	 */
   3620 	if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
   3621 		sc->bge_flags |= BGEF_TAGGED_STATUS;
   3622 
   3623 	/*
   3624 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3625 	 * lock in bge_reset().
   3626 	 */
   3627 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   3628 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3629 	delay(1000);
   3630 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3631 
   3632 	bge_stop_fw(sc);
   3633 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   3634 	if (bge_reset(sc))
   3635 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3636 
   3637 	/*
   3638 	 * Read the hardware config word in the first 32k of NIC internal
   3639 	 * memory, or fall back to the config word in the EEPROM.
   3640 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3641 	 */
   3642 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
   3643 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3644 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3645 		uint32_t tmp;
   3646 
   3647 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3648 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3649 		    BGE_SRAM_DATA_VER_SHIFT;
   3650 		if ((0 < tmp) && (tmp < 0x100))
   3651 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3652 		if (sc->bge_flags & BGEF_PCIE)
   3653 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3654 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3655 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3656 		if (BGE_IS_5717_PLUS(sc))
   3657 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
   3658 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
   3659 		bge_read_eeprom(sc, (void *)&hwcfg,
   3660 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3661 		hwcfg = be32toh(hwcfg);
   3662 	}
   3663 	aprint_normal_dev(sc->bge_dev,
   3664 	    "HW config %08x, %08x, %08x, %08x %08x\n",
   3665 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
   3666 
   3667 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   3668 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   3669 
   3670 	if (bge_chipinit(sc)) {
   3671 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3672 		bge_release_resources(sc);
   3673 		return;
   3674 	}
   3675 
   3676 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   3677 		BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
   3678 		    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
   3679 		DELAY(100);
   3680 	}
   3681 
   3682 	/* Set MI_MODE */
   3683 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3684 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3685 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3686 	else
   3687 		mimode |= BGE_MIMODE_BASE;
   3688 	CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
   3689 	DELAY(80);
   3690 
   3691 	/*
   3692 	 * Get station address from the EEPROM.
   3693 	 */
   3694 	if (bge_get_eaddr(sc, eaddr)) {
   3695 		aprint_error_dev(sc->bge_dev,
   3696 		    "failed to read station address\n");
   3697 		bge_release_resources(sc);
   3698 		return;
   3699 	}
   3700 
   3701 	br = bge_lookup_rev(sc->bge_chipid);
   3702 
   3703 	if (br == NULL) {
   3704 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3705 		    sc->bge_chipid);
   3706 	} else {
   3707 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3708 		    br->br_name, sc->bge_chipid);
   3709 	}
   3710 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3711 
   3712 	/* Allocate the general information block and ring buffers. */
   3713 	if (pci_dma64_available(pa)) {
   3714 		sc->bge_dmatag = pa->pa_dmat64;
   3715 		sc->bge_dmatag32 = pa->pa_dmat;
   3716 		sc->bge_dma64 = true;
   3717 	} else {
   3718 		sc->bge_dmatag = pa->pa_dmat;
   3719 		sc->bge_dmatag32 = pa->pa_dmat;
   3720 		sc->bge_dma64 = false;
   3721 	}
   3722 
   3723 	/* 40bit DMA workaround */
   3724 	if (sizeof(bus_addr_t) > 4) {
   3725 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
   3726 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
   3727 
   3728 			if (bus_dmatag_subregion(olddmatag, 0,
   3729 			    (bus_addr_t)__MASK(40),
   3730 			    &(sc->bge_dmatag), BUS_DMA_NOWAIT) != 0) {
   3731 				aprint_error_dev(self,
   3732 				    "WARNING: failed to restrict dma range,"
   3733 				    " falling back to parent bus dma range\n");
   3734 				sc->bge_dmatag = olddmatag;
   3735 			}
   3736 		}
   3737 	}
   3738 	SLIST_INIT(&sc->txdma_list);
   3739 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3740 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3741 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3742 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
   3743 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3744 		return;
   3745 	}
   3746 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3747 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3748 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3749 			   BUS_DMA_NOWAIT)) {
   3750 		aprint_error_dev(sc->bge_dev,
   3751 		    "can't map DMA buffers (%zu bytes)\n",
   3752 		    sizeof(struct bge_ring_data));
   3753 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3754 		    sc->bge_ring_rseg);
   3755 		return;
   3756 	}
   3757 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3758 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3759 	    sizeof(struct bge_ring_data), 0,
   3760 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3761 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3762 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3763 				 sizeof(struct bge_ring_data));
   3764 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3765 		    sc->bge_ring_rseg);
   3766 		return;
   3767 	}
   3768 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3769 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3770 			    sizeof(struct bge_ring_data), NULL,
   3771 			    BUS_DMA_NOWAIT)) {
   3772 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3773 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3774 				 sizeof(struct bge_ring_data));
   3775 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3776 		    sc->bge_ring_rseg);
   3777 		return;
   3778 	}
   3779 
   3780 	DPRINTFN(5, ("bzero\n"));
   3781 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3782 
   3783 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3784 
   3785 	/* Try to allocate memory for jumbo buffers. */
   3786 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3787 		if (bge_alloc_jumbo_mem(sc)) {
   3788 			aprint_error_dev(sc->bge_dev,
   3789 			    "jumbo buffer allocation failed\n");
   3790 		} else
   3791 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3792 	}
   3793 
   3794 	/* Set default tuneable values. */
   3795 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3796 	sc->bge_rx_coal_ticks = 150;
   3797 	sc->bge_rx_max_coal_bds = 64;
   3798 	sc->bge_tx_coal_ticks = 300;
   3799 	sc->bge_tx_max_coal_bds = 400;
   3800 	if (BGE_IS_5705_PLUS(sc)) {
   3801 		sc->bge_tx_coal_ticks = (12 * 5);
   3802 		sc->bge_tx_max_coal_bds = (12 * 5);
   3803 			aprint_verbose_dev(sc->bge_dev,
   3804 			    "setting short Tx thresholds\n");
   3805 	}
   3806 
   3807 	if (BGE_IS_5717_PLUS(sc))
   3808 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3809 	else if (BGE_IS_5705_PLUS(sc))
   3810 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3811 	else
   3812 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3813 
   3814 	/* Set up ifnet structure */
   3815 	ifp = &sc->ethercom.ec_if;
   3816 	ifp->if_softc = sc;
   3817 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3818 	ifp->if_ioctl = bge_ioctl;
   3819 	ifp->if_stop = bge_stop;
   3820 	ifp->if_start = bge_start;
   3821 	ifp->if_init = bge_init;
   3822 	ifp->if_watchdog = bge_watchdog;
   3823 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3824 	IFQ_SET_READY(&ifp->if_snd);
   3825 	DPRINTFN(5, ("strcpy if_xname\n"));
   3826 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3827 
   3828 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3829 		sc->ethercom.ec_if.if_capabilities |=
   3830 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3831 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3832 		sc->ethercom.ec_if.if_capabilities |=
   3833 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3834 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3835 #endif
   3836 	sc->ethercom.ec_capabilities |=
   3837 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3838 	sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
   3839 
   3840 	if (sc->bge_flags & BGEF_TSO)
   3841 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3842 
   3843 	/*
   3844 	 * Do MII setup.
   3845 	 */
   3846 	DPRINTFN(5, ("mii setup\n"));
   3847 	mii->mii_ifp = ifp;
   3848 	mii->mii_readreg = bge_miibus_readreg;
   3849 	mii->mii_writereg = bge_miibus_writereg;
   3850 	mii->mii_statchg = bge_miibus_statchg;
   3851 
   3852 	/*
   3853 	 * Figure out what sort of media we have by checking the hardware
   3854 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   3855 	 * unset. If that's the case, we have to rely on identifying the NIC
   3856 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   3857 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   3858 	 */
   3859 	if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
   3860 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3861 		if (BGE_IS_5705_PLUS(sc)) {
   3862 			sc->bge_flags |= BGEF_FIBER_MII;
   3863 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3864 		} else
   3865 			sc->bge_flags |= BGEF_FIBER_TBI;
   3866 	}
   3867 
   3868 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
   3869 	if (BGE_IS_JUMBO_CAPABLE(sc))
   3870 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
   3871 
   3872 	/* set phyflags and chipid before mii_attach() */
   3873 	dict = device_properties(self);
   3874 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
   3875 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3876 
   3877 	macmode = CSR_READ_4(sc, BGE_MAC_MODE);
   3878 	macmode &= ~BGE_MACMODE_PORTMODE;
   3879 	/* Initialize ifmedia structures. */
   3880 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3881 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
   3882 		    macmode | BGE_PORTMODE_TBI);
   3883 		DELAY(40);
   3884 
   3885 		sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
   3886 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3887 		    bge_ifmedia_sts);
   3888 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3889 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
   3890 			    0, NULL);
   3891 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3892 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3893 		/* Pretend the user requested this setting */
   3894 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3895 	} else {
   3896 		uint16_t phyreg;
   3897 		int rv;
   3898 		/*
   3899 		 * Do transceiver setup and tell the firmware the
   3900 		 * driver is down so we can try to get access the
   3901 		 * probe if ASF is running.  Retry a couple of times
   3902 		 * if we get a conflict with the ASF firmware accessing
   3903 		 * the PHY.
   3904 		 */
   3905 		if (sc->bge_flags & BGEF_FIBER_MII)
   3906 			macmode |= BGE_PORTMODE_GMII;
   3907 		else
   3908 			macmode |= BGE_PORTMODE_MII;
   3909 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
   3910 		DELAY(40);
   3911 
   3912 		/*
   3913 		 * Do transceiver setup and tell the firmware the
   3914 		 * driver is down so we can try to get access the
   3915 		 * probe if ASF is running.  Retry a couple of times
   3916 		 * if we get a conflict with the ASF firmware accessing
   3917 		 * the PHY.
   3918 		 */
   3919 		trys = 0;
   3920 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3921 		sc->ethercom.ec_mii = mii;
   3922 		ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
   3923 			     bge_ifmedia_sts);
   3924 		mii_flags = MIIF_DOPAUSE;
   3925 		if (sc->bge_flags & BGEF_FIBER_MII)
   3926 			mii_flags |= MIIF_HAVEFIBER;
   3927 again:
   3928 		bge_asf_driver_up(sc);
   3929 		rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   3930 		    MII_BMCR, &phyreg);
   3931 		if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
   3932 			int i;
   3933 
   3934 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   3935 			    MII_BMCR, BMCR_RESET);
   3936 			/* Wait up to 500ms for it to complete. */
   3937 			for (i = 0; i < 500; i++) {
   3938 				bge_miibus_readreg(sc->bge_dev,
   3939 				    sc->bge_phy_addr, MII_BMCR, &phyreg);
   3940 				if ((phyreg & BMCR_RESET) == 0)
   3941 					break;
   3942 				DELAY(1000);
   3943 			}
   3944 		}
   3945 
   3946 		mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
   3947 		    MII_OFFSET_ANY, mii_flags);
   3948 
   3949 		if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
   3950 			goto again;
   3951 
   3952 		if (LIST_EMPTY(&mii->mii_phys)) {
   3953 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3954 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
   3955 			    0, NULL);
   3956 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
   3957 		} else
   3958 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   3959 
   3960 		/*
   3961 		 * Now tell the firmware we are going up after probing the PHY
   3962 		 */
   3963 		if (sc->bge_asf_mode & ASF_STACKUP)
   3964 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3965 	}
   3966 
   3967 	/*
   3968 	 * Call MI attach routine.
   3969 	 */
   3970 	DPRINTFN(5, ("if_attach\n"));
   3971 	if_attach(ifp);
   3972 	if_deferred_start_init(ifp, NULL);
   3973 	DPRINTFN(5, ("ether_ifattach\n"));
   3974 	ether_ifattach(ifp, eaddr);
   3975 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3976 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3977 		RND_TYPE_NET, RND_FLAG_DEFAULT);
   3978 #ifdef BGE_EVENT_COUNTERS
   3979 	/*
   3980 	 * Attach event counters.
   3981 	 */
   3982 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   3983 	    NULL, device_xname(sc->bge_dev), "intr");
   3984 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
   3985 	    NULL, device_xname(sc->bge_dev), "intr_spurious");
   3986 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
   3987 	    NULL, device_xname(sc->bge_dev), "intr_spurious2");
   3988 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   3989 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   3990 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   3991 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   3992 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   3993 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   3994 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   3995 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   3996 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   3997 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   3998 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   3999 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   4000 #endif /* BGE_EVENT_COUNTERS */
   4001 	DPRINTFN(5, ("callout_init\n"));
   4002 	callout_init(&sc->bge_timeout, 0);
   4003 	callout_setfunc(&sc->bge_timeout, bge_tick, sc);
   4004 
   4005 	if (pmf_device_register(self, NULL, NULL))
   4006 		pmf_class_network_register(self, ifp);
   4007 	else
   4008 		aprint_error_dev(self, "couldn't establish power handler\n");
   4009 
   4010 	bge_sysctl_init(sc);
   4011 
   4012 #ifdef BGE_DEBUG
   4013 	bge_debug_info(sc);
   4014 #endif
   4015 }
   4016 
   4017 /*
   4018  * Stop all chip I/O so that the kernel's probe routines don't
   4019  * get confused by errant DMAs when rebooting.
   4020  */
   4021 static int
   4022 bge_detach(device_t self, int flags __unused)
   4023 {
   4024 	struct bge_softc * const sc = device_private(self);
   4025 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4026 	int s;
   4027 
   4028 	s = splnet();
   4029 	/* Stop the interface. Callouts are stopped in it. */
   4030 	bge_stop(ifp, 1);
   4031 	splx(s);
   4032 
   4033 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   4034 
   4035 	ether_ifdetach(ifp);
   4036 	if_detach(ifp);
   4037 
   4038 	/* Delete all remaining media. */
   4039 	ifmedia_fini(&sc->bge_mii.mii_media);
   4040 
   4041 	bge_release_resources(sc);
   4042 
   4043 	return 0;
   4044 }
   4045 
   4046 static void
   4047 bge_release_resources(struct bge_softc *sc)
   4048 {
   4049 
   4050 	/* Detach sysctl */
   4051 	if (sc->bge_log != NULL)
   4052 		sysctl_teardown(&sc->bge_log);
   4053 
   4054 #ifdef BGE_EVENT_COUNTERS
   4055 	/* Detach event counters. */
   4056 	evcnt_detach(&sc->bge_ev_intr);
   4057 	evcnt_detach(&sc->bge_ev_intr_spurious);
   4058 	evcnt_detach(&sc->bge_ev_intr_spurious2);
   4059 	evcnt_detach(&sc->bge_ev_tx_xoff);
   4060 	evcnt_detach(&sc->bge_ev_tx_xon);
   4061 	evcnt_detach(&sc->bge_ev_rx_xoff);
   4062 	evcnt_detach(&sc->bge_ev_rx_xon);
   4063 	evcnt_detach(&sc->bge_ev_rx_macctl);
   4064 	evcnt_detach(&sc->bge_ev_xoffentered);
   4065 #endif /* BGE_EVENT_COUNTERS */
   4066 
   4067 	/* Disestablish the interrupt handler */
   4068 	if (sc->bge_intrhand != NULL) {
   4069 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   4070 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
   4071 		sc->bge_intrhand = NULL;
   4072 	}
   4073 
   4074 	if (sc->bge_dmatag != NULL) {
   4075 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   4076 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   4077 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   4078 		    sizeof(struct bge_ring_data));
   4079 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   4080 		    sc->bge_ring_rseg);
   4081 	}
   4082 
   4083 	/* Unmap the device registers */
   4084 	if (sc->bge_bsize != 0) {
   4085 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   4086 		sc->bge_bsize = 0;
   4087 	}
   4088 
   4089 	/* Unmap the APE registers */
   4090 	if (sc->bge_apesize != 0) {
   4091 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   4092 		    sc->bge_apesize);
   4093 		sc->bge_apesize = 0;
   4094 	}
   4095 }
   4096 
   4097 static int
   4098 bge_reset(struct bge_softc *sc)
   4099 {
   4100 	uint32_t cachesize, command;
   4101 	uint32_t reset, mac_mode, mac_mode_mask;
   4102 	pcireg_t devctl, reg;
   4103 	int i, val;
   4104 	void (*write_op)(struct bge_softc *, int, int);
   4105 
   4106 	/* Make mask for BGE_MAC_MODE register. */
   4107 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   4108 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4109 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   4110 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   4111 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   4112 
   4113 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   4114 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   4115 		if (sc->bge_flags & BGEF_PCIE)
   4116 			write_op = bge_writemem_direct;
   4117 		else
   4118 			write_op = bge_writemem_ind;
   4119 	} else
   4120 		write_op = bge_writereg_ind;
   4121 
   4122 	/* 57XX step 4 */
   4123 	/* Acquire the NVM lock */
   4124 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
   4125 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4126 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4127 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4128 		for (i = 0; i < 8000; i++) {
   4129 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4130 			    BGE_NVRAMSWARB_GNT1)
   4131 				break;
   4132 			DELAY(20);
   4133 		}
   4134 		if (i == 8000) {
   4135 			printf("%s: NVRAM lock timedout!\n",
   4136 			    device_xname(sc->bge_dev));
   4137 		}
   4138 	}
   4139 
   4140 	/* Take APE lock when performing reset. */
   4141 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4142 
   4143 	/* 57XX step 3 */
   4144 	/* Save some important PCI state. */
   4145 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4146 	/* 5718 reset step 3 */
   4147 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4148 
   4149 	/* 5718 reset step 5, 57XX step 5b-5d */
   4150 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4151 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4152 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4153 
   4154 	/* XXX ???: Disable fastboot on controllers that support it. */
   4155 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4156 	    BGE_IS_5755_PLUS(sc))
   4157 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4158 
   4159 	/* 5718 reset step 2, 57XX step 6 */
   4160 	/*
   4161 	 * Write the magic number to SRAM at offset 0xB50.
   4162 	 * When firmware finishes its initialization it will
   4163 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4164 	 */
   4165 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4166 
   4167 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   4168 		val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   4169 		val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   4170 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   4171 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
   4172 	}
   4173 
   4174 	/* 5718 reset step 6, 57XX step 7 */
   4175 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4176 	/*
   4177 	 * XXX: from FreeBSD/Linux; no documentation
   4178 	 */
   4179 	if (sc->bge_flags & BGEF_PCIE) {
   4180 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
   4181 		    !BGE_IS_57765_PLUS(sc) &&
   4182 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4183 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4184 			/* PCI Express 1.0 system */
   4185 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4186 			    BGE_PHY_PCIE_SCRAM_MODE);
   4187 		}
   4188 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4189 			/*
   4190 			 * Prevent PCI Express link training
   4191 			 * during global reset.
   4192 			 */
   4193 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4194 			reset |= (1 << 29);
   4195 		}
   4196 	}
   4197 
   4198 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4199 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4200 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4201 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4202 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4203 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4204 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4205 	}
   4206 
   4207 	/*
   4208 	 * Set GPHY Power Down Override to leave GPHY
   4209 	 * powered up in D0 uninitialized.
   4210 	 */
   4211 	if (BGE_IS_5705_PLUS(sc) &&
   4212 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4213 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4214 
   4215 	/* Issue global reset */
   4216 	write_op(sc, BGE_MISC_CFG, reset);
   4217 
   4218 	/* 5718 reset step 7, 57XX step 8 */
   4219 	if (sc->bge_flags & BGEF_PCIE)
   4220 		delay(100*1000); /* too big */
   4221 	else
   4222 		delay(1000);
   4223 
   4224 	if (sc->bge_flags & BGEF_PCIE) {
   4225 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4226 			DELAY(500000);
   4227 			/* XXX: Magic Numbers */
   4228 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4229 			    BGE_PCI_UNKNOWN0);
   4230 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4231 			    BGE_PCI_UNKNOWN0,
   4232 			    reg | (1 << 15));
   4233 		}
   4234 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4235 		    sc->bge_pciecap + PCIE_DCSR);
   4236 		/* Clear enable no snoop and disable relaxed ordering. */
   4237 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4238 		    PCIE_DCSR_ENA_NO_SNOOP);
   4239 
   4240 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4241 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4242 			devctl &= ~(0x00e0);
   4243 		/* Clear device status register. Write 1b to clear */
   4244 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4245 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4246 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4247 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4248 		bge_set_max_readrq(sc);
   4249 	}
   4250 
   4251 	/* From Linux: dummy read to flush PCI posted writes */
   4252 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4253 
   4254 	/*
   4255 	 * Reset some of the PCI state that got zapped by reset
   4256 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4257 	 * set, too.
   4258 	 */
   4259 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4260 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4261 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4262 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4263 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4264 	    (sc->bge_flags & BGEF_PCIX) != 0)
   4265 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4266 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4267 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4268 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4269 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4270 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4271 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4272 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4273 
   4274 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
   4275 	if (sc->bge_flags & BGEF_PCIX) {
   4276 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4277 		    + PCIX_CMD);
   4278 		/* Set max memory read byte count to 2K */
   4279 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   4280 			reg &= ~PCIX_CMD_BYTECNT_MASK;
   4281 			reg |= PCIX_CMD_BCNT_2048;
   4282 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
   4283 			/*
   4284 			 * For 5704, set max outstanding split transaction
   4285 			 * field to 0 (0 means it supports 1 request)
   4286 			 */
   4287 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
   4288 			    | PCIX_CMD_BYTECNT_MASK);
   4289 			reg |= PCIX_CMD_BCNT_2048;
   4290 		}
   4291 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4292 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4293 	}
   4294 
   4295 	/* 5718 reset step 10, 57XX step 12 */
   4296 	/* Enable memory arbiter. */
   4297 	if (BGE_IS_5714_FAMILY(sc)) {
   4298 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4299 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4300 	} else
   4301 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4302 
   4303 	/* XXX 5721, 5751 and 5752 */
   4304 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4305 		/* Step 19: */
   4306 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4307 		/* Step 20: */
   4308 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4309 	}
   4310 
   4311 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4312 	/* Fix up byte swapping */
   4313 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4314 
   4315 	/* 5718 reset step 13, 57XX step 17 */
   4316 	/* Poll until the firmware initialization is complete */
   4317 	bge_poll_fw(sc);
   4318 
   4319 	/* 57XX step 21 */
   4320 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4321 		pcireg_t msidata;
   4322 
   4323 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4324 		    BGE_PCI_MSI_DATA);
   4325 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4326 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4327 		    msidata);
   4328 	}
   4329 
   4330 	/* 57XX step 18 */
   4331 	/* Write mac mode. */
   4332 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4333 	/* Restore mac_mode_mask's bits using mac_mode */
   4334 	val = (val & ~mac_mode_mask) | mac_mode;
   4335 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4336 	DELAY(40);
   4337 
   4338 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4339 
   4340 	/*
   4341 	 * The 5704 in TBI mode apparently needs some special
   4342 	 * adjustment to insure the SERDES drive level is set
   4343 	 * to 1.2V.
   4344 	 */
   4345 	if (sc->bge_flags & BGEF_FIBER_TBI &&
   4346 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4347 		uint32_t serdescfg;
   4348 
   4349 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4350 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4351 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4352 	}
   4353 
   4354 	if (sc->bge_flags & BGEF_PCIE &&
   4355 	    !BGE_IS_57765_PLUS(sc) &&
   4356 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4357 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4358 		uint32_t v;
   4359 
   4360 		/* Enable PCI Express bug fix */
   4361 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4362 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4363 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4364 	}
   4365 
   4366 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4367 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4368 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4369 
   4370 	return 0;
   4371 }
   4372 
   4373 /*
   4374  * Frame reception handling. This is called if there's a frame
   4375  * on the receive return list.
   4376  *
   4377  * Note: we have to be able to handle two possibilities here:
   4378  * 1) the frame is from the jumbo receive ring
   4379  * 2) the frame is from the standard receive ring
   4380  */
   4381 
   4382 static void
   4383 bge_rxeof(struct bge_softc *sc)
   4384 {
   4385 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4386 	uint16_t rx_prod, rx_cons;
   4387 	int stdcnt = 0, jumbocnt = 0;
   4388 	bus_dmamap_t dmamap;
   4389 	bus_addr_t offset, toff;
   4390 	bus_size_t tlen;
   4391 	int tosync;
   4392 
   4393 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4394 	    offsetof(struct bge_ring_data, bge_status_block),
   4395 	    sizeof(struct bge_status_block),
   4396 	    BUS_DMASYNC_POSTREAD);
   4397 
   4398 	rx_cons = sc->bge_rx_saved_considx;
   4399 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4400 
   4401 	/* Nothing to do */
   4402 	if (rx_cons == rx_prod)
   4403 		return;
   4404 
   4405 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4406 	tosync = rx_prod - rx_cons;
   4407 
   4408 	if (tosync != 0)
   4409 		rnd_add_uint32(&sc->rnd_source, tosync);
   4410 
   4411 	toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
   4412 
   4413 	if (tosync < 0) {
   4414 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4415 		    sizeof(struct bge_rx_bd);
   4416 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4417 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4418 		tosync = -tosync;
   4419 	}
   4420 
   4421 	if (tosync != 0) {
   4422 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4423 		    offset, tosync * sizeof(struct bge_rx_bd),
   4424 		    BUS_DMASYNC_POSTREAD);
   4425 	}
   4426 
   4427 	while (rx_cons != rx_prod) {
   4428 		struct bge_rx_bd	*cur_rx;
   4429 		uint32_t		rxidx;
   4430 		struct mbuf		*m = NULL;
   4431 
   4432 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4433 
   4434 		rxidx = cur_rx->bge_idx;
   4435 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4436 
   4437 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4438 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4439 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4440 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4441 			jumbocnt++;
   4442 			bus_dmamap_sync(sc->bge_dmatag,
   4443 			    sc->bge_cdata.bge_rx_jumbo_map,
   4444 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4445 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4446 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4447 				if_statinc(ifp, if_ierrors);
   4448 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4449 				continue;
   4450 			}
   4451 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4452 					     NULL) == ENOBUFS) {
   4453 				if_statinc(ifp, if_ierrors);
   4454 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4455 				continue;
   4456 			}
   4457 		} else {
   4458 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   4459 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4460 
   4461 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4462 			stdcnt++;
   4463 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4464 			sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
   4465 			if (dmamap == NULL) {
   4466 				if_statinc(ifp, if_ierrors);
   4467 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4468 				continue;
   4469 			}
   4470 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4471 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4472 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4473 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4474 				if_statinc(ifp, if_ierrors);
   4475 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4476 				continue;
   4477 			}
   4478 			if (bge_newbuf_std(sc, sc->bge_std,
   4479 			    NULL, dmamap) == ENOBUFS) {
   4480 				if_statinc(ifp, if_ierrors);
   4481 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4482 				continue;
   4483 			}
   4484 		}
   4485 
   4486 #ifndef __NO_STRICT_ALIGNMENT
   4487 		/*
   4488 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4489 		 * the Rx buffer has the layer-2 header unaligned.
   4490 		 * If our CPU requires alignment, re-align by copying.
   4491 		 */
   4492 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
   4493 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4494 				cur_rx->bge_len);
   4495 			m->m_data += ETHER_ALIGN;
   4496 		}
   4497 #endif
   4498 
   4499 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4500 		m_set_rcvif(m, ifp);
   4501 
   4502 		bge_rxcsum(sc, cur_rx, m);
   4503 
   4504 		/*
   4505 		 * If we received a packet with a vlan tag, pass it
   4506 		 * to vlan_input() instead of ether_input().
   4507 		 */
   4508 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   4509 			vlan_set_tag(m, cur_rx->bge_vlan_tag);
   4510 
   4511 		if_percpuq_enqueue(ifp->if_percpuq, m);
   4512 	}
   4513 
   4514 	sc->bge_rx_saved_considx = rx_cons;
   4515 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4516 	if (stdcnt)
   4517 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   4518 	if (jumbocnt)
   4519 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4520 }
   4521 
   4522 static void
   4523 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4524 {
   4525 
   4526 	if (BGE_IS_57765_PLUS(sc)) {
   4527 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4528 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4529 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4530 			if ((cur_rx->bge_error_flag &
   4531 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4532 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4533 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4534 				m->m_pkthdr.csum_data =
   4535 				    cur_rx->bge_tcp_udp_csum;
   4536 				m->m_pkthdr.csum_flags |=
   4537 				    (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
   4538 			}
   4539 		}
   4540 	} else {
   4541 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4542 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4543 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4544 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4545 		/*
   4546 		 * Rx transport checksum-offload may also
   4547 		 * have bugs with packets which, when transmitted,
   4548 		 * were `runts' requiring padding.
   4549 		 */
   4550 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4551 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4552 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4553 			m->m_pkthdr.csum_data =
   4554 			    cur_rx->bge_tcp_udp_csum;
   4555 			m->m_pkthdr.csum_flags |=
   4556 			    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
   4557 		}
   4558 	}
   4559 }
   4560 
   4561 static void
   4562 bge_txeof(struct bge_softc *sc)
   4563 {
   4564 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4565 	struct bge_tx_bd *cur_tx = NULL;
   4566 	struct txdmamap_pool_entry *dma;
   4567 	bus_addr_t offset, toff;
   4568 	bus_size_t tlen;
   4569 	int tosync;
   4570 	struct mbuf *m;
   4571 
   4572 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4573 	    offsetof(struct bge_ring_data, bge_status_block),
   4574 	    sizeof(struct bge_status_block),
   4575 	    BUS_DMASYNC_POSTREAD);
   4576 
   4577 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4578 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   4579 	    sc->bge_tx_saved_considx;
   4580 
   4581 	if (tosync != 0)
   4582 		rnd_add_uint32(&sc->rnd_source, tosync);
   4583 
   4584 	toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
   4585 
   4586 	if (tosync < 0) {
   4587 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4588 		    sizeof(struct bge_tx_bd);
   4589 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4590 		    toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4591 		tosync = -tosync;
   4592 	}
   4593 
   4594 	if (tosync != 0) {
   4595 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4596 		    offset, tosync * sizeof(struct bge_tx_bd),
   4597 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4598 	}
   4599 
   4600 	/*
   4601 	 * Go through our tx ring and free mbufs for those
   4602 	 * frames that have been sent.
   4603 	 */
   4604 	while (sc->bge_tx_saved_considx !=
   4605 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   4606 		uint32_t idx = sc->bge_tx_saved_considx;
   4607 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4608 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4609 			if_statinc(ifp, if_opackets);
   4610 		m = sc->bge_cdata.bge_tx_chain[idx];
   4611 		if (m != NULL) {
   4612 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4613 			dma = sc->txdma[idx];
   4614 			if (dma->is_dma32) {
   4615 				bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
   4616 				    0, dma->dmamap32->dm_mapsize,
   4617 				    BUS_DMASYNC_POSTWRITE);
   4618 				bus_dmamap_unload(
   4619 				    sc->bge_dmatag32, dma->dmamap32);
   4620 			} else {
   4621 				bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
   4622 				    0, dma->dmamap->dm_mapsize,
   4623 				    BUS_DMASYNC_POSTWRITE);
   4624 				bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4625 			}
   4626 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4627 			sc->txdma[idx] = NULL;
   4628 
   4629 			m_freem(m);
   4630 		}
   4631 		sc->bge_txcnt--;
   4632 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4633 		ifp->if_timer = 0;
   4634 	}
   4635 
   4636 	if (cur_tx != NULL)
   4637 		ifp->if_flags &= ~IFF_OACTIVE;
   4638 }
   4639 
   4640 static int
   4641 bge_intr(void *xsc)
   4642 {
   4643 	struct bge_softc * const sc = xsc;
   4644 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4645 	uint32_t pcistate, statusword, statustag;
   4646 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4647 
   4648 
   4649 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4650 	if (BGE_IS_5717_PLUS(sc))
   4651 		intrmask = 0;
   4652 
   4653 	/*
   4654 	 * It is possible for the interrupt to arrive before
   4655 	 * the status block is updated prior to the interrupt.
   4656 	 * Reading the PCI State register will confirm whether the
   4657 	 * interrupt is ours and will flush the status block.
   4658 	 */
   4659 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
   4660 
   4661 	/* read status word from status block */
   4662 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4663 	    offsetof(struct bge_ring_data, bge_status_block),
   4664 	    sizeof(struct bge_status_block),
   4665 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4666 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4667 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
   4668 
   4669 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
   4670 		if (sc->bge_lasttag == statustag &&
   4671 		    (~pcistate & intrmask)) {
   4672 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
   4673 			return 0;
   4674 		}
   4675 		sc->bge_lasttag = statustag;
   4676 	} else {
   4677 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
   4678 		    !(~pcistate & intrmask)) {
   4679 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
   4680 			return 0;
   4681 		}
   4682 		statustag = 0;
   4683 	}
   4684 	/* Ack interrupt and stop others from occurring. */
   4685 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4686 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   4687 
   4688 	/* clear status word */
   4689 	sc->bge_rdata->bge_status_block.bge_status = 0;
   4690 
   4691 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4692 	    offsetof(struct bge_ring_data, bge_status_block),
   4693 	    sizeof(struct bge_status_block),
   4694 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4695 
   4696 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4697 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4698 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4699 		bge_link_upd(sc);
   4700 
   4701 	if (ifp->if_flags & IFF_RUNNING) {
   4702 		/* Check RX return ring producer/consumer */
   4703 		bge_rxeof(sc);
   4704 
   4705 		/* Check TX ring producer/consumer */
   4706 		bge_txeof(sc);
   4707 	}
   4708 
   4709 	if (sc->bge_pending_rxintr_change) {
   4710 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4711 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4712 
   4713 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4714 		DELAY(10);
   4715 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4716 
   4717 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4718 		DELAY(10);
   4719 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4720 
   4721 		sc->bge_pending_rxintr_change = 0;
   4722 	}
   4723 	bge_handle_events(sc);
   4724 
   4725 	/* Re-enable interrupts. */
   4726 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
   4727 
   4728 	if (ifp->if_flags & IFF_RUNNING)
   4729 		if_schedule_deferred_start(ifp);
   4730 
   4731 	return 1;
   4732 }
   4733 
   4734 static void
   4735 bge_asf_driver_up(struct bge_softc *sc)
   4736 {
   4737 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4738 		/* Send ASF heartbeat aprox. every 2s */
   4739 		if (sc->bge_asf_count)
   4740 			sc->bge_asf_count --;
   4741 		else {
   4742 			sc->bge_asf_count = 2;
   4743 
   4744 			bge_wait_for_event_ack(sc);
   4745 
   4746 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4747 			    BGE_FW_CMD_DRV_ALIVE3);
   4748 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4749 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4750 			    BGE_FW_HB_TIMEOUT_SEC);
   4751 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4752 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4753 			    BGE_RX_CPU_DRV_EVENT);
   4754 		}
   4755 	}
   4756 }
   4757 
   4758 static void
   4759 bge_tick(void *xsc)
   4760 {
   4761 	struct bge_softc * const sc = xsc;
   4762 	struct mii_data * const mii = &sc->bge_mii;
   4763 	int s;
   4764 
   4765 	s = splnet();
   4766 
   4767 	if (BGE_IS_5705_PLUS(sc))
   4768 		bge_stats_update_regs(sc);
   4769 	else
   4770 		bge_stats_update(sc);
   4771 
   4772 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4773 		/*
   4774 		 * Since in TBI mode auto-polling can't be used we should poll
   4775 		 * link status manually. Here we register pending link event
   4776 		 * and trigger interrupt.
   4777 		 */
   4778 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4779 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4780 	} else {
   4781 		/*
   4782 		 * Do not touch PHY if we have link up. This could break
   4783 		 * IPMI/ASF mode or produce extra input errors.
   4784 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4785 		 */
   4786 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4787 			mii_tick(mii);
   4788 	}
   4789 
   4790 	bge_asf_driver_up(sc);
   4791 
   4792 	if (!sc->bge_detaching)
   4793 		callout_schedule(&sc->bge_timeout, hz);
   4794 
   4795 	splx(s);
   4796 }
   4797 
   4798 static void
   4799 bge_stats_update_regs(struct bge_softc *sc)
   4800 {
   4801 	struct ifnet *const ifp = &sc->ethercom.ec_if;
   4802 
   4803 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4804 
   4805 	if_statadd_ref(nsr, if_collisions,
   4806 	    CSR_READ_4(sc, BGE_MAC_STATS +
   4807 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
   4808 
   4809 	/*
   4810 	 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
   4811 	 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
   4812 	 * (silicon bug). There's no reliable workaround so just
   4813 	 * ignore the counter
   4814 	 */
   4815 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   4816 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
   4817 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
   4818 		if_statadd_ref(nsr, if_ierrors,
   4819 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
   4820 	}
   4821 	if_statadd_ref(nsr, if_ierrors,
   4822 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
   4823 	if_statadd_ref(nsr, if_ierrors,
   4824 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
   4825 
   4826 	IF_STAT_PUTREF(ifp);
   4827 
   4828 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   4829 		uint32_t val, ucast, mcast, bcast;
   4830 
   4831 		ucast = CSR_READ_4(sc, BGE_MAC_STATS +
   4832 		    offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
   4833 		mcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4834 		    offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
   4835 		bcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4836 		    offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
   4837 
   4838 		/*
   4839 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
   4840 		 * frames, it's safe to disable workaround for DMA engine's
   4841 		 * miscalculation of TXMBUF space.
   4842 		 */
   4843 		if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
   4844 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   4845 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   4846 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
   4847 			else
   4848 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
   4849 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   4850 			sc->bge_flags &= ~BGEF_RDMA_BUG;
   4851 		}
   4852 	}
   4853 }
   4854 
   4855 static void
   4856 bge_stats_update(struct bge_softc *sc)
   4857 {
   4858 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4859 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4860 
   4861 #define READ_STAT(sc, stats, stat) \
   4862 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4863 
   4864 	uint64_t collisions =
   4865 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4866 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4867 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4868 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
   4869 
   4870 	if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
   4871 	sc->bge_if_collisions = collisions;
   4872 
   4873 
   4874 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4875 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4876 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4877 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4878 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4879 		      READ_STAT(sc, stats,
   4880 				xoffPauseFramesReceived.bge_addr_lo));
   4881 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4882 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4883 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4884 		      READ_STAT(sc, stats,
   4885 				macControlFramesReceived.bge_addr_lo));
   4886 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4887 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4888 
   4889 #undef READ_STAT
   4890 
   4891 #ifdef notdef
   4892 	ifp->if_collisions +=
   4893 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   4894 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   4895 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   4896 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   4897 	   ifp->if_collisions;
   4898 #endif
   4899 }
   4900 
   4901 /*
   4902  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4903  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4904  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4905  * the hardware checksum assist gives incorrect results (possibly
   4906  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4907  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4908  */
   4909 static inline int
   4910 bge_cksum_pad(struct mbuf *pkt)
   4911 {
   4912 	struct mbuf *last = NULL;
   4913 	int padlen;
   4914 
   4915 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4916 
   4917 	/* if there's only the packet-header and we can pad there, use it. */
   4918 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4919 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4920 		last = pkt;
   4921 	} else {
   4922 		/*
   4923 		 * Walk packet chain to find last mbuf. We will either
   4924 		 * pad there, or append a new mbuf and pad it
   4925 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4926 		 */
   4927 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4928 			continue; /* do nothing */
   4929 		}
   4930 
   4931 		/* `last' now points to last in chain. */
   4932 		if (M_TRAILINGSPACE(last) < padlen) {
   4933 			/* Allocate new empty mbuf, pad it. Compact later. */
   4934 			struct mbuf *n;
   4935 			MGET(n, M_DONTWAIT, MT_DATA);
   4936 			if (n == NULL)
   4937 				return ENOBUFS;
   4938 			n->m_len = 0;
   4939 			last->m_next = n;
   4940 			last = n;
   4941 		}
   4942 	}
   4943 
   4944 	KDASSERT(!M_READONLY(last));
   4945 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4946 
   4947 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4948 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4949 	last->m_len += padlen;
   4950 	pkt->m_pkthdr.len += padlen;
   4951 	return 0;
   4952 }
   4953 
   4954 /*
   4955  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   4956  */
   4957 static inline int
   4958 bge_compact_dma_runt(struct mbuf *pkt)
   4959 {
   4960 	struct mbuf	*m, *prev;
   4961 	int		totlen;
   4962 
   4963 	prev = NULL;
   4964 	totlen = 0;
   4965 
   4966 	for (m = pkt; m != NULL; prev = m, m = m->m_next) {
   4967 		int mlen = m->m_len;
   4968 		int shortfall = 8 - mlen ;
   4969 
   4970 		totlen += mlen;
   4971 		if (mlen == 0)
   4972 			continue;
   4973 		if (mlen >= 8)
   4974 			continue;
   4975 
   4976 		/*
   4977 		 * If we get here, mbuf data is too small for DMA engine.
   4978 		 * Try to fix by shuffling data to prev or next in chain.
   4979 		 * If that fails, do a compacting deep-copy of the whole chain.
   4980 		 */
   4981 
   4982 		/* Internal frag. If fits in prev, copy it there. */
   4983 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   4984 			memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   4985 			prev->m_len += mlen;
   4986 			m->m_len = 0;
   4987 			/* XXX stitch chain */
   4988 			prev->m_next = m_free(m);
   4989 			m = prev;
   4990 			continue;
   4991 		} else if (m->m_next != NULL &&
   4992 			    M_TRAILINGSPACE(m) >= shortfall &&
   4993 			    m->m_next->m_len >= (8 + shortfall)) {
   4994 		    /* m is writable and have enough data in next, pull up. */
   4995 
   4996 			memcpy(m->m_data + m->m_len, m->m_next->m_data,
   4997 			    shortfall);
   4998 			m->m_len += shortfall;
   4999 			m->m_next->m_len -= shortfall;
   5000 			m->m_next->m_data += shortfall;
   5001 		} else if (m->m_next == NULL || 1) {
   5002 			/*
   5003 			 * Got a runt at the very end of the packet.
   5004 			 * borrow data from the tail of the preceding mbuf and
   5005 			 * update its length in-place. (The original data is
   5006 			 * still valid, so we can do this even if prev is not
   5007 			 * writable.)
   5008 			 */
   5009 
   5010 			/*
   5011 			 * If we'd make prev a runt, just move all of its data.
   5012 			 */
   5013 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   5014 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   5015 
   5016 			if ((prev->m_len - shortfall) < 8)
   5017 				shortfall = prev->m_len;
   5018 
   5019 #ifdef notyet	/* just do the safe slow thing for now */
   5020 			if (!M_READONLY(m)) {
   5021 				if (M_LEADINGSPACE(m) < shorfall) {
   5022 					void *m_dat;
   5023 					m_dat = M_BUFADDR(m);
   5024 					memmove(m_dat, mtod(m, void*),
   5025 					    m->m_len);
   5026 					m->m_data = m_dat;
   5027 				}
   5028 			} else
   5029 #endif	/* just do the safe slow thing */
   5030 			{
   5031 				struct mbuf * n = NULL;
   5032 				int newprevlen = prev->m_len - shortfall;
   5033 
   5034 				MGET(n, M_NOWAIT, MT_DATA);
   5035 				if (n == NULL)
   5036 				   return ENOBUFS;
   5037 				KASSERT(m->m_len + shortfall < MLEN
   5038 					/*,
   5039 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   5040 
   5041 				/* first copy the data we're stealing from prev */
   5042 				memcpy(n->m_data, prev->m_data + newprevlen,
   5043 				    shortfall);
   5044 
   5045 				/* update prev->m_len accordingly */
   5046 				prev->m_len -= shortfall;
   5047 
   5048 				/* copy data from runt m */
   5049 				memcpy(n->m_data + shortfall, m->m_data,
   5050 				    m->m_len);
   5051 
   5052 				/* n holds what we stole from prev, plus m */
   5053 				n->m_len = shortfall + m->m_len;
   5054 
   5055 				/* stitch n into chain and free m */
   5056 				n->m_next = m->m_next;
   5057 				prev->m_next = n;
   5058 				/* KASSERT(m->m_next == NULL); */
   5059 				m->m_next = NULL;
   5060 				m_free(m);
   5061 				m = n;	/* for continuing loop */
   5062 			}
   5063 		}
   5064 	}
   5065 	return 0;
   5066 }
   5067 
   5068 /*
   5069  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   5070  * pointers to descriptors.
   5071  */
   5072 static int
   5073 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   5074 {
   5075 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   5076 	struct bge_tx_bd	*f, *prev_f;
   5077 	uint32_t		frag, cur;
   5078 	uint16_t		csum_flags = 0;
   5079 	uint16_t		txbd_tso_flags = 0;
   5080 	struct txdmamap_pool_entry *dma;
   5081 	bus_dmamap_t dmamap;
   5082 	bus_dma_tag_t dmatag;
   5083 	int			i = 0;
   5084 	int			use_tso, maxsegsize, error;
   5085 	bool			have_vtag;
   5086 	uint16_t		vtag;
   5087 	bool			remap;
   5088 
   5089 	if (m_head->m_pkthdr.csum_flags) {
   5090 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5091 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   5092 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
   5093 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   5094 	}
   5095 
   5096 	/*
   5097 	 * If we were asked to do an outboard checksum, and the NIC
   5098 	 * has the bug where it sometimes adds in the Ethernet padding,
   5099 	 * explicitly pad with zeros so the cksum will be correct either way.
   5100 	 * (For now, do this for all chip versions, until newer
   5101 	 * are confirmed to not require the workaround.)
   5102 	 */
   5103 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   5104 #ifdef notyet
   5105 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   5106 #endif
   5107 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   5108 		goto check_dma_bug;
   5109 
   5110 	if (bge_cksum_pad(m_head) != 0)
   5111 		return ENOBUFS;
   5112 
   5113 check_dma_bug:
   5114 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   5115 		goto doit;
   5116 
   5117 	/*
   5118 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   5119 	 * less than eight bytes.  If we encounter a teeny mbuf
   5120 	 * at the end of a chain, we can pad.  Otherwise, copy.
   5121 	 */
   5122 	if (bge_compact_dma_runt(m_head) != 0)
   5123 		return ENOBUFS;
   5124 
   5125 doit:
   5126 	dma = SLIST_FIRST(&sc->txdma_list);
   5127 	if (dma == NULL) {
   5128 		ifp->if_flags |= IFF_OACTIVE;
   5129 		return ENOBUFS;
   5130 	}
   5131 	dmamap = dma->dmamap;
   5132 	dmatag = sc->bge_dmatag;
   5133 	dma->is_dma32 = false;
   5134 
   5135 	/*
   5136 	 * Set up any necessary TSO state before we start packing...
   5137 	 */
   5138 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   5139 	if (!use_tso) {
   5140 		maxsegsize = 0;
   5141 	} else {	/* TSO setup */
   5142 		unsigned  mss;
   5143 		struct ether_header *eh;
   5144 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   5145 		unsigned bge_hlen;
   5146 		struct mbuf * m0 = m_head;
   5147 		struct ip *ip;
   5148 		struct tcphdr *th;
   5149 		int iphl, hlen;
   5150 
   5151 		/*
   5152 		 * XXX It would be nice if the mbuf pkthdr had offset
   5153 		 * fields for the protocol headers.
   5154 		 */
   5155 
   5156 		eh = mtod(m0, struct ether_header *);
   5157 		switch (htons(eh->ether_type)) {
   5158 		case ETHERTYPE_IP:
   5159 			offset = ETHER_HDR_LEN;
   5160 			break;
   5161 
   5162 		case ETHERTYPE_VLAN:
   5163 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   5164 			break;
   5165 
   5166 		default:
   5167 			/*
   5168 			 * Don't support this protocol or encapsulation.
   5169 			 */
   5170 			return ENOBUFS;
   5171 		}
   5172 
   5173 		/*
   5174 		 * TCP/IP headers are in the first mbuf; we can do
   5175 		 * this the easy way.
   5176 		 */
   5177 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   5178 		hlen = iphl + offset;
   5179 		if (__predict_false(m0->m_len <
   5180 				    (hlen + sizeof(struct tcphdr)))) {
   5181 
   5182 			aprint_error_dev(sc->bge_dev,
   5183 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   5184 			    "not handled yet\n",
   5185 			    m0->m_len, hlen+ sizeof(struct tcphdr));
   5186 #ifdef NOTYET
   5187 			/*
   5188 			 * XXX jonathan (at) NetBSD.org: untested.
   5189 			 * how to force this branch to be taken?
   5190 			 */
   5191 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
   5192 
   5193 			m_copydata(m0, offset, sizeof(ip), &ip);
   5194 			m_copydata(m0, hlen, sizeof(th), &th);
   5195 
   5196 			ip.ip_len = 0;
   5197 
   5198 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   5199 			    sizeof(ip.ip_len), &ip.ip_len);
   5200 
   5201 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   5202 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   5203 
   5204 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   5205 			    sizeof(th.th_sum), &th.th_sum);
   5206 
   5207 			hlen += th.th_off << 2;
   5208 			iptcp_opt_words	= hlen;
   5209 #else
   5210 			/*
   5211 			 * if_wm "hard" case not yet supported, can we not
   5212 			 * mandate it out of existence?
   5213 			 */
   5214 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5215 
   5216 			return ENOBUFS;
   5217 #endif
   5218 		} else {
   5219 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5220 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5221 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5222 
   5223 			/* Total IP/TCP options, in 32-bit words */
   5224 			iptcp_opt_words = (ip_tcp_hlen
   5225 					   - sizeof(struct tcphdr)
   5226 					   - sizeof(struct ip)) >> 2;
   5227 		}
   5228 		if (BGE_IS_575X_PLUS(sc)) {
   5229 			th->th_sum = 0;
   5230 			csum_flags = 0;
   5231 		} else {
   5232 			/*
   5233 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5234 			 * Requires TSO firmware patch for 5701/5703/5704.
   5235 			 */
   5236 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5237 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5238 		}
   5239 
   5240 		mss = m_head->m_pkthdr.segsz;
   5241 		txbd_tso_flags |=
   5242 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5243 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5244 
   5245 		/*
   5246 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5247 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5248 		 * the NIC copies 40 bytes of IP/TCP header from the
   5249 		 * supplied header into the IP/TCP header portion of
   5250 		 * each post-TSO-segment. If the supplied packet has IP or
   5251 		 * TCP options, we need to tell the NIC to copy those extra
   5252 		 * bytes into each  post-TSO header, in addition to the normal
   5253 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5254 		 * Unfortunately, the driver encoding of option length
   5255 		 * varies across different ASIC families.
   5256 		 */
   5257 		tcp_seg_flags = 0;
   5258 		bge_hlen = ip_tcp_hlen >> 2;
   5259 		if (BGE_IS_5717_PLUS(sc)) {
   5260 			tcp_seg_flags = (bge_hlen & 0x3) << 14;
   5261 			txbd_tso_flags |=
   5262 			    ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
   5263 		} else if (BGE_IS_5705_PLUS(sc)) {
   5264 			tcp_seg_flags = bge_hlen << 11;
   5265 		} else {
   5266 			/* XXX iptcp_opt_words or bge_hlen ? */
   5267 			txbd_tso_flags |= iptcp_opt_words << 12;
   5268 		}
   5269 		maxsegsize = mss | tcp_seg_flags;
   5270 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5271 		ip->ip_sum = 0;
   5272 
   5273 	}	/* TSO setup */
   5274 
   5275 	have_vtag = vlan_has_tag(m_head);
   5276 	if (have_vtag)
   5277 		vtag = vlan_get_tag(m_head);
   5278 
   5279 	/*
   5280 	 * Start packing the mbufs in this chain into
   5281 	 * the fragment pointers. Stop when we run out
   5282 	 * of fragments or hit the end of the mbuf chain.
   5283 	 */
   5284 	remap = true;
   5285 load_again:
   5286 	error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
   5287 	if (__predict_false(error)) {
   5288 		if (error == EFBIG && remap) {
   5289 			struct mbuf *m;
   5290 			remap = false;
   5291 			m = m_defrag(m_head, M_NOWAIT);
   5292 			if (m != NULL) {
   5293 				KASSERT(m == m_head);
   5294 				goto load_again;
   5295 			}
   5296 		}
   5297 		return error;
   5298 	}
   5299 	/*
   5300 	 * Sanity check: avoid coming within 16 descriptors
   5301 	 * of the end of the ring.
   5302 	 */
   5303 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5304 		BGE_TSO_PRINTF(("%s: "
   5305 		    " dmamap_load_mbuf too close to ring wrap\n",
   5306 		    device_xname(sc->bge_dev)));
   5307 		goto fail_unload;
   5308 	}
   5309 
   5310 	/* Iterate over dmap-map fragments. */
   5311 	f = prev_f = NULL;
   5312 	cur = frag = *txidx;
   5313 
   5314 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5315 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5316 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5317 			break;
   5318 
   5319 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5320 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5321 		if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
   5322 		    (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
   5323 		    ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
   5324 		    (prev_f != NULL &&
   5325 		     prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
   5326 		   ) {
   5327 			/*
   5328 			 * watchdog timeout issue was observed with TSO,
   5329 			 * limiting DMA address space to 32bits seems to
   5330 			 * address the issue.
   5331 			 */
   5332 			bus_dmamap_unload(dmatag, dmamap);
   5333 			dmatag = sc->bge_dmatag32;
   5334 			dmamap = dma->dmamap32;
   5335 			dma->is_dma32 = true;
   5336 			remap = true;
   5337 			goto load_again;
   5338 		}
   5339 
   5340 		/*
   5341 		 * For 5751 and follow-ons, for TSO we must turn
   5342 		 * off checksum-assist flag in the tx-descr, and
   5343 		 * supply the ASIC-revision-specific encoding
   5344 		 * of TSO flags and segsize.
   5345 		 */
   5346 		if (use_tso) {
   5347 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5348 				f->bge_rsvd = maxsegsize;
   5349 				f->bge_flags = csum_flags | txbd_tso_flags;
   5350 			} else {
   5351 				f->bge_rsvd = 0;
   5352 				f->bge_flags =
   5353 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5354 			}
   5355 		} else {
   5356 			f->bge_rsvd = 0;
   5357 			f->bge_flags = csum_flags;
   5358 		}
   5359 
   5360 		if (have_vtag) {
   5361 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5362 			f->bge_vlan_tag = vtag;
   5363 		} else {
   5364 			f->bge_vlan_tag = 0;
   5365 		}
   5366 		prev_f = f;
   5367 		cur = frag;
   5368 		BGE_INC(frag, BGE_TX_RING_CNT);
   5369 	}
   5370 
   5371 	if (i < dmamap->dm_nsegs) {
   5372 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5373 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5374 		goto fail_unload;
   5375 	}
   5376 
   5377 	bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
   5378 	    BUS_DMASYNC_PREWRITE);
   5379 
   5380 	if (frag == sc->bge_tx_saved_considx) {
   5381 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5382 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5383 
   5384 		goto fail_unload;
   5385 	}
   5386 
   5387 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5388 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5389 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5390 	sc->txdma[cur] = dma;
   5391 	sc->bge_txcnt += dmamap->dm_nsegs;
   5392 
   5393 	*txidx = frag;
   5394 
   5395 	return 0;
   5396 
   5397 fail_unload:
   5398 	bus_dmamap_unload(dmatag, dmamap);
   5399 	ifp->if_flags |= IFF_OACTIVE;
   5400 
   5401 	return ENOBUFS;
   5402 }
   5403 
   5404 /*
   5405  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5406  * to the mbuf data regions directly in the transmit descriptors.
   5407  */
   5408 static void
   5409 bge_start(struct ifnet *ifp)
   5410 {
   5411 	struct bge_softc * const sc = ifp->if_softc;
   5412 	struct mbuf *m_head = NULL;
   5413 	struct mbuf *m;
   5414 	uint32_t prodidx;
   5415 	int pkts = 0;
   5416 	int error;
   5417 
   5418 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   5419 		return;
   5420 
   5421 	prodidx = sc->bge_tx_prodidx;
   5422 
   5423 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5424 		IFQ_POLL(&ifp->if_snd, m_head);
   5425 		if (m_head == NULL)
   5426 			break;
   5427 
   5428 #if 0
   5429 		/*
   5430 		 * XXX
   5431 		 * safety overkill.  If this is a fragmented packet chain
   5432 		 * with delayed TCP/UDP checksums, then only encapsulate
   5433 		 * it if we have enough descriptors to handle the entire
   5434 		 * chain at once.
   5435 		 * (paranoia -- may not actually be needed)
   5436 		 */
   5437 		if (m_head->m_flags & M_FIRSTFRAG &&
   5438 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5439 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5440 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5441 				ifp->if_flags |= IFF_OACTIVE;
   5442 				break;
   5443 			}
   5444 		}
   5445 #endif
   5446 
   5447 		/*
   5448 		 * Pack the data into the transmit ring. If we
   5449 		 * don't have room, set the OACTIVE flag and wait
   5450 		 * for the NIC to drain the ring.
   5451 		 */
   5452 		error = bge_encap(sc, m_head, &prodidx);
   5453 		if (__predict_false(error)) {
   5454 			if (ifp->if_flags & IFF_OACTIVE) {
   5455 				/* just wait for the transmit ring to drain */
   5456 				break;
   5457 			}
   5458 			IFQ_DEQUEUE(&ifp->if_snd, m);
   5459 			KASSERT(m == m_head);
   5460 			m_freem(m_head);
   5461 			continue;
   5462 		}
   5463 
   5464 		/* now we are committed to transmit the packet */
   5465 		IFQ_DEQUEUE(&ifp->if_snd, m);
   5466 		KASSERT(m == m_head);
   5467 		pkts++;
   5468 
   5469 		/*
   5470 		 * If there's a BPF listener, bounce a copy of this frame
   5471 		 * to him.
   5472 		 */
   5473 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5474 	}
   5475 	if (pkts == 0)
   5476 		return;
   5477 
   5478 	/* Transmit */
   5479 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5480 	/* 5700 b2 errata */
   5481 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5482 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5483 
   5484 	sc->bge_tx_prodidx = prodidx;
   5485 
   5486 	/*
   5487 	 * Set a timeout in case the chip goes out to lunch.
   5488 	 */
   5489 	ifp->if_timer = 5;
   5490 }
   5491 
   5492 static int
   5493 bge_init(struct ifnet *ifp)
   5494 {
   5495 	struct bge_softc * const sc = ifp->if_softc;
   5496 	const uint16_t *m;
   5497 	uint32_t mode, reg;
   5498 	int s, error = 0;
   5499 
   5500 	s = splnet();
   5501 
   5502 	KASSERT(ifp == &sc->ethercom.ec_if);
   5503 
   5504 	/* Cancel pending I/O and flush buffers. */
   5505 	bge_stop(ifp, 0);
   5506 
   5507 	bge_stop_fw(sc);
   5508 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5509 	bge_reset(sc);
   5510 	bge_sig_legacy(sc, BGE_RESET_START);
   5511 
   5512 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5513 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5514 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
   5515 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
   5516 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5517 
   5518 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   5519 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
   5520 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   5521 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   5522 
   5523 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
   5524 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
   5525 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
   5526 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
   5527 
   5528 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
   5529 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
   5530 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
   5531 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
   5532 	}
   5533 
   5534 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   5535 		pcireg_t aercap;
   5536 
   5537 		reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
   5538 		reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
   5539 		    | BGE_PCIE_PWRMNG_L1THRESH_4MS
   5540 		    | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
   5541 		CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
   5542 
   5543 		reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
   5544 		reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
   5545 		    | BGE_PCIE_EIDLE_DELAY_13CLK;
   5546 		CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
   5547 
   5548 		/* Clear correctable error */
   5549 		if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
   5550 		    PCI_EXTCAP_AER, &aercap, NULL) != 0)
   5551 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   5552 			    aercap + PCI_AER_COR_STATUS, 0xffffffff);
   5553 
   5554 		reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   5555 		reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   5556 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   5557 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
   5558 	}
   5559 
   5560 	bge_sig_post_reset(sc, BGE_RESET_START);
   5561 
   5562 	bge_chipinit(sc);
   5563 
   5564 	/*
   5565 	 * Init the various state machines, ring
   5566 	 * control blocks and firmware.
   5567 	 */
   5568 	error = bge_blockinit(sc);
   5569 	if (error != 0) {
   5570 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5571 		    error);
   5572 		splx(s);
   5573 		return error;
   5574 	}
   5575 
   5576 	/* 5718 step 25, 57XX step 54 */
   5577 	/* Specify MTU. */
   5578 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5579 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5580 
   5581 	/* 5718 step 23 */
   5582 	/* Load our MAC address. */
   5583 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5584 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5585 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
   5586 	    ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
   5587 
   5588 	/* Enable or disable promiscuous mode as needed. */
   5589 	if (ifp->if_flags & IFF_PROMISC)
   5590 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5591 	else
   5592 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5593 
   5594 	/* Program multicast filter. */
   5595 	bge_setmulti(sc);
   5596 
   5597 	/* Init RX ring. */
   5598 	bge_init_rx_ring_std(sc);
   5599 
   5600 	/*
   5601 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5602 	 * memory to insure that the chip has in fact read the first
   5603 	 * entry of the ring.
   5604 	 */
   5605 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5606 		uint32_t		v, i;
   5607 		for (i = 0; i < 10; i++) {
   5608 			DELAY(20);
   5609 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5610 			if (v == (MCLBYTES - ETHER_ALIGN))
   5611 				break;
   5612 		}
   5613 		if (i == 10)
   5614 			aprint_error_dev(sc->bge_dev,
   5615 			    "5705 A0 chip failed to load RX ring\n");
   5616 	}
   5617 
   5618 	/* Init jumbo RX ring. */
   5619 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5620 		bge_init_rx_ring_jumbo(sc);
   5621 
   5622 	/* Init our RX return ring index */
   5623 	sc->bge_rx_saved_considx = 0;
   5624 
   5625 	/* Init TX ring. */
   5626 	bge_init_tx_ring(sc);
   5627 
   5628 	/* 5718 step 63, 57XX step 94 */
   5629 	/* Enable TX MAC state machine lockup fix. */
   5630 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5631 	if (BGE_IS_5755_PLUS(sc) ||
   5632 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5633 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5634 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   5635 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   5636 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5637 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5638 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5639 	}
   5640 
   5641 	/* Turn on transmitter */
   5642 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5643 	/* 5718 step 64 */
   5644 	DELAY(100);
   5645 
   5646 	/* 5718 step 65, 57XX step 95 */
   5647 	/* Turn on receiver */
   5648 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5649 	if (BGE_IS_5755_PLUS(sc))
   5650 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5651 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   5652 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
   5653 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5654 	/* 5718 step 66 */
   5655 	DELAY(10);
   5656 
   5657 	/* 5718 step 12, 57XX step 37 */
   5658 	/*
   5659 	 * XXX Doucments of 5718 series and 577xx say the recommended value
   5660 	 * is 1, but tg3 set 1 only on 57765 series.
   5661 	 */
   5662 	if (BGE_IS_57765_PLUS(sc))
   5663 		reg = 1;
   5664 	else
   5665 		reg = 2;
   5666 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
   5667 
   5668 	/* Tell firmware we're alive. */
   5669 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5670 
   5671 	/* Enable host interrupts. */
   5672 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5673 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5674 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5675 
   5676 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5677 		goto out;
   5678 
   5679 	ifp->if_flags |= IFF_RUNNING;
   5680 	ifp->if_flags &= ~IFF_OACTIVE;
   5681 
   5682 	callout_schedule(&sc->bge_timeout, hz);
   5683 
   5684 out:
   5685 	sc->bge_if_flags = ifp->if_flags;
   5686 	splx(s);
   5687 
   5688 	return error;
   5689 }
   5690 
   5691 /*
   5692  * Set media options.
   5693  */
   5694 static int
   5695 bge_ifmedia_upd(struct ifnet *ifp)
   5696 {
   5697 	struct bge_softc * const sc = ifp->if_softc;
   5698 	struct mii_data * const mii = &sc->bge_mii;
   5699 	struct ifmedia * const ifm = &sc->bge_ifmedia;
   5700 	int rc;
   5701 
   5702 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5703 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5704 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5705 			return EINVAL;
   5706 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5707 		case IFM_AUTO:
   5708 			/*
   5709 			 * The BCM5704 ASIC appears to have a special
   5710 			 * mechanism for programming the autoneg
   5711 			 * advertisement registers in TBI mode.
   5712 			 */
   5713 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5714 				uint32_t sgdig;
   5715 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5716 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5717 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5718 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5719 					sgdig |= BGE_SGDIGCFG_AUTO |
   5720 					    BGE_SGDIGCFG_PAUSE_CAP |
   5721 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5722 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5723 					    sgdig | BGE_SGDIGCFG_SEND);
   5724 					DELAY(5);
   5725 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5726 					    sgdig);
   5727 				}
   5728 			}
   5729 			break;
   5730 		case IFM_1000_SX:
   5731 			if ((ifm->ifm_media & IFM_FDX) != 0) {
   5732 				BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   5733 				    BGE_MACMODE_HALF_DUPLEX);
   5734 			} else {
   5735 				BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
   5736 				    BGE_MACMODE_HALF_DUPLEX);
   5737 			}
   5738 			DELAY(40);
   5739 			break;
   5740 		default:
   5741 			return EINVAL;
   5742 		}
   5743 		/* XXX 802.3x flow control for 1000BASE-SX */
   5744 		return 0;
   5745 	}
   5746 
   5747 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
   5748 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
   5749 		uint32_t reg;
   5750 
   5751 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5752 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
   5753 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
   5754 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5755 		}
   5756 	}
   5757 
   5758 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5759 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5760 		return 0;
   5761 
   5762 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5763 		uint32_t reg;
   5764 
   5765 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
   5766 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
   5767 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
   5768 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
   5769 			delay(40);
   5770 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
   5771 		}
   5772 	}
   5773 
   5774 	/*
   5775 	 * Force an interrupt so that we will call bge_link_upd
   5776 	 * if needed and clear any pending link state attention.
   5777 	 * Without this we are not getting any further interrupts
   5778 	 * for link state changes and thus will not UP the link and
   5779 	 * not be able to send in bge_start. The only way to get
   5780 	 * things working was to receive a packet and get a RX intr.
   5781 	 */
   5782 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5783 	    sc->bge_flags & BGEF_IS_5788)
   5784 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5785 	else
   5786 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5787 
   5788 	return rc;
   5789 }
   5790 
   5791 /*
   5792  * Report current media status.
   5793  */
   5794 static void
   5795 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5796 {
   5797 	struct bge_softc * const sc = ifp->if_softc;
   5798 	struct mii_data * const mii = &sc->bge_mii;
   5799 
   5800 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5801 		ifmr->ifm_status = IFM_AVALID;
   5802 		ifmr->ifm_active = IFM_ETHER;
   5803 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5804 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5805 			ifmr->ifm_status |= IFM_ACTIVE;
   5806 		ifmr->ifm_active |= IFM_1000_SX;
   5807 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5808 			ifmr->ifm_active |= IFM_HDX;
   5809 		else
   5810 			ifmr->ifm_active |= IFM_FDX;
   5811 		return;
   5812 	}
   5813 
   5814 	mii_pollstat(mii);
   5815 	ifmr->ifm_status = mii->mii_media_status;
   5816 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5817 	    sc->bge_flowflags;
   5818 }
   5819 
   5820 static int
   5821 bge_ifflags_cb(struct ethercom *ec)
   5822 {
   5823 	struct ifnet * const ifp = &ec->ec_if;
   5824 	struct bge_softc * const sc = ifp->if_softc;
   5825 	u_short change = ifp->if_flags ^ sc->bge_if_flags;
   5826 
   5827 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
   5828 		return ENETRESET;
   5829 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   5830 		return 0;
   5831 
   5832 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   5833 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5834 	else
   5835 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5836 
   5837 	bge_setmulti(sc);
   5838 
   5839 	sc->bge_if_flags = ifp->if_flags;
   5840 	return 0;
   5841 }
   5842 
   5843 static int
   5844 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5845 {
   5846 	struct bge_softc * const sc = ifp->if_softc;
   5847 	struct ifreq * const ifr = (struct ifreq *) data;
   5848 	int s, error = 0;
   5849 	struct mii_data *mii;
   5850 
   5851 	s = splnet();
   5852 
   5853 	switch (command) {
   5854 	case SIOCSIFMEDIA:
   5855 		/* XXX Flow control is not supported for 1000BASE-SX */
   5856 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5857 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5858 			sc->bge_flowflags = 0;
   5859 		}
   5860 
   5861 		/* Flow control requires full-duplex mode. */
   5862 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5863 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5864 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5865 		}
   5866 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5867 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5868 				/* We can do both TXPAUSE and RXPAUSE. */
   5869 				ifr->ifr_media |=
   5870 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5871 			}
   5872 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5873 		}
   5874 
   5875 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5876 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5877 			    command);
   5878 		} else {
   5879 			mii = &sc->bge_mii;
   5880 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5881 			    command);
   5882 		}
   5883 		break;
   5884 	default:
   5885 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5886 			break;
   5887 
   5888 		error = 0;
   5889 
   5890 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   5891 			;
   5892 		else if (ifp->if_flags & IFF_RUNNING)
   5893 			bge_setmulti(sc);
   5894 		break;
   5895 	}
   5896 
   5897 	splx(s);
   5898 
   5899 	return error;
   5900 }
   5901 
   5902 static void
   5903 bge_watchdog(struct ifnet *ifp)
   5904 {
   5905 	struct bge_softc * const sc = ifp->if_softc;
   5906 	uint32_t status;
   5907 
   5908 	/* If pause frames are active then don't reset the hardware. */
   5909 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
   5910 		status = CSR_READ_4(sc, BGE_RX_STS);
   5911 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
   5912 			/*
   5913 			 * If link partner has us in XOFF state then wait for
   5914 			 * the condition to clear.
   5915 			 */
   5916 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   5917 			ifp->if_timer = 5;
   5918 			return;
   5919 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
   5920 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
   5921 			/*
   5922 			 * If link partner has us in XOFF state then wait for
   5923 			 * the condition to clear.
   5924 			 */
   5925 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   5926 			ifp->if_timer = 5;
   5927 			return;
   5928 		}
   5929 		/*
   5930 		 * Any other condition is unexpected and the controller
   5931 		 * should be reset.
   5932 		 */
   5933 	}
   5934 
   5935 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   5936 
   5937 	ifp->if_flags &= ~IFF_RUNNING;
   5938 	bge_init(ifp);
   5939 
   5940 	if_statinc(ifp, if_oerrors);
   5941 }
   5942 
   5943 static void
   5944 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   5945 {
   5946 	int i;
   5947 
   5948 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   5949 
   5950 	for (i = 0; i < 1000; i++) {
   5951 		delay(100);
   5952 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   5953 			return;
   5954 	}
   5955 
   5956 	/*
   5957 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   5958 	 * on some environment (and once after boot?)
   5959 	 */
   5960 	if (reg != BGE_SRS_MODE)
   5961 		aprint_error_dev(sc->bge_dev,
   5962 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   5963 		    (u_long)reg, bit);
   5964 }
   5965 
   5966 /*
   5967  * Stop the adapter and free any mbufs allocated to the
   5968  * RX and TX lists.
   5969  */
   5970 static void
   5971 bge_stop(struct ifnet *ifp, int disable)
   5972 {
   5973 	struct bge_softc * const sc = ifp->if_softc;
   5974 
   5975 	if (disable) {
   5976 		sc->bge_detaching = 1;
   5977 		callout_halt(&sc->bge_timeout, NULL);
   5978 	} else
   5979 		callout_stop(&sc->bge_timeout);
   5980 
   5981 	/* Disable host interrupts. */
   5982 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5983 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   5984 
   5985 	/*
   5986 	 * Tell firmware we're shutting down.
   5987 	 */
   5988 	bge_stop_fw(sc);
   5989 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   5990 
   5991 	/*
   5992 	 * Disable all of the receiver blocks.
   5993 	 */
   5994 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   5995 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   5996 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   5997 	if (BGE_IS_5700_FAMILY(sc))
   5998 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   5999 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   6000 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   6001 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   6002 
   6003 	/*
   6004 	 * Disable all of the transmit blocks.
   6005 	 */
   6006 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   6007 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   6008 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   6009 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   6010 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   6011 	if (BGE_IS_5700_FAMILY(sc))
   6012 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   6013 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   6014 
   6015 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   6016 	delay(40);
   6017 
   6018 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   6019 
   6020 	/*
   6021 	 * Shut down all of the memory managers and related
   6022 	 * state machines.
   6023 	 */
   6024 	/* 5718 step 5a,5b */
   6025 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   6026 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   6027 	if (BGE_IS_5700_FAMILY(sc))
   6028 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   6029 
   6030 	/* 5718 step 5c,5d */
   6031 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   6032 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   6033 
   6034 	if (BGE_IS_5700_FAMILY(sc)) {
   6035 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   6036 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   6037 	}
   6038 
   6039 	bge_reset(sc);
   6040 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   6041 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   6042 
   6043 	/*
   6044 	 * Keep the ASF firmware running if up.
   6045 	 */
   6046 	if (sc->bge_asf_mode & ASF_STACKUP)
   6047 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6048 	else
   6049 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6050 
   6051 	/* Free the RX lists. */
   6052 	bge_free_rx_ring_std(sc, disable);
   6053 
   6054 	/* Free jumbo RX list. */
   6055 	if (BGE_IS_JUMBO_CAPABLE(sc))
   6056 		bge_free_rx_ring_jumbo(sc);
   6057 
   6058 	/* Free TX buffers. */
   6059 	bge_free_tx_ring(sc, disable);
   6060 
   6061 	/*
   6062 	 * Isolate/power down the PHY.
   6063 	 */
   6064 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
   6065 		mii_down(&sc->bge_mii);
   6066 
   6067 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   6068 
   6069 	/* Clear MAC's link state (PHY may still have link UP). */
   6070 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6071 
   6072 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   6073 }
   6074 
   6075 static void
   6076 bge_link_upd(struct bge_softc *sc)
   6077 {
   6078 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   6079 	struct mii_data * const mii = &sc->bge_mii;
   6080 	uint32_t status;
   6081 	uint16_t phyval;
   6082 	int link;
   6083 
   6084 	/* Clear 'pending link event' flag */
   6085 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   6086 
   6087 	/*
   6088 	 * Process link state changes.
   6089 	 * Grrr. The link status word in the status block does
   6090 	 * not work correctly on the BCM5700 rev AX and BX chips,
   6091 	 * according to all available information. Hence, we have
   6092 	 * to enable MII interrupts in order to properly obtain
   6093 	 * async link changes. Unfortunately, this also means that
   6094 	 * we have to read the MAC status register to detect link
   6095 	 * changes, thereby adding an additional register access to
   6096 	 * the interrupt handler.
   6097 	 */
   6098 
   6099 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   6100 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6101 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   6102 			mii_pollstat(mii);
   6103 
   6104 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6105 			    mii->mii_media_status & IFM_ACTIVE &&
   6106 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6107 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6108 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6109 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6110 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6111 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6112 
   6113 			/* Clear the interrupt */
   6114 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   6115 			    BGE_EVTENB_MI_INTERRUPT);
   6116 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   6117 			    BRGPHY_MII_ISR, &phyval);
   6118 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   6119 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   6120 		}
   6121 		return;
   6122 	}
   6123 
   6124 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   6125 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6126 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   6127 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6128 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6129 				if (BGE_ASICREV(sc->bge_chipid)
   6130 				    == BGE_ASICREV_BCM5704) {
   6131 					BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   6132 					    BGE_MACMODE_TBI_SEND_CFGS);
   6133 					DELAY(40);
   6134 				}
   6135 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   6136 				if_link_state_change(ifp, LINK_STATE_UP);
   6137 			}
   6138 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6139 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6140 			if_link_state_change(ifp, LINK_STATE_DOWN);
   6141 		}
   6142 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   6143 		/*
   6144 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   6145 		 * bit in status word always set. Workaround this bug by
   6146 		 * reading PHY link status directly.
   6147 		 */
   6148 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   6149 		    BGE_STS_LINK : 0;
   6150 
   6151 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   6152 			mii_pollstat(mii);
   6153 
   6154 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6155 			    mii->mii_media_status & IFM_ACTIVE &&
   6156 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6157 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6158 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6159 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6160 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6161 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6162 		}
   6163 	} else {
   6164 		/*
   6165 		 * For controllers that call mii_tick, we have to poll
   6166 		 * link status.
   6167 		 */
   6168 		mii_pollstat(mii);
   6169 	}
   6170 
   6171 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   6172 		uint32_t reg, scale;
   6173 
   6174 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
   6175 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
   6176 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
   6177 			scale = 65;
   6178 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
   6179 			scale = 6;
   6180 		else
   6181 			scale = 12;
   6182 
   6183 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
   6184 		    ~BGE_MISCCFG_TIMER_PRESCALER;
   6185 		reg |= scale << 1;
   6186 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
   6187 	}
   6188 	/* Clear the attention */
   6189 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   6190 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   6191 	    BGE_MACSTAT_LINK_CHANGED);
   6192 }
   6193 
   6194 static int
   6195 bge_sysctl_verify(SYSCTLFN_ARGS)
   6196 {
   6197 	int error, t;
   6198 	struct sysctlnode node;
   6199 
   6200 	node = *rnode;
   6201 	t = *(int*)rnode->sysctl_data;
   6202 	node.sysctl_data = &t;
   6203 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   6204 	if (error || newp == NULL)
   6205 		return error;
   6206 
   6207 #if 0
   6208 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   6209 	    node.sysctl_num, rnode->sysctl_num));
   6210 #endif
   6211 
   6212 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   6213 		if (t < 0 || t >= NBGE_RX_THRESH)
   6214 			return EINVAL;
   6215 		bge_update_all_threshes(t);
   6216 	} else
   6217 		return EINVAL;
   6218 
   6219 	*(int*)rnode->sysctl_data = t;
   6220 
   6221 	return 0;
   6222 }
   6223 
   6224 /*
   6225  * Set up sysctl(3) MIB, hw.bge.*.
   6226  */
   6227 static void
   6228 bge_sysctl_init(struct bge_softc *sc)
   6229 {
   6230 	int rc, bge_root_num;
   6231 	const struct sysctlnode *node;
   6232 
   6233 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6234 	    0, CTLTYPE_NODE, "bge",
   6235 	    SYSCTL_DESCR("BGE interface controls"),
   6236 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   6237 		goto out;
   6238 	}
   6239 
   6240 	bge_root_num = node->sysctl_num;
   6241 
   6242 	/* BGE Rx interrupt mitigation level */
   6243 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6244 	    CTLFLAG_READWRITE,
   6245 	    CTLTYPE_INT, "rx_lvl",
   6246 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   6247 	    bge_sysctl_verify, 0,
   6248 	    &bge_rx_thresh_lvl,
   6249 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   6250 	    CTL_EOL)) != 0) {
   6251 		goto out;
   6252 	}
   6253 
   6254 	bge_rxthresh_nodenum = node->sysctl_num;
   6255 
   6256 	return;
   6257 
   6258 out:
   6259 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   6260 }
   6261 
   6262 #ifdef BGE_DEBUG
   6263 void
   6264 bge_debug_info(struct bge_softc *sc)
   6265 {
   6266 
   6267 	printf("Hardware Flags:\n");
   6268 	if (BGE_IS_57765_PLUS(sc))
   6269 		printf(" - 57765 Plus\n");
   6270 	if (BGE_IS_5717_PLUS(sc))
   6271 		printf(" - 5717 Plus\n");
   6272 	if (BGE_IS_5755_PLUS(sc))
   6273 		printf(" - 5755 Plus\n");
   6274 	if (BGE_IS_575X_PLUS(sc))
   6275 		printf(" - 575X Plus\n");
   6276 	if (BGE_IS_5705_PLUS(sc))
   6277 		printf(" - 5705 Plus\n");
   6278 	if (BGE_IS_5714_FAMILY(sc))
   6279 		printf(" - 5714 Family\n");
   6280 	if (BGE_IS_5700_FAMILY(sc))
   6281 		printf(" - 5700 Family\n");
   6282 	if (sc->bge_flags & BGEF_IS_5788)
   6283 		printf(" - 5788\n");
   6284 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
   6285 		printf(" - Supports Jumbo Frames\n");
   6286 	if (sc->bge_flags & BGEF_NO_EEPROM)
   6287 		printf(" - No EEPROM\n");
   6288 	if (sc->bge_flags & BGEF_PCIX)
   6289 		printf(" - PCI-X Bus\n");
   6290 	if (sc->bge_flags & BGEF_PCIE)
   6291 		printf(" - PCI Express Bus\n");
   6292 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
   6293 		printf(" - RX Alignment Bug\n");
   6294 	if (sc->bge_flags & BGEF_APE)
   6295 		printf(" - APE\n");
   6296 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
   6297 		printf(" - CPMU\n");
   6298 	if (sc->bge_flags & BGEF_TSO)
   6299 		printf(" - TSO\n");
   6300 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   6301 		printf(" - TAGGED_STATUS\n");
   6302 
   6303 	/* PHY related */
   6304 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
   6305 		printf(" - No 3 LEDs\n");
   6306 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
   6307 		printf(" - CRC bug\n");
   6308 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
   6309 		printf(" - ADC bug\n");
   6310 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
   6311 		printf(" - 5704 A0 bug\n");
   6312 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
   6313 		printf(" - jitter bug\n");
   6314 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
   6315 		printf(" - BER bug\n");
   6316 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
   6317 		printf(" - adjust trim\n");
   6318 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
   6319 		printf(" - no wirespeed\n");
   6320 
   6321 	/* ASF related */
   6322 	if (sc->bge_asf_mode & ASF_ENABLE)
   6323 		printf(" - ASF enable\n");
   6324 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
   6325 		printf(" - ASF new handshake\n");
   6326 	if (sc->bge_asf_mode & ASF_STACKUP)
   6327 		printf(" - ASF stackup\n");
   6328 }
   6329 #endif /* BGE_DEBUG */
   6330 
   6331 static int
   6332 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   6333 {
   6334 	prop_dictionary_t dict;
   6335 	prop_data_t ea;
   6336 
   6337 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
   6338 		return 1;
   6339 
   6340 	dict = device_properties(sc->bge_dev);
   6341 	ea = prop_dictionary_get(dict, "mac-address");
   6342 	if (ea != NULL) {
   6343 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   6344 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   6345 		memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
   6346 		return 0;
   6347 	}
   6348 
   6349 	return 1;
   6350 }
   6351 
   6352 static int
   6353 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   6354 {
   6355 	uint32_t mac_addr;
   6356 
   6357 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   6358 	if ((mac_addr >> 16) == 0x484b) {
   6359 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   6360 		ether_addr[1] = (uint8_t)mac_addr;
   6361 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   6362 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   6363 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   6364 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   6365 		ether_addr[5] = (uint8_t)mac_addr;
   6366 		return 0;
   6367 	}
   6368 	return 1;
   6369 }
   6370 
   6371 static int
   6372 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   6373 {
   6374 	int mac_offset = BGE_EE_MAC_OFFSET;
   6375 
   6376 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6377 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   6378 
   6379 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   6380 	    ETHER_ADDR_LEN));
   6381 }
   6382 
   6383 static int
   6384 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   6385 {
   6386 
   6387 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6388 		return 1;
   6389 
   6390 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   6391 	   ETHER_ADDR_LEN));
   6392 }
   6393 
   6394 static int
   6395 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6396 {
   6397 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6398 		/* NOTE: Order is critical */
   6399 		bge_get_eaddr_fw,
   6400 		bge_get_eaddr_mem,
   6401 		bge_get_eaddr_nvram,
   6402 		bge_get_eaddr_eeprom,
   6403 		NULL
   6404 	};
   6405 	const bge_eaddr_fcn_t *func;
   6406 
   6407 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6408 		if ((*func)(sc, eaddr) == 0)
   6409 			break;
   6410 	}
   6411 	return *func == NULL ? ENXIO : 0;
   6412 }
   6413