if_bge.c revision 1.384 1 /* $NetBSD: if_bge.c,v 1.384 2022/08/27 06:32:53 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.384 2022/08/27 06:32:53 skrll Exp $");
83
84 #include <sys/param.h>
85 #include <sys/types.h>
86
87 #include <sys/callout.h>
88 #include <sys/device.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mbuf.h>
92 #include <sys/rndsource.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/sysctl.h>
96 #include <sys/systm.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 #include <net/bpf.h>
103
104 /* Headers for TCP Segmentation Offload (TSO) */
105 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
106 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
107 #include <netinet/ip.h> /* for struct ip */
108 #include <netinet/tcp.h> /* for struct tcphdr */
109
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/miidevs.h>
117 #include <dev/mii/brgphyreg.h>
118
119 #include <dev/pci/if_bgereg.h>
120 #include <dev/pci/if_bgevar.h>
121
122 #include <prop/proplib.h>
123
124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125
126
127 /*
128 * Tunable thresholds for rx-side bge interrupt mitigation.
129 */
130
131 /*
132 * The pairs of values below were obtained from empirical measurement
133 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
134 * interrupt for every N packets received, where N is, approximately,
135 * the second value (rx_max_bds) in each pair. The values are chosen
136 * such that moving from one pair to the succeeding pair was observed
137 * to roughly halve interrupt rate under sustained input packet load.
138 * The values were empirically chosen to avoid overflowing internal
139 * limits on the bcm5700: increasing rx_ticks much beyond 600
140 * results in internal wrapping and higher interrupt rates.
141 * The limit of 46 frames was chosen to match NFS workloads.
142 *
143 * These values also work well on bcm5701, bcm5704C, and (less
144 * tested) bcm5703. On other chipsets, (including the Altima chip
145 * family), the larger values may overflow internal chip limits,
146 * leading to increasing interrupt rates rather than lower interrupt
147 * rates.
148 *
149 * Applications using heavy interrupt mitigation (interrupting every
150 * 32 or 46 frames) in both directions may need to increase the TCP
151 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
152 * full link bandwidth, due to ACKs and window updates lingering
153 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
154 */
155 static const struct bge_load_rx_thresh {
156 int rx_ticks;
157 int rx_max_bds; }
158 bge_rx_threshes[] = {
159 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
160 { 32, 2 },
161 { 50, 4 },
162 { 100, 8 },
163 { 192, 16 },
164 { 416, 32 },
165 { 598, 46 }
166 };
167 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
168
169 /* XXX patchable; should be sysctl'able */
170 static int bge_auto_thresh = 1;
171 static int bge_rx_thresh_lvl;
172
173 static int bge_rxthresh_nodenum;
174
175 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
176
177 static uint32_t bge_chipid(const struct pci_attach_args *);
178 static int bge_can_use_msi(struct bge_softc *);
179 static int bge_probe(device_t, cfdata_t, void *);
180 static void bge_attach(device_t, device_t, void *);
181 static int bge_detach(device_t, int);
182 static void bge_release_resources(struct bge_softc *);
183
184 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
185 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
186 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
187 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
188 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
189
190 static void bge_txeof(struct bge_softc *);
191 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
192 static void bge_rxeof(struct bge_softc *);
193
194 static void bge_asf_driver_up (struct bge_softc *);
195 static void bge_tick(void *);
196 static void bge_stats_update(struct bge_softc *);
197 static void bge_stats_update_regs(struct bge_softc *);
198 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
199
200 static int bge_intr(void *);
201 static void bge_start(struct ifnet *);
202 static void bge_start_locked(struct ifnet *);
203 static int bge_ifflags_cb(struct ethercom *);
204 static int bge_ioctl(struct ifnet *, u_long, void *);
205 static int bge_init(struct ifnet *);
206 static int bge_init_locked(struct ifnet *);
207 static void bge_stop(struct ifnet *, int);
208 static void bge_stop_locked(struct ifnet *, int);
209 static bool bge_watchdog(struct ifnet *);
210 static int bge_ifmedia_upd(struct ifnet *);
211 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
212 static void bge_handle_reset_work(struct work *, void *);
213
214 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
215 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
216
217 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
219 static void bge_setmulti(struct bge_softc *);
220
221 static void bge_handle_events(struct bge_softc *);
222 static int bge_alloc_jumbo_mem(struct bge_softc *);
223 static void bge_free_jumbo_mem(struct bge_softc *);
224 static void *bge_jalloc(struct bge_softc *);
225 static void bge_jfree(struct mbuf *, void *, size_t, void *);
226 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
227 static int bge_init_rx_ring_jumbo(struct bge_softc *);
228 static void bge_free_rx_ring_jumbo(struct bge_softc *);
229
230 static int bge_newbuf_std(struct bge_softc *, int);
231 static int bge_init_rx_ring_std(struct bge_softc *);
232 static void bge_fill_rx_ring_std(struct bge_softc *);
233 static void bge_free_rx_ring_std(struct bge_softc *m);
234
235 static void bge_free_tx_ring(struct bge_softc *m, bool);
236 static int bge_init_tx_ring(struct bge_softc *);
237
238 static int bge_chipinit(struct bge_softc *);
239 static int bge_blockinit(struct bge_softc *);
240 static int bge_phy_addr(struct bge_softc *);
241 static uint32_t bge_readmem_ind(struct bge_softc *, int);
242 static void bge_writemem_ind(struct bge_softc *, int, int);
243 static void bge_writembx(struct bge_softc *, int, int);
244 static void bge_writembx_flush(struct bge_softc *, int, int);
245 static void bge_writemem_direct(struct bge_softc *, int, int);
246 static void bge_writereg_ind(struct bge_softc *, int, int);
247 static void bge_set_max_readrq(struct bge_softc *);
248
249 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
250 static int bge_miibus_writereg(device_t, int, int, uint16_t);
251 static void bge_miibus_statchg(struct ifnet *);
252
253 #define BGE_RESET_SHUTDOWN 0
254 #define BGE_RESET_START 1
255 #define BGE_RESET_SUSPEND 2
256 static void bge_sig_post_reset(struct bge_softc *, int);
257 static void bge_sig_legacy(struct bge_softc *, int);
258 static void bge_sig_pre_reset(struct bge_softc *, int);
259 static void bge_wait_for_event_ack(struct bge_softc *);
260 static void bge_stop_fw(struct bge_softc *);
261 static int bge_reset(struct bge_softc *);
262 static void bge_link_upd(struct bge_softc *);
263 static void bge_sysctl_init(struct bge_softc *);
264 static int bge_sysctl_verify(SYSCTLFN_PROTO);
265
266 static void bge_ape_lock_init(struct bge_softc *);
267 static void bge_ape_read_fw_ver(struct bge_softc *);
268 static int bge_ape_lock(struct bge_softc *, int);
269 static void bge_ape_unlock(struct bge_softc *, int);
270 static void bge_ape_send_event(struct bge_softc *, uint32_t);
271 static void bge_ape_driver_state_change(struct bge_softc *, int);
272
273 #ifdef BGE_DEBUG
274 #define DPRINTF(x) if (bgedebug) printf x
275 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
276 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
277 int bgedebug = 0;
278 int bge_tso_debug = 0;
279 void bge_debug_info(struct bge_softc *);
280 #else
281 #define DPRINTF(x)
282 #define DPRINTFN(n, x)
283 #define BGE_TSO_PRINTF(x)
284 #endif
285
286 #ifdef BGE_EVENT_COUNTERS
287 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
288 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
289 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
290 #else
291 #define BGE_EVCNT_INCR(ev) /* nothing */
292 #define BGE_EVCNT_ADD(ev, val) /* nothing */
293 #define BGE_EVCNT_UPD(ev, val) /* nothing */
294 #endif
295
296 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
297 /*
298 * The BCM5700 documentation seems to indicate that the hardware still has the
299 * Alteon vendor ID burned into it, though it should always be overridden by
300 * the value in the EEPROM. We'll check for it anyway.
301 */
302 static const struct bge_product {
303 pci_vendor_id_t bp_vendor;
304 pci_product_id_t bp_product;
305 const char *bp_name;
306 } bge_products[] = {
307 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
308 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
309 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
310 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
311 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
312 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
313 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
314 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
315 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
316 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
317 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
318 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
319 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
320 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
321 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
322 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
323 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
324 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
325 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
326 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
327 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
328 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
329 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
330 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
331 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
332 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
333 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
334 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
335 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
336 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
337 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
338 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
339 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
340 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
341 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
342 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
343 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
344 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
345 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
346 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
347 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
348 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
349 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
350 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
351 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
352 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
353 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
354 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
355 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
356 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
357 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
358 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
359 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
360 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
361 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
362 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
363 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
364 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
365 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
366 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
367 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
368 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
369 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
370 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
371 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
372 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
373 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
374 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
375 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
376 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
377 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
378 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
379 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
380 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
381 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
382 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
383 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
384 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
385 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
386 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
387 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
388 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
389 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
390 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
391 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
392 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
393 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
394 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
395 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
396 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
397 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
398 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
399 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
400 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
401 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
402 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
403 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
404 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
405 { 0, 0, NULL },
406 };
407
408 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
409 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
410 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
411 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
412 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
413 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
414 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
415 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
416 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
417
418 static const struct bge_revision {
419 uint32_t br_chipid;
420 const char *br_name;
421 } bge_revisions[] = {
422 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
423 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
424 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
425 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
426 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
427 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
428 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
429 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
430 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
431 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
432 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
433 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
434 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
435 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
436 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
437 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
438 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
439 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
440 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
441 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
442 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
443 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
444 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
445 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
446 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
447 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
448 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
449 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
450 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
451 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
452 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
453 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
454 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
455 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
456 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
457 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
458 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
459 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
460 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
461 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
462 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
463 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
464 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
465 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
466 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
467 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
468 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
469 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
470 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
471 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
472 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
473 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
474 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
475 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
476 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
477 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
478 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
479 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
480 /* 5754 and 5787 share the same ASIC ID */
481 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
482 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
483 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
484 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
485 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
486 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
487 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
488 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
489 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
490 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
491 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
492
493 { 0, NULL }
494 };
495
496 /*
497 * Some defaults for major revisions, so that newer steppings
498 * that we don't know about have a shot at working.
499 */
500 static const struct bge_revision bge_majorrevs[] = {
501 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
502 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
503 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
504 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
505 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
506 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
507 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
508 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
509 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
510 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
511 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
512 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
513 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
514 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
515 /* 5754 and 5787 share the same ASIC ID */
516 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
517 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
518 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
519 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
520 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
521 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
522 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
523 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
524 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
525
526 { 0, NULL }
527 };
528
529 static int bge_allow_asf = 1;
530
531 #ifndef BGE_WATCHDOG_TIMEOUT
532 #define BGE_WATCHDOG_TIMEOUT 5
533 #endif
534 static int bge_watchdog_timeout = BGE_WATCHDOG_TIMEOUT;
535
536
537 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
538 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
539
540 static uint32_t
541 bge_readmem_ind(struct bge_softc *sc, int off)
542 {
543 pcireg_t val;
544
545 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
546 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
547 return 0;
548
549 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
550 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
551 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
552 return val;
553 }
554
555 static void
556 bge_writemem_ind(struct bge_softc *sc, int off, int val)
557 {
558
559 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
560 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
561 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
562 }
563
564 /*
565 * PCI Express only
566 */
567 static void
568 bge_set_max_readrq(struct bge_softc *sc)
569 {
570 pcireg_t val;
571
572 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
573 + PCIE_DCSR);
574 val &= ~PCIE_DCSR_MAX_READ_REQ;
575 switch (sc->bge_expmrq) {
576 case 2048:
577 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
578 break;
579 case 4096:
580 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
581 break;
582 default:
583 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
584 break;
585 }
586 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
587 + PCIE_DCSR, val);
588 }
589
590 #ifdef notdef
591 static uint32_t
592 bge_readreg_ind(struct bge_softc *sc, int off)
593 {
594 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
595 return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
596 }
597 #endif
598
599 static void
600 bge_writereg_ind(struct bge_softc *sc, int off, int val)
601 {
602 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
603 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
604 }
605
606 static void
607 bge_writemem_direct(struct bge_softc *sc, int off, int val)
608 {
609 CSR_WRITE_4(sc, off, val);
610 }
611
612 static void
613 bge_writembx(struct bge_softc *sc, int off, int val)
614 {
615 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
616 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
617
618 CSR_WRITE_4(sc, off, val);
619 }
620
621 static void
622 bge_writembx_flush(struct bge_softc *sc, int off, int val)
623 {
624 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
625 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
626
627 CSR_WRITE_4_FLUSH(sc, off, val);
628 }
629
630 /*
631 * Clear all stale locks and select the lock for this driver instance.
632 */
633 void
634 bge_ape_lock_init(struct bge_softc *sc)
635 {
636 struct pci_attach_args *pa = &(sc->bge_pa);
637 uint32_t bit, regbase;
638 int i;
639
640 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
641 regbase = BGE_APE_LOCK_GRANT;
642 else
643 regbase = BGE_APE_PER_LOCK_GRANT;
644
645 /* Clear any stale locks. */
646 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
647 switch (i) {
648 case BGE_APE_LOCK_PHY0:
649 case BGE_APE_LOCK_PHY1:
650 case BGE_APE_LOCK_PHY2:
651 case BGE_APE_LOCK_PHY3:
652 bit = BGE_APE_LOCK_GRANT_DRIVER0;
653 break;
654 default:
655 if (pa->pa_function == 0)
656 bit = BGE_APE_LOCK_GRANT_DRIVER0;
657 else
658 bit = (1 << pa->pa_function);
659 }
660 APE_WRITE_4(sc, regbase + 4 * i, bit);
661 }
662
663 /* Select the PHY lock based on the device's function number. */
664 switch (pa->pa_function) {
665 case 0:
666 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
667 break;
668 case 1:
669 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
670 break;
671 case 2:
672 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
673 break;
674 case 3:
675 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
676 break;
677 default:
678 printf("%s: PHY lock not supported on function\n",
679 device_xname(sc->bge_dev));
680 break;
681 }
682 }
683
684 /*
685 * Check for APE firmware, set flags, and print version info.
686 */
687 void
688 bge_ape_read_fw_ver(struct bge_softc *sc)
689 {
690 const char *fwtype;
691 uint32_t apedata, features;
692
693 /* Check for a valid APE signature in shared memory. */
694 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
695 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
696 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
697 return;
698 }
699
700 /* Check if APE firmware is running. */
701 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
702 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
703 printf("%s: APE signature found but FW status not ready! "
704 "0x%08x\n", device_xname(sc->bge_dev), apedata);
705 return;
706 }
707
708 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
709
710 /* Fetch the APE firwmare type and version. */
711 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
712 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
713 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
714 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
715 fwtype = "NCSI";
716 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
717 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
718 fwtype = "DASH";
719 } else
720 fwtype = "UNKN";
721
722 /* Print the APE firmware version. */
723 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
724 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
725 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
726 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
727 (apedata & BGE_APE_FW_VERSION_BLDMSK));
728 }
729
730 int
731 bge_ape_lock(struct bge_softc *sc, int locknum)
732 {
733 struct pci_attach_args *pa = &(sc->bge_pa);
734 uint32_t bit, gnt, req, status;
735 int i, off;
736
737 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
738 return 0;
739
740 /* Lock request/grant registers have different bases. */
741 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
742 req = BGE_APE_LOCK_REQ;
743 gnt = BGE_APE_LOCK_GRANT;
744 } else {
745 req = BGE_APE_PER_LOCK_REQ;
746 gnt = BGE_APE_PER_LOCK_GRANT;
747 }
748
749 off = 4 * locknum;
750
751 switch (locknum) {
752 case BGE_APE_LOCK_GPIO:
753 /* Lock required when using GPIO. */
754 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
755 return 0;
756 if (pa->pa_function == 0)
757 bit = BGE_APE_LOCK_REQ_DRIVER0;
758 else
759 bit = (1 << pa->pa_function);
760 break;
761 case BGE_APE_LOCK_GRC:
762 /* Lock required to reset the device. */
763 if (pa->pa_function == 0)
764 bit = BGE_APE_LOCK_REQ_DRIVER0;
765 else
766 bit = (1 << pa->pa_function);
767 break;
768 case BGE_APE_LOCK_MEM:
769 /* Lock required when accessing certain APE memory. */
770 if (pa->pa_function == 0)
771 bit = BGE_APE_LOCK_REQ_DRIVER0;
772 else
773 bit = (1 << pa->pa_function);
774 break;
775 case BGE_APE_LOCK_PHY0:
776 case BGE_APE_LOCK_PHY1:
777 case BGE_APE_LOCK_PHY2:
778 case BGE_APE_LOCK_PHY3:
779 /* Lock required when accessing PHYs. */
780 bit = BGE_APE_LOCK_REQ_DRIVER0;
781 break;
782 default:
783 return EINVAL;
784 }
785
786 /* Request a lock. */
787 APE_WRITE_4_FLUSH(sc, req + off, bit);
788
789 /* Wait up to 1 second to acquire lock. */
790 for (i = 0; i < 20000; i++) {
791 status = APE_READ_4(sc, gnt + off);
792 if (status == bit)
793 break;
794 DELAY(50);
795 }
796
797 /* Handle any errors. */
798 if (status != bit) {
799 printf("%s: APE lock %d request failed! "
800 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
801 device_xname(sc->bge_dev),
802 locknum, req + off, bit & 0xFFFF, gnt + off,
803 status & 0xFFFF);
804 /* Revoke the lock request. */
805 APE_WRITE_4(sc, gnt + off, bit);
806 return EBUSY;
807 }
808
809 return 0;
810 }
811
812 void
813 bge_ape_unlock(struct bge_softc *sc, int locknum)
814 {
815 struct pci_attach_args *pa = &(sc->bge_pa);
816 uint32_t bit, gnt;
817 int off;
818
819 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
820 return;
821
822 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
823 gnt = BGE_APE_LOCK_GRANT;
824 else
825 gnt = BGE_APE_PER_LOCK_GRANT;
826
827 off = 4 * locknum;
828
829 switch (locknum) {
830 case BGE_APE_LOCK_GPIO:
831 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
832 return;
833 if (pa->pa_function == 0)
834 bit = BGE_APE_LOCK_GRANT_DRIVER0;
835 else
836 bit = (1 << pa->pa_function);
837 break;
838 case BGE_APE_LOCK_GRC:
839 if (pa->pa_function == 0)
840 bit = BGE_APE_LOCK_GRANT_DRIVER0;
841 else
842 bit = (1 << pa->pa_function);
843 break;
844 case BGE_APE_LOCK_MEM:
845 if (pa->pa_function == 0)
846 bit = BGE_APE_LOCK_GRANT_DRIVER0;
847 else
848 bit = (1 << pa->pa_function);
849 break;
850 case BGE_APE_LOCK_PHY0:
851 case BGE_APE_LOCK_PHY1:
852 case BGE_APE_LOCK_PHY2:
853 case BGE_APE_LOCK_PHY3:
854 bit = BGE_APE_LOCK_GRANT_DRIVER0;
855 break;
856 default:
857 return;
858 }
859
860 /* Write and flush for consecutive bge_ape_lock() */
861 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
862 }
863
864 /*
865 * Send an event to the APE firmware.
866 */
867 void
868 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
869 {
870 uint32_t apedata;
871 int i;
872
873 /* NCSI does not support APE events. */
874 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
875 return;
876
877 /* Wait up to 1ms for APE to service previous event. */
878 for (i = 10; i > 0; i--) {
879 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
880 break;
881 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
882 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
883 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
884 BGE_APE_EVENT_STATUS_EVENT_PENDING);
885 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
886 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
887 break;
888 }
889 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
890 DELAY(100);
891 }
892 if (i == 0) {
893 printf("%s: APE event 0x%08x send timed out\n",
894 device_xname(sc->bge_dev), event);
895 }
896 }
897
898 void
899 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
900 {
901 uint32_t apedata, event;
902
903 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
904 return;
905
906 switch (kind) {
907 case BGE_RESET_START:
908 /* If this is the first load, clear the load counter. */
909 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
910 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
911 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
912 else {
913 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
914 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
915 }
916 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
917 BGE_APE_HOST_SEG_SIG_MAGIC);
918 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
919 BGE_APE_HOST_SEG_LEN_MAGIC);
920
921 /* Add some version info if bge(4) supports it. */
922 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
923 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
924 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
925 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
926 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
927 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
928 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
929 BGE_APE_HOST_DRVR_STATE_START);
930 event = BGE_APE_EVENT_STATUS_STATE_START;
931 break;
932 case BGE_RESET_SHUTDOWN:
933 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
934 BGE_APE_HOST_DRVR_STATE_UNLOAD);
935 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
936 break;
937 case BGE_RESET_SUSPEND:
938 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
939 break;
940 default:
941 return;
942 }
943
944 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
945 BGE_APE_EVENT_STATUS_STATE_CHNGE);
946 }
947
948 static uint8_t
949 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
950 {
951 uint32_t access, byte = 0;
952 int i;
953
954 /* Lock. */
955 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
956 for (i = 0; i < 8000; i++) {
957 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
958 break;
959 DELAY(20);
960 }
961 if (i == 8000)
962 return 1;
963
964 /* Enable access. */
965 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
966 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
967
968 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
969 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
970 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
971 DELAY(10);
972 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
973 DELAY(10);
974 break;
975 }
976 }
977
978 if (i == BGE_TIMEOUT * 10) {
979 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
980 return 1;
981 }
982
983 /* Get result. */
984 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
985
986 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
987
988 /* Disable access. */
989 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
990
991 /* Unlock. */
992 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
993
994 return 0;
995 }
996
997 /*
998 * Read a sequence of bytes from NVRAM.
999 */
1000 static int
1001 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1002 {
1003 int error = 0, i;
1004 uint8_t byte = 0;
1005
1006 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1007 return 1;
1008
1009 for (i = 0; i < cnt; i++) {
1010 error = bge_nvram_getbyte(sc, off + i, &byte);
1011 if (error)
1012 break;
1013 *(dest + i) = byte;
1014 }
1015
1016 return error ? 1 : 0;
1017 }
1018
1019 /*
1020 * Read a byte of data stored in the EEPROM at address 'addr.' The
1021 * BCM570x supports both the traditional bitbang interface and an
1022 * auto access interface for reading the EEPROM. We use the auto
1023 * access method.
1024 */
1025 static uint8_t
1026 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1027 {
1028 int i;
1029 uint32_t byte = 0;
1030
1031 /*
1032 * Enable use of auto EEPROM access so we can avoid
1033 * having to use the bitbang method.
1034 */
1035 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1036
1037 /* Reset the EEPROM, load the clock period. */
1038 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1039 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1040 DELAY(20);
1041
1042 /* Issue the read EEPROM command. */
1043 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1044
1045 /* Wait for completion */
1046 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1047 DELAY(10);
1048 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1049 break;
1050 }
1051
1052 if (i == BGE_TIMEOUT * 10) {
1053 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1054 return 1;
1055 }
1056
1057 /* Get result. */
1058 byte = CSR_READ_4(sc, BGE_EE_DATA);
1059
1060 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1061
1062 return 0;
1063 }
1064
1065 /*
1066 * Read a sequence of bytes from the EEPROM.
1067 */
1068 static int
1069 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1070 {
1071 int error = 0, i;
1072 uint8_t byte = 0;
1073 char *dest = destv;
1074
1075 for (i = 0; i < cnt; i++) {
1076 error = bge_eeprom_getbyte(sc, off + i, &byte);
1077 if (error)
1078 break;
1079 *(dest + i) = byte;
1080 }
1081
1082 return error ? 1 : 0;
1083 }
1084
1085 static int
1086 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1087 {
1088 struct bge_softc * const sc = device_private(dev);
1089 uint32_t data;
1090 uint32_t autopoll;
1091 int rv = 0;
1092 int i;
1093
1094 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1095 return -1;
1096
1097 /* Reading with autopolling on may trigger PCI errors */
1098 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1099 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1100 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1101 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1102 DELAY(80);
1103 }
1104
1105 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1106 BGE_MIPHY(phy) | BGE_MIREG(reg));
1107
1108 for (i = 0; i < BGE_TIMEOUT; i++) {
1109 delay(10);
1110 data = CSR_READ_4(sc, BGE_MI_COMM);
1111 if (!(data & BGE_MICOMM_BUSY)) {
1112 DELAY(5);
1113 data = CSR_READ_4(sc, BGE_MI_COMM);
1114 break;
1115 }
1116 }
1117
1118 if (i == BGE_TIMEOUT) {
1119 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1120 rv = ETIMEDOUT;
1121 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1122 /* XXX This error occurs on some devices while attaching. */
1123 aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1124 rv = EIO;
1125 } else
1126 *val = data & BGE_MICOMM_DATA;
1127
1128 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1129 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1130 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1131 DELAY(80);
1132 }
1133
1134 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1135
1136 return rv;
1137 }
1138
1139 static int
1140 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1141 {
1142 struct bge_softc * const sc = device_private(dev);
1143 uint32_t data, autopoll;
1144 int rv = 0;
1145 int i;
1146
1147 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1148 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1149 return 0;
1150
1151 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1152 return -1;
1153
1154 /* Reading with autopolling on may trigger PCI errors */
1155 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1156 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1157 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1158 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1159 DELAY(80);
1160 }
1161
1162 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1163 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1164
1165 for (i = 0; i < BGE_TIMEOUT; i++) {
1166 delay(10);
1167 data = CSR_READ_4(sc, BGE_MI_COMM);
1168 if (!(data & BGE_MICOMM_BUSY)) {
1169 delay(5);
1170 data = CSR_READ_4(sc, BGE_MI_COMM);
1171 break;
1172 }
1173 }
1174
1175 if (i == BGE_TIMEOUT) {
1176 aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1177 rv = ETIMEDOUT;
1178 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1179 aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1180 rv = EIO;
1181 }
1182
1183 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1184 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1185 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1186 delay(80);
1187 }
1188
1189 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1190
1191 return rv;
1192 }
1193
1194 static void
1195 bge_miibus_statchg(struct ifnet *ifp)
1196 {
1197 struct bge_softc * const sc = ifp->if_softc;
1198 struct mii_data *mii = &sc->bge_mii;
1199 uint32_t mac_mode, rx_mode, tx_mode;
1200
1201 /*
1202 * Get flow control negotiation result.
1203 */
1204 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1205 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1206 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1207
1208 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1209 mii->mii_media_status & IFM_ACTIVE &&
1210 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1211 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1212 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1213 (!(mii->mii_media_status & IFM_ACTIVE) ||
1214 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1215 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1216
1217 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1218 return;
1219
1220 /* Set the port mode (MII/GMII) to match the link speed. */
1221 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1222 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1223 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1224 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1225 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1226 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1227 mac_mode |= BGE_PORTMODE_GMII;
1228 else
1229 mac_mode |= BGE_PORTMODE_MII;
1230
1231 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1232 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1233 if ((mii->mii_media_active & IFM_FDX) != 0) {
1234 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1235 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1236 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1237 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1238 } else
1239 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1240
1241 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1242 DELAY(40);
1243 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1244 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1245 }
1246
1247 /*
1248 * Update rx threshold levels to values in a particular slot
1249 * of the interrupt-mitigation table bge_rx_threshes.
1250 */
1251 static void
1252 bge_set_thresh(struct ifnet *ifp, int lvl)
1253 {
1254 struct bge_softc * const sc = ifp->if_softc;
1255
1256 /*
1257 * For now, just save the new Rx-intr thresholds and record
1258 * that a threshold update is pending. Updating the hardware
1259 * registers here (even at splhigh()) is observed to
1260 * occasionally cause glitches where Rx-interrupts are not
1261 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1262 */
1263 mutex_enter(sc->sc_core_lock);
1264 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1265 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1266 sc->bge_pending_rxintr_change = true;
1267 mutex_exit(sc->sc_core_lock);
1268 }
1269
1270
1271 /*
1272 * Update Rx thresholds of all bge devices
1273 */
1274 static void
1275 bge_update_all_threshes(int lvl)
1276 {
1277 const char * const namebuf = "bge";
1278 const size_t namelen = strlen(namebuf);
1279 struct ifnet *ifp;
1280
1281 if (lvl < 0)
1282 lvl = 0;
1283 else if (lvl >= NBGE_RX_THRESH)
1284 lvl = NBGE_RX_THRESH - 1;
1285
1286 /*
1287 * Now search all the interfaces for this name/number
1288 */
1289 int s = pserialize_read_enter();
1290 IFNET_READER_FOREACH(ifp) {
1291 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1292 continue;
1293 /* We got a match: update if doing auto-threshold-tuning */
1294 if (bge_auto_thresh)
1295 bge_set_thresh(ifp, lvl);
1296 }
1297 pserialize_read_exit(s);
1298 }
1299
1300 /*
1301 * Handle events that have triggered interrupts.
1302 */
1303 static void
1304 bge_handle_events(struct bge_softc *sc)
1305 {
1306
1307 return;
1308 }
1309
1310 /*
1311 * Memory management for jumbo frames.
1312 */
1313
1314 static int
1315 bge_alloc_jumbo_mem(struct bge_softc *sc)
1316 {
1317 char *ptr, *kva;
1318 int i, rseg, state, error;
1319 struct bge_jpool_entry *entry;
1320
1321 state = error = 0;
1322
1323 /* Grab a big chunk o' storage. */
1324 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1325 &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_WAITOK)) {
1326 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1327 return ENOBUFS;
1328 }
1329
1330 state = 1;
1331 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg,
1332 rseg, BGE_JMEM, (void **)&kva, BUS_DMA_WAITOK)) {
1333 aprint_error_dev(sc->bge_dev,
1334 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1335 error = ENOBUFS;
1336 goto out;
1337 }
1338
1339 state = 2;
1340 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1341 BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_jumbo_map)) {
1342 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1343 error = ENOBUFS;
1344 goto out;
1345 }
1346
1347 state = 3;
1348 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1349 kva, BGE_JMEM, NULL, BUS_DMA_WAITOK)) {
1350 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1351 error = ENOBUFS;
1352 goto out;
1353 }
1354
1355 state = 4;
1356 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1357 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1358
1359 SLIST_INIT(&sc->bge_jfree_listhead);
1360 SLIST_INIT(&sc->bge_jinuse_listhead);
1361
1362 /*
1363 * Now divide it up into 9K pieces and save the addresses
1364 * in an array.
1365 */
1366 ptr = sc->bge_cdata.bge_jumbo_buf;
1367 for (i = 0; i < BGE_JSLOTS; i++) {
1368 sc->bge_cdata.bge_jslots[i] = ptr;
1369 ptr += BGE_JLEN;
1370 entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
1371 entry->slot = i;
1372 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1373 entry, jpool_entries);
1374 }
1375 out:
1376 if (error != 0) {
1377 switch (state) {
1378 case 4:
1379 bus_dmamap_unload(sc->bge_dmatag,
1380 sc->bge_cdata.bge_rx_jumbo_map);
1381 /* FALLTHROUGH */
1382 case 3:
1383 bus_dmamap_destroy(sc->bge_dmatag,
1384 sc->bge_cdata.bge_rx_jumbo_map);
1385 /* FALLTHROUGH */
1386 case 2:
1387 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1388 /* FALLTHROUGH */
1389 case 1:
1390 bus_dmamem_free(sc->bge_dmatag,
1391 &sc->bge_cdata.bge_rx_jumbo_seg, rseg);
1392 break;
1393 default:
1394 break;
1395 }
1396 }
1397
1398 return error;
1399 }
1400
1401 static void
1402 bge_free_jumbo_mem(struct bge_softc *sc)
1403 {
1404 struct bge_jpool_entry *entry, *tmp;
1405
1406 KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead));
1407
1408 SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) {
1409 kmem_free(entry, sizeof(*entry));
1410 }
1411
1412 bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
1413
1414 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
1415
1416 bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM);
1417
1418 bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1);
1419 }
1420
1421 /*
1422 * Allocate a jumbo buffer.
1423 */
1424 static void *
1425 bge_jalloc(struct bge_softc *sc)
1426 {
1427 struct bge_jpool_entry *entry;
1428
1429 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1430
1431 if (entry == NULL) {
1432 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1433 return NULL;
1434 }
1435
1436 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1437 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1438 return sc->bge_cdata.bge_jslots[entry->slot];
1439 }
1440
1441 /*
1442 * Release a jumbo buffer.
1443 */
1444 static void
1445 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1446 {
1447 struct bge_jpool_entry *entry;
1448 struct bge_softc * const sc = arg;
1449
1450 if (sc == NULL)
1451 panic("bge_jfree: can't find softc pointer!");
1452
1453 /* calculate the slot this buffer belongs to */
1454 int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1455
1456 if (i < 0 || i >= BGE_JSLOTS)
1457 panic("bge_jfree: asked to free buffer that we don't manage!");
1458
1459 mutex_enter(sc->sc_core_lock);
1460 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1461 if (entry == NULL)
1462 panic("bge_jfree: buffer not in use!");
1463 entry->slot = i;
1464 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1465 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1466 mutex_exit(sc->sc_core_lock);
1467
1468 if (__predict_true(m != NULL))
1469 pool_cache_put(mb_cache, m);
1470 }
1471
1472
1473 /*
1474 * Initialize a standard receive ring descriptor.
1475 */
1476 static int
1477 bge_newbuf_std(struct bge_softc *sc, int i)
1478 {
1479 const bus_dmamap_t dmamap = sc->bge_cdata.bge_rx_std_map[i];
1480 struct mbuf *m;
1481
1482 MGETHDR(m, M_DONTWAIT, MT_DATA);
1483 if (m == NULL)
1484 return ENOBUFS;
1485
1486 MCLGET(m, M_DONTWAIT);
1487 if (!(m->m_flags & M_EXT)) {
1488 m_freem(m);
1489 return ENOBUFS;
1490 }
1491 m->m_len = m->m_pkthdr.len = MCLBYTES;
1492
1493 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1494 m_adj(m, ETHER_ALIGN);
1495 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,
1496 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1497 m_freem(m);
1498 return ENOBUFS;
1499 }
1500 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1501 BUS_DMASYNC_PREREAD);
1502 sc->bge_cdata.bge_rx_std_chain[i] = m;
1503
1504 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1505 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1506 i * sizeof(struct bge_rx_bd),
1507 sizeof(struct bge_rx_bd),
1508 BUS_DMASYNC_POSTWRITE);
1509
1510 struct bge_rx_bd * const r = &sc->bge_rdata->bge_rx_std_ring[i];
1511 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1512 r->bge_flags = BGE_RXBDFLAG_END;
1513 r->bge_len = m->m_len;
1514 r->bge_idx = i;
1515
1516 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1517 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1518 i * sizeof(struct bge_rx_bd),
1519 sizeof(struct bge_rx_bd),
1520 BUS_DMASYNC_PREWRITE);
1521
1522 sc->bge_std_cnt++;
1523
1524 return 0;
1525 }
1526
1527 /*
1528 * Initialize a jumbo receive ring descriptor. This allocates
1529 * a jumbo buffer from the pool managed internally by the driver.
1530 */
1531 static int
1532 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1533 {
1534 struct mbuf *m_new = NULL;
1535 struct bge_rx_bd *r;
1536 void *buf = NULL;
1537
1538 if (m == NULL) {
1539
1540 /* Allocate the mbuf. */
1541 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1542 if (m_new == NULL)
1543 return ENOBUFS;
1544
1545 /* Allocate the jumbo buffer */
1546 buf = bge_jalloc(sc);
1547 if (buf == NULL) {
1548 m_freem(m_new);
1549 aprint_error_dev(sc->bge_dev,
1550 "jumbo allocation failed -- packet dropped!\n");
1551 return ENOBUFS;
1552 }
1553
1554 /* Attach the buffer to the mbuf. */
1555 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1556 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1557 bge_jfree, sc);
1558 m_new->m_flags |= M_EXT_RW;
1559 } else {
1560 m_new = m;
1561 buf = m_new->m_data = m_new->m_ext.ext_buf;
1562 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1563 }
1564 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1565 m_adj(m_new, ETHER_ALIGN);
1566 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1567 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1568 BGE_JLEN, BUS_DMASYNC_PREREAD);
1569
1570 /* Set up the descriptor. */
1571 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1572 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1573 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1574 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1575 r->bge_len = m_new->m_len;
1576 r->bge_idx = i;
1577
1578 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1579 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1580 i * sizeof(struct bge_rx_bd),
1581 sizeof(struct bge_rx_bd),
1582 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1583
1584 return 0;
1585 }
1586
1587 static int
1588 bge_init_rx_ring_std(struct bge_softc *sc)
1589 {
1590 bus_dmamap_t dmamap;
1591 int error = 0;
1592 u_int i;
1593
1594 if (sc->bge_flags & BGEF_RXRING_VALID)
1595 return 0;
1596
1597 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1598 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1599 MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dmamap);
1600 if (error)
1601 goto uncreate;
1602
1603 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1604 memset(&sc->bge_rdata->bge_rx_std_ring[i], 0,
1605 sizeof(struct bge_rx_bd));
1606 }
1607
1608 sc->bge_std = i - 1;
1609 sc->bge_std_cnt = 0;
1610 bge_fill_rx_ring_std(sc);
1611
1612 sc->bge_flags |= BGEF_RXRING_VALID;
1613
1614 return 0;
1615
1616 uncreate:
1617 while (--i) {
1618 bus_dmamap_destroy(sc->bge_dmatag,
1619 sc->bge_cdata.bge_rx_std_map[i]);
1620 }
1621 return error;
1622 }
1623
1624 static void
1625 bge_fill_rx_ring_std(struct bge_softc *sc)
1626 {
1627 int i = sc->bge_std;
1628 bool post = false;
1629
1630 while (sc->bge_std_cnt < BGE_STD_RX_RING_CNT) {
1631 BGE_INC(i, BGE_STD_RX_RING_CNT);
1632
1633 if (bge_newbuf_std(sc, i) != 0)
1634 break;
1635
1636 sc->bge_std = i;
1637 post = true;
1638 }
1639
1640 if (post)
1641 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1642 }
1643
1644
1645 static void
1646 bge_free_rx_ring_std(struct bge_softc *sc)
1647 {
1648
1649 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1650 return;
1651
1652 for (u_int i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1653 const bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i];
1654 struct mbuf * const m = sc->bge_cdata.bge_rx_std_chain[i];
1655 if (m != NULL) {
1656 bus_dmamap_sync(sc->bge_dmatag, dmap, 0,
1657 dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1658 bus_dmamap_unload(sc->bge_dmatag, dmap);
1659 m_freem(m);
1660 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1661 }
1662 bus_dmamap_destroy(sc->bge_dmatag,
1663 sc->bge_cdata.bge_rx_std_map[i]);
1664 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1665 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1666 sizeof(struct bge_rx_bd));
1667 }
1668
1669 sc->bge_flags &= ~BGEF_RXRING_VALID;
1670 }
1671
1672 static int
1673 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1674 {
1675 int i;
1676 volatile struct bge_rcb *rcb;
1677
1678 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1679 return 0;
1680
1681 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1682 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1683 return ENOBUFS;
1684 }
1685
1686 sc->bge_jumbo = i - 1;
1687 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1688
1689 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1690 rcb->bge_maxlen_flags = 0;
1691 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1692
1693 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1694
1695 return 0;
1696 }
1697
1698 static void
1699 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1700 {
1701 int i;
1702
1703 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1704 return;
1705
1706 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1707 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1708 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1709 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1710 }
1711 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1712 sizeof(struct bge_rx_bd));
1713 }
1714
1715 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1716 }
1717
1718 static void
1719 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1720 {
1721 int i;
1722 struct txdmamap_pool_entry *dma;
1723
1724 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1725 return;
1726
1727 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1728 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1729 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1730 sc->bge_cdata.bge_tx_chain[i] = NULL;
1731 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1732 link);
1733 sc->txdma[i] = 0;
1734 }
1735 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1736 sizeof(struct bge_tx_bd));
1737 }
1738
1739 if (disable) {
1740 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1741 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1742 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1743 if (sc->bge_dma64) {
1744 bus_dmamap_destroy(sc->bge_dmatag32,
1745 dma->dmamap32);
1746 }
1747 kmem_free(dma, sizeof(*dma));
1748 }
1749 SLIST_INIT(&sc->txdma_list);
1750 }
1751
1752 sc->bge_flags &= ~BGEF_TXRING_VALID;
1753 }
1754
1755 static int
1756 bge_init_tx_ring(struct bge_softc *sc)
1757 {
1758 struct ifnet * const ifp = &sc->ethercom.ec_if;
1759 int i;
1760 bus_dmamap_t dmamap, dmamap32;
1761 bus_size_t maxsegsz;
1762 struct txdmamap_pool_entry *dma;
1763
1764 if (sc->bge_flags & BGEF_TXRING_VALID)
1765 return 0;
1766
1767 sc->bge_txcnt = 0;
1768 sc->bge_tx_saved_considx = 0;
1769
1770 /* Initialize transmit producer index for host-memory send ring. */
1771 sc->bge_tx_prodidx = 0;
1772 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1773 /* 5700 b2 errata */
1774 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1775 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1776
1777 /* NIC-memory send ring not used; initialize to zero. */
1778 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1779 /* 5700 b2 errata */
1780 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1781 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1782
1783 /* Limit DMA segment size for some chips */
1784 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1785 (ifp->if_mtu <= ETHERMTU))
1786 maxsegsz = 2048;
1787 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1788 maxsegsz = 4096;
1789 else
1790 maxsegsz = ETHER_MAX_LEN_JUMBO;
1791
1792 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1793 goto alloc_done;
1794
1795 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1796 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1797 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1798 &dmamap))
1799 return ENOBUFS;
1800 if (dmamap == NULL)
1801 panic("dmamap NULL in bge_init_tx_ring");
1802 if (sc->bge_dma64) {
1803 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1804 BGE_NTXSEG, maxsegsz, 0,
1805 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1806 &dmamap32)) {
1807 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1808 return ENOBUFS;
1809 }
1810 if (dmamap32 == NULL)
1811 panic("dmamap32 NULL in bge_init_tx_ring");
1812 } else
1813 dmamap32 = dmamap;
1814 dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
1815 if (dma == NULL) {
1816 aprint_error_dev(sc->bge_dev,
1817 "can't alloc txdmamap_pool_entry\n");
1818 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1819 if (sc->bge_dma64)
1820 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1821 return ENOMEM;
1822 }
1823 dma->dmamap = dmamap;
1824 dma->dmamap32 = dmamap32;
1825 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1826 }
1827 alloc_done:
1828 sc->bge_flags |= BGEF_TXRING_VALID;
1829
1830 return 0;
1831 }
1832
1833 static void
1834 bge_setmulti(struct bge_softc *sc)
1835 {
1836 struct ethercom * const ec = &sc->ethercom;
1837 struct ether_multi *enm;
1838 struct ether_multistep step;
1839 uint32_t hashes[4] = { 0, 0, 0, 0 };
1840 uint32_t h;
1841 int i;
1842
1843 KASSERT(mutex_owned(sc->sc_core_lock));
1844 if (sc->bge_if_flags & IFF_PROMISC)
1845 goto allmulti;
1846
1847 /* Now program new ones. */
1848 ETHER_LOCK(ec);
1849 ETHER_FIRST_MULTI(step, ec, enm);
1850 while (enm != NULL) {
1851 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1852 /*
1853 * We must listen to a range of multicast addresses.
1854 * For now, just accept all multicasts, rather than
1855 * trying to set only those filter bits needed to match
1856 * the range. (At this time, the only use of address
1857 * ranges is for IP multicast routing, for which the
1858 * range is big enough to require all bits set.)
1859 */
1860 ETHER_UNLOCK(ec);
1861 goto allmulti;
1862 }
1863
1864 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1865
1866 /* Just want the 7 least-significant bits. */
1867 h &= 0x7f;
1868
1869 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1870 ETHER_NEXT_MULTI(step, enm);
1871 }
1872 ec->ec_flags &= ~ETHER_F_ALLMULTI;
1873 ETHER_UNLOCK(ec);
1874
1875 goto setit;
1876
1877 allmulti:
1878 ETHER_LOCK(ec);
1879 ec->ec_flags |= ETHER_F_ALLMULTI;
1880 ETHER_UNLOCK(ec);
1881 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1882
1883 setit:
1884 for (i = 0; i < 4; i++)
1885 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1886 }
1887
1888 static void
1889 bge_sig_pre_reset(struct bge_softc *sc, int type)
1890 {
1891
1892 /*
1893 * Some chips don't like this so only do this if ASF is enabled
1894 */
1895 if (sc->bge_asf_mode)
1896 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1897
1898 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1899 switch (type) {
1900 case BGE_RESET_START:
1901 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1902 BGE_FW_DRV_STATE_START);
1903 break;
1904 case BGE_RESET_SHUTDOWN:
1905 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1906 BGE_FW_DRV_STATE_UNLOAD);
1907 break;
1908 case BGE_RESET_SUSPEND:
1909 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1910 BGE_FW_DRV_STATE_SUSPEND);
1911 break;
1912 }
1913 }
1914
1915 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1916 bge_ape_driver_state_change(sc, type);
1917 }
1918
1919 static void
1920 bge_sig_post_reset(struct bge_softc *sc, int type)
1921 {
1922
1923 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1924 switch (type) {
1925 case BGE_RESET_START:
1926 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1927 BGE_FW_DRV_STATE_START_DONE);
1928 /* START DONE */
1929 break;
1930 case BGE_RESET_SHUTDOWN:
1931 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1932 BGE_FW_DRV_STATE_UNLOAD_DONE);
1933 break;
1934 }
1935 }
1936
1937 if (type == BGE_RESET_SHUTDOWN)
1938 bge_ape_driver_state_change(sc, type);
1939 }
1940
1941 static void
1942 bge_sig_legacy(struct bge_softc *sc, int type)
1943 {
1944
1945 if (sc->bge_asf_mode) {
1946 switch (type) {
1947 case BGE_RESET_START:
1948 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1949 BGE_FW_DRV_STATE_START);
1950 break;
1951 case BGE_RESET_SHUTDOWN:
1952 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1953 BGE_FW_DRV_STATE_UNLOAD);
1954 break;
1955 }
1956 }
1957 }
1958
1959 static void
1960 bge_wait_for_event_ack(struct bge_softc *sc)
1961 {
1962 int i;
1963
1964 /* wait up to 2500usec */
1965 for (i = 0; i < 250; i++) {
1966 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1967 BGE_RX_CPU_DRV_EVENT))
1968 break;
1969 DELAY(10);
1970 }
1971 }
1972
1973 static void
1974 bge_stop_fw(struct bge_softc *sc)
1975 {
1976
1977 if (sc->bge_asf_mode) {
1978 bge_wait_for_event_ack(sc);
1979
1980 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1981 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1982 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1983
1984 bge_wait_for_event_ack(sc);
1985 }
1986 }
1987
1988 static int
1989 bge_poll_fw(struct bge_softc *sc)
1990 {
1991 uint32_t val;
1992 int i;
1993
1994 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1995 for (i = 0; i < BGE_TIMEOUT; i++) {
1996 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1997 if (val & BGE_VCPU_STATUS_INIT_DONE)
1998 break;
1999 DELAY(100);
2000 }
2001 if (i >= BGE_TIMEOUT) {
2002 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2003 return -1;
2004 }
2005 } else {
2006 /*
2007 * Poll the value location we just wrote until
2008 * we see the 1's complement of the magic number.
2009 * This indicates that the firmware initialization
2010 * is complete.
2011 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2012 */
2013 for (i = 0; i < BGE_TIMEOUT; i++) {
2014 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2015 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2016 break;
2017 DELAY(10);
2018 }
2019
2020 if ((i >= BGE_TIMEOUT)
2021 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2022 aprint_error_dev(sc->bge_dev,
2023 "firmware handshake timed out, val = %x\n", val);
2024 return -1;
2025 }
2026 }
2027
2028 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2029 /* tg3 says we have to wait extra time */
2030 delay(10 * 1000);
2031 }
2032
2033 return 0;
2034 }
2035
2036 int
2037 bge_phy_addr(struct bge_softc *sc)
2038 {
2039 struct pci_attach_args *pa = &(sc->bge_pa);
2040 int phy_addr = 1;
2041
2042 /*
2043 * PHY address mapping for various devices.
2044 *
2045 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2046 * ---------+-------+-------+-------+-------+
2047 * BCM57XX | 1 | X | X | X |
2048 * BCM5704 | 1 | X | 1 | X |
2049 * BCM5717 | 1 | 8 | 2 | 9 |
2050 * BCM5719 | 1 | 8 | 2 | 9 |
2051 * BCM5720 | 1 | 8 | 2 | 9 |
2052 *
2053 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2054 * ---------+-------+-------+-------+-------+
2055 * BCM57XX | X | X | X | X |
2056 * BCM5704 | X | X | X | X |
2057 * BCM5717 | X | X | X | X |
2058 * BCM5719 | 3 | 10 | 4 | 11 |
2059 * BCM5720 | X | X | X | X |
2060 *
2061 * Other addresses may respond but they are not
2062 * IEEE compliant PHYs and should be ignored.
2063 */
2064 switch (BGE_ASICREV(sc->bge_chipid)) {
2065 case BGE_ASICREV_BCM5717:
2066 case BGE_ASICREV_BCM5719:
2067 case BGE_ASICREV_BCM5720:
2068 phy_addr = pa->pa_function;
2069 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2070 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2071 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2072 } else {
2073 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2074 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2075 }
2076 }
2077
2078 return phy_addr;
2079 }
2080
2081 /*
2082 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2083 * self-test results.
2084 */
2085 static int
2086 bge_chipinit(struct bge_softc *sc)
2087 {
2088 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2089 int i;
2090
2091 /* Set endianness before we access any non-PCI registers. */
2092 misc_ctl = BGE_INIT;
2093 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2094 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2095 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2096 misc_ctl);
2097
2098 /*
2099 * Clear the MAC statistics block in the NIC's
2100 * internal memory.
2101 */
2102 for (i = BGE_STATS_BLOCK;
2103 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2104 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2105
2106 for (i = BGE_STATUS_BLOCK;
2107 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2108 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2109
2110 /* 5717 workaround from tg3 */
2111 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2112 /* Save */
2113 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2114
2115 /* Temporary modify MODE_CTL to control TLP */
2116 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2117 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2118
2119 /* Control TLP */
2120 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2121 BGE_TLP_PHYCTL1);
2122 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2123 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2124
2125 /* Restore */
2126 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2127 }
2128
2129 if (BGE_IS_57765_FAMILY(sc)) {
2130 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2131 /* Save */
2132 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2133
2134 /* Temporary modify MODE_CTL to control TLP */
2135 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2136 CSR_WRITE_4(sc, BGE_MODE_CTL,
2137 reg | BGE_MODECTL_PCIE_TLPADDR1);
2138
2139 /* Control TLP */
2140 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2141 BGE_TLP_PHYCTL5);
2142 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2143 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2144
2145 /* Restore */
2146 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2147 }
2148 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2149 /*
2150 * For the 57766 and non Ax versions of 57765, bootcode
2151 * needs to setup the PCIE Fast Training Sequence (FTS)
2152 * value to prevent transmit hangs.
2153 */
2154 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2155 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2156 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2157
2158 /* Save */
2159 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2160
2161 /* Temporary modify MODE_CTL to control TLP */
2162 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2163 CSR_WRITE_4(sc, BGE_MODE_CTL,
2164 reg | BGE_MODECTL_PCIE_TLPADDR0);
2165
2166 /* Control TLP */
2167 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2168 BGE_TLP_FTSMAX);
2169 reg &= ~BGE_TLP_FTSMAX_MSK;
2170 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2171 reg | BGE_TLP_FTSMAX_VAL);
2172
2173 /* Restore */
2174 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2175 }
2176
2177 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2178 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2179 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2180 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2181 }
2182
2183 /* Set up the PCI DMA control register. */
2184 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2185 if (sc->bge_flags & BGEF_PCIE) {
2186 /* Read watermark not used, 128 bytes for write. */
2187 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2188 device_xname(sc->bge_dev)));
2189 if (sc->bge_mps >= 256)
2190 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2191 else
2192 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2193 } else if (sc->bge_flags & BGEF_PCIX) {
2194 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2195 device_xname(sc->bge_dev)));
2196 /* PCI-X bus */
2197 if (BGE_IS_5714_FAMILY(sc)) {
2198 /* 256 bytes for read and write. */
2199 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2200 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2201
2202 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2203 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2204 else
2205 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2206 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2207 /*
2208 * In the BCM5703, the DMA read watermark should
2209 * be set to less than or equal to the maximum
2210 * memory read byte count of the PCI-X command
2211 * register.
2212 */
2213 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2214 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2215 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2216 /* 1536 bytes for read, 384 bytes for write. */
2217 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2218 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2219 } else {
2220 /* 384 bytes for read and write. */
2221 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2222 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2223 (0x0F);
2224 }
2225
2226 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2227 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2228 uint32_t tmp;
2229
2230 /* Set ONEDMA_ATONCE for hardware workaround. */
2231 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2232 if (tmp == 6 || tmp == 7)
2233 dma_rw_ctl |=
2234 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2235
2236 /* Set PCI-X DMA write workaround. */
2237 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2238 }
2239 } else {
2240 /* Conventional PCI bus: 256 bytes for read and write. */
2241 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2242 device_xname(sc->bge_dev)));
2243 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2244 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2245
2246 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2247 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2248 dma_rw_ctl |= 0x0F;
2249 }
2250
2251 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2252 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2253 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2254 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2255
2256 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2257 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2258 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2259
2260 if (BGE_IS_57765_PLUS(sc)) {
2261 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2262 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2263 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2264
2265 /*
2266 * Enable HW workaround for controllers that misinterpret
2267 * a status tag update and leave interrupts permanently
2268 * disabled.
2269 */
2270 if (!BGE_IS_57765_FAMILY(sc) &&
2271 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2272 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2273 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2274 }
2275
2276 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2277 dma_rw_ctl);
2278
2279 /*
2280 * Set up general mode register.
2281 */
2282 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2283 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2284 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2285 /* Retain Host-2-BMC settings written by APE firmware. */
2286 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2287 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2288 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2289 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2290 }
2291 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2292 BGE_MODECTL_TX_NO_PHDR_CSUM;
2293
2294 /*
2295 * BCM5701 B5 have a bug causing data corruption when using
2296 * 64-bit DMA reads, which can be terminated early and then
2297 * completed later as 32-bit accesses, in combination with
2298 * certain bridges.
2299 */
2300 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2301 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2302 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2303
2304 /*
2305 * Tell the firmware the driver is running
2306 */
2307 if (sc->bge_asf_mode & ASF_STACKUP)
2308 mode_ctl |= BGE_MODECTL_STACKUP;
2309
2310 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2311
2312 /*
2313 * Disable memory write invalidate. Apparently it is not supported
2314 * properly by these devices.
2315 */
2316 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2317 PCI_COMMAND_INVALIDATE_ENABLE);
2318
2319 #ifdef __brokenalpha__
2320 /*
2321 * Must insure that we do not cross an 8K (bytes) boundary
2322 * for DMA reads. Our highest limit is 1K bytes. This is a
2323 * restriction on some ALPHA platforms with early revision
2324 * 21174 PCI chipsets, such as the AlphaPC 164lx
2325 */
2326 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2327 #endif
2328
2329 /* Set the timer prescaler (always 66MHz) */
2330 CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2331
2332 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2333 DELAY(40); /* XXX */
2334
2335 /* Put PHY into ready state */
2336 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2337 DELAY(40);
2338 }
2339
2340 return 0;
2341 }
2342
2343 static int
2344 bge_blockinit(struct bge_softc *sc)
2345 {
2346 volatile struct bge_rcb *rcb;
2347 bus_size_t rcb_addr;
2348 struct ifnet * const ifp = &sc->ethercom.ec_if;
2349 bge_hostaddr taddr;
2350 uint32_t dmactl, rdmareg, mimode, val;
2351 int i, limit;
2352
2353 /*
2354 * Initialize the memory window pointer register so that
2355 * we can access the first 32K of internal NIC RAM. This will
2356 * allow us to set up the TX send ring RCBs and the RX return
2357 * ring RCBs, plus other things which live in NIC memory.
2358 */
2359 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2360
2361 if (!BGE_IS_5705_PLUS(sc)) {
2362 /* 57XX step 33 */
2363 /* Configure mbuf memory pool */
2364 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2365
2366 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2367 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2368 else
2369 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2370
2371 /* 57XX step 34 */
2372 /* Configure DMA resource pool */
2373 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2374 BGE_DMA_DESCRIPTORS);
2375 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2376 }
2377
2378 /* 5718 step 11, 57XX step 35 */
2379 /*
2380 * Configure mbuf pool watermarks. New broadcom docs strongly
2381 * recommend these.
2382 */
2383 if (BGE_IS_5717_PLUS(sc)) {
2384 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2385 if (ifp->if_mtu > ETHERMTU) {
2386 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2387 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2388 } else {
2389 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2390 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2391 }
2392 } else if (BGE_IS_5705_PLUS(sc)) {
2393 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2394
2395 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2396 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2397 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2398 } else {
2399 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2400 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2401 }
2402 } else {
2403 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2404 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2405 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2406 }
2407
2408 /* 57XX step 36 */
2409 /* Configure DMA resource watermarks */
2410 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2411 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2412
2413 /* 5718 step 13, 57XX step 38 */
2414 /* Enable buffer manager */
2415 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2416 /*
2417 * Change the arbitration algorithm of TXMBUF read request to
2418 * round-robin instead of priority based for BCM5719. When
2419 * TXFIFO is almost empty, RDMA will hold its request until
2420 * TXFIFO is not almost empty.
2421 */
2422 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2423 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2424 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2425 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2426 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2427 val |= BGE_BMANMODE_LOMBUF_ATTN;
2428 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2429
2430 /* 57XX step 39 */
2431 /* Poll for buffer manager start indication */
2432 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2433 DELAY(10);
2434 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2435 break;
2436 }
2437
2438 if (i == BGE_TIMEOUT * 2) {
2439 aprint_error_dev(sc->bge_dev,
2440 "buffer manager failed to start\n");
2441 return ENXIO;
2442 }
2443
2444 /* 57XX step 40 */
2445 /* Enable flow-through queues */
2446 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2447 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2448
2449 /* Wait until queue initialization is complete */
2450 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2451 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2452 break;
2453 DELAY(10);
2454 }
2455
2456 if (i == BGE_TIMEOUT * 2) {
2457 aprint_error_dev(sc->bge_dev,
2458 "flow-through queue init failed\n");
2459 return ENXIO;
2460 }
2461
2462 /*
2463 * Summary of rings supported by the controller:
2464 *
2465 * Standard Receive Producer Ring
2466 * - This ring is used to feed receive buffers for "standard"
2467 * sized frames (typically 1536 bytes) to the controller.
2468 *
2469 * Jumbo Receive Producer Ring
2470 * - This ring is used to feed receive buffers for jumbo sized
2471 * frames (i.e. anything bigger than the "standard" frames)
2472 * to the controller.
2473 *
2474 * Mini Receive Producer Ring
2475 * - This ring is used to feed receive buffers for "mini"
2476 * sized frames to the controller.
2477 * - This feature required external memory for the controller
2478 * but was never used in a production system. Should always
2479 * be disabled.
2480 *
2481 * Receive Return Ring
2482 * - After the controller has placed an incoming frame into a
2483 * receive buffer that buffer is moved into a receive return
2484 * ring. The driver is then responsible to passing the
2485 * buffer up to the stack. Many versions of the controller
2486 * support multiple RR rings.
2487 *
2488 * Send Ring
2489 * - This ring is used for outgoing frames. Many versions of
2490 * the controller support multiple send rings.
2491 */
2492
2493 /* 5718 step 15, 57XX step 41 */
2494 /* Initialize the standard RX ring control block */
2495 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2496 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2497 /* 5718 step 16 */
2498 if (BGE_IS_57765_PLUS(sc)) {
2499 /*
2500 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2501 * Bits 15-2 : Maximum RX frame size
2502 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2503 * Bit 0 : Reserved
2504 */
2505 rcb->bge_maxlen_flags =
2506 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2507 } else if (BGE_IS_5705_PLUS(sc)) {
2508 /*
2509 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2510 * Bits 15-2 : Reserved (should be 0)
2511 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2512 * Bit 0 : Reserved
2513 */
2514 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2515 } else {
2516 /*
2517 * Ring size is always XXX entries
2518 * Bits 31-16: Maximum RX frame size
2519 * Bits 15-2 : Reserved (should be 0)
2520 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2521 * Bit 0 : Reserved
2522 */
2523 rcb->bge_maxlen_flags =
2524 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2525 }
2526 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2527 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2528 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2529 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2530 else
2531 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2532 /* Write the standard receive producer ring control block. */
2533 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2534 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2535 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2536 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2537
2538 /* Reset the standard receive producer ring producer index. */
2539 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2540
2541 /* 57XX step 42 */
2542 /*
2543 * Initialize the jumbo RX ring control block
2544 * We set the 'ring disabled' bit in the flags
2545 * field until we're actually ready to start
2546 * using this ring (i.e. once we set the MTU
2547 * high enough to require it).
2548 */
2549 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2550 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2551 BGE_HOSTADDR(rcb->bge_hostaddr,
2552 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2553 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2554 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2555 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2556 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2557 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2558 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2559 else
2560 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2561 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2562 rcb->bge_hostaddr.bge_addr_hi);
2563 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2564 rcb->bge_hostaddr.bge_addr_lo);
2565 /* Program the jumbo receive producer ring RCB parameters. */
2566 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2567 rcb->bge_maxlen_flags);
2568 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2569 /* Reset the jumbo receive producer ring producer index. */
2570 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2571 }
2572
2573 /* 57XX step 43 */
2574 /* Disable the mini receive producer ring RCB. */
2575 if (BGE_IS_5700_FAMILY(sc)) {
2576 /* Set up dummy disabled mini ring RCB */
2577 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2578 rcb->bge_maxlen_flags =
2579 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2580 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2581 rcb->bge_maxlen_flags);
2582 /* Reset the mini receive producer ring producer index. */
2583 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2584
2585 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2586 offsetof(struct bge_ring_data, bge_info),
2587 sizeof(struct bge_gib),
2588 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2589 }
2590
2591 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2592 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2593 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2594 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2595 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2596 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2597 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2598 }
2599 /* 5718 step 14, 57XX step 44 */
2600 /*
2601 * The BD ring replenish thresholds control how often the
2602 * hardware fetches new BD's from the producer rings in host
2603 * memory. Setting the value too low on a busy system can
2604 * starve the hardware and recue the throughpout.
2605 *
2606 * Set the BD ring replenish thresholds. The recommended
2607 * values are 1/8th the number of descriptors allocated to
2608 * each ring, but since we try to avoid filling the entire
2609 * ring we set these to the minimal value of 8. This needs to
2610 * be done on several of the supported chip revisions anyway,
2611 * to work around HW bugs.
2612 */
2613 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2614 if (BGE_IS_JUMBO_CAPABLE(sc))
2615 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2616
2617 /* 5718 step 18 */
2618 if (BGE_IS_5717_PLUS(sc)) {
2619 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2620 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2621 }
2622
2623 /* 57XX step 45 */
2624 /*
2625 * Disable all send rings by setting the 'ring disabled' bit
2626 * in the flags field of all the TX send ring control blocks,
2627 * located in NIC memory.
2628 */
2629 if (BGE_IS_5700_FAMILY(sc)) {
2630 /* 5700 to 5704 had 16 send rings. */
2631 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2632 } else if (BGE_IS_5717_PLUS(sc)) {
2633 limit = BGE_TX_RINGS_5717_MAX;
2634 } else if (BGE_IS_57765_FAMILY(sc) ||
2635 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2636 limit = BGE_TX_RINGS_57765_MAX;
2637 } else
2638 limit = 1;
2639 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2640 for (i = 0; i < limit; i++) {
2641 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2642 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2643 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2644 rcb_addr += sizeof(struct bge_rcb);
2645 }
2646
2647 /* 57XX step 46 and 47 */
2648 /* Configure send ring RCB 0 (we use only the first ring) */
2649 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2650 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2651 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2652 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2653 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2654 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2655 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2656 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2657 else
2658 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2659 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2660 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2661 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2662
2663 /* 57XX step 48 */
2664 /*
2665 * Disable all receive return rings by setting the
2666 * 'ring diabled' bit in the flags field of all the receive
2667 * return ring control blocks, located in NIC memory.
2668 */
2669 if (BGE_IS_5717_PLUS(sc)) {
2670 /* Should be 17, use 16 until we get an SRAM map. */
2671 limit = 16;
2672 } else if (BGE_IS_5700_FAMILY(sc))
2673 limit = BGE_RX_RINGS_MAX;
2674 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2675 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2676 BGE_IS_57765_FAMILY(sc))
2677 limit = 4;
2678 else
2679 limit = 1;
2680 /* Disable all receive return rings */
2681 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2682 for (i = 0; i < limit; i++) {
2683 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2684 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2685 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2686 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2687 BGE_RCB_FLAG_RING_DISABLED));
2688 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2689 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2690 (i * (sizeof(uint64_t))), 0);
2691 rcb_addr += sizeof(struct bge_rcb);
2692 }
2693
2694 /* 57XX step 49 */
2695 /*
2696 * Set up receive return ring 0. Note that the NIC address
2697 * for RX return rings is 0x0. The return rings live entirely
2698 * within the host, so the nicaddr field in the RCB isn't used.
2699 */
2700 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2701 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2702 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2703 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2704 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2705 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2706 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2707
2708 /* 5718 step 24, 57XX step 53 */
2709 /* Set random backoff seed for TX */
2710 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2711 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2712 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2713 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2714 BGE_TX_BACKOFF_SEED_MASK);
2715
2716 /* 5718 step 26, 57XX step 55 */
2717 /* Set inter-packet gap */
2718 val = 0x2620;
2719 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2720 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2721 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2722 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2723 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2724
2725 /* 5718 step 27, 57XX step 56 */
2726 /*
2727 * Specify which ring to use for packets that don't match
2728 * any RX rules.
2729 */
2730 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2731
2732 /* 5718 step 28, 57XX step 57 */
2733 /*
2734 * Configure number of RX lists. One interrupt distribution
2735 * list, sixteen active lists, one bad frames class.
2736 */
2737 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2738
2739 /* 5718 step 29, 57XX step 58 */
2740 /* Inialize RX list placement stats mask. */
2741 if (BGE_IS_575X_PLUS(sc)) {
2742 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2743 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2744 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2745 } else
2746 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2747
2748 /* 5718 step 30, 57XX step 59 */
2749 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2750
2751 /* 5718 step 33, 57XX step 62 */
2752 /* Disable host coalescing until we get it set up */
2753 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2754
2755 /* 5718 step 34, 57XX step 63 */
2756 /* Poll to make sure it's shut down. */
2757 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2758 DELAY(10);
2759 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2760 break;
2761 }
2762
2763 if (i == BGE_TIMEOUT * 2) {
2764 aprint_error_dev(sc->bge_dev,
2765 "host coalescing engine failed to idle\n");
2766 return ENXIO;
2767 }
2768
2769 /* 5718 step 35, 36, 37 */
2770 /* Set up host coalescing defaults */
2771 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2772 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2773 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2774 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2775 if (!(BGE_IS_5705_PLUS(sc))) {
2776 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2777 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2778 }
2779 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2780 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2781
2782 /* Set up address of statistics block */
2783 if (BGE_IS_5700_FAMILY(sc)) {
2784 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2785 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2786 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2787 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2788 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2789 }
2790
2791 /* 5718 step 38 */
2792 /* Set up address of status block */
2793 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2794 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2795 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2796 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2797 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2798 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2799
2800 /* Set up status block size. */
2801 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2802 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2803 val = BGE_STATBLKSZ_FULL;
2804 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2805 } else {
2806 val = BGE_STATBLKSZ_32BYTE;
2807 bzero(&sc->bge_rdata->bge_status_block, 32);
2808 }
2809
2810 /* 5718 step 39, 57XX step 73 */
2811 /* Turn on host coalescing state machine */
2812 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2813
2814 /* 5718 step 40, 57XX step 74 */
2815 /* Turn on RX BD completion state machine and enable attentions */
2816 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2817 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2818
2819 /* 5718 step 41, 57XX step 75 */
2820 /* Turn on RX list placement state machine */
2821 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2822
2823 /* 57XX step 76 */
2824 /* Turn on RX list selector state machine. */
2825 if (!(BGE_IS_5705_PLUS(sc)))
2826 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2827
2828 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2829 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2830 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2831 BGE_MACMODE_FRMHDR_DMA_ENB;
2832
2833 if (sc->bge_flags & BGEF_FIBER_TBI)
2834 val |= BGE_PORTMODE_TBI;
2835 else if (sc->bge_flags & BGEF_FIBER_MII)
2836 val |= BGE_PORTMODE_GMII;
2837 else
2838 val |= BGE_PORTMODE_MII;
2839
2840 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2841 /* Allow APE to send/receive frames. */
2842 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2843 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2844
2845 /* Turn on DMA, clear stats */
2846 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2847 /* 5718 step 44 */
2848 DELAY(40);
2849
2850 /* 5718 step 45, 57XX step 79 */
2851 /* Set misc. local control, enable interrupts on attentions */
2852 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2853 if (BGE_IS_5717_PLUS(sc)) {
2854 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2855 /* 5718 step 46 */
2856 DELAY(100);
2857 }
2858
2859 /* 57XX step 81 */
2860 /* Turn on DMA completion state machine */
2861 if (!(BGE_IS_5705_PLUS(sc)))
2862 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2863
2864 /* 5718 step 47, 57XX step 82 */
2865 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2866
2867 /* 5718 step 48 */
2868 /* Enable host coalescing bug fix. */
2869 if (BGE_IS_5755_PLUS(sc))
2870 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2871
2872 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2873 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2874
2875 /* Turn on write DMA state machine */
2876 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2877 /* 5718 step 49 */
2878 DELAY(40);
2879
2880 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2881
2882 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2883 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2884
2885 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2886 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2887 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2888 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2889 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2890 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2891
2892 if (sc->bge_flags & BGEF_PCIE)
2893 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2894 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2895 if (ifp->if_mtu <= ETHERMTU)
2896 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2897 }
2898 if (sc->bge_flags & BGEF_TSO) {
2899 val |= BGE_RDMAMODE_TSO4_ENABLE;
2900 if (BGE_IS_5717_PLUS(sc))
2901 val |= BGE_RDMAMODE_TSO6_ENABLE;
2902 }
2903
2904 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2905 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2906 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2907 BGE_RDMAMODE_H2BNC_VLAN_DET;
2908 /*
2909 * Allow multiple outstanding read requests from
2910 * non-LSO read DMA engine.
2911 */
2912 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2913 }
2914
2915 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2916 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2917 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2918 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2919 BGE_IS_57765_PLUS(sc)) {
2920 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2921 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2922 else
2923 rdmareg = BGE_RDMA_RSRVCTRL;
2924 dmactl = CSR_READ_4(sc, rdmareg);
2925 /*
2926 * Adjust tx margin to prevent TX data corruption and
2927 * fix internal FIFO overflow.
2928 */
2929 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2930 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2931 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2932 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2933 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2934 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2935 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2936 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2937 }
2938 /*
2939 * Enable fix for read DMA FIFO overruns.
2940 * The fix is to limit the number of RX BDs
2941 * the hardware would fetch at a time.
2942 */
2943 CSR_WRITE_4(sc, rdmareg, dmactl |
2944 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2945 }
2946
2947 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2948 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2949 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2950 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2951 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2952 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2953 /*
2954 * Allow 4KB burst length reads for non-LSO frames.
2955 * Enable 512B burst length reads for buffer descriptors.
2956 */
2957 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2958 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2959 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2960 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2961 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2962 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2963 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2964 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2965 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2966 }
2967 /* Turn on read DMA state machine */
2968 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2969 /* 5718 step 52 */
2970 delay(40);
2971
2972 if (sc->bge_flags & BGEF_RDMA_BUG) {
2973 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2974 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2975 if ((val & 0xFFFF) > BGE_FRAMELEN)
2976 break;
2977 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2978 break;
2979 }
2980 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2981 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2982 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2983 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2984 else
2985 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2986 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2987 }
2988 }
2989
2990 /* 5718 step 56, 57XX step 84 */
2991 /* Turn on RX data completion state machine */
2992 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2993
2994 /* Turn on RX data and RX BD initiator state machine */
2995 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2996
2997 /* 57XX step 85 */
2998 /* Turn on Mbuf cluster free state machine */
2999 if (!BGE_IS_5705_PLUS(sc))
3000 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3001
3002 /* 5718 step 57, 57XX step 86 */
3003 /* Turn on send data completion state machine */
3004 val = BGE_SDCMODE_ENABLE;
3005 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3006 val |= BGE_SDCMODE_CDELAY;
3007 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3008
3009 /* 5718 step 58 */
3010 /* Turn on send BD completion state machine */
3011 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3012
3013 /* 57XX step 88 */
3014 /* Turn on RX BD initiator state machine */
3015 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3016
3017 /* 5718 step 60, 57XX step 90 */
3018 /* Turn on send data initiator state machine */
3019 if (sc->bge_flags & BGEF_TSO) {
3020 /* XXX: magic value from Linux driver */
3021 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3022 BGE_SDIMODE_HW_LSO_PRE_DMA);
3023 } else
3024 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3025
3026 /* 5718 step 61, 57XX step 91 */
3027 /* Turn on send BD initiator state machine */
3028 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3029
3030 /* 5718 step 62, 57XX step 92 */
3031 /* Turn on send BD selector state machine */
3032 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3033
3034 /* 5718 step 31, 57XX step 60 */
3035 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3036 /* 5718 step 32, 57XX step 61 */
3037 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3038 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3039
3040 /* ack/clear link change events */
3041 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3042 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3043 BGE_MACSTAT_LINK_CHANGED);
3044 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3045
3046 /*
3047 * Enable attention when the link has changed state for
3048 * devices that use auto polling.
3049 */
3050 if (sc->bge_flags & BGEF_FIBER_TBI) {
3051 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3052 } else {
3053 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3054 mimode = BGE_MIMODE_500KHZ_CONST;
3055 else
3056 mimode = BGE_MIMODE_BASE;
3057 /* 5718 step 68. 5718 step 69 (optionally). */
3058 if (BGE_IS_5700_FAMILY(sc) ||
3059 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3060 mimode |= BGE_MIMODE_AUTOPOLL;
3061 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3062 }
3063 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3064 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3065 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3066 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3067 BGE_EVTENB_MI_INTERRUPT);
3068 }
3069
3070 /*
3071 * Clear any pending link state attention.
3072 * Otherwise some link state change events may be lost until attention
3073 * is cleared by bge_intr() -> bge_link_upd() sequence.
3074 * It's not necessary on newer BCM chips - perhaps enabling link
3075 * state change attentions implies clearing pending attention.
3076 */
3077 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3078 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3079 BGE_MACSTAT_LINK_CHANGED);
3080
3081 /* Enable link state change attentions. */
3082 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3083
3084 return 0;
3085 }
3086
3087 static const struct bge_revision *
3088 bge_lookup_rev(uint32_t chipid)
3089 {
3090 const struct bge_revision *br;
3091
3092 for (br = bge_revisions; br->br_name != NULL; br++) {
3093 if (br->br_chipid == chipid)
3094 return br;
3095 }
3096
3097 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3098 if (br->br_chipid == BGE_ASICREV(chipid))
3099 return br;
3100 }
3101
3102 return NULL;
3103 }
3104
3105 static const struct bge_product *
3106 bge_lookup(const struct pci_attach_args *pa)
3107 {
3108 const struct bge_product *bp;
3109
3110 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3111 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3112 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3113 return bp;
3114 }
3115
3116 return NULL;
3117 }
3118
3119 static uint32_t
3120 bge_chipid(const struct pci_attach_args *pa)
3121 {
3122 uint32_t id;
3123
3124 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3125 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3126
3127 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3128 switch (PCI_PRODUCT(pa->pa_id)) {
3129 case PCI_PRODUCT_BROADCOM_BCM5717:
3130 case PCI_PRODUCT_BROADCOM_BCM5718:
3131 case PCI_PRODUCT_BROADCOM_BCM5719:
3132 case PCI_PRODUCT_BROADCOM_BCM5720:
3133 case PCI_PRODUCT_BROADCOM_BCM5725:
3134 case PCI_PRODUCT_BROADCOM_BCM5727:
3135 case PCI_PRODUCT_BROADCOM_BCM5762:
3136 case PCI_PRODUCT_BROADCOM_BCM57764:
3137 case PCI_PRODUCT_BROADCOM_BCM57767:
3138 case PCI_PRODUCT_BROADCOM_BCM57787:
3139 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3140 BGE_PCI_GEN2_PRODID_ASICREV);
3141 break;
3142 case PCI_PRODUCT_BROADCOM_BCM57761:
3143 case PCI_PRODUCT_BROADCOM_BCM57762:
3144 case PCI_PRODUCT_BROADCOM_BCM57765:
3145 case PCI_PRODUCT_BROADCOM_BCM57766:
3146 case PCI_PRODUCT_BROADCOM_BCM57781:
3147 case PCI_PRODUCT_BROADCOM_BCM57782:
3148 case PCI_PRODUCT_BROADCOM_BCM57785:
3149 case PCI_PRODUCT_BROADCOM_BCM57786:
3150 case PCI_PRODUCT_BROADCOM_BCM57791:
3151 case PCI_PRODUCT_BROADCOM_BCM57795:
3152 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3153 BGE_PCI_GEN15_PRODID_ASICREV);
3154 break;
3155 default:
3156 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3157 BGE_PCI_PRODID_ASICREV);
3158 break;
3159 }
3160 }
3161
3162 return id;
3163 }
3164
3165 /*
3166 * Return true if MSI can be used with this device.
3167 */
3168 static int
3169 bge_can_use_msi(struct bge_softc *sc)
3170 {
3171 int can_use_msi = 0;
3172
3173 switch (BGE_ASICREV(sc->bge_chipid)) {
3174 case BGE_ASICREV_BCM5714_A0:
3175 case BGE_ASICREV_BCM5714:
3176 /*
3177 * Apparently, MSI doesn't work when these chips are
3178 * configured in single-port mode.
3179 */
3180 break;
3181 case BGE_ASICREV_BCM5750:
3182 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3183 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3184 can_use_msi = 1;
3185 break;
3186 default:
3187 if (BGE_IS_575X_PLUS(sc))
3188 can_use_msi = 1;
3189 }
3190 return can_use_msi;
3191 }
3192
3193 /*
3194 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3195 * against our list and return its name if we find a match. Note
3196 * that since the Broadcom controller contains VPD support, we
3197 * can get the device name string from the controller itself instead
3198 * of the compiled-in string. This is a little slow, but it guarantees
3199 * we'll always announce the right product name.
3200 */
3201 static int
3202 bge_probe(device_t parent, cfdata_t match, void *aux)
3203 {
3204 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3205
3206 if (bge_lookup(pa) != NULL)
3207 return 1;
3208
3209 return 0;
3210 }
3211
3212 static void
3213 bge_attach(device_t parent, device_t self, void *aux)
3214 {
3215 struct bge_softc * const sc = device_private(self);
3216 struct pci_attach_args * const pa = aux;
3217 prop_dictionary_t dict;
3218 const struct bge_product *bp;
3219 const struct bge_revision *br;
3220 pci_chipset_tag_t pc;
3221 const char *intrstr = NULL;
3222 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3223 uint32_t command;
3224 struct ifnet *ifp;
3225 struct mii_data * const mii = &sc->bge_mii;
3226 uint32_t misccfg, mimode, macmode;
3227 void * kva;
3228 u_char eaddr[ETHER_ADDR_LEN];
3229 pcireg_t memtype, subid, reg;
3230 bus_addr_t memaddr;
3231 uint32_t pm_ctl;
3232 bool no_seeprom;
3233 int capmask, trys;
3234 int mii_flags;
3235 int map_flags;
3236 char intrbuf[PCI_INTRSTR_LEN];
3237
3238 bp = bge_lookup(pa);
3239 KASSERT(bp != NULL);
3240
3241 sc->sc_pc = pa->pa_pc;
3242 sc->sc_pcitag = pa->pa_tag;
3243 sc->bge_dev = self;
3244
3245 sc->bge_pa = *pa;
3246 pc = sc->sc_pc;
3247 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3248
3249 aprint_naive(": Ethernet controller\n");
3250 aprint_normal(": %s Ethernet\n", bp->bp_name);
3251
3252 /*
3253 * Map control/status registers.
3254 */
3255 DPRINTFN(5, ("Map control/status regs\n"));
3256 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3257 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3258 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3259 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3260
3261 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3262 aprint_error_dev(sc->bge_dev,
3263 "failed to enable memory mapping!\n");
3264 return;
3265 }
3266
3267 DPRINTFN(5, ("pci_mem_find\n"));
3268 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3269 switch (memtype) {
3270 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3271 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3272 #if 0
3273 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3274 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3275 &memaddr, &sc->bge_bsize) == 0)
3276 break;
3277 #else
3278 /*
3279 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3280 * system get NMI on boot (PR#48451). This problem might not be
3281 * the driver's bug but our PCI common part's bug. Until we
3282 * find a real reason, we ignore the prefetchable bit.
3283 */
3284 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3285 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3286 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3287 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3288 map_flags, &sc->bge_bhandle) == 0) {
3289 sc->bge_btag = pa->pa_memt;
3290 break;
3291 }
3292 }
3293 #endif
3294 /* FALLTHROUGH */
3295 default:
3296 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3297 return;
3298 }
3299
3300 /* Save various chip information. */
3301 sc->bge_chipid = bge_chipid(pa);
3302 sc->bge_phy_addr = bge_phy_addr(sc);
3303
3304 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3305 &sc->bge_pciecap, NULL) != 0) {
3306 /* PCIe */
3307 sc->bge_flags |= BGEF_PCIE;
3308 /* Extract supported maximum payload size. */
3309 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3310 sc->bge_pciecap + PCIE_DCAP);
3311 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3312 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3313 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3314 sc->bge_expmrq = 2048;
3315 else
3316 sc->bge_expmrq = 4096;
3317 bge_set_max_readrq(sc);
3318 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3319 /* PCIe without PCIe cap */
3320 sc->bge_flags |= BGEF_PCIE;
3321 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3322 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3323 /* PCI-X */
3324 sc->bge_flags |= BGEF_PCIX;
3325 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3326 &sc->bge_pcixcap, NULL) == 0)
3327 aprint_error_dev(sc->bge_dev,
3328 "unable to find PCIX capability\n");
3329 }
3330
3331 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3332 /*
3333 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3334 * can clobber the chip's PCI config-space power control
3335 * registers, leaving the card in D3 powersave state. We do
3336 * not have memory-mapped registers in this state, so force
3337 * device into D0 state before starting initialization.
3338 */
3339 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3340 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3341 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3342 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3343 DELAY(1000); /* 27 usec is allegedly sufficient */
3344 }
3345
3346 /* Save chipset family. */
3347 switch (BGE_ASICREV(sc->bge_chipid)) {
3348 case BGE_ASICREV_BCM5717:
3349 case BGE_ASICREV_BCM5719:
3350 case BGE_ASICREV_BCM5720:
3351 sc->bge_flags |= BGEF_5717_PLUS;
3352 /* FALLTHROUGH */
3353 case BGE_ASICREV_BCM5762:
3354 case BGE_ASICREV_BCM57765:
3355 case BGE_ASICREV_BCM57766:
3356 if (!BGE_IS_5717_PLUS(sc))
3357 sc->bge_flags |= BGEF_57765_FAMILY;
3358 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3359 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3360 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3361 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3362 /*
3363 * Enable work around for DMA engine miscalculation
3364 * of TXMBUF available space.
3365 */
3366 sc->bge_flags |= BGEF_RDMA_BUG;
3367
3368 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3369 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3370 /* Jumbo frame on BCM5719 A0 does not work. */
3371 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3372 }
3373 }
3374 break;
3375 case BGE_ASICREV_BCM5755:
3376 case BGE_ASICREV_BCM5761:
3377 case BGE_ASICREV_BCM5784:
3378 case BGE_ASICREV_BCM5785:
3379 case BGE_ASICREV_BCM5787:
3380 case BGE_ASICREV_BCM57780:
3381 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3382 break;
3383 case BGE_ASICREV_BCM5700:
3384 case BGE_ASICREV_BCM5701:
3385 case BGE_ASICREV_BCM5703:
3386 case BGE_ASICREV_BCM5704:
3387 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3388 break;
3389 case BGE_ASICREV_BCM5714_A0:
3390 case BGE_ASICREV_BCM5780:
3391 case BGE_ASICREV_BCM5714:
3392 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3393 /* FALLTHROUGH */
3394 case BGE_ASICREV_BCM5750:
3395 case BGE_ASICREV_BCM5752:
3396 case BGE_ASICREV_BCM5906:
3397 sc->bge_flags |= BGEF_575X_PLUS;
3398 /* FALLTHROUGH */
3399 case BGE_ASICREV_BCM5705:
3400 sc->bge_flags |= BGEF_5705_PLUS;
3401 break;
3402 }
3403
3404 /* Identify chips with APE processor. */
3405 switch (BGE_ASICREV(sc->bge_chipid)) {
3406 case BGE_ASICREV_BCM5717:
3407 case BGE_ASICREV_BCM5719:
3408 case BGE_ASICREV_BCM5720:
3409 case BGE_ASICREV_BCM5761:
3410 case BGE_ASICREV_BCM5762:
3411 sc->bge_flags |= BGEF_APE;
3412 break;
3413 }
3414
3415 /*
3416 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3417 * not actually a MAC controller bug but an issue with the embedded
3418 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3419 */
3420 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3421 sc->bge_flags |= BGEF_40BIT_BUG;
3422
3423 /* Chips with APE need BAR2 access for APE registers/memory. */
3424 if ((sc->bge_flags & BGEF_APE) != 0) {
3425 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3426 #if 0
3427 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3428 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3429 &sc->bge_apesize)) {
3430 aprint_error_dev(sc->bge_dev,
3431 "couldn't map BAR2 memory\n");
3432 return;
3433 }
3434 #else
3435 /*
3436 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3437 * system get NMI on boot (PR#48451). This problem might not be
3438 * the driver's bug but our PCI common part's bug. Until we
3439 * find a real reason, we ignore the prefetchable bit.
3440 */
3441 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3442 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3443 aprint_error_dev(sc->bge_dev,
3444 "couldn't map BAR2 memory\n");
3445 return;
3446 }
3447
3448 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3449 if (bus_space_map(pa->pa_memt, memaddr,
3450 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3451 aprint_error_dev(sc->bge_dev,
3452 "couldn't map BAR2 memory\n");
3453 return;
3454 }
3455 sc->bge_apetag = pa->pa_memt;
3456 #endif
3457
3458 /* Enable APE register/memory access by host driver. */
3459 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3460 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3461 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3462 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3463 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3464
3465 bge_ape_lock_init(sc);
3466 bge_ape_read_fw_ver(sc);
3467 }
3468
3469 /* Identify the chips that use an CPMU. */
3470 if (BGE_IS_5717_PLUS(sc) ||
3471 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3472 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3473 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3474 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3475 sc->bge_flags |= BGEF_CPMU_PRESENT;
3476
3477 /*
3478 * When using the BCM5701 in PCI-X mode, data corruption has
3479 * been observed in the first few bytes of some received packets.
3480 * Aligning the packet buffer in memory eliminates the corruption.
3481 * Unfortunately, this misaligns the packet payloads. On platforms
3482 * which do not support unaligned accesses, we will realign the
3483 * payloads by copying the received packets.
3484 */
3485 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3486 sc->bge_flags & BGEF_PCIX)
3487 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3488
3489 if (BGE_IS_5700_FAMILY(sc))
3490 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3491
3492 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3493 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3494
3495 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3496 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3497 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3498 sc->bge_flags |= BGEF_IS_5788;
3499
3500 /*
3501 * Some controllers seem to require a special firmware to use
3502 * TSO. But the firmware is not available to FreeBSD and Linux
3503 * claims that the TSO performed by the firmware is slower than
3504 * hardware based TSO. Moreover the firmware based TSO has one
3505 * known bug which can't handle TSO if ethernet header + IP/TCP
3506 * header is greater than 80 bytes. The workaround for the TSO
3507 * bug exist but it seems it's too expensive than not using
3508 * TSO at all. Some hardwares also have the TSO bug so limit
3509 * the TSO to the controllers that are not affected TSO issues
3510 * (e.g. 5755 or higher).
3511 */
3512 if (BGE_IS_5755_PLUS(sc)) {
3513 /*
3514 * BCM5754 and BCM5787 shares the same ASIC id so
3515 * explicit device id check is required.
3516 */
3517 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3518 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3519 sc->bge_flags |= BGEF_TSO;
3520 /* TSO on BCM5719 A0 does not work. */
3521 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3522 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3523 sc->bge_flags &= ~BGEF_TSO;
3524 }
3525
3526 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3527 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3528 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3529 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3530 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3531 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3532 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3533 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3534 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3535 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3536 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3537 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3538 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3539 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3540 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3541 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3542 /* These chips are 10/100 only. */
3543 capmask &= ~BMSR_EXTSTAT;
3544 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3545 }
3546
3547 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3548 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3549 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3550 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3551 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3552
3553 /* Set various PHY bug flags. */
3554 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3555 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3556 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3557 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3558 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3559 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3560 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3561 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3562 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3563 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3564 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3565 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3566 if (BGE_IS_5705_PLUS(sc) &&
3567 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3568 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3569 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3570 !BGE_IS_57765_PLUS(sc)) {
3571 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3572 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3573 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3574 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3575 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3576 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3577 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3578 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3579 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3580 } else
3581 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3582 }
3583
3584 /*
3585 * SEEPROM check.
3586 * First check if firmware knows we do not have SEEPROM.
3587 */
3588 if (prop_dictionary_get_bool(device_properties(self),
3589 "without-seeprom", &no_seeprom) && no_seeprom)
3590 sc->bge_flags |= BGEF_NO_EEPROM;
3591
3592 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3593 sc->bge_flags |= BGEF_NO_EEPROM;
3594
3595 /* Now check the 'ROM failed' bit on the RX CPU */
3596 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3597 sc->bge_flags |= BGEF_NO_EEPROM;
3598
3599 sc->bge_asf_mode = 0;
3600 /* No ASF if APE present. */
3601 if ((sc->bge_flags & BGEF_APE) == 0) {
3602 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3603 BGE_SRAM_DATA_SIG_MAGIC)) {
3604 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3605 BGE_HWCFG_ASF) {
3606 sc->bge_asf_mode |= ASF_ENABLE;
3607 sc->bge_asf_mode |= ASF_STACKUP;
3608 if (BGE_IS_575X_PLUS(sc))
3609 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3610 }
3611 }
3612 }
3613
3614 int counts[PCI_INTR_TYPE_SIZE] = {
3615 [PCI_INTR_TYPE_INTX] = 1,
3616 [PCI_INTR_TYPE_MSI] = 1,
3617 [PCI_INTR_TYPE_MSIX] = 1,
3618 };
3619 int max_type = PCI_INTR_TYPE_MSIX;
3620
3621 if (!bge_can_use_msi(sc)) {
3622 /* MSI broken, allow only INTx */
3623 max_type = PCI_INTR_TYPE_INTX;
3624 }
3625
3626 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3627 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3628 return;
3629 }
3630
3631 DPRINTFN(5, ("pci_intr_string\n"));
3632 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3633 sizeof(intrbuf));
3634 DPRINTFN(5, ("pci_intr_establish\n"));
3635 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3636 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3637 if (sc->bge_intrhand == NULL) {
3638 pci_intr_release(pc, sc->bge_pihp, 1);
3639 sc->bge_pihp = NULL;
3640
3641 aprint_error_dev(self, "couldn't establish interrupt");
3642 if (intrstr != NULL)
3643 aprint_error(" at %s", intrstr);
3644 aprint_error("\n");
3645 return;
3646 }
3647 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3648
3649 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3650 case PCI_INTR_TYPE_MSIX:
3651 case PCI_INTR_TYPE_MSI:
3652 KASSERT(bge_can_use_msi(sc));
3653 sc->bge_flags |= BGEF_MSI;
3654 break;
3655 default:
3656 /* nothing to do */
3657 break;
3658 }
3659
3660 char wqname[MAXCOMLEN];
3661 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->bge_dev));
3662 int error = workqueue_create(&sc->sc_reset_wq, wqname,
3663 bge_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK,
3664 WQ_MPSAFE);
3665 if (error) {
3666 aprint_error_dev(sc->bge_dev,
3667 "unable to create reset workqueue\n");
3668 return;
3669 }
3670
3671
3672 /*
3673 * All controllers except BCM5700 supports tagged status but
3674 * we use tagged status only for MSI case on BCM5717. Otherwise
3675 * MSI on BCM5717 does not work.
3676 */
3677 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3678 sc->bge_flags |= BGEF_TAGGED_STATUS;
3679
3680 /*
3681 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3682 * lock in bge_reset().
3683 */
3684 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3685 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3686 delay(1000);
3687 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3688
3689 bge_stop_fw(sc);
3690 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3691 if (bge_reset(sc))
3692 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3693
3694 /*
3695 * Read the hardware config word in the first 32k of NIC internal
3696 * memory, or fall back to the config word in the EEPROM.
3697 * Note: on some BCM5700 cards, this value appears to be unset.
3698 */
3699 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3700 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3701 BGE_SRAM_DATA_SIG_MAGIC) {
3702 uint32_t tmp;
3703
3704 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3705 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3706 BGE_SRAM_DATA_VER_SHIFT;
3707 if ((0 < tmp) && (tmp < 0x100))
3708 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3709 if (sc->bge_flags & BGEF_PCIE)
3710 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3711 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3712 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3713 if (BGE_IS_5717_PLUS(sc))
3714 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3715 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3716 bge_read_eeprom(sc, (void *)&hwcfg,
3717 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3718 hwcfg = be32toh(hwcfg);
3719 }
3720 aprint_normal_dev(sc->bge_dev,
3721 "HW config %08x, %08x, %08x, %08x %08x\n",
3722 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3723
3724 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3725 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3726
3727 if (bge_chipinit(sc)) {
3728 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3729 bge_release_resources(sc);
3730 return;
3731 }
3732
3733 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3734 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3735 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3736 DELAY(100);
3737 }
3738
3739 /* Set MI_MODE */
3740 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3741 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3742 mimode |= BGE_MIMODE_500KHZ_CONST;
3743 else
3744 mimode |= BGE_MIMODE_BASE;
3745 CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3746 DELAY(80);
3747
3748 /*
3749 * Get station address from the EEPROM.
3750 */
3751 if (bge_get_eaddr(sc, eaddr)) {
3752 aprint_error_dev(sc->bge_dev,
3753 "failed to read station address\n");
3754 bge_release_resources(sc);
3755 return;
3756 }
3757
3758 br = bge_lookup_rev(sc->bge_chipid);
3759
3760 if (br == NULL) {
3761 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3762 sc->bge_chipid);
3763 } else {
3764 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3765 br->br_name, sc->bge_chipid);
3766 }
3767 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3768
3769 /* Allocate the general information block and ring buffers. */
3770 if (pci_dma64_available(pa)) {
3771 sc->bge_dmatag = pa->pa_dmat64;
3772 sc->bge_dmatag32 = pa->pa_dmat;
3773 sc->bge_dma64 = true;
3774 } else {
3775 sc->bge_dmatag = pa->pa_dmat;
3776 sc->bge_dmatag32 = pa->pa_dmat;
3777 sc->bge_dma64 = false;
3778 }
3779
3780 /* 40bit DMA workaround */
3781 if (sizeof(bus_addr_t) > 4) {
3782 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3783 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3784
3785 if (bus_dmatag_subregion(olddmatag, 0,
3786 (bus_addr_t)__MASK(40),
3787 &(sc->bge_dmatag), BUS_DMA_WAITOK) != 0) {
3788 aprint_error_dev(self,
3789 "WARNING: failed to restrict dma range,"
3790 " falling back to parent bus dma range\n");
3791 sc->bge_dmatag = olddmatag;
3792 }
3793 }
3794 }
3795 SLIST_INIT(&sc->txdma_list);
3796 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3797 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3798 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3799 &sc->bge_ring_rseg, BUS_DMA_WAITOK)) {
3800 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3801 return;
3802 }
3803 DPRINTFN(5, ("bus_dmamem_map\n"));
3804 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3805 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3806 BUS_DMA_WAITOK)) {
3807 aprint_error_dev(sc->bge_dev,
3808 "can't map DMA buffers (%zu bytes)\n",
3809 sizeof(struct bge_ring_data));
3810 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3811 sc->bge_ring_rseg);
3812 return;
3813 }
3814 DPRINTFN(5, ("bus_dmamem_create\n"));
3815 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3816 sizeof(struct bge_ring_data), 0,
3817 BUS_DMA_WAITOK, &sc->bge_ring_map)) {
3818 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3819 bus_dmamem_unmap(sc->bge_dmatag, kva,
3820 sizeof(struct bge_ring_data));
3821 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3822 sc->bge_ring_rseg);
3823 return;
3824 }
3825 DPRINTFN(5, ("bus_dmamem_load\n"));
3826 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3827 sizeof(struct bge_ring_data), NULL,
3828 BUS_DMA_WAITOK)) {
3829 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3830 bus_dmamem_unmap(sc->bge_dmatag, kva,
3831 sizeof(struct bge_ring_data));
3832 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3833 sc->bge_ring_rseg);
3834 return;
3835 }
3836
3837 DPRINTFN(5, ("bzero\n"));
3838 sc->bge_rdata = (struct bge_ring_data *)kva;
3839
3840 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3841
3842 /* Try to allocate memory for jumbo buffers. */
3843 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3844 if (bge_alloc_jumbo_mem(sc)) {
3845 aprint_error_dev(sc->bge_dev,
3846 "jumbo buffer allocation failed\n");
3847 } else
3848 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3849 }
3850
3851 /* Set default tuneable values. */
3852 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3853 sc->bge_rx_coal_ticks = 150;
3854 sc->bge_rx_max_coal_bds = 64;
3855 sc->bge_tx_coal_ticks = 300;
3856 sc->bge_tx_max_coal_bds = 400;
3857 if (BGE_IS_5705_PLUS(sc)) {
3858 sc->bge_tx_coal_ticks = (12 * 5);
3859 sc->bge_tx_max_coal_bds = (12 * 5);
3860 aprint_verbose_dev(sc->bge_dev,
3861 "setting short Tx thresholds\n");
3862 }
3863
3864 if (BGE_IS_5717_PLUS(sc))
3865 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3866 else if (BGE_IS_5705_PLUS(sc))
3867 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3868 else
3869 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3870
3871 sc->sc_core_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
3872
3873 /* Set up ifnet structure */
3874 ifp = &sc->ethercom.ec_if;
3875 ifp->if_softc = sc;
3876 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3877 ifp->if_extflags = IFEF_MPSAFE;
3878 ifp->if_ioctl = bge_ioctl;
3879 ifp->if_stop = bge_stop;
3880 ifp->if_start = bge_start;
3881 ifp->if_init = bge_init;
3882 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3883 IFQ_SET_READY(&ifp->if_snd);
3884 DPRINTFN(5, ("strcpy if_xname\n"));
3885 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3886
3887 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3888 sc->ethercom.ec_if.if_capabilities |=
3889 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3890 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3891 sc->ethercom.ec_if.if_capabilities |=
3892 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3893 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3894 #endif
3895 sc->ethercom.ec_capabilities |=
3896 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3897 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3898
3899 if (sc->bge_flags & BGEF_TSO)
3900 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3901
3902 /*
3903 * Do MII setup.
3904 */
3905 DPRINTFN(5, ("mii setup\n"));
3906 mii->mii_ifp = ifp;
3907 mii->mii_readreg = bge_miibus_readreg;
3908 mii->mii_writereg = bge_miibus_writereg;
3909 mii->mii_statchg = bge_miibus_statchg;
3910
3911 /*
3912 * Figure out what sort of media we have by checking the hardware
3913 * config word. Note: on some BCM5700 cards, this value appears to be
3914 * unset. If that's the case, we have to rely on identifying the NIC
3915 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3916 * The SysKonnect SK-9D41 is a 1000baseSX card.
3917 */
3918 if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3919 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3920 if (BGE_IS_5705_PLUS(sc)) {
3921 sc->bge_flags |= BGEF_FIBER_MII;
3922 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3923 } else
3924 sc->bge_flags |= BGEF_FIBER_TBI;
3925 }
3926
3927 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3928 if (BGE_IS_JUMBO_CAPABLE(sc))
3929 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3930
3931 /* set phyflags and chipid before mii_attach() */
3932 dict = device_properties(self);
3933 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3934 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3935
3936 macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3937 macmode &= ~BGE_MACMODE_PORTMODE;
3938 /* Initialize ifmedia structures. */
3939 if (sc->bge_flags & BGEF_FIBER_TBI) {
3940 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3941 macmode | BGE_PORTMODE_TBI);
3942 DELAY(40);
3943
3944 sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
3945 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3946 bge_ifmedia_sts);
3947 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3948 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3949 0, NULL);
3950 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3951 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3952 /* Pretend the user requested this setting */
3953 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3954 } else {
3955 uint16_t phyreg;
3956 int rv;
3957 /*
3958 * Do transceiver setup and tell the firmware the
3959 * driver is down so we can try to get access the
3960 * probe if ASF is running. Retry a couple of times
3961 * if we get a conflict with the ASF firmware accessing
3962 * the PHY.
3963 */
3964 if (sc->bge_flags & BGEF_FIBER_MII)
3965 macmode |= BGE_PORTMODE_GMII;
3966 else
3967 macmode |= BGE_PORTMODE_MII;
3968 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3969 DELAY(40);
3970
3971 /*
3972 * Do transceiver setup and tell the firmware the
3973 * driver is down so we can try to get access the
3974 * probe if ASF is running. Retry a couple of times
3975 * if we get a conflict with the ASF firmware accessing
3976 * the PHY.
3977 */
3978 trys = 0;
3979 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3980 sc->ethercom.ec_mii = mii;
3981 ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3982 bge_ifmedia_sts);
3983 mii_flags = MIIF_DOPAUSE;
3984 if (sc->bge_flags & BGEF_FIBER_MII)
3985 mii_flags |= MIIF_HAVEFIBER;
3986 again:
3987 bge_asf_driver_up(sc);
3988 rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
3989 MII_BMCR, &phyreg);
3990 if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
3991 int i;
3992
3993 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
3994 MII_BMCR, BMCR_RESET);
3995 /* Wait up to 500ms for it to complete. */
3996 for (i = 0; i < 500; i++) {
3997 bge_miibus_readreg(sc->bge_dev,
3998 sc->bge_phy_addr, MII_BMCR, &phyreg);
3999 if ((phyreg & BMCR_RESET) == 0)
4000 break;
4001 DELAY(1000);
4002 }
4003 }
4004
4005 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
4006 MII_OFFSET_ANY, mii_flags);
4007
4008 if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
4009 goto again;
4010
4011 if (LIST_EMPTY(&mii->mii_phys)) {
4012 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4013 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
4014 0, NULL);
4015 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
4016 } else
4017 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
4018
4019 /*
4020 * Now tell the firmware we are going up after probing the PHY
4021 */
4022 if (sc->bge_asf_mode & ASF_STACKUP)
4023 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4024 }
4025
4026 /*
4027 * Call MI attach routine.
4028 */
4029 DPRINTFN(5, ("if_initialize\n"));
4030 if_initialize(ifp);
4031 ifp->if_percpuq = if_percpuq_create(ifp);
4032 if_deferred_start_init(ifp, NULL);
4033 if_register(ifp);
4034
4035 DPRINTFN(5, ("ether_ifattach\n"));
4036 ether_ifattach(ifp, eaddr);
4037 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4038
4039 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4040 RND_TYPE_NET, RND_FLAG_DEFAULT);
4041 #ifdef BGE_EVENT_COUNTERS
4042 /*
4043 * Attach event counters.
4044 */
4045 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4046 NULL, device_xname(sc->bge_dev), "intr");
4047 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
4048 NULL, device_xname(sc->bge_dev), "intr_spurious");
4049 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
4050 NULL, device_xname(sc->bge_dev), "intr_spurious2");
4051 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4052 NULL, device_xname(sc->bge_dev), "tx_xoff");
4053 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4054 NULL, device_xname(sc->bge_dev), "tx_xon");
4055 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4056 NULL, device_xname(sc->bge_dev), "rx_xoff");
4057 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4058 NULL, device_xname(sc->bge_dev), "rx_xon");
4059 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4060 NULL, device_xname(sc->bge_dev), "rx_macctl");
4061 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4062 NULL, device_xname(sc->bge_dev), "xoffentered");
4063 #endif /* BGE_EVENT_COUNTERS */
4064 DPRINTFN(5, ("callout_init\n"));
4065 callout_init(&sc->bge_timeout, CALLOUT_MPSAFE);
4066 callout_setfunc(&sc->bge_timeout, bge_tick, sc);
4067
4068 if (pmf_device_register(self, NULL, NULL))
4069 pmf_class_network_register(self, ifp);
4070 else
4071 aprint_error_dev(self, "couldn't establish power handler\n");
4072
4073 bge_sysctl_init(sc);
4074
4075 #ifdef BGE_DEBUG
4076 bge_debug_info(sc);
4077 #endif
4078 }
4079
4080 /*
4081 * Stop all chip I/O so that the kernel's probe routines don't
4082 * get confused by errant DMAs when rebooting.
4083 */
4084 static int
4085 bge_detach(device_t self, int flags __unused)
4086 {
4087 struct bge_softc * const sc = device_private(self);
4088 struct ifnet * const ifp = &sc->ethercom.ec_if;
4089
4090 /* Stop the interface. Callouts are stopped in it. */
4091 bge_stop(ifp, 1);
4092
4093 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4094
4095 ether_ifdetach(ifp);
4096 if_detach(ifp);
4097
4098 /* Delete all remaining media. */
4099 ifmedia_fini(&sc->bge_mii.mii_media);
4100
4101 bge_release_resources(sc);
4102
4103 return 0;
4104 }
4105
4106 static void
4107 bge_release_resources(struct bge_softc *sc)
4108 {
4109
4110 /* Detach sysctl */
4111 if (sc->bge_log != NULL)
4112 sysctl_teardown(&sc->bge_log);
4113
4114 #ifdef BGE_EVENT_COUNTERS
4115 /* Detach event counters. */
4116 evcnt_detach(&sc->bge_ev_intr);
4117 evcnt_detach(&sc->bge_ev_intr_spurious);
4118 evcnt_detach(&sc->bge_ev_intr_spurious2);
4119 evcnt_detach(&sc->bge_ev_tx_xoff);
4120 evcnt_detach(&sc->bge_ev_tx_xon);
4121 evcnt_detach(&sc->bge_ev_rx_xoff);
4122 evcnt_detach(&sc->bge_ev_rx_xon);
4123 evcnt_detach(&sc->bge_ev_rx_macctl);
4124 evcnt_detach(&sc->bge_ev_xoffentered);
4125 #endif /* BGE_EVENT_COUNTERS */
4126
4127 /* Disestablish the interrupt handler */
4128 if (sc->bge_intrhand != NULL) {
4129 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4130 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4131 sc->bge_intrhand = NULL;
4132 }
4133
4134 if (sc->bge_cdata.bge_jumbo_buf != NULL)
4135 bge_free_jumbo_mem(sc);
4136
4137 if (sc->bge_dmatag != NULL) {
4138 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4139 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4140 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4141 sizeof(struct bge_ring_data));
4142 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4143 sc->bge_ring_rseg);
4144 }
4145
4146 /* Unmap the device registers */
4147 if (sc->bge_bsize != 0) {
4148 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4149 sc->bge_bsize = 0;
4150 }
4151
4152 /* Unmap the APE registers */
4153 if (sc->bge_apesize != 0) {
4154 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4155 sc->bge_apesize);
4156 sc->bge_apesize = 0;
4157 }
4158 }
4159
4160 static int
4161 bge_reset(struct bge_softc *sc)
4162 {
4163 uint32_t cachesize, command;
4164 uint32_t reset, mac_mode, mac_mode_mask;
4165 pcireg_t devctl, reg;
4166 int i, val;
4167 void (*write_op)(struct bge_softc *, int, int);
4168
4169 /* Make mask for BGE_MAC_MODE register. */
4170 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4171 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4172 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4173 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4174 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4175
4176 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4177 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4178 if (sc->bge_flags & BGEF_PCIE)
4179 write_op = bge_writemem_direct;
4180 else
4181 write_op = bge_writemem_ind;
4182 } else
4183 write_op = bge_writereg_ind;
4184
4185 /* 57XX step 4 */
4186 /* Acquire the NVM lock */
4187 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4188 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4189 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4190 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4191 for (i = 0; i < 8000; i++) {
4192 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4193 BGE_NVRAMSWARB_GNT1)
4194 break;
4195 DELAY(20);
4196 }
4197 if (i == 8000) {
4198 printf("%s: NVRAM lock timedout!\n",
4199 device_xname(sc->bge_dev));
4200 }
4201 }
4202
4203 /* Take APE lock when performing reset. */
4204 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4205
4206 /* 57XX step 3 */
4207 /* Save some important PCI state. */
4208 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4209 /* 5718 reset step 3 */
4210 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4211
4212 /* 5718 reset step 5, 57XX step 5b-5d */
4213 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4214 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4215 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4216
4217 /* XXX ???: Disable fastboot on controllers that support it. */
4218 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4219 BGE_IS_5755_PLUS(sc))
4220 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4221
4222 /* 5718 reset step 2, 57XX step 6 */
4223 /*
4224 * Write the magic number to SRAM at offset 0xB50.
4225 * When firmware finishes its initialization it will
4226 * write ~BGE_MAGIC_NUMBER to the same location.
4227 */
4228 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4229
4230 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4231 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4232 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4233 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4234 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4235 }
4236
4237 /* 5718 reset step 6, 57XX step 7 */
4238 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4239 /*
4240 * XXX: from FreeBSD/Linux; no documentation
4241 */
4242 if (sc->bge_flags & BGEF_PCIE) {
4243 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4244 !BGE_IS_57765_PLUS(sc) &&
4245 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4246 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4247 /* PCI Express 1.0 system */
4248 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4249 BGE_PHY_PCIE_SCRAM_MODE);
4250 }
4251 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4252 /*
4253 * Prevent PCI Express link training
4254 * during global reset.
4255 */
4256 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4257 reset |= (1 << 29);
4258 }
4259 }
4260
4261 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4262 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4263 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4264 i | BGE_VCPU_STATUS_DRV_RESET);
4265 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4266 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4267 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4268 }
4269
4270 /*
4271 * Set GPHY Power Down Override to leave GPHY
4272 * powered up in D0 uninitialized.
4273 */
4274 if (BGE_IS_5705_PLUS(sc) &&
4275 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4276 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4277
4278 /* Issue global reset */
4279 write_op(sc, BGE_MISC_CFG, reset);
4280
4281 /* 5718 reset step 7, 57XX step 8 */
4282 if (sc->bge_flags & BGEF_PCIE)
4283 delay(100*1000); /* too big */
4284 else
4285 delay(1000);
4286
4287 if (sc->bge_flags & BGEF_PCIE) {
4288 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4289 DELAY(500000);
4290 /* XXX: Magic Numbers */
4291 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4292 BGE_PCI_UNKNOWN0);
4293 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4294 BGE_PCI_UNKNOWN0,
4295 reg | (1 << 15));
4296 }
4297 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4298 sc->bge_pciecap + PCIE_DCSR);
4299 /* Clear enable no snoop and disable relaxed ordering. */
4300 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4301 PCIE_DCSR_ENA_NO_SNOOP);
4302
4303 /* Set PCIE max payload size to 128 for older PCIe devices */
4304 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4305 devctl &= ~(0x00e0);
4306 /* Clear device status register. Write 1b to clear */
4307 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4308 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4309 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4310 sc->bge_pciecap + PCIE_DCSR, devctl);
4311 bge_set_max_readrq(sc);
4312 }
4313
4314 /* From Linux: dummy read to flush PCI posted writes */
4315 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4316
4317 /*
4318 * Reset some of the PCI state that got zapped by reset
4319 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4320 * set, too.
4321 */
4322 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4323 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4324 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4325 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4326 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4327 (sc->bge_flags & BGEF_PCIX) != 0)
4328 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4329 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4330 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4331 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4332 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4333 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4334 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4335 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4336
4337 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4338 if (sc->bge_flags & BGEF_PCIX) {
4339 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4340 + PCIX_CMD);
4341 /* Set max memory read byte count to 2K */
4342 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4343 reg &= ~PCIX_CMD_BYTECNT_MASK;
4344 reg |= PCIX_CMD_BCNT_2048;
4345 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4346 /*
4347 * For 5704, set max outstanding split transaction
4348 * field to 0 (0 means it supports 1 request)
4349 */
4350 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4351 | PCIX_CMD_BYTECNT_MASK);
4352 reg |= PCIX_CMD_BCNT_2048;
4353 }
4354 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4355 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4356 }
4357
4358 /* 5718 reset step 10, 57XX step 12 */
4359 /* Enable memory arbiter. */
4360 if (BGE_IS_5714_FAMILY(sc)) {
4361 val = CSR_READ_4(sc, BGE_MARB_MODE);
4362 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4363 } else
4364 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4365
4366 /* XXX 5721, 5751 and 5752 */
4367 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4368 /* Step 19: */
4369 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4370 /* Step 20: */
4371 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4372 }
4373
4374 /* 5718 reset step 12, 57XX step 15 and 16 */
4375 /* Fix up byte swapping */
4376 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4377
4378 /* 5718 reset step 13, 57XX step 17 */
4379 /* Poll until the firmware initialization is complete */
4380 bge_poll_fw(sc);
4381
4382 /* 57XX step 21 */
4383 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4384 pcireg_t msidata;
4385
4386 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4387 BGE_PCI_MSI_DATA);
4388 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4389 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4390 msidata);
4391 }
4392
4393 /* 57XX step 18 */
4394 /* Write mac mode. */
4395 val = CSR_READ_4(sc, BGE_MAC_MODE);
4396 /* Restore mac_mode_mask's bits using mac_mode */
4397 val = (val & ~mac_mode_mask) | mac_mode;
4398 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4399 DELAY(40);
4400
4401 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4402
4403 /*
4404 * The 5704 in TBI mode apparently needs some special
4405 * adjustment to insure the SERDES drive level is set
4406 * to 1.2V.
4407 */
4408 if (sc->bge_flags & BGEF_FIBER_TBI &&
4409 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4410 uint32_t serdescfg;
4411
4412 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4413 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4414 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4415 }
4416
4417 if (sc->bge_flags & BGEF_PCIE &&
4418 !BGE_IS_57765_PLUS(sc) &&
4419 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4420 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4421 uint32_t v;
4422
4423 /* Enable PCI Express bug fix */
4424 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4425 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4426 v | BGE_TLP_DATA_FIFO_PROTECT);
4427 }
4428
4429 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4430 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4431 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4432
4433 return 0;
4434 }
4435
4436 /*
4437 * Frame reception handling. This is called if there's a frame
4438 * on the receive return list.
4439 *
4440 * Note: we have to be able to handle two possibilities here:
4441 * 1) the frame is from the jumbo receive ring
4442 * 2) the frame is from the standard receive ring
4443 */
4444
4445 static void
4446 bge_rxeof(struct bge_softc *sc)
4447 {
4448 struct ifnet * const ifp = &sc->ethercom.ec_if;
4449 uint16_t rx_prod, rx_cons;
4450 int stdcnt = 0, jumbocnt = 0;
4451 bus_dmamap_t dmamap;
4452 bus_addr_t offset, toff;
4453 bus_size_t tlen;
4454 int tosync;
4455
4456 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4457 offsetof(struct bge_ring_data, bge_status_block),
4458 sizeof(struct bge_status_block),
4459 BUS_DMASYNC_POSTREAD);
4460
4461 rx_cons = sc->bge_rx_saved_considx;
4462 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4463
4464 /* Nothing to do */
4465 if (rx_cons == rx_prod)
4466 return;
4467
4468 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4469 tosync = rx_prod - rx_cons;
4470
4471 if (tosync != 0)
4472 rnd_add_uint32(&sc->rnd_source, tosync);
4473
4474 toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
4475
4476 if (tosync < 0) {
4477 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4478 sizeof(struct bge_rx_bd);
4479 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4480 toff, tlen, BUS_DMASYNC_POSTREAD);
4481 tosync = rx_prod;
4482 toff = offset;
4483 }
4484
4485 if (tosync != 0) {
4486 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4487 toff, tosync * sizeof(struct bge_rx_bd),
4488 BUS_DMASYNC_POSTREAD);
4489 }
4490
4491 while (rx_cons != rx_prod) {
4492 struct bge_rx_bd *cur_rx;
4493 uint32_t rxidx;
4494 struct mbuf *m = NULL;
4495
4496 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4497
4498 rxidx = cur_rx->bge_idx;
4499 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4500
4501 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4502 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4503 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4504 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4505 jumbocnt++;
4506 bus_dmamap_sync(sc->bge_dmatag,
4507 sc->bge_cdata.bge_rx_jumbo_map,
4508 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4509 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4510 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4511 if_statinc(ifp, if_ierrors);
4512 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4513 continue;
4514 }
4515 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4516 NULL) == ENOBUFS) {
4517 if_statinc(ifp, if_ierrors);
4518 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4519 continue;
4520 }
4521 } else {
4522 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4523 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4524
4525 stdcnt++;
4526 sc->bge_std_cnt--;
4527
4528 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4529 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4530 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4531 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4532
4533 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4534 m_free(m);
4535 if_statinc(ifp, if_ierrors);
4536 continue;
4537 }
4538 }
4539
4540 #ifndef __NO_STRICT_ALIGNMENT
4541 /*
4542 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4543 * the Rx buffer has the layer-2 header unaligned.
4544 * If our CPU requires alignment, re-align by copying.
4545 */
4546 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4547 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4548 cur_rx->bge_len);
4549 m->m_data += ETHER_ALIGN;
4550 }
4551 #endif
4552
4553 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4554 m_set_rcvif(m, ifp);
4555
4556 bge_rxcsum(sc, cur_rx, m);
4557
4558 /*
4559 * If we received a packet with a vlan tag, pass it
4560 * to vlan_input() instead of ether_input().
4561 */
4562 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4563 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4564
4565 if_percpuq_enqueue(ifp->if_percpuq, m);
4566 }
4567
4568 sc->bge_rx_saved_considx = rx_cons;
4569 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4570 if (stdcnt)
4571 bge_fill_rx_ring_std(sc);
4572 if (jumbocnt)
4573 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4574 }
4575
4576 static void
4577 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4578 {
4579
4580 if (BGE_IS_57765_PLUS(sc)) {
4581 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4582 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4583 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4584 if ((cur_rx->bge_error_flag &
4585 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4586 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4587 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4588 m->m_pkthdr.csum_data =
4589 cur_rx->bge_tcp_udp_csum;
4590 m->m_pkthdr.csum_flags |=
4591 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4592 }
4593 }
4594 } else {
4595 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4596 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4597 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4598 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4599 /*
4600 * Rx transport checksum-offload may also
4601 * have bugs with packets which, when transmitted,
4602 * were `runts' requiring padding.
4603 */
4604 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4605 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4606 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4607 m->m_pkthdr.csum_data =
4608 cur_rx->bge_tcp_udp_csum;
4609 m->m_pkthdr.csum_flags |=
4610 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4611 }
4612 }
4613 }
4614
4615 static void
4616 bge_txeof(struct bge_softc *sc)
4617 {
4618 struct ifnet * const ifp = &sc->ethercom.ec_if;
4619 struct bge_tx_bd *cur_tx = NULL;
4620 struct txdmamap_pool_entry *dma;
4621 bus_addr_t offset, toff;
4622 bus_size_t tlen;
4623 int tosync;
4624 struct mbuf *m;
4625
4626 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4627 offsetof(struct bge_ring_data, bge_status_block),
4628 sizeof(struct bge_status_block),
4629 BUS_DMASYNC_POSTREAD);
4630
4631 const uint16_t hw_cons_idx =
4632 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx;
4633 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4634 tosync = hw_cons_idx - sc->bge_tx_saved_considx;
4635
4636 if (tosync != 0)
4637 rnd_add_uint32(&sc->rnd_source, tosync);
4638
4639 toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
4640
4641 if (tosync < 0) {
4642 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4643 sizeof(struct bge_tx_bd);
4644 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4645 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4646 tosync = hw_cons_idx;
4647 toff = offset;
4648 }
4649
4650 if (tosync != 0) {
4651 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4652 toff, tosync * sizeof(struct bge_tx_bd),
4653 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4654 }
4655
4656 /*
4657 * Go through our tx ring and free mbufs for those
4658 * frames that have been sent.
4659 */
4660 while (sc->bge_tx_saved_considx != hw_cons_idx) {
4661 uint32_t idx = sc->bge_tx_saved_considx;
4662 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4663 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4664 if_statinc(ifp, if_opackets);
4665 m = sc->bge_cdata.bge_tx_chain[idx];
4666 if (m != NULL) {
4667 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4668 dma = sc->txdma[idx];
4669 if (dma->is_dma32) {
4670 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4671 0, dma->dmamap32->dm_mapsize,
4672 BUS_DMASYNC_POSTWRITE);
4673 bus_dmamap_unload(
4674 sc->bge_dmatag32, dma->dmamap32);
4675 } else {
4676 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4677 0, dma->dmamap->dm_mapsize,
4678 BUS_DMASYNC_POSTWRITE);
4679 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4680 }
4681 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4682 sc->txdma[idx] = NULL;
4683
4684 m_freem(m);
4685 }
4686 sc->bge_txcnt--;
4687 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4688 sc->bge_tx_sending = false;
4689 }
4690 }
4691
4692 static int
4693 bge_intr(void *xsc)
4694 {
4695 struct bge_softc * const sc = xsc;
4696 struct ifnet * const ifp = &sc->ethercom.ec_if;
4697 uint32_t pcistate, statusword, statustag;
4698 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4699
4700 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4701 if (BGE_IS_5717_PLUS(sc))
4702 intrmask = 0;
4703
4704 mutex_enter(sc->sc_core_lock);
4705
4706 /*
4707 * It is possible for the interrupt to arrive before
4708 * the status block is updated prior to the interrupt.
4709 * Reading the PCI State register will confirm whether the
4710 * interrupt is ours and will flush the status block.
4711 */
4712 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4713
4714 /* read status word from status block */
4715 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4716 offsetof(struct bge_ring_data, bge_status_block),
4717 sizeof(struct bge_status_block),
4718 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4719 statusword = sc->bge_rdata->bge_status_block.bge_status;
4720 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4721
4722 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4723 if (sc->bge_lasttag == statustag &&
4724 (~pcistate & intrmask)) {
4725 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4726 mutex_exit(sc->sc_core_lock);
4727 return 0;
4728 }
4729 sc->bge_lasttag = statustag;
4730 } else {
4731 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4732 !(~pcistate & intrmask)) {
4733 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4734 mutex_exit(sc->sc_core_lock);
4735 return 0;
4736 }
4737 statustag = 0;
4738 }
4739 /* Ack interrupt and stop others from occurring. */
4740 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4741 BGE_EVCNT_INCR(sc->bge_ev_intr);
4742
4743 /* clear status word */
4744 sc->bge_rdata->bge_status_block.bge_status = 0;
4745
4746 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4747 offsetof(struct bge_ring_data, bge_status_block),
4748 sizeof(struct bge_status_block),
4749 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4750
4751 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4752 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4753 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4754 bge_link_upd(sc);
4755
4756 if (sc->bge_if_flags & IFF_RUNNING) {
4757 /* Check RX return ring producer/consumer */
4758 bge_rxeof(sc);
4759
4760 /* Check TX ring producer/consumer */
4761 bge_txeof(sc);
4762 }
4763
4764 if (sc->bge_pending_rxintr_change) {
4765 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4766 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4767
4768 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4769 DELAY(10);
4770 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4771
4772 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4773 DELAY(10);
4774 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4775
4776 sc->bge_pending_rxintr_change = false;
4777 }
4778 bge_handle_events(sc);
4779
4780 /* Re-enable interrupts. */
4781 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4782
4783 if (sc->bge_if_flags & IFF_RUNNING)
4784 if_schedule_deferred_start(ifp);
4785
4786 mutex_exit(sc->sc_core_lock);
4787
4788 return 1;
4789 }
4790
4791 static void
4792 bge_asf_driver_up(struct bge_softc *sc)
4793 {
4794 if (sc->bge_asf_mode & ASF_STACKUP) {
4795 /* Send ASF heartbeat approx. every 2s */
4796 if (sc->bge_asf_count)
4797 sc->bge_asf_count --;
4798 else {
4799 sc->bge_asf_count = 2;
4800
4801 bge_wait_for_event_ack(sc);
4802
4803 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4804 BGE_FW_CMD_DRV_ALIVE3);
4805 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4806 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4807 BGE_FW_HB_TIMEOUT_SEC);
4808 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4809 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4810 BGE_RX_CPU_DRV_EVENT);
4811 }
4812 }
4813 }
4814
4815 static void
4816 bge_tick(void *xsc)
4817 {
4818 struct bge_softc * const sc = xsc;
4819 struct ifnet * const ifp = &sc->ethercom.ec_if;
4820 struct mii_data * const mii = &sc->bge_mii;
4821
4822 mutex_enter(sc->sc_core_lock);
4823
4824 if (BGE_IS_5705_PLUS(sc))
4825 bge_stats_update_regs(sc);
4826 else
4827 bge_stats_update(sc);
4828
4829 if (sc->bge_flags & BGEF_FIBER_TBI) {
4830 /*
4831 * Since in TBI mode auto-polling can't be used we should poll
4832 * link status manually. Here we register pending link event
4833 * and trigger interrupt.
4834 */
4835 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4836 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4837 } else {
4838 /*
4839 * Do not touch PHY if we have link up. This could break
4840 * IPMI/ASF mode or produce extra input errors.
4841 * (extra input errors was reported for bcm5701 & bcm5704).
4842 */
4843 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4844 mii_tick(mii);
4845 }
4846
4847 bge_asf_driver_up(sc);
4848
4849 const bool ok = bge_watchdog(ifp);
4850
4851 if (ok && !sc->bge_detaching)
4852 callout_schedule(&sc->bge_timeout, hz);
4853
4854 mutex_exit(sc->sc_core_lock);
4855 }
4856
4857 static void
4858 bge_stats_update_regs(struct bge_softc *sc)
4859 {
4860 struct ifnet * const ifp = &sc->ethercom.ec_if;
4861
4862 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4863
4864 if_statadd_ref(nsr, if_collisions,
4865 CSR_READ_4(sc, BGE_MAC_STATS +
4866 offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
4867
4868 /*
4869 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4870 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4871 * (silicon bug). There's no reliable workaround so just
4872 * ignore the counter
4873 */
4874 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4875 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4876 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4877 if_statadd_ref(nsr, if_ierrors,
4878 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4879 }
4880 if_statadd_ref(nsr, if_ierrors,
4881 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
4882 if_statadd_ref(nsr, if_ierrors,
4883 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
4884
4885 IF_STAT_PUTREF(ifp);
4886
4887 if (sc->bge_flags & BGEF_RDMA_BUG) {
4888 uint32_t val, ucast, mcast, bcast;
4889
4890 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4891 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4892 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4893 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4894 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4895 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4896
4897 /*
4898 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4899 * frames, it's safe to disable workaround for DMA engine's
4900 * miscalculation of TXMBUF space.
4901 */
4902 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4903 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4904 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4905 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4906 else
4907 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4908 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4909 sc->bge_flags &= ~BGEF_RDMA_BUG;
4910 }
4911 }
4912 }
4913
4914 static void
4915 bge_stats_update(struct bge_softc *sc)
4916 {
4917 struct ifnet * const ifp = &sc->ethercom.ec_if;
4918 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4919
4920 #define READ_STAT(sc, stats, stat) \
4921 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4922
4923 uint64_t collisions =
4924 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4925 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4926 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4927 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
4928
4929 if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
4930 sc->bge_if_collisions = collisions;
4931
4932
4933 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4934 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4935 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4936 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4937 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4938 READ_STAT(sc, stats,
4939 xoffPauseFramesReceived.bge_addr_lo));
4940 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4941 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4942 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4943 READ_STAT(sc, stats,
4944 macControlFramesReceived.bge_addr_lo));
4945 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4946 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4947
4948 #undef READ_STAT
4949 }
4950
4951 /*
4952 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4953 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4954 * but when such padded frames employ the bge IP/TCP checksum offload,
4955 * the hardware checksum assist gives incorrect results (possibly
4956 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4957 * If we pad such runts with zeros, the onboard checksum comes out correct.
4958 */
4959 static inline int
4960 bge_cksum_pad(struct mbuf *pkt)
4961 {
4962 struct mbuf *last = NULL;
4963 int padlen;
4964
4965 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4966
4967 /* if there's only the packet-header and we can pad there, use it. */
4968 if (pkt->m_pkthdr.len == pkt->m_len &&
4969 M_TRAILINGSPACE(pkt) >= padlen) {
4970 last = pkt;
4971 } else {
4972 /*
4973 * Walk packet chain to find last mbuf. We will either
4974 * pad there, or append a new mbuf and pad it
4975 * (thus perhaps avoiding the bcm5700 dma-min bug).
4976 */
4977 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4978 continue; /* do nothing */
4979 }
4980
4981 /* `last' now points to last in chain. */
4982 if (M_TRAILINGSPACE(last) < padlen) {
4983 /* Allocate new empty mbuf, pad it. Compact later. */
4984 struct mbuf *n;
4985 MGET(n, M_DONTWAIT, MT_DATA);
4986 if (n == NULL)
4987 return ENOBUFS;
4988 n->m_len = 0;
4989 last->m_next = n;
4990 last = n;
4991 }
4992 }
4993
4994 KDASSERT(!M_READONLY(last));
4995 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4996
4997 /* Now zero the pad area, to avoid the bge cksum-assist bug */
4998 memset(mtod(last, char *) + last->m_len, 0, padlen);
4999 last->m_len += padlen;
5000 pkt->m_pkthdr.len += padlen;
5001 return 0;
5002 }
5003
5004 /*
5005 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
5006 */
5007 static inline int
5008 bge_compact_dma_runt(struct mbuf *pkt)
5009 {
5010 struct mbuf *m, *prev;
5011 int totlen;
5012
5013 prev = NULL;
5014 totlen = 0;
5015
5016 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
5017 int mlen = m->m_len;
5018 int shortfall = 8 - mlen ;
5019
5020 totlen += mlen;
5021 if (mlen == 0)
5022 continue;
5023 if (mlen >= 8)
5024 continue;
5025
5026 /*
5027 * If we get here, mbuf data is too small for DMA engine.
5028 * Try to fix by shuffling data to prev or next in chain.
5029 * If that fails, do a compacting deep-copy of the whole chain.
5030 */
5031
5032 /* Internal frag. If fits in prev, copy it there. */
5033 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5034 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5035 prev->m_len += mlen;
5036 m->m_len = 0;
5037 /* XXX stitch chain */
5038 prev->m_next = m_free(m);
5039 m = prev;
5040 continue;
5041 } else if (m->m_next != NULL &&
5042 M_TRAILINGSPACE(m) >= shortfall &&
5043 m->m_next->m_len >= (8 + shortfall)) {
5044 /* m is writable and have enough data in next, pull up. */
5045
5046 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5047 shortfall);
5048 m->m_len += shortfall;
5049 m->m_next->m_len -= shortfall;
5050 m->m_next->m_data += shortfall;
5051 } else if (m->m_next == NULL || 1) {
5052 /*
5053 * Got a runt at the very end of the packet.
5054 * borrow data from the tail of the preceding mbuf and
5055 * update its length in-place. (The original data is
5056 * still valid, so we can do this even if prev is not
5057 * writable.)
5058 */
5059
5060 /*
5061 * If we'd make prev a runt, just move all of its data.
5062 */
5063 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5064 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5065
5066 if ((prev->m_len - shortfall) < 8)
5067 shortfall = prev->m_len;
5068
5069 #ifdef notyet /* just do the safe slow thing for now */
5070 if (!M_READONLY(m)) {
5071 if (M_LEADINGSPACE(m) < shorfall) {
5072 void *m_dat;
5073 m_dat = M_BUFADDR(m);
5074 memmove(m_dat, mtod(m, void*),
5075 m->m_len);
5076 m->m_data = m_dat;
5077 }
5078 } else
5079 #endif /* just do the safe slow thing */
5080 {
5081 struct mbuf * n = NULL;
5082 int newprevlen = prev->m_len - shortfall;
5083
5084 MGET(n, M_NOWAIT, MT_DATA);
5085 if (n == NULL)
5086 return ENOBUFS;
5087 KASSERT(m->m_len + shortfall < MLEN
5088 /*,
5089 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5090
5091 /* first copy the data we're stealing from prev */
5092 memcpy(n->m_data, prev->m_data + newprevlen,
5093 shortfall);
5094
5095 /* update prev->m_len accordingly */
5096 prev->m_len -= shortfall;
5097
5098 /* copy data from runt m */
5099 memcpy(n->m_data + shortfall, m->m_data,
5100 m->m_len);
5101
5102 /* n holds what we stole from prev, plus m */
5103 n->m_len = shortfall + m->m_len;
5104
5105 /* stitch n into chain and free m */
5106 n->m_next = m->m_next;
5107 prev->m_next = n;
5108 /* KASSERT(m->m_next == NULL); */
5109 m->m_next = NULL;
5110 m_free(m);
5111 m = n; /* for continuing loop */
5112 }
5113 }
5114 }
5115 return 0;
5116 }
5117
5118 /*
5119 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5120 * pointers to descriptors.
5121 */
5122 static int
5123 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5124 {
5125 struct bge_tx_bd *f, *prev_f;
5126 uint32_t frag, cur;
5127 uint16_t csum_flags = 0;
5128 uint16_t txbd_tso_flags = 0;
5129 struct txdmamap_pool_entry *dma;
5130 bus_dmamap_t dmamap;
5131 bus_dma_tag_t dmatag;
5132 int i = 0;
5133 int use_tso, maxsegsize, error;
5134 bool have_vtag;
5135 uint16_t vtag;
5136 bool remap;
5137
5138 if (m_head->m_pkthdr.csum_flags) {
5139 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5140 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5141 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5142 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5143 }
5144
5145 /*
5146 * If we were asked to do an outboard checksum, and the NIC
5147 * has the bug where it sometimes adds in the Ethernet padding,
5148 * explicitly pad with zeros so the cksum will be correct either way.
5149 * (For now, do this for all chip versions, until newer
5150 * are confirmed to not require the workaround.)
5151 */
5152 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5153 #ifdef notyet
5154 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5155 #endif
5156 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5157 goto check_dma_bug;
5158
5159 if (bge_cksum_pad(m_head) != 0)
5160 return ENOBUFS;
5161
5162 check_dma_bug:
5163 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5164 goto doit;
5165
5166 /*
5167 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5168 * less than eight bytes. If we encounter a teeny mbuf
5169 * at the end of a chain, we can pad. Otherwise, copy.
5170 */
5171 if (bge_compact_dma_runt(m_head) != 0)
5172 return ENOBUFS;
5173
5174 doit:
5175 dma = SLIST_FIRST(&sc->txdma_list);
5176 if (dma == NULL) {
5177 return ENOBUFS;
5178 }
5179 dmamap = dma->dmamap;
5180 dmatag = sc->bge_dmatag;
5181 dma->is_dma32 = false;
5182
5183 /*
5184 * Set up any necessary TSO state before we start packing...
5185 */
5186 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5187 if (!use_tso) {
5188 maxsegsize = 0;
5189 } else { /* TSO setup */
5190 unsigned mss;
5191 struct ether_header *eh;
5192 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5193 unsigned bge_hlen;
5194 struct mbuf * m0 = m_head;
5195 struct ip *ip;
5196 struct tcphdr *th;
5197 int iphl, hlen;
5198
5199 /*
5200 * XXX It would be nice if the mbuf pkthdr had offset
5201 * fields for the protocol headers.
5202 */
5203
5204 eh = mtod(m0, struct ether_header *);
5205 switch (htons(eh->ether_type)) {
5206 case ETHERTYPE_IP:
5207 offset = ETHER_HDR_LEN;
5208 break;
5209
5210 case ETHERTYPE_VLAN:
5211 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5212 break;
5213
5214 default:
5215 /*
5216 * Don't support this protocol or encapsulation.
5217 */
5218 return ENOBUFS;
5219 }
5220
5221 /*
5222 * TCP/IP headers are in the first mbuf; we can do
5223 * this the easy way.
5224 */
5225 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5226 hlen = iphl + offset;
5227 if (__predict_false(m0->m_len <
5228 (hlen + sizeof(struct tcphdr)))) {
5229
5230 aprint_error_dev(sc->bge_dev,
5231 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5232 "not handled yet\n",
5233 m0->m_len, hlen+ sizeof(struct tcphdr));
5234 #ifdef NOTYET
5235 /*
5236 * XXX jonathan (at) NetBSD.org: untested.
5237 * how to force this branch to be taken?
5238 */
5239 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5240
5241 m_copydata(m0, offset, sizeof(ip), &ip);
5242 m_copydata(m0, hlen, sizeof(th), &th);
5243
5244 ip.ip_len = 0;
5245
5246 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5247 sizeof(ip.ip_len), &ip.ip_len);
5248
5249 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5250 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5251
5252 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5253 sizeof(th.th_sum), &th.th_sum);
5254
5255 hlen += th.th_off << 2;
5256 iptcp_opt_words = hlen;
5257 #else
5258 /*
5259 * if_wm "hard" case not yet supported, can we not
5260 * mandate it out of existence?
5261 */
5262 (void) ip; (void)th; (void) ip_tcp_hlen;
5263
5264 return ENOBUFS;
5265 #endif
5266 } else {
5267 ip = (struct ip *) (mtod(m0, char *) + offset);
5268 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5269 ip_tcp_hlen = iphl + (th->th_off << 2);
5270
5271 /* Total IP/TCP options, in 32-bit words */
5272 iptcp_opt_words = (ip_tcp_hlen
5273 - sizeof(struct tcphdr)
5274 - sizeof(struct ip)) >> 2;
5275 }
5276 if (BGE_IS_575X_PLUS(sc)) {
5277 th->th_sum = 0;
5278 csum_flags = 0;
5279 } else {
5280 /*
5281 * XXX jonathan (at) NetBSD.org: 5705 untested.
5282 * Requires TSO firmware patch for 5701/5703/5704.
5283 */
5284 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5285 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5286 }
5287
5288 mss = m_head->m_pkthdr.segsz;
5289 txbd_tso_flags |=
5290 BGE_TXBDFLAG_CPU_PRE_DMA |
5291 BGE_TXBDFLAG_CPU_POST_DMA;
5292
5293 /*
5294 * Our NIC TSO-assist assumes TSO has standard, optionless
5295 * IPv4 and TCP headers, which total 40 bytes. By default,
5296 * the NIC copies 40 bytes of IP/TCP header from the
5297 * supplied header into the IP/TCP header portion of
5298 * each post-TSO-segment. If the supplied packet has IP or
5299 * TCP options, we need to tell the NIC to copy those extra
5300 * bytes into each post-TSO header, in addition to the normal
5301 * 40-byte IP/TCP header (and to leave space accordingly).
5302 * Unfortunately, the driver encoding of option length
5303 * varies across different ASIC families.
5304 */
5305 tcp_seg_flags = 0;
5306 bge_hlen = ip_tcp_hlen >> 2;
5307 if (BGE_IS_5717_PLUS(sc)) {
5308 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5309 txbd_tso_flags |=
5310 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5311 } else if (BGE_IS_5705_PLUS(sc)) {
5312 tcp_seg_flags = bge_hlen << 11;
5313 } else {
5314 /* XXX iptcp_opt_words or bge_hlen ? */
5315 txbd_tso_flags |= iptcp_opt_words << 12;
5316 }
5317 maxsegsize = mss | tcp_seg_flags;
5318 ip->ip_len = htons(mss + ip_tcp_hlen);
5319 ip->ip_sum = 0;
5320
5321 } /* TSO setup */
5322
5323 have_vtag = vlan_has_tag(m_head);
5324 if (have_vtag)
5325 vtag = vlan_get_tag(m_head);
5326
5327 /*
5328 * Start packing the mbufs in this chain into
5329 * the fragment pointers. Stop when we run out
5330 * of fragments or hit the end of the mbuf chain.
5331 */
5332 remap = true;
5333 load_again:
5334 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5335 if (__predict_false(error)) {
5336 if (error == EFBIG && remap) {
5337 struct mbuf *m;
5338 remap = false;
5339 m = m_defrag(m_head, M_NOWAIT);
5340 if (m != NULL) {
5341 KASSERT(m == m_head);
5342 goto load_again;
5343 }
5344 }
5345 return error;
5346 }
5347 /*
5348 * Sanity check: avoid coming within 16 descriptors
5349 * of the end of the ring.
5350 */
5351 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5352 BGE_TSO_PRINTF(("%s: "
5353 " dmamap_load_mbuf too close to ring wrap\n",
5354 device_xname(sc->bge_dev)));
5355 goto fail_unload;
5356 }
5357
5358 /* Iterate over dmap-map fragments. */
5359 f = prev_f = NULL;
5360 cur = frag = *txidx;
5361
5362 for (i = 0; i < dmamap->dm_nsegs; i++) {
5363 f = &sc->bge_rdata->bge_tx_ring[frag];
5364 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5365 break;
5366
5367 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5368 f->bge_len = dmamap->dm_segs[i].ds_len;
5369 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5370 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5371 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5372 (prev_f != NULL &&
5373 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5374 ) {
5375 /*
5376 * watchdog timeout issue was observed with TSO,
5377 * limiting DMA address space to 32bits seems to
5378 * address the issue.
5379 */
5380 bus_dmamap_unload(dmatag, dmamap);
5381 dmatag = sc->bge_dmatag32;
5382 dmamap = dma->dmamap32;
5383 dma->is_dma32 = true;
5384 remap = true;
5385 goto load_again;
5386 }
5387
5388 /*
5389 * For 5751 and follow-ons, for TSO we must turn
5390 * off checksum-assist flag in the tx-descr, and
5391 * supply the ASIC-revision-specific encoding
5392 * of TSO flags and segsize.
5393 */
5394 if (use_tso) {
5395 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5396 f->bge_rsvd = maxsegsize;
5397 f->bge_flags = csum_flags | txbd_tso_flags;
5398 } else {
5399 f->bge_rsvd = 0;
5400 f->bge_flags =
5401 (csum_flags | txbd_tso_flags) & 0x0fff;
5402 }
5403 } else {
5404 f->bge_rsvd = 0;
5405 f->bge_flags = csum_flags;
5406 }
5407
5408 if (have_vtag) {
5409 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5410 f->bge_vlan_tag = vtag;
5411 } else {
5412 f->bge_vlan_tag = 0;
5413 }
5414 prev_f = f;
5415 cur = frag;
5416 BGE_INC(frag, BGE_TX_RING_CNT);
5417 }
5418
5419 if (i < dmamap->dm_nsegs) {
5420 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5421 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5422 goto fail_unload;
5423 }
5424
5425 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5426 BUS_DMASYNC_PREWRITE);
5427
5428 if (frag == sc->bge_tx_saved_considx) {
5429 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5430 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5431
5432 goto fail_unload;
5433 }
5434
5435 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5436 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5437 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5438 sc->txdma[cur] = dma;
5439 sc->bge_txcnt += dmamap->dm_nsegs;
5440
5441 *txidx = frag;
5442
5443 return 0;
5444
5445 fail_unload:
5446 bus_dmamap_unload(dmatag, dmamap);
5447
5448 return ENOBUFS;
5449 }
5450
5451
5452 static void
5453 bge_start(struct ifnet *ifp)
5454 {
5455 struct bge_softc * const sc = ifp->if_softc;
5456
5457 mutex_enter(sc->sc_core_lock);
5458 bge_start_locked(ifp);
5459 mutex_exit(sc->sc_core_lock);
5460 }
5461
5462 /*
5463 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5464 * to the mbuf data regions directly in the transmit descriptors.
5465 */
5466 static void
5467 bge_start_locked(struct ifnet *ifp)
5468 {
5469 struct bge_softc * const sc = ifp->if_softc;
5470 struct mbuf *m_head = NULL;
5471 struct mbuf *m;
5472 uint32_t prodidx;
5473 int pkts = 0;
5474 int error;
5475
5476 if ((sc->bge_if_flags & IFF_RUNNING) != IFF_RUNNING)
5477 return;
5478
5479 prodidx = sc->bge_tx_prodidx;
5480
5481 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5482 IFQ_POLL(&ifp->if_snd, m_head);
5483 if (m_head == NULL)
5484 break;
5485
5486 #if 0
5487 /*
5488 * XXX
5489 * safety overkill. If this is a fragmented packet chain
5490 * with delayed TCP/UDP checksums, then only encapsulate
5491 * it if we have enough descriptors to handle the entire
5492 * chain at once.
5493 * (paranoia -- may not actually be needed)
5494 */
5495 if (m_head->m_flags & M_FIRSTFRAG &&
5496 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5497 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5498 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5499 ifp->if_flags |= IFF_OACTIVE;
5500 break;
5501 }
5502 }
5503 #endif
5504
5505 /*
5506 * Pack the data into the transmit ring. If we
5507 * don't have room, set the OACTIVE flag and wait
5508 * for the NIC to drain the ring.
5509 */
5510 error = bge_encap(sc, m_head, &prodidx);
5511 if (__predict_false(error)) {
5512 if (SLIST_EMPTY(&sc->txdma_list)) {
5513 /* just wait for the transmit ring to drain */
5514 break;
5515 }
5516 IFQ_DEQUEUE(&ifp->if_snd, m);
5517 KASSERT(m == m_head);
5518 m_freem(m_head);
5519 continue;
5520 }
5521
5522 /* now we are committed to transmit the packet */
5523 IFQ_DEQUEUE(&ifp->if_snd, m);
5524 KASSERT(m == m_head);
5525 pkts++;
5526
5527 /*
5528 * If there's a BPF listener, bounce a copy of this frame
5529 * to him.
5530 */
5531 bpf_mtap(ifp, m_head, BPF_D_OUT);
5532 }
5533 if (pkts == 0)
5534 return;
5535
5536 /* Transmit */
5537 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5538 /* 5700 b2 errata */
5539 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5540 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5541
5542 sc->bge_tx_prodidx = prodidx;
5543 sc->bge_tx_lastsent = time_uptime;
5544 sc->bge_tx_sending = true;
5545 }
5546
5547 static int
5548 bge_init(struct ifnet *ifp)
5549 {
5550 struct bge_softc * const sc = ifp->if_softc;
5551
5552 mutex_enter(sc->sc_core_lock);
5553 int ret = bge_init_locked(ifp);
5554 mutex_exit(sc->sc_core_lock);
5555
5556 return ret;
5557 }
5558
5559
5560 static int
5561 bge_init_locked(struct ifnet *ifp)
5562 {
5563 struct bge_softc * const sc = ifp->if_softc;
5564 const uint16_t *m;
5565 uint32_t mode, reg;
5566 int error = 0;
5567
5568 KASSERT(IFNET_LOCKED(ifp));
5569 KASSERT(mutex_owned(sc->sc_core_lock));
5570 KASSERT(ifp == &sc->ethercom.ec_if);
5571
5572 /* Cancel pending I/O and flush buffers. */
5573 bge_stop_locked(ifp, 0);
5574
5575 bge_stop_fw(sc);
5576 bge_sig_pre_reset(sc, BGE_RESET_START);
5577 bge_reset(sc);
5578 bge_sig_legacy(sc, BGE_RESET_START);
5579
5580 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5581 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5582 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5583 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5584 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5585
5586 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5587 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5588 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5589 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5590
5591 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5592 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5593 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5594 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5595
5596 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5597 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5598 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5599 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5600 }
5601
5602 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5603 pcireg_t aercap;
5604
5605 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5606 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5607 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5608 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5609 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5610
5611 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5612 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5613 | BGE_PCIE_EIDLE_DELAY_13CLK;
5614 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5615
5616 /* Clear correctable error */
5617 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5618 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5619 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5620 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5621
5622 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5623 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5624 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5625 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5626 }
5627
5628 bge_sig_post_reset(sc, BGE_RESET_START);
5629
5630 bge_chipinit(sc);
5631
5632 /*
5633 * Init the various state machines, ring
5634 * control blocks and firmware.
5635 */
5636 error = bge_blockinit(sc);
5637 if (error != 0) {
5638 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5639 error);
5640 return error;
5641 }
5642
5643 /* 5718 step 25, 57XX step 54 */
5644 /* Specify MTU. */
5645 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5646 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5647
5648 /* 5718 step 23 */
5649 /* Load our MAC address. */
5650 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5651 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5652 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5653 ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5654
5655 /* Enable or disable promiscuous mode as needed. */
5656 if (ifp->if_flags & IFF_PROMISC)
5657 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5658 else
5659 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5660
5661 /* Program multicast filter. */
5662 bge_setmulti(sc);
5663
5664 /* Init RX ring. */
5665 bge_init_rx_ring_std(sc);
5666
5667 /*
5668 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5669 * memory to insure that the chip has in fact read the first
5670 * entry of the ring.
5671 */
5672 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5673 u_int i;
5674 for (i = 0; i < 10; i++) {
5675 DELAY(20);
5676 uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5677 if (v == (MCLBYTES - ETHER_ALIGN))
5678 break;
5679 }
5680 if (i == 10)
5681 aprint_error_dev(sc->bge_dev,
5682 "5705 A0 chip failed to load RX ring\n");
5683 }
5684
5685 /* Init jumbo RX ring. */
5686 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5687 bge_init_rx_ring_jumbo(sc);
5688
5689 /* Init our RX return ring index */
5690 sc->bge_rx_saved_considx = 0;
5691
5692 /* Init TX ring. */
5693 bge_init_tx_ring(sc);
5694
5695 /* 5718 step 63, 57XX step 94 */
5696 /* Enable TX MAC state machine lockup fix. */
5697 mode = CSR_READ_4(sc, BGE_TX_MODE);
5698 if (BGE_IS_5755_PLUS(sc) ||
5699 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5700 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5701 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5702 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5703 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5704 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5705 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5706 }
5707
5708 /* Turn on transmitter */
5709 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5710 /* 5718 step 64 */
5711 DELAY(100);
5712
5713 /* 5718 step 65, 57XX step 95 */
5714 /* Turn on receiver */
5715 mode = CSR_READ_4(sc, BGE_RX_MODE);
5716 if (BGE_IS_5755_PLUS(sc))
5717 mode |= BGE_RXMODE_IPV6_ENABLE;
5718 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5719 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5720 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5721 /* 5718 step 66 */
5722 DELAY(10);
5723
5724 /* 5718 step 12, 57XX step 37 */
5725 /*
5726 * XXX Doucments of 5718 series and 577xx say the recommended value
5727 * is 1, but tg3 set 1 only on 57765 series.
5728 */
5729 if (BGE_IS_57765_PLUS(sc))
5730 reg = 1;
5731 else
5732 reg = 2;
5733 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5734
5735 /* Tell firmware we're alive. */
5736 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5737
5738 /* Enable host interrupts. */
5739 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5740 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5741 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5742
5743 if ((error = bge_ifmedia_upd(ifp)) != 0)
5744 goto out;
5745
5746 /* IFNET_LOCKED asserted above */
5747 ifp->if_flags |= IFF_RUNNING;
5748
5749 callout_schedule(&sc->bge_timeout, hz);
5750
5751 out:
5752 sc->bge_if_flags = ifp->if_flags;
5753
5754 return error;
5755 }
5756
5757 /*
5758 * Set media options.
5759 */
5760 static int
5761 bge_ifmedia_upd(struct ifnet *ifp)
5762 {
5763 struct bge_softc * const sc = ifp->if_softc;
5764 struct mii_data * const mii = &sc->bge_mii;
5765 struct ifmedia * const ifm = &sc->bge_ifmedia;
5766 int rc;
5767
5768 /* If this is a 1000baseX NIC, enable the TBI port. */
5769 if (sc->bge_flags & BGEF_FIBER_TBI) {
5770 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5771 return EINVAL;
5772 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5773 case IFM_AUTO:
5774 /*
5775 * The BCM5704 ASIC appears to have a special
5776 * mechanism for programming the autoneg
5777 * advertisement registers in TBI mode.
5778 */
5779 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5780 uint32_t sgdig;
5781 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5782 if (sgdig & BGE_SGDIGSTS_DONE) {
5783 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5784 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5785 sgdig |= BGE_SGDIGCFG_AUTO |
5786 BGE_SGDIGCFG_PAUSE_CAP |
5787 BGE_SGDIGCFG_ASYM_PAUSE;
5788 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5789 sgdig | BGE_SGDIGCFG_SEND);
5790 DELAY(5);
5791 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5792 sgdig);
5793 }
5794 }
5795 break;
5796 case IFM_1000_SX:
5797 if ((ifm->ifm_media & IFM_FDX) != 0) {
5798 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5799 BGE_MACMODE_HALF_DUPLEX);
5800 } else {
5801 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5802 BGE_MACMODE_HALF_DUPLEX);
5803 }
5804 DELAY(40);
5805 break;
5806 default:
5807 return EINVAL;
5808 }
5809 /* XXX 802.3x flow control for 1000BASE-SX */
5810 return 0;
5811 }
5812
5813 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5814 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5815 uint32_t reg;
5816
5817 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5818 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5819 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5820 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5821 }
5822 }
5823
5824 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5825 if ((rc = mii_mediachg(mii)) == ENXIO)
5826 return 0;
5827
5828 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5829 uint32_t reg;
5830
5831 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5832 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5833 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5834 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5835 delay(40);
5836 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5837 }
5838 }
5839
5840 /*
5841 * Force an interrupt so that we will call bge_link_upd
5842 * if needed and clear any pending link state attention.
5843 * Without this we are not getting any further interrupts
5844 * for link state changes and thus will not UP the link and
5845 * not be able to send in bge_start. The only way to get
5846 * things working was to receive a packet and get a RX intr.
5847 */
5848 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5849 sc->bge_flags & BGEF_IS_5788)
5850 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5851 else
5852 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5853
5854 return rc;
5855 }
5856
5857 /*
5858 * Report current media status.
5859 */
5860 static void
5861 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5862 {
5863 struct bge_softc * const sc = ifp->if_softc;
5864 struct mii_data * const mii = &sc->bge_mii;
5865
5866 if (sc->bge_flags & BGEF_FIBER_TBI) {
5867 ifmr->ifm_status = IFM_AVALID;
5868 ifmr->ifm_active = IFM_ETHER;
5869 if (CSR_READ_4(sc, BGE_MAC_STS) &
5870 BGE_MACSTAT_TBI_PCS_SYNCHED)
5871 ifmr->ifm_status |= IFM_ACTIVE;
5872 ifmr->ifm_active |= IFM_1000_SX;
5873 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5874 ifmr->ifm_active |= IFM_HDX;
5875 else
5876 ifmr->ifm_active |= IFM_FDX;
5877 return;
5878 }
5879
5880 mii_pollstat(mii);
5881 ifmr->ifm_status = mii->mii_media_status;
5882 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5883 sc->bge_flowflags;
5884 }
5885
5886 static int
5887 bge_ifflags_cb(struct ethercom *ec)
5888 {
5889 struct ifnet * const ifp = &ec->ec_if;
5890 struct bge_softc * const sc = ifp->if_softc;
5891 int ret = 0;
5892
5893 KASSERT(IFNET_LOCKED(ifp));
5894 mutex_enter(sc->sc_core_lock);
5895
5896 u_short change = ifp->if_flags ^ sc->bge_if_flags;
5897
5898 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
5899 ret = ENETRESET;
5900 } else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
5901 if ((ifp->if_flags & IFF_PROMISC) == 0)
5902 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5903 else
5904 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5905
5906 bge_setmulti(sc);
5907 }
5908
5909 sc->bge_if_flags = ifp->if_flags;
5910 mutex_exit(sc->sc_core_lock);
5911
5912 return ret;
5913 }
5914
5915 static int
5916 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5917 {
5918 struct bge_softc * const sc = ifp->if_softc;
5919 struct ifreq * const ifr = (struct ifreq *) data;
5920 int error = 0;
5921
5922 switch (command) {
5923 case SIOCADDMULTI:
5924 case SIOCDELMULTI:
5925 break;
5926 default:
5927 KASSERT(IFNET_LOCKED(ifp));
5928 }
5929
5930 const int s = splnet();
5931
5932 switch (command) {
5933 case SIOCSIFMEDIA:
5934 mutex_enter(sc->sc_core_lock);
5935 /* XXX Flow control is not supported for 1000BASE-SX */
5936 if (sc->bge_flags & BGEF_FIBER_TBI) {
5937 ifr->ifr_media &= ~IFM_ETH_FMASK;
5938 sc->bge_flowflags = 0;
5939 }
5940
5941 /* Flow control requires full-duplex mode. */
5942 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5943 (ifr->ifr_media & IFM_FDX) == 0) {
5944 ifr->ifr_media &= ~IFM_ETH_FMASK;
5945 }
5946 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5947 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5948 /* We can do both TXPAUSE and RXPAUSE. */
5949 ifr->ifr_media |=
5950 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5951 }
5952 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5953 }
5954 mutex_exit(sc->sc_core_lock);
5955
5956 if (sc->bge_flags & BGEF_FIBER_TBI) {
5957 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5958 command);
5959 } else {
5960 struct mii_data * const mii = &sc->bge_mii;
5961 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5962 command);
5963 }
5964 break;
5965 default:
5966 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5967 break;
5968
5969 error = 0;
5970
5971 if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
5972 mutex_enter(sc->sc_core_lock);
5973 if (sc->bge_if_flags & IFF_RUNNING) {
5974 bge_setmulti(sc);
5975 }
5976 mutex_exit(sc->sc_core_lock);
5977 }
5978 break;
5979 }
5980
5981 splx(s);
5982
5983 return error;
5984 }
5985
5986 static bool
5987 bge_watchdog_check(struct bge_softc * const sc)
5988 {
5989
5990 KASSERT(mutex_owned(sc->sc_core_lock));
5991
5992 if (!sc->bge_tx_sending)
5993 return true;
5994
5995 if (time_uptime - sc->bge_tx_lastsent <= bge_watchdog_timeout)
5996 return true;
5997
5998 /* If pause frames are active then don't reset the hardware. */
5999 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
6000 const uint32_t status = CSR_READ_4(sc, BGE_RX_STS);
6001 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
6002 /*
6003 * If link partner has us in XOFF state then wait for
6004 * the condition to clear.
6005 */
6006 CSR_WRITE_4(sc, BGE_RX_STS, status);
6007 sc->bge_tx_lastsent = time_uptime;
6008 return true;
6009 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
6010 (status & BGE_RXSTAT_RCVD_XON) != 0) {
6011 /*
6012 * If link partner has us in XOFF state then wait for
6013 * the condition to clear.
6014 */
6015 CSR_WRITE_4(sc, BGE_RX_STS, status);
6016 sc->bge_tx_lastsent = time_uptime;
6017 return true;
6018 }
6019 /*
6020 * Any other condition is unexpected and the controller
6021 * should be reset.
6022 */
6023 }
6024
6025 return false;
6026 }
6027
6028 static bool
6029 bge_watchdog(struct ifnet *ifp)
6030 {
6031 struct bge_softc * const sc = ifp->if_softc;
6032
6033 KASSERT(mutex_owned(sc->sc_core_lock));
6034
6035 if (!sc->sc_trigger_reset && bge_watchdog_check(sc))
6036 return true;
6037
6038 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
6039
6040 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0)
6041 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
6042
6043 return false;
6044 }
6045
6046 /*
6047 * Perform an interface watchdog reset.
6048 */
6049 static void
6050 bge_handle_reset_work(struct work *work, void *arg)
6051 {
6052 struct bge_softc * const sc = arg;
6053 struct ifnet * const ifp = &sc->ethercom.ec_if;
6054
6055 /* Don't want ioctl operations to happen */
6056 IFNET_LOCK(ifp);
6057
6058 /* reset the interface. */
6059 bge_init(ifp);
6060
6061 IFNET_UNLOCK(ifp);
6062
6063 /*
6064 * There are still some upper layer processing which call
6065 * ifp->if_start(). e.g. ALTQ or one CPU system
6066 */
6067 /* Try to get more packets going. */
6068 ifp->if_start(ifp);
6069
6070 atomic_store_relaxed(&sc->sc_reset_pending, 0);
6071 }
6072
6073 static void
6074 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
6075 {
6076 int i;
6077
6078 BGE_CLRBIT_FLUSH(sc, reg, bit);
6079
6080 for (i = 0; i < 1000; i++) {
6081 delay(100);
6082 if ((CSR_READ_4(sc, reg) & bit) == 0)
6083 return;
6084 }
6085
6086 /*
6087 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
6088 * on some environment (and once after boot?)
6089 */
6090 if (reg != BGE_SRS_MODE)
6091 aprint_error_dev(sc->bge_dev,
6092 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
6093 (u_long)reg, bit);
6094 }
6095
6096
6097 static void
6098 bge_stop(struct ifnet *ifp, int disable)
6099 {
6100 struct bge_softc * const sc = ifp->if_softc;
6101
6102 ASSERT_SLEEPABLE();
6103
6104 mutex_enter(sc->sc_core_lock);
6105 bge_stop_locked(ifp, disable);
6106 mutex_exit(sc->sc_core_lock);
6107 }
6108
6109 /*
6110 * Stop the adapter and free any mbufs allocated to the
6111 * RX and TX lists.
6112 */
6113 static void
6114 bge_stop_locked(struct ifnet *ifp, int disable)
6115 {
6116 struct bge_softc * const sc = ifp->if_softc;
6117
6118 KASSERT(mutex_owned(sc->sc_core_lock));
6119
6120 if (disable) {
6121 sc->bge_detaching = true;
6122 callout_halt(&sc->bge_timeout, NULL);
6123 } else
6124 callout_stop(&sc->bge_timeout);
6125
6126 /* Disable host interrupts. */
6127 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6128 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
6129
6130 /*
6131 * Tell firmware we're shutting down.
6132 */
6133 bge_stop_fw(sc);
6134 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6135
6136 /*
6137 * Disable all of the receiver blocks.
6138 */
6139 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6140 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6141 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6142 if (BGE_IS_5700_FAMILY(sc))
6143 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6144 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6145 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6146 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6147
6148 /*
6149 * Disable all of the transmit blocks.
6150 */
6151 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6152 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6153 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6154 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6155 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6156 if (BGE_IS_5700_FAMILY(sc))
6157 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6158 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6159
6160 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6161 delay(40);
6162
6163 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6164
6165 /*
6166 * Shut down all of the memory managers and related
6167 * state machines.
6168 */
6169 /* 5718 step 5a,5b */
6170 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6171 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6172 if (BGE_IS_5700_FAMILY(sc))
6173 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6174
6175 /* 5718 step 5c,5d */
6176 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6177 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6178
6179 if (BGE_IS_5700_FAMILY(sc)) {
6180 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6181 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6182 }
6183
6184 bge_reset(sc);
6185 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6186 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6187
6188 /*
6189 * Keep the ASF firmware running if up.
6190 */
6191 if (sc->bge_asf_mode & ASF_STACKUP)
6192 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6193 else
6194 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6195
6196 /* Free the RX lists. */
6197 bge_free_rx_ring_std(sc);
6198
6199 /* Free jumbo RX list. */
6200 if (BGE_IS_JUMBO_CAPABLE(sc))
6201 bge_free_rx_ring_jumbo(sc);
6202
6203 /* Free TX buffers. */
6204 bge_free_tx_ring(sc, disable);
6205
6206 /*
6207 * Isolate/power down the PHY.
6208 */
6209 if (!(sc->bge_flags & BGEF_FIBER_TBI))
6210 mii_down(&sc->bge_mii);
6211
6212 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6213
6214 /* Clear MAC's link state (PHY may still have link UP). */
6215 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6216
6217 ifp->if_flags &= ~IFF_RUNNING;
6218 }
6219
6220 static void
6221 bge_link_upd(struct bge_softc *sc)
6222 {
6223 struct ifnet * const ifp = &sc->ethercom.ec_if;
6224 struct mii_data * const mii = &sc->bge_mii;
6225 uint32_t status;
6226 uint16_t phyval;
6227 int link;
6228
6229 /* Clear 'pending link event' flag */
6230 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6231
6232 /*
6233 * Process link state changes.
6234 * Grrr. The link status word in the status block does
6235 * not work correctly on the BCM5700 rev AX and BX chips,
6236 * according to all available information. Hence, we have
6237 * to enable MII interrupts in order to properly obtain
6238 * async link changes. Unfortunately, this also means that
6239 * we have to read the MAC status register to detect link
6240 * changes, thereby adding an additional register access to
6241 * the interrupt handler.
6242 */
6243
6244 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6245 status = CSR_READ_4(sc, BGE_MAC_STS);
6246 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6247 mii_pollstat(mii);
6248
6249 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6250 mii->mii_media_status & IFM_ACTIVE &&
6251 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6252 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6253 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6254 (!(mii->mii_media_status & IFM_ACTIVE) ||
6255 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6256 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6257
6258 /* Clear the interrupt */
6259 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6260 BGE_EVTENB_MI_INTERRUPT);
6261 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6262 BRGPHY_MII_ISR, &phyval);
6263 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6264 BRGPHY_MII_IMR, BRGPHY_INTRS);
6265 }
6266 return;
6267 }
6268
6269 if (sc->bge_flags & BGEF_FIBER_TBI) {
6270 status = CSR_READ_4(sc, BGE_MAC_STS);
6271 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6272 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6273 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6274 if (BGE_ASICREV(sc->bge_chipid)
6275 == BGE_ASICREV_BCM5704) {
6276 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6277 BGE_MACMODE_TBI_SEND_CFGS);
6278 DELAY(40);
6279 }
6280 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6281 if_link_state_change(ifp, LINK_STATE_UP);
6282 }
6283 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6284 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6285 if_link_state_change(ifp, LINK_STATE_DOWN);
6286 }
6287 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6288 /*
6289 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6290 * bit in status word always set. Workaround this bug by
6291 * reading PHY link status directly.
6292 */
6293 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6294 BGE_STS_LINK : 0;
6295
6296 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6297 mii_pollstat(mii);
6298
6299 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6300 mii->mii_media_status & IFM_ACTIVE &&
6301 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6302 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6303 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6304 (!(mii->mii_media_status & IFM_ACTIVE) ||
6305 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6306 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6307 }
6308 } else {
6309 /*
6310 * For controllers that call mii_tick, we have to poll
6311 * link status.
6312 */
6313 mii_pollstat(mii);
6314 }
6315
6316 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6317 uint32_t reg, scale;
6318
6319 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6320 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6321 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6322 scale = 65;
6323 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6324 scale = 6;
6325 else
6326 scale = 12;
6327
6328 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6329 ~BGE_MISCCFG_TIMER_PRESCALER;
6330 reg |= scale << 1;
6331 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6332 }
6333 /* Clear the attention */
6334 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6335 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6336 BGE_MACSTAT_LINK_CHANGED);
6337 }
6338
6339 static int
6340 bge_sysctl_verify(SYSCTLFN_ARGS)
6341 {
6342 int error, t;
6343 struct sysctlnode node;
6344
6345 node = *rnode;
6346 t = *(int*)rnode->sysctl_data;
6347 node.sysctl_data = &t;
6348 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6349 if (error || newp == NULL)
6350 return error;
6351
6352 #if 0
6353 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6354 node.sysctl_num, rnode->sysctl_num));
6355 #endif
6356
6357 if (node.sysctl_num == bge_rxthresh_nodenum) {
6358 if (t < 0 || t >= NBGE_RX_THRESH)
6359 return EINVAL;
6360 bge_update_all_threshes(t);
6361 } else
6362 return EINVAL;
6363
6364 *(int*)rnode->sysctl_data = t;
6365
6366 return 0;
6367 }
6368
6369 /*
6370 * Set up sysctl(3) MIB, hw.bge.*.
6371 */
6372 static void
6373 bge_sysctl_init(struct bge_softc *sc)
6374 {
6375 int rc, bge_root_num;
6376 const struct sysctlnode *node;
6377
6378 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6379 0, CTLTYPE_NODE, "bge",
6380 SYSCTL_DESCR("BGE interface controls"),
6381 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6382 goto out;
6383 }
6384
6385 bge_root_num = node->sysctl_num;
6386
6387 /* BGE Rx interrupt mitigation level */
6388 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6389 CTLFLAG_READWRITE,
6390 CTLTYPE_INT, "rx_lvl",
6391 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6392 bge_sysctl_verify, 0,
6393 &bge_rx_thresh_lvl,
6394 0, CTL_HW, bge_root_num, CTL_CREATE,
6395 CTL_EOL)) != 0) {
6396 goto out;
6397 }
6398
6399 bge_rxthresh_nodenum = node->sysctl_num;
6400
6401 #ifdef BGE_DEBUG
6402 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6403 CTLFLAG_READWRITE,
6404 CTLTYPE_BOOL, "trigger_reset",
6405 SYSCTL_DESCR("Trigger an interface reset"),
6406 NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE,
6407 CTL_EOL)) != 0) {
6408 goto out;
6409 }
6410 #endif
6411 return;
6412
6413 out:
6414 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6415 }
6416
6417 #ifdef BGE_DEBUG
6418 void
6419 bge_debug_info(struct bge_softc *sc)
6420 {
6421
6422 printf("Hardware Flags:\n");
6423 if (BGE_IS_57765_PLUS(sc))
6424 printf(" - 57765 Plus\n");
6425 if (BGE_IS_5717_PLUS(sc))
6426 printf(" - 5717 Plus\n");
6427 if (BGE_IS_5755_PLUS(sc))
6428 printf(" - 5755 Plus\n");
6429 if (BGE_IS_575X_PLUS(sc))
6430 printf(" - 575X Plus\n");
6431 if (BGE_IS_5705_PLUS(sc))
6432 printf(" - 5705 Plus\n");
6433 if (BGE_IS_5714_FAMILY(sc))
6434 printf(" - 5714 Family\n");
6435 if (BGE_IS_5700_FAMILY(sc))
6436 printf(" - 5700 Family\n");
6437 if (sc->bge_flags & BGEF_IS_5788)
6438 printf(" - 5788\n");
6439 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6440 printf(" - Supports Jumbo Frames\n");
6441 if (sc->bge_flags & BGEF_NO_EEPROM)
6442 printf(" - No EEPROM\n");
6443 if (sc->bge_flags & BGEF_PCIX)
6444 printf(" - PCI-X Bus\n");
6445 if (sc->bge_flags & BGEF_PCIE)
6446 printf(" - PCI Express Bus\n");
6447 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6448 printf(" - RX Alignment Bug\n");
6449 if (sc->bge_flags & BGEF_APE)
6450 printf(" - APE\n");
6451 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6452 printf(" - CPMU\n");
6453 if (sc->bge_flags & BGEF_TSO)
6454 printf(" - TSO\n");
6455 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6456 printf(" - TAGGED_STATUS\n");
6457
6458 /* PHY related */
6459 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6460 printf(" - No 3 LEDs\n");
6461 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6462 printf(" - CRC bug\n");
6463 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6464 printf(" - ADC bug\n");
6465 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6466 printf(" - 5704 A0 bug\n");
6467 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6468 printf(" - jitter bug\n");
6469 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6470 printf(" - BER bug\n");
6471 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6472 printf(" - adjust trim\n");
6473 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6474 printf(" - no wirespeed\n");
6475
6476 /* ASF related */
6477 if (sc->bge_asf_mode & ASF_ENABLE)
6478 printf(" - ASF enable\n");
6479 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6480 printf(" - ASF new handshake\n");
6481 if (sc->bge_asf_mode & ASF_STACKUP)
6482 printf(" - ASF stackup\n");
6483 }
6484 #endif /* BGE_DEBUG */
6485
6486 static int
6487 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6488 {
6489 prop_dictionary_t dict;
6490 prop_data_t ea;
6491
6492 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6493 return 1;
6494
6495 dict = device_properties(sc->bge_dev);
6496 ea = prop_dictionary_get(dict, "mac-address");
6497 if (ea != NULL) {
6498 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6499 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6500 memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
6501 return 0;
6502 }
6503
6504 return 1;
6505 }
6506
6507 static int
6508 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6509 {
6510 uint32_t mac_addr;
6511
6512 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6513 if ((mac_addr >> 16) == 0x484b) {
6514 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6515 ether_addr[1] = (uint8_t)mac_addr;
6516 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6517 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6518 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6519 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6520 ether_addr[5] = (uint8_t)mac_addr;
6521 return 0;
6522 }
6523 return 1;
6524 }
6525
6526 static int
6527 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6528 {
6529 int mac_offset = BGE_EE_MAC_OFFSET;
6530
6531 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6532 mac_offset = BGE_EE_MAC_OFFSET_5906;
6533
6534 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6535 ETHER_ADDR_LEN));
6536 }
6537
6538 static int
6539 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6540 {
6541
6542 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6543 return 1;
6544
6545 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6546 ETHER_ADDR_LEN));
6547 }
6548
6549 static int
6550 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6551 {
6552 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6553 /* NOTE: Order is critical */
6554 bge_get_eaddr_fw,
6555 bge_get_eaddr_mem,
6556 bge_get_eaddr_nvram,
6557 bge_get_eaddr_eeprom,
6558 NULL
6559 };
6560 const bge_eaddr_fcn_t *func;
6561
6562 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6563 if ((*func)(sc, eaddr) == 0)
6564 break;
6565 }
6566 return *func == NULL ? ENXIO : 0;
6567 }
6568