Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.382
      1 /*	$NetBSD: if_bge.c,v 1.382 2022/08/27 05:35:17 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.382 2022/08/27 05:35:17 skrll Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/types.h>
     86 
     87 #include <sys/callout.h>
     88 #include <sys/device.h>
     89 #include <sys/kernel.h>
     90 #include <sys/kmem.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/rndsource.h>
     93 #include <sys/socket.h>
     94 #include <sys/sockio.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/systm.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 #include <net/bpf.h>
    103 
    104 #ifdef INET
    105 #include <netinet/in.h>
    106 #include <netinet/in_systm.h>
    107 #include <netinet/in_var.h>
    108 #include <netinet/ip.h>
    109 #endif
    110 
    111 /* Headers for TCP Segmentation Offload (TSO) */
    112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    114 #include <netinet/ip.h>			/* for struct ip */
    115 #include <netinet/tcp.h>		/* for struct tcphdr */
    116 
    117 #include <dev/pci/pcireg.h>
    118 #include <dev/pci/pcivar.h>
    119 #include <dev/pci/pcidevs.h>
    120 
    121 #include <dev/mii/mii.h>
    122 #include <dev/mii/miivar.h>
    123 #include <dev/mii/miidevs.h>
    124 #include <dev/mii/brgphyreg.h>
    125 
    126 #include <dev/pci/if_bgereg.h>
    127 #include <dev/pci/if_bgevar.h>
    128 
    129 #include <prop/proplib.h>
    130 
    131 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    132 
    133 
    134 /*
    135  * Tunable thresholds for rx-side bge interrupt mitigation.
    136  */
    137 
    138 /*
    139  * The pairs of values below were obtained from empirical measurement
    140  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    141  * interrupt for every N packets received, where N is, approximately,
    142  * the second value (rx_max_bds) in each pair.  The values are chosen
    143  * such that moving from one pair to the succeeding pair was observed
    144  * to roughly halve interrupt rate under sustained input packet load.
    145  * The values were empirically chosen to avoid overflowing internal
    146  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    147  * results in internal wrapping and higher interrupt rates.
    148  * The limit of 46 frames was chosen to match NFS workloads.
    149  *
    150  * These values also work well on bcm5701, bcm5704C, and (less
    151  * tested) bcm5703.  On other chipsets, (including the Altima chip
    152  * family), the larger values may overflow internal chip limits,
    153  * leading to increasing interrupt rates rather than lower interrupt
    154  * rates.
    155  *
    156  * Applications using heavy interrupt mitigation (interrupting every
    157  * 32 or 46 frames) in both directions may need to increase the TCP
    158  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    159  * full link bandwidth, due to ACKs and window updates lingering
    160  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    161  */
    162 static const struct bge_load_rx_thresh {
    163 	int rx_ticks;
    164 	int rx_max_bds; }
    165 bge_rx_threshes[] = {
    166 	{ 16,	1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    167 	{ 32,	2 },
    168 	{ 50,	4 },
    169 	{ 100,	8 },
    170 	{ 192, 16 },
    171 	{ 416, 32 },
    172 	{ 598, 46 }
    173 };
    174 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    175 
    176 /* XXX patchable; should be sysctl'able */
    177 static int bge_auto_thresh = 1;
    178 static int bge_rx_thresh_lvl;
    179 
    180 static int bge_rxthresh_nodenum;
    181 
    182 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    183 
    184 static uint32_t bge_chipid(const struct pci_attach_args *);
    185 static int bge_can_use_msi(struct bge_softc *);
    186 static int bge_probe(device_t, cfdata_t, void *);
    187 static void bge_attach(device_t, device_t, void *);
    188 static int bge_detach(device_t, int);
    189 static void bge_release_resources(struct bge_softc *);
    190 
    191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    196 
    197 static void bge_txeof(struct bge_softc *);
    198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    199 static void bge_rxeof(struct bge_softc *);
    200 
    201 static void bge_asf_driver_up (struct bge_softc *);
    202 static void bge_tick(void *);
    203 static void bge_stats_update(struct bge_softc *);
    204 static void bge_stats_update_regs(struct bge_softc *);
    205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    206 
    207 static int bge_intr(void *);
    208 static void bge_start(struct ifnet *);
    209 static void bge_start_locked(struct ifnet *);
    210 static int bge_ifflags_cb(struct ethercom *);
    211 static int bge_ioctl(struct ifnet *, u_long, void *);
    212 static int bge_init(struct ifnet *);
    213 static int bge_init_locked(struct ifnet *);
    214 static void bge_stop(struct ifnet *, int);
    215 static void bge_stop_locked(struct ifnet *, int);
    216 static bool bge_watchdog(struct ifnet *);
    217 static int bge_ifmedia_upd(struct ifnet *);
    218 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    219 static void bge_handle_reset_work(struct work *, void *);
    220 
    221 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    222 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    223 
    224 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    225 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    226 static void bge_setmulti(struct bge_softc *);
    227 
    228 static void bge_handle_events(struct bge_softc *);
    229 static int bge_alloc_jumbo_mem(struct bge_softc *);
    230 static void bge_free_jumbo_mem(struct bge_softc *);
    231 static void *bge_jalloc(struct bge_softc *);
    232 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    234 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    235 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    236 
    237 static int bge_newbuf_std(struct bge_softc *, int);
    238 static int bge_init_rx_ring_std(struct bge_softc *);
    239 static void bge_fill_rx_ring_std(struct bge_softc *);
    240 static void bge_free_rx_ring_std(struct bge_softc *m);
    241 
    242 static void bge_free_tx_ring(struct bge_softc *m, bool);
    243 static int bge_init_tx_ring(struct bge_softc *);
    244 
    245 static int bge_chipinit(struct bge_softc *);
    246 static int bge_blockinit(struct bge_softc *);
    247 static int bge_phy_addr(struct bge_softc *);
    248 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    249 static void bge_writemem_ind(struct bge_softc *, int, int);
    250 static void bge_writembx(struct bge_softc *, int, int);
    251 static void bge_writembx_flush(struct bge_softc *, int, int);
    252 static void bge_writemem_direct(struct bge_softc *, int, int);
    253 static void bge_writereg_ind(struct bge_softc *, int, int);
    254 static void bge_set_max_readrq(struct bge_softc *);
    255 
    256 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
    257 static int bge_miibus_writereg(device_t, int, int, uint16_t);
    258 static void bge_miibus_statchg(struct ifnet *);
    259 
    260 #define BGE_RESET_SHUTDOWN	0
    261 #define	BGE_RESET_START		1
    262 #define	BGE_RESET_SUSPEND	2
    263 static void bge_sig_post_reset(struct bge_softc *, int);
    264 static void bge_sig_legacy(struct bge_softc *, int);
    265 static void bge_sig_pre_reset(struct bge_softc *, int);
    266 static void bge_wait_for_event_ack(struct bge_softc *);
    267 static void bge_stop_fw(struct bge_softc *);
    268 static int bge_reset(struct bge_softc *);
    269 static void bge_link_upd(struct bge_softc *);
    270 static void bge_sysctl_init(struct bge_softc *);
    271 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    272 
    273 static void bge_ape_lock_init(struct bge_softc *);
    274 static void bge_ape_read_fw_ver(struct bge_softc *);
    275 static int bge_ape_lock(struct bge_softc *, int);
    276 static void bge_ape_unlock(struct bge_softc *, int);
    277 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    278 static void bge_ape_driver_state_change(struct bge_softc *, int);
    279 
    280 #ifdef BGE_DEBUG
    281 #define DPRINTF(x)	if (bgedebug) printf x
    282 #define DPRINTFN(n, x)	if (bgedebug >= (n)) printf x
    283 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    284 int	bgedebug = 0;
    285 int	bge_tso_debug = 0;
    286 void	bge_debug_info(struct bge_softc *);
    287 #else
    288 #define DPRINTF(x)
    289 #define DPRINTFN(n, x)
    290 #define BGE_TSO_PRINTF(x)
    291 #endif
    292 
    293 #ifdef BGE_EVENT_COUNTERS
    294 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    295 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    296 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    297 #else
    298 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    299 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    300 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    301 #endif
    302 
    303 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
    304 /*
    305  * The BCM5700 documentation seems to indicate that the hardware still has the
    306  * Alteon vendor ID burned into it, though it should always be overridden by
    307  * the value in the EEPROM.  We'll check for it anyway.
    308  */
    309 static const struct bge_product {
    310 	pci_vendor_id_t		bp_vendor;
    311 	pci_product_id_t	bp_product;
    312 	const char		*bp_name;
    313 } bge_products[] = {
    314 	{ VIDDID(ALTEON,   BCM5700),	"Broadcom BCM5700 Gigabit" },
    315 	{ VIDDID(ALTEON,   BCM5701),	"Broadcom BCM5701 Gigabit" },
    316 	{ VIDDID(ALTIMA,   AC1000),	"Altima AC1000 Gigabit" },
    317 	{ VIDDID(ALTIMA,   AC1001),	"Altima AC1001 Gigabit" },
    318 	{ VIDDID(ALTIMA,   AC1003),	"Altima AC1003 Gigabit" },
    319 	{ VIDDID(ALTIMA,   AC9100),	"Altima AC9100 Gigabit" },
    320 	{ VIDDID(APPLE,	   BCM5701),	"APPLE BCM5701 Gigabit" },
    321 	{ VIDDID(BROADCOM, BCM5700),	"Broadcom BCM5700 Gigabit" },
    322 	{ VIDDID(BROADCOM, BCM5701),	"Broadcom BCM5701 Gigabit" },
    323 	{ VIDDID(BROADCOM, BCM5702),	"Broadcom BCM5702 Gigabit" },
    324 	{ VIDDID(BROADCOM, BCM5702FE),	"Broadcom BCM5702FE Fast" },
    325 	{ VIDDID(BROADCOM, BCM5702X),	"Broadcom BCM5702X Gigabit" },
    326 	{ VIDDID(BROADCOM, BCM5703),	"Broadcom BCM5703 Gigabit" },
    327 	{ VIDDID(BROADCOM, BCM5703X),	"Broadcom BCM5703X Gigabit" },
    328 	{ VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
    329 	{ VIDDID(BROADCOM, BCM5704C),	"Broadcom BCM5704C Dual Gigabit" },
    330 	{ VIDDID(BROADCOM, BCM5704S),	"Broadcom BCM5704S Dual Gigabit" },
    331 	{ VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
    332 	{ VIDDID(BROADCOM, BCM5705),	"Broadcom BCM5705 Gigabit" },
    333 	{ VIDDID(BROADCOM, BCM5705F),	"Broadcom BCM5705F Gigabit" },
    334 	{ VIDDID(BROADCOM, BCM5705K),	"Broadcom BCM5705K Gigabit" },
    335 	{ VIDDID(BROADCOM, BCM5705M),	"Broadcom BCM5705M Gigabit" },
    336 	{ VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
    337 	{ VIDDID(BROADCOM, BCM5714),	"Broadcom BCM5714 Gigabit" },
    338 	{ VIDDID(BROADCOM, BCM5714S),	"Broadcom BCM5714S Gigabit" },
    339 	{ VIDDID(BROADCOM, BCM5715),	"Broadcom BCM5715 Gigabit" },
    340 	{ VIDDID(BROADCOM, BCM5715S),	"Broadcom BCM5715S Gigabit" },
    341 	{ VIDDID(BROADCOM, BCM5717),	"Broadcom BCM5717 Gigabit" },
    342 	{ VIDDID(BROADCOM, BCM5717C),	"Broadcom BCM5717 Gigabit" },
    343 	{ VIDDID(BROADCOM, BCM5718),	"Broadcom BCM5718 Gigabit" },
    344 	{ VIDDID(BROADCOM, BCM5719),	"Broadcom BCM5719 Gigabit" },
    345 	{ VIDDID(BROADCOM, BCM5720),	"Broadcom BCM5720 Gigabit" },
    346 	{ VIDDID(BROADCOM, BCM5721),	"Broadcom BCM5721 Gigabit" },
    347 	{ VIDDID(BROADCOM, BCM5722),	"Broadcom BCM5722 Gigabit" },
    348 	{ VIDDID(BROADCOM, BCM5723),	"Broadcom BCM5723 Gigabit" },
    349 	{ VIDDID(BROADCOM, BCM5725),	"Broadcom BCM5725 Gigabit" },
    350 	{ VIDDID(BROADCOM, BCM5727),	"Broadcom BCM5727 Gigabit" },
    351 	{ VIDDID(BROADCOM, BCM5750),	"Broadcom BCM5750 Gigabit" },
    352 	{ VIDDID(BROADCOM, BCM5751),	"Broadcom BCM5751 Gigabit" },
    353 	{ VIDDID(BROADCOM, BCM5751F),	"Broadcom BCM5751F Gigabit" },
    354 	{ VIDDID(BROADCOM, BCM5751M),	"Broadcom BCM5751M Gigabit" },
    355 	{ VIDDID(BROADCOM, BCM5752),	"Broadcom BCM5752 Gigabit" },
    356 	{ VIDDID(BROADCOM, BCM5752M),	"Broadcom BCM5752M Gigabit" },
    357 	{ VIDDID(BROADCOM, BCM5753),	"Broadcom BCM5753 Gigabit" },
    358 	{ VIDDID(BROADCOM, BCM5753F),	"Broadcom BCM5753F Gigabit" },
    359 	{ VIDDID(BROADCOM, BCM5753M),	"Broadcom BCM5753M Gigabit" },
    360 	{ VIDDID(BROADCOM, BCM5754),	"Broadcom BCM5754 Gigabit" },
    361 	{ VIDDID(BROADCOM, BCM5754M),	"Broadcom BCM5754M Gigabit" },
    362 	{ VIDDID(BROADCOM, BCM5755),	"Broadcom BCM5755 Gigabit" },
    363 	{ VIDDID(BROADCOM, BCM5755M),	"Broadcom BCM5755M Gigabit" },
    364 	{ VIDDID(BROADCOM, BCM5756),	"Broadcom BCM5756 Gigabit" },
    365 	{ VIDDID(BROADCOM, BCM5761),	"Broadcom BCM5761 Gigabit" },
    366 	{ VIDDID(BROADCOM, BCM5761E),	"Broadcom BCM5761E Gigabit" },
    367 	{ VIDDID(BROADCOM, BCM5761S),	"Broadcom BCM5761S Gigabit" },
    368 	{ VIDDID(BROADCOM, BCM5761SE),	"Broadcom BCM5761SE Gigabit" },
    369 	{ VIDDID(BROADCOM, BCM5762),	"Broadcom BCM5762 Gigabit" },
    370 	{ VIDDID(BROADCOM, BCM5764),	"Broadcom BCM5764 Gigabit" },
    371 	{ VIDDID(BROADCOM, BCM5780),	"Broadcom BCM5780 Gigabit" },
    372 	{ VIDDID(BROADCOM, BCM5780S),	"Broadcom BCM5780S Gigabit" },
    373 	{ VIDDID(BROADCOM, BCM5781),	"Broadcom BCM5781 Gigabit" },
    374 	{ VIDDID(BROADCOM, BCM5782),	"Broadcom BCM5782 Gigabit" },
    375 	{ VIDDID(BROADCOM, BCM5784M),	"BCM5784M NetLink 1000baseT" },
    376 	{ VIDDID(BROADCOM, BCM5785F),	"BCM5785F NetLink 10/100" },
    377 	{ VIDDID(BROADCOM, BCM5785G),	"BCM5785G NetLink 1000baseT" },
    378 	{ VIDDID(BROADCOM, BCM5786),	"Broadcom BCM5786 Gigabit" },
    379 	{ VIDDID(BROADCOM, BCM5787),	"Broadcom BCM5787 Gigabit" },
    380 	{ VIDDID(BROADCOM, BCM5787F),	"Broadcom BCM5787F 10/100" },
    381 	{ VIDDID(BROADCOM, BCM5787M),	"Broadcom BCM5787M Gigabit" },
    382 	{ VIDDID(BROADCOM, BCM5788),	"Broadcom BCM5788 Gigabit" },
    383 	{ VIDDID(BROADCOM, BCM5789),	"Broadcom BCM5789 Gigabit" },
    384 	{ VIDDID(BROADCOM, BCM5901),	"Broadcom BCM5901 Fast" },
    385 	{ VIDDID(BROADCOM, BCM5901A2),	"Broadcom BCM5901A2 Fast" },
    386 	{ VIDDID(BROADCOM, BCM5903M),	"Broadcom BCM5903M Fast" },
    387 	{ VIDDID(BROADCOM, BCM5906),	"Broadcom BCM5906 Fast" },
    388 	{ VIDDID(BROADCOM, BCM5906M),	"Broadcom BCM5906M Fast" },
    389 	{ VIDDID(BROADCOM, BCM57760),	"Broadcom BCM57760 Gigabit" },
    390 	{ VIDDID(BROADCOM, BCM57761),	"Broadcom BCM57761 Gigabit" },
    391 	{ VIDDID(BROADCOM, BCM57762),	"Broadcom BCM57762 Gigabit" },
    392 	{ VIDDID(BROADCOM, BCM57764),	"Broadcom BCM57764 Gigabit" },
    393 	{ VIDDID(BROADCOM, BCM57765),	"Broadcom BCM57765 Gigabit" },
    394 	{ VIDDID(BROADCOM, BCM57766),	"Broadcom BCM57766 Gigabit" },
    395 	{ VIDDID(BROADCOM, BCM57767),	"Broadcom BCM57767 Gigabit" },
    396 	{ VIDDID(BROADCOM, BCM57780),	"Broadcom BCM57780 Gigabit" },
    397 	{ VIDDID(BROADCOM, BCM57781),	"Broadcom BCM57781 Gigabit" },
    398 	{ VIDDID(BROADCOM, BCM57782),	"Broadcom BCM57782 Gigabit" },
    399 	{ VIDDID(BROADCOM, BCM57785),	"Broadcom BCM57785 Gigabit" },
    400 	{ VIDDID(BROADCOM, BCM57786),	"Broadcom BCM57786 Gigabit" },
    401 	{ VIDDID(BROADCOM, BCM57787),	"Broadcom BCM57787 Gigabit" },
    402 	{ VIDDID(BROADCOM, BCM57788),	"Broadcom BCM57788 Gigabit" },
    403 	{ VIDDID(BROADCOM, BCM57790),	"Broadcom BCM57790 Gigabit" },
    404 	{ VIDDID(BROADCOM, BCM57791),	"Broadcom BCM57791 Gigabit" },
    405 	{ VIDDID(BROADCOM, BCM57795),	"Broadcom BCM57795 Gigabit" },
    406 	{ VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
    407 	{ VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
    408 	{ VIDDID(3COM, 3C996),		"3Com 3c996 Gigabit" },
    409 	{ VIDDID(FUJITSU4, PW008GE4),	"Fujitsu PW008GE4 Gigabit" },
    410 	{ VIDDID(FUJITSU4, PW008GE5),	"Fujitsu PW008GE5 Gigabit" },
    411 	{ VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
    412 	{ 0, 0, NULL },
    413 };
    414 
    415 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
    416 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
    417 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
    418 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
    419 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
    420 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
    421 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
    422 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
    423 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
    424 
    425 static const struct bge_revision {
    426 	uint32_t		br_chipid;
    427 	const char		*br_name;
    428 } bge_revisions[] = {
    429 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    430 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    431 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    432 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    433 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    434 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    435 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    436 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    437 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    438 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    439 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    440 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    441 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    442 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    443 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    444 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    445 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    446 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    447 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    448 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    449 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    450 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    451 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    452 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    453 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    454 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    455 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    456 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    457 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    458 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    459 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    460 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    461 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    462 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    463 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    464 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    465 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    466 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    467 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    468 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    469 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    470 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    471 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    472 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    473 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    474 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    475 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    476 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    477 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    478 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    479 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    480 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    481 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    482 	{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
    483 	{ BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
    484 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    485 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    486 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
    487 	/* 5754 and 5787 share the same ASIC ID */
    488 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    489 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    490 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    491 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    492 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    493 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    494 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    495 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    496 	{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
    497 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    498 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    499 
    500 	{ 0, NULL }
    501 };
    502 
    503 /*
    504  * Some defaults for major revisions, so that newer steppings
    505  * that we don't know about have a shot at working.
    506  */
    507 static const struct bge_revision bge_majorrevs[] = {
    508 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    509 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    510 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    511 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    512 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    513 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    514 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    515 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    516 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    517 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    518 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    519 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    520 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    521 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    522 	/* 5754 and 5787 share the same ASIC ID */
    523 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    524 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    525 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    526 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    527 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    528 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    529 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    530 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    531 	{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
    532 
    533 	{ 0, NULL }
    534 };
    535 
    536 static int bge_allow_asf = 1;
    537 
    538 #ifndef BGE_WATCHDOG_TIMEOUT
    539 #define BGE_WATCHDOG_TIMEOUT 5
    540 #endif
    541 static int bge_watchdog_timeout = BGE_WATCHDOG_TIMEOUT;
    542 
    543 
    544 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    545     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    546 
    547 static uint32_t
    548 bge_readmem_ind(struct bge_softc *sc, int off)
    549 {
    550 	pcireg_t val;
    551 
    552 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    553 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    554 		return 0;
    555 
    556 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    557 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    558 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    559 	return val;
    560 }
    561 
    562 static void
    563 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    564 {
    565 
    566 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    567 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    568 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    569 }
    570 
    571 /*
    572  * PCI Express only
    573  */
    574 static void
    575 bge_set_max_readrq(struct bge_softc *sc)
    576 {
    577 	pcireg_t val;
    578 
    579 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    580 	    + PCIE_DCSR);
    581 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    582 	switch (sc->bge_expmrq) {
    583 	case 2048:
    584 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    585 		break;
    586 	case 4096:
    587 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    588 		break;
    589 	default:
    590 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    591 		break;
    592 	}
    593 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    594 	    + PCIE_DCSR, val);
    595 }
    596 
    597 #ifdef notdef
    598 static uint32_t
    599 bge_readreg_ind(struct bge_softc *sc, int off)
    600 {
    601 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    602 	return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
    603 }
    604 #endif
    605 
    606 static void
    607 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    608 {
    609 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    610 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    611 }
    612 
    613 static void
    614 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    615 {
    616 	CSR_WRITE_4(sc, off, val);
    617 }
    618 
    619 static void
    620 bge_writembx(struct bge_softc *sc, int off, int val)
    621 {
    622 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    623 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    624 
    625 	CSR_WRITE_4(sc, off, val);
    626 }
    627 
    628 static void
    629 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    630 {
    631 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    632 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    633 
    634 	CSR_WRITE_4_FLUSH(sc, off, val);
    635 }
    636 
    637 /*
    638  * Clear all stale locks and select the lock for this driver instance.
    639  */
    640 void
    641 bge_ape_lock_init(struct bge_softc *sc)
    642 {
    643 	struct pci_attach_args *pa = &(sc->bge_pa);
    644 	uint32_t bit, regbase;
    645 	int i;
    646 
    647 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    648 		regbase = BGE_APE_LOCK_GRANT;
    649 	else
    650 		regbase = BGE_APE_PER_LOCK_GRANT;
    651 
    652 	/* Clear any stale locks. */
    653 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    654 		switch (i) {
    655 		case BGE_APE_LOCK_PHY0:
    656 		case BGE_APE_LOCK_PHY1:
    657 		case BGE_APE_LOCK_PHY2:
    658 		case BGE_APE_LOCK_PHY3:
    659 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    660 			break;
    661 		default:
    662 			if (pa->pa_function == 0)
    663 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    664 			else
    665 				bit = (1 << pa->pa_function);
    666 		}
    667 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    668 	}
    669 
    670 	/* Select the PHY lock based on the device's function number. */
    671 	switch (pa->pa_function) {
    672 	case 0:
    673 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    674 		break;
    675 	case 1:
    676 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    677 		break;
    678 	case 2:
    679 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    680 		break;
    681 	case 3:
    682 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    683 		break;
    684 	default:
    685 		printf("%s: PHY lock not supported on function\n",
    686 		    device_xname(sc->bge_dev));
    687 		break;
    688 	}
    689 }
    690 
    691 /*
    692  * Check for APE firmware, set flags, and print version info.
    693  */
    694 void
    695 bge_ape_read_fw_ver(struct bge_softc *sc)
    696 {
    697 	const char *fwtype;
    698 	uint32_t apedata, features;
    699 
    700 	/* Check for a valid APE signature in shared memory. */
    701 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    702 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    703 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    704 		return;
    705 	}
    706 
    707 	/* Check if APE firmware is running. */
    708 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    709 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    710 		printf("%s: APE signature found but FW status not ready! "
    711 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    712 		return;
    713 	}
    714 
    715 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    716 
    717 	/* Fetch the APE firwmare type and version. */
    718 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    719 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    720 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    721 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    722 		fwtype = "NCSI";
    723 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    724 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    725 		fwtype = "DASH";
    726 	} else
    727 		fwtype = "UNKN";
    728 
    729 	/* Print the APE firmware version. */
    730 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
    731 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    732 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    733 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    734 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    735 }
    736 
    737 int
    738 bge_ape_lock(struct bge_softc *sc, int locknum)
    739 {
    740 	struct pci_attach_args *pa = &(sc->bge_pa);
    741 	uint32_t bit, gnt, req, status;
    742 	int i, off;
    743 
    744 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    745 		return 0;
    746 
    747 	/* Lock request/grant registers have different bases. */
    748 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    749 		req = BGE_APE_LOCK_REQ;
    750 		gnt = BGE_APE_LOCK_GRANT;
    751 	} else {
    752 		req = BGE_APE_PER_LOCK_REQ;
    753 		gnt = BGE_APE_PER_LOCK_GRANT;
    754 	}
    755 
    756 	off = 4 * locknum;
    757 
    758 	switch (locknum) {
    759 	case BGE_APE_LOCK_GPIO:
    760 		/* Lock required when using GPIO. */
    761 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    762 			return 0;
    763 		if (pa->pa_function == 0)
    764 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    765 		else
    766 			bit = (1 << pa->pa_function);
    767 		break;
    768 	case BGE_APE_LOCK_GRC:
    769 		/* Lock required to reset the device. */
    770 		if (pa->pa_function == 0)
    771 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    772 		else
    773 			bit = (1 << pa->pa_function);
    774 		break;
    775 	case BGE_APE_LOCK_MEM:
    776 		/* Lock required when accessing certain APE memory. */
    777 		if (pa->pa_function == 0)
    778 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    779 		else
    780 			bit = (1 << pa->pa_function);
    781 		break;
    782 	case BGE_APE_LOCK_PHY0:
    783 	case BGE_APE_LOCK_PHY1:
    784 	case BGE_APE_LOCK_PHY2:
    785 	case BGE_APE_LOCK_PHY3:
    786 		/* Lock required when accessing PHYs. */
    787 		bit = BGE_APE_LOCK_REQ_DRIVER0;
    788 		break;
    789 	default:
    790 		return EINVAL;
    791 	}
    792 
    793 	/* Request a lock. */
    794 	APE_WRITE_4_FLUSH(sc, req + off, bit);
    795 
    796 	/* Wait up to 1 second to acquire lock. */
    797 	for (i = 0; i < 20000; i++) {
    798 		status = APE_READ_4(sc, gnt + off);
    799 		if (status == bit)
    800 			break;
    801 		DELAY(50);
    802 	}
    803 
    804 	/* Handle any errors. */
    805 	if (status != bit) {
    806 		printf("%s: APE lock %d request failed! "
    807 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
    808 		    device_xname(sc->bge_dev),
    809 		    locknum, req + off, bit & 0xFFFF, gnt + off,
    810 		    status & 0xFFFF);
    811 		/* Revoke the lock request. */
    812 		APE_WRITE_4(sc, gnt + off, bit);
    813 		return EBUSY;
    814 	}
    815 
    816 	return 0;
    817 }
    818 
    819 void
    820 bge_ape_unlock(struct bge_softc *sc, int locknum)
    821 {
    822 	struct pci_attach_args *pa = &(sc->bge_pa);
    823 	uint32_t bit, gnt;
    824 	int off;
    825 
    826 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    827 		return;
    828 
    829 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    830 		gnt = BGE_APE_LOCK_GRANT;
    831 	else
    832 		gnt = BGE_APE_PER_LOCK_GRANT;
    833 
    834 	off = 4 * locknum;
    835 
    836 	switch (locknum) {
    837 	case BGE_APE_LOCK_GPIO:
    838 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    839 			return;
    840 		if (pa->pa_function == 0)
    841 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    842 		else
    843 			bit = (1 << pa->pa_function);
    844 		break;
    845 	case BGE_APE_LOCK_GRC:
    846 		if (pa->pa_function == 0)
    847 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    848 		else
    849 			bit = (1 << pa->pa_function);
    850 		break;
    851 	case BGE_APE_LOCK_MEM:
    852 		if (pa->pa_function == 0)
    853 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    854 		else
    855 			bit = (1 << pa->pa_function);
    856 		break;
    857 	case BGE_APE_LOCK_PHY0:
    858 	case BGE_APE_LOCK_PHY1:
    859 	case BGE_APE_LOCK_PHY2:
    860 	case BGE_APE_LOCK_PHY3:
    861 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
    862 		break;
    863 	default:
    864 		return;
    865 	}
    866 
    867 	/* Write and flush for consecutive bge_ape_lock() */
    868 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
    869 }
    870 
    871 /*
    872  * Send an event to the APE firmware.
    873  */
    874 void
    875 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
    876 {
    877 	uint32_t apedata;
    878 	int i;
    879 
    880 	/* NCSI does not support APE events. */
    881 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    882 		return;
    883 
    884 	/* Wait up to 1ms for APE to service previous event. */
    885 	for (i = 10; i > 0; i--) {
    886 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
    887 			break;
    888 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
    889 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
    890 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
    891 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
    892 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    893 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
    894 			break;
    895 		}
    896 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    897 		DELAY(100);
    898 	}
    899 	if (i == 0) {
    900 		printf("%s: APE event 0x%08x send timed out\n",
    901 		    device_xname(sc->bge_dev), event);
    902 	}
    903 }
    904 
    905 void
    906 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
    907 {
    908 	uint32_t apedata, event;
    909 
    910 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    911 		return;
    912 
    913 	switch (kind) {
    914 	case BGE_RESET_START:
    915 		/* If this is the first load, clear the load counter. */
    916 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
    917 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
    918 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
    919 		else {
    920 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
    921 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
    922 		}
    923 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
    924 		    BGE_APE_HOST_SEG_SIG_MAGIC);
    925 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
    926 		    BGE_APE_HOST_SEG_LEN_MAGIC);
    927 
    928 		/* Add some version info if bge(4) supports it. */
    929 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
    930 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
    931 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
    932 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
    933 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
    934 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
    935 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    936 		    BGE_APE_HOST_DRVR_STATE_START);
    937 		event = BGE_APE_EVENT_STATUS_STATE_START;
    938 		break;
    939 	case BGE_RESET_SHUTDOWN:
    940 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    941 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
    942 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
    943 		break;
    944 	case BGE_RESET_SUSPEND:
    945 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
    946 		break;
    947 	default:
    948 		return;
    949 	}
    950 
    951 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
    952 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
    953 }
    954 
    955 static uint8_t
    956 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    957 {
    958 	uint32_t access, byte = 0;
    959 	int i;
    960 
    961 	/* Lock. */
    962 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    963 	for (i = 0; i < 8000; i++) {
    964 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    965 			break;
    966 		DELAY(20);
    967 	}
    968 	if (i == 8000)
    969 		return 1;
    970 
    971 	/* Enable access. */
    972 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    973 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    974 
    975 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    976 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    977 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    978 		DELAY(10);
    979 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    980 			DELAY(10);
    981 			break;
    982 		}
    983 	}
    984 
    985 	if (i == BGE_TIMEOUT * 10) {
    986 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    987 		return 1;
    988 	}
    989 
    990 	/* Get result. */
    991 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    992 
    993 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    994 
    995 	/* Disable access. */
    996 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    997 
    998 	/* Unlock. */
    999 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
   1000 
   1001 	return 0;
   1002 }
   1003 
   1004 /*
   1005  * Read a sequence of bytes from NVRAM.
   1006  */
   1007 static int
   1008 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
   1009 {
   1010 	int error = 0, i;
   1011 	uint8_t byte = 0;
   1012 
   1013 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1014 		return 1;
   1015 
   1016 	for (i = 0; i < cnt; i++) {
   1017 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1018 		if (error)
   1019 			break;
   1020 		*(dest + i) = byte;
   1021 	}
   1022 
   1023 	return error ? 1 : 0;
   1024 }
   1025 
   1026 /*
   1027  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1028  * BCM570x supports both the traditional bitbang interface and an
   1029  * auto access interface for reading the EEPROM. We use the auto
   1030  * access method.
   1031  */
   1032 static uint8_t
   1033 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1034 {
   1035 	int i;
   1036 	uint32_t byte = 0;
   1037 
   1038 	/*
   1039 	 * Enable use of auto EEPROM access so we can avoid
   1040 	 * having to use the bitbang method.
   1041 	 */
   1042 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1043 
   1044 	/* Reset the EEPROM, load the clock period. */
   1045 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   1046 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1047 	DELAY(20);
   1048 
   1049 	/* Issue the read EEPROM command. */
   1050 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1051 
   1052 	/* Wait for completion */
   1053 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1054 		DELAY(10);
   1055 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1056 			break;
   1057 	}
   1058 
   1059 	if (i == BGE_TIMEOUT * 10) {
   1060 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1061 		return 1;
   1062 	}
   1063 
   1064 	/* Get result. */
   1065 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1066 
   1067 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1068 
   1069 	return 0;
   1070 }
   1071 
   1072 /*
   1073  * Read a sequence of bytes from the EEPROM.
   1074  */
   1075 static int
   1076 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1077 {
   1078 	int error = 0, i;
   1079 	uint8_t byte = 0;
   1080 	char *dest = destv;
   1081 
   1082 	for (i = 0; i < cnt; i++) {
   1083 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1084 		if (error)
   1085 			break;
   1086 		*(dest + i) = byte;
   1087 	}
   1088 
   1089 	return error ? 1 : 0;
   1090 }
   1091 
   1092 static int
   1093 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
   1094 {
   1095 	struct bge_softc * const sc = device_private(dev);
   1096 	uint32_t data;
   1097 	uint32_t autopoll;
   1098 	int rv = 0;
   1099 	int i;
   1100 
   1101 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1102 		return -1;
   1103 
   1104 	/* Reading with autopolling on may trigger PCI errors */
   1105 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1106 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1107 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1108 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1109 		DELAY(80);
   1110 	}
   1111 
   1112 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1113 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1114 
   1115 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1116 		delay(10);
   1117 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1118 		if (!(data & BGE_MICOMM_BUSY)) {
   1119 			DELAY(5);
   1120 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1121 			break;
   1122 		}
   1123 	}
   1124 
   1125 	if (i == BGE_TIMEOUT) {
   1126 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1127 		rv = ETIMEDOUT;
   1128 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1129 		/* XXX This error occurs on some devices while attaching. */
   1130 		aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
   1131 		rv = EIO;
   1132 	} else
   1133 		*val = data & BGE_MICOMM_DATA;
   1134 
   1135 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1136 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1137 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1138 		DELAY(80);
   1139 	}
   1140 
   1141 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1142 
   1143 	return rv;
   1144 }
   1145 
   1146 static int
   1147 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
   1148 {
   1149 	struct bge_softc * const sc = device_private(dev);
   1150 	uint32_t data, autopoll;
   1151 	int rv = 0;
   1152 	int i;
   1153 
   1154 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1155 	    (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
   1156 		return 0;
   1157 
   1158 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1159 		return -1;
   1160 
   1161 	/* Reading with autopolling on may trigger PCI errors */
   1162 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1163 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1164 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1165 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1166 		DELAY(80);
   1167 	}
   1168 
   1169 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1170 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1171 
   1172 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1173 		delay(10);
   1174 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1175 		if (!(data & BGE_MICOMM_BUSY)) {
   1176 			delay(5);
   1177 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1178 			break;
   1179 		}
   1180 	}
   1181 
   1182 	if (i == BGE_TIMEOUT) {
   1183 		aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
   1184 		rv = ETIMEDOUT;
   1185 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1186 		aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
   1187 		rv = EIO;
   1188 	}
   1189 
   1190 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1191 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1192 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1193 		delay(80);
   1194 	}
   1195 
   1196 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1197 
   1198 	return rv;
   1199 }
   1200 
   1201 static void
   1202 bge_miibus_statchg(struct ifnet *ifp)
   1203 {
   1204 	struct bge_softc * const sc = ifp->if_softc;
   1205 	struct mii_data *mii = &sc->bge_mii;
   1206 	uint32_t mac_mode, rx_mode, tx_mode;
   1207 
   1208 	/*
   1209 	 * Get flow control negotiation result.
   1210 	 */
   1211 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1212 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
   1213 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1214 
   1215 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1216 	    mii->mii_media_status & IFM_ACTIVE &&
   1217 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   1218 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
   1219 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1220 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
   1221 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   1222 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   1223 
   1224 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   1225 		return;
   1226 
   1227 	/* Set the port mode (MII/GMII) to match the link speed. */
   1228 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1229 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1230 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1231 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1232 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1233 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1234 		mac_mode |= BGE_PORTMODE_GMII;
   1235 	else
   1236 		mac_mode |= BGE_PORTMODE_MII;
   1237 
   1238 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1239 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1240 	if ((mii->mii_media_active & IFM_FDX) != 0) {
   1241 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1242 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1243 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1244 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1245 	} else
   1246 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1247 
   1248 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1249 	DELAY(40);
   1250 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1251 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1252 }
   1253 
   1254 /*
   1255  * Update rx threshold levels to values in a particular slot
   1256  * of the interrupt-mitigation table bge_rx_threshes.
   1257  */
   1258 static void
   1259 bge_set_thresh(struct ifnet *ifp, int lvl)
   1260 {
   1261 	struct bge_softc * const sc = ifp->if_softc;
   1262 
   1263 	/*
   1264 	 * For now, just save the new Rx-intr thresholds and record
   1265 	 * that a threshold update is pending.  Updating the hardware
   1266 	 * registers here (even at splhigh()) is observed to
   1267 	 * occasionally cause glitches where Rx-interrupts are not
   1268 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1269 	 */
   1270 	mutex_enter(sc->sc_core_lock);
   1271 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1272 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1273 	sc->bge_pending_rxintr_change = 1;
   1274 	mutex_exit(sc->sc_core_lock);
   1275 }
   1276 
   1277 
   1278 /*
   1279  * Update Rx thresholds of all bge devices
   1280  */
   1281 static void
   1282 bge_update_all_threshes(int lvl)
   1283 {
   1284 	const char * const namebuf = "bge";
   1285 	const size_t namelen = strlen(namebuf);
   1286 	struct ifnet *ifp;
   1287 
   1288 	if (lvl < 0)
   1289 		lvl = 0;
   1290 	else if (lvl >= NBGE_RX_THRESH)
   1291 		lvl = NBGE_RX_THRESH - 1;
   1292 
   1293 	/*
   1294 	 * Now search all the interfaces for this name/number
   1295 	 */
   1296 	int s = pserialize_read_enter();
   1297 	IFNET_READER_FOREACH(ifp) {
   1298 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1299 			continue;
   1300 		/* We got a match: update if doing auto-threshold-tuning */
   1301 		if (bge_auto_thresh)
   1302 			bge_set_thresh(ifp, lvl);
   1303 	}
   1304 	pserialize_read_exit(s);
   1305 }
   1306 
   1307 /*
   1308  * Handle events that have triggered interrupts.
   1309  */
   1310 static void
   1311 bge_handle_events(struct bge_softc *sc)
   1312 {
   1313 
   1314 	return;
   1315 }
   1316 
   1317 /*
   1318  * Memory management for jumbo frames.
   1319  */
   1320 
   1321 static int
   1322 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1323 {
   1324 	char *ptr, *kva;
   1325 	int i, rseg, state, error;
   1326 	struct bge_jpool_entry *entry;
   1327 
   1328 	state = error = 0;
   1329 
   1330 	/* Grab a big chunk o' storage. */
   1331 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1332 	    &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_WAITOK)) {
   1333 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1334 		return ENOBUFS;
   1335 	}
   1336 
   1337 	state = 1;
   1338 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg,
   1339 	    rseg, BGE_JMEM, (void **)&kva, BUS_DMA_WAITOK)) {
   1340 		aprint_error_dev(sc->bge_dev,
   1341 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1342 		error = ENOBUFS;
   1343 		goto out;
   1344 	}
   1345 
   1346 	state = 2;
   1347 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1348 	    BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1349 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1350 		error = ENOBUFS;
   1351 		goto out;
   1352 	}
   1353 
   1354 	state = 3;
   1355 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1356 	    kva, BGE_JMEM, NULL, BUS_DMA_WAITOK)) {
   1357 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1358 		error = ENOBUFS;
   1359 		goto out;
   1360 	}
   1361 
   1362 	state = 4;
   1363 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1364 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1365 
   1366 	SLIST_INIT(&sc->bge_jfree_listhead);
   1367 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1368 
   1369 	/*
   1370 	 * Now divide it up into 9K pieces and save the addresses
   1371 	 * in an array.
   1372 	 */
   1373 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1374 	for (i = 0; i < BGE_JSLOTS; i++) {
   1375 		sc->bge_cdata.bge_jslots[i] = ptr;
   1376 		ptr += BGE_JLEN;
   1377 		entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
   1378 		entry->slot = i;
   1379 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1380 				 entry, jpool_entries);
   1381 	}
   1382 out:
   1383 	if (error != 0) {
   1384 		switch (state) {
   1385 		case 4:
   1386 			bus_dmamap_unload(sc->bge_dmatag,
   1387 			    sc->bge_cdata.bge_rx_jumbo_map);
   1388 			/* FALLTHROUGH */
   1389 		case 3:
   1390 			bus_dmamap_destroy(sc->bge_dmatag,
   1391 			    sc->bge_cdata.bge_rx_jumbo_map);
   1392 			/* FALLTHROUGH */
   1393 		case 2:
   1394 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1395 			/* FALLTHROUGH */
   1396 		case 1:
   1397 			bus_dmamem_free(sc->bge_dmatag,
   1398 			    &sc->bge_cdata.bge_rx_jumbo_seg, rseg);
   1399 			break;
   1400 		default:
   1401 			break;
   1402 		}
   1403 	}
   1404 
   1405 	return error;
   1406 }
   1407 
   1408 static void
   1409 bge_free_jumbo_mem(struct bge_softc *sc)
   1410 {
   1411 	struct bge_jpool_entry *entry, *tmp;
   1412 
   1413 	KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead));
   1414 
   1415 	SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) {
   1416 		kmem_free(entry, sizeof(*entry));
   1417 	}
   1418 
   1419 	bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
   1420 
   1421 	bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
   1422 
   1423 	bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM);
   1424 
   1425 	bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1);
   1426 }
   1427 
   1428 /*
   1429  * Allocate a jumbo buffer.
   1430  */
   1431 static void *
   1432 bge_jalloc(struct bge_softc *sc)
   1433 {
   1434 	struct bge_jpool_entry	 *entry;
   1435 
   1436 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1437 
   1438 	if (entry == NULL) {
   1439 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1440 		return NULL;
   1441 	}
   1442 
   1443 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1444 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1445 	return sc->bge_cdata.bge_jslots[entry->slot];
   1446 }
   1447 
   1448 /*
   1449  * Release a jumbo buffer.
   1450  */
   1451 static void
   1452 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1453 {
   1454 	struct bge_jpool_entry *entry;
   1455 	struct bge_softc * const sc = arg;
   1456 
   1457 	if (sc == NULL)
   1458 		panic("bge_jfree: can't find softc pointer!");
   1459 
   1460 	/* calculate the slot this buffer belongs to */
   1461 	int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1462 
   1463 	if (i < 0 || i >= BGE_JSLOTS)
   1464 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1465 
   1466 	mutex_enter(sc->sc_core_lock);
   1467 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1468 	if (entry == NULL)
   1469 		panic("bge_jfree: buffer not in use!");
   1470 	entry->slot = i;
   1471 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1472 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1473 	mutex_exit(sc->sc_core_lock);
   1474 
   1475 	if (__predict_true(m != NULL))
   1476 		pool_cache_put(mb_cache, m);
   1477 }
   1478 
   1479 
   1480 /*
   1481  * Initialize a standard receive ring descriptor.
   1482  */
   1483 static int
   1484 bge_newbuf_std(struct bge_softc *sc, int i)
   1485 {
   1486 	const bus_dmamap_t dmamap = sc->bge_cdata.bge_rx_std_map[i];
   1487 	struct mbuf *m;
   1488 
   1489 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1490 	if (m == NULL)
   1491 		return ENOBUFS;
   1492 
   1493 	MCLGET(m, M_DONTWAIT);
   1494 	if (!(m->m_flags & M_EXT)) {
   1495 		m_freem(m);
   1496 		return ENOBUFS;
   1497 	}
   1498 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1499 
   1500 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1501 	    m_adj(m, ETHER_ALIGN);
   1502 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,
   1503 	    BUS_DMA_READ | BUS_DMA_NOWAIT)) {
   1504 		m_freem(m);
   1505 		return ENOBUFS;
   1506 	}
   1507 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1508 	    BUS_DMASYNC_PREREAD);
   1509 	sc->bge_cdata.bge_rx_std_chain[i] = m;
   1510 
   1511 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1512 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1513 		i * sizeof(struct bge_rx_bd),
   1514 	    sizeof(struct bge_rx_bd),
   1515 	    BUS_DMASYNC_POSTWRITE);
   1516 
   1517 	struct bge_rx_bd * const r = &sc->bge_rdata->bge_rx_std_ring[i];
   1518 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1519 	r->bge_flags = BGE_RXBDFLAG_END;
   1520 	r->bge_len = m->m_len;
   1521 	r->bge_idx = i;
   1522 
   1523 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1524 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1525 		i * sizeof(struct bge_rx_bd),
   1526 	    sizeof(struct bge_rx_bd),
   1527 	    BUS_DMASYNC_PREWRITE);
   1528 
   1529 	sc->bge_std_cnt++;
   1530 
   1531 	return 0;
   1532 }
   1533 
   1534 /*
   1535  * Initialize a jumbo receive ring descriptor. This allocates
   1536  * a jumbo buffer from the pool managed internally by the driver.
   1537  */
   1538 static int
   1539 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1540 {
   1541 	struct mbuf *m_new = NULL;
   1542 	struct bge_rx_bd *r;
   1543 	void *buf = NULL;
   1544 
   1545 	if (m == NULL) {
   1546 
   1547 		/* Allocate the mbuf. */
   1548 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1549 		if (m_new == NULL)
   1550 			return ENOBUFS;
   1551 
   1552 		/* Allocate the jumbo buffer */
   1553 		buf = bge_jalloc(sc);
   1554 		if (buf == NULL) {
   1555 			m_freem(m_new);
   1556 			aprint_error_dev(sc->bge_dev,
   1557 			    "jumbo allocation failed -- packet dropped!\n");
   1558 			return ENOBUFS;
   1559 		}
   1560 
   1561 		/* Attach the buffer to the mbuf. */
   1562 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1563 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1564 		    bge_jfree, sc);
   1565 		m_new->m_flags |= M_EXT_RW;
   1566 	} else {
   1567 		m_new = m;
   1568 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1569 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1570 	}
   1571 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1572 	    m_adj(m_new, ETHER_ALIGN);
   1573 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1574 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   1575 	    BGE_JLEN, BUS_DMASYNC_PREREAD);
   1576 
   1577 	/* Set up the descriptor. */
   1578 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1579 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1580 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1581 	r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
   1582 	r->bge_len = m_new->m_len;
   1583 	r->bge_idx = i;
   1584 
   1585 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1586 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1587 		i * sizeof(struct bge_rx_bd),
   1588 	    sizeof(struct bge_rx_bd),
   1589 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1590 
   1591 	return 0;
   1592 }
   1593 
   1594 static int
   1595 bge_init_rx_ring_std(struct bge_softc *sc)
   1596 {
   1597 	bus_dmamap_t dmamap;
   1598 	int error = 0;
   1599 	u_int i;
   1600 
   1601 	if (sc->bge_flags & BGEF_RXRING_VALID)
   1602 		return 0;
   1603 
   1604 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1605 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1606 		    MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dmamap);
   1607 		if (error)
   1608 			goto uncreate;
   1609 
   1610 		sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1611 		memset(&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1612 		    sizeof(struct bge_rx_bd));
   1613 	}
   1614 
   1615 	sc->bge_std = i - 1;
   1616 	sc->bge_std_cnt = 0;
   1617 	bge_fill_rx_ring_std(sc);
   1618 
   1619 	sc->bge_flags |= BGEF_RXRING_VALID;
   1620 
   1621 	return 0;
   1622 
   1623 uncreate:
   1624 	while (--i) {
   1625 		bus_dmamap_destroy(sc->bge_dmatag,
   1626 		    sc->bge_cdata.bge_rx_std_map[i]);
   1627 	}
   1628 	return error;
   1629 }
   1630 
   1631 static void
   1632 bge_fill_rx_ring_std(struct bge_softc *sc)
   1633 {
   1634 	int i = sc->bge_std;
   1635 	bool post = false;
   1636 
   1637 	while (sc->bge_std_cnt < BGE_STD_RX_RING_CNT) {
   1638 		BGE_INC(i, BGE_STD_RX_RING_CNT);
   1639 
   1640 		if (bge_newbuf_std(sc, i) != 0)
   1641 			break;
   1642 
   1643 		sc->bge_std = i;
   1644 		post = true;
   1645 	}
   1646 
   1647 	if (post)
   1648 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1649 }
   1650 
   1651 
   1652 static void
   1653 bge_free_rx_ring_std(struct bge_softc *sc)
   1654 {
   1655 
   1656 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
   1657 		return;
   1658 
   1659 	for (u_int i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1660 		const bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i];
   1661 		struct mbuf * const m = sc->bge_cdata.bge_rx_std_chain[i];
   1662 		if (m != NULL) {
   1663 			bus_dmamap_sync(sc->bge_dmatag, dmap, 0,
   1664 			    dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1665 			bus_dmamap_unload(sc->bge_dmatag, dmap);
   1666 			m_freem(m);
   1667 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1668 		}
   1669 		bus_dmamap_destroy(sc->bge_dmatag,
   1670 		    sc->bge_cdata.bge_rx_std_map[i]);
   1671 		sc->bge_cdata.bge_rx_std_map[i] = NULL;
   1672 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1673 		    sizeof(struct bge_rx_bd));
   1674 	}
   1675 
   1676 	sc->bge_flags &= ~BGEF_RXRING_VALID;
   1677 }
   1678 
   1679 static int
   1680 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1681 {
   1682 	int i;
   1683 	volatile struct bge_rcb *rcb;
   1684 
   1685 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
   1686 		return 0;
   1687 
   1688 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1689 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1690 			return ENOBUFS;
   1691 	}
   1692 
   1693 	sc->bge_jumbo = i - 1;
   1694 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
   1695 
   1696 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1697 	rcb->bge_maxlen_flags = 0;
   1698 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1699 
   1700 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1701 
   1702 	return 0;
   1703 }
   1704 
   1705 static void
   1706 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1707 {
   1708 	int i;
   1709 
   1710 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
   1711 		return;
   1712 
   1713 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1714 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1715 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1716 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1717 		}
   1718 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1719 		    sizeof(struct bge_rx_bd));
   1720 	}
   1721 
   1722 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
   1723 }
   1724 
   1725 static void
   1726 bge_free_tx_ring(struct bge_softc *sc, bool disable)
   1727 {
   1728 	int i;
   1729 	struct txdmamap_pool_entry *dma;
   1730 
   1731 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
   1732 		return;
   1733 
   1734 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1735 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1736 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1737 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1738 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1739 					    link);
   1740 			sc->txdma[i] = 0;
   1741 		}
   1742 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1743 		    sizeof(struct bge_tx_bd));
   1744 	}
   1745 
   1746 	if (disable) {
   1747 		while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1748 			SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1749 			bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1750 			if (sc->bge_dma64) {
   1751 				bus_dmamap_destroy(sc->bge_dmatag32,
   1752 				    dma->dmamap32);
   1753 			}
   1754 			kmem_free(dma, sizeof(*dma));
   1755 		}
   1756 		SLIST_INIT(&sc->txdma_list);
   1757 	}
   1758 
   1759 	sc->bge_flags &= ~BGEF_TXRING_VALID;
   1760 }
   1761 
   1762 static int
   1763 bge_init_tx_ring(struct bge_softc *sc)
   1764 {
   1765 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   1766 	int i;
   1767 	bus_dmamap_t dmamap, dmamap32;
   1768 	bus_size_t maxsegsz;
   1769 	struct txdmamap_pool_entry *dma;
   1770 
   1771 	if (sc->bge_flags & BGEF_TXRING_VALID)
   1772 		return 0;
   1773 
   1774 	sc->bge_txcnt = 0;
   1775 	sc->bge_tx_saved_considx = 0;
   1776 
   1777 	/* Initialize transmit producer index for host-memory send ring. */
   1778 	sc->bge_tx_prodidx = 0;
   1779 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1780 	/* 5700 b2 errata */
   1781 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1782 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1783 
   1784 	/* NIC-memory send ring not used; initialize to zero. */
   1785 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1786 	/* 5700 b2 errata */
   1787 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1788 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1789 
   1790 	/* Limit DMA segment size for some chips */
   1791 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
   1792 	    (ifp->if_mtu <= ETHERMTU))
   1793 		maxsegsz = 2048;
   1794 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   1795 		maxsegsz = 4096;
   1796 	else
   1797 		maxsegsz = ETHER_MAX_LEN_JUMBO;
   1798 
   1799 	if (SLIST_FIRST(&sc->txdma_list) != NULL)
   1800 		goto alloc_done;
   1801 
   1802 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1803 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1804 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1805 		    &dmamap))
   1806 			return ENOBUFS;
   1807 		if (dmamap == NULL)
   1808 			panic("dmamap NULL in bge_init_tx_ring");
   1809 		if (sc->bge_dma64) {
   1810 			if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
   1811 			    BGE_NTXSEG, maxsegsz, 0,
   1812 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1813 			    &dmamap32)) {
   1814 				bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1815 				return ENOBUFS;
   1816 			}
   1817 			if (dmamap32 == NULL)
   1818 				panic("dmamap32 NULL in bge_init_tx_ring");
   1819 		} else
   1820 			dmamap32 = dmamap;
   1821 		dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
   1822 		if (dma == NULL) {
   1823 			aprint_error_dev(sc->bge_dev,
   1824 			    "can't alloc txdmamap_pool_entry\n");
   1825 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1826 			if (sc->bge_dma64)
   1827 				bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
   1828 			return ENOMEM;
   1829 		}
   1830 		dma->dmamap = dmamap;
   1831 		dma->dmamap32 = dmamap32;
   1832 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1833 	}
   1834 alloc_done:
   1835 	sc->bge_flags |= BGEF_TXRING_VALID;
   1836 
   1837 	return 0;
   1838 }
   1839 
   1840 static void
   1841 bge_setmulti(struct bge_softc *sc)
   1842 {
   1843 	struct ethercom * const ec = &sc->ethercom;
   1844 	struct ether_multi	*enm;
   1845 	struct ether_multistep	step;
   1846 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1847 	uint32_t		h;
   1848 	int			i;
   1849 
   1850 	KASSERT(mutex_owned(sc->sc_core_lock));
   1851 	if (sc->bge_if_flags & IFF_PROMISC)
   1852 		goto allmulti;
   1853 
   1854 	/* Now program new ones. */
   1855 	ETHER_LOCK(ec);
   1856 	ETHER_FIRST_MULTI(step, ec, enm);
   1857 	while (enm != NULL) {
   1858 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1859 			/*
   1860 			 * We must listen to a range of multicast addresses.
   1861 			 * For now, just accept all multicasts, rather than
   1862 			 * trying to set only those filter bits needed to match
   1863 			 * the range.  (At this time, the only use of address
   1864 			 * ranges is for IP multicast routing, for which the
   1865 			 * range is big enough to require all bits set.)
   1866 			 */
   1867 			ETHER_UNLOCK(ec);
   1868 			goto allmulti;
   1869 		}
   1870 
   1871 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1872 
   1873 		/* Just want the 7 least-significant bits. */
   1874 		h &= 0x7f;
   1875 
   1876 		hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
   1877 		ETHER_NEXT_MULTI(step, enm);
   1878 	}
   1879 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   1880 	ETHER_UNLOCK(ec);
   1881 
   1882 	goto setit;
   1883 
   1884  allmulti:
   1885 	ETHER_LOCK(ec);
   1886 	ec->ec_flags |= ETHER_F_ALLMULTI;
   1887 	ETHER_UNLOCK(ec);
   1888 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1889 
   1890  setit:
   1891 	for (i = 0; i < 4; i++)
   1892 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1893 }
   1894 
   1895 static void
   1896 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1897 {
   1898 
   1899 	/*
   1900 	 * Some chips don't like this so only do this if ASF is enabled
   1901 	 */
   1902 	if (sc->bge_asf_mode)
   1903 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   1904 
   1905 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1906 		switch (type) {
   1907 		case BGE_RESET_START:
   1908 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1909 			    BGE_FW_DRV_STATE_START);
   1910 			break;
   1911 		case BGE_RESET_SHUTDOWN:
   1912 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1913 			    BGE_FW_DRV_STATE_UNLOAD);
   1914 			break;
   1915 		case BGE_RESET_SUSPEND:
   1916 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1917 			    BGE_FW_DRV_STATE_SUSPEND);
   1918 			break;
   1919 		}
   1920 	}
   1921 
   1922 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   1923 		bge_ape_driver_state_change(sc, type);
   1924 }
   1925 
   1926 static void
   1927 bge_sig_post_reset(struct bge_softc *sc, int type)
   1928 {
   1929 
   1930 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1931 		switch (type) {
   1932 		case BGE_RESET_START:
   1933 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1934 			    BGE_FW_DRV_STATE_START_DONE);
   1935 			/* START DONE */
   1936 			break;
   1937 		case BGE_RESET_SHUTDOWN:
   1938 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1939 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   1940 			break;
   1941 		}
   1942 	}
   1943 
   1944 	if (type == BGE_RESET_SHUTDOWN)
   1945 		bge_ape_driver_state_change(sc, type);
   1946 }
   1947 
   1948 static void
   1949 bge_sig_legacy(struct bge_softc *sc, int type)
   1950 {
   1951 
   1952 	if (sc->bge_asf_mode) {
   1953 		switch (type) {
   1954 		case BGE_RESET_START:
   1955 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1956 			    BGE_FW_DRV_STATE_START);
   1957 			break;
   1958 		case BGE_RESET_SHUTDOWN:
   1959 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1960 			    BGE_FW_DRV_STATE_UNLOAD);
   1961 			break;
   1962 		}
   1963 	}
   1964 }
   1965 
   1966 static void
   1967 bge_wait_for_event_ack(struct bge_softc *sc)
   1968 {
   1969 	int i;
   1970 
   1971 	/* wait up to 2500usec */
   1972 	for (i = 0; i < 250; i++) {
   1973 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   1974 			BGE_RX_CPU_DRV_EVENT))
   1975 			break;
   1976 		DELAY(10);
   1977 	}
   1978 }
   1979 
   1980 static void
   1981 bge_stop_fw(struct bge_softc *sc)
   1982 {
   1983 
   1984 	if (sc->bge_asf_mode) {
   1985 		bge_wait_for_event_ack(sc);
   1986 
   1987 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   1988 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   1989 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   1990 
   1991 		bge_wait_for_event_ack(sc);
   1992 	}
   1993 }
   1994 
   1995 static int
   1996 bge_poll_fw(struct bge_softc *sc)
   1997 {
   1998 	uint32_t val;
   1999 	int i;
   2000 
   2001 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2002 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2003 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2004 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2005 				break;
   2006 			DELAY(100);
   2007 		}
   2008 		if (i >= BGE_TIMEOUT) {
   2009 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2010 			return -1;
   2011 		}
   2012 	} else {
   2013 		/*
   2014 		 * Poll the value location we just wrote until
   2015 		 * we see the 1's complement of the magic number.
   2016 		 * This indicates that the firmware initialization
   2017 		 * is complete.
   2018 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   2019 		 */
   2020 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2021 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   2022 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   2023 				break;
   2024 			DELAY(10);
   2025 		}
   2026 
   2027 		if ((i >= BGE_TIMEOUT)
   2028 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
   2029 			aprint_error_dev(sc->bge_dev,
   2030 			    "firmware handshake timed out, val = %x\n", val);
   2031 			return -1;
   2032 		}
   2033 	}
   2034 
   2035 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2036 		/* tg3 says we have to wait extra time */
   2037 		delay(10 * 1000);
   2038 	}
   2039 
   2040 	return 0;
   2041 }
   2042 
   2043 int
   2044 bge_phy_addr(struct bge_softc *sc)
   2045 {
   2046 	struct pci_attach_args *pa = &(sc->bge_pa);
   2047 	int phy_addr = 1;
   2048 
   2049 	/*
   2050 	 * PHY address mapping for various devices.
   2051 	 *
   2052 	 *	    | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2053 	 * ---------+-------+-------+-------+-------+
   2054 	 * BCM57XX  |	1   |	X   |	X   |	X   |
   2055 	 * BCM5704  |	1   |	X   |	1   |	X   |
   2056 	 * BCM5717  |	1   |	8   |	2   |	9   |
   2057 	 * BCM5719  |	1   |	8   |	2   |	9   |
   2058 	 * BCM5720  |	1   |	8   |	2   |	9   |
   2059 	 *
   2060 	 *	    | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2061 	 * ---------+-------+-------+-------+-------+
   2062 	 * BCM57XX  |	X   |	X   |	X   |	X   |
   2063 	 * BCM5704  |	X   |	X   |	X   |	X   |
   2064 	 * BCM5717  |	X   |	X   |	X   |	X   |
   2065 	 * BCM5719  |	3   |	10  |	4   |	11  |
   2066 	 * BCM5720  |	X   |	X   |	X   |	X   |
   2067 	 *
   2068 	 * Other addresses may respond but they are not
   2069 	 * IEEE compliant PHYs and should be ignored.
   2070 	 */
   2071 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2072 	case BGE_ASICREV_BCM5717:
   2073 	case BGE_ASICREV_BCM5719:
   2074 	case BGE_ASICREV_BCM5720:
   2075 		phy_addr = pa->pa_function;
   2076 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2077 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2078 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2079 		} else {
   2080 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2081 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2082 		}
   2083 	}
   2084 
   2085 	return phy_addr;
   2086 }
   2087 
   2088 /*
   2089  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2090  * self-test results.
   2091  */
   2092 static int
   2093 bge_chipinit(struct bge_softc *sc)
   2094 {
   2095 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
   2096 	int i;
   2097 
   2098 	/* Set endianness before we access any non-PCI registers. */
   2099 	misc_ctl = BGE_INIT;
   2100 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   2101 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
   2102 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2103 	    misc_ctl);
   2104 
   2105 	/*
   2106 	 * Clear the MAC statistics block in the NIC's
   2107 	 * internal memory.
   2108 	 */
   2109 	for (i = BGE_STATS_BLOCK;
   2110 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2111 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2112 
   2113 	for (i = BGE_STATUS_BLOCK;
   2114 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2115 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2116 
   2117 	/* 5717 workaround from tg3 */
   2118 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2119 		/* Save */
   2120 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2121 
   2122 		/* Temporary modify MODE_CTL to control TLP */
   2123 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2124 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2125 
   2126 		/* Control TLP */
   2127 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2128 		    BGE_TLP_PHYCTL1);
   2129 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2130 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2131 
   2132 		/* Restore */
   2133 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2134 	}
   2135 
   2136 	if (BGE_IS_57765_FAMILY(sc)) {
   2137 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2138 			/* Save */
   2139 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2140 
   2141 			/* Temporary modify MODE_CTL to control TLP */
   2142 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2143 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2144 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2145 
   2146 			/* Control TLP */
   2147 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2148 			    BGE_TLP_PHYCTL5);
   2149 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2150 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2151 
   2152 			/* Restore */
   2153 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2154 		}
   2155 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2156 			/*
   2157 			 * For the 57766 and non Ax versions of 57765, bootcode
   2158 			 * needs to setup the PCIE Fast Training Sequence (FTS)
   2159 			 * value to prevent transmit hangs.
   2160 			 */
   2161 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2162 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2163 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2164 
   2165 			/* Save */
   2166 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2167 
   2168 			/* Temporary modify MODE_CTL to control TLP */
   2169 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2170 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2171 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2172 
   2173 			/* Control TLP */
   2174 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2175 			    BGE_TLP_FTSMAX);
   2176 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2177 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2178 			    reg | BGE_TLP_FTSMAX_VAL);
   2179 
   2180 			/* Restore */
   2181 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2182 		}
   2183 
   2184 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2185 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2186 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2187 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2188 	}
   2189 
   2190 	/* Set up the PCI DMA control register. */
   2191 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2192 	if (sc->bge_flags & BGEF_PCIE) {
   2193 		/* Read watermark not used, 128 bytes for write. */
   2194 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2195 		    device_xname(sc->bge_dev)));
   2196 		if (sc->bge_mps >= 256)
   2197 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2198 		else
   2199 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2200 	} else if (sc->bge_flags & BGEF_PCIX) {
   2201 		DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2202 		    device_xname(sc->bge_dev)));
   2203 		/* PCI-X bus */
   2204 		if (BGE_IS_5714_FAMILY(sc)) {
   2205 			/* 256 bytes for read and write. */
   2206 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2207 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2208 
   2209 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2210 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2211 			else
   2212 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2213 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   2214 			/*
   2215 			 * In the BCM5703, the DMA read watermark should
   2216 			 * be set to less than or equal to the maximum
   2217 			 * memory read byte count of the PCI-X command
   2218 			 * register.
   2219 			 */
   2220 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
   2221 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2222 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2223 			/* 1536 bytes for read, 384 bytes for write. */
   2224 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2225 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2226 		} else {
   2227 			/* 384 bytes for read and write. */
   2228 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2229 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2230 			    (0x0F);
   2231 		}
   2232 
   2233 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2234 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2235 			uint32_t tmp;
   2236 
   2237 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2238 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2239 			if (tmp == 6 || tmp == 7)
   2240 				dma_rw_ctl |=
   2241 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2242 
   2243 			/* Set PCI-X DMA write workaround. */
   2244 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2245 		}
   2246 	} else {
   2247 		/* Conventional PCI bus: 256 bytes for read and write. */
   2248 		DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2249 		    device_xname(sc->bge_dev)));
   2250 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2251 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2252 
   2253 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2254 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2255 			dma_rw_ctl |= 0x0F;
   2256 	}
   2257 
   2258 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2259 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2260 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2261 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2262 
   2263 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2264 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2265 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2266 
   2267 	if (BGE_IS_57765_PLUS(sc)) {
   2268 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2269 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2270 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2271 
   2272 		/*
   2273 		 * Enable HW workaround for controllers that misinterpret
   2274 		 * a status tag update and leave interrupts permanently
   2275 		 * disabled.
   2276 		 */
   2277 		if (!BGE_IS_57765_FAMILY(sc) &&
   2278 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2279 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
   2280 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2281 	}
   2282 
   2283 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2284 	    dma_rw_ctl);
   2285 
   2286 	/*
   2287 	 * Set up general mode register.
   2288 	 */
   2289 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2290 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2291 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2292 		/* Retain Host-2-BMC settings written by APE firmware. */
   2293 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2294 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2295 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2296 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2297 	}
   2298 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2299 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2300 
   2301 	/*
   2302 	 * BCM5701 B5 have a bug causing data corruption when using
   2303 	 * 64-bit DMA reads, which can be terminated early and then
   2304 	 * completed later as 32-bit accesses, in combination with
   2305 	 * certain bridges.
   2306 	 */
   2307 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2308 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2309 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2310 
   2311 	/*
   2312 	 * Tell the firmware the driver is running
   2313 	 */
   2314 	if (sc->bge_asf_mode & ASF_STACKUP)
   2315 		mode_ctl |= BGE_MODECTL_STACKUP;
   2316 
   2317 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2318 
   2319 	/*
   2320 	 * Disable memory write invalidate.  Apparently it is not supported
   2321 	 * properly by these devices.
   2322 	 */
   2323 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2324 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2325 
   2326 #ifdef __brokenalpha__
   2327 	/*
   2328 	 * Must insure that we do not cross an 8K (bytes) boundary
   2329 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2330 	 * restriction on some ALPHA platforms with early revision
   2331 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2332 	 */
   2333 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2334 #endif
   2335 
   2336 	/* Set the timer prescaler (always 66MHz) */
   2337 	CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2338 
   2339 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2340 		DELAY(40);	/* XXX */
   2341 
   2342 		/* Put PHY into ready state */
   2343 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2344 		DELAY(40);
   2345 	}
   2346 
   2347 	return 0;
   2348 }
   2349 
   2350 static int
   2351 bge_blockinit(struct bge_softc *sc)
   2352 {
   2353 	volatile struct bge_rcb	 *rcb;
   2354 	bus_size_t rcb_addr;
   2355 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   2356 	bge_hostaddr taddr;
   2357 	uint32_t	dmactl, rdmareg, mimode, val;
   2358 	int		i, limit;
   2359 
   2360 	/*
   2361 	 * Initialize the memory window pointer register so that
   2362 	 * we can access the first 32K of internal NIC RAM. This will
   2363 	 * allow us to set up the TX send ring RCBs and the RX return
   2364 	 * ring RCBs, plus other things which live in NIC memory.
   2365 	 */
   2366 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2367 
   2368 	if (!BGE_IS_5705_PLUS(sc)) {
   2369 		/* 57XX step 33 */
   2370 		/* Configure mbuf memory pool */
   2371 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
   2372 
   2373 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2374 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2375 		else
   2376 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2377 
   2378 		/* 57XX step 34 */
   2379 		/* Configure DMA resource pool */
   2380 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2381 		    BGE_DMA_DESCRIPTORS);
   2382 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2383 	}
   2384 
   2385 	/* 5718 step 11, 57XX step 35 */
   2386 	/*
   2387 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2388 	 * recommend these.
   2389 	 */
   2390 	if (BGE_IS_5717_PLUS(sc)) {
   2391 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2392 		if (ifp->if_mtu > ETHERMTU) {
   2393 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
   2394 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
   2395 		} else {
   2396 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2397 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2398 		}
   2399 	} else if (BGE_IS_5705_PLUS(sc)) {
   2400 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2401 
   2402 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2403 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2404 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2405 		} else {
   2406 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2407 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2408 		}
   2409 	} else {
   2410 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2411 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2412 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2413 	}
   2414 
   2415 	/* 57XX step 36 */
   2416 	/* Configure DMA resource watermarks */
   2417 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2418 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2419 
   2420 	/* 5718 step 13, 57XX step 38 */
   2421 	/* Enable buffer manager */
   2422 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2423 	/*
   2424 	 * Change the arbitration algorithm of TXMBUF read request to
   2425 	 * round-robin instead of priority based for BCM5719.  When
   2426 	 * TXFIFO is almost empty, RDMA will hold its request until
   2427 	 * TXFIFO is not almost empty.
   2428 	 */
   2429 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2430 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2431 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2432 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2433 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2434 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2435 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2436 
   2437 	/* 57XX step 39 */
   2438 	/* Poll for buffer manager start indication */
   2439 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2440 		DELAY(10);
   2441 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2442 			break;
   2443 	}
   2444 
   2445 	if (i == BGE_TIMEOUT * 2) {
   2446 		aprint_error_dev(sc->bge_dev,
   2447 		    "buffer manager failed to start\n");
   2448 		return ENXIO;
   2449 	}
   2450 
   2451 	/* 57XX step 40 */
   2452 	/* Enable flow-through queues */
   2453 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2454 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2455 
   2456 	/* Wait until queue initialization is complete */
   2457 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2458 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2459 			break;
   2460 		DELAY(10);
   2461 	}
   2462 
   2463 	if (i == BGE_TIMEOUT * 2) {
   2464 		aprint_error_dev(sc->bge_dev,
   2465 		    "flow-through queue init failed\n");
   2466 		return ENXIO;
   2467 	}
   2468 
   2469 	/*
   2470 	 * Summary of rings supported by the controller:
   2471 	 *
   2472 	 * Standard Receive Producer Ring
   2473 	 * - This ring is used to feed receive buffers for "standard"
   2474 	 *   sized frames (typically 1536 bytes) to the controller.
   2475 	 *
   2476 	 * Jumbo Receive Producer Ring
   2477 	 * - This ring is used to feed receive buffers for jumbo sized
   2478 	 *   frames (i.e. anything bigger than the "standard" frames)
   2479 	 *   to the controller.
   2480 	 *
   2481 	 * Mini Receive Producer Ring
   2482 	 * - This ring is used to feed receive buffers for "mini"
   2483 	 *   sized frames to the controller.
   2484 	 * - This feature required external memory for the controller
   2485 	 *   but was never used in a production system.  Should always
   2486 	 *   be disabled.
   2487 	 *
   2488 	 * Receive Return Ring
   2489 	 * - After the controller has placed an incoming frame into a
   2490 	 *   receive buffer that buffer is moved into a receive return
   2491 	 *   ring.  The driver is then responsible to passing the
   2492 	 *   buffer up to the stack.  Many versions of the controller
   2493 	 *   support multiple RR rings.
   2494 	 *
   2495 	 * Send Ring
   2496 	 * - This ring is used for outgoing frames.  Many versions of
   2497 	 *   the controller support multiple send rings.
   2498 	 */
   2499 
   2500 	/* 5718 step 15, 57XX step 41 */
   2501 	/* Initialize the standard RX ring control block */
   2502 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2503 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2504 	/* 5718 step 16 */
   2505 	if (BGE_IS_57765_PLUS(sc)) {
   2506 		/*
   2507 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2508 		 * Bits 15-2 : Maximum RX frame size
   2509 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2510 		 * Bit 0     : Reserved
   2511 		 */
   2512 		rcb->bge_maxlen_flags =
   2513 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2514 	} else if (BGE_IS_5705_PLUS(sc)) {
   2515 		/*
   2516 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2517 		 * Bits 15-2 : Reserved (should be 0)
   2518 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2519 		 * Bit 0     : Reserved
   2520 		 */
   2521 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2522 	} else {
   2523 		/*
   2524 		 * Ring size is always XXX entries
   2525 		 * Bits 31-16: Maximum RX frame size
   2526 		 * Bits 15-2 : Reserved (should be 0)
   2527 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2528 		 * Bit 0     : Reserved
   2529 		 */
   2530 		rcb->bge_maxlen_flags =
   2531 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2532 	}
   2533 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2534 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2535 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2536 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2537 	else
   2538 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2539 	/* Write the standard receive producer ring control block. */
   2540 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2541 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2542 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2543 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2544 
   2545 	/* Reset the standard receive producer ring producer index. */
   2546 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2547 
   2548 	/* 57XX step 42 */
   2549 	/*
   2550 	 * Initialize the jumbo RX ring control block
   2551 	 * We set the 'ring disabled' bit in the flags
   2552 	 * field until we're actually ready to start
   2553 	 * using this ring (i.e. once we set the MTU
   2554 	 * high enough to require it).
   2555 	 */
   2556 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2557 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2558 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2559 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2560 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2561 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2562 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2563 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2564 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2565 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2566 		else
   2567 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2568 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2569 		    rcb->bge_hostaddr.bge_addr_hi);
   2570 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2571 		    rcb->bge_hostaddr.bge_addr_lo);
   2572 		/* Program the jumbo receive producer ring RCB parameters. */
   2573 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2574 		    rcb->bge_maxlen_flags);
   2575 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2576 		/* Reset the jumbo receive producer ring producer index. */
   2577 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2578 	}
   2579 
   2580 	/* 57XX step 43 */
   2581 	/* Disable the mini receive producer ring RCB. */
   2582 	if (BGE_IS_5700_FAMILY(sc)) {
   2583 		/* Set up dummy disabled mini ring RCB */
   2584 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2585 		rcb->bge_maxlen_flags =
   2586 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2587 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2588 		    rcb->bge_maxlen_flags);
   2589 		/* Reset the mini receive producer ring producer index. */
   2590 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2591 
   2592 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2593 		    offsetof(struct bge_ring_data, bge_info),
   2594 		    sizeof(struct bge_gib),
   2595 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2596 	}
   2597 
   2598 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2599 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2600 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2601 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2602 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2603 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2604 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2605 	}
   2606 	/* 5718 step 14, 57XX step 44 */
   2607 	/*
   2608 	 * The BD ring replenish thresholds control how often the
   2609 	 * hardware fetches new BD's from the producer rings in host
   2610 	 * memory.  Setting the value too low on a busy system can
   2611 	 * starve the hardware and recue the throughpout.
   2612 	 *
   2613 	 * Set the BD ring replenish thresholds. The recommended
   2614 	 * values are 1/8th the number of descriptors allocated to
   2615 	 * each ring, but since we try to avoid filling the entire
   2616 	 * ring we set these to the minimal value of 8.  This needs to
   2617 	 * be done on several of the supported chip revisions anyway,
   2618 	 * to work around HW bugs.
   2619 	 */
   2620 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2621 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2622 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2623 
   2624 	/* 5718 step 18 */
   2625 	if (BGE_IS_5717_PLUS(sc)) {
   2626 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2627 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2628 	}
   2629 
   2630 	/* 57XX step 45 */
   2631 	/*
   2632 	 * Disable all send rings by setting the 'ring disabled' bit
   2633 	 * in the flags field of all the TX send ring control blocks,
   2634 	 * located in NIC memory.
   2635 	 */
   2636 	if (BGE_IS_5700_FAMILY(sc)) {
   2637 		/* 5700 to 5704 had 16 send rings. */
   2638 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2639 	} else if (BGE_IS_5717_PLUS(sc)) {
   2640 		limit = BGE_TX_RINGS_5717_MAX;
   2641 	} else if (BGE_IS_57765_FAMILY(sc) ||
   2642 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2643 		limit = BGE_TX_RINGS_57765_MAX;
   2644 	} else
   2645 		limit = 1;
   2646 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2647 	for (i = 0; i < limit; i++) {
   2648 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2649 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2650 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2651 		rcb_addr += sizeof(struct bge_rcb);
   2652 	}
   2653 
   2654 	/* 57XX step 46 and 47 */
   2655 	/* Configure send ring RCB 0 (we use only the first ring) */
   2656 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2657 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2658 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2659 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2660 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2661 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2662 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2663 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2664 	else
   2665 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2666 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2667 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2668 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2669 
   2670 	/* 57XX step 48 */
   2671 	/*
   2672 	 * Disable all receive return rings by setting the
   2673 	 * 'ring diabled' bit in the flags field of all the receive
   2674 	 * return ring control blocks, located in NIC memory.
   2675 	 */
   2676 	if (BGE_IS_5717_PLUS(sc)) {
   2677 		/* Should be 17, use 16 until we get an SRAM map. */
   2678 		limit = 16;
   2679 	} else if (BGE_IS_5700_FAMILY(sc))
   2680 		limit = BGE_RX_RINGS_MAX;
   2681 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2682 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
   2683 	    BGE_IS_57765_FAMILY(sc))
   2684 		limit = 4;
   2685 	else
   2686 		limit = 1;
   2687 	/* Disable all receive return rings */
   2688 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2689 	for (i = 0; i < limit; i++) {
   2690 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2691 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2692 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2693 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2694 			BGE_RCB_FLAG_RING_DISABLED));
   2695 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2696 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2697 		    (i * (sizeof(uint64_t))), 0);
   2698 		rcb_addr += sizeof(struct bge_rcb);
   2699 	}
   2700 
   2701 	/* 57XX step 49 */
   2702 	/*
   2703 	 * Set up receive return ring 0.  Note that the NIC address
   2704 	 * for RX return rings is 0x0.  The return rings live entirely
   2705 	 * within the host, so the nicaddr field in the RCB isn't used.
   2706 	 */
   2707 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2708 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2709 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2710 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2711 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2712 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2713 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2714 
   2715 	/* 5718 step 24, 57XX step 53 */
   2716 	/* Set random backoff seed for TX */
   2717 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2718 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2719 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2720 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2721 	    BGE_TX_BACKOFF_SEED_MASK);
   2722 
   2723 	/* 5718 step 26, 57XX step 55 */
   2724 	/* Set inter-packet gap */
   2725 	val = 0x2620;
   2726 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2727 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2728 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2729 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2730 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2731 
   2732 	/* 5718 step 27, 57XX step 56 */
   2733 	/*
   2734 	 * Specify which ring to use for packets that don't match
   2735 	 * any RX rules.
   2736 	 */
   2737 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2738 
   2739 	/* 5718 step 28, 57XX step 57 */
   2740 	/*
   2741 	 * Configure number of RX lists. One interrupt distribution
   2742 	 * list, sixteen active lists, one bad frames class.
   2743 	 */
   2744 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2745 
   2746 	/* 5718 step 29, 57XX step 58 */
   2747 	/* Inialize RX list placement stats mask. */
   2748 	if (BGE_IS_575X_PLUS(sc)) {
   2749 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2750 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2751 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2752 	} else
   2753 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2754 
   2755 	/* 5718 step 30, 57XX step 59 */
   2756 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2757 
   2758 	/* 5718 step 33, 57XX step 62 */
   2759 	/* Disable host coalescing until we get it set up */
   2760 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2761 
   2762 	/* 5718 step 34, 57XX step 63 */
   2763 	/* Poll to make sure it's shut down. */
   2764 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2765 		DELAY(10);
   2766 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2767 			break;
   2768 	}
   2769 
   2770 	if (i == BGE_TIMEOUT * 2) {
   2771 		aprint_error_dev(sc->bge_dev,
   2772 		    "host coalescing engine failed to idle\n");
   2773 		return ENXIO;
   2774 	}
   2775 
   2776 	/* 5718 step 35, 36, 37 */
   2777 	/* Set up host coalescing defaults */
   2778 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2779 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2780 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2781 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2782 	if (!(BGE_IS_5705_PLUS(sc))) {
   2783 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2784 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2785 	}
   2786 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2787 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2788 
   2789 	/* Set up address of statistics block */
   2790 	if (BGE_IS_5700_FAMILY(sc)) {
   2791 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2792 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2793 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2794 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2795 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2796 	}
   2797 
   2798 	/* 5718 step 38 */
   2799 	/* Set up address of status block */
   2800 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2801 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2802 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2803 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2804 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2805 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2806 
   2807 	/* Set up status block size. */
   2808 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2809 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2810 		val = BGE_STATBLKSZ_FULL;
   2811 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2812 	} else {
   2813 		val = BGE_STATBLKSZ_32BYTE;
   2814 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2815 	}
   2816 
   2817 	/* 5718 step 39, 57XX step 73 */
   2818 	/* Turn on host coalescing state machine */
   2819 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2820 
   2821 	/* 5718 step 40, 57XX step 74 */
   2822 	/* Turn on RX BD completion state machine and enable attentions */
   2823 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2824 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2825 
   2826 	/* 5718 step 41, 57XX step 75 */
   2827 	/* Turn on RX list placement state machine */
   2828 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2829 
   2830 	/* 57XX step 76 */
   2831 	/* Turn on RX list selector state machine. */
   2832 	if (!(BGE_IS_5705_PLUS(sc)))
   2833 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2834 
   2835 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2836 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2837 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2838 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2839 
   2840 	if (sc->bge_flags & BGEF_FIBER_TBI)
   2841 		val |= BGE_PORTMODE_TBI;
   2842 	else if (sc->bge_flags & BGEF_FIBER_MII)
   2843 		val |= BGE_PORTMODE_GMII;
   2844 	else
   2845 		val |= BGE_PORTMODE_MII;
   2846 
   2847 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   2848 	/* Allow APE to send/receive frames. */
   2849 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2850 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2851 
   2852 	/* Turn on DMA, clear stats */
   2853 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2854 	/* 5718 step 44 */
   2855 	DELAY(40);
   2856 
   2857 	/* 5718 step 45, 57XX step 79 */
   2858 	/* Set misc. local control, enable interrupts on attentions */
   2859 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2860 	if (BGE_IS_5717_PLUS(sc)) {
   2861 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2862 		/* 5718 step 46 */
   2863 		DELAY(100);
   2864 	}
   2865 
   2866 	/* 57XX step 81 */
   2867 	/* Turn on DMA completion state machine */
   2868 	if (!(BGE_IS_5705_PLUS(sc)))
   2869 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2870 
   2871 	/* 5718 step 47, 57XX step 82 */
   2872 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2873 
   2874 	/* 5718 step 48 */
   2875 	/* Enable host coalescing bug fix. */
   2876 	if (BGE_IS_5755_PLUS(sc))
   2877 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2878 
   2879 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2880 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2881 
   2882 	/* Turn on write DMA state machine */
   2883 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2884 	/* 5718 step 49 */
   2885 	DELAY(40);
   2886 
   2887 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2888 
   2889 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   2890 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2891 
   2892 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2893 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2894 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2895 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2896 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2897 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2898 
   2899 	if (sc->bge_flags & BGEF_PCIE)
   2900 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2901 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2902 		if (ifp->if_mtu <= ETHERMTU)
   2903 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
   2904 	}
   2905 	if (sc->bge_flags & BGEF_TSO) {
   2906 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2907 		if (BGE_IS_5717_PLUS(sc))
   2908 			val |= BGE_RDMAMODE_TSO6_ENABLE;
   2909 	}
   2910 
   2911 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2912 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2913 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   2914 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   2915 		/*
   2916 		 * Allow multiple outstanding read requests from
   2917 		 * non-LSO read DMA engine.
   2918 		 */
   2919 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2920 	}
   2921 
   2922 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2923 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2924 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2925 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   2926 	    BGE_IS_57765_PLUS(sc)) {
   2927 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2928 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
   2929 		else
   2930 			rdmareg = BGE_RDMA_RSRVCTRL;
   2931 		dmactl = CSR_READ_4(sc, rdmareg);
   2932 		/*
   2933 		 * Adjust tx margin to prevent TX data corruption and
   2934 		 * fix internal FIFO overflow.
   2935 		 */
   2936 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2937 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2938 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   2939 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   2940 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   2941 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   2942 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   2943 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   2944 		}
   2945 		/*
   2946 		 * Enable fix for read DMA FIFO overruns.
   2947 		 * The fix is to limit the number of RX BDs
   2948 		 * the hardware would fetch at a time.
   2949 		 */
   2950 		CSR_WRITE_4(sc, rdmareg, dmactl |
   2951 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   2952 	}
   2953 
   2954 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   2955 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2956 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2957 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2958 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2959 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2960 		/*
   2961 		 * Allow 4KB burst length reads for non-LSO frames.
   2962 		 * Enable 512B burst length reads for buffer descriptors.
   2963 		 */
   2964 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2965 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2966 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   2967 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2968 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2969 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
   2970 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
   2971 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2972 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2973 	}
   2974 	/* Turn on read DMA state machine */
   2975 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   2976 	/* 5718 step 52 */
   2977 	delay(40);
   2978 
   2979 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   2980 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
   2981 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
   2982 			if ((val & 0xFFFF) > BGE_FRAMELEN)
   2983 				break;
   2984 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
   2985 				break;
   2986 		}
   2987 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
   2988 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   2989 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2990 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
   2991 			else
   2992 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
   2993 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   2994 		}
   2995 	}
   2996 
   2997 	/* 5718 step 56, 57XX step 84 */
   2998 	/* Turn on RX data completion state machine */
   2999 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3000 
   3001 	/* Turn on RX data and RX BD initiator state machine */
   3002 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   3003 
   3004 	/* 57XX step 85 */
   3005 	/* Turn on Mbuf cluster free state machine */
   3006 	if (!BGE_IS_5705_PLUS(sc))
   3007 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3008 
   3009 	/* 5718 step 57, 57XX step 86 */
   3010 	/* Turn on send data completion state machine */
   3011 	val = BGE_SDCMODE_ENABLE;
   3012 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   3013 		val |= BGE_SDCMODE_CDELAY;
   3014 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   3015 
   3016 	/* 5718 step 58 */
   3017 	/* Turn on send BD completion state machine */
   3018 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3019 
   3020 	/* 57XX step 88 */
   3021 	/* Turn on RX BD initiator state machine */
   3022 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3023 
   3024 	/* 5718 step 60, 57XX step 90 */
   3025 	/* Turn on send data initiator state machine */
   3026 	if (sc->bge_flags & BGEF_TSO) {
   3027 		/* XXX: magic value from Linux driver */
   3028 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   3029 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   3030 	} else
   3031 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3032 
   3033 	/* 5718 step 61, 57XX step 91 */
   3034 	/* Turn on send BD initiator state machine */
   3035 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3036 
   3037 	/* 5718 step 62, 57XX step 92 */
   3038 	/* Turn on send BD selector state machine */
   3039 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3040 
   3041 	/* 5718 step 31, 57XX step 60 */
   3042 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   3043 	/* 5718 step 32, 57XX step 61 */
   3044 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   3045 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   3046 
   3047 	/* ack/clear link change events */
   3048 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3049 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3050 	    BGE_MACSTAT_LINK_CHANGED);
   3051 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3052 
   3053 	/*
   3054 	 * Enable attention when the link has changed state for
   3055 	 * devices that use auto polling.
   3056 	 */
   3057 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3058 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3059 	} else {
   3060 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3061 			mimode = BGE_MIMODE_500KHZ_CONST;
   3062 		else
   3063 			mimode = BGE_MIMODE_BASE;
   3064 		/* 5718 step 68. 5718 step 69 (optionally). */
   3065 		if (BGE_IS_5700_FAMILY(sc) ||
   3066 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
   3067 			mimode |= BGE_MIMODE_AUTOPOLL;
   3068 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3069 		}
   3070 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3071 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3072 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3073 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3074 			    BGE_EVTENB_MI_INTERRUPT);
   3075 	}
   3076 
   3077 	/*
   3078 	 * Clear any pending link state attention.
   3079 	 * Otherwise some link state change events may be lost until attention
   3080 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3081 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3082 	 * state change attentions implies clearing pending attention.
   3083 	 */
   3084 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3085 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3086 	    BGE_MACSTAT_LINK_CHANGED);
   3087 
   3088 	/* Enable link state change attentions. */
   3089 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3090 
   3091 	return 0;
   3092 }
   3093 
   3094 static const struct bge_revision *
   3095 bge_lookup_rev(uint32_t chipid)
   3096 {
   3097 	const struct bge_revision *br;
   3098 
   3099 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3100 		if (br->br_chipid == chipid)
   3101 			return br;
   3102 	}
   3103 
   3104 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3105 		if (br->br_chipid == BGE_ASICREV(chipid))
   3106 			return br;
   3107 	}
   3108 
   3109 	return NULL;
   3110 }
   3111 
   3112 static const struct bge_product *
   3113 bge_lookup(const struct pci_attach_args *pa)
   3114 {
   3115 	const struct bge_product *bp;
   3116 
   3117 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3118 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3119 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3120 			return bp;
   3121 	}
   3122 
   3123 	return NULL;
   3124 }
   3125 
   3126 static uint32_t
   3127 bge_chipid(const struct pci_attach_args *pa)
   3128 {
   3129 	uint32_t id;
   3130 
   3131 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3132 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3133 
   3134 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3135 		switch (PCI_PRODUCT(pa->pa_id)) {
   3136 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3137 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3138 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3139 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3140 		case PCI_PRODUCT_BROADCOM_BCM5725:
   3141 		case PCI_PRODUCT_BROADCOM_BCM5727:
   3142 		case PCI_PRODUCT_BROADCOM_BCM5762:
   3143 		case PCI_PRODUCT_BROADCOM_BCM57764:
   3144 		case PCI_PRODUCT_BROADCOM_BCM57767:
   3145 		case PCI_PRODUCT_BROADCOM_BCM57787:
   3146 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3147 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3148 			break;
   3149 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3150 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3151 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3152 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3153 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3154 		case PCI_PRODUCT_BROADCOM_BCM57782:
   3155 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3156 		case PCI_PRODUCT_BROADCOM_BCM57786:
   3157 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3158 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3159 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3160 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3161 			break;
   3162 		default:
   3163 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3164 			    BGE_PCI_PRODID_ASICREV);
   3165 			break;
   3166 		}
   3167 	}
   3168 
   3169 	return id;
   3170 }
   3171 
   3172 /*
   3173  * Return true if MSI can be used with this device.
   3174  */
   3175 static int
   3176 bge_can_use_msi(struct bge_softc *sc)
   3177 {
   3178 	int can_use_msi = 0;
   3179 
   3180 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3181 	case BGE_ASICREV_BCM5714_A0:
   3182 	case BGE_ASICREV_BCM5714:
   3183 		/*
   3184 		 * Apparently, MSI doesn't work when these chips are
   3185 		 * configured in single-port mode.
   3186 		 */
   3187 		break;
   3188 	case BGE_ASICREV_BCM5750:
   3189 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
   3190 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
   3191 			can_use_msi = 1;
   3192 		break;
   3193 	default:
   3194 		if (BGE_IS_575X_PLUS(sc))
   3195 			can_use_msi = 1;
   3196 	}
   3197 	return can_use_msi;
   3198 }
   3199 
   3200 /*
   3201  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3202  * against our list and return its name if we find a match. Note
   3203  * that since the Broadcom controller contains VPD support, we
   3204  * can get the device name string from the controller itself instead
   3205  * of the compiled-in string. This is a little slow, but it guarantees
   3206  * we'll always announce the right product name.
   3207  */
   3208 static int
   3209 bge_probe(device_t parent, cfdata_t match, void *aux)
   3210 {
   3211 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3212 
   3213 	if (bge_lookup(pa) != NULL)
   3214 		return 1;
   3215 
   3216 	return 0;
   3217 }
   3218 
   3219 static void
   3220 bge_attach(device_t parent, device_t self, void *aux)
   3221 {
   3222 	struct bge_softc * const sc = device_private(self);
   3223 	struct pci_attach_args * const pa = aux;
   3224 	prop_dictionary_t dict;
   3225 	const struct bge_product *bp;
   3226 	const struct bge_revision *br;
   3227 	pci_chipset_tag_t	pc;
   3228 	const char		*intrstr = NULL;
   3229 	uint32_t		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
   3230 	uint32_t		command;
   3231 	struct ifnet		*ifp;
   3232 	struct mii_data * const mii = &sc->bge_mii;
   3233 	uint32_t		misccfg, mimode, macmode;
   3234 	void *			kva;
   3235 	u_char			eaddr[ETHER_ADDR_LEN];
   3236 	pcireg_t		memtype, subid, reg;
   3237 	bus_addr_t		memaddr;
   3238 	uint32_t		pm_ctl;
   3239 	bool			no_seeprom;
   3240 	int			capmask, trys;
   3241 	int			mii_flags;
   3242 	int			map_flags;
   3243 	char intrbuf[PCI_INTRSTR_LEN];
   3244 
   3245 	bp = bge_lookup(pa);
   3246 	KASSERT(bp != NULL);
   3247 
   3248 	sc->sc_pc = pa->pa_pc;
   3249 	sc->sc_pcitag = pa->pa_tag;
   3250 	sc->bge_dev = self;
   3251 
   3252 	sc->bge_pa = *pa;
   3253 	pc = sc->sc_pc;
   3254 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3255 
   3256 	aprint_naive(": Ethernet controller\n");
   3257 	aprint_normal(": %s Ethernet\n", bp->bp_name);
   3258 
   3259 	/*
   3260 	 * Map control/status registers.
   3261 	 */
   3262 	DPRINTFN(5, ("Map control/status regs\n"));
   3263 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3264 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3265 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3266 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3267 
   3268 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3269 		aprint_error_dev(sc->bge_dev,
   3270 		    "failed to enable memory mapping!\n");
   3271 		return;
   3272 	}
   3273 
   3274 	DPRINTFN(5, ("pci_mem_find\n"));
   3275 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3276 	switch (memtype) {
   3277 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3278 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3279 #if 0
   3280 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3281 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3282 		    &memaddr, &sc->bge_bsize) == 0)
   3283 			break;
   3284 #else
   3285 		/*
   3286 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3287 		 * system get NMI on boot (PR#48451). This problem might not be
   3288 		 * the driver's bug but our PCI common part's bug. Until we
   3289 		 * find a real reason, we ignore the prefetchable bit.
   3290 		 */
   3291 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
   3292 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
   3293 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3294 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
   3295 			    map_flags, &sc->bge_bhandle) == 0) {
   3296 				sc->bge_btag = pa->pa_memt;
   3297 				break;
   3298 			}
   3299 		}
   3300 #endif
   3301 		/* FALLTHROUGH */
   3302 	default:
   3303 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3304 		return;
   3305 	}
   3306 
   3307 	/* Save various chip information. */
   3308 	sc->bge_chipid = bge_chipid(pa);
   3309 	sc->bge_phy_addr = bge_phy_addr(sc);
   3310 
   3311 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3312 	    &sc->bge_pciecap, NULL) != 0) {
   3313 		/* PCIe */
   3314 		sc->bge_flags |= BGEF_PCIE;
   3315 		/* Extract supported maximum payload size. */
   3316 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3317 		    sc->bge_pciecap + PCIE_DCAP);
   3318 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3319 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3320 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3321 			sc->bge_expmrq = 2048;
   3322 		else
   3323 			sc->bge_expmrq = 4096;
   3324 		bge_set_max_readrq(sc);
   3325 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
   3326 		/* PCIe without PCIe cap */
   3327 		sc->bge_flags |= BGEF_PCIE;
   3328 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3329 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3330 		/* PCI-X */
   3331 		sc->bge_flags |= BGEF_PCIX;
   3332 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3333 			&sc->bge_pcixcap, NULL) == 0)
   3334 			aprint_error_dev(sc->bge_dev,
   3335 			    "unable to find PCIX capability\n");
   3336 	}
   3337 
   3338 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3339 		/*
   3340 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3341 		 * can clobber the chip's PCI config-space power control
   3342 		 * registers, leaving the card in D3 powersave state. We do
   3343 		 * not have memory-mapped registers in this state, so force
   3344 		 * device into D0 state before starting initialization.
   3345 		 */
   3346 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3347 		pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
   3348 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3349 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3350 		DELAY(1000);	/* 27 usec is allegedly sufficient */
   3351 	}
   3352 
   3353 	/* Save chipset family. */
   3354 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3355 	case BGE_ASICREV_BCM5717:
   3356 	case BGE_ASICREV_BCM5719:
   3357 	case BGE_ASICREV_BCM5720:
   3358 		sc->bge_flags |= BGEF_5717_PLUS;
   3359 		/* FALLTHROUGH */
   3360 	case BGE_ASICREV_BCM5762:
   3361 	case BGE_ASICREV_BCM57765:
   3362 	case BGE_ASICREV_BCM57766:
   3363 		if (!BGE_IS_5717_PLUS(sc))
   3364 			sc->bge_flags |= BGEF_57765_FAMILY;
   3365 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
   3366 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
   3367 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3368 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3369 			/*
   3370 			 * Enable work around for DMA engine miscalculation
   3371 			 * of TXMBUF available space.
   3372 			 */
   3373 			sc->bge_flags |= BGEF_RDMA_BUG;
   3374 
   3375 			if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3376 			    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
   3377 				/* Jumbo frame on BCM5719 A0 does not work. */
   3378 				sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
   3379 			}
   3380 		}
   3381 		break;
   3382 	case BGE_ASICREV_BCM5755:
   3383 	case BGE_ASICREV_BCM5761:
   3384 	case BGE_ASICREV_BCM5784:
   3385 	case BGE_ASICREV_BCM5785:
   3386 	case BGE_ASICREV_BCM5787:
   3387 	case BGE_ASICREV_BCM57780:
   3388 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
   3389 		break;
   3390 	case BGE_ASICREV_BCM5700:
   3391 	case BGE_ASICREV_BCM5701:
   3392 	case BGE_ASICREV_BCM5703:
   3393 	case BGE_ASICREV_BCM5704:
   3394 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
   3395 		break;
   3396 	case BGE_ASICREV_BCM5714_A0:
   3397 	case BGE_ASICREV_BCM5780:
   3398 	case BGE_ASICREV_BCM5714:
   3399 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
   3400 		/* FALLTHROUGH */
   3401 	case BGE_ASICREV_BCM5750:
   3402 	case BGE_ASICREV_BCM5752:
   3403 	case BGE_ASICREV_BCM5906:
   3404 		sc->bge_flags |= BGEF_575X_PLUS;
   3405 		/* FALLTHROUGH */
   3406 	case BGE_ASICREV_BCM5705:
   3407 		sc->bge_flags |= BGEF_5705_PLUS;
   3408 		break;
   3409 	}
   3410 
   3411 	/* Identify chips with APE processor. */
   3412 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3413 	case BGE_ASICREV_BCM5717:
   3414 	case BGE_ASICREV_BCM5719:
   3415 	case BGE_ASICREV_BCM5720:
   3416 	case BGE_ASICREV_BCM5761:
   3417 	case BGE_ASICREV_BCM5762:
   3418 		sc->bge_flags |= BGEF_APE;
   3419 		break;
   3420 	}
   3421 
   3422 	/*
   3423 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
   3424 	 * not actually a MAC controller bug but an issue with the embedded
   3425 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
   3426 	 */
   3427 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
   3428 		sc->bge_flags |= BGEF_40BIT_BUG;
   3429 
   3430 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3431 	if ((sc->bge_flags & BGEF_APE) != 0) {
   3432 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3433 #if 0
   3434 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3435 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3436 			&sc->bge_apesize)) {
   3437 			aprint_error_dev(sc->bge_dev,
   3438 			    "couldn't map BAR2 memory\n");
   3439 			return;
   3440 		}
   3441 #else
   3442 		/*
   3443 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3444 		 * system get NMI on boot (PR#48451). This problem might not be
   3445 		 * the driver's bug but our PCI common part's bug. Until we
   3446 		 * find a real reason, we ignore the prefetchable bit.
   3447 		 */
   3448 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
   3449 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
   3450 			aprint_error_dev(sc->bge_dev,
   3451 			    "couldn't map BAR2 memory\n");
   3452 			return;
   3453 		}
   3454 
   3455 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3456 		if (bus_space_map(pa->pa_memt, memaddr,
   3457 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
   3458 			aprint_error_dev(sc->bge_dev,
   3459 			    "couldn't map BAR2 memory\n");
   3460 			return;
   3461 		}
   3462 		sc->bge_apetag = pa->pa_memt;
   3463 #endif
   3464 
   3465 		/* Enable APE register/memory access by host driver. */
   3466 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3467 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3468 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3469 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3470 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3471 
   3472 		bge_ape_lock_init(sc);
   3473 		bge_ape_read_fw_ver(sc);
   3474 	}
   3475 
   3476 	/* Identify the chips that use an CPMU. */
   3477 	if (BGE_IS_5717_PLUS(sc) ||
   3478 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3479 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3480 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3481 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3482 		sc->bge_flags |= BGEF_CPMU_PRESENT;
   3483 
   3484 	/*
   3485 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3486 	 * been observed in the first few bytes of some received packets.
   3487 	 * Aligning the packet buffer in memory eliminates the corruption.
   3488 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3489 	 * which do not support unaligned accesses, we will realign the
   3490 	 * payloads by copying the received packets.
   3491 	 */
   3492 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3493 	    sc->bge_flags & BGEF_PCIX)
   3494 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
   3495 
   3496 	if (BGE_IS_5700_FAMILY(sc))
   3497 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
   3498 
   3499 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3500 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3501 
   3502 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3503 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3504 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3505 		sc->bge_flags |= BGEF_IS_5788;
   3506 
   3507 	/*
   3508 	 * Some controllers seem to require a special firmware to use
   3509 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3510 	 * claims that the TSO performed by the firmware is slower than
   3511 	 * hardware based TSO. Moreover the firmware based TSO has one
   3512 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3513 	 * header is greater than 80 bytes. The workaround for the TSO
   3514 	 * bug exist but it seems it's too expensive than not using
   3515 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3516 	 * the TSO to the controllers that are not affected TSO issues
   3517 	 * (e.g. 5755 or higher).
   3518 	 */
   3519 	if (BGE_IS_5755_PLUS(sc)) {
   3520 		/*
   3521 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3522 		 * explicit device id check is required.
   3523 		 */
   3524 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3525 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3526 			sc->bge_flags |= BGEF_TSO;
   3527 		/* TSO on BCM5719 A0 does not work. */
   3528 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3529 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3530 			sc->bge_flags &= ~BGEF_TSO;
   3531 	}
   3532 
   3533 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3534 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3535 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3536 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3537 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3538 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3539 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3540 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3541 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3542 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3543 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3544 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3545 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3546 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3547 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3548 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3549 		/* These chips are 10/100 only. */
   3550 		capmask &= ~BMSR_EXTSTAT;
   3551 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3552 	}
   3553 
   3554 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3555 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3556 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3557 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3558 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3559 
   3560 	/* Set various PHY bug flags. */
   3561 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3562 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3563 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
   3564 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3565 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3566 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
   3567 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3568 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
   3569 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3570 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3571 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3572 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
   3573 	if (BGE_IS_5705_PLUS(sc) &&
   3574 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3575 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3576 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3577 	    !BGE_IS_57765_PLUS(sc)) {
   3578 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3579 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3580 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3581 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3582 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3583 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3584 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
   3585 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3586 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
   3587 		} else
   3588 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
   3589 	}
   3590 
   3591 	/*
   3592 	 * SEEPROM check.
   3593 	 * First check if firmware knows we do not have SEEPROM.
   3594 	 */
   3595 	if (prop_dictionary_get_bool(device_properties(self),
   3596 	    "without-seeprom", &no_seeprom) && no_seeprom)
   3597 		sc->bge_flags |= BGEF_NO_EEPROM;
   3598 
   3599 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3600 		sc->bge_flags |= BGEF_NO_EEPROM;
   3601 
   3602 	/* Now check the 'ROM failed' bit on the RX CPU */
   3603 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3604 		sc->bge_flags |= BGEF_NO_EEPROM;
   3605 
   3606 	sc->bge_asf_mode = 0;
   3607 	/* No ASF if APE present. */
   3608 	if ((sc->bge_flags & BGEF_APE) == 0) {
   3609 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3610 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3611 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3612 			    BGE_HWCFG_ASF) {
   3613 				sc->bge_asf_mode |= ASF_ENABLE;
   3614 				sc->bge_asf_mode |= ASF_STACKUP;
   3615 				if (BGE_IS_575X_PLUS(sc))
   3616 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3617 			}
   3618 		}
   3619 	}
   3620 
   3621 	int counts[PCI_INTR_TYPE_SIZE] = {
   3622 		[PCI_INTR_TYPE_INTX] = 1,
   3623 		[PCI_INTR_TYPE_MSI] = 1,
   3624 		[PCI_INTR_TYPE_MSIX] = 1,
   3625 	};
   3626 	int max_type = PCI_INTR_TYPE_MSIX;
   3627 
   3628 	if (!bge_can_use_msi(sc)) {
   3629 		/* MSI broken, allow only INTx */
   3630 		max_type = PCI_INTR_TYPE_INTX;
   3631 	}
   3632 
   3633 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
   3634 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
   3635 		return;
   3636 	}
   3637 
   3638 	DPRINTFN(5, ("pci_intr_string\n"));
   3639 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
   3640 	    sizeof(intrbuf));
   3641 	DPRINTFN(5, ("pci_intr_establish\n"));
   3642 	sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
   3643 	    IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
   3644 	if (sc->bge_intrhand == NULL) {
   3645 		pci_intr_release(pc, sc->bge_pihp, 1);
   3646 		sc->bge_pihp = NULL;
   3647 
   3648 		aprint_error_dev(self, "couldn't establish interrupt");
   3649 		if (intrstr != NULL)
   3650 			aprint_error(" at %s", intrstr);
   3651 		aprint_error("\n");
   3652 		return;
   3653 	}
   3654 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3655 
   3656 	switch (pci_intr_type(pc, sc->bge_pihp[0])) {
   3657 	case PCI_INTR_TYPE_MSIX:
   3658 	case PCI_INTR_TYPE_MSI:
   3659 		KASSERT(bge_can_use_msi(sc));
   3660 		sc->bge_flags |= BGEF_MSI;
   3661 		break;
   3662 	default:
   3663 		/* nothing to do */
   3664 		break;
   3665 	}
   3666 
   3667 	char wqname[MAXCOMLEN];
   3668 	snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->bge_dev));
   3669 	int error = workqueue_create(&sc->sc_reset_wq, wqname,
   3670 	    bge_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK,
   3671 	    WQ_MPSAFE);
   3672 	if (error) {
   3673 		aprint_error_dev(sc->bge_dev,
   3674 		    "unable to create reset workqueue\n");
   3675 		return;
   3676 	}
   3677 
   3678 
   3679 	/*
   3680 	 * All controllers except BCM5700 supports tagged status but
   3681 	 * we use tagged status only for MSI case on BCM5717. Otherwise
   3682 	 * MSI on BCM5717 does not work.
   3683 	 */
   3684 	if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
   3685 		sc->bge_flags |= BGEF_TAGGED_STATUS;
   3686 
   3687 	/*
   3688 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3689 	 * lock in bge_reset().
   3690 	 */
   3691 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   3692 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3693 	delay(1000);
   3694 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3695 
   3696 	bge_stop_fw(sc);
   3697 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   3698 	if (bge_reset(sc))
   3699 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3700 
   3701 	/*
   3702 	 * Read the hardware config word in the first 32k of NIC internal
   3703 	 * memory, or fall back to the config word in the EEPROM.
   3704 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3705 	 */
   3706 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
   3707 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3708 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3709 		uint32_t tmp;
   3710 
   3711 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3712 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3713 		    BGE_SRAM_DATA_VER_SHIFT;
   3714 		if ((0 < tmp) && (tmp < 0x100))
   3715 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3716 		if (sc->bge_flags & BGEF_PCIE)
   3717 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3718 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3719 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3720 		if (BGE_IS_5717_PLUS(sc))
   3721 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
   3722 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
   3723 		bge_read_eeprom(sc, (void *)&hwcfg,
   3724 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3725 		hwcfg = be32toh(hwcfg);
   3726 	}
   3727 	aprint_normal_dev(sc->bge_dev,
   3728 	    "HW config %08x, %08x, %08x, %08x %08x\n",
   3729 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
   3730 
   3731 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   3732 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   3733 
   3734 	if (bge_chipinit(sc)) {
   3735 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3736 		bge_release_resources(sc);
   3737 		return;
   3738 	}
   3739 
   3740 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   3741 		BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
   3742 		    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
   3743 		DELAY(100);
   3744 	}
   3745 
   3746 	/* Set MI_MODE */
   3747 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3748 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3749 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3750 	else
   3751 		mimode |= BGE_MIMODE_BASE;
   3752 	CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
   3753 	DELAY(80);
   3754 
   3755 	/*
   3756 	 * Get station address from the EEPROM.
   3757 	 */
   3758 	if (bge_get_eaddr(sc, eaddr)) {
   3759 		aprint_error_dev(sc->bge_dev,
   3760 		    "failed to read station address\n");
   3761 		bge_release_resources(sc);
   3762 		return;
   3763 	}
   3764 
   3765 	br = bge_lookup_rev(sc->bge_chipid);
   3766 
   3767 	if (br == NULL) {
   3768 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3769 		    sc->bge_chipid);
   3770 	} else {
   3771 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3772 		    br->br_name, sc->bge_chipid);
   3773 	}
   3774 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3775 
   3776 	/* Allocate the general information block and ring buffers. */
   3777 	if (pci_dma64_available(pa)) {
   3778 		sc->bge_dmatag = pa->pa_dmat64;
   3779 		sc->bge_dmatag32 = pa->pa_dmat;
   3780 		sc->bge_dma64 = true;
   3781 	} else {
   3782 		sc->bge_dmatag = pa->pa_dmat;
   3783 		sc->bge_dmatag32 = pa->pa_dmat;
   3784 		sc->bge_dma64 = false;
   3785 	}
   3786 
   3787 	/* 40bit DMA workaround */
   3788 	if (sizeof(bus_addr_t) > 4) {
   3789 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
   3790 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
   3791 
   3792 			if (bus_dmatag_subregion(olddmatag, 0,
   3793 			    (bus_addr_t)__MASK(40),
   3794 			    &(sc->bge_dmatag), BUS_DMA_WAITOK) != 0) {
   3795 				aprint_error_dev(self,
   3796 				    "WARNING: failed to restrict dma range,"
   3797 				    " falling back to parent bus dma range\n");
   3798 				sc->bge_dmatag = olddmatag;
   3799 			}
   3800 		}
   3801 	}
   3802 	SLIST_INIT(&sc->txdma_list);
   3803 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3804 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3805 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3806 		&sc->bge_ring_rseg, BUS_DMA_WAITOK)) {
   3807 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3808 		return;
   3809 	}
   3810 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3811 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3812 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3813 			   BUS_DMA_WAITOK)) {
   3814 		aprint_error_dev(sc->bge_dev,
   3815 		    "can't map DMA buffers (%zu bytes)\n",
   3816 		    sizeof(struct bge_ring_data));
   3817 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3818 		    sc->bge_ring_rseg);
   3819 		return;
   3820 	}
   3821 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3822 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3823 	    sizeof(struct bge_ring_data), 0,
   3824 	    BUS_DMA_WAITOK, &sc->bge_ring_map)) {
   3825 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3826 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3827 				 sizeof(struct bge_ring_data));
   3828 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3829 		    sc->bge_ring_rseg);
   3830 		return;
   3831 	}
   3832 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3833 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3834 			    sizeof(struct bge_ring_data), NULL,
   3835 			    BUS_DMA_WAITOK)) {
   3836 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3837 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3838 				 sizeof(struct bge_ring_data));
   3839 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3840 		    sc->bge_ring_rseg);
   3841 		return;
   3842 	}
   3843 
   3844 	DPRINTFN(5, ("bzero\n"));
   3845 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3846 
   3847 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3848 
   3849 	/* Try to allocate memory for jumbo buffers. */
   3850 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3851 		if (bge_alloc_jumbo_mem(sc)) {
   3852 			aprint_error_dev(sc->bge_dev,
   3853 			    "jumbo buffer allocation failed\n");
   3854 		} else
   3855 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3856 	}
   3857 
   3858 	/* Set default tuneable values. */
   3859 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3860 	sc->bge_rx_coal_ticks = 150;
   3861 	sc->bge_rx_max_coal_bds = 64;
   3862 	sc->bge_tx_coal_ticks = 300;
   3863 	sc->bge_tx_max_coal_bds = 400;
   3864 	if (BGE_IS_5705_PLUS(sc)) {
   3865 		sc->bge_tx_coal_ticks = (12 * 5);
   3866 		sc->bge_tx_max_coal_bds = (12 * 5);
   3867 			aprint_verbose_dev(sc->bge_dev,
   3868 			    "setting short Tx thresholds\n");
   3869 	}
   3870 
   3871 	if (BGE_IS_5717_PLUS(sc))
   3872 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3873 	else if (BGE_IS_5705_PLUS(sc))
   3874 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3875 	else
   3876 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3877 
   3878 	sc->sc_core_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
   3879 
   3880 	/* Set up ifnet structure */
   3881 	ifp = &sc->ethercom.ec_if;
   3882 	ifp->if_softc = sc;
   3883 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3884 	ifp->if_extflags = IFEF_MPSAFE;
   3885 	ifp->if_ioctl = bge_ioctl;
   3886 	ifp->if_stop = bge_stop;
   3887 	ifp->if_start = bge_start;
   3888 	ifp->if_init = bge_init;
   3889 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3890 	IFQ_SET_READY(&ifp->if_snd);
   3891 	DPRINTFN(5, ("strcpy if_xname\n"));
   3892 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3893 
   3894 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3895 		sc->ethercom.ec_if.if_capabilities |=
   3896 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3897 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3898 		sc->ethercom.ec_if.if_capabilities |=
   3899 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3900 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3901 #endif
   3902 	sc->ethercom.ec_capabilities |=
   3903 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3904 	sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
   3905 
   3906 	if (sc->bge_flags & BGEF_TSO)
   3907 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3908 
   3909 	/*
   3910 	 * Do MII setup.
   3911 	 */
   3912 	DPRINTFN(5, ("mii setup\n"));
   3913 	mii->mii_ifp = ifp;
   3914 	mii->mii_readreg = bge_miibus_readreg;
   3915 	mii->mii_writereg = bge_miibus_writereg;
   3916 	mii->mii_statchg = bge_miibus_statchg;
   3917 
   3918 	/*
   3919 	 * Figure out what sort of media we have by checking the hardware
   3920 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   3921 	 * unset. If that's the case, we have to rely on identifying the NIC
   3922 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   3923 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   3924 	 */
   3925 	if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
   3926 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3927 		if (BGE_IS_5705_PLUS(sc)) {
   3928 			sc->bge_flags |= BGEF_FIBER_MII;
   3929 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3930 		} else
   3931 			sc->bge_flags |= BGEF_FIBER_TBI;
   3932 	}
   3933 
   3934 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
   3935 	if (BGE_IS_JUMBO_CAPABLE(sc))
   3936 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
   3937 
   3938 	/* set phyflags and chipid before mii_attach() */
   3939 	dict = device_properties(self);
   3940 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
   3941 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3942 
   3943 	macmode = CSR_READ_4(sc, BGE_MAC_MODE);
   3944 	macmode &= ~BGE_MACMODE_PORTMODE;
   3945 	/* Initialize ifmedia structures. */
   3946 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3947 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
   3948 		    macmode | BGE_PORTMODE_TBI);
   3949 		DELAY(40);
   3950 
   3951 		sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
   3952 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3953 		    bge_ifmedia_sts);
   3954 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3955 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
   3956 			    0, NULL);
   3957 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3958 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3959 		/* Pretend the user requested this setting */
   3960 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3961 	} else {
   3962 		uint16_t phyreg;
   3963 		int rv;
   3964 		/*
   3965 		 * Do transceiver setup and tell the firmware the
   3966 		 * driver is down so we can try to get access the
   3967 		 * probe if ASF is running.  Retry a couple of times
   3968 		 * if we get a conflict with the ASF firmware accessing
   3969 		 * the PHY.
   3970 		 */
   3971 		if (sc->bge_flags & BGEF_FIBER_MII)
   3972 			macmode |= BGE_PORTMODE_GMII;
   3973 		else
   3974 			macmode |= BGE_PORTMODE_MII;
   3975 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
   3976 		DELAY(40);
   3977 
   3978 		/*
   3979 		 * Do transceiver setup and tell the firmware the
   3980 		 * driver is down so we can try to get access the
   3981 		 * probe if ASF is running.  Retry a couple of times
   3982 		 * if we get a conflict with the ASF firmware accessing
   3983 		 * the PHY.
   3984 		 */
   3985 		trys = 0;
   3986 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3987 		sc->ethercom.ec_mii = mii;
   3988 		ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
   3989 			     bge_ifmedia_sts);
   3990 		mii_flags = MIIF_DOPAUSE;
   3991 		if (sc->bge_flags & BGEF_FIBER_MII)
   3992 			mii_flags |= MIIF_HAVEFIBER;
   3993 again:
   3994 		bge_asf_driver_up(sc);
   3995 		rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   3996 		    MII_BMCR, &phyreg);
   3997 		if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
   3998 			int i;
   3999 
   4000 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   4001 			    MII_BMCR, BMCR_RESET);
   4002 			/* Wait up to 500ms for it to complete. */
   4003 			for (i = 0; i < 500; i++) {
   4004 				bge_miibus_readreg(sc->bge_dev,
   4005 				    sc->bge_phy_addr, MII_BMCR, &phyreg);
   4006 				if ((phyreg & BMCR_RESET) == 0)
   4007 					break;
   4008 				DELAY(1000);
   4009 			}
   4010 		}
   4011 
   4012 		mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
   4013 		    MII_OFFSET_ANY, mii_flags);
   4014 
   4015 		if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
   4016 			goto again;
   4017 
   4018 		if (LIST_EMPTY(&mii->mii_phys)) {
   4019 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   4020 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
   4021 			    0, NULL);
   4022 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
   4023 		} else
   4024 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   4025 
   4026 		/*
   4027 		 * Now tell the firmware we are going up after probing the PHY
   4028 		 */
   4029 		if (sc->bge_asf_mode & ASF_STACKUP)
   4030 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4031 	}
   4032 
   4033 	/*
   4034 	 * Call MI attach routine.
   4035 	 */
   4036 	DPRINTFN(5, ("if_initialize\n"));
   4037 	if_initialize(ifp);
   4038 	ifp->if_percpuq = if_percpuq_create(ifp);
   4039 	if_deferred_start_init(ifp, NULL);
   4040 	if_register(ifp);
   4041 
   4042 	DPRINTFN(5, ("ether_ifattach\n"));
   4043 	ether_ifattach(ifp, eaddr);
   4044 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   4045 
   4046 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   4047 		RND_TYPE_NET, RND_FLAG_DEFAULT);
   4048 #ifdef BGE_EVENT_COUNTERS
   4049 	/*
   4050 	 * Attach event counters.
   4051 	 */
   4052 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   4053 	    NULL, device_xname(sc->bge_dev), "intr");
   4054 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
   4055 	    NULL, device_xname(sc->bge_dev), "intr_spurious");
   4056 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
   4057 	    NULL, device_xname(sc->bge_dev), "intr_spurious2");
   4058 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   4059 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   4060 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   4061 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   4062 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   4063 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   4064 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   4065 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   4066 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   4067 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   4068 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   4069 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   4070 #endif /* BGE_EVENT_COUNTERS */
   4071 	DPRINTFN(5, ("callout_init\n"));
   4072 	callout_init(&sc->bge_timeout, CALLOUT_MPSAFE);
   4073 	callout_setfunc(&sc->bge_timeout, bge_tick, sc);
   4074 
   4075 	if (pmf_device_register(self, NULL, NULL))
   4076 		pmf_class_network_register(self, ifp);
   4077 	else
   4078 		aprint_error_dev(self, "couldn't establish power handler\n");
   4079 
   4080 	bge_sysctl_init(sc);
   4081 
   4082 #ifdef BGE_DEBUG
   4083 	bge_debug_info(sc);
   4084 #endif
   4085 }
   4086 
   4087 /*
   4088  * Stop all chip I/O so that the kernel's probe routines don't
   4089  * get confused by errant DMAs when rebooting.
   4090  */
   4091 static int
   4092 bge_detach(device_t self, int flags __unused)
   4093 {
   4094 	struct bge_softc * const sc = device_private(self);
   4095 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4096 
   4097 	/* Stop the interface. Callouts are stopped in it. */
   4098 	bge_stop(ifp, 1);
   4099 
   4100 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   4101 
   4102 	ether_ifdetach(ifp);
   4103 	if_detach(ifp);
   4104 
   4105 	/* Delete all remaining media. */
   4106 	ifmedia_fini(&sc->bge_mii.mii_media);
   4107 
   4108 	bge_release_resources(sc);
   4109 
   4110 	return 0;
   4111 }
   4112 
   4113 static void
   4114 bge_release_resources(struct bge_softc *sc)
   4115 {
   4116 
   4117 	/* Detach sysctl */
   4118 	if (sc->bge_log != NULL)
   4119 		sysctl_teardown(&sc->bge_log);
   4120 
   4121 #ifdef BGE_EVENT_COUNTERS
   4122 	/* Detach event counters. */
   4123 	evcnt_detach(&sc->bge_ev_intr);
   4124 	evcnt_detach(&sc->bge_ev_intr_spurious);
   4125 	evcnt_detach(&sc->bge_ev_intr_spurious2);
   4126 	evcnt_detach(&sc->bge_ev_tx_xoff);
   4127 	evcnt_detach(&sc->bge_ev_tx_xon);
   4128 	evcnt_detach(&sc->bge_ev_rx_xoff);
   4129 	evcnt_detach(&sc->bge_ev_rx_xon);
   4130 	evcnt_detach(&sc->bge_ev_rx_macctl);
   4131 	evcnt_detach(&sc->bge_ev_xoffentered);
   4132 #endif /* BGE_EVENT_COUNTERS */
   4133 
   4134 	/* Disestablish the interrupt handler */
   4135 	if (sc->bge_intrhand != NULL) {
   4136 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   4137 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
   4138 		sc->bge_intrhand = NULL;
   4139 	}
   4140 
   4141 	if (sc->bge_cdata.bge_jumbo_buf != NULL)
   4142 		bge_free_jumbo_mem(sc);
   4143 
   4144 	if (sc->bge_dmatag != NULL) {
   4145 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   4146 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   4147 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   4148 		    sizeof(struct bge_ring_data));
   4149 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   4150 		    sc->bge_ring_rseg);
   4151 	}
   4152 
   4153 	/* Unmap the device registers */
   4154 	if (sc->bge_bsize != 0) {
   4155 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   4156 		sc->bge_bsize = 0;
   4157 	}
   4158 
   4159 	/* Unmap the APE registers */
   4160 	if (sc->bge_apesize != 0) {
   4161 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   4162 		    sc->bge_apesize);
   4163 		sc->bge_apesize = 0;
   4164 	}
   4165 }
   4166 
   4167 static int
   4168 bge_reset(struct bge_softc *sc)
   4169 {
   4170 	uint32_t cachesize, command;
   4171 	uint32_t reset, mac_mode, mac_mode_mask;
   4172 	pcireg_t devctl, reg;
   4173 	int i, val;
   4174 	void (*write_op)(struct bge_softc *, int, int);
   4175 
   4176 	/* Make mask for BGE_MAC_MODE register. */
   4177 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   4178 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4179 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   4180 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   4181 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   4182 
   4183 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   4184 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   4185 		if (sc->bge_flags & BGEF_PCIE)
   4186 			write_op = bge_writemem_direct;
   4187 		else
   4188 			write_op = bge_writemem_ind;
   4189 	} else
   4190 		write_op = bge_writereg_ind;
   4191 
   4192 	/* 57XX step 4 */
   4193 	/* Acquire the NVM lock */
   4194 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
   4195 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4196 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4197 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4198 		for (i = 0; i < 8000; i++) {
   4199 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4200 			    BGE_NVRAMSWARB_GNT1)
   4201 				break;
   4202 			DELAY(20);
   4203 		}
   4204 		if (i == 8000) {
   4205 			printf("%s: NVRAM lock timedout!\n",
   4206 			    device_xname(sc->bge_dev));
   4207 		}
   4208 	}
   4209 
   4210 	/* Take APE lock when performing reset. */
   4211 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4212 
   4213 	/* 57XX step 3 */
   4214 	/* Save some important PCI state. */
   4215 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4216 	/* 5718 reset step 3 */
   4217 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4218 
   4219 	/* 5718 reset step 5, 57XX step 5b-5d */
   4220 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4221 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4222 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4223 
   4224 	/* XXX ???: Disable fastboot on controllers that support it. */
   4225 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4226 	    BGE_IS_5755_PLUS(sc))
   4227 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4228 
   4229 	/* 5718 reset step 2, 57XX step 6 */
   4230 	/*
   4231 	 * Write the magic number to SRAM at offset 0xB50.
   4232 	 * When firmware finishes its initialization it will
   4233 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4234 	 */
   4235 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4236 
   4237 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   4238 		val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   4239 		val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   4240 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   4241 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
   4242 	}
   4243 
   4244 	/* 5718 reset step 6, 57XX step 7 */
   4245 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4246 	/*
   4247 	 * XXX: from FreeBSD/Linux; no documentation
   4248 	 */
   4249 	if (sc->bge_flags & BGEF_PCIE) {
   4250 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
   4251 		    !BGE_IS_57765_PLUS(sc) &&
   4252 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4253 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4254 			/* PCI Express 1.0 system */
   4255 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4256 			    BGE_PHY_PCIE_SCRAM_MODE);
   4257 		}
   4258 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4259 			/*
   4260 			 * Prevent PCI Express link training
   4261 			 * during global reset.
   4262 			 */
   4263 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4264 			reset |= (1 << 29);
   4265 		}
   4266 	}
   4267 
   4268 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4269 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4270 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4271 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4272 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4273 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4274 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4275 	}
   4276 
   4277 	/*
   4278 	 * Set GPHY Power Down Override to leave GPHY
   4279 	 * powered up in D0 uninitialized.
   4280 	 */
   4281 	if (BGE_IS_5705_PLUS(sc) &&
   4282 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4283 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4284 
   4285 	/* Issue global reset */
   4286 	write_op(sc, BGE_MISC_CFG, reset);
   4287 
   4288 	/* 5718 reset step 7, 57XX step 8 */
   4289 	if (sc->bge_flags & BGEF_PCIE)
   4290 		delay(100*1000); /* too big */
   4291 	else
   4292 		delay(1000);
   4293 
   4294 	if (sc->bge_flags & BGEF_PCIE) {
   4295 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4296 			DELAY(500000);
   4297 			/* XXX: Magic Numbers */
   4298 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4299 			    BGE_PCI_UNKNOWN0);
   4300 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4301 			    BGE_PCI_UNKNOWN0,
   4302 			    reg | (1 << 15));
   4303 		}
   4304 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4305 		    sc->bge_pciecap + PCIE_DCSR);
   4306 		/* Clear enable no snoop and disable relaxed ordering. */
   4307 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4308 		    PCIE_DCSR_ENA_NO_SNOOP);
   4309 
   4310 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4311 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4312 			devctl &= ~(0x00e0);
   4313 		/* Clear device status register. Write 1b to clear */
   4314 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4315 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4316 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4317 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4318 		bge_set_max_readrq(sc);
   4319 	}
   4320 
   4321 	/* From Linux: dummy read to flush PCI posted writes */
   4322 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4323 
   4324 	/*
   4325 	 * Reset some of the PCI state that got zapped by reset
   4326 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4327 	 * set, too.
   4328 	 */
   4329 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4330 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4331 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4332 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4333 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4334 	    (sc->bge_flags & BGEF_PCIX) != 0)
   4335 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4336 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4337 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4338 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4339 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4340 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4341 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4342 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4343 
   4344 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
   4345 	if (sc->bge_flags & BGEF_PCIX) {
   4346 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4347 		    + PCIX_CMD);
   4348 		/* Set max memory read byte count to 2K */
   4349 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   4350 			reg &= ~PCIX_CMD_BYTECNT_MASK;
   4351 			reg |= PCIX_CMD_BCNT_2048;
   4352 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
   4353 			/*
   4354 			 * For 5704, set max outstanding split transaction
   4355 			 * field to 0 (0 means it supports 1 request)
   4356 			 */
   4357 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
   4358 			    | PCIX_CMD_BYTECNT_MASK);
   4359 			reg |= PCIX_CMD_BCNT_2048;
   4360 		}
   4361 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4362 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4363 	}
   4364 
   4365 	/* 5718 reset step 10, 57XX step 12 */
   4366 	/* Enable memory arbiter. */
   4367 	if (BGE_IS_5714_FAMILY(sc)) {
   4368 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4369 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4370 	} else
   4371 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4372 
   4373 	/* XXX 5721, 5751 and 5752 */
   4374 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4375 		/* Step 19: */
   4376 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4377 		/* Step 20: */
   4378 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4379 	}
   4380 
   4381 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4382 	/* Fix up byte swapping */
   4383 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4384 
   4385 	/* 5718 reset step 13, 57XX step 17 */
   4386 	/* Poll until the firmware initialization is complete */
   4387 	bge_poll_fw(sc);
   4388 
   4389 	/* 57XX step 21 */
   4390 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4391 		pcireg_t msidata;
   4392 
   4393 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4394 		    BGE_PCI_MSI_DATA);
   4395 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4396 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4397 		    msidata);
   4398 	}
   4399 
   4400 	/* 57XX step 18 */
   4401 	/* Write mac mode. */
   4402 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4403 	/* Restore mac_mode_mask's bits using mac_mode */
   4404 	val = (val & ~mac_mode_mask) | mac_mode;
   4405 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4406 	DELAY(40);
   4407 
   4408 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4409 
   4410 	/*
   4411 	 * The 5704 in TBI mode apparently needs some special
   4412 	 * adjustment to insure the SERDES drive level is set
   4413 	 * to 1.2V.
   4414 	 */
   4415 	if (sc->bge_flags & BGEF_FIBER_TBI &&
   4416 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4417 		uint32_t serdescfg;
   4418 
   4419 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4420 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4421 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4422 	}
   4423 
   4424 	if (sc->bge_flags & BGEF_PCIE &&
   4425 	    !BGE_IS_57765_PLUS(sc) &&
   4426 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4427 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4428 		uint32_t v;
   4429 
   4430 		/* Enable PCI Express bug fix */
   4431 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4432 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4433 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4434 	}
   4435 
   4436 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4437 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4438 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4439 
   4440 	return 0;
   4441 }
   4442 
   4443 /*
   4444  * Frame reception handling. This is called if there's a frame
   4445  * on the receive return list.
   4446  *
   4447  * Note: we have to be able to handle two possibilities here:
   4448  * 1) the frame is from the jumbo receive ring
   4449  * 2) the frame is from the standard receive ring
   4450  */
   4451 
   4452 static void
   4453 bge_rxeof(struct bge_softc *sc)
   4454 {
   4455 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4456 	uint16_t rx_prod, rx_cons;
   4457 	int stdcnt = 0, jumbocnt = 0;
   4458 	bus_dmamap_t dmamap;
   4459 	bus_addr_t offset, toff;
   4460 	bus_size_t tlen;
   4461 	int tosync;
   4462 
   4463 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4464 	    offsetof(struct bge_ring_data, bge_status_block),
   4465 	    sizeof(struct bge_status_block),
   4466 	    BUS_DMASYNC_POSTREAD);
   4467 
   4468 	rx_cons = sc->bge_rx_saved_considx;
   4469 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4470 
   4471 	/* Nothing to do */
   4472 	if (rx_cons == rx_prod)
   4473 		return;
   4474 
   4475 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4476 	tosync = rx_prod - rx_cons;
   4477 
   4478 	if (tosync != 0)
   4479 		rnd_add_uint32(&sc->rnd_source, tosync);
   4480 
   4481 	toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
   4482 
   4483 	if (tosync < 0) {
   4484 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4485 		    sizeof(struct bge_rx_bd);
   4486 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4487 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4488 		tosync = rx_prod;
   4489 		toff = offset;
   4490 	}
   4491 
   4492 	if (tosync != 0) {
   4493 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4494 		    toff, tosync * sizeof(struct bge_rx_bd),
   4495 		    BUS_DMASYNC_POSTREAD);
   4496 	}
   4497 
   4498 	while (rx_cons != rx_prod) {
   4499 		struct bge_rx_bd	*cur_rx;
   4500 		uint32_t		rxidx;
   4501 		struct mbuf		*m = NULL;
   4502 
   4503 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4504 
   4505 		rxidx = cur_rx->bge_idx;
   4506 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4507 
   4508 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4509 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4510 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4511 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4512 			jumbocnt++;
   4513 			bus_dmamap_sync(sc->bge_dmatag,
   4514 			    sc->bge_cdata.bge_rx_jumbo_map,
   4515 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4516 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4517 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4518 				if_statinc(ifp, if_ierrors);
   4519 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4520 				continue;
   4521 			}
   4522 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4523 					     NULL) == ENOBUFS) {
   4524 				if_statinc(ifp, if_ierrors);
   4525 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4526 				continue;
   4527 			}
   4528 		} else {
   4529 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4530 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4531 
   4532 			stdcnt++;
   4533 			sc->bge_std_cnt--;
   4534 
   4535 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4536 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4537 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4538 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4539 
   4540 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4541 				m_free(m);
   4542 				if_statinc(ifp, if_ierrors);
   4543 				continue;
   4544 			}
   4545 		}
   4546 
   4547 #ifndef __NO_STRICT_ALIGNMENT
   4548 		/*
   4549 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4550 		 * the Rx buffer has the layer-2 header unaligned.
   4551 		 * If our CPU requires alignment, re-align by copying.
   4552 		 */
   4553 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
   4554 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4555 				cur_rx->bge_len);
   4556 			m->m_data += ETHER_ALIGN;
   4557 		}
   4558 #endif
   4559 
   4560 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4561 		m_set_rcvif(m, ifp);
   4562 
   4563 		bge_rxcsum(sc, cur_rx, m);
   4564 
   4565 		/*
   4566 		 * If we received a packet with a vlan tag, pass it
   4567 		 * to vlan_input() instead of ether_input().
   4568 		 */
   4569 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   4570 			vlan_set_tag(m, cur_rx->bge_vlan_tag);
   4571 
   4572 		if_percpuq_enqueue(ifp->if_percpuq, m);
   4573 	}
   4574 
   4575 	sc->bge_rx_saved_considx = rx_cons;
   4576 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4577 	if (stdcnt)
   4578 		bge_fill_rx_ring_std(sc);
   4579 	if (jumbocnt)
   4580 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4581 }
   4582 
   4583 static void
   4584 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4585 {
   4586 
   4587 	if (BGE_IS_57765_PLUS(sc)) {
   4588 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4589 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4590 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4591 			if ((cur_rx->bge_error_flag &
   4592 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4593 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4594 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4595 				m->m_pkthdr.csum_data =
   4596 				    cur_rx->bge_tcp_udp_csum;
   4597 				m->m_pkthdr.csum_flags |=
   4598 				    (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
   4599 			}
   4600 		}
   4601 	} else {
   4602 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4603 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4604 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4605 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4606 		/*
   4607 		 * Rx transport checksum-offload may also
   4608 		 * have bugs with packets which, when transmitted,
   4609 		 * were `runts' requiring padding.
   4610 		 */
   4611 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4612 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4613 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4614 			m->m_pkthdr.csum_data =
   4615 			    cur_rx->bge_tcp_udp_csum;
   4616 			m->m_pkthdr.csum_flags |=
   4617 			    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
   4618 		}
   4619 	}
   4620 }
   4621 
   4622 static void
   4623 bge_txeof(struct bge_softc *sc)
   4624 {
   4625 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4626 	struct bge_tx_bd *cur_tx = NULL;
   4627 	struct txdmamap_pool_entry *dma;
   4628 	bus_addr_t offset, toff;
   4629 	bus_size_t tlen;
   4630 	int tosync;
   4631 	struct mbuf *m;
   4632 
   4633 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4634 	    offsetof(struct bge_ring_data, bge_status_block),
   4635 	    sizeof(struct bge_status_block),
   4636 	    BUS_DMASYNC_POSTREAD);
   4637 
   4638 	const uint16_t hw_cons_idx =
   4639 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx;
   4640 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4641 	tosync = hw_cons_idx - sc->bge_tx_saved_considx;
   4642 
   4643 	if (tosync != 0)
   4644 		rnd_add_uint32(&sc->rnd_source, tosync);
   4645 
   4646 	toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
   4647 
   4648 	if (tosync < 0) {
   4649 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4650 		    sizeof(struct bge_tx_bd);
   4651 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4652 		    toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4653 		tosync = hw_cons_idx;
   4654 		toff = offset;
   4655 	}
   4656 
   4657 	if (tosync != 0) {
   4658 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4659 		    toff, tosync * sizeof(struct bge_tx_bd),
   4660 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4661 	}
   4662 
   4663 	/*
   4664 	 * Go through our tx ring and free mbufs for those
   4665 	 * frames that have been sent.
   4666 	 */
   4667 	while (sc->bge_tx_saved_considx != hw_cons_idx) {
   4668 		uint32_t idx = sc->bge_tx_saved_considx;
   4669 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4670 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4671 			if_statinc(ifp, if_opackets);
   4672 		m = sc->bge_cdata.bge_tx_chain[idx];
   4673 		if (m != NULL) {
   4674 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4675 			dma = sc->txdma[idx];
   4676 			if (dma->is_dma32) {
   4677 				bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
   4678 				    0, dma->dmamap32->dm_mapsize,
   4679 				    BUS_DMASYNC_POSTWRITE);
   4680 				bus_dmamap_unload(
   4681 				    sc->bge_dmatag32, dma->dmamap32);
   4682 			} else {
   4683 				bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
   4684 				    0, dma->dmamap->dm_mapsize,
   4685 				    BUS_DMASYNC_POSTWRITE);
   4686 				bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4687 			}
   4688 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4689 			sc->txdma[idx] = NULL;
   4690 
   4691 			m_freem(m);
   4692 		}
   4693 		sc->bge_txcnt--;
   4694 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4695 		sc->bge_tx_sending = false;
   4696 	}
   4697 }
   4698 
   4699 static int
   4700 bge_intr(void *xsc)
   4701 {
   4702 	struct bge_softc * const sc = xsc;
   4703 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4704 	uint32_t pcistate, statusword, statustag;
   4705 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4706 
   4707 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4708 	if (BGE_IS_5717_PLUS(sc))
   4709 		intrmask = 0;
   4710 
   4711 	mutex_enter(sc->sc_core_lock);
   4712 
   4713 	/*
   4714 	 * It is possible for the interrupt to arrive before
   4715 	 * the status block is updated prior to the interrupt.
   4716 	 * Reading the PCI State register will confirm whether the
   4717 	 * interrupt is ours and will flush the status block.
   4718 	 */
   4719 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
   4720 
   4721 	/* read status word from status block */
   4722 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4723 	    offsetof(struct bge_ring_data, bge_status_block),
   4724 	    sizeof(struct bge_status_block),
   4725 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4726 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4727 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
   4728 
   4729 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
   4730 		if (sc->bge_lasttag == statustag &&
   4731 		    (~pcistate & intrmask)) {
   4732 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
   4733 			mutex_exit(sc->sc_core_lock);
   4734 			return 0;
   4735 		}
   4736 		sc->bge_lasttag = statustag;
   4737 	} else {
   4738 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
   4739 		    !(~pcistate & intrmask)) {
   4740 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
   4741 			mutex_exit(sc->sc_core_lock);
   4742 			return 0;
   4743 		}
   4744 		statustag = 0;
   4745 	}
   4746 	/* Ack interrupt and stop others from occurring. */
   4747 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4748 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   4749 
   4750 	/* clear status word */
   4751 	sc->bge_rdata->bge_status_block.bge_status = 0;
   4752 
   4753 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4754 	    offsetof(struct bge_ring_data, bge_status_block),
   4755 	    sizeof(struct bge_status_block),
   4756 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4757 
   4758 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4759 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4760 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4761 		bge_link_upd(sc);
   4762 
   4763 	if (sc->bge_if_flags & IFF_RUNNING) {
   4764 		/* Check RX return ring producer/consumer */
   4765 		bge_rxeof(sc);
   4766 
   4767 		/* Check TX ring producer/consumer */
   4768 		bge_txeof(sc);
   4769 	}
   4770 
   4771 	if (sc->bge_pending_rxintr_change) {
   4772 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4773 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4774 
   4775 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4776 		DELAY(10);
   4777 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4778 
   4779 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4780 		DELAY(10);
   4781 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4782 
   4783 		sc->bge_pending_rxintr_change = 0;
   4784 	}
   4785 	bge_handle_events(sc);
   4786 
   4787 	/* Re-enable interrupts. */
   4788 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
   4789 
   4790 	if (sc->bge_if_flags & IFF_RUNNING)
   4791 		if_schedule_deferred_start(ifp);
   4792 
   4793 	mutex_exit(sc->sc_core_lock);
   4794 
   4795 	return 1;
   4796 }
   4797 
   4798 static void
   4799 bge_asf_driver_up(struct bge_softc *sc)
   4800 {
   4801 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4802 		/* Send ASF heartbeat approx. every 2s */
   4803 		if (sc->bge_asf_count)
   4804 			sc->bge_asf_count --;
   4805 		else {
   4806 			sc->bge_asf_count = 2;
   4807 
   4808 			bge_wait_for_event_ack(sc);
   4809 
   4810 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4811 			    BGE_FW_CMD_DRV_ALIVE3);
   4812 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4813 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4814 			    BGE_FW_HB_TIMEOUT_SEC);
   4815 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4816 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4817 			    BGE_RX_CPU_DRV_EVENT);
   4818 		}
   4819 	}
   4820 }
   4821 
   4822 static void
   4823 bge_tick(void *xsc)
   4824 {
   4825 	struct bge_softc * const sc = xsc;
   4826 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4827 	struct mii_data * const mii = &sc->bge_mii;
   4828 
   4829 	mutex_enter(sc->sc_core_lock);
   4830 
   4831 	if (BGE_IS_5705_PLUS(sc))
   4832 		bge_stats_update_regs(sc);
   4833 	else
   4834 		bge_stats_update(sc);
   4835 
   4836 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4837 		/*
   4838 		 * Since in TBI mode auto-polling can't be used we should poll
   4839 		 * link status manually. Here we register pending link event
   4840 		 * and trigger interrupt.
   4841 		 */
   4842 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4843 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4844 	} else {
   4845 		/*
   4846 		 * Do not touch PHY if we have link up. This could break
   4847 		 * IPMI/ASF mode or produce extra input errors.
   4848 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4849 		 */
   4850 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4851 			mii_tick(mii);
   4852 	}
   4853 
   4854 	bge_asf_driver_up(sc);
   4855 
   4856 	const bool ok = bge_watchdog(ifp);
   4857 
   4858 	if (ok && !sc->bge_detaching)
   4859 		callout_schedule(&sc->bge_timeout, hz);
   4860 
   4861 	mutex_exit(sc->sc_core_lock);
   4862 }
   4863 
   4864 static void
   4865 bge_stats_update_regs(struct bge_softc *sc)
   4866 {
   4867 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4868 
   4869 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4870 
   4871 	if_statadd_ref(nsr, if_collisions,
   4872 	    CSR_READ_4(sc, BGE_MAC_STATS +
   4873 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
   4874 
   4875 	/*
   4876 	 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
   4877 	 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
   4878 	 * (silicon bug). There's no reliable workaround so just
   4879 	 * ignore the counter
   4880 	 */
   4881 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   4882 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
   4883 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
   4884 		if_statadd_ref(nsr, if_ierrors,
   4885 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
   4886 	}
   4887 	if_statadd_ref(nsr, if_ierrors,
   4888 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
   4889 	if_statadd_ref(nsr, if_ierrors,
   4890 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
   4891 
   4892 	IF_STAT_PUTREF(ifp);
   4893 
   4894 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   4895 		uint32_t val, ucast, mcast, bcast;
   4896 
   4897 		ucast = CSR_READ_4(sc, BGE_MAC_STATS +
   4898 		    offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
   4899 		mcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4900 		    offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
   4901 		bcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4902 		    offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
   4903 
   4904 		/*
   4905 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
   4906 		 * frames, it's safe to disable workaround for DMA engine's
   4907 		 * miscalculation of TXMBUF space.
   4908 		 */
   4909 		if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
   4910 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   4911 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   4912 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
   4913 			else
   4914 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
   4915 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   4916 			sc->bge_flags &= ~BGEF_RDMA_BUG;
   4917 		}
   4918 	}
   4919 }
   4920 
   4921 static void
   4922 bge_stats_update(struct bge_softc *sc)
   4923 {
   4924 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4925 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4926 
   4927 #define READ_STAT(sc, stats, stat) \
   4928 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4929 
   4930 	uint64_t collisions =
   4931 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4932 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4933 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4934 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
   4935 
   4936 	if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
   4937 	sc->bge_if_collisions = collisions;
   4938 
   4939 
   4940 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4941 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4942 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4943 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4944 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4945 		      READ_STAT(sc, stats,
   4946 				xoffPauseFramesReceived.bge_addr_lo));
   4947 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4948 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4949 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4950 		      READ_STAT(sc, stats,
   4951 				macControlFramesReceived.bge_addr_lo));
   4952 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4953 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4954 
   4955 #undef READ_STAT
   4956 }
   4957 
   4958 /*
   4959  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4960  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4961  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4962  * the hardware checksum assist gives incorrect results (possibly
   4963  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4964  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4965  */
   4966 static inline int
   4967 bge_cksum_pad(struct mbuf *pkt)
   4968 {
   4969 	struct mbuf *last = NULL;
   4970 	int padlen;
   4971 
   4972 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4973 
   4974 	/* if there's only the packet-header and we can pad there, use it. */
   4975 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4976 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4977 		last = pkt;
   4978 	} else {
   4979 		/*
   4980 		 * Walk packet chain to find last mbuf. We will either
   4981 		 * pad there, or append a new mbuf and pad it
   4982 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4983 		 */
   4984 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4985 			continue; /* do nothing */
   4986 		}
   4987 
   4988 		/* `last' now points to last in chain. */
   4989 		if (M_TRAILINGSPACE(last) < padlen) {
   4990 			/* Allocate new empty mbuf, pad it. Compact later. */
   4991 			struct mbuf *n;
   4992 			MGET(n, M_DONTWAIT, MT_DATA);
   4993 			if (n == NULL)
   4994 				return ENOBUFS;
   4995 			n->m_len = 0;
   4996 			last->m_next = n;
   4997 			last = n;
   4998 		}
   4999 	}
   5000 
   5001 	KDASSERT(!M_READONLY(last));
   5002 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   5003 
   5004 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   5005 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   5006 	last->m_len += padlen;
   5007 	pkt->m_pkthdr.len += padlen;
   5008 	return 0;
   5009 }
   5010 
   5011 /*
   5012  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   5013  */
   5014 static inline int
   5015 bge_compact_dma_runt(struct mbuf *pkt)
   5016 {
   5017 	struct mbuf	*m, *prev;
   5018 	int		totlen;
   5019 
   5020 	prev = NULL;
   5021 	totlen = 0;
   5022 
   5023 	for (m = pkt; m != NULL; prev = m, m = m->m_next) {
   5024 		int mlen = m->m_len;
   5025 		int shortfall = 8 - mlen ;
   5026 
   5027 		totlen += mlen;
   5028 		if (mlen == 0)
   5029 			continue;
   5030 		if (mlen >= 8)
   5031 			continue;
   5032 
   5033 		/*
   5034 		 * If we get here, mbuf data is too small for DMA engine.
   5035 		 * Try to fix by shuffling data to prev or next in chain.
   5036 		 * If that fails, do a compacting deep-copy of the whole chain.
   5037 		 */
   5038 
   5039 		/* Internal frag. If fits in prev, copy it there. */
   5040 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   5041 			memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   5042 			prev->m_len += mlen;
   5043 			m->m_len = 0;
   5044 			/* XXX stitch chain */
   5045 			prev->m_next = m_free(m);
   5046 			m = prev;
   5047 			continue;
   5048 		} else if (m->m_next != NULL &&
   5049 			    M_TRAILINGSPACE(m) >= shortfall &&
   5050 			    m->m_next->m_len >= (8 + shortfall)) {
   5051 		    /* m is writable and have enough data in next, pull up. */
   5052 
   5053 			memcpy(m->m_data + m->m_len, m->m_next->m_data,
   5054 			    shortfall);
   5055 			m->m_len += shortfall;
   5056 			m->m_next->m_len -= shortfall;
   5057 			m->m_next->m_data += shortfall;
   5058 		} else if (m->m_next == NULL || 1) {
   5059 			/*
   5060 			 * Got a runt at the very end of the packet.
   5061 			 * borrow data from the tail of the preceding mbuf and
   5062 			 * update its length in-place. (The original data is
   5063 			 * still valid, so we can do this even if prev is not
   5064 			 * writable.)
   5065 			 */
   5066 
   5067 			/*
   5068 			 * If we'd make prev a runt, just move all of its data.
   5069 			 */
   5070 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   5071 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   5072 
   5073 			if ((prev->m_len - shortfall) < 8)
   5074 				shortfall = prev->m_len;
   5075 
   5076 #ifdef notyet	/* just do the safe slow thing for now */
   5077 			if (!M_READONLY(m)) {
   5078 				if (M_LEADINGSPACE(m) < shorfall) {
   5079 					void *m_dat;
   5080 					m_dat = M_BUFADDR(m);
   5081 					memmove(m_dat, mtod(m, void*),
   5082 					    m->m_len);
   5083 					m->m_data = m_dat;
   5084 				}
   5085 			} else
   5086 #endif	/* just do the safe slow thing */
   5087 			{
   5088 				struct mbuf * n = NULL;
   5089 				int newprevlen = prev->m_len - shortfall;
   5090 
   5091 				MGET(n, M_NOWAIT, MT_DATA);
   5092 				if (n == NULL)
   5093 				   return ENOBUFS;
   5094 				KASSERT(m->m_len + shortfall < MLEN
   5095 					/*,
   5096 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   5097 
   5098 				/* first copy the data we're stealing from prev */
   5099 				memcpy(n->m_data, prev->m_data + newprevlen,
   5100 				    shortfall);
   5101 
   5102 				/* update prev->m_len accordingly */
   5103 				prev->m_len -= shortfall;
   5104 
   5105 				/* copy data from runt m */
   5106 				memcpy(n->m_data + shortfall, m->m_data,
   5107 				    m->m_len);
   5108 
   5109 				/* n holds what we stole from prev, plus m */
   5110 				n->m_len = shortfall + m->m_len;
   5111 
   5112 				/* stitch n into chain and free m */
   5113 				n->m_next = m->m_next;
   5114 				prev->m_next = n;
   5115 				/* KASSERT(m->m_next == NULL); */
   5116 				m->m_next = NULL;
   5117 				m_free(m);
   5118 				m = n;	/* for continuing loop */
   5119 			}
   5120 		}
   5121 	}
   5122 	return 0;
   5123 }
   5124 
   5125 /*
   5126  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   5127  * pointers to descriptors.
   5128  */
   5129 static int
   5130 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   5131 {
   5132 	struct bge_tx_bd	*f, *prev_f;
   5133 	uint32_t		frag, cur;
   5134 	uint16_t		csum_flags = 0;
   5135 	uint16_t		txbd_tso_flags = 0;
   5136 	struct txdmamap_pool_entry *dma;
   5137 	bus_dmamap_t dmamap;
   5138 	bus_dma_tag_t dmatag;
   5139 	int			i = 0;
   5140 	int			use_tso, maxsegsize, error;
   5141 	bool			have_vtag;
   5142 	uint16_t		vtag;
   5143 	bool			remap;
   5144 
   5145 	if (m_head->m_pkthdr.csum_flags) {
   5146 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5147 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   5148 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
   5149 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   5150 	}
   5151 
   5152 	/*
   5153 	 * If we were asked to do an outboard checksum, and the NIC
   5154 	 * has the bug where it sometimes adds in the Ethernet padding,
   5155 	 * explicitly pad with zeros so the cksum will be correct either way.
   5156 	 * (For now, do this for all chip versions, until newer
   5157 	 * are confirmed to not require the workaround.)
   5158 	 */
   5159 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   5160 #ifdef notyet
   5161 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   5162 #endif
   5163 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   5164 		goto check_dma_bug;
   5165 
   5166 	if (bge_cksum_pad(m_head) != 0)
   5167 		return ENOBUFS;
   5168 
   5169 check_dma_bug:
   5170 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   5171 		goto doit;
   5172 
   5173 	/*
   5174 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   5175 	 * less than eight bytes.  If we encounter a teeny mbuf
   5176 	 * at the end of a chain, we can pad.  Otherwise, copy.
   5177 	 */
   5178 	if (bge_compact_dma_runt(m_head) != 0)
   5179 		return ENOBUFS;
   5180 
   5181 doit:
   5182 	dma = SLIST_FIRST(&sc->txdma_list);
   5183 	if (dma == NULL) {
   5184 		return ENOBUFS;
   5185 	}
   5186 	dmamap = dma->dmamap;
   5187 	dmatag = sc->bge_dmatag;
   5188 	dma->is_dma32 = false;
   5189 
   5190 	/*
   5191 	 * Set up any necessary TSO state before we start packing...
   5192 	 */
   5193 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   5194 	if (!use_tso) {
   5195 		maxsegsize = 0;
   5196 	} else {	/* TSO setup */
   5197 		unsigned  mss;
   5198 		struct ether_header *eh;
   5199 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   5200 		unsigned bge_hlen;
   5201 		struct mbuf * m0 = m_head;
   5202 		struct ip *ip;
   5203 		struct tcphdr *th;
   5204 		int iphl, hlen;
   5205 
   5206 		/*
   5207 		 * XXX It would be nice if the mbuf pkthdr had offset
   5208 		 * fields for the protocol headers.
   5209 		 */
   5210 
   5211 		eh = mtod(m0, struct ether_header *);
   5212 		switch (htons(eh->ether_type)) {
   5213 		case ETHERTYPE_IP:
   5214 			offset = ETHER_HDR_LEN;
   5215 			break;
   5216 
   5217 		case ETHERTYPE_VLAN:
   5218 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   5219 			break;
   5220 
   5221 		default:
   5222 			/*
   5223 			 * Don't support this protocol or encapsulation.
   5224 			 */
   5225 			return ENOBUFS;
   5226 		}
   5227 
   5228 		/*
   5229 		 * TCP/IP headers are in the first mbuf; we can do
   5230 		 * this the easy way.
   5231 		 */
   5232 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   5233 		hlen = iphl + offset;
   5234 		if (__predict_false(m0->m_len <
   5235 				    (hlen + sizeof(struct tcphdr)))) {
   5236 
   5237 			aprint_error_dev(sc->bge_dev,
   5238 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   5239 			    "not handled yet\n",
   5240 			    m0->m_len, hlen+ sizeof(struct tcphdr));
   5241 #ifdef NOTYET
   5242 			/*
   5243 			 * XXX jonathan (at) NetBSD.org: untested.
   5244 			 * how to force this branch to be taken?
   5245 			 */
   5246 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
   5247 
   5248 			m_copydata(m0, offset, sizeof(ip), &ip);
   5249 			m_copydata(m0, hlen, sizeof(th), &th);
   5250 
   5251 			ip.ip_len = 0;
   5252 
   5253 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   5254 			    sizeof(ip.ip_len), &ip.ip_len);
   5255 
   5256 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   5257 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   5258 
   5259 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   5260 			    sizeof(th.th_sum), &th.th_sum);
   5261 
   5262 			hlen += th.th_off << 2;
   5263 			iptcp_opt_words	= hlen;
   5264 #else
   5265 			/*
   5266 			 * if_wm "hard" case not yet supported, can we not
   5267 			 * mandate it out of existence?
   5268 			 */
   5269 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5270 
   5271 			return ENOBUFS;
   5272 #endif
   5273 		} else {
   5274 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5275 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5276 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5277 
   5278 			/* Total IP/TCP options, in 32-bit words */
   5279 			iptcp_opt_words = (ip_tcp_hlen
   5280 					   - sizeof(struct tcphdr)
   5281 					   - sizeof(struct ip)) >> 2;
   5282 		}
   5283 		if (BGE_IS_575X_PLUS(sc)) {
   5284 			th->th_sum = 0;
   5285 			csum_flags = 0;
   5286 		} else {
   5287 			/*
   5288 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5289 			 * Requires TSO firmware patch for 5701/5703/5704.
   5290 			 */
   5291 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5292 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5293 		}
   5294 
   5295 		mss = m_head->m_pkthdr.segsz;
   5296 		txbd_tso_flags |=
   5297 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5298 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5299 
   5300 		/*
   5301 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5302 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5303 		 * the NIC copies 40 bytes of IP/TCP header from the
   5304 		 * supplied header into the IP/TCP header portion of
   5305 		 * each post-TSO-segment. If the supplied packet has IP or
   5306 		 * TCP options, we need to tell the NIC to copy those extra
   5307 		 * bytes into each  post-TSO header, in addition to the normal
   5308 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5309 		 * Unfortunately, the driver encoding of option length
   5310 		 * varies across different ASIC families.
   5311 		 */
   5312 		tcp_seg_flags = 0;
   5313 		bge_hlen = ip_tcp_hlen >> 2;
   5314 		if (BGE_IS_5717_PLUS(sc)) {
   5315 			tcp_seg_flags = (bge_hlen & 0x3) << 14;
   5316 			txbd_tso_flags |=
   5317 			    ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
   5318 		} else if (BGE_IS_5705_PLUS(sc)) {
   5319 			tcp_seg_flags = bge_hlen << 11;
   5320 		} else {
   5321 			/* XXX iptcp_opt_words or bge_hlen ? */
   5322 			txbd_tso_flags |= iptcp_opt_words << 12;
   5323 		}
   5324 		maxsegsize = mss | tcp_seg_flags;
   5325 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5326 		ip->ip_sum = 0;
   5327 
   5328 	}	/* TSO setup */
   5329 
   5330 	have_vtag = vlan_has_tag(m_head);
   5331 	if (have_vtag)
   5332 		vtag = vlan_get_tag(m_head);
   5333 
   5334 	/*
   5335 	 * Start packing the mbufs in this chain into
   5336 	 * the fragment pointers. Stop when we run out
   5337 	 * of fragments or hit the end of the mbuf chain.
   5338 	 */
   5339 	remap = true;
   5340 load_again:
   5341 	error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
   5342 	if (__predict_false(error)) {
   5343 		if (error == EFBIG && remap) {
   5344 			struct mbuf *m;
   5345 			remap = false;
   5346 			m = m_defrag(m_head, M_NOWAIT);
   5347 			if (m != NULL) {
   5348 				KASSERT(m == m_head);
   5349 				goto load_again;
   5350 			}
   5351 		}
   5352 		return error;
   5353 	}
   5354 	/*
   5355 	 * Sanity check: avoid coming within 16 descriptors
   5356 	 * of the end of the ring.
   5357 	 */
   5358 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5359 		BGE_TSO_PRINTF(("%s: "
   5360 		    " dmamap_load_mbuf too close to ring wrap\n",
   5361 		    device_xname(sc->bge_dev)));
   5362 		goto fail_unload;
   5363 	}
   5364 
   5365 	/* Iterate over dmap-map fragments. */
   5366 	f = prev_f = NULL;
   5367 	cur = frag = *txidx;
   5368 
   5369 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5370 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5371 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5372 			break;
   5373 
   5374 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5375 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5376 		if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
   5377 		    (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
   5378 		    ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
   5379 		    (prev_f != NULL &&
   5380 		     prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
   5381 		   ) {
   5382 			/*
   5383 			 * watchdog timeout issue was observed with TSO,
   5384 			 * limiting DMA address space to 32bits seems to
   5385 			 * address the issue.
   5386 			 */
   5387 			bus_dmamap_unload(dmatag, dmamap);
   5388 			dmatag = sc->bge_dmatag32;
   5389 			dmamap = dma->dmamap32;
   5390 			dma->is_dma32 = true;
   5391 			remap = true;
   5392 			goto load_again;
   5393 		}
   5394 
   5395 		/*
   5396 		 * For 5751 and follow-ons, for TSO we must turn
   5397 		 * off checksum-assist flag in the tx-descr, and
   5398 		 * supply the ASIC-revision-specific encoding
   5399 		 * of TSO flags and segsize.
   5400 		 */
   5401 		if (use_tso) {
   5402 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5403 				f->bge_rsvd = maxsegsize;
   5404 				f->bge_flags = csum_flags | txbd_tso_flags;
   5405 			} else {
   5406 				f->bge_rsvd = 0;
   5407 				f->bge_flags =
   5408 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5409 			}
   5410 		} else {
   5411 			f->bge_rsvd = 0;
   5412 			f->bge_flags = csum_flags;
   5413 		}
   5414 
   5415 		if (have_vtag) {
   5416 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5417 			f->bge_vlan_tag = vtag;
   5418 		} else {
   5419 			f->bge_vlan_tag = 0;
   5420 		}
   5421 		prev_f = f;
   5422 		cur = frag;
   5423 		BGE_INC(frag, BGE_TX_RING_CNT);
   5424 	}
   5425 
   5426 	if (i < dmamap->dm_nsegs) {
   5427 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5428 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5429 		goto fail_unload;
   5430 	}
   5431 
   5432 	bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
   5433 	    BUS_DMASYNC_PREWRITE);
   5434 
   5435 	if (frag == sc->bge_tx_saved_considx) {
   5436 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5437 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5438 
   5439 		goto fail_unload;
   5440 	}
   5441 
   5442 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5443 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5444 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5445 	sc->txdma[cur] = dma;
   5446 	sc->bge_txcnt += dmamap->dm_nsegs;
   5447 
   5448 	*txidx = frag;
   5449 
   5450 	return 0;
   5451 
   5452 fail_unload:
   5453 	bus_dmamap_unload(dmatag, dmamap);
   5454 
   5455 	return ENOBUFS;
   5456 }
   5457 
   5458 
   5459 static void
   5460 bge_start(struct ifnet *ifp)
   5461 {
   5462 	struct bge_softc * const sc = ifp->if_softc;
   5463 
   5464 	mutex_enter(sc->sc_core_lock);
   5465 	bge_start_locked(ifp);
   5466 	mutex_exit(sc->sc_core_lock);
   5467 }
   5468 
   5469 /*
   5470  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5471  * to the mbuf data regions directly in the transmit descriptors.
   5472  */
   5473 static void
   5474 bge_start_locked(struct ifnet *ifp)
   5475 {
   5476 	struct bge_softc * const sc = ifp->if_softc;
   5477 	struct mbuf *m_head = NULL;
   5478 	struct mbuf *m;
   5479 	uint32_t prodidx;
   5480 	int pkts = 0;
   5481 	int error;
   5482 
   5483 	if ((sc->bge_if_flags & IFF_RUNNING) != IFF_RUNNING)
   5484 		return;
   5485 
   5486 	prodidx = sc->bge_tx_prodidx;
   5487 
   5488 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5489 		IFQ_POLL(&ifp->if_snd, m_head);
   5490 		if (m_head == NULL)
   5491 			break;
   5492 
   5493 #if 0
   5494 		/*
   5495 		 * XXX
   5496 		 * safety overkill.  If this is a fragmented packet chain
   5497 		 * with delayed TCP/UDP checksums, then only encapsulate
   5498 		 * it if we have enough descriptors to handle the entire
   5499 		 * chain at once.
   5500 		 * (paranoia -- may not actually be needed)
   5501 		 */
   5502 		if (m_head->m_flags & M_FIRSTFRAG &&
   5503 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5504 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5505 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5506 				ifp->if_flags |= IFF_OACTIVE;
   5507 				break;
   5508 			}
   5509 		}
   5510 #endif
   5511 
   5512 		/*
   5513 		 * Pack the data into the transmit ring. If we
   5514 		 * don't have room, set the OACTIVE flag and wait
   5515 		 * for the NIC to drain the ring.
   5516 		 */
   5517 		error = bge_encap(sc, m_head, &prodidx);
   5518 		if (__predict_false(error)) {
   5519 			if (SLIST_EMPTY(&sc->txdma_list)) {
   5520 				/* just wait for the transmit ring to drain */
   5521 				break;
   5522 			}
   5523 			IFQ_DEQUEUE(&ifp->if_snd, m);
   5524 			KASSERT(m == m_head);
   5525 			m_freem(m_head);
   5526 			continue;
   5527 		}
   5528 
   5529 		/* now we are committed to transmit the packet */
   5530 		IFQ_DEQUEUE(&ifp->if_snd, m);
   5531 		KASSERT(m == m_head);
   5532 		pkts++;
   5533 
   5534 		/*
   5535 		 * If there's a BPF listener, bounce a copy of this frame
   5536 		 * to him.
   5537 		 */
   5538 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5539 	}
   5540 	if (pkts == 0)
   5541 		return;
   5542 
   5543 	/* Transmit */
   5544 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5545 	/* 5700 b2 errata */
   5546 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5547 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5548 
   5549 	sc->bge_tx_prodidx = prodidx;
   5550 	sc->bge_tx_lastsent = time_uptime;
   5551 	sc->bge_tx_sending = true;
   5552 }
   5553 
   5554 static int
   5555 bge_init(struct ifnet *ifp)
   5556 {
   5557 	struct bge_softc * const sc = ifp->if_softc;
   5558 
   5559 	mutex_enter(sc->sc_core_lock);
   5560 	int ret = bge_init_locked(ifp);
   5561 	mutex_exit(sc->sc_core_lock);
   5562 
   5563 	return ret;
   5564 }
   5565 
   5566 
   5567 static int
   5568 bge_init_locked(struct ifnet *ifp)
   5569 {
   5570 	struct bge_softc * const sc = ifp->if_softc;
   5571 	const uint16_t *m;
   5572 	uint32_t mode, reg;
   5573 	int error = 0;
   5574 
   5575 	KASSERT(IFNET_LOCKED(ifp));
   5576 	KASSERT(mutex_owned(sc->sc_core_lock));
   5577 	KASSERT(ifp == &sc->ethercom.ec_if);
   5578 
   5579 	/* Cancel pending I/O and flush buffers. */
   5580 	bge_stop_locked(ifp, 0);
   5581 
   5582 	bge_stop_fw(sc);
   5583 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5584 	bge_reset(sc);
   5585 	bge_sig_legacy(sc, BGE_RESET_START);
   5586 
   5587 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5588 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5589 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
   5590 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
   5591 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5592 
   5593 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   5594 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
   5595 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   5596 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   5597 
   5598 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
   5599 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
   5600 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
   5601 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
   5602 
   5603 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
   5604 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
   5605 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
   5606 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
   5607 	}
   5608 
   5609 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   5610 		pcireg_t aercap;
   5611 
   5612 		reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
   5613 		reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
   5614 		    | BGE_PCIE_PWRMNG_L1THRESH_4MS
   5615 		    | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
   5616 		CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
   5617 
   5618 		reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
   5619 		reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
   5620 		    | BGE_PCIE_EIDLE_DELAY_13CLK;
   5621 		CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
   5622 
   5623 		/* Clear correctable error */
   5624 		if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
   5625 		    PCI_EXTCAP_AER, &aercap, NULL) != 0)
   5626 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   5627 			    aercap + PCI_AER_COR_STATUS, 0xffffffff);
   5628 
   5629 		reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   5630 		reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   5631 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   5632 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
   5633 	}
   5634 
   5635 	bge_sig_post_reset(sc, BGE_RESET_START);
   5636 
   5637 	bge_chipinit(sc);
   5638 
   5639 	/*
   5640 	 * Init the various state machines, ring
   5641 	 * control blocks and firmware.
   5642 	 */
   5643 	error = bge_blockinit(sc);
   5644 	if (error != 0) {
   5645 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5646 		    error);
   5647 		return error;
   5648 	}
   5649 
   5650 	/* 5718 step 25, 57XX step 54 */
   5651 	/* Specify MTU. */
   5652 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5653 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5654 
   5655 	/* 5718 step 23 */
   5656 	/* Load our MAC address. */
   5657 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5658 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5659 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
   5660 	    ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
   5661 
   5662 	/* Enable or disable promiscuous mode as needed. */
   5663 	if (ifp->if_flags & IFF_PROMISC)
   5664 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5665 	else
   5666 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5667 
   5668 	/* Program multicast filter. */
   5669 	bge_setmulti(sc);
   5670 
   5671 	/* Init RX ring. */
   5672 	bge_init_rx_ring_std(sc);
   5673 
   5674 	/*
   5675 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5676 	 * memory to insure that the chip has in fact read the first
   5677 	 * entry of the ring.
   5678 	 */
   5679 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5680 		u_int i;
   5681 		for (i = 0; i < 10; i++) {
   5682 			DELAY(20);
   5683 			uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5684 			if (v == (MCLBYTES - ETHER_ALIGN))
   5685 				break;
   5686 		}
   5687 		if (i == 10)
   5688 			aprint_error_dev(sc->bge_dev,
   5689 			    "5705 A0 chip failed to load RX ring\n");
   5690 	}
   5691 
   5692 	/* Init jumbo RX ring. */
   5693 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5694 		bge_init_rx_ring_jumbo(sc);
   5695 
   5696 	/* Init our RX return ring index */
   5697 	sc->bge_rx_saved_considx = 0;
   5698 
   5699 	/* Init TX ring. */
   5700 	bge_init_tx_ring(sc);
   5701 
   5702 	/* 5718 step 63, 57XX step 94 */
   5703 	/* Enable TX MAC state machine lockup fix. */
   5704 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5705 	if (BGE_IS_5755_PLUS(sc) ||
   5706 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5707 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5708 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   5709 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   5710 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5711 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5712 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5713 	}
   5714 
   5715 	/* Turn on transmitter */
   5716 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5717 	/* 5718 step 64 */
   5718 	DELAY(100);
   5719 
   5720 	/* 5718 step 65, 57XX step 95 */
   5721 	/* Turn on receiver */
   5722 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5723 	if (BGE_IS_5755_PLUS(sc))
   5724 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5725 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   5726 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
   5727 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5728 	/* 5718 step 66 */
   5729 	DELAY(10);
   5730 
   5731 	/* 5718 step 12, 57XX step 37 */
   5732 	/*
   5733 	 * XXX Doucments of 5718 series and 577xx say the recommended value
   5734 	 * is 1, but tg3 set 1 only on 57765 series.
   5735 	 */
   5736 	if (BGE_IS_57765_PLUS(sc))
   5737 		reg = 1;
   5738 	else
   5739 		reg = 2;
   5740 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
   5741 
   5742 	/* Tell firmware we're alive. */
   5743 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5744 
   5745 	/* Enable host interrupts. */
   5746 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5747 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5748 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5749 
   5750 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5751 		goto out;
   5752 
   5753 	/* IFNET_LOCKED asserted above */
   5754 	ifp->if_flags |= IFF_RUNNING;
   5755 
   5756 	callout_schedule(&sc->bge_timeout, hz);
   5757 
   5758 out:
   5759 	sc->bge_if_flags = ifp->if_flags;
   5760 
   5761 	return error;
   5762 }
   5763 
   5764 /*
   5765  * Set media options.
   5766  */
   5767 static int
   5768 bge_ifmedia_upd(struct ifnet *ifp)
   5769 {
   5770 	struct bge_softc * const sc = ifp->if_softc;
   5771 	struct mii_data * const mii = &sc->bge_mii;
   5772 	struct ifmedia * const ifm = &sc->bge_ifmedia;
   5773 	int rc;
   5774 
   5775 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5776 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5777 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5778 			return EINVAL;
   5779 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5780 		case IFM_AUTO:
   5781 			/*
   5782 			 * The BCM5704 ASIC appears to have a special
   5783 			 * mechanism for programming the autoneg
   5784 			 * advertisement registers in TBI mode.
   5785 			 */
   5786 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5787 				uint32_t sgdig;
   5788 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5789 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5790 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5791 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5792 					sgdig |= BGE_SGDIGCFG_AUTO |
   5793 					    BGE_SGDIGCFG_PAUSE_CAP |
   5794 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5795 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5796 					    sgdig | BGE_SGDIGCFG_SEND);
   5797 					DELAY(5);
   5798 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5799 					    sgdig);
   5800 				}
   5801 			}
   5802 			break;
   5803 		case IFM_1000_SX:
   5804 			if ((ifm->ifm_media & IFM_FDX) != 0) {
   5805 				BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   5806 				    BGE_MACMODE_HALF_DUPLEX);
   5807 			} else {
   5808 				BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
   5809 				    BGE_MACMODE_HALF_DUPLEX);
   5810 			}
   5811 			DELAY(40);
   5812 			break;
   5813 		default:
   5814 			return EINVAL;
   5815 		}
   5816 		/* XXX 802.3x flow control for 1000BASE-SX */
   5817 		return 0;
   5818 	}
   5819 
   5820 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
   5821 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
   5822 		uint32_t reg;
   5823 
   5824 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5825 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
   5826 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
   5827 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5828 		}
   5829 	}
   5830 
   5831 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5832 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5833 		return 0;
   5834 
   5835 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5836 		uint32_t reg;
   5837 
   5838 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
   5839 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
   5840 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
   5841 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
   5842 			delay(40);
   5843 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
   5844 		}
   5845 	}
   5846 
   5847 	/*
   5848 	 * Force an interrupt so that we will call bge_link_upd
   5849 	 * if needed and clear any pending link state attention.
   5850 	 * Without this we are not getting any further interrupts
   5851 	 * for link state changes and thus will not UP the link and
   5852 	 * not be able to send in bge_start. The only way to get
   5853 	 * things working was to receive a packet and get a RX intr.
   5854 	 */
   5855 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5856 	    sc->bge_flags & BGEF_IS_5788)
   5857 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5858 	else
   5859 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5860 
   5861 	return rc;
   5862 }
   5863 
   5864 /*
   5865  * Report current media status.
   5866  */
   5867 static void
   5868 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5869 {
   5870 	struct bge_softc * const sc = ifp->if_softc;
   5871 	struct mii_data * const mii = &sc->bge_mii;
   5872 
   5873 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5874 		ifmr->ifm_status = IFM_AVALID;
   5875 		ifmr->ifm_active = IFM_ETHER;
   5876 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5877 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5878 			ifmr->ifm_status |= IFM_ACTIVE;
   5879 		ifmr->ifm_active |= IFM_1000_SX;
   5880 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5881 			ifmr->ifm_active |= IFM_HDX;
   5882 		else
   5883 			ifmr->ifm_active |= IFM_FDX;
   5884 		return;
   5885 	}
   5886 
   5887 	mii_pollstat(mii);
   5888 	ifmr->ifm_status = mii->mii_media_status;
   5889 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5890 	    sc->bge_flowflags;
   5891 }
   5892 
   5893 static int
   5894 bge_ifflags_cb(struct ethercom *ec)
   5895 {
   5896 	struct ifnet * const ifp = &ec->ec_if;
   5897 	struct bge_softc * const sc = ifp->if_softc;
   5898 	int ret = 0;
   5899 
   5900 	KASSERT(IFNET_LOCKED(ifp));
   5901 	mutex_enter(sc->sc_core_lock);
   5902 
   5903 	u_short change = ifp->if_flags ^ sc->bge_if_flags;
   5904 
   5905 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
   5906 		ret = ENETRESET;
   5907 	} else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
   5908 		if ((ifp->if_flags & IFF_PROMISC) == 0)
   5909 			BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5910 		else
   5911 			BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5912 
   5913 		bge_setmulti(sc);
   5914 	}
   5915 
   5916 	sc->bge_if_flags = ifp->if_flags;
   5917 	mutex_exit(sc->sc_core_lock);
   5918 
   5919 	return ret;
   5920 }
   5921 
   5922 static int
   5923 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5924 {
   5925 	struct bge_softc * const sc = ifp->if_softc;
   5926 	struct ifreq * const ifr = (struct ifreq *) data;
   5927 	int error = 0;
   5928 
   5929 	switch (command) {
   5930 	case SIOCADDMULTI:
   5931 	case SIOCDELMULTI:
   5932 		break;
   5933 	default:
   5934 		KASSERT(IFNET_LOCKED(ifp));
   5935 	}
   5936 
   5937 	const int s = splnet();
   5938 
   5939 	switch (command) {
   5940 	case SIOCSIFMEDIA:
   5941 		mutex_enter(sc->sc_core_lock);
   5942 		/* XXX Flow control is not supported for 1000BASE-SX */
   5943 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5944 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5945 			sc->bge_flowflags = 0;
   5946 		}
   5947 
   5948 		/* Flow control requires full-duplex mode. */
   5949 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5950 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5951 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5952 		}
   5953 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5954 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5955 				/* We can do both TXPAUSE and RXPAUSE. */
   5956 				ifr->ifr_media |=
   5957 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5958 			}
   5959 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5960 		}
   5961 		mutex_exit(sc->sc_core_lock);
   5962 
   5963 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5964 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5965 			    command);
   5966 		} else {
   5967 			struct mii_data * const mii = &sc->bge_mii;
   5968 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5969 			    command);
   5970 		}
   5971 		break;
   5972 	default:
   5973 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5974 			break;
   5975 
   5976 		error = 0;
   5977 
   5978 		if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
   5979 			mutex_enter(sc->sc_core_lock);
   5980 			if (sc->bge_if_flags & IFF_RUNNING) {
   5981 				bge_setmulti(sc);
   5982 			}
   5983 			mutex_exit(sc->sc_core_lock);
   5984 		}
   5985 		break;
   5986 	}
   5987 
   5988 	splx(s);
   5989 
   5990 	return error;
   5991 }
   5992 
   5993 static bool
   5994 bge_watchdog_check(struct bge_softc * const sc)
   5995 {
   5996 
   5997 	KASSERT(mutex_owned(sc->sc_core_lock));
   5998 
   5999 	if (!sc->bge_tx_sending)
   6000 		return true;
   6001 
   6002 	if (time_uptime - sc->bge_tx_lastsent <= bge_watchdog_timeout)
   6003 		return true;
   6004 
   6005 	/* If pause frames are active then don't reset the hardware. */
   6006 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
   6007 		const uint32_t status = CSR_READ_4(sc, BGE_RX_STS);
   6008 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
   6009 			/*
   6010 			 * If link partner has us in XOFF state then wait for
   6011 			 * the condition to clear.
   6012 			 */
   6013 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   6014 			sc->bge_tx_lastsent = time_uptime;
   6015 			return true;
   6016 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
   6017 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
   6018 			/*
   6019 			 * If link partner has us in XOFF state then wait for
   6020 			 * the condition to clear.
   6021 			 */
   6022 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   6023 			sc->bge_tx_lastsent = time_uptime;
   6024 			return true;
   6025 		}
   6026 		/*
   6027 		 * Any other condition is unexpected and the controller
   6028 		 * should be reset.
   6029 		 */
   6030 	}
   6031 
   6032 	return false;
   6033 }
   6034 
   6035 static bool
   6036 bge_watchdog(struct ifnet *ifp)
   6037 {
   6038 	struct bge_softc * const sc = ifp->if_softc;
   6039 
   6040 	KASSERT(mutex_owned(sc->sc_core_lock));
   6041 
   6042 	if (!sc->sc_trigger_reset && bge_watchdog_check(sc))
   6043 		return true;
   6044 
   6045 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   6046 
   6047 	if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0)
   6048 		workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
   6049 
   6050 	return false;
   6051 }
   6052 
   6053 /*
   6054  * Perform an interface watchdog reset.
   6055  */
   6056 static void
   6057 bge_handle_reset_work(struct work *work, void *arg)
   6058 {
   6059 	struct bge_softc * const sc = arg;
   6060 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   6061 
   6062 	/* Don't want ioctl operations to happen */
   6063 	IFNET_LOCK(ifp);
   6064 
   6065 	/* reset the interface. */
   6066 	bge_init(ifp);
   6067 
   6068 	IFNET_UNLOCK(ifp);
   6069 
   6070 	/*
   6071 	 * There are still some upper layer processing which call
   6072 	 * ifp->if_start(). e.g. ALTQ or one CPU system
   6073 	 */
   6074 	/* Try to get more packets going. */
   6075 	ifp->if_start(ifp);
   6076 
   6077 	atomic_store_relaxed(&sc->sc_reset_pending, 0);
   6078 }
   6079 
   6080 static void
   6081 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   6082 {
   6083 	int i;
   6084 
   6085 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   6086 
   6087 	for (i = 0; i < 1000; i++) {
   6088 		delay(100);
   6089 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   6090 			return;
   6091 	}
   6092 
   6093 	/*
   6094 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   6095 	 * on some environment (and once after boot?)
   6096 	 */
   6097 	if (reg != BGE_SRS_MODE)
   6098 		aprint_error_dev(sc->bge_dev,
   6099 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   6100 		    (u_long)reg, bit);
   6101 }
   6102 
   6103 
   6104 static void
   6105 bge_stop(struct ifnet *ifp, int disable)
   6106 {
   6107 	struct bge_softc * const sc = ifp->if_softc;
   6108 
   6109 	ASSERT_SLEEPABLE();
   6110 
   6111 	mutex_enter(sc->sc_core_lock);
   6112 	bge_stop_locked(ifp, disable);
   6113 	mutex_exit(sc->sc_core_lock);
   6114 }
   6115 
   6116 /*
   6117  * Stop the adapter and free any mbufs allocated to the
   6118  * RX and TX lists.
   6119  */
   6120 static void
   6121 bge_stop_locked(struct ifnet *ifp, int disable)
   6122 {
   6123 	struct bge_softc * const sc = ifp->if_softc;
   6124 
   6125 	KASSERT(mutex_owned(sc->sc_core_lock));
   6126 
   6127 	if (disable) {
   6128 		sc->bge_detaching = true;
   6129 		callout_halt(&sc->bge_timeout, NULL);
   6130 	} else
   6131 		callout_stop(&sc->bge_timeout);
   6132 
   6133 	/* Disable host interrupts. */
   6134 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   6135 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   6136 
   6137 	/*
   6138 	 * Tell firmware we're shutting down.
   6139 	 */
   6140 	bge_stop_fw(sc);
   6141 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   6142 
   6143 	/*
   6144 	 * Disable all of the receiver blocks.
   6145 	 */
   6146 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   6147 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   6148 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   6149 	if (BGE_IS_5700_FAMILY(sc))
   6150 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   6151 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   6152 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   6153 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   6154 
   6155 	/*
   6156 	 * Disable all of the transmit blocks.
   6157 	 */
   6158 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   6159 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   6160 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   6161 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   6162 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   6163 	if (BGE_IS_5700_FAMILY(sc))
   6164 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   6165 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   6166 
   6167 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   6168 	delay(40);
   6169 
   6170 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   6171 
   6172 	/*
   6173 	 * Shut down all of the memory managers and related
   6174 	 * state machines.
   6175 	 */
   6176 	/* 5718 step 5a,5b */
   6177 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   6178 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   6179 	if (BGE_IS_5700_FAMILY(sc))
   6180 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   6181 
   6182 	/* 5718 step 5c,5d */
   6183 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   6184 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   6185 
   6186 	if (BGE_IS_5700_FAMILY(sc)) {
   6187 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   6188 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   6189 	}
   6190 
   6191 	bge_reset(sc);
   6192 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   6193 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   6194 
   6195 	/*
   6196 	 * Keep the ASF firmware running if up.
   6197 	 */
   6198 	if (sc->bge_asf_mode & ASF_STACKUP)
   6199 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6200 	else
   6201 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6202 
   6203 	/* Free the RX lists. */
   6204 	bge_free_rx_ring_std(sc);
   6205 
   6206 	/* Free jumbo RX list. */
   6207 	if (BGE_IS_JUMBO_CAPABLE(sc))
   6208 		bge_free_rx_ring_jumbo(sc);
   6209 
   6210 	/* Free TX buffers. */
   6211 	bge_free_tx_ring(sc, disable);
   6212 
   6213 	/*
   6214 	 * Isolate/power down the PHY.
   6215 	 */
   6216 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
   6217 		mii_down(&sc->bge_mii);
   6218 
   6219 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   6220 
   6221 	/* Clear MAC's link state (PHY may still have link UP). */
   6222 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6223 
   6224 	ifp->if_flags &= ~IFF_RUNNING;
   6225 }
   6226 
   6227 static void
   6228 bge_link_upd(struct bge_softc *sc)
   6229 {
   6230 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   6231 	struct mii_data * const mii = &sc->bge_mii;
   6232 	uint32_t status;
   6233 	uint16_t phyval;
   6234 	int link;
   6235 
   6236 	/* Clear 'pending link event' flag */
   6237 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   6238 
   6239 	/*
   6240 	 * Process link state changes.
   6241 	 * Grrr. The link status word in the status block does
   6242 	 * not work correctly on the BCM5700 rev AX and BX chips,
   6243 	 * according to all available information. Hence, we have
   6244 	 * to enable MII interrupts in order to properly obtain
   6245 	 * async link changes. Unfortunately, this also means that
   6246 	 * we have to read the MAC status register to detect link
   6247 	 * changes, thereby adding an additional register access to
   6248 	 * the interrupt handler.
   6249 	 */
   6250 
   6251 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   6252 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6253 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   6254 			mii_pollstat(mii);
   6255 
   6256 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6257 			    mii->mii_media_status & IFM_ACTIVE &&
   6258 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6259 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6260 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6261 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6262 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6263 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6264 
   6265 			/* Clear the interrupt */
   6266 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   6267 			    BGE_EVTENB_MI_INTERRUPT);
   6268 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   6269 			    BRGPHY_MII_ISR, &phyval);
   6270 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   6271 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   6272 		}
   6273 		return;
   6274 	}
   6275 
   6276 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   6277 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6278 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   6279 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6280 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6281 				if (BGE_ASICREV(sc->bge_chipid)
   6282 				    == BGE_ASICREV_BCM5704) {
   6283 					BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   6284 					    BGE_MACMODE_TBI_SEND_CFGS);
   6285 					DELAY(40);
   6286 				}
   6287 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   6288 				if_link_state_change(ifp, LINK_STATE_UP);
   6289 			}
   6290 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6291 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6292 			if_link_state_change(ifp, LINK_STATE_DOWN);
   6293 		}
   6294 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   6295 		/*
   6296 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   6297 		 * bit in status word always set. Workaround this bug by
   6298 		 * reading PHY link status directly.
   6299 		 */
   6300 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   6301 		    BGE_STS_LINK : 0;
   6302 
   6303 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   6304 			mii_pollstat(mii);
   6305 
   6306 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6307 			    mii->mii_media_status & IFM_ACTIVE &&
   6308 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6309 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6310 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6311 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6312 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6313 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6314 		}
   6315 	} else {
   6316 		/*
   6317 		 * For controllers that call mii_tick, we have to poll
   6318 		 * link status.
   6319 		 */
   6320 		mii_pollstat(mii);
   6321 	}
   6322 
   6323 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   6324 		uint32_t reg, scale;
   6325 
   6326 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
   6327 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
   6328 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
   6329 			scale = 65;
   6330 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
   6331 			scale = 6;
   6332 		else
   6333 			scale = 12;
   6334 
   6335 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
   6336 		    ~BGE_MISCCFG_TIMER_PRESCALER;
   6337 		reg |= scale << 1;
   6338 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
   6339 	}
   6340 	/* Clear the attention */
   6341 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   6342 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   6343 	    BGE_MACSTAT_LINK_CHANGED);
   6344 }
   6345 
   6346 static int
   6347 bge_sysctl_verify(SYSCTLFN_ARGS)
   6348 {
   6349 	int error, t;
   6350 	struct sysctlnode node;
   6351 
   6352 	node = *rnode;
   6353 	t = *(int*)rnode->sysctl_data;
   6354 	node.sysctl_data = &t;
   6355 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   6356 	if (error || newp == NULL)
   6357 		return error;
   6358 
   6359 #if 0
   6360 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   6361 	    node.sysctl_num, rnode->sysctl_num));
   6362 #endif
   6363 
   6364 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   6365 		if (t < 0 || t >= NBGE_RX_THRESH)
   6366 			return EINVAL;
   6367 		bge_update_all_threshes(t);
   6368 	} else
   6369 		return EINVAL;
   6370 
   6371 	*(int*)rnode->sysctl_data = t;
   6372 
   6373 	return 0;
   6374 }
   6375 
   6376 /*
   6377  * Set up sysctl(3) MIB, hw.bge.*.
   6378  */
   6379 static void
   6380 bge_sysctl_init(struct bge_softc *sc)
   6381 {
   6382 	int rc, bge_root_num;
   6383 	const struct sysctlnode *node;
   6384 
   6385 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6386 	    0, CTLTYPE_NODE, "bge",
   6387 	    SYSCTL_DESCR("BGE interface controls"),
   6388 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   6389 		goto out;
   6390 	}
   6391 
   6392 	bge_root_num = node->sysctl_num;
   6393 
   6394 	/* BGE Rx interrupt mitigation level */
   6395 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6396 	    CTLFLAG_READWRITE,
   6397 	    CTLTYPE_INT, "rx_lvl",
   6398 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   6399 	    bge_sysctl_verify, 0,
   6400 	    &bge_rx_thresh_lvl,
   6401 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   6402 	    CTL_EOL)) != 0) {
   6403 		goto out;
   6404 	}
   6405 
   6406 	bge_rxthresh_nodenum = node->sysctl_num;
   6407 
   6408 #ifdef BGE_DEBUG
   6409 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6410 	    CTLFLAG_READWRITE,
   6411 	    CTLTYPE_BOOL, "trigger_reset",
   6412 	    SYSCTL_DESCR("Trigger an interface reset"),
   6413 	    NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE,
   6414 	    CTL_EOL)) != 0) {
   6415 		goto out;
   6416 	}
   6417 #endif
   6418 	return;
   6419 
   6420 out:
   6421 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   6422 }
   6423 
   6424 #ifdef BGE_DEBUG
   6425 void
   6426 bge_debug_info(struct bge_softc *sc)
   6427 {
   6428 
   6429 	printf("Hardware Flags:\n");
   6430 	if (BGE_IS_57765_PLUS(sc))
   6431 		printf(" - 57765 Plus\n");
   6432 	if (BGE_IS_5717_PLUS(sc))
   6433 		printf(" - 5717 Plus\n");
   6434 	if (BGE_IS_5755_PLUS(sc))
   6435 		printf(" - 5755 Plus\n");
   6436 	if (BGE_IS_575X_PLUS(sc))
   6437 		printf(" - 575X Plus\n");
   6438 	if (BGE_IS_5705_PLUS(sc))
   6439 		printf(" - 5705 Plus\n");
   6440 	if (BGE_IS_5714_FAMILY(sc))
   6441 		printf(" - 5714 Family\n");
   6442 	if (BGE_IS_5700_FAMILY(sc))
   6443 		printf(" - 5700 Family\n");
   6444 	if (sc->bge_flags & BGEF_IS_5788)
   6445 		printf(" - 5788\n");
   6446 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
   6447 		printf(" - Supports Jumbo Frames\n");
   6448 	if (sc->bge_flags & BGEF_NO_EEPROM)
   6449 		printf(" - No EEPROM\n");
   6450 	if (sc->bge_flags & BGEF_PCIX)
   6451 		printf(" - PCI-X Bus\n");
   6452 	if (sc->bge_flags & BGEF_PCIE)
   6453 		printf(" - PCI Express Bus\n");
   6454 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
   6455 		printf(" - RX Alignment Bug\n");
   6456 	if (sc->bge_flags & BGEF_APE)
   6457 		printf(" - APE\n");
   6458 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
   6459 		printf(" - CPMU\n");
   6460 	if (sc->bge_flags & BGEF_TSO)
   6461 		printf(" - TSO\n");
   6462 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   6463 		printf(" - TAGGED_STATUS\n");
   6464 
   6465 	/* PHY related */
   6466 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
   6467 		printf(" - No 3 LEDs\n");
   6468 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
   6469 		printf(" - CRC bug\n");
   6470 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
   6471 		printf(" - ADC bug\n");
   6472 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
   6473 		printf(" - 5704 A0 bug\n");
   6474 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
   6475 		printf(" - jitter bug\n");
   6476 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
   6477 		printf(" - BER bug\n");
   6478 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
   6479 		printf(" - adjust trim\n");
   6480 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
   6481 		printf(" - no wirespeed\n");
   6482 
   6483 	/* ASF related */
   6484 	if (sc->bge_asf_mode & ASF_ENABLE)
   6485 		printf(" - ASF enable\n");
   6486 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
   6487 		printf(" - ASF new handshake\n");
   6488 	if (sc->bge_asf_mode & ASF_STACKUP)
   6489 		printf(" - ASF stackup\n");
   6490 }
   6491 #endif /* BGE_DEBUG */
   6492 
   6493 static int
   6494 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   6495 {
   6496 	prop_dictionary_t dict;
   6497 	prop_data_t ea;
   6498 
   6499 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
   6500 		return 1;
   6501 
   6502 	dict = device_properties(sc->bge_dev);
   6503 	ea = prop_dictionary_get(dict, "mac-address");
   6504 	if (ea != NULL) {
   6505 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   6506 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   6507 		memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
   6508 		return 0;
   6509 	}
   6510 
   6511 	return 1;
   6512 }
   6513 
   6514 static int
   6515 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   6516 {
   6517 	uint32_t mac_addr;
   6518 
   6519 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   6520 	if ((mac_addr >> 16) == 0x484b) {
   6521 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   6522 		ether_addr[1] = (uint8_t)mac_addr;
   6523 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   6524 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   6525 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   6526 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   6527 		ether_addr[5] = (uint8_t)mac_addr;
   6528 		return 0;
   6529 	}
   6530 	return 1;
   6531 }
   6532 
   6533 static int
   6534 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   6535 {
   6536 	int mac_offset = BGE_EE_MAC_OFFSET;
   6537 
   6538 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6539 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   6540 
   6541 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   6542 	    ETHER_ADDR_LEN));
   6543 }
   6544 
   6545 static int
   6546 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   6547 {
   6548 
   6549 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6550 		return 1;
   6551 
   6552 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   6553 	   ETHER_ADDR_LEN));
   6554 }
   6555 
   6556 static int
   6557 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6558 {
   6559 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6560 		/* NOTE: Order is critical */
   6561 		bge_get_eaddr_fw,
   6562 		bge_get_eaddr_mem,
   6563 		bge_get_eaddr_nvram,
   6564 		bge_get_eaddr_eeprom,
   6565 		NULL
   6566 	};
   6567 	const bge_eaddr_fcn_t *func;
   6568 
   6569 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6570 		if ((*func)(sc, eaddr) == 0)
   6571 			break;
   6572 	}
   6573 	return *func == NULL ? ENXIO : 0;
   6574 }
   6575