Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.373
      1 /*	$NetBSD: if_bge.c,v 1.373 2022/08/07 08:37:48 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.373 2022/08/07 08:37:48 skrll Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/types.h>
     86 
     87 #include <sys/callout.h>
     88 #include <sys/device.h>
     89 #include <sys/kernel.h>
     90 #include <sys/kmem.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/rndsource.h>
     93 #include <sys/socket.h>
     94 #include <sys/sockio.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/systm.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 #include <net/bpf.h>
    103 
    104 #ifdef INET
    105 #include <netinet/in.h>
    106 #include <netinet/in_systm.h>
    107 #include <netinet/in_var.h>
    108 #include <netinet/ip.h>
    109 #endif
    110 
    111 /* Headers for TCP Segmentation Offload (TSO) */
    112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    114 #include <netinet/ip.h>			/* for struct ip */
    115 #include <netinet/tcp.h>		/* for struct tcphdr */
    116 
    117 #include <dev/pci/pcireg.h>
    118 #include <dev/pci/pcivar.h>
    119 #include <dev/pci/pcidevs.h>
    120 
    121 #include <dev/mii/mii.h>
    122 #include <dev/mii/miivar.h>
    123 #include <dev/mii/miidevs.h>
    124 #include <dev/mii/brgphyreg.h>
    125 
    126 #include <dev/pci/if_bgereg.h>
    127 #include <dev/pci/if_bgevar.h>
    128 
    129 #include <prop/proplib.h>
    130 
    131 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    132 
    133 
    134 /*
    135  * Tunable thresholds for rx-side bge interrupt mitigation.
    136  */
    137 
    138 /*
    139  * The pairs of values below were obtained from empirical measurement
    140  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    141  * interrupt for every N packets received, where N is, approximately,
    142  * the second value (rx_max_bds) in each pair.  The values are chosen
    143  * such that moving from one pair to the succeeding pair was observed
    144  * to roughly halve interrupt rate under sustained input packet load.
    145  * The values were empirically chosen to avoid overflowing internal
    146  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    147  * results in internal wrapping and higher interrupt rates.
    148  * The limit of 46 frames was chosen to match NFS workloads.
    149  *
    150  * These values also work well on bcm5701, bcm5704C, and (less
    151  * tested) bcm5703.  On other chipsets, (including the Altima chip
    152  * family), the larger values may overflow internal chip limits,
    153  * leading to increasing interrupt rates rather than lower interrupt
    154  * rates.
    155  *
    156  * Applications using heavy interrupt mitigation (interrupting every
    157  * 32 or 46 frames) in both directions may need to increase the TCP
    158  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    159  * full link bandwidth, due to ACKs and window updates lingering
    160  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    161  */
    162 static const struct bge_load_rx_thresh {
    163 	int rx_ticks;
    164 	int rx_max_bds; }
    165 bge_rx_threshes[] = {
    166 	{ 16,	1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    167 	{ 32,	2 },
    168 	{ 50,	4 },
    169 	{ 100,	8 },
    170 	{ 192, 16 },
    171 	{ 416, 32 },
    172 	{ 598, 46 }
    173 };
    174 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    175 
    176 /* XXX patchable; should be sysctl'able */
    177 static int bge_auto_thresh = 1;
    178 static int bge_rx_thresh_lvl;
    179 
    180 static int bge_rxthresh_nodenum;
    181 
    182 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    183 
    184 static uint32_t bge_chipid(const struct pci_attach_args *);
    185 static int bge_can_use_msi(struct bge_softc *);
    186 static int bge_probe(device_t, cfdata_t, void *);
    187 static void bge_attach(device_t, device_t, void *);
    188 static int bge_detach(device_t, int);
    189 static void bge_release_resources(struct bge_softc *);
    190 
    191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    196 
    197 static void bge_txeof(struct bge_softc *);
    198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    199 static void bge_rxeof(struct bge_softc *);
    200 
    201 static void bge_asf_driver_up (struct bge_softc *);
    202 static void bge_tick(void *);
    203 static void bge_stats_update(struct bge_softc *);
    204 static void bge_stats_update_regs(struct bge_softc *);
    205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    206 
    207 static int bge_intr(void *);
    208 static void bge_start(struct ifnet *);
    209 static int bge_ifflags_cb(struct ethercom *);
    210 static int bge_ioctl(struct ifnet *, u_long, void *);
    211 static int bge_init(struct ifnet *);
    212 static void bge_stop(struct ifnet *, int);
    213 static void bge_watchdog(struct ifnet *);
    214 static int bge_ifmedia_upd(struct ifnet *);
    215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    216 
    217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    219 
    220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    222 static void bge_setmulti(struct bge_softc *);
    223 
    224 static void bge_handle_events(struct bge_softc *);
    225 static int bge_alloc_jumbo_mem(struct bge_softc *);
    226 static void bge_free_jumbo_mem(struct bge_softc *);
    227 static void *bge_jalloc(struct bge_softc *);
    228 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    229 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
    230 			       bus_dmamap_t);
    231 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    232 static int bge_init_rx_ring_std(struct bge_softc *);
    233 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
    234 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    235 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    236 static void bge_free_tx_ring(struct bge_softc *m, bool);
    237 static int bge_init_tx_ring(struct bge_softc *);
    238 
    239 static int bge_chipinit(struct bge_softc *);
    240 static int bge_blockinit(struct bge_softc *);
    241 static int bge_phy_addr(struct bge_softc *);
    242 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    243 static void bge_writemem_ind(struct bge_softc *, int, int);
    244 static void bge_writembx(struct bge_softc *, int, int);
    245 static void bge_writembx_flush(struct bge_softc *, int, int);
    246 static void bge_writemem_direct(struct bge_softc *, int, int);
    247 static void bge_writereg_ind(struct bge_softc *, int, int);
    248 static void bge_set_max_readrq(struct bge_softc *);
    249 
    250 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
    251 static int bge_miibus_writereg(device_t, int, int, uint16_t);
    252 static void bge_miibus_statchg(struct ifnet *);
    253 
    254 #define BGE_RESET_SHUTDOWN	0
    255 #define	BGE_RESET_START		1
    256 #define	BGE_RESET_SUSPEND	2
    257 static void bge_sig_post_reset(struct bge_softc *, int);
    258 static void bge_sig_legacy(struct bge_softc *, int);
    259 static void bge_sig_pre_reset(struct bge_softc *, int);
    260 static void bge_wait_for_event_ack(struct bge_softc *);
    261 static void bge_stop_fw(struct bge_softc *);
    262 static int bge_reset(struct bge_softc *);
    263 static void bge_link_upd(struct bge_softc *);
    264 static void bge_sysctl_init(struct bge_softc *);
    265 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    266 
    267 static void bge_ape_lock_init(struct bge_softc *);
    268 static void bge_ape_read_fw_ver(struct bge_softc *);
    269 static int bge_ape_lock(struct bge_softc *, int);
    270 static void bge_ape_unlock(struct bge_softc *, int);
    271 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    272 static void bge_ape_driver_state_change(struct bge_softc *, int);
    273 
    274 #ifdef BGE_DEBUG
    275 #define DPRINTF(x)	if (bgedebug) printf x
    276 #define DPRINTFN(n, x)	if (bgedebug >= (n)) printf x
    277 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    278 int	bgedebug = 0;
    279 int	bge_tso_debug = 0;
    280 void	bge_debug_info(struct bge_softc *);
    281 #else
    282 #define DPRINTF(x)
    283 #define DPRINTFN(n, x)
    284 #define BGE_TSO_PRINTF(x)
    285 #endif
    286 
    287 #ifdef BGE_EVENT_COUNTERS
    288 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    289 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    290 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    291 #else
    292 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    293 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    294 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    295 #endif
    296 
    297 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
    298 /*
    299  * The BCM5700 documentation seems to indicate that the hardware still has the
    300  * Alteon vendor ID burned into it, though it should always be overridden by
    301  * the value in the EEPROM.  We'll check for it anyway.
    302  */
    303 static const struct bge_product {
    304 	pci_vendor_id_t		bp_vendor;
    305 	pci_product_id_t	bp_product;
    306 	const char		*bp_name;
    307 } bge_products[] = {
    308 	{ VIDDID(ALTEON,   BCM5700),	"Broadcom BCM5700 Gigabit" },
    309 	{ VIDDID(ALTEON,   BCM5701),	"Broadcom BCM5701 Gigabit" },
    310 	{ VIDDID(ALTIMA,   AC1000),	"Altima AC1000 Gigabit" },
    311 	{ VIDDID(ALTIMA,   AC1001),	"Altima AC1001 Gigabit" },
    312 	{ VIDDID(ALTIMA,   AC1003),	"Altima AC1003 Gigabit" },
    313 	{ VIDDID(ALTIMA,   AC9100),	"Altima AC9100 Gigabit" },
    314 	{ VIDDID(APPLE,	   BCM5701),	"APPLE BCM5701 Gigabit" },
    315 	{ VIDDID(BROADCOM, BCM5700),	"Broadcom BCM5700 Gigabit" },
    316 	{ VIDDID(BROADCOM, BCM5701),	"Broadcom BCM5701 Gigabit" },
    317 	{ VIDDID(BROADCOM, BCM5702),	"Broadcom BCM5702 Gigabit" },
    318 	{ VIDDID(BROADCOM, BCM5702FE),	"Broadcom BCM5702FE Fast" },
    319 	{ VIDDID(BROADCOM, BCM5702X),	"Broadcom BCM5702X Gigabit" },
    320 	{ VIDDID(BROADCOM, BCM5703),	"Broadcom BCM5703 Gigabit" },
    321 	{ VIDDID(BROADCOM, BCM5703X),	"Broadcom BCM5703X Gigabit" },
    322 	{ VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
    323 	{ VIDDID(BROADCOM, BCM5704C),	"Broadcom BCM5704C Dual Gigabit" },
    324 	{ VIDDID(BROADCOM, BCM5704S),	"Broadcom BCM5704S Dual Gigabit" },
    325 	{ VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
    326 	{ VIDDID(BROADCOM, BCM5705),	"Broadcom BCM5705 Gigabit" },
    327 	{ VIDDID(BROADCOM, BCM5705F),	"Broadcom BCM5705F Gigabit" },
    328 	{ VIDDID(BROADCOM, BCM5705K),	"Broadcom BCM5705K Gigabit" },
    329 	{ VIDDID(BROADCOM, BCM5705M),	"Broadcom BCM5705M Gigabit" },
    330 	{ VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
    331 	{ VIDDID(BROADCOM, BCM5714),	"Broadcom BCM5714 Gigabit" },
    332 	{ VIDDID(BROADCOM, BCM5714S),	"Broadcom BCM5714S Gigabit" },
    333 	{ VIDDID(BROADCOM, BCM5715),	"Broadcom BCM5715 Gigabit" },
    334 	{ VIDDID(BROADCOM, BCM5715S),	"Broadcom BCM5715S Gigabit" },
    335 	{ VIDDID(BROADCOM, BCM5717),	"Broadcom BCM5717 Gigabit" },
    336 	{ VIDDID(BROADCOM, BCM5717C),	"Broadcom BCM5717 Gigabit" },
    337 	{ VIDDID(BROADCOM, BCM5718),	"Broadcom BCM5718 Gigabit" },
    338 	{ VIDDID(BROADCOM, BCM5719),	"Broadcom BCM5719 Gigabit" },
    339 	{ VIDDID(BROADCOM, BCM5720),	"Broadcom BCM5720 Gigabit" },
    340 	{ VIDDID(BROADCOM, BCM5721),	"Broadcom BCM5721 Gigabit" },
    341 	{ VIDDID(BROADCOM, BCM5722),	"Broadcom BCM5722 Gigabit" },
    342 	{ VIDDID(BROADCOM, BCM5723),	"Broadcom BCM5723 Gigabit" },
    343 	{ VIDDID(BROADCOM, BCM5725),	"Broadcom BCM5725 Gigabit" },
    344 	{ VIDDID(BROADCOM, BCM5727),	"Broadcom BCM5727 Gigabit" },
    345 	{ VIDDID(BROADCOM, BCM5750),	"Broadcom BCM5750 Gigabit" },
    346 	{ VIDDID(BROADCOM, BCM5751),	"Broadcom BCM5751 Gigabit" },
    347 	{ VIDDID(BROADCOM, BCM5751F),	"Broadcom BCM5751F Gigabit" },
    348 	{ VIDDID(BROADCOM, BCM5751M),	"Broadcom BCM5751M Gigabit" },
    349 	{ VIDDID(BROADCOM, BCM5752),	"Broadcom BCM5752 Gigabit" },
    350 	{ VIDDID(BROADCOM, BCM5752M),	"Broadcom BCM5752M Gigabit" },
    351 	{ VIDDID(BROADCOM, BCM5753),	"Broadcom BCM5753 Gigabit" },
    352 	{ VIDDID(BROADCOM, BCM5753F),	"Broadcom BCM5753F Gigabit" },
    353 	{ VIDDID(BROADCOM, BCM5753M),	"Broadcom BCM5753M Gigabit" },
    354 	{ VIDDID(BROADCOM, BCM5754),	"Broadcom BCM5754 Gigabit" },
    355 	{ VIDDID(BROADCOM, BCM5754M),	"Broadcom BCM5754M Gigabit" },
    356 	{ VIDDID(BROADCOM, BCM5755),	"Broadcom BCM5755 Gigabit" },
    357 	{ VIDDID(BROADCOM, BCM5755M),	"Broadcom BCM5755M Gigabit" },
    358 	{ VIDDID(BROADCOM, BCM5756),	"Broadcom BCM5756 Gigabit" },
    359 	{ VIDDID(BROADCOM, BCM5761),	"Broadcom BCM5761 Gigabit" },
    360 	{ VIDDID(BROADCOM, BCM5761E),	"Broadcom BCM5761E Gigabit" },
    361 	{ VIDDID(BROADCOM, BCM5761S),	"Broadcom BCM5761S Gigabit" },
    362 	{ VIDDID(BROADCOM, BCM5761SE),	"Broadcom BCM5761SE Gigabit" },
    363 	{ VIDDID(BROADCOM, BCM5762),	"Broadcom BCM5762 Gigabit" },
    364 	{ VIDDID(BROADCOM, BCM5764),	"Broadcom BCM5764 Gigabit" },
    365 	{ VIDDID(BROADCOM, BCM5780),	"Broadcom BCM5780 Gigabit" },
    366 	{ VIDDID(BROADCOM, BCM5780S),	"Broadcom BCM5780S Gigabit" },
    367 	{ VIDDID(BROADCOM, BCM5781),	"Broadcom BCM5781 Gigabit" },
    368 	{ VIDDID(BROADCOM, BCM5782),	"Broadcom BCM5782 Gigabit" },
    369 	{ VIDDID(BROADCOM, BCM5784M),	"BCM5784M NetLink 1000baseT" },
    370 	{ VIDDID(BROADCOM, BCM5785F),	"BCM5785F NetLink 10/100" },
    371 	{ VIDDID(BROADCOM, BCM5785G),	"BCM5785G NetLink 1000baseT" },
    372 	{ VIDDID(BROADCOM, BCM5786),	"Broadcom BCM5786 Gigabit" },
    373 	{ VIDDID(BROADCOM, BCM5787),	"Broadcom BCM5787 Gigabit" },
    374 	{ VIDDID(BROADCOM, BCM5787F),	"Broadcom BCM5787F 10/100" },
    375 	{ VIDDID(BROADCOM, BCM5787M),	"Broadcom BCM5787M Gigabit" },
    376 	{ VIDDID(BROADCOM, BCM5788),	"Broadcom BCM5788 Gigabit" },
    377 	{ VIDDID(BROADCOM, BCM5789),	"Broadcom BCM5789 Gigabit" },
    378 	{ VIDDID(BROADCOM, BCM5901),	"Broadcom BCM5901 Fast" },
    379 	{ VIDDID(BROADCOM, BCM5901A2),	"Broadcom BCM5901A2 Fast" },
    380 	{ VIDDID(BROADCOM, BCM5903M),	"Broadcom BCM5903M Fast" },
    381 	{ VIDDID(BROADCOM, BCM5906),	"Broadcom BCM5906 Fast" },
    382 	{ VIDDID(BROADCOM, BCM5906M),	"Broadcom BCM5906M Fast" },
    383 	{ VIDDID(BROADCOM, BCM57760),	"Broadcom BCM57760 Gigabit" },
    384 	{ VIDDID(BROADCOM, BCM57761),	"Broadcom BCM57761 Gigabit" },
    385 	{ VIDDID(BROADCOM, BCM57762),	"Broadcom BCM57762 Gigabit" },
    386 	{ VIDDID(BROADCOM, BCM57764),	"Broadcom BCM57764 Gigabit" },
    387 	{ VIDDID(BROADCOM, BCM57765),	"Broadcom BCM57765 Gigabit" },
    388 	{ VIDDID(BROADCOM, BCM57766),	"Broadcom BCM57766 Gigabit" },
    389 	{ VIDDID(BROADCOM, BCM57767),	"Broadcom BCM57767 Gigabit" },
    390 	{ VIDDID(BROADCOM, BCM57780),	"Broadcom BCM57780 Gigabit" },
    391 	{ VIDDID(BROADCOM, BCM57781),	"Broadcom BCM57781 Gigabit" },
    392 	{ VIDDID(BROADCOM, BCM57782),	"Broadcom BCM57782 Gigabit" },
    393 	{ VIDDID(BROADCOM, BCM57785),	"Broadcom BCM57785 Gigabit" },
    394 	{ VIDDID(BROADCOM, BCM57786),	"Broadcom BCM57786 Gigabit" },
    395 	{ VIDDID(BROADCOM, BCM57787),	"Broadcom BCM57787 Gigabit" },
    396 	{ VIDDID(BROADCOM, BCM57788),	"Broadcom BCM57788 Gigabit" },
    397 	{ VIDDID(BROADCOM, BCM57790),	"Broadcom BCM57790 Gigabit" },
    398 	{ VIDDID(BROADCOM, BCM57791),	"Broadcom BCM57791 Gigabit" },
    399 	{ VIDDID(BROADCOM, BCM57795),	"Broadcom BCM57795 Gigabit" },
    400 	{ VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
    401 	{ VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
    402 	{ VIDDID(3COM, 3C996),		"3Com 3c996 Gigabit" },
    403 	{ VIDDID(FUJITSU4, PW008GE4),	"Fujitsu PW008GE4 Gigabit" },
    404 	{ VIDDID(FUJITSU4, PW008GE5),	"Fujitsu PW008GE5 Gigabit" },
    405 	{ VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
    406 	{ 0, 0, NULL },
    407 };
    408 
    409 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
    410 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
    411 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
    412 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
    413 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
    414 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
    415 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
    416 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
    417 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
    418 
    419 static const struct bge_revision {
    420 	uint32_t		br_chipid;
    421 	const char		*br_name;
    422 } bge_revisions[] = {
    423 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    424 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    425 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    426 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    427 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    428 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    429 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    430 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    431 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    432 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    433 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    434 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    435 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    436 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    437 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    438 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    439 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    440 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    441 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    442 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    443 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    444 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    445 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    446 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    447 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    448 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    449 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    450 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    451 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    452 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    453 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    454 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    455 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    456 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    457 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    458 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    459 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    460 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    461 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    462 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    463 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    464 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    465 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    466 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    467 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    468 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    469 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    470 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    471 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    472 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    473 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    474 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    475 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    476 	{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
    477 	{ BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
    478 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    479 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    480 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
    481 	/* 5754 and 5787 share the same ASIC ID */
    482 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    483 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    484 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    485 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    486 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    487 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    488 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    489 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    490 	{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
    491 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    492 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    493 
    494 	{ 0, NULL }
    495 };
    496 
    497 /*
    498  * Some defaults for major revisions, so that newer steppings
    499  * that we don't know about have a shot at working.
    500  */
    501 static const struct bge_revision bge_majorrevs[] = {
    502 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    503 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    504 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    505 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    506 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    507 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    508 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    509 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    510 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    511 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    512 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    513 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    514 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    515 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    516 	/* 5754 and 5787 share the same ASIC ID */
    517 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    518 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    519 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    520 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    521 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    522 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    523 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    524 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    525 	{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
    526 
    527 	{ 0, NULL }
    528 };
    529 
    530 static int bge_allow_asf = 1;
    531 
    532 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    533     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    534 
    535 static uint32_t
    536 bge_readmem_ind(struct bge_softc *sc, int off)
    537 {
    538 	pcireg_t val;
    539 
    540 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    541 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    542 		return 0;
    543 
    544 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    545 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    546 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    547 	return val;
    548 }
    549 
    550 static void
    551 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    552 {
    553 
    554 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    555 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    556 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    557 }
    558 
    559 /*
    560  * PCI Express only
    561  */
    562 static void
    563 bge_set_max_readrq(struct bge_softc *sc)
    564 {
    565 	pcireg_t val;
    566 
    567 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    568 	    + PCIE_DCSR);
    569 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    570 	switch (sc->bge_expmrq) {
    571 	case 2048:
    572 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    573 		break;
    574 	case 4096:
    575 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    576 		break;
    577 	default:
    578 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    579 		break;
    580 	}
    581 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    582 	    + PCIE_DCSR, val);
    583 }
    584 
    585 #ifdef notdef
    586 static uint32_t
    587 bge_readreg_ind(struct bge_softc *sc, int off)
    588 {
    589 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    590 	return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
    591 }
    592 #endif
    593 
    594 static void
    595 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    596 {
    597 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    598 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    599 }
    600 
    601 static void
    602 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    603 {
    604 	CSR_WRITE_4(sc, off, val);
    605 }
    606 
    607 static void
    608 bge_writembx(struct bge_softc *sc, int off, int val)
    609 {
    610 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    611 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    612 
    613 	CSR_WRITE_4(sc, off, val);
    614 }
    615 
    616 static void
    617 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    618 {
    619 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    620 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    621 
    622 	CSR_WRITE_4_FLUSH(sc, off, val);
    623 }
    624 
    625 /*
    626  * Clear all stale locks and select the lock for this driver instance.
    627  */
    628 void
    629 bge_ape_lock_init(struct bge_softc *sc)
    630 {
    631 	struct pci_attach_args *pa = &(sc->bge_pa);
    632 	uint32_t bit, regbase;
    633 	int i;
    634 
    635 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    636 		regbase = BGE_APE_LOCK_GRANT;
    637 	else
    638 		regbase = BGE_APE_PER_LOCK_GRANT;
    639 
    640 	/* Clear any stale locks. */
    641 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    642 		switch (i) {
    643 		case BGE_APE_LOCK_PHY0:
    644 		case BGE_APE_LOCK_PHY1:
    645 		case BGE_APE_LOCK_PHY2:
    646 		case BGE_APE_LOCK_PHY3:
    647 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    648 			break;
    649 		default:
    650 			if (pa->pa_function == 0)
    651 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    652 			else
    653 				bit = (1 << pa->pa_function);
    654 		}
    655 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    656 	}
    657 
    658 	/* Select the PHY lock based on the device's function number. */
    659 	switch (pa->pa_function) {
    660 	case 0:
    661 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    662 		break;
    663 	case 1:
    664 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    665 		break;
    666 	case 2:
    667 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    668 		break;
    669 	case 3:
    670 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    671 		break;
    672 	default:
    673 		printf("%s: PHY lock not supported on function\n",
    674 		    device_xname(sc->bge_dev));
    675 		break;
    676 	}
    677 }
    678 
    679 /*
    680  * Check for APE firmware, set flags, and print version info.
    681  */
    682 void
    683 bge_ape_read_fw_ver(struct bge_softc *sc)
    684 {
    685 	const char *fwtype;
    686 	uint32_t apedata, features;
    687 
    688 	/* Check for a valid APE signature in shared memory. */
    689 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    690 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    691 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    692 		return;
    693 	}
    694 
    695 	/* Check if APE firmware is running. */
    696 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    697 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    698 		printf("%s: APE signature found but FW status not ready! "
    699 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    700 		return;
    701 	}
    702 
    703 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    704 
    705 	/* Fetch the APE firwmare type and version. */
    706 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    707 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    708 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    709 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    710 		fwtype = "NCSI";
    711 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    712 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    713 		fwtype = "DASH";
    714 	} else
    715 		fwtype = "UNKN";
    716 
    717 	/* Print the APE firmware version. */
    718 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
    719 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    720 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    721 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    722 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    723 }
    724 
    725 int
    726 bge_ape_lock(struct bge_softc *sc, int locknum)
    727 {
    728 	struct pci_attach_args *pa = &(sc->bge_pa);
    729 	uint32_t bit, gnt, req, status;
    730 	int i, off;
    731 
    732 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    733 		return 0;
    734 
    735 	/* Lock request/grant registers have different bases. */
    736 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    737 		req = BGE_APE_LOCK_REQ;
    738 		gnt = BGE_APE_LOCK_GRANT;
    739 	} else {
    740 		req = BGE_APE_PER_LOCK_REQ;
    741 		gnt = BGE_APE_PER_LOCK_GRANT;
    742 	}
    743 
    744 	off = 4 * locknum;
    745 
    746 	switch (locknum) {
    747 	case BGE_APE_LOCK_GPIO:
    748 		/* Lock required when using GPIO. */
    749 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    750 			return 0;
    751 		if (pa->pa_function == 0)
    752 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    753 		else
    754 			bit = (1 << pa->pa_function);
    755 		break;
    756 	case BGE_APE_LOCK_GRC:
    757 		/* Lock required to reset the device. */
    758 		if (pa->pa_function == 0)
    759 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    760 		else
    761 			bit = (1 << pa->pa_function);
    762 		break;
    763 	case BGE_APE_LOCK_MEM:
    764 		/* Lock required when accessing certain APE memory. */
    765 		if (pa->pa_function == 0)
    766 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    767 		else
    768 			bit = (1 << pa->pa_function);
    769 		break;
    770 	case BGE_APE_LOCK_PHY0:
    771 	case BGE_APE_LOCK_PHY1:
    772 	case BGE_APE_LOCK_PHY2:
    773 	case BGE_APE_LOCK_PHY3:
    774 		/* Lock required when accessing PHYs. */
    775 		bit = BGE_APE_LOCK_REQ_DRIVER0;
    776 		break;
    777 	default:
    778 		return EINVAL;
    779 	}
    780 
    781 	/* Request a lock. */
    782 	APE_WRITE_4_FLUSH(sc, req + off, bit);
    783 
    784 	/* Wait up to 1 second to acquire lock. */
    785 	for (i = 0; i < 20000; i++) {
    786 		status = APE_READ_4(sc, gnt + off);
    787 		if (status == bit)
    788 			break;
    789 		DELAY(50);
    790 	}
    791 
    792 	/* Handle any errors. */
    793 	if (status != bit) {
    794 		printf("%s: APE lock %d request failed! "
    795 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
    796 		    device_xname(sc->bge_dev),
    797 		    locknum, req + off, bit & 0xFFFF, gnt + off,
    798 		    status & 0xFFFF);
    799 		/* Revoke the lock request. */
    800 		APE_WRITE_4(sc, gnt + off, bit);
    801 		return EBUSY;
    802 	}
    803 
    804 	return 0;
    805 }
    806 
    807 void
    808 bge_ape_unlock(struct bge_softc *sc, int locknum)
    809 {
    810 	struct pci_attach_args *pa = &(sc->bge_pa);
    811 	uint32_t bit, gnt;
    812 	int off;
    813 
    814 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    815 		return;
    816 
    817 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    818 		gnt = BGE_APE_LOCK_GRANT;
    819 	else
    820 		gnt = BGE_APE_PER_LOCK_GRANT;
    821 
    822 	off = 4 * locknum;
    823 
    824 	switch (locknum) {
    825 	case BGE_APE_LOCK_GPIO:
    826 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    827 			return;
    828 		if (pa->pa_function == 0)
    829 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    830 		else
    831 			bit = (1 << pa->pa_function);
    832 		break;
    833 	case BGE_APE_LOCK_GRC:
    834 		if (pa->pa_function == 0)
    835 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    836 		else
    837 			bit = (1 << pa->pa_function);
    838 		break;
    839 	case BGE_APE_LOCK_MEM:
    840 		if (pa->pa_function == 0)
    841 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    842 		else
    843 			bit = (1 << pa->pa_function);
    844 		break;
    845 	case BGE_APE_LOCK_PHY0:
    846 	case BGE_APE_LOCK_PHY1:
    847 	case BGE_APE_LOCK_PHY2:
    848 	case BGE_APE_LOCK_PHY3:
    849 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
    850 		break;
    851 	default:
    852 		return;
    853 	}
    854 
    855 	/* Write and flush for consecutive bge_ape_lock() */
    856 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
    857 }
    858 
    859 /*
    860  * Send an event to the APE firmware.
    861  */
    862 void
    863 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
    864 {
    865 	uint32_t apedata;
    866 	int i;
    867 
    868 	/* NCSI does not support APE events. */
    869 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    870 		return;
    871 
    872 	/* Wait up to 1ms for APE to service previous event. */
    873 	for (i = 10; i > 0; i--) {
    874 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
    875 			break;
    876 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
    877 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
    878 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
    879 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
    880 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    881 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
    882 			break;
    883 		}
    884 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    885 		DELAY(100);
    886 	}
    887 	if (i == 0) {
    888 		printf("%s: APE event 0x%08x send timed out\n",
    889 		    device_xname(sc->bge_dev), event);
    890 	}
    891 }
    892 
    893 void
    894 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
    895 {
    896 	uint32_t apedata, event;
    897 
    898 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    899 		return;
    900 
    901 	switch (kind) {
    902 	case BGE_RESET_START:
    903 		/* If this is the first load, clear the load counter. */
    904 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
    905 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
    906 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
    907 		else {
    908 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
    909 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
    910 		}
    911 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
    912 		    BGE_APE_HOST_SEG_SIG_MAGIC);
    913 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
    914 		    BGE_APE_HOST_SEG_LEN_MAGIC);
    915 
    916 		/* Add some version info if bge(4) supports it. */
    917 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
    918 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
    919 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
    920 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
    921 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
    922 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
    923 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    924 		    BGE_APE_HOST_DRVR_STATE_START);
    925 		event = BGE_APE_EVENT_STATUS_STATE_START;
    926 		break;
    927 	case BGE_RESET_SHUTDOWN:
    928 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    929 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
    930 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
    931 		break;
    932 	case BGE_RESET_SUSPEND:
    933 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
    934 		break;
    935 	default:
    936 		return;
    937 	}
    938 
    939 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
    940 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
    941 }
    942 
    943 static uint8_t
    944 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    945 {
    946 	uint32_t access, byte = 0;
    947 	int i;
    948 
    949 	/* Lock. */
    950 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    951 	for (i = 0; i < 8000; i++) {
    952 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    953 			break;
    954 		DELAY(20);
    955 	}
    956 	if (i == 8000)
    957 		return 1;
    958 
    959 	/* Enable access. */
    960 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    961 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    962 
    963 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    964 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    965 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    966 		DELAY(10);
    967 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    968 			DELAY(10);
    969 			break;
    970 		}
    971 	}
    972 
    973 	if (i == BGE_TIMEOUT * 10) {
    974 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    975 		return 1;
    976 	}
    977 
    978 	/* Get result. */
    979 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    980 
    981 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    982 
    983 	/* Disable access. */
    984 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    985 
    986 	/* Unlock. */
    987 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    988 
    989 	return 0;
    990 }
    991 
    992 /*
    993  * Read a sequence of bytes from NVRAM.
    994  */
    995 static int
    996 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
    997 {
    998 	int error = 0, i;
    999 	uint8_t byte = 0;
   1000 
   1001 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1002 		return 1;
   1003 
   1004 	for (i = 0; i < cnt; i++) {
   1005 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1006 		if (error)
   1007 			break;
   1008 		*(dest + i) = byte;
   1009 	}
   1010 
   1011 	return error ? 1 : 0;
   1012 }
   1013 
   1014 /*
   1015  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1016  * BCM570x supports both the traditional bitbang interface and an
   1017  * auto access interface for reading the EEPROM. We use the auto
   1018  * access method.
   1019  */
   1020 static uint8_t
   1021 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1022 {
   1023 	int i;
   1024 	uint32_t byte = 0;
   1025 
   1026 	/*
   1027 	 * Enable use of auto EEPROM access so we can avoid
   1028 	 * having to use the bitbang method.
   1029 	 */
   1030 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1031 
   1032 	/* Reset the EEPROM, load the clock period. */
   1033 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   1034 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1035 	DELAY(20);
   1036 
   1037 	/* Issue the read EEPROM command. */
   1038 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1039 
   1040 	/* Wait for completion */
   1041 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1042 		DELAY(10);
   1043 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1044 			break;
   1045 	}
   1046 
   1047 	if (i == BGE_TIMEOUT * 10) {
   1048 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1049 		return 1;
   1050 	}
   1051 
   1052 	/* Get result. */
   1053 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1054 
   1055 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1056 
   1057 	return 0;
   1058 }
   1059 
   1060 /*
   1061  * Read a sequence of bytes from the EEPROM.
   1062  */
   1063 static int
   1064 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1065 {
   1066 	int error = 0, i;
   1067 	uint8_t byte = 0;
   1068 	char *dest = destv;
   1069 
   1070 	for (i = 0; i < cnt; i++) {
   1071 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1072 		if (error)
   1073 			break;
   1074 		*(dest + i) = byte;
   1075 	}
   1076 
   1077 	return error ? 1 : 0;
   1078 }
   1079 
   1080 static int
   1081 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
   1082 {
   1083 	struct bge_softc * const sc = device_private(dev);
   1084 	uint32_t data;
   1085 	uint32_t autopoll;
   1086 	int rv = 0;
   1087 	int i;
   1088 
   1089 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1090 		return -1;
   1091 
   1092 	/* Reading with autopolling on may trigger PCI errors */
   1093 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1094 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1095 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1096 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1097 		DELAY(80);
   1098 	}
   1099 
   1100 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1101 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1102 
   1103 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1104 		delay(10);
   1105 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1106 		if (!(data & BGE_MICOMM_BUSY)) {
   1107 			DELAY(5);
   1108 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1109 			break;
   1110 		}
   1111 	}
   1112 
   1113 	if (i == BGE_TIMEOUT) {
   1114 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1115 		rv = ETIMEDOUT;
   1116 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1117 		/* XXX This error occurs on some devices while attaching. */
   1118 		aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
   1119 		rv = EIO;
   1120 	} else
   1121 		*val = data & BGE_MICOMM_DATA;
   1122 
   1123 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1124 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1125 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1126 		DELAY(80);
   1127 	}
   1128 
   1129 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1130 
   1131 	return rv;
   1132 }
   1133 
   1134 static int
   1135 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
   1136 {
   1137 	struct bge_softc * const sc = device_private(dev);
   1138 	uint32_t data, autopoll;
   1139 	int rv = 0;
   1140 	int i;
   1141 
   1142 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1143 	    (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
   1144 		return 0;
   1145 
   1146 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1147 		return -1;
   1148 
   1149 	/* Reading with autopolling on may trigger PCI errors */
   1150 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1151 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1152 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1153 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1154 		DELAY(80);
   1155 	}
   1156 
   1157 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1158 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1159 
   1160 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1161 		delay(10);
   1162 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1163 		if (!(data & BGE_MICOMM_BUSY)) {
   1164 			delay(5);
   1165 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1166 			break;
   1167 		}
   1168 	}
   1169 
   1170 	if (i == BGE_TIMEOUT) {
   1171 		aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
   1172 		rv = ETIMEDOUT;
   1173 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1174 		aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
   1175 		rv = EIO;
   1176 	}
   1177 
   1178 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1179 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1180 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1181 		delay(80);
   1182 	}
   1183 
   1184 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1185 
   1186 	return rv;
   1187 }
   1188 
   1189 static void
   1190 bge_miibus_statchg(struct ifnet *ifp)
   1191 {
   1192 	struct bge_softc * const sc = ifp->if_softc;
   1193 	struct mii_data *mii = &sc->bge_mii;
   1194 	uint32_t mac_mode, rx_mode, tx_mode;
   1195 
   1196 	/*
   1197 	 * Get flow control negotiation result.
   1198 	 */
   1199 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1200 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
   1201 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1202 
   1203 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1204 	    mii->mii_media_status & IFM_ACTIVE &&
   1205 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   1206 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
   1207 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1208 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
   1209 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   1210 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   1211 
   1212 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   1213 		return;
   1214 
   1215 	/* Set the port mode (MII/GMII) to match the link speed. */
   1216 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1217 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1218 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1219 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1220 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1221 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1222 		mac_mode |= BGE_PORTMODE_GMII;
   1223 	else
   1224 		mac_mode |= BGE_PORTMODE_MII;
   1225 
   1226 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1227 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1228 	if ((mii->mii_media_active & IFM_FDX) != 0) {
   1229 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1230 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1231 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1232 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1233 	} else
   1234 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1235 
   1236 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1237 	DELAY(40);
   1238 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1239 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1240 }
   1241 
   1242 /*
   1243  * Update rx threshold levels to values in a particular slot
   1244  * of the interrupt-mitigation table bge_rx_threshes.
   1245  */
   1246 static void
   1247 bge_set_thresh(struct ifnet *ifp, int lvl)
   1248 {
   1249 	struct bge_softc * const sc = ifp->if_softc;
   1250 	int s;
   1251 
   1252 	/*
   1253 	 * For now, just save the new Rx-intr thresholds and record
   1254 	 * that a threshold update is pending.  Updating the hardware
   1255 	 * registers here (even at splhigh()) is observed to
   1256 	 * occasionally cause glitches where Rx-interrupts are not
   1257 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1258 	 */
   1259 	s = splnet();
   1260 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1261 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1262 	sc->bge_pending_rxintr_change = 1;
   1263 	splx(s);
   1264 }
   1265 
   1266 
   1267 /*
   1268  * Update Rx thresholds of all bge devices
   1269  */
   1270 static void
   1271 bge_update_all_threshes(int lvl)
   1272 {
   1273 	const char * const namebuf = "bge";
   1274 	const size_t namelen = strlen(namebuf);
   1275 	struct ifnet *ifp;
   1276 
   1277 	if (lvl < 0)
   1278 		lvl = 0;
   1279 	else if (lvl >= NBGE_RX_THRESH)
   1280 		lvl = NBGE_RX_THRESH - 1;
   1281 
   1282 	/*
   1283 	 * Now search all the interfaces for this name/number
   1284 	 */
   1285 	int s = pserialize_read_enter();
   1286 	IFNET_READER_FOREACH(ifp) {
   1287 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1288 			continue;
   1289 		/* We got a match: update if doing auto-threshold-tuning */
   1290 		if (bge_auto_thresh)
   1291 			bge_set_thresh(ifp, lvl);
   1292 	}
   1293 	pserialize_read_exit(s);
   1294 }
   1295 
   1296 /*
   1297  * Handle events that have triggered interrupts.
   1298  */
   1299 static void
   1300 bge_handle_events(struct bge_softc *sc)
   1301 {
   1302 
   1303 	return;
   1304 }
   1305 
   1306 /*
   1307  * Memory management for jumbo frames.
   1308  */
   1309 
   1310 static int
   1311 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1312 {
   1313 	char *ptr, *kva;
   1314 	int		i, rseg, state, error;
   1315 	struct bge_jpool_entry	 *entry;
   1316 
   1317 	state = error = 0;
   1318 
   1319 	/* Grab a big chunk o' storage. */
   1320 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1321 	    &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   1322 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1323 		return ENOBUFS;
   1324 	}
   1325 
   1326 	state = 1;
   1327 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg,
   1328 	    rseg, BGE_JMEM, (void **)&kva,
   1329 	    BUS_DMA_NOWAIT)) {
   1330 		aprint_error_dev(sc->bge_dev,
   1331 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1332 		error = ENOBUFS;
   1333 		goto out;
   1334 	}
   1335 
   1336 	state = 2;
   1337 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1338 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1339 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1340 		error = ENOBUFS;
   1341 		goto out;
   1342 	}
   1343 
   1344 	state = 3;
   1345 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1346 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
   1347 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1348 		error = ENOBUFS;
   1349 		goto out;
   1350 	}
   1351 
   1352 	state = 4;
   1353 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1354 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1355 
   1356 	SLIST_INIT(&sc->bge_jfree_listhead);
   1357 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1358 
   1359 	/*
   1360 	 * Now divide it up into 9K pieces and save the addresses
   1361 	 * in an array.
   1362 	 */
   1363 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1364 	for (i = 0; i < BGE_JSLOTS; i++) {
   1365 		sc->bge_cdata.bge_jslots[i] = ptr;
   1366 		ptr += BGE_JLEN;
   1367 		entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
   1368 		entry->slot = i;
   1369 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1370 				 entry, jpool_entries);
   1371 	}
   1372 out:
   1373 	if (error != 0) {
   1374 		switch (state) {
   1375 		case 4:
   1376 			bus_dmamap_unload(sc->bge_dmatag,
   1377 			    sc->bge_cdata.bge_rx_jumbo_map);
   1378 			/* FALLTHROUGH */
   1379 		case 3:
   1380 			bus_dmamap_destroy(sc->bge_dmatag,
   1381 			    sc->bge_cdata.bge_rx_jumbo_map);
   1382 			/* FALLTHROUGH */
   1383 		case 2:
   1384 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1385 			/* FALLTHROUGH */
   1386 		case 1:
   1387 			bus_dmamem_free(sc->bge_dmatag,
   1388 			    &sc->bge_cdata.bge_rx_jumbo_seg, rseg);
   1389 			break;
   1390 		default:
   1391 			break;
   1392 		}
   1393 	}
   1394 
   1395 	return error;
   1396 }
   1397 
   1398 static void
   1399 bge_free_jumbo_mem(struct bge_softc *sc)
   1400 {
   1401 	struct bge_jpool_entry *entry, *tmp;
   1402 
   1403 	KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead));
   1404 
   1405 	SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) {
   1406 		kmem_free(entry, sizeof(*entry));
   1407 	}
   1408 
   1409 	bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
   1410 
   1411 	bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
   1412 
   1413 	bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM);
   1414 
   1415 	bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1);
   1416 }
   1417 
   1418 /*
   1419  * Allocate a jumbo buffer.
   1420  */
   1421 static void *
   1422 bge_jalloc(struct bge_softc *sc)
   1423 {
   1424 	struct bge_jpool_entry	 *entry;
   1425 
   1426 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1427 
   1428 	if (entry == NULL) {
   1429 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1430 		return NULL;
   1431 	}
   1432 
   1433 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1434 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1435 	return sc->bge_cdata.bge_jslots[entry->slot];
   1436 }
   1437 
   1438 /*
   1439  * Release a jumbo buffer.
   1440  */
   1441 static void
   1442 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1443 {
   1444 	struct bge_jpool_entry *entry;
   1445 	struct bge_softc * const sc = arg;
   1446 	int s;
   1447 
   1448 	if (sc == NULL)
   1449 		panic("bge_jfree: can't find softc pointer!");
   1450 
   1451 	/* calculate the slot this buffer belongs to */
   1452 	int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1453 
   1454 	if (i < 0 || i >= BGE_JSLOTS)
   1455 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1456 
   1457 	s = splvm();
   1458 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1459 	if (entry == NULL)
   1460 		panic("bge_jfree: buffer not in use!");
   1461 	entry->slot = i;
   1462 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1463 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1464 
   1465 	if (__predict_true(m != NULL))
   1466 		pool_cache_put(mb_cache, m);
   1467 	splx(s);
   1468 }
   1469 
   1470 
   1471 /*
   1472  * Initialize a standard receive ring descriptor.
   1473  */
   1474 static int
   1475 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
   1476     bus_dmamap_t dmamap)
   1477 {
   1478 	struct mbuf		*m_new = NULL;
   1479 	struct bge_rx_bd	*r;
   1480 	int			error;
   1481 
   1482 	if (dmamap == NULL)
   1483 		dmamap = sc->bge_cdata.bge_rx_std_map[i];
   1484 
   1485 	if (dmamap == NULL) {
   1486 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1487 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
   1488 		if (error != 0)
   1489 			return error;
   1490 	}
   1491 
   1492 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1493 
   1494 	if (m == NULL) {
   1495 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1496 		if (m_new == NULL)
   1497 			return ENOBUFS;
   1498 
   1499 		MCLGET(m_new, M_DONTWAIT);
   1500 		if (!(m_new->m_flags & M_EXT)) {
   1501 			m_freem(m_new);
   1502 			return ENOBUFS;
   1503 		}
   1504 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1505 
   1506 	} else {
   1507 		m_new = m;
   1508 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
   1509 		m_new->m_data = m_new->m_ext.ext_buf;
   1510 	}
   1511 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1512 	    m_adj(m_new, ETHER_ALIGN);
   1513 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
   1514 	    BUS_DMA_READ | BUS_DMA_NOWAIT)) {
   1515 		m_freem(m_new);
   1516 		return ENOBUFS;
   1517 	}
   1518 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1519 	    BUS_DMASYNC_PREREAD);
   1520 
   1521 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
   1522 	r = &sc->bge_rdata->bge_rx_std_ring[i];
   1523 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1524 	r->bge_flags = BGE_RXBDFLAG_END;
   1525 	r->bge_len = m_new->m_len;
   1526 	r->bge_idx = i;
   1527 
   1528 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1529 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1530 		i * sizeof(struct bge_rx_bd),
   1531 	    sizeof(struct bge_rx_bd),
   1532 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1533 
   1534 	return 0;
   1535 }
   1536 
   1537 /*
   1538  * Initialize a jumbo receive ring descriptor. This allocates
   1539  * a jumbo buffer from the pool managed internally by the driver.
   1540  */
   1541 static int
   1542 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1543 {
   1544 	struct mbuf *m_new = NULL;
   1545 	struct bge_rx_bd *r;
   1546 	void *buf = NULL;
   1547 
   1548 	if (m == NULL) {
   1549 
   1550 		/* Allocate the mbuf. */
   1551 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1552 		if (m_new == NULL)
   1553 			return ENOBUFS;
   1554 
   1555 		/* Allocate the jumbo buffer */
   1556 		buf = bge_jalloc(sc);
   1557 		if (buf == NULL) {
   1558 			m_freem(m_new);
   1559 			aprint_error_dev(sc->bge_dev,
   1560 			    "jumbo allocation failed -- packet dropped!\n");
   1561 			return ENOBUFS;
   1562 		}
   1563 
   1564 		/* Attach the buffer to the mbuf. */
   1565 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1566 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1567 		    bge_jfree, sc);
   1568 		m_new->m_flags |= M_EXT_RW;
   1569 	} else {
   1570 		m_new = m;
   1571 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1572 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1573 	}
   1574 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1575 	    m_adj(m_new, ETHER_ALIGN);
   1576 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1577 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   1578 	    BGE_JLEN, BUS_DMASYNC_PREREAD);
   1579 	/* Set up the descriptor. */
   1580 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1581 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1582 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1583 	r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
   1584 	r->bge_len = m_new->m_len;
   1585 	r->bge_idx = i;
   1586 
   1587 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1588 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1589 		i * sizeof(struct bge_rx_bd),
   1590 	    sizeof(struct bge_rx_bd),
   1591 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1592 
   1593 	return 0;
   1594 }
   1595 
   1596 /*
   1597  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
   1598  * that's 1MB or memory, which is a lot. For now, we fill only the first
   1599  * 256 ring entries and hope that our CPU is fast enough to keep up with
   1600  * the NIC.
   1601  */
   1602 static int
   1603 bge_init_rx_ring_std(struct bge_softc *sc)
   1604 {
   1605 	int i;
   1606 
   1607 	if (sc->bge_flags & BGEF_RXRING_VALID)
   1608 		return 0;
   1609 
   1610 	for (i = 0; i < BGE_SSLOTS; i++) {
   1611 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1612 			return ENOBUFS;
   1613 	}
   1614 
   1615 	sc->bge_std = i - 1;
   1616 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1617 
   1618 	sc->bge_flags |= BGEF_RXRING_VALID;
   1619 
   1620 	return 0;
   1621 }
   1622 
   1623 static void
   1624 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
   1625 {
   1626 	int i;
   1627 
   1628 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
   1629 		return;
   1630 
   1631 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1632 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1633 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1634 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1635 			if (disable) {
   1636 				bus_dmamap_destroy(sc->bge_dmatag,
   1637 				    sc->bge_cdata.bge_rx_std_map[i]);
   1638 				sc->bge_cdata.bge_rx_std_map[i] = NULL;
   1639 			}
   1640 		}
   1641 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1642 		    sizeof(struct bge_rx_bd));
   1643 	}
   1644 
   1645 	sc->bge_flags &= ~BGEF_RXRING_VALID;
   1646 }
   1647 
   1648 static int
   1649 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1650 {
   1651 	int i;
   1652 	volatile struct bge_rcb *rcb;
   1653 
   1654 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
   1655 		return 0;
   1656 
   1657 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1658 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1659 			return ENOBUFS;
   1660 	}
   1661 
   1662 	sc->bge_jumbo = i - 1;
   1663 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
   1664 
   1665 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1666 	rcb->bge_maxlen_flags = 0;
   1667 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1668 
   1669 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1670 
   1671 	return 0;
   1672 }
   1673 
   1674 static void
   1675 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1676 {
   1677 	int i;
   1678 
   1679 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
   1680 		return;
   1681 
   1682 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1683 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1684 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1685 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1686 		}
   1687 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1688 		    sizeof(struct bge_rx_bd));
   1689 	}
   1690 
   1691 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
   1692 }
   1693 
   1694 static void
   1695 bge_free_tx_ring(struct bge_softc *sc, bool disable)
   1696 {
   1697 	int i;
   1698 	struct txdmamap_pool_entry *dma;
   1699 
   1700 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
   1701 		return;
   1702 
   1703 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1704 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1705 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1706 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1707 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1708 					    link);
   1709 			sc->txdma[i] = 0;
   1710 		}
   1711 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1712 		    sizeof(struct bge_tx_bd));
   1713 	}
   1714 
   1715 	if (disable) {
   1716 		while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1717 			SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1718 			bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1719 			if (sc->bge_dma64) {
   1720 				bus_dmamap_destroy(sc->bge_dmatag32,
   1721 				    dma->dmamap32);
   1722 			}
   1723 			kmem_free(dma, sizeof(*dma));
   1724 		}
   1725 		SLIST_INIT(&sc->txdma_list);
   1726 	}
   1727 
   1728 	sc->bge_flags &= ~BGEF_TXRING_VALID;
   1729 }
   1730 
   1731 static int
   1732 bge_init_tx_ring(struct bge_softc *sc)
   1733 {
   1734 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   1735 	int i;
   1736 	bus_dmamap_t dmamap, dmamap32;
   1737 	bus_size_t maxsegsz;
   1738 	struct txdmamap_pool_entry *dma;
   1739 
   1740 	if (sc->bge_flags & BGEF_TXRING_VALID)
   1741 		return 0;
   1742 
   1743 	sc->bge_txcnt = 0;
   1744 	sc->bge_tx_saved_considx = 0;
   1745 
   1746 	/* Initialize transmit producer index for host-memory send ring. */
   1747 	sc->bge_tx_prodidx = 0;
   1748 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1749 	/* 5700 b2 errata */
   1750 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1751 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1752 
   1753 	/* NIC-memory send ring not used; initialize to zero. */
   1754 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1755 	/* 5700 b2 errata */
   1756 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1757 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1758 
   1759 	/* Limit DMA segment size for some chips */
   1760 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
   1761 	    (ifp->if_mtu <= ETHERMTU))
   1762 		maxsegsz = 2048;
   1763 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   1764 		maxsegsz = 4096;
   1765 	else
   1766 		maxsegsz = ETHER_MAX_LEN_JUMBO;
   1767 
   1768 	if (SLIST_FIRST(&sc->txdma_list) != NULL)
   1769 		goto alloc_done;
   1770 
   1771 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1772 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1773 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1774 		    &dmamap))
   1775 			return ENOBUFS;
   1776 		if (dmamap == NULL)
   1777 			panic("dmamap NULL in bge_init_tx_ring");
   1778 		if (sc->bge_dma64) {
   1779 			if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
   1780 			    BGE_NTXSEG, maxsegsz, 0,
   1781 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1782 			    &dmamap32)) {
   1783 				bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1784 				return ENOBUFS;
   1785 			}
   1786 			if (dmamap32 == NULL)
   1787 				panic("dmamap32 NULL in bge_init_tx_ring");
   1788 		} else
   1789 			dmamap32 = dmamap;
   1790 		dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
   1791 		if (dma == NULL) {
   1792 			aprint_error_dev(sc->bge_dev,
   1793 			    "can't alloc txdmamap_pool_entry\n");
   1794 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1795 			if (sc->bge_dma64)
   1796 				bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
   1797 			return ENOMEM;
   1798 		}
   1799 		dma->dmamap = dmamap;
   1800 		dma->dmamap32 = dmamap32;
   1801 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1802 	}
   1803 alloc_done:
   1804 	sc->bge_flags |= BGEF_TXRING_VALID;
   1805 
   1806 	return 0;
   1807 }
   1808 
   1809 static void
   1810 bge_setmulti(struct bge_softc *sc)
   1811 {
   1812 	struct ethercom * const ec = &sc->ethercom;
   1813 	struct ifnet * const ifp = &ec->ec_if;
   1814 	struct ether_multi	*enm;
   1815 	struct ether_multistep	step;
   1816 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1817 	uint32_t		h;
   1818 	int			i;
   1819 
   1820 	if (ifp->if_flags & IFF_PROMISC)
   1821 		goto allmulti;
   1822 
   1823 	/* Now program new ones. */
   1824 	ETHER_LOCK(ec);
   1825 	ETHER_FIRST_MULTI(step, ec, enm);
   1826 	while (enm != NULL) {
   1827 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1828 			/*
   1829 			 * We must listen to a range of multicast addresses.
   1830 			 * For now, just accept all multicasts, rather than
   1831 			 * trying to set only those filter bits needed to match
   1832 			 * the range.  (At this time, the only use of address
   1833 			 * ranges is for IP multicast routing, for which the
   1834 			 * range is big enough to require all bits set.)
   1835 			 */
   1836 			ETHER_UNLOCK(ec);
   1837 			goto allmulti;
   1838 		}
   1839 
   1840 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1841 
   1842 		/* Just want the 7 least-significant bits. */
   1843 		h &= 0x7f;
   1844 
   1845 		hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
   1846 		ETHER_NEXT_MULTI(step, enm);
   1847 	}
   1848 	ETHER_UNLOCK(ec);
   1849 
   1850 	ifp->if_flags &= ~IFF_ALLMULTI;
   1851 	goto setit;
   1852 
   1853  allmulti:
   1854 	ifp->if_flags |= IFF_ALLMULTI;
   1855 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1856 
   1857  setit:
   1858 	for (i = 0; i < 4; i++)
   1859 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1860 }
   1861 
   1862 static void
   1863 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1864 {
   1865 
   1866 	/*
   1867 	 * Some chips don't like this so only do this if ASF is enabled
   1868 	 */
   1869 	if (sc->bge_asf_mode)
   1870 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   1871 
   1872 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1873 		switch (type) {
   1874 		case BGE_RESET_START:
   1875 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1876 			    BGE_FW_DRV_STATE_START);
   1877 			break;
   1878 		case BGE_RESET_SHUTDOWN:
   1879 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1880 			    BGE_FW_DRV_STATE_UNLOAD);
   1881 			break;
   1882 		case BGE_RESET_SUSPEND:
   1883 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1884 			    BGE_FW_DRV_STATE_SUSPEND);
   1885 			break;
   1886 		}
   1887 	}
   1888 
   1889 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   1890 		bge_ape_driver_state_change(sc, type);
   1891 }
   1892 
   1893 static void
   1894 bge_sig_post_reset(struct bge_softc *sc, int type)
   1895 {
   1896 
   1897 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1898 		switch (type) {
   1899 		case BGE_RESET_START:
   1900 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1901 			    BGE_FW_DRV_STATE_START_DONE);
   1902 			/* START DONE */
   1903 			break;
   1904 		case BGE_RESET_SHUTDOWN:
   1905 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1906 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   1907 			break;
   1908 		}
   1909 	}
   1910 
   1911 	if (type == BGE_RESET_SHUTDOWN)
   1912 		bge_ape_driver_state_change(sc, type);
   1913 }
   1914 
   1915 static void
   1916 bge_sig_legacy(struct bge_softc *sc, int type)
   1917 {
   1918 
   1919 	if (sc->bge_asf_mode) {
   1920 		switch (type) {
   1921 		case BGE_RESET_START:
   1922 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1923 			    BGE_FW_DRV_STATE_START);
   1924 			break;
   1925 		case BGE_RESET_SHUTDOWN:
   1926 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1927 			    BGE_FW_DRV_STATE_UNLOAD);
   1928 			break;
   1929 		}
   1930 	}
   1931 }
   1932 
   1933 static void
   1934 bge_wait_for_event_ack(struct bge_softc *sc)
   1935 {
   1936 	int i;
   1937 
   1938 	/* wait up to 2500usec */
   1939 	for (i = 0; i < 250; i++) {
   1940 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   1941 			BGE_RX_CPU_DRV_EVENT))
   1942 			break;
   1943 		DELAY(10);
   1944 	}
   1945 }
   1946 
   1947 static void
   1948 bge_stop_fw(struct bge_softc *sc)
   1949 {
   1950 
   1951 	if (sc->bge_asf_mode) {
   1952 		bge_wait_for_event_ack(sc);
   1953 
   1954 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   1955 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   1956 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   1957 
   1958 		bge_wait_for_event_ack(sc);
   1959 	}
   1960 }
   1961 
   1962 static int
   1963 bge_poll_fw(struct bge_softc *sc)
   1964 {
   1965 	uint32_t val;
   1966 	int i;
   1967 
   1968 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1969 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1970 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1971 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1972 				break;
   1973 			DELAY(100);
   1974 		}
   1975 		if (i >= BGE_TIMEOUT) {
   1976 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   1977 			return -1;
   1978 		}
   1979 	} else {
   1980 		/*
   1981 		 * Poll the value location we just wrote until
   1982 		 * we see the 1's complement of the magic number.
   1983 		 * This indicates that the firmware initialization
   1984 		 * is complete.
   1985 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   1986 		 */
   1987 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1988 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   1989 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   1990 				break;
   1991 			DELAY(10);
   1992 		}
   1993 
   1994 		if ((i >= BGE_TIMEOUT)
   1995 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
   1996 			aprint_error_dev(sc->bge_dev,
   1997 			    "firmware handshake timed out, val = %x\n", val);
   1998 			return -1;
   1999 		}
   2000 	}
   2001 
   2002 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2003 		/* tg3 says we have to wait extra time */
   2004 		delay(10 * 1000);
   2005 	}
   2006 
   2007 	return 0;
   2008 }
   2009 
   2010 int
   2011 bge_phy_addr(struct bge_softc *sc)
   2012 {
   2013 	struct pci_attach_args *pa = &(sc->bge_pa);
   2014 	int phy_addr = 1;
   2015 
   2016 	/*
   2017 	 * PHY address mapping for various devices.
   2018 	 *
   2019 	 *	    | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2020 	 * ---------+-------+-------+-------+-------+
   2021 	 * BCM57XX  |	1   |	X   |	X   |	X   |
   2022 	 * BCM5704  |	1   |	X   |	1   |	X   |
   2023 	 * BCM5717  |	1   |	8   |	2   |	9   |
   2024 	 * BCM5719  |	1   |	8   |	2   |	9   |
   2025 	 * BCM5720  |	1   |	8   |	2   |	9   |
   2026 	 *
   2027 	 *	    | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2028 	 * ---------+-------+-------+-------+-------+
   2029 	 * BCM57XX  |	X   |	X   |	X   |	X   |
   2030 	 * BCM5704  |	X   |	X   |	X   |	X   |
   2031 	 * BCM5717  |	X   |	X   |	X   |	X   |
   2032 	 * BCM5719  |	3   |	10  |	4   |	11  |
   2033 	 * BCM5720  |	X   |	X   |	X   |	X   |
   2034 	 *
   2035 	 * Other addresses may respond but they are not
   2036 	 * IEEE compliant PHYs and should be ignored.
   2037 	 */
   2038 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2039 	case BGE_ASICREV_BCM5717:
   2040 	case BGE_ASICREV_BCM5719:
   2041 	case BGE_ASICREV_BCM5720:
   2042 		phy_addr = pa->pa_function;
   2043 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2044 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2045 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2046 		} else {
   2047 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2048 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2049 		}
   2050 	}
   2051 
   2052 	return phy_addr;
   2053 }
   2054 
   2055 /*
   2056  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2057  * self-test results.
   2058  */
   2059 static int
   2060 bge_chipinit(struct bge_softc *sc)
   2061 {
   2062 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
   2063 	int i;
   2064 
   2065 	/* Set endianness before we access any non-PCI registers. */
   2066 	misc_ctl = BGE_INIT;
   2067 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   2068 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
   2069 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2070 	    misc_ctl);
   2071 
   2072 	/*
   2073 	 * Clear the MAC statistics block in the NIC's
   2074 	 * internal memory.
   2075 	 */
   2076 	for (i = BGE_STATS_BLOCK;
   2077 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2078 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2079 
   2080 	for (i = BGE_STATUS_BLOCK;
   2081 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2082 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2083 
   2084 	/* 5717 workaround from tg3 */
   2085 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2086 		/* Save */
   2087 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2088 
   2089 		/* Temporary modify MODE_CTL to control TLP */
   2090 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2091 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2092 
   2093 		/* Control TLP */
   2094 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2095 		    BGE_TLP_PHYCTL1);
   2096 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2097 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2098 
   2099 		/* Restore */
   2100 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2101 	}
   2102 
   2103 	if (BGE_IS_57765_FAMILY(sc)) {
   2104 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2105 			/* Save */
   2106 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2107 
   2108 			/* Temporary modify MODE_CTL to control TLP */
   2109 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2110 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2111 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2112 
   2113 			/* Control TLP */
   2114 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2115 			    BGE_TLP_PHYCTL5);
   2116 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2117 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2118 
   2119 			/* Restore */
   2120 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2121 		}
   2122 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2123 			/*
   2124 			 * For the 57766 and non Ax versions of 57765, bootcode
   2125 			 * needs to setup the PCIE Fast Training Sequence (FTS)
   2126 			 * value to prevent transmit hangs.
   2127 			 */
   2128 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2129 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2130 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2131 
   2132 			/* Save */
   2133 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2134 
   2135 			/* Temporary modify MODE_CTL to control TLP */
   2136 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2137 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2138 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2139 
   2140 			/* Control TLP */
   2141 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2142 			    BGE_TLP_FTSMAX);
   2143 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2144 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2145 			    reg | BGE_TLP_FTSMAX_VAL);
   2146 
   2147 			/* Restore */
   2148 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2149 		}
   2150 
   2151 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2152 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2153 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2154 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2155 	}
   2156 
   2157 	/* Set up the PCI DMA control register. */
   2158 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2159 	if (sc->bge_flags & BGEF_PCIE) {
   2160 		/* Read watermark not used, 128 bytes for write. */
   2161 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2162 		    device_xname(sc->bge_dev)));
   2163 		if (sc->bge_mps >= 256)
   2164 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2165 		else
   2166 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2167 	} else if (sc->bge_flags & BGEF_PCIX) {
   2168 		DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2169 		    device_xname(sc->bge_dev)));
   2170 		/* PCI-X bus */
   2171 		if (BGE_IS_5714_FAMILY(sc)) {
   2172 			/* 256 bytes for read and write. */
   2173 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2174 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2175 
   2176 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2177 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2178 			else
   2179 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2180 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   2181 			/*
   2182 			 * In the BCM5703, the DMA read watermark should
   2183 			 * be set to less than or equal to the maximum
   2184 			 * memory read byte count of the PCI-X command
   2185 			 * register.
   2186 			 */
   2187 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
   2188 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2189 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2190 			/* 1536 bytes for read, 384 bytes for write. */
   2191 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2192 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2193 		} else {
   2194 			/* 384 bytes for read and write. */
   2195 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2196 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2197 			    (0x0F);
   2198 		}
   2199 
   2200 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2201 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2202 			uint32_t tmp;
   2203 
   2204 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2205 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2206 			if (tmp == 6 || tmp == 7)
   2207 				dma_rw_ctl |=
   2208 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2209 
   2210 			/* Set PCI-X DMA write workaround. */
   2211 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2212 		}
   2213 	} else {
   2214 		/* Conventional PCI bus: 256 bytes for read and write. */
   2215 		DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2216 		    device_xname(sc->bge_dev)));
   2217 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2218 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2219 
   2220 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2221 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2222 			dma_rw_ctl |= 0x0F;
   2223 	}
   2224 
   2225 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2226 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2227 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2228 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2229 
   2230 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2231 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2232 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2233 
   2234 	if (BGE_IS_57765_PLUS(sc)) {
   2235 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2236 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2237 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2238 
   2239 		/*
   2240 		 * Enable HW workaround for controllers that misinterpret
   2241 		 * a status tag update and leave interrupts permanently
   2242 		 * disabled.
   2243 		 */
   2244 		if (!BGE_IS_57765_FAMILY(sc) &&
   2245 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2246 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
   2247 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2248 	}
   2249 
   2250 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2251 	    dma_rw_ctl);
   2252 
   2253 	/*
   2254 	 * Set up general mode register.
   2255 	 */
   2256 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2257 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2258 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2259 		/* Retain Host-2-BMC settings written by APE firmware. */
   2260 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2261 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2262 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2263 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2264 	}
   2265 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2266 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2267 
   2268 	/*
   2269 	 * BCM5701 B5 have a bug causing data corruption when using
   2270 	 * 64-bit DMA reads, which can be terminated early and then
   2271 	 * completed later as 32-bit accesses, in combination with
   2272 	 * certain bridges.
   2273 	 */
   2274 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2275 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2276 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2277 
   2278 	/*
   2279 	 * Tell the firmware the driver is running
   2280 	 */
   2281 	if (sc->bge_asf_mode & ASF_STACKUP)
   2282 		mode_ctl |= BGE_MODECTL_STACKUP;
   2283 
   2284 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2285 
   2286 	/*
   2287 	 * Disable memory write invalidate.  Apparently it is not supported
   2288 	 * properly by these devices.
   2289 	 */
   2290 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2291 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2292 
   2293 #ifdef __brokenalpha__
   2294 	/*
   2295 	 * Must insure that we do not cross an 8K (bytes) boundary
   2296 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2297 	 * restriction on some ALPHA platforms with early revision
   2298 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2299 	 */
   2300 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2301 #endif
   2302 
   2303 	/* Set the timer prescaler (always 66MHz) */
   2304 	CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2305 
   2306 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2307 		DELAY(40);	/* XXX */
   2308 
   2309 		/* Put PHY into ready state */
   2310 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2311 		DELAY(40);
   2312 	}
   2313 
   2314 	return 0;
   2315 }
   2316 
   2317 static int
   2318 bge_blockinit(struct bge_softc *sc)
   2319 {
   2320 	volatile struct bge_rcb	 *rcb;
   2321 	bus_size_t rcb_addr;
   2322 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   2323 	bge_hostaddr taddr;
   2324 	uint32_t	dmactl, rdmareg, mimode, val;
   2325 	int		i, limit;
   2326 
   2327 	/*
   2328 	 * Initialize the memory window pointer register so that
   2329 	 * we can access the first 32K of internal NIC RAM. This will
   2330 	 * allow us to set up the TX send ring RCBs and the RX return
   2331 	 * ring RCBs, plus other things which live in NIC memory.
   2332 	 */
   2333 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2334 
   2335 	if (!BGE_IS_5705_PLUS(sc)) {
   2336 		/* 57XX step 33 */
   2337 		/* Configure mbuf memory pool */
   2338 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
   2339 
   2340 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2341 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2342 		else
   2343 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2344 
   2345 		/* 57XX step 34 */
   2346 		/* Configure DMA resource pool */
   2347 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2348 		    BGE_DMA_DESCRIPTORS);
   2349 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2350 	}
   2351 
   2352 	/* 5718 step 11, 57XX step 35 */
   2353 	/*
   2354 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2355 	 * recommend these.
   2356 	 */
   2357 	if (BGE_IS_5717_PLUS(sc)) {
   2358 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2359 		if (ifp->if_mtu > ETHERMTU) {
   2360 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
   2361 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
   2362 		} else {
   2363 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2364 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2365 		}
   2366 	} else if (BGE_IS_5705_PLUS(sc)) {
   2367 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2368 
   2369 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2370 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2371 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2372 		} else {
   2373 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2374 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2375 		}
   2376 	} else {
   2377 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2378 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2379 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2380 	}
   2381 
   2382 	/* 57XX step 36 */
   2383 	/* Configure DMA resource watermarks */
   2384 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2385 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2386 
   2387 	/* 5718 step 13, 57XX step 38 */
   2388 	/* Enable buffer manager */
   2389 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2390 	/*
   2391 	 * Change the arbitration algorithm of TXMBUF read request to
   2392 	 * round-robin instead of priority based for BCM5719.  When
   2393 	 * TXFIFO is almost empty, RDMA will hold its request until
   2394 	 * TXFIFO is not almost empty.
   2395 	 */
   2396 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2397 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2398 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2399 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2400 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2401 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2402 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2403 
   2404 	/* 57XX step 39 */
   2405 	/* Poll for buffer manager start indication */
   2406 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2407 		DELAY(10);
   2408 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2409 			break;
   2410 	}
   2411 
   2412 	if (i == BGE_TIMEOUT * 2) {
   2413 		aprint_error_dev(sc->bge_dev,
   2414 		    "buffer manager failed to start\n");
   2415 		return ENXIO;
   2416 	}
   2417 
   2418 	/* 57XX step 40 */
   2419 	/* Enable flow-through queues */
   2420 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2421 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2422 
   2423 	/* Wait until queue initialization is complete */
   2424 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2425 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2426 			break;
   2427 		DELAY(10);
   2428 	}
   2429 
   2430 	if (i == BGE_TIMEOUT * 2) {
   2431 		aprint_error_dev(sc->bge_dev,
   2432 		    "flow-through queue init failed\n");
   2433 		return ENXIO;
   2434 	}
   2435 
   2436 	/*
   2437 	 * Summary of rings supported by the controller:
   2438 	 *
   2439 	 * Standard Receive Producer Ring
   2440 	 * - This ring is used to feed receive buffers for "standard"
   2441 	 *   sized frames (typically 1536 bytes) to the controller.
   2442 	 *
   2443 	 * Jumbo Receive Producer Ring
   2444 	 * - This ring is used to feed receive buffers for jumbo sized
   2445 	 *   frames (i.e. anything bigger than the "standard" frames)
   2446 	 *   to the controller.
   2447 	 *
   2448 	 * Mini Receive Producer Ring
   2449 	 * - This ring is used to feed receive buffers for "mini"
   2450 	 *   sized frames to the controller.
   2451 	 * - This feature required external memory for the controller
   2452 	 *   but was never used in a production system.  Should always
   2453 	 *   be disabled.
   2454 	 *
   2455 	 * Receive Return Ring
   2456 	 * - After the controller has placed an incoming frame into a
   2457 	 *   receive buffer that buffer is moved into a receive return
   2458 	 *   ring.  The driver is then responsible to passing the
   2459 	 *   buffer up to the stack.  Many versions of the controller
   2460 	 *   support multiple RR rings.
   2461 	 *
   2462 	 * Send Ring
   2463 	 * - This ring is used for outgoing frames.  Many versions of
   2464 	 *   the controller support multiple send rings.
   2465 	 */
   2466 
   2467 	/* 5718 step 15, 57XX step 41 */
   2468 	/* Initialize the standard RX ring control block */
   2469 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2470 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2471 	/* 5718 step 16 */
   2472 	if (BGE_IS_57765_PLUS(sc)) {
   2473 		/*
   2474 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2475 		 * Bits 15-2 : Maximum RX frame size
   2476 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2477 		 * Bit 0     : Reserved
   2478 		 */
   2479 		rcb->bge_maxlen_flags =
   2480 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2481 	} else if (BGE_IS_5705_PLUS(sc)) {
   2482 		/*
   2483 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2484 		 * Bits 15-2 : Reserved (should be 0)
   2485 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2486 		 * Bit 0     : Reserved
   2487 		 */
   2488 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2489 	} else {
   2490 		/*
   2491 		 * Ring size is always XXX entries
   2492 		 * Bits 31-16: Maximum RX frame size
   2493 		 * Bits 15-2 : Reserved (should be 0)
   2494 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2495 		 * Bit 0     : Reserved
   2496 		 */
   2497 		rcb->bge_maxlen_flags =
   2498 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2499 	}
   2500 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2501 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2502 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2503 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2504 	else
   2505 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2506 	/* Write the standard receive producer ring control block. */
   2507 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2508 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2509 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2510 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2511 
   2512 	/* Reset the standard receive producer ring producer index. */
   2513 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2514 
   2515 	/* 57XX step 42 */
   2516 	/*
   2517 	 * Initialize the jumbo RX ring control block
   2518 	 * We set the 'ring disabled' bit in the flags
   2519 	 * field until we're actually ready to start
   2520 	 * using this ring (i.e. once we set the MTU
   2521 	 * high enough to require it).
   2522 	 */
   2523 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2524 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2525 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2526 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2527 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2528 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2529 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2530 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2531 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2532 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2533 		else
   2534 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2535 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2536 		    rcb->bge_hostaddr.bge_addr_hi);
   2537 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2538 		    rcb->bge_hostaddr.bge_addr_lo);
   2539 		/* Program the jumbo receive producer ring RCB parameters. */
   2540 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2541 		    rcb->bge_maxlen_flags);
   2542 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2543 		/* Reset the jumbo receive producer ring producer index. */
   2544 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2545 	}
   2546 
   2547 	/* 57XX step 43 */
   2548 	/* Disable the mini receive producer ring RCB. */
   2549 	if (BGE_IS_5700_FAMILY(sc)) {
   2550 		/* Set up dummy disabled mini ring RCB */
   2551 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2552 		rcb->bge_maxlen_flags =
   2553 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2554 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2555 		    rcb->bge_maxlen_flags);
   2556 		/* Reset the mini receive producer ring producer index. */
   2557 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2558 
   2559 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2560 		    offsetof(struct bge_ring_data, bge_info),
   2561 		    sizeof(struct bge_gib),
   2562 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2563 	}
   2564 
   2565 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2566 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2567 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2568 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2569 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2570 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2571 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2572 	}
   2573 	/* 5718 step 14, 57XX step 44 */
   2574 	/*
   2575 	 * The BD ring replenish thresholds control how often the
   2576 	 * hardware fetches new BD's from the producer rings in host
   2577 	 * memory.  Setting the value too low on a busy system can
   2578 	 * starve the hardware and recue the throughpout.
   2579 	 *
   2580 	 * Set the BD ring replenish thresholds. The recommended
   2581 	 * values are 1/8th the number of descriptors allocated to
   2582 	 * each ring, but since we try to avoid filling the entire
   2583 	 * ring we set these to the minimal value of 8.  This needs to
   2584 	 * be done on several of the supported chip revisions anyway,
   2585 	 * to work around HW bugs.
   2586 	 */
   2587 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2588 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2589 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2590 
   2591 	/* 5718 step 18 */
   2592 	if (BGE_IS_5717_PLUS(sc)) {
   2593 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2594 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2595 	}
   2596 
   2597 	/* 57XX step 45 */
   2598 	/*
   2599 	 * Disable all send rings by setting the 'ring disabled' bit
   2600 	 * in the flags field of all the TX send ring control blocks,
   2601 	 * located in NIC memory.
   2602 	 */
   2603 	if (BGE_IS_5700_FAMILY(sc)) {
   2604 		/* 5700 to 5704 had 16 send rings. */
   2605 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2606 	} else if (BGE_IS_5717_PLUS(sc)) {
   2607 		limit = BGE_TX_RINGS_5717_MAX;
   2608 	} else if (BGE_IS_57765_FAMILY(sc) ||
   2609 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2610 		limit = BGE_TX_RINGS_57765_MAX;
   2611 	} else
   2612 		limit = 1;
   2613 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2614 	for (i = 0; i < limit; i++) {
   2615 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2616 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2617 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2618 		rcb_addr += sizeof(struct bge_rcb);
   2619 	}
   2620 
   2621 	/* 57XX step 46 and 47 */
   2622 	/* Configure send ring RCB 0 (we use only the first ring) */
   2623 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2624 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2625 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2626 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2627 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2628 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2629 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2630 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2631 	else
   2632 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2633 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2634 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2635 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2636 
   2637 	/* 57XX step 48 */
   2638 	/*
   2639 	 * Disable all receive return rings by setting the
   2640 	 * 'ring diabled' bit in the flags field of all the receive
   2641 	 * return ring control blocks, located in NIC memory.
   2642 	 */
   2643 	if (BGE_IS_5717_PLUS(sc)) {
   2644 		/* Should be 17, use 16 until we get an SRAM map. */
   2645 		limit = 16;
   2646 	} else if (BGE_IS_5700_FAMILY(sc))
   2647 		limit = BGE_RX_RINGS_MAX;
   2648 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2649 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
   2650 	    BGE_IS_57765_FAMILY(sc))
   2651 		limit = 4;
   2652 	else
   2653 		limit = 1;
   2654 	/* Disable all receive return rings */
   2655 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2656 	for (i = 0; i < limit; i++) {
   2657 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2658 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2659 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2660 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2661 			BGE_RCB_FLAG_RING_DISABLED));
   2662 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2663 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2664 		    (i * (sizeof(uint64_t))), 0);
   2665 		rcb_addr += sizeof(struct bge_rcb);
   2666 	}
   2667 
   2668 	/* 57XX step 49 */
   2669 	/*
   2670 	 * Set up receive return ring 0.  Note that the NIC address
   2671 	 * for RX return rings is 0x0.  The return rings live entirely
   2672 	 * within the host, so the nicaddr field in the RCB isn't used.
   2673 	 */
   2674 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2675 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2676 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2677 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2678 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2679 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2680 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2681 
   2682 	/* 5718 step 24, 57XX step 53 */
   2683 	/* Set random backoff seed for TX */
   2684 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2685 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2686 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2687 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2688 	    BGE_TX_BACKOFF_SEED_MASK);
   2689 
   2690 	/* 5718 step 26, 57XX step 55 */
   2691 	/* Set inter-packet gap */
   2692 	val = 0x2620;
   2693 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2694 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2695 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2696 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2697 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2698 
   2699 	/* 5718 step 27, 57XX step 56 */
   2700 	/*
   2701 	 * Specify which ring to use for packets that don't match
   2702 	 * any RX rules.
   2703 	 */
   2704 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2705 
   2706 	/* 5718 step 28, 57XX step 57 */
   2707 	/*
   2708 	 * Configure number of RX lists. One interrupt distribution
   2709 	 * list, sixteen active lists, one bad frames class.
   2710 	 */
   2711 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2712 
   2713 	/* 5718 step 29, 57XX step 58 */
   2714 	/* Inialize RX list placement stats mask. */
   2715 	if (BGE_IS_575X_PLUS(sc)) {
   2716 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2717 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2718 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2719 	} else
   2720 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2721 
   2722 	/* 5718 step 30, 57XX step 59 */
   2723 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2724 
   2725 	/* 5718 step 33, 57XX step 62 */
   2726 	/* Disable host coalescing until we get it set up */
   2727 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2728 
   2729 	/* 5718 step 34, 57XX step 63 */
   2730 	/* Poll to make sure it's shut down. */
   2731 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2732 		DELAY(10);
   2733 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2734 			break;
   2735 	}
   2736 
   2737 	if (i == BGE_TIMEOUT * 2) {
   2738 		aprint_error_dev(sc->bge_dev,
   2739 		    "host coalescing engine failed to idle\n");
   2740 		return ENXIO;
   2741 	}
   2742 
   2743 	/* 5718 step 35, 36, 37 */
   2744 	/* Set up host coalescing defaults */
   2745 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2746 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2747 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2748 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2749 	if (!(BGE_IS_5705_PLUS(sc))) {
   2750 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2751 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2752 	}
   2753 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2754 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2755 
   2756 	/* Set up address of statistics block */
   2757 	if (BGE_IS_5700_FAMILY(sc)) {
   2758 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2759 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2760 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2761 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2762 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2763 	}
   2764 
   2765 	/* 5718 step 38 */
   2766 	/* Set up address of status block */
   2767 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2768 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2769 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2770 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2771 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2772 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2773 
   2774 	/* Set up status block size. */
   2775 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2776 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2777 		val = BGE_STATBLKSZ_FULL;
   2778 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2779 	} else {
   2780 		val = BGE_STATBLKSZ_32BYTE;
   2781 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2782 	}
   2783 
   2784 	/* 5718 step 39, 57XX step 73 */
   2785 	/* Turn on host coalescing state machine */
   2786 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2787 
   2788 	/* 5718 step 40, 57XX step 74 */
   2789 	/* Turn on RX BD completion state machine and enable attentions */
   2790 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2791 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2792 
   2793 	/* 5718 step 41, 57XX step 75 */
   2794 	/* Turn on RX list placement state machine */
   2795 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2796 
   2797 	/* 57XX step 76 */
   2798 	/* Turn on RX list selector state machine. */
   2799 	if (!(BGE_IS_5705_PLUS(sc)))
   2800 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2801 
   2802 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2803 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2804 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2805 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2806 
   2807 	if (sc->bge_flags & BGEF_FIBER_TBI)
   2808 		val |= BGE_PORTMODE_TBI;
   2809 	else if (sc->bge_flags & BGEF_FIBER_MII)
   2810 		val |= BGE_PORTMODE_GMII;
   2811 	else
   2812 		val |= BGE_PORTMODE_MII;
   2813 
   2814 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   2815 	/* Allow APE to send/receive frames. */
   2816 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2817 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2818 
   2819 	/* Turn on DMA, clear stats */
   2820 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2821 	/* 5718 step 44 */
   2822 	DELAY(40);
   2823 
   2824 	/* 5718 step 45, 57XX step 79 */
   2825 	/* Set misc. local control, enable interrupts on attentions */
   2826 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2827 	if (BGE_IS_5717_PLUS(sc)) {
   2828 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2829 		/* 5718 step 46 */
   2830 		DELAY(100);
   2831 	}
   2832 
   2833 	/* 57XX step 81 */
   2834 	/* Turn on DMA completion state machine */
   2835 	if (!(BGE_IS_5705_PLUS(sc)))
   2836 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2837 
   2838 	/* 5718 step 47, 57XX step 82 */
   2839 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2840 
   2841 	/* 5718 step 48 */
   2842 	/* Enable host coalescing bug fix. */
   2843 	if (BGE_IS_5755_PLUS(sc))
   2844 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2845 
   2846 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2847 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2848 
   2849 	/* Turn on write DMA state machine */
   2850 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2851 	/* 5718 step 49 */
   2852 	DELAY(40);
   2853 
   2854 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2855 
   2856 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   2857 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2858 
   2859 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2860 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2861 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2862 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2863 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2864 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2865 
   2866 	if (sc->bge_flags & BGEF_PCIE)
   2867 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2868 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2869 		if (ifp->if_mtu <= ETHERMTU)
   2870 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
   2871 	}
   2872 	if (sc->bge_flags & BGEF_TSO) {
   2873 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2874 		if (BGE_IS_5717_PLUS(sc))
   2875 			val |= BGE_RDMAMODE_TSO6_ENABLE;
   2876 	}
   2877 
   2878 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2879 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2880 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   2881 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   2882 		/*
   2883 		 * Allow multiple outstanding read requests from
   2884 		 * non-LSO read DMA engine.
   2885 		 */
   2886 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2887 	}
   2888 
   2889 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2890 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2891 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2892 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   2893 	    BGE_IS_57765_PLUS(sc)) {
   2894 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2895 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
   2896 		else
   2897 			rdmareg = BGE_RDMA_RSRVCTRL;
   2898 		dmactl = CSR_READ_4(sc, rdmareg);
   2899 		/*
   2900 		 * Adjust tx margin to prevent TX data corruption and
   2901 		 * fix internal FIFO overflow.
   2902 		 */
   2903 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2904 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2905 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   2906 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   2907 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   2908 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   2909 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   2910 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   2911 		}
   2912 		/*
   2913 		 * Enable fix for read DMA FIFO overruns.
   2914 		 * The fix is to limit the number of RX BDs
   2915 		 * the hardware would fetch at a time.
   2916 		 */
   2917 		CSR_WRITE_4(sc, rdmareg, dmactl |
   2918 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   2919 	}
   2920 
   2921 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   2922 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2923 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2924 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2925 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2926 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2927 		/*
   2928 		 * Allow 4KB burst length reads for non-LSO frames.
   2929 		 * Enable 512B burst length reads for buffer descriptors.
   2930 		 */
   2931 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2932 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2933 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   2934 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2935 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2936 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
   2937 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
   2938 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2939 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2940 	}
   2941 	/* Turn on read DMA state machine */
   2942 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   2943 	/* 5718 step 52 */
   2944 	delay(40);
   2945 
   2946 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   2947 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
   2948 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
   2949 			if ((val & 0xFFFF) > BGE_FRAMELEN)
   2950 				break;
   2951 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
   2952 				break;
   2953 		}
   2954 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
   2955 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   2956 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2957 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
   2958 			else
   2959 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
   2960 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   2961 		}
   2962 	}
   2963 
   2964 	/* 5718 step 56, 57XX step 84 */
   2965 	/* Turn on RX data completion state machine */
   2966 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2967 
   2968 	/* Turn on RX data and RX BD initiator state machine */
   2969 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2970 
   2971 	/* 57XX step 85 */
   2972 	/* Turn on Mbuf cluster free state machine */
   2973 	if (!BGE_IS_5705_PLUS(sc))
   2974 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   2975 
   2976 	/* 5718 step 57, 57XX step 86 */
   2977 	/* Turn on send data completion state machine */
   2978 	val = BGE_SDCMODE_ENABLE;
   2979 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   2980 		val |= BGE_SDCMODE_CDELAY;
   2981 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   2982 
   2983 	/* 5718 step 58 */
   2984 	/* Turn on send BD completion state machine */
   2985 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   2986 
   2987 	/* 57XX step 88 */
   2988 	/* Turn on RX BD initiator state machine */
   2989 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   2990 
   2991 	/* 5718 step 60, 57XX step 90 */
   2992 	/* Turn on send data initiator state machine */
   2993 	if (sc->bge_flags & BGEF_TSO) {
   2994 		/* XXX: magic value from Linux driver */
   2995 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   2996 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   2997 	} else
   2998 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   2999 
   3000 	/* 5718 step 61, 57XX step 91 */
   3001 	/* Turn on send BD initiator state machine */
   3002 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3003 
   3004 	/* 5718 step 62, 57XX step 92 */
   3005 	/* Turn on send BD selector state machine */
   3006 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3007 
   3008 	/* 5718 step 31, 57XX step 60 */
   3009 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   3010 	/* 5718 step 32, 57XX step 61 */
   3011 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   3012 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   3013 
   3014 	/* ack/clear link change events */
   3015 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3016 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3017 	    BGE_MACSTAT_LINK_CHANGED);
   3018 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3019 
   3020 	/*
   3021 	 * Enable attention when the link has changed state for
   3022 	 * devices that use auto polling.
   3023 	 */
   3024 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3025 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3026 	} else {
   3027 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3028 			mimode = BGE_MIMODE_500KHZ_CONST;
   3029 		else
   3030 			mimode = BGE_MIMODE_BASE;
   3031 		/* 5718 step 68. 5718 step 69 (optionally). */
   3032 		if (BGE_IS_5700_FAMILY(sc) ||
   3033 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
   3034 			mimode |= BGE_MIMODE_AUTOPOLL;
   3035 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3036 		}
   3037 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3038 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3039 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3040 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3041 			    BGE_EVTENB_MI_INTERRUPT);
   3042 	}
   3043 
   3044 	/*
   3045 	 * Clear any pending link state attention.
   3046 	 * Otherwise some link state change events may be lost until attention
   3047 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3048 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3049 	 * state change attentions implies clearing pending attention.
   3050 	 */
   3051 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3052 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3053 	    BGE_MACSTAT_LINK_CHANGED);
   3054 
   3055 	/* Enable link state change attentions. */
   3056 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3057 
   3058 	return 0;
   3059 }
   3060 
   3061 static const struct bge_revision *
   3062 bge_lookup_rev(uint32_t chipid)
   3063 {
   3064 	const struct bge_revision *br;
   3065 
   3066 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3067 		if (br->br_chipid == chipid)
   3068 			return br;
   3069 	}
   3070 
   3071 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3072 		if (br->br_chipid == BGE_ASICREV(chipid))
   3073 			return br;
   3074 	}
   3075 
   3076 	return NULL;
   3077 }
   3078 
   3079 static const struct bge_product *
   3080 bge_lookup(const struct pci_attach_args *pa)
   3081 {
   3082 	const struct bge_product *bp;
   3083 
   3084 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3085 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3086 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3087 			return bp;
   3088 	}
   3089 
   3090 	return NULL;
   3091 }
   3092 
   3093 static uint32_t
   3094 bge_chipid(const struct pci_attach_args *pa)
   3095 {
   3096 	uint32_t id;
   3097 
   3098 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3099 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3100 
   3101 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3102 		switch (PCI_PRODUCT(pa->pa_id)) {
   3103 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3104 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3105 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3106 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3107 		case PCI_PRODUCT_BROADCOM_BCM5725:
   3108 		case PCI_PRODUCT_BROADCOM_BCM5727:
   3109 		case PCI_PRODUCT_BROADCOM_BCM5762:
   3110 		case PCI_PRODUCT_BROADCOM_BCM57764:
   3111 		case PCI_PRODUCT_BROADCOM_BCM57767:
   3112 		case PCI_PRODUCT_BROADCOM_BCM57787:
   3113 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3114 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3115 			break;
   3116 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3117 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3118 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3119 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3120 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3121 		case PCI_PRODUCT_BROADCOM_BCM57782:
   3122 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3123 		case PCI_PRODUCT_BROADCOM_BCM57786:
   3124 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3125 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3126 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3127 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3128 			break;
   3129 		default:
   3130 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3131 			    BGE_PCI_PRODID_ASICREV);
   3132 			break;
   3133 		}
   3134 	}
   3135 
   3136 	return id;
   3137 }
   3138 
   3139 /*
   3140  * Return true if MSI can be used with this device.
   3141  */
   3142 static int
   3143 bge_can_use_msi(struct bge_softc *sc)
   3144 {
   3145 	int can_use_msi = 0;
   3146 
   3147 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3148 	case BGE_ASICREV_BCM5714_A0:
   3149 	case BGE_ASICREV_BCM5714:
   3150 		/*
   3151 		 * Apparently, MSI doesn't work when these chips are
   3152 		 * configured in single-port mode.
   3153 		 */
   3154 		break;
   3155 	case BGE_ASICREV_BCM5750:
   3156 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
   3157 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
   3158 			can_use_msi = 1;
   3159 		break;
   3160 	default:
   3161 		if (BGE_IS_575X_PLUS(sc))
   3162 			can_use_msi = 1;
   3163 	}
   3164 	return can_use_msi;
   3165 }
   3166 
   3167 /*
   3168  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3169  * against our list and return its name if we find a match. Note
   3170  * that since the Broadcom controller contains VPD support, we
   3171  * can get the device name string from the controller itself instead
   3172  * of the compiled-in string. This is a little slow, but it guarantees
   3173  * we'll always announce the right product name.
   3174  */
   3175 static int
   3176 bge_probe(device_t parent, cfdata_t match, void *aux)
   3177 {
   3178 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3179 
   3180 	if (bge_lookup(pa) != NULL)
   3181 		return 1;
   3182 
   3183 	return 0;
   3184 }
   3185 
   3186 static void
   3187 bge_attach(device_t parent, device_t self, void *aux)
   3188 {
   3189 	struct bge_softc * const sc = device_private(self);
   3190 	struct pci_attach_args * const pa = aux;
   3191 	prop_dictionary_t dict;
   3192 	const struct bge_product *bp;
   3193 	const struct bge_revision *br;
   3194 	pci_chipset_tag_t	pc;
   3195 	const char		*intrstr = NULL;
   3196 	uint32_t		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
   3197 	uint32_t		command;
   3198 	struct ifnet		*ifp;
   3199 	struct mii_data * const mii = &sc->bge_mii;
   3200 	uint32_t		misccfg, mimode, macmode;
   3201 	void *			kva;
   3202 	u_char			eaddr[ETHER_ADDR_LEN];
   3203 	pcireg_t		memtype, subid, reg;
   3204 	bus_addr_t		memaddr;
   3205 	uint32_t		pm_ctl;
   3206 	bool			no_seeprom;
   3207 	int			capmask, trys;
   3208 	int			mii_flags;
   3209 	int			map_flags;
   3210 	char intrbuf[PCI_INTRSTR_LEN];
   3211 
   3212 	bp = bge_lookup(pa);
   3213 	KASSERT(bp != NULL);
   3214 
   3215 	sc->sc_pc = pa->pa_pc;
   3216 	sc->sc_pcitag = pa->pa_tag;
   3217 	sc->bge_dev = self;
   3218 
   3219 	sc->bge_pa = *pa;
   3220 	pc = sc->sc_pc;
   3221 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3222 
   3223 	aprint_naive(": Ethernet controller\n");
   3224 	aprint_normal(": %s Ethernet\n", bp->bp_name);
   3225 
   3226 	/*
   3227 	 * Map control/status registers.
   3228 	 */
   3229 	DPRINTFN(5, ("Map control/status regs\n"));
   3230 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3231 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3232 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3233 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3234 
   3235 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3236 		aprint_error_dev(sc->bge_dev,
   3237 		    "failed to enable memory mapping!\n");
   3238 		return;
   3239 	}
   3240 
   3241 	DPRINTFN(5, ("pci_mem_find\n"));
   3242 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3243 	switch (memtype) {
   3244 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3245 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3246 #if 0
   3247 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3248 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3249 		    &memaddr, &sc->bge_bsize) == 0)
   3250 			break;
   3251 #else
   3252 		/*
   3253 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3254 		 * system get NMI on boot (PR#48451). This problem might not be
   3255 		 * the driver's bug but our PCI common part's bug. Until we
   3256 		 * find a real reason, we ignore the prefetchable bit.
   3257 		 */
   3258 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
   3259 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
   3260 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3261 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
   3262 			    map_flags, &sc->bge_bhandle) == 0) {
   3263 				sc->bge_btag = pa->pa_memt;
   3264 				break;
   3265 			}
   3266 		}
   3267 #endif
   3268 		/* FALLTHROUGH */
   3269 	default:
   3270 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3271 		return;
   3272 	}
   3273 
   3274 	/* Save various chip information. */
   3275 	sc->bge_chipid = bge_chipid(pa);
   3276 	sc->bge_phy_addr = bge_phy_addr(sc);
   3277 
   3278 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3279 	    &sc->bge_pciecap, NULL) != 0) {
   3280 		/* PCIe */
   3281 		sc->bge_flags |= BGEF_PCIE;
   3282 		/* Extract supported maximum payload size. */
   3283 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3284 		    sc->bge_pciecap + PCIE_DCAP);
   3285 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3286 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3287 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3288 			sc->bge_expmrq = 2048;
   3289 		else
   3290 			sc->bge_expmrq = 4096;
   3291 		bge_set_max_readrq(sc);
   3292 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
   3293 		/* PCIe without PCIe cap */
   3294 		sc->bge_flags |= BGEF_PCIE;
   3295 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3296 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3297 		/* PCI-X */
   3298 		sc->bge_flags |= BGEF_PCIX;
   3299 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3300 			&sc->bge_pcixcap, NULL) == 0)
   3301 			aprint_error_dev(sc->bge_dev,
   3302 			    "unable to find PCIX capability\n");
   3303 	}
   3304 
   3305 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3306 		/*
   3307 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3308 		 * can clobber the chip's PCI config-space power control
   3309 		 * registers, leaving the card in D3 powersave state. We do
   3310 		 * not have memory-mapped registers in this state, so force
   3311 		 * device into D0 state before starting initialization.
   3312 		 */
   3313 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3314 		pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
   3315 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3316 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3317 		DELAY(1000);	/* 27 usec is allegedly sufficient */
   3318 	}
   3319 
   3320 	/* Save chipset family. */
   3321 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3322 	case BGE_ASICREV_BCM5717:
   3323 	case BGE_ASICREV_BCM5719:
   3324 	case BGE_ASICREV_BCM5720:
   3325 		sc->bge_flags |= BGEF_5717_PLUS;
   3326 		/* FALLTHROUGH */
   3327 	case BGE_ASICREV_BCM5762:
   3328 	case BGE_ASICREV_BCM57765:
   3329 	case BGE_ASICREV_BCM57766:
   3330 		if (!BGE_IS_5717_PLUS(sc))
   3331 			sc->bge_flags |= BGEF_57765_FAMILY;
   3332 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
   3333 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
   3334 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3335 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3336 			/*
   3337 			 * Enable work around for DMA engine miscalculation
   3338 			 * of TXMBUF available space.
   3339 			 */
   3340 			sc->bge_flags |= BGEF_RDMA_BUG;
   3341 
   3342 			if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3343 			    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
   3344 				/* Jumbo frame on BCM5719 A0 does not work. */
   3345 				sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
   3346 			}
   3347 		}
   3348 		break;
   3349 	case BGE_ASICREV_BCM5755:
   3350 	case BGE_ASICREV_BCM5761:
   3351 	case BGE_ASICREV_BCM5784:
   3352 	case BGE_ASICREV_BCM5785:
   3353 	case BGE_ASICREV_BCM5787:
   3354 	case BGE_ASICREV_BCM57780:
   3355 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
   3356 		break;
   3357 	case BGE_ASICREV_BCM5700:
   3358 	case BGE_ASICREV_BCM5701:
   3359 	case BGE_ASICREV_BCM5703:
   3360 	case BGE_ASICREV_BCM5704:
   3361 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
   3362 		break;
   3363 	case BGE_ASICREV_BCM5714_A0:
   3364 	case BGE_ASICREV_BCM5780:
   3365 	case BGE_ASICREV_BCM5714:
   3366 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
   3367 		/* FALLTHROUGH */
   3368 	case BGE_ASICREV_BCM5750:
   3369 	case BGE_ASICREV_BCM5752:
   3370 	case BGE_ASICREV_BCM5906:
   3371 		sc->bge_flags |= BGEF_575X_PLUS;
   3372 		/* FALLTHROUGH */
   3373 	case BGE_ASICREV_BCM5705:
   3374 		sc->bge_flags |= BGEF_5705_PLUS;
   3375 		break;
   3376 	}
   3377 
   3378 	/* Identify chips with APE processor. */
   3379 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3380 	case BGE_ASICREV_BCM5717:
   3381 	case BGE_ASICREV_BCM5719:
   3382 	case BGE_ASICREV_BCM5720:
   3383 	case BGE_ASICREV_BCM5761:
   3384 	case BGE_ASICREV_BCM5762:
   3385 		sc->bge_flags |= BGEF_APE;
   3386 		break;
   3387 	}
   3388 
   3389 	/*
   3390 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
   3391 	 * not actually a MAC controller bug but an issue with the embedded
   3392 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
   3393 	 */
   3394 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
   3395 		sc->bge_flags |= BGEF_40BIT_BUG;
   3396 
   3397 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3398 	if ((sc->bge_flags & BGEF_APE) != 0) {
   3399 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3400 #if 0
   3401 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3402 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3403 			&sc->bge_apesize)) {
   3404 			aprint_error_dev(sc->bge_dev,
   3405 			    "couldn't map BAR2 memory\n");
   3406 			return;
   3407 		}
   3408 #else
   3409 		/*
   3410 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3411 		 * system get NMI on boot (PR#48451). This problem might not be
   3412 		 * the driver's bug but our PCI common part's bug. Until we
   3413 		 * find a real reason, we ignore the prefetchable bit.
   3414 		 */
   3415 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
   3416 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
   3417 			aprint_error_dev(sc->bge_dev,
   3418 			    "couldn't map BAR2 memory\n");
   3419 			return;
   3420 		}
   3421 
   3422 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3423 		if (bus_space_map(pa->pa_memt, memaddr,
   3424 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
   3425 			aprint_error_dev(sc->bge_dev,
   3426 			    "couldn't map BAR2 memory\n");
   3427 			return;
   3428 		}
   3429 		sc->bge_apetag = pa->pa_memt;
   3430 #endif
   3431 
   3432 		/* Enable APE register/memory access by host driver. */
   3433 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3434 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3435 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3436 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3437 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3438 
   3439 		bge_ape_lock_init(sc);
   3440 		bge_ape_read_fw_ver(sc);
   3441 	}
   3442 
   3443 	/* Identify the chips that use an CPMU. */
   3444 	if (BGE_IS_5717_PLUS(sc) ||
   3445 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3446 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3447 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3448 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3449 		sc->bge_flags |= BGEF_CPMU_PRESENT;
   3450 
   3451 	/*
   3452 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3453 	 * been observed in the first few bytes of some received packets.
   3454 	 * Aligning the packet buffer in memory eliminates the corruption.
   3455 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3456 	 * which do not support unaligned accesses, we will realign the
   3457 	 * payloads by copying the received packets.
   3458 	 */
   3459 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3460 	    sc->bge_flags & BGEF_PCIX)
   3461 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
   3462 
   3463 	if (BGE_IS_5700_FAMILY(sc))
   3464 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
   3465 
   3466 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3467 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3468 
   3469 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3470 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3471 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3472 		sc->bge_flags |= BGEF_IS_5788;
   3473 
   3474 	/*
   3475 	 * Some controllers seem to require a special firmware to use
   3476 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3477 	 * claims that the TSO performed by the firmware is slower than
   3478 	 * hardware based TSO. Moreover the firmware based TSO has one
   3479 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3480 	 * header is greater than 80 bytes. The workaround for the TSO
   3481 	 * bug exist but it seems it's too expensive than not using
   3482 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3483 	 * the TSO to the controllers that are not affected TSO issues
   3484 	 * (e.g. 5755 or higher).
   3485 	 */
   3486 	if (BGE_IS_5755_PLUS(sc)) {
   3487 		/*
   3488 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3489 		 * explicit device id check is required.
   3490 		 */
   3491 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3492 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3493 			sc->bge_flags |= BGEF_TSO;
   3494 		/* TSO on BCM5719 A0 does not work. */
   3495 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3496 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3497 			sc->bge_flags &= ~BGEF_TSO;
   3498 	}
   3499 
   3500 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3501 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3502 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3503 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3504 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3505 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3506 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3507 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3508 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3509 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3510 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3511 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3512 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3513 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3514 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3515 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3516 		/* These chips are 10/100 only. */
   3517 		capmask &= ~BMSR_EXTSTAT;
   3518 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3519 	}
   3520 
   3521 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3522 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3523 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3524 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3525 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3526 
   3527 	/* Set various PHY bug flags. */
   3528 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3529 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3530 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
   3531 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3532 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3533 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
   3534 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3535 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
   3536 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3537 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3538 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3539 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
   3540 	if (BGE_IS_5705_PLUS(sc) &&
   3541 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3542 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3543 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3544 	    !BGE_IS_57765_PLUS(sc)) {
   3545 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3546 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3547 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3548 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3549 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3550 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3551 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
   3552 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3553 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
   3554 		} else
   3555 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
   3556 	}
   3557 
   3558 	/*
   3559 	 * SEEPROM check.
   3560 	 * First check if firmware knows we do not have SEEPROM.
   3561 	 */
   3562 	if (prop_dictionary_get_bool(device_properties(self),
   3563 	    "without-seeprom", &no_seeprom) && no_seeprom)
   3564 		sc->bge_flags |= BGEF_NO_EEPROM;
   3565 
   3566 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3567 		sc->bge_flags |= BGEF_NO_EEPROM;
   3568 
   3569 	/* Now check the 'ROM failed' bit on the RX CPU */
   3570 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3571 		sc->bge_flags |= BGEF_NO_EEPROM;
   3572 
   3573 	sc->bge_asf_mode = 0;
   3574 	/* No ASF if APE present. */
   3575 	if ((sc->bge_flags & BGEF_APE) == 0) {
   3576 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3577 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3578 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3579 			    BGE_HWCFG_ASF) {
   3580 				sc->bge_asf_mode |= ASF_ENABLE;
   3581 				sc->bge_asf_mode |= ASF_STACKUP;
   3582 				if (BGE_IS_575X_PLUS(sc))
   3583 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3584 			}
   3585 		}
   3586 	}
   3587 
   3588 	int counts[PCI_INTR_TYPE_SIZE] = {
   3589 		[PCI_INTR_TYPE_INTX] = 1,
   3590 		[PCI_INTR_TYPE_MSI] = 1,
   3591 		[PCI_INTR_TYPE_MSIX] = 1,
   3592 	};
   3593 	int max_type = PCI_INTR_TYPE_MSIX;
   3594 
   3595 	if (!bge_can_use_msi(sc)) {
   3596 		/* MSI broken, allow only INTx */
   3597 		max_type = PCI_INTR_TYPE_INTX;
   3598 	}
   3599 
   3600 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
   3601 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
   3602 		return;
   3603 	}
   3604 
   3605 	DPRINTFN(5, ("pci_intr_string\n"));
   3606 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
   3607 	    sizeof(intrbuf));
   3608 	DPRINTFN(5, ("pci_intr_establish\n"));
   3609 	sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
   3610 	    IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
   3611 	if (sc->bge_intrhand == NULL) {
   3612 		pci_intr_release(pc, sc->bge_pihp, 1);
   3613 		sc->bge_pihp = NULL;
   3614 
   3615 		aprint_error_dev(self, "couldn't establish interrupt");
   3616 		if (intrstr != NULL)
   3617 			aprint_error(" at %s", intrstr);
   3618 		aprint_error("\n");
   3619 		return;
   3620 	}
   3621 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3622 
   3623 	switch (pci_intr_type(pc, sc->bge_pihp[0])) {
   3624 	case PCI_INTR_TYPE_MSIX:
   3625 	case PCI_INTR_TYPE_MSI:
   3626 		KASSERT(bge_can_use_msi(sc));
   3627 		sc->bge_flags |= BGEF_MSI;
   3628 		break;
   3629 	default:
   3630 		/* nothing to do */
   3631 		break;
   3632 	}
   3633 
   3634 	/*
   3635 	 * All controllers except BCM5700 supports tagged status but
   3636 	 * we use tagged status only for MSI case on BCM5717. Otherwise
   3637 	 * MSI on BCM5717 does not work.
   3638 	 */
   3639 	if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
   3640 		sc->bge_flags |= BGEF_TAGGED_STATUS;
   3641 
   3642 	/*
   3643 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3644 	 * lock in bge_reset().
   3645 	 */
   3646 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   3647 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3648 	delay(1000);
   3649 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3650 
   3651 	bge_stop_fw(sc);
   3652 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   3653 	if (bge_reset(sc))
   3654 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3655 
   3656 	/*
   3657 	 * Read the hardware config word in the first 32k of NIC internal
   3658 	 * memory, or fall back to the config word in the EEPROM.
   3659 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3660 	 */
   3661 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
   3662 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3663 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3664 		uint32_t tmp;
   3665 
   3666 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3667 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3668 		    BGE_SRAM_DATA_VER_SHIFT;
   3669 		if ((0 < tmp) && (tmp < 0x100))
   3670 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3671 		if (sc->bge_flags & BGEF_PCIE)
   3672 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3673 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3674 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3675 		if (BGE_IS_5717_PLUS(sc))
   3676 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
   3677 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
   3678 		bge_read_eeprom(sc, (void *)&hwcfg,
   3679 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3680 		hwcfg = be32toh(hwcfg);
   3681 	}
   3682 	aprint_normal_dev(sc->bge_dev,
   3683 	    "HW config %08x, %08x, %08x, %08x %08x\n",
   3684 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
   3685 
   3686 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   3687 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   3688 
   3689 	if (bge_chipinit(sc)) {
   3690 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3691 		bge_release_resources(sc);
   3692 		return;
   3693 	}
   3694 
   3695 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   3696 		BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
   3697 		    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
   3698 		DELAY(100);
   3699 	}
   3700 
   3701 	/* Set MI_MODE */
   3702 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3703 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3704 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3705 	else
   3706 		mimode |= BGE_MIMODE_BASE;
   3707 	CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
   3708 	DELAY(80);
   3709 
   3710 	/*
   3711 	 * Get station address from the EEPROM.
   3712 	 */
   3713 	if (bge_get_eaddr(sc, eaddr)) {
   3714 		aprint_error_dev(sc->bge_dev,
   3715 		    "failed to read station address\n");
   3716 		bge_release_resources(sc);
   3717 		return;
   3718 	}
   3719 
   3720 	br = bge_lookup_rev(sc->bge_chipid);
   3721 
   3722 	if (br == NULL) {
   3723 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3724 		    sc->bge_chipid);
   3725 	} else {
   3726 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3727 		    br->br_name, sc->bge_chipid);
   3728 	}
   3729 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3730 
   3731 	/* Allocate the general information block and ring buffers. */
   3732 	if (pci_dma64_available(pa)) {
   3733 		sc->bge_dmatag = pa->pa_dmat64;
   3734 		sc->bge_dmatag32 = pa->pa_dmat;
   3735 		sc->bge_dma64 = true;
   3736 	} else {
   3737 		sc->bge_dmatag = pa->pa_dmat;
   3738 		sc->bge_dmatag32 = pa->pa_dmat;
   3739 		sc->bge_dma64 = false;
   3740 	}
   3741 
   3742 	/* 40bit DMA workaround */
   3743 	if (sizeof(bus_addr_t) > 4) {
   3744 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
   3745 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
   3746 
   3747 			if (bus_dmatag_subregion(olddmatag, 0,
   3748 			    (bus_addr_t)__MASK(40),
   3749 			    &(sc->bge_dmatag), BUS_DMA_NOWAIT) != 0) {
   3750 				aprint_error_dev(self,
   3751 				    "WARNING: failed to restrict dma range,"
   3752 				    " falling back to parent bus dma range\n");
   3753 				sc->bge_dmatag = olddmatag;
   3754 			}
   3755 		}
   3756 	}
   3757 	SLIST_INIT(&sc->txdma_list);
   3758 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3759 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3760 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3761 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
   3762 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3763 		return;
   3764 	}
   3765 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3766 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3767 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3768 			   BUS_DMA_NOWAIT)) {
   3769 		aprint_error_dev(sc->bge_dev,
   3770 		    "can't map DMA buffers (%zu bytes)\n",
   3771 		    sizeof(struct bge_ring_data));
   3772 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3773 		    sc->bge_ring_rseg);
   3774 		return;
   3775 	}
   3776 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3777 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3778 	    sizeof(struct bge_ring_data), 0,
   3779 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   3780 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3781 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3782 				 sizeof(struct bge_ring_data));
   3783 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3784 		    sc->bge_ring_rseg);
   3785 		return;
   3786 	}
   3787 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3788 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3789 			    sizeof(struct bge_ring_data), NULL,
   3790 			    BUS_DMA_NOWAIT)) {
   3791 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3792 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3793 				 sizeof(struct bge_ring_data));
   3794 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3795 		    sc->bge_ring_rseg);
   3796 		return;
   3797 	}
   3798 
   3799 	DPRINTFN(5, ("bzero\n"));
   3800 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3801 
   3802 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3803 
   3804 	/* Try to allocate memory for jumbo buffers. */
   3805 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3806 		if (bge_alloc_jumbo_mem(sc)) {
   3807 			aprint_error_dev(sc->bge_dev,
   3808 			    "jumbo buffer allocation failed\n");
   3809 		} else
   3810 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3811 	}
   3812 
   3813 	/* Set default tuneable values. */
   3814 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3815 	sc->bge_rx_coal_ticks = 150;
   3816 	sc->bge_rx_max_coal_bds = 64;
   3817 	sc->bge_tx_coal_ticks = 300;
   3818 	sc->bge_tx_max_coal_bds = 400;
   3819 	if (BGE_IS_5705_PLUS(sc)) {
   3820 		sc->bge_tx_coal_ticks = (12 * 5);
   3821 		sc->bge_tx_max_coal_bds = (12 * 5);
   3822 			aprint_verbose_dev(sc->bge_dev,
   3823 			    "setting short Tx thresholds\n");
   3824 	}
   3825 
   3826 	if (BGE_IS_5717_PLUS(sc))
   3827 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3828 	else if (BGE_IS_5705_PLUS(sc))
   3829 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3830 	else
   3831 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3832 
   3833 	/* Set up ifnet structure */
   3834 	ifp = &sc->ethercom.ec_if;
   3835 	ifp->if_softc = sc;
   3836 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3837 	ifp->if_ioctl = bge_ioctl;
   3838 	ifp->if_stop = bge_stop;
   3839 	ifp->if_start = bge_start;
   3840 	ifp->if_init = bge_init;
   3841 	ifp->if_watchdog = bge_watchdog;
   3842 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3843 	IFQ_SET_READY(&ifp->if_snd);
   3844 	DPRINTFN(5, ("strcpy if_xname\n"));
   3845 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3846 
   3847 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3848 		sc->ethercom.ec_if.if_capabilities |=
   3849 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3850 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3851 		sc->ethercom.ec_if.if_capabilities |=
   3852 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3853 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3854 #endif
   3855 	sc->ethercom.ec_capabilities |=
   3856 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3857 	sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
   3858 
   3859 	if (sc->bge_flags & BGEF_TSO)
   3860 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3861 
   3862 	/*
   3863 	 * Do MII setup.
   3864 	 */
   3865 	DPRINTFN(5, ("mii setup\n"));
   3866 	mii->mii_ifp = ifp;
   3867 	mii->mii_readreg = bge_miibus_readreg;
   3868 	mii->mii_writereg = bge_miibus_writereg;
   3869 	mii->mii_statchg = bge_miibus_statchg;
   3870 
   3871 	/*
   3872 	 * Figure out what sort of media we have by checking the hardware
   3873 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   3874 	 * unset. If that's the case, we have to rely on identifying the NIC
   3875 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   3876 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   3877 	 */
   3878 	if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
   3879 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3880 		if (BGE_IS_5705_PLUS(sc)) {
   3881 			sc->bge_flags |= BGEF_FIBER_MII;
   3882 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3883 		} else
   3884 			sc->bge_flags |= BGEF_FIBER_TBI;
   3885 	}
   3886 
   3887 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
   3888 	if (BGE_IS_JUMBO_CAPABLE(sc))
   3889 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
   3890 
   3891 	/* set phyflags and chipid before mii_attach() */
   3892 	dict = device_properties(self);
   3893 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
   3894 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3895 
   3896 	macmode = CSR_READ_4(sc, BGE_MAC_MODE);
   3897 	macmode &= ~BGE_MACMODE_PORTMODE;
   3898 	/* Initialize ifmedia structures. */
   3899 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3900 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
   3901 		    macmode | BGE_PORTMODE_TBI);
   3902 		DELAY(40);
   3903 
   3904 		sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
   3905 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3906 		    bge_ifmedia_sts);
   3907 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3908 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
   3909 			    0, NULL);
   3910 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3911 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3912 		/* Pretend the user requested this setting */
   3913 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3914 	} else {
   3915 		uint16_t phyreg;
   3916 		int rv;
   3917 		/*
   3918 		 * Do transceiver setup and tell the firmware the
   3919 		 * driver is down so we can try to get access the
   3920 		 * probe if ASF is running.  Retry a couple of times
   3921 		 * if we get a conflict with the ASF firmware accessing
   3922 		 * the PHY.
   3923 		 */
   3924 		if (sc->bge_flags & BGEF_FIBER_MII)
   3925 			macmode |= BGE_PORTMODE_GMII;
   3926 		else
   3927 			macmode |= BGE_PORTMODE_MII;
   3928 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
   3929 		DELAY(40);
   3930 
   3931 		/*
   3932 		 * Do transceiver setup and tell the firmware the
   3933 		 * driver is down so we can try to get access the
   3934 		 * probe if ASF is running.  Retry a couple of times
   3935 		 * if we get a conflict with the ASF firmware accessing
   3936 		 * the PHY.
   3937 		 */
   3938 		trys = 0;
   3939 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3940 		sc->ethercom.ec_mii = mii;
   3941 		ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
   3942 			     bge_ifmedia_sts);
   3943 		mii_flags = MIIF_DOPAUSE;
   3944 		if (sc->bge_flags & BGEF_FIBER_MII)
   3945 			mii_flags |= MIIF_HAVEFIBER;
   3946 again:
   3947 		bge_asf_driver_up(sc);
   3948 		rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   3949 		    MII_BMCR, &phyreg);
   3950 		if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
   3951 			int i;
   3952 
   3953 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   3954 			    MII_BMCR, BMCR_RESET);
   3955 			/* Wait up to 500ms for it to complete. */
   3956 			for (i = 0; i < 500; i++) {
   3957 				bge_miibus_readreg(sc->bge_dev,
   3958 				    sc->bge_phy_addr, MII_BMCR, &phyreg);
   3959 				if ((phyreg & BMCR_RESET) == 0)
   3960 					break;
   3961 				DELAY(1000);
   3962 			}
   3963 		}
   3964 
   3965 		mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
   3966 		    MII_OFFSET_ANY, mii_flags);
   3967 
   3968 		if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
   3969 			goto again;
   3970 
   3971 		if (LIST_EMPTY(&mii->mii_phys)) {
   3972 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   3973 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
   3974 			    0, NULL);
   3975 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
   3976 		} else
   3977 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   3978 
   3979 		/*
   3980 		 * Now tell the firmware we are going up after probing the PHY
   3981 		 */
   3982 		if (sc->bge_asf_mode & ASF_STACKUP)
   3983 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3984 	}
   3985 
   3986 	/*
   3987 	 * Call MI attach routine.
   3988 	 */
   3989 	DPRINTFN(5, ("if_attach\n"));
   3990 	if_attach(ifp);
   3991 	if_deferred_start_init(ifp, NULL);
   3992 	DPRINTFN(5, ("ether_ifattach\n"));
   3993 	ether_ifattach(ifp, eaddr);
   3994 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   3995 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   3996 		RND_TYPE_NET, RND_FLAG_DEFAULT);
   3997 #ifdef BGE_EVENT_COUNTERS
   3998 	/*
   3999 	 * Attach event counters.
   4000 	 */
   4001 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   4002 	    NULL, device_xname(sc->bge_dev), "intr");
   4003 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
   4004 	    NULL, device_xname(sc->bge_dev), "intr_spurious");
   4005 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
   4006 	    NULL, device_xname(sc->bge_dev), "intr_spurious2");
   4007 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   4008 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   4009 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   4010 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   4011 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   4012 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   4013 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   4014 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   4015 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   4016 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   4017 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   4018 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   4019 #endif /* BGE_EVENT_COUNTERS */
   4020 	DPRINTFN(5, ("callout_init\n"));
   4021 	callout_init(&sc->bge_timeout, 0);
   4022 	callout_setfunc(&sc->bge_timeout, bge_tick, sc);
   4023 
   4024 	if (pmf_device_register(self, NULL, NULL))
   4025 		pmf_class_network_register(self, ifp);
   4026 	else
   4027 		aprint_error_dev(self, "couldn't establish power handler\n");
   4028 
   4029 	bge_sysctl_init(sc);
   4030 
   4031 #ifdef BGE_DEBUG
   4032 	bge_debug_info(sc);
   4033 #endif
   4034 }
   4035 
   4036 /*
   4037  * Stop all chip I/O so that the kernel's probe routines don't
   4038  * get confused by errant DMAs when rebooting.
   4039  */
   4040 static int
   4041 bge_detach(device_t self, int flags __unused)
   4042 {
   4043 	struct bge_softc * const sc = device_private(self);
   4044 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4045 	int s;
   4046 
   4047 	s = splnet();
   4048 	/* Stop the interface. Callouts are stopped in it. */
   4049 	bge_stop(ifp, 1);
   4050 	splx(s);
   4051 
   4052 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   4053 
   4054 	ether_ifdetach(ifp);
   4055 	if_detach(ifp);
   4056 
   4057 	/* Delete all remaining media. */
   4058 	ifmedia_fini(&sc->bge_mii.mii_media);
   4059 
   4060 	bge_release_resources(sc);
   4061 
   4062 	return 0;
   4063 }
   4064 
   4065 static void
   4066 bge_release_resources(struct bge_softc *sc)
   4067 {
   4068 
   4069 	/* Detach sysctl */
   4070 	if (sc->bge_log != NULL)
   4071 		sysctl_teardown(&sc->bge_log);
   4072 
   4073 #ifdef BGE_EVENT_COUNTERS
   4074 	/* Detach event counters. */
   4075 	evcnt_detach(&sc->bge_ev_intr);
   4076 	evcnt_detach(&sc->bge_ev_intr_spurious);
   4077 	evcnt_detach(&sc->bge_ev_intr_spurious2);
   4078 	evcnt_detach(&sc->bge_ev_tx_xoff);
   4079 	evcnt_detach(&sc->bge_ev_tx_xon);
   4080 	evcnt_detach(&sc->bge_ev_rx_xoff);
   4081 	evcnt_detach(&sc->bge_ev_rx_xon);
   4082 	evcnt_detach(&sc->bge_ev_rx_macctl);
   4083 	evcnt_detach(&sc->bge_ev_xoffentered);
   4084 #endif /* BGE_EVENT_COUNTERS */
   4085 
   4086 	/* Disestablish the interrupt handler */
   4087 	if (sc->bge_intrhand != NULL) {
   4088 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   4089 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
   4090 		sc->bge_intrhand = NULL;
   4091 	}
   4092 
   4093 	if (sc->bge_cdata.bge_jumbo_buf != NULL)
   4094 		bge_free_jumbo_mem(sc);
   4095 
   4096 	if (sc->bge_dmatag != NULL) {
   4097 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   4098 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   4099 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   4100 		    sizeof(struct bge_ring_data));
   4101 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   4102 		    sc->bge_ring_rseg);
   4103 	}
   4104 
   4105 	/* Unmap the device registers */
   4106 	if (sc->bge_bsize != 0) {
   4107 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   4108 		sc->bge_bsize = 0;
   4109 	}
   4110 
   4111 	/* Unmap the APE registers */
   4112 	if (sc->bge_apesize != 0) {
   4113 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   4114 		    sc->bge_apesize);
   4115 		sc->bge_apesize = 0;
   4116 	}
   4117 }
   4118 
   4119 static int
   4120 bge_reset(struct bge_softc *sc)
   4121 {
   4122 	uint32_t cachesize, command;
   4123 	uint32_t reset, mac_mode, mac_mode_mask;
   4124 	pcireg_t devctl, reg;
   4125 	int i, val;
   4126 	void (*write_op)(struct bge_softc *, int, int);
   4127 
   4128 	/* Make mask for BGE_MAC_MODE register. */
   4129 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   4130 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4131 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   4132 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   4133 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   4134 
   4135 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   4136 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   4137 		if (sc->bge_flags & BGEF_PCIE)
   4138 			write_op = bge_writemem_direct;
   4139 		else
   4140 			write_op = bge_writemem_ind;
   4141 	} else
   4142 		write_op = bge_writereg_ind;
   4143 
   4144 	/* 57XX step 4 */
   4145 	/* Acquire the NVM lock */
   4146 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
   4147 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4148 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4149 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4150 		for (i = 0; i < 8000; i++) {
   4151 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4152 			    BGE_NVRAMSWARB_GNT1)
   4153 				break;
   4154 			DELAY(20);
   4155 		}
   4156 		if (i == 8000) {
   4157 			printf("%s: NVRAM lock timedout!\n",
   4158 			    device_xname(sc->bge_dev));
   4159 		}
   4160 	}
   4161 
   4162 	/* Take APE lock when performing reset. */
   4163 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4164 
   4165 	/* 57XX step 3 */
   4166 	/* Save some important PCI state. */
   4167 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4168 	/* 5718 reset step 3 */
   4169 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4170 
   4171 	/* 5718 reset step 5, 57XX step 5b-5d */
   4172 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4173 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4174 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4175 
   4176 	/* XXX ???: Disable fastboot on controllers that support it. */
   4177 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4178 	    BGE_IS_5755_PLUS(sc))
   4179 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4180 
   4181 	/* 5718 reset step 2, 57XX step 6 */
   4182 	/*
   4183 	 * Write the magic number to SRAM at offset 0xB50.
   4184 	 * When firmware finishes its initialization it will
   4185 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4186 	 */
   4187 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4188 
   4189 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   4190 		val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   4191 		val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   4192 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   4193 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
   4194 	}
   4195 
   4196 	/* 5718 reset step 6, 57XX step 7 */
   4197 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4198 	/*
   4199 	 * XXX: from FreeBSD/Linux; no documentation
   4200 	 */
   4201 	if (sc->bge_flags & BGEF_PCIE) {
   4202 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
   4203 		    !BGE_IS_57765_PLUS(sc) &&
   4204 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4205 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4206 			/* PCI Express 1.0 system */
   4207 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4208 			    BGE_PHY_PCIE_SCRAM_MODE);
   4209 		}
   4210 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4211 			/*
   4212 			 * Prevent PCI Express link training
   4213 			 * during global reset.
   4214 			 */
   4215 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4216 			reset |= (1 << 29);
   4217 		}
   4218 	}
   4219 
   4220 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4221 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4222 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4223 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4224 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4225 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4226 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4227 	}
   4228 
   4229 	/*
   4230 	 * Set GPHY Power Down Override to leave GPHY
   4231 	 * powered up in D0 uninitialized.
   4232 	 */
   4233 	if (BGE_IS_5705_PLUS(sc) &&
   4234 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4235 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4236 
   4237 	/* Issue global reset */
   4238 	write_op(sc, BGE_MISC_CFG, reset);
   4239 
   4240 	/* 5718 reset step 7, 57XX step 8 */
   4241 	if (sc->bge_flags & BGEF_PCIE)
   4242 		delay(100*1000); /* too big */
   4243 	else
   4244 		delay(1000);
   4245 
   4246 	if (sc->bge_flags & BGEF_PCIE) {
   4247 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4248 			DELAY(500000);
   4249 			/* XXX: Magic Numbers */
   4250 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4251 			    BGE_PCI_UNKNOWN0);
   4252 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4253 			    BGE_PCI_UNKNOWN0,
   4254 			    reg | (1 << 15));
   4255 		}
   4256 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4257 		    sc->bge_pciecap + PCIE_DCSR);
   4258 		/* Clear enable no snoop and disable relaxed ordering. */
   4259 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4260 		    PCIE_DCSR_ENA_NO_SNOOP);
   4261 
   4262 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4263 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4264 			devctl &= ~(0x00e0);
   4265 		/* Clear device status register. Write 1b to clear */
   4266 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4267 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4268 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4269 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4270 		bge_set_max_readrq(sc);
   4271 	}
   4272 
   4273 	/* From Linux: dummy read to flush PCI posted writes */
   4274 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4275 
   4276 	/*
   4277 	 * Reset some of the PCI state that got zapped by reset
   4278 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4279 	 * set, too.
   4280 	 */
   4281 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4282 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4283 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4284 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4285 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4286 	    (sc->bge_flags & BGEF_PCIX) != 0)
   4287 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4288 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4289 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4290 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4291 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4292 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4293 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4294 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4295 
   4296 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
   4297 	if (sc->bge_flags & BGEF_PCIX) {
   4298 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4299 		    + PCIX_CMD);
   4300 		/* Set max memory read byte count to 2K */
   4301 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   4302 			reg &= ~PCIX_CMD_BYTECNT_MASK;
   4303 			reg |= PCIX_CMD_BCNT_2048;
   4304 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
   4305 			/*
   4306 			 * For 5704, set max outstanding split transaction
   4307 			 * field to 0 (0 means it supports 1 request)
   4308 			 */
   4309 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
   4310 			    | PCIX_CMD_BYTECNT_MASK);
   4311 			reg |= PCIX_CMD_BCNT_2048;
   4312 		}
   4313 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4314 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4315 	}
   4316 
   4317 	/* 5718 reset step 10, 57XX step 12 */
   4318 	/* Enable memory arbiter. */
   4319 	if (BGE_IS_5714_FAMILY(sc)) {
   4320 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4321 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4322 	} else
   4323 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4324 
   4325 	/* XXX 5721, 5751 and 5752 */
   4326 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4327 		/* Step 19: */
   4328 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4329 		/* Step 20: */
   4330 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4331 	}
   4332 
   4333 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4334 	/* Fix up byte swapping */
   4335 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4336 
   4337 	/* 5718 reset step 13, 57XX step 17 */
   4338 	/* Poll until the firmware initialization is complete */
   4339 	bge_poll_fw(sc);
   4340 
   4341 	/* 57XX step 21 */
   4342 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4343 		pcireg_t msidata;
   4344 
   4345 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4346 		    BGE_PCI_MSI_DATA);
   4347 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4348 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4349 		    msidata);
   4350 	}
   4351 
   4352 	/* 57XX step 18 */
   4353 	/* Write mac mode. */
   4354 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4355 	/* Restore mac_mode_mask's bits using mac_mode */
   4356 	val = (val & ~mac_mode_mask) | mac_mode;
   4357 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4358 	DELAY(40);
   4359 
   4360 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4361 
   4362 	/*
   4363 	 * The 5704 in TBI mode apparently needs some special
   4364 	 * adjustment to insure the SERDES drive level is set
   4365 	 * to 1.2V.
   4366 	 */
   4367 	if (sc->bge_flags & BGEF_FIBER_TBI &&
   4368 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4369 		uint32_t serdescfg;
   4370 
   4371 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4372 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4373 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4374 	}
   4375 
   4376 	if (sc->bge_flags & BGEF_PCIE &&
   4377 	    !BGE_IS_57765_PLUS(sc) &&
   4378 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4379 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4380 		uint32_t v;
   4381 
   4382 		/* Enable PCI Express bug fix */
   4383 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4384 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4385 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4386 	}
   4387 
   4388 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4389 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4390 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4391 
   4392 	return 0;
   4393 }
   4394 
   4395 /*
   4396  * Frame reception handling. This is called if there's a frame
   4397  * on the receive return list.
   4398  *
   4399  * Note: we have to be able to handle two possibilities here:
   4400  * 1) the frame is from the jumbo receive ring
   4401  * 2) the frame is from the standard receive ring
   4402  */
   4403 
   4404 static void
   4405 bge_rxeof(struct bge_softc *sc)
   4406 {
   4407 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4408 	uint16_t rx_prod, rx_cons;
   4409 	int stdcnt = 0, jumbocnt = 0;
   4410 	bus_dmamap_t dmamap;
   4411 	bus_addr_t offset, toff;
   4412 	bus_size_t tlen;
   4413 	int tosync;
   4414 
   4415 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4416 	    offsetof(struct bge_ring_data, bge_status_block),
   4417 	    sizeof(struct bge_status_block),
   4418 	    BUS_DMASYNC_POSTREAD);
   4419 
   4420 	rx_cons = sc->bge_rx_saved_considx;
   4421 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4422 
   4423 	/* Nothing to do */
   4424 	if (rx_cons == rx_prod)
   4425 		return;
   4426 
   4427 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4428 	tosync = rx_prod - rx_cons;
   4429 
   4430 	if (tosync != 0)
   4431 		rnd_add_uint32(&sc->rnd_source, tosync);
   4432 
   4433 	toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
   4434 
   4435 	if (tosync < 0) {
   4436 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4437 		    sizeof(struct bge_rx_bd);
   4438 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4439 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4440 		tosync = -tosync;
   4441 	}
   4442 
   4443 	if (tosync != 0) {
   4444 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4445 		    offset, tosync * sizeof(struct bge_rx_bd),
   4446 		    BUS_DMASYNC_POSTREAD);
   4447 	}
   4448 
   4449 	while (rx_cons != rx_prod) {
   4450 		struct bge_rx_bd	*cur_rx;
   4451 		uint32_t		rxidx;
   4452 		struct mbuf		*m = NULL;
   4453 
   4454 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4455 
   4456 		rxidx = cur_rx->bge_idx;
   4457 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4458 
   4459 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4460 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4461 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4462 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4463 			jumbocnt++;
   4464 			bus_dmamap_sync(sc->bge_dmatag,
   4465 			    sc->bge_cdata.bge_rx_jumbo_map,
   4466 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4467 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4468 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4469 				if_statinc(ifp, if_ierrors);
   4470 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4471 				continue;
   4472 			}
   4473 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4474 					     NULL) == ENOBUFS) {
   4475 				if_statinc(ifp, if_ierrors);
   4476 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4477 				continue;
   4478 			}
   4479 		} else {
   4480 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   4481 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4482 
   4483 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4484 			stdcnt++;
   4485 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4486 			sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
   4487 			if (dmamap == NULL) {
   4488 				if_statinc(ifp, if_ierrors);
   4489 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4490 				continue;
   4491 			}
   4492 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4493 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4494 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4495 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4496 				if_statinc(ifp, if_ierrors);
   4497 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4498 				continue;
   4499 			}
   4500 			if (bge_newbuf_std(sc, sc->bge_std,
   4501 			    NULL, dmamap) == ENOBUFS) {
   4502 				if_statinc(ifp, if_ierrors);
   4503 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   4504 				continue;
   4505 			}
   4506 		}
   4507 
   4508 #ifndef __NO_STRICT_ALIGNMENT
   4509 		/*
   4510 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4511 		 * the Rx buffer has the layer-2 header unaligned.
   4512 		 * If our CPU requires alignment, re-align by copying.
   4513 		 */
   4514 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
   4515 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4516 				cur_rx->bge_len);
   4517 			m->m_data += ETHER_ALIGN;
   4518 		}
   4519 #endif
   4520 
   4521 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4522 		m_set_rcvif(m, ifp);
   4523 
   4524 		bge_rxcsum(sc, cur_rx, m);
   4525 
   4526 		/*
   4527 		 * If we received a packet with a vlan tag, pass it
   4528 		 * to vlan_input() instead of ether_input().
   4529 		 */
   4530 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   4531 			vlan_set_tag(m, cur_rx->bge_vlan_tag);
   4532 
   4533 		if_percpuq_enqueue(ifp->if_percpuq, m);
   4534 	}
   4535 
   4536 	sc->bge_rx_saved_considx = rx_cons;
   4537 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4538 	if (stdcnt)
   4539 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   4540 	if (jumbocnt)
   4541 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4542 }
   4543 
   4544 static void
   4545 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4546 {
   4547 
   4548 	if (BGE_IS_57765_PLUS(sc)) {
   4549 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4550 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4551 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4552 			if ((cur_rx->bge_error_flag &
   4553 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4554 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4555 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4556 				m->m_pkthdr.csum_data =
   4557 				    cur_rx->bge_tcp_udp_csum;
   4558 				m->m_pkthdr.csum_flags |=
   4559 				    (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
   4560 			}
   4561 		}
   4562 	} else {
   4563 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4564 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4565 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4566 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4567 		/*
   4568 		 * Rx transport checksum-offload may also
   4569 		 * have bugs with packets which, when transmitted,
   4570 		 * were `runts' requiring padding.
   4571 		 */
   4572 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4573 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4574 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4575 			m->m_pkthdr.csum_data =
   4576 			    cur_rx->bge_tcp_udp_csum;
   4577 			m->m_pkthdr.csum_flags |=
   4578 			    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
   4579 		}
   4580 	}
   4581 }
   4582 
   4583 static void
   4584 bge_txeof(struct bge_softc *sc)
   4585 {
   4586 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4587 	struct bge_tx_bd *cur_tx = NULL;
   4588 	struct txdmamap_pool_entry *dma;
   4589 	bus_addr_t offset, toff;
   4590 	bus_size_t tlen;
   4591 	int tosync;
   4592 	struct mbuf *m;
   4593 
   4594 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4595 	    offsetof(struct bge_ring_data, bge_status_block),
   4596 	    sizeof(struct bge_status_block),
   4597 	    BUS_DMASYNC_POSTREAD);
   4598 
   4599 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4600 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   4601 	    sc->bge_tx_saved_considx;
   4602 
   4603 	if (tosync != 0)
   4604 		rnd_add_uint32(&sc->rnd_source, tosync);
   4605 
   4606 	toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
   4607 
   4608 	if (tosync < 0) {
   4609 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4610 		    sizeof(struct bge_tx_bd);
   4611 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4612 		    toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4613 		tosync = -tosync;
   4614 	}
   4615 
   4616 	if (tosync != 0) {
   4617 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4618 		    offset, tosync * sizeof(struct bge_tx_bd),
   4619 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4620 	}
   4621 
   4622 	/*
   4623 	 * Go through our tx ring and free mbufs for those
   4624 	 * frames that have been sent.
   4625 	 */
   4626 	while (sc->bge_tx_saved_considx !=
   4627 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   4628 		uint32_t idx = sc->bge_tx_saved_considx;
   4629 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4630 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4631 			if_statinc(ifp, if_opackets);
   4632 		m = sc->bge_cdata.bge_tx_chain[idx];
   4633 		if (m != NULL) {
   4634 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4635 			dma = sc->txdma[idx];
   4636 			if (dma->is_dma32) {
   4637 				bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
   4638 				    0, dma->dmamap32->dm_mapsize,
   4639 				    BUS_DMASYNC_POSTWRITE);
   4640 				bus_dmamap_unload(
   4641 				    sc->bge_dmatag32, dma->dmamap32);
   4642 			} else {
   4643 				bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
   4644 				    0, dma->dmamap->dm_mapsize,
   4645 				    BUS_DMASYNC_POSTWRITE);
   4646 				bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4647 			}
   4648 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4649 			sc->txdma[idx] = NULL;
   4650 
   4651 			m_freem(m);
   4652 		}
   4653 		sc->bge_txcnt--;
   4654 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4655 		ifp->if_timer = 0;
   4656 	}
   4657 
   4658 	if (cur_tx != NULL)
   4659 		ifp->if_flags &= ~IFF_OACTIVE;
   4660 }
   4661 
   4662 static int
   4663 bge_intr(void *xsc)
   4664 {
   4665 	struct bge_softc * const sc = xsc;
   4666 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4667 	uint32_t pcistate, statusword, statustag;
   4668 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4669 
   4670 
   4671 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4672 	if (BGE_IS_5717_PLUS(sc))
   4673 		intrmask = 0;
   4674 
   4675 	/*
   4676 	 * It is possible for the interrupt to arrive before
   4677 	 * the status block is updated prior to the interrupt.
   4678 	 * Reading the PCI State register will confirm whether the
   4679 	 * interrupt is ours and will flush the status block.
   4680 	 */
   4681 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
   4682 
   4683 	/* read status word from status block */
   4684 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4685 	    offsetof(struct bge_ring_data, bge_status_block),
   4686 	    sizeof(struct bge_status_block),
   4687 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4688 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4689 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
   4690 
   4691 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
   4692 		if (sc->bge_lasttag == statustag &&
   4693 		    (~pcistate & intrmask)) {
   4694 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
   4695 			return 0;
   4696 		}
   4697 		sc->bge_lasttag = statustag;
   4698 	} else {
   4699 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
   4700 		    !(~pcistate & intrmask)) {
   4701 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
   4702 			return 0;
   4703 		}
   4704 		statustag = 0;
   4705 	}
   4706 	/* Ack interrupt and stop others from occurring. */
   4707 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4708 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   4709 
   4710 	/* clear status word */
   4711 	sc->bge_rdata->bge_status_block.bge_status = 0;
   4712 
   4713 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4714 	    offsetof(struct bge_ring_data, bge_status_block),
   4715 	    sizeof(struct bge_status_block),
   4716 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4717 
   4718 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4719 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4720 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4721 		bge_link_upd(sc);
   4722 
   4723 	if (ifp->if_flags & IFF_RUNNING) {
   4724 		/* Check RX return ring producer/consumer */
   4725 		bge_rxeof(sc);
   4726 
   4727 		/* Check TX ring producer/consumer */
   4728 		bge_txeof(sc);
   4729 	}
   4730 
   4731 	if (sc->bge_pending_rxintr_change) {
   4732 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4733 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4734 
   4735 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4736 		DELAY(10);
   4737 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4738 
   4739 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4740 		DELAY(10);
   4741 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4742 
   4743 		sc->bge_pending_rxintr_change = 0;
   4744 	}
   4745 	bge_handle_events(sc);
   4746 
   4747 	/* Re-enable interrupts. */
   4748 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
   4749 
   4750 	if (ifp->if_flags & IFF_RUNNING)
   4751 		if_schedule_deferred_start(ifp);
   4752 
   4753 	return 1;
   4754 }
   4755 
   4756 static void
   4757 bge_asf_driver_up(struct bge_softc *sc)
   4758 {
   4759 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4760 		/* Send ASF heartbeat aprox. every 2s */
   4761 		if (sc->bge_asf_count)
   4762 			sc->bge_asf_count --;
   4763 		else {
   4764 			sc->bge_asf_count = 2;
   4765 
   4766 			bge_wait_for_event_ack(sc);
   4767 
   4768 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4769 			    BGE_FW_CMD_DRV_ALIVE3);
   4770 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4771 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4772 			    BGE_FW_HB_TIMEOUT_SEC);
   4773 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4774 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4775 			    BGE_RX_CPU_DRV_EVENT);
   4776 		}
   4777 	}
   4778 }
   4779 
   4780 static void
   4781 bge_tick(void *xsc)
   4782 {
   4783 	struct bge_softc * const sc = xsc;
   4784 	struct mii_data * const mii = &sc->bge_mii;
   4785 	int s;
   4786 
   4787 	s = splnet();
   4788 
   4789 	if (BGE_IS_5705_PLUS(sc))
   4790 		bge_stats_update_regs(sc);
   4791 	else
   4792 		bge_stats_update(sc);
   4793 
   4794 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4795 		/*
   4796 		 * Since in TBI mode auto-polling can't be used we should poll
   4797 		 * link status manually. Here we register pending link event
   4798 		 * and trigger interrupt.
   4799 		 */
   4800 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4801 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4802 	} else {
   4803 		/*
   4804 		 * Do not touch PHY if we have link up. This could break
   4805 		 * IPMI/ASF mode or produce extra input errors.
   4806 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4807 		 */
   4808 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4809 			mii_tick(mii);
   4810 	}
   4811 
   4812 	bge_asf_driver_up(sc);
   4813 
   4814 	if (!sc->bge_detaching)
   4815 		callout_schedule(&sc->bge_timeout, hz);
   4816 
   4817 	splx(s);
   4818 }
   4819 
   4820 static void
   4821 bge_stats_update_regs(struct bge_softc *sc)
   4822 {
   4823 	struct ifnet *const ifp = &sc->ethercom.ec_if;
   4824 
   4825 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4826 
   4827 	if_statadd_ref(nsr, if_collisions,
   4828 	    CSR_READ_4(sc, BGE_MAC_STATS +
   4829 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
   4830 
   4831 	/*
   4832 	 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
   4833 	 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
   4834 	 * (silicon bug). There's no reliable workaround so just
   4835 	 * ignore the counter
   4836 	 */
   4837 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   4838 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
   4839 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
   4840 		if_statadd_ref(nsr, if_ierrors,
   4841 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
   4842 	}
   4843 	if_statadd_ref(nsr, if_ierrors,
   4844 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
   4845 	if_statadd_ref(nsr, if_ierrors,
   4846 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
   4847 
   4848 	IF_STAT_PUTREF(ifp);
   4849 
   4850 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   4851 		uint32_t val, ucast, mcast, bcast;
   4852 
   4853 		ucast = CSR_READ_4(sc, BGE_MAC_STATS +
   4854 		    offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
   4855 		mcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4856 		    offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
   4857 		bcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4858 		    offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
   4859 
   4860 		/*
   4861 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
   4862 		 * frames, it's safe to disable workaround for DMA engine's
   4863 		 * miscalculation of TXMBUF space.
   4864 		 */
   4865 		if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
   4866 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   4867 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   4868 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
   4869 			else
   4870 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
   4871 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   4872 			sc->bge_flags &= ~BGEF_RDMA_BUG;
   4873 		}
   4874 	}
   4875 }
   4876 
   4877 static void
   4878 bge_stats_update(struct bge_softc *sc)
   4879 {
   4880 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4881 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4882 
   4883 #define READ_STAT(sc, stats, stat) \
   4884 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4885 
   4886 	uint64_t collisions =
   4887 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4888 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4889 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4890 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
   4891 
   4892 	if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
   4893 	sc->bge_if_collisions = collisions;
   4894 
   4895 
   4896 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4897 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4898 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4899 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4900 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4901 		      READ_STAT(sc, stats,
   4902 				xoffPauseFramesReceived.bge_addr_lo));
   4903 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4904 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4905 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4906 		      READ_STAT(sc, stats,
   4907 				macControlFramesReceived.bge_addr_lo));
   4908 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4909 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4910 
   4911 #undef READ_STAT
   4912 
   4913 #ifdef notdef
   4914 	ifp->if_collisions +=
   4915 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   4916 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   4917 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   4918 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   4919 	   ifp->if_collisions;
   4920 #endif
   4921 }
   4922 
   4923 /*
   4924  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4925  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4926  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4927  * the hardware checksum assist gives incorrect results (possibly
   4928  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4929  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4930  */
   4931 static inline int
   4932 bge_cksum_pad(struct mbuf *pkt)
   4933 {
   4934 	struct mbuf *last = NULL;
   4935 	int padlen;
   4936 
   4937 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4938 
   4939 	/* if there's only the packet-header and we can pad there, use it. */
   4940 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4941 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4942 		last = pkt;
   4943 	} else {
   4944 		/*
   4945 		 * Walk packet chain to find last mbuf. We will either
   4946 		 * pad there, or append a new mbuf and pad it
   4947 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4948 		 */
   4949 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4950 			continue; /* do nothing */
   4951 		}
   4952 
   4953 		/* `last' now points to last in chain. */
   4954 		if (M_TRAILINGSPACE(last) < padlen) {
   4955 			/* Allocate new empty mbuf, pad it. Compact later. */
   4956 			struct mbuf *n;
   4957 			MGET(n, M_DONTWAIT, MT_DATA);
   4958 			if (n == NULL)
   4959 				return ENOBUFS;
   4960 			n->m_len = 0;
   4961 			last->m_next = n;
   4962 			last = n;
   4963 		}
   4964 	}
   4965 
   4966 	KDASSERT(!M_READONLY(last));
   4967 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4968 
   4969 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4970 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4971 	last->m_len += padlen;
   4972 	pkt->m_pkthdr.len += padlen;
   4973 	return 0;
   4974 }
   4975 
   4976 /*
   4977  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   4978  */
   4979 static inline int
   4980 bge_compact_dma_runt(struct mbuf *pkt)
   4981 {
   4982 	struct mbuf	*m, *prev;
   4983 	int		totlen;
   4984 
   4985 	prev = NULL;
   4986 	totlen = 0;
   4987 
   4988 	for (m = pkt; m != NULL; prev = m, m = m->m_next) {
   4989 		int mlen = m->m_len;
   4990 		int shortfall = 8 - mlen ;
   4991 
   4992 		totlen += mlen;
   4993 		if (mlen == 0)
   4994 			continue;
   4995 		if (mlen >= 8)
   4996 			continue;
   4997 
   4998 		/*
   4999 		 * If we get here, mbuf data is too small for DMA engine.
   5000 		 * Try to fix by shuffling data to prev or next in chain.
   5001 		 * If that fails, do a compacting deep-copy of the whole chain.
   5002 		 */
   5003 
   5004 		/* Internal frag. If fits in prev, copy it there. */
   5005 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   5006 			memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   5007 			prev->m_len += mlen;
   5008 			m->m_len = 0;
   5009 			/* XXX stitch chain */
   5010 			prev->m_next = m_free(m);
   5011 			m = prev;
   5012 			continue;
   5013 		} else if (m->m_next != NULL &&
   5014 			    M_TRAILINGSPACE(m) >= shortfall &&
   5015 			    m->m_next->m_len >= (8 + shortfall)) {
   5016 		    /* m is writable and have enough data in next, pull up. */
   5017 
   5018 			memcpy(m->m_data + m->m_len, m->m_next->m_data,
   5019 			    shortfall);
   5020 			m->m_len += shortfall;
   5021 			m->m_next->m_len -= shortfall;
   5022 			m->m_next->m_data += shortfall;
   5023 		} else if (m->m_next == NULL || 1) {
   5024 			/*
   5025 			 * Got a runt at the very end of the packet.
   5026 			 * borrow data from the tail of the preceding mbuf and
   5027 			 * update its length in-place. (The original data is
   5028 			 * still valid, so we can do this even if prev is not
   5029 			 * writable.)
   5030 			 */
   5031 
   5032 			/*
   5033 			 * If we'd make prev a runt, just move all of its data.
   5034 			 */
   5035 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   5036 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   5037 
   5038 			if ((prev->m_len - shortfall) < 8)
   5039 				shortfall = prev->m_len;
   5040 
   5041 #ifdef notyet	/* just do the safe slow thing for now */
   5042 			if (!M_READONLY(m)) {
   5043 				if (M_LEADINGSPACE(m) < shorfall) {
   5044 					void *m_dat;
   5045 					m_dat = M_BUFADDR(m);
   5046 					memmove(m_dat, mtod(m, void*),
   5047 					    m->m_len);
   5048 					m->m_data = m_dat;
   5049 				}
   5050 			} else
   5051 #endif	/* just do the safe slow thing */
   5052 			{
   5053 				struct mbuf * n = NULL;
   5054 				int newprevlen = prev->m_len - shortfall;
   5055 
   5056 				MGET(n, M_NOWAIT, MT_DATA);
   5057 				if (n == NULL)
   5058 				   return ENOBUFS;
   5059 				KASSERT(m->m_len + shortfall < MLEN
   5060 					/*,
   5061 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   5062 
   5063 				/* first copy the data we're stealing from prev */
   5064 				memcpy(n->m_data, prev->m_data + newprevlen,
   5065 				    shortfall);
   5066 
   5067 				/* update prev->m_len accordingly */
   5068 				prev->m_len -= shortfall;
   5069 
   5070 				/* copy data from runt m */
   5071 				memcpy(n->m_data + shortfall, m->m_data,
   5072 				    m->m_len);
   5073 
   5074 				/* n holds what we stole from prev, plus m */
   5075 				n->m_len = shortfall + m->m_len;
   5076 
   5077 				/* stitch n into chain and free m */
   5078 				n->m_next = m->m_next;
   5079 				prev->m_next = n;
   5080 				/* KASSERT(m->m_next == NULL); */
   5081 				m->m_next = NULL;
   5082 				m_free(m);
   5083 				m = n;	/* for continuing loop */
   5084 			}
   5085 		}
   5086 	}
   5087 	return 0;
   5088 }
   5089 
   5090 /*
   5091  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   5092  * pointers to descriptors.
   5093  */
   5094 static int
   5095 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   5096 {
   5097 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   5098 	struct bge_tx_bd	*f, *prev_f;
   5099 	uint32_t		frag, cur;
   5100 	uint16_t		csum_flags = 0;
   5101 	uint16_t		txbd_tso_flags = 0;
   5102 	struct txdmamap_pool_entry *dma;
   5103 	bus_dmamap_t dmamap;
   5104 	bus_dma_tag_t dmatag;
   5105 	int			i = 0;
   5106 	int			use_tso, maxsegsize, error;
   5107 	bool			have_vtag;
   5108 	uint16_t		vtag;
   5109 	bool			remap;
   5110 
   5111 	if (m_head->m_pkthdr.csum_flags) {
   5112 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5113 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   5114 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
   5115 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   5116 	}
   5117 
   5118 	/*
   5119 	 * If we were asked to do an outboard checksum, and the NIC
   5120 	 * has the bug where it sometimes adds in the Ethernet padding,
   5121 	 * explicitly pad with zeros so the cksum will be correct either way.
   5122 	 * (For now, do this for all chip versions, until newer
   5123 	 * are confirmed to not require the workaround.)
   5124 	 */
   5125 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   5126 #ifdef notyet
   5127 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   5128 #endif
   5129 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   5130 		goto check_dma_bug;
   5131 
   5132 	if (bge_cksum_pad(m_head) != 0)
   5133 		return ENOBUFS;
   5134 
   5135 check_dma_bug:
   5136 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   5137 		goto doit;
   5138 
   5139 	/*
   5140 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   5141 	 * less than eight bytes.  If we encounter a teeny mbuf
   5142 	 * at the end of a chain, we can pad.  Otherwise, copy.
   5143 	 */
   5144 	if (bge_compact_dma_runt(m_head) != 0)
   5145 		return ENOBUFS;
   5146 
   5147 doit:
   5148 	dma = SLIST_FIRST(&sc->txdma_list);
   5149 	if (dma == NULL) {
   5150 		ifp->if_flags |= IFF_OACTIVE;
   5151 		return ENOBUFS;
   5152 	}
   5153 	dmamap = dma->dmamap;
   5154 	dmatag = sc->bge_dmatag;
   5155 	dma->is_dma32 = false;
   5156 
   5157 	/*
   5158 	 * Set up any necessary TSO state before we start packing...
   5159 	 */
   5160 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   5161 	if (!use_tso) {
   5162 		maxsegsize = 0;
   5163 	} else {	/* TSO setup */
   5164 		unsigned  mss;
   5165 		struct ether_header *eh;
   5166 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   5167 		unsigned bge_hlen;
   5168 		struct mbuf * m0 = m_head;
   5169 		struct ip *ip;
   5170 		struct tcphdr *th;
   5171 		int iphl, hlen;
   5172 
   5173 		/*
   5174 		 * XXX It would be nice if the mbuf pkthdr had offset
   5175 		 * fields for the protocol headers.
   5176 		 */
   5177 
   5178 		eh = mtod(m0, struct ether_header *);
   5179 		switch (htons(eh->ether_type)) {
   5180 		case ETHERTYPE_IP:
   5181 			offset = ETHER_HDR_LEN;
   5182 			break;
   5183 
   5184 		case ETHERTYPE_VLAN:
   5185 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   5186 			break;
   5187 
   5188 		default:
   5189 			/*
   5190 			 * Don't support this protocol or encapsulation.
   5191 			 */
   5192 			return ENOBUFS;
   5193 		}
   5194 
   5195 		/*
   5196 		 * TCP/IP headers are in the first mbuf; we can do
   5197 		 * this the easy way.
   5198 		 */
   5199 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   5200 		hlen = iphl + offset;
   5201 		if (__predict_false(m0->m_len <
   5202 				    (hlen + sizeof(struct tcphdr)))) {
   5203 
   5204 			aprint_error_dev(sc->bge_dev,
   5205 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   5206 			    "not handled yet\n",
   5207 			    m0->m_len, hlen+ sizeof(struct tcphdr));
   5208 #ifdef NOTYET
   5209 			/*
   5210 			 * XXX jonathan (at) NetBSD.org: untested.
   5211 			 * how to force this branch to be taken?
   5212 			 */
   5213 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
   5214 
   5215 			m_copydata(m0, offset, sizeof(ip), &ip);
   5216 			m_copydata(m0, hlen, sizeof(th), &th);
   5217 
   5218 			ip.ip_len = 0;
   5219 
   5220 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   5221 			    sizeof(ip.ip_len), &ip.ip_len);
   5222 
   5223 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   5224 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   5225 
   5226 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   5227 			    sizeof(th.th_sum), &th.th_sum);
   5228 
   5229 			hlen += th.th_off << 2;
   5230 			iptcp_opt_words	= hlen;
   5231 #else
   5232 			/*
   5233 			 * if_wm "hard" case not yet supported, can we not
   5234 			 * mandate it out of existence?
   5235 			 */
   5236 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5237 
   5238 			return ENOBUFS;
   5239 #endif
   5240 		} else {
   5241 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5242 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5243 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5244 
   5245 			/* Total IP/TCP options, in 32-bit words */
   5246 			iptcp_opt_words = (ip_tcp_hlen
   5247 					   - sizeof(struct tcphdr)
   5248 					   - sizeof(struct ip)) >> 2;
   5249 		}
   5250 		if (BGE_IS_575X_PLUS(sc)) {
   5251 			th->th_sum = 0;
   5252 			csum_flags = 0;
   5253 		} else {
   5254 			/*
   5255 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5256 			 * Requires TSO firmware patch for 5701/5703/5704.
   5257 			 */
   5258 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5259 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5260 		}
   5261 
   5262 		mss = m_head->m_pkthdr.segsz;
   5263 		txbd_tso_flags |=
   5264 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5265 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5266 
   5267 		/*
   5268 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5269 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5270 		 * the NIC copies 40 bytes of IP/TCP header from the
   5271 		 * supplied header into the IP/TCP header portion of
   5272 		 * each post-TSO-segment. If the supplied packet has IP or
   5273 		 * TCP options, we need to tell the NIC to copy those extra
   5274 		 * bytes into each  post-TSO header, in addition to the normal
   5275 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5276 		 * Unfortunately, the driver encoding of option length
   5277 		 * varies across different ASIC families.
   5278 		 */
   5279 		tcp_seg_flags = 0;
   5280 		bge_hlen = ip_tcp_hlen >> 2;
   5281 		if (BGE_IS_5717_PLUS(sc)) {
   5282 			tcp_seg_flags = (bge_hlen & 0x3) << 14;
   5283 			txbd_tso_flags |=
   5284 			    ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
   5285 		} else if (BGE_IS_5705_PLUS(sc)) {
   5286 			tcp_seg_flags = bge_hlen << 11;
   5287 		} else {
   5288 			/* XXX iptcp_opt_words or bge_hlen ? */
   5289 			txbd_tso_flags |= iptcp_opt_words << 12;
   5290 		}
   5291 		maxsegsize = mss | tcp_seg_flags;
   5292 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5293 		ip->ip_sum = 0;
   5294 
   5295 	}	/* TSO setup */
   5296 
   5297 	have_vtag = vlan_has_tag(m_head);
   5298 	if (have_vtag)
   5299 		vtag = vlan_get_tag(m_head);
   5300 
   5301 	/*
   5302 	 * Start packing the mbufs in this chain into
   5303 	 * the fragment pointers. Stop when we run out
   5304 	 * of fragments or hit the end of the mbuf chain.
   5305 	 */
   5306 	remap = true;
   5307 load_again:
   5308 	error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
   5309 	if (__predict_false(error)) {
   5310 		if (error == EFBIG && remap) {
   5311 			struct mbuf *m;
   5312 			remap = false;
   5313 			m = m_defrag(m_head, M_NOWAIT);
   5314 			if (m != NULL) {
   5315 				KASSERT(m == m_head);
   5316 				goto load_again;
   5317 			}
   5318 		}
   5319 		return error;
   5320 	}
   5321 	/*
   5322 	 * Sanity check: avoid coming within 16 descriptors
   5323 	 * of the end of the ring.
   5324 	 */
   5325 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5326 		BGE_TSO_PRINTF(("%s: "
   5327 		    " dmamap_load_mbuf too close to ring wrap\n",
   5328 		    device_xname(sc->bge_dev)));
   5329 		goto fail_unload;
   5330 	}
   5331 
   5332 	/* Iterate over dmap-map fragments. */
   5333 	f = prev_f = NULL;
   5334 	cur = frag = *txidx;
   5335 
   5336 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5337 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5338 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5339 			break;
   5340 
   5341 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5342 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5343 		if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
   5344 		    (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
   5345 		    ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
   5346 		    (prev_f != NULL &&
   5347 		     prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
   5348 		   ) {
   5349 			/*
   5350 			 * watchdog timeout issue was observed with TSO,
   5351 			 * limiting DMA address space to 32bits seems to
   5352 			 * address the issue.
   5353 			 */
   5354 			bus_dmamap_unload(dmatag, dmamap);
   5355 			dmatag = sc->bge_dmatag32;
   5356 			dmamap = dma->dmamap32;
   5357 			dma->is_dma32 = true;
   5358 			remap = true;
   5359 			goto load_again;
   5360 		}
   5361 
   5362 		/*
   5363 		 * For 5751 and follow-ons, for TSO we must turn
   5364 		 * off checksum-assist flag in the tx-descr, and
   5365 		 * supply the ASIC-revision-specific encoding
   5366 		 * of TSO flags and segsize.
   5367 		 */
   5368 		if (use_tso) {
   5369 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5370 				f->bge_rsvd = maxsegsize;
   5371 				f->bge_flags = csum_flags | txbd_tso_flags;
   5372 			} else {
   5373 				f->bge_rsvd = 0;
   5374 				f->bge_flags =
   5375 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5376 			}
   5377 		} else {
   5378 			f->bge_rsvd = 0;
   5379 			f->bge_flags = csum_flags;
   5380 		}
   5381 
   5382 		if (have_vtag) {
   5383 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5384 			f->bge_vlan_tag = vtag;
   5385 		} else {
   5386 			f->bge_vlan_tag = 0;
   5387 		}
   5388 		prev_f = f;
   5389 		cur = frag;
   5390 		BGE_INC(frag, BGE_TX_RING_CNT);
   5391 	}
   5392 
   5393 	if (i < dmamap->dm_nsegs) {
   5394 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5395 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5396 		goto fail_unload;
   5397 	}
   5398 
   5399 	bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
   5400 	    BUS_DMASYNC_PREWRITE);
   5401 
   5402 	if (frag == sc->bge_tx_saved_considx) {
   5403 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5404 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5405 
   5406 		goto fail_unload;
   5407 	}
   5408 
   5409 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5410 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5411 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5412 	sc->txdma[cur] = dma;
   5413 	sc->bge_txcnt += dmamap->dm_nsegs;
   5414 
   5415 	*txidx = frag;
   5416 
   5417 	return 0;
   5418 
   5419 fail_unload:
   5420 	bus_dmamap_unload(dmatag, dmamap);
   5421 	ifp->if_flags |= IFF_OACTIVE;
   5422 
   5423 	return ENOBUFS;
   5424 }
   5425 
   5426 /*
   5427  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5428  * to the mbuf data regions directly in the transmit descriptors.
   5429  */
   5430 static void
   5431 bge_start(struct ifnet *ifp)
   5432 {
   5433 	struct bge_softc * const sc = ifp->if_softc;
   5434 	struct mbuf *m_head = NULL;
   5435 	struct mbuf *m;
   5436 	uint32_t prodidx;
   5437 	int pkts = 0;
   5438 	int error;
   5439 
   5440 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   5441 		return;
   5442 
   5443 	prodidx = sc->bge_tx_prodidx;
   5444 
   5445 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5446 		IFQ_POLL(&ifp->if_snd, m_head);
   5447 		if (m_head == NULL)
   5448 			break;
   5449 
   5450 #if 0
   5451 		/*
   5452 		 * XXX
   5453 		 * safety overkill.  If this is a fragmented packet chain
   5454 		 * with delayed TCP/UDP checksums, then only encapsulate
   5455 		 * it if we have enough descriptors to handle the entire
   5456 		 * chain at once.
   5457 		 * (paranoia -- may not actually be needed)
   5458 		 */
   5459 		if (m_head->m_flags & M_FIRSTFRAG &&
   5460 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5461 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5462 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5463 				ifp->if_flags |= IFF_OACTIVE;
   5464 				break;
   5465 			}
   5466 		}
   5467 #endif
   5468 
   5469 		/*
   5470 		 * Pack the data into the transmit ring. If we
   5471 		 * don't have room, set the OACTIVE flag and wait
   5472 		 * for the NIC to drain the ring.
   5473 		 */
   5474 		error = bge_encap(sc, m_head, &prodidx);
   5475 		if (__predict_false(error)) {
   5476 			if (ifp->if_flags & IFF_OACTIVE) {
   5477 				/* just wait for the transmit ring to drain */
   5478 				break;
   5479 			}
   5480 			IFQ_DEQUEUE(&ifp->if_snd, m);
   5481 			KASSERT(m == m_head);
   5482 			m_freem(m_head);
   5483 			continue;
   5484 		}
   5485 
   5486 		/* now we are committed to transmit the packet */
   5487 		IFQ_DEQUEUE(&ifp->if_snd, m);
   5488 		KASSERT(m == m_head);
   5489 		pkts++;
   5490 
   5491 		/*
   5492 		 * If there's a BPF listener, bounce a copy of this frame
   5493 		 * to him.
   5494 		 */
   5495 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5496 	}
   5497 	if (pkts == 0)
   5498 		return;
   5499 
   5500 	/* Transmit */
   5501 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5502 	/* 5700 b2 errata */
   5503 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5504 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5505 
   5506 	sc->bge_tx_prodidx = prodidx;
   5507 
   5508 	/*
   5509 	 * Set a timeout in case the chip goes out to lunch.
   5510 	 */
   5511 	ifp->if_timer = 5;
   5512 }
   5513 
   5514 static int
   5515 bge_init(struct ifnet *ifp)
   5516 {
   5517 	struct bge_softc * const sc = ifp->if_softc;
   5518 	const uint16_t *m;
   5519 	uint32_t mode, reg;
   5520 	int s, error = 0;
   5521 
   5522 	s = splnet();
   5523 
   5524 	KASSERT(ifp == &sc->ethercom.ec_if);
   5525 
   5526 	/* Cancel pending I/O and flush buffers. */
   5527 	bge_stop(ifp, 0);
   5528 
   5529 	bge_stop_fw(sc);
   5530 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5531 	bge_reset(sc);
   5532 	bge_sig_legacy(sc, BGE_RESET_START);
   5533 
   5534 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5535 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5536 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
   5537 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
   5538 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5539 
   5540 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   5541 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
   5542 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   5543 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   5544 
   5545 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
   5546 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
   5547 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
   5548 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
   5549 
   5550 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
   5551 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
   5552 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
   5553 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
   5554 	}
   5555 
   5556 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   5557 		pcireg_t aercap;
   5558 
   5559 		reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
   5560 		reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
   5561 		    | BGE_PCIE_PWRMNG_L1THRESH_4MS
   5562 		    | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
   5563 		CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
   5564 
   5565 		reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
   5566 		reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
   5567 		    | BGE_PCIE_EIDLE_DELAY_13CLK;
   5568 		CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
   5569 
   5570 		/* Clear correctable error */
   5571 		if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
   5572 		    PCI_EXTCAP_AER, &aercap, NULL) != 0)
   5573 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   5574 			    aercap + PCI_AER_COR_STATUS, 0xffffffff);
   5575 
   5576 		reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   5577 		reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   5578 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   5579 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
   5580 	}
   5581 
   5582 	bge_sig_post_reset(sc, BGE_RESET_START);
   5583 
   5584 	bge_chipinit(sc);
   5585 
   5586 	/*
   5587 	 * Init the various state machines, ring
   5588 	 * control blocks and firmware.
   5589 	 */
   5590 	error = bge_blockinit(sc);
   5591 	if (error != 0) {
   5592 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5593 		    error);
   5594 		splx(s);
   5595 		return error;
   5596 	}
   5597 
   5598 	/* 5718 step 25, 57XX step 54 */
   5599 	/* Specify MTU. */
   5600 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5601 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5602 
   5603 	/* 5718 step 23 */
   5604 	/* Load our MAC address. */
   5605 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5606 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5607 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
   5608 	    ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
   5609 
   5610 	/* Enable or disable promiscuous mode as needed. */
   5611 	if (ifp->if_flags & IFF_PROMISC)
   5612 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5613 	else
   5614 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5615 
   5616 	/* Program multicast filter. */
   5617 	bge_setmulti(sc);
   5618 
   5619 	/* Init RX ring. */
   5620 	bge_init_rx_ring_std(sc);
   5621 
   5622 	/*
   5623 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5624 	 * memory to insure that the chip has in fact read the first
   5625 	 * entry of the ring.
   5626 	 */
   5627 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5628 		u_int i;
   5629 		for (i = 0; i < 10; i++) {
   5630 			DELAY(20);
   5631 			uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5632 			if (v == (MCLBYTES - ETHER_ALIGN))
   5633 				break;
   5634 		}
   5635 		if (i == 10)
   5636 			aprint_error_dev(sc->bge_dev,
   5637 			    "5705 A0 chip failed to load RX ring\n");
   5638 	}
   5639 
   5640 	/* Init jumbo RX ring. */
   5641 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5642 		bge_init_rx_ring_jumbo(sc);
   5643 
   5644 	/* Init our RX return ring index */
   5645 	sc->bge_rx_saved_considx = 0;
   5646 
   5647 	/* Init TX ring. */
   5648 	bge_init_tx_ring(sc);
   5649 
   5650 	/* 5718 step 63, 57XX step 94 */
   5651 	/* Enable TX MAC state machine lockup fix. */
   5652 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5653 	if (BGE_IS_5755_PLUS(sc) ||
   5654 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5655 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5656 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   5657 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   5658 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5659 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5660 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5661 	}
   5662 
   5663 	/* Turn on transmitter */
   5664 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5665 	/* 5718 step 64 */
   5666 	DELAY(100);
   5667 
   5668 	/* 5718 step 65, 57XX step 95 */
   5669 	/* Turn on receiver */
   5670 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5671 	if (BGE_IS_5755_PLUS(sc))
   5672 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5673 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   5674 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
   5675 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5676 	/* 5718 step 66 */
   5677 	DELAY(10);
   5678 
   5679 	/* 5718 step 12, 57XX step 37 */
   5680 	/*
   5681 	 * XXX Doucments of 5718 series and 577xx say the recommended value
   5682 	 * is 1, but tg3 set 1 only on 57765 series.
   5683 	 */
   5684 	if (BGE_IS_57765_PLUS(sc))
   5685 		reg = 1;
   5686 	else
   5687 		reg = 2;
   5688 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
   5689 
   5690 	/* Tell firmware we're alive. */
   5691 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5692 
   5693 	/* Enable host interrupts. */
   5694 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5695 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5696 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5697 
   5698 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5699 		goto out;
   5700 
   5701 	ifp->if_flags |= IFF_RUNNING;
   5702 	ifp->if_flags &= ~IFF_OACTIVE;
   5703 
   5704 	callout_schedule(&sc->bge_timeout, hz);
   5705 
   5706 out:
   5707 	sc->bge_if_flags = ifp->if_flags;
   5708 	splx(s);
   5709 
   5710 	return error;
   5711 }
   5712 
   5713 /*
   5714  * Set media options.
   5715  */
   5716 static int
   5717 bge_ifmedia_upd(struct ifnet *ifp)
   5718 {
   5719 	struct bge_softc * const sc = ifp->if_softc;
   5720 	struct mii_data * const mii = &sc->bge_mii;
   5721 	struct ifmedia * const ifm = &sc->bge_ifmedia;
   5722 	int rc;
   5723 
   5724 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5725 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5726 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5727 			return EINVAL;
   5728 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5729 		case IFM_AUTO:
   5730 			/*
   5731 			 * The BCM5704 ASIC appears to have a special
   5732 			 * mechanism for programming the autoneg
   5733 			 * advertisement registers in TBI mode.
   5734 			 */
   5735 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5736 				uint32_t sgdig;
   5737 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5738 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5739 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5740 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5741 					sgdig |= BGE_SGDIGCFG_AUTO |
   5742 					    BGE_SGDIGCFG_PAUSE_CAP |
   5743 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5744 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5745 					    sgdig | BGE_SGDIGCFG_SEND);
   5746 					DELAY(5);
   5747 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5748 					    sgdig);
   5749 				}
   5750 			}
   5751 			break;
   5752 		case IFM_1000_SX:
   5753 			if ((ifm->ifm_media & IFM_FDX) != 0) {
   5754 				BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   5755 				    BGE_MACMODE_HALF_DUPLEX);
   5756 			} else {
   5757 				BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
   5758 				    BGE_MACMODE_HALF_DUPLEX);
   5759 			}
   5760 			DELAY(40);
   5761 			break;
   5762 		default:
   5763 			return EINVAL;
   5764 		}
   5765 		/* XXX 802.3x flow control for 1000BASE-SX */
   5766 		return 0;
   5767 	}
   5768 
   5769 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
   5770 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
   5771 		uint32_t reg;
   5772 
   5773 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5774 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
   5775 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
   5776 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5777 		}
   5778 	}
   5779 
   5780 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5781 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5782 		return 0;
   5783 
   5784 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5785 		uint32_t reg;
   5786 
   5787 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
   5788 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
   5789 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
   5790 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
   5791 			delay(40);
   5792 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
   5793 		}
   5794 	}
   5795 
   5796 	/*
   5797 	 * Force an interrupt so that we will call bge_link_upd
   5798 	 * if needed and clear any pending link state attention.
   5799 	 * Without this we are not getting any further interrupts
   5800 	 * for link state changes and thus will not UP the link and
   5801 	 * not be able to send in bge_start. The only way to get
   5802 	 * things working was to receive a packet and get a RX intr.
   5803 	 */
   5804 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5805 	    sc->bge_flags & BGEF_IS_5788)
   5806 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5807 	else
   5808 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5809 
   5810 	return rc;
   5811 }
   5812 
   5813 /*
   5814  * Report current media status.
   5815  */
   5816 static void
   5817 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5818 {
   5819 	struct bge_softc * const sc = ifp->if_softc;
   5820 	struct mii_data * const mii = &sc->bge_mii;
   5821 
   5822 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5823 		ifmr->ifm_status = IFM_AVALID;
   5824 		ifmr->ifm_active = IFM_ETHER;
   5825 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5826 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5827 			ifmr->ifm_status |= IFM_ACTIVE;
   5828 		ifmr->ifm_active |= IFM_1000_SX;
   5829 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5830 			ifmr->ifm_active |= IFM_HDX;
   5831 		else
   5832 			ifmr->ifm_active |= IFM_FDX;
   5833 		return;
   5834 	}
   5835 
   5836 	mii_pollstat(mii);
   5837 	ifmr->ifm_status = mii->mii_media_status;
   5838 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5839 	    sc->bge_flowflags;
   5840 }
   5841 
   5842 static int
   5843 bge_ifflags_cb(struct ethercom *ec)
   5844 {
   5845 	struct ifnet * const ifp = &ec->ec_if;
   5846 	struct bge_softc * const sc = ifp->if_softc;
   5847 	u_short change = ifp->if_flags ^ sc->bge_if_flags;
   5848 
   5849 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
   5850 		return ENETRESET;
   5851 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
   5852 		return 0;
   5853 
   5854 	if ((ifp->if_flags & IFF_PROMISC) == 0)
   5855 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5856 	else
   5857 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5858 
   5859 	bge_setmulti(sc);
   5860 
   5861 	sc->bge_if_flags = ifp->if_flags;
   5862 	return 0;
   5863 }
   5864 
   5865 static int
   5866 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5867 {
   5868 	struct bge_softc * const sc = ifp->if_softc;
   5869 	struct ifreq * const ifr = (struct ifreq *) data;
   5870 	int s, error = 0;
   5871 	struct mii_data *mii;
   5872 
   5873 	s = splnet();
   5874 
   5875 	switch (command) {
   5876 	case SIOCSIFMEDIA:
   5877 		/* XXX Flow control is not supported for 1000BASE-SX */
   5878 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5879 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5880 			sc->bge_flowflags = 0;
   5881 		}
   5882 
   5883 		/* Flow control requires full-duplex mode. */
   5884 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5885 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5886 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5887 		}
   5888 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5889 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5890 				/* We can do both TXPAUSE and RXPAUSE. */
   5891 				ifr->ifr_media |=
   5892 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5893 			}
   5894 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5895 		}
   5896 
   5897 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5898 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5899 			    command);
   5900 		} else {
   5901 			mii = &sc->bge_mii;
   5902 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5903 			    command);
   5904 		}
   5905 		break;
   5906 	default:
   5907 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5908 			break;
   5909 
   5910 		error = 0;
   5911 
   5912 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   5913 			;
   5914 		else if (ifp->if_flags & IFF_RUNNING)
   5915 			bge_setmulti(sc);
   5916 		break;
   5917 	}
   5918 
   5919 	splx(s);
   5920 
   5921 	return error;
   5922 }
   5923 
   5924 static void
   5925 bge_watchdog(struct ifnet *ifp)
   5926 {
   5927 	struct bge_softc * const sc = ifp->if_softc;
   5928 	uint32_t status;
   5929 
   5930 	/* If pause frames are active then don't reset the hardware. */
   5931 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
   5932 		status = CSR_READ_4(sc, BGE_RX_STS);
   5933 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
   5934 			/*
   5935 			 * If link partner has us in XOFF state then wait for
   5936 			 * the condition to clear.
   5937 			 */
   5938 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   5939 			ifp->if_timer = 5;
   5940 			return;
   5941 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
   5942 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
   5943 			/*
   5944 			 * If link partner has us in XOFF state then wait for
   5945 			 * the condition to clear.
   5946 			 */
   5947 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   5948 			ifp->if_timer = 5;
   5949 			return;
   5950 		}
   5951 		/*
   5952 		 * Any other condition is unexpected and the controller
   5953 		 * should be reset.
   5954 		 */
   5955 	}
   5956 
   5957 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   5958 
   5959 	ifp->if_flags &= ~IFF_RUNNING;
   5960 	bge_init(ifp);
   5961 
   5962 	if_statinc(ifp, if_oerrors);
   5963 }
   5964 
   5965 static void
   5966 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   5967 {
   5968 	int i;
   5969 
   5970 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   5971 
   5972 	for (i = 0; i < 1000; i++) {
   5973 		delay(100);
   5974 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   5975 			return;
   5976 	}
   5977 
   5978 	/*
   5979 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   5980 	 * on some environment (and once after boot?)
   5981 	 */
   5982 	if (reg != BGE_SRS_MODE)
   5983 		aprint_error_dev(sc->bge_dev,
   5984 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   5985 		    (u_long)reg, bit);
   5986 }
   5987 
   5988 /*
   5989  * Stop the adapter and free any mbufs allocated to the
   5990  * RX and TX lists.
   5991  */
   5992 static void
   5993 bge_stop(struct ifnet *ifp, int disable)
   5994 {
   5995 	struct bge_softc * const sc = ifp->if_softc;
   5996 
   5997 	if (disable) {
   5998 		sc->bge_detaching = 1;
   5999 		callout_halt(&sc->bge_timeout, NULL);
   6000 	} else
   6001 		callout_stop(&sc->bge_timeout);
   6002 
   6003 	/* Disable host interrupts. */
   6004 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   6005 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   6006 
   6007 	/*
   6008 	 * Tell firmware we're shutting down.
   6009 	 */
   6010 	bge_stop_fw(sc);
   6011 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   6012 
   6013 	/*
   6014 	 * Disable all of the receiver blocks.
   6015 	 */
   6016 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   6017 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   6018 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   6019 	if (BGE_IS_5700_FAMILY(sc))
   6020 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   6021 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   6022 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   6023 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   6024 
   6025 	/*
   6026 	 * Disable all of the transmit blocks.
   6027 	 */
   6028 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   6029 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   6030 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   6031 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   6032 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   6033 	if (BGE_IS_5700_FAMILY(sc))
   6034 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   6035 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   6036 
   6037 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   6038 	delay(40);
   6039 
   6040 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   6041 
   6042 	/*
   6043 	 * Shut down all of the memory managers and related
   6044 	 * state machines.
   6045 	 */
   6046 	/* 5718 step 5a,5b */
   6047 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   6048 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   6049 	if (BGE_IS_5700_FAMILY(sc))
   6050 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   6051 
   6052 	/* 5718 step 5c,5d */
   6053 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   6054 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   6055 
   6056 	if (BGE_IS_5700_FAMILY(sc)) {
   6057 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   6058 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   6059 	}
   6060 
   6061 	bge_reset(sc);
   6062 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   6063 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   6064 
   6065 	/*
   6066 	 * Keep the ASF firmware running if up.
   6067 	 */
   6068 	if (sc->bge_asf_mode & ASF_STACKUP)
   6069 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6070 	else
   6071 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6072 
   6073 	/* Free the RX lists. */
   6074 	bge_free_rx_ring_std(sc, disable);
   6075 
   6076 	/* Free jumbo RX list. */
   6077 	if (BGE_IS_JUMBO_CAPABLE(sc))
   6078 		bge_free_rx_ring_jumbo(sc);
   6079 
   6080 	/* Free TX buffers. */
   6081 	bge_free_tx_ring(sc, disable);
   6082 
   6083 	/*
   6084 	 * Isolate/power down the PHY.
   6085 	 */
   6086 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
   6087 		mii_down(&sc->bge_mii);
   6088 
   6089 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   6090 
   6091 	/* Clear MAC's link state (PHY may still have link UP). */
   6092 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6093 
   6094 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   6095 }
   6096 
   6097 static void
   6098 bge_link_upd(struct bge_softc *sc)
   6099 {
   6100 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   6101 	struct mii_data * const mii = &sc->bge_mii;
   6102 	uint32_t status;
   6103 	uint16_t phyval;
   6104 	int link;
   6105 
   6106 	/* Clear 'pending link event' flag */
   6107 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   6108 
   6109 	/*
   6110 	 * Process link state changes.
   6111 	 * Grrr. The link status word in the status block does
   6112 	 * not work correctly on the BCM5700 rev AX and BX chips,
   6113 	 * according to all available information. Hence, we have
   6114 	 * to enable MII interrupts in order to properly obtain
   6115 	 * async link changes. Unfortunately, this also means that
   6116 	 * we have to read the MAC status register to detect link
   6117 	 * changes, thereby adding an additional register access to
   6118 	 * the interrupt handler.
   6119 	 */
   6120 
   6121 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   6122 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6123 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   6124 			mii_pollstat(mii);
   6125 
   6126 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6127 			    mii->mii_media_status & IFM_ACTIVE &&
   6128 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6129 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6130 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6131 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6132 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6133 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6134 
   6135 			/* Clear the interrupt */
   6136 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   6137 			    BGE_EVTENB_MI_INTERRUPT);
   6138 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   6139 			    BRGPHY_MII_ISR, &phyval);
   6140 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   6141 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   6142 		}
   6143 		return;
   6144 	}
   6145 
   6146 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   6147 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6148 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   6149 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6150 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6151 				if (BGE_ASICREV(sc->bge_chipid)
   6152 				    == BGE_ASICREV_BCM5704) {
   6153 					BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   6154 					    BGE_MACMODE_TBI_SEND_CFGS);
   6155 					DELAY(40);
   6156 				}
   6157 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   6158 				if_link_state_change(ifp, LINK_STATE_UP);
   6159 			}
   6160 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6161 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6162 			if_link_state_change(ifp, LINK_STATE_DOWN);
   6163 		}
   6164 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   6165 		/*
   6166 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   6167 		 * bit in status word always set. Workaround this bug by
   6168 		 * reading PHY link status directly.
   6169 		 */
   6170 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   6171 		    BGE_STS_LINK : 0;
   6172 
   6173 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   6174 			mii_pollstat(mii);
   6175 
   6176 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6177 			    mii->mii_media_status & IFM_ACTIVE &&
   6178 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6179 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6180 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6181 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6182 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6183 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6184 		}
   6185 	} else {
   6186 		/*
   6187 		 * For controllers that call mii_tick, we have to poll
   6188 		 * link status.
   6189 		 */
   6190 		mii_pollstat(mii);
   6191 	}
   6192 
   6193 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   6194 		uint32_t reg, scale;
   6195 
   6196 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
   6197 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
   6198 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
   6199 			scale = 65;
   6200 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
   6201 			scale = 6;
   6202 		else
   6203 			scale = 12;
   6204 
   6205 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
   6206 		    ~BGE_MISCCFG_TIMER_PRESCALER;
   6207 		reg |= scale << 1;
   6208 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
   6209 	}
   6210 	/* Clear the attention */
   6211 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   6212 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   6213 	    BGE_MACSTAT_LINK_CHANGED);
   6214 }
   6215 
   6216 static int
   6217 bge_sysctl_verify(SYSCTLFN_ARGS)
   6218 {
   6219 	int error, t;
   6220 	struct sysctlnode node;
   6221 
   6222 	node = *rnode;
   6223 	t = *(int*)rnode->sysctl_data;
   6224 	node.sysctl_data = &t;
   6225 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   6226 	if (error || newp == NULL)
   6227 		return error;
   6228 
   6229 #if 0
   6230 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   6231 	    node.sysctl_num, rnode->sysctl_num));
   6232 #endif
   6233 
   6234 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   6235 		if (t < 0 || t >= NBGE_RX_THRESH)
   6236 			return EINVAL;
   6237 		bge_update_all_threshes(t);
   6238 	} else
   6239 		return EINVAL;
   6240 
   6241 	*(int*)rnode->sysctl_data = t;
   6242 
   6243 	return 0;
   6244 }
   6245 
   6246 /*
   6247  * Set up sysctl(3) MIB, hw.bge.*.
   6248  */
   6249 static void
   6250 bge_sysctl_init(struct bge_softc *sc)
   6251 {
   6252 	int rc, bge_root_num;
   6253 	const struct sysctlnode *node;
   6254 
   6255 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6256 	    0, CTLTYPE_NODE, "bge",
   6257 	    SYSCTL_DESCR("BGE interface controls"),
   6258 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   6259 		goto out;
   6260 	}
   6261 
   6262 	bge_root_num = node->sysctl_num;
   6263 
   6264 	/* BGE Rx interrupt mitigation level */
   6265 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6266 	    CTLFLAG_READWRITE,
   6267 	    CTLTYPE_INT, "rx_lvl",
   6268 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   6269 	    bge_sysctl_verify, 0,
   6270 	    &bge_rx_thresh_lvl,
   6271 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   6272 	    CTL_EOL)) != 0) {
   6273 		goto out;
   6274 	}
   6275 
   6276 	bge_rxthresh_nodenum = node->sysctl_num;
   6277 
   6278 	return;
   6279 
   6280 out:
   6281 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   6282 }
   6283 
   6284 #ifdef BGE_DEBUG
   6285 void
   6286 bge_debug_info(struct bge_softc *sc)
   6287 {
   6288 
   6289 	printf("Hardware Flags:\n");
   6290 	if (BGE_IS_57765_PLUS(sc))
   6291 		printf(" - 57765 Plus\n");
   6292 	if (BGE_IS_5717_PLUS(sc))
   6293 		printf(" - 5717 Plus\n");
   6294 	if (BGE_IS_5755_PLUS(sc))
   6295 		printf(" - 5755 Plus\n");
   6296 	if (BGE_IS_575X_PLUS(sc))
   6297 		printf(" - 575X Plus\n");
   6298 	if (BGE_IS_5705_PLUS(sc))
   6299 		printf(" - 5705 Plus\n");
   6300 	if (BGE_IS_5714_FAMILY(sc))
   6301 		printf(" - 5714 Family\n");
   6302 	if (BGE_IS_5700_FAMILY(sc))
   6303 		printf(" - 5700 Family\n");
   6304 	if (sc->bge_flags & BGEF_IS_5788)
   6305 		printf(" - 5788\n");
   6306 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
   6307 		printf(" - Supports Jumbo Frames\n");
   6308 	if (sc->bge_flags & BGEF_NO_EEPROM)
   6309 		printf(" - No EEPROM\n");
   6310 	if (sc->bge_flags & BGEF_PCIX)
   6311 		printf(" - PCI-X Bus\n");
   6312 	if (sc->bge_flags & BGEF_PCIE)
   6313 		printf(" - PCI Express Bus\n");
   6314 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
   6315 		printf(" - RX Alignment Bug\n");
   6316 	if (sc->bge_flags & BGEF_APE)
   6317 		printf(" - APE\n");
   6318 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
   6319 		printf(" - CPMU\n");
   6320 	if (sc->bge_flags & BGEF_TSO)
   6321 		printf(" - TSO\n");
   6322 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   6323 		printf(" - TAGGED_STATUS\n");
   6324 
   6325 	/* PHY related */
   6326 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
   6327 		printf(" - No 3 LEDs\n");
   6328 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
   6329 		printf(" - CRC bug\n");
   6330 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
   6331 		printf(" - ADC bug\n");
   6332 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
   6333 		printf(" - 5704 A0 bug\n");
   6334 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
   6335 		printf(" - jitter bug\n");
   6336 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
   6337 		printf(" - BER bug\n");
   6338 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
   6339 		printf(" - adjust trim\n");
   6340 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
   6341 		printf(" - no wirespeed\n");
   6342 
   6343 	/* ASF related */
   6344 	if (sc->bge_asf_mode & ASF_ENABLE)
   6345 		printf(" - ASF enable\n");
   6346 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
   6347 		printf(" - ASF new handshake\n");
   6348 	if (sc->bge_asf_mode & ASF_STACKUP)
   6349 		printf(" - ASF stackup\n");
   6350 }
   6351 #endif /* BGE_DEBUG */
   6352 
   6353 static int
   6354 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   6355 {
   6356 	prop_dictionary_t dict;
   6357 	prop_data_t ea;
   6358 
   6359 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
   6360 		return 1;
   6361 
   6362 	dict = device_properties(sc->bge_dev);
   6363 	ea = prop_dictionary_get(dict, "mac-address");
   6364 	if (ea != NULL) {
   6365 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   6366 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   6367 		memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
   6368 		return 0;
   6369 	}
   6370 
   6371 	return 1;
   6372 }
   6373 
   6374 static int
   6375 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   6376 {
   6377 	uint32_t mac_addr;
   6378 
   6379 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   6380 	if ((mac_addr >> 16) == 0x484b) {
   6381 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   6382 		ether_addr[1] = (uint8_t)mac_addr;
   6383 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   6384 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   6385 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   6386 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   6387 		ether_addr[5] = (uint8_t)mac_addr;
   6388 		return 0;
   6389 	}
   6390 	return 1;
   6391 }
   6392 
   6393 static int
   6394 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   6395 {
   6396 	int mac_offset = BGE_EE_MAC_OFFSET;
   6397 
   6398 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6399 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   6400 
   6401 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   6402 	    ETHER_ADDR_LEN));
   6403 }
   6404 
   6405 static int
   6406 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   6407 {
   6408 
   6409 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6410 		return 1;
   6411 
   6412 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   6413 	   ETHER_ADDR_LEN));
   6414 }
   6415 
   6416 static int
   6417 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6418 {
   6419 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6420 		/* NOTE: Order is critical */
   6421 		bge_get_eaddr_fw,
   6422 		bge_get_eaddr_mem,
   6423 		bge_get_eaddr_nvram,
   6424 		bge_get_eaddr_eeprom,
   6425 		NULL
   6426 	};
   6427 	const bge_eaddr_fcn_t *func;
   6428 
   6429 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6430 		if ((*func)(sc, eaddr) == 0)
   6431 			break;
   6432 	}
   6433 	return *func == NULL ? ENXIO : 0;
   6434 }
   6435