if_bge.c revision 1.393 1 /* $NetBSD: if_bge.c,v 1.393 2024/07/05 04:31:51 rin Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.393 2024/07/05 04:31:51 rin Exp $");
83
84 #include <sys/param.h>
85 #include <sys/types.h>
86
87 #include <sys/callout.h>
88 #include <sys/device.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mbuf.h>
92 #include <sys/rndsource.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/sysctl.h>
96 #include <sys/systm.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 #include <net/bpf.h>
103
104 /* Headers for TCP Segmentation Offload (TSO) */
105 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
106 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
107 #include <netinet/ip.h> /* for struct ip */
108 #include <netinet/tcp.h> /* for struct tcphdr */
109
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/miidevs.h>
117 #include <dev/mii/brgphyreg.h>
118
119 #include <dev/pci/if_bgereg.h>
120 #include <dev/pci/if_bgevar.h>
121
122 #include <prop/proplib.h>
123
124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125
126
127 /*
128 * Tunable thresholds for rx-side bge interrupt mitigation.
129 */
130
131 /*
132 * The pairs of values below were obtained from empirical measurement
133 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
134 * interrupt for every N packets received, where N is, approximately,
135 * the second value (rx_max_bds) in each pair. The values are chosen
136 * such that moving from one pair to the succeeding pair was observed
137 * to roughly halve interrupt rate under sustained input packet load.
138 * The values were empirically chosen to avoid overflowing internal
139 * limits on the bcm5700: increasing rx_ticks much beyond 600
140 * results in internal wrapping and higher interrupt rates.
141 * The limit of 46 frames was chosen to match NFS workloads.
142 *
143 * These values also work well on bcm5701, bcm5704C, and (less
144 * tested) bcm5703. On other chipsets, (including the Altima chip
145 * family), the larger values may overflow internal chip limits,
146 * leading to increasing interrupt rates rather than lower interrupt
147 * rates.
148 *
149 * Applications using heavy interrupt mitigation (interrupting every
150 * 32 or 46 frames) in both directions may need to increase the TCP
151 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
152 * full link bandwidth, due to ACKs and window updates lingering
153 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
154 */
155 static const struct bge_load_rx_thresh {
156 int rx_ticks;
157 int rx_max_bds; }
158 bge_rx_threshes[] = {
159 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
160 { 32, 2 },
161 { 50, 4 },
162 { 100, 8 },
163 { 192, 16 },
164 { 416, 32 },
165 { 598, 46 }
166 };
167 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
168
169 /* XXX patchable; should be sysctl'able */
170 static int bge_auto_thresh = 1;
171 static int bge_rx_thresh_lvl;
172
173 static int bge_rxthresh_nodenum;
174
175 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
176
177 static uint32_t bge_chipid(const struct pci_attach_args *);
178 static int bge_can_use_msi(struct bge_softc *);
179 static int bge_probe(device_t, cfdata_t, void *);
180 static void bge_attach(device_t, device_t, void *);
181 static int bge_detach(device_t, int);
182 static void bge_release_resources(struct bge_softc *);
183
184 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
185 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
186 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
187 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
188 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
189
190 static void bge_txeof(struct bge_softc *);
191 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
192 static void bge_rxeof(struct bge_softc *);
193
194 static void bge_asf_driver_up (struct bge_softc *);
195 static void bge_tick(void *);
196 static void bge_stats_update(struct bge_softc *);
197 static void bge_stats_update_regs(struct bge_softc *);
198 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
199
200 static int bge_intr(void *);
201 static void bge_start(struct ifnet *);
202 static void bge_start_locked(struct ifnet *);
203 static int bge_ifflags_cb(struct ethercom *);
204 static int bge_ioctl(struct ifnet *, u_long, void *);
205 static int bge_init(struct ifnet *);
206 static int bge_init_locked(struct ifnet *);
207 static void bge_stop(struct ifnet *, int);
208 static void bge_stop_locked(struct ifnet *, bool);
209 static bool bge_watchdog_tick(struct ifnet *);
210 static int bge_ifmedia_upd(struct ifnet *);
211 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
212 static void bge_handle_reset_work(struct work *, void *);
213
214 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
215 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
216
217 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
219 static void bge_setmulti(struct bge_softc *);
220
221 static void bge_handle_events(struct bge_softc *);
222 static int bge_alloc_jumbo_mem(struct bge_softc *);
223 static void bge_free_jumbo_mem(struct bge_softc *);
224 static void *bge_jalloc(struct bge_softc *);
225 static void bge_jfree(struct mbuf *, void *, size_t, void *);
226 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
227 static int bge_init_rx_ring_jumbo(struct bge_softc *);
228 static void bge_free_rx_ring_jumbo(struct bge_softc *);
229
230 static int bge_newbuf_std(struct bge_softc *, int);
231 static int bge_init_rx_ring_std(struct bge_softc *);
232 static void bge_fill_rx_ring_std(struct bge_softc *);
233 static void bge_free_rx_ring_std(struct bge_softc *m);
234
235 static void bge_free_tx_ring(struct bge_softc *m, bool);
236 static int bge_init_tx_ring(struct bge_softc *);
237
238 static int bge_chipinit(struct bge_softc *);
239 static int bge_blockinit(struct bge_softc *);
240 static int bge_phy_addr(struct bge_softc *);
241 static uint32_t bge_readmem_ind(struct bge_softc *, int);
242 static void bge_writemem_ind(struct bge_softc *, int, int);
243 static void bge_writembx(struct bge_softc *, int, int);
244 static void bge_writembx_flush(struct bge_softc *, int, int);
245 static void bge_writemem_direct(struct bge_softc *, int, int);
246 static void bge_writereg_ind(struct bge_softc *, int, int);
247 static void bge_set_max_readrq(struct bge_softc *);
248
249 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
250 static int bge_miibus_writereg(device_t, int, int, uint16_t);
251 static void bge_miibus_statchg(struct ifnet *);
252
253 #define BGE_RESET_SHUTDOWN 0
254 #define BGE_RESET_START 1
255 #define BGE_RESET_SUSPEND 2
256 static void bge_sig_post_reset(struct bge_softc *, int);
257 static void bge_sig_legacy(struct bge_softc *, int);
258 static void bge_sig_pre_reset(struct bge_softc *, int);
259 static void bge_wait_for_event_ack(struct bge_softc *);
260 static void bge_stop_fw(struct bge_softc *);
261 static int bge_reset(struct bge_softc *);
262 static void bge_link_upd(struct bge_softc *);
263 static void bge_sysctl_init(struct bge_softc *);
264 static int bge_sysctl_verify(SYSCTLFN_PROTO);
265
266 static void bge_ape_lock_init(struct bge_softc *);
267 static void bge_ape_read_fw_ver(struct bge_softc *);
268 static int bge_ape_lock(struct bge_softc *, int);
269 static void bge_ape_unlock(struct bge_softc *, int);
270 static void bge_ape_send_event(struct bge_softc *, uint32_t);
271 static void bge_ape_driver_state_change(struct bge_softc *, int);
272
273 #ifdef BGE_DEBUG
274 #define DPRINTF(x) if (bgedebug) printf x
275 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
276 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
277 int bgedebug = 0;
278 int bge_tso_debug = 0;
279 void bge_debug_info(struct bge_softc *);
280 #else
281 #define DPRINTF(x)
282 #define DPRINTFN(n, x)
283 #define BGE_TSO_PRINTF(x)
284 #endif
285
286 #ifdef BGE_EVENT_COUNTERS
287 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
288 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
289 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
290 #else
291 #define BGE_EVCNT_INCR(ev) /* nothing */
292 #define BGE_EVCNT_ADD(ev, val) /* nothing */
293 #define BGE_EVCNT_UPD(ev, val) /* nothing */
294 #endif
295
296 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
297 /*
298 * The BCM5700 documentation seems to indicate that the hardware still has the
299 * Alteon vendor ID burned into it, though it should always be overridden by
300 * the value in the EEPROM. We'll check for it anyway.
301 */
302 static const struct bge_product {
303 pci_vendor_id_t bp_vendor;
304 pci_product_id_t bp_product;
305 const char *bp_name;
306 } bge_products[] = {
307 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
308 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
309 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
310 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
311 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
312 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
313 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
314 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
315 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
316 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
317 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
318 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
319 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
320 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
321 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
322 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
323 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
324 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
325 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
326 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
327 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
328 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
329 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
330 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
331 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
332 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
333 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
334 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
335 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
336 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
337 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
338 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
339 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
340 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
341 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
342 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
343 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
344 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
345 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
346 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
347 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
348 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
349 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
350 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
351 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
352 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
353 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
354 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
355 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
356 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
357 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
358 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
359 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
360 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
361 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
362 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
363 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
364 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
365 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
366 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
367 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
368 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
369 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
370 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
371 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
372 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
373 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
374 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
375 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
376 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
377 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
378 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
379 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
380 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
381 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
382 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
383 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
384 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
385 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
386 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
387 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
388 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
389 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
390 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
391 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
392 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
393 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
394 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
395 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
396 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
397 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
398 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
399 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
400 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
401 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
402 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
403 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
404 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
405 { 0, 0, NULL },
406 };
407
408 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
409 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
410 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
411 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
412 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
413 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
414 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
415 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
416 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
417
418 static const struct bge_revision {
419 uint32_t br_chipid;
420 const char *br_name;
421 } bge_revisions[] = {
422 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
423 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
424 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
425 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
426 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
427 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
428 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
429 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
430 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
431 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
432 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
433 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
434 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
435 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
436 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
437 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
438 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
439 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
440 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
441 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
442 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
443 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
444 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
445 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
446 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
447 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
448 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
449 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
450 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
451 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
452 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
453 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
454 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
455 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
456 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
457 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
458 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
459 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
460 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
461 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
462 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
463 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
464 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
465 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
466 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
467 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
468 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
469 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
470 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
471 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
472 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
473 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
474 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
475 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
476 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
477 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
478 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
479 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
480 /* 5754 and 5787 share the same ASIC ID */
481 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
482 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
483 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
484 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
485 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
486 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
487 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
488 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
489 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
490 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
491 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
492
493 { 0, NULL }
494 };
495
496 /*
497 * Some defaults for major revisions, so that newer steppings
498 * that we don't know about have a shot at working.
499 */
500 static const struct bge_revision bge_majorrevs[] = {
501 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
502 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
503 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
504 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
505 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
506 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
507 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
508 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
509 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
510 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
511 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
512 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
513 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
514 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
515 /* 5754 and 5787 share the same ASIC ID */
516 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
517 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
518 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
519 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
520 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
521 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
522 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
523 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
524 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
525
526 { 0, NULL }
527 };
528
529 static int bge_allow_asf = 1;
530
531 #ifndef BGE_WATCHDOG_TIMEOUT
532 #define BGE_WATCHDOG_TIMEOUT 5
533 #endif
534 static int bge_watchdog_timeout = BGE_WATCHDOG_TIMEOUT;
535
536
537 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
538 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
539
540 static uint32_t
541 bge_readmem_ind(struct bge_softc *sc, int off)
542 {
543 pcireg_t val;
544
545 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
546 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
547 return 0;
548
549 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
550 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
551 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
552 return val;
553 }
554
555 static void
556 bge_writemem_ind(struct bge_softc *sc, int off, int val)
557 {
558
559 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
560 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
561 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
562 }
563
564 /*
565 * PCI Express only
566 */
567 static void
568 bge_set_max_readrq(struct bge_softc *sc)
569 {
570 pcireg_t val;
571
572 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
573 + PCIE_DCSR);
574 val &= ~PCIE_DCSR_MAX_READ_REQ;
575 switch (sc->bge_expmrq) {
576 case 2048:
577 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
578 break;
579 case 4096:
580 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
581 break;
582 default:
583 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
584 break;
585 }
586 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
587 + PCIE_DCSR, val);
588 }
589
590 #ifdef notdef
591 static uint32_t
592 bge_readreg_ind(struct bge_softc *sc, int off)
593 {
594 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
595 return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
596 }
597 #endif
598
599 static void
600 bge_writereg_ind(struct bge_softc *sc, int off, int val)
601 {
602 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
603 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
604 }
605
606 static void
607 bge_writemem_direct(struct bge_softc *sc, int off, int val)
608 {
609 CSR_WRITE_4(sc, off, val);
610 }
611
612 static void
613 bge_writembx(struct bge_softc *sc, int off, int val)
614 {
615 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
616 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
617
618 CSR_WRITE_4(sc, off, val);
619 }
620
621 static void
622 bge_writembx_flush(struct bge_softc *sc, int off, int val)
623 {
624 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
625 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
626
627 CSR_WRITE_4_FLUSH(sc, off, val);
628 }
629
630 /*
631 * Clear all stale locks and select the lock for this driver instance.
632 */
633 void
634 bge_ape_lock_init(struct bge_softc *sc)
635 {
636 struct pci_attach_args *pa = &(sc->bge_pa);
637 uint32_t bit, regbase;
638 int i;
639
640 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
641 regbase = BGE_APE_LOCK_GRANT;
642 else
643 regbase = BGE_APE_PER_LOCK_GRANT;
644
645 /* Clear any stale locks. */
646 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
647 switch (i) {
648 case BGE_APE_LOCK_PHY0:
649 case BGE_APE_LOCK_PHY1:
650 case BGE_APE_LOCK_PHY2:
651 case BGE_APE_LOCK_PHY3:
652 bit = BGE_APE_LOCK_GRANT_DRIVER0;
653 break;
654 default:
655 if (pa->pa_function == 0)
656 bit = BGE_APE_LOCK_GRANT_DRIVER0;
657 else
658 bit = (1 << pa->pa_function);
659 }
660 APE_WRITE_4(sc, regbase + 4 * i, bit);
661 }
662
663 /* Select the PHY lock based on the device's function number. */
664 switch (pa->pa_function) {
665 case 0:
666 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
667 break;
668 case 1:
669 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
670 break;
671 case 2:
672 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
673 break;
674 case 3:
675 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
676 break;
677 default:
678 printf("%s: PHY lock not supported on function\n",
679 device_xname(sc->bge_dev));
680 break;
681 }
682 }
683
684 /*
685 * Check for APE firmware, set flags, and print version info.
686 */
687 void
688 bge_ape_read_fw_ver(struct bge_softc *sc)
689 {
690 const char *fwtype;
691 uint32_t apedata, features;
692
693 /* Check for a valid APE signature in shared memory. */
694 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
695 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
696 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
697 return;
698 }
699
700 /* Check if APE firmware is running. */
701 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
702 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
703 printf("%s: APE signature found but FW status not ready! "
704 "0x%08x\n", device_xname(sc->bge_dev), apedata);
705 return;
706 }
707
708 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
709
710 /* Fetch the APE firmware type and version. */
711 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
712 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
713 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
714 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
715 fwtype = "NCSI";
716 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
717 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
718 fwtype = "DASH";
719 } else
720 fwtype = "UNKN";
721
722 /* Print the APE firmware version. */
723 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
724 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
725 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
726 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
727 (apedata & BGE_APE_FW_VERSION_BLDMSK));
728 }
729
730 int
731 bge_ape_lock(struct bge_softc *sc, int locknum)
732 {
733 struct pci_attach_args *pa = &(sc->bge_pa);
734 uint32_t bit, gnt, req, status;
735 int i, off;
736
737 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
738 return 0;
739
740 /* Lock request/grant registers have different bases. */
741 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
742 req = BGE_APE_LOCK_REQ;
743 gnt = BGE_APE_LOCK_GRANT;
744 } else {
745 req = BGE_APE_PER_LOCK_REQ;
746 gnt = BGE_APE_PER_LOCK_GRANT;
747 }
748
749 off = 4 * locknum;
750
751 switch (locknum) {
752 case BGE_APE_LOCK_GPIO:
753 /* Lock required when using GPIO. */
754 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
755 return 0;
756 if (pa->pa_function == 0)
757 bit = BGE_APE_LOCK_REQ_DRIVER0;
758 else
759 bit = (1 << pa->pa_function);
760 break;
761 case BGE_APE_LOCK_GRC:
762 /* Lock required to reset the device. */
763 if (pa->pa_function == 0)
764 bit = BGE_APE_LOCK_REQ_DRIVER0;
765 else
766 bit = (1 << pa->pa_function);
767 break;
768 case BGE_APE_LOCK_MEM:
769 /* Lock required when accessing certain APE memory. */
770 if (pa->pa_function == 0)
771 bit = BGE_APE_LOCK_REQ_DRIVER0;
772 else
773 bit = (1 << pa->pa_function);
774 break;
775 case BGE_APE_LOCK_PHY0:
776 case BGE_APE_LOCK_PHY1:
777 case BGE_APE_LOCK_PHY2:
778 case BGE_APE_LOCK_PHY3:
779 /* Lock required when accessing PHYs. */
780 bit = BGE_APE_LOCK_REQ_DRIVER0;
781 break;
782 default:
783 return EINVAL;
784 }
785
786 /* Request a lock. */
787 APE_WRITE_4_FLUSH(sc, req + off, bit);
788
789 /* Wait up to 1 second to acquire lock. */
790 for (i = 0; i < 20000; i++) {
791 status = APE_READ_4(sc, gnt + off);
792 if (status == bit)
793 break;
794 DELAY(50);
795 }
796
797 /* Handle any errors. */
798 if (status != bit) {
799 printf("%s: APE lock %d request failed! "
800 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
801 device_xname(sc->bge_dev),
802 locknum, req + off, bit & 0xFFFF, gnt + off,
803 status & 0xFFFF);
804 /* Revoke the lock request. */
805 APE_WRITE_4(sc, gnt + off, bit);
806 return EBUSY;
807 }
808
809 return 0;
810 }
811
812 void
813 bge_ape_unlock(struct bge_softc *sc, int locknum)
814 {
815 struct pci_attach_args *pa = &(sc->bge_pa);
816 uint32_t bit, gnt;
817 int off;
818
819 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
820 return;
821
822 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
823 gnt = BGE_APE_LOCK_GRANT;
824 else
825 gnt = BGE_APE_PER_LOCK_GRANT;
826
827 off = 4 * locknum;
828
829 switch (locknum) {
830 case BGE_APE_LOCK_GPIO:
831 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
832 return;
833 if (pa->pa_function == 0)
834 bit = BGE_APE_LOCK_GRANT_DRIVER0;
835 else
836 bit = (1 << pa->pa_function);
837 break;
838 case BGE_APE_LOCK_GRC:
839 if (pa->pa_function == 0)
840 bit = BGE_APE_LOCK_GRANT_DRIVER0;
841 else
842 bit = (1 << pa->pa_function);
843 break;
844 case BGE_APE_LOCK_MEM:
845 if (pa->pa_function == 0)
846 bit = BGE_APE_LOCK_GRANT_DRIVER0;
847 else
848 bit = (1 << pa->pa_function);
849 break;
850 case BGE_APE_LOCK_PHY0:
851 case BGE_APE_LOCK_PHY1:
852 case BGE_APE_LOCK_PHY2:
853 case BGE_APE_LOCK_PHY3:
854 bit = BGE_APE_LOCK_GRANT_DRIVER0;
855 break;
856 default:
857 return;
858 }
859
860 /* Write and flush for consecutive bge_ape_lock() */
861 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
862 }
863
864 /*
865 * Send an event to the APE firmware.
866 */
867 void
868 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
869 {
870 uint32_t apedata;
871 int i;
872
873 /* NCSI does not support APE events. */
874 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
875 return;
876
877 /* Wait up to 1ms for APE to service previous event. */
878 for (i = 10; i > 0; i--) {
879 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
880 break;
881 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
882 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
883 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
884 BGE_APE_EVENT_STATUS_EVENT_PENDING);
885 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
886 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
887 break;
888 }
889 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
890 DELAY(100);
891 }
892 if (i == 0) {
893 printf("%s: APE event 0x%08x send timed out\n",
894 device_xname(sc->bge_dev), event);
895 }
896 }
897
898 void
899 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
900 {
901 uint32_t apedata, event;
902
903 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
904 return;
905
906 switch (kind) {
907 case BGE_RESET_START:
908 /* If this is the first load, clear the load counter. */
909 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
910 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
911 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
912 else {
913 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
914 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
915 }
916 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
917 BGE_APE_HOST_SEG_SIG_MAGIC);
918 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
919 BGE_APE_HOST_SEG_LEN_MAGIC);
920
921 /* Add some version info if bge(4) supports it. */
922 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
923 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
924 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
925 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
926 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
927 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
928 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
929 BGE_APE_HOST_DRVR_STATE_START);
930 event = BGE_APE_EVENT_STATUS_STATE_START;
931 break;
932 case BGE_RESET_SHUTDOWN:
933 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
934 BGE_APE_HOST_DRVR_STATE_UNLOAD);
935 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
936 break;
937 case BGE_RESET_SUSPEND:
938 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
939 break;
940 default:
941 return;
942 }
943
944 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
945 BGE_APE_EVENT_STATUS_STATE_CHNGE);
946 }
947
948 static uint8_t
949 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
950 {
951 uint32_t access, byte = 0;
952 int i;
953
954 /* Lock. */
955 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
956 for (i = 0; i < 8000; i++) {
957 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
958 break;
959 DELAY(20);
960 }
961 if (i == 8000)
962 return 1;
963
964 /* Enable access. */
965 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
966 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
967
968 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
969 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
970 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
971 DELAY(10);
972 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
973 DELAY(10);
974 break;
975 }
976 }
977
978 if (i == BGE_TIMEOUT * 10) {
979 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
980 return 1;
981 }
982
983 /* Get result. */
984 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
985
986 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
987
988 /* Disable access. */
989 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
990
991 /* Unlock. */
992 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
993
994 return 0;
995 }
996
997 /*
998 * Read a sequence of bytes from NVRAM.
999 */
1000 static int
1001 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1002 {
1003 int error = 0, i;
1004 uint8_t byte = 0;
1005
1006 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1007 return 1;
1008
1009 for (i = 0; i < cnt; i++) {
1010 error = bge_nvram_getbyte(sc, off + i, &byte);
1011 if (error)
1012 break;
1013 *(dest + i) = byte;
1014 }
1015
1016 return error ? 1 : 0;
1017 }
1018
1019 /*
1020 * Read a byte of data stored in the EEPROM at address 'addr.' The
1021 * BCM570x supports both the traditional bitbang interface and an
1022 * auto access interface for reading the EEPROM. We use the auto
1023 * access method.
1024 */
1025 static uint8_t
1026 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1027 {
1028 int i;
1029 uint32_t byte = 0;
1030
1031 /*
1032 * Enable use of auto EEPROM access so we can avoid
1033 * having to use the bitbang method.
1034 */
1035 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1036
1037 /* Reset the EEPROM, load the clock period. */
1038 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1039 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1040 DELAY(20);
1041
1042 /* Issue the read EEPROM command. */
1043 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1044
1045 /* Wait for completion */
1046 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1047 DELAY(10);
1048 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1049 break;
1050 }
1051
1052 if (i == BGE_TIMEOUT * 10) {
1053 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1054 return 1;
1055 }
1056
1057 /* Get result. */
1058 byte = CSR_READ_4(sc, BGE_EE_DATA);
1059
1060 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1061
1062 return 0;
1063 }
1064
1065 /*
1066 * Read a sequence of bytes from the EEPROM.
1067 */
1068 static int
1069 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1070 {
1071 int error = 0, i;
1072 uint8_t byte = 0;
1073 char *dest = destv;
1074
1075 for (i = 0; i < cnt; i++) {
1076 error = bge_eeprom_getbyte(sc, off + i, &byte);
1077 if (error)
1078 break;
1079 *(dest + i) = byte;
1080 }
1081
1082 return error ? 1 : 0;
1083 }
1084
1085 static int
1086 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1087 {
1088 struct bge_softc * const sc = device_private(dev);
1089 uint32_t data;
1090 uint32_t autopoll;
1091 int rv = 0;
1092 int i;
1093
1094 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1095 return -1;
1096
1097 /* Reading with autopolling on may trigger PCI errors */
1098 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1099 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1100 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1101 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1102 DELAY(80);
1103 }
1104
1105 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1106 BGE_MIPHY(phy) | BGE_MIREG(reg));
1107
1108 for (i = 0; i < BGE_TIMEOUT; i++) {
1109 delay(10);
1110 data = CSR_READ_4(sc, BGE_MI_COMM);
1111 if (!(data & BGE_MICOMM_BUSY)) {
1112 DELAY(5);
1113 data = CSR_READ_4(sc, BGE_MI_COMM);
1114 break;
1115 }
1116 }
1117
1118 if (i == BGE_TIMEOUT) {
1119 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1120 rv = ETIMEDOUT;
1121 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1122 /* XXX This error occurs on some devices while attaching. */
1123 aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1124 rv = EIO;
1125 } else
1126 *val = data & BGE_MICOMM_DATA;
1127
1128 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1129 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1130 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1131 DELAY(80);
1132 }
1133
1134 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1135
1136 return rv;
1137 }
1138
1139 static int
1140 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1141 {
1142 struct bge_softc * const sc = device_private(dev);
1143 uint32_t data, autopoll;
1144 int rv = 0;
1145 int i;
1146
1147 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1148 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1149 return 0;
1150
1151 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1152 return -1;
1153
1154 /* Reading with autopolling on may trigger PCI errors */
1155 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1156 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1157 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1158 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1159 DELAY(80);
1160 }
1161
1162 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1163 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1164
1165 for (i = 0; i < BGE_TIMEOUT; i++) {
1166 delay(10);
1167 data = CSR_READ_4(sc, BGE_MI_COMM);
1168 if (!(data & BGE_MICOMM_BUSY)) {
1169 delay(5);
1170 data = CSR_READ_4(sc, BGE_MI_COMM);
1171 break;
1172 }
1173 }
1174
1175 if (i == BGE_TIMEOUT) {
1176 aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1177 rv = ETIMEDOUT;
1178 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1179 aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1180 rv = EIO;
1181 }
1182
1183 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1184 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1185 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1186 delay(80);
1187 }
1188
1189 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1190
1191 return rv;
1192 }
1193
1194 static void
1195 bge_miibus_statchg(struct ifnet *ifp)
1196 {
1197 struct bge_softc * const sc = ifp->if_softc;
1198 struct mii_data *mii = &sc->bge_mii;
1199 uint32_t mac_mode, rx_mode, tx_mode;
1200
1201 /*
1202 * Get flow control negotiation result.
1203 */
1204 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1205 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1206 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1207
1208 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1209 mii->mii_media_status & IFM_ACTIVE &&
1210 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1211 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1212 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1213 (!(mii->mii_media_status & IFM_ACTIVE) ||
1214 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1215 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1216
1217 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1218 return;
1219
1220 /* Set the port mode (MII/GMII) to match the link speed. */
1221 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1222 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1223 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1224 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1225 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1226 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1227 mac_mode |= BGE_PORTMODE_GMII;
1228 else
1229 mac_mode |= BGE_PORTMODE_MII;
1230
1231 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1232 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1233 if ((mii->mii_media_active & IFM_FDX) != 0) {
1234 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1235 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1236 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1237 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1238 } else
1239 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1240
1241 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1242 DELAY(40);
1243 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1244 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1245 }
1246
1247 /*
1248 * Update rx threshold levels to values in a particular slot
1249 * of the interrupt-mitigation table bge_rx_threshes.
1250 */
1251 static void
1252 bge_set_thresh(struct ifnet *ifp, int lvl)
1253 {
1254 struct bge_softc * const sc = ifp->if_softc;
1255
1256 /*
1257 * For now, just save the new Rx-intr thresholds and record
1258 * that a threshold update is pending. Updating the hardware
1259 * registers here (even at splhigh()) is observed to
1260 * occasionally cause glitches where Rx-interrupts are not
1261 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1262 */
1263 mutex_enter(sc->sc_intr_lock);
1264 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1265 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1266 sc->bge_pending_rxintr_change = true;
1267 mutex_exit(sc->sc_intr_lock);
1268 }
1269
1270
1271 /*
1272 * Update Rx thresholds of all bge devices
1273 */
1274 static void
1275 bge_update_all_threshes(int lvl)
1276 {
1277 const char * const namebuf = "bge";
1278 const size_t namelen = strlen(namebuf);
1279 struct ifnet *ifp;
1280
1281 if (lvl < 0)
1282 lvl = 0;
1283 else if (lvl >= NBGE_RX_THRESH)
1284 lvl = NBGE_RX_THRESH - 1;
1285
1286 /*
1287 * Now search all the interfaces for this name/number
1288 */
1289 int s = pserialize_read_enter();
1290 IFNET_READER_FOREACH(ifp) {
1291 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1292 continue;
1293 /* We got a match: update if doing auto-threshold-tuning */
1294 if (bge_auto_thresh)
1295 bge_set_thresh(ifp, lvl);
1296 }
1297 pserialize_read_exit(s);
1298 }
1299
1300 /*
1301 * Handle events that have triggered interrupts.
1302 */
1303 static void
1304 bge_handle_events(struct bge_softc *sc)
1305 {
1306
1307 return;
1308 }
1309
1310 /*
1311 * Memory management for jumbo frames.
1312 */
1313
1314 static int
1315 bge_alloc_jumbo_mem(struct bge_softc *sc)
1316 {
1317 char *ptr, *kva;
1318 int i, rseg, state, error;
1319 struct bge_jpool_entry *entry;
1320
1321 state = error = 0;
1322
1323 /* Grab a big chunk o' storage. */
1324 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1325 &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_WAITOK)) {
1326 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1327 return ENOBUFS;
1328 }
1329
1330 state = 1;
1331 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg,
1332 rseg, BGE_JMEM, (void **)&kva, BUS_DMA_WAITOK)) {
1333 aprint_error_dev(sc->bge_dev,
1334 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1335 error = ENOBUFS;
1336 goto out;
1337 }
1338
1339 state = 2;
1340 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1341 BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_jumbo_map)) {
1342 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1343 error = ENOBUFS;
1344 goto out;
1345 }
1346
1347 state = 3;
1348 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1349 kva, BGE_JMEM, NULL, BUS_DMA_WAITOK)) {
1350 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1351 error = ENOBUFS;
1352 goto out;
1353 }
1354
1355 state = 4;
1356 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1357 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1358
1359 SLIST_INIT(&sc->bge_jfree_listhead);
1360 SLIST_INIT(&sc->bge_jinuse_listhead);
1361
1362 /*
1363 * Now divide it up into 9K pieces and save the addresses
1364 * in an array.
1365 */
1366 ptr = sc->bge_cdata.bge_jumbo_buf;
1367 for (i = 0; i < BGE_JSLOTS; i++) {
1368 sc->bge_cdata.bge_jslots[i] = ptr;
1369 ptr += BGE_JLEN;
1370 entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
1371 entry->slot = i;
1372 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1373 entry, jpool_entries);
1374 }
1375 out:
1376 if (error != 0) {
1377 switch (state) {
1378 case 4:
1379 bus_dmamap_unload(sc->bge_dmatag,
1380 sc->bge_cdata.bge_rx_jumbo_map);
1381 /* FALLTHROUGH */
1382 case 3:
1383 bus_dmamap_destroy(sc->bge_dmatag,
1384 sc->bge_cdata.bge_rx_jumbo_map);
1385 /* FALLTHROUGH */
1386 case 2:
1387 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1388 /* FALLTHROUGH */
1389 case 1:
1390 bus_dmamem_free(sc->bge_dmatag,
1391 &sc->bge_cdata.bge_rx_jumbo_seg, rseg);
1392 break;
1393 default:
1394 break;
1395 }
1396 }
1397
1398 return error;
1399 }
1400
1401 static void
1402 bge_free_jumbo_mem(struct bge_softc *sc)
1403 {
1404 struct bge_jpool_entry *entry, *tmp;
1405
1406 KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead));
1407
1408 SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) {
1409 kmem_free(entry, sizeof(*entry));
1410 }
1411
1412 bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
1413
1414 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
1415
1416 bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM);
1417
1418 bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1);
1419 }
1420
1421 /*
1422 * Allocate a jumbo buffer.
1423 */
1424 static void *
1425 bge_jalloc(struct bge_softc *sc)
1426 {
1427 struct bge_jpool_entry *entry;
1428
1429 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1430
1431 if (entry == NULL) {
1432 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1433 return NULL;
1434 }
1435
1436 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1437 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1438 return sc->bge_cdata.bge_jslots[entry->slot];
1439 }
1440
1441 /*
1442 * Release a jumbo buffer.
1443 */
1444 static void
1445 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1446 {
1447 struct bge_jpool_entry *entry;
1448 struct bge_softc * const sc = arg;
1449
1450 if (sc == NULL)
1451 panic("bge_jfree: can't find softc pointer!");
1452
1453 /* calculate the slot this buffer belongs to */
1454 int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1455
1456 if (i < 0 || i >= BGE_JSLOTS)
1457 panic("bge_jfree: asked to free buffer that we don't manage!");
1458
1459 mutex_enter(sc->sc_intr_lock);
1460 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1461 if (entry == NULL)
1462 panic("bge_jfree: buffer not in use!");
1463 entry->slot = i;
1464 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1465 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1466 mutex_exit(sc->sc_intr_lock);
1467
1468 if (__predict_true(m != NULL))
1469 pool_cache_put(mb_cache, m);
1470 }
1471
1472
1473 /*
1474 * Initialize a standard receive ring descriptor.
1475 */
1476 static int
1477 bge_newbuf_std(struct bge_softc *sc, int i)
1478 {
1479 const bus_dmamap_t dmamap = sc->bge_cdata.bge_rx_std_map[i];
1480 struct mbuf *m;
1481
1482 MGETHDR(m, M_DONTWAIT, MT_DATA);
1483 if (m == NULL)
1484 return ENOBUFS;
1485
1486 MCLGET(m, M_DONTWAIT);
1487 if (!(m->m_flags & M_EXT)) {
1488 m_freem(m);
1489 return ENOBUFS;
1490 }
1491 m->m_len = m->m_pkthdr.len = MCLBYTES;
1492
1493 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1494 m_adj(m, ETHER_ALIGN);
1495 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,
1496 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1497 m_freem(m);
1498 return ENOBUFS;
1499 }
1500 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1501 BUS_DMASYNC_PREREAD);
1502 sc->bge_cdata.bge_rx_std_chain[i] = m;
1503
1504 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1505 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1506 i * sizeof(struct bge_rx_bd),
1507 sizeof(struct bge_rx_bd),
1508 BUS_DMASYNC_POSTWRITE);
1509
1510 struct bge_rx_bd * const r = &sc->bge_rdata->bge_rx_std_ring[i];
1511 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1512 r->bge_flags = BGE_RXBDFLAG_END;
1513 r->bge_len = m->m_len;
1514 r->bge_idx = i;
1515
1516 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1517 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1518 i * sizeof(struct bge_rx_bd),
1519 sizeof(struct bge_rx_bd),
1520 BUS_DMASYNC_PREWRITE);
1521
1522 sc->bge_std_cnt++;
1523
1524 return 0;
1525 }
1526
1527 /*
1528 * Initialize a jumbo receive ring descriptor. This allocates
1529 * a jumbo buffer from the pool managed internally by the driver.
1530 */
1531 static int
1532 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1533 {
1534 struct mbuf *m_new = NULL;
1535 struct bge_rx_bd *r;
1536 void *buf = NULL;
1537
1538 if (m == NULL) {
1539
1540 /* Allocate the mbuf. */
1541 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1542 if (m_new == NULL)
1543 return ENOBUFS;
1544
1545 /* Allocate the jumbo buffer */
1546 buf = bge_jalloc(sc);
1547 if (buf == NULL) {
1548 m_freem(m_new);
1549 aprint_error_dev(sc->bge_dev,
1550 "jumbo allocation failed -- packet dropped!\n");
1551 return ENOBUFS;
1552 }
1553
1554 /* Attach the buffer to the mbuf. */
1555 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1556 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1557 bge_jfree, sc);
1558 m_new->m_flags |= M_EXT_RW;
1559 } else {
1560 m_new = m;
1561 buf = m_new->m_data = m_new->m_ext.ext_buf;
1562 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1563 }
1564 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1565 m_adj(m_new, ETHER_ALIGN);
1566 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1567 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1568 BGE_JLEN, BUS_DMASYNC_PREREAD);
1569
1570 /* Set up the descriptor. */
1571 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1572 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1573 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1574 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1575 r->bge_len = m_new->m_len;
1576 r->bge_idx = i;
1577
1578 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1579 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1580 i * sizeof(struct bge_rx_bd),
1581 sizeof(struct bge_rx_bd),
1582 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1583
1584 return 0;
1585 }
1586
1587 static int
1588 bge_init_rx_ring_std(struct bge_softc *sc)
1589 {
1590 bus_dmamap_t dmamap;
1591 int error = 0;
1592 u_int i;
1593
1594 if (sc->bge_flags & BGEF_RXRING_VALID)
1595 return 0;
1596
1597 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1598 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1599 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmamap);
1600 if (error)
1601 goto uncreate;
1602
1603 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1604 memset(&sc->bge_rdata->bge_rx_std_ring[i], 0,
1605 sizeof(struct bge_rx_bd));
1606 }
1607
1608 sc->bge_std = i - 1;
1609 sc->bge_std_cnt = 0;
1610 bge_fill_rx_ring_std(sc);
1611
1612 sc->bge_flags |= BGEF_RXRING_VALID;
1613
1614 return 0;
1615
1616 uncreate:
1617 while (--i) {
1618 bus_dmamap_destroy(sc->bge_dmatag,
1619 sc->bge_cdata.bge_rx_std_map[i]);
1620 }
1621 return error;
1622 }
1623
1624 static void
1625 bge_fill_rx_ring_std(struct bge_softc *sc)
1626 {
1627 int i = sc->bge_std;
1628 bool post = false;
1629
1630 while (sc->bge_std_cnt < BGE_STD_RX_RING_CNT) {
1631 BGE_INC(i, BGE_STD_RX_RING_CNT);
1632
1633 if (bge_newbuf_std(sc, i) != 0)
1634 break;
1635
1636 sc->bge_std = i;
1637 post = true;
1638 }
1639
1640 if (post)
1641 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1642 }
1643
1644
1645 static void
1646 bge_free_rx_ring_std(struct bge_softc *sc)
1647 {
1648
1649 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1650 return;
1651
1652 for (u_int i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1653 const bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i];
1654 struct mbuf * const m = sc->bge_cdata.bge_rx_std_chain[i];
1655 if (m != NULL) {
1656 bus_dmamap_sync(sc->bge_dmatag, dmap, 0,
1657 dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1658 bus_dmamap_unload(sc->bge_dmatag, dmap);
1659 m_freem(m);
1660 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1661 }
1662 bus_dmamap_destroy(sc->bge_dmatag,
1663 sc->bge_cdata.bge_rx_std_map[i]);
1664 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1665 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1666 sizeof(struct bge_rx_bd));
1667 }
1668
1669 sc->bge_flags &= ~BGEF_RXRING_VALID;
1670 }
1671
1672 static int
1673 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1674 {
1675 int i;
1676 volatile struct bge_rcb *rcb;
1677
1678 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1679 return 0;
1680
1681 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1682 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1683 return ENOBUFS;
1684 }
1685
1686 sc->bge_jumbo = i - 1;
1687 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1688
1689 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1690 rcb->bge_maxlen_flags = 0;
1691 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1692
1693 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1694
1695 return 0;
1696 }
1697
1698 static void
1699 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1700 {
1701 int i;
1702
1703 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1704 return;
1705
1706 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1707 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1708 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1709 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1710 sizeof(struct bge_rx_bd));
1711 }
1712
1713 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1714 }
1715
1716 static void
1717 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1718 {
1719 int i;
1720 struct txdmamap_pool_entry *dma;
1721
1722 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1723 return;
1724
1725 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1726 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1727 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1728 sc->bge_cdata.bge_tx_chain[i] = NULL;
1729 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1730 link);
1731 sc->txdma[i] = 0;
1732 }
1733 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1734 sizeof(struct bge_tx_bd));
1735 }
1736
1737 if (disable) {
1738 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1739 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1740 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1741 if (sc->bge_dma64) {
1742 bus_dmamap_destroy(sc->bge_dmatag32,
1743 dma->dmamap32);
1744 }
1745 kmem_free(dma, sizeof(*dma));
1746 }
1747 SLIST_INIT(&sc->txdma_list);
1748 }
1749
1750 sc->bge_flags &= ~BGEF_TXRING_VALID;
1751 }
1752
1753 static int
1754 bge_init_tx_ring(struct bge_softc *sc)
1755 {
1756 struct ifnet * const ifp = &sc->ethercom.ec_if;
1757 int i;
1758 bus_dmamap_t dmamap, dmamap32;
1759 bus_size_t maxsegsz;
1760 struct txdmamap_pool_entry *dma;
1761
1762 if (sc->bge_flags & BGEF_TXRING_VALID)
1763 return 0;
1764
1765 sc->bge_txcnt = 0;
1766 sc->bge_tx_saved_considx = 0;
1767
1768 /* Initialize transmit producer index for host-memory send ring. */
1769 sc->bge_tx_prodidx = 0;
1770 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1771 /* 5700 b2 errata */
1772 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1773 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1774
1775 /* NIC-memory send ring not used; initialize to zero. */
1776 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1777 /* 5700 b2 errata */
1778 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1779 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1780
1781 /* Limit DMA segment size for some chips */
1782 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1783 (ifp->if_mtu <= ETHERMTU))
1784 maxsegsz = 2048;
1785 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1786 maxsegsz = 4096;
1787 else
1788 maxsegsz = ETHER_MAX_LEN_JUMBO;
1789
1790 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1791 goto alloc_done;
1792
1793 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1794 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1795 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1796 &dmamap))
1797 return ENOBUFS;
1798 if (dmamap == NULL)
1799 panic("dmamap NULL in bge_init_tx_ring");
1800 if (sc->bge_dma64) {
1801 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1802 BGE_NTXSEG, maxsegsz, 0,
1803 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1804 &dmamap32)) {
1805 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1806 return ENOBUFS;
1807 }
1808 if (dmamap32 == NULL)
1809 panic("dmamap32 NULL in bge_init_tx_ring");
1810 } else
1811 dmamap32 = dmamap;
1812 dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
1813 if (dma == NULL) {
1814 aprint_error_dev(sc->bge_dev,
1815 "can't alloc txdmamap_pool_entry\n");
1816 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1817 if (sc->bge_dma64)
1818 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1819 return ENOMEM;
1820 }
1821 dma->dmamap = dmamap;
1822 dma->dmamap32 = dmamap32;
1823 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1824 }
1825 alloc_done:
1826 sc->bge_flags |= BGEF_TXRING_VALID;
1827
1828 return 0;
1829 }
1830
1831 static void
1832 bge_setmulti(struct bge_softc *sc)
1833 {
1834 struct ethercom * const ec = &sc->ethercom;
1835 struct ether_multi *enm;
1836 struct ether_multistep step;
1837 uint32_t hashes[4] = { 0, 0, 0, 0 };
1838 uint32_t h;
1839 int i;
1840
1841 KASSERT(mutex_owned(sc->sc_core_lock));
1842 if (sc->bge_if_flags & IFF_PROMISC)
1843 goto allmulti;
1844
1845 /* Now program new ones. */
1846 ETHER_LOCK(ec);
1847 ETHER_FIRST_MULTI(step, ec, enm);
1848 while (enm != NULL) {
1849 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1850 /*
1851 * We must listen to a range of multicast addresses.
1852 * For now, just accept all multicasts, rather than
1853 * trying to set only those filter bits needed to match
1854 * the range. (At this time, the only use of address
1855 * ranges is for IP multicast routing, for which the
1856 * range is big enough to require all bits set.)
1857 */
1858 ETHER_UNLOCK(ec);
1859 goto allmulti;
1860 }
1861
1862 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1863
1864 /* Just want the 7 least-significant bits. */
1865 h &= 0x7f;
1866
1867 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1868 ETHER_NEXT_MULTI(step, enm);
1869 }
1870 ec->ec_flags &= ~ETHER_F_ALLMULTI;
1871 ETHER_UNLOCK(ec);
1872
1873 goto setit;
1874
1875 allmulti:
1876 ETHER_LOCK(ec);
1877 ec->ec_flags |= ETHER_F_ALLMULTI;
1878 ETHER_UNLOCK(ec);
1879 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1880
1881 setit:
1882 for (i = 0; i < 4; i++)
1883 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1884 }
1885
1886 static void
1887 bge_sig_pre_reset(struct bge_softc *sc, int type)
1888 {
1889
1890 /*
1891 * Some chips don't like this so only do this if ASF is enabled
1892 */
1893 if (sc->bge_asf_mode)
1894 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1895
1896 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1897 switch (type) {
1898 case BGE_RESET_START:
1899 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1900 BGE_FW_DRV_STATE_START);
1901 break;
1902 case BGE_RESET_SHUTDOWN:
1903 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1904 BGE_FW_DRV_STATE_UNLOAD);
1905 break;
1906 case BGE_RESET_SUSPEND:
1907 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1908 BGE_FW_DRV_STATE_SUSPEND);
1909 break;
1910 }
1911 }
1912
1913 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1914 bge_ape_driver_state_change(sc, type);
1915 }
1916
1917 static void
1918 bge_sig_post_reset(struct bge_softc *sc, int type)
1919 {
1920
1921 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1922 switch (type) {
1923 case BGE_RESET_START:
1924 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1925 BGE_FW_DRV_STATE_START_DONE);
1926 /* START DONE */
1927 break;
1928 case BGE_RESET_SHUTDOWN:
1929 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1930 BGE_FW_DRV_STATE_UNLOAD_DONE);
1931 break;
1932 }
1933 }
1934
1935 if (type == BGE_RESET_SHUTDOWN)
1936 bge_ape_driver_state_change(sc, type);
1937 }
1938
1939 static void
1940 bge_sig_legacy(struct bge_softc *sc, int type)
1941 {
1942
1943 if (sc->bge_asf_mode) {
1944 switch (type) {
1945 case BGE_RESET_START:
1946 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1947 BGE_FW_DRV_STATE_START);
1948 break;
1949 case BGE_RESET_SHUTDOWN:
1950 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1951 BGE_FW_DRV_STATE_UNLOAD);
1952 break;
1953 }
1954 }
1955 }
1956
1957 static void
1958 bge_wait_for_event_ack(struct bge_softc *sc)
1959 {
1960 int i;
1961
1962 /* wait up to 2500usec */
1963 for (i = 0; i < 250; i++) {
1964 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1965 BGE_RX_CPU_DRV_EVENT))
1966 break;
1967 DELAY(10);
1968 }
1969 }
1970
1971 static void
1972 bge_stop_fw(struct bge_softc *sc)
1973 {
1974
1975 if (sc->bge_asf_mode) {
1976 bge_wait_for_event_ack(sc);
1977
1978 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1979 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1980 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1981
1982 bge_wait_for_event_ack(sc);
1983 }
1984 }
1985
1986 static int
1987 bge_poll_fw(struct bge_softc *sc)
1988 {
1989 uint32_t val;
1990 int i;
1991
1992 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1993 for (i = 0; i < BGE_TIMEOUT; i++) {
1994 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1995 if (val & BGE_VCPU_STATUS_INIT_DONE)
1996 break;
1997 DELAY(100);
1998 }
1999 if (i >= BGE_TIMEOUT) {
2000 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2001 return -1;
2002 }
2003 } else {
2004 /*
2005 * Poll the value location we just wrote until
2006 * we see the 1's complement of the magic number.
2007 * This indicates that the firmware initialization
2008 * is complete.
2009 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2010 */
2011 for (i = 0; i < BGE_TIMEOUT; i++) {
2012 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2013 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2014 break;
2015 DELAY(10);
2016 }
2017
2018 if ((i >= BGE_TIMEOUT)
2019 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2020 aprint_error_dev(sc->bge_dev,
2021 "firmware handshake timed out, val = %x\n", val);
2022 return -1;
2023 }
2024 }
2025
2026 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2027 /* tg3 says we have to wait extra time */
2028 delay(10 * 1000);
2029 }
2030
2031 return 0;
2032 }
2033
2034 int
2035 bge_phy_addr(struct bge_softc *sc)
2036 {
2037 struct pci_attach_args *pa = &(sc->bge_pa);
2038 int phy_addr = 1;
2039
2040 /*
2041 * PHY address mapping for various devices.
2042 *
2043 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2044 * ---------+-------+-------+-------+-------+
2045 * BCM57XX | 1 | X | X | X |
2046 * BCM5704 | 1 | X | 1 | X |
2047 * BCM5717 | 1 | 8 | 2 | 9 |
2048 * BCM5719 | 1 | 8 | 2 | 9 |
2049 * BCM5720 | 1 | 8 | 2 | 9 |
2050 *
2051 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2052 * ---------+-------+-------+-------+-------+
2053 * BCM57XX | X | X | X | X |
2054 * BCM5704 | X | X | X | X |
2055 * BCM5717 | X | X | X | X |
2056 * BCM5719 | 3 | 10 | 4 | 11 |
2057 * BCM5720 | X | X | X | X |
2058 *
2059 * Other addresses may respond but they are not
2060 * IEEE compliant PHYs and should be ignored.
2061 */
2062 switch (BGE_ASICREV(sc->bge_chipid)) {
2063 case BGE_ASICREV_BCM5717:
2064 case BGE_ASICREV_BCM5719:
2065 case BGE_ASICREV_BCM5720:
2066 phy_addr = pa->pa_function;
2067 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2068 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2069 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2070 } else {
2071 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2072 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2073 }
2074 }
2075
2076 return phy_addr;
2077 }
2078
2079 /*
2080 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2081 * self-test results.
2082 */
2083 static int
2084 bge_chipinit(struct bge_softc *sc)
2085 {
2086 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2087 int i;
2088
2089 /* Set endianness before we access any non-PCI registers. */
2090 misc_ctl = BGE_INIT;
2091 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2092 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2093 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2094 misc_ctl);
2095
2096 /*
2097 * Clear the MAC statistics block in the NIC's
2098 * internal memory.
2099 */
2100 for (i = BGE_STATS_BLOCK;
2101 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2102 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2103
2104 for (i = BGE_STATUS_BLOCK;
2105 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2106 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2107
2108 /* 5717 workaround from tg3 */
2109 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2110 /* Save */
2111 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2112
2113 /* Temporary modify MODE_CTL to control TLP */
2114 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2115 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2116
2117 /* Control TLP */
2118 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2119 BGE_TLP_PHYCTL1);
2120 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2121 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2122
2123 /* Restore */
2124 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2125 }
2126
2127 if (BGE_IS_57765_FAMILY(sc)) {
2128 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2129 /* Save */
2130 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2131
2132 /* Temporary modify MODE_CTL to control TLP */
2133 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2134 CSR_WRITE_4(sc, BGE_MODE_CTL,
2135 reg | BGE_MODECTL_PCIE_TLPADDR1);
2136
2137 /* Control TLP */
2138 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2139 BGE_TLP_PHYCTL5);
2140 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2141 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2142
2143 /* Restore */
2144 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2145 }
2146 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2147 /*
2148 * For the 57766 and non Ax versions of 57765, bootcode
2149 * needs to setup the PCIE Fast Training Sequence (FTS)
2150 * value to prevent transmit hangs.
2151 */
2152 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2153 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2154 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2155
2156 /* Save */
2157 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2158
2159 /* Temporary modify MODE_CTL to control TLP */
2160 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2161 CSR_WRITE_4(sc, BGE_MODE_CTL,
2162 reg | BGE_MODECTL_PCIE_TLPADDR0);
2163
2164 /* Control TLP */
2165 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2166 BGE_TLP_FTSMAX);
2167 reg &= ~BGE_TLP_FTSMAX_MSK;
2168 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2169 reg | BGE_TLP_FTSMAX_VAL);
2170
2171 /* Restore */
2172 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2173 }
2174
2175 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2176 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2177 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2178 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2179 }
2180
2181 /* Set up the PCI DMA control register. */
2182 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2183 if (sc->bge_flags & BGEF_PCIE) {
2184 /* Read watermark not used, 128 bytes for write. */
2185 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2186 device_xname(sc->bge_dev)));
2187 if (sc->bge_mps >= 256)
2188 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2189 else
2190 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2191 } else if (sc->bge_flags & BGEF_PCIX) {
2192 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2193 device_xname(sc->bge_dev)));
2194 /* PCI-X bus */
2195 if (BGE_IS_5714_FAMILY(sc)) {
2196 /* 256 bytes for read and write. */
2197 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2198 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2199
2200 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2201 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2202 else
2203 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2204 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2205 /*
2206 * In the BCM5703, the DMA read watermark should
2207 * be set to less than or equal to the maximum
2208 * memory read byte count of the PCI-X command
2209 * register.
2210 */
2211 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2212 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2213 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2214 /* 1536 bytes for read, 384 bytes for write. */
2215 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2216 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2217 } else {
2218 /* 384 bytes for read and write. */
2219 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2220 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2221 (0x0F);
2222 }
2223
2224 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2225 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2226 uint32_t tmp;
2227
2228 /* Set ONEDMA_ATONCE for hardware workaround. */
2229 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2230 if (tmp == 6 || tmp == 7)
2231 dma_rw_ctl |=
2232 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2233
2234 /* Set PCI-X DMA write workaround. */
2235 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2236 }
2237 } else {
2238 /* Conventional PCI bus: 256 bytes for read and write. */
2239 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2240 device_xname(sc->bge_dev)));
2241 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2242 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2243
2244 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2245 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2246 dma_rw_ctl |= 0x0F;
2247 }
2248
2249 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2250 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2251 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2252 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2253
2254 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2255 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2256 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2257
2258 if (BGE_IS_57765_PLUS(sc)) {
2259 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2260 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2261 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2262
2263 /*
2264 * Enable HW workaround for controllers that misinterpret
2265 * a status tag update and leave interrupts permanently
2266 * disabled.
2267 */
2268 if (!BGE_IS_57765_FAMILY(sc) &&
2269 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2270 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2271 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2272 }
2273
2274 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2275 dma_rw_ctl);
2276
2277 /*
2278 * Set up general mode register.
2279 */
2280 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2281 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2282 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2283 /* Retain Host-2-BMC settings written by APE firmware. */
2284 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2285 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2286 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2287 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2288 }
2289 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2290 BGE_MODECTL_TX_NO_PHDR_CSUM;
2291
2292 /*
2293 * BCM5701 B5 have a bug causing data corruption when using
2294 * 64-bit DMA reads, which can be terminated early and then
2295 * completed later as 32-bit accesses, in combination with
2296 * certain bridges.
2297 */
2298 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2299 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2300 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2301
2302 /*
2303 * Tell the firmware the driver is running
2304 */
2305 if (sc->bge_asf_mode & ASF_STACKUP)
2306 mode_ctl |= BGE_MODECTL_STACKUP;
2307
2308 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2309
2310 /*
2311 * Disable memory write invalidate. Apparently it is not supported
2312 * properly by these devices.
2313 */
2314 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2315 PCI_COMMAND_INVALIDATE_ENABLE);
2316
2317 #ifdef __brokenalpha__
2318 /*
2319 * Must insure that we do not cross an 8K (bytes) boundary
2320 * for DMA reads. Our highest limit is 1K bytes. This is a
2321 * restriction on some ALPHA platforms with early revision
2322 * 21174 PCI chipsets, such as the AlphaPC 164lx
2323 */
2324 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2325 #endif
2326
2327 /* Set the timer prescaler (always 66MHz) */
2328 CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2329
2330 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2331 DELAY(40); /* XXX */
2332
2333 /* Put PHY into ready state */
2334 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2335 DELAY(40);
2336 }
2337
2338 return 0;
2339 }
2340
2341 static int
2342 bge_blockinit(struct bge_softc *sc)
2343 {
2344 volatile struct bge_rcb *rcb;
2345 bus_size_t rcb_addr;
2346 struct ifnet * const ifp = &sc->ethercom.ec_if;
2347 bge_hostaddr taddr;
2348 uint32_t dmactl, rdmareg, mimode, val;
2349 int i, limit;
2350
2351 /*
2352 * Initialize the memory window pointer register so that
2353 * we can access the first 32K of internal NIC RAM. This will
2354 * allow us to set up the TX send ring RCBs and the RX return
2355 * ring RCBs, plus other things which live in NIC memory.
2356 */
2357 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2358
2359 if (!BGE_IS_5705_PLUS(sc)) {
2360 /* 57XX step 33 */
2361 /* Configure mbuf memory pool */
2362 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2363
2364 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2365 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2366 else
2367 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2368
2369 /* 57XX step 34 */
2370 /* Configure DMA resource pool */
2371 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2372 BGE_DMA_DESCRIPTORS);
2373 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2374 }
2375
2376 /* 5718 step 11, 57XX step 35 */
2377 /*
2378 * Configure mbuf pool watermarks. New broadcom docs strongly
2379 * recommend these.
2380 */
2381 if (BGE_IS_5717_PLUS(sc)) {
2382 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2383 if (ifp->if_mtu > ETHERMTU) {
2384 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2385 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2386 } else {
2387 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2388 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2389 }
2390 } else if (BGE_IS_5705_PLUS(sc)) {
2391 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2392
2393 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2394 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2395 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2396 } else {
2397 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2398 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2399 }
2400 } else {
2401 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2402 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2403 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2404 }
2405
2406 /* 57XX step 36 */
2407 /* Configure DMA resource watermarks */
2408 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2409 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2410
2411 /* 5718 step 13, 57XX step 38 */
2412 /* Enable buffer manager */
2413 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2414 /*
2415 * Change the arbitration algorithm of TXMBUF read request to
2416 * round-robin instead of priority based for BCM5719. When
2417 * TXFIFO is almost empty, RDMA will hold its request until
2418 * TXFIFO is not almost empty.
2419 */
2420 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2421 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2422 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2423 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2424 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2425 val |= BGE_BMANMODE_LOMBUF_ATTN;
2426 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2427
2428 /* 57XX step 39 */
2429 /* Poll for buffer manager start indication */
2430 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2431 DELAY(10);
2432 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2433 break;
2434 }
2435
2436 if (i == BGE_TIMEOUT * 2) {
2437 aprint_error_dev(sc->bge_dev,
2438 "buffer manager failed to start\n");
2439 return ENXIO;
2440 }
2441
2442 /* 57XX step 40 */
2443 /* Enable flow-through queues */
2444 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2445 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2446
2447 /* Wait until queue initialization is complete */
2448 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2449 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2450 break;
2451 DELAY(10);
2452 }
2453
2454 if (i == BGE_TIMEOUT * 2) {
2455 aprint_error_dev(sc->bge_dev,
2456 "flow-through queue init failed\n");
2457 return ENXIO;
2458 }
2459
2460 /*
2461 * Summary of rings supported by the controller:
2462 *
2463 * Standard Receive Producer Ring
2464 * - This ring is used to feed receive buffers for "standard"
2465 * sized frames (typically 1536 bytes) to the controller.
2466 *
2467 * Jumbo Receive Producer Ring
2468 * - This ring is used to feed receive buffers for jumbo sized
2469 * frames (i.e. anything bigger than the "standard" frames)
2470 * to the controller.
2471 *
2472 * Mini Receive Producer Ring
2473 * - This ring is used to feed receive buffers for "mini"
2474 * sized frames to the controller.
2475 * - This feature required external memory for the controller
2476 * but was never used in a production system. Should always
2477 * be disabled.
2478 *
2479 * Receive Return Ring
2480 * - After the controller has placed an incoming frame into a
2481 * receive buffer that buffer is moved into a receive return
2482 * ring. The driver is then responsible to passing the
2483 * buffer up to the stack. Many versions of the controller
2484 * support multiple RR rings.
2485 *
2486 * Send Ring
2487 * - This ring is used for outgoing frames. Many versions of
2488 * the controller support multiple send rings.
2489 */
2490
2491 /* 5718 step 15, 57XX step 41 */
2492 /* Initialize the standard RX ring control block */
2493 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2494 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2495 /* 5718 step 16 */
2496 if (BGE_IS_57765_PLUS(sc)) {
2497 /*
2498 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2499 * Bits 15-2 : Maximum RX frame size
2500 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2501 * Bit 0 : Reserved
2502 */
2503 rcb->bge_maxlen_flags =
2504 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2505 } else if (BGE_IS_5705_PLUS(sc)) {
2506 /*
2507 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2508 * Bits 15-2 : Reserved (should be 0)
2509 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2510 * Bit 0 : Reserved
2511 */
2512 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2513 } else {
2514 /*
2515 * Ring size is always XXX entries
2516 * Bits 31-16: Maximum RX frame size
2517 * Bits 15-2 : Reserved (should be 0)
2518 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2519 * Bit 0 : Reserved
2520 */
2521 rcb->bge_maxlen_flags =
2522 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2523 }
2524 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2525 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2526 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2527 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2528 else
2529 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2530 /* Write the standard receive producer ring control block. */
2531 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2532 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2533 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2534 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2535
2536 /* Reset the standard receive producer ring producer index. */
2537 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2538
2539 /* 57XX step 42 */
2540 /*
2541 * Initialize the jumbo RX ring control block
2542 * We set the 'ring disabled' bit in the flags
2543 * field until we're actually ready to start
2544 * using this ring (i.e. once we set the MTU
2545 * high enough to require it).
2546 */
2547 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2548 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2549 BGE_HOSTADDR(rcb->bge_hostaddr,
2550 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2551 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2552 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2553 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2554 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2555 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2556 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2557 else
2558 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2559 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2560 rcb->bge_hostaddr.bge_addr_hi);
2561 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2562 rcb->bge_hostaddr.bge_addr_lo);
2563 /* Program the jumbo receive producer ring RCB parameters. */
2564 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2565 rcb->bge_maxlen_flags);
2566 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2567 /* Reset the jumbo receive producer ring producer index. */
2568 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2569 }
2570
2571 /* 57XX step 43 */
2572 /* Disable the mini receive producer ring RCB. */
2573 if (BGE_IS_5700_FAMILY(sc)) {
2574 /* Set up dummy disabled mini ring RCB */
2575 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2576 rcb->bge_maxlen_flags =
2577 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2578 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2579 rcb->bge_maxlen_flags);
2580 /* Reset the mini receive producer ring producer index. */
2581 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2582
2583 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2584 offsetof(struct bge_ring_data, bge_info),
2585 sizeof(struct bge_gib),
2586 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2587 }
2588
2589 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2590 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2591 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2592 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2593 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2594 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2595 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2596 }
2597 /* 5718 step 14, 57XX step 44 */
2598 /*
2599 * The BD ring replenish thresholds control how often the
2600 * hardware fetches new BD's from the producer rings in host
2601 * memory. Setting the value too low on a busy system can
2602 * starve the hardware and reduce the throughput.
2603 *
2604 * Set the BD ring replenish thresholds. The recommended
2605 * values are 1/8th the number of descriptors allocated to
2606 * each ring, but since we try to avoid filling the entire
2607 * ring we set these to the minimal value of 8. This needs to
2608 * be done on several of the supported chip revisions anyway,
2609 * to work around HW bugs.
2610 */
2611 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2612 if (BGE_IS_JUMBO_CAPABLE(sc))
2613 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2614
2615 /* 5718 step 18 */
2616 if (BGE_IS_5717_PLUS(sc)) {
2617 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2618 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2619 }
2620
2621 /* 57XX step 45 */
2622 /*
2623 * Disable all send rings by setting the 'ring disabled' bit
2624 * in the flags field of all the TX send ring control blocks,
2625 * located in NIC memory.
2626 */
2627 if (BGE_IS_5700_FAMILY(sc)) {
2628 /* 5700 to 5704 had 16 send rings. */
2629 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2630 } else if (BGE_IS_5717_PLUS(sc)) {
2631 limit = BGE_TX_RINGS_5717_MAX;
2632 } else if (BGE_IS_57765_FAMILY(sc) ||
2633 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2634 limit = BGE_TX_RINGS_57765_MAX;
2635 } else
2636 limit = 1;
2637 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2638 for (i = 0; i < limit; i++) {
2639 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2640 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2641 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2642 rcb_addr += sizeof(struct bge_rcb);
2643 }
2644
2645 /* 57XX step 46 and 47 */
2646 /* Configure send ring RCB 0 (we use only the first ring) */
2647 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2648 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2649 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2650 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2651 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2652 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2653 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2654 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2655 else
2656 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2657 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2658 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2659 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2660
2661 /* 57XX step 48 */
2662 /*
2663 * Disable all receive return rings by setting the
2664 * 'ring disabled' bit in the flags field of all the receive
2665 * return ring control blocks, located in NIC memory.
2666 */
2667 if (BGE_IS_5717_PLUS(sc)) {
2668 /* Should be 17, use 16 until we get an SRAM map. */
2669 limit = 16;
2670 } else if (BGE_IS_5700_FAMILY(sc))
2671 limit = BGE_RX_RINGS_MAX;
2672 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2673 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2674 BGE_IS_57765_FAMILY(sc))
2675 limit = 4;
2676 else
2677 limit = 1;
2678 /* Disable all receive return rings */
2679 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2680 for (i = 0; i < limit; i++) {
2681 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2682 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2683 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2684 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2685 BGE_RCB_FLAG_RING_DISABLED));
2686 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2687 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2688 (i * (sizeof(uint64_t))), 0);
2689 rcb_addr += sizeof(struct bge_rcb);
2690 }
2691
2692 /* 57XX step 49 */
2693 /*
2694 * Set up receive return ring 0. Note that the NIC address
2695 * for RX return rings is 0x0. The return rings live entirely
2696 * within the host, so the nicaddr field in the RCB isn't used.
2697 */
2698 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2699 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2700 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2701 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2702 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2703 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2704 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2705
2706 /* 5718 step 24, 57XX step 53 */
2707 /* Set random backoff seed for TX */
2708 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2709 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2710 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2711 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2712 BGE_TX_BACKOFF_SEED_MASK);
2713
2714 /* 5718 step 26, 57XX step 55 */
2715 /* Set inter-packet gap */
2716 val = 0x2620;
2717 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2718 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2719 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2720 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2721 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2722
2723 /* 5718 step 27, 57XX step 56 */
2724 /*
2725 * Specify which ring to use for packets that don't match
2726 * any RX rules.
2727 */
2728 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2729
2730 /* 5718 step 28, 57XX step 57 */
2731 /*
2732 * Configure number of RX lists. One interrupt distribution
2733 * list, sixteen active lists, one bad frames class.
2734 */
2735 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2736
2737 /* 5718 step 29, 57XX step 58 */
2738 /* Initialize RX list placement stats mask. */
2739 if (BGE_IS_575X_PLUS(sc)) {
2740 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2741 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2742 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2743 } else
2744 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2745
2746 /* 5718 step 30, 57XX step 59 */
2747 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2748
2749 /* 5718 step 33, 57XX step 62 */
2750 /* Disable host coalescing until we get it set up */
2751 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2752
2753 /* 5718 step 34, 57XX step 63 */
2754 /* Poll to make sure it's shut down. */
2755 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2756 DELAY(10);
2757 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2758 break;
2759 }
2760
2761 if (i == BGE_TIMEOUT * 2) {
2762 aprint_error_dev(sc->bge_dev,
2763 "host coalescing engine failed to idle\n");
2764 return ENXIO;
2765 }
2766
2767 /* 5718 step 35, 36, 37 */
2768 /* Set up host coalescing defaults */
2769 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2770 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2771 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2772 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2773 if (!(BGE_IS_5705_PLUS(sc))) {
2774 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2775 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2776 }
2777 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2778 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2779
2780 /* Set up address of statistics block */
2781 if (BGE_IS_5700_FAMILY(sc)) {
2782 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2783 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2784 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2785 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2786 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2787 }
2788
2789 /* 5718 step 38 */
2790 /* Set up address of status block */
2791 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2792 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2793 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2794 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2795 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2796 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2797
2798 /* Set up status block size. */
2799 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2800 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2801 val = BGE_STATBLKSZ_FULL;
2802 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2803 } else {
2804 val = BGE_STATBLKSZ_32BYTE;
2805 bzero(&sc->bge_rdata->bge_status_block, 32);
2806 }
2807
2808 /* 5718 step 39, 57XX step 73 */
2809 /* Turn on host coalescing state machine */
2810 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2811
2812 /* 5718 step 40, 57XX step 74 */
2813 /* Turn on RX BD completion state machine and enable attentions */
2814 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2815 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2816
2817 /* 5718 step 41, 57XX step 75 */
2818 /* Turn on RX list placement state machine */
2819 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2820
2821 /* 57XX step 76 */
2822 /* Turn on RX list selector state machine. */
2823 if (!(BGE_IS_5705_PLUS(sc)))
2824 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2825
2826 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2827 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2828 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2829 BGE_MACMODE_FRMHDR_DMA_ENB;
2830
2831 if (sc->bge_flags & BGEF_FIBER_TBI)
2832 val |= BGE_PORTMODE_TBI;
2833 else if (sc->bge_flags & BGEF_FIBER_MII)
2834 val |= BGE_PORTMODE_GMII;
2835 else
2836 val |= BGE_PORTMODE_MII;
2837
2838 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2839 /* Allow APE to send/receive frames. */
2840 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2841 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2842
2843 /* Turn on DMA, clear stats */
2844 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2845 /* 5718 step 44 */
2846 DELAY(40);
2847
2848 /* 5718 step 45, 57XX step 79 */
2849 /* Set misc. local control, enable interrupts on attentions */
2850 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2851 if (BGE_IS_5717_PLUS(sc)) {
2852 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2853 /* 5718 step 46 */
2854 DELAY(100);
2855 }
2856
2857 /* 57XX step 81 */
2858 /* Turn on DMA completion state machine */
2859 if (!(BGE_IS_5705_PLUS(sc)))
2860 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2861
2862 /* 5718 step 47, 57XX step 82 */
2863 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2864
2865 /* 5718 step 48 */
2866 /* Enable host coalescing bug fix. */
2867 if (BGE_IS_5755_PLUS(sc))
2868 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2869
2870 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2871 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2872
2873 /* Turn on write DMA state machine */
2874 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2875 /* 5718 step 49 */
2876 DELAY(40);
2877
2878 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2879
2880 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2881 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2882
2883 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2884 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2885 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2886 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2887 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2888 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2889
2890 if (sc->bge_flags & BGEF_PCIE)
2891 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2892 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2893 if (ifp->if_mtu <= ETHERMTU)
2894 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2895 }
2896 if (sc->bge_flags & BGEF_TSO) {
2897 val |= BGE_RDMAMODE_TSO4_ENABLE;
2898 if (BGE_IS_5717_PLUS(sc))
2899 val |= BGE_RDMAMODE_TSO6_ENABLE;
2900 }
2901
2902 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2903 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2904 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2905 BGE_RDMAMODE_H2BNC_VLAN_DET;
2906 /*
2907 * Allow multiple outstanding read requests from
2908 * non-LSO read DMA engine.
2909 */
2910 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2911 }
2912
2913 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2914 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2915 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2916 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2917 BGE_IS_57765_PLUS(sc)) {
2918 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2919 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2920 else
2921 rdmareg = BGE_RDMA_RSRVCTRL;
2922 dmactl = CSR_READ_4(sc, rdmareg);
2923 /*
2924 * Adjust tx margin to prevent TX data corruption and
2925 * fix internal FIFO overflow.
2926 */
2927 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2928 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2929 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2930 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2931 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2932 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2933 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2934 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2935 }
2936 /*
2937 * Enable fix for read DMA FIFO overruns.
2938 * The fix is to limit the number of RX BDs
2939 * the hardware would fetch at a time.
2940 */
2941 CSR_WRITE_4(sc, rdmareg, dmactl |
2942 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2943 }
2944
2945 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2946 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2947 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2948 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2949 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2950 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2951 /*
2952 * Allow 4KB burst length reads for non-LSO frames.
2953 * Enable 512B burst length reads for buffer descriptors.
2954 */
2955 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2956 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2957 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2958 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2959 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2960 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2961 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2962 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2963 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2964 }
2965 /* Turn on read DMA state machine */
2966 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2967 /* 5718 step 52 */
2968 delay(40);
2969
2970 if (sc->bge_flags & BGEF_RDMA_BUG) {
2971 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2972 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2973 if ((val & 0xFFFF) > BGE_FRAMELEN)
2974 break;
2975 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2976 break;
2977 }
2978 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2979 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2980 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2981 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2982 else
2983 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2984 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2985 }
2986 }
2987
2988 /* 5718 step 56, 57XX step 84 */
2989 /* Turn on RX data completion state machine */
2990 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2991
2992 /* Turn on RX data and RX BD initiator state machine */
2993 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2994
2995 /* 57XX step 85 */
2996 /* Turn on Mbuf cluster free state machine */
2997 if (!BGE_IS_5705_PLUS(sc))
2998 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2999
3000 /* 5718 step 57, 57XX step 86 */
3001 /* Turn on send data completion state machine */
3002 val = BGE_SDCMODE_ENABLE;
3003 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3004 val |= BGE_SDCMODE_CDELAY;
3005 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3006
3007 /* 5718 step 58 */
3008 /* Turn on send BD completion state machine */
3009 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3010
3011 /* 57XX step 88 */
3012 /* Turn on RX BD initiator state machine */
3013 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3014
3015 /* 5718 step 60, 57XX step 90 */
3016 /* Turn on send data initiator state machine */
3017 if (sc->bge_flags & BGEF_TSO) {
3018 /* XXX: magic value from Linux driver */
3019 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3020 BGE_SDIMODE_HW_LSO_PRE_DMA);
3021 } else
3022 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3023
3024 /* 5718 step 61, 57XX step 91 */
3025 /* Turn on send BD initiator state machine */
3026 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3027
3028 /* 5718 step 62, 57XX step 92 */
3029 /* Turn on send BD selector state machine */
3030 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3031
3032 /* 5718 step 31, 57XX step 60 */
3033 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3034 /* 5718 step 32, 57XX step 61 */
3035 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3036 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3037
3038 /* ack/clear link change events */
3039 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3040 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3041 BGE_MACSTAT_LINK_CHANGED);
3042 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3043
3044 /*
3045 * Enable attention when the link has changed state for
3046 * devices that use auto polling.
3047 */
3048 if (sc->bge_flags & BGEF_FIBER_TBI) {
3049 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3050 } else {
3051 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3052 mimode = BGE_MIMODE_500KHZ_CONST;
3053 else
3054 mimode = BGE_MIMODE_BASE;
3055 /* 5718 step 68. 5718 step 69 (optionally). */
3056 if (BGE_IS_5700_FAMILY(sc) ||
3057 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3058 mimode |= BGE_MIMODE_AUTOPOLL;
3059 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3060 }
3061 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3062 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3063 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3064 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3065 BGE_EVTENB_MI_INTERRUPT);
3066 }
3067
3068 /*
3069 * Clear any pending link state attention.
3070 * Otherwise some link state change events may be lost until attention
3071 * is cleared by bge_intr() -> bge_link_upd() sequence.
3072 * It's not necessary on newer BCM chips - perhaps enabling link
3073 * state change attentions implies clearing pending attention.
3074 */
3075 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3076 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3077 BGE_MACSTAT_LINK_CHANGED);
3078
3079 /* Enable link state change attentions. */
3080 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3081
3082 return 0;
3083 }
3084
3085 static const struct bge_revision *
3086 bge_lookup_rev(uint32_t chipid)
3087 {
3088 const struct bge_revision *br;
3089
3090 for (br = bge_revisions; br->br_name != NULL; br++) {
3091 if (br->br_chipid == chipid)
3092 return br;
3093 }
3094
3095 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3096 if (br->br_chipid == BGE_ASICREV(chipid))
3097 return br;
3098 }
3099
3100 return NULL;
3101 }
3102
3103 static const struct bge_product *
3104 bge_lookup(const struct pci_attach_args *pa)
3105 {
3106 const struct bge_product *bp;
3107
3108 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3109 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3110 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3111 return bp;
3112 }
3113
3114 return NULL;
3115 }
3116
3117 static uint32_t
3118 bge_chipid(const struct pci_attach_args *pa)
3119 {
3120 uint32_t id;
3121
3122 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3123 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3124
3125 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3126 switch (PCI_PRODUCT(pa->pa_id)) {
3127 case PCI_PRODUCT_BROADCOM_BCM5717:
3128 case PCI_PRODUCT_BROADCOM_BCM5718:
3129 case PCI_PRODUCT_BROADCOM_BCM5719:
3130 case PCI_PRODUCT_BROADCOM_BCM5720:
3131 case PCI_PRODUCT_BROADCOM_BCM5725:
3132 case PCI_PRODUCT_BROADCOM_BCM5727:
3133 case PCI_PRODUCT_BROADCOM_BCM5762:
3134 case PCI_PRODUCT_BROADCOM_BCM57764:
3135 case PCI_PRODUCT_BROADCOM_BCM57767:
3136 case PCI_PRODUCT_BROADCOM_BCM57787:
3137 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3138 BGE_PCI_GEN2_PRODID_ASICREV);
3139 break;
3140 case PCI_PRODUCT_BROADCOM_BCM57761:
3141 case PCI_PRODUCT_BROADCOM_BCM57762:
3142 case PCI_PRODUCT_BROADCOM_BCM57765:
3143 case PCI_PRODUCT_BROADCOM_BCM57766:
3144 case PCI_PRODUCT_BROADCOM_BCM57781:
3145 case PCI_PRODUCT_BROADCOM_BCM57782:
3146 case PCI_PRODUCT_BROADCOM_BCM57785:
3147 case PCI_PRODUCT_BROADCOM_BCM57786:
3148 case PCI_PRODUCT_BROADCOM_BCM57791:
3149 case PCI_PRODUCT_BROADCOM_BCM57795:
3150 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3151 BGE_PCI_GEN15_PRODID_ASICREV);
3152 break;
3153 default:
3154 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3155 BGE_PCI_PRODID_ASICREV);
3156 break;
3157 }
3158 }
3159
3160 return id;
3161 }
3162
3163 /*
3164 * Return true if MSI can be used with this device.
3165 */
3166 static int
3167 bge_can_use_msi(struct bge_softc *sc)
3168 {
3169 int can_use_msi = 0;
3170
3171 switch (BGE_ASICREV(sc->bge_chipid)) {
3172 case BGE_ASICREV_BCM5714_A0:
3173 case BGE_ASICREV_BCM5714:
3174 /*
3175 * Apparently, MSI doesn't work when these chips are
3176 * configured in single-port mode.
3177 */
3178 break;
3179 case BGE_ASICREV_BCM5750:
3180 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3181 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3182 can_use_msi = 1;
3183 break;
3184 default:
3185 if (BGE_IS_575X_PLUS(sc))
3186 can_use_msi = 1;
3187 }
3188 return can_use_msi;
3189 }
3190
3191 /*
3192 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3193 * against our list and return its name if we find a match. Note
3194 * that since the Broadcom controller contains VPD support, we
3195 * can get the device name string from the controller itself instead
3196 * of the compiled-in string. This is a little slow, but it guarantees
3197 * we'll always announce the right product name.
3198 */
3199 static int
3200 bge_probe(device_t parent, cfdata_t match, void *aux)
3201 {
3202 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3203
3204 if (bge_lookup(pa) != NULL)
3205 return 1;
3206
3207 return 0;
3208 }
3209
3210 static void
3211 bge_attach(device_t parent, device_t self, void *aux)
3212 {
3213 struct bge_softc * const sc = device_private(self);
3214 struct pci_attach_args * const pa = aux;
3215 prop_dictionary_t dict;
3216 const struct bge_product *bp;
3217 const struct bge_revision *br;
3218 pci_chipset_tag_t pc;
3219 const char *intrstr = NULL;
3220 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3221 uint32_t command;
3222 struct ifnet *ifp;
3223 struct mii_data * const mii = &sc->bge_mii;
3224 uint32_t misccfg, mimode, macmode;
3225 void * kva;
3226 u_char eaddr[ETHER_ADDR_LEN];
3227 pcireg_t memtype, subid, reg;
3228 bus_addr_t memaddr;
3229 uint32_t pm_ctl;
3230 bool no_seeprom;
3231 int capmask, trys;
3232 int mii_flags;
3233 int map_flags;
3234 char intrbuf[PCI_INTRSTR_LEN];
3235
3236 bp = bge_lookup(pa);
3237 KASSERT(bp != NULL);
3238
3239 sc->sc_pc = pa->pa_pc;
3240 sc->sc_pcitag = pa->pa_tag;
3241 sc->bge_dev = self;
3242
3243 sc->bge_pa = *pa;
3244 pc = sc->sc_pc;
3245 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3246
3247 aprint_naive(": Ethernet controller\n");
3248 aprint_normal(": %s Ethernet\n", bp->bp_name);
3249
3250 /*
3251 * Map control/status registers.
3252 */
3253 DPRINTFN(5, ("Map control/status regs\n"));
3254 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3255 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3256 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3257 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3258
3259 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3260 aprint_error_dev(sc->bge_dev,
3261 "failed to enable memory mapping!\n");
3262 return;
3263 }
3264
3265 DPRINTFN(5, ("pci_mem_find\n"));
3266 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3267 switch (memtype) {
3268 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3269 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3270 #if 0
3271 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3272 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3273 &memaddr, &sc->bge_bsize) == 0)
3274 break;
3275 #else
3276 /*
3277 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3278 * system get NMI on boot (PR#48451). This problem might not be
3279 * the driver's bug but our PCI common part's bug. Until we
3280 * find a real reason, we ignore the prefetchable bit.
3281 */
3282 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3283 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3284 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3285 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3286 map_flags, &sc->bge_bhandle) == 0) {
3287 sc->bge_btag = pa->pa_memt;
3288 break;
3289 }
3290 }
3291 #endif
3292 /* FALLTHROUGH */
3293 default:
3294 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3295 return;
3296 }
3297
3298 sc->bge_stopping = false;
3299 sc->bge_txrx_stopping = false;
3300
3301 /* Save various chip information. */
3302 sc->bge_chipid = bge_chipid(pa);
3303 sc->bge_phy_addr = bge_phy_addr(sc);
3304
3305 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3306 &sc->bge_pciecap, NULL) != 0) {
3307 /* PCIe */
3308 sc->bge_flags |= BGEF_PCIE;
3309 /* Extract supported maximum payload size. */
3310 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3311 sc->bge_pciecap + PCIE_DCAP);
3312 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3313 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3314 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3315 sc->bge_expmrq = 2048;
3316 else
3317 sc->bge_expmrq = 4096;
3318 bge_set_max_readrq(sc);
3319 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3320 /* PCIe without PCIe cap */
3321 sc->bge_flags |= BGEF_PCIE;
3322 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3323 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3324 /* PCI-X */
3325 sc->bge_flags |= BGEF_PCIX;
3326 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3327 &sc->bge_pcixcap, NULL) == 0)
3328 aprint_error_dev(sc->bge_dev,
3329 "unable to find PCIX capability\n");
3330 }
3331
3332 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3333 /*
3334 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3335 * can clobber the chip's PCI config-space power control
3336 * registers, leaving the card in D3 powersave state. We do
3337 * not have memory-mapped registers in this state, so force
3338 * device into D0 state before starting initialization.
3339 */
3340 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3341 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3342 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3343 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3344 DELAY(1000); /* 27 usec is allegedly sufficient */
3345 }
3346
3347 /* Save chipset family. */
3348 switch (BGE_ASICREV(sc->bge_chipid)) {
3349 case BGE_ASICREV_BCM5717:
3350 case BGE_ASICREV_BCM5719:
3351 case BGE_ASICREV_BCM5720:
3352 sc->bge_flags |= BGEF_5717_PLUS;
3353 /* FALLTHROUGH */
3354 case BGE_ASICREV_BCM5762:
3355 case BGE_ASICREV_BCM57765:
3356 case BGE_ASICREV_BCM57766:
3357 if (!BGE_IS_5717_PLUS(sc))
3358 sc->bge_flags |= BGEF_57765_FAMILY;
3359 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3360 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3361 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3362 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3363 /*
3364 * Enable work around for DMA engine miscalculation
3365 * of TXMBUF available space.
3366 */
3367 sc->bge_flags |= BGEF_RDMA_BUG;
3368
3369 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3370 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3371 /* Jumbo frame on BCM5719 A0 does not work. */
3372 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3373 }
3374 }
3375 break;
3376 case BGE_ASICREV_BCM5755:
3377 case BGE_ASICREV_BCM5761:
3378 case BGE_ASICREV_BCM5784:
3379 case BGE_ASICREV_BCM5785:
3380 case BGE_ASICREV_BCM5787:
3381 case BGE_ASICREV_BCM57780:
3382 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3383 break;
3384 case BGE_ASICREV_BCM5700:
3385 case BGE_ASICREV_BCM5701:
3386 case BGE_ASICREV_BCM5703:
3387 case BGE_ASICREV_BCM5704:
3388 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3389 break;
3390 case BGE_ASICREV_BCM5714_A0:
3391 case BGE_ASICREV_BCM5780:
3392 case BGE_ASICREV_BCM5714:
3393 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3394 /* FALLTHROUGH */
3395 case BGE_ASICREV_BCM5750:
3396 case BGE_ASICREV_BCM5752:
3397 case BGE_ASICREV_BCM5906:
3398 sc->bge_flags |= BGEF_575X_PLUS;
3399 /* FALLTHROUGH */
3400 case BGE_ASICREV_BCM5705:
3401 sc->bge_flags |= BGEF_5705_PLUS;
3402 break;
3403 }
3404
3405 /* Identify chips with APE processor. */
3406 switch (BGE_ASICREV(sc->bge_chipid)) {
3407 case BGE_ASICREV_BCM5717:
3408 case BGE_ASICREV_BCM5719:
3409 case BGE_ASICREV_BCM5720:
3410 case BGE_ASICREV_BCM5761:
3411 case BGE_ASICREV_BCM5762:
3412 sc->bge_flags |= BGEF_APE;
3413 break;
3414 }
3415
3416 /*
3417 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3418 * not actually a MAC controller bug but an issue with the embedded
3419 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3420 */
3421 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3422 sc->bge_flags |= BGEF_40BIT_BUG;
3423
3424 /* Chips with APE need BAR2 access for APE registers/memory. */
3425 if ((sc->bge_flags & BGEF_APE) != 0) {
3426 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3427 #if 0
3428 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3429 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3430 &sc->bge_apesize)) {
3431 aprint_error_dev(sc->bge_dev,
3432 "couldn't map BAR2 memory\n");
3433 return;
3434 }
3435 #else
3436 /*
3437 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3438 * system get NMI on boot (PR#48451). This problem might not be
3439 * the driver's bug but our PCI common part's bug. Until we
3440 * find a real reason, we ignore the prefetchable bit.
3441 */
3442 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3443 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3444 aprint_error_dev(sc->bge_dev,
3445 "couldn't map BAR2 memory\n");
3446 return;
3447 }
3448
3449 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3450 if (bus_space_map(pa->pa_memt, memaddr,
3451 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3452 aprint_error_dev(sc->bge_dev,
3453 "couldn't map BAR2 memory\n");
3454 return;
3455 }
3456 sc->bge_apetag = pa->pa_memt;
3457 #endif
3458
3459 /* Enable APE register/memory access by host driver. */
3460 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3461 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3462 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3463 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3464 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3465
3466 bge_ape_lock_init(sc);
3467 bge_ape_read_fw_ver(sc);
3468 }
3469
3470 /* Identify the chips that use an CPMU. */
3471 if (BGE_IS_5717_PLUS(sc) ||
3472 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3473 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3474 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3475 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3476 sc->bge_flags |= BGEF_CPMU_PRESENT;
3477
3478 /*
3479 * When using the BCM5701 in PCI-X mode, data corruption has
3480 * been observed in the first few bytes of some received packets.
3481 * Aligning the packet buffer in memory eliminates the corruption.
3482 * Unfortunately, this misaligns the packet payloads. On platforms
3483 * which do not support unaligned accesses, we will realign the
3484 * payloads by copying the received packets.
3485 */
3486 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3487 sc->bge_flags & BGEF_PCIX)
3488 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3489
3490 if (BGE_IS_5700_FAMILY(sc))
3491 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3492
3493 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3494 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3495
3496 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3497 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3498 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3499 sc->bge_flags |= BGEF_IS_5788;
3500
3501 /*
3502 * Some controllers seem to require a special firmware to use
3503 * TSO. But the firmware is not available to FreeBSD and Linux
3504 * claims that the TSO performed by the firmware is slower than
3505 * hardware based TSO. Moreover the firmware based TSO has one
3506 * known bug which can't handle TSO if ethernet header + IP/TCP
3507 * header is greater than 80 bytes. The workaround for the TSO
3508 * bug exist but it seems it's too expensive than not using
3509 * TSO at all. Some hardware also have the TSO bug so limit
3510 * the TSO to the controllers that are not affected TSO issues
3511 * (e.g. 5755 or higher).
3512 */
3513 if (BGE_IS_5755_PLUS(sc)) {
3514 /*
3515 * BCM5754 and BCM5787 shares the same ASIC id so
3516 * explicit device id check is required.
3517 */
3518 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3519 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3520 sc->bge_flags |= BGEF_TSO;
3521 /* TSO on BCM5719 A0 does not work. */
3522 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3523 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3524 sc->bge_flags &= ~BGEF_TSO;
3525 }
3526
3527 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3528 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3529 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3530 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3531 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3532 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3533 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3534 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3535 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3536 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3537 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3538 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3539 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3540 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3541 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3542 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3543 /* These chips are 10/100 only. */
3544 capmask &= ~BMSR_EXTSTAT;
3545 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3546 }
3547
3548 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3549 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3550 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3551 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3552 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3553
3554 /* Set various PHY bug flags. */
3555 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3556 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3557 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3558 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3559 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3560 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3561 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3562 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3563 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3564 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3565 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3566 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3567 if (BGE_IS_5705_PLUS(sc) &&
3568 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3569 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3570 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3571 !BGE_IS_57765_PLUS(sc)) {
3572 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3573 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3574 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3575 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3576 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3577 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3578 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3579 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3580 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3581 } else
3582 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3583 }
3584
3585 /*
3586 * SEEPROM check.
3587 * First check if firmware knows we do not have SEEPROM.
3588 */
3589 if (prop_dictionary_get_bool(device_properties(self),
3590 "without-seeprom", &no_seeprom) && no_seeprom)
3591 sc->bge_flags |= BGEF_NO_EEPROM;
3592
3593 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3594 sc->bge_flags |= BGEF_NO_EEPROM;
3595
3596 /* Now check the 'ROM failed' bit on the RX CPU */
3597 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3598 sc->bge_flags |= BGEF_NO_EEPROM;
3599
3600 sc->bge_asf_mode = 0;
3601 /* No ASF if APE present. */
3602 if ((sc->bge_flags & BGEF_APE) == 0) {
3603 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3604 BGE_SRAM_DATA_SIG_MAGIC)) {
3605 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3606 BGE_HWCFG_ASF) {
3607 sc->bge_asf_mode |= ASF_ENABLE;
3608 sc->bge_asf_mode |= ASF_STACKUP;
3609 if (BGE_IS_575X_PLUS(sc))
3610 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3611 }
3612 }
3613 }
3614
3615 int counts[PCI_INTR_TYPE_SIZE] = {
3616 [PCI_INTR_TYPE_INTX] = 1,
3617 [PCI_INTR_TYPE_MSI] = 1,
3618 [PCI_INTR_TYPE_MSIX] = 1,
3619 };
3620 int max_type = PCI_INTR_TYPE_MSIX;
3621
3622 if (!bge_can_use_msi(sc)) {
3623 /* MSI broken, allow only INTx */
3624 max_type = PCI_INTR_TYPE_INTX;
3625 }
3626
3627 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3628 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3629 return;
3630 }
3631
3632 DPRINTFN(5, ("pci_intr_string\n"));
3633 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3634 sizeof(intrbuf));
3635 DPRINTFN(5, ("pci_intr_establish\n"));
3636 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3637 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3638 if (sc->bge_intrhand == NULL) {
3639 pci_intr_release(pc, sc->bge_pihp, 1);
3640 sc->bge_pihp = NULL;
3641
3642 aprint_error_dev(self, "couldn't establish interrupt");
3643 if (intrstr != NULL)
3644 aprint_error(" at %s", intrstr);
3645 aprint_error("\n");
3646 return;
3647 }
3648 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3649
3650 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3651 case PCI_INTR_TYPE_MSIX:
3652 case PCI_INTR_TYPE_MSI:
3653 KASSERT(bge_can_use_msi(sc));
3654 sc->bge_flags |= BGEF_MSI;
3655 break;
3656 default:
3657 /* nothing to do */
3658 break;
3659 }
3660
3661 char wqname[MAXCOMLEN];
3662 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->bge_dev));
3663 int error = workqueue_create(&sc->sc_reset_wq, wqname,
3664 bge_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK,
3665 WQ_MPSAFE);
3666 if (error) {
3667 aprint_error_dev(sc->bge_dev,
3668 "unable to create reset workqueue\n");
3669 return;
3670 }
3671
3672
3673 /*
3674 * All controllers except BCM5700 supports tagged status but
3675 * we use tagged status only for MSI case on BCM5717. Otherwise
3676 * MSI on BCM5717 does not work.
3677 */
3678 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3679 sc->bge_flags |= BGEF_TAGGED_STATUS;
3680
3681 /*
3682 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3683 * lock in bge_reset().
3684 */
3685 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3686 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3687 delay(1000);
3688 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3689
3690 bge_stop_fw(sc);
3691 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3692 if (bge_reset(sc))
3693 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3694
3695 /*
3696 * Read the hardware config word in the first 32k of NIC internal
3697 * memory, or fall back to the config word in the EEPROM.
3698 * Note: on some BCM5700 cards, this value appears to be unset.
3699 */
3700 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3701 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3702 BGE_SRAM_DATA_SIG_MAGIC) {
3703 uint32_t tmp;
3704
3705 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3706 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3707 BGE_SRAM_DATA_VER_SHIFT;
3708 if ((0 < tmp) && (tmp < 0x100))
3709 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3710 if (sc->bge_flags & BGEF_PCIE)
3711 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3712 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3713 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3714 if (BGE_IS_5717_PLUS(sc))
3715 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3716 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3717 bge_read_eeprom(sc, (void *)&hwcfg,
3718 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3719 hwcfg = be32toh(hwcfg);
3720 }
3721 aprint_normal_dev(sc->bge_dev,
3722 "HW config %08x, %08x, %08x, %08x %08x\n",
3723 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3724
3725 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3726 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3727
3728 if (bge_chipinit(sc)) {
3729 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3730 bge_release_resources(sc);
3731 return;
3732 }
3733
3734 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3735 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3736 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3737 DELAY(100);
3738 }
3739
3740 /* Set MI_MODE */
3741 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3742 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3743 mimode |= BGE_MIMODE_500KHZ_CONST;
3744 else
3745 mimode |= BGE_MIMODE_BASE;
3746 CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3747 DELAY(80);
3748
3749 /*
3750 * Get station address from the EEPROM.
3751 */
3752 if (bge_get_eaddr(sc, eaddr)) {
3753 aprint_error_dev(sc->bge_dev,
3754 "failed to read station address\n");
3755 bge_release_resources(sc);
3756 return;
3757 }
3758
3759 br = bge_lookup_rev(sc->bge_chipid);
3760
3761 if (br == NULL) {
3762 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3763 sc->bge_chipid);
3764 } else {
3765 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3766 br->br_name, sc->bge_chipid);
3767 }
3768 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3769
3770 /* Allocate the general information block and ring buffers. */
3771 if (pci_dma64_available(pa)) {
3772 sc->bge_dmatag = pa->pa_dmat64;
3773 sc->bge_dmatag32 = pa->pa_dmat;
3774 sc->bge_dma64 = true;
3775 } else {
3776 sc->bge_dmatag = pa->pa_dmat;
3777 sc->bge_dmatag32 = pa->pa_dmat;
3778 sc->bge_dma64 = false;
3779 }
3780
3781 /* 40bit DMA workaround */
3782 if (sizeof(bus_addr_t) > 4) {
3783 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3784 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3785
3786 if (bus_dmatag_subregion(olddmatag, 0,
3787 (bus_addr_t)__MASK(40),
3788 &(sc->bge_dmatag), BUS_DMA_WAITOK) != 0) {
3789 aprint_error_dev(self,
3790 "WARNING: failed to restrict dma range,"
3791 " falling back to parent bus dma range\n");
3792 sc->bge_dmatag = olddmatag;
3793 }
3794 }
3795 }
3796 SLIST_INIT(&sc->txdma_list);
3797 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3798 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3799 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3800 &sc->bge_ring_rseg, BUS_DMA_WAITOK)) {
3801 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3802 return;
3803 }
3804 DPRINTFN(5, ("bus_dmamem_map\n"));
3805 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3806 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3807 BUS_DMA_WAITOK)) {
3808 aprint_error_dev(sc->bge_dev,
3809 "can't map DMA buffers (%zu bytes)\n",
3810 sizeof(struct bge_ring_data));
3811 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3812 sc->bge_ring_rseg);
3813 return;
3814 }
3815 DPRINTFN(5, ("bus_dmamap_create\n"));
3816 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3817 sizeof(struct bge_ring_data), 0,
3818 BUS_DMA_WAITOK, &sc->bge_ring_map)) {
3819 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3820 bus_dmamem_unmap(sc->bge_dmatag, kva,
3821 sizeof(struct bge_ring_data));
3822 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3823 sc->bge_ring_rseg);
3824 return;
3825 }
3826 DPRINTFN(5, ("bus_dmamap_load\n"));
3827 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3828 sizeof(struct bge_ring_data), NULL,
3829 BUS_DMA_WAITOK)) {
3830 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3831 bus_dmamem_unmap(sc->bge_dmatag, kva,
3832 sizeof(struct bge_ring_data));
3833 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3834 sc->bge_ring_rseg);
3835 return;
3836 }
3837
3838 DPRINTFN(5, ("bzero\n"));
3839 sc->bge_rdata = (struct bge_ring_data *)kva;
3840
3841 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3842
3843 /* Try to allocate memory for jumbo buffers. */
3844 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3845 if (bge_alloc_jumbo_mem(sc)) {
3846 aprint_error_dev(sc->bge_dev,
3847 "jumbo buffer allocation failed\n");
3848 } else
3849 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3850 }
3851
3852 /* Set default tuneable values. */
3853 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3854 sc->bge_rx_coal_ticks = 150;
3855 sc->bge_rx_max_coal_bds = 64;
3856 sc->bge_tx_coal_ticks = 300;
3857 sc->bge_tx_max_coal_bds = 400;
3858 if (BGE_IS_5705_PLUS(sc)) {
3859 sc->bge_tx_coal_ticks = (12 * 5);
3860 sc->bge_tx_max_coal_bds = (12 * 5);
3861 aprint_verbose_dev(sc->bge_dev,
3862 "setting short Tx thresholds\n");
3863 }
3864
3865 if (BGE_IS_5717_PLUS(sc))
3866 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3867 else if (BGE_IS_5705_PLUS(sc))
3868 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3869 else
3870 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3871
3872 sc->sc_core_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3873 sc->sc_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
3874
3875 /* Set up ifnet structure */
3876 ifp = &sc->ethercom.ec_if;
3877 ifp->if_softc = sc;
3878 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3879 ifp->if_extflags = IFEF_MPSAFE;
3880 ifp->if_ioctl = bge_ioctl;
3881 ifp->if_stop = bge_stop;
3882 ifp->if_start = bge_start;
3883 ifp->if_init = bge_init;
3884 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3885 IFQ_SET_READY(&ifp->if_snd);
3886 DPRINTFN(5, ("strcpy if_xname\n"));
3887 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3888
3889 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3890 sc->ethercom.ec_if.if_capabilities |=
3891 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3892 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3893 sc->ethercom.ec_if.if_capabilities |=
3894 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3895 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3896 #endif
3897 sc->ethercom.ec_capabilities |=
3898 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3899 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3900
3901 if (sc->bge_flags & BGEF_TSO)
3902 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3903
3904 /*
3905 * Do MII setup.
3906 */
3907 DPRINTFN(5, ("mii setup\n"));
3908 mii->mii_ifp = ifp;
3909 mii->mii_readreg = bge_miibus_readreg;
3910 mii->mii_writereg = bge_miibus_writereg;
3911 mii->mii_statchg = bge_miibus_statchg;
3912
3913 /*
3914 * Figure out what sort of media we have by checking the hardware
3915 * config word. Note: on some BCM5700 cards, this value appears to be
3916 * unset. If that's the case, we have to rely on identifying the NIC
3917 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3918 * The SysKonnect SK-9D41 is a 1000baseSX card.
3919 */
3920 if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3921 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3922 if (BGE_IS_5705_PLUS(sc)) {
3923 sc->bge_flags |= BGEF_FIBER_MII;
3924 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3925 } else
3926 sc->bge_flags |= BGEF_FIBER_TBI;
3927 }
3928
3929 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3930 if (BGE_IS_JUMBO_CAPABLE(sc))
3931 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3932
3933 /* set phyflags and chipid before mii_attach() */
3934 dict = device_properties(self);
3935 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3936 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3937
3938 macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3939 macmode &= ~BGE_MACMODE_PORTMODE;
3940 /* Initialize ifmedia structures. */
3941 if (sc->bge_flags & BGEF_FIBER_TBI) {
3942 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3943 macmode | BGE_PORTMODE_TBI);
3944 DELAY(40);
3945
3946 struct ifmedia * const ifm = &sc->bge_ifmedia;
3947 sc->ethercom.ec_ifmedia = ifm;
3948
3949 ifmedia_init_with_lock(ifm, IFM_IMASK,
3950 bge_ifmedia_upd, bge_ifmedia_sts, sc->sc_intr_lock);
3951 ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX, 0, NULL);
3952 ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
3953 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
3954 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
3955 /* Pretend the user requested this setting */
3956 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3957 } else {
3958 uint16_t phyreg;
3959 int rv;
3960 /*
3961 * Do transceiver setup and tell the firmware the
3962 * driver is down so we can try to get access the
3963 * probe if ASF is running. Retry a couple of times
3964 * if we get a conflict with the ASF firmware accessing
3965 * the PHY.
3966 */
3967 if (sc->bge_flags & BGEF_FIBER_MII)
3968 macmode |= BGE_PORTMODE_GMII;
3969 else
3970 macmode |= BGE_PORTMODE_MII;
3971 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3972 DELAY(40);
3973
3974 /*
3975 * Do transceiver setup and tell the firmware the
3976 * driver is down so we can try to get access the
3977 * probe if ASF is running. Retry a couple of times
3978 * if we get a conflict with the ASF firmware accessing
3979 * the PHY.
3980 */
3981 trys = 0;
3982 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3983 sc->ethercom.ec_mii = mii;
3984 ifmedia_init_with_lock(&mii->mii_media, 0, bge_ifmedia_upd,
3985 bge_ifmedia_sts, sc->sc_intr_lock);
3986 mii_flags = MIIF_DOPAUSE;
3987 if (sc->bge_flags & BGEF_FIBER_MII)
3988 mii_flags |= MIIF_HAVEFIBER;
3989 again:
3990 bge_asf_driver_up(sc);
3991 rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
3992 MII_BMCR, &phyreg);
3993 if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
3994 int i;
3995
3996 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
3997 MII_BMCR, BMCR_RESET);
3998 /* Wait up to 500ms for it to complete. */
3999 for (i = 0; i < 500; i++) {
4000 bge_miibus_readreg(sc->bge_dev,
4001 sc->bge_phy_addr, MII_BMCR, &phyreg);
4002 if ((phyreg & BMCR_RESET) == 0)
4003 break;
4004 DELAY(1000);
4005 }
4006 }
4007
4008 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
4009 MII_OFFSET_ANY, mii_flags);
4010
4011 if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
4012 goto again;
4013
4014 if (LIST_EMPTY(&mii->mii_phys)) {
4015 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4016 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
4017 0, NULL);
4018 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
4019 } else
4020 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
4021
4022 /*
4023 * Now tell the firmware we are going up after probing the PHY
4024 */
4025 if (sc->bge_asf_mode & ASF_STACKUP)
4026 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4027 }
4028
4029 /*
4030 * Call MI attach routine.
4031 */
4032 DPRINTFN(5, ("if_initialize\n"));
4033 if_initialize(ifp);
4034 ifp->if_percpuq = if_percpuq_create(ifp);
4035 if_deferred_start_init(ifp, NULL);
4036 if_register(ifp);
4037
4038 DPRINTFN(5, ("ether_ifattach\n"));
4039 ether_ifattach(ifp, eaddr);
4040 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4041
4042 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4043 RND_TYPE_NET, RND_FLAG_DEFAULT);
4044 #ifdef BGE_EVENT_COUNTERS
4045 /*
4046 * Attach event counters.
4047 */
4048 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4049 NULL, device_xname(sc->bge_dev), "intr");
4050 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
4051 NULL, device_xname(sc->bge_dev), "intr_spurious");
4052 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
4053 NULL, device_xname(sc->bge_dev), "intr_spurious2");
4054 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4055 NULL, device_xname(sc->bge_dev), "tx_xoff");
4056 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4057 NULL, device_xname(sc->bge_dev), "tx_xon");
4058 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4059 NULL, device_xname(sc->bge_dev), "rx_xoff");
4060 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4061 NULL, device_xname(sc->bge_dev), "rx_xon");
4062 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4063 NULL, device_xname(sc->bge_dev), "rx_macctl");
4064 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4065 NULL, device_xname(sc->bge_dev), "xoffentered");
4066 #endif /* BGE_EVENT_COUNTERS */
4067 DPRINTFN(5, ("callout_init\n"));
4068 callout_init(&sc->bge_timeout, CALLOUT_MPSAFE);
4069 callout_setfunc(&sc->bge_timeout, bge_tick, sc);
4070
4071 if (pmf_device_register(self, NULL, NULL))
4072 pmf_class_network_register(self, ifp);
4073 else
4074 aprint_error_dev(self, "couldn't establish power handler\n");
4075
4076 bge_sysctl_init(sc);
4077
4078 #ifdef BGE_DEBUG
4079 bge_debug_info(sc);
4080 #endif
4081 }
4082
4083 /*
4084 * Stop all chip I/O so that the kernel's probe routines don't
4085 * get confused by errant DMAs when rebooting.
4086 */
4087 static int
4088 bge_detach(device_t self, int flags __unused)
4089 {
4090 struct bge_softc * const sc = device_private(self);
4091 struct ifnet * const ifp = &sc->ethercom.ec_if;
4092
4093 IFNET_LOCK(ifp);
4094
4095 /* Stop the interface. Callouts are stopped in it. */
4096 bge_stop(ifp, 1);
4097 sc->bge_detaching = true;
4098
4099 IFNET_UNLOCK(ifp);
4100
4101 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4102
4103 ether_ifdetach(ifp);
4104 if_detach(ifp);
4105
4106 /* Delete all remaining media. */
4107 ifmedia_fini(&sc->bge_mii.mii_media);
4108
4109 bge_release_resources(sc);
4110
4111 return 0;
4112 }
4113
4114 static void
4115 bge_release_resources(struct bge_softc *sc)
4116 {
4117
4118 /* Detach sysctl */
4119 if (sc->bge_log != NULL)
4120 sysctl_teardown(&sc->bge_log);
4121
4122 #ifdef BGE_EVENT_COUNTERS
4123 /* Detach event counters. */
4124 evcnt_detach(&sc->bge_ev_intr);
4125 evcnt_detach(&sc->bge_ev_intr_spurious);
4126 evcnt_detach(&sc->bge_ev_intr_spurious2);
4127 evcnt_detach(&sc->bge_ev_tx_xoff);
4128 evcnt_detach(&sc->bge_ev_tx_xon);
4129 evcnt_detach(&sc->bge_ev_rx_xoff);
4130 evcnt_detach(&sc->bge_ev_rx_xon);
4131 evcnt_detach(&sc->bge_ev_rx_macctl);
4132 evcnt_detach(&sc->bge_ev_xoffentered);
4133 #endif /* BGE_EVENT_COUNTERS */
4134
4135 /* Disestablish the interrupt handler */
4136 if (sc->bge_intrhand != NULL) {
4137 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4138 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4139 sc->bge_intrhand = NULL;
4140 }
4141
4142 if (sc->bge_cdata.bge_jumbo_buf != NULL)
4143 bge_free_jumbo_mem(sc);
4144
4145 if (sc->bge_dmatag != NULL) {
4146 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4147 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4148 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4149 sizeof(struct bge_ring_data));
4150 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4151 sc->bge_ring_rseg);
4152 }
4153
4154 /* Unmap the device registers */
4155 if (sc->bge_bsize != 0) {
4156 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4157 sc->bge_bsize = 0;
4158 }
4159
4160 /* Unmap the APE registers */
4161 if (sc->bge_apesize != 0) {
4162 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4163 sc->bge_apesize);
4164 sc->bge_apesize = 0;
4165 }
4166 }
4167
4168 static int
4169 bge_reset(struct bge_softc *sc)
4170 {
4171 uint32_t cachesize, command;
4172 uint32_t reset, mac_mode, mac_mode_mask;
4173 pcireg_t devctl, reg;
4174 int i, val;
4175 void (*write_op)(struct bge_softc *, int, int);
4176
4177 /* Make mask for BGE_MAC_MODE register. */
4178 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4179 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4180 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4181 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4182 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4183
4184 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4185 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4186 if (sc->bge_flags & BGEF_PCIE)
4187 write_op = bge_writemem_direct;
4188 else
4189 write_op = bge_writemem_ind;
4190 } else
4191 write_op = bge_writereg_ind;
4192
4193 /* 57XX step 4 */
4194 /* Acquire the NVM lock */
4195 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4196 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4197 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4198 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4199 for (i = 0; i < 8000; i++) {
4200 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4201 BGE_NVRAMSWARB_GNT1)
4202 break;
4203 DELAY(20);
4204 }
4205 if (i == 8000) {
4206 printf("%s: NVRAM lock timedout!\n",
4207 device_xname(sc->bge_dev));
4208 }
4209 }
4210
4211 /* Take APE lock when performing reset. */
4212 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4213
4214 /* 57XX step 3 */
4215 /* Save some important PCI state. */
4216 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4217 /* 5718 reset step 3 */
4218 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4219
4220 /* 5718 reset step 5, 57XX step 5b-5d */
4221 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4222 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4223 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4224
4225 /* XXX ???: Disable fastboot on controllers that support it. */
4226 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4227 BGE_IS_5755_PLUS(sc))
4228 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4229
4230 /* 5718 reset step 2, 57XX step 6 */
4231 /*
4232 * Write the magic number to SRAM at offset 0xB50.
4233 * When firmware finishes its initialization it will
4234 * write ~BGE_MAGIC_NUMBER to the same location.
4235 */
4236 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4237
4238 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4239 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4240 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4241 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4242 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4243 }
4244
4245 /* 5718 reset step 6, 57XX step 7 */
4246 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4247 /*
4248 * XXX: from FreeBSD/Linux; no documentation
4249 */
4250 if (sc->bge_flags & BGEF_PCIE) {
4251 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4252 !BGE_IS_57765_PLUS(sc) &&
4253 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4254 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4255 /* PCI Express 1.0 system */
4256 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4257 BGE_PHY_PCIE_SCRAM_MODE);
4258 }
4259 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4260 /*
4261 * Prevent PCI Express link training
4262 * during global reset.
4263 */
4264 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4265 reset |= (1 << 29);
4266 }
4267 }
4268
4269 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4270 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4271 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4272 i | BGE_VCPU_STATUS_DRV_RESET);
4273 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4274 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4275 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4276 }
4277
4278 /*
4279 * Set GPHY Power Down Override to leave GPHY
4280 * powered up in D0 uninitialized.
4281 */
4282 if (BGE_IS_5705_PLUS(sc) &&
4283 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4284 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4285
4286 /* Issue global reset */
4287 write_op(sc, BGE_MISC_CFG, reset);
4288
4289 /* 5718 reset step 7, 57XX step 8 */
4290 if (sc->bge_flags & BGEF_PCIE)
4291 delay(100*1000); /* too big */
4292 else
4293 delay(1000);
4294
4295 if (sc->bge_flags & BGEF_PCIE) {
4296 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4297 DELAY(500000);
4298 /* XXX: Magic Numbers */
4299 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4300 BGE_PCI_UNKNOWN0);
4301 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4302 BGE_PCI_UNKNOWN0,
4303 reg | (1 << 15));
4304 }
4305 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4306 sc->bge_pciecap + PCIE_DCSR);
4307 /* Clear enable no snoop and disable relaxed ordering. */
4308 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4309 PCIE_DCSR_ENA_NO_SNOOP);
4310
4311 /* Set PCIE max payload size to 128 for older PCIe devices */
4312 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4313 devctl &= ~(0x00e0);
4314 /* Clear device status register. Write 1b to clear */
4315 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4316 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4317 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4318 sc->bge_pciecap + PCIE_DCSR, devctl);
4319 bge_set_max_readrq(sc);
4320 }
4321
4322 /* From Linux: dummy read to flush PCI posted writes */
4323 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4324
4325 /*
4326 * Reset some of the PCI state that got zapped by reset
4327 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4328 * set, too.
4329 */
4330 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4331 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4332 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4333 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4334 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4335 (sc->bge_flags & BGEF_PCIX) != 0)
4336 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4337 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4338 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4339 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4340 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4341 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4342 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4343 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4344
4345 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4346 if (sc->bge_flags & BGEF_PCIX) {
4347 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4348 + PCIX_CMD);
4349 /* Set max memory read byte count to 2K */
4350 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4351 reg &= ~PCIX_CMD_BYTECNT_MASK;
4352 reg |= PCIX_CMD_BCNT_2048;
4353 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4354 /*
4355 * For 5704, set max outstanding split transaction
4356 * field to 0 (0 means it supports 1 request)
4357 */
4358 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4359 | PCIX_CMD_BYTECNT_MASK);
4360 reg |= PCIX_CMD_BCNT_2048;
4361 }
4362 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4363 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4364 }
4365
4366 /* 5718 reset step 10, 57XX step 12 */
4367 /* Enable memory arbiter. */
4368 if (BGE_IS_5714_FAMILY(sc)) {
4369 val = CSR_READ_4(sc, BGE_MARB_MODE);
4370 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4371 } else
4372 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4373
4374 /* XXX 5721, 5751 and 5752 */
4375 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4376 /* Step 19: */
4377 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4378 /* Step 20: */
4379 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4380 }
4381
4382 /* 5718 reset step 12, 57XX step 15 and 16 */
4383 /* Fix up byte swapping */
4384 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4385
4386 /* 5718 reset step 13, 57XX step 17 */
4387 /* Poll until the firmware initialization is complete */
4388 bge_poll_fw(sc);
4389
4390 /* 57XX step 21 */
4391 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4392 pcireg_t msidata;
4393
4394 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4395 BGE_PCI_MSI_DATA);
4396 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4397 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4398 msidata);
4399 }
4400
4401 /* 57XX step 18 */
4402 /* Write mac mode. */
4403 val = CSR_READ_4(sc, BGE_MAC_MODE);
4404 /* Restore mac_mode_mask's bits using mac_mode */
4405 val = (val & ~mac_mode_mask) | mac_mode;
4406 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4407 DELAY(40);
4408
4409 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4410
4411 /*
4412 * The 5704 in TBI mode apparently needs some special
4413 * adjustment to insure the SERDES drive level is set
4414 * to 1.2V.
4415 */
4416 if (sc->bge_flags & BGEF_FIBER_TBI &&
4417 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4418 uint32_t serdescfg;
4419
4420 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4421 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4422 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4423 }
4424
4425 if (sc->bge_flags & BGEF_PCIE &&
4426 !BGE_IS_57765_PLUS(sc) &&
4427 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4428 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4429 uint32_t v;
4430
4431 /* Enable PCI Express bug fix */
4432 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4433 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4434 v | BGE_TLP_DATA_FIFO_PROTECT);
4435 }
4436
4437 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4438 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4439 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4440
4441 return 0;
4442 }
4443
4444 /*
4445 * Frame reception handling. This is called if there's a frame
4446 * on the receive return list.
4447 *
4448 * Note: we have to be able to handle two possibilities here:
4449 * 1) the frame is from the jumbo receive ring
4450 * 2) the frame is from the standard receive ring
4451 */
4452
4453 static void
4454 bge_rxeof(struct bge_softc *sc)
4455 {
4456 struct ifnet * const ifp = &sc->ethercom.ec_if;
4457 uint16_t rx_prod, rx_cons;
4458 int stdcnt = 0, jumbocnt = 0;
4459 bus_dmamap_t dmamap;
4460 bus_addr_t offset, toff;
4461 bus_size_t tlen;
4462 int tosync;
4463
4464 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4465 offsetof(struct bge_ring_data, bge_status_block),
4466 sizeof(struct bge_status_block),
4467 BUS_DMASYNC_POSTREAD);
4468
4469 rx_cons = sc->bge_rx_saved_considx;
4470 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4471
4472 /* Nothing to do */
4473 if (rx_cons == rx_prod)
4474 return;
4475
4476 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4477 tosync = rx_prod - rx_cons;
4478
4479 if (tosync != 0)
4480 rnd_add_uint32(&sc->rnd_source, tosync);
4481
4482 toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
4483
4484 if (tosync < 0) {
4485 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4486 sizeof(struct bge_rx_bd);
4487 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4488 toff, tlen, BUS_DMASYNC_POSTREAD);
4489 tosync = rx_prod;
4490 toff = offset;
4491 }
4492
4493 if (tosync != 0) {
4494 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4495 toff, tosync * sizeof(struct bge_rx_bd),
4496 BUS_DMASYNC_POSTREAD);
4497 }
4498
4499 while (rx_cons != rx_prod) {
4500 struct bge_rx_bd *cur_rx;
4501 uint32_t rxidx;
4502 struct mbuf *m = NULL;
4503
4504 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4505
4506 rxidx = cur_rx->bge_idx;
4507 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4508
4509 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4510 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4511 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4512 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4513 jumbocnt++;
4514 bus_dmamap_sync(sc->bge_dmatag,
4515 sc->bge_cdata.bge_rx_jumbo_map,
4516 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4517 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4518 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4519 if_statinc(ifp, if_ierrors);
4520 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4521 continue;
4522 }
4523 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4524 NULL) == ENOBUFS) {
4525 if_statinc(ifp, if_ierrors);
4526 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4527 continue;
4528 }
4529 } else {
4530 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4531 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4532
4533 stdcnt++;
4534 sc->bge_std_cnt--;
4535
4536 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4537 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4538 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4539 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4540
4541 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4542 m_free(m);
4543 if_statinc(ifp, if_ierrors);
4544 continue;
4545 }
4546 }
4547
4548 #ifndef __NO_STRICT_ALIGNMENT
4549 /*
4550 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4551 * the Rx buffer has the layer-2 header unaligned.
4552 * If our CPU requires alignment, re-align by copying.
4553 */
4554 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4555 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4556 cur_rx->bge_len);
4557 m->m_data += ETHER_ALIGN;
4558 }
4559 #endif
4560
4561 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4562 m_set_rcvif(m, ifp);
4563
4564 bge_rxcsum(sc, cur_rx, m);
4565
4566 /*
4567 * If we received a packet with a vlan tag, pass it
4568 * to vlan_input() instead of ether_input().
4569 */
4570 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4571 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4572
4573 if_percpuq_enqueue(ifp->if_percpuq, m);
4574 }
4575
4576 sc->bge_rx_saved_considx = rx_cons;
4577 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4578 if (stdcnt)
4579 bge_fill_rx_ring_std(sc);
4580 if (jumbocnt)
4581 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4582 }
4583
4584 static void
4585 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4586 {
4587
4588 if (BGE_IS_57765_PLUS(sc)) {
4589 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4590 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4591 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4592 if ((cur_rx->bge_error_flag &
4593 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4594 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4595 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4596 m->m_pkthdr.csum_data =
4597 cur_rx->bge_tcp_udp_csum;
4598 m->m_pkthdr.csum_flags |=
4599 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4600 }
4601 }
4602 } else {
4603 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4604 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4605 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4606 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4607 /*
4608 * Rx transport checksum-offload may also
4609 * have bugs with packets which, when transmitted,
4610 * were `runts' requiring padding.
4611 */
4612 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4613 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4614 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4615 m->m_pkthdr.csum_data =
4616 cur_rx->bge_tcp_udp_csum;
4617 m->m_pkthdr.csum_flags |=
4618 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4619 }
4620 }
4621 }
4622
4623 static void
4624 bge_txeof(struct bge_softc *sc)
4625 {
4626 struct ifnet * const ifp = &sc->ethercom.ec_if;
4627 struct bge_tx_bd *cur_tx = NULL;
4628 struct txdmamap_pool_entry *dma;
4629 bus_addr_t offset, toff;
4630 bus_size_t tlen;
4631 int tosync;
4632 struct mbuf *m;
4633
4634 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4635 offsetof(struct bge_ring_data, bge_status_block),
4636 sizeof(struct bge_status_block),
4637 BUS_DMASYNC_POSTREAD);
4638
4639 const uint16_t hw_cons_idx =
4640 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx;
4641 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4642 tosync = hw_cons_idx - sc->bge_tx_saved_considx;
4643
4644 if (tosync != 0)
4645 rnd_add_uint32(&sc->rnd_source, tosync);
4646
4647 toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
4648
4649 if (tosync < 0) {
4650 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4651 sizeof(struct bge_tx_bd);
4652 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4653 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4654 tosync = hw_cons_idx;
4655 toff = offset;
4656 }
4657
4658 if (tosync != 0) {
4659 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4660 toff, tosync * sizeof(struct bge_tx_bd),
4661 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4662 }
4663
4664 /*
4665 * Go through our tx ring and free mbufs for those
4666 * frames that have been sent.
4667 */
4668 while (sc->bge_tx_saved_considx != hw_cons_idx) {
4669 uint32_t idx = sc->bge_tx_saved_considx;
4670 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4671 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4672 if_statinc(ifp, if_opackets);
4673 m = sc->bge_cdata.bge_tx_chain[idx];
4674 if (m != NULL) {
4675 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4676 dma = sc->txdma[idx];
4677 if (dma->is_dma32) {
4678 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4679 0, dma->dmamap32->dm_mapsize,
4680 BUS_DMASYNC_POSTWRITE);
4681 bus_dmamap_unload(
4682 sc->bge_dmatag32, dma->dmamap32);
4683 } else {
4684 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4685 0, dma->dmamap->dm_mapsize,
4686 BUS_DMASYNC_POSTWRITE);
4687 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4688 }
4689 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4690 sc->txdma[idx] = NULL;
4691
4692 m_freem(m);
4693 }
4694 sc->bge_txcnt--;
4695 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4696 sc->bge_tx_sending = false;
4697 }
4698 }
4699
4700 static int
4701 bge_intr(void *xsc)
4702 {
4703 struct bge_softc * const sc = xsc;
4704 struct ifnet * const ifp = &sc->ethercom.ec_if;
4705 uint32_t pcistate, statusword, statustag;
4706 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4707
4708 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4709 if (BGE_IS_5717_PLUS(sc))
4710 intrmask = 0;
4711
4712 mutex_enter(sc->sc_intr_lock);
4713 if (sc->bge_txrx_stopping) {
4714 mutex_exit(sc->sc_intr_lock);
4715 return 1;
4716 }
4717
4718 /*
4719 * It is possible for the interrupt to arrive before
4720 * the status block is updated prior to the interrupt.
4721 * Reading the PCI State register will confirm whether the
4722 * interrupt is ours and will flush the status block.
4723 */
4724 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4725
4726 /* read status word from status block */
4727 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4728 offsetof(struct bge_ring_data, bge_status_block),
4729 sizeof(struct bge_status_block),
4730 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4731 statusword = sc->bge_rdata->bge_status_block.bge_status;
4732 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4733
4734 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4735 if (sc->bge_lasttag == statustag &&
4736 (~pcistate & intrmask)) {
4737 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4738 mutex_exit(sc->sc_intr_lock);
4739 return 0;
4740 }
4741 sc->bge_lasttag = statustag;
4742 } else {
4743 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4744 !(~pcistate & intrmask)) {
4745 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4746 mutex_exit(sc->sc_intr_lock);
4747 return 0;
4748 }
4749 statustag = 0;
4750 }
4751 /* Ack interrupt and stop others from occurring. */
4752 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4753 BGE_EVCNT_INCR(sc->bge_ev_intr);
4754
4755 /* clear status word */
4756 sc->bge_rdata->bge_status_block.bge_status = 0;
4757
4758 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4759 offsetof(struct bge_ring_data, bge_status_block),
4760 sizeof(struct bge_status_block),
4761 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4762
4763 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4764 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4765 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4766 bge_link_upd(sc);
4767
4768 /* Check RX return ring producer/consumer */
4769 bge_rxeof(sc);
4770
4771 /* Check TX ring producer/consumer */
4772 bge_txeof(sc);
4773
4774 if (sc->bge_pending_rxintr_change) {
4775 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4776 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4777
4778 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4779 DELAY(10);
4780 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4781
4782 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4783 DELAY(10);
4784 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4785
4786 sc->bge_pending_rxintr_change = false;
4787 }
4788 bge_handle_events(sc);
4789
4790 /* Re-enable interrupts. */
4791 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4792
4793 if_schedule_deferred_start(ifp);
4794
4795 mutex_exit(sc->sc_intr_lock);
4796
4797 return 1;
4798 }
4799
4800 static void
4801 bge_asf_driver_up(struct bge_softc *sc)
4802 {
4803 if (sc->bge_asf_mode & ASF_STACKUP) {
4804 /* Send ASF heartbeat approx. every 2s */
4805 if (sc->bge_asf_count)
4806 sc->bge_asf_count --;
4807 else {
4808 sc->bge_asf_count = 2;
4809
4810 bge_wait_for_event_ack(sc);
4811
4812 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4813 BGE_FW_CMD_DRV_ALIVE3);
4814 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4815 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4816 BGE_FW_HB_TIMEOUT_SEC);
4817 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4818 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4819 BGE_RX_CPU_DRV_EVENT);
4820 }
4821 }
4822 }
4823
4824 static void
4825 bge_tick(void *xsc)
4826 {
4827 struct bge_softc * const sc = xsc;
4828 struct ifnet * const ifp = &sc->ethercom.ec_if;
4829 struct mii_data * const mii = &sc->bge_mii;
4830
4831 mutex_enter(sc->sc_core_lock);
4832 if (sc->bge_stopping) {
4833 mutex_exit(sc->sc_core_lock);
4834 return;
4835 }
4836
4837 if (BGE_IS_5705_PLUS(sc))
4838 bge_stats_update_regs(sc);
4839 else
4840 bge_stats_update(sc);
4841
4842 if (sc->bge_flags & BGEF_FIBER_TBI) {
4843 /*
4844 * Since in TBI mode auto-polling can't be used we should poll
4845 * link status manually. Here we register pending link event
4846 * and trigger interrupt.
4847 */
4848 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4849 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4850 } else {
4851 /*
4852 * Do not touch PHY if we have link up. This could break
4853 * IPMI/ASF mode or produce extra input errors.
4854 * (extra input errors was reported for bcm5701 & bcm5704).
4855 */
4856 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4857 mutex_enter(sc->sc_intr_lock);
4858 mii_tick(mii);
4859 mutex_exit(sc->sc_intr_lock);
4860 }
4861 }
4862
4863 bge_asf_driver_up(sc);
4864
4865 const bool ok = bge_watchdog_tick(ifp);
4866 if (ok)
4867 callout_schedule(&sc->bge_timeout, hz);
4868
4869 mutex_exit(sc->sc_core_lock);
4870 }
4871
4872 static void
4873 bge_stats_update_regs(struct bge_softc *sc)
4874 {
4875 struct ifnet * const ifp = &sc->ethercom.ec_if;
4876
4877 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4878
4879 if_statadd_ref(ifp, nsr, if_collisions,
4880 CSR_READ_4(sc, BGE_MAC_STATS +
4881 offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
4882
4883 /*
4884 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4885 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4886 * (silicon bug). There's no reliable workaround so just
4887 * ignore the counter
4888 */
4889 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4890 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4891 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4892 if_statadd_ref(ifp, nsr, if_ierrors,
4893 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4894 }
4895 if_statadd_ref(ifp, nsr, if_ierrors,
4896 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
4897 if_statadd_ref(ifp, nsr, if_ierrors,
4898 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
4899
4900 IF_STAT_PUTREF(ifp);
4901
4902 if (sc->bge_flags & BGEF_RDMA_BUG) {
4903 uint32_t val, ucast, mcast, bcast;
4904
4905 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4906 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4907 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4908 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4909 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4910 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4911
4912 /*
4913 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4914 * frames, it's safe to disable workaround for DMA engine's
4915 * miscalculation of TXMBUF space.
4916 */
4917 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4918 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4919 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4920 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4921 else
4922 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4923 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4924 sc->bge_flags &= ~BGEF_RDMA_BUG;
4925 }
4926 }
4927 }
4928
4929 static void
4930 bge_stats_update(struct bge_softc *sc)
4931 {
4932 struct ifnet * const ifp = &sc->ethercom.ec_if;
4933 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4934
4935 #define READ_STAT(sc, stats, stat) \
4936 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4937
4938 uint64_t collisions =
4939 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4940 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4941 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4942 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
4943
4944 if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
4945 sc->bge_if_collisions = collisions;
4946
4947
4948 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4949 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4950 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4951 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4952 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4953 READ_STAT(sc, stats,
4954 xoffPauseFramesReceived.bge_addr_lo));
4955 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4956 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4957 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4958 READ_STAT(sc, stats,
4959 macControlFramesReceived.bge_addr_lo));
4960 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4961 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4962
4963 #undef READ_STAT
4964 }
4965
4966 /*
4967 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4968 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4969 * but when such padded frames employ the bge IP/TCP checksum offload,
4970 * the hardware checksum assist gives incorrect results (possibly
4971 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4972 * If we pad such runts with zeros, the onboard checksum comes out correct.
4973 */
4974 static inline int
4975 bge_cksum_pad(struct mbuf *pkt)
4976 {
4977 struct mbuf *last = NULL;
4978 int padlen;
4979
4980 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4981
4982 /* if there's only the packet-header and we can pad there, use it. */
4983 if (pkt->m_pkthdr.len == pkt->m_len &&
4984 M_TRAILINGSPACE(pkt) >= padlen) {
4985 last = pkt;
4986 } else {
4987 /*
4988 * Walk packet chain to find last mbuf. We will either
4989 * pad there, or append a new mbuf and pad it
4990 * (thus perhaps avoiding the bcm5700 dma-min bug).
4991 */
4992 for (last = pkt; last->m_next != NULL; last = last->m_next) {
4993 continue; /* do nothing */
4994 }
4995
4996 /* `last' now points to last in chain. */
4997 if (M_TRAILINGSPACE(last) < padlen) {
4998 /* Allocate new empty mbuf, pad it. Compact later. */
4999 struct mbuf *n;
5000 MGET(n, M_DONTWAIT, MT_DATA);
5001 if (n == NULL)
5002 return ENOBUFS;
5003 n->m_len = 0;
5004 last->m_next = n;
5005 last = n;
5006 }
5007 }
5008
5009 KDASSERT(!M_READONLY(last));
5010 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
5011
5012 /* Now zero the pad area, to avoid the bge cksum-assist bug */
5013 memset(mtod(last, char *) + last->m_len, 0, padlen);
5014 last->m_len += padlen;
5015 pkt->m_pkthdr.len += padlen;
5016 return 0;
5017 }
5018
5019 /*
5020 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
5021 */
5022 static inline int
5023 bge_compact_dma_runt(struct mbuf *pkt)
5024 {
5025 struct mbuf *m, *prev;
5026 int totlen;
5027
5028 prev = NULL;
5029 totlen = 0;
5030
5031 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
5032 int mlen = m->m_len;
5033 int shortfall = 8 - mlen ;
5034
5035 totlen += mlen;
5036 if (mlen == 0)
5037 continue;
5038 if (mlen >= 8)
5039 continue;
5040
5041 /*
5042 * If we get here, mbuf data is too small for DMA engine.
5043 * Try to fix by shuffling data to prev or next in chain.
5044 * If that fails, do a compacting deep-copy of the whole chain.
5045 */
5046
5047 /* Internal frag. If fits in prev, copy it there. */
5048 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5049 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5050 prev->m_len += mlen;
5051 m->m_len = 0;
5052 /* XXX stitch chain */
5053 prev->m_next = m_free(m);
5054 m = prev;
5055 continue;
5056 } else if (m->m_next != NULL &&
5057 M_TRAILINGSPACE(m) >= shortfall &&
5058 m->m_next->m_len >= (8 + shortfall)) {
5059 /* m is writable and have enough data in next, pull up. */
5060
5061 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5062 shortfall);
5063 m->m_len += shortfall;
5064 m->m_next->m_len -= shortfall;
5065 m->m_next->m_data += shortfall;
5066 } else if (m->m_next == NULL || 1) {
5067 /*
5068 * Got a runt at the very end of the packet.
5069 * borrow data from the tail of the preceding mbuf and
5070 * update its length in-place. (The original data is
5071 * still valid, so we can do this even if prev is not
5072 * writable.)
5073 */
5074
5075 /*
5076 * If we'd make prev a runt, just move all of its data.
5077 */
5078 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5079 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5080
5081 if ((prev->m_len - shortfall) < 8)
5082 shortfall = prev->m_len;
5083
5084 #ifdef notyet /* just do the safe slow thing for now */
5085 if (!M_READONLY(m)) {
5086 if (M_LEADINGSPACE(m) < shorfall) {
5087 void *m_dat;
5088 m_dat = M_BUFADDR(m);
5089 memmove(m_dat, mtod(m, void*),
5090 m->m_len);
5091 m->m_data = m_dat;
5092 }
5093 } else
5094 #endif /* just do the safe slow thing */
5095 {
5096 struct mbuf * n = NULL;
5097 int newprevlen = prev->m_len - shortfall;
5098
5099 MGET(n, M_NOWAIT, MT_DATA);
5100 if (n == NULL)
5101 return ENOBUFS;
5102 KASSERT(m->m_len + shortfall < MLEN
5103 /*,
5104 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5105
5106 /* first copy the data we're stealing from prev */
5107 memcpy(n->m_data, prev->m_data + newprevlen,
5108 shortfall);
5109
5110 /* update prev->m_len accordingly */
5111 prev->m_len -= shortfall;
5112
5113 /* copy data from runt m */
5114 memcpy(n->m_data + shortfall, m->m_data,
5115 m->m_len);
5116
5117 /* n holds what we stole from prev, plus m */
5118 n->m_len = shortfall + m->m_len;
5119
5120 /* stitch n into chain and free m */
5121 n->m_next = m->m_next;
5122 prev->m_next = n;
5123 /* KASSERT(m->m_next == NULL); */
5124 m->m_next = NULL;
5125 m_free(m);
5126 m = n; /* for continuing loop */
5127 }
5128 }
5129 }
5130 return 0;
5131 }
5132
5133 /*
5134 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5135 * pointers to descriptors.
5136 */
5137 static int
5138 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5139 {
5140 struct bge_tx_bd *f, *prev_f;
5141 uint32_t frag, cur;
5142 uint16_t csum_flags = 0;
5143 uint16_t txbd_tso_flags = 0;
5144 struct txdmamap_pool_entry *dma;
5145 bus_dmamap_t dmamap;
5146 bus_dma_tag_t dmatag;
5147 int i = 0;
5148 int use_tso, maxsegsize, error;
5149 bool have_vtag;
5150 uint16_t vtag;
5151 bool remap;
5152
5153 if (m_head->m_pkthdr.csum_flags) {
5154 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5155 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5156 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5157 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5158 }
5159
5160 /*
5161 * If we were asked to do an outboard checksum, and the NIC
5162 * has the bug where it sometimes adds in the Ethernet padding,
5163 * explicitly pad with zeros so the cksum will be correct either way.
5164 * (For now, do this for all chip versions, until newer
5165 * are confirmed to not require the workaround.)
5166 */
5167 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5168 #ifdef notyet
5169 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5170 #endif
5171 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5172 goto check_dma_bug;
5173
5174 if (bge_cksum_pad(m_head) != 0)
5175 return ENOBUFS;
5176
5177 check_dma_bug:
5178 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5179 goto doit;
5180
5181 /*
5182 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5183 * less than eight bytes. If we encounter a teeny mbuf
5184 * at the end of a chain, we can pad. Otherwise, copy.
5185 */
5186 if (bge_compact_dma_runt(m_head) != 0)
5187 return ENOBUFS;
5188
5189 doit:
5190 dma = SLIST_FIRST(&sc->txdma_list);
5191 if (dma == NULL) {
5192 return ENOBUFS;
5193 }
5194 dmamap = dma->dmamap;
5195 dmatag = sc->bge_dmatag;
5196 dma->is_dma32 = false;
5197
5198 /*
5199 * Set up any necessary TSO state before we start packing...
5200 */
5201 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5202 if (!use_tso) {
5203 maxsegsize = 0;
5204 } else { /* TSO setup */
5205 unsigned mss;
5206 struct ether_header *eh;
5207 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5208 unsigned bge_hlen;
5209 struct mbuf * m0 = m_head;
5210 struct ip *ip;
5211 struct tcphdr *th;
5212 int iphl, hlen;
5213
5214 /*
5215 * XXX It would be nice if the mbuf pkthdr had offset
5216 * fields for the protocol headers.
5217 */
5218
5219 eh = mtod(m0, struct ether_header *);
5220 switch (htons(eh->ether_type)) {
5221 case ETHERTYPE_IP:
5222 offset = ETHER_HDR_LEN;
5223 break;
5224
5225 case ETHERTYPE_VLAN:
5226 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5227 break;
5228
5229 default:
5230 /*
5231 * Don't support this protocol or encapsulation.
5232 */
5233 return ENOBUFS;
5234 }
5235
5236 /*
5237 * TCP/IP headers are in the first mbuf; we can do
5238 * this the easy way.
5239 */
5240 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5241 hlen = iphl + offset;
5242 if (__predict_false(m0->m_len <
5243 (hlen + sizeof(struct tcphdr)))) {
5244
5245 aprint_error_dev(sc->bge_dev,
5246 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5247 "not handled yet\n",
5248 m0->m_len, hlen+ sizeof(struct tcphdr));
5249 #ifdef NOTYET
5250 /*
5251 * XXX jonathan (at) NetBSD.org: untested.
5252 * how to force this branch to be taken?
5253 */
5254 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5255
5256 m_copydata(m0, offset, sizeof(ip), &ip);
5257 m_copydata(m0, hlen, sizeof(th), &th);
5258
5259 ip.ip_len = 0;
5260
5261 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5262 sizeof(ip.ip_len), &ip.ip_len);
5263
5264 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5265 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5266
5267 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5268 sizeof(th.th_sum), &th.th_sum);
5269
5270 hlen += th.th_off << 2;
5271 iptcp_opt_words = hlen;
5272 #else
5273 /*
5274 * if_wm "hard" case not yet supported, can we not
5275 * mandate it out of existence?
5276 */
5277 (void) ip; (void)th; (void) ip_tcp_hlen;
5278
5279 return ENOBUFS;
5280 #endif
5281 } else {
5282 ip = (struct ip *) (mtod(m0, char *) + offset);
5283 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5284 ip_tcp_hlen = iphl + (th->th_off << 2);
5285
5286 /* Total IP/TCP options, in 32-bit words */
5287 iptcp_opt_words = (ip_tcp_hlen
5288 - sizeof(struct tcphdr)
5289 - sizeof(struct ip)) >> 2;
5290 }
5291 if (BGE_IS_575X_PLUS(sc)) {
5292 th->th_sum = 0;
5293 csum_flags = 0;
5294 } else {
5295 /*
5296 * XXX jonathan (at) NetBSD.org: 5705 untested.
5297 * Requires TSO firmware patch for 5701/5703/5704.
5298 */
5299 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5300 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5301 }
5302
5303 mss = m_head->m_pkthdr.segsz;
5304 txbd_tso_flags |=
5305 BGE_TXBDFLAG_CPU_PRE_DMA |
5306 BGE_TXBDFLAG_CPU_POST_DMA;
5307
5308 /*
5309 * Our NIC TSO-assist assumes TSO has standard, optionless
5310 * IPv4 and TCP headers, which total 40 bytes. By default,
5311 * the NIC copies 40 bytes of IP/TCP header from the
5312 * supplied header into the IP/TCP header portion of
5313 * each post-TSO-segment. If the supplied packet has IP or
5314 * TCP options, we need to tell the NIC to copy those extra
5315 * bytes into each post-TSO header, in addition to the normal
5316 * 40-byte IP/TCP header (and to leave space accordingly).
5317 * Unfortunately, the driver encoding of option length
5318 * varies across different ASIC families.
5319 */
5320 tcp_seg_flags = 0;
5321 bge_hlen = ip_tcp_hlen >> 2;
5322 if (BGE_IS_5717_PLUS(sc)) {
5323 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5324 txbd_tso_flags |=
5325 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5326 } else if (BGE_IS_5705_PLUS(sc)) {
5327 tcp_seg_flags = bge_hlen << 11;
5328 } else {
5329 /* XXX iptcp_opt_words or bge_hlen ? */
5330 txbd_tso_flags |= iptcp_opt_words << 12;
5331 }
5332 maxsegsize = mss | tcp_seg_flags;
5333 ip->ip_len = htons(mss + ip_tcp_hlen);
5334 ip->ip_sum = 0;
5335
5336 } /* TSO setup */
5337
5338 have_vtag = vlan_has_tag(m_head);
5339 if (have_vtag)
5340 vtag = vlan_get_tag(m_head);
5341
5342 /*
5343 * Start packing the mbufs in this chain into
5344 * the fragment pointers. Stop when we run out
5345 * of fragments or hit the end of the mbuf chain.
5346 */
5347 remap = true;
5348 load_again:
5349 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5350 if (__predict_false(error)) {
5351 if (error == EFBIG && remap) {
5352 struct mbuf *m;
5353 remap = false;
5354 m = m_defrag(m_head, M_NOWAIT);
5355 if (m != NULL) {
5356 KASSERT(m == m_head);
5357 goto load_again;
5358 }
5359 }
5360 return error;
5361 }
5362 /*
5363 * Sanity check: avoid coming within 16 descriptors
5364 * of the end of the ring.
5365 */
5366 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5367 BGE_TSO_PRINTF(("%s: "
5368 " dmamap_load_mbuf too close to ring wrap\n",
5369 device_xname(sc->bge_dev)));
5370 goto fail_unload;
5371 }
5372
5373 /* Iterate over dmap-map fragments. */
5374 f = prev_f = NULL;
5375 cur = frag = *txidx;
5376
5377 for (i = 0; i < dmamap->dm_nsegs; i++) {
5378 f = &sc->bge_rdata->bge_tx_ring[frag];
5379 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5380 break;
5381
5382 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5383 f->bge_len = dmamap->dm_segs[i].ds_len;
5384 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5385 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5386 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5387 (prev_f != NULL &&
5388 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5389 ) {
5390 /*
5391 * watchdog timeout issue was observed with TSO,
5392 * limiting DMA address space to 32bits seems to
5393 * address the issue.
5394 */
5395 bus_dmamap_unload(dmatag, dmamap);
5396 dmatag = sc->bge_dmatag32;
5397 dmamap = dma->dmamap32;
5398 dma->is_dma32 = true;
5399 remap = true;
5400 goto load_again;
5401 }
5402
5403 /*
5404 * For 5751 and follow-ons, for TSO we must turn
5405 * off checksum-assist flag in the tx-descr, and
5406 * supply the ASIC-revision-specific encoding
5407 * of TSO flags and segsize.
5408 */
5409 if (use_tso) {
5410 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5411 f->bge_rsvd = maxsegsize;
5412 f->bge_flags = csum_flags | txbd_tso_flags;
5413 } else {
5414 f->bge_rsvd = 0;
5415 f->bge_flags =
5416 (csum_flags | txbd_tso_flags) & 0x0fff;
5417 }
5418 } else {
5419 f->bge_rsvd = 0;
5420 f->bge_flags = csum_flags;
5421 }
5422
5423 if (have_vtag) {
5424 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5425 f->bge_vlan_tag = vtag;
5426 } else {
5427 f->bge_vlan_tag = 0;
5428 }
5429 prev_f = f;
5430 cur = frag;
5431 BGE_INC(frag, BGE_TX_RING_CNT);
5432 }
5433
5434 if (i < dmamap->dm_nsegs) {
5435 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5436 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5437 goto fail_unload;
5438 }
5439
5440 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5441 BUS_DMASYNC_PREWRITE);
5442
5443 if (frag == sc->bge_tx_saved_considx) {
5444 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5445 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5446
5447 goto fail_unload;
5448 }
5449
5450 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5451 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5452 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5453 sc->txdma[cur] = dma;
5454 sc->bge_txcnt += dmamap->dm_nsegs;
5455
5456 *txidx = frag;
5457
5458 return 0;
5459
5460 fail_unload:
5461 bus_dmamap_unload(dmatag, dmamap);
5462
5463 return ENOBUFS;
5464 }
5465
5466
5467 static void
5468 bge_start(struct ifnet *ifp)
5469 {
5470 struct bge_softc * const sc = ifp->if_softc;
5471
5472 mutex_enter(sc->sc_intr_lock);
5473 if (!sc->bge_txrx_stopping)
5474 bge_start_locked(ifp);
5475 mutex_exit(sc->sc_intr_lock);
5476 }
5477
5478 /*
5479 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5480 * to the mbuf data regions directly in the transmit descriptors.
5481 */
5482 static void
5483 bge_start_locked(struct ifnet *ifp)
5484 {
5485 struct bge_softc * const sc = ifp->if_softc;
5486 struct mbuf *m_head = NULL;
5487 struct mbuf *m;
5488 uint32_t prodidx;
5489 int pkts = 0;
5490 int error;
5491
5492 KASSERT(mutex_owned(sc->sc_intr_lock));
5493
5494 prodidx = sc->bge_tx_prodidx;
5495
5496 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5497 IFQ_POLL(&ifp->if_snd, m_head);
5498 if (m_head == NULL)
5499 break;
5500
5501 #if 0
5502 /*
5503 * XXX
5504 * safety overkill. If this is a fragmented packet chain
5505 * with delayed TCP/UDP checksums, then only encapsulate
5506 * it if we have enough descriptors to handle the entire
5507 * chain at once.
5508 * (paranoia -- may not actually be needed)
5509 */
5510 if (m_head->m_flags & M_FIRSTFRAG &&
5511 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5512 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5513 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5514 ifp->if_flags |= IFF_OACTIVE;
5515 break;
5516 }
5517 }
5518 #endif
5519
5520 /*
5521 * Pack the data into the transmit ring. If we
5522 * don't have room, set the OACTIVE flag and wait
5523 * for the NIC to drain the ring.
5524 */
5525 error = bge_encap(sc, m_head, &prodidx);
5526 if (__predict_false(error)) {
5527 if (SLIST_EMPTY(&sc->txdma_list)) {
5528 /* just wait for the transmit ring to drain */
5529 break;
5530 }
5531 IFQ_DEQUEUE(&ifp->if_snd, m);
5532 KASSERT(m == m_head);
5533 m_freem(m_head);
5534 continue;
5535 }
5536
5537 /* now we are committed to transmit the packet */
5538 IFQ_DEQUEUE(&ifp->if_snd, m);
5539 KASSERT(m == m_head);
5540 pkts++;
5541
5542 /*
5543 * If there's a BPF listener, bounce a copy of this frame
5544 * to him.
5545 */
5546 bpf_mtap(ifp, m_head, BPF_D_OUT);
5547 }
5548 if (pkts == 0)
5549 return;
5550
5551 /* Transmit */
5552 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5553 /* 5700 b2 errata */
5554 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5555 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5556
5557 sc->bge_tx_prodidx = prodidx;
5558 sc->bge_tx_lastsent = time_uptime;
5559 sc->bge_tx_sending = true;
5560 }
5561
5562 static int
5563 bge_init(struct ifnet *ifp)
5564 {
5565 struct bge_softc * const sc = ifp->if_softc;
5566
5567 KASSERT(IFNET_LOCKED(ifp));
5568
5569 if (sc->bge_detaching)
5570 return ENXIO;
5571
5572 mutex_enter(sc->sc_core_lock);
5573 int ret = bge_init_locked(ifp);
5574 mutex_exit(sc->sc_core_lock);
5575
5576 return ret;
5577 }
5578
5579
5580 static int
5581 bge_init_locked(struct ifnet *ifp)
5582 {
5583 struct bge_softc * const sc = ifp->if_softc;
5584 const uint16_t *m;
5585 uint32_t mode, reg;
5586 int error = 0;
5587
5588 ASSERT_SLEEPABLE();
5589 KASSERT(IFNET_LOCKED(ifp));
5590 KASSERT(mutex_owned(sc->sc_core_lock));
5591 KASSERT(ifp == &sc->ethercom.ec_if);
5592
5593 /* Cancel pending I/O and flush buffers. */
5594 bge_stop_locked(ifp, false);
5595
5596 bge_stop_fw(sc);
5597 bge_sig_pre_reset(sc, BGE_RESET_START);
5598 bge_reset(sc);
5599 bge_sig_legacy(sc, BGE_RESET_START);
5600
5601 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5602 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5603 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5604 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5605 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5606
5607 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5608 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5609 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5610 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5611
5612 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5613 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5614 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5615 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5616
5617 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5618 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5619 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5620 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5621 }
5622
5623 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5624 pcireg_t aercap;
5625
5626 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5627 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5628 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5629 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5630 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5631
5632 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5633 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5634 | BGE_PCIE_EIDLE_DELAY_13CLK;
5635 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5636
5637 /* Clear correctable error */
5638 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5639 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5640 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5641 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5642
5643 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5644 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5645 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5646 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5647 }
5648
5649 bge_sig_post_reset(sc, BGE_RESET_START);
5650
5651 bge_chipinit(sc);
5652
5653 /*
5654 * Init the various state machines, ring
5655 * control blocks and firmware.
5656 */
5657 error = bge_blockinit(sc);
5658 if (error != 0) {
5659 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5660 error);
5661 return error;
5662 }
5663
5664 /* 5718 step 25, 57XX step 54 */
5665 /* Specify MTU. */
5666 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5667 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5668
5669 /* 5718 step 23 */
5670 /* Load our MAC address. */
5671 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5672 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5673 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5674 ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5675
5676 /* Enable or disable promiscuous mode as needed. */
5677 if (ifp->if_flags & IFF_PROMISC)
5678 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5679 else
5680 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5681
5682 /* Program multicast filter. */
5683 bge_setmulti(sc);
5684
5685 /* Init RX ring. */
5686 bge_init_rx_ring_std(sc);
5687
5688 /*
5689 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5690 * memory to insure that the chip has in fact read the first
5691 * entry of the ring.
5692 */
5693 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5694 u_int i;
5695 for (i = 0; i < 10; i++) {
5696 DELAY(20);
5697 uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5698 if (v == (MCLBYTES - ETHER_ALIGN))
5699 break;
5700 }
5701 if (i == 10)
5702 aprint_error_dev(sc->bge_dev,
5703 "5705 A0 chip failed to load RX ring\n");
5704 }
5705
5706 /* Init jumbo RX ring. */
5707 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5708 bge_init_rx_ring_jumbo(sc);
5709
5710 /* Init our RX return ring index */
5711 sc->bge_rx_saved_considx = 0;
5712
5713 /* Init TX ring. */
5714 bge_init_tx_ring(sc);
5715
5716 /* 5718 step 63, 57XX step 94 */
5717 /* Enable TX MAC state machine lockup fix. */
5718 mode = CSR_READ_4(sc, BGE_TX_MODE);
5719 if (BGE_IS_5755_PLUS(sc) ||
5720 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5721 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5722 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5723 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5724 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5725 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5726 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5727 }
5728
5729 /* Turn on transmitter */
5730 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5731 /* 5718 step 64 */
5732 DELAY(100);
5733
5734 /* 5718 step 65, 57XX step 95 */
5735 /* Turn on receiver */
5736 mode = CSR_READ_4(sc, BGE_RX_MODE);
5737 if (BGE_IS_5755_PLUS(sc))
5738 mode |= BGE_RXMODE_IPV6_ENABLE;
5739 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5740 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5741 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5742 /* 5718 step 66 */
5743 DELAY(10);
5744
5745 /* 5718 step 12, 57XX step 37 */
5746 /*
5747 * XXX Documents of 5718 series and 577xx say the recommended value
5748 * is 1, but tg3 set 1 only on 57765 series.
5749 */
5750 if (BGE_IS_57765_PLUS(sc))
5751 reg = 1;
5752 else
5753 reg = 2;
5754 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5755
5756 /* Tell firmware we're alive. */
5757 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5758
5759 /* Enable host interrupts. */
5760 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5761 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5762 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5763
5764 mutex_enter(sc->sc_intr_lock);
5765 if ((error = bge_ifmedia_upd(ifp)) == 0) {
5766 sc->bge_stopping = false;
5767 sc->bge_txrx_stopping = false;
5768
5769 /* IFNET_LOCKED asserted above */
5770 ifp->if_flags |= IFF_RUNNING;
5771
5772 callout_schedule(&sc->bge_timeout, hz);
5773 }
5774 mutex_exit(sc->sc_intr_lock);
5775
5776 sc->bge_if_flags = ifp->if_flags;
5777
5778 return error;
5779 }
5780
5781 /*
5782 * Set media options.
5783 */
5784 static int
5785 bge_ifmedia_upd(struct ifnet *ifp)
5786 {
5787 struct bge_softc * const sc = ifp->if_softc;
5788 struct mii_data * const mii = &sc->bge_mii;
5789 struct ifmedia * const ifm = &sc->bge_ifmedia;
5790 int rc;
5791
5792 KASSERT(mutex_owned(sc->sc_intr_lock));
5793
5794 /* If this is a 1000baseX NIC, enable the TBI port. */
5795 if (sc->bge_flags & BGEF_FIBER_TBI) {
5796 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5797 return EINVAL;
5798 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5799 case IFM_AUTO:
5800 /*
5801 * The BCM5704 ASIC appears to have a special
5802 * mechanism for programming the autoneg
5803 * advertisement registers in TBI mode.
5804 */
5805 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5806 uint32_t sgdig;
5807 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5808 if (sgdig & BGE_SGDIGSTS_DONE) {
5809 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5810 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5811 sgdig |= BGE_SGDIGCFG_AUTO |
5812 BGE_SGDIGCFG_PAUSE_CAP |
5813 BGE_SGDIGCFG_ASYM_PAUSE;
5814 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5815 sgdig | BGE_SGDIGCFG_SEND);
5816 DELAY(5);
5817 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5818 sgdig);
5819 }
5820 }
5821 break;
5822 case IFM_1000_SX:
5823 if ((ifm->ifm_media & IFM_FDX) != 0) {
5824 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5825 BGE_MACMODE_HALF_DUPLEX);
5826 } else {
5827 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5828 BGE_MACMODE_HALF_DUPLEX);
5829 }
5830 DELAY(40);
5831 break;
5832 default:
5833 return EINVAL;
5834 }
5835 /* XXX 802.3x flow control for 1000BASE-SX */
5836 return 0;
5837 }
5838
5839 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5840 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5841 uint32_t reg;
5842
5843 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5844 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5845 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5846 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5847 }
5848 }
5849
5850 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5851 if ((rc = mii_mediachg(mii)) == ENXIO)
5852 return 0;
5853
5854 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5855 uint32_t reg;
5856
5857 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5858 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5859 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5860 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5861 delay(40);
5862 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5863 }
5864 }
5865
5866 /*
5867 * Force an interrupt so that we will call bge_link_upd
5868 * if needed and clear any pending link state attention.
5869 * Without this we are not getting any further interrupts
5870 * for link state changes and thus will not UP the link and
5871 * not be able to send in bge_start. The only way to get
5872 * things working was to receive a packet and get a RX intr.
5873 */
5874 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5875 sc->bge_flags & BGEF_IS_5788)
5876 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5877 else
5878 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5879
5880 return rc;
5881 }
5882
5883 /*
5884 * Report current media status.
5885 */
5886 static void
5887 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5888 {
5889 struct bge_softc * const sc = ifp->if_softc;
5890 struct mii_data * const mii = &sc->bge_mii;
5891
5892 KASSERT(mutex_owned(sc->sc_intr_lock));
5893
5894 if (sc->bge_flags & BGEF_FIBER_TBI) {
5895 ifmr->ifm_status = IFM_AVALID;
5896 ifmr->ifm_active = IFM_ETHER;
5897 if (CSR_READ_4(sc, BGE_MAC_STS) &
5898 BGE_MACSTAT_TBI_PCS_SYNCHED)
5899 ifmr->ifm_status |= IFM_ACTIVE;
5900 ifmr->ifm_active |= IFM_1000_SX;
5901 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5902 ifmr->ifm_active |= IFM_HDX;
5903 else
5904 ifmr->ifm_active |= IFM_FDX;
5905 return;
5906 }
5907
5908 mii_pollstat(mii);
5909 ifmr->ifm_status = mii->mii_media_status;
5910 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5911 sc->bge_flowflags;
5912 }
5913
5914 static int
5915 bge_ifflags_cb(struct ethercom *ec)
5916 {
5917 struct ifnet * const ifp = &ec->ec_if;
5918 struct bge_softc * const sc = ifp->if_softc;
5919 int ret = 0;
5920
5921 KASSERT(IFNET_LOCKED(ifp));
5922 mutex_enter(sc->sc_core_lock);
5923
5924 u_short change = ifp->if_flags ^ sc->bge_if_flags;
5925
5926 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
5927 ret = ENETRESET;
5928 } else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
5929 if ((ifp->if_flags & IFF_PROMISC) == 0)
5930 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5931 else
5932 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5933
5934 bge_setmulti(sc);
5935 }
5936
5937 sc->bge_if_flags = ifp->if_flags;
5938 mutex_exit(sc->sc_core_lock);
5939
5940 return ret;
5941 }
5942
5943 static int
5944 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5945 {
5946 struct bge_softc * const sc = ifp->if_softc;
5947 struct ifreq * const ifr = (struct ifreq *) data;
5948 int error = 0;
5949
5950 switch (command) {
5951 case SIOCADDMULTI:
5952 case SIOCDELMULTI:
5953 break;
5954 default:
5955 KASSERT(IFNET_LOCKED(ifp));
5956 }
5957
5958 const int s = splnet();
5959
5960 switch (command) {
5961 case SIOCSIFMEDIA:
5962 mutex_enter(sc->sc_core_lock);
5963 /* XXX Flow control is not supported for 1000BASE-SX */
5964 if (sc->bge_flags & BGEF_FIBER_TBI) {
5965 ifr->ifr_media &= ~IFM_ETH_FMASK;
5966 sc->bge_flowflags = 0;
5967 }
5968
5969 /* Flow control requires full-duplex mode. */
5970 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5971 (ifr->ifr_media & IFM_FDX) == 0) {
5972 ifr->ifr_media &= ~IFM_ETH_FMASK;
5973 }
5974 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5975 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5976 /* We can do both TXPAUSE and RXPAUSE. */
5977 ifr->ifr_media |=
5978 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5979 }
5980 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5981 }
5982 mutex_exit(sc->sc_core_lock);
5983
5984 if (sc->bge_flags & BGEF_FIBER_TBI) {
5985 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5986 command);
5987 } else {
5988 struct mii_data * const mii = &sc->bge_mii;
5989 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5990 command);
5991 }
5992 break;
5993 default:
5994 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5995 break;
5996
5997 error = 0;
5998
5999 if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
6000 mutex_enter(sc->sc_core_lock);
6001 if (sc->bge_if_flags & IFF_RUNNING) {
6002 bge_setmulti(sc);
6003 }
6004 mutex_exit(sc->sc_core_lock);
6005 }
6006 break;
6007 }
6008
6009 splx(s);
6010
6011 return error;
6012 }
6013
6014 static bool
6015 bge_watchdog_check(struct bge_softc * const sc)
6016 {
6017
6018 KASSERT(mutex_owned(sc->sc_core_lock));
6019
6020 if (!sc->bge_tx_sending)
6021 return true;
6022
6023 if (time_uptime - sc->bge_tx_lastsent <= bge_watchdog_timeout)
6024 return true;
6025
6026 /* If pause frames are active then don't reset the hardware. */
6027 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
6028 const uint32_t status = CSR_READ_4(sc, BGE_RX_STS);
6029 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
6030 /*
6031 * If link partner has us in XOFF state then wait for
6032 * the condition to clear.
6033 */
6034 CSR_WRITE_4(sc, BGE_RX_STS, status);
6035 sc->bge_tx_lastsent = time_uptime;
6036 return true;
6037 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
6038 (status & BGE_RXSTAT_RCVD_XON) != 0) {
6039 /*
6040 * If link partner has us in XOFF state then wait for
6041 * the condition to clear.
6042 */
6043 CSR_WRITE_4(sc, BGE_RX_STS, status);
6044 sc->bge_tx_lastsent = time_uptime;
6045 return true;
6046 }
6047 /*
6048 * Any other condition is unexpected and the controller
6049 * should be reset.
6050 */
6051 }
6052
6053 return false;
6054 }
6055
6056 static bool
6057 bge_watchdog_tick(struct ifnet *ifp)
6058 {
6059 struct bge_softc * const sc = ifp->if_softc;
6060
6061 KASSERT(mutex_owned(sc->sc_core_lock));
6062
6063 if (!sc->sc_trigger_reset && bge_watchdog_check(sc))
6064 return true;
6065
6066 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0)
6067 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
6068
6069 return false;
6070 }
6071
6072 /*
6073 * Perform an interface watchdog reset.
6074 */
6075 static void
6076 bge_handle_reset_work(struct work *work, void *arg)
6077 {
6078 struct bge_softc * const sc = arg;
6079 struct ifnet * const ifp = &sc->ethercom.ec_if;
6080
6081 printf("%s: watchdog timeout -- resetting\n", ifp->if_xname);
6082
6083 /* Don't want ioctl operations to happen */
6084 IFNET_LOCK(ifp);
6085
6086 /* reset the interface. */
6087 bge_init(ifp);
6088
6089 IFNET_UNLOCK(ifp);
6090
6091 /*
6092 * There are still some upper layer processing which call
6093 * ifp->if_start(). e.g. ALTQ or one CPU system
6094 */
6095 /* Try to get more packets going. */
6096 ifp->if_start(ifp);
6097
6098 atomic_store_relaxed(&sc->sc_reset_pending, 0);
6099 }
6100
6101 static void
6102 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
6103 {
6104 int i;
6105
6106 BGE_CLRBIT_FLUSH(sc, reg, bit);
6107
6108 for (i = 0; i < 1000; i++) {
6109 delay(100);
6110 if ((CSR_READ_4(sc, reg) & bit) == 0)
6111 return;
6112 }
6113
6114 /*
6115 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
6116 * on some environment (and once after boot?)
6117 */
6118 if (reg != BGE_SRS_MODE)
6119 aprint_error_dev(sc->bge_dev,
6120 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
6121 (u_long)reg, bit);
6122 }
6123
6124
6125 static void
6126 bge_stop(struct ifnet *ifp, int disable)
6127 {
6128 struct bge_softc * const sc = ifp->if_softc;
6129
6130 ASSERT_SLEEPABLE();
6131 KASSERT(IFNET_LOCKED(ifp));
6132
6133 mutex_enter(sc->sc_core_lock);
6134 bge_stop_locked(ifp, disable ? true : false);
6135 mutex_exit(sc->sc_core_lock);
6136 }
6137
6138 /*
6139 * Stop the adapter and free any mbufs allocated to the
6140 * RX and TX lists.
6141 */
6142 static void
6143 bge_stop_locked(struct ifnet *ifp, bool disable)
6144 {
6145 struct bge_softc * const sc = ifp->if_softc;
6146
6147 ASSERT_SLEEPABLE();
6148 KASSERT(IFNET_LOCKED(ifp));
6149 KASSERT(mutex_owned(sc->sc_core_lock));
6150
6151 sc->bge_stopping = true;
6152
6153 mutex_enter(sc->sc_intr_lock);
6154 sc->bge_txrx_stopping = true;
6155 mutex_exit(sc->sc_intr_lock);
6156
6157 callout_halt(&sc->bge_timeout, sc->sc_core_lock);
6158
6159 /* Disable host interrupts. */
6160 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6161 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
6162
6163 /*
6164 * Tell firmware we're shutting down.
6165 */
6166 bge_stop_fw(sc);
6167 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6168
6169 /*
6170 * Disable all of the receiver blocks.
6171 */
6172 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6173 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6174 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6175 if (BGE_IS_5700_FAMILY(sc))
6176 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6177 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6178 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6179 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6180
6181 /*
6182 * Disable all of the transmit blocks.
6183 */
6184 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6185 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6186 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6187 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6188 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6189 if (BGE_IS_5700_FAMILY(sc))
6190 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6191 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6192
6193 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6194 delay(40);
6195
6196 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6197
6198 /*
6199 * Shut down all of the memory managers and related
6200 * state machines.
6201 */
6202 /* 5718 step 5a,5b */
6203 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6204 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6205 if (BGE_IS_5700_FAMILY(sc))
6206 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6207
6208 /* 5718 step 5c,5d */
6209 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6210 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6211
6212 if (BGE_IS_5700_FAMILY(sc)) {
6213 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6214 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6215 }
6216
6217 bge_reset(sc);
6218 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6219 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6220
6221 /*
6222 * Keep the ASF firmware running if up.
6223 */
6224 if (sc->bge_asf_mode & ASF_STACKUP)
6225 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6226 else
6227 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6228
6229 /* Free the RX lists. */
6230 bge_free_rx_ring_std(sc);
6231
6232 /* Free jumbo RX list. */
6233 if (BGE_IS_JUMBO_CAPABLE(sc))
6234 bge_free_rx_ring_jumbo(sc);
6235
6236 /* Free TX buffers. */
6237 bge_free_tx_ring(sc, disable);
6238
6239 /*
6240 * Isolate/power down the PHY.
6241 */
6242 if (!(sc->bge_flags & BGEF_FIBER_TBI)) {
6243 mutex_enter(sc->sc_intr_lock);
6244 mii_down(&sc->bge_mii);
6245 mutex_exit(sc->sc_intr_lock);
6246 }
6247
6248 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6249
6250 /* Clear MAC's link state (PHY may still have link UP). */
6251 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6252
6253 ifp->if_flags &= ~IFF_RUNNING;
6254
6255 sc->bge_if_flags = ifp->if_flags;
6256 }
6257
6258 static void
6259 bge_link_upd(struct bge_softc *sc)
6260 {
6261 struct ifnet * const ifp = &sc->ethercom.ec_if;
6262 struct mii_data * const mii = &sc->bge_mii;
6263 uint32_t status;
6264 uint16_t phyval;
6265 int link;
6266
6267 KASSERT(sc->sc_intr_lock);
6268
6269 /* Clear 'pending link event' flag */
6270 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6271
6272 /*
6273 * Process link state changes.
6274 * Grrr. The link status word in the status block does
6275 * not work correctly on the BCM5700 rev AX and BX chips,
6276 * according to all available information. Hence, we have
6277 * to enable MII interrupts in order to properly obtain
6278 * async link changes. Unfortunately, this also means that
6279 * we have to read the MAC status register to detect link
6280 * changes, thereby adding an additional register access to
6281 * the interrupt handler.
6282 */
6283
6284 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6285 status = CSR_READ_4(sc, BGE_MAC_STS);
6286 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6287 mii_pollstat(mii);
6288
6289 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6290 mii->mii_media_status & IFM_ACTIVE &&
6291 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6292 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6293 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6294 (!(mii->mii_media_status & IFM_ACTIVE) ||
6295 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6296 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6297
6298 /* Clear the interrupt */
6299 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6300 BGE_EVTENB_MI_INTERRUPT);
6301 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6302 BRGPHY_MII_ISR, &phyval);
6303 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6304 BRGPHY_MII_IMR, BRGPHY_INTRS);
6305 }
6306 return;
6307 }
6308
6309 if (sc->bge_flags & BGEF_FIBER_TBI) {
6310 status = CSR_READ_4(sc, BGE_MAC_STS);
6311 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6312 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6313 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6314 if (BGE_ASICREV(sc->bge_chipid)
6315 == BGE_ASICREV_BCM5704) {
6316 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6317 BGE_MACMODE_TBI_SEND_CFGS);
6318 DELAY(40);
6319 }
6320 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6321 if_link_state_change(ifp, LINK_STATE_UP);
6322 }
6323 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6324 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6325 if_link_state_change(ifp, LINK_STATE_DOWN);
6326 }
6327 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6328 /*
6329 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6330 * bit in status word always set. Workaround this bug by
6331 * reading PHY link status directly.
6332 */
6333 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6334 BGE_STS_LINK : 0;
6335
6336 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6337 mii_pollstat(mii);
6338
6339 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6340 mii->mii_media_status & IFM_ACTIVE &&
6341 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6342 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6343 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6344 (!(mii->mii_media_status & IFM_ACTIVE) ||
6345 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6346 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6347 }
6348 } else {
6349 /*
6350 * For controllers that call mii_tick, we have to poll
6351 * link status.
6352 */
6353 mii_pollstat(mii);
6354 }
6355
6356 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6357 uint32_t reg, scale;
6358
6359 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6360 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6361 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6362 scale = 65;
6363 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6364 scale = 6;
6365 else
6366 scale = 12;
6367
6368 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6369 ~BGE_MISCCFG_TIMER_PRESCALER;
6370 reg |= scale << 1;
6371 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6372 }
6373 /* Clear the attention */
6374 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6375 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6376 BGE_MACSTAT_LINK_CHANGED);
6377 }
6378
6379 static int
6380 bge_sysctl_verify(SYSCTLFN_ARGS)
6381 {
6382 int error, t;
6383 struct sysctlnode node;
6384
6385 node = *rnode;
6386 t = *(int*)rnode->sysctl_data;
6387 node.sysctl_data = &t;
6388 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6389 if (error || newp == NULL)
6390 return error;
6391
6392 #if 0
6393 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6394 node.sysctl_num, rnode->sysctl_num));
6395 #endif
6396
6397 if (node.sysctl_num == bge_rxthresh_nodenum) {
6398 if (t < 0 || t >= NBGE_RX_THRESH)
6399 return EINVAL;
6400 bge_update_all_threshes(t);
6401 } else
6402 return EINVAL;
6403
6404 *(int*)rnode->sysctl_data = t;
6405
6406 return 0;
6407 }
6408
6409 /*
6410 * Set up sysctl(3) MIB, hw.bge.*.
6411 */
6412 static void
6413 bge_sysctl_init(struct bge_softc *sc)
6414 {
6415 int rc, bge_root_num;
6416 const struct sysctlnode *node;
6417
6418 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6419 0, CTLTYPE_NODE, "bge",
6420 SYSCTL_DESCR("BGE interface controls"),
6421 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6422 goto out;
6423 }
6424
6425 bge_root_num = node->sysctl_num;
6426
6427 /* BGE Rx interrupt mitigation level */
6428 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6429 CTLFLAG_READWRITE,
6430 CTLTYPE_INT, "rx_lvl",
6431 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6432 bge_sysctl_verify, 0,
6433 &bge_rx_thresh_lvl,
6434 0, CTL_HW, bge_root_num, CTL_CREATE,
6435 CTL_EOL)) != 0) {
6436 goto out;
6437 }
6438
6439 bge_rxthresh_nodenum = node->sysctl_num;
6440
6441 #ifdef BGE_DEBUG
6442 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6443 CTLFLAG_READWRITE,
6444 CTLTYPE_BOOL, "trigger_reset",
6445 SYSCTL_DESCR("Trigger an interface reset"),
6446 NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE,
6447 CTL_EOL)) != 0) {
6448 goto out;
6449 }
6450 #endif
6451 return;
6452
6453 out:
6454 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6455 }
6456
6457 #ifdef BGE_DEBUG
6458 void
6459 bge_debug_info(struct bge_softc *sc)
6460 {
6461
6462 printf("Hardware Flags:\n");
6463 if (BGE_IS_57765_PLUS(sc))
6464 printf(" - 57765 Plus\n");
6465 if (BGE_IS_5717_PLUS(sc))
6466 printf(" - 5717 Plus\n");
6467 if (BGE_IS_5755_PLUS(sc))
6468 printf(" - 5755 Plus\n");
6469 if (BGE_IS_575X_PLUS(sc))
6470 printf(" - 575X Plus\n");
6471 if (BGE_IS_5705_PLUS(sc))
6472 printf(" - 5705 Plus\n");
6473 if (BGE_IS_5714_FAMILY(sc))
6474 printf(" - 5714 Family\n");
6475 if (BGE_IS_5700_FAMILY(sc))
6476 printf(" - 5700 Family\n");
6477 if (sc->bge_flags & BGEF_IS_5788)
6478 printf(" - 5788\n");
6479 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6480 printf(" - Supports Jumbo Frames\n");
6481 if (sc->bge_flags & BGEF_NO_EEPROM)
6482 printf(" - No EEPROM\n");
6483 if (sc->bge_flags & BGEF_PCIX)
6484 printf(" - PCI-X Bus\n");
6485 if (sc->bge_flags & BGEF_PCIE)
6486 printf(" - PCI Express Bus\n");
6487 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6488 printf(" - RX Alignment Bug\n");
6489 if (sc->bge_flags & BGEF_APE)
6490 printf(" - APE\n");
6491 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6492 printf(" - CPMU\n");
6493 if (sc->bge_flags & BGEF_TSO)
6494 printf(" - TSO\n");
6495 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6496 printf(" - TAGGED_STATUS\n");
6497
6498 /* PHY related */
6499 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6500 printf(" - No 3 LEDs\n");
6501 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6502 printf(" - CRC bug\n");
6503 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6504 printf(" - ADC bug\n");
6505 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6506 printf(" - 5704 A0 bug\n");
6507 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6508 printf(" - jitter bug\n");
6509 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6510 printf(" - BER bug\n");
6511 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6512 printf(" - adjust trim\n");
6513 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6514 printf(" - no wirespeed\n");
6515
6516 /* ASF related */
6517 if (sc->bge_asf_mode & ASF_ENABLE)
6518 printf(" - ASF enable\n");
6519 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6520 printf(" - ASF new handshake\n");
6521 if (sc->bge_asf_mode & ASF_STACKUP)
6522 printf(" - ASF stackup\n");
6523 }
6524 #endif /* BGE_DEBUG */
6525
6526 static int
6527 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6528 {
6529 prop_dictionary_t dict;
6530 prop_data_t ea;
6531
6532 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6533 return 1;
6534
6535 dict = device_properties(sc->bge_dev);
6536 ea = prop_dictionary_get(dict, "mac-address");
6537 if (ea != NULL) {
6538 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6539 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6540 memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
6541 return 0;
6542 }
6543
6544 return 1;
6545 }
6546
6547 static int
6548 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6549 {
6550 uint32_t mac_addr;
6551
6552 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6553 if ((mac_addr >> 16) == 0x484b) {
6554 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6555 ether_addr[1] = (uint8_t)mac_addr;
6556 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6557 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6558 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6559 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6560 ether_addr[5] = (uint8_t)mac_addr;
6561 return 0;
6562 }
6563 return 1;
6564 }
6565
6566 static int
6567 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6568 {
6569 int mac_offset = BGE_EE_MAC_OFFSET;
6570
6571 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6572 mac_offset = BGE_EE_MAC_OFFSET_5906;
6573
6574 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6575 ETHER_ADDR_LEN));
6576 }
6577
6578 static int
6579 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6580 {
6581
6582 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6583 return 1;
6584
6585 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6586 ETHER_ADDR_LEN));
6587 }
6588
6589 static int
6590 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6591 {
6592 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6593 /* NOTE: Order is critical */
6594 bge_get_eaddr_fw,
6595 bge_get_eaddr_mem,
6596 bge_get_eaddr_nvram,
6597 bge_get_eaddr_eeprom,
6598 NULL
6599 };
6600 const bge_eaddr_fcn_t *func;
6601
6602 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6603 if ((*func)(sc, eaddr) == 0)
6604 break;
6605 }
6606 return *func == NULL ? ENXIO : 0;
6607 }
6608