Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.384
      1 /*	$NetBSD: if_bge.c,v 1.384 2022/08/27 06:32:53 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.384 2022/08/27 06:32:53 skrll Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/types.h>
     86 
     87 #include <sys/callout.h>
     88 #include <sys/device.h>
     89 #include <sys/kernel.h>
     90 #include <sys/kmem.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/rndsource.h>
     93 #include <sys/socket.h>
     94 #include <sys/sockio.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/systm.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 #include <net/bpf.h>
    103 
    104 /* Headers for TCP Segmentation Offload (TSO) */
    105 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    106 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    107 #include <netinet/ip.h>			/* for struct ip */
    108 #include <netinet/tcp.h>		/* for struct tcphdr */
    109 
    110 #include <dev/pci/pcireg.h>
    111 #include <dev/pci/pcivar.h>
    112 #include <dev/pci/pcidevs.h>
    113 
    114 #include <dev/mii/mii.h>
    115 #include <dev/mii/miivar.h>
    116 #include <dev/mii/miidevs.h>
    117 #include <dev/mii/brgphyreg.h>
    118 
    119 #include <dev/pci/if_bgereg.h>
    120 #include <dev/pci/if_bgevar.h>
    121 
    122 #include <prop/proplib.h>
    123 
    124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    125 
    126 
    127 /*
    128  * Tunable thresholds for rx-side bge interrupt mitigation.
    129  */
    130 
    131 /*
    132  * The pairs of values below were obtained from empirical measurement
    133  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    134  * interrupt for every N packets received, where N is, approximately,
    135  * the second value (rx_max_bds) in each pair.  The values are chosen
    136  * such that moving from one pair to the succeeding pair was observed
    137  * to roughly halve interrupt rate under sustained input packet load.
    138  * The values were empirically chosen to avoid overflowing internal
    139  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    140  * results in internal wrapping and higher interrupt rates.
    141  * The limit of 46 frames was chosen to match NFS workloads.
    142  *
    143  * These values also work well on bcm5701, bcm5704C, and (less
    144  * tested) bcm5703.  On other chipsets, (including the Altima chip
    145  * family), the larger values may overflow internal chip limits,
    146  * leading to increasing interrupt rates rather than lower interrupt
    147  * rates.
    148  *
    149  * Applications using heavy interrupt mitigation (interrupting every
    150  * 32 or 46 frames) in both directions may need to increase the TCP
    151  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    152  * full link bandwidth, due to ACKs and window updates lingering
    153  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    154  */
    155 static const struct bge_load_rx_thresh {
    156 	int rx_ticks;
    157 	int rx_max_bds; }
    158 bge_rx_threshes[] = {
    159 	{ 16,	1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    160 	{ 32,	2 },
    161 	{ 50,	4 },
    162 	{ 100,	8 },
    163 	{ 192, 16 },
    164 	{ 416, 32 },
    165 	{ 598, 46 }
    166 };
    167 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    168 
    169 /* XXX patchable; should be sysctl'able */
    170 static int bge_auto_thresh = 1;
    171 static int bge_rx_thresh_lvl;
    172 
    173 static int bge_rxthresh_nodenum;
    174 
    175 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    176 
    177 static uint32_t bge_chipid(const struct pci_attach_args *);
    178 static int bge_can_use_msi(struct bge_softc *);
    179 static int bge_probe(device_t, cfdata_t, void *);
    180 static void bge_attach(device_t, device_t, void *);
    181 static int bge_detach(device_t, int);
    182 static void bge_release_resources(struct bge_softc *);
    183 
    184 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    185 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    186 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    187 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    188 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    189 
    190 static void bge_txeof(struct bge_softc *);
    191 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    192 static void bge_rxeof(struct bge_softc *);
    193 
    194 static void bge_asf_driver_up (struct bge_softc *);
    195 static void bge_tick(void *);
    196 static void bge_stats_update(struct bge_softc *);
    197 static void bge_stats_update_regs(struct bge_softc *);
    198 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    199 
    200 static int bge_intr(void *);
    201 static void bge_start(struct ifnet *);
    202 static void bge_start_locked(struct ifnet *);
    203 static int bge_ifflags_cb(struct ethercom *);
    204 static int bge_ioctl(struct ifnet *, u_long, void *);
    205 static int bge_init(struct ifnet *);
    206 static int bge_init_locked(struct ifnet *);
    207 static void bge_stop(struct ifnet *, int);
    208 static void bge_stop_locked(struct ifnet *, int);
    209 static bool bge_watchdog(struct ifnet *);
    210 static int bge_ifmedia_upd(struct ifnet *);
    211 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    212 static void bge_handle_reset_work(struct work *, void *);
    213 
    214 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    215 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    216 
    217 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    218 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    219 static void bge_setmulti(struct bge_softc *);
    220 
    221 static void bge_handle_events(struct bge_softc *);
    222 static int bge_alloc_jumbo_mem(struct bge_softc *);
    223 static void bge_free_jumbo_mem(struct bge_softc *);
    224 static void *bge_jalloc(struct bge_softc *);
    225 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    226 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    227 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    228 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    229 
    230 static int bge_newbuf_std(struct bge_softc *, int);
    231 static int bge_init_rx_ring_std(struct bge_softc *);
    232 static void bge_fill_rx_ring_std(struct bge_softc *);
    233 static void bge_free_rx_ring_std(struct bge_softc *m);
    234 
    235 static void bge_free_tx_ring(struct bge_softc *m, bool);
    236 static int bge_init_tx_ring(struct bge_softc *);
    237 
    238 static int bge_chipinit(struct bge_softc *);
    239 static int bge_blockinit(struct bge_softc *);
    240 static int bge_phy_addr(struct bge_softc *);
    241 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    242 static void bge_writemem_ind(struct bge_softc *, int, int);
    243 static void bge_writembx(struct bge_softc *, int, int);
    244 static void bge_writembx_flush(struct bge_softc *, int, int);
    245 static void bge_writemem_direct(struct bge_softc *, int, int);
    246 static void bge_writereg_ind(struct bge_softc *, int, int);
    247 static void bge_set_max_readrq(struct bge_softc *);
    248 
    249 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
    250 static int bge_miibus_writereg(device_t, int, int, uint16_t);
    251 static void bge_miibus_statchg(struct ifnet *);
    252 
    253 #define BGE_RESET_SHUTDOWN	0
    254 #define	BGE_RESET_START		1
    255 #define	BGE_RESET_SUSPEND	2
    256 static void bge_sig_post_reset(struct bge_softc *, int);
    257 static void bge_sig_legacy(struct bge_softc *, int);
    258 static void bge_sig_pre_reset(struct bge_softc *, int);
    259 static void bge_wait_for_event_ack(struct bge_softc *);
    260 static void bge_stop_fw(struct bge_softc *);
    261 static int bge_reset(struct bge_softc *);
    262 static void bge_link_upd(struct bge_softc *);
    263 static void bge_sysctl_init(struct bge_softc *);
    264 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    265 
    266 static void bge_ape_lock_init(struct bge_softc *);
    267 static void bge_ape_read_fw_ver(struct bge_softc *);
    268 static int bge_ape_lock(struct bge_softc *, int);
    269 static void bge_ape_unlock(struct bge_softc *, int);
    270 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    271 static void bge_ape_driver_state_change(struct bge_softc *, int);
    272 
    273 #ifdef BGE_DEBUG
    274 #define DPRINTF(x)	if (bgedebug) printf x
    275 #define DPRINTFN(n, x)	if (bgedebug >= (n)) printf x
    276 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    277 int	bgedebug = 0;
    278 int	bge_tso_debug = 0;
    279 void	bge_debug_info(struct bge_softc *);
    280 #else
    281 #define DPRINTF(x)
    282 #define DPRINTFN(n, x)
    283 #define BGE_TSO_PRINTF(x)
    284 #endif
    285 
    286 #ifdef BGE_EVENT_COUNTERS
    287 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    288 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    289 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    290 #else
    291 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    292 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    293 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    294 #endif
    295 
    296 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
    297 /*
    298  * The BCM5700 documentation seems to indicate that the hardware still has the
    299  * Alteon vendor ID burned into it, though it should always be overridden by
    300  * the value in the EEPROM.  We'll check for it anyway.
    301  */
    302 static const struct bge_product {
    303 	pci_vendor_id_t		bp_vendor;
    304 	pci_product_id_t	bp_product;
    305 	const char		*bp_name;
    306 } bge_products[] = {
    307 	{ VIDDID(ALTEON,   BCM5700),	"Broadcom BCM5700 Gigabit" },
    308 	{ VIDDID(ALTEON,   BCM5701),	"Broadcom BCM5701 Gigabit" },
    309 	{ VIDDID(ALTIMA,   AC1000),	"Altima AC1000 Gigabit" },
    310 	{ VIDDID(ALTIMA,   AC1001),	"Altima AC1001 Gigabit" },
    311 	{ VIDDID(ALTIMA,   AC1003),	"Altima AC1003 Gigabit" },
    312 	{ VIDDID(ALTIMA,   AC9100),	"Altima AC9100 Gigabit" },
    313 	{ VIDDID(APPLE,	   BCM5701),	"APPLE BCM5701 Gigabit" },
    314 	{ VIDDID(BROADCOM, BCM5700),	"Broadcom BCM5700 Gigabit" },
    315 	{ VIDDID(BROADCOM, BCM5701),	"Broadcom BCM5701 Gigabit" },
    316 	{ VIDDID(BROADCOM, BCM5702),	"Broadcom BCM5702 Gigabit" },
    317 	{ VIDDID(BROADCOM, BCM5702FE),	"Broadcom BCM5702FE Fast" },
    318 	{ VIDDID(BROADCOM, BCM5702X),	"Broadcom BCM5702X Gigabit" },
    319 	{ VIDDID(BROADCOM, BCM5703),	"Broadcom BCM5703 Gigabit" },
    320 	{ VIDDID(BROADCOM, BCM5703X),	"Broadcom BCM5703X Gigabit" },
    321 	{ VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
    322 	{ VIDDID(BROADCOM, BCM5704C),	"Broadcom BCM5704C Dual Gigabit" },
    323 	{ VIDDID(BROADCOM, BCM5704S),	"Broadcom BCM5704S Dual Gigabit" },
    324 	{ VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
    325 	{ VIDDID(BROADCOM, BCM5705),	"Broadcom BCM5705 Gigabit" },
    326 	{ VIDDID(BROADCOM, BCM5705F),	"Broadcom BCM5705F Gigabit" },
    327 	{ VIDDID(BROADCOM, BCM5705K),	"Broadcom BCM5705K Gigabit" },
    328 	{ VIDDID(BROADCOM, BCM5705M),	"Broadcom BCM5705M Gigabit" },
    329 	{ VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
    330 	{ VIDDID(BROADCOM, BCM5714),	"Broadcom BCM5714 Gigabit" },
    331 	{ VIDDID(BROADCOM, BCM5714S),	"Broadcom BCM5714S Gigabit" },
    332 	{ VIDDID(BROADCOM, BCM5715),	"Broadcom BCM5715 Gigabit" },
    333 	{ VIDDID(BROADCOM, BCM5715S),	"Broadcom BCM5715S Gigabit" },
    334 	{ VIDDID(BROADCOM, BCM5717),	"Broadcom BCM5717 Gigabit" },
    335 	{ VIDDID(BROADCOM, BCM5717C),	"Broadcom BCM5717 Gigabit" },
    336 	{ VIDDID(BROADCOM, BCM5718),	"Broadcom BCM5718 Gigabit" },
    337 	{ VIDDID(BROADCOM, BCM5719),	"Broadcom BCM5719 Gigabit" },
    338 	{ VIDDID(BROADCOM, BCM5720),	"Broadcom BCM5720 Gigabit" },
    339 	{ VIDDID(BROADCOM, BCM5721),	"Broadcom BCM5721 Gigabit" },
    340 	{ VIDDID(BROADCOM, BCM5722),	"Broadcom BCM5722 Gigabit" },
    341 	{ VIDDID(BROADCOM, BCM5723),	"Broadcom BCM5723 Gigabit" },
    342 	{ VIDDID(BROADCOM, BCM5725),	"Broadcom BCM5725 Gigabit" },
    343 	{ VIDDID(BROADCOM, BCM5727),	"Broadcom BCM5727 Gigabit" },
    344 	{ VIDDID(BROADCOM, BCM5750),	"Broadcom BCM5750 Gigabit" },
    345 	{ VIDDID(BROADCOM, BCM5751),	"Broadcom BCM5751 Gigabit" },
    346 	{ VIDDID(BROADCOM, BCM5751F),	"Broadcom BCM5751F Gigabit" },
    347 	{ VIDDID(BROADCOM, BCM5751M),	"Broadcom BCM5751M Gigabit" },
    348 	{ VIDDID(BROADCOM, BCM5752),	"Broadcom BCM5752 Gigabit" },
    349 	{ VIDDID(BROADCOM, BCM5752M),	"Broadcom BCM5752M Gigabit" },
    350 	{ VIDDID(BROADCOM, BCM5753),	"Broadcom BCM5753 Gigabit" },
    351 	{ VIDDID(BROADCOM, BCM5753F),	"Broadcom BCM5753F Gigabit" },
    352 	{ VIDDID(BROADCOM, BCM5753M),	"Broadcom BCM5753M Gigabit" },
    353 	{ VIDDID(BROADCOM, BCM5754),	"Broadcom BCM5754 Gigabit" },
    354 	{ VIDDID(BROADCOM, BCM5754M),	"Broadcom BCM5754M Gigabit" },
    355 	{ VIDDID(BROADCOM, BCM5755),	"Broadcom BCM5755 Gigabit" },
    356 	{ VIDDID(BROADCOM, BCM5755M),	"Broadcom BCM5755M Gigabit" },
    357 	{ VIDDID(BROADCOM, BCM5756),	"Broadcom BCM5756 Gigabit" },
    358 	{ VIDDID(BROADCOM, BCM5761),	"Broadcom BCM5761 Gigabit" },
    359 	{ VIDDID(BROADCOM, BCM5761E),	"Broadcom BCM5761E Gigabit" },
    360 	{ VIDDID(BROADCOM, BCM5761S),	"Broadcom BCM5761S Gigabit" },
    361 	{ VIDDID(BROADCOM, BCM5761SE),	"Broadcom BCM5761SE Gigabit" },
    362 	{ VIDDID(BROADCOM, BCM5762),	"Broadcom BCM5762 Gigabit" },
    363 	{ VIDDID(BROADCOM, BCM5764),	"Broadcom BCM5764 Gigabit" },
    364 	{ VIDDID(BROADCOM, BCM5780),	"Broadcom BCM5780 Gigabit" },
    365 	{ VIDDID(BROADCOM, BCM5780S),	"Broadcom BCM5780S Gigabit" },
    366 	{ VIDDID(BROADCOM, BCM5781),	"Broadcom BCM5781 Gigabit" },
    367 	{ VIDDID(BROADCOM, BCM5782),	"Broadcom BCM5782 Gigabit" },
    368 	{ VIDDID(BROADCOM, BCM5784M),	"BCM5784M NetLink 1000baseT" },
    369 	{ VIDDID(BROADCOM, BCM5785F),	"BCM5785F NetLink 10/100" },
    370 	{ VIDDID(BROADCOM, BCM5785G),	"BCM5785G NetLink 1000baseT" },
    371 	{ VIDDID(BROADCOM, BCM5786),	"Broadcom BCM5786 Gigabit" },
    372 	{ VIDDID(BROADCOM, BCM5787),	"Broadcom BCM5787 Gigabit" },
    373 	{ VIDDID(BROADCOM, BCM5787F),	"Broadcom BCM5787F 10/100" },
    374 	{ VIDDID(BROADCOM, BCM5787M),	"Broadcom BCM5787M Gigabit" },
    375 	{ VIDDID(BROADCOM, BCM5788),	"Broadcom BCM5788 Gigabit" },
    376 	{ VIDDID(BROADCOM, BCM5789),	"Broadcom BCM5789 Gigabit" },
    377 	{ VIDDID(BROADCOM, BCM5901),	"Broadcom BCM5901 Fast" },
    378 	{ VIDDID(BROADCOM, BCM5901A2),	"Broadcom BCM5901A2 Fast" },
    379 	{ VIDDID(BROADCOM, BCM5903M),	"Broadcom BCM5903M Fast" },
    380 	{ VIDDID(BROADCOM, BCM5906),	"Broadcom BCM5906 Fast" },
    381 	{ VIDDID(BROADCOM, BCM5906M),	"Broadcom BCM5906M Fast" },
    382 	{ VIDDID(BROADCOM, BCM57760),	"Broadcom BCM57760 Gigabit" },
    383 	{ VIDDID(BROADCOM, BCM57761),	"Broadcom BCM57761 Gigabit" },
    384 	{ VIDDID(BROADCOM, BCM57762),	"Broadcom BCM57762 Gigabit" },
    385 	{ VIDDID(BROADCOM, BCM57764),	"Broadcom BCM57764 Gigabit" },
    386 	{ VIDDID(BROADCOM, BCM57765),	"Broadcom BCM57765 Gigabit" },
    387 	{ VIDDID(BROADCOM, BCM57766),	"Broadcom BCM57766 Gigabit" },
    388 	{ VIDDID(BROADCOM, BCM57767),	"Broadcom BCM57767 Gigabit" },
    389 	{ VIDDID(BROADCOM, BCM57780),	"Broadcom BCM57780 Gigabit" },
    390 	{ VIDDID(BROADCOM, BCM57781),	"Broadcom BCM57781 Gigabit" },
    391 	{ VIDDID(BROADCOM, BCM57782),	"Broadcom BCM57782 Gigabit" },
    392 	{ VIDDID(BROADCOM, BCM57785),	"Broadcom BCM57785 Gigabit" },
    393 	{ VIDDID(BROADCOM, BCM57786),	"Broadcom BCM57786 Gigabit" },
    394 	{ VIDDID(BROADCOM, BCM57787),	"Broadcom BCM57787 Gigabit" },
    395 	{ VIDDID(BROADCOM, BCM57788),	"Broadcom BCM57788 Gigabit" },
    396 	{ VIDDID(BROADCOM, BCM57790),	"Broadcom BCM57790 Gigabit" },
    397 	{ VIDDID(BROADCOM, BCM57791),	"Broadcom BCM57791 Gigabit" },
    398 	{ VIDDID(BROADCOM, BCM57795),	"Broadcom BCM57795 Gigabit" },
    399 	{ VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
    400 	{ VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
    401 	{ VIDDID(3COM, 3C996),		"3Com 3c996 Gigabit" },
    402 	{ VIDDID(FUJITSU4, PW008GE4),	"Fujitsu PW008GE4 Gigabit" },
    403 	{ VIDDID(FUJITSU4, PW008GE5),	"Fujitsu PW008GE5 Gigabit" },
    404 	{ VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
    405 	{ 0, 0, NULL },
    406 };
    407 
    408 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
    409 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
    410 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
    411 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
    412 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
    413 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
    414 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
    415 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
    416 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
    417 
    418 static const struct bge_revision {
    419 	uint32_t		br_chipid;
    420 	const char		*br_name;
    421 } bge_revisions[] = {
    422 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    423 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    424 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    425 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    426 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    427 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    428 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    429 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    430 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    431 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    432 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    433 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    434 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    435 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    436 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    437 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    438 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    439 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    440 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    441 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    442 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    443 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    444 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    445 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    446 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    447 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    448 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    449 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    450 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    451 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    452 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    453 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    454 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    455 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    456 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    457 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    458 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    459 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    460 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    461 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    462 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    463 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    464 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    465 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    466 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    467 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    468 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    469 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    470 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    471 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    472 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    473 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    474 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    475 	{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
    476 	{ BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
    477 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    478 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    479 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
    480 	/* 5754 and 5787 share the same ASIC ID */
    481 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    482 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    483 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    484 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    485 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    486 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    487 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    488 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    489 	{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
    490 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    491 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    492 
    493 	{ 0, NULL }
    494 };
    495 
    496 /*
    497  * Some defaults for major revisions, so that newer steppings
    498  * that we don't know about have a shot at working.
    499  */
    500 static const struct bge_revision bge_majorrevs[] = {
    501 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    502 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    503 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    504 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    505 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    506 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    507 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    508 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    509 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    510 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    511 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    512 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    513 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    514 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    515 	/* 5754 and 5787 share the same ASIC ID */
    516 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    517 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    518 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    519 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    520 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    521 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    522 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    523 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    524 	{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
    525 
    526 	{ 0, NULL }
    527 };
    528 
    529 static int bge_allow_asf = 1;
    530 
    531 #ifndef BGE_WATCHDOG_TIMEOUT
    532 #define BGE_WATCHDOG_TIMEOUT 5
    533 #endif
    534 static int bge_watchdog_timeout = BGE_WATCHDOG_TIMEOUT;
    535 
    536 
    537 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    538     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    539 
    540 static uint32_t
    541 bge_readmem_ind(struct bge_softc *sc, int off)
    542 {
    543 	pcireg_t val;
    544 
    545 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    546 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    547 		return 0;
    548 
    549 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    550 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    551 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    552 	return val;
    553 }
    554 
    555 static void
    556 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    557 {
    558 
    559 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    560 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    561 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    562 }
    563 
    564 /*
    565  * PCI Express only
    566  */
    567 static void
    568 bge_set_max_readrq(struct bge_softc *sc)
    569 {
    570 	pcireg_t val;
    571 
    572 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    573 	    + PCIE_DCSR);
    574 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    575 	switch (sc->bge_expmrq) {
    576 	case 2048:
    577 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    578 		break;
    579 	case 4096:
    580 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    581 		break;
    582 	default:
    583 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    584 		break;
    585 	}
    586 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    587 	    + PCIE_DCSR, val);
    588 }
    589 
    590 #ifdef notdef
    591 static uint32_t
    592 bge_readreg_ind(struct bge_softc *sc, int off)
    593 {
    594 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    595 	return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
    596 }
    597 #endif
    598 
    599 static void
    600 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    601 {
    602 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    603 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    604 }
    605 
    606 static void
    607 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    608 {
    609 	CSR_WRITE_4(sc, off, val);
    610 }
    611 
    612 static void
    613 bge_writembx(struct bge_softc *sc, int off, int val)
    614 {
    615 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    616 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    617 
    618 	CSR_WRITE_4(sc, off, val);
    619 }
    620 
    621 static void
    622 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    623 {
    624 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    625 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    626 
    627 	CSR_WRITE_4_FLUSH(sc, off, val);
    628 }
    629 
    630 /*
    631  * Clear all stale locks and select the lock for this driver instance.
    632  */
    633 void
    634 bge_ape_lock_init(struct bge_softc *sc)
    635 {
    636 	struct pci_attach_args *pa = &(sc->bge_pa);
    637 	uint32_t bit, regbase;
    638 	int i;
    639 
    640 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    641 		regbase = BGE_APE_LOCK_GRANT;
    642 	else
    643 		regbase = BGE_APE_PER_LOCK_GRANT;
    644 
    645 	/* Clear any stale locks. */
    646 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    647 		switch (i) {
    648 		case BGE_APE_LOCK_PHY0:
    649 		case BGE_APE_LOCK_PHY1:
    650 		case BGE_APE_LOCK_PHY2:
    651 		case BGE_APE_LOCK_PHY3:
    652 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    653 			break;
    654 		default:
    655 			if (pa->pa_function == 0)
    656 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    657 			else
    658 				bit = (1 << pa->pa_function);
    659 		}
    660 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    661 	}
    662 
    663 	/* Select the PHY lock based on the device's function number. */
    664 	switch (pa->pa_function) {
    665 	case 0:
    666 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    667 		break;
    668 	case 1:
    669 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    670 		break;
    671 	case 2:
    672 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    673 		break;
    674 	case 3:
    675 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    676 		break;
    677 	default:
    678 		printf("%s: PHY lock not supported on function\n",
    679 		    device_xname(sc->bge_dev));
    680 		break;
    681 	}
    682 }
    683 
    684 /*
    685  * Check for APE firmware, set flags, and print version info.
    686  */
    687 void
    688 bge_ape_read_fw_ver(struct bge_softc *sc)
    689 {
    690 	const char *fwtype;
    691 	uint32_t apedata, features;
    692 
    693 	/* Check for a valid APE signature in shared memory. */
    694 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    695 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    696 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    697 		return;
    698 	}
    699 
    700 	/* Check if APE firmware is running. */
    701 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    702 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    703 		printf("%s: APE signature found but FW status not ready! "
    704 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    705 		return;
    706 	}
    707 
    708 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    709 
    710 	/* Fetch the APE firwmare type and version. */
    711 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    712 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    713 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    714 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    715 		fwtype = "NCSI";
    716 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    717 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    718 		fwtype = "DASH";
    719 	} else
    720 		fwtype = "UNKN";
    721 
    722 	/* Print the APE firmware version. */
    723 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
    724 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    725 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    726 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    727 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    728 }
    729 
    730 int
    731 bge_ape_lock(struct bge_softc *sc, int locknum)
    732 {
    733 	struct pci_attach_args *pa = &(sc->bge_pa);
    734 	uint32_t bit, gnt, req, status;
    735 	int i, off;
    736 
    737 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    738 		return 0;
    739 
    740 	/* Lock request/grant registers have different bases. */
    741 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    742 		req = BGE_APE_LOCK_REQ;
    743 		gnt = BGE_APE_LOCK_GRANT;
    744 	} else {
    745 		req = BGE_APE_PER_LOCK_REQ;
    746 		gnt = BGE_APE_PER_LOCK_GRANT;
    747 	}
    748 
    749 	off = 4 * locknum;
    750 
    751 	switch (locknum) {
    752 	case BGE_APE_LOCK_GPIO:
    753 		/* Lock required when using GPIO. */
    754 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    755 			return 0;
    756 		if (pa->pa_function == 0)
    757 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    758 		else
    759 			bit = (1 << pa->pa_function);
    760 		break;
    761 	case BGE_APE_LOCK_GRC:
    762 		/* Lock required to reset the device. */
    763 		if (pa->pa_function == 0)
    764 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    765 		else
    766 			bit = (1 << pa->pa_function);
    767 		break;
    768 	case BGE_APE_LOCK_MEM:
    769 		/* Lock required when accessing certain APE memory. */
    770 		if (pa->pa_function == 0)
    771 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    772 		else
    773 			bit = (1 << pa->pa_function);
    774 		break;
    775 	case BGE_APE_LOCK_PHY0:
    776 	case BGE_APE_LOCK_PHY1:
    777 	case BGE_APE_LOCK_PHY2:
    778 	case BGE_APE_LOCK_PHY3:
    779 		/* Lock required when accessing PHYs. */
    780 		bit = BGE_APE_LOCK_REQ_DRIVER0;
    781 		break;
    782 	default:
    783 		return EINVAL;
    784 	}
    785 
    786 	/* Request a lock. */
    787 	APE_WRITE_4_FLUSH(sc, req + off, bit);
    788 
    789 	/* Wait up to 1 second to acquire lock. */
    790 	for (i = 0; i < 20000; i++) {
    791 		status = APE_READ_4(sc, gnt + off);
    792 		if (status == bit)
    793 			break;
    794 		DELAY(50);
    795 	}
    796 
    797 	/* Handle any errors. */
    798 	if (status != bit) {
    799 		printf("%s: APE lock %d request failed! "
    800 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
    801 		    device_xname(sc->bge_dev),
    802 		    locknum, req + off, bit & 0xFFFF, gnt + off,
    803 		    status & 0xFFFF);
    804 		/* Revoke the lock request. */
    805 		APE_WRITE_4(sc, gnt + off, bit);
    806 		return EBUSY;
    807 	}
    808 
    809 	return 0;
    810 }
    811 
    812 void
    813 bge_ape_unlock(struct bge_softc *sc, int locknum)
    814 {
    815 	struct pci_attach_args *pa = &(sc->bge_pa);
    816 	uint32_t bit, gnt;
    817 	int off;
    818 
    819 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    820 		return;
    821 
    822 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    823 		gnt = BGE_APE_LOCK_GRANT;
    824 	else
    825 		gnt = BGE_APE_PER_LOCK_GRANT;
    826 
    827 	off = 4 * locknum;
    828 
    829 	switch (locknum) {
    830 	case BGE_APE_LOCK_GPIO:
    831 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    832 			return;
    833 		if (pa->pa_function == 0)
    834 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    835 		else
    836 			bit = (1 << pa->pa_function);
    837 		break;
    838 	case BGE_APE_LOCK_GRC:
    839 		if (pa->pa_function == 0)
    840 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    841 		else
    842 			bit = (1 << pa->pa_function);
    843 		break;
    844 	case BGE_APE_LOCK_MEM:
    845 		if (pa->pa_function == 0)
    846 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    847 		else
    848 			bit = (1 << pa->pa_function);
    849 		break;
    850 	case BGE_APE_LOCK_PHY0:
    851 	case BGE_APE_LOCK_PHY1:
    852 	case BGE_APE_LOCK_PHY2:
    853 	case BGE_APE_LOCK_PHY3:
    854 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
    855 		break;
    856 	default:
    857 		return;
    858 	}
    859 
    860 	/* Write and flush for consecutive bge_ape_lock() */
    861 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
    862 }
    863 
    864 /*
    865  * Send an event to the APE firmware.
    866  */
    867 void
    868 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
    869 {
    870 	uint32_t apedata;
    871 	int i;
    872 
    873 	/* NCSI does not support APE events. */
    874 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    875 		return;
    876 
    877 	/* Wait up to 1ms for APE to service previous event. */
    878 	for (i = 10; i > 0; i--) {
    879 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
    880 			break;
    881 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
    882 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
    883 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
    884 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
    885 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    886 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
    887 			break;
    888 		}
    889 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    890 		DELAY(100);
    891 	}
    892 	if (i == 0) {
    893 		printf("%s: APE event 0x%08x send timed out\n",
    894 		    device_xname(sc->bge_dev), event);
    895 	}
    896 }
    897 
    898 void
    899 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
    900 {
    901 	uint32_t apedata, event;
    902 
    903 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    904 		return;
    905 
    906 	switch (kind) {
    907 	case BGE_RESET_START:
    908 		/* If this is the first load, clear the load counter. */
    909 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
    910 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
    911 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
    912 		else {
    913 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
    914 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
    915 		}
    916 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
    917 		    BGE_APE_HOST_SEG_SIG_MAGIC);
    918 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
    919 		    BGE_APE_HOST_SEG_LEN_MAGIC);
    920 
    921 		/* Add some version info if bge(4) supports it. */
    922 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
    923 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
    924 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
    925 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
    926 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
    927 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
    928 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    929 		    BGE_APE_HOST_DRVR_STATE_START);
    930 		event = BGE_APE_EVENT_STATUS_STATE_START;
    931 		break;
    932 	case BGE_RESET_SHUTDOWN:
    933 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    934 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
    935 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
    936 		break;
    937 	case BGE_RESET_SUSPEND:
    938 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
    939 		break;
    940 	default:
    941 		return;
    942 	}
    943 
    944 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
    945 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
    946 }
    947 
    948 static uint8_t
    949 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    950 {
    951 	uint32_t access, byte = 0;
    952 	int i;
    953 
    954 	/* Lock. */
    955 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    956 	for (i = 0; i < 8000; i++) {
    957 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    958 			break;
    959 		DELAY(20);
    960 	}
    961 	if (i == 8000)
    962 		return 1;
    963 
    964 	/* Enable access. */
    965 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    966 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    967 
    968 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    969 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    970 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    971 		DELAY(10);
    972 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    973 			DELAY(10);
    974 			break;
    975 		}
    976 	}
    977 
    978 	if (i == BGE_TIMEOUT * 10) {
    979 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    980 		return 1;
    981 	}
    982 
    983 	/* Get result. */
    984 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    985 
    986 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    987 
    988 	/* Disable access. */
    989 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    990 
    991 	/* Unlock. */
    992 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    993 
    994 	return 0;
    995 }
    996 
    997 /*
    998  * Read a sequence of bytes from NVRAM.
    999  */
   1000 static int
   1001 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
   1002 {
   1003 	int error = 0, i;
   1004 	uint8_t byte = 0;
   1005 
   1006 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1007 		return 1;
   1008 
   1009 	for (i = 0; i < cnt; i++) {
   1010 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1011 		if (error)
   1012 			break;
   1013 		*(dest + i) = byte;
   1014 	}
   1015 
   1016 	return error ? 1 : 0;
   1017 }
   1018 
   1019 /*
   1020  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1021  * BCM570x supports both the traditional bitbang interface and an
   1022  * auto access interface for reading the EEPROM. We use the auto
   1023  * access method.
   1024  */
   1025 static uint8_t
   1026 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1027 {
   1028 	int i;
   1029 	uint32_t byte = 0;
   1030 
   1031 	/*
   1032 	 * Enable use of auto EEPROM access so we can avoid
   1033 	 * having to use the bitbang method.
   1034 	 */
   1035 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1036 
   1037 	/* Reset the EEPROM, load the clock period. */
   1038 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   1039 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1040 	DELAY(20);
   1041 
   1042 	/* Issue the read EEPROM command. */
   1043 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1044 
   1045 	/* Wait for completion */
   1046 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1047 		DELAY(10);
   1048 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1049 			break;
   1050 	}
   1051 
   1052 	if (i == BGE_TIMEOUT * 10) {
   1053 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1054 		return 1;
   1055 	}
   1056 
   1057 	/* Get result. */
   1058 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1059 
   1060 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1061 
   1062 	return 0;
   1063 }
   1064 
   1065 /*
   1066  * Read a sequence of bytes from the EEPROM.
   1067  */
   1068 static int
   1069 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1070 {
   1071 	int error = 0, i;
   1072 	uint8_t byte = 0;
   1073 	char *dest = destv;
   1074 
   1075 	for (i = 0; i < cnt; i++) {
   1076 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1077 		if (error)
   1078 			break;
   1079 		*(dest + i) = byte;
   1080 	}
   1081 
   1082 	return error ? 1 : 0;
   1083 }
   1084 
   1085 static int
   1086 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
   1087 {
   1088 	struct bge_softc * const sc = device_private(dev);
   1089 	uint32_t data;
   1090 	uint32_t autopoll;
   1091 	int rv = 0;
   1092 	int i;
   1093 
   1094 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1095 		return -1;
   1096 
   1097 	/* Reading with autopolling on may trigger PCI errors */
   1098 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1099 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1100 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1101 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1102 		DELAY(80);
   1103 	}
   1104 
   1105 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1106 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1107 
   1108 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1109 		delay(10);
   1110 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1111 		if (!(data & BGE_MICOMM_BUSY)) {
   1112 			DELAY(5);
   1113 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1114 			break;
   1115 		}
   1116 	}
   1117 
   1118 	if (i == BGE_TIMEOUT) {
   1119 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1120 		rv = ETIMEDOUT;
   1121 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1122 		/* XXX This error occurs on some devices while attaching. */
   1123 		aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
   1124 		rv = EIO;
   1125 	} else
   1126 		*val = data & BGE_MICOMM_DATA;
   1127 
   1128 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1129 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1130 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1131 		DELAY(80);
   1132 	}
   1133 
   1134 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1135 
   1136 	return rv;
   1137 }
   1138 
   1139 static int
   1140 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
   1141 {
   1142 	struct bge_softc * const sc = device_private(dev);
   1143 	uint32_t data, autopoll;
   1144 	int rv = 0;
   1145 	int i;
   1146 
   1147 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1148 	    (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
   1149 		return 0;
   1150 
   1151 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1152 		return -1;
   1153 
   1154 	/* Reading with autopolling on may trigger PCI errors */
   1155 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1156 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1157 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1158 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1159 		DELAY(80);
   1160 	}
   1161 
   1162 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1163 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1164 
   1165 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1166 		delay(10);
   1167 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1168 		if (!(data & BGE_MICOMM_BUSY)) {
   1169 			delay(5);
   1170 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1171 			break;
   1172 		}
   1173 	}
   1174 
   1175 	if (i == BGE_TIMEOUT) {
   1176 		aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
   1177 		rv = ETIMEDOUT;
   1178 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1179 		aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
   1180 		rv = EIO;
   1181 	}
   1182 
   1183 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1184 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1185 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1186 		delay(80);
   1187 	}
   1188 
   1189 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1190 
   1191 	return rv;
   1192 }
   1193 
   1194 static void
   1195 bge_miibus_statchg(struct ifnet *ifp)
   1196 {
   1197 	struct bge_softc * const sc = ifp->if_softc;
   1198 	struct mii_data *mii = &sc->bge_mii;
   1199 	uint32_t mac_mode, rx_mode, tx_mode;
   1200 
   1201 	/*
   1202 	 * Get flow control negotiation result.
   1203 	 */
   1204 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1205 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
   1206 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1207 
   1208 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1209 	    mii->mii_media_status & IFM_ACTIVE &&
   1210 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   1211 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
   1212 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1213 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
   1214 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   1215 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   1216 
   1217 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   1218 		return;
   1219 
   1220 	/* Set the port mode (MII/GMII) to match the link speed. */
   1221 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1222 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1223 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1224 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1225 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1226 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1227 		mac_mode |= BGE_PORTMODE_GMII;
   1228 	else
   1229 		mac_mode |= BGE_PORTMODE_MII;
   1230 
   1231 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1232 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1233 	if ((mii->mii_media_active & IFM_FDX) != 0) {
   1234 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1235 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1236 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1237 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1238 	} else
   1239 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1240 
   1241 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1242 	DELAY(40);
   1243 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1244 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1245 }
   1246 
   1247 /*
   1248  * Update rx threshold levels to values in a particular slot
   1249  * of the interrupt-mitigation table bge_rx_threshes.
   1250  */
   1251 static void
   1252 bge_set_thresh(struct ifnet *ifp, int lvl)
   1253 {
   1254 	struct bge_softc * const sc = ifp->if_softc;
   1255 
   1256 	/*
   1257 	 * For now, just save the new Rx-intr thresholds and record
   1258 	 * that a threshold update is pending.  Updating the hardware
   1259 	 * registers here (even at splhigh()) is observed to
   1260 	 * occasionally cause glitches where Rx-interrupts are not
   1261 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1262 	 */
   1263 	mutex_enter(sc->sc_core_lock);
   1264 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1265 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1266 	sc->bge_pending_rxintr_change = true;
   1267 	mutex_exit(sc->sc_core_lock);
   1268 }
   1269 
   1270 
   1271 /*
   1272  * Update Rx thresholds of all bge devices
   1273  */
   1274 static void
   1275 bge_update_all_threshes(int lvl)
   1276 {
   1277 	const char * const namebuf = "bge";
   1278 	const size_t namelen = strlen(namebuf);
   1279 	struct ifnet *ifp;
   1280 
   1281 	if (lvl < 0)
   1282 		lvl = 0;
   1283 	else if (lvl >= NBGE_RX_THRESH)
   1284 		lvl = NBGE_RX_THRESH - 1;
   1285 
   1286 	/*
   1287 	 * Now search all the interfaces for this name/number
   1288 	 */
   1289 	int s = pserialize_read_enter();
   1290 	IFNET_READER_FOREACH(ifp) {
   1291 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1292 			continue;
   1293 		/* We got a match: update if doing auto-threshold-tuning */
   1294 		if (bge_auto_thresh)
   1295 			bge_set_thresh(ifp, lvl);
   1296 	}
   1297 	pserialize_read_exit(s);
   1298 }
   1299 
   1300 /*
   1301  * Handle events that have triggered interrupts.
   1302  */
   1303 static void
   1304 bge_handle_events(struct bge_softc *sc)
   1305 {
   1306 
   1307 	return;
   1308 }
   1309 
   1310 /*
   1311  * Memory management for jumbo frames.
   1312  */
   1313 
   1314 static int
   1315 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1316 {
   1317 	char *ptr, *kva;
   1318 	int i, rseg, state, error;
   1319 	struct bge_jpool_entry *entry;
   1320 
   1321 	state = error = 0;
   1322 
   1323 	/* Grab a big chunk o' storage. */
   1324 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1325 	    &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_WAITOK)) {
   1326 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1327 		return ENOBUFS;
   1328 	}
   1329 
   1330 	state = 1;
   1331 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg,
   1332 	    rseg, BGE_JMEM, (void **)&kva, BUS_DMA_WAITOK)) {
   1333 		aprint_error_dev(sc->bge_dev,
   1334 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1335 		error = ENOBUFS;
   1336 		goto out;
   1337 	}
   1338 
   1339 	state = 2;
   1340 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1341 	    BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1342 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1343 		error = ENOBUFS;
   1344 		goto out;
   1345 	}
   1346 
   1347 	state = 3;
   1348 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1349 	    kva, BGE_JMEM, NULL, BUS_DMA_WAITOK)) {
   1350 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1351 		error = ENOBUFS;
   1352 		goto out;
   1353 	}
   1354 
   1355 	state = 4;
   1356 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1357 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1358 
   1359 	SLIST_INIT(&sc->bge_jfree_listhead);
   1360 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1361 
   1362 	/*
   1363 	 * Now divide it up into 9K pieces and save the addresses
   1364 	 * in an array.
   1365 	 */
   1366 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1367 	for (i = 0; i < BGE_JSLOTS; i++) {
   1368 		sc->bge_cdata.bge_jslots[i] = ptr;
   1369 		ptr += BGE_JLEN;
   1370 		entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
   1371 		entry->slot = i;
   1372 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1373 				 entry, jpool_entries);
   1374 	}
   1375 out:
   1376 	if (error != 0) {
   1377 		switch (state) {
   1378 		case 4:
   1379 			bus_dmamap_unload(sc->bge_dmatag,
   1380 			    sc->bge_cdata.bge_rx_jumbo_map);
   1381 			/* FALLTHROUGH */
   1382 		case 3:
   1383 			bus_dmamap_destroy(sc->bge_dmatag,
   1384 			    sc->bge_cdata.bge_rx_jumbo_map);
   1385 			/* FALLTHROUGH */
   1386 		case 2:
   1387 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1388 			/* FALLTHROUGH */
   1389 		case 1:
   1390 			bus_dmamem_free(sc->bge_dmatag,
   1391 			    &sc->bge_cdata.bge_rx_jumbo_seg, rseg);
   1392 			break;
   1393 		default:
   1394 			break;
   1395 		}
   1396 	}
   1397 
   1398 	return error;
   1399 }
   1400 
   1401 static void
   1402 bge_free_jumbo_mem(struct bge_softc *sc)
   1403 {
   1404 	struct bge_jpool_entry *entry, *tmp;
   1405 
   1406 	KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead));
   1407 
   1408 	SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) {
   1409 		kmem_free(entry, sizeof(*entry));
   1410 	}
   1411 
   1412 	bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
   1413 
   1414 	bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
   1415 
   1416 	bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM);
   1417 
   1418 	bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1);
   1419 }
   1420 
   1421 /*
   1422  * Allocate a jumbo buffer.
   1423  */
   1424 static void *
   1425 bge_jalloc(struct bge_softc *sc)
   1426 {
   1427 	struct bge_jpool_entry	 *entry;
   1428 
   1429 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1430 
   1431 	if (entry == NULL) {
   1432 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1433 		return NULL;
   1434 	}
   1435 
   1436 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1437 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1438 	return sc->bge_cdata.bge_jslots[entry->slot];
   1439 }
   1440 
   1441 /*
   1442  * Release a jumbo buffer.
   1443  */
   1444 static void
   1445 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1446 {
   1447 	struct bge_jpool_entry *entry;
   1448 	struct bge_softc * const sc = arg;
   1449 
   1450 	if (sc == NULL)
   1451 		panic("bge_jfree: can't find softc pointer!");
   1452 
   1453 	/* calculate the slot this buffer belongs to */
   1454 	int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1455 
   1456 	if (i < 0 || i >= BGE_JSLOTS)
   1457 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1458 
   1459 	mutex_enter(sc->sc_core_lock);
   1460 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1461 	if (entry == NULL)
   1462 		panic("bge_jfree: buffer not in use!");
   1463 	entry->slot = i;
   1464 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1465 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1466 	mutex_exit(sc->sc_core_lock);
   1467 
   1468 	if (__predict_true(m != NULL))
   1469 		pool_cache_put(mb_cache, m);
   1470 }
   1471 
   1472 
   1473 /*
   1474  * Initialize a standard receive ring descriptor.
   1475  */
   1476 static int
   1477 bge_newbuf_std(struct bge_softc *sc, int i)
   1478 {
   1479 	const bus_dmamap_t dmamap = sc->bge_cdata.bge_rx_std_map[i];
   1480 	struct mbuf *m;
   1481 
   1482 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1483 	if (m == NULL)
   1484 		return ENOBUFS;
   1485 
   1486 	MCLGET(m, M_DONTWAIT);
   1487 	if (!(m->m_flags & M_EXT)) {
   1488 		m_freem(m);
   1489 		return ENOBUFS;
   1490 	}
   1491 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1492 
   1493 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1494 	    m_adj(m, ETHER_ALIGN);
   1495 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,
   1496 	    BUS_DMA_READ | BUS_DMA_NOWAIT)) {
   1497 		m_freem(m);
   1498 		return ENOBUFS;
   1499 	}
   1500 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1501 	    BUS_DMASYNC_PREREAD);
   1502 	sc->bge_cdata.bge_rx_std_chain[i] = m;
   1503 
   1504 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1505 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1506 		i * sizeof(struct bge_rx_bd),
   1507 	    sizeof(struct bge_rx_bd),
   1508 	    BUS_DMASYNC_POSTWRITE);
   1509 
   1510 	struct bge_rx_bd * const r = &sc->bge_rdata->bge_rx_std_ring[i];
   1511 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1512 	r->bge_flags = BGE_RXBDFLAG_END;
   1513 	r->bge_len = m->m_len;
   1514 	r->bge_idx = i;
   1515 
   1516 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1517 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1518 		i * sizeof(struct bge_rx_bd),
   1519 	    sizeof(struct bge_rx_bd),
   1520 	    BUS_DMASYNC_PREWRITE);
   1521 
   1522 	sc->bge_std_cnt++;
   1523 
   1524 	return 0;
   1525 }
   1526 
   1527 /*
   1528  * Initialize a jumbo receive ring descriptor. This allocates
   1529  * a jumbo buffer from the pool managed internally by the driver.
   1530  */
   1531 static int
   1532 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1533 {
   1534 	struct mbuf *m_new = NULL;
   1535 	struct bge_rx_bd *r;
   1536 	void *buf = NULL;
   1537 
   1538 	if (m == NULL) {
   1539 
   1540 		/* Allocate the mbuf. */
   1541 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1542 		if (m_new == NULL)
   1543 			return ENOBUFS;
   1544 
   1545 		/* Allocate the jumbo buffer */
   1546 		buf = bge_jalloc(sc);
   1547 		if (buf == NULL) {
   1548 			m_freem(m_new);
   1549 			aprint_error_dev(sc->bge_dev,
   1550 			    "jumbo allocation failed -- packet dropped!\n");
   1551 			return ENOBUFS;
   1552 		}
   1553 
   1554 		/* Attach the buffer to the mbuf. */
   1555 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1556 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1557 		    bge_jfree, sc);
   1558 		m_new->m_flags |= M_EXT_RW;
   1559 	} else {
   1560 		m_new = m;
   1561 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1562 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1563 	}
   1564 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1565 	    m_adj(m_new, ETHER_ALIGN);
   1566 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1567 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   1568 	    BGE_JLEN, BUS_DMASYNC_PREREAD);
   1569 
   1570 	/* Set up the descriptor. */
   1571 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1572 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1573 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1574 	r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
   1575 	r->bge_len = m_new->m_len;
   1576 	r->bge_idx = i;
   1577 
   1578 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1579 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1580 		i * sizeof(struct bge_rx_bd),
   1581 	    sizeof(struct bge_rx_bd),
   1582 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1583 
   1584 	return 0;
   1585 }
   1586 
   1587 static int
   1588 bge_init_rx_ring_std(struct bge_softc *sc)
   1589 {
   1590 	bus_dmamap_t dmamap;
   1591 	int error = 0;
   1592 	u_int i;
   1593 
   1594 	if (sc->bge_flags & BGEF_RXRING_VALID)
   1595 		return 0;
   1596 
   1597 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1598 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1599 		    MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dmamap);
   1600 		if (error)
   1601 			goto uncreate;
   1602 
   1603 		sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1604 		memset(&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1605 		    sizeof(struct bge_rx_bd));
   1606 	}
   1607 
   1608 	sc->bge_std = i - 1;
   1609 	sc->bge_std_cnt = 0;
   1610 	bge_fill_rx_ring_std(sc);
   1611 
   1612 	sc->bge_flags |= BGEF_RXRING_VALID;
   1613 
   1614 	return 0;
   1615 
   1616 uncreate:
   1617 	while (--i) {
   1618 		bus_dmamap_destroy(sc->bge_dmatag,
   1619 		    sc->bge_cdata.bge_rx_std_map[i]);
   1620 	}
   1621 	return error;
   1622 }
   1623 
   1624 static void
   1625 bge_fill_rx_ring_std(struct bge_softc *sc)
   1626 {
   1627 	int i = sc->bge_std;
   1628 	bool post = false;
   1629 
   1630 	while (sc->bge_std_cnt < BGE_STD_RX_RING_CNT) {
   1631 		BGE_INC(i, BGE_STD_RX_RING_CNT);
   1632 
   1633 		if (bge_newbuf_std(sc, i) != 0)
   1634 			break;
   1635 
   1636 		sc->bge_std = i;
   1637 		post = true;
   1638 	}
   1639 
   1640 	if (post)
   1641 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1642 }
   1643 
   1644 
   1645 static void
   1646 bge_free_rx_ring_std(struct bge_softc *sc)
   1647 {
   1648 
   1649 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
   1650 		return;
   1651 
   1652 	for (u_int i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1653 		const bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i];
   1654 		struct mbuf * const m = sc->bge_cdata.bge_rx_std_chain[i];
   1655 		if (m != NULL) {
   1656 			bus_dmamap_sync(sc->bge_dmatag, dmap, 0,
   1657 			    dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1658 			bus_dmamap_unload(sc->bge_dmatag, dmap);
   1659 			m_freem(m);
   1660 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1661 		}
   1662 		bus_dmamap_destroy(sc->bge_dmatag,
   1663 		    sc->bge_cdata.bge_rx_std_map[i]);
   1664 		sc->bge_cdata.bge_rx_std_map[i] = NULL;
   1665 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1666 		    sizeof(struct bge_rx_bd));
   1667 	}
   1668 
   1669 	sc->bge_flags &= ~BGEF_RXRING_VALID;
   1670 }
   1671 
   1672 static int
   1673 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1674 {
   1675 	int i;
   1676 	volatile struct bge_rcb *rcb;
   1677 
   1678 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
   1679 		return 0;
   1680 
   1681 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1682 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1683 			return ENOBUFS;
   1684 	}
   1685 
   1686 	sc->bge_jumbo = i - 1;
   1687 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
   1688 
   1689 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1690 	rcb->bge_maxlen_flags = 0;
   1691 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1692 
   1693 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1694 
   1695 	return 0;
   1696 }
   1697 
   1698 static void
   1699 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1700 {
   1701 	int i;
   1702 
   1703 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
   1704 		return;
   1705 
   1706 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1707 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1708 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1709 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1710 		}
   1711 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1712 		    sizeof(struct bge_rx_bd));
   1713 	}
   1714 
   1715 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
   1716 }
   1717 
   1718 static void
   1719 bge_free_tx_ring(struct bge_softc *sc, bool disable)
   1720 {
   1721 	int i;
   1722 	struct txdmamap_pool_entry *dma;
   1723 
   1724 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
   1725 		return;
   1726 
   1727 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1728 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1729 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1730 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1731 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1732 					    link);
   1733 			sc->txdma[i] = 0;
   1734 		}
   1735 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1736 		    sizeof(struct bge_tx_bd));
   1737 	}
   1738 
   1739 	if (disable) {
   1740 		while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1741 			SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1742 			bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1743 			if (sc->bge_dma64) {
   1744 				bus_dmamap_destroy(sc->bge_dmatag32,
   1745 				    dma->dmamap32);
   1746 			}
   1747 			kmem_free(dma, sizeof(*dma));
   1748 		}
   1749 		SLIST_INIT(&sc->txdma_list);
   1750 	}
   1751 
   1752 	sc->bge_flags &= ~BGEF_TXRING_VALID;
   1753 }
   1754 
   1755 static int
   1756 bge_init_tx_ring(struct bge_softc *sc)
   1757 {
   1758 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   1759 	int i;
   1760 	bus_dmamap_t dmamap, dmamap32;
   1761 	bus_size_t maxsegsz;
   1762 	struct txdmamap_pool_entry *dma;
   1763 
   1764 	if (sc->bge_flags & BGEF_TXRING_VALID)
   1765 		return 0;
   1766 
   1767 	sc->bge_txcnt = 0;
   1768 	sc->bge_tx_saved_considx = 0;
   1769 
   1770 	/* Initialize transmit producer index for host-memory send ring. */
   1771 	sc->bge_tx_prodidx = 0;
   1772 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1773 	/* 5700 b2 errata */
   1774 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1775 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1776 
   1777 	/* NIC-memory send ring not used; initialize to zero. */
   1778 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1779 	/* 5700 b2 errata */
   1780 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1781 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1782 
   1783 	/* Limit DMA segment size for some chips */
   1784 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
   1785 	    (ifp->if_mtu <= ETHERMTU))
   1786 		maxsegsz = 2048;
   1787 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   1788 		maxsegsz = 4096;
   1789 	else
   1790 		maxsegsz = ETHER_MAX_LEN_JUMBO;
   1791 
   1792 	if (SLIST_FIRST(&sc->txdma_list) != NULL)
   1793 		goto alloc_done;
   1794 
   1795 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1796 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1797 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1798 		    &dmamap))
   1799 			return ENOBUFS;
   1800 		if (dmamap == NULL)
   1801 			panic("dmamap NULL in bge_init_tx_ring");
   1802 		if (sc->bge_dma64) {
   1803 			if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
   1804 			    BGE_NTXSEG, maxsegsz, 0,
   1805 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   1806 			    &dmamap32)) {
   1807 				bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1808 				return ENOBUFS;
   1809 			}
   1810 			if (dmamap32 == NULL)
   1811 				panic("dmamap32 NULL in bge_init_tx_ring");
   1812 		} else
   1813 			dmamap32 = dmamap;
   1814 		dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
   1815 		if (dma == NULL) {
   1816 			aprint_error_dev(sc->bge_dev,
   1817 			    "can't alloc txdmamap_pool_entry\n");
   1818 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1819 			if (sc->bge_dma64)
   1820 				bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
   1821 			return ENOMEM;
   1822 		}
   1823 		dma->dmamap = dmamap;
   1824 		dma->dmamap32 = dmamap32;
   1825 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1826 	}
   1827 alloc_done:
   1828 	sc->bge_flags |= BGEF_TXRING_VALID;
   1829 
   1830 	return 0;
   1831 }
   1832 
   1833 static void
   1834 bge_setmulti(struct bge_softc *sc)
   1835 {
   1836 	struct ethercom * const ec = &sc->ethercom;
   1837 	struct ether_multi	*enm;
   1838 	struct ether_multistep	step;
   1839 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1840 	uint32_t		h;
   1841 	int			i;
   1842 
   1843 	KASSERT(mutex_owned(sc->sc_core_lock));
   1844 	if (sc->bge_if_flags & IFF_PROMISC)
   1845 		goto allmulti;
   1846 
   1847 	/* Now program new ones. */
   1848 	ETHER_LOCK(ec);
   1849 	ETHER_FIRST_MULTI(step, ec, enm);
   1850 	while (enm != NULL) {
   1851 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1852 			/*
   1853 			 * We must listen to a range of multicast addresses.
   1854 			 * For now, just accept all multicasts, rather than
   1855 			 * trying to set only those filter bits needed to match
   1856 			 * the range.  (At this time, the only use of address
   1857 			 * ranges is for IP multicast routing, for which the
   1858 			 * range is big enough to require all bits set.)
   1859 			 */
   1860 			ETHER_UNLOCK(ec);
   1861 			goto allmulti;
   1862 		}
   1863 
   1864 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1865 
   1866 		/* Just want the 7 least-significant bits. */
   1867 		h &= 0x7f;
   1868 
   1869 		hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
   1870 		ETHER_NEXT_MULTI(step, enm);
   1871 	}
   1872 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   1873 	ETHER_UNLOCK(ec);
   1874 
   1875 	goto setit;
   1876 
   1877  allmulti:
   1878 	ETHER_LOCK(ec);
   1879 	ec->ec_flags |= ETHER_F_ALLMULTI;
   1880 	ETHER_UNLOCK(ec);
   1881 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1882 
   1883  setit:
   1884 	for (i = 0; i < 4; i++)
   1885 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1886 }
   1887 
   1888 static void
   1889 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1890 {
   1891 
   1892 	/*
   1893 	 * Some chips don't like this so only do this if ASF is enabled
   1894 	 */
   1895 	if (sc->bge_asf_mode)
   1896 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   1897 
   1898 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1899 		switch (type) {
   1900 		case BGE_RESET_START:
   1901 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1902 			    BGE_FW_DRV_STATE_START);
   1903 			break;
   1904 		case BGE_RESET_SHUTDOWN:
   1905 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1906 			    BGE_FW_DRV_STATE_UNLOAD);
   1907 			break;
   1908 		case BGE_RESET_SUSPEND:
   1909 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1910 			    BGE_FW_DRV_STATE_SUSPEND);
   1911 			break;
   1912 		}
   1913 	}
   1914 
   1915 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   1916 		bge_ape_driver_state_change(sc, type);
   1917 }
   1918 
   1919 static void
   1920 bge_sig_post_reset(struct bge_softc *sc, int type)
   1921 {
   1922 
   1923 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1924 		switch (type) {
   1925 		case BGE_RESET_START:
   1926 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1927 			    BGE_FW_DRV_STATE_START_DONE);
   1928 			/* START DONE */
   1929 			break;
   1930 		case BGE_RESET_SHUTDOWN:
   1931 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1932 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   1933 			break;
   1934 		}
   1935 	}
   1936 
   1937 	if (type == BGE_RESET_SHUTDOWN)
   1938 		bge_ape_driver_state_change(sc, type);
   1939 }
   1940 
   1941 static void
   1942 bge_sig_legacy(struct bge_softc *sc, int type)
   1943 {
   1944 
   1945 	if (sc->bge_asf_mode) {
   1946 		switch (type) {
   1947 		case BGE_RESET_START:
   1948 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1949 			    BGE_FW_DRV_STATE_START);
   1950 			break;
   1951 		case BGE_RESET_SHUTDOWN:
   1952 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1953 			    BGE_FW_DRV_STATE_UNLOAD);
   1954 			break;
   1955 		}
   1956 	}
   1957 }
   1958 
   1959 static void
   1960 bge_wait_for_event_ack(struct bge_softc *sc)
   1961 {
   1962 	int i;
   1963 
   1964 	/* wait up to 2500usec */
   1965 	for (i = 0; i < 250; i++) {
   1966 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   1967 			BGE_RX_CPU_DRV_EVENT))
   1968 			break;
   1969 		DELAY(10);
   1970 	}
   1971 }
   1972 
   1973 static void
   1974 bge_stop_fw(struct bge_softc *sc)
   1975 {
   1976 
   1977 	if (sc->bge_asf_mode) {
   1978 		bge_wait_for_event_ack(sc);
   1979 
   1980 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   1981 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   1982 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   1983 
   1984 		bge_wait_for_event_ack(sc);
   1985 	}
   1986 }
   1987 
   1988 static int
   1989 bge_poll_fw(struct bge_softc *sc)
   1990 {
   1991 	uint32_t val;
   1992 	int i;
   1993 
   1994 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1995 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1996 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1997 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   1998 				break;
   1999 			DELAY(100);
   2000 		}
   2001 		if (i >= BGE_TIMEOUT) {
   2002 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2003 			return -1;
   2004 		}
   2005 	} else {
   2006 		/*
   2007 		 * Poll the value location we just wrote until
   2008 		 * we see the 1's complement of the magic number.
   2009 		 * This indicates that the firmware initialization
   2010 		 * is complete.
   2011 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   2012 		 */
   2013 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2014 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   2015 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   2016 				break;
   2017 			DELAY(10);
   2018 		}
   2019 
   2020 		if ((i >= BGE_TIMEOUT)
   2021 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
   2022 			aprint_error_dev(sc->bge_dev,
   2023 			    "firmware handshake timed out, val = %x\n", val);
   2024 			return -1;
   2025 		}
   2026 	}
   2027 
   2028 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2029 		/* tg3 says we have to wait extra time */
   2030 		delay(10 * 1000);
   2031 	}
   2032 
   2033 	return 0;
   2034 }
   2035 
   2036 int
   2037 bge_phy_addr(struct bge_softc *sc)
   2038 {
   2039 	struct pci_attach_args *pa = &(sc->bge_pa);
   2040 	int phy_addr = 1;
   2041 
   2042 	/*
   2043 	 * PHY address mapping for various devices.
   2044 	 *
   2045 	 *	    | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2046 	 * ---------+-------+-------+-------+-------+
   2047 	 * BCM57XX  |	1   |	X   |	X   |	X   |
   2048 	 * BCM5704  |	1   |	X   |	1   |	X   |
   2049 	 * BCM5717  |	1   |	8   |	2   |	9   |
   2050 	 * BCM5719  |	1   |	8   |	2   |	9   |
   2051 	 * BCM5720  |	1   |	8   |	2   |	9   |
   2052 	 *
   2053 	 *	    | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2054 	 * ---------+-------+-------+-------+-------+
   2055 	 * BCM57XX  |	X   |	X   |	X   |	X   |
   2056 	 * BCM5704  |	X   |	X   |	X   |	X   |
   2057 	 * BCM5717  |	X   |	X   |	X   |	X   |
   2058 	 * BCM5719  |	3   |	10  |	4   |	11  |
   2059 	 * BCM5720  |	X   |	X   |	X   |	X   |
   2060 	 *
   2061 	 * Other addresses may respond but they are not
   2062 	 * IEEE compliant PHYs and should be ignored.
   2063 	 */
   2064 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2065 	case BGE_ASICREV_BCM5717:
   2066 	case BGE_ASICREV_BCM5719:
   2067 	case BGE_ASICREV_BCM5720:
   2068 		phy_addr = pa->pa_function;
   2069 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2070 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2071 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2072 		} else {
   2073 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2074 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2075 		}
   2076 	}
   2077 
   2078 	return phy_addr;
   2079 }
   2080 
   2081 /*
   2082  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2083  * self-test results.
   2084  */
   2085 static int
   2086 bge_chipinit(struct bge_softc *sc)
   2087 {
   2088 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
   2089 	int i;
   2090 
   2091 	/* Set endianness before we access any non-PCI registers. */
   2092 	misc_ctl = BGE_INIT;
   2093 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   2094 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
   2095 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2096 	    misc_ctl);
   2097 
   2098 	/*
   2099 	 * Clear the MAC statistics block in the NIC's
   2100 	 * internal memory.
   2101 	 */
   2102 	for (i = BGE_STATS_BLOCK;
   2103 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2104 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2105 
   2106 	for (i = BGE_STATUS_BLOCK;
   2107 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2108 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2109 
   2110 	/* 5717 workaround from tg3 */
   2111 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2112 		/* Save */
   2113 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2114 
   2115 		/* Temporary modify MODE_CTL to control TLP */
   2116 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2117 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2118 
   2119 		/* Control TLP */
   2120 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2121 		    BGE_TLP_PHYCTL1);
   2122 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2123 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2124 
   2125 		/* Restore */
   2126 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2127 	}
   2128 
   2129 	if (BGE_IS_57765_FAMILY(sc)) {
   2130 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2131 			/* Save */
   2132 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2133 
   2134 			/* Temporary modify MODE_CTL to control TLP */
   2135 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2136 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2137 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2138 
   2139 			/* Control TLP */
   2140 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2141 			    BGE_TLP_PHYCTL5);
   2142 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2143 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2144 
   2145 			/* Restore */
   2146 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2147 		}
   2148 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2149 			/*
   2150 			 * For the 57766 and non Ax versions of 57765, bootcode
   2151 			 * needs to setup the PCIE Fast Training Sequence (FTS)
   2152 			 * value to prevent transmit hangs.
   2153 			 */
   2154 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2155 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2156 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2157 
   2158 			/* Save */
   2159 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2160 
   2161 			/* Temporary modify MODE_CTL to control TLP */
   2162 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2163 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2164 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2165 
   2166 			/* Control TLP */
   2167 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2168 			    BGE_TLP_FTSMAX);
   2169 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2170 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2171 			    reg | BGE_TLP_FTSMAX_VAL);
   2172 
   2173 			/* Restore */
   2174 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2175 		}
   2176 
   2177 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2178 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2179 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2180 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2181 	}
   2182 
   2183 	/* Set up the PCI DMA control register. */
   2184 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2185 	if (sc->bge_flags & BGEF_PCIE) {
   2186 		/* Read watermark not used, 128 bytes for write. */
   2187 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2188 		    device_xname(sc->bge_dev)));
   2189 		if (sc->bge_mps >= 256)
   2190 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2191 		else
   2192 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2193 	} else if (sc->bge_flags & BGEF_PCIX) {
   2194 		DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2195 		    device_xname(sc->bge_dev)));
   2196 		/* PCI-X bus */
   2197 		if (BGE_IS_5714_FAMILY(sc)) {
   2198 			/* 256 bytes for read and write. */
   2199 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2200 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2201 
   2202 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2203 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2204 			else
   2205 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2206 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   2207 			/*
   2208 			 * In the BCM5703, the DMA read watermark should
   2209 			 * be set to less than or equal to the maximum
   2210 			 * memory read byte count of the PCI-X command
   2211 			 * register.
   2212 			 */
   2213 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
   2214 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2215 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2216 			/* 1536 bytes for read, 384 bytes for write. */
   2217 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2218 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2219 		} else {
   2220 			/* 384 bytes for read and write. */
   2221 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2222 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2223 			    (0x0F);
   2224 		}
   2225 
   2226 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2227 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2228 			uint32_t tmp;
   2229 
   2230 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2231 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2232 			if (tmp == 6 || tmp == 7)
   2233 				dma_rw_ctl |=
   2234 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2235 
   2236 			/* Set PCI-X DMA write workaround. */
   2237 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2238 		}
   2239 	} else {
   2240 		/* Conventional PCI bus: 256 bytes for read and write. */
   2241 		DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2242 		    device_xname(sc->bge_dev)));
   2243 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2244 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2245 
   2246 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2247 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2248 			dma_rw_ctl |= 0x0F;
   2249 	}
   2250 
   2251 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2252 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2253 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2254 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2255 
   2256 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2257 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2258 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2259 
   2260 	if (BGE_IS_57765_PLUS(sc)) {
   2261 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2262 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2263 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2264 
   2265 		/*
   2266 		 * Enable HW workaround for controllers that misinterpret
   2267 		 * a status tag update and leave interrupts permanently
   2268 		 * disabled.
   2269 		 */
   2270 		if (!BGE_IS_57765_FAMILY(sc) &&
   2271 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2272 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
   2273 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2274 	}
   2275 
   2276 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2277 	    dma_rw_ctl);
   2278 
   2279 	/*
   2280 	 * Set up general mode register.
   2281 	 */
   2282 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2283 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2284 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2285 		/* Retain Host-2-BMC settings written by APE firmware. */
   2286 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2287 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2288 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2289 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2290 	}
   2291 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2292 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2293 
   2294 	/*
   2295 	 * BCM5701 B5 have a bug causing data corruption when using
   2296 	 * 64-bit DMA reads, which can be terminated early and then
   2297 	 * completed later as 32-bit accesses, in combination with
   2298 	 * certain bridges.
   2299 	 */
   2300 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2301 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2302 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2303 
   2304 	/*
   2305 	 * Tell the firmware the driver is running
   2306 	 */
   2307 	if (sc->bge_asf_mode & ASF_STACKUP)
   2308 		mode_ctl |= BGE_MODECTL_STACKUP;
   2309 
   2310 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2311 
   2312 	/*
   2313 	 * Disable memory write invalidate.  Apparently it is not supported
   2314 	 * properly by these devices.
   2315 	 */
   2316 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2317 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2318 
   2319 #ifdef __brokenalpha__
   2320 	/*
   2321 	 * Must insure that we do not cross an 8K (bytes) boundary
   2322 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2323 	 * restriction on some ALPHA platforms with early revision
   2324 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2325 	 */
   2326 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2327 #endif
   2328 
   2329 	/* Set the timer prescaler (always 66MHz) */
   2330 	CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2331 
   2332 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2333 		DELAY(40);	/* XXX */
   2334 
   2335 		/* Put PHY into ready state */
   2336 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2337 		DELAY(40);
   2338 	}
   2339 
   2340 	return 0;
   2341 }
   2342 
   2343 static int
   2344 bge_blockinit(struct bge_softc *sc)
   2345 {
   2346 	volatile struct bge_rcb	 *rcb;
   2347 	bus_size_t rcb_addr;
   2348 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   2349 	bge_hostaddr taddr;
   2350 	uint32_t	dmactl, rdmareg, mimode, val;
   2351 	int		i, limit;
   2352 
   2353 	/*
   2354 	 * Initialize the memory window pointer register so that
   2355 	 * we can access the first 32K of internal NIC RAM. This will
   2356 	 * allow us to set up the TX send ring RCBs and the RX return
   2357 	 * ring RCBs, plus other things which live in NIC memory.
   2358 	 */
   2359 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2360 
   2361 	if (!BGE_IS_5705_PLUS(sc)) {
   2362 		/* 57XX step 33 */
   2363 		/* Configure mbuf memory pool */
   2364 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
   2365 
   2366 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2367 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2368 		else
   2369 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2370 
   2371 		/* 57XX step 34 */
   2372 		/* Configure DMA resource pool */
   2373 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2374 		    BGE_DMA_DESCRIPTORS);
   2375 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2376 	}
   2377 
   2378 	/* 5718 step 11, 57XX step 35 */
   2379 	/*
   2380 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2381 	 * recommend these.
   2382 	 */
   2383 	if (BGE_IS_5717_PLUS(sc)) {
   2384 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2385 		if (ifp->if_mtu > ETHERMTU) {
   2386 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
   2387 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
   2388 		} else {
   2389 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2390 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2391 		}
   2392 	} else if (BGE_IS_5705_PLUS(sc)) {
   2393 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2394 
   2395 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2396 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2397 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2398 		} else {
   2399 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2400 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2401 		}
   2402 	} else {
   2403 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2404 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2405 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2406 	}
   2407 
   2408 	/* 57XX step 36 */
   2409 	/* Configure DMA resource watermarks */
   2410 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2411 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2412 
   2413 	/* 5718 step 13, 57XX step 38 */
   2414 	/* Enable buffer manager */
   2415 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2416 	/*
   2417 	 * Change the arbitration algorithm of TXMBUF read request to
   2418 	 * round-robin instead of priority based for BCM5719.  When
   2419 	 * TXFIFO is almost empty, RDMA will hold its request until
   2420 	 * TXFIFO is not almost empty.
   2421 	 */
   2422 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2423 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2424 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2425 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2426 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2427 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2428 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2429 
   2430 	/* 57XX step 39 */
   2431 	/* Poll for buffer manager start indication */
   2432 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2433 		DELAY(10);
   2434 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2435 			break;
   2436 	}
   2437 
   2438 	if (i == BGE_TIMEOUT * 2) {
   2439 		aprint_error_dev(sc->bge_dev,
   2440 		    "buffer manager failed to start\n");
   2441 		return ENXIO;
   2442 	}
   2443 
   2444 	/* 57XX step 40 */
   2445 	/* Enable flow-through queues */
   2446 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2447 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2448 
   2449 	/* Wait until queue initialization is complete */
   2450 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2451 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2452 			break;
   2453 		DELAY(10);
   2454 	}
   2455 
   2456 	if (i == BGE_TIMEOUT * 2) {
   2457 		aprint_error_dev(sc->bge_dev,
   2458 		    "flow-through queue init failed\n");
   2459 		return ENXIO;
   2460 	}
   2461 
   2462 	/*
   2463 	 * Summary of rings supported by the controller:
   2464 	 *
   2465 	 * Standard Receive Producer Ring
   2466 	 * - This ring is used to feed receive buffers for "standard"
   2467 	 *   sized frames (typically 1536 bytes) to the controller.
   2468 	 *
   2469 	 * Jumbo Receive Producer Ring
   2470 	 * - This ring is used to feed receive buffers for jumbo sized
   2471 	 *   frames (i.e. anything bigger than the "standard" frames)
   2472 	 *   to the controller.
   2473 	 *
   2474 	 * Mini Receive Producer Ring
   2475 	 * - This ring is used to feed receive buffers for "mini"
   2476 	 *   sized frames to the controller.
   2477 	 * - This feature required external memory for the controller
   2478 	 *   but was never used in a production system.  Should always
   2479 	 *   be disabled.
   2480 	 *
   2481 	 * Receive Return Ring
   2482 	 * - After the controller has placed an incoming frame into a
   2483 	 *   receive buffer that buffer is moved into a receive return
   2484 	 *   ring.  The driver is then responsible to passing the
   2485 	 *   buffer up to the stack.  Many versions of the controller
   2486 	 *   support multiple RR rings.
   2487 	 *
   2488 	 * Send Ring
   2489 	 * - This ring is used for outgoing frames.  Many versions of
   2490 	 *   the controller support multiple send rings.
   2491 	 */
   2492 
   2493 	/* 5718 step 15, 57XX step 41 */
   2494 	/* Initialize the standard RX ring control block */
   2495 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2496 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2497 	/* 5718 step 16 */
   2498 	if (BGE_IS_57765_PLUS(sc)) {
   2499 		/*
   2500 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2501 		 * Bits 15-2 : Maximum RX frame size
   2502 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2503 		 * Bit 0     : Reserved
   2504 		 */
   2505 		rcb->bge_maxlen_flags =
   2506 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2507 	} else if (BGE_IS_5705_PLUS(sc)) {
   2508 		/*
   2509 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2510 		 * Bits 15-2 : Reserved (should be 0)
   2511 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2512 		 * Bit 0     : Reserved
   2513 		 */
   2514 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2515 	} else {
   2516 		/*
   2517 		 * Ring size is always XXX entries
   2518 		 * Bits 31-16: Maximum RX frame size
   2519 		 * Bits 15-2 : Reserved (should be 0)
   2520 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2521 		 * Bit 0     : Reserved
   2522 		 */
   2523 		rcb->bge_maxlen_flags =
   2524 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2525 	}
   2526 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2527 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2528 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2529 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2530 	else
   2531 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2532 	/* Write the standard receive producer ring control block. */
   2533 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2534 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2535 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2536 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2537 
   2538 	/* Reset the standard receive producer ring producer index. */
   2539 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2540 
   2541 	/* 57XX step 42 */
   2542 	/*
   2543 	 * Initialize the jumbo RX ring control block
   2544 	 * We set the 'ring disabled' bit in the flags
   2545 	 * field until we're actually ready to start
   2546 	 * using this ring (i.e. once we set the MTU
   2547 	 * high enough to require it).
   2548 	 */
   2549 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2550 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2551 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2552 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2553 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2554 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2555 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2556 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2557 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2558 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2559 		else
   2560 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2561 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2562 		    rcb->bge_hostaddr.bge_addr_hi);
   2563 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2564 		    rcb->bge_hostaddr.bge_addr_lo);
   2565 		/* Program the jumbo receive producer ring RCB parameters. */
   2566 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2567 		    rcb->bge_maxlen_flags);
   2568 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2569 		/* Reset the jumbo receive producer ring producer index. */
   2570 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2571 	}
   2572 
   2573 	/* 57XX step 43 */
   2574 	/* Disable the mini receive producer ring RCB. */
   2575 	if (BGE_IS_5700_FAMILY(sc)) {
   2576 		/* Set up dummy disabled mini ring RCB */
   2577 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2578 		rcb->bge_maxlen_flags =
   2579 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2580 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2581 		    rcb->bge_maxlen_flags);
   2582 		/* Reset the mini receive producer ring producer index. */
   2583 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2584 
   2585 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2586 		    offsetof(struct bge_ring_data, bge_info),
   2587 		    sizeof(struct bge_gib),
   2588 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2589 	}
   2590 
   2591 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2592 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2593 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2594 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2595 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2596 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2597 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2598 	}
   2599 	/* 5718 step 14, 57XX step 44 */
   2600 	/*
   2601 	 * The BD ring replenish thresholds control how often the
   2602 	 * hardware fetches new BD's from the producer rings in host
   2603 	 * memory.  Setting the value too low on a busy system can
   2604 	 * starve the hardware and recue the throughpout.
   2605 	 *
   2606 	 * Set the BD ring replenish thresholds. The recommended
   2607 	 * values are 1/8th the number of descriptors allocated to
   2608 	 * each ring, but since we try to avoid filling the entire
   2609 	 * ring we set these to the minimal value of 8.  This needs to
   2610 	 * be done on several of the supported chip revisions anyway,
   2611 	 * to work around HW bugs.
   2612 	 */
   2613 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2614 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2615 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2616 
   2617 	/* 5718 step 18 */
   2618 	if (BGE_IS_5717_PLUS(sc)) {
   2619 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2620 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2621 	}
   2622 
   2623 	/* 57XX step 45 */
   2624 	/*
   2625 	 * Disable all send rings by setting the 'ring disabled' bit
   2626 	 * in the flags field of all the TX send ring control blocks,
   2627 	 * located in NIC memory.
   2628 	 */
   2629 	if (BGE_IS_5700_FAMILY(sc)) {
   2630 		/* 5700 to 5704 had 16 send rings. */
   2631 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2632 	} else if (BGE_IS_5717_PLUS(sc)) {
   2633 		limit = BGE_TX_RINGS_5717_MAX;
   2634 	} else if (BGE_IS_57765_FAMILY(sc) ||
   2635 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2636 		limit = BGE_TX_RINGS_57765_MAX;
   2637 	} else
   2638 		limit = 1;
   2639 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2640 	for (i = 0; i < limit; i++) {
   2641 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2642 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2643 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2644 		rcb_addr += sizeof(struct bge_rcb);
   2645 	}
   2646 
   2647 	/* 57XX step 46 and 47 */
   2648 	/* Configure send ring RCB 0 (we use only the first ring) */
   2649 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2650 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2651 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2652 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2653 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2654 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2655 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2656 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2657 	else
   2658 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2659 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2660 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2661 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2662 
   2663 	/* 57XX step 48 */
   2664 	/*
   2665 	 * Disable all receive return rings by setting the
   2666 	 * 'ring diabled' bit in the flags field of all the receive
   2667 	 * return ring control blocks, located in NIC memory.
   2668 	 */
   2669 	if (BGE_IS_5717_PLUS(sc)) {
   2670 		/* Should be 17, use 16 until we get an SRAM map. */
   2671 		limit = 16;
   2672 	} else if (BGE_IS_5700_FAMILY(sc))
   2673 		limit = BGE_RX_RINGS_MAX;
   2674 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2675 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
   2676 	    BGE_IS_57765_FAMILY(sc))
   2677 		limit = 4;
   2678 	else
   2679 		limit = 1;
   2680 	/* Disable all receive return rings */
   2681 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2682 	for (i = 0; i < limit; i++) {
   2683 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2684 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2685 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2686 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2687 			BGE_RCB_FLAG_RING_DISABLED));
   2688 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2689 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2690 		    (i * (sizeof(uint64_t))), 0);
   2691 		rcb_addr += sizeof(struct bge_rcb);
   2692 	}
   2693 
   2694 	/* 57XX step 49 */
   2695 	/*
   2696 	 * Set up receive return ring 0.  Note that the NIC address
   2697 	 * for RX return rings is 0x0.  The return rings live entirely
   2698 	 * within the host, so the nicaddr field in the RCB isn't used.
   2699 	 */
   2700 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2701 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2702 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2703 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2704 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2705 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2706 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2707 
   2708 	/* 5718 step 24, 57XX step 53 */
   2709 	/* Set random backoff seed for TX */
   2710 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2711 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2712 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2713 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2714 	    BGE_TX_BACKOFF_SEED_MASK);
   2715 
   2716 	/* 5718 step 26, 57XX step 55 */
   2717 	/* Set inter-packet gap */
   2718 	val = 0x2620;
   2719 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2720 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2721 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2722 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2723 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2724 
   2725 	/* 5718 step 27, 57XX step 56 */
   2726 	/*
   2727 	 * Specify which ring to use for packets that don't match
   2728 	 * any RX rules.
   2729 	 */
   2730 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2731 
   2732 	/* 5718 step 28, 57XX step 57 */
   2733 	/*
   2734 	 * Configure number of RX lists. One interrupt distribution
   2735 	 * list, sixteen active lists, one bad frames class.
   2736 	 */
   2737 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2738 
   2739 	/* 5718 step 29, 57XX step 58 */
   2740 	/* Inialize RX list placement stats mask. */
   2741 	if (BGE_IS_575X_PLUS(sc)) {
   2742 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2743 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2744 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2745 	} else
   2746 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2747 
   2748 	/* 5718 step 30, 57XX step 59 */
   2749 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2750 
   2751 	/* 5718 step 33, 57XX step 62 */
   2752 	/* Disable host coalescing until we get it set up */
   2753 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2754 
   2755 	/* 5718 step 34, 57XX step 63 */
   2756 	/* Poll to make sure it's shut down. */
   2757 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2758 		DELAY(10);
   2759 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2760 			break;
   2761 	}
   2762 
   2763 	if (i == BGE_TIMEOUT * 2) {
   2764 		aprint_error_dev(sc->bge_dev,
   2765 		    "host coalescing engine failed to idle\n");
   2766 		return ENXIO;
   2767 	}
   2768 
   2769 	/* 5718 step 35, 36, 37 */
   2770 	/* Set up host coalescing defaults */
   2771 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   2772 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   2773 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   2774 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   2775 	if (!(BGE_IS_5705_PLUS(sc))) {
   2776 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2777 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2778 	}
   2779 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2780 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2781 
   2782 	/* Set up address of statistics block */
   2783 	if (BGE_IS_5700_FAMILY(sc)) {
   2784 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2785 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2786 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2787 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2788 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2789 	}
   2790 
   2791 	/* 5718 step 38 */
   2792 	/* Set up address of status block */
   2793 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2794 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2795 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2796 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2797 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2798 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2799 
   2800 	/* Set up status block size. */
   2801 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2802 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2803 		val = BGE_STATBLKSZ_FULL;
   2804 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2805 	} else {
   2806 		val = BGE_STATBLKSZ_32BYTE;
   2807 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2808 	}
   2809 
   2810 	/* 5718 step 39, 57XX step 73 */
   2811 	/* Turn on host coalescing state machine */
   2812 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2813 
   2814 	/* 5718 step 40, 57XX step 74 */
   2815 	/* Turn on RX BD completion state machine and enable attentions */
   2816 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2817 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2818 
   2819 	/* 5718 step 41, 57XX step 75 */
   2820 	/* Turn on RX list placement state machine */
   2821 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2822 
   2823 	/* 57XX step 76 */
   2824 	/* Turn on RX list selector state machine. */
   2825 	if (!(BGE_IS_5705_PLUS(sc)))
   2826 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2827 
   2828 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2829 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2830 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2831 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2832 
   2833 	if (sc->bge_flags & BGEF_FIBER_TBI)
   2834 		val |= BGE_PORTMODE_TBI;
   2835 	else if (sc->bge_flags & BGEF_FIBER_MII)
   2836 		val |= BGE_PORTMODE_GMII;
   2837 	else
   2838 		val |= BGE_PORTMODE_MII;
   2839 
   2840 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   2841 	/* Allow APE to send/receive frames. */
   2842 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2843 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2844 
   2845 	/* Turn on DMA, clear stats */
   2846 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2847 	/* 5718 step 44 */
   2848 	DELAY(40);
   2849 
   2850 	/* 5718 step 45, 57XX step 79 */
   2851 	/* Set misc. local control, enable interrupts on attentions */
   2852 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2853 	if (BGE_IS_5717_PLUS(sc)) {
   2854 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2855 		/* 5718 step 46 */
   2856 		DELAY(100);
   2857 	}
   2858 
   2859 	/* 57XX step 81 */
   2860 	/* Turn on DMA completion state machine */
   2861 	if (!(BGE_IS_5705_PLUS(sc)))
   2862 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2863 
   2864 	/* 5718 step 47, 57XX step 82 */
   2865 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2866 
   2867 	/* 5718 step 48 */
   2868 	/* Enable host coalescing bug fix. */
   2869 	if (BGE_IS_5755_PLUS(sc))
   2870 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2871 
   2872 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2873 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2874 
   2875 	/* Turn on write DMA state machine */
   2876 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2877 	/* 5718 step 49 */
   2878 	DELAY(40);
   2879 
   2880 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2881 
   2882 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   2883 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2884 
   2885 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2886 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2887 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2888 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2889 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2890 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2891 
   2892 	if (sc->bge_flags & BGEF_PCIE)
   2893 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2894 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2895 		if (ifp->if_mtu <= ETHERMTU)
   2896 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
   2897 	}
   2898 	if (sc->bge_flags & BGEF_TSO) {
   2899 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2900 		if (BGE_IS_5717_PLUS(sc))
   2901 			val |= BGE_RDMAMODE_TSO6_ENABLE;
   2902 	}
   2903 
   2904 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2905 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2906 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   2907 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   2908 		/*
   2909 		 * Allow multiple outstanding read requests from
   2910 		 * non-LSO read DMA engine.
   2911 		 */
   2912 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2913 	}
   2914 
   2915 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2916 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2917 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2918 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   2919 	    BGE_IS_57765_PLUS(sc)) {
   2920 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2921 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
   2922 		else
   2923 			rdmareg = BGE_RDMA_RSRVCTRL;
   2924 		dmactl = CSR_READ_4(sc, rdmareg);
   2925 		/*
   2926 		 * Adjust tx margin to prevent TX data corruption and
   2927 		 * fix internal FIFO overflow.
   2928 		 */
   2929 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2930 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2931 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   2932 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   2933 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   2934 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   2935 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   2936 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   2937 		}
   2938 		/*
   2939 		 * Enable fix for read DMA FIFO overruns.
   2940 		 * The fix is to limit the number of RX BDs
   2941 		 * the hardware would fetch at a time.
   2942 		 */
   2943 		CSR_WRITE_4(sc, rdmareg, dmactl |
   2944 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   2945 	}
   2946 
   2947 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   2948 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2949 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2950 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2951 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2952 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2953 		/*
   2954 		 * Allow 4KB burst length reads for non-LSO frames.
   2955 		 * Enable 512B burst length reads for buffer descriptors.
   2956 		 */
   2957 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2958 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2959 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   2960 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2961 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2962 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
   2963 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
   2964 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2965 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2966 	}
   2967 	/* Turn on read DMA state machine */
   2968 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   2969 	/* 5718 step 52 */
   2970 	delay(40);
   2971 
   2972 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   2973 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
   2974 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
   2975 			if ((val & 0xFFFF) > BGE_FRAMELEN)
   2976 				break;
   2977 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
   2978 				break;
   2979 		}
   2980 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
   2981 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   2982 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2983 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
   2984 			else
   2985 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
   2986 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   2987 		}
   2988 	}
   2989 
   2990 	/* 5718 step 56, 57XX step 84 */
   2991 	/* Turn on RX data completion state machine */
   2992 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   2993 
   2994 	/* Turn on RX data and RX BD initiator state machine */
   2995 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   2996 
   2997 	/* 57XX step 85 */
   2998 	/* Turn on Mbuf cluster free state machine */
   2999 	if (!BGE_IS_5705_PLUS(sc))
   3000 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3001 
   3002 	/* 5718 step 57, 57XX step 86 */
   3003 	/* Turn on send data completion state machine */
   3004 	val = BGE_SDCMODE_ENABLE;
   3005 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   3006 		val |= BGE_SDCMODE_CDELAY;
   3007 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   3008 
   3009 	/* 5718 step 58 */
   3010 	/* Turn on send BD completion state machine */
   3011 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3012 
   3013 	/* 57XX step 88 */
   3014 	/* Turn on RX BD initiator state machine */
   3015 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3016 
   3017 	/* 5718 step 60, 57XX step 90 */
   3018 	/* Turn on send data initiator state machine */
   3019 	if (sc->bge_flags & BGEF_TSO) {
   3020 		/* XXX: magic value from Linux driver */
   3021 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   3022 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   3023 	} else
   3024 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3025 
   3026 	/* 5718 step 61, 57XX step 91 */
   3027 	/* Turn on send BD initiator state machine */
   3028 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3029 
   3030 	/* 5718 step 62, 57XX step 92 */
   3031 	/* Turn on send BD selector state machine */
   3032 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3033 
   3034 	/* 5718 step 31, 57XX step 60 */
   3035 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   3036 	/* 5718 step 32, 57XX step 61 */
   3037 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   3038 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   3039 
   3040 	/* ack/clear link change events */
   3041 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3042 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3043 	    BGE_MACSTAT_LINK_CHANGED);
   3044 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3045 
   3046 	/*
   3047 	 * Enable attention when the link has changed state for
   3048 	 * devices that use auto polling.
   3049 	 */
   3050 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3051 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3052 	} else {
   3053 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3054 			mimode = BGE_MIMODE_500KHZ_CONST;
   3055 		else
   3056 			mimode = BGE_MIMODE_BASE;
   3057 		/* 5718 step 68. 5718 step 69 (optionally). */
   3058 		if (BGE_IS_5700_FAMILY(sc) ||
   3059 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
   3060 			mimode |= BGE_MIMODE_AUTOPOLL;
   3061 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3062 		}
   3063 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3064 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3065 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3066 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3067 			    BGE_EVTENB_MI_INTERRUPT);
   3068 	}
   3069 
   3070 	/*
   3071 	 * Clear any pending link state attention.
   3072 	 * Otherwise some link state change events may be lost until attention
   3073 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3074 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3075 	 * state change attentions implies clearing pending attention.
   3076 	 */
   3077 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3078 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3079 	    BGE_MACSTAT_LINK_CHANGED);
   3080 
   3081 	/* Enable link state change attentions. */
   3082 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3083 
   3084 	return 0;
   3085 }
   3086 
   3087 static const struct bge_revision *
   3088 bge_lookup_rev(uint32_t chipid)
   3089 {
   3090 	const struct bge_revision *br;
   3091 
   3092 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3093 		if (br->br_chipid == chipid)
   3094 			return br;
   3095 	}
   3096 
   3097 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3098 		if (br->br_chipid == BGE_ASICREV(chipid))
   3099 			return br;
   3100 	}
   3101 
   3102 	return NULL;
   3103 }
   3104 
   3105 static const struct bge_product *
   3106 bge_lookup(const struct pci_attach_args *pa)
   3107 {
   3108 	const struct bge_product *bp;
   3109 
   3110 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3111 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3112 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3113 			return bp;
   3114 	}
   3115 
   3116 	return NULL;
   3117 }
   3118 
   3119 static uint32_t
   3120 bge_chipid(const struct pci_attach_args *pa)
   3121 {
   3122 	uint32_t id;
   3123 
   3124 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3125 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3126 
   3127 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3128 		switch (PCI_PRODUCT(pa->pa_id)) {
   3129 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3130 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3131 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3132 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3133 		case PCI_PRODUCT_BROADCOM_BCM5725:
   3134 		case PCI_PRODUCT_BROADCOM_BCM5727:
   3135 		case PCI_PRODUCT_BROADCOM_BCM5762:
   3136 		case PCI_PRODUCT_BROADCOM_BCM57764:
   3137 		case PCI_PRODUCT_BROADCOM_BCM57767:
   3138 		case PCI_PRODUCT_BROADCOM_BCM57787:
   3139 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3140 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3141 			break;
   3142 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3143 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3144 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3145 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3146 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3147 		case PCI_PRODUCT_BROADCOM_BCM57782:
   3148 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3149 		case PCI_PRODUCT_BROADCOM_BCM57786:
   3150 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3151 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3152 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3153 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3154 			break;
   3155 		default:
   3156 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3157 			    BGE_PCI_PRODID_ASICREV);
   3158 			break;
   3159 		}
   3160 	}
   3161 
   3162 	return id;
   3163 }
   3164 
   3165 /*
   3166  * Return true if MSI can be used with this device.
   3167  */
   3168 static int
   3169 bge_can_use_msi(struct bge_softc *sc)
   3170 {
   3171 	int can_use_msi = 0;
   3172 
   3173 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3174 	case BGE_ASICREV_BCM5714_A0:
   3175 	case BGE_ASICREV_BCM5714:
   3176 		/*
   3177 		 * Apparently, MSI doesn't work when these chips are
   3178 		 * configured in single-port mode.
   3179 		 */
   3180 		break;
   3181 	case BGE_ASICREV_BCM5750:
   3182 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
   3183 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
   3184 			can_use_msi = 1;
   3185 		break;
   3186 	default:
   3187 		if (BGE_IS_575X_PLUS(sc))
   3188 			can_use_msi = 1;
   3189 	}
   3190 	return can_use_msi;
   3191 }
   3192 
   3193 /*
   3194  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3195  * against our list and return its name if we find a match. Note
   3196  * that since the Broadcom controller contains VPD support, we
   3197  * can get the device name string from the controller itself instead
   3198  * of the compiled-in string. This is a little slow, but it guarantees
   3199  * we'll always announce the right product name.
   3200  */
   3201 static int
   3202 bge_probe(device_t parent, cfdata_t match, void *aux)
   3203 {
   3204 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3205 
   3206 	if (bge_lookup(pa) != NULL)
   3207 		return 1;
   3208 
   3209 	return 0;
   3210 }
   3211 
   3212 static void
   3213 bge_attach(device_t parent, device_t self, void *aux)
   3214 {
   3215 	struct bge_softc * const sc = device_private(self);
   3216 	struct pci_attach_args * const pa = aux;
   3217 	prop_dictionary_t dict;
   3218 	const struct bge_product *bp;
   3219 	const struct bge_revision *br;
   3220 	pci_chipset_tag_t	pc;
   3221 	const char		*intrstr = NULL;
   3222 	uint32_t		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
   3223 	uint32_t		command;
   3224 	struct ifnet		*ifp;
   3225 	struct mii_data * const mii = &sc->bge_mii;
   3226 	uint32_t		misccfg, mimode, macmode;
   3227 	void *			kva;
   3228 	u_char			eaddr[ETHER_ADDR_LEN];
   3229 	pcireg_t		memtype, subid, reg;
   3230 	bus_addr_t		memaddr;
   3231 	uint32_t		pm_ctl;
   3232 	bool			no_seeprom;
   3233 	int			capmask, trys;
   3234 	int			mii_flags;
   3235 	int			map_flags;
   3236 	char intrbuf[PCI_INTRSTR_LEN];
   3237 
   3238 	bp = bge_lookup(pa);
   3239 	KASSERT(bp != NULL);
   3240 
   3241 	sc->sc_pc = pa->pa_pc;
   3242 	sc->sc_pcitag = pa->pa_tag;
   3243 	sc->bge_dev = self;
   3244 
   3245 	sc->bge_pa = *pa;
   3246 	pc = sc->sc_pc;
   3247 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3248 
   3249 	aprint_naive(": Ethernet controller\n");
   3250 	aprint_normal(": %s Ethernet\n", bp->bp_name);
   3251 
   3252 	/*
   3253 	 * Map control/status registers.
   3254 	 */
   3255 	DPRINTFN(5, ("Map control/status regs\n"));
   3256 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3257 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3258 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3259 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3260 
   3261 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3262 		aprint_error_dev(sc->bge_dev,
   3263 		    "failed to enable memory mapping!\n");
   3264 		return;
   3265 	}
   3266 
   3267 	DPRINTFN(5, ("pci_mem_find\n"));
   3268 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3269 	switch (memtype) {
   3270 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3271 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3272 #if 0
   3273 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3274 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3275 		    &memaddr, &sc->bge_bsize) == 0)
   3276 			break;
   3277 #else
   3278 		/*
   3279 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3280 		 * system get NMI on boot (PR#48451). This problem might not be
   3281 		 * the driver's bug but our PCI common part's bug. Until we
   3282 		 * find a real reason, we ignore the prefetchable bit.
   3283 		 */
   3284 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
   3285 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
   3286 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3287 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
   3288 			    map_flags, &sc->bge_bhandle) == 0) {
   3289 				sc->bge_btag = pa->pa_memt;
   3290 				break;
   3291 			}
   3292 		}
   3293 #endif
   3294 		/* FALLTHROUGH */
   3295 	default:
   3296 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3297 		return;
   3298 	}
   3299 
   3300 	/* Save various chip information. */
   3301 	sc->bge_chipid = bge_chipid(pa);
   3302 	sc->bge_phy_addr = bge_phy_addr(sc);
   3303 
   3304 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3305 	    &sc->bge_pciecap, NULL) != 0) {
   3306 		/* PCIe */
   3307 		sc->bge_flags |= BGEF_PCIE;
   3308 		/* Extract supported maximum payload size. */
   3309 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3310 		    sc->bge_pciecap + PCIE_DCAP);
   3311 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3312 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3313 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3314 			sc->bge_expmrq = 2048;
   3315 		else
   3316 			sc->bge_expmrq = 4096;
   3317 		bge_set_max_readrq(sc);
   3318 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
   3319 		/* PCIe without PCIe cap */
   3320 		sc->bge_flags |= BGEF_PCIE;
   3321 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3322 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3323 		/* PCI-X */
   3324 		sc->bge_flags |= BGEF_PCIX;
   3325 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3326 			&sc->bge_pcixcap, NULL) == 0)
   3327 			aprint_error_dev(sc->bge_dev,
   3328 			    "unable to find PCIX capability\n");
   3329 	}
   3330 
   3331 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3332 		/*
   3333 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3334 		 * can clobber the chip's PCI config-space power control
   3335 		 * registers, leaving the card in D3 powersave state. We do
   3336 		 * not have memory-mapped registers in this state, so force
   3337 		 * device into D0 state before starting initialization.
   3338 		 */
   3339 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3340 		pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
   3341 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3342 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3343 		DELAY(1000);	/* 27 usec is allegedly sufficient */
   3344 	}
   3345 
   3346 	/* Save chipset family. */
   3347 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3348 	case BGE_ASICREV_BCM5717:
   3349 	case BGE_ASICREV_BCM5719:
   3350 	case BGE_ASICREV_BCM5720:
   3351 		sc->bge_flags |= BGEF_5717_PLUS;
   3352 		/* FALLTHROUGH */
   3353 	case BGE_ASICREV_BCM5762:
   3354 	case BGE_ASICREV_BCM57765:
   3355 	case BGE_ASICREV_BCM57766:
   3356 		if (!BGE_IS_5717_PLUS(sc))
   3357 			sc->bge_flags |= BGEF_57765_FAMILY;
   3358 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
   3359 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
   3360 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3361 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3362 			/*
   3363 			 * Enable work around for DMA engine miscalculation
   3364 			 * of TXMBUF available space.
   3365 			 */
   3366 			sc->bge_flags |= BGEF_RDMA_BUG;
   3367 
   3368 			if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3369 			    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
   3370 				/* Jumbo frame on BCM5719 A0 does not work. */
   3371 				sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
   3372 			}
   3373 		}
   3374 		break;
   3375 	case BGE_ASICREV_BCM5755:
   3376 	case BGE_ASICREV_BCM5761:
   3377 	case BGE_ASICREV_BCM5784:
   3378 	case BGE_ASICREV_BCM5785:
   3379 	case BGE_ASICREV_BCM5787:
   3380 	case BGE_ASICREV_BCM57780:
   3381 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
   3382 		break;
   3383 	case BGE_ASICREV_BCM5700:
   3384 	case BGE_ASICREV_BCM5701:
   3385 	case BGE_ASICREV_BCM5703:
   3386 	case BGE_ASICREV_BCM5704:
   3387 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
   3388 		break;
   3389 	case BGE_ASICREV_BCM5714_A0:
   3390 	case BGE_ASICREV_BCM5780:
   3391 	case BGE_ASICREV_BCM5714:
   3392 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
   3393 		/* FALLTHROUGH */
   3394 	case BGE_ASICREV_BCM5750:
   3395 	case BGE_ASICREV_BCM5752:
   3396 	case BGE_ASICREV_BCM5906:
   3397 		sc->bge_flags |= BGEF_575X_PLUS;
   3398 		/* FALLTHROUGH */
   3399 	case BGE_ASICREV_BCM5705:
   3400 		sc->bge_flags |= BGEF_5705_PLUS;
   3401 		break;
   3402 	}
   3403 
   3404 	/* Identify chips with APE processor. */
   3405 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3406 	case BGE_ASICREV_BCM5717:
   3407 	case BGE_ASICREV_BCM5719:
   3408 	case BGE_ASICREV_BCM5720:
   3409 	case BGE_ASICREV_BCM5761:
   3410 	case BGE_ASICREV_BCM5762:
   3411 		sc->bge_flags |= BGEF_APE;
   3412 		break;
   3413 	}
   3414 
   3415 	/*
   3416 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
   3417 	 * not actually a MAC controller bug but an issue with the embedded
   3418 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
   3419 	 */
   3420 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
   3421 		sc->bge_flags |= BGEF_40BIT_BUG;
   3422 
   3423 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3424 	if ((sc->bge_flags & BGEF_APE) != 0) {
   3425 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3426 #if 0
   3427 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3428 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3429 			&sc->bge_apesize)) {
   3430 			aprint_error_dev(sc->bge_dev,
   3431 			    "couldn't map BAR2 memory\n");
   3432 			return;
   3433 		}
   3434 #else
   3435 		/*
   3436 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3437 		 * system get NMI on boot (PR#48451). This problem might not be
   3438 		 * the driver's bug but our PCI common part's bug. Until we
   3439 		 * find a real reason, we ignore the prefetchable bit.
   3440 		 */
   3441 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
   3442 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
   3443 			aprint_error_dev(sc->bge_dev,
   3444 			    "couldn't map BAR2 memory\n");
   3445 			return;
   3446 		}
   3447 
   3448 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3449 		if (bus_space_map(pa->pa_memt, memaddr,
   3450 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
   3451 			aprint_error_dev(sc->bge_dev,
   3452 			    "couldn't map BAR2 memory\n");
   3453 			return;
   3454 		}
   3455 		sc->bge_apetag = pa->pa_memt;
   3456 #endif
   3457 
   3458 		/* Enable APE register/memory access by host driver. */
   3459 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3460 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3461 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3462 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3463 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3464 
   3465 		bge_ape_lock_init(sc);
   3466 		bge_ape_read_fw_ver(sc);
   3467 	}
   3468 
   3469 	/* Identify the chips that use an CPMU. */
   3470 	if (BGE_IS_5717_PLUS(sc) ||
   3471 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3472 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3473 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3474 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3475 		sc->bge_flags |= BGEF_CPMU_PRESENT;
   3476 
   3477 	/*
   3478 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3479 	 * been observed in the first few bytes of some received packets.
   3480 	 * Aligning the packet buffer in memory eliminates the corruption.
   3481 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3482 	 * which do not support unaligned accesses, we will realign the
   3483 	 * payloads by copying the received packets.
   3484 	 */
   3485 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3486 	    sc->bge_flags & BGEF_PCIX)
   3487 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
   3488 
   3489 	if (BGE_IS_5700_FAMILY(sc))
   3490 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
   3491 
   3492 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3493 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3494 
   3495 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3496 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3497 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3498 		sc->bge_flags |= BGEF_IS_5788;
   3499 
   3500 	/*
   3501 	 * Some controllers seem to require a special firmware to use
   3502 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3503 	 * claims that the TSO performed by the firmware is slower than
   3504 	 * hardware based TSO. Moreover the firmware based TSO has one
   3505 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3506 	 * header is greater than 80 bytes. The workaround for the TSO
   3507 	 * bug exist but it seems it's too expensive than not using
   3508 	 * TSO at all. Some hardwares also have the TSO bug so limit
   3509 	 * the TSO to the controllers that are not affected TSO issues
   3510 	 * (e.g. 5755 or higher).
   3511 	 */
   3512 	if (BGE_IS_5755_PLUS(sc)) {
   3513 		/*
   3514 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3515 		 * explicit device id check is required.
   3516 		 */
   3517 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3518 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3519 			sc->bge_flags |= BGEF_TSO;
   3520 		/* TSO on BCM5719 A0 does not work. */
   3521 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3522 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3523 			sc->bge_flags &= ~BGEF_TSO;
   3524 	}
   3525 
   3526 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3527 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3528 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3529 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3530 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3531 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3532 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3533 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3534 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3535 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3536 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3537 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3538 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3539 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3540 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3541 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3542 		/* These chips are 10/100 only. */
   3543 		capmask &= ~BMSR_EXTSTAT;
   3544 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3545 	}
   3546 
   3547 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3548 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3549 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3550 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3551 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3552 
   3553 	/* Set various PHY bug flags. */
   3554 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3555 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3556 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
   3557 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3558 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3559 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
   3560 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3561 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
   3562 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3563 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3564 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3565 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
   3566 	if (BGE_IS_5705_PLUS(sc) &&
   3567 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3568 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3569 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3570 	    !BGE_IS_57765_PLUS(sc)) {
   3571 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3572 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3573 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3574 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3575 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3576 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3577 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
   3578 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3579 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
   3580 		} else
   3581 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
   3582 	}
   3583 
   3584 	/*
   3585 	 * SEEPROM check.
   3586 	 * First check if firmware knows we do not have SEEPROM.
   3587 	 */
   3588 	if (prop_dictionary_get_bool(device_properties(self),
   3589 	    "without-seeprom", &no_seeprom) && no_seeprom)
   3590 		sc->bge_flags |= BGEF_NO_EEPROM;
   3591 
   3592 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3593 		sc->bge_flags |= BGEF_NO_EEPROM;
   3594 
   3595 	/* Now check the 'ROM failed' bit on the RX CPU */
   3596 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3597 		sc->bge_flags |= BGEF_NO_EEPROM;
   3598 
   3599 	sc->bge_asf_mode = 0;
   3600 	/* No ASF if APE present. */
   3601 	if ((sc->bge_flags & BGEF_APE) == 0) {
   3602 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3603 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3604 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3605 			    BGE_HWCFG_ASF) {
   3606 				sc->bge_asf_mode |= ASF_ENABLE;
   3607 				sc->bge_asf_mode |= ASF_STACKUP;
   3608 				if (BGE_IS_575X_PLUS(sc))
   3609 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3610 			}
   3611 		}
   3612 	}
   3613 
   3614 	int counts[PCI_INTR_TYPE_SIZE] = {
   3615 		[PCI_INTR_TYPE_INTX] = 1,
   3616 		[PCI_INTR_TYPE_MSI] = 1,
   3617 		[PCI_INTR_TYPE_MSIX] = 1,
   3618 	};
   3619 	int max_type = PCI_INTR_TYPE_MSIX;
   3620 
   3621 	if (!bge_can_use_msi(sc)) {
   3622 		/* MSI broken, allow only INTx */
   3623 		max_type = PCI_INTR_TYPE_INTX;
   3624 	}
   3625 
   3626 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
   3627 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
   3628 		return;
   3629 	}
   3630 
   3631 	DPRINTFN(5, ("pci_intr_string\n"));
   3632 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
   3633 	    sizeof(intrbuf));
   3634 	DPRINTFN(5, ("pci_intr_establish\n"));
   3635 	sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
   3636 	    IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
   3637 	if (sc->bge_intrhand == NULL) {
   3638 		pci_intr_release(pc, sc->bge_pihp, 1);
   3639 		sc->bge_pihp = NULL;
   3640 
   3641 		aprint_error_dev(self, "couldn't establish interrupt");
   3642 		if (intrstr != NULL)
   3643 			aprint_error(" at %s", intrstr);
   3644 		aprint_error("\n");
   3645 		return;
   3646 	}
   3647 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3648 
   3649 	switch (pci_intr_type(pc, sc->bge_pihp[0])) {
   3650 	case PCI_INTR_TYPE_MSIX:
   3651 	case PCI_INTR_TYPE_MSI:
   3652 		KASSERT(bge_can_use_msi(sc));
   3653 		sc->bge_flags |= BGEF_MSI;
   3654 		break;
   3655 	default:
   3656 		/* nothing to do */
   3657 		break;
   3658 	}
   3659 
   3660 	char wqname[MAXCOMLEN];
   3661 	snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->bge_dev));
   3662 	int error = workqueue_create(&sc->sc_reset_wq, wqname,
   3663 	    bge_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK,
   3664 	    WQ_MPSAFE);
   3665 	if (error) {
   3666 		aprint_error_dev(sc->bge_dev,
   3667 		    "unable to create reset workqueue\n");
   3668 		return;
   3669 	}
   3670 
   3671 
   3672 	/*
   3673 	 * All controllers except BCM5700 supports tagged status but
   3674 	 * we use tagged status only for MSI case on BCM5717. Otherwise
   3675 	 * MSI on BCM5717 does not work.
   3676 	 */
   3677 	if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
   3678 		sc->bge_flags |= BGEF_TAGGED_STATUS;
   3679 
   3680 	/*
   3681 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3682 	 * lock in bge_reset().
   3683 	 */
   3684 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   3685 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3686 	delay(1000);
   3687 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3688 
   3689 	bge_stop_fw(sc);
   3690 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   3691 	if (bge_reset(sc))
   3692 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3693 
   3694 	/*
   3695 	 * Read the hardware config word in the first 32k of NIC internal
   3696 	 * memory, or fall back to the config word in the EEPROM.
   3697 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3698 	 */
   3699 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
   3700 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3701 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3702 		uint32_t tmp;
   3703 
   3704 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3705 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3706 		    BGE_SRAM_DATA_VER_SHIFT;
   3707 		if ((0 < tmp) && (tmp < 0x100))
   3708 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3709 		if (sc->bge_flags & BGEF_PCIE)
   3710 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3711 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3712 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3713 		if (BGE_IS_5717_PLUS(sc))
   3714 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
   3715 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
   3716 		bge_read_eeprom(sc, (void *)&hwcfg,
   3717 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3718 		hwcfg = be32toh(hwcfg);
   3719 	}
   3720 	aprint_normal_dev(sc->bge_dev,
   3721 	    "HW config %08x, %08x, %08x, %08x %08x\n",
   3722 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
   3723 
   3724 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   3725 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   3726 
   3727 	if (bge_chipinit(sc)) {
   3728 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3729 		bge_release_resources(sc);
   3730 		return;
   3731 	}
   3732 
   3733 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   3734 		BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
   3735 		    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
   3736 		DELAY(100);
   3737 	}
   3738 
   3739 	/* Set MI_MODE */
   3740 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3741 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3742 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3743 	else
   3744 		mimode |= BGE_MIMODE_BASE;
   3745 	CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
   3746 	DELAY(80);
   3747 
   3748 	/*
   3749 	 * Get station address from the EEPROM.
   3750 	 */
   3751 	if (bge_get_eaddr(sc, eaddr)) {
   3752 		aprint_error_dev(sc->bge_dev,
   3753 		    "failed to read station address\n");
   3754 		bge_release_resources(sc);
   3755 		return;
   3756 	}
   3757 
   3758 	br = bge_lookup_rev(sc->bge_chipid);
   3759 
   3760 	if (br == NULL) {
   3761 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3762 		    sc->bge_chipid);
   3763 	} else {
   3764 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3765 		    br->br_name, sc->bge_chipid);
   3766 	}
   3767 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3768 
   3769 	/* Allocate the general information block and ring buffers. */
   3770 	if (pci_dma64_available(pa)) {
   3771 		sc->bge_dmatag = pa->pa_dmat64;
   3772 		sc->bge_dmatag32 = pa->pa_dmat;
   3773 		sc->bge_dma64 = true;
   3774 	} else {
   3775 		sc->bge_dmatag = pa->pa_dmat;
   3776 		sc->bge_dmatag32 = pa->pa_dmat;
   3777 		sc->bge_dma64 = false;
   3778 	}
   3779 
   3780 	/* 40bit DMA workaround */
   3781 	if (sizeof(bus_addr_t) > 4) {
   3782 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
   3783 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
   3784 
   3785 			if (bus_dmatag_subregion(olddmatag, 0,
   3786 			    (bus_addr_t)__MASK(40),
   3787 			    &(sc->bge_dmatag), BUS_DMA_WAITOK) != 0) {
   3788 				aprint_error_dev(self,
   3789 				    "WARNING: failed to restrict dma range,"
   3790 				    " falling back to parent bus dma range\n");
   3791 				sc->bge_dmatag = olddmatag;
   3792 			}
   3793 		}
   3794 	}
   3795 	SLIST_INIT(&sc->txdma_list);
   3796 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3797 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3798 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3799 		&sc->bge_ring_rseg, BUS_DMA_WAITOK)) {
   3800 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3801 		return;
   3802 	}
   3803 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3804 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3805 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3806 			   BUS_DMA_WAITOK)) {
   3807 		aprint_error_dev(sc->bge_dev,
   3808 		    "can't map DMA buffers (%zu bytes)\n",
   3809 		    sizeof(struct bge_ring_data));
   3810 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3811 		    sc->bge_ring_rseg);
   3812 		return;
   3813 	}
   3814 	DPRINTFN(5, ("bus_dmamem_create\n"));
   3815 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3816 	    sizeof(struct bge_ring_data), 0,
   3817 	    BUS_DMA_WAITOK, &sc->bge_ring_map)) {
   3818 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3819 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3820 				 sizeof(struct bge_ring_data));
   3821 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3822 		    sc->bge_ring_rseg);
   3823 		return;
   3824 	}
   3825 	DPRINTFN(5, ("bus_dmamem_load\n"));
   3826 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3827 			    sizeof(struct bge_ring_data), NULL,
   3828 			    BUS_DMA_WAITOK)) {
   3829 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3830 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3831 				 sizeof(struct bge_ring_data));
   3832 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3833 		    sc->bge_ring_rseg);
   3834 		return;
   3835 	}
   3836 
   3837 	DPRINTFN(5, ("bzero\n"));
   3838 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3839 
   3840 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3841 
   3842 	/* Try to allocate memory for jumbo buffers. */
   3843 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3844 		if (bge_alloc_jumbo_mem(sc)) {
   3845 			aprint_error_dev(sc->bge_dev,
   3846 			    "jumbo buffer allocation failed\n");
   3847 		} else
   3848 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3849 	}
   3850 
   3851 	/* Set default tuneable values. */
   3852 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3853 	sc->bge_rx_coal_ticks = 150;
   3854 	sc->bge_rx_max_coal_bds = 64;
   3855 	sc->bge_tx_coal_ticks = 300;
   3856 	sc->bge_tx_max_coal_bds = 400;
   3857 	if (BGE_IS_5705_PLUS(sc)) {
   3858 		sc->bge_tx_coal_ticks = (12 * 5);
   3859 		sc->bge_tx_max_coal_bds = (12 * 5);
   3860 			aprint_verbose_dev(sc->bge_dev,
   3861 			    "setting short Tx thresholds\n");
   3862 	}
   3863 
   3864 	if (BGE_IS_5717_PLUS(sc))
   3865 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3866 	else if (BGE_IS_5705_PLUS(sc))
   3867 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3868 	else
   3869 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3870 
   3871 	sc->sc_core_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
   3872 
   3873 	/* Set up ifnet structure */
   3874 	ifp = &sc->ethercom.ec_if;
   3875 	ifp->if_softc = sc;
   3876 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3877 	ifp->if_extflags = IFEF_MPSAFE;
   3878 	ifp->if_ioctl = bge_ioctl;
   3879 	ifp->if_stop = bge_stop;
   3880 	ifp->if_start = bge_start;
   3881 	ifp->if_init = bge_init;
   3882 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3883 	IFQ_SET_READY(&ifp->if_snd);
   3884 	DPRINTFN(5, ("strcpy if_xname\n"));
   3885 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3886 
   3887 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3888 		sc->ethercom.ec_if.if_capabilities |=
   3889 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3890 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3891 		sc->ethercom.ec_if.if_capabilities |=
   3892 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3893 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3894 #endif
   3895 	sc->ethercom.ec_capabilities |=
   3896 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3897 	sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
   3898 
   3899 	if (sc->bge_flags & BGEF_TSO)
   3900 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3901 
   3902 	/*
   3903 	 * Do MII setup.
   3904 	 */
   3905 	DPRINTFN(5, ("mii setup\n"));
   3906 	mii->mii_ifp = ifp;
   3907 	mii->mii_readreg = bge_miibus_readreg;
   3908 	mii->mii_writereg = bge_miibus_writereg;
   3909 	mii->mii_statchg = bge_miibus_statchg;
   3910 
   3911 	/*
   3912 	 * Figure out what sort of media we have by checking the hardware
   3913 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   3914 	 * unset. If that's the case, we have to rely on identifying the NIC
   3915 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   3916 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   3917 	 */
   3918 	if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
   3919 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3920 		if (BGE_IS_5705_PLUS(sc)) {
   3921 			sc->bge_flags |= BGEF_FIBER_MII;
   3922 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3923 		} else
   3924 			sc->bge_flags |= BGEF_FIBER_TBI;
   3925 	}
   3926 
   3927 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
   3928 	if (BGE_IS_JUMBO_CAPABLE(sc))
   3929 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
   3930 
   3931 	/* set phyflags and chipid before mii_attach() */
   3932 	dict = device_properties(self);
   3933 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
   3934 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3935 
   3936 	macmode = CSR_READ_4(sc, BGE_MAC_MODE);
   3937 	macmode &= ~BGE_MACMODE_PORTMODE;
   3938 	/* Initialize ifmedia structures. */
   3939 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3940 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
   3941 		    macmode | BGE_PORTMODE_TBI);
   3942 		DELAY(40);
   3943 
   3944 		sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
   3945 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   3946 		    bge_ifmedia_sts);
   3947 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
   3948 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
   3949 			    0, NULL);
   3950 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
   3951 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
   3952 		/* Pretend the user requested this setting */
   3953 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3954 	} else {
   3955 		uint16_t phyreg;
   3956 		int rv;
   3957 		/*
   3958 		 * Do transceiver setup and tell the firmware the
   3959 		 * driver is down so we can try to get access the
   3960 		 * probe if ASF is running.  Retry a couple of times
   3961 		 * if we get a conflict with the ASF firmware accessing
   3962 		 * the PHY.
   3963 		 */
   3964 		if (sc->bge_flags & BGEF_FIBER_MII)
   3965 			macmode |= BGE_PORTMODE_GMII;
   3966 		else
   3967 			macmode |= BGE_PORTMODE_MII;
   3968 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
   3969 		DELAY(40);
   3970 
   3971 		/*
   3972 		 * Do transceiver setup and tell the firmware the
   3973 		 * driver is down so we can try to get access the
   3974 		 * probe if ASF is running.  Retry a couple of times
   3975 		 * if we get a conflict with the ASF firmware accessing
   3976 		 * the PHY.
   3977 		 */
   3978 		trys = 0;
   3979 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3980 		sc->ethercom.ec_mii = mii;
   3981 		ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
   3982 			     bge_ifmedia_sts);
   3983 		mii_flags = MIIF_DOPAUSE;
   3984 		if (sc->bge_flags & BGEF_FIBER_MII)
   3985 			mii_flags |= MIIF_HAVEFIBER;
   3986 again:
   3987 		bge_asf_driver_up(sc);
   3988 		rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   3989 		    MII_BMCR, &phyreg);
   3990 		if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
   3991 			int i;
   3992 
   3993 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   3994 			    MII_BMCR, BMCR_RESET);
   3995 			/* Wait up to 500ms for it to complete. */
   3996 			for (i = 0; i < 500; i++) {
   3997 				bge_miibus_readreg(sc->bge_dev,
   3998 				    sc->bge_phy_addr, MII_BMCR, &phyreg);
   3999 				if ((phyreg & BMCR_RESET) == 0)
   4000 					break;
   4001 				DELAY(1000);
   4002 			}
   4003 		}
   4004 
   4005 		mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
   4006 		    MII_OFFSET_ANY, mii_flags);
   4007 
   4008 		if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
   4009 			goto again;
   4010 
   4011 		if (LIST_EMPTY(&mii->mii_phys)) {
   4012 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   4013 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
   4014 			    0, NULL);
   4015 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
   4016 		} else
   4017 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   4018 
   4019 		/*
   4020 		 * Now tell the firmware we are going up after probing the PHY
   4021 		 */
   4022 		if (sc->bge_asf_mode & ASF_STACKUP)
   4023 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4024 	}
   4025 
   4026 	/*
   4027 	 * Call MI attach routine.
   4028 	 */
   4029 	DPRINTFN(5, ("if_initialize\n"));
   4030 	if_initialize(ifp);
   4031 	ifp->if_percpuq = if_percpuq_create(ifp);
   4032 	if_deferred_start_init(ifp, NULL);
   4033 	if_register(ifp);
   4034 
   4035 	DPRINTFN(5, ("ether_ifattach\n"));
   4036 	ether_ifattach(ifp, eaddr);
   4037 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   4038 
   4039 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   4040 		RND_TYPE_NET, RND_FLAG_DEFAULT);
   4041 #ifdef BGE_EVENT_COUNTERS
   4042 	/*
   4043 	 * Attach event counters.
   4044 	 */
   4045 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   4046 	    NULL, device_xname(sc->bge_dev), "intr");
   4047 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
   4048 	    NULL, device_xname(sc->bge_dev), "intr_spurious");
   4049 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
   4050 	    NULL, device_xname(sc->bge_dev), "intr_spurious2");
   4051 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   4052 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   4053 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   4054 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   4055 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   4056 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   4057 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   4058 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   4059 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   4060 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   4061 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   4062 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   4063 #endif /* BGE_EVENT_COUNTERS */
   4064 	DPRINTFN(5, ("callout_init\n"));
   4065 	callout_init(&sc->bge_timeout, CALLOUT_MPSAFE);
   4066 	callout_setfunc(&sc->bge_timeout, bge_tick, sc);
   4067 
   4068 	if (pmf_device_register(self, NULL, NULL))
   4069 		pmf_class_network_register(self, ifp);
   4070 	else
   4071 		aprint_error_dev(self, "couldn't establish power handler\n");
   4072 
   4073 	bge_sysctl_init(sc);
   4074 
   4075 #ifdef BGE_DEBUG
   4076 	bge_debug_info(sc);
   4077 #endif
   4078 }
   4079 
   4080 /*
   4081  * Stop all chip I/O so that the kernel's probe routines don't
   4082  * get confused by errant DMAs when rebooting.
   4083  */
   4084 static int
   4085 bge_detach(device_t self, int flags __unused)
   4086 {
   4087 	struct bge_softc * const sc = device_private(self);
   4088 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4089 
   4090 	/* Stop the interface. Callouts are stopped in it. */
   4091 	bge_stop(ifp, 1);
   4092 
   4093 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   4094 
   4095 	ether_ifdetach(ifp);
   4096 	if_detach(ifp);
   4097 
   4098 	/* Delete all remaining media. */
   4099 	ifmedia_fini(&sc->bge_mii.mii_media);
   4100 
   4101 	bge_release_resources(sc);
   4102 
   4103 	return 0;
   4104 }
   4105 
   4106 static void
   4107 bge_release_resources(struct bge_softc *sc)
   4108 {
   4109 
   4110 	/* Detach sysctl */
   4111 	if (sc->bge_log != NULL)
   4112 		sysctl_teardown(&sc->bge_log);
   4113 
   4114 #ifdef BGE_EVENT_COUNTERS
   4115 	/* Detach event counters. */
   4116 	evcnt_detach(&sc->bge_ev_intr);
   4117 	evcnt_detach(&sc->bge_ev_intr_spurious);
   4118 	evcnt_detach(&sc->bge_ev_intr_spurious2);
   4119 	evcnt_detach(&sc->bge_ev_tx_xoff);
   4120 	evcnt_detach(&sc->bge_ev_tx_xon);
   4121 	evcnt_detach(&sc->bge_ev_rx_xoff);
   4122 	evcnt_detach(&sc->bge_ev_rx_xon);
   4123 	evcnt_detach(&sc->bge_ev_rx_macctl);
   4124 	evcnt_detach(&sc->bge_ev_xoffentered);
   4125 #endif /* BGE_EVENT_COUNTERS */
   4126 
   4127 	/* Disestablish the interrupt handler */
   4128 	if (sc->bge_intrhand != NULL) {
   4129 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   4130 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
   4131 		sc->bge_intrhand = NULL;
   4132 	}
   4133 
   4134 	if (sc->bge_cdata.bge_jumbo_buf != NULL)
   4135 		bge_free_jumbo_mem(sc);
   4136 
   4137 	if (sc->bge_dmatag != NULL) {
   4138 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   4139 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   4140 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   4141 		    sizeof(struct bge_ring_data));
   4142 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   4143 		    sc->bge_ring_rseg);
   4144 	}
   4145 
   4146 	/* Unmap the device registers */
   4147 	if (sc->bge_bsize != 0) {
   4148 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   4149 		sc->bge_bsize = 0;
   4150 	}
   4151 
   4152 	/* Unmap the APE registers */
   4153 	if (sc->bge_apesize != 0) {
   4154 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   4155 		    sc->bge_apesize);
   4156 		sc->bge_apesize = 0;
   4157 	}
   4158 }
   4159 
   4160 static int
   4161 bge_reset(struct bge_softc *sc)
   4162 {
   4163 	uint32_t cachesize, command;
   4164 	uint32_t reset, mac_mode, mac_mode_mask;
   4165 	pcireg_t devctl, reg;
   4166 	int i, val;
   4167 	void (*write_op)(struct bge_softc *, int, int);
   4168 
   4169 	/* Make mask for BGE_MAC_MODE register. */
   4170 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   4171 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4172 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   4173 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   4174 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   4175 
   4176 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   4177 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   4178 		if (sc->bge_flags & BGEF_PCIE)
   4179 			write_op = bge_writemem_direct;
   4180 		else
   4181 			write_op = bge_writemem_ind;
   4182 	} else
   4183 		write_op = bge_writereg_ind;
   4184 
   4185 	/* 57XX step 4 */
   4186 	/* Acquire the NVM lock */
   4187 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
   4188 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4189 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4190 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4191 		for (i = 0; i < 8000; i++) {
   4192 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4193 			    BGE_NVRAMSWARB_GNT1)
   4194 				break;
   4195 			DELAY(20);
   4196 		}
   4197 		if (i == 8000) {
   4198 			printf("%s: NVRAM lock timedout!\n",
   4199 			    device_xname(sc->bge_dev));
   4200 		}
   4201 	}
   4202 
   4203 	/* Take APE lock when performing reset. */
   4204 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4205 
   4206 	/* 57XX step 3 */
   4207 	/* Save some important PCI state. */
   4208 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4209 	/* 5718 reset step 3 */
   4210 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4211 
   4212 	/* 5718 reset step 5, 57XX step 5b-5d */
   4213 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4214 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4215 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4216 
   4217 	/* XXX ???: Disable fastboot on controllers that support it. */
   4218 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4219 	    BGE_IS_5755_PLUS(sc))
   4220 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4221 
   4222 	/* 5718 reset step 2, 57XX step 6 */
   4223 	/*
   4224 	 * Write the magic number to SRAM at offset 0xB50.
   4225 	 * When firmware finishes its initialization it will
   4226 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4227 	 */
   4228 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4229 
   4230 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   4231 		val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   4232 		val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   4233 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   4234 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
   4235 	}
   4236 
   4237 	/* 5718 reset step 6, 57XX step 7 */
   4238 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4239 	/*
   4240 	 * XXX: from FreeBSD/Linux; no documentation
   4241 	 */
   4242 	if (sc->bge_flags & BGEF_PCIE) {
   4243 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
   4244 		    !BGE_IS_57765_PLUS(sc) &&
   4245 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4246 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4247 			/* PCI Express 1.0 system */
   4248 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4249 			    BGE_PHY_PCIE_SCRAM_MODE);
   4250 		}
   4251 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4252 			/*
   4253 			 * Prevent PCI Express link training
   4254 			 * during global reset.
   4255 			 */
   4256 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4257 			reset |= (1 << 29);
   4258 		}
   4259 	}
   4260 
   4261 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4262 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4263 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4264 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4265 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4266 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4267 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4268 	}
   4269 
   4270 	/*
   4271 	 * Set GPHY Power Down Override to leave GPHY
   4272 	 * powered up in D0 uninitialized.
   4273 	 */
   4274 	if (BGE_IS_5705_PLUS(sc) &&
   4275 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4276 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4277 
   4278 	/* Issue global reset */
   4279 	write_op(sc, BGE_MISC_CFG, reset);
   4280 
   4281 	/* 5718 reset step 7, 57XX step 8 */
   4282 	if (sc->bge_flags & BGEF_PCIE)
   4283 		delay(100*1000); /* too big */
   4284 	else
   4285 		delay(1000);
   4286 
   4287 	if (sc->bge_flags & BGEF_PCIE) {
   4288 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4289 			DELAY(500000);
   4290 			/* XXX: Magic Numbers */
   4291 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4292 			    BGE_PCI_UNKNOWN0);
   4293 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4294 			    BGE_PCI_UNKNOWN0,
   4295 			    reg | (1 << 15));
   4296 		}
   4297 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4298 		    sc->bge_pciecap + PCIE_DCSR);
   4299 		/* Clear enable no snoop and disable relaxed ordering. */
   4300 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4301 		    PCIE_DCSR_ENA_NO_SNOOP);
   4302 
   4303 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4304 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4305 			devctl &= ~(0x00e0);
   4306 		/* Clear device status register. Write 1b to clear */
   4307 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4308 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4309 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4310 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4311 		bge_set_max_readrq(sc);
   4312 	}
   4313 
   4314 	/* From Linux: dummy read to flush PCI posted writes */
   4315 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4316 
   4317 	/*
   4318 	 * Reset some of the PCI state that got zapped by reset
   4319 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4320 	 * set, too.
   4321 	 */
   4322 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4323 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4324 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4325 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4326 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4327 	    (sc->bge_flags & BGEF_PCIX) != 0)
   4328 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4329 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4330 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4331 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4332 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4333 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4334 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4335 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4336 
   4337 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
   4338 	if (sc->bge_flags & BGEF_PCIX) {
   4339 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4340 		    + PCIX_CMD);
   4341 		/* Set max memory read byte count to 2K */
   4342 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   4343 			reg &= ~PCIX_CMD_BYTECNT_MASK;
   4344 			reg |= PCIX_CMD_BCNT_2048;
   4345 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
   4346 			/*
   4347 			 * For 5704, set max outstanding split transaction
   4348 			 * field to 0 (0 means it supports 1 request)
   4349 			 */
   4350 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
   4351 			    | PCIX_CMD_BYTECNT_MASK);
   4352 			reg |= PCIX_CMD_BCNT_2048;
   4353 		}
   4354 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4355 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4356 	}
   4357 
   4358 	/* 5718 reset step 10, 57XX step 12 */
   4359 	/* Enable memory arbiter. */
   4360 	if (BGE_IS_5714_FAMILY(sc)) {
   4361 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4362 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4363 	} else
   4364 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4365 
   4366 	/* XXX 5721, 5751 and 5752 */
   4367 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4368 		/* Step 19: */
   4369 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4370 		/* Step 20: */
   4371 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4372 	}
   4373 
   4374 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4375 	/* Fix up byte swapping */
   4376 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4377 
   4378 	/* 5718 reset step 13, 57XX step 17 */
   4379 	/* Poll until the firmware initialization is complete */
   4380 	bge_poll_fw(sc);
   4381 
   4382 	/* 57XX step 21 */
   4383 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4384 		pcireg_t msidata;
   4385 
   4386 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4387 		    BGE_PCI_MSI_DATA);
   4388 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4389 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4390 		    msidata);
   4391 	}
   4392 
   4393 	/* 57XX step 18 */
   4394 	/* Write mac mode. */
   4395 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4396 	/* Restore mac_mode_mask's bits using mac_mode */
   4397 	val = (val & ~mac_mode_mask) | mac_mode;
   4398 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4399 	DELAY(40);
   4400 
   4401 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4402 
   4403 	/*
   4404 	 * The 5704 in TBI mode apparently needs some special
   4405 	 * adjustment to insure the SERDES drive level is set
   4406 	 * to 1.2V.
   4407 	 */
   4408 	if (sc->bge_flags & BGEF_FIBER_TBI &&
   4409 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4410 		uint32_t serdescfg;
   4411 
   4412 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4413 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4414 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4415 	}
   4416 
   4417 	if (sc->bge_flags & BGEF_PCIE &&
   4418 	    !BGE_IS_57765_PLUS(sc) &&
   4419 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4420 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4421 		uint32_t v;
   4422 
   4423 		/* Enable PCI Express bug fix */
   4424 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4425 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4426 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4427 	}
   4428 
   4429 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4430 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4431 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4432 
   4433 	return 0;
   4434 }
   4435 
   4436 /*
   4437  * Frame reception handling. This is called if there's a frame
   4438  * on the receive return list.
   4439  *
   4440  * Note: we have to be able to handle two possibilities here:
   4441  * 1) the frame is from the jumbo receive ring
   4442  * 2) the frame is from the standard receive ring
   4443  */
   4444 
   4445 static void
   4446 bge_rxeof(struct bge_softc *sc)
   4447 {
   4448 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4449 	uint16_t rx_prod, rx_cons;
   4450 	int stdcnt = 0, jumbocnt = 0;
   4451 	bus_dmamap_t dmamap;
   4452 	bus_addr_t offset, toff;
   4453 	bus_size_t tlen;
   4454 	int tosync;
   4455 
   4456 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4457 	    offsetof(struct bge_ring_data, bge_status_block),
   4458 	    sizeof(struct bge_status_block),
   4459 	    BUS_DMASYNC_POSTREAD);
   4460 
   4461 	rx_cons = sc->bge_rx_saved_considx;
   4462 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4463 
   4464 	/* Nothing to do */
   4465 	if (rx_cons == rx_prod)
   4466 		return;
   4467 
   4468 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4469 	tosync = rx_prod - rx_cons;
   4470 
   4471 	if (tosync != 0)
   4472 		rnd_add_uint32(&sc->rnd_source, tosync);
   4473 
   4474 	toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
   4475 
   4476 	if (tosync < 0) {
   4477 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4478 		    sizeof(struct bge_rx_bd);
   4479 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4480 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4481 		tosync = rx_prod;
   4482 		toff = offset;
   4483 	}
   4484 
   4485 	if (tosync != 0) {
   4486 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4487 		    toff, tosync * sizeof(struct bge_rx_bd),
   4488 		    BUS_DMASYNC_POSTREAD);
   4489 	}
   4490 
   4491 	while (rx_cons != rx_prod) {
   4492 		struct bge_rx_bd	*cur_rx;
   4493 		uint32_t		rxidx;
   4494 		struct mbuf		*m = NULL;
   4495 
   4496 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4497 
   4498 		rxidx = cur_rx->bge_idx;
   4499 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4500 
   4501 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4502 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4503 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4504 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4505 			jumbocnt++;
   4506 			bus_dmamap_sync(sc->bge_dmatag,
   4507 			    sc->bge_cdata.bge_rx_jumbo_map,
   4508 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4509 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4510 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4511 				if_statinc(ifp, if_ierrors);
   4512 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4513 				continue;
   4514 			}
   4515 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4516 					     NULL) == ENOBUFS) {
   4517 				if_statinc(ifp, if_ierrors);
   4518 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4519 				continue;
   4520 			}
   4521 		} else {
   4522 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4523 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4524 
   4525 			stdcnt++;
   4526 			sc->bge_std_cnt--;
   4527 
   4528 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4529 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4530 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4531 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4532 
   4533 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4534 				m_free(m);
   4535 				if_statinc(ifp, if_ierrors);
   4536 				continue;
   4537 			}
   4538 		}
   4539 
   4540 #ifndef __NO_STRICT_ALIGNMENT
   4541 		/*
   4542 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4543 		 * the Rx buffer has the layer-2 header unaligned.
   4544 		 * If our CPU requires alignment, re-align by copying.
   4545 		 */
   4546 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
   4547 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4548 				cur_rx->bge_len);
   4549 			m->m_data += ETHER_ALIGN;
   4550 		}
   4551 #endif
   4552 
   4553 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4554 		m_set_rcvif(m, ifp);
   4555 
   4556 		bge_rxcsum(sc, cur_rx, m);
   4557 
   4558 		/*
   4559 		 * If we received a packet with a vlan tag, pass it
   4560 		 * to vlan_input() instead of ether_input().
   4561 		 */
   4562 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   4563 			vlan_set_tag(m, cur_rx->bge_vlan_tag);
   4564 
   4565 		if_percpuq_enqueue(ifp->if_percpuq, m);
   4566 	}
   4567 
   4568 	sc->bge_rx_saved_considx = rx_cons;
   4569 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4570 	if (stdcnt)
   4571 		bge_fill_rx_ring_std(sc);
   4572 	if (jumbocnt)
   4573 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4574 }
   4575 
   4576 static void
   4577 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4578 {
   4579 
   4580 	if (BGE_IS_57765_PLUS(sc)) {
   4581 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4582 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4583 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4584 			if ((cur_rx->bge_error_flag &
   4585 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4586 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4587 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4588 				m->m_pkthdr.csum_data =
   4589 				    cur_rx->bge_tcp_udp_csum;
   4590 				m->m_pkthdr.csum_flags |=
   4591 				    (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
   4592 			}
   4593 		}
   4594 	} else {
   4595 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4596 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4597 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4598 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4599 		/*
   4600 		 * Rx transport checksum-offload may also
   4601 		 * have bugs with packets which, when transmitted,
   4602 		 * were `runts' requiring padding.
   4603 		 */
   4604 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4605 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4606 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4607 			m->m_pkthdr.csum_data =
   4608 			    cur_rx->bge_tcp_udp_csum;
   4609 			m->m_pkthdr.csum_flags |=
   4610 			    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
   4611 		}
   4612 	}
   4613 }
   4614 
   4615 static void
   4616 bge_txeof(struct bge_softc *sc)
   4617 {
   4618 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4619 	struct bge_tx_bd *cur_tx = NULL;
   4620 	struct txdmamap_pool_entry *dma;
   4621 	bus_addr_t offset, toff;
   4622 	bus_size_t tlen;
   4623 	int tosync;
   4624 	struct mbuf *m;
   4625 
   4626 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4627 	    offsetof(struct bge_ring_data, bge_status_block),
   4628 	    sizeof(struct bge_status_block),
   4629 	    BUS_DMASYNC_POSTREAD);
   4630 
   4631 	const uint16_t hw_cons_idx =
   4632 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx;
   4633 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4634 	tosync = hw_cons_idx - sc->bge_tx_saved_considx;
   4635 
   4636 	if (tosync != 0)
   4637 		rnd_add_uint32(&sc->rnd_source, tosync);
   4638 
   4639 	toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
   4640 
   4641 	if (tosync < 0) {
   4642 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4643 		    sizeof(struct bge_tx_bd);
   4644 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4645 		    toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4646 		tosync = hw_cons_idx;
   4647 		toff = offset;
   4648 	}
   4649 
   4650 	if (tosync != 0) {
   4651 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4652 		    toff, tosync * sizeof(struct bge_tx_bd),
   4653 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4654 	}
   4655 
   4656 	/*
   4657 	 * Go through our tx ring and free mbufs for those
   4658 	 * frames that have been sent.
   4659 	 */
   4660 	while (sc->bge_tx_saved_considx != hw_cons_idx) {
   4661 		uint32_t idx = sc->bge_tx_saved_considx;
   4662 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4663 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4664 			if_statinc(ifp, if_opackets);
   4665 		m = sc->bge_cdata.bge_tx_chain[idx];
   4666 		if (m != NULL) {
   4667 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4668 			dma = sc->txdma[idx];
   4669 			if (dma->is_dma32) {
   4670 				bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
   4671 				    0, dma->dmamap32->dm_mapsize,
   4672 				    BUS_DMASYNC_POSTWRITE);
   4673 				bus_dmamap_unload(
   4674 				    sc->bge_dmatag32, dma->dmamap32);
   4675 			} else {
   4676 				bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
   4677 				    0, dma->dmamap->dm_mapsize,
   4678 				    BUS_DMASYNC_POSTWRITE);
   4679 				bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4680 			}
   4681 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4682 			sc->txdma[idx] = NULL;
   4683 
   4684 			m_freem(m);
   4685 		}
   4686 		sc->bge_txcnt--;
   4687 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4688 		sc->bge_tx_sending = false;
   4689 	}
   4690 }
   4691 
   4692 static int
   4693 bge_intr(void *xsc)
   4694 {
   4695 	struct bge_softc * const sc = xsc;
   4696 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4697 	uint32_t pcistate, statusword, statustag;
   4698 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4699 
   4700 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4701 	if (BGE_IS_5717_PLUS(sc))
   4702 		intrmask = 0;
   4703 
   4704 	mutex_enter(sc->sc_core_lock);
   4705 
   4706 	/*
   4707 	 * It is possible for the interrupt to arrive before
   4708 	 * the status block is updated prior to the interrupt.
   4709 	 * Reading the PCI State register will confirm whether the
   4710 	 * interrupt is ours and will flush the status block.
   4711 	 */
   4712 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
   4713 
   4714 	/* read status word from status block */
   4715 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4716 	    offsetof(struct bge_ring_data, bge_status_block),
   4717 	    sizeof(struct bge_status_block),
   4718 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4719 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4720 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
   4721 
   4722 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
   4723 		if (sc->bge_lasttag == statustag &&
   4724 		    (~pcistate & intrmask)) {
   4725 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
   4726 			mutex_exit(sc->sc_core_lock);
   4727 			return 0;
   4728 		}
   4729 		sc->bge_lasttag = statustag;
   4730 	} else {
   4731 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
   4732 		    !(~pcistate & intrmask)) {
   4733 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
   4734 			mutex_exit(sc->sc_core_lock);
   4735 			return 0;
   4736 		}
   4737 		statustag = 0;
   4738 	}
   4739 	/* Ack interrupt and stop others from occurring. */
   4740 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4741 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   4742 
   4743 	/* clear status word */
   4744 	sc->bge_rdata->bge_status_block.bge_status = 0;
   4745 
   4746 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4747 	    offsetof(struct bge_ring_data, bge_status_block),
   4748 	    sizeof(struct bge_status_block),
   4749 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4750 
   4751 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4752 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4753 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4754 		bge_link_upd(sc);
   4755 
   4756 	if (sc->bge_if_flags & IFF_RUNNING) {
   4757 		/* Check RX return ring producer/consumer */
   4758 		bge_rxeof(sc);
   4759 
   4760 		/* Check TX ring producer/consumer */
   4761 		bge_txeof(sc);
   4762 	}
   4763 
   4764 	if (sc->bge_pending_rxintr_change) {
   4765 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4766 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4767 
   4768 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4769 		DELAY(10);
   4770 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4771 
   4772 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4773 		DELAY(10);
   4774 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4775 
   4776 		sc->bge_pending_rxintr_change = false;
   4777 	}
   4778 	bge_handle_events(sc);
   4779 
   4780 	/* Re-enable interrupts. */
   4781 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
   4782 
   4783 	if (sc->bge_if_flags & IFF_RUNNING)
   4784 		if_schedule_deferred_start(ifp);
   4785 
   4786 	mutex_exit(sc->sc_core_lock);
   4787 
   4788 	return 1;
   4789 }
   4790 
   4791 static void
   4792 bge_asf_driver_up(struct bge_softc *sc)
   4793 {
   4794 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4795 		/* Send ASF heartbeat approx. every 2s */
   4796 		if (sc->bge_asf_count)
   4797 			sc->bge_asf_count --;
   4798 		else {
   4799 			sc->bge_asf_count = 2;
   4800 
   4801 			bge_wait_for_event_ack(sc);
   4802 
   4803 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4804 			    BGE_FW_CMD_DRV_ALIVE3);
   4805 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4806 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4807 			    BGE_FW_HB_TIMEOUT_SEC);
   4808 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4809 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4810 			    BGE_RX_CPU_DRV_EVENT);
   4811 		}
   4812 	}
   4813 }
   4814 
   4815 static void
   4816 bge_tick(void *xsc)
   4817 {
   4818 	struct bge_softc * const sc = xsc;
   4819 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4820 	struct mii_data * const mii = &sc->bge_mii;
   4821 
   4822 	mutex_enter(sc->sc_core_lock);
   4823 
   4824 	if (BGE_IS_5705_PLUS(sc))
   4825 		bge_stats_update_regs(sc);
   4826 	else
   4827 		bge_stats_update(sc);
   4828 
   4829 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4830 		/*
   4831 		 * Since in TBI mode auto-polling can't be used we should poll
   4832 		 * link status manually. Here we register pending link event
   4833 		 * and trigger interrupt.
   4834 		 */
   4835 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4836 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4837 	} else {
   4838 		/*
   4839 		 * Do not touch PHY if we have link up. This could break
   4840 		 * IPMI/ASF mode or produce extra input errors.
   4841 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4842 		 */
   4843 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   4844 			mii_tick(mii);
   4845 	}
   4846 
   4847 	bge_asf_driver_up(sc);
   4848 
   4849 	const bool ok = bge_watchdog(ifp);
   4850 
   4851 	if (ok && !sc->bge_detaching)
   4852 		callout_schedule(&sc->bge_timeout, hz);
   4853 
   4854 	mutex_exit(sc->sc_core_lock);
   4855 }
   4856 
   4857 static void
   4858 bge_stats_update_regs(struct bge_softc *sc)
   4859 {
   4860 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4861 
   4862 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4863 
   4864 	if_statadd_ref(nsr, if_collisions,
   4865 	    CSR_READ_4(sc, BGE_MAC_STATS +
   4866 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
   4867 
   4868 	/*
   4869 	 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
   4870 	 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
   4871 	 * (silicon bug). There's no reliable workaround so just
   4872 	 * ignore the counter
   4873 	 */
   4874 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   4875 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
   4876 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
   4877 		if_statadd_ref(nsr, if_ierrors,
   4878 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
   4879 	}
   4880 	if_statadd_ref(nsr, if_ierrors,
   4881 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
   4882 	if_statadd_ref(nsr, if_ierrors,
   4883 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
   4884 
   4885 	IF_STAT_PUTREF(ifp);
   4886 
   4887 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   4888 		uint32_t val, ucast, mcast, bcast;
   4889 
   4890 		ucast = CSR_READ_4(sc, BGE_MAC_STATS +
   4891 		    offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
   4892 		mcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4893 		    offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
   4894 		bcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4895 		    offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
   4896 
   4897 		/*
   4898 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
   4899 		 * frames, it's safe to disable workaround for DMA engine's
   4900 		 * miscalculation of TXMBUF space.
   4901 		 */
   4902 		if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
   4903 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   4904 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   4905 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
   4906 			else
   4907 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
   4908 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   4909 			sc->bge_flags &= ~BGEF_RDMA_BUG;
   4910 		}
   4911 	}
   4912 }
   4913 
   4914 static void
   4915 bge_stats_update(struct bge_softc *sc)
   4916 {
   4917 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4918 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4919 
   4920 #define READ_STAT(sc, stats, stat) \
   4921 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4922 
   4923 	uint64_t collisions =
   4924 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4925 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4926 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4927 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
   4928 
   4929 	if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
   4930 	sc->bge_if_collisions = collisions;
   4931 
   4932 
   4933 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4934 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4935 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4936 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4937 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4938 		      READ_STAT(sc, stats,
   4939 				xoffPauseFramesReceived.bge_addr_lo));
   4940 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4941 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4942 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4943 		      READ_STAT(sc, stats,
   4944 				macControlFramesReceived.bge_addr_lo));
   4945 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4946 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4947 
   4948 #undef READ_STAT
   4949 }
   4950 
   4951 /*
   4952  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4953  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4954  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4955  * the hardware checksum assist gives incorrect results (possibly
   4956  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4957  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4958  */
   4959 static inline int
   4960 bge_cksum_pad(struct mbuf *pkt)
   4961 {
   4962 	struct mbuf *last = NULL;
   4963 	int padlen;
   4964 
   4965 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4966 
   4967 	/* if there's only the packet-header and we can pad there, use it. */
   4968 	if (pkt->m_pkthdr.len == pkt->m_len &&
   4969 	    M_TRAILINGSPACE(pkt) >= padlen) {
   4970 		last = pkt;
   4971 	} else {
   4972 		/*
   4973 		 * Walk packet chain to find last mbuf. We will either
   4974 		 * pad there, or append a new mbuf and pad it
   4975 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   4976 		 */
   4977 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   4978 			continue; /* do nothing */
   4979 		}
   4980 
   4981 		/* `last' now points to last in chain. */
   4982 		if (M_TRAILINGSPACE(last) < padlen) {
   4983 			/* Allocate new empty mbuf, pad it. Compact later. */
   4984 			struct mbuf *n;
   4985 			MGET(n, M_DONTWAIT, MT_DATA);
   4986 			if (n == NULL)
   4987 				return ENOBUFS;
   4988 			n->m_len = 0;
   4989 			last->m_next = n;
   4990 			last = n;
   4991 		}
   4992 	}
   4993 
   4994 	KDASSERT(!M_READONLY(last));
   4995 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   4996 
   4997 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   4998 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   4999 	last->m_len += padlen;
   5000 	pkt->m_pkthdr.len += padlen;
   5001 	return 0;
   5002 }
   5003 
   5004 /*
   5005  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   5006  */
   5007 static inline int
   5008 bge_compact_dma_runt(struct mbuf *pkt)
   5009 {
   5010 	struct mbuf	*m, *prev;
   5011 	int		totlen;
   5012 
   5013 	prev = NULL;
   5014 	totlen = 0;
   5015 
   5016 	for (m = pkt; m != NULL; prev = m, m = m->m_next) {
   5017 		int mlen = m->m_len;
   5018 		int shortfall = 8 - mlen ;
   5019 
   5020 		totlen += mlen;
   5021 		if (mlen == 0)
   5022 			continue;
   5023 		if (mlen >= 8)
   5024 			continue;
   5025 
   5026 		/*
   5027 		 * If we get here, mbuf data is too small for DMA engine.
   5028 		 * Try to fix by shuffling data to prev or next in chain.
   5029 		 * If that fails, do a compacting deep-copy of the whole chain.
   5030 		 */
   5031 
   5032 		/* Internal frag. If fits in prev, copy it there. */
   5033 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   5034 			memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   5035 			prev->m_len += mlen;
   5036 			m->m_len = 0;
   5037 			/* XXX stitch chain */
   5038 			prev->m_next = m_free(m);
   5039 			m = prev;
   5040 			continue;
   5041 		} else if (m->m_next != NULL &&
   5042 			    M_TRAILINGSPACE(m) >= shortfall &&
   5043 			    m->m_next->m_len >= (8 + shortfall)) {
   5044 		    /* m is writable and have enough data in next, pull up. */
   5045 
   5046 			memcpy(m->m_data + m->m_len, m->m_next->m_data,
   5047 			    shortfall);
   5048 			m->m_len += shortfall;
   5049 			m->m_next->m_len -= shortfall;
   5050 			m->m_next->m_data += shortfall;
   5051 		} else if (m->m_next == NULL || 1) {
   5052 			/*
   5053 			 * Got a runt at the very end of the packet.
   5054 			 * borrow data from the tail of the preceding mbuf and
   5055 			 * update its length in-place. (The original data is
   5056 			 * still valid, so we can do this even if prev is not
   5057 			 * writable.)
   5058 			 */
   5059 
   5060 			/*
   5061 			 * If we'd make prev a runt, just move all of its data.
   5062 			 */
   5063 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   5064 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   5065 
   5066 			if ((prev->m_len - shortfall) < 8)
   5067 				shortfall = prev->m_len;
   5068 
   5069 #ifdef notyet	/* just do the safe slow thing for now */
   5070 			if (!M_READONLY(m)) {
   5071 				if (M_LEADINGSPACE(m) < shorfall) {
   5072 					void *m_dat;
   5073 					m_dat = M_BUFADDR(m);
   5074 					memmove(m_dat, mtod(m, void*),
   5075 					    m->m_len);
   5076 					m->m_data = m_dat;
   5077 				}
   5078 			} else
   5079 #endif	/* just do the safe slow thing */
   5080 			{
   5081 				struct mbuf * n = NULL;
   5082 				int newprevlen = prev->m_len - shortfall;
   5083 
   5084 				MGET(n, M_NOWAIT, MT_DATA);
   5085 				if (n == NULL)
   5086 				   return ENOBUFS;
   5087 				KASSERT(m->m_len + shortfall < MLEN
   5088 					/*,
   5089 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   5090 
   5091 				/* first copy the data we're stealing from prev */
   5092 				memcpy(n->m_data, prev->m_data + newprevlen,
   5093 				    shortfall);
   5094 
   5095 				/* update prev->m_len accordingly */
   5096 				prev->m_len -= shortfall;
   5097 
   5098 				/* copy data from runt m */
   5099 				memcpy(n->m_data + shortfall, m->m_data,
   5100 				    m->m_len);
   5101 
   5102 				/* n holds what we stole from prev, plus m */
   5103 				n->m_len = shortfall + m->m_len;
   5104 
   5105 				/* stitch n into chain and free m */
   5106 				n->m_next = m->m_next;
   5107 				prev->m_next = n;
   5108 				/* KASSERT(m->m_next == NULL); */
   5109 				m->m_next = NULL;
   5110 				m_free(m);
   5111 				m = n;	/* for continuing loop */
   5112 			}
   5113 		}
   5114 	}
   5115 	return 0;
   5116 }
   5117 
   5118 /*
   5119  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   5120  * pointers to descriptors.
   5121  */
   5122 static int
   5123 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   5124 {
   5125 	struct bge_tx_bd	*f, *prev_f;
   5126 	uint32_t		frag, cur;
   5127 	uint16_t		csum_flags = 0;
   5128 	uint16_t		txbd_tso_flags = 0;
   5129 	struct txdmamap_pool_entry *dma;
   5130 	bus_dmamap_t dmamap;
   5131 	bus_dma_tag_t dmatag;
   5132 	int			i = 0;
   5133 	int			use_tso, maxsegsize, error;
   5134 	bool			have_vtag;
   5135 	uint16_t		vtag;
   5136 	bool			remap;
   5137 
   5138 	if (m_head->m_pkthdr.csum_flags) {
   5139 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5140 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   5141 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
   5142 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   5143 	}
   5144 
   5145 	/*
   5146 	 * If we were asked to do an outboard checksum, and the NIC
   5147 	 * has the bug where it sometimes adds in the Ethernet padding,
   5148 	 * explicitly pad with zeros so the cksum will be correct either way.
   5149 	 * (For now, do this for all chip versions, until newer
   5150 	 * are confirmed to not require the workaround.)
   5151 	 */
   5152 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   5153 #ifdef notyet
   5154 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   5155 #endif
   5156 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   5157 		goto check_dma_bug;
   5158 
   5159 	if (bge_cksum_pad(m_head) != 0)
   5160 		return ENOBUFS;
   5161 
   5162 check_dma_bug:
   5163 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   5164 		goto doit;
   5165 
   5166 	/*
   5167 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   5168 	 * less than eight bytes.  If we encounter a teeny mbuf
   5169 	 * at the end of a chain, we can pad.  Otherwise, copy.
   5170 	 */
   5171 	if (bge_compact_dma_runt(m_head) != 0)
   5172 		return ENOBUFS;
   5173 
   5174 doit:
   5175 	dma = SLIST_FIRST(&sc->txdma_list);
   5176 	if (dma == NULL) {
   5177 		return ENOBUFS;
   5178 	}
   5179 	dmamap = dma->dmamap;
   5180 	dmatag = sc->bge_dmatag;
   5181 	dma->is_dma32 = false;
   5182 
   5183 	/*
   5184 	 * Set up any necessary TSO state before we start packing...
   5185 	 */
   5186 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   5187 	if (!use_tso) {
   5188 		maxsegsize = 0;
   5189 	} else {	/* TSO setup */
   5190 		unsigned  mss;
   5191 		struct ether_header *eh;
   5192 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   5193 		unsigned bge_hlen;
   5194 		struct mbuf * m0 = m_head;
   5195 		struct ip *ip;
   5196 		struct tcphdr *th;
   5197 		int iphl, hlen;
   5198 
   5199 		/*
   5200 		 * XXX It would be nice if the mbuf pkthdr had offset
   5201 		 * fields for the protocol headers.
   5202 		 */
   5203 
   5204 		eh = mtod(m0, struct ether_header *);
   5205 		switch (htons(eh->ether_type)) {
   5206 		case ETHERTYPE_IP:
   5207 			offset = ETHER_HDR_LEN;
   5208 			break;
   5209 
   5210 		case ETHERTYPE_VLAN:
   5211 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   5212 			break;
   5213 
   5214 		default:
   5215 			/*
   5216 			 * Don't support this protocol or encapsulation.
   5217 			 */
   5218 			return ENOBUFS;
   5219 		}
   5220 
   5221 		/*
   5222 		 * TCP/IP headers are in the first mbuf; we can do
   5223 		 * this the easy way.
   5224 		 */
   5225 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   5226 		hlen = iphl + offset;
   5227 		if (__predict_false(m0->m_len <
   5228 				    (hlen + sizeof(struct tcphdr)))) {
   5229 
   5230 			aprint_error_dev(sc->bge_dev,
   5231 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   5232 			    "not handled yet\n",
   5233 			    m0->m_len, hlen+ sizeof(struct tcphdr));
   5234 #ifdef NOTYET
   5235 			/*
   5236 			 * XXX jonathan (at) NetBSD.org: untested.
   5237 			 * how to force this branch to be taken?
   5238 			 */
   5239 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
   5240 
   5241 			m_copydata(m0, offset, sizeof(ip), &ip);
   5242 			m_copydata(m0, hlen, sizeof(th), &th);
   5243 
   5244 			ip.ip_len = 0;
   5245 
   5246 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   5247 			    sizeof(ip.ip_len), &ip.ip_len);
   5248 
   5249 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   5250 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   5251 
   5252 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   5253 			    sizeof(th.th_sum), &th.th_sum);
   5254 
   5255 			hlen += th.th_off << 2;
   5256 			iptcp_opt_words	= hlen;
   5257 #else
   5258 			/*
   5259 			 * if_wm "hard" case not yet supported, can we not
   5260 			 * mandate it out of existence?
   5261 			 */
   5262 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5263 
   5264 			return ENOBUFS;
   5265 #endif
   5266 		} else {
   5267 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5268 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5269 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5270 
   5271 			/* Total IP/TCP options, in 32-bit words */
   5272 			iptcp_opt_words = (ip_tcp_hlen
   5273 					   - sizeof(struct tcphdr)
   5274 					   - sizeof(struct ip)) >> 2;
   5275 		}
   5276 		if (BGE_IS_575X_PLUS(sc)) {
   5277 			th->th_sum = 0;
   5278 			csum_flags = 0;
   5279 		} else {
   5280 			/*
   5281 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5282 			 * Requires TSO firmware patch for 5701/5703/5704.
   5283 			 */
   5284 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5285 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5286 		}
   5287 
   5288 		mss = m_head->m_pkthdr.segsz;
   5289 		txbd_tso_flags |=
   5290 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5291 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5292 
   5293 		/*
   5294 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5295 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5296 		 * the NIC copies 40 bytes of IP/TCP header from the
   5297 		 * supplied header into the IP/TCP header portion of
   5298 		 * each post-TSO-segment. If the supplied packet has IP or
   5299 		 * TCP options, we need to tell the NIC to copy those extra
   5300 		 * bytes into each  post-TSO header, in addition to the normal
   5301 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5302 		 * Unfortunately, the driver encoding of option length
   5303 		 * varies across different ASIC families.
   5304 		 */
   5305 		tcp_seg_flags = 0;
   5306 		bge_hlen = ip_tcp_hlen >> 2;
   5307 		if (BGE_IS_5717_PLUS(sc)) {
   5308 			tcp_seg_flags = (bge_hlen & 0x3) << 14;
   5309 			txbd_tso_flags |=
   5310 			    ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
   5311 		} else if (BGE_IS_5705_PLUS(sc)) {
   5312 			tcp_seg_flags = bge_hlen << 11;
   5313 		} else {
   5314 			/* XXX iptcp_opt_words or bge_hlen ? */
   5315 			txbd_tso_flags |= iptcp_opt_words << 12;
   5316 		}
   5317 		maxsegsize = mss | tcp_seg_flags;
   5318 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5319 		ip->ip_sum = 0;
   5320 
   5321 	}	/* TSO setup */
   5322 
   5323 	have_vtag = vlan_has_tag(m_head);
   5324 	if (have_vtag)
   5325 		vtag = vlan_get_tag(m_head);
   5326 
   5327 	/*
   5328 	 * Start packing the mbufs in this chain into
   5329 	 * the fragment pointers. Stop when we run out
   5330 	 * of fragments or hit the end of the mbuf chain.
   5331 	 */
   5332 	remap = true;
   5333 load_again:
   5334 	error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
   5335 	if (__predict_false(error)) {
   5336 		if (error == EFBIG && remap) {
   5337 			struct mbuf *m;
   5338 			remap = false;
   5339 			m = m_defrag(m_head, M_NOWAIT);
   5340 			if (m != NULL) {
   5341 				KASSERT(m == m_head);
   5342 				goto load_again;
   5343 			}
   5344 		}
   5345 		return error;
   5346 	}
   5347 	/*
   5348 	 * Sanity check: avoid coming within 16 descriptors
   5349 	 * of the end of the ring.
   5350 	 */
   5351 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5352 		BGE_TSO_PRINTF(("%s: "
   5353 		    " dmamap_load_mbuf too close to ring wrap\n",
   5354 		    device_xname(sc->bge_dev)));
   5355 		goto fail_unload;
   5356 	}
   5357 
   5358 	/* Iterate over dmap-map fragments. */
   5359 	f = prev_f = NULL;
   5360 	cur = frag = *txidx;
   5361 
   5362 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5363 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5364 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5365 			break;
   5366 
   5367 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5368 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5369 		if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
   5370 		    (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
   5371 		    ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
   5372 		    (prev_f != NULL &&
   5373 		     prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
   5374 		   ) {
   5375 			/*
   5376 			 * watchdog timeout issue was observed with TSO,
   5377 			 * limiting DMA address space to 32bits seems to
   5378 			 * address the issue.
   5379 			 */
   5380 			bus_dmamap_unload(dmatag, dmamap);
   5381 			dmatag = sc->bge_dmatag32;
   5382 			dmamap = dma->dmamap32;
   5383 			dma->is_dma32 = true;
   5384 			remap = true;
   5385 			goto load_again;
   5386 		}
   5387 
   5388 		/*
   5389 		 * For 5751 and follow-ons, for TSO we must turn
   5390 		 * off checksum-assist flag in the tx-descr, and
   5391 		 * supply the ASIC-revision-specific encoding
   5392 		 * of TSO flags and segsize.
   5393 		 */
   5394 		if (use_tso) {
   5395 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5396 				f->bge_rsvd = maxsegsize;
   5397 				f->bge_flags = csum_flags | txbd_tso_flags;
   5398 			} else {
   5399 				f->bge_rsvd = 0;
   5400 				f->bge_flags =
   5401 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5402 			}
   5403 		} else {
   5404 			f->bge_rsvd = 0;
   5405 			f->bge_flags = csum_flags;
   5406 		}
   5407 
   5408 		if (have_vtag) {
   5409 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5410 			f->bge_vlan_tag = vtag;
   5411 		} else {
   5412 			f->bge_vlan_tag = 0;
   5413 		}
   5414 		prev_f = f;
   5415 		cur = frag;
   5416 		BGE_INC(frag, BGE_TX_RING_CNT);
   5417 	}
   5418 
   5419 	if (i < dmamap->dm_nsegs) {
   5420 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5421 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5422 		goto fail_unload;
   5423 	}
   5424 
   5425 	bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
   5426 	    BUS_DMASYNC_PREWRITE);
   5427 
   5428 	if (frag == sc->bge_tx_saved_considx) {
   5429 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5430 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5431 
   5432 		goto fail_unload;
   5433 	}
   5434 
   5435 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5436 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5437 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5438 	sc->txdma[cur] = dma;
   5439 	sc->bge_txcnt += dmamap->dm_nsegs;
   5440 
   5441 	*txidx = frag;
   5442 
   5443 	return 0;
   5444 
   5445 fail_unload:
   5446 	bus_dmamap_unload(dmatag, dmamap);
   5447 
   5448 	return ENOBUFS;
   5449 }
   5450 
   5451 
   5452 static void
   5453 bge_start(struct ifnet *ifp)
   5454 {
   5455 	struct bge_softc * const sc = ifp->if_softc;
   5456 
   5457 	mutex_enter(sc->sc_core_lock);
   5458 	bge_start_locked(ifp);
   5459 	mutex_exit(sc->sc_core_lock);
   5460 }
   5461 
   5462 /*
   5463  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5464  * to the mbuf data regions directly in the transmit descriptors.
   5465  */
   5466 static void
   5467 bge_start_locked(struct ifnet *ifp)
   5468 {
   5469 	struct bge_softc * const sc = ifp->if_softc;
   5470 	struct mbuf *m_head = NULL;
   5471 	struct mbuf *m;
   5472 	uint32_t prodidx;
   5473 	int pkts = 0;
   5474 	int error;
   5475 
   5476 	if ((sc->bge_if_flags & IFF_RUNNING) != IFF_RUNNING)
   5477 		return;
   5478 
   5479 	prodidx = sc->bge_tx_prodidx;
   5480 
   5481 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5482 		IFQ_POLL(&ifp->if_snd, m_head);
   5483 		if (m_head == NULL)
   5484 			break;
   5485 
   5486 #if 0
   5487 		/*
   5488 		 * XXX
   5489 		 * safety overkill.  If this is a fragmented packet chain
   5490 		 * with delayed TCP/UDP checksums, then only encapsulate
   5491 		 * it if we have enough descriptors to handle the entire
   5492 		 * chain at once.
   5493 		 * (paranoia -- may not actually be needed)
   5494 		 */
   5495 		if (m_head->m_flags & M_FIRSTFRAG &&
   5496 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5497 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5498 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5499 				ifp->if_flags |= IFF_OACTIVE;
   5500 				break;
   5501 			}
   5502 		}
   5503 #endif
   5504 
   5505 		/*
   5506 		 * Pack the data into the transmit ring. If we
   5507 		 * don't have room, set the OACTIVE flag and wait
   5508 		 * for the NIC to drain the ring.
   5509 		 */
   5510 		error = bge_encap(sc, m_head, &prodidx);
   5511 		if (__predict_false(error)) {
   5512 			if (SLIST_EMPTY(&sc->txdma_list)) {
   5513 				/* just wait for the transmit ring to drain */
   5514 				break;
   5515 			}
   5516 			IFQ_DEQUEUE(&ifp->if_snd, m);
   5517 			KASSERT(m == m_head);
   5518 			m_freem(m_head);
   5519 			continue;
   5520 		}
   5521 
   5522 		/* now we are committed to transmit the packet */
   5523 		IFQ_DEQUEUE(&ifp->if_snd, m);
   5524 		KASSERT(m == m_head);
   5525 		pkts++;
   5526 
   5527 		/*
   5528 		 * If there's a BPF listener, bounce a copy of this frame
   5529 		 * to him.
   5530 		 */
   5531 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5532 	}
   5533 	if (pkts == 0)
   5534 		return;
   5535 
   5536 	/* Transmit */
   5537 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5538 	/* 5700 b2 errata */
   5539 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5540 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5541 
   5542 	sc->bge_tx_prodidx = prodidx;
   5543 	sc->bge_tx_lastsent = time_uptime;
   5544 	sc->bge_tx_sending = true;
   5545 }
   5546 
   5547 static int
   5548 bge_init(struct ifnet *ifp)
   5549 {
   5550 	struct bge_softc * const sc = ifp->if_softc;
   5551 
   5552 	mutex_enter(sc->sc_core_lock);
   5553 	int ret = bge_init_locked(ifp);
   5554 	mutex_exit(sc->sc_core_lock);
   5555 
   5556 	return ret;
   5557 }
   5558 
   5559 
   5560 static int
   5561 bge_init_locked(struct ifnet *ifp)
   5562 {
   5563 	struct bge_softc * const sc = ifp->if_softc;
   5564 	const uint16_t *m;
   5565 	uint32_t mode, reg;
   5566 	int error = 0;
   5567 
   5568 	KASSERT(IFNET_LOCKED(ifp));
   5569 	KASSERT(mutex_owned(sc->sc_core_lock));
   5570 	KASSERT(ifp == &sc->ethercom.ec_if);
   5571 
   5572 	/* Cancel pending I/O and flush buffers. */
   5573 	bge_stop_locked(ifp, 0);
   5574 
   5575 	bge_stop_fw(sc);
   5576 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5577 	bge_reset(sc);
   5578 	bge_sig_legacy(sc, BGE_RESET_START);
   5579 
   5580 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5581 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5582 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
   5583 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
   5584 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5585 
   5586 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   5587 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
   5588 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   5589 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   5590 
   5591 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
   5592 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
   5593 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
   5594 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
   5595 
   5596 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
   5597 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
   5598 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
   5599 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
   5600 	}
   5601 
   5602 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   5603 		pcireg_t aercap;
   5604 
   5605 		reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
   5606 		reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
   5607 		    | BGE_PCIE_PWRMNG_L1THRESH_4MS
   5608 		    | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
   5609 		CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
   5610 
   5611 		reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
   5612 		reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
   5613 		    | BGE_PCIE_EIDLE_DELAY_13CLK;
   5614 		CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
   5615 
   5616 		/* Clear correctable error */
   5617 		if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
   5618 		    PCI_EXTCAP_AER, &aercap, NULL) != 0)
   5619 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   5620 			    aercap + PCI_AER_COR_STATUS, 0xffffffff);
   5621 
   5622 		reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   5623 		reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   5624 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   5625 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
   5626 	}
   5627 
   5628 	bge_sig_post_reset(sc, BGE_RESET_START);
   5629 
   5630 	bge_chipinit(sc);
   5631 
   5632 	/*
   5633 	 * Init the various state machines, ring
   5634 	 * control blocks and firmware.
   5635 	 */
   5636 	error = bge_blockinit(sc);
   5637 	if (error != 0) {
   5638 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5639 		    error);
   5640 		return error;
   5641 	}
   5642 
   5643 	/* 5718 step 25, 57XX step 54 */
   5644 	/* Specify MTU. */
   5645 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5646 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5647 
   5648 	/* 5718 step 23 */
   5649 	/* Load our MAC address. */
   5650 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5651 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5652 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
   5653 	    ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
   5654 
   5655 	/* Enable or disable promiscuous mode as needed. */
   5656 	if (ifp->if_flags & IFF_PROMISC)
   5657 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5658 	else
   5659 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5660 
   5661 	/* Program multicast filter. */
   5662 	bge_setmulti(sc);
   5663 
   5664 	/* Init RX ring. */
   5665 	bge_init_rx_ring_std(sc);
   5666 
   5667 	/*
   5668 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5669 	 * memory to insure that the chip has in fact read the first
   5670 	 * entry of the ring.
   5671 	 */
   5672 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5673 		u_int i;
   5674 		for (i = 0; i < 10; i++) {
   5675 			DELAY(20);
   5676 			uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5677 			if (v == (MCLBYTES - ETHER_ALIGN))
   5678 				break;
   5679 		}
   5680 		if (i == 10)
   5681 			aprint_error_dev(sc->bge_dev,
   5682 			    "5705 A0 chip failed to load RX ring\n");
   5683 	}
   5684 
   5685 	/* Init jumbo RX ring. */
   5686 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5687 		bge_init_rx_ring_jumbo(sc);
   5688 
   5689 	/* Init our RX return ring index */
   5690 	sc->bge_rx_saved_considx = 0;
   5691 
   5692 	/* Init TX ring. */
   5693 	bge_init_tx_ring(sc);
   5694 
   5695 	/* 5718 step 63, 57XX step 94 */
   5696 	/* Enable TX MAC state machine lockup fix. */
   5697 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5698 	if (BGE_IS_5755_PLUS(sc) ||
   5699 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5700 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5701 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   5702 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   5703 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5704 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5705 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5706 	}
   5707 
   5708 	/* Turn on transmitter */
   5709 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5710 	/* 5718 step 64 */
   5711 	DELAY(100);
   5712 
   5713 	/* 5718 step 65, 57XX step 95 */
   5714 	/* Turn on receiver */
   5715 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5716 	if (BGE_IS_5755_PLUS(sc))
   5717 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5718 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   5719 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
   5720 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5721 	/* 5718 step 66 */
   5722 	DELAY(10);
   5723 
   5724 	/* 5718 step 12, 57XX step 37 */
   5725 	/*
   5726 	 * XXX Doucments of 5718 series and 577xx say the recommended value
   5727 	 * is 1, but tg3 set 1 only on 57765 series.
   5728 	 */
   5729 	if (BGE_IS_57765_PLUS(sc))
   5730 		reg = 1;
   5731 	else
   5732 		reg = 2;
   5733 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
   5734 
   5735 	/* Tell firmware we're alive. */
   5736 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5737 
   5738 	/* Enable host interrupts. */
   5739 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5740 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5741 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5742 
   5743 	if ((error = bge_ifmedia_upd(ifp)) != 0)
   5744 		goto out;
   5745 
   5746 	/* IFNET_LOCKED asserted above */
   5747 	ifp->if_flags |= IFF_RUNNING;
   5748 
   5749 	callout_schedule(&sc->bge_timeout, hz);
   5750 
   5751 out:
   5752 	sc->bge_if_flags = ifp->if_flags;
   5753 
   5754 	return error;
   5755 }
   5756 
   5757 /*
   5758  * Set media options.
   5759  */
   5760 static int
   5761 bge_ifmedia_upd(struct ifnet *ifp)
   5762 {
   5763 	struct bge_softc * const sc = ifp->if_softc;
   5764 	struct mii_data * const mii = &sc->bge_mii;
   5765 	struct ifmedia * const ifm = &sc->bge_ifmedia;
   5766 	int rc;
   5767 
   5768 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5769 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5770 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5771 			return EINVAL;
   5772 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5773 		case IFM_AUTO:
   5774 			/*
   5775 			 * The BCM5704 ASIC appears to have a special
   5776 			 * mechanism for programming the autoneg
   5777 			 * advertisement registers in TBI mode.
   5778 			 */
   5779 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5780 				uint32_t sgdig;
   5781 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5782 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5783 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5784 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5785 					sgdig |= BGE_SGDIGCFG_AUTO |
   5786 					    BGE_SGDIGCFG_PAUSE_CAP |
   5787 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5788 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5789 					    sgdig | BGE_SGDIGCFG_SEND);
   5790 					DELAY(5);
   5791 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5792 					    sgdig);
   5793 				}
   5794 			}
   5795 			break;
   5796 		case IFM_1000_SX:
   5797 			if ((ifm->ifm_media & IFM_FDX) != 0) {
   5798 				BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   5799 				    BGE_MACMODE_HALF_DUPLEX);
   5800 			} else {
   5801 				BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
   5802 				    BGE_MACMODE_HALF_DUPLEX);
   5803 			}
   5804 			DELAY(40);
   5805 			break;
   5806 		default:
   5807 			return EINVAL;
   5808 		}
   5809 		/* XXX 802.3x flow control for 1000BASE-SX */
   5810 		return 0;
   5811 	}
   5812 
   5813 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
   5814 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
   5815 		uint32_t reg;
   5816 
   5817 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5818 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
   5819 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
   5820 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5821 		}
   5822 	}
   5823 
   5824 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5825 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5826 		return 0;
   5827 
   5828 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5829 		uint32_t reg;
   5830 
   5831 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
   5832 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
   5833 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
   5834 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
   5835 			delay(40);
   5836 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
   5837 		}
   5838 	}
   5839 
   5840 	/*
   5841 	 * Force an interrupt so that we will call bge_link_upd
   5842 	 * if needed and clear any pending link state attention.
   5843 	 * Without this we are not getting any further interrupts
   5844 	 * for link state changes and thus will not UP the link and
   5845 	 * not be able to send in bge_start. The only way to get
   5846 	 * things working was to receive a packet and get a RX intr.
   5847 	 */
   5848 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5849 	    sc->bge_flags & BGEF_IS_5788)
   5850 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5851 	else
   5852 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5853 
   5854 	return rc;
   5855 }
   5856 
   5857 /*
   5858  * Report current media status.
   5859  */
   5860 static void
   5861 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5862 {
   5863 	struct bge_softc * const sc = ifp->if_softc;
   5864 	struct mii_data * const mii = &sc->bge_mii;
   5865 
   5866 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5867 		ifmr->ifm_status = IFM_AVALID;
   5868 		ifmr->ifm_active = IFM_ETHER;
   5869 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5870 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5871 			ifmr->ifm_status |= IFM_ACTIVE;
   5872 		ifmr->ifm_active |= IFM_1000_SX;
   5873 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5874 			ifmr->ifm_active |= IFM_HDX;
   5875 		else
   5876 			ifmr->ifm_active |= IFM_FDX;
   5877 		return;
   5878 	}
   5879 
   5880 	mii_pollstat(mii);
   5881 	ifmr->ifm_status = mii->mii_media_status;
   5882 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5883 	    sc->bge_flowflags;
   5884 }
   5885 
   5886 static int
   5887 bge_ifflags_cb(struct ethercom *ec)
   5888 {
   5889 	struct ifnet * const ifp = &ec->ec_if;
   5890 	struct bge_softc * const sc = ifp->if_softc;
   5891 	int ret = 0;
   5892 
   5893 	KASSERT(IFNET_LOCKED(ifp));
   5894 	mutex_enter(sc->sc_core_lock);
   5895 
   5896 	u_short change = ifp->if_flags ^ sc->bge_if_flags;
   5897 
   5898 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
   5899 		ret = ENETRESET;
   5900 	} else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
   5901 		if ((ifp->if_flags & IFF_PROMISC) == 0)
   5902 			BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5903 		else
   5904 			BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5905 
   5906 		bge_setmulti(sc);
   5907 	}
   5908 
   5909 	sc->bge_if_flags = ifp->if_flags;
   5910 	mutex_exit(sc->sc_core_lock);
   5911 
   5912 	return ret;
   5913 }
   5914 
   5915 static int
   5916 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5917 {
   5918 	struct bge_softc * const sc = ifp->if_softc;
   5919 	struct ifreq * const ifr = (struct ifreq *) data;
   5920 	int error = 0;
   5921 
   5922 	switch (command) {
   5923 	case SIOCADDMULTI:
   5924 	case SIOCDELMULTI:
   5925 		break;
   5926 	default:
   5927 		KASSERT(IFNET_LOCKED(ifp));
   5928 	}
   5929 
   5930 	const int s = splnet();
   5931 
   5932 	switch (command) {
   5933 	case SIOCSIFMEDIA:
   5934 		mutex_enter(sc->sc_core_lock);
   5935 		/* XXX Flow control is not supported for 1000BASE-SX */
   5936 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5937 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5938 			sc->bge_flowflags = 0;
   5939 		}
   5940 
   5941 		/* Flow control requires full-duplex mode. */
   5942 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5943 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5944 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5945 		}
   5946 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5947 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5948 				/* We can do both TXPAUSE and RXPAUSE. */
   5949 				ifr->ifr_media |=
   5950 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5951 			}
   5952 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5953 		}
   5954 		mutex_exit(sc->sc_core_lock);
   5955 
   5956 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5957 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5958 			    command);
   5959 		} else {
   5960 			struct mii_data * const mii = &sc->bge_mii;
   5961 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5962 			    command);
   5963 		}
   5964 		break;
   5965 	default:
   5966 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   5967 			break;
   5968 
   5969 		error = 0;
   5970 
   5971 		if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
   5972 			mutex_enter(sc->sc_core_lock);
   5973 			if (sc->bge_if_flags & IFF_RUNNING) {
   5974 				bge_setmulti(sc);
   5975 			}
   5976 			mutex_exit(sc->sc_core_lock);
   5977 		}
   5978 		break;
   5979 	}
   5980 
   5981 	splx(s);
   5982 
   5983 	return error;
   5984 }
   5985 
   5986 static bool
   5987 bge_watchdog_check(struct bge_softc * const sc)
   5988 {
   5989 
   5990 	KASSERT(mutex_owned(sc->sc_core_lock));
   5991 
   5992 	if (!sc->bge_tx_sending)
   5993 		return true;
   5994 
   5995 	if (time_uptime - sc->bge_tx_lastsent <= bge_watchdog_timeout)
   5996 		return true;
   5997 
   5998 	/* If pause frames are active then don't reset the hardware. */
   5999 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
   6000 		const uint32_t status = CSR_READ_4(sc, BGE_RX_STS);
   6001 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
   6002 			/*
   6003 			 * If link partner has us in XOFF state then wait for
   6004 			 * the condition to clear.
   6005 			 */
   6006 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   6007 			sc->bge_tx_lastsent = time_uptime;
   6008 			return true;
   6009 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
   6010 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
   6011 			/*
   6012 			 * If link partner has us in XOFF state then wait for
   6013 			 * the condition to clear.
   6014 			 */
   6015 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   6016 			sc->bge_tx_lastsent = time_uptime;
   6017 			return true;
   6018 		}
   6019 		/*
   6020 		 * Any other condition is unexpected and the controller
   6021 		 * should be reset.
   6022 		 */
   6023 	}
   6024 
   6025 	return false;
   6026 }
   6027 
   6028 static bool
   6029 bge_watchdog(struct ifnet *ifp)
   6030 {
   6031 	struct bge_softc * const sc = ifp->if_softc;
   6032 
   6033 	KASSERT(mutex_owned(sc->sc_core_lock));
   6034 
   6035 	if (!sc->sc_trigger_reset && bge_watchdog_check(sc))
   6036 		return true;
   6037 
   6038 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
   6039 
   6040 	if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0)
   6041 		workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
   6042 
   6043 	return false;
   6044 }
   6045 
   6046 /*
   6047  * Perform an interface watchdog reset.
   6048  */
   6049 static void
   6050 bge_handle_reset_work(struct work *work, void *arg)
   6051 {
   6052 	struct bge_softc * const sc = arg;
   6053 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   6054 
   6055 	/* Don't want ioctl operations to happen */
   6056 	IFNET_LOCK(ifp);
   6057 
   6058 	/* reset the interface. */
   6059 	bge_init(ifp);
   6060 
   6061 	IFNET_UNLOCK(ifp);
   6062 
   6063 	/*
   6064 	 * There are still some upper layer processing which call
   6065 	 * ifp->if_start(). e.g. ALTQ or one CPU system
   6066 	 */
   6067 	/* Try to get more packets going. */
   6068 	ifp->if_start(ifp);
   6069 
   6070 	atomic_store_relaxed(&sc->sc_reset_pending, 0);
   6071 }
   6072 
   6073 static void
   6074 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   6075 {
   6076 	int i;
   6077 
   6078 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   6079 
   6080 	for (i = 0; i < 1000; i++) {
   6081 		delay(100);
   6082 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   6083 			return;
   6084 	}
   6085 
   6086 	/*
   6087 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   6088 	 * on some environment (and once after boot?)
   6089 	 */
   6090 	if (reg != BGE_SRS_MODE)
   6091 		aprint_error_dev(sc->bge_dev,
   6092 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   6093 		    (u_long)reg, bit);
   6094 }
   6095 
   6096 
   6097 static void
   6098 bge_stop(struct ifnet *ifp, int disable)
   6099 {
   6100 	struct bge_softc * const sc = ifp->if_softc;
   6101 
   6102 	ASSERT_SLEEPABLE();
   6103 
   6104 	mutex_enter(sc->sc_core_lock);
   6105 	bge_stop_locked(ifp, disable);
   6106 	mutex_exit(sc->sc_core_lock);
   6107 }
   6108 
   6109 /*
   6110  * Stop the adapter and free any mbufs allocated to the
   6111  * RX and TX lists.
   6112  */
   6113 static void
   6114 bge_stop_locked(struct ifnet *ifp, int disable)
   6115 {
   6116 	struct bge_softc * const sc = ifp->if_softc;
   6117 
   6118 	KASSERT(mutex_owned(sc->sc_core_lock));
   6119 
   6120 	if (disable) {
   6121 		sc->bge_detaching = true;
   6122 		callout_halt(&sc->bge_timeout, NULL);
   6123 	} else
   6124 		callout_stop(&sc->bge_timeout);
   6125 
   6126 	/* Disable host interrupts. */
   6127 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   6128 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   6129 
   6130 	/*
   6131 	 * Tell firmware we're shutting down.
   6132 	 */
   6133 	bge_stop_fw(sc);
   6134 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   6135 
   6136 	/*
   6137 	 * Disable all of the receiver blocks.
   6138 	 */
   6139 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   6140 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   6141 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   6142 	if (BGE_IS_5700_FAMILY(sc))
   6143 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   6144 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   6145 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   6146 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   6147 
   6148 	/*
   6149 	 * Disable all of the transmit blocks.
   6150 	 */
   6151 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   6152 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   6153 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   6154 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   6155 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   6156 	if (BGE_IS_5700_FAMILY(sc))
   6157 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   6158 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   6159 
   6160 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   6161 	delay(40);
   6162 
   6163 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   6164 
   6165 	/*
   6166 	 * Shut down all of the memory managers and related
   6167 	 * state machines.
   6168 	 */
   6169 	/* 5718 step 5a,5b */
   6170 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   6171 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   6172 	if (BGE_IS_5700_FAMILY(sc))
   6173 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   6174 
   6175 	/* 5718 step 5c,5d */
   6176 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   6177 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   6178 
   6179 	if (BGE_IS_5700_FAMILY(sc)) {
   6180 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   6181 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   6182 	}
   6183 
   6184 	bge_reset(sc);
   6185 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   6186 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   6187 
   6188 	/*
   6189 	 * Keep the ASF firmware running if up.
   6190 	 */
   6191 	if (sc->bge_asf_mode & ASF_STACKUP)
   6192 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6193 	else
   6194 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6195 
   6196 	/* Free the RX lists. */
   6197 	bge_free_rx_ring_std(sc);
   6198 
   6199 	/* Free jumbo RX list. */
   6200 	if (BGE_IS_JUMBO_CAPABLE(sc))
   6201 		bge_free_rx_ring_jumbo(sc);
   6202 
   6203 	/* Free TX buffers. */
   6204 	bge_free_tx_ring(sc, disable);
   6205 
   6206 	/*
   6207 	 * Isolate/power down the PHY.
   6208 	 */
   6209 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
   6210 		mii_down(&sc->bge_mii);
   6211 
   6212 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   6213 
   6214 	/* Clear MAC's link state (PHY may still have link UP). */
   6215 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6216 
   6217 	ifp->if_flags &= ~IFF_RUNNING;
   6218 }
   6219 
   6220 static void
   6221 bge_link_upd(struct bge_softc *sc)
   6222 {
   6223 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   6224 	struct mii_data * const mii = &sc->bge_mii;
   6225 	uint32_t status;
   6226 	uint16_t phyval;
   6227 	int link;
   6228 
   6229 	/* Clear 'pending link event' flag */
   6230 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   6231 
   6232 	/*
   6233 	 * Process link state changes.
   6234 	 * Grrr. The link status word in the status block does
   6235 	 * not work correctly on the BCM5700 rev AX and BX chips,
   6236 	 * according to all available information. Hence, we have
   6237 	 * to enable MII interrupts in order to properly obtain
   6238 	 * async link changes. Unfortunately, this also means that
   6239 	 * we have to read the MAC status register to detect link
   6240 	 * changes, thereby adding an additional register access to
   6241 	 * the interrupt handler.
   6242 	 */
   6243 
   6244 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   6245 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6246 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   6247 			mii_pollstat(mii);
   6248 
   6249 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6250 			    mii->mii_media_status & IFM_ACTIVE &&
   6251 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6252 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6253 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6254 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6255 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6256 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6257 
   6258 			/* Clear the interrupt */
   6259 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   6260 			    BGE_EVTENB_MI_INTERRUPT);
   6261 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   6262 			    BRGPHY_MII_ISR, &phyval);
   6263 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   6264 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   6265 		}
   6266 		return;
   6267 	}
   6268 
   6269 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   6270 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6271 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   6272 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6273 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6274 				if (BGE_ASICREV(sc->bge_chipid)
   6275 				    == BGE_ASICREV_BCM5704) {
   6276 					BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   6277 					    BGE_MACMODE_TBI_SEND_CFGS);
   6278 					DELAY(40);
   6279 				}
   6280 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   6281 				if_link_state_change(ifp, LINK_STATE_UP);
   6282 			}
   6283 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6284 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6285 			if_link_state_change(ifp, LINK_STATE_DOWN);
   6286 		}
   6287 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   6288 		/*
   6289 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   6290 		 * bit in status word always set. Workaround this bug by
   6291 		 * reading PHY link status directly.
   6292 		 */
   6293 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   6294 		    BGE_STS_LINK : 0;
   6295 
   6296 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   6297 			mii_pollstat(mii);
   6298 
   6299 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6300 			    mii->mii_media_status & IFM_ACTIVE &&
   6301 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6302 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6303 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6304 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6305 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6306 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6307 		}
   6308 	} else {
   6309 		/*
   6310 		 * For controllers that call mii_tick, we have to poll
   6311 		 * link status.
   6312 		 */
   6313 		mii_pollstat(mii);
   6314 	}
   6315 
   6316 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   6317 		uint32_t reg, scale;
   6318 
   6319 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
   6320 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
   6321 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
   6322 			scale = 65;
   6323 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
   6324 			scale = 6;
   6325 		else
   6326 			scale = 12;
   6327 
   6328 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
   6329 		    ~BGE_MISCCFG_TIMER_PRESCALER;
   6330 		reg |= scale << 1;
   6331 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
   6332 	}
   6333 	/* Clear the attention */
   6334 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   6335 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   6336 	    BGE_MACSTAT_LINK_CHANGED);
   6337 }
   6338 
   6339 static int
   6340 bge_sysctl_verify(SYSCTLFN_ARGS)
   6341 {
   6342 	int error, t;
   6343 	struct sysctlnode node;
   6344 
   6345 	node = *rnode;
   6346 	t = *(int*)rnode->sysctl_data;
   6347 	node.sysctl_data = &t;
   6348 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   6349 	if (error || newp == NULL)
   6350 		return error;
   6351 
   6352 #if 0
   6353 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   6354 	    node.sysctl_num, rnode->sysctl_num));
   6355 #endif
   6356 
   6357 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   6358 		if (t < 0 || t >= NBGE_RX_THRESH)
   6359 			return EINVAL;
   6360 		bge_update_all_threshes(t);
   6361 	} else
   6362 		return EINVAL;
   6363 
   6364 	*(int*)rnode->sysctl_data = t;
   6365 
   6366 	return 0;
   6367 }
   6368 
   6369 /*
   6370  * Set up sysctl(3) MIB, hw.bge.*.
   6371  */
   6372 static void
   6373 bge_sysctl_init(struct bge_softc *sc)
   6374 {
   6375 	int rc, bge_root_num;
   6376 	const struct sysctlnode *node;
   6377 
   6378 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6379 	    0, CTLTYPE_NODE, "bge",
   6380 	    SYSCTL_DESCR("BGE interface controls"),
   6381 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   6382 		goto out;
   6383 	}
   6384 
   6385 	bge_root_num = node->sysctl_num;
   6386 
   6387 	/* BGE Rx interrupt mitigation level */
   6388 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6389 	    CTLFLAG_READWRITE,
   6390 	    CTLTYPE_INT, "rx_lvl",
   6391 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   6392 	    bge_sysctl_verify, 0,
   6393 	    &bge_rx_thresh_lvl,
   6394 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   6395 	    CTL_EOL)) != 0) {
   6396 		goto out;
   6397 	}
   6398 
   6399 	bge_rxthresh_nodenum = node->sysctl_num;
   6400 
   6401 #ifdef BGE_DEBUG
   6402 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6403 	    CTLFLAG_READWRITE,
   6404 	    CTLTYPE_BOOL, "trigger_reset",
   6405 	    SYSCTL_DESCR("Trigger an interface reset"),
   6406 	    NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE,
   6407 	    CTL_EOL)) != 0) {
   6408 		goto out;
   6409 	}
   6410 #endif
   6411 	return;
   6412 
   6413 out:
   6414 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   6415 }
   6416 
   6417 #ifdef BGE_DEBUG
   6418 void
   6419 bge_debug_info(struct bge_softc *sc)
   6420 {
   6421 
   6422 	printf("Hardware Flags:\n");
   6423 	if (BGE_IS_57765_PLUS(sc))
   6424 		printf(" - 57765 Plus\n");
   6425 	if (BGE_IS_5717_PLUS(sc))
   6426 		printf(" - 5717 Plus\n");
   6427 	if (BGE_IS_5755_PLUS(sc))
   6428 		printf(" - 5755 Plus\n");
   6429 	if (BGE_IS_575X_PLUS(sc))
   6430 		printf(" - 575X Plus\n");
   6431 	if (BGE_IS_5705_PLUS(sc))
   6432 		printf(" - 5705 Plus\n");
   6433 	if (BGE_IS_5714_FAMILY(sc))
   6434 		printf(" - 5714 Family\n");
   6435 	if (BGE_IS_5700_FAMILY(sc))
   6436 		printf(" - 5700 Family\n");
   6437 	if (sc->bge_flags & BGEF_IS_5788)
   6438 		printf(" - 5788\n");
   6439 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
   6440 		printf(" - Supports Jumbo Frames\n");
   6441 	if (sc->bge_flags & BGEF_NO_EEPROM)
   6442 		printf(" - No EEPROM\n");
   6443 	if (sc->bge_flags & BGEF_PCIX)
   6444 		printf(" - PCI-X Bus\n");
   6445 	if (sc->bge_flags & BGEF_PCIE)
   6446 		printf(" - PCI Express Bus\n");
   6447 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
   6448 		printf(" - RX Alignment Bug\n");
   6449 	if (sc->bge_flags & BGEF_APE)
   6450 		printf(" - APE\n");
   6451 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
   6452 		printf(" - CPMU\n");
   6453 	if (sc->bge_flags & BGEF_TSO)
   6454 		printf(" - TSO\n");
   6455 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   6456 		printf(" - TAGGED_STATUS\n");
   6457 
   6458 	/* PHY related */
   6459 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
   6460 		printf(" - No 3 LEDs\n");
   6461 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
   6462 		printf(" - CRC bug\n");
   6463 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
   6464 		printf(" - ADC bug\n");
   6465 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
   6466 		printf(" - 5704 A0 bug\n");
   6467 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
   6468 		printf(" - jitter bug\n");
   6469 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
   6470 		printf(" - BER bug\n");
   6471 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
   6472 		printf(" - adjust trim\n");
   6473 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
   6474 		printf(" - no wirespeed\n");
   6475 
   6476 	/* ASF related */
   6477 	if (sc->bge_asf_mode & ASF_ENABLE)
   6478 		printf(" - ASF enable\n");
   6479 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
   6480 		printf(" - ASF new handshake\n");
   6481 	if (sc->bge_asf_mode & ASF_STACKUP)
   6482 		printf(" - ASF stackup\n");
   6483 }
   6484 #endif /* BGE_DEBUG */
   6485 
   6486 static int
   6487 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   6488 {
   6489 	prop_dictionary_t dict;
   6490 	prop_data_t ea;
   6491 
   6492 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
   6493 		return 1;
   6494 
   6495 	dict = device_properties(sc->bge_dev);
   6496 	ea = prop_dictionary_get(dict, "mac-address");
   6497 	if (ea != NULL) {
   6498 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   6499 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   6500 		memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
   6501 		return 0;
   6502 	}
   6503 
   6504 	return 1;
   6505 }
   6506 
   6507 static int
   6508 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   6509 {
   6510 	uint32_t mac_addr;
   6511 
   6512 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   6513 	if ((mac_addr >> 16) == 0x484b) {
   6514 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   6515 		ether_addr[1] = (uint8_t)mac_addr;
   6516 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   6517 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   6518 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   6519 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   6520 		ether_addr[5] = (uint8_t)mac_addr;
   6521 		return 0;
   6522 	}
   6523 	return 1;
   6524 }
   6525 
   6526 static int
   6527 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   6528 {
   6529 	int mac_offset = BGE_EE_MAC_OFFSET;
   6530 
   6531 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6532 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   6533 
   6534 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   6535 	    ETHER_ADDR_LEN));
   6536 }
   6537 
   6538 static int
   6539 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   6540 {
   6541 
   6542 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6543 		return 1;
   6544 
   6545 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   6546 	   ETHER_ADDR_LEN));
   6547 }
   6548 
   6549 static int
   6550 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6551 {
   6552 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6553 		/* NOTE: Order is critical */
   6554 		bge_get_eaddr_fw,
   6555 		bge_get_eaddr_mem,
   6556 		bge_get_eaddr_nvram,
   6557 		bge_get_eaddr_eeprom,
   6558 		NULL
   6559 	};
   6560 	const bge_eaddr_fcn_t *func;
   6561 
   6562 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6563 		if ((*func)(sc, eaddr) == 0)
   6564 			break;
   6565 	}
   6566 	return *func == NULL ? ENXIO : 0;
   6567 }
   6568