if_bge.c revision 1.373 1 /* $NetBSD: if_bge.c,v 1.373 2022/08/07 08:37:48 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.373 2022/08/07 08:37:48 skrll Exp $");
83
84 #include <sys/param.h>
85 #include <sys/types.h>
86
87 #include <sys/callout.h>
88 #include <sys/device.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mbuf.h>
92 #include <sys/rndsource.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/sysctl.h>
96 #include <sys/systm.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 #include <net/bpf.h>
103
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110
111 /* Headers for TCP Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h> /* for struct ip */
115 #include <netinet/tcp.h> /* for struct tcphdr */
116
117 #include <dev/pci/pcireg.h>
118 #include <dev/pci/pcivar.h>
119 #include <dev/pci/pcidevs.h>
120
121 #include <dev/mii/mii.h>
122 #include <dev/mii/miivar.h>
123 #include <dev/mii/miidevs.h>
124 #include <dev/mii/brgphyreg.h>
125
126 #include <dev/pci/if_bgereg.h>
127 #include <dev/pci/if_bgevar.h>
128
129 #include <prop/proplib.h>
130
131 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
132
133
134 /*
135 * Tunable thresholds for rx-side bge interrupt mitigation.
136 */
137
138 /*
139 * The pairs of values below were obtained from empirical measurement
140 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
141 * interrupt for every N packets received, where N is, approximately,
142 * the second value (rx_max_bds) in each pair. The values are chosen
143 * such that moving from one pair to the succeeding pair was observed
144 * to roughly halve interrupt rate under sustained input packet load.
145 * The values were empirically chosen to avoid overflowing internal
146 * limits on the bcm5700: increasing rx_ticks much beyond 600
147 * results in internal wrapping and higher interrupt rates.
148 * The limit of 46 frames was chosen to match NFS workloads.
149 *
150 * These values also work well on bcm5701, bcm5704C, and (less
151 * tested) bcm5703. On other chipsets, (including the Altima chip
152 * family), the larger values may overflow internal chip limits,
153 * leading to increasing interrupt rates rather than lower interrupt
154 * rates.
155 *
156 * Applications using heavy interrupt mitigation (interrupting every
157 * 32 or 46 frames) in both directions may need to increase the TCP
158 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
159 * full link bandwidth, due to ACKs and window updates lingering
160 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
161 */
162 static const struct bge_load_rx_thresh {
163 int rx_ticks;
164 int rx_max_bds; }
165 bge_rx_threshes[] = {
166 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
167 { 32, 2 },
168 { 50, 4 },
169 { 100, 8 },
170 { 192, 16 },
171 { 416, 32 },
172 { 598, 46 }
173 };
174 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
175
176 /* XXX patchable; should be sysctl'able */
177 static int bge_auto_thresh = 1;
178 static int bge_rx_thresh_lvl;
179
180 static int bge_rxthresh_nodenum;
181
182 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
183
184 static uint32_t bge_chipid(const struct pci_attach_args *);
185 static int bge_can_use_msi(struct bge_softc *);
186 static int bge_probe(device_t, cfdata_t, void *);
187 static void bge_attach(device_t, device_t, void *);
188 static int bge_detach(device_t, int);
189 static void bge_release_resources(struct bge_softc *);
190
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
199 static void bge_rxeof(struct bge_softc *);
200
201 static void bge_asf_driver_up (struct bge_softc *);
202 static void bge_tick(void *);
203 static void bge_stats_update(struct bge_softc *);
204 static void bge_stats_update_regs(struct bge_softc *);
205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206
207 static int bge_intr(void *);
208 static void bge_start(struct ifnet *);
209 static int bge_ifflags_cb(struct ethercom *);
210 static int bge_ioctl(struct ifnet *, u_long, void *);
211 static int bge_init(struct ifnet *);
212 static void bge_stop(struct ifnet *, int);
213 static void bge_watchdog(struct ifnet *);
214 static int bge_ifmedia_upd(struct ifnet *);
215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216
217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
219
220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
222 static void bge_setmulti(struct bge_softc *);
223
224 static void bge_handle_events(struct bge_softc *);
225 static int bge_alloc_jumbo_mem(struct bge_softc *);
226 static void bge_free_jumbo_mem(struct bge_softc *);
227 static void *bge_jalloc(struct bge_softc *);
228 static void bge_jfree(struct mbuf *, void *, size_t, void *);
229 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
230 bus_dmamap_t);
231 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
232 static int bge_init_rx_ring_std(struct bge_softc *);
233 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
234 static int bge_init_rx_ring_jumbo(struct bge_softc *);
235 static void bge_free_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_tx_ring(struct bge_softc *m, bool);
237 static int bge_init_tx_ring(struct bge_softc *);
238
239 static int bge_chipinit(struct bge_softc *);
240 static int bge_blockinit(struct bge_softc *);
241 static int bge_phy_addr(struct bge_softc *);
242 static uint32_t bge_readmem_ind(struct bge_softc *, int);
243 static void bge_writemem_ind(struct bge_softc *, int, int);
244 static void bge_writembx(struct bge_softc *, int, int);
245 static void bge_writembx_flush(struct bge_softc *, int, int);
246 static void bge_writemem_direct(struct bge_softc *, int, int);
247 static void bge_writereg_ind(struct bge_softc *, int, int);
248 static void bge_set_max_readrq(struct bge_softc *);
249
250 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
251 static int bge_miibus_writereg(device_t, int, int, uint16_t);
252 static void bge_miibus_statchg(struct ifnet *);
253
254 #define BGE_RESET_SHUTDOWN 0
255 #define BGE_RESET_START 1
256 #define BGE_RESET_SUSPEND 2
257 static void bge_sig_post_reset(struct bge_softc *, int);
258 static void bge_sig_legacy(struct bge_softc *, int);
259 static void bge_sig_pre_reset(struct bge_softc *, int);
260 static void bge_wait_for_event_ack(struct bge_softc *);
261 static void bge_stop_fw(struct bge_softc *);
262 static int bge_reset(struct bge_softc *);
263 static void bge_link_upd(struct bge_softc *);
264 static void bge_sysctl_init(struct bge_softc *);
265 static int bge_sysctl_verify(SYSCTLFN_PROTO);
266
267 static void bge_ape_lock_init(struct bge_softc *);
268 static void bge_ape_read_fw_ver(struct bge_softc *);
269 static int bge_ape_lock(struct bge_softc *, int);
270 static void bge_ape_unlock(struct bge_softc *, int);
271 static void bge_ape_send_event(struct bge_softc *, uint32_t);
272 static void bge_ape_driver_state_change(struct bge_softc *, int);
273
274 #ifdef BGE_DEBUG
275 #define DPRINTF(x) if (bgedebug) printf x
276 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
277 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
278 int bgedebug = 0;
279 int bge_tso_debug = 0;
280 void bge_debug_info(struct bge_softc *);
281 #else
282 #define DPRINTF(x)
283 #define DPRINTFN(n, x)
284 #define BGE_TSO_PRINTF(x)
285 #endif
286
287 #ifdef BGE_EVENT_COUNTERS
288 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
289 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
290 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
291 #else
292 #define BGE_EVCNT_INCR(ev) /* nothing */
293 #define BGE_EVCNT_ADD(ev, val) /* nothing */
294 #define BGE_EVCNT_UPD(ev, val) /* nothing */
295 #endif
296
297 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
298 /*
299 * The BCM5700 documentation seems to indicate that the hardware still has the
300 * Alteon vendor ID burned into it, though it should always be overridden by
301 * the value in the EEPROM. We'll check for it anyway.
302 */
303 static const struct bge_product {
304 pci_vendor_id_t bp_vendor;
305 pci_product_id_t bp_product;
306 const char *bp_name;
307 } bge_products[] = {
308 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
309 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
310 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
311 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
312 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
313 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
314 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
315 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
316 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
317 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
318 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
319 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
320 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
321 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
322 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
323 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
324 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
325 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
326 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
327 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
328 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
329 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
330 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
331 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
332 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
333 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
334 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
335 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
336 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
337 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
338 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
339 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
340 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
341 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
342 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
343 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
344 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
345 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
346 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
347 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
348 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
349 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
350 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
351 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
352 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
353 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
354 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
355 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
356 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
357 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
358 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
359 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
360 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
361 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
362 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
363 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
364 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
365 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
366 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
367 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
368 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
369 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
370 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
371 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
372 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
373 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
374 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
375 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
376 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
377 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
378 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
379 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
380 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
381 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
382 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
383 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
384 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
385 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
386 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
387 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
388 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
389 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
390 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
391 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
392 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
393 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
394 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
395 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
396 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
397 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
398 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
399 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
400 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
401 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
402 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
403 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
404 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
405 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
406 { 0, 0, NULL },
407 };
408
409 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
410 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
411 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
412 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
413 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
414 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
415 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
416 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
417 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
418
419 static const struct bge_revision {
420 uint32_t br_chipid;
421 const char *br_name;
422 } bge_revisions[] = {
423 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
424 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
425 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
426 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
427 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
428 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
429 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
430 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
431 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
432 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
433 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
434 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
435 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
436 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
437 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
438 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
439 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
440 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
441 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
442 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
443 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
444 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
445 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
446 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
447 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
448 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
449 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
450 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
451 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
452 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
453 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
454 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
455 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
456 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
457 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
458 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
459 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
460 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
461 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
462 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
463 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
464 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
465 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
466 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
467 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
468 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
469 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
470 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
471 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
472 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
473 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
474 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
475 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
476 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
477 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
478 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
479 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
480 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
481 /* 5754 and 5787 share the same ASIC ID */
482 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
483 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
484 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
485 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
486 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
487 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
488 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
489 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
490 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
491 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
492 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
493
494 { 0, NULL }
495 };
496
497 /*
498 * Some defaults for major revisions, so that newer steppings
499 * that we don't know about have a shot at working.
500 */
501 static const struct bge_revision bge_majorrevs[] = {
502 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
503 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
504 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
505 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
506 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
507 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
508 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
509 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
510 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
511 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
512 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
513 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
514 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
515 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
516 /* 5754 and 5787 share the same ASIC ID */
517 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
518 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
519 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
520 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
521 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
522 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
523 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
524 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
525 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
526
527 { 0, NULL }
528 };
529
530 static int bge_allow_asf = 1;
531
532 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
533 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
534
535 static uint32_t
536 bge_readmem_ind(struct bge_softc *sc, int off)
537 {
538 pcireg_t val;
539
540 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
541 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
542 return 0;
543
544 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
545 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
546 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
547 return val;
548 }
549
550 static void
551 bge_writemem_ind(struct bge_softc *sc, int off, int val)
552 {
553
554 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
555 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
556 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
557 }
558
559 /*
560 * PCI Express only
561 */
562 static void
563 bge_set_max_readrq(struct bge_softc *sc)
564 {
565 pcireg_t val;
566
567 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
568 + PCIE_DCSR);
569 val &= ~PCIE_DCSR_MAX_READ_REQ;
570 switch (sc->bge_expmrq) {
571 case 2048:
572 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
573 break;
574 case 4096:
575 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
576 break;
577 default:
578 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
579 break;
580 }
581 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
582 + PCIE_DCSR, val);
583 }
584
585 #ifdef notdef
586 static uint32_t
587 bge_readreg_ind(struct bge_softc *sc, int off)
588 {
589 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
590 return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
591 }
592 #endif
593
594 static void
595 bge_writereg_ind(struct bge_softc *sc, int off, int val)
596 {
597 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
598 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
599 }
600
601 static void
602 bge_writemem_direct(struct bge_softc *sc, int off, int val)
603 {
604 CSR_WRITE_4(sc, off, val);
605 }
606
607 static void
608 bge_writembx(struct bge_softc *sc, int off, int val)
609 {
610 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
611 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
612
613 CSR_WRITE_4(sc, off, val);
614 }
615
616 static void
617 bge_writembx_flush(struct bge_softc *sc, int off, int val)
618 {
619 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
620 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
621
622 CSR_WRITE_4_FLUSH(sc, off, val);
623 }
624
625 /*
626 * Clear all stale locks and select the lock for this driver instance.
627 */
628 void
629 bge_ape_lock_init(struct bge_softc *sc)
630 {
631 struct pci_attach_args *pa = &(sc->bge_pa);
632 uint32_t bit, regbase;
633 int i;
634
635 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
636 regbase = BGE_APE_LOCK_GRANT;
637 else
638 regbase = BGE_APE_PER_LOCK_GRANT;
639
640 /* Clear any stale locks. */
641 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
642 switch (i) {
643 case BGE_APE_LOCK_PHY0:
644 case BGE_APE_LOCK_PHY1:
645 case BGE_APE_LOCK_PHY2:
646 case BGE_APE_LOCK_PHY3:
647 bit = BGE_APE_LOCK_GRANT_DRIVER0;
648 break;
649 default:
650 if (pa->pa_function == 0)
651 bit = BGE_APE_LOCK_GRANT_DRIVER0;
652 else
653 bit = (1 << pa->pa_function);
654 }
655 APE_WRITE_4(sc, regbase + 4 * i, bit);
656 }
657
658 /* Select the PHY lock based on the device's function number. */
659 switch (pa->pa_function) {
660 case 0:
661 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
662 break;
663 case 1:
664 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
665 break;
666 case 2:
667 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
668 break;
669 case 3:
670 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
671 break;
672 default:
673 printf("%s: PHY lock not supported on function\n",
674 device_xname(sc->bge_dev));
675 break;
676 }
677 }
678
679 /*
680 * Check for APE firmware, set flags, and print version info.
681 */
682 void
683 bge_ape_read_fw_ver(struct bge_softc *sc)
684 {
685 const char *fwtype;
686 uint32_t apedata, features;
687
688 /* Check for a valid APE signature in shared memory. */
689 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
690 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
691 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
692 return;
693 }
694
695 /* Check if APE firmware is running. */
696 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
697 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
698 printf("%s: APE signature found but FW status not ready! "
699 "0x%08x\n", device_xname(sc->bge_dev), apedata);
700 return;
701 }
702
703 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
704
705 /* Fetch the APE firwmare type and version. */
706 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
707 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
708 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
709 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
710 fwtype = "NCSI";
711 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
712 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
713 fwtype = "DASH";
714 } else
715 fwtype = "UNKN";
716
717 /* Print the APE firmware version. */
718 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
719 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
720 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
721 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
722 (apedata & BGE_APE_FW_VERSION_BLDMSK));
723 }
724
725 int
726 bge_ape_lock(struct bge_softc *sc, int locknum)
727 {
728 struct pci_attach_args *pa = &(sc->bge_pa);
729 uint32_t bit, gnt, req, status;
730 int i, off;
731
732 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
733 return 0;
734
735 /* Lock request/grant registers have different bases. */
736 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
737 req = BGE_APE_LOCK_REQ;
738 gnt = BGE_APE_LOCK_GRANT;
739 } else {
740 req = BGE_APE_PER_LOCK_REQ;
741 gnt = BGE_APE_PER_LOCK_GRANT;
742 }
743
744 off = 4 * locknum;
745
746 switch (locknum) {
747 case BGE_APE_LOCK_GPIO:
748 /* Lock required when using GPIO. */
749 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
750 return 0;
751 if (pa->pa_function == 0)
752 bit = BGE_APE_LOCK_REQ_DRIVER0;
753 else
754 bit = (1 << pa->pa_function);
755 break;
756 case BGE_APE_LOCK_GRC:
757 /* Lock required to reset the device. */
758 if (pa->pa_function == 0)
759 bit = BGE_APE_LOCK_REQ_DRIVER0;
760 else
761 bit = (1 << pa->pa_function);
762 break;
763 case BGE_APE_LOCK_MEM:
764 /* Lock required when accessing certain APE memory. */
765 if (pa->pa_function == 0)
766 bit = BGE_APE_LOCK_REQ_DRIVER0;
767 else
768 bit = (1 << pa->pa_function);
769 break;
770 case BGE_APE_LOCK_PHY0:
771 case BGE_APE_LOCK_PHY1:
772 case BGE_APE_LOCK_PHY2:
773 case BGE_APE_LOCK_PHY3:
774 /* Lock required when accessing PHYs. */
775 bit = BGE_APE_LOCK_REQ_DRIVER0;
776 break;
777 default:
778 return EINVAL;
779 }
780
781 /* Request a lock. */
782 APE_WRITE_4_FLUSH(sc, req + off, bit);
783
784 /* Wait up to 1 second to acquire lock. */
785 for (i = 0; i < 20000; i++) {
786 status = APE_READ_4(sc, gnt + off);
787 if (status == bit)
788 break;
789 DELAY(50);
790 }
791
792 /* Handle any errors. */
793 if (status != bit) {
794 printf("%s: APE lock %d request failed! "
795 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
796 device_xname(sc->bge_dev),
797 locknum, req + off, bit & 0xFFFF, gnt + off,
798 status & 0xFFFF);
799 /* Revoke the lock request. */
800 APE_WRITE_4(sc, gnt + off, bit);
801 return EBUSY;
802 }
803
804 return 0;
805 }
806
807 void
808 bge_ape_unlock(struct bge_softc *sc, int locknum)
809 {
810 struct pci_attach_args *pa = &(sc->bge_pa);
811 uint32_t bit, gnt;
812 int off;
813
814 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
815 return;
816
817 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
818 gnt = BGE_APE_LOCK_GRANT;
819 else
820 gnt = BGE_APE_PER_LOCK_GRANT;
821
822 off = 4 * locknum;
823
824 switch (locknum) {
825 case BGE_APE_LOCK_GPIO:
826 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
827 return;
828 if (pa->pa_function == 0)
829 bit = BGE_APE_LOCK_GRANT_DRIVER0;
830 else
831 bit = (1 << pa->pa_function);
832 break;
833 case BGE_APE_LOCK_GRC:
834 if (pa->pa_function == 0)
835 bit = BGE_APE_LOCK_GRANT_DRIVER0;
836 else
837 bit = (1 << pa->pa_function);
838 break;
839 case BGE_APE_LOCK_MEM:
840 if (pa->pa_function == 0)
841 bit = BGE_APE_LOCK_GRANT_DRIVER0;
842 else
843 bit = (1 << pa->pa_function);
844 break;
845 case BGE_APE_LOCK_PHY0:
846 case BGE_APE_LOCK_PHY1:
847 case BGE_APE_LOCK_PHY2:
848 case BGE_APE_LOCK_PHY3:
849 bit = BGE_APE_LOCK_GRANT_DRIVER0;
850 break;
851 default:
852 return;
853 }
854
855 /* Write and flush for consecutive bge_ape_lock() */
856 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
857 }
858
859 /*
860 * Send an event to the APE firmware.
861 */
862 void
863 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
864 {
865 uint32_t apedata;
866 int i;
867
868 /* NCSI does not support APE events. */
869 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
870 return;
871
872 /* Wait up to 1ms for APE to service previous event. */
873 for (i = 10; i > 0; i--) {
874 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
875 break;
876 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
877 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
878 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
879 BGE_APE_EVENT_STATUS_EVENT_PENDING);
880 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
881 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
882 break;
883 }
884 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
885 DELAY(100);
886 }
887 if (i == 0) {
888 printf("%s: APE event 0x%08x send timed out\n",
889 device_xname(sc->bge_dev), event);
890 }
891 }
892
893 void
894 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
895 {
896 uint32_t apedata, event;
897
898 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
899 return;
900
901 switch (kind) {
902 case BGE_RESET_START:
903 /* If this is the first load, clear the load counter. */
904 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
905 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
906 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
907 else {
908 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
909 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
910 }
911 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
912 BGE_APE_HOST_SEG_SIG_MAGIC);
913 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
914 BGE_APE_HOST_SEG_LEN_MAGIC);
915
916 /* Add some version info if bge(4) supports it. */
917 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
918 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
919 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
920 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
921 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
922 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
923 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
924 BGE_APE_HOST_DRVR_STATE_START);
925 event = BGE_APE_EVENT_STATUS_STATE_START;
926 break;
927 case BGE_RESET_SHUTDOWN:
928 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
929 BGE_APE_HOST_DRVR_STATE_UNLOAD);
930 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
931 break;
932 case BGE_RESET_SUSPEND:
933 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
934 break;
935 default:
936 return;
937 }
938
939 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
940 BGE_APE_EVENT_STATUS_STATE_CHNGE);
941 }
942
943 static uint8_t
944 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
945 {
946 uint32_t access, byte = 0;
947 int i;
948
949 /* Lock. */
950 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
951 for (i = 0; i < 8000; i++) {
952 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
953 break;
954 DELAY(20);
955 }
956 if (i == 8000)
957 return 1;
958
959 /* Enable access. */
960 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
961 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
962
963 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
964 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
965 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
966 DELAY(10);
967 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
968 DELAY(10);
969 break;
970 }
971 }
972
973 if (i == BGE_TIMEOUT * 10) {
974 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
975 return 1;
976 }
977
978 /* Get result. */
979 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
980
981 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
982
983 /* Disable access. */
984 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
985
986 /* Unlock. */
987 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
988
989 return 0;
990 }
991
992 /*
993 * Read a sequence of bytes from NVRAM.
994 */
995 static int
996 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
997 {
998 int error = 0, i;
999 uint8_t byte = 0;
1000
1001 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1002 return 1;
1003
1004 for (i = 0; i < cnt; i++) {
1005 error = bge_nvram_getbyte(sc, off + i, &byte);
1006 if (error)
1007 break;
1008 *(dest + i) = byte;
1009 }
1010
1011 return error ? 1 : 0;
1012 }
1013
1014 /*
1015 * Read a byte of data stored in the EEPROM at address 'addr.' The
1016 * BCM570x supports both the traditional bitbang interface and an
1017 * auto access interface for reading the EEPROM. We use the auto
1018 * access method.
1019 */
1020 static uint8_t
1021 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1022 {
1023 int i;
1024 uint32_t byte = 0;
1025
1026 /*
1027 * Enable use of auto EEPROM access so we can avoid
1028 * having to use the bitbang method.
1029 */
1030 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1031
1032 /* Reset the EEPROM, load the clock period. */
1033 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1034 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1035 DELAY(20);
1036
1037 /* Issue the read EEPROM command. */
1038 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1039
1040 /* Wait for completion */
1041 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1042 DELAY(10);
1043 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1044 break;
1045 }
1046
1047 if (i == BGE_TIMEOUT * 10) {
1048 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1049 return 1;
1050 }
1051
1052 /* Get result. */
1053 byte = CSR_READ_4(sc, BGE_EE_DATA);
1054
1055 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1056
1057 return 0;
1058 }
1059
1060 /*
1061 * Read a sequence of bytes from the EEPROM.
1062 */
1063 static int
1064 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1065 {
1066 int error = 0, i;
1067 uint8_t byte = 0;
1068 char *dest = destv;
1069
1070 for (i = 0; i < cnt; i++) {
1071 error = bge_eeprom_getbyte(sc, off + i, &byte);
1072 if (error)
1073 break;
1074 *(dest + i) = byte;
1075 }
1076
1077 return error ? 1 : 0;
1078 }
1079
1080 static int
1081 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1082 {
1083 struct bge_softc * const sc = device_private(dev);
1084 uint32_t data;
1085 uint32_t autopoll;
1086 int rv = 0;
1087 int i;
1088
1089 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1090 return -1;
1091
1092 /* Reading with autopolling on may trigger PCI errors */
1093 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1094 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1095 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1096 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1097 DELAY(80);
1098 }
1099
1100 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1101 BGE_MIPHY(phy) | BGE_MIREG(reg));
1102
1103 for (i = 0; i < BGE_TIMEOUT; i++) {
1104 delay(10);
1105 data = CSR_READ_4(sc, BGE_MI_COMM);
1106 if (!(data & BGE_MICOMM_BUSY)) {
1107 DELAY(5);
1108 data = CSR_READ_4(sc, BGE_MI_COMM);
1109 break;
1110 }
1111 }
1112
1113 if (i == BGE_TIMEOUT) {
1114 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1115 rv = ETIMEDOUT;
1116 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1117 /* XXX This error occurs on some devices while attaching. */
1118 aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1119 rv = EIO;
1120 } else
1121 *val = data & BGE_MICOMM_DATA;
1122
1123 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1124 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1125 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1126 DELAY(80);
1127 }
1128
1129 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1130
1131 return rv;
1132 }
1133
1134 static int
1135 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1136 {
1137 struct bge_softc * const sc = device_private(dev);
1138 uint32_t data, autopoll;
1139 int rv = 0;
1140 int i;
1141
1142 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1143 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1144 return 0;
1145
1146 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1147 return -1;
1148
1149 /* Reading with autopolling on may trigger PCI errors */
1150 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1151 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1152 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1153 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1154 DELAY(80);
1155 }
1156
1157 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1158 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1159
1160 for (i = 0; i < BGE_TIMEOUT; i++) {
1161 delay(10);
1162 data = CSR_READ_4(sc, BGE_MI_COMM);
1163 if (!(data & BGE_MICOMM_BUSY)) {
1164 delay(5);
1165 data = CSR_READ_4(sc, BGE_MI_COMM);
1166 break;
1167 }
1168 }
1169
1170 if (i == BGE_TIMEOUT) {
1171 aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1172 rv = ETIMEDOUT;
1173 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1174 aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1175 rv = EIO;
1176 }
1177
1178 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1179 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1180 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1181 delay(80);
1182 }
1183
1184 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1185
1186 return rv;
1187 }
1188
1189 static void
1190 bge_miibus_statchg(struct ifnet *ifp)
1191 {
1192 struct bge_softc * const sc = ifp->if_softc;
1193 struct mii_data *mii = &sc->bge_mii;
1194 uint32_t mac_mode, rx_mode, tx_mode;
1195
1196 /*
1197 * Get flow control negotiation result.
1198 */
1199 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1200 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1201 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1202
1203 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1204 mii->mii_media_status & IFM_ACTIVE &&
1205 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1206 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1207 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1208 (!(mii->mii_media_status & IFM_ACTIVE) ||
1209 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1210 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1211
1212 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1213 return;
1214
1215 /* Set the port mode (MII/GMII) to match the link speed. */
1216 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1217 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1218 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1219 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1220 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1221 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1222 mac_mode |= BGE_PORTMODE_GMII;
1223 else
1224 mac_mode |= BGE_PORTMODE_MII;
1225
1226 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1227 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1228 if ((mii->mii_media_active & IFM_FDX) != 0) {
1229 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1230 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1231 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1232 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1233 } else
1234 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1235
1236 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1237 DELAY(40);
1238 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1239 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1240 }
1241
1242 /*
1243 * Update rx threshold levels to values in a particular slot
1244 * of the interrupt-mitigation table bge_rx_threshes.
1245 */
1246 static void
1247 bge_set_thresh(struct ifnet *ifp, int lvl)
1248 {
1249 struct bge_softc * const sc = ifp->if_softc;
1250 int s;
1251
1252 /*
1253 * For now, just save the new Rx-intr thresholds and record
1254 * that a threshold update is pending. Updating the hardware
1255 * registers here (even at splhigh()) is observed to
1256 * occasionally cause glitches where Rx-interrupts are not
1257 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1258 */
1259 s = splnet();
1260 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1261 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1262 sc->bge_pending_rxintr_change = 1;
1263 splx(s);
1264 }
1265
1266
1267 /*
1268 * Update Rx thresholds of all bge devices
1269 */
1270 static void
1271 bge_update_all_threshes(int lvl)
1272 {
1273 const char * const namebuf = "bge";
1274 const size_t namelen = strlen(namebuf);
1275 struct ifnet *ifp;
1276
1277 if (lvl < 0)
1278 lvl = 0;
1279 else if (lvl >= NBGE_RX_THRESH)
1280 lvl = NBGE_RX_THRESH - 1;
1281
1282 /*
1283 * Now search all the interfaces for this name/number
1284 */
1285 int s = pserialize_read_enter();
1286 IFNET_READER_FOREACH(ifp) {
1287 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1288 continue;
1289 /* We got a match: update if doing auto-threshold-tuning */
1290 if (bge_auto_thresh)
1291 bge_set_thresh(ifp, lvl);
1292 }
1293 pserialize_read_exit(s);
1294 }
1295
1296 /*
1297 * Handle events that have triggered interrupts.
1298 */
1299 static void
1300 bge_handle_events(struct bge_softc *sc)
1301 {
1302
1303 return;
1304 }
1305
1306 /*
1307 * Memory management for jumbo frames.
1308 */
1309
1310 static int
1311 bge_alloc_jumbo_mem(struct bge_softc *sc)
1312 {
1313 char *ptr, *kva;
1314 int i, rseg, state, error;
1315 struct bge_jpool_entry *entry;
1316
1317 state = error = 0;
1318
1319 /* Grab a big chunk o' storage. */
1320 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1321 &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1322 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1323 return ENOBUFS;
1324 }
1325
1326 state = 1;
1327 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg,
1328 rseg, BGE_JMEM, (void **)&kva,
1329 BUS_DMA_NOWAIT)) {
1330 aprint_error_dev(sc->bge_dev,
1331 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1332 error = ENOBUFS;
1333 goto out;
1334 }
1335
1336 state = 2;
1337 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1338 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1339 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1340 error = ENOBUFS;
1341 goto out;
1342 }
1343
1344 state = 3;
1345 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1346 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1347 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1348 error = ENOBUFS;
1349 goto out;
1350 }
1351
1352 state = 4;
1353 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1354 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1355
1356 SLIST_INIT(&sc->bge_jfree_listhead);
1357 SLIST_INIT(&sc->bge_jinuse_listhead);
1358
1359 /*
1360 * Now divide it up into 9K pieces and save the addresses
1361 * in an array.
1362 */
1363 ptr = sc->bge_cdata.bge_jumbo_buf;
1364 for (i = 0; i < BGE_JSLOTS; i++) {
1365 sc->bge_cdata.bge_jslots[i] = ptr;
1366 ptr += BGE_JLEN;
1367 entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
1368 entry->slot = i;
1369 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1370 entry, jpool_entries);
1371 }
1372 out:
1373 if (error != 0) {
1374 switch (state) {
1375 case 4:
1376 bus_dmamap_unload(sc->bge_dmatag,
1377 sc->bge_cdata.bge_rx_jumbo_map);
1378 /* FALLTHROUGH */
1379 case 3:
1380 bus_dmamap_destroy(sc->bge_dmatag,
1381 sc->bge_cdata.bge_rx_jumbo_map);
1382 /* FALLTHROUGH */
1383 case 2:
1384 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1385 /* FALLTHROUGH */
1386 case 1:
1387 bus_dmamem_free(sc->bge_dmatag,
1388 &sc->bge_cdata.bge_rx_jumbo_seg, rseg);
1389 break;
1390 default:
1391 break;
1392 }
1393 }
1394
1395 return error;
1396 }
1397
1398 static void
1399 bge_free_jumbo_mem(struct bge_softc *sc)
1400 {
1401 struct bge_jpool_entry *entry, *tmp;
1402
1403 KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead));
1404
1405 SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) {
1406 kmem_free(entry, sizeof(*entry));
1407 }
1408
1409 bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
1410
1411 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
1412
1413 bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM);
1414
1415 bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1);
1416 }
1417
1418 /*
1419 * Allocate a jumbo buffer.
1420 */
1421 static void *
1422 bge_jalloc(struct bge_softc *sc)
1423 {
1424 struct bge_jpool_entry *entry;
1425
1426 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1427
1428 if (entry == NULL) {
1429 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1430 return NULL;
1431 }
1432
1433 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1434 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1435 return sc->bge_cdata.bge_jslots[entry->slot];
1436 }
1437
1438 /*
1439 * Release a jumbo buffer.
1440 */
1441 static void
1442 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1443 {
1444 struct bge_jpool_entry *entry;
1445 struct bge_softc * const sc = arg;
1446 int s;
1447
1448 if (sc == NULL)
1449 panic("bge_jfree: can't find softc pointer!");
1450
1451 /* calculate the slot this buffer belongs to */
1452 int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1453
1454 if (i < 0 || i >= BGE_JSLOTS)
1455 panic("bge_jfree: asked to free buffer that we don't manage!");
1456
1457 s = splvm();
1458 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1459 if (entry == NULL)
1460 panic("bge_jfree: buffer not in use!");
1461 entry->slot = i;
1462 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1463 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1464
1465 if (__predict_true(m != NULL))
1466 pool_cache_put(mb_cache, m);
1467 splx(s);
1468 }
1469
1470
1471 /*
1472 * Initialize a standard receive ring descriptor.
1473 */
1474 static int
1475 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1476 bus_dmamap_t dmamap)
1477 {
1478 struct mbuf *m_new = NULL;
1479 struct bge_rx_bd *r;
1480 int error;
1481
1482 if (dmamap == NULL)
1483 dmamap = sc->bge_cdata.bge_rx_std_map[i];
1484
1485 if (dmamap == NULL) {
1486 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1487 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1488 if (error != 0)
1489 return error;
1490 }
1491
1492 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1493
1494 if (m == NULL) {
1495 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1496 if (m_new == NULL)
1497 return ENOBUFS;
1498
1499 MCLGET(m_new, M_DONTWAIT);
1500 if (!(m_new->m_flags & M_EXT)) {
1501 m_freem(m_new);
1502 return ENOBUFS;
1503 }
1504 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1505
1506 } else {
1507 m_new = m;
1508 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1509 m_new->m_data = m_new->m_ext.ext_buf;
1510 }
1511 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1512 m_adj(m_new, ETHER_ALIGN);
1513 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1514 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1515 m_freem(m_new);
1516 return ENOBUFS;
1517 }
1518 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1519 BUS_DMASYNC_PREREAD);
1520
1521 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1522 r = &sc->bge_rdata->bge_rx_std_ring[i];
1523 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1524 r->bge_flags = BGE_RXBDFLAG_END;
1525 r->bge_len = m_new->m_len;
1526 r->bge_idx = i;
1527
1528 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1529 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1530 i * sizeof(struct bge_rx_bd),
1531 sizeof(struct bge_rx_bd),
1532 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1533
1534 return 0;
1535 }
1536
1537 /*
1538 * Initialize a jumbo receive ring descriptor. This allocates
1539 * a jumbo buffer from the pool managed internally by the driver.
1540 */
1541 static int
1542 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1543 {
1544 struct mbuf *m_new = NULL;
1545 struct bge_rx_bd *r;
1546 void *buf = NULL;
1547
1548 if (m == NULL) {
1549
1550 /* Allocate the mbuf. */
1551 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1552 if (m_new == NULL)
1553 return ENOBUFS;
1554
1555 /* Allocate the jumbo buffer */
1556 buf = bge_jalloc(sc);
1557 if (buf == NULL) {
1558 m_freem(m_new);
1559 aprint_error_dev(sc->bge_dev,
1560 "jumbo allocation failed -- packet dropped!\n");
1561 return ENOBUFS;
1562 }
1563
1564 /* Attach the buffer to the mbuf. */
1565 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1566 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1567 bge_jfree, sc);
1568 m_new->m_flags |= M_EXT_RW;
1569 } else {
1570 m_new = m;
1571 buf = m_new->m_data = m_new->m_ext.ext_buf;
1572 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1573 }
1574 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1575 m_adj(m_new, ETHER_ALIGN);
1576 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1577 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1578 BGE_JLEN, BUS_DMASYNC_PREREAD);
1579 /* Set up the descriptor. */
1580 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1581 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1582 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1583 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1584 r->bge_len = m_new->m_len;
1585 r->bge_idx = i;
1586
1587 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1588 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1589 i * sizeof(struct bge_rx_bd),
1590 sizeof(struct bge_rx_bd),
1591 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1592
1593 return 0;
1594 }
1595
1596 /*
1597 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1598 * that's 1MB or memory, which is a lot. For now, we fill only the first
1599 * 256 ring entries and hope that our CPU is fast enough to keep up with
1600 * the NIC.
1601 */
1602 static int
1603 bge_init_rx_ring_std(struct bge_softc *sc)
1604 {
1605 int i;
1606
1607 if (sc->bge_flags & BGEF_RXRING_VALID)
1608 return 0;
1609
1610 for (i = 0; i < BGE_SSLOTS; i++) {
1611 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1612 return ENOBUFS;
1613 }
1614
1615 sc->bge_std = i - 1;
1616 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1617
1618 sc->bge_flags |= BGEF_RXRING_VALID;
1619
1620 return 0;
1621 }
1622
1623 static void
1624 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1625 {
1626 int i;
1627
1628 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1629 return;
1630
1631 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1632 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1633 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1634 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1635 if (disable) {
1636 bus_dmamap_destroy(sc->bge_dmatag,
1637 sc->bge_cdata.bge_rx_std_map[i]);
1638 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1639 }
1640 }
1641 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1642 sizeof(struct bge_rx_bd));
1643 }
1644
1645 sc->bge_flags &= ~BGEF_RXRING_VALID;
1646 }
1647
1648 static int
1649 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1650 {
1651 int i;
1652 volatile struct bge_rcb *rcb;
1653
1654 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1655 return 0;
1656
1657 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1658 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1659 return ENOBUFS;
1660 }
1661
1662 sc->bge_jumbo = i - 1;
1663 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1664
1665 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1666 rcb->bge_maxlen_flags = 0;
1667 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1668
1669 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1670
1671 return 0;
1672 }
1673
1674 static void
1675 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1676 {
1677 int i;
1678
1679 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1680 return;
1681
1682 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1683 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1684 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1685 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1686 }
1687 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1688 sizeof(struct bge_rx_bd));
1689 }
1690
1691 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1692 }
1693
1694 static void
1695 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1696 {
1697 int i;
1698 struct txdmamap_pool_entry *dma;
1699
1700 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1701 return;
1702
1703 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1704 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1705 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1706 sc->bge_cdata.bge_tx_chain[i] = NULL;
1707 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1708 link);
1709 sc->txdma[i] = 0;
1710 }
1711 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1712 sizeof(struct bge_tx_bd));
1713 }
1714
1715 if (disable) {
1716 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1717 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1718 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1719 if (sc->bge_dma64) {
1720 bus_dmamap_destroy(sc->bge_dmatag32,
1721 dma->dmamap32);
1722 }
1723 kmem_free(dma, sizeof(*dma));
1724 }
1725 SLIST_INIT(&sc->txdma_list);
1726 }
1727
1728 sc->bge_flags &= ~BGEF_TXRING_VALID;
1729 }
1730
1731 static int
1732 bge_init_tx_ring(struct bge_softc *sc)
1733 {
1734 struct ifnet * const ifp = &sc->ethercom.ec_if;
1735 int i;
1736 bus_dmamap_t dmamap, dmamap32;
1737 bus_size_t maxsegsz;
1738 struct txdmamap_pool_entry *dma;
1739
1740 if (sc->bge_flags & BGEF_TXRING_VALID)
1741 return 0;
1742
1743 sc->bge_txcnt = 0;
1744 sc->bge_tx_saved_considx = 0;
1745
1746 /* Initialize transmit producer index for host-memory send ring. */
1747 sc->bge_tx_prodidx = 0;
1748 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1749 /* 5700 b2 errata */
1750 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1751 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1752
1753 /* NIC-memory send ring not used; initialize to zero. */
1754 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1755 /* 5700 b2 errata */
1756 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1757 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1758
1759 /* Limit DMA segment size for some chips */
1760 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1761 (ifp->if_mtu <= ETHERMTU))
1762 maxsegsz = 2048;
1763 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1764 maxsegsz = 4096;
1765 else
1766 maxsegsz = ETHER_MAX_LEN_JUMBO;
1767
1768 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1769 goto alloc_done;
1770
1771 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1772 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1773 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1774 &dmamap))
1775 return ENOBUFS;
1776 if (dmamap == NULL)
1777 panic("dmamap NULL in bge_init_tx_ring");
1778 if (sc->bge_dma64) {
1779 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1780 BGE_NTXSEG, maxsegsz, 0,
1781 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1782 &dmamap32)) {
1783 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1784 return ENOBUFS;
1785 }
1786 if (dmamap32 == NULL)
1787 panic("dmamap32 NULL in bge_init_tx_ring");
1788 } else
1789 dmamap32 = dmamap;
1790 dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
1791 if (dma == NULL) {
1792 aprint_error_dev(sc->bge_dev,
1793 "can't alloc txdmamap_pool_entry\n");
1794 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1795 if (sc->bge_dma64)
1796 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1797 return ENOMEM;
1798 }
1799 dma->dmamap = dmamap;
1800 dma->dmamap32 = dmamap32;
1801 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1802 }
1803 alloc_done:
1804 sc->bge_flags |= BGEF_TXRING_VALID;
1805
1806 return 0;
1807 }
1808
1809 static void
1810 bge_setmulti(struct bge_softc *sc)
1811 {
1812 struct ethercom * const ec = &sc->ethercom;
1813 struct ifnet * const ifp = &ec->ec_if;
1814 struct ether_multi *enm;
1815 struct ether_multistep step;
1816 uint32_t hashes[4] = { 0, 0, 0, 0 };
1817 uint32_t h;
1818 int i;
1819
1820 if (ifp->if_flags & IFF_PROMISC)
1821 goto allmulti;
1822
1823 /* Now program new ones. */
1824 ETHER_LOCK(ec);
1825 ETHER_FIRST_MULTI(step, ec, enm);
1826 while (enm != NULL) {
1827 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1828 /*
1829 * We must listen to a range of multicast addresses.
1830 * For now, just accept all multicasts, rather than
1831 * trying to set only those filter bits needed to match
1832 * the range. (At this time, the only use of address
1833 * ranges is for IP multicast routing, for which the
1834 * range is big enough to require all bits set.)
1835 */
1836 ETHER_UNLOCK(ec);
1837 goto allmulti;
1838 }
1839
1840 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1841
1842 /* Just want the 7 least-significant bits. */
1843 h &= 0x7f;
1844
1845 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1846 ETHER_NEXT_MULTI(step, enm);
1847 }
1848 ETHER_UNLOCK(ec);
1849
1850 ifp->if_flags &= ~IFF_ALLMULTI;
1851 goto setit;
1852
1853 allmulti:
1854 ifp->if_flags |= IFF_ALLMULTI;
1855 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1856
1857 setit:
1858 for (i = 0; i < 4; i++)
1859 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1860 }
1861
1862 static void
1863 bge_sig_pre_reset(struct bge_softc *sc, int type)
1864 {
1865
1866 /*
1867 * Some chips don't like this so only do this if ASF is enabled
1868 */
1869 if (sc->bge_asf_mode)
1870 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1871
1872 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1873 switch (type) {
1874 case BGE_RESET_START:
1875 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1876 BGE_FW_DRV_STATE_START);
1877 break;
1878 case BGE_RESET_SHUTDOWN:
1879 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1880 BGE_FW_DRV_STATE_UNLOAD);
1881 break;
1882 case BGE_RESET_SUSPEND:
1883 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1884 BGE_FW_DRV_STATE_SUSPEND);
1885 break;
1886 }
1887 }
1888
1889 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1890 bge_ape_driver_state_change(sc, type);
1891 }
1892
1893 static void
1894 bge_sig_post_reset(struct bge_softc *sc, int type)
1895 {
1896
1897 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1898 switch (type) {
1899 case BGE_RESET_START:
1900 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1901 BGE_FW_DRV_STATE_START_DONE);
1902 /* START DONE */
1903 break;
1904 case BGE_RESET_SHUTDOWN:
1905 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1906 BGE_FW_DRV_STATE_UNLOAD_DONE);
1907 break;
1908 }
1909 }
1910
1911 if (type == BGE_RESET_SHUTDOWN)
1912 bge_ape_driver_state_change(sc, type);
1913 }
1914
1915 static void
1916 bge_sig_legacy(struct bge_softc *sc, int type)
1917 {
1918
1919 if (sc->bge_asf_mode) {
1920 switch (type) {
1921 case BGE_RESET_START:
1922 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1923 BGE_FW_DRV_STATE_START);
1924 break;
1925 case BGE_RESET_SHUTDOWN:
1926 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1927 BGE_FW_DRV_STATE_UNLOAD);
1928 break;
1929 }
1930 }
1931 }
1932
1933 static void
1934 bge_wait_for_event_ack(struct bge_softc *sc)
1935 {
1936 int i;
1937
1938 /* wait up to 2500usec */
1939 for (i = 0; i < 250; i++) {
1940 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1941 BGE_RX_CPU_DRV_EVENT))
1942 break;
1943 DELAY(10);
1944 }
1945 }
1946
1947 static void
1948 bge_stop_fw(struct bge_softc *sc)
1949 {
1950
1951 if (sc->bge_asf_mode) {
1952 bge_wait_for_event_ack(sc);
1953
1954 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1955 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1956 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1957
1958 bge_wait_for_event_ack(sc);
1959 }
1960 }
1961
1962 static int
1963 bge_poll_fw(struct bge_softc *sc)
1964 {
1965 uint32_t val;
1966 int i;
1967
1968 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1969 for (i = 0; i < BGE_TIMEOUT; i++) {
1970 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1971 if (val & BGE_VCPU_STATUS_INIT_DONE)
1972 break;
1973 DELAY(100);
1974 }
1975 if (i >= BGE_TIMEOUT) {
1976 aprint_error_dev(sc->bge_dev, "reset timed out\n");
1977 return -1;
1978 }
1979 } else {
1980 /*
1981 * Poll the value location we just wrote until
1982 * we see the 1's complement of the magic number.
1983 * This indicates that the firmware initialization
1984 * is complete.
1985 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1986 */
1987 for (i = 0; i < BGE_TIMEOUT; i++) {
1988 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1989 if (val == ~BGE_SRAM_FW_MB_MAGIC)
1990 break;
1991 DELAY(10);
1992 }
1993
1994 if ((i >= BGE_TIMEOUT)
1995 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1996 aprint_error_dev(sc->bge_dev,
1997 "firmware handshake timed out, val = %x\n", val);
1998 return -1;
1999 }
2000 }
2001
2002 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2003 /* tg3 says we have to wait extra time */
2004 delay(10 * 1000);
2005 }
2006
2007 return 0;
2008 }
2009
2010 int
2011 bge_phy_addr(struct bge_softc *sc)
2012 {
2013 struct pci_attach_args *pa = &(sc->bge_pa);
2014 int phy_addr = 1;
2015
2016 /*
2017 * PHY address mapping for various devices.
2018 *
2019 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2020 * ---------+-------+-------+-------+-------+
2021 * BCM57XX | 1 | X | X | X |
2022 * BCM5704 | 1 | X | 1 | X |
2023 * BCM5717 | 1 | 8 | 2 | 9 |
2024 * BCM5719 | 1 | 8 | 2 | 9 |
2025 * BCM5720 | 1 | 8 | 2 | 9 |
2026 *
2027 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2028 * ---------+-------+-------+-------+-------+
2029 * BCM57XX | X | X | X | X |
2030 * BCM5704 | X | X | X | X |
2031 * BCM5717 | X | X | X | X |
2032 * BCM5719 | 3 | 10 | 4 | 11 |
2033 * BCM5720 | X | X | X | X |
2034 *
2035 * Other addresses may respond but they are not
2036 * IEEE compliant PHYs and should be ignored.
2037 */
2038 switch (BGE_ASICREV(sc->bge_chipid)) {
2039 case BGE_ASICREV_BCM5717:
2040 case BGE_ASICREV_BCM5719:
2041 case BGE_ASICREV_BCM5720:
2042 phy_addr = pa->pa_function;
2043 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2044 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2045 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2046 } else {
2047 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2048 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2049 }
2050 }
2051
2052 return phy_addr;
2053 }
2054
2055 /*
2056 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2057 * self-test results.
2058 */
2059 static int
2060 bge_chipinit(struct bge_softc *sc)
2061 {
2062 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2063 int i;
2064
2065 /* Set endianness before we access any non-PCI registers. */
2066 misc_ctl = BGE_INIT;
2067 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2068 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2069 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2070 misc_ctl);
2071
2072 /*
2073 * Clear the MAC statistics block in the NIC's
2074 * internal memory.
2075 */
2076 for (i = BGE_STATS_BLOCK;
2077 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2078 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2079
2080 for (i = BGE_STATUS_BLOCK;
2081 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2082 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2083
2084 /* 5717 workaround from tg3 */
2085 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2086 /* Save */
2087 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2088
2089 /* Temporary modify MODE_CTL to control TLP */
2090 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2091 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2092
2093 /* Control TLP */
2094 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2095 BGE_TLP_PHYCTL1);
2096 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2097 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2098
2099 /* Restore */
2100 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2101 }
2102
2103 if (BGE_IS_57765_FAMILY(sc)) {
2104 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2105 /* Save */
2106 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2107
2108 /* Temporary modify MODE_CTL to control TLP */
2109 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2110 CSR_WRITE_4(sc, BGE_MODE_CTL,
2111 reg | BGE_MODECTL_PCIE_TLPADDR1);
2112
2113 /* Control TLP */
2114 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2115 BGE_TLP_PHYCTL5);
2116 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2117 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2118
2119 /* Restore */
2120 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2121 }
2122 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2123 /*
2124 * For the 57766 and non Ax versions of 57765, bootcode
2125 * needs to setup the PCIE Fast Training Sequence (FTS)
2126 * value to prevent transmit hangs.
2127 */
2128 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2129 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2130 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2131
2132 /* Save */
2133 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2134
2135 /* Temporary modify MODE_CTL to control TLP */
2136 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2137 CSR_WRITE_4(sc, BGE_MODE_CTL,
2138 reg | BGE_MODECTL_PCIE_TLPADDR0);
2139
2140 /* Control TLP */
2141 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2142 BGE_TLP_FTSMAX);
2143 reg &= ~BGE_TLP_FTSMAX_MSK;
2144 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2145 reg | BGE_TLP_FTSMAX_VAL);
2146
2147 /* Restore */
2148 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2149 }
2150
2151 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2152 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2153 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2154 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2155 }
2156
2157 /* Set up the PCI DMA control register. */
2158 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2159 if (sc->bge_flags & BGEF_PCIE) {
2160 /* Read watermark not used, 128 bytes for write. */
2161 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2162 device_xname(sc->bge_dev)));
2163 if (sc->bge_mps >= 256)
2164 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2165 else
2166 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2167 } else if (sc->bge_flags & BGEF_PCIX) {
2168 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2169 device_xname(sc->bge_dev)));
2170 /* PCI-X bus */
2171 if (BGE_IS_5714_FAMILY(sc)) {
2172 /* 256 bytes for read and write. */
2173 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2174 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2175
2176 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2177 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2178 else
2179 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2180 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2181 /*
2182 * In the BCM5703, the DMA read watermark should
2183 * be set to less than or equal to the maximum
2184 * memory read byte count of the PCI-X command
2185 * register.
2186 */
2187 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2188 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2189 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2190 /* 1536 bytes for read, 384 bytes for write. */
2191 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2192 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2193 } else {
2194 /* 384 bytes for read and write. */
2195 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2196 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2197 (0x0F);
2198 }
2199
2200 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2201 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2202 uint32_t tmp;
2203
2204 /* Set ONEDMA_ATONCE for hardware workaround. */
2205 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2206 if (tmp == 6 || tmp == 7)
2207 dma_rw_ctl |=
2208 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2209
2210 /* Set PCI-X DMA write workaround. */
2211 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2212 }
2213 } else {
2214 /* Conventional PCI bus: 256 bytes for read and write. */
2215 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2216 device_xname(sc->bge_dev)));
2217 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2218 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2219
2220 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2221 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2222 dma_rw_ctl |= 0x0F;
2223 }
2224
2225 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2226 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2227 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2228 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2229
2230 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2231 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2232 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2233
2234 if (BGE_IS_57765_PLUS(sc)) {
2235 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2236 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2237 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2238
2239 /*
2240 * Enable HW workaround for controllers that misinterpret
2241 * a status tag update and leave interrupts permanently
2242 * disabled.
2243 */
2244 if (!BGE_IS_57765_FAMILY(sc) &&
2245 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2246 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2247 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2248 }
2249
2250 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2251 dma_rw_ctl);
2252
2253 /*
2254 * Set up general mode register.
2255 */
2256 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2257 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2258 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2259 /* Retain Host-2-BMC settings written by APE firmware. */
2260 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2261 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2262 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2263 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2264 }
2265 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2266 BGE_MODECTL_TX_NO_PHDR_CSUM;
2267
2268 /*
2269 * BCM5701 B5 have a bug causing data corruption when using
2270 * 64-bit DMA reads, which can be terminated early and then
2271 * completed later as 32-bit accesses, in combination with
2272 * certain bridges.
2273 */
2274 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2275 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2276 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2277
2278 /*
2279 * Tell the firmware the driver is running
2280 */
2281 if (sc->bge_asf_mode & ASF_STACKUP)
2282 mode_ctl |= BGE_MODECTL_STACKUP;
2283
2284 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2285
2286 /*
2287 * Disable memory write invalidate. Apparently it is not supported
2288 * properly by these devices.
2289 */
2290 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2291 PCI_COMMAND_INVALIDATE_ENABLE);
2292
2293 #ifdef __brokenalpha__
2294 /*
2295 * Must insure that we do not cross an 8K (bytes) boundary
2296 * for DMA reads. Our highest limit is 1K bytes. This is a
2297 * restriction on some ALPHA platforms with early revision
2298 * 21174 PCI chipsets, such as the AlphaPC 164lx
2299 */
2300 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2301 #endif
2302
2303 /* Set the timer prescaler (always 66MHz) */
2304 CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2305
2306 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2307 DELAY(40); /* XXX */
2308
2309 /* Put PHY into ready state */
2310 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2311 DELAY(40);
2312 }
2313
2314 return 0;
2315 }
2316
2317 static int
2318 bge_blockinit(struct bge_softc *sc)
2319 {
2320 volatile struct bge_rcb *rcb;
2321 bus_size_t rcb_addr;
2322 struct ifnet * const ifp = &sc->ethercom.ec_if;
2323 bge_hostaddr taddr;
2324 uint32_t dmactl, rdmareg, mimode, val;
2325 int i, limit;
2326
2327 /*
2328 * Initialize the memory window pointer register so that
2329 * we can access the first 32K of internal NIC RAM. This will
2330 * allow us to set up the TX send ring RCBs and the RX return
2331 * ring RCBs, plus other things which live in NIC memory.
2332 */
2333 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2334
2335 if (!BGE_IS_5705_PLUS(sc)) {
2336 /* 57XX step 33 */
2337 /* Configure mbuf memory pool */
2338 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2339
2340 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2341 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2342 else
2343 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2344
2345 /* 57XX step 34 */
2346 /* Configure DMA resource pool */
2347 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2348 BGE_DMA_DESCRIPTORS);
2349 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2350 }
2351
2352 /* 5718 step 11, 57XX step 35 */
2353 /*
2354 * Configure mbuf pool watermarks. New broadcom docs strongly
2355 * recommend these.
2356 */
2357 if (BGE_IS_5717_PLUS(sc)) {
2358 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2359 if (ifp->if_mtu > ETHERMTU) {
2360 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2361 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2362 } else {
2363 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2364 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2365 }
2366 } else if (BGE_IS_5705_PLUS(sc)) {
2367 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2368
2369 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2370 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2371 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2372 } else {
2373 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2374 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2375 }
2376 } else {
2377 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2378 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2379 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2380 }
2381
2382 /* 57XX step 36 */
2383 /* Configure DMA resource watermarks */
2384 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2385 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2386
2387 /* 5718 step 13, 57XX step 38 */
2388 /* Enable buffer manager */
2389 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2390 /*
2391 * Change the arbitration algorithm of TXMBUF read request to
2392 * round-robin instead of priority based for BCM5719. When
2393 * TXFIFO is almost empty, RDMA will hold its request until
2394 * TXFIFO is not almost empty.
2395 */
2396 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2397 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2398 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2399 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2400 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2401 val |= BGE_BMANMODE_LOMBUF_ATTN;
2402 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2403
2404 /* 57XX step 39 */
2405 /* Poll for buffer manager start indication */
2406 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2407 DELAY(10);
2408 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2409 break;
2410 }
2411
2412 if (i == BGE_TIMEOUT * 2) {
2413 aprint_error_dev(sc->bge_dev,
2414 "buffer manager failed to start\n");
2415 return ENXIO;
2416 }
2417
2418 /* 57XX step 40 */
2419 /* Enable flow-through queues */
2420 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2421 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2422
2423 /* Wait until queue initialization is complete */
2424 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2425 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2426 break;
2427 DELAY(10);
2428 }
2429
2430 if (i == BGE_TIMEOUT * 2) {
2431 aprint_error_dev(sc->bge_dev,
2432 "flow-through queue init failed\n");
2433 return ENXIO;
2434 }
2435
2436 /*
2437 * Summary of rings supported by the controller:
2438 *
2439 * Standard Receive Producer Ring
2440 * - This ring is used to feed receive buffers for "standard"
2441 * sized frames (typically 1536 bytes) to the controller.
2442 *
2443 * Jumbo Receive Producer Ring
2444 * - This ring is used to feed receive buffers for jumbo sized
2445 * frames (i.e. anything bigger than the "standard" frames)
2446 * to the controller.
2447 *
2448 * Mini Receive Producer Ring
2449 * - This ring is used to feed receive buffers for "mini"
2450 * sized frames to the controller.
2451 * - This feature required external memory for the controller
2452 * but was never used in a production system. Should always
2453 * be disabled.
2454 *
2455 * Receive Return Ring
2456 * - After the controller has placed an incoming frame into a
2457 * receive buffer that buffer is moved into a receive return
2458 * ring. The driver is then responsible to passing the
2459 * buffer up to the stack. Many versions of the controller
2460 * support multiple RR rings.
2461 *
2462 * Send Ring
2463 * - This ring is used for outgoing frames. Many versions of
2464 * the controller support multiple send rings.
2465 */
2466
2467 /* 5718 step 15, 57XX step 41 */
2468 /* Initialize the standard RX ring control block */
2469 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2470 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2471 /* 5718 step 16 */
2472 if (BGE_IS_57765_PLUS(sc)) {
2473 /*
2474 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2475 * Bits 15-2 : Maximum RX frame size
2476 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2477 * Bit 0 : Reserved
2478 */
2479 rcb->bge_maxlen_flags =
2480 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2481 } else if (BGE_IS_5705_PLUS(sc)) {
2482 /*
2483 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2484 * Bits 15-2 : Reserved (should be 0)
2485 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2486 * Bit 0 : Reserved
2487 */
2488 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2489 } else {
2490 /*
2491 * Ring size is always XXX entries
2492 * Bits 31-16: Maximum RX frame size
2493 * Bits 15-2 : Reserved (should be 0)
2494 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2495 * Bit 0 : Reserved
2496 */
2497 rcb->bge_maxlen_flags =
2498 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2499 }
2500 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2501 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2502 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2503 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2504 else
2505 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2506 /* Write the standard receive producer ring control block. */
2507 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2508 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2509 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2510 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2511
2512 /* Reset the standard receive producer ring producer index. */
2513 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2514
2515 /* 57XX step 42 */
2516 /*
2517 * Initialize the jumbo RX ring control block
2518 * We set the 'ring disabled' bit in the flags
2519 * field until we're actually ready to start
2520 * using this ring (i.e. once we set the MTU
2521 * high enough to require it).
2522 */
2523 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2524 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2525 BGE_HOSTADDR(rcb->bge_hostaddr,
2526 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2527 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2528 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2529 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2530 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2531 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2532 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2533 else
2534 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2535 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2536 rcb->bge_hostaddr.bge_addr_hi);
2537 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2538 rcb->bge_hostaddr.bge_addr_lo);
2539 /* Program the jumbo receive producer ring RCB parameters. */
2540 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2541 rcb->bge_maxlen_flags);
2542 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2543 /* Reset the jumbo receive producer ring producer index. */
2544 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2545 }
2546
2547 /* 57XX step 43 */
2548 /* Disable the mini receive producer ring RCB. */
2549 if (BGE_IS_5700_FAMILY(sc)) {
2550 /* Set up dummy disabled mini ring RCB */
2551 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2552 rcb->bge_maxlen_flags =
2553 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2554 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2555 rcb->bge_maxlen_flags);
2556 /* Reset the mini receive producer ring producer index. */
2557 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2558
2559 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2560 offsetof(struct bge_ring_data, bge_info),
2561 sizeof(struct bge_gib),
2562 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2563 }
2564
2565 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2566 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2567 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2568 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2569 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2570 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2571 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2572 }
2573 /* 5718 step 14, 57XX step 44 */
2574 /*
2575 * The BD ring replenish thresholds control how often the
2576 * hardware fetches new BD's from the producer rings in host
2577 * memory. Setting the value too low on a busy system can
2578 * starve the hardware and recue the throughpout.
2579 *
2580 * Set the BD ring replenish thresholds. The recommended
2581 * values are 1/8th the number of descriptors allocated to
2582 * each ring, but since we try to avoid filling the entire
2583 * ring we set these to the minimal value of 8. This needs to
2584 * be done on several of the supported chip revisions anyway,
2585 * to work around HW bugs.
2586 */
2587 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2588 if (BGE_IS_JUMBO_CAPABLE(sc))
2589 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2590
2591 /* 5718 step 18 */
2592 if (BGE_IS_5717_PLUS(sc)) {
2593 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2594 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2595 }
2596
2597 /* 57XX step 45 */
2598 /*
2599 * Disable all send rings by setting the 'ring disabled' bit
2600 * in the flags field of all the TX send ring control blocks,
2601 * located in NIC memory.
2602 */
2603 if (BGE_IS_5700_FAMILY(sc)) {
2604 /* 5700 to 5704 had 16 send rings. */
2605 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2606 } else if (BGE_IS_5717_PLUS(sc)) {
2607 limit = BGE_TX_RINGS_5717_MAX;
2608 } else if (BGE_IS_57765_FAMILY(sc) ||
2609 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2610 limit = BGE_TX_RINGS_57765_MAX;
2611 } else
2612 limit = 1;
2613 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2614 for (i = 0; i < limit; i++) {
2615 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2616 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2617 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2618 rcb_addr += sizeof(struct bge_rcb);
2619 }
2620
2621 /* 57XX step 46 and 47 */
2622 /* Configure send ring RCB 0 (we use only the first ring) */
2623 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2624 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2625 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2626 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2627 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2628 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2629 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2630 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2631 else
2632 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2633 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2634 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2635 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2636
2637 /* 57XX step 48 */
2638 /*
2639 * Disable all receive return rings by setting the
2640 * 'ring diabled' bit in the flags field of all the receive
2641 * return ring control blocks, located in NIC memory.
2642 */
2643 if (BGE_IS_5717_PLUS(sc)) {
2644 /* Should be 17, use 16 until we get an SRAM map. */
2645 limit = 16;
2646 } else if (BGE_IS_5700_FAMILY(sc))
2647 limit = BGE_RX_RINGS_MAX;
2648 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2649 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2650 BGE_IS_57765_FAMILY(sc))
2651 limit = 4;
2652 else
2653 limit = 1;
2654 /* Disable all receive return rings */
2655 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2656 for (i = 0; i < limit; i++) {
2657 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2658 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2659 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2660 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2661 BGE_RCB_FLAG_RING_DISABLED));
2662 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2663 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2664 (i * (sizeof(uint64_t))), 0);
2665 rcb_addr += sizeof(struct bge_rcb);
2666 }
2667
2668 /* 57XX step 49 */
2669 /*
2670 * Set up receive return ring 0. Note that the NIC address
2671 * for RX return rings is 0x0. The return rings live entirely
2672 * within the host, so the nicaddr field in the RCB isn't used.
2673 */
2674 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2675 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2676 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2677 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2678 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2679 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2680 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2681
2682 /* 5718 step 24, 57XX step 53 */
2683 /* Set random backoff seed for TX */
2684 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2685 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2686 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2687 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2688 BGE_TX_BACKOFF_SEED_MASK);
2689
2690 /* 5718 step 26, 57XX step 55 */
2691 /* Set inter-packet gap */
2692 val = 0x2620;
2693 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2694 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2695 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2696 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2697 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2698
2699 /* 5718 step 27, 57XX step 56 */
2700 /*
2701 * Specify which ring to use for packets that don't match
2702 * any RX rules.
2703 */
2704 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2705
2706 /* 5718 step 28, 57XX step 57 */
2707 /*
2708 * Configure number of RX lists. One interrupt distribution
2709 * list, sixteen active lists, one bad frames class.
2710 */
2711 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2712
2713 /* 5718 step 29, 57XX step 58 */
2714 /* Inialize RX list placement stats mask. */
2715 if (BGE_IS_575X_PLUS(sc)) {
2716 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2717 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2718 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2719 } else
2720 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2721
2722 /* 5718 step 30, 57XX step 59 */
2723 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2724
2725 /* 5718 step 33, 57XX step 62 */
2726 /* Disable host coalescing until we get it set up */
2727 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2728
2729 /* 5718 step 34, 57XX step 63 */
2730 /* Poll to make sure it's shut down. */
2731 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2732 DELAY(10);
2733 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2734 break;
2735 }
2736
2737 if (i == BGE_TIMEOUT * 2) {
2738 aprint_error_dev(sc->bge_dev,
2739 "host coalescing engine failed to idle\n");
2740 return ENXIO;
2741 }
2742
2743 /* 5718 step 35, 36, 37 */
2744 /* Set up host coalescing defaults */
2745 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2746 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2747 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2748 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2749 if (!(BGE_IS_5705_PLUS(sc))) {
2750 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2751 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2752 }
2753 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2754 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2755
2756 /* Set up address of statistics block */
2757 if (BGE_IS_5700_FAMILY(sc)) {
2758 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2759 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2760 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2761 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2762 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2763 }
2764
2765 /* 5718 step 38 */
2766 /* Set up address of status block */
2767 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2768 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2769 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2770 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2771 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2772 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2773
2774 /* Set up status block size. */
2775 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2776 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2777 val = BGE_STATBLKSZ_FULL;
2778 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2779 } else {
2780 val = BGE_STATBLKSZ_32BYTE;
2781 bzero(&sc->bge_rdata->bge_status_block, 32);
2782 }
2783
2784 /* 5718 step 39, 57XX step 73 */
2785 /* Turn on host coalescing state machine */
2786 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2787
2788 /* 5718 step 40, 57XX step 74 */
2789 /* Turn on RX BD completion state machine and enable attentions */
2790 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2791 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2792
2793 /* 5718 step 41, 57XX step 75 */
2794 /* Turn on RX list placement state machine */
2795 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2796
2797 /* 57XX step 76 */
2798 /* Turn on RX list selector state machine. */
2799 if (!(BGE_IS_5705_PLUS(sc)))
2800 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2801
2802 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2803 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2804 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2805 BGE_MACMODE_FRMHDR_DMA_ENB;
2806
2807 if (sc->bge_flags & BGEF_FIBER_TBI)
2808 val |= BGE_PORTMODE_TBI;
2809 else if (sc->bge_flags & BGEF_FIBER_MII)
2810 val |= BGE_PORTMODE_GMII;
2811 else
2812 val |= BGE_PORTMODE_MII;
2813
2814 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2815 /* Allow APE to send/receive frames. */
2816 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2817 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2818
2819 /* Turn on DMA, clear stats */
2820 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2821 /* 5718 step 44 */
2822 DELAY(40);
2823
2824 /* 5718 step 45, 57XX step 79 */
2825 /* Set misc. local control, enable interrupts on attentions */
2826 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2827 if (BGE_IS_5717_PLUS(sc)) {
2828 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2829 /* 5718 step 46 */
2830 DELAY(100);
2831 }
2832
2833 /* 57XX step 81 */
2834 /* Turn on DMA completion state machine */
2835 if (!(BGE_IS_5705_PLUS(sc)))
2836 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2837
2838 /* 5718 step 47, 57XX step 82 */
2839 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2840
2841 /* 5718 step 48 */
2842 /* Enable host coalescing bug fix. */
2843 if (BGE_IS_5755_PLUS(sc))
2844 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2845
2846 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2847 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2848
2849 /* Turn on write DMA state machine */
2850 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2851 /* 5718 step 49 */
2852 DELAY(40);
2853
2854 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2855
2856 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2857 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2858
2859 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2860 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2861 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2862 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2863 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2864 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2865
2866 if (sc->bge_flags & BGEF_PCIE)
2867 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2868 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2869 if (ifp->if_mtu <= ETHERMTU)
2870 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2871 }
2872 if (sc->bge_flags & BGEF_TSO) {
2873 val |= BGE_RDMAMODE_TSO4_ENABLE;
2874 if (BGE_IS_5717_PLUS(sc))
2875 val |= BGE_RDMAMODE_TSO6_ENABLE;
2876 }
2877
2878 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2879 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2880 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2881 BGE_RDMAMODE_H2BNC_VLAN_DET;
2882 /*
2883 * Allow multiple outstanding read requests from
2884 * non-LSO read DMA engine.
2885 */
2886 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2887 }
2888
2889 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2890 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2891 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2892 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2893 BGE_IS_57765_PLUS(sc)) {
2894 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2895 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2896 else
2897 rdmareg = BGE_RDMA_RSRVCTRL;
2898 dmactl = CSR_READ_4(sc, rdmareg);
2899 /*
2900 * Adjust tx margin to prevent TX data corruption and
2901 * fix internal FIFO overflow.
2902 */
2903 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2904 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2905 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2906 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2907 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2908 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2909 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2910 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2911 }
2912 /*
2913 * Enable fix for read DMA FIFO overruns.
2914 * The fix is to limit the number of RX BDs
2915 * the hardware would fetch at a time.
2916 */
2917 CSR_WRITE_4(sc, rdmareg, dmactl |
2918 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2919 }
2920
2921 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2922 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2923 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2924 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2925 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2926 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2927 /*
2928 * Allow 4KB burst length reads for non-LSO frames.
2929 * Enable 512B burst length reads for buffer descriptors.
2930 */
2931 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2932 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2933 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2934 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2935 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2936 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2937 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2938 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2939 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2940 }
2941 /* Turn on read DMA state machine */
2942 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2943 /* 5718 step 52 */
2944 delay(40);
2945
2946 if (sc->bge_flags & BGEF_RDMA_BUG) {
2947 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2948 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2949 if ((val & 0xFFFF) > BGE_FRAMELEN)
2950 break;
2951 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2952 break;
2953 }
2954 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2955 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2956 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2957 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2958 else
2959 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2960 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2961 }
2962 }
2963
2964 /* 5718 step 56, 57XX step 84 */
2965 /* Turn on RX data completion state machine */
2966 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2967
2968 /* Turn on RX data and RX BD initiator state machine */
2969 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2970
2971 /* 57XX step 85 */
2972 /* Turn on Mbuf cluster free state machine */
2973 if (!BGE_IS_5705_PLUS(sc))
2974 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2975
2976 /* 5718 step 57, 57XX step 86 */
2977 /* Turn on send data completion state machine */
2978 val = BGE_SDCMODE_ENABLE;
2979 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2980 val |= BGE_SDCMODE_CDELAY;
2981 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2982
2983 /* 5718 step 58 */
2984 /* Turn on send BD completion state machine */
2985 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2986
2987 /* 57XX step 88 */
2988 /* Turn on RX BD initiator state machine */
2989 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2990
2991 /* 5718 step 60, 57XX step 90 */
2992 /* Turn on send data initiator state machine */
2993 if (sc->bge_flags & BGEF_TSO) {
2994 /* XXX: magic value from Linux driver */
2995 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2996 BGE_SDIMODE_HW_LSO_PRE_DMA);
2997 } else
2998 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2999
3000 /* 5718 step 61, 57XX step 91 */
3001 /* Turn on send BD initiator state machine */
3002 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3003
3004 /* 5718 step 62, 57XX step 92 */
3005 /* Turn on send BD selector state machine */
3006 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3007
3008 /* 5718 step 31, 57XX step 60 */
3009 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3010 /* 5718 step 32, 57XX step 61 */
3011 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3012 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3013
3014 /* ack/clear link change events */
3015 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3016 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3017 BGE_MACSTAT_LINK_CHANGED);
3018 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3019
3020 /*
3021 * Enable attention when the link has changed state for
3022 * devices that use auto polling.
3023 */
3024 if (sc->bge_flags & BGEF_FIBER_TBI) {
3025 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3026 } else {
3027 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3028 mimode = BGE_MIMODE_500KHZ_CONST;
3029 else
3030 mimode = BGE_MIMODE_BASE;
3031 /* 5718 step 68. 5718 step 69 (optionally). */
3032 if (BGE_IS_5700_FAMILY(sc) ||
3033 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3034 mimode |= BGE_MIMODE_AUTOPOLL;
3035 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3036 }
3037 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3038 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3039 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3040 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3041 BGE_EVTENB_MI_INTERRUPT);
3042 }
3043
3044 /*
3045 * Clear any pending link state attention.
3046 * Otherwise some link state change events may be lost until attention
3047 * is cleared by bge_intr() -> bge_link_upd() sequence.
3048 * It's not necessary on newer BCM chips - perhaps enabling link
3049 * state change attentions implies clearing pending attention.
3050 */
3051 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3052 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3053 BGE_MACSTAT_LINK_CHANGED);
3054
3055 /* Enable link state change attentions. */
3056 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3057
3058 return 0;
3059 }
3060
3061 static const struct bge_revision *
3062 bge_lookup_rev(uint32_t chipid)
3063 {
3064 const struct bge_revision *br;
3065
3066 for (br = bge_revisions; br->br_name != NULL; br++) {
3067 if (br->br_chipid == chipid)
3068 return br;
3069 }
3070
3071 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3072 if (br->br_chipid == BGE_ASICREV(chipid))
3073 return br;
3074 }
3075
3076 return NULL;
3077 }
3078
3079 static const struct bge_product *
3080 bge_lookup(const struct pci_attach_args *pa)
3081 {
3082 const struct bge_product *bp;
3083
3084 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3085 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3086 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3087 return bp;
3088 }
3089
3090 return NULL;
3091 }
3092
3093 static uint32_t
3094 bge_chipid(const struct pci_attach_args *pa)
3095 {
3096 uint32_t id;
3097
3098 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3099 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3100
3101 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3102 switch (PCI_PRODUCT(pa->pa_id)) {
3103 case PCI_PRODUCT_BROADCOM_BCM5717:
3104 case PCI_PRODUCT_BROADCOM_BCM5718:
3105 case PCI_PRODUCT_BROADCOM_BCM5719:
3106 case PCI_PRODUCT_BROADCOM_BCM5720:
3107 case PCI_PRODUCT_BROADCOM_BCM5725:
3108 case PCI_PRODUCT_BROADCOM_BCM5727:
3109 case PCI_PRODUCT_BROADCOM_BCM5762:
3110 case PCI_PRODUCT_BROADCOM_BCM57764:
3111 case PCI_PRODUCT_BROADCOM_BCM57767:
3112 case PCI_PRODUCT_BROADCOM_BCM57787:
3113 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3114 BGE_PCI_GEN2_PRODID_ASICREV);
3115 break;
3116 case PCI_PRODUCT_BROADCOM_BCM57761:
3117 case PCI_PRODUCT_BROADCOM_BCM57762:
3118 case PCI_PRODUCT_BROADCOM_BCM57765:
3119 case PCI_PRODUCT_BROADCOM_BCM57766:
3120 case PCI_PRODUCT_BROADCOM_BCM57781:
3121 case PCI_PRODUCT_BROADCOM_BCM57782:
3122 case PCI_PRODUCT_BROADCOM_BCM57785:
3123 case PCI_PRODUCT_BROADCOM_BCM57786:
3124 case PCI_PRODUCT_BROADCOM_BCM57791:
3125 case PCI_PRODUCT_BROADCOM_BCM57795:
3126 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3127 BGE_PCI_GEN15_PRODID_ASICREV);
3128 break;
3129 default:
3130 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3131 BGE_PCI_PRODID_ASICREV);
3132 break;
3133 }
3134 }
3135
3136 return id;
3137 }
3138
3139 /*
3140 * Return true if MSI can be used with this device.
3141 */
3142 static int
3143 bge_can_use_msi(struct bge_softc *sc)
3144 {
3145 int can_use_msi = 0;
3146
3147 switch (BGE_ASICREV(sc->bge_chipid)) {
3148 case BGE_ASICREV_BCM5714_A0:
3149 case BGE_ASICREV_BCM5714:
3150 /*
3151 * Apparently, MSI doesn't work when these chips are
3152 * configured in single-port mode.
3153 */
3154 break;
3155 case BGE_ASICREV_BCM5750:
3156 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3157 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3158 can_use_msi = 1;
3159 break;
3160 default:
3161 if (BGE_IS_575X_PLUS(sc))
3162 can_use_msi = 1;
3163 }
3164 return can_use_msi;
3165 }
3166
3167 /*
3168 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3169 * against our list and return its name if we find a match. Note
3170 * that since the Broadcom controller contains VPD support, we
3171 * can get the device name string from the controller itself instead
3172 * of the compiled-in string. This is a little slow, but it guarantees
3173 * we'll always announce the right product name.
3174 */
3175 static int
3176 bge_probe(device_t parent, cfdata_t match, void *aux)
3177 {
3178 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3179
3180 if (bge_lookup(pa) != NULL)
3181 return 1;
3182
3183 return 0;
3184 }
3185
3186 static void
3187 bge_attach(device_t parent, device_t self, void *aux)
3188 {
3189 struct bge_softc * const sc = device_private(self);
3190 struct pci_attach_args * const pa = aux;
3191 prop_dictionary_t dict;
3192 const struct bge_product *bp;
3193 const struct bge_revision *br;
3194 pci_chipset_tag_t pc;
3195 const char *intrstr = NULL;
3196 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3197 uint32_t command;
3198 struct ifnet *ifp;
3199 struct mii_data * const mii = &sc->bge_mii;
3200 uint32_t misccfg, mimode, macmode;
3201 void * kva;
3202 u_char eaddr[ETHER_ADDR_LEN];
3203 pcireg_t memtype, subid, reg;
3204 bus_addr_t memaddr;
3205 uint32_t pm_ctl;
3206 bool no_seeprom;
3207 int capmask, trys;
3208 int mii_flags;
3209 int map_flags;
3210 char intrbuf[PCI_INTRSTR_LEN];
3211
3212 bp = bge_lookup(pa);
3213 KASSERT(bp != NULL);
3214
3215 sc->sc_pc = pa->pa_pc;
3216 sc->sc_pcitag = pa->pa_tag;
3217 sc->bge_dev = self;
3218
3219 sc->bge_pa = *pa;
3220 pc = sc->sc_pc;
3221 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3222
3223 aprint_naive(": Ethernet controller\n");
3224 aprint_normal(": %s Ethernet\n", bp->bp_name);
3225
3226 /*
3227 * Map control/status registers.
3228 */
3229 DPRINTFN(5, ("Map control/status regs\n"));
3230 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3231 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3232 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3233 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3234
3235 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3236 aprint_error_dev(sc->bge_dev,
3237 "failed to enable memory mapping!\n");
3238 return;
3239 }
3240
3241 DPRINTFN(5, ("pci_mem_find\n"));
3242 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3243 switch (memtype) {
3244 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3245 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3246 #if 0
3247 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3248 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3249 &memaddr, &sc->bge_bsize) == 0)
3250 break;
3251 #else
3252 /*
3253 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3254 * system get NMI on boot (PR#48451). This problem might not be
3255 * the driver's bug but our PCI common part's bug. Until we
3256 * find a real reason, we ignore the prefetchable bit.
3257 */
3258 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3259 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3260 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3261 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3262 map_flags, &sc->bge_bhandle) == 0) {
3263 sc->bge_btag = pa->pa_memt;
3264 break;
3265 }
3266 }
3267 #endif
3268 /* FALLTHROUGH */
3269 default:
3270 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3271 return;
3272 }
3273
3274 /* Save various chip information. */
3275 sc->bge_chipid = bge_chipid(pa);
3276 sc->bge_phy_addr = bge_phy_addr(sc);
3277
3278 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3279 &sc->bge_pciecap, NULL) != 0) {
3280 /* PCIe */
3281 sc->bge_flags |= BGEF_PCIE;
3282 /* Extract supported maximum payload size. */
3283 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3284 sc->bge_pciecap + PCIE_DCAP);
3285 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3286 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3287 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3288 sc->bge_expmrq = 2048;
3289 else
3290 sc->bge_expmrq = 4096;
3291 bge_set_max_readrq(sc);
3292 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3293 /* PCIe without PCIe cap */
3294 sc->bge_flags |= BGEF_PCIE;
3295 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3296 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3297 /* PCI-X */
3298 sc->bge_flags |= BGEF_PCIX;
3299 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3300 &sc->bge_pcixcap, NULL) == 0)
3301 aprint_error_dev(sc->bge_dev,
3302 "unable to find PCIX capability\n");
3303 }
3304
3305 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3306 /*
3307 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3308 * can clobber the chip's PCI config-space power control
3309 * registers, leaving the card in D3 powersave state. We do
3310 * not have memory-mapped registers in this state, so force
3311 * device into D0 state before starting initialization.
3312 */
3313 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3314 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3315 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3316 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3317 DELAY(1000); /* 27 usec is allegedly sufficient */
3318 }
3319
3320 /* Save chipset family. */
3321 switch (BGE_ASICREV(sc->bge_chipid)) {
3322 case BGE_ASICREV_BCM5717:
3323 case BGE_ASICREV_BCM5719:
3324 case BGE_ASICREV_BCM5720:
3325 sc->bge_flags |= BGEF_5717_PLUS;
3326 /* FALLTHROUGH */
3327 case BGE_ASICREV_BCM5762:
3328 case BGE_ASICREV_BCM57765:
3329 case BGE_ASICREV_BCM57766:
3330 if (!BGE_IS_5717_PLUS(sc))
3331 sc->bge_flags |= BGEF_57765_FAMILY;
3332 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3333 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3334 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3335 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3336 /*
3337 * Enable work around for DMA engine miscalculation
3338 * of TXMBUF available space.
3339 */
3340 sc->bge_flags |= BGEF_RDMA_BUG;
3341
3342 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3343 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3344 /* Jumbo frame on BCM5719 A0 does not work. */
3345 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3346 }
3347 }
3348 break;
3349 case BGE_ASICREV_BCM5755:
3350 case BGE_ASICREV_BCM5761:
3351 case BGE_ASICREV_BCM5784:
3352 case BGE_ASICREV_BCM5785:
3353 case BGE_ASICREV_BCM5787:
3354 case BGE_ASICREV_BCM57780:
3355 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3356 break;
3357 case BGE_ASICREV_BCM5700:
3358 case BGE_ASICREV_BCM5701:
3359 case BGE_ASICREV_BCM5703:
3360 case BGE_ASICREV_BCM5704:
3361 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3362 break;
3363 case BGE_ASICREV_BCM5714_A0:
3364 case BGE_ASICREV_BCM5780:
3365 case BGE_ASICREV_BCM5714:
3366 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3367 /* FALLTHROUGH */
3368 case BGE_ASICREV_BCM5750:
3369 case BGE_ASICREV_BCM5752:
3370 case BGE_ASICREV_BCM5906:
3371 sc->bge_flags |= BGEF_575X_PLUS;
3372 /* FALLTHROUGH */
3373 case BGE_ASICREV_BCM5705:
3374 sc->bge_flags |= BGEF_5705_PLUS;
3375 break;
3376 }
3377
3378 /* Identify chips with APE processor. */
3379 switch (BGE_ASICREV(sc->bge_chipid)) {
3380 case BGE_ASICREV_BCM5717:
3381 case BGE_ASICREV_BCM5719:
3382 case BGE_ASICREV_BCM5720:
3383 case BGE_ASICREV_BCM5761:
3384 case BGE_ASICREV_BCM5762:
3385 sc->bge_flags |= BGEF_APE;
3386 break;
3387 }
3388
3389 /*
3390 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3391 * not actually a MAC controller bug but an issue with the embedded
3392 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3393 */
3394 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3395 sc->bge_flags |= BGEF_40BIT_BUG;
3396
3397 /* Chips with APE need BAR2 access for APE registers/memory. */
3398 if ((sc->bge_flags & BGEF_APE) != 0) {
3399 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3400 #if 0
3401 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3402 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3403 &sc->bge_apesize)) {
3404 aprint_error_dev(sc->bge_dev,
3405 "couldn't map BAR2 memory\n");
3406 return;
3407 }
3408 #else
3409 /*
3410 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3411 * system get NMI on boot (PR#48451). This problem might not be
3412 * the driver's bug but our PCI common part's bug. Until we
3413 * find a real reason, we ignore the prefetchable bit.
3414 */
3415 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3416 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3417 aprint_error_dev(sc->bge_dev,
3418 "couldn't map BAR2 memory\n");
3419 return;
3420 }
3421
3422 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3423 if (bus_space_map(pa->pa_memt, memaddr,
3424 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3425 aprint_error_dev(sc->bge_dev,
3426 "couldn't map BAR2 memory\n");
3427 return;
3428 }
3429 sc->bge_apetag = pa->pa_memt;
3430 #endif
3431
3432 /* Enable APE register/memory access by host driver. */
3433 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3434 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3435 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3436 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3437 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3438
3439 bge_ape_lock_init(sc);
3440 bge_ape_read_fw_ver(sc);
3441 }
3442
3443 /* Identify the chips that use an CPMU. */
3444 if (BGE_IS_5717_PLUS(sc) ||
3445 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3446 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3447 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3448 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3449 sc->bge_flags |= BGEF_CPMU_PRESENT;
3450
3451 /*
3452 * When using the BCM5701 in PCI-X mode, data corruption has
3453 * been observed in the first few bytes of some received packets.
3454 * Aligning the packet buffer in memory eliminates the corruption.
3455 * Unfortunately, this misaligns the packet payloads. On platforms
3456 * which do not support unaligned accesses, we will realign the
3457 * payloads by copying the received packets.
3458 */
3459 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3460 sc->bge_flags & BGEF_PCIX)
3461 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3462
3463 if (BGE_IS_5700_FAMILY(sc))
3464 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3465
3466 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3467 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3468
3469 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3470 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3471 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3472 sc->bge_flags |= BGEF_IS_5788;
3473
3474 /*
3475 * Some controllers seem to require a special firmware to use
3476 * TSO. But the firmware is not available to FreeBSD and Linux
3477 * claims that the TSO performed by the firmware is slower than
3478 * hardware based TSO. Moreover the firmware based TSO has one
3479 * known bug which can't handle TSO if ethernet header + IP/TCP
3480 * header is greater than 80 bytes. The workaround for the TSO
3481 * bug exist but it seems it's too expensive than not using
3482 * TSO at all. Some hardwares also have the TSO bug so limit
3483 * the TSO to the controllers that are not affected TSO issues
3484 * (e.g. 5755 or higher).
3485 */
3486 if (BGE_IS_5755_PLUS(sc)) {
3487 /*
3488 * BCM5754 and BCM5787 shares the same ASIC id so
3489 * explicit device id check is required.
3490 */
3491 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3492 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3493 sc->bge_flags |= BGEF_TSO;
3494 /* TSO on BCM5719 A0 does not work. */
3495 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3496 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3497 sc->bge_flags &= ~BGEF_TSO;
3498 }
3499
3500 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3501 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3502 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3503 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3504 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3505 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3506 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3507 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3508 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3509 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3510 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3511 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3512 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3513 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3514 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3515 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3516 /* These chips are 10/100 only. */
3517 capmask &= ~BMSR_EXTSTAT;
3518 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3519 }
3520
3521 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3522 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3523 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3524 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3525 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3526
3527 /* Set various PHY bug flags. */
3528 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3529 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3530 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3531 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3532 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3533 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3534 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3535 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3536 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3537 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3538 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3539 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3540 if (BGE_IS_5705_PLUS(sc) &&
3541 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3542 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3543 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3544 !BGE_IS_57765_PLUS(sc)) {
3545 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3546 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3547 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3548 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3549 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3550 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3551 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3552 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3553 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3554 } else
3555 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3556 }
3557
3558 /*
3559 * SEEPROM check.
3560 * First check if firmware knows we do not have SEEPROM.
3561 */
3562 if (prop_dictionary_get_bool(device_properties(self),
3563 "without-seeprom", &no_seeprom) && no_seeprom)
3564 sc->bge_flags |= BGEF_NO_EEPROM;
3565
3566 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3567 sc->bge_flags |= BGEF_NO_EEPROM;
3568
3569 /* Now check the 'ROM failed' bit on the RX CPU */
3570 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3571 sc->bge_flags |= BGEF_NO_EEPROM;
3572
3573 sc->bge_asf_mode = 0;
3574 /* No ASF if APE present. */
3575 if ((sc->bge_flags & BGEF_APE) == 0) {
3576 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3577 BGE_SRAM_DATA_SIG_MAGIC)) {
3578 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3579 BGE_HWCFG_ASF) {
3580 sc->bge_asf_mode |= ASF_ENABLE;
3581 sc->bge_asf_mode |= ASF_STACKUP;
3582 if (BGE_IS_575X_PLUS(sc))
3583 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3584 }
3585 }
3586 }
3587
3588 int counts[PCI_INTR_TYPE_SIZE] = {
3589 [PCI_INTR_TYPE_INTX] = 1,
3590 [PCI_INTR_TYPE_MSI] = 1,
3591 [PCI_INTR_TYPE_MSIX] = 1,
3592 };
3593 int max_type = PCI_INTR_TYPE_MSIX;
3594
3595 if (!bge_can_use_msi(sc)) {
3596 /* MSI broken, allow only INTx */
3597 max_type = PCI_INTR_TYPE_INTX;
3598 }
3599
3600 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3601 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3602 return;
3603 }
3604
3605 DPRINTFN(5, ("pci_intr_string\n"));
3606 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3607 sizeof(intrbuf));
3608 DPRINTFN(5, ("pci_intr_establish\n"));
3609 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3610 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3611 if (sc->bge_intrhand == NULL) {
3612 pci_intr_release(pc, sc->bge_pihp, 1);
3613 sc->bge_pihp = NULL;
3614
3615 aprint_error_dev(self, "couldn't establish interrupt");
3616 if (intrstr != NULL)
3617 aprint_error(" at %s", intrstr);
3618 aprint_error("\n");
3619 return;
3620 }
3621 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3622
3623 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3624 case PCI_INTR_TYPE_MSIX:
3625 case PCI_INTR_TYPE_MSI:
3626 KASSERT(bge_can_use_msi(sc));
3627 sc->bge_flags |= BGEF_MSI;
3628 break;
3629 default:
3630 /* nothing to do */
3631 break;
3632 }
3633
3634 /*
3635 * All controllers except BCM5700 supports tagged status but
3636 * we use tagged status only for MSI case on BCM5717. Otherwise
3637 * MSI on BCM5717 does not work.
3638 */
3639 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3640 sc->bge_flags |= BGEF_TAGGED_STATUS;
3641
3642 /*
3643 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3644 * lock in bge_reset().
3645 */
3646 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3647 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3648 delay(1000);
3649 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3650
3651 bge_stop_fw(sc);
3652 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3653 if (bge_reset(sc))
3654 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3655
3656 /*
3657 * Read the hardware config word in the first 32k of NIC internal
3658 * memory, or fall back to the config word in the EEPROM.
3659 * Note: on some BCM5700 cards, this value appears to be unset.
3660 */
3661 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3662 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3663 BGE_SRAM_DATA_SIG_MAGIC) {
3664 uint32_t tmp;
3665
3666 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3667 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3668 BGE_SRAM_DATA_VER_SHIFT;
3669 if ((0 < tmp) && (tmp < 0x100))
3670 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3671 if (sc->bge_flags & BGEF_PCIE)
3672 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3673 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3674 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3675 if (BGE_IS_5717_PLUS(sc))
3676 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3677 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3678 bge_read_eeprom(sc, (void *)&hwcfg,
3679 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3680 hwcfg = be32toh(hwcfg);
3681 }
3682 aprint_normal_dev(sc->bge_dev,
3683 "HW config %08x, %08x, %08x, %08x %08x\n",
3684 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3685
3686 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3687 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3688
3689 if (bge_chipinit(sc)) {
3690 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3691 bge_release_resources(sc);
3692 return;
3693 }
3694
3695 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3696 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3697 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3698 DELAY(100);
3699 }
3700
3701 /* Set MI_MODE */
3702 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3703 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3704 mimode |= BGE_MIMODE_500KHZ_CONST;
3705 else
3706 mimode |= BGE_MIMODE_BASE;
3707 CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3708 DELAY(80);
3709
3710 /*
3711 * Get station address from the EEPROM.
3712 */
3713 if (bge_get_eaddr(sc, eaddr)) {
3714 aprint_error_dev(sc->bge_dev,
3715 "failed to read station address\n");
3716 bge_release_resources(sc);
3717 return;
3718 }
3719
3720 br = bge_lookup_rev(sc->bge_chipid);
3721
3722 if (br == NULL) {
3723 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3724 sc->bge_chipid);
3725 } else {
3726 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3727 br->br_name, sc->bge_chipid);
3728 }
3729 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3730
3731 /* Allocate the general information block and ring buffers. */
3732 if (pci_dma64_available(pa)) {
3733 sc->bge_dmatag = pa->pa_dmat64;
3734 sc->bge_dmatag32 = pa->pa_dmat;
3735 sc->bge_dma64 = true;
3736 } else {
3737 sc->bge_dmatag = pa->pa_dmat;
3738 sc->bge_dmatag32 = pa->pa_dmat;
3739 sc->bge_dma64 = false;
3740 }
3741
3742 /* 40bit DMA workaround */
3743 if (sizeof(bus_addr_t) > 4) {
3744 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3745 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3746
3747 if (bus_dmatag_subregion(olddmatag, 0,
3748 (bus_addr_t)__MASK(40),
3749 &(sc->bge_dmatag), BUS_DMA_NOWAIT) != 0) {
3750 aprint_error_dev(self,
3751 "WARNING: failed to restrict dma range,"
3752 " falling back to parent bus dma range\n");
3753 sc->bge_dmatag = olddmatag;
3754 }
3755 }
3756 }
3757 SLIST_INIT(&sc->txdma_list);
3758 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3759 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3760 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3761 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3762 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3763 return;
3764 }
3765 DPRINTFN(5, ("bus_dmamem_map\n"));
3766 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3767 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3768 BUS_DMA_NOWAIT)) {
3769 aprint_error_dev(sc->bge_dev,
3770 "can't map DMA buffers (%zu bytes)\n",
3771 sizeof(struct bge_ring_data));
3772 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3773 sc->bge_ring_rseg);
3774 return;
3775 }
3776 DPRINTFN(5, ("bus_dmamem_create\n"));
3777 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3778 sizeof(struct bge_ring_data), 0,
3779 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3780 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3781 bus_dmamem_unmap(sc->bge_dmatag, kva,
3782 sizeof(struct bge_ring_data));
3783 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3784 sc->bge_ring_rseg);
3785 return;
3786 }
3787 DPRINTFN(5, ("bus_dmamem_load\n"));
3788 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3789 sizeof(struct bge_ring_data), NULL,
3790 BUS_DMA_NOWAIT)) {
3791 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3792 bus_dmamem_unmap(sc->bge_dmatag, kva,
3793 sizeof(struct bge_ring_data));
3794 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3795 sc->bge_ring_rseg);
3796 return;
3797 }
3798
3799 DPRINTFN(5, ("bzero\n"));
3800 sc->bge_rdata = (struct bge_ring_data *)kva;
3801
3802 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3803
3804 /* Try to allocate memory for jumbo buffers. */
3805 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3806 if (bge_alloc_jumbo_mem(sc)) {
3807 aprint_error_dev(sc->bge_dev,
3808 "jumbo buffer allocation failed\n");
3809 } else
3810 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3811 }
3812
3813 /* Set default tuneable values. */
3814 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3815 sc->bge_rx_coal_ticks = 150;
3816 sc->bge_rx_max_coal_bds = 64;
3817 sc->bge_tx_coal_ticks = 300;
3818 sc->bge_tx_max_coal_bds = 400;
3819 if (BGE_IS_5705_PLUS(sc)) {
3820 sc->bge_tx_coal_ticks = (12 * 5);
3821 sc->bge_tx_max_coal_bds = (12 * 5);
3822 aprint_verbose_dev(sc->bge_dev,
3823 "setting short Tx thresholds\n");
3824 }
3825
3826 if (BGE_IS_5717_PLUS(sc))
3827 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3828 else if (BGE_IS_5705_PLUS(sc))
3829 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3830 else
3831 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3832
3833 /* Set up ifnet structure */
3834 ifp = &sc->ethercom.ec_if;
3835 ifp->if_softc = sc;
3836 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3837 ifp->if_ioctl = bge_ioctl;
3838 ifp->if_stop = bge_stop;
3839 ifp->if_start = bge_start;
3840 ifp->if_init = bge_init;
3841 ifp->if_watchdog = bge_watchdog;
3842 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3843 IFQ_SET_READY(&ifp->if_snd);
3844 DPRINTFN(5, ("strcpy if_xname\n"));
3845 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3846
3847 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3848 sc->ethercom.ec_if.if_capabilities |=
3849 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3850 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3851 sc->ethercom.ec_if.if_capabilities |=
3852 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3853 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3854 #endif
3855 sc->ethercom.ec_capabilities |=
3856 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3857 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3858
3859 if (sc->bge_flags & BGEF_TSO)
3860 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3861
3862 /*
3863 * Do MII setup.
3864 */
3865 DPRINTFN(5, ("mii setup\n"));
3866 mii->mii_ifp = ifp;
3867 mii->mii_readreg = bge_miibus_readreg;
3868 mii->mii_writereg = bge_miibus_writereg;
3869 mii->mii_statchg = bge_miibus_statchg;
3870
3871 /*
3872 * Figure out what sort of media we have by checking the hardware
3873 * config word. Note: on some BCM5700 cards, this value appears to be
3874 * unset. If that's the case, we have to rely on identifying the NIC
3875 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3876 * The SysKonnect SK-9D41 is a 1000baseSX card.
3877 */
3878 if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3879 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3880 if (BGE_IS_5705_PLUS(sc)) {
3881 sc->bge_flags |= BGEF_FIBER_MII;
3882 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3883 } else
3884 sc->bge_flags |= BGEF_FIBER_TBI;
3885 }
3886
3887 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3888 if (BGE_IS_JUMBO_CAPABLE(sc))
3889 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3890
3891 /* set phyflags and chipid before mii_attach() */
3892 dict = device_properties(self);
3893 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3894 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3895
3896 macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3897 macmode &= ~BGE_MACMODE_PORTMODE;
3898 /* Initialize ifmedia structures. */
3899 if (sc->bge_flags & BGEF_FIBER_TBI) {
3900 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3901 macmode | BGE_PORTMODE_TBI);
3902 DELAY(40);
3903
3904 sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
3905 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3906 bge_ifmedia_sts);
3907 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3908 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3909 0, NULL);
3910 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3911 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3912 /* Pretend the user requested this setting */
3913 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3914 } else {
3915 uint16_t phyreg;
3916 int rv;
3917 /*
3918 * Do transceiver setup and tell the firmware the
3919 * driver is down so we can try to get access the
3920 * probe if ASF is running. Retry a couple of times
3921 * if we get a conflict with the ASF firmware accessing
3922 * the PHY.
3923 */
3924 if (sc->bge_flags & BGEF_FIBER_MII)
3925 macmode |= BGE_PORTMODE_GMII;
3926 else
3927 macmode |= BGE_PORTMODE_MII;
3928 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3929 DELAY(40);
3930
3931 /*
3932 * Do transceiver setup and tell the firmware the
3933 * driver is down so we can try to get access the
3934 * probe if ASF is running. Retry a couple of times
3935 * if we get a conflict with the ASF firmware accessing
3936 * the PHY.
3937 */
3938 trys = 0;
3939 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3940 sc->ethercom.ec_mii = mii;
3941 ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3942 bge_ifmedia_sts);
3943 mii_flags = MIIF_DOPAUSE;
3944 if (sc->bge_flags & BGEF_FIBER_MII)
3945 mii_flags |= MIIF_HAVEFIBER;
3946 again:
3947 bge_asf_driver_up(sc);
3948 rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
3949 MII_BMCR, &phyreg);
3950 if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
3951 int i;
3952
3953 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
3954 MII_BMCR, BMCR_RESET);
3955 /* Wait up to 500ms for it to complete. */
3956 for (i = 0; i < 500; i++) {
3957 bge_miibus_readreg(sc->bge_dev,
3958 sc->bge_phy_addr, MII_BMCR, &phyreg);
3959 if ((phyreg & BMCR_RESET) == 0)
3960 break;
3961 DELAY(1000);
3962 }
3963 }
3964
3965 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
3966 MII_OFFSET_ANY, mii_flags);
3967
3968 if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
3969 goto again;
3970
3971 if (LIST_EMPTY(&mii->mii_phys)) {
3972 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3973 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
3974 0, NULL);
3975 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
3976 } else
3977 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
3978
3979 /*
3980 * Now tell the firmware we are going up after probing the PHY
3981 */
3982 if (sc->bge_asf_mode & ASF_STACKUP)
3983 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3984 }
3985
3986 /*
3987 * Call MI attach routine.
3988 */
3989 DPRINTFN(5, ("if_attach\n"));
3990 if_attach(ifp);
3991 if_deferred_start_init(ifp, NULL);
3992 DPRINTFN(5, ("ether_ifattach\n"));
3993 ether_ifattach(ifp, eaddr);
3994 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3995 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3996 RND_TYPE_NET, RND_FLAG_DEFAULT);
3997 #ifdef BGE_EVENT_COUNTERS
3998 /*
3999 * Attach event counters.
4000 */
4001 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4002 NULL, device_xname(sc->bge_dev), "intr");
4003 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
4004 NULL, device_xname(sc->bge_dev), "intr_spurious");
4005 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
4006 NULL, device_xname(sc->bge_dev), "intr_spurious2");
4007 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4008 NULL, device_xname(sc->bge_dev), "tx_xoff");
4009 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4010 NULL, device_xname(sc->bge_dev), "tx_xon");
4011 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4012 NULL, device_xname(sc->bge_dev), "rx_xoff");
4013 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4014 NULL, device_xname(sc->bge_dev), "rx_xon");
4015 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4016 NULL, device_xname(sc->bge_dev), "rx_macctl");
4017 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4018 NULL, device_xname(sc->bge_dev), "xoffentered");
4019 #endif /* BGE_EVENT_COUNTERS */
4020 DPRINTFN(5, ("callout_init\n"));
4021 callout_init(&sc->bge_timeout, 0);
4022 callout_setfunc(&sc->bge_timeout, bge_tick, sc);
4023
4024 if (pmf_device_register(self, NULL, NULL))
4025 pmf_class_network_register(self, ifp);
4026 else
4027 aprint_error_dev(self, "couldn't establish power handler\n");
4028
4029 bge_sysctl_init(sc);
4030
4031 #ifdef BGE_DEBUG
4032 bge_debug_info(sc);
4033 #endif
4034 }
4035
4036 /*
4037 * Stop all chip I/O so that the kernel's probe routines don't
4038 * get confused by errant DMAs when rebooting.
4039 */
4040 static int
4041 bge_detach(device_t self, int flags __unused)
4042 {
4043 struct bge_softc * const sc = device_private(self);
4044 struct ifnet * const ifp = &sc->ethercom.ec_if;
4045 int s;
4046
4047 s = splnet();
4048 /* Stop the interface. Callouts are stopped in it. */
4049 bge_stop(ifp, 1);
4050 splx(s);
4051
4052 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4053
4054 ether_ifdetach(ifp);
4055 if_detach(ifp);
4056
4057 /* Delete all remaining media. */
4058 ifmedia_fini(&sc->bge_mii.mii_media);
4059
4060 bge_release_resources(sc);
4061
4062 return 0;
4063 }
4064
4065 static void
4066 bge_release_resources(struct bge_softc *sc)
4067 {
4068
4069 /* Detach sysctl */
4070 if (sc->bge_log != NULL)
4071 sysctl_teardown(&sc->bge_log);
4072
4073 #ifdef BGE_EVENT_COUNTERS
4074 /* Detach event counters. */
4075 evcnt_detach(&sc->bge_ev_intr);
4076 evcnt_detach(&sc->bge_ev_intr_spurious);
4077 evcnt_detach(&sc->bge_ev_intr_spurious2);
4078 evcnt_detach(&sc->bge_ev_tx_xoff);
4079 evcnt_detach(&sc->bge_ev_tx_xon);
4080 evcnt_detach(&sc->bge_ev_rx_xoff);
4081 evcnt_detach(&sc->bge_ev_rx_xon);
4082 evcnt_detach(&sc->bge_ev_rx_macctl);
4083 evcnt_detach(&sc->bge_ev_xoffentered);
4084 #endif /* BGE_EVENT_COUNTERS */
4085
4086 /* Disestablish the interrupt handler */
4087 if (sc->bge_intrhand != NULL) {
4088 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4089 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4090 sc->bge_intrhand = NULL;
4091 }
4092
4093 if (sc->bge_cdata.bge_jumbo_buf != NULL)
4094 bge_free_jumbo_mem(sc);
4095
4096 if (sc->bge_dmatag != NULL) {
4097 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4098 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4099 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4100 sizeof(struct bge_ring_data));
4101 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4102 sc->bge_ring_rseg);
4103 }
4104
4105 /* Unmap the device registers */
4106 if (sc->bge_bsize != 0) {
4107 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4108 sc->bge_bsize = 0;
4109 }
4110
4111 /* Unmap the APE registers */
4112 if (sc->bge_apesize != 0) {
4113 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4114 sc->bge_apesize);
4115 sc->bge_apesize = 0;
4116 }
4117 }
4118
4119 static int
4120 bge_reset(struct bge_softc *sc)
4121 {
4122 uint32_t cachesize, command;
4123 uint32_t reset, mac_mode, mac_mode_mask;
4124 pcireg_t devctl, reg;
4125 int i, val;
4126 void (*write_op)(struct bge_softc *, int, int);
4127
4128 /* Make mask for BGE_MAC_MODE register. */
4129 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4130 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4131 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4132 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4133 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4134
4135 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4136 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4137 if (sc->bge_flags & BGEF_PCIE)
4138 write_op = bge_writemem_direct;
4139 else
4140 write_op = bge_writemem_ind;
4141 } else
4142 write_op = bge_writereg_ind;
4143
4144 /* 57XX step 4 */
4145 /* Acquire the NVM lock */
4146 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4147 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4148 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4149 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4150 for (i = 0; i < 8000; i++) {
4151 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4152 BGE_NVRAMSWARB_GNT1)
4153 break;
4154 DELAY(20);
4155 }
4156 if (i == 8000) {
4157 printf("%s: NVRAM lock timedout!\n",
4158 device_xname(sc->bge_dev));
4159 }
4160 }
4161
4162 /* Take APE lock when performing reset. */
4163 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4164
4165 /* 57XX step 3 */
4166 /* Save some important PCI state. */
4167 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4168 /* 5718 reset step 3 */
4169 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4170
4171 /* 5718 reset step 5, 57XX step 5b-5d */
4172 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4173 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4174 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4175
4176 /* XXX ???: Disable fastboot on controllers that support it. */
4177 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4178 BGE_IS_5755_PLUS(sc))
4179 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4180
4181 /* 5718 reset step 2, 57XX step 6 */
4182 /*
4183 * Write the magic number to SRAM at offset 0xB50.
4184 * When firmware finishes its initialization it will
4185 * write ~BGE_MAGIC_NUMBER to the same location.
4186 */
4187 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4188
4189 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4190 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4191 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4192 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4193 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4194 }
4195
4196 /* 5718 reset step 6, 57XX step 7 */
4197 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4198 /*
4199 * XXX: from FreeBSD/Linux; no documentation
4200 */
4201 if (sc->bge_flags & BGEF_PCIE) {
4202 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4203 !BGE_IS_57765_PLUS(sc) &&
4204 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4205 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4206 /* PCI Express 1.0 system */
4207 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4208 BGE_PHY_PCIE_SCRAM_MODE);
4209 }
4210 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4211 /*
4212 * Prevent PCI Express link training
4213 * during global reset.
4214 */
4215 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4216 reset |= (1 << 29);
4217 }
4218 }
4219
4220 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4221 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4222 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4223 i | BGE_VCPU_STATUS_DRV_RESET);
4224 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4225 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4226 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4227 }
4228
4229 /*
4230 * Set GPHY Power Down Override to leave GPHY
4231 * powered up in D0 uninitialized.
4232 */
4233 if (BGE_IS_5705_PLUS(sc) &&
4234 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4235 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4236
4237 /* Issue global reset */
4238 write_op(sc, BGE_MISC_CFG, reset);
4239
4240 /* 5718 reset step 7, 57XX step 8 */
4241 if (sc->bge_flags & BGEF_PCIE)
4242 delay(100*1000); /* too big */
4243 else
4244 delay(1000);
4245
4246 if (sc->bge_flags & BGEF_PCIE) {
4247 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4248 DELAY(500000);
4249 /* XXX: Magic Numbers */
4250 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4251 BGE_PCI_UNKNOWN0);
4252 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4253 BGE_PCI_UNKNOWN0,
4254 reg | (1 << 15));
4255 }
4256 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4257 sc->bge_pciecap + PCIE_DCSR);
4258 /* Clear enable no snoop and disable relaxed ordering. */
4259 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4260 PCIE_DCSR_ENA_NO_SNOOP);
4261
4262 /* Set PCIE max payload size to 128 for older PCIe devices */
4263 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4264 devctl &= ~(0x00e0);
4265 /* Clear device status register. Write 1b to clear */
4266 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4267 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4268 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4269 sc->bge_pciecap + PCIE_DCSR, devctl);
4270 bge_set_max_readrq(sc);
4271 }
4272
4273 /* From Linux: dummy read to flush PCI posted writes */
4274 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4275
4276 /*
4277 * Reset some of the PCI state that got zapped by reset
4278 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4279 * set, too.
4280 */
4281 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4282 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4283 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4284 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4285 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4286 (sc->bge_flags & BGEF_PCIX) != 0)
4287 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4288 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4289 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4290 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4291 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4292 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4293 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4294 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4295
4296 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4297 if (sc->bge_flags & BGEF_PCIX) {
4298 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4299 + PCIX_CMD);
4300 /* Set max memory read byte count to 2K */
4301 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4302 reg &= ~PCIX_CMD_BYTECNT_MASK;
4303 reg |= PCIX_CMD_BCNT_2048;
4304 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4305 /*
4306 * For 5704, set max outstanding split transaction
4307 * field to 0 (0 means it supports 1 request)
4308 */
4309 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4310 | PCIX_CMD_BYTECNT_MASK);
4311 reg |= PCIX_CMD_BCNT_2048;
4312 }
4313 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4314 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4315 }
4316
4317 /* 5718 reset step 10, 57XX step 12 */
4318 /* Enable memory arbiter. */
4319 if (BGE_IS_5714_FAMILY(sc)) {
4320 val = CSR_READ_4(sc, BGE_MARB_MODE);
4321 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4322 } else
4323 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4324
4325 /* XXX 5721, 5751 and 5752 */
4326 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4327 /* Step 19: */
4328 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4329 /* Step 20: */
4330 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4331 }
4332
4333 /* 5718 reset step 12, 57XX step 15 and 16 */
4334 /* Fix up byte swapping */
4335 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4336
4337 /* 5718 reset step 13, 57XX step 17 */
4338 /* Poll until the firmware initialization is complete */
4339 bge_poll_fw(sc);
4340
4341 /* 57XX step 21 */
4342 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4343 pcireg_t msidata;
4344
4345 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4346 BGE_PCI_MSI_DATA);
4347 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4348 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4349 msidata);
4350 }
4351
4352 /* 57XX step 18 */
4353 /* Write mac mode. */
4354 val = CSR_READ_4(sc, BGE_MAC_MODE);
4355 /* Restore mac_mode_mask's bits using mac_mode */
4356 val = (val & ~mac_mode_mask) | mac_mode;
4357 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4358 DELAY(40);
4359
4360 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4361
4362 /*
4363 * The 5704 in TBI mode apparently needs some special
4364 * adjustment to insure the SERDES drive level is set
4365 * to 1.2V.
4366 */
4367 if (sc->bge_flags & BGEF_FIBER_TBI &&
4368 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4369 uint32_t serdescfg;
4370
4371 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4372 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4373 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4374 }
4375
4376 if (sc->bge_flags & BGEF_PCIE &&
4377 !BGE_IS_57765_PLUS(sc) &&
4378 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4379 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4380 uint32_t v;
4381
4382 /* Enable PCI Express bug fix */
4383 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4384 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4385 v | BGE_TLP_DATA_FIFO_PROTECT);
4386 }
4387
4388 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4389 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4390 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4391
4392 return 0;
4393 }
4394
4395 /*
4396 * Frame reception handling. This is called if there's a frame
4397 * on the receive return list.
4398 *
4399 * Note: we have to be able to handle two possibilities here:
4400 * 1) the frame is from the jumbo receive ring
4401 * 2) the frame is from the standard receive ring
4402 */
4403
4404 static void
4405 bge_rxeof(struct bge_softc *sc)
4406 {
4407 struct ifnet * const ifp = &sc->ethercom.ec_if;
4408 uint16_t rx_prod, rx_cons;
4409 int stdcnt = 0, jumbocnt = 0;
4410 bus_dmamap_t dmamap;
4411 bus_addr_t offset, toff;
4412 bus_size_t tlen;
4413 int tosync;
4414
4415 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4416 offsetof(struct bge_ring_data, bge_status_block),
4417 sizeof(struct bge_status_block),
4418 BUS_DMASYNC_POSTREAD);
4419
4420 rx_cons = sc->bge_rx_saved_considx;
4421 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4422
4423 /* Nothing to do */
4424 if (rx_cons == rx_prod)
4425 return;
4426
4427 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4428 tosync = rx_prod - rx_cons;
4429
4430 if (tosync != 0)
4431 rnd_add_uint32(&sc->rnd_source, tosync);
4432
4433 toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
4434
4435 if (tosync < 0) {
4436 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4437 sizeof(struct bge_rx_bd);
4438 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4439 toff, tlen, BUS_DMASYNC_POSTREAD);
4440 tosync = -tosync;
4441 }
4442
4443 if (tosync != 0) {
4444 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4445 offset, tosync * sizeof(struct bge_rx_bd),
4446 BUS_DMASYNC_POSTREAD);
4447 }
4448
4449 while (rx_cons != rx_prod) {
4450 struct bge_rx_bd *cur_rx;
4451 uint32_t rxidx;
4452 struct mbuf *m = NULL;
4453
4454 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4455
4456 rxidx = cur_rx->bge_idx;
4457 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4458
4459 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4460 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4461 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4462 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4463 jumbocnt++;
4464 bus_dmamap_sync(sc->bge_dmatag,
4465 sc->bge_cdata.bge_rx_jumbo_map,
4466 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4467 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4468 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4469 if_statinc(ifp, if_ierrors);
4470 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4471 continue;
4472 }
4473 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4474 NULL) == ENOBUFS) {
4475 if_statinc(ifp, if_ierrors);
4476 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4477 continue;
4478 }
4479 } else {
4480 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4481 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4482
4483 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4484 stdcnt++;
4485 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4486 sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4487 if (dmamap == NULL) {
4488 if_statinc(ifp, if_ierrors);
4489 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4490 continue;
4491 }
4492 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4493 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4494 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4495 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4496 if_statinc(ifp, if_ierrors);
4497 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4498 continue;
4499 }
4500 if (bge_newbuf_std(sc, sc->bge_std,
4501 NULL, dmamap) == ENOBUFS) {
4502 if_statinc(ifp, if_ierrors);
4503 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4504 continue;
4505 }
4506 }
4507
4508 #ifndef __NO_STRICT_ALIGNMENT
4509 /*
4510 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4511 * the Rx buffer has the layer-2 header unaligned.
4512 * If our CPU requires alignment, re-align by copying.
4513 */
4514 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4515 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4516 cur_rx->bge_len);
4517 m->m_data += ETHER_ALIGN;
4518 }
4519 #endif
4520
4521 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4522 m_set_rcvif(m, ifp);
4523
4524 bge_rxcsum(sc, cur_rx, m);
4525
4526 /*
4527 * If we received a packet with a vlan tag, pass it
4528 * to vlan_input() instead of ether_input().
4529 */
4530 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4531 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4532
4533 if_percpuq_enqueue(ifp->if_percpuq, m);
4534 }
4535
4536 sc->bge_rx_saved_considx = rx_cons;
4537 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4538 if (stdcnt)
4539 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4540 if (jumbocnt)
4541 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4542 }
4543
4544 static void
4545 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4546 {
4547
4548 if (BGE_IS_57765_PLUS(sc)) {
4549 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4550 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4551 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4552 if ((cur_rx->bge_error_flag &
4553 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4554 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4555 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4556 m->m_pkthdr.csum_data =
4557 cur_rx->bge_tcp_udp_csum;
4558 m->m_pkthdr.csum_flags |=
4559 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4560 }
4561 }
4562 } else {
4563 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4564 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4565 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4566 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4567 /*
4568 * Rx transport checksum-offload may also
4569 * have bugs with packets which, when transmitted,
4570 * were `runts' requiring padding.
4571 */
4572 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4573 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4574 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4575 m->m_pkthdr.csum_data =
4576 cur_rx->bge_tcp_udp_csum;
4577 m->m_pkthdr.csum_flags |=
4578 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4579 }
4580 }
4581 }
4582
4583 static void
4584 bge_txeof(struct bge_softc *sc)
4585 {
4586 struct ifnet * const ifp = &sc->ethercom.ec_if;
4587 struct bge_tx_bd *cur_tx = NULL;
4588 struct txdmamap_pool_entry *dma;
4589 bus_addr_t offset, toff;
4590 bus_size_t tlen;
4591 int tosync;
4592 struct mbuf *m;
4593
4594 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4595 offsetof(struct bge_ring_data, bge_status_block),
4596 sizeof(struct bge_status_block),
4597 BUS_DMASYNC_POSTREAD);
4598
4599 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4600 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4601 sc->bge_tx_saved_considx;
4602
4603 if (tosync != 0)
4604 rnd_add_uint32(&sc->rnd_source, tosync);
4605
4606 toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
4607
4608 if (tosync < 0) {
4609 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4610 sizeof(struct bge_tx_bd);
4611 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4612 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4613 tosync = -tosync;
4614 }
4615
4616 if (tosync != 0) {
4617 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4618 offset, tosync * sizeof(struct bge_tx_bd),
4619 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4620 }
4621
4622 /*
4623 * Go through our tx ring and free mbufs for those
4624 * frames that have been sent.
4625 */
4626 while (sc->bge_tx_saved_considx !=
4627 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4628 uint32_t idx = sc->bge_tx_saved_considx;
4629 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4630 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4631 if_statinc(ifp, if_opackets);
4632 m = sc->bge_cdata.bge_tx_chain[idx];
4633 if (m != NULL) {
4634 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4635 dma = sc->txdma[idx];
4636 if (dma->is_dma32) {
4637 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4638 0, dma->dmamap32->dm_mapsize,
4639 BUS_DMASYNC_POSTWRITE);
4640 bus_dmamap_unload(
4641 sc->bge_dmatag32, dma->dmamap32);
4642 } else {
4643 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4644 0, dma->dmamap->dm_mapsize,
4645 BUS_DMASYNC_POSTWRITE);
4646 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4647 }
4648 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4649 sc->txdma[idx] = NULL;
4650
4651 m_freem(m);
4652 }
4653 sc->bge_txcnt--;
4654 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4655 ifp->if_timer = 0;
4656 }
4657
4658 if (cur_tx != NULL)
4659 ifp->if_flags &= ~IFF_OACTIVE;
4660 }
4661
4662 static int
4663 bge_intr(void *xsc)
4664 {
4665 struct bge_softc * const sc = xsc;
4666 struct ifnet * const ifp = &sc->ethercom.ec_if;
4667 uint32_t pcistate, statusword, statustag;
4668 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4669
4670
4671 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4672 if (BGE_IS_5717_PLUS(sc))
4673 intrmask = 0;
4674
4675 /*
4676 * It is possible for the interrupt to arrive before
4677 * the status block is updated prior to the interrupt.
4678 * Reading the PCI State register will confirm whether the
4679 * interrupt is ours and will flush the status block.
4680 */
4681 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4682
4683 /* read status word from status block */
4684 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4685 offsetof(struct bge_ring_data, bge_status_block),
4686 sizeof(struct bge_status_block),
4687 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4688 statusword = sc->bge_rdata->bge_status_block.bge_status;
4689 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4690
4691 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4692 if (sc->bge_lasttag == statustag &&
4693 (~pcistate & intrmask)) {
4694 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4695 return 0;
4696 }
4697 sc->bge_lasttag = statustag;
4698 } else {
4699 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4700 !(~pcistate & intrmask)) {
4701 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4702 return 0;
4703 }
4704 statustag = 0;
4705 }
4706 /* Ack interrupt and stop others from occurring. */
4707 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4708 BGE_EVCNT_INCR(sc->bge_ev_intr);
4709
4710 /* clear status word */
4711 sc->bge_rdata->bge_status_block.bge_status = 0;
4712
4713 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4714 offsetof(struct bge_ring_data, bge_status_block),
4715 sizeof(struct bge_status_block),
4716 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4717
4718 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4719 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4720 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4721 bge_link_upd(sc);
4722
4723 if (ifp->if_flags & IFF_RUNNING) {
4724 /* Check RX return ring producer/consumer */
4725 bge_rxeof(sc);
4726
4727 /* Check TX ring producer/consumer */
4728 bge_txeof(sc);
4729 }
4730
4731 if (sc->bge_pending_rxintr_change) {
4732 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4733 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4734
4735 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4736 DELAY(10);
4737 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4738
4739 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4740 DELAY(10);
4741 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4742
4743 sc->bge_pending_rxintr_change = 0;
4744 }
4745 bge_handle_events(sc);
4746
4747 /* Re-enable interrupts. */
4748 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4749
4750 if (ifp->if_flags & IFF_RUNNING)
4751 if_schedule_deferred_start(ifp);
4752
4753 return 1;
4754 }
4755
4756 static void
4757 bge_asf_driver_up(struct bge_softc *sc)
4758 {
4759 if (sc->bge_asf_mode & ASF_STACKUP) {
4760 /* Send ASF heartbeat aprox. every 2s */
4761 if (sc->bge_asf_count)
4762 sc->bge_asf_count --;
4763 else {
4764 sc->bge_asf_count = 2;
4765
4766 bge_wait_for_event_ack(sc);
4767
4768 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4769 BGE_FW_CMD_DRV_ALIVE3);
4770 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4771 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4772 BGE_FW_HB_TIMEOUT_SEC);
4773 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4774 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4775 BGE_RX_CPU_DRV_EVENT);
4776 }
4777 }
4778 }
4779
4780 static void
4781 bge_tick(void *xsc)
4782 {
4783 struct bge_softc * const sc = xsc;
4784 struct mii_data * const mii = &sc->bge_mii;
4785 int s;
4786
4787 s = splnet();
4788
4789 if (BGE_IS_5705_PLUS(sc))
4790 bge_stats_update_regs(sc);
4791 else
4792 bge_stats_update(sc);
4793
4794 if (sc->bge_flags & BGEF_FIBER_TBI) {
4795 /*
4796 * Since in TBI mode auto-polling can't be used we should poll
4797 * link status manually. Here we register pending link event
4798 * and trigger interrupt.
4799 */
4800 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4801 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4802 } else {
4803 /*
4804 * Do not touch PHY if we have link up. This could break
4805 * IPMI/ASF mode or produce extra input errors.
4806 * (extra input errors was reported for bcm5701 & bcm5704).
4807 */
4808 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4809 mii_tick(mii);
4810 }
4811
4812 bge_asf_driver_up(sc);
4813
4814 if (!sc->bge_detaching)
4815 callout_schedule(&sc->bge_timeout, hz);
4816
4817 splx(s);
4818 }
4819
4820 static void
4821 bge_stats_update_regs(struct bge_softc *sc)
4822 {
4823 struct ifnet *const ifp = &sc->ethercom.ec_if;
4824
4825 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4826
4827 if_statadd_ref(nsr, if_collisions,
4828 CSR_READ_4(sc, BGE_MAC_STATS +
4829 offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
4830
4831 /*
4832 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4833 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4834 * (silicon bug). There's no reliable workaround so just
4835 * ignore the counter
4836 */
4837 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4838 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4839 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4840 if_statadd_ref(nsr, if_ierrors,
4841 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4842 }
4843 if_statadd_ref(nsr, if_ierrors,
4844 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
4845 if_statadd_ref(nsr, if_ierrors,
4846 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
4847
4848 IF_STAT_PUTREF(ifp);
4849
4850 if (sc->bge_flags & BGEF_RDMA_BUG) {
4851 uint32_t val, ucast, mcast, bcast;
4852
4853 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4854 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4855 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4856 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4857 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4858 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4859
4860 /*
4861 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4862 * frames, it's safe to disable workaround for DMA engine's
4863 * miscalculation of TXMBUF space.
4864 */
4865 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4866 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4867 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4868 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4869 else
4870 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4871 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4872 sc->bge_flags &= ~BGEF_RDMA_BUG;
4873 }
4874 }
4875 }
4876
4877 static void
4878 bge_stats_update(struct bge_softc *sc)
4879 {
4880 struct ifnet * const ifp = &sc->ethercom.ec_if;
4881 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4882
4883 #define READ_STAT(sc, stats, stat) \
4884 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4885
4886 uint64_t collisions =
4887 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4888 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4889 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4890 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
4891
4892 if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
4893 sc->bge_if_collisions = collisions;
4894
4895
4896 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4897 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4898 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4899 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4900 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4901 READ_STAT(sc, stats,
4902 xoffPauseFramesReceived.bge_addr_lo));
4903 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4904 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4905 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4906 READ_STAT(sc, stats,
4907 macControlFramesReceived.bge_addr_lo));
4908 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4909 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4910
4911 #undef READ_STAT
4912
4913 #ifdef notdef
4914 ifp->if_collisions +=
4915 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4916 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4917 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4918 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4919 ifp->if_collisions;
4920 #endif
4921 }
4922
4923 /*
4924 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4925 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4926 * but when such padded frames employ the bge IP/TCP checksum offload,
4927 * the hardware checksum assist gives incorrect results (possibly
4928 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4929 * If we pad such runts with zeros, the onboard checksum comes out correct.
4930 */
4931 static inline int
4932 bge_cksum_pad(struct mbuf *pkt)
4933 {
4934 struct mbuf *last = NULL;
4935 int padlen;
4936
4937 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4938
4939 /* if there's only the packet-header and we can pad there, use it. */
4940 if (pkt->m_pkthdr.len == pkt->m_len &&
4941 M_TRAILINGSPACE(pkt) >= padlen) {
4942 last = pkt;
4943 } else {
4944 /*
4945 * Walk packet chain to find last mbuf. We will either
4946 * pad there, or append a new mbuf and pad it
4947 * (thus perhaps avoiding the bcm5700 dma-min bug).
4948 */
4949 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4950 continue; /* do nothing */
4951 }
4952
4953 /* `last' now points to last in chain. */
4954 if (M_TRAILINGSPACE(last) < padlen) {
4955 /* Allocate new empty mbuf, pad it. Compact later. */
4956 struct mbuf *n;
4957 MGET(n, M_DONTWAIT, MT_DATA);
4958 if (n == NULL)
4959 return ENOBUFS;
4960 n->m_len = 0;
4961 last->m_next = n;
4962 last = n;
4963 }
4964 }
4965
4966 KDASSERT(!M_READONLY(last));
4967 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4968
4969 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4970 memset(mtod(last, char *) + last->m_len, 0, padlen);
4971 last->m_len += padlen;
4972 pkt->m_pkthdr.len += padlen;
4973 return 0;
4974 }
4975
4976 /*
4977 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4978 */
4979 static inline int
4980 bge_compact_dma_runt(struct mbuf *pkt)
4981 {
4982 struct mbuf *m, *prev;
4983 int totlen;
4984
4985 prev = NULL;
4986 totlen = 0;
4987
4988 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
4989 int mlen = m->m_len;
4990 int shortfall = 8 - mlen ;
4991
4992 totlen += mlen;
4993 if (mlen == 0)
4994 continue;
4995 if (mlen >= 8)
4996 continue;
4997
4998 /*
4999 * If we get here, mbuf data is too small for DMA engine.
5000 * Try to fix by shuffling data to prev or next in chain.
5001 * If that fails, do a compacting deep-copy of the whole chain.
5002 */
5003
5004 /* Internal frag. If fits in prev, copy it there. */
5005 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5006 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5007 prev->m_len += mlen;
5008 m->m_len = 0;
5009 /* XXX stitch chain */
5010 prev->m_next = m_free(m);
5011 m = prev;
5012 continue;
5013 } else if (m->m_next != NULL &&
5014 M_TRAILINGSPACE(m) >= shortfall &&
5015 m->m_next->m_len >= (8 + shortfall)) {
5016 /* m is writable and have enough data in next, pull up. */
5017
5018 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5019 shortfall);
5020 m->m_len += shortfall;
5021 m->m_next->m_len -= shortfall;
5022 m->m_next->m_data += shortfall;
5023 } else if (m->m_next == NULL || 1) {
5024 /*
5025 * Got a runt at the very end of the packet.
5026 * borrow data from the tail of the preceding mbuf and
5027 * update its length in-place. (The original data is
5028 * still valid, so we can do this even if prev is not
5029 * writable.)
5030 */
5031
5032 /*
5033 * If we'd make prev a runt, just move all of its data.
5034 */
5035 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5036 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5037
5038 if ((prev->m_len - shortfall) < 8)
5039 shortfall = prev->m_len;
5040
5041 #ifdef notyet /* just do the safe slow thing for now */
5042 if (!M_READONLY(m)) {
5043 if (M_LEADINGSPACE(m) < shorfall) {
5044 void *m_dat;
5045 m_dat = M_BUFADDR(m);
5046 memmove(m_dat, mtod(m, void*),
5047 m->m_len);
5048 m->m_data = m_dat;
5049 }
5050 } else
5051 #endif /* just do the safe slow thing */
5052 {
5053 struct mbuf * n = NULL;
5054 int newprevlen = prev->m_len - shortfall;
5055
5056 MGET(n, M_NOWAIT, MT_DATA);
5057 if (n == NULL)
5058 return ENOBUFS;
5059 KASSERT(m->m_len + shortfall < MLEN
5060 /*,
5061 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5062
5063 /* first copy the data we're stealing from prev */
5064 memcpy(n->m_data, prev->m_data + newprevlen,
5065 shortfall);
5066
5067 /* update prev->m_len accordingly */
5068 prev->m_len -= shortfall;
5069
5070 /* copy data from runt m */
5071 memcpy(n->m_data + shortfall, m->m_data,
5072 m->m_len);
5073
5074 /* n holds what we stole from prev, plus m */
5075 n->m_len = shortfall + m->m_len;
5076
5077 /* stitch n into chain and free m */
5078 n->m_next = m->m_next;
5079 prev->m_next = n;
5080 /* KASSERT(m->m_next == NULL); */
5081 m->m_next = NULL;
5082 m_free(m);
5083 m = n; /* for continuing loop */
5084 }
5085 }
5086 }
5087 return 0;
5088 }
5089
5090 /*
5091 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5092 * pointers to descriptors.
5093 */
5094 static int
5095 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5096 {
5097 struct ifnet * const ifp = &sc->ethercom.ec_if;
5098 struct bge_tx_bd *f, *prev_f;
5099 uint32_t frag, cur;
5100 uint16_t csum_flags = 0;
5101 uint16_t txbd_tso_flags = 0;
5102 struct txdmamap_pool_entry *dma;
5103 bus_dmamap_t dmamap;
5104 bus_dma_tag_t dmatag;
5105 int i = 0;
5106 int use_tso, maxsegsize, error;
5107 bool have_vtag;
5108 uint16_t vtag;
5109 bool remap;
5110
5111 if (m_head->m_pkthdr.csum_flags) {
5112 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5113 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5114 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5115 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5116 }
5117
5118 /*
5119 * If we were asked to do an outboard checksum, and the NIC
5120 * has the bug where it sometimes adds in the Ethernet padding,
5121 * explicitly pad with zeros so the cksum will be correct either way.
5122 * (For now, do this for all chip versions, until newer
5123 * are confirmed to not require the workaround.)
5124 */
5125 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5126 #ifdef notyet
5127 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5128 #endif
5129 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5130 goto check_dma_bug;
5131
5132 if (bge_cksum_pad(m_head) != 0)
5133 return ENOBUFS;
5134
5135 check_dma_bug:
5136 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5137 goto doit;
5138
5139 /*
5140 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5141 * less than eight bytes. If we encounter a teeny mbuf
5142 * at the end of a chain, we can pad. Otherwise, copy.
5143 */
5144 if (bge_compact_dma_runt(m_head) != 0)
5145 return ENOBUFS;
5146
5147 doit:
5148 dma = SLIST_FIRST(&sc->txdma_list);
5149 if (dma == NULL) {
5150 ifp->if_flags |= IFF_OACTIVE;
5151 return ENOBUFS;
5152 }
5153 dmamap = dma->dmamap;
5154 dmatag = sc->bge_dmatag;
5155 dma->is_dma32 = false;
5156
5157 /*
5158 * Set up any necessary TSO state before we start packing...
5159 */
5160 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5161 if (!use_tso) {
5162 maxsegsize = 0;
5163 } else { /* TSO setup */
5164 unsigned mss;
5165 struct ether_header *eh;
5166 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5167 unsigned bge_hlen;
5168 struct mbuf * m0 = m_head;
5169 struct ip *ip;
5170 struct tcphdr *th;
5171 int iphl, hlen;
5172
5173 /*
5174 * XXX It would be nice if the mbuf pkthdr had offset
5175 * fields for the protocol headers.
5176 */
5177
5178 eh = mtod(m0, struct ether_header *);
5179 switch (htons(eh->ether_type)) {
5180 case ETHERTYPE_IP:
5181 offset = ETHER_HDR_LEN;
5182 break;
5183
5184 case ETHERTYPE_VLAN:
5185 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5186 break;
5187
5188 default:
5189 /*
5190 * Don't support this protocol or encapsulation.
5191 */
5192 return ENOBUFS;
5193 }
5194
5195 /*
5196 * TCP/IP headers are in the first mbuf; we can do
5197 * this the easy way.
5198 */
5199 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5200 hlen = iphl + offset;
5201 if (__predict_false(m0->m_len <
5202 (hlen + sizeof(struct tcphdr)))) {
5203
5204 aprint_error_dev(sc->bge_dev,
5205 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5206 "not handled yet\n",
5207 m0->m_len, hlen+ sizeof(struct tcphdr));
5208 #ifdef NOTYET
5209 /*
5210 * XXX jonathan (at) NetBSD.org: untested.
5211 * how to force this branch to be taken?
5212 */
5213 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5214
5215 m_copydata(m0, offset, sizeof(ip), &ip);
5216 m_copydata(m0, hlen, sizeof(th), &th);
5217
5218 ip.ip_len = 0;
5219
5220 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5221 sizeof(ip.ip_len), &ip.ip_len);
5222
5223 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5224 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5225
5226 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5227 sizeof(th.th_sum), &th.th_sum);
5228
5229 hlen += th.th_off << 2;
5230 iptcp_opt_words = hlen;
5231 #else
5232 /*
5233 * if_wm "hard" case not yet supported, can we not
5234 * mandate it out of existence?
5235 */
5236 (void) ip; (void)th; (void) ip_tcp_hlen;
5237
5238 return ENOBUFS;
5239 #endif
5240 } else {
5241 ip = (struct ip *) (mtod(m0, char *) + offset);
5242 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5243 ip_tcp_hlen = iphl + (th->th_off << 2);
5244
5245 /* Total IP/TCP options, in 32-bit words */
5246 iptcp_opt_words = (ip_tcp_hlen
5247 - sizeof(struct tcphdr)
5248 - sizeof(struct ip)) >> 2;
5249 }
5250 if (BGE_IS_575X_PLUS(sc)) {
5251 th->th_sum = 0;
5252 csum_flags = 0;
5253 } else {
5254 /*
5255 * XXX jonathan (at) NetBSD.org: 5705 untested.
5256 * Requires TSO firmware patch for 5701/5703/5704.
5257 */
5258 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5259 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5260 }
5261
5262 mss = m_head->m_pkthdr.segsz;
5263 txbd_tso_flags |=
5264 BGE_TXBDFLAG_CPU_PRE_DMA |
5265 BGE_TXBDFLAG_CPU_POST_DMA;
5266
5267 /*
5268 * Our NIC TSO-assist assumes TSO has standard, optionless
5269 * IPv4 and TCP headers, which total 40 bytes. By default,
5270 * the NIC copies 40 bytes of IP/TCP header from the
5271 * supplied header into the IP/TCP header portion of
5272 * each post-TSO-segment. If the supplied packet has IP or
5273 * TCP options, we need to tell the NIC to copy those extra
5274 * bytes into each post-TSO header, in addition to the normal
5275 * 40-byte IP/TCP header (and to leave space accordingly).
5276 * Unfortunately, the driver encoding of option length
5277 * varies across different ASIC families.
5278 */
5279 tcp_seg_flags = 0;
5280 bge_hlen = ip_tcp_hlen >> 2;
5281 if (BGE_IS_5717_PLUS(sc)) {
5282 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5283 txbd_tso_flags |=
5284 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5285 } else if (BGE_IS_5705_PLUS(sc)) {
5286 tcp_seg_flags = bge_hlen << 11;
5287 } else {
5288 /* XXX iptcp_opt_words or bge_hlen ? */
5289 txbd_tso_flags |= iptcp_opt_words << 12;
5290 }
5291 maxsegsize = mss | tcp_seg_flags;
5292 ip->ip_len = htons(mss + ip_tcp_hlen);
5293 ip->ip_sum = 0;
5294
5295 } /* TSO setup */
5296
5297 have_vtag = vlan_has_tag(m_head);
5298 if (have_vtag)
5299 vtag = vlan_get_tag(m_head);
5300
5301 /*
5302 * Start packing the mbufs in this chain into
5303 * the fragment pointers. Stop when we run out
5304 * of fragments or hit the end of the mbuf chain.
5305 */
5306 remap = true;
5307 load_again:
5308 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5309 if (__predict_false(error)) {
5310 if (error == EFBIG && remap) {
5311 struct mbuf *m;
5312 remap = false;
5313 m = m_defrag(m_head, M_NOWAIT);
5314 if (m != NULL) {
5315 KASSERT(m == m_head);
5316 goto load_again;
5317 }
5318 }
5319 return error;
5320 }
5321 /*
5322 * Sanity check: avoid coming within 16 descriptors
5323 * of the end of the ring.
5324 */
5325 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5326 BGE_TSO_PRINTF(("%s: "
5327 " dmamap_load_mbuf too close to ring wrap\n",
5328 device_xname(sc->bge_dev)));
5329 goto fail_unload;
5330 }
5331
5332 /* Iterate over dmap-map fragments. */
5333 f = prev_f = NULL;
5334 cur = frag = *txidx;
5335
5336 for (i = 0; i < dmamap->dm_nsegs; i++) {
5337 f = &sc->bge_rdata->bge_tx_ring[frag];
5338 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5339 break;
5340
5341 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5342 f->bge_len = dmamap->dm_segs[i].ds_len;
5343 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5344 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5345 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5346 (prev_f != NULL &&
5347 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5348 ) {
5349 /*
5350 * watchdog timeout issue was observed with TSO,
5351 * limiting DMA address space to 32bits seems to
5352 * address the issue.
5353 */
5354 bus_dmamap_unload(dmatag, dmamap);
5355 dmatag = sc->bge_dmatag32;
5356 dmamap = dma->dmamap32;
5357 dma->is_dma32 = true;
5358 remap = true;
5359 goto load_again;
5360 }
5361
5362 /*
5363 * For 5751 and follow-ons, for TSO we must turn
5364 * off checksum-assist flag in the tx-descr, and
5365 * supply the ASIC-revision-specific encoding
5366 * of TSO flags and segsize.
5367 */
5368 if (use_tso) {
5369 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5370 f->bge_rsvd = maxsegsize;
5371 f->bge_flags = csum_flags | txbd_tso_flags;
5372 } else {
5373 f->bge_rsvd = 0;
5374 f->bge_flags =
5375 (csum_flags | txbd_tso_flags) & 0x0fff;
5376 }
5377 } else {
5378 f->bge_rsvd = 0;
5379 f->bge_flags = csum_flags;
5380 }
5381
5382 if (have_vtag) {
5383 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5384 f->bge_vlan_tag = vtag;
5385 } else {
5386 f->bge_vlan_tag = 0;
5387 }
5388 prev_f = f;
5389 cur = frag;
5390 BGE_INC(frag, BGE_TX_RING_CNT);
5391 }
5392
5393 if (i < dmamap->dm_nsegs) {
5394 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5395 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5396 goto fail_unload;
5397 }
5398
5399 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5400 BUS_DMASYNC_PREWRITE);
5401
5402 if (frag == sc->bge_tx_saved_considx) {
5403 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5404 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5405
5406 goto fail_unload;
5407 }
5408
5409 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5410 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5411 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5412 sc->txdma[cur] = dma;
5413 sc->bge_txcnt += dmamap->dm_nsegs;
5414
5415 *txidx = frag;
5416
5417 return 0;
5418
5419 fail_unload:
5420 bus_dmamap_unload(dmatag, dmamap);
5421 ifp->if_flags |= IFF_OACTIVE;
5422
5423 return ENOBUFS;
5424 }
5425
5426 /*
5427 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5428 * to the mbuf data regions directly in the transmit descriptors.
5429 */
5430 static void
5431 bge_start(struct ifnet *ifp)
5432 {
5433 struct bge_softc * const sc = ifp->if_softc;
5434 struct mbuf *m_head = NULL;
5435 struct mbuf *m;
5436 uint32_t prodidx;
5437 int pkts = 0;
5438 int error;
5439
5440 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5441 return;
5442
5443 prodidx = sc->bge_tx_prodidx;
5444
5445 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5446 IFQ_POLL(&ifp->if_snd, m_head);
5447 if (m_head == NULL)
5448 break;
5449
5450 #if 0
5451 /*
5452 * XXX
5453 * safety overkill. If this is a fragmented packet chain
5454 * with delayed TCP/UDP checksums, then only encapsulate
5455 * it if we have enough descriptors to handle the entire
5456 * chain at once.
5457 * (paranoia -- may not actually be needed)
5458 */
5459 if (m_head->m_flags & M_FIRSTFRAG &&
5460 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5461 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5462 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5463 ifp->if_flags |= IFF_OACTIVE;
5464 break;
5465 }
5466 }
5467 #endif
5468
5469 /*
5470 * Pack the data into the transmit ring. If we
5471 * don't have room, set the OACTIVE flag and wait
5472 * for the NIC to drain the ring.
5473 */
5474 error = bge_encap(sc, m_head, &prodidx);
5475 if (__predict_false(error)) {
5476 if (ifp->if_flags & IFF_OACTIVE) {
5477 /* just wait for the transmit ring to drain */
5478 break;
5479 }
5480 IFQ_DEQUEUE(&ifp->if_snd, m);
5481 KASSERT(m == m_head);
5482 m_freem(m_head);
5483 continue;
5484 }
5485
5486 /* now we are committed to transmit the packet */
5487 IFQ_DEQUEUE(&ifp->if_snd, m);
5488 KASSERT(m == m_head);
5489 pkts++;
5490
5491 /*
5492 * If there's a BPF listener, bounce a copy of this frame
5493 * to him.
5494 */
5495 bpf_mtap(ifp, m_head, BPF_D_OUT);
5496 }
5497 if (pkts == 0)
5498 return;
5499
5500 /* Transmit */
5501 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5502 /* 5700 b2 errata */
5503 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5504 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5505
5506 sc->bge_tx_prodidx = prodidx;
5507
5508 /*
5509 * Set a timeout in case the chip goes out to lunch.
5510 */
5511 ifp->if_timer = 5;
5512 }
5513
5514 static int
5515 bge_init(struct ifnet *ifp)
5516 {
5517 struct bge_softc * const sc = ifp->if_softc;
5518 const uint16_t *m;
5519 uint32_t mode, reg;
5520 int s, error = 0;
5521
5522 s = splnet();
5523
5524 KASSERT(ifp == &sc->ethercom.ec_if);
5525
5526 /* Cancel pending I/O and flush buffers. */
5527 bge_stop(ifp, 0);
5528
5529 bge_stop_fw(sc);
5530 bge_sig_pre_reset(sc, BGE_RESET_START);
5531 bge_reset(sc);
5532 bge_sig_legacy(sc, BGE_RESET_START);
5533
5534 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5535 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5536 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5537 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5538 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5539
5540 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5541 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5542 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5543 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5544
5545 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5546 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5547 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5548 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5549
5550 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5551 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5552 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5553 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5554 }
5555
5556 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5557 pcireg_t aercap;
5558
5559 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5560 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5561 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5562 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5563 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5564
5565 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5566 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5567 | BGE_PCIE_EIDLE_DELAY_13CLK;
5568 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5569
5570 /* Clear correctable error */
5571 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5572 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5573 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5574 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5575
5576 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5577 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5578 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5579 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5580 }
5581
5582 bge_sig_post_reset(sc, BGE_RESET_START);
5583
5584 bge_chipinit(sc);
5585
5586 /*
5587 * Init the various state machines, ring
5588 * control blocks and firmware.
5589 */
5590 error = bge_blockinit(sc);
5591 if (error != 0) {
5592 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5593 error);
5594 splx(s);
5595 return error;
5596 }
5597
5598 /* 5718 step 25, 57XX step 54 */
5599 /* Specify MTU. */
5600 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5601 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5602
5603 /* 5718 step 23 */
5604 /* Load our MAC address. */
5605 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5606 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5607 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5608 ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5609
5610 /* Enable or disable promiscuous mode as needed. */
5611 if (ifp->if_flags & IFF_PROMISC)
5612 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5613 else
5614 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5615
5616 /* Program multicast filter. */
5617 bge_setmulti(sc);
5618
5619 /* Init RX ring. */
5620 bge_init_rx_ring_std(sc);
5621
5622 /*
5623 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5624 * memory to insure that the chip has in fact read the first
5625 * entry of the ring.
5626 */
5627 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5628 u_int i;
5629 for (i = 0; i < 10; i++) {
5630 DELAY(20);
5631 uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5632 if (v == (MCLBYTES - ETHER_ALIGN))
5633 break;
5634 }
5635 if (i == 10)
5636 aprint_error_dev(sc->bge_dev,
5637 "5705 A0 chip failed to load RX ring\n");
5638 }
5639
5640 /* Init jumbo RX ring. */
5641 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5642 bge_init_rx_ring_jumbo(sc);
5643
5644 /* Init our RX return ring index */
5645 sc->bge_rx_saved_considx = 0;
5646
5647 /* Init TX ring. */
5648 bge_init_tx_ring(sc);
5649
5650 /* 5718 step 63, 57XX step 94 */
5651 /* Enable TX MAC state machine lockup fix. */
5652 mode = CSR_READ_4(sc, BGE_TX_MODE);
5653 if (BGE_IS_5755_PLUS(sc) ||
5654 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5655 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5656 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5657 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5658 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5659 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5660 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5661 }
5662
5663 /* Turn on transmitter */
5664 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5665 /* 5718 step 64 */
5666 DELAY(100);
5667
5668 /* 5718 step 65, 57XX step 95 */
5669 /* Turn on receiver */
5670 mode = CSR_READ_4(sc, BGE_RX_MODE);
5671 if (BGE_IS_5755_PLUS(sc))
5672 mode |= BGE_RXMODE_IPV6_ENABLE;
5673 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5674 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5675 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5676 /* 5718 step 66 */
5677 DELAY(10);
5678
5679 /* 5718 step 12, 57XX step 37 */
5680 /*
5681 * XXX Doucments of 5718 series and 577xx say the recommended value
5682 * is 1, but tg3 set 1 only on 57765 series.
5683 */
5684 if (BGE_IS_57765_PLUS(sc))
5685 reg = 1;
5686 else
5687 reg = 2;
5688 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5689
5690 /* Tell firmware we're alive. */
5691 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5692
5693 /* Enable host interrupts. */
5694 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5695 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5696 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5697
5698 if ((error = bge_ifmedia_upd(ifp)) != 0)
5699 goto out;
5700
5701 ifp->if_flags |= IFF_RUNNING;
5702 ifp->if_flags &= ~IFF_OACTIVE;
5703
5704 callout_schedule(&sc->bge_timeout, hz);
5705
5706 out:
5707 sc->bge_if_flags = ifp->if_flags;
5708 splx(s);
5709
5710 return error;
5711 }
5712
5713 /*
5714 * Set media options.
5715 */
5716 static int
5717 bge_ifmedia_upd(struct ifnet *ifp)
5718 {
5719 struct bge_softc * const sc = ifp->if_softc;
5720 struct mii_data * const mii = &sc->bge_mii;
5721 struct ifmedia * const ifm = &sc->bge_ifmedia;
5722 int rc;
5723
5724 /* If this is a 1000baseX NIC, enable the TBI port. */
5725 if (sc->bge_flags & BGEF_FIBER_TBI) {
5726 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5727 return EINVAL;
5728 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5729 case IFM_AUTO:
5730 /*
5731 * The BCM5704 ASIC appears to have a special
5732 * mechanism for programming the autoneg
5733 * advertisement registers in TBI mode.
5734 */
5735 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5736 uint32_t sgdig;
5737 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5738 if (sgdig & BGE_SGDIGSTS_DONE) {
5739 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5740 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5741 sgdig |= BGE_SGDIGCFG_AUTO |
5742 BGE_SGDIGCFG_PAUSE_CAP |
5743 BGE_SGDIGCFG_ASYM_PAUSE;
5744 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5745 sgdig | BGE_SGDIGCFG_SEND);
5746 DELAY(5);
5747 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5748 sgdig);
5749 }
5750 }
5751 break;
5752 case IFM_1000_SX:
5753 if ((ifm->ifm_media & IFM_FDX) != 0) {
5754 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5755 BGE_MACMODE_HALF_DUPLEX);
5756 } else {
5757 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5758 BGE_MACMODE_HALF_DUPLEX);
5759 }
5760 DELAY(40);
5761 break;
5762 default:
5763 return EINVAL;
5764 }
5765 /* XXX 802.3x flow control for 1000BASE-SX */
5766 return 0;
5767 }
5768
5769 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5770 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5771 uint32_t reg;
5772
5773 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5774 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5775 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5776 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5777 }
5778 }
5779
5780 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5781 if ((rc = mii_mediachg(mii)) == ENXIO)
5782 return 0;
5783
5784 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5785 uint32_t reg;
5786
5787 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5788 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5789 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5790 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5791 delay(40);
5792 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5793 }
5794 }
5795
5796 /*
5797 * Force an interrupt so that we will call bge_link_upd
5798 * if needed and clear any pending link state attention.
5799 * Without this we are not getting any further interrupts
5800 * for link state changes and thus will not UP the link and
5801 * not be able to send in bge_start. The only way to get
5802 * things working was to receive a packet and get a RX intr.
5803 */
5804 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5805 sc->bge_flags & BGEF_IS_5788)
5806 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5807 else
5808 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5809
5810 return rc;
5811 }
5812
5813 /*
5814 * Report current media status.
5815 */
5816 static void
5817 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5818 {
5819 struct bge_softc * const sc = ifp->if_softc;
5820 struct mii_data * const mii = &sc->bge_mii;
5821
5822 if (sc->bge_flags & BGEF_FIBER_TBI) {
5823 ifmr->ifm_status = IFM_AVALID;
5824 ifmr->ifm_active = IFM_ETHER;
5825 if (CSR_READ_4(sc, BGE_MAC_STS) &
5826 BGE_MACSTAT_TBI_PCS_SYNCHED)
5827 ifmr->ifm_status |= IFM_ACTIVE;
5828 ifmr->ifm_active |= IFM_1000_SX;
5829 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5830 ifmr->ifm_active |= IFM_HDX;
5831 else
5832 ifmr->ifm_active |= IFM_FDX;
5833 return;
5834 }
5835
5836 mii_pollstat(mii);
5837 ifmr->ifm_status = mii->mii_media_status;
5838 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5839 sc->bge_flowflags;
5840 }
5841
5842 static int
5843 bge_ifflags_cb(struct ethercom *ec)
5844 {
5845 struct ifnet * const ifp = &ec->ec_if;
5846 struct bge_softc * const sc = ifp->if_softc;
5847 u_short change = ifp->if_flags ^ sc->bge_if_flags;
5848
5849 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
5850 return ENETRESET;
5851 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5852 return 0;
5853
5854 if ((ifp->if_flags & IFF_PROMISC) == 0)
5855 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5856 else
5857 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5858
5859 bge_setmulti(sc);
5860
5861 sc->bge_if_flags = ifp->if_flags;
5862 return 0;
5863 }
5864
5865 static int
5866 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5867 {
5868 struct bge_softc * const sc = ifp->if_softc;
5869 struct ifreq * const ifr = (struct ifreq *) data;
5870 int s, error = 0;
5871 struct mii_data *mii;
5872
5873 s = splnet();
5874
5875 switch (command) {
5876 case SIOCSIFMEDIA:
5877 /* XXX Flow control is not supported for 1000BASE-SX */
5878 if (sc->bge_flags & BGEF_FIBER_TBI) {
5879 ifr->ifr_media &= ~IFM_ETH_FMASK;
5880 sc->bge_flowflags = 0;
5881 }
5882
5883 /* Flow control requires full-duplex mode. */
5884 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5885 (ifr->ifr_media & IFM_FDX) == 0) {
5886 ifr->ifr_media &= ~IFM_ETH_FMASK;
5887 }
5888 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5889 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5890 /* We can do both TXPAUSE and RXPAUSE. */
5891 ifr->ifr_media |=
5892 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5893 }
5894 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5895 }
5896
5897 if (sc->bge_flags & BGEF_FIBER_TBI) {
5898 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5899 command);
5900 } else {
5901 mii = &sc->bge_mii;
5902 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5903 command);
5904 }
5905 break;
5906 default:
5907 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5908 break;
5909
5910 error = 0;
5911
5912 if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5913 ;
5914 else if (ifp->if_flags & IFF_RUNNING)
5915 bge_setmulti(sc);
5916 break;
5917 }
5918
5919 splx(s);
5920
5921 return error;
5922 }
5923
5924 static void
5925 bge_watchdog(struct ifnet *ifp)
5926 {
5927 struct bge_softc * const sc = ifp->if_softc;
5928 uint32_t status;
5929
5930 /* If pause frames are active then don't reset the hardware. */
5931 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5932 status = CSR_READ_4(sc, BGE_RX_STS);
5933 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5934 /*
5935 * If link partner has us in XOFF state then wait for
5936 * the condition to clear.
5937 */
5938 CSR_WRITE_4(sc, BGE_RX_STS, status);
5939 ifp->if_timer = 5;
5940 return;
5941 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5942 (status & BGE_RXSTAT_RCVD_XON) != 0) {
5943 /*
5944 * If link partner has us in XOFF state then wait for
5945 * the condition to clear.
5946 */
5947 CSR_WRITE_4(sc, BGE_RX_STS, status);
5948 ifp->if_timer = 5;
5949 return;
5950 }
5951 /*
5952 * Any other condition is unexpected and the controller
5953 * should be reset.
5954 */
5955 }
5956
5957 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5958
5959 ifp->if_flags &= ~IFF_RUNNING;
5960 bge_init(ifp);
5961
5962 if_statinc(ifp, if_oerrors);
5963 }
5964
5965 static void
5966 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5967 {
5968 int i;
5969
5970 BGE_CLRBIT_FLUSH(sc, reg, bit);
5971
5972 for (i = 0; i < 1000; i++) {
5973 delay(100);
5974 if ((CSR_READ_4(sc, reg) & bit) == 0)
5975 return;
5976 }
5977
5978 /*
5979 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5980 * on some environment (and once after boot?)
5981 */
5982 if (reg != BGE_SRS_MODE)
5983 aprint_error_dev(sc->bge_dev,
5984 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5985 (u_long)reg, bit);
5986 }
5987
5988 /*
5989 * Stop the adapter and free any mbufs allocated to the
5990 * RX and TX lists.
5991 */
5992 static void
5993 bge_stop(struct ifnet *ifp, int disable)
5994 {
5995 struct bge_softc * const sc = ifp->if_softc;
5996
5997 if (disable) {
5998 sc->bge_detaching = 1;
5999 callout_halt(&sc->bge_timeout, NULL);
6000 } else
6001 callout_stop(&sc->bge_timeout);
6002
6003 /* Disable host interrupts. */
6004 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6005 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
6006
6007 /*
6008 * Tell firmware we're shutting down.
6009 */
6010 bge_stop_fw(sc);
6011 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6012
6013 /*
6014 * Disable all of the receiver blocks.
6015 */
6016 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6017 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6018 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6019 if (BGE_IS_5700_FAMILY(sc))
6020 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6021 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6022 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6023 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6024
6025 /*
6026 * Disable all of the transmit blocks.
6027 */
6028 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6029 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6030 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6031 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6032 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6033 if (BGE_IS_5700_FAMILY(sc))
6034 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6035 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6036
6037 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6038 delay(40);
6039
6040 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6041
6042 /*
6043 * Shut down all of the memory managers and related
6044 * state machines.
6045 */
6046 /* 5718 step 5a,5b */
6047 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6048 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6049 if (BGE_IS_5700_FAMILY(sc))
6050 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6051
6052 /* 5718 step 5c,5d */
6053 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6054 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6055
6056 if (BGE_IS_5700_FAMILY(sc)) {
6057 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6058 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6059 }
6060
6061 bge_reset(sc);
6062 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6063 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6064
6065 /*
6066 * Keep the ASF firmware running if up.
6067 */
6068 if (sc->bge_asf_mode & ASF_STACKUP)
6069 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6070 else
6071 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6072
6073 /* Free the RX lists. */
6074 bge_free_rx_ring_std(sc, disable);
6075
6076 /* Free jumbo RX list. */
6077 if (BGE_IS_JUMBO_CAPABLE(sc))
6078 bge_free_rx_ring_jumbo(sc);
6079
6080 /* Free TX buffers. */
6081 bge_free_tx_ring(sc, disable);
6082
6083 /*
6084 * Isolate/power down the PHY.
6085 */
6086 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6087 mii_down(&sc->bge_mii);
6088
6089 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6090
6091 /* Clear MAC's link state (PHY may still have link UP). */
6092 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6093
6094 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6095 }
6096
6097 static void
6098 bge_link_upd(struct bge_softc *sc)
6099 {
6100 struct ifnet * const ifp = &sc->ethercom.ec_if;
6101 struct mii_data * const mii = &sc->bge_mii;
6102 uint32_t status;
6103 uint16_t phyval;
6104 int link;
6105
6106 /* Clear 'pending link event' flag */
6107 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6108
6109 /*
6110 * Process link state changes.
6111 * Grrr. The link status word in the status block does
6112 * not work correctly on the BCM5700 rev AX and BX chips,
6113 * according to all available information. Hence, we have
6114 * to enable MII interrupts in order to properly obtain
6115 * async link changes. Unfortunately, this also means that
6116 * we have to read the MAC status register to detect link
6117 * changes, thereby adding an additional register access to
6118 * the interrupt handler.
6119 */
6120
6121 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6122 status = CSR_READ_4(sc, BGE_MAC_STS);
6123 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6124 mii_pollstat(mii);
6125
6126 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6127 mii->mii_media_status & IFM_ACTIVE &&
6128 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6129 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6130 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6131 (!(mii->mii_media_status & IFM_ACTIVE) ||
6132 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6133 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6134
6135 /* Clear the interrupt */
6136 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6137 BGE_EVTENB_MI_INTERRUPT);
6138 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6139 BRGPHY_MII_ISR, &phyval);
6140 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6141 BRGPHY_MII_IMR, BRGPHY_INTRS);
6142 }
6143 return;
6144 }
6145
6146 if (sc->bge_flags & BGEF_FIBER_TBI) {
6147 status = CSR_READ_4(sc, BGE_MAC_STS);
6148 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6149 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6150 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6151 if (BGE_ASICREV(sc->bge_chipid)
6152 == BGE_ASICREV_BCM5704) {
6153 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6154 BGE_MACMODE_TBI_SEND_CFGS);
6155 DELAY(40);
6156 }
6157 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6158 if_link_state_change(ifp, LINK_STATE_UP);
6159 }
6160 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6161 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6162 if_link_state_change(ifp, LINK_STATE_DOWN);
6163 }
6164 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6165 /*
6166 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6167 * bit in status word always set. Workaround this bug by
6168 * reading PHY link status directly.
6169 */
6170 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6171 BGE_STS_LINK : 0;
6172
6173 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6174 mii_pollstat(mii);
6175
6176 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6177 mii->mii_media_status & IFM_ACTIVE &&
6178 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6179 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6180 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6181 (!(mii->mii_media_status & IFM_ACTIVE) ||
6182 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6183 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6184 }
6185 } else {
6186 /*
6187 * For controllers that call mii_tick, we have to poll
6188 * link status.
6189 */
6190 mii_pollstat(mii);
6191 }
6192
6193 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6194 uint32_t reg, scale;
6195
6196 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6197 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6198 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6199 scale = 65;
6200 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6201 scale = 6;
6202 else
6203 scale = 12;
6204
6205 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6206 ~BGE_MISCCFG_TIMER_PRESCALER;
6207 reg |= scale << 1;
6208 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6209 }
6210 /* Clear the attention */
6211 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6212 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6213 BGE_MACSTAT_LINK_CHANGED);
6214 }
6215
6216 static int
6217 bge_sysctl_verify(SYSCTLFN_ARGS)
6218 {
6219 int error, t;
6220 struct sysctlnode node;
6221
6222 node = *rnode;
6223 t = *(int*)rnode->sysctl_data;
6224 node.sysctl_data = &t;
6225 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6226 if (error || newp == NULL)
6227 return error;
6228
6229 #if 0
6230 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6231 node.sysctl_num, rnode->sysctl_num));
6232 #endif
6233
6234 if (node.sysctl_num == bge_rxthresh_nodenum) {
6235 if (t < 0 || t >= NBGE_RX_THRESH)
6236 return EINVAL;
6237 bge_update_all_threshes(t);
6238 } else
6239 return EINVAL;
6240
6241 *(int*)rnode->sysctl_data = t;
6242
6243 return 0;
6244 }
6245
6246 /*
6247 * Set up sysctl(3) MIB, hw.bge.*.
6248 */
6249 static void
6250 bge_sysctl_init(struct bge_softc *sc)
6251 {
6252 int rc, bge_root_num;
6253 const struct sysctlnode *node;
6254
6255 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6256 0, CTLTYPE_NODE, "bge",
6257 SYSCTL_DESCR("BGE interface controls"),
6258 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6259 goto out;
6260 }
6261
6262 bge_root_num = node->sysctl_num;
6263
6264 /* BGE Rx interrupt mitigation level */
6265 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6266 CTLFLAG_READWRITE,
6267 CTLTYPE_INT, "rx_lvl",
6268 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6269 bge_sysctl_verify, 0,
6270 &bge_rx_thresh_lvl,
6271 0, CTL_HW, bge_root_num, CTL_CREATE,
6272 CTL_EOL)) != 0) {
6273 goto out;
6274 }
6275
6276 bge_rxthresh_nodenum = node->sysctl_num;
6277
6278 return;
6279
6280 out:
6281 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6282 }
6283
6284 #ifdef BGE_DEBUG
6285 void
6286 bge_debug_info(struct bge_softc *sc)
6287 {
6288
6289 printf("Hardware Flags:\n");
6290 if (BGE_IS_57765_PLUS(sc))
6291 printf(" - 57765 Plus\n");
6292 if (BGE_IS_5717_PLUS(sc))
6293 printf(" - 5717 Plus\n");
6294 if (BGE_IS_5755_PLUS(sc))
6295 printf(" - 5755 Plus\n");
6296 if (BGE_IS_575X_PLUS(sc))
6297 printf(" - 575X Plus\n");
6298 if (BGE_IS_5705_PLUS(sc))
6299 printf(" - 5705 Plus\n");
6300 if (BGE_IS_5714_FAMILY(sc))
6301 printf(" - 5714 Family\n");
6302 if (BGE_IS_5700_FAMILY(sc))
6303 printf(" - 5700 Family\n");
6304 if (sc->bge_flags & BGEF_IS_5788)
6305 printf(" - 5788\n");
6306 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6307 printf(" - Supports Jumbo Frames\n");
6308 if (sc->bge_flags & BGEF_NO_EEPROM)
6309 printf(" - No EEPROM\n");
6310 if (sc->bge_flags & BGEF_PCIX)
6311 printf(" - PCI-X Bus\n");
6312 if (sc->bge_flags & BGEF_PCIE)
6313 printf(" - PCI Express Bus\n");
6314 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6315 printf(" - RX Alignment Bug\n");
6316 if (sc->bge_flags & BGEF_APE)
6317 printf(" - APE\n");
6318 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6319 printf(" - CPMU\n");
6320 if (sc->bge_flags & BGEF_TSO)
6321 printf(" - TSO\n");
6322 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6323 printf(" - TAGGED_STATUS\n");
6324
6325 /* PHY related */
6326 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6327 printf(" - No 3 LEDs\n");
6328 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6329 printf(" - CRC bug\n");
6330 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6331 printf(" - ADC bug\n");
6332 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6333 printf(" - 5704 A0 bug\n");
6334 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6335 printf(" - jitter bug\n");
6336 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6337 printf(" - BER bug\n");
6338 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6339 printf(" - adjust trim\n");
6340 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6341 printf(" - no wirespeed\n");
6342
6343 /* ASF related */
6344 if (sc->bge_asf_mode & ASF_ENABLE)
6345 printf(" - ASF enable\n");
6346 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6347 printf(" - ASF new handshake\n");
6348 if (sc->bge_asf_mode & ASF_STACKUP)
6349 printf(" - ASF stackup\n");
6350 }
6351 #endif /* BGE_DEBUG */
6352
6353 static int
6354 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6355 {
6356 prop_dictionary_t dict;
6357 prop_data_t ea;
6358
6359 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6360 return 1;
6361
6362 dict = device_properties(sc->bge_dev);
6363 ea = prop_dictionary_get(dict, "mac-address");
6364 if (ea != NULL) {
6365 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6366 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6367 memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
6368 return 0;
6369 }
6370
6371 return 1;
6372 }
6373
6374 static int
6375 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6376 {
6377 uint32_t mac_addr;
6378
6379 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6380 if ((mac_addr >> 16) == 0x484b) {
6381 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6382 ether_addr[1] = (uint8_t)mac_addr;
6383 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6384 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6385 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6386 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6387 ether_addr[5] = (uint8_t)mac_addr;
6388 return 0;
6389 }
6390 return 1;
6391 }
6392
6393 static int
6394 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6395 {
6396 int mac_offset = BGE_EE_MAC_OFFSET;
6397
6398 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6399 mac_offset = BGE_EE_MAC_OFFSET_5906;
6400
6401 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6402 ETHER_ADDR_LEN));
6403 }
6404
6405 static int
6406 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6407 {
6408
6409 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6410 return 1;
6411
6412 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6413 ETHER_ADDR_LEN));
6414 }
6415
6416 static int
6417 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6418 {
6419 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6420 /* NOTE: Order is critical */
6421 bge_get_eaddr_fw,
6422 bge_get_eaddr_mem,
6423 bge_get_eaddr_nvram,
6424 bge_get_eaddr_eeprom,
6425 NULL
6426 };
6427 const bge_eaddr_fcn_t *func;
6428
6429 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6430 if ((*func)(sc, eaddr) == 0)
6431 break;
6432 }
6433 return *func == NULL ? ENXIO : 0;
6434 }
6435