Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.394
      1 /*	$NetBSD: if_bge.c,v 1.394 2024/08/28 05:58:11 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.394 2024/08/28 05:58:11 skrll Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/types.h>
     86 
     87 #include <sys/callout.h>
     88 #include <sys/device.h>
     89 #include <sys/kernel.h>
     90 #include <sys/kmem.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/rndsource.h>
     93 #include <sys/socket.h>
     94 #include <sys/sockio.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/systm.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 #include <net/bpf.h>
    103 
    104 /* Headers for TCP Segmentation Offload (TSO) */
    105 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    106 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    107 #include <netinet/ip.h>			/* for struct ip */
    108 #include <netinet/tcp.h>		/* for struct tcphdr */
    109 
    110 #include <dev/pci/pcireg.h>
    111 #include <dev/pci/pcivar.h>
    112 #include <dev/pci/pcidevs.h>
    113 
    114 #include <dev/mii/mii.h>
    115 #include <dev/mii/miivar.h>
    116 #include <dev/mii/miidevs.h>
    117 #include <dev/mii/brgphyreg.h>
    118 
    119 #include <dev/pci/if_bgereg.h>
    120 #include <dev/pci/if_bgevar.h>
    121 
    122 #include <prop/proplib.h>
    123 
    124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    125 
    126 
    127 /*
    128  * Tunable thresholds for rx-side bge interrupt mitigation.
    129  */
    130 
    131 /*
    132  * The pairs of values below were obtained from empirical measurement
    133  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    134  * interrupt for every N packets received, where N is, approximately,
    135  * the second value (rx_max_bds) in each pair.  The values are chosen
    136  * such that moving from one pair to the succeeding pair was observed
    137  * to roughly halve interrupt rate under sustained input packet load.
    138  * The values were empirically chosen to avoid overflowing internal
    139  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    140  * results in internal wrapping and higher interrupt rates.
    141  * The limit of 46 frames was chosen to match NFS workloads.
    142  *
    143  * These values also work well on bcm5701, bcm5704C, and (less
    144  * tested) bcm5703.  On other chipsets, (including the Altima chip
    145  * family), the larger values may overflow internal chip limits,
    146  * leading to increasing interrupt rates rather than lower interrupt
    147  * rates.
    148  *
    149  * Applications using heavy interrupt mitigation (interrupting every
    150  * 32 or 46 frames) in both directions may need to increase the TCP
    151  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    152  * full link bandwidth, due to ACKs and window updates lingering
    153  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    154  */
    155 static const struct bge_load_rx_thresh {
    156 	int rx_ticks;
    157 	int rx_max_bds; }
    158 bge_rx_threshes[] = {
    159 	{ 16,	1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    160 	{ 32,	2 },
    161 	{ 50,	4 },
    162 	{ 100,	8 },
    163 	{ 192, 16 },
    164 	{ 416, 32 },
    165 	{ 598, 46 }
    166 };
    167 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    168 
    169 /* XXX patchable; should be sysctl'able */
    170 static int bge_auto_thresh = 1;
    171 static int bge_rx_thresh_lvl;
    172 
    173 static int bge_rxthresh_nodenum;
    174 
    175 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    176 
    177 static uint32_t bge_chipid(const struct pci_attach_args *);
    178 static int bge_can_use_msi(struct bge_softc *);
    179 static int bge_probe(device_t, cfdata_t, void *);
    180 static void bge_attach(device_t, device_t, void *);
    181 static int bge_detach(device_t, int);
    182 static void bge_release_resources(struct bge_softc *);
    183 
    184 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    185 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    186 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    187 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    188 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    189 
    190 static void bge_txeof(struct bge_softc *);
    191 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    192 static void bge_rxeof(struct bge_softc *);
    193 
    194 static void bge_asf_driver_up (struct bge_softc *);
    195 static void bge_tick(void *);
    196 static void bge_stats_update(struct bge_softc *);
    197 static void bge_stats_update_regs(struct bge_softc *);
    198 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    199 
    200 static int bge_intr(void *);
    201 static void bge_start(struct ifnet *);
    202 static void bge_start_locked(struct ifnet *);
    203 static int bge_ifflags_cb(struct ethercom *);
    204 static int bge_ioctl(struct ifnet *, u_long, void *);
    205 static int bge_init(struct ifnet *);
    206 static void bge_stop(struct ifnet *, int);
    207 static bool bge_watchdog_tick(struct ifnet *);
    208 static int bge_ifmedia_upd(struct ifnet *);
    209 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    210 static void bge_handle_reset_work(struct work *, void *);
    211 
    212 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    213 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    214 
    215 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    216 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    217 static void bge_setmulti(struct bge_softc *);
    218 
    219 static void bge_handle_events(struct bge_softc *);
    220 static int bge_alloc_jumbo_mem(struct bge_softc *);
    221 static void bge_free_jumbo_mem(struct bge_softc *);
    222 static void *bge_jalloc(struct bge_softc *);
    223 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    224 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    225 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    226 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    227 
    228 static int bge_newbuf_std(struct bge_softc *, int);
    229 static int bge_init_rx_ring_std(struct bge_softc *);
    230 static void bge_fill_rx_ring_std(struct bge_softc *);
    231 static void bge_free_rx_ring_std(struct bge_softc *m);
    232 
    233 static void bge_free_tx_ring(struct bge_softc *m, bool);
    234 static int bge_init_tx_ring(struct bge_softc *);
    235 
    236 static int bge_chipinit(struct bge_softc *);
    237 static int bge_blockinit(struct bge_softc *);
    238 static int bge_phy_addr(struct bge_softc *);
    239 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    240 static void bge_writemem_ind(struct bge_softc *, int, int);
    241 static void bge_writembx(struct bge_softc *, int, int);
    242 static void bge_writembx_flush(struct bge_softc *, int, int);
    243 static void bge_writemem_direct(struct bge_softc *, int, int);
    244 static void bge_writereg_ind(struct bge_softc *, int, int);
    245 static void bge_set_max_readrq(struct bge_softc *);
    246 
    247 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
    248 static int bge_miibus_writereg(device_t, int, int, uint16_t);
    249 static void bge_miibus_statchg(struct ifnet *);
    250 
    251 #define BGE_RESET_SHUTDOWN	0
    252 #define	BGE_RESET_START		1
    253 #define	BGE_RESET_SUSPEND	2
    254 static void bge_sig_post_reset(struct bge_softc *, int);
    255 static void bge_sig_legacy(struct bge_softc *, int);
    256 static void bge_sig_pre_reset(struct bge_softc *, int);
    257 static void bge_wait_for_event_ack(struct bge_softc *);
    258 static void bge_stop_fw(struct bge_softc *);
    259 static int bge_reset(struct bge_softc *);
    260 static void bge_link_upd(struct bge_softc *);
    261 static void bge_sysctl_init(struct bge_softc *);
    262 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    263 
    264 static void bge_ape_lock_init(struct bge_softc *);
    265 static void bge_ape_read_fw_ver(struct bge_softc *);
    266 static int bge_ape_lock(struct bge_softc *, int);
    267 static void bge_ape_unlock(struct bge_softc *, int);
    268 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    269 static void bge_ape_driver_state_change(struct bge_softc *, int);
    270 
    271 #ifdef BGE_DEBUG
    272 #define DPRINTF(x)	if (bgedebug) printf x
    273 #define DPRINTFN(n, x)	if (bgedebug >= (n)) printf x
    274 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    275 int	bgedebug = 0;
    276 int	bge_tso_debug = 0;
    277 void	bge_debug_info(struct bge_softc *);
    278 #else
    279 #define DPRINTF(x)
    280 #define DPRINTFN(n, x)
    281 #define BGE_TSO_PRINTF(x)
    282 #endif
    283 
    284 #ifdef BGE_EVENT_COUNTERS
    285 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    286 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    287 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    288 #else
    289 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    290 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    291 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    292 #endif
    293 
    294 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
    295 /*
    296  * The BCM5700 documentation seems to indicate that the hardware still has the
    297  * Alteon vendor ID burned into it, though it should always be overridden by
    298  * the value in the EEPROM.  We'll check for it anyway.
    299  */
    300 static const struct bge_product {
    301 	pci_vendor_id_t		bp_vendor;
    302 	pci_product_id_t	bp_product;
    303 	const char		*bp_name;
    304 } bge_products[] = {
    305 	{ VIDDID(ALTEON,   BCM5700),	"Broadcom BCM5700 Gigabit" },
    306 	{ VIDDID(ALTEON,   BCM5701),	"Broadcom BCM5701 Gigabit" },
    307 	{ VIDDID(ALTIMA,   AC1000),	"Altima AC1000 Gigabit" },
    308 	{ VIDDID(ALTIMA,   AC1001),	"Altima AC1001 Gigabit" },
    309 	{ VIDDID(ALTIMA,   AC1003),	"Altima AC1003 Gigabit" },
    310 	{ VIDDID(ALTIMA,   AC9100),	"Altima AC9100 Gigabit" },
    311 	{ VIDDID(APPLE,	   BCM5701),	"APPLE BCM5701 Gigabit" },
    312 	{ VIDDID(BROADCOM, BCM5700),	"Broadcom BCM5700 Gigabit" },
    313 	{ VIDDID(BROADCOM, BCM5701),	"Broadcom BCM5701 Gigabit" },
    314 	{ VIDDID(BROADCOM, BCM5702),	"Broadcom BCM5702 Gigabit" },
    315 	{ VIDDID(BROADCOM, BCM5702FE),	"Broadcom BCM5702FE Fast" },
    316 	{ VIDDID(BROADCOM, BCM5702X),	"Broadcom BCM5702X Gigabit" },
    317 	{ VIDDID(BROADCOM, BCM5703),	"Broadcom BCM5703 Gigabit" },
    318 	{ VIDDID(BROADCOM, BCM5703X),	"Broadcom BCM5703X Gigabit" },
    319 	{ VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
    320 	{ VIDDID(BROADCOM, BCM5704C),	"Broadcom BCM5704C Dual Gigabit" },
    321 	{ VIDDID(BROADCOM, BCM5704S),	"Broadcom BCM5704S Dual Gigabit" },
    322 	{ VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
    323 	{ VIDDID(BROADCOM, BCM5705),	"Broadcom BCM5705 Gigabit" },
    324 	{ VIDDID(BROADCOM, BCM5705F),	"Broadcom BCM5705F Gigabit" },
    325 	{ VIDDID(BROADCOM, BCM5705K),	"Broadcom BCM5705K Gigabit" },
    326 	{ VIDDID(BROADCOM, BCM5705M),	"Broadcom BCM5705M Gigabit" },
    327 	{ VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
    328 	{ VIDDID(BROADCOM, BCM5714),	"Broadcom BCM5714 Gigabit" },
    329 	{ VIDDID(BROADCOM, BCM5714S),	"Broadcom BCM5714S Gigabit" },
    330 	{ VIDDID(BROADCOM, BCM5715),	"Broadcom BCM5715 Gigabit" },
    331 	{ VIDDID(BROADCOM, BCM5715S),	"Broadcom BCM5715S Gigabit" },
    332 	{ VIDDID(BROADCOM, BCM5717),	"Broadcom BCM5717 Gigabit" },
    333 	{ VIDDID(BROADCOM, BCM5717C),	"Broadcom BCM5717 Gigabit" },
    334 	{ VIDDID(BROADCOM, BCM5718),	"Broadcom BCM5718 Gigabit" },
    335 	{ VIDDID(BROADCOM, BCM5719),	"Broadcom BCM5719 Gigabit" },
    336 	{ VIDDID(BROADCOM, BCM5720),	"Broadcom BCM5720 Gigabit" },
    337 	{ VIDDID(BROADCOM, BCM5721),	"Broadcom BCM5721 Gigabit" },
    338 	{ VIDDID(BROADCOM, BCM5722),	"Broadcom BCM5722 Gigabit" },
    339 	{ VIDDID(BROADCOM, BCM5723),	"Broadcom BCM5723 Gigabit" },
    340 	{ VIDDID(BROADCOM, BCM5725),	"Broadcom BCM5725 Gigabit" },
    341 	{ VIDDID(BROADCOM, BCM5727),	"Broadcom BCM5727 Gigabit" },
    342 	{ VIDDID(BROADCOM, BCM5750),	"Broadcom BCM5750 Gigabit" },
    343 	{ VIDDID(BROADCOM, BCM5751),	"Broadcom BCM5751 Gigabit" },
    344 	{ VIDDID(BROADCOM, BCM5751F),	"Broadcom BCM5751F Gigabit" },
    345 	{ VIDDID(BROADCOM, BCM5751M),	"Broadcom BCM5751M Gigabit" },
    346 	{ VIDDID(BROADCOM, BCM5752),	"Broadcom BCM5752 Gigabit" },
    347 	{ VIDDID(BROADCOM, BCM5752M),	"Broadcom BCM5752M Gigabit" },
    348 	{ VIDDID(BROADCOM, BCM5753),	"Broadcom BCM5753 Gigabit" },
    349 	{ VIDDID(BROADCOM, BCM5753F),	"Broadcom BCM5753F Gigabit" },
    350 	{ VIDDID(BROADCOM, BCM5753M),	"Broadcom BCM5753M Gigabit" },
    351 	{ VIDDID(BROADCOM, BCM5754),	"Broadcom BCM5754 Gigabit" },
    352 	{ VIDDID(BROADCOM, BCM5754M),	"Broadcom BCM5754M Gigabit" },
    353 	{ VIDDID(BROADCOM, BCM5755),	"Broadcom BCM5755 Gigabit" },
    354 	{ VIDDID(BROADCOM, BCM5755M),	"Broadcom BCM5755M Gigabit" },
    355 	{ VIDDID(BROADCOM, BCM5756),	"Broadcom BCM5756 Gigabit" },
    356 	{ VIDDID(BROADCOM, BCM5761),	"Broadcom BCM5761 Gigabit" },
    357 	{ VIDDID(BROADCOM, BCM5761E),	"Broadcom BCM5761E Gigabit" },
    358 	{ VIDDID(BROADCOM, BCM5761S),	"Broadcom BCM5761S Gigabit" },
    359 	{ VIDDID(BROADCOM, BCM5761SE),	"Broadcom BCM5761SE Gigabit" },
    360 	{ VIDDID(BROADCOM, BCM5762),	"Broadcom BCM5762 Gigabit" },
    361 	{ VIDDID(BROADCOM, BCM5764),	"Broadcom BCM5764 Gigabit" },
    362 	{ VIDDID(BROADCOM, BCM5780),	"Broadcom BCM5780 Gigabit" },
    363 	{ VIDDID(BROADCOM, BCM5780S),	"Broadcom BCM5780S Gigabit" },
    364 	{ VIDDID(BROADCOM, BCM5781),	"Broadcom BCM5781 Gigabit" },
    365 	{ VIDDID(BROADCOM, BCM5782),	"Broadcom BCM5782 Gigabit" },
    366 	{ VIDDID(BROADCOM, BCM5784M),	"BCM5784M NetLink 1000baseT" },
    367 	{ VIDDID(BROADCOM, BCM5785F),	"BCM5785F NetLink 10/100" },
    368 	{ VIDDID(BROADCOM, BCM5785G),	"BCM5785G NetLink 1000baseT" },
    369 	{ VIDDID(BROADCOM, BCM5786),	"Broadcom BCM5786 Gigabit" },
    370 	{ VIDDID(BROADCOM, BCM5787),	"Broadcom BCM5787 Gigabit" },
    371 	{ VIDDID(BROADCOM, BCM5787F),	"Broadcom BCM5787F 10/100" },
    372 	{ VIDDID(BROADCOM, BCM5787M),	"Broadcom BCM5787M Gigabit" },
    373 	{ VIDDID(BROADCOM, BCM5788),	"Broadcom BCM5788 Gigabit" },
    374 	{ VIDDID(BROADCOM, BCM5789),	"Broadcom BCM5789 Gigabit" },
    375 	{ VIDDID(BROADCOM, BCM5901),	"Broadcom BCM5901 Fast" },
    376 	{ VIDDID(BROADCOM, BCM5901A2),	"Broadcom BCM5901A2 Fast" },
    377 	{ VIDDID(BROADCOM, BCM5903M),	"Broadcom BCM5903M Fast" },
    378 	{ VIDDID(BROADCOM, BCM5906),	"Broadcom BCM5906 Fast" },
    379 	{ VIDDID(BROADCOM, BCM5906M),	"Broadcom BCM5906M Fast" },
    380 	{ VIDDID(BROADCOM, BCM57760),	"Broadcom BCM57760 Gigabit" },
    381 	{ VIDDID(BROADCOM, BCM57761),	"Broadcom BCM57761 Gigabit" },
    382 	{ VIDDID(BROADCOM, BCM57762),	"Broadcom BCM57762 Gigabit" },
    383 	{ VIDDID(BROADCOM, BCM57764),	"Broadcom BCM57764 Gigabit" },
    384 	{ VIDDID(BROADCOM, BCM57765),	"Broadcom BCM57765 Gigabit" },
    385 	{ VIDDID(BROADCOM, BCM57766),	"Broadcom BCM57766 Gigabit" },
    386 	{ VIDDID(BROADCOM, BCM57767),	"Broadcom BCM57767 Gigabit" },
    387 	{ VIDDID(BROADCOM, BCM57780),	"Broadcom BCM57780 Gigabit" },
    388 	{ VIDDID(BROADCOM, BCM57781),	"Broadcom BCM57781 Gigabit" },
    389 	{ VIDDID(BROADCOM, BCM57782),	"Broadcom BCM57782 Gigabit" },
    390 	{ VIDDID(BROADCOM, BCM57785),	"Broadcom BCM57785 Gigabit" },
    391 	{ VIDDID(BROADCOM, BCM57786),	"Broadcom BCM57786 Gigabit" },
    392 	{ VIDDID(BROADCOM, BCM57787),	"Broadcom BCM57787 Gigabit" },
    393 	{ VIDDID(BROADCOM, BCM57788),	"Broadcom BCM57788 Gigabit" },
    394 	{ VIDDID(BROADCOM, BCM57790),	"Broadcom BCM57790 Gigabit" },
    395 	{ VIDDID(BROADCOM, BCM57791),	"Broadcom BCM57791 Gigabit" },
    396 	{ VIDDID(BROADCOM, BCM57795),	"Broadcom BCM57795 Gigabit" },
    397 	{ VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
    398 	{ VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
    399 	{ VIDDID(3COM, 3C996),		"3Com 3c996 Gigabit" },
    400 	{ VIDDID(FUJITSU4, PW008GE4),	"Fujitsu PW008GE4 Gigabit" },
    401 	{ VIDDID(FUJITSU4, PW008GE5),	"Fujitsu PW008GE5 Gigabit" },
    402 	{ VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
    403 	{ 0, 0, NULL },
    404 };
    405 
    406 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
    407 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
    408 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
    409 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
    410 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
    411 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
    412 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
    413 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
    414 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
    415 
    416 static const struct bge_revision {
    417 	uint32_t		br_chipid;
    418 	const char		*br_name;
    419 } bge_revisions[] = {
    420 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    421 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    422 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    423 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    424 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    425 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    426 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    427 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    428 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    429 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    430 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    431 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    432 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    433 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    434 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    435 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    436 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    437 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    438 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    439 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    440 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    441 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    442 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    443 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    444 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    445 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    446 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    447 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    448 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    449 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    450 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    451 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    452 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    453 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    454 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    455 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    456 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    457 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    458 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    459 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    460 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    461 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    462 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    463 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    464 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    465 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    466 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    467 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    468 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    469 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    470 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    471 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    472 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    473 	{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
    474 	{ BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
    475 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    476 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    477 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
    478 	/* 5754 and 5787 share the same ASIC ID */
    479 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    480 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    481 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    482 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    483 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    484 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    485 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    486 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    487 	{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
    488 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    489 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    490 
    491 	{ 0, NULL }
    492 };
    493 
    494 /*
    495  * Some defaults for major revisions, so that newer steppings
    496  * that we don't know about have a shot at working.
    497  */
    498 static const struct bge_revision bge_majorrevs[] = {
    499 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    500 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    501 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    502 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    503 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    504 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    505 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    506 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    507 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    508 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    509 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    510 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    511 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    512 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    513 	/* 5754 and 5787 share the same ASIC ID */
    514 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    515 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    516 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    517 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    518 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    519 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    520 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    521 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    522 	{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
    523 
    524 	{ 0, NULL }
    525 };
    526 
    527 static int bge_allow_asf = 1;
    528 
    529 #ifndef BGE_WATCHDOG_TIMEOUT
    530 #define BGE_WATCHDOG_TIMEOUT 5
    531 #endif
    532 static int bge_watchdog_timeout = BGE_WATCHDOG_TIMEOUT;
    533 
    534 
    535 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    536     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    537 
    538 static uint32_t
    539 bge_readmem_ind(struct bge_softc *sc, int off)
    540 {
    541 	pcireg_t val;
    542 
    543 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    544 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    545 		return 0;
    546 
    547 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    548 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    549 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    550 	return val;
    551 }
    552 
    553 static void
    554 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    555 {
    556 
    557 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    558 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    559 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    560 }
    561 
    562 /*
    563  * PCI Express only
    564  */
    565 static void
    566 bge_set_max_readrq(struct bge_softc *sc)
    567 {
    568 	pcireg_t val;
    569 
    570 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    571 	    + PCIE_DCSR);
    572 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    573 	switch (sc->bge_expmrq) {
    574 	case 2048:
    575 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    576 		break;
    577 	case 4096:
    578 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    579 		break;
    580 	default:
    581 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    582 		break;
    583 	}
    584 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    585 	    + PCIE_DCSR, val);
    586 }
    587 
    588 #ifdef notdef
    589 static uint32_t
    590 bge_readreg_ind(struct bge_softc *sc, int off)
    591 {
    592 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    593 	return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
    594 }
    595 #endif
    596 
    597 static void
    598 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    599 {
    600 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    601 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    602 }
    603 
    604 static void
    605 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    606 {
    607 	CSR_WRITE_4(sc, off, val);
    608 }
    609 
    610 static void
    611 bge_writembx(struct bge_softc *sc, int off, int val)
    612 {
    613 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    614 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    615 
    616 	CSR_WRITE_4(sc, off, val);
    617 }
    618 
    619 static void
    620 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    621 {
    622 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    623 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    624 
    625 	CSR_WRITE_4_FLUSH(sc, off, val);
    626 }
    627 
    628 /*
    629  * Clear all stale locks and select the lock for this driver instance.
    630  */
    631 void
    632 bge_ape_lock_init(struct bge_softc *sc)
    633 {
    634 	struct pci_attach_args *pa = &(sc->bge_pa);
    635 	uint32_t bit, regbase;
    636 	int i;
    637 
    638 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    639 		regbase = BGE_APE_LOCK_GRANT;
    640 	else
    641 		regbase = BGE_APE_PER_LOCK_GRANT;
    642 
    643 	/* Clear any stale locks. */
    644 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    645 		switch (i) {
    646 		case BGE_APE_LOCK_PHY0:
    647 		case BGE_APE_LOCK_PHY1:
    648 		case BGE_APE_LOCK_PHY2:
    649 		case BGE_APE_LOCK_PHY3:
    650 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    651 			break;
    652 		default:
    653 			if (pa->pa_function == 0)
    654 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    655 			else
    656 				bit = (1 << pa->pa_function);
    657 		}
    658 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    659 	}
    660 
    661 	/* Select the PHY lock based on the device's function number. */
    662 	switch (pa->pa_function) {
    663 	case 0:
    664 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    665 		break;
    666 	case 1:
    667 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    668 		break;
    669 	case 2:
    670 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    671 		break;
    672 	case 3:
    673 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    674 		break;
    675 	default:
    676 		printf("%s: PHY lock not supported on function\n",
    677 		    device_xname(sc->bge_dev));
    678 		break;
    679 	}
    680 }
    681 
    682 /*
    683  * Check for APE firmware, set flags, and print version info.
    684  */
    685 void
    686 bge_ape_read_fw_ver(struct bge_softc *sc)
    687 {
    688 	const char *fwtype;
    689 	uint32_t apedata, features;
    690 
    691 	/* Check for a valid APE signature in shared memory. */
    692 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    693 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    694 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    695 		return;
    696 	}
    697 
    698 	/* Check if APE firmware is running. */
    699 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    700 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    701 		printf("%s: APE signature found but FW status not ready! "
    702 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    703 		return;
    704 	}
    705 
    706 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    707 
    708 	/* Fetch the APE firmware type and version. */
    709 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    710 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    711 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    712 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    713 		fwtype = "NCSI";
    714 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    715 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    716 		fwtype = "DASH";
    717 	} else
    718 		fwtype = "UNKN";
    719 
    720 	/* Print the APE firmware version. */
    721 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
    722 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    723 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    724 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    725 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    726 }
    727 
    728 int
    729 bge_ape_lock(struct bge_softc *sc, int locknum)
    730 {
    731 	struct pci_attach_args *pa = &(sc->bge_pa);
    732 	uint32_t bit, gnt, req, status;
    733 	int i, off;
    734 
    735 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    736 		return 0;
    737 
    738 	/* Lock request/grant registers have different bases. */
    739 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    740 		req = BGE_APE_LOCK_REQ;
    741 		gnt = BGE_APE_LOCK_GRANT;
    742 	} else {
    743 		req = BGE_APE_PER_LOCK_REQ;
    744 		gnt = BGE_APE_PER_LOCK_GRANT;
    745 	}
    746 
    747 	off = 4 * locknum;
    748 
    749 	switch (locknum) {
    750 	case BGE_APE_LOCK_GPIO:
    751 		/* Lock required when using GPIO. */
    752 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    753 			return 0;
    754 		if (pa->pa_function == 0)
    755 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    756 		else
    757 			bit = (1 << pa->pa_function);
    758 		break;
    759 	case BGE_APE_LOCK_GRC:
    760 		/* Lock required to reset the device. */
    761 		if (pa->pa_function == 0)
    762 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    763 		else
    764 			bit = (1 << pa->pa_function);
    765 		break;
    766 	case BGE_APE_LOCK_MEM:
    767 		/* Lock required when accessing certain APE memory. */
    768 		if (pa->pa_function == 0)
    769 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    770 		else
    771 			bit = (1 << pa->pa_function);
    772 		break;
    773 	case BGE_APE_LOCK_PHY0:
    774 	case BGE_APE_LOCK_PHY1:
    775 	case BGE_APE_LOCK_PHY2:
    776 	case BGE_APE_LOCK_PHY3:
    777 		/* Lock required when accessing PHYs. */
    778 		bit = BGE_APE_LOCK_REQ_DRIVER0;
    779 		break;
    780 	default:
    781 		return EINVAL;
    782 	}
    783 
    784 	/* Request a lock. */
    785 	APE_WRITE_4_FLUSH(sc, req + off, bit);
    786 
    787 	/* Wait up to 1 second to acquire lock. */
    788 	for (i = 0; i < 20000; i++) {
    789 		status = APE_READ_4(sc, gnt + off);
    790 		if (status == bit)
    791 			break;
    792 		DELAY(50);
    793 	}
    794 
    795 	/* Handle any errors. */
    796 	if (status != bit) {
    797 		printf("%s: APE lock %d request failed! "
    798 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
    799 		    device_xname(sc->bge_dev),
    800 		    locknum, req + off, bit & 0xFFFF, gnt + off,
    801 		    status & 0xFFFF);
    802 		/* Revoke the lock request. */
    803 		APE_WRITE_4(sc, gnt + off, bit);
    804 		return EBUSY;
    805 	}
    806 
    807 	return 0;
    808 }
    809 
    810 void
    811 bge_ape_unlock(struct bge_softc *sc, int locknum)
    812 {
    813 	struct pci_attach_args *pa = &(sc->bge_pa);
    814 	uint32_t bit, gnt;
    815 	int off;
    816 
    817 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    818 		return;
    819 
    820 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    821 		gnt = BGE_APE_LOCK_GRANT;
    822 	else
    823 		gnt = BGE_APE_PER_LOCK_GRANT;
    824 
    825 	off = 4 * locknum;
    826 
    827 	switch (locknum) {
    828 	case BGE_APE_LOCK_GPIO:
    829 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    830 			return;
    831 		if (pa->pa_function == 0)
    832 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    833 		else
    834 			bit = (1 << pa->pa_function);
    835 		break;
    836 	case BGE_APE_LOCK_GRC:
    837 		if (pa->pa_function == 0)
    838 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    839 		else
    840 			bit = (1 << pa->pa_function);
    841 		break;
    842 	case BGE_APE_LOCK_MEM:
    843 		if (pa->pa_function == 0)
    844 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    845 		else
    846 			bit = (1 << pa->pa_function);
    847 		break;
    848 	case BGE_APE_LOCK_PHY0:
    849 	case BGE_APE_LOCK_PHY1:
    850 	case BGE_APE_LOCK_PHY2:
    851 	case BGE_APE_LOCK_PHY3:
    852 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
    853 		break;
    854 	default:
    855 		return;
    856 	}
    857 
    858 	/* Write and flush for consecutive bge_ape_lock() */
    859 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
    860 }
    861 
    862 /*
    863  * Send an event to the APE firmware.
    864  */
    865 void
    866 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
    867 {
    868 	uint32_t apedata;
    869 	int i;
    870 
    871 	/* NCSI does not support APE events. */
    872 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    873 		return;
    874 
    875 	/* Wait up to 1ms for APE to service previous event. */
    876 	for (i = 10; i > 0; i--) {
    877 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
    878 			break;
    879 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
    880 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
    881 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
    882 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
    883 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    884 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
    885 			break;
    886 		}
    887 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    888 		DELAY(100);
    889 	}
    890 	if (i == 0) {
    891 		printf("%s: APE event 0x%08x send timed out\n",
    892 		    device_xname(sc->bge_dev), event);
    893 	}
    894 }
    895 
    896 void
    897 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
    898 {
    899 	uint32_t apedata, event;
    900 
    901 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    902 		return;
    903 
    904 	switch (kind) {
    905 	case BGE_RESET_START:
    906 		/* If this is the first load, clear the load counter. */
    907 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
    908 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
    909 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
    910 		else {
    911 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
    912 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
    913 		}
    914 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
    915 		    BGE_APE_HOST_SEG_SIG_MAGIC);
    916 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
    917 		    BGE_APE_HOST_SEG_LEN_MAGIC);
    918 
    919 		/* Add some version info if bge(4) supports it. */
    920 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
    921 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
    922 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
    923 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
    924 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
    925 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
    926 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    927 		    BGE_APE_HOST_DRVR_STATE_START);
    928 		event = BGE_APE_EVENT_STATUS_STATE_START;
    929 		break;
    930 	case BGE_RESET_SHUTDOWN:
    931 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    932 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
    933 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
    934 		break;
    935 	case BGE_RESET_SUSPEND:
    936 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
    937 		break;
    938 	default:
    939 		return;
    940 	}
    941 
    942 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
    943 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
    944 }
    945 
    946 static uint8_t
    947 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    948 {
    949 	uint32_t access, byte = 0;
    950 	int i;
    951 
    952 	/* Lock. */
    953 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    954 	for (i = 0; i < 8000; i++) {
    955 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    956 			break;
    957 		DELAY(20);
    958 	}
    959 	if (i == 8000)
    960 		return 1;
    961 
    962 	/* Enable access. */
    963 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    964 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    965 
    966 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    967 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    968 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    969 		DELAY(10);
    970 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    971 			DELAY(10);
    972 			break;
    973 		}
    974 	}
    975 
    976 	if (i == BGE_TIMEOUT * 10) {
    977 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    978 		return 1;
    979 	}
    980 
    981 	/* Get result. */
    982 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    983 
    984 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    985 
    986 	/* Disable access. */
    987 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    988 
    989 	/* Unlock. */
    990 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    991 
    992 	return 0;
    993 }
    994 
    995 /*
    996  * Read a sequence of bytes from NVRAM.
    997  */
    998 static int
    999 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
   1000 {
   1001 	int error = 0, i;
   1002 	uint8_t byte = 0;
   1003 
   1004 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1005 		return 1;
   1006 
   1007 	for (i = 0; i < cnt; i++) {
   1008 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1009 		if (error)
   1010 			break;
   1011 		*(dest + i) = byte;
   1012 	}
   1013 
   1014 	return error ? 1 : 0;
   1015 }
   1016 
   1017 /*
   1018  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1019  * BCM570x supports both the traditional bitbang interface and an
   1020  * auto access interface for reading the EEPROM. We use the auto
   1021  * access method.
   1022  */
   1023 static uint8_t
   1024 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1025 {
   1026 	int i;
   1027 	uint32_t byte = 0;
   1028 
   1029 	/*
   1030 	 * Enable use of auto EEPROM access so we can avoid
   1031 	 * having to use the bitbang method.
   1032 	 */
   1033 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1034 
   1035 	/* Reset the EEPROM, load the clock period. */
   1036 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   1037 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1038 	DELAY(20);
   1039 
   1040 	/* Issue the read EEPROM command. */
   1041 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1042 
   1043 	/* Wait for completion */
   1044 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1045 		DELAY(10);
   1046 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1047 			break;
   1048 	}
   1049 
   1050 	if (i == BGE_TIMEOUT * 10) {
   1051 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1052 		return 1;
   1053 	}
   1054 
   1055 	/* Get result. */
   1056 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1057 
   1058 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1059 
   1060 	return 0;
   1061 }
   1062 
   1063 /*
   1064  * Read a sequence of bytes from the EEPROM.
   1065  */
   1066 static int
   1067 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1068 {
   1069 	int error = 0, i;
   1070 	uint8_t byte = 0;
   1071 	char *dest = destv;
   1072 
   1073 	for (i = 0; i < cnt; i++) {
   1074 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1075 		if (error)
   1076 			break;
   1077 		*(dest + i) = byte;
   1078 	}
   1079 
   1080 	return error ? 1 : 0;
   1081 }
   1082 
   1083 static int
   1084 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
   1085 {
   1086 	struct bge_softc * const sc = device_private(dev);
   1087 	uint32_t data;
   1088 	uint32_t autopoll;
   1089 	int rv = 0;
   1090 	int i;
   1091 
   1092 	KASSERT(mutex_owned(sc->sc_intr_lock));
   1093 
   1094 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1095 		return -1;
   1096 
   1097 	/* Reading with autopolling on may trigger PCI errors */
   1098 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1099 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1100 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1101 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1102 		DELAY(80);
   1103 	}
   1104 
   1105 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1106 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1107 
   1108 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1109 		delay(10);
   1110 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1111 		if (!(data & BGE_MICOMM_BUSY)) {
   1112 			DELAY(5);
   1113 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1114 			break;
   1115 		}
   1116 	}
   1117 
   1118 	if (i == BGE_TIMEOUT) {
   1119 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1120 		rv = ETIMEDOUT;
   1121 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1122 		/* XXX This error occurs on some devices while attaching. */
   1123 		aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
   1124 		rv = EIO;
   1125 	} else
   1126 		*val = data & BGE_MICOMM_DATA;
   1127 
   1128 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1129 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1130 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1131 		DELAY(80);
   1132 	}
   1133 
   1134 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1135 
   1136 	return rv;
   1137 }
   1138 
   1139 static int
   1140 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
   1141 {
   1142 	struct bge_softc * const sc = device_private(dev);
   1143 	uint32_t data, autopoll;
   1144 	int rv = 0;
   1145 	int i;
   1146 
   1147 	KASSERT(mutex_owned(sc->sc_intr_lock));
   1148 
   1149 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1150 	    (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
   1151 		return 0;
   1152 
   1153 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1154 		return -1;
   1155 
   1156 	/* Reading with autopolling on may trigger PCI errors */
   1157 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1158 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1159 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1160 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1161 		DELAY(80);
   1162 	}
   1163 
   1164 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1165 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1166 
   1167 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1168 		delay(10);
   1169 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1170 		if (!(data & BGE_MICOMM_BUSY)) {
   1171 			delay(5);
   1172 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1173 			break;
   1174 		}
   1175 	}
   1176 
   1177 	if (i == BGE_TIMEOUT) {
   1178 		aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
   1179 		rv = ETIMEDOUT;
   1180 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1181 		aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
   1182 		rv = EIO;
   1183 	}
   1184 
   1185 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1186 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1187 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1188 		delay(80);
   1189 	}
   1190 
   1191 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1192 
   1193 	return rv;
   1194 }
   1195 
   1196 static void
   1197 bge_miibus_statchg(struct ifnet *ifp)
   1198 {
   1199 	struct bge_softc * const sc = ifp->if_softc;
   1200 	struct mii_data *mii = &sc->bge_mii;
   1201 	uint32_t mac_mode, rx_mode, tx_mode;
   1202 
   1203 	KASSERT(mutex_owned(sc->sc_intr_lock));
   1204 
   1205 	/*
   1206 	 * Get flow control negotiation result.
   1207 	 */
   1208 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1209 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
   1210 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1211 
   1212 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1213 	    mii->mii_media_status & IFM_ACTIVE &&
   1214 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   1215 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
   1216 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1217 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
   1218 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   1219 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   1220 
   1221 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   1222 		return;
   1223 
   1224 	/* Set the port mode (MII/GMII) to match the link speed. */
   1225 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1226 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1227 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1228 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1229 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1230 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1231 		mac_mode |= BGE_PORTMODE_GMII;
   1232 	else
   1233 		mac_mode |= BGE_PORTMODE_MII;
   1234 
   1235 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1236 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1237 	if ((mii->mii_media_active & IFM_FDX) != 0) {
   1238 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1239 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1240 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1241 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1242 	} else
   1243 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1244 
   1245 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1246 	DELAY(40);
   1247 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1248 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1249 }
   1250 
   1251 /*
   1252  * Update rx threshold levels to values in a particular slot
   1253  * of the interrupt-mitigation table bge_rx_threshes.
   1254  */
   1255 static void
   1256 bge_set_thresh(struct ifnet *ifp, int lvl)
   1257 {
   1258 	struct bge_softc * const sc = ifp->if_softc;
   1259 
   1260 	/*
   1261 	 * For now, just save the new Rx-intr thresholds and record
   1262 	 * that a threshold update is pending.  Updating the hardware
   1263 	 * registers here (even at splhigh()) is observed to
   1264 	 * occasionally cause glitches where Rx-interrupts are not
   1265 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1266 	 */
   1267 	mutex_enter(sc->sc_intr_lock);
   1268 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1269 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1270 	sc->bge_pending_rxintr_change = true;
   1271 	mutex_exit(sc->sc_intr_lock);
   1272 }
   1273 
   1274 
   1275 /*
   1276  * Update Rx thresholds of all bge devices
   1277  */
   1278 static void
   1279 bge_update_all_threshes(int lvl)
   1280 {
   1281 	const char * const namebuf = "bge";
   1282 	const size_t namelen = strlen(namebuf);
   1283 	struct ifnet *ifp;
   1284 
   1285 	if (lvl < 0)
   1286 		lvl = 0;
   1287 	else if (lvl >= NBGE_RX_THRESH)
   1288 		lvl = NBGE_RX_THRESH - 1;
   1289 
   1290 	/*
   1291 	 * Now search all the interfaces for this name/number
   1292 	 */
   1293 	int s = pserialize_read_enter();
   1294 	IFNET_READER_FOREACH(ifp) {
   1295 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1296 			continue;
   1297 		/* We got a match: update if doing auto-threshold-tuning */
   1298 		if (bge_auto_thresh)
   1299 			bge_set_thresh(ifp, lvl);
   1300 	}
   1301 	pserialize_read_exit(s);
   1302 }
   1303 
   1304 /*
   1305  * Handle events that have triggered interrupts.
   1306  */
   1307 static void
   1308 bge_handle_events(struct bge_softc *sc)
   1309 {
   1310 
   1311 	return;
   1312 }
   1313 
   1314 /*
   1315  * Memory management for jumbo frames.
   1316  */
   1317 
   1318 static int
   1319 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1320 {
   1321 	char *ptr, *kva;
   1322 	int i, rseg, state, error;
   1323 	struct bge_jpool_entry *entry;
   1324 
   1325 	state = error = 0;
   1326 
   1327 	/* Grab a big chunk o' storage. */
   1328 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1329 	    &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_WAITOK)) {
   1330 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1331 		return ENOBUFS;
   1332 	}
   1333 
   1334 	state = 1;
   1335 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg,
   1336 	    rseg, BGE_JMEM, (void **)&kva, BUS_DMA_WAITOK)) {
   1337 		aprint_error_dev(sc->bge_dev,
   1338 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1339 		error = ENOBUFS;
   1340 		goto out;
   1341 	}
   1342 
   1343 	state = 2;
   1344 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1345 	    BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1346 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1347 		error = ENOBUFS;
   1348 		goto out;
   1349 	}
   1350 
   1351 	state = 3;
   1352 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1353 	    kva, BGE_JMEM, NULL, BUS_DMA_WAITOK)) {
   1354 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1355 		error = ENOBUFS;
   1356 		goto out;
   1357 	}
   1358 
   1359 	state = 4;
   1360 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1361 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1362 
   1363 	SLIST_INIT(&sc->bge_jfree_listhead);
   1364 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1365 
   1366 	/*
   1367 	 * Now divide it up into 9K pieces and save the addresses
   1368 	 * in an array.
   1369 	 */
   1370 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1371 	for (i = 0; i < BGE_JSLOTS; i++) {
   1372 		sc->bge_cdata.bge_jslots[i] = ptr;
   1373 		ptr += BGE_JLEN;
   1374 		entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
   1375 		entry->slot = i;
   1376 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1377 				 entry, jpool_entries);
   1378 	}
   1379 out:
   1380 	if (error != 0) {
   1381 		switch (state) {
   1382 		case 4:
   1383 			bus_dmamap_unload(sc->bge_dmatag,
   1384 			    sc->bge_cdata.bge_rx_jumbo_map);
   1385 			/* FALLTHROUGH */
   1386 		case 3:
   1387 			bus_dmamap_destroy(sc->bge_dmatag,
   1388 			    sc->bge_cdata.bge_rx_jumbo_map);
   1389 			/* FALLTHROUGH */
   1390 		case 2:
   1391 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1392 			/* FALLTHROUGH */
   1393 		case 1:
   1394 			bus_dmamem_free(sc->bge_dmatag,
   1395 			    &sc->bge_cdata.bge_rx_jumbo_seg, rseg);
   1396 			break;
   1397 		default:
   1398 			break;
   1399 		}
   1400 	}
   1401 
   1402 	return error;
   1403 }
   1404 
   1405 static void
   1406 bge_free_jumbo_mem(struct bge_softc *sc)
   1407 {
   1408 	struct bge_jpool_entry *entry, *tmp;
   1409 
   1410 	KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead));
   1411 
   1412 	SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) {
   1413 		kmem_free(entry, sizeof(*entry));
   1414 	}
   1415 
   1416 	bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
   1417 
   1418 	bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
   1419 
   1420 	bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM);
   1421 
   1422 	bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1);
   1423 }
   1424 
   1425 /*
   1426  * Allocate a jumbo buffer.
   1427  */
   1428 static void *
   1429 bge_jalloc(struct bge_softc *sc)
   1430 {
   1431 	struct bge_jpool_entry	 *entry;
   1432 
   1433 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1434 
   1435 	if (entry == NULL) {
   1436 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1437 		return NULL;
   1438 	}
   1439 
   1440 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1441 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1442 	return sc->bge_cdata.bge_jslots[entry->slot];
   1443 }
   1444 
   1445 /*
   1446  * Release a jumbo buffer.
   1447  */
   1448 static void
   1449 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1450 {
   1451 	struct bge_jpool_entry *entry;
   1452 	struct bge_softc * const sc = arg;
   1453 
   1454 	if (sc == NULL)
   1455 		panic("bge_jfree: can't find softc pointer!");
   1456 
   1457 	/* calculate the slot this buffer belongs to */
   1458 	int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1459 
   1460 	if (i < 0 || i >= BGE_JSLOTS)
   1461 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1462 
   1463 	mutex_enter(sc->sc_intr_lock);
   1464 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1465 	if (entry == NULL)
   1466 		panic("bge_jfree: buffer not in use!");
   1467 	entry->slot = i;
   1468 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1469 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1470 	mutex_exit(sc->sc_intr_lock);
   1471 
   1472 	if (__predict_true(m != NULL))
   1473 		pool_cache_put(mb_cache, m);
   1474 }
   1475 
   1476 
   1477 /*
   1478  * Initialize a standard receive ring descriptor.
   1479  */
   1480 static int
   1481 bge_newbuf_std(struct bge_softc *sc, int i)
   1482 {
   1483 	const bus_dmamap_t dmamap = sc->bge_cdata.bge_rx_std_map[i];
   1484 	struct mbuf *m;
   1485 
   1486 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1487 	if (m == NULL)
   1488 		return ENOBUFS;
   1489 
   1490 	MCLGET(m, M_DONTWAIT);
   1491 	if (!(m->m_flags & M_EXT)) {
   1492 		m_freem(m);
   1493 		return ENOBUFS;
   1494 	}
   1495 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1496 
   1497 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1498 	    m_adj(m, ETHER_ALIGN);
   1499 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,
   1500 	    BUS_DMA_READ | BUS_DMA_NOWAIT)) {
   1501 		m_freem(m);
   1502 		return ENOBUFS;
   1503 	}
   1504 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1505 	    BUS_DMASYNC_PREREAD);
   1506 	sc->bge_cdata.bge_rx_std_chain[i] = m;
   1507 
   1508 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1509 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1510 		i * sizeof(struct bge_rx_bd),
   1511 	    sizeof(struct bge_rx_bd),
   1512 	    BUS_DMASYNC_POSTWRITE);
   1513 
   1514 	struct bge_rx_bd * const r = &sc->bge_rdata->bge_rx_std_ring[i];
   1515 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1516 	r->bge_flags = BGE_RXBDFLAG_END;
   1517 	r->bge_len = m->m_len;
   1518 	r->bge_idx = i;
   1519 
   1520 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1521 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1522 		i * sizeof(struct bge_rx_bd),
   1523 	    sizeof(struct bge_rx_bd),
   1524 	    BUS_DMASYNC_PREWRITE);
   1525 
   1526 	sc->bge_std_cnt++;
   1527 
   1528 	return 0;
   1529 }
   1530 
   1531 /*
   1532  * Initialize a jumbo receive ring descriptor. This allocates
   1533  * a jumbo buffer from the pool managed internally by the driver.
   1534  */
   1535 static int
   1536 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1537 {
   1538 	struct mbuf *m_new = NULL;
   1539 	struct bge_rx_bd *r;
   1540 	void *buf = NULL;
   1541 
   1542 	if (m == NULL) {
   1543 
   1544 		/* Allocate the mbuf. */
   1545 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1546 		if (m_new == NULL)
   1547 			return ENOBUFS;
   1548 
   1549 		/* Allocate the jumbo buffer */
   1550 		buf = bge_jalloc(sc);
   1551 		if (buf == NULL) {
   1552 			m_freem(m_new);
   1553 			aprint_error_dev(sc->bge_dev,
   1554 			    "jumbo allocation failed -- packet dropped!\n");
   1555 			return ENOBUFS;
   1556 		}
   1557 
   1558 		/* Attach the buffer to the mbuf. */
   1559 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1560 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1561 		    bge_jfree, sc);
   1562 		m_new->m_flags |= M_EXT_RW;
   1563 	} else {
   1564 		m_new = m;
   1565 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1566 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1567 	}
   1568 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1569 	    m_adj(m_new, ETHER_ALIGN);
   1570 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1571 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   1572 	    BGE_JLEN, BUS_DMASYNC_PREREAD);
   1573 
   1574 	/* Set up the descriptor. */
   1575 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1576 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1577 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1578 	r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
   1579 	r->bge_len = m_new->m_len;
   1580 	r->bge_idx = i;
   1581 
   1582 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1583 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1584 		i * sizeof(struct bge_rx_bd),
   1585 	    sizeof(struct bge_rx_bd),
   1586 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1587 
   1588 	return 0;
   1589 }
   1590 
   1591 static int
   1592 bge_init_rx_ring_std(struct bge_softc *sc)
   1593 {
   1594 	bus_dmamap_t dmamap;
   1595 	int error = 0;
   1596 	u_int i;
   1597 
   1598 	if (sc->bge_flags & BGEF_RXRING_VALID)
   1599 		return 0;
   1600 
   1601 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1602 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1603 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmamap);
   1604 		if (error)
   1605 			goto uncreate;
   1606 
   1607 		sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1608 		memset(&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1609 		    sizeof(struct bge_rx_bd));
   1610 	}
   1611 
   1612 	sc->bge_std = i - 1;
   1613 	sc->bge_std_cnt = 0;
   1614 	bge_fill_rx_ring_std(sc);
   1615 
   1616 	sc->bge_flags |= BGEF_RXRING_VALID;
   1617 
   1618 	return 0;
   1619 
   1620 uncreate:
   1621 	while (--i) {
   1622 		bus_dmamap_destroy(sc->bge_dmatag,
   1623 		    sc->bge_cdata.bge_rx_std_map[i]);
   1624 	}
   1625 	return error;
   1626 }
   1627 
   1628 static void
   1629 bge_fill_rx_ring_std(struct bge_softc *sc)
   1630 {
   1631 	int i = sc->bge_std;
   1632 	bool post = false;
   1633 
   1634 	while (sc->bge_std_cnt < BGE_STD_RX_RING_CNT) {
   1635 		BGE_INC(i, BGE_STD_RX_RING_CNT);
   1636 
   1637 		if (bge_newbuf_std(sc, i) != 0)
   1638 			break;
   1639 
   1640 		sc->bge_std = i;
   1641 		post = true;
   1642 	}
   1643 
   1644 	if (post)
   1645 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1646 }
   1647 
   1648 
   1649 static void
   1650 bge_free_rx_ring_std(struct bge_softc *sc)
   1651 {
   1652 
   1653 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
   1654 		return;
   1655 
   1656 	for (u_int i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1657 		const bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i];
   1658 		struct mbuf * const m = sc->bge_cdata.bge_rx_std_chain[i];
   1659 		if (m != NULL) {
   1660 			bus_dmamap_sync(sc->bge_dmatag, dmap, 0,
   1661 			    dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1662 			bus_dmamap_unload(sc->bge_dmatag, dmap);
   1663 			m_freem(m);
   1664 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1665 		}
   1666 		bus_dmamap_destroy(sc->bge_dmatag,
   1667 		    sc->bge_cdata.bge_rx_std_map[i]);
   1668 		sc->bge_cdata.bge_rx_std_map[i] = NULL;
   1669 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1670 		    sizeof(struct bge_rx_bd));
   1671 	}
   1672 
   1673 	sc->bge_flags &= ~BGEF_RXRING_VALID;
   1674 }
   1675 
   1676 static int
   1677 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1678 {
   1679 	int i;
   1680 	volatile struct bge_rcb *rcb;
   1681 
   1682 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
   1683 		return 0;
   1684 
   1685 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1686 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1687 			return ENOBUFS;
   1688 	}
   1689 
   1690 	sc->bge_jumbo = i - 1;
   1691 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
   1692 
   1693 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1694 	rcb->bge_maxlen_flags = 0;
   1695 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1696 
   1697 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1698 
   1699 	return 0;
   1700 }
   1701 
   1702 static void
   1703 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1704 {
   1705 	int i;
   1706 
   1707 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
   1708 		return;
   1709 
   1710 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1711 		m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1712 		sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1713 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1714 		    sizeof(struct bge_rx_bd));
   1715 	}
   1716 
   1717 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
   1718 }
   1719 
   1720 static void
   1721 bge_free_tx_ring(struct bge_softc *sc, bool disable)
   1722 {
   1723 	int i;
   1724 	struct txdmamap_pool_entry *dma;
   1725 
   1726 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
   1727 		return;
   1728 
   1729 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1730 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1731 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1732 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1733 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1734 					    link);
   1735 			sc->txdma[i] = 0;
   1736 		}
   1737 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1738 		    sizeof(struct bge_tx_bd));
   1739 	}
   1740 
   1741 	if (disable) {
   1742 		while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1743 			SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1744 			bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1745 			if (sc->bge_dma64) {
   1746 				bus_dmamap_destroy(sc->bge_dmatag32,
   1747 				    dma->dmamap32);
   1748 			}
   1749 			kmem_free(dma, sizeof(*dma));
   1750 		}
   1751 		SLIST_INIT(&sc->txdma_list);
   1752 	}
   1753 
   1754 	sc->bge_flags &= ~BGEF_TXRING_VALID;
   1755 }
   1756 
   1757 static int
   1758 bge_init_tx_ring(struct bge_softc *sc)
   1759 {
   1760 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   1761 	int i;
   1762 	bus_dmamap_t dmamap, dmamap32;
   1763 	bus_size_t maxsegsz;
   1764 	struct txdmamap_pool_entry *dma;
   1765 
   1766 	if (sc->bge_flags & BGEF_TXRING_VALID)
   1767 		return 0;
   1768 
   1769 	sc->bge_txcnt = 0;
   1770 	sc->bge_tx_saved_considx = 0;
   1771 
   1772 	/* Initialize transmit producer index for host-memory send ring. */
   1773 	sc->bge_tx_prodidx = 0;
   1774 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1775 	/* 5700 b2 errata */
   1776 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1777 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1778 
   1779 	/* NIC-memory send ring not used; initialize to zero. */
   1780 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1781 	/* 5700 b2 errata */
   1782 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1783 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1784 
   1785 	/* Limit DMA segment size for some chips */
   1786 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
   1787 	    (ifp->if_mtu <= ETHERMTU))
   1788 		maxsegsz = 2048;
   1789 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   1790 		maxsegsz = 4096;
   1791 	else
   1792 		maxsegsz = ETHER_MAX_LEN_JUMBO;
   1793 
   1794 	if (SLIST_FIRST(&sc->txdma_list) != NULL)
   1795 		goto alloc_done;
   1796 
   1797 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1798 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1799 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1800 		    &dmamap))
   1801 			return ENOBUFS;
   1802 		if (dmamap == NULL)
   1803 			panic("dmamap NULL in bge_init_tx_ring");
   1804 		if (sc->bge_dma64) {
   1805 			if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
   1806 			    BGE_NTXSEG, maxsegsz, 0,
   1807 			    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1808 			    &dmamap32)) {
   1809 				bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1810 				return ENOBUFS;
   1811 			}
   1812 			if (dmamap32 == NULL)
   1813 				panic("dmamap32 NULL in bge_init_tx_ring");
   1814 		} else
   1815 			dmamap32 = dmamap;
   1816 		dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
   1817 		if (dma == NULL) {
   1818 			aprint_error_dev(sc->bge_dev,
   1819 			    "can't alloc txdmamap_pool_entry\n");
   1820 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1821 			if (sc->bge_dma64)
   1822 				bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
   1823 			return ENOMEM;
   1824 		}
   1825 		dma->dmamap = dmamap;
   1826 		dma->dmamap32 = dmamap32;
   1827 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1828 	}
   1829 alloc_done:
   1830 	sc->bge_flags |= BGEF_TXRING_VALID;
   1831 
   1832 	return 0;
   1833 }
   1834 
   1835 static void
   1836 bge_setmulti(struct bge_softc *sc)
   1837 {
   1838 	struct ethercom * const ec = &sc->ethercom;
   1839 	struct ether_multi	*enm;
   1840 	struct ether_multistep	step;
   1841 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1842 	uint32_t		h;
   1843 	int			i;
   1844 
   1845 	KASSERT(mutex_owned(sc->sc_mcast_lock));
   1846 	if (sc->bge_if_flags & IFF_PROMISC)
   1847 		goto allmulti;
   1848 
   1849 	/* Now program new ones. */
   1850 	ETHER_LOCK(ec);
   1851 	ETHER_FIRST_MULTI(step, ec, enm);
   1852 	while (enm != NULL) {
   1853 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1854 			/*
   1855 			 * We must listen to a range of multicast addresses.
   1856 			 * For now, just accept all multicasts, rather than
   1857 			 * trying to set only those filter bits needed to match
   1858 			 * the range.  (At this time, the only use of address
   1859 			 * ranges is for IP multicast routing, for which the
   1860 			 * range is big enough to require all bits set.)
   1861 			 */
   1862 			ETHER_UNLOCK(ec);
   1863 			goto allmulti;
   1864 		}
   1865 
   1866 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1867 
   1868 		/* Just want the 7 least-significant bits. */
   1869 		h &= 0x7f;
   1870 
   1871 		hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
   1872 		ETHER_NEXT_MULTI(step, enm);
   1873 	}
   1874 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   1875 	ETHER_UNLOCK(ec);
   1876 
   1877 	goto setit;
   1878 
   1879  allmulti:
   1880 	ETHER_LOCK(ec);
   1881 	ec->ec_flags |= ETHER_F_ALLMULTI;
   1882 	ETHER_UNLOCK(ec);
   1883 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1884 
   1885  setit:
   1886 	for (i = 0; i < 4; i++)
   1887 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1888 }
   1889 
   1890 static void
   1891 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1892 {
   1893 
   1894 	/*
   1895 	 * Some chips don't like this so only do this if ASF is enabled
   1896 	 */
   1897 	if (sc->bge_asf_mode)
   1898 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   1899 
   1900 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1901 		switch (type) {
   1902 		case BGE_RESET_START:
   1903 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1904 			    BGE_FW_DRV_STATE_START);
   1905 			break;
   1906 		case BGE_RESET_SHUTDOWN:
   1907 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1908 			    BGE_FW_DRV_STATE_UNLOAD);
   1909 			break;
   1910 		case BGE_RESET_SUSPEND:
   1911 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1912 			    BGE_FW_DRV_STATE_SUSPEND);
   1913 			break;
   1914 		}
   1915 	}
   1916 
   1917 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   1918 		bge_ape_driver_state_change(sc, type);
   1919 }
   1920 
   1921 static void
   1922 bge_sig_post_reset(struct bge_softc *sc, int type)
   1923 {
   1924 
   1925 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1926 		switch (type) {
   1927 		case BGE_RESET_START:
   1928 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1929 			    BGE_FW_DRV_STATE_START_DONE);
   1930 			/* START DONE */
   1931 			break;
   1932 		case BGE_RESET_SHUTDOWN:
   1933 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1934 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   1935 			break;
   1936 		}
   1937 	}
   1938 
   1939 	if (type == BGE_RESET_SHUTDOWN)
   1940 		bge_ape_driver_state_change(sc, type);
   1941 }
   1942 
   1943 static void
   1944 bge_sig_legacy(struct bge_softc *sc, int type)
   1945 {
   1946 
   1947 	if (sc->bge_asf_mode) {
   1948 		switch (type) {
   1949 		case BGE_RESET_START:
   1950 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1951 			    BGE_FW_DRV_STATE_START);
   1952 			break;
   1953 		case BGE_RESET_SHUTDOWN:
   1954 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1955 			    BGE_FW_DRV_STATE_UNLOAD);
   1956 			break;
   1957 		}
   1958 	}
   1959 }
   1960 
   1961 static void
   1962 bge_wait_for_event_ack(struct bge_softc *sc)
   1963 {
   1964 	int i;
   1965 
   1966 	/* wait up to 2500usec */
   1967 	for (i = 0; i < 250; i++) {
   1968 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   1969 			BGE_RX_CPU_DRV_EVENT))
   1970 			break;
   1971 		DELAY(10);
   1972 	}
   1973 }
   1974 
   1975 static void
   1976 bge_stop_fw(struct bge_softc *sc)
   1977 {
   1978 
   1979 	if (sc->bge_asf_mode) {
   1980 		bge_wait_for_event_ack(sc);
   1981 
   1982 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   1983 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   1984 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   1985 
   1986 		bge_wait_for_event_ack(sc);
   1987 	}
   1988 }
   1989 
   1990 static int
   1991 bge_poll_fw(struct bge_softc *sc)
   1992 {
   1993 	uint32_t val;
   1994 	int i;
   1995 
   1996 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1997 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1998 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   1999 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2000 				break;
   2001 			DELAY(100);
   2002 		}
   2003 		if (i >= BGE_TIMEOUT) {
   2004 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2005 			return -1;
   2006 		}
   2007 	} else {
   2008 		/*
   2009 		 * Poll the value location we just wrote until
   2010 		 * we see the 1's complement of the magic number.
   2011 		 * This indicates that the firmware initialization
   2012 		 * is complete.
   2013 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   2014 		 */
   2015 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2016 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   2017 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   2018 				break;
   2019 			DELAY(10);
   2020 		}
   2021 
   2022 		if ((i >= BGE_TIMEOUT)
   2023 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
   2024 			aprint_error_dev(sc->bge_dev,
   2025 			    "firmware handshake timed out, val = %x\n", val);
   2026 			return -1;
   2027 		}
   2028 	}
   2029 
   2030 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2031 		/* tg3 says we have to wait extra time */
   2032 		delay(10 * 1000);
   2033 	}
   2034 
   2035 	return 0;
   2036 }
   2037 
   2038 int
   2039 bge_phy_addr(struct bge_softc *sc)
   2040 {
   2041 	struct pci_attach_args *pa = &(sc->bge_pa);
   2042 	int phy_addr = 1;
   2043 
   2044 	/*
   2045 	 * PHY address mapping for various devices.
   2046 	 *
   2047 	 *	    | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2048 	 * ---------+-------+-------+-------+-------+
   2049 	 * BCM57XX  |	1   |	X   |	X   |	X   |
   2050 	 * BCM5704  |	1   |	X   |	1   |	X   |
   2051 	 * BCM5717  |	1   |	8   |	2   |	9   |
   2052 	 * BCM5719  |	1   |	8   |	2   |	9   |
   2053 	 * BCM5720  |	1   |	8   |	2   |	9   |
   2054 	 *
   2055 	 *	    | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2056 	 * ---------+-------+-------+-------+-------+
   2057 	 * BCM57XX  |	X   |	X   |	X   |	X   |
   2058 	 * BCM5704  |	X   |	X   |	X   |	X   |
   2059 	 * BCM5717  |	X   |	X   |	X   |	X   |
   2060 	 * BCM5719  |	3   |	10  |	4   |	11  |
   2061 	 * BCM5720  |	X   |	X   |	X   |	X   |
   2062 	 *
   2063 	 * Other addresses may respond but they are not
   2064 	 * IEEE compliant PHYs and should be ignored.
   2065 	 */
   2066 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2067 	case BGE_ASICREV_BCM5717:
   2068 	case BGE_ASICREV_BCM5719:
   2069 	case BGE_ASICREV_BCM5720:
   2070 		phy_addr = pa->pa_function;
   2071 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2072 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2073 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2074 		} else {
   2075 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2076 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2077 		}
   2078 	}
   2079 
   2080 	return phy_addr;
   2081 }
   2082 
   2083 /*
   2084  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2085  * self-test results.
   2086  */
   2087 static int
   2088 bge_chipinit(struct bge_softc *sc)
   2089 {
   2090 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
   2091 	int i;
   2092 
   2093 	/* Set endianness before we access any non-PCI registers. */
   2094 	misc_ctl = BGE_INIT;
   2095 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   2096 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
   2097 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2098 	    misc_ctl);
   2099 
   2100 	/*
   2101 	 * Clear the MAC statistics block in the NIC's
   2102 	 * internal memory.
   2103 	 */
   2104 	for (i = BGE_STATS_BLOCK;
   2105 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2106 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2107 
   2108 	for (i = BGE_STATUS_BLOCK;
   2109 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2110 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2111 
   2112 	/* 5717 workaround from tg3 */
   2113 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2114 		/* Save */
   2115 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2116 
   2117 		/* Temporary modify MODE_CTL to control TLP */
   2118 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2119 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2120 
   2121 		/* Control TLP */
   2122 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2123 		    BGE_TLP_PHYCTL1);
   2124 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2125 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2126 
   2127 		/* Restore */
   2128 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2129 	}
   2130 
   2131 	if (BGE_IS_57765_FAMILY(sc)) {
   2132 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2133 			/* Save */
   2134 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2135 
   2136 			/* Temporary modify MODE_CTL to control TLP */
   2137 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2138 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2139 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2140 
   2141 			/* Control TLP */
   2142 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2143 			    BGE_TLP_PHYCTL5);
   2144 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2145 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2146 
   2147 			/* Restore */
   2148 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2149 		}
   2150 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2151 			/*
   2152 			 * For the 57766 and non Ax versions of 57765, bootcode
   2153 			 * needs to setup the PCIE Fast Training Sequence (FTS)
   2154 			 * value to prevent transmit hangs.
   2155 			 */
   2156 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2157 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2158 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2159 
   2160 			/* Save */
   2161 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2162 
   2163 			/* Temporary modify MODE_CTL to control TLP */
   2164 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2165 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2166 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2167 
   2168 			/* Control TLP */
   2169 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2170 			    BGE_TLP_FTSMAX);
   2171 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2172 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2173 			    reg | BGE_TLP_FTSMAX_VAL);
   2174 
   2175 			/* Restore */
   2176 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2177 		}
   2178 
   2179 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2180 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2181 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2182 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2183 	}
   2184 
   2185 	/* Set up the PCI DMA control register. */
   2186 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2187 	if (sc->bge_flags & BGEF_PCIE) {
   2188 		/* Read watermark not used, 128 bytes for write. */
   2189 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2190 		    device_xname(sc->bge_dev)));
   2191 		if (sc->bge_mps >= 256)
   2192 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2193 		else
   2194 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2195 	} else if (sc->bge_flags & BGEF_PCIX) {
   2196 		DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2197 		    device_xname(sc->bge_dev)));
   2198 		/* PCI-X bus */
   2199 		if (BGE_IS_5714_FAMILY(sc)) {
   2200 			/* 256 bytes for read and write. */
   2201 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2202 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2203 
   2204 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2205 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2206 			else
   2207 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2208 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   2209 			/*
   2210 			 * In the BCM5703, the DMA read watermark should
   2211 			 * be set to less than or equal to the maximum
   2212 			 * memory read byte count of the PCI-X command
   2213 			 * register.
   2214 			 */
   2215 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
   2216 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2217 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2218 			/* 1536 bytes for read, 384 bytes for write. */
   2219 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2220 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2221 		} else {
   2222 			/* 384 bytes for read and write. */
   2223 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2224 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2225 			    (0x0F);
   2226 		}
   2227 
   2228 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2229 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2230 			uint32_t tmp;
   2231 
   2232 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2233 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2234 			if (tmp == 6 || tmp == 7)
   2235 				dma_rw_ctl |=
   2236 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2237 
   2238 			/* Set PCI-X DMA write workaround. */
   2239 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2240 		}
   2241 	} else {
   2242 		/* Conventional PCI bus: 256 bytes for read and write. */
   2243 		DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2244 		    device_xname(sc->bge_dev)));
   2245 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2246 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2247 
   2248 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2249 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2250 			dma_rw_ctl |= 0x0F;
   2251 	}
   2252 
   2253 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2254 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2255 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2256 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2257 
   2258 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2259 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2260 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2261 
   2262 	if (BGE_IS_57765_PLUS(sc)) {
   2263 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2264 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2265 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2266 
   2267 		/*
   2268 		 * Enable HW workaround for controllers that misinterpret
   2269 		 * a status tag update and leave interrupts permanently
   2270 		 * disabled.
   2271 		 */
   2272 		if (!BGE_IS_57765_FAMILY(sc) &&
   2273 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2274 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
   2275 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2276 	}
   2277 
   2278 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2279 	    dma_rw_ctl);
   2280 
   2281 	/*
   2282 	 * Set up general mode register.
   2283 	 */
   2284 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2285 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2286 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2287 		/* Retain Host-2-BMC settings written by APE firmware. */
   2288 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2289 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2290 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2291 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2292 	}
   2293 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2294 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2295 
   2296 	/*
   2297 	 * BCM5701 B5 have a bug causing data corruption when using
   2298 	 * 64-bit DMA reads, which can be terminated early and then
   2299 	 * completed later as 32-bit accesses, in combination with
   2300 	 * certain bridges.
   2301 	 */
   2302 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2303 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2304 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2305 
   2306 	/*
   2307 	 * Tell the firmware the driver is running
   2308 	 */
   2309 	if (sc->bge_asf_mode & ASF_STACKUP)
   2310 		mode_ctl |= BGE_MODECTL_STACKUP;
   2311 
   2312 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2313 
   2314 	/*
   2315 	 * Disable memory write invalidate.  Apparently it is not supported
   2316 	 * properly by these devices.
   2317 	 */
   2318 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2319 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2320 
   2321 #ifdef __brokenalpha__
   2322 	/*
   2323 	 * Must insure that we do not cross an 8K (bytes) boundary
   2324 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2325 	 * restriction on some ALPHA platforms with early revision
   2326 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2327 	 */
   2328 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2329 #endif
   2330 
   2331 	/* Set the timer prescaler (always 66MHz) */
   2332 	CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2333 
   2334 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2335 		DELAY(40);	/* XXX */
   2336 
   2337 		/* Put PHY into ready state */
   2338 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2339 		DELAY(40);
   2340 	}
   2341 
   2342 	return 0;
   2343 }
   2344 
   2345 static int
   2346 bge_blockinit(struct bge_softc *sc)
   2347 {
   2348 	volatile struct bge_rcb	 *rcb;
   2349 	bus_size_t rcb_addr;
   2350 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   2351 	bge_hostaddr taddr;
   2352 	uint32_t	dmactl, rdmareg, mimode, val;
   2353 	int		i, limit;
   2354 
   2355 	/*
   2356 	 * Initialize the memory window pointer register so that
   2357 	 * we can access the first 32K of internal NIC RAM. This will
   2358 	 * allow us to set up the TX send ring RCBs and the RX return
   2359 	 * ring RCBs, plus other things which live in NIC memory.
   2360 	 */
   2361 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2362 
   2363 	if (!BGE_IS_5705_PLUS(sc)) {
   2364 		/* 57XX step 33 */
   2365 		/* Configure mbuf memory pool */
   2366 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
   2367 
   2368 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2369 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2370 		else
   2371 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2372 
   2373 		/* 57XX step 34 */
   2374 		/* Configure DMA resource pool */
   2375 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2376 		    BGE_DMA_DESCRIPTORS);
   2377 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2378 	}
   2379 
   2380 	/* 5718 step 11, 57XX step 35 */
   2381 	/*
   2382 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2383 	 * recommend these.
   2384 	 */
   2385 	if (BGE_IS_5717_PLUS(sc)) {
   2386 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2387 		if (ifp->if_mtu > ETHERMTU) {
   2388 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
   2389 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
   2390 		} else {
   2391 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2392 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2393 		}
   2394 	} else if (BGE_IS_5705_PLUS(sc)) {
   2395 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2396 
   2397 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2398 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2399 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2400 		} else {
   2401 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2402 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2403 		}
   2404 	} else {
   2405 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2406 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2407 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2408 	}
   2409 
   2410 	/* 57XX step 36 */
   2411 	/* Configure DMA resource watermarks */
   2412 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2413 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2414 
   2415 	/* 5718 step 13, 57XX step 38 */
   2416 	/* Enable buffer manager */
   2417 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2418 	/*
   2419 	 * Change the arbitration algorithm of TXMBUF read request to
   2420 	 * round-robin instead of priority based for BCM5719.  When
   2421 	 * TXFIFO is almost empty, RDMA will hold its request until
   2422 	 * TXFIFO is not almost empty.
   2423 	 */
   2424 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2425 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2426 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2427 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2428 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2429 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2430 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2431 
   2432 	/* 57XX step 39 */
   2433 	/* Poll for buffer manager start indication */
   2434 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2435 		DELAY(10);
   2436 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2437 			break;
   2438 	}
   2439 
   2440 	if (i == BGE_TIMEOUT * 2) {
   2441 		aprint_error_dev(sc->bge_dev,
   2442 		    "buffer manager failed to start\n");
   2443 		return ENXIO;
   2444 	}
   2445 
   2446 	/* 57XX step 40 */
   2447 	/* Enable flow-through queues */
   2448 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2449 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2450 
   2451 	/* Wait until queue initialization is complete */
   2452 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2453 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2454 			break;
   2455 		DELAY(10);
   2456 	}
   2457 
   2458 	if (i == BGE_TIMEOUT * 2) {
   2459 		aprint_error_dev(sc->bge_dev,
   2460 		    "flow-through queue init failed\n");
   2461 		return ENXIO;
   2462 	}
   2463 
   2464 	/*
   2465 	 * Summary of rings supported by the controller:
   2466 	 *
   2467 	 * Standard Receive Producer Ring
   2468 	 * - This ring is used to feed receive buffers for "standard"
   2469 	 *   sized frames (typically 1536 bytes) to the controller.
   2470 	 *
   2471 	 * Jumbo Receive Producer Ring
   2472 	 * - This ring is used to feed receive buffers for jumbo sized
   2473 	 *   frames (i.e. anything bigger than the "standard" frames)
   2474 	 *   to the controller.
   2475 	 *
   2476 	 * Mini Receive Producer Ring
   2477 	 * - This ring is used to feed receive buffers for "mini"
   2478 	 *   sized frames to the controller.
   2479 	 * - This feature required external memory for the controller
   2480 	 *   but was never used in a production system.  Should always
   2481 	 *   be disabled.
   2482 	 *
   2483 	 * Receive Return Ring
   2484 	 * - After the controller has placed an incoming frame into a
   2485 	 *   receive buffer that buffer is moved into a receive return
   2486 	 *   ring.  The driver is then responsible to passing the
   2487 	 *   buffer up to the stack.  Many versions of the controller
   2488 	 *   support multiple RR rings.
   2489 	 *
   2490 	 * Send Ring
   2491 	 * - This ring is used for outgoing frames.  Many versions of
   2492 	 *   the controller support multiple send rings.
   2493 	 */
   2494 
   2495 	/* 5718 step 15, 57XX step 41 */
   2496 	/* Initialize the standard RX ring control block */
   2497 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2498 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2499 	/* 5718 step 16 */
   2500 	if (BGE_IS_57765_PLUS(sc)) {
   2501 		/*
   2502 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2503 		 * Bits 15-2 : Maximum RX frame size
   2504 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2505 		 * Bit 0     : Reserved
   2506 		 */
   2507 		rcb->bge_maxlen_flags =
   2508 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2509 	} else if (BGE_IS_5705_PLUS(sc)) {
   2510 		/*
   2511 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2512 		 * Bits 15-2 : Reserved (should be 0)
   2513 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2514 		 * Bit 0     : Reserved
   2515 		 */
   2516 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2517 	} else {
   2518 		/*
   2519 		 * Ring size is always XXX entries
   2520 		 * Bits 31-16: Maximum RX frame size
   2521 		 * Bits 15-2 : Reserved (should be 0)
   2522 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2523 		 * Bit 0     : Reserved
   2524 		 */
   2525 		rcb->bge_maxlen_flags =
   2526 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2527 	}
   2528 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2529 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2530 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2531 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2532 	else
   2533 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2534 	/* Write the standard receive producer ring control block. */
   2535 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2536 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2537 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2538 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2539 
   2540 	/* Reset the standard receive producer ring producer index. */
   2541 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2542 
   2543 	/* 57XX step 42 */
   2544 	/*
   2545 	 * Initialize the jumbo RX ring control block
   2546 	 * We set the 'ring disabled' bit in the flags
   2547 	 * field until we're actually ready to start
   2548 	 * using this ring (i.e. once we set the MTU
   2549 	 * high enough to require it).
   2550 	 */
   2551 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2552 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2553 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2554 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2555 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2556 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2557 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2558 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2559 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2560 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2561 		else
   2562 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2563 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2564 		    rcb->bge_hostaddr.bge_addr_hi);
   2565 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2566 		    rcb->bge_hostaddr.bge_addr_lo);
   2567 		/* Program the jumbo receive producer ring RCB parameters. */
   2568 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2569 		    rcb->bge_maxlen_flags);
   2570 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2571 		/* Reset the jumbo receive producer ring producer index. */
   2572 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2573 	}
   2574 
   2575 	/* 57XX step 43 */
   2576 	/* Disable the mini receive producer ring RCB. */
   2577 	if (BGE_IS_5700_FAMILY(sc)) {
   2578 		/* Set up dummy disabled mini ring RCB */
   2579 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2580 		rcb->bge_maxlen_flags =
   2581 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2582 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2583 		    rcb->bge_maxlen_flags);
   2584 		/* Reset the mini receive producer ring producer index. */
   2585 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2586 
   2587 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2588 		    offsetof(struct bge_ring_data, bge_info),
   2589 		    sizeof(struct bge_gib),
   2590 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2591 	}
   2592 
   2593 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2594 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2595 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2596 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2597 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2598 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2599 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2600 	}
   2601 	/* 5718 step 14, 57XX step 44 */
   2602 	/*
   2603 	 * The BD ring replenish thresholds control how often the
   2604 	 * hardware fetches new BD's from the producer rings in host
   2605 	 * memory.  Setting the value too low on a busy system can
   2606 	 * starve the hardware and reduce the throughput.
   2607 	 *
   2608 	 * Set the BD ring replenish thresholds. The recommended
   2609 	 * values are 1/8th the number of descriptors allocated to
   2610 	 * each ring, but since we try to avoid filling the entire
   2611 	 * ring we set these to the minimal value of 8.  This needs to
   2612 	 * be done on several of the supported chip revisions anyway,
   2613 	 * to work around HW bugs.
   2614 	 */
   2615 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2616 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2617 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2618 
   2619 	/* 5718 step 18 */
   2620 	if (BGE_IS_5717_PLUS(sc)) {
   2621 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2622 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2623 	}
   2624 
   2625 	/* 57XX step 45 */
   2626 	/*
   2627 	 * Disable all send rings by setting the 'ring disabled' bit
   2628 	 * in the flags field of all the TX send ring control blocks,
   2629 	 * located in NIC memory.
   2630 	 */
   2631 	if (BGE_IS_5700_FAMILY(sc)) {
   2632 		/* 5700 to 5704 had 16 send rings. */
   2633 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2634 	} else if (BGE_IS_5717_PLUS(sc)) {
   2635 		limit = BGE_TX_RINGS_5717_MAX;
   2636 	} else if (BGE_IS_57765_FAMILY(sc) ||
   2637 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2638 		limit = BGE_TX_RINGS_57765_MAX;
   2639 	} else
   2640 		limit = 1;
   2641 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2642 	for (i = 0; i < limit; i++) {
   2643 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2644 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2645 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2646 		rcb_addr += sizeof(struct bge_rcb);
   2647 	}
   2648 
   2649 	/* 57XX step 46 and 47 */
   2650 	/* Configure send ring RCB 0 (we use only the first ring) */
   2651 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2652 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2653 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2654 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2655 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2656 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2657 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2658 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2659 	else
   2660 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2661 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2662 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2663 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2664 
   2665 	/* 57XX step 48 */
   2666 	/*
   2667 	 * Disable all receive return rings by setting the
   2668 	 * 'ring disabled' bit in the flags field of all the receive
   2669 	 * return ring control blocks, located in NIC memory.
   2670 	 */
   2671 	if (BGE_IS_5717_PLUS(sc)) {
   2672 		/* Should be 17, use 16 until we get an SRAM map. */
   2673 		limit = 16;
   2674 	} else if (BGE_IS_5700_FAMILY(sc))
   2675 		limit = BGE_RX_RINGS_MAX;
   2676 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2677 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
   2678 	    BGE_IS_57765_FAMILY(sc))
   2679 		limit = 4;
   2680 	else
   2681 		limit = 1;
   2682 	/* Disable all receive return rings */
   2683 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2684 	for (i = 0; i < limit; i++) {
   2685 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2686 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2687 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2688 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2689 			BGE_RCB_FLAG_RING_DISABLED));
   2690 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2691 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2692 		    (i * (sizeof(uint64_t))), 0);
   2693 		rcb_addr += sizeof(struct bge_rcb);
   2694 	}
   2695 
   2696 	/* 57XX step 49 */
   2697 	/*
   2698 	 * Set up receive return ring 0.  Note that the NIC address
   2699 	 * for RX return rings is 0x0.  The return rings live entirely
   2700 	 * within the host, so the nicaddr field in the RCB isn't used.
   2701 	 */
   2702 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2703 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2704 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2705 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2706 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2707 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2708 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2709 
   2710 	/* 5718 step 24, 57XX step 53 */
   2711 	/* Set random backoff seed for TX */
   2712 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2713 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2714 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2715 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2716 	    BGE_TX_BACKOFF_SEED_MASK);
   2717 
   2718 	/* 5718 step 26, 57XX step 55 */
   2719 	/* Set inter-packet gap */
   2720 	val = 0x2620;
   2721 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2722 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2723 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2724 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2725 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2726 
   2727 	/* 5718 step 27, 57XX step 56 */
   2728 	/*
   2729 	 * Specify which ring to use for packets that don't match
   2730 	 * any RX rules.
   2731 	 */
   2732 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2733 
   2734 	/* 5718 step 28, 57XX step 57 */
   2735 	/*
   2736 	 * Configure number of RX lists. One interrupt distribution
   2737 	 * list, sixteen active lists, one bad frames class.
   2738 	 */
   2739 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2740 
   2741 	/* 5718 step 29, 57XX step 58 */
   2742 	/* Initialize RX list placement stats mask. */
   2743 	if (BGE_IS_575X_PLUS(sc)) {
   2744 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2745 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2746 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2747 	} else
   2748 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2749 
   2750 	/* 5718 step 30, 57XX step 59 */
   2751 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2752 
   2753 	/* 5718 step 33, 57XX step 62 */
   2754 	/* Disable host coalescing until we get it set up */
   2755 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2756 
   2757 	/* 5718 step 34, 57XX step 63 */
   2758 	/* Poll to make sure it's shut down. */
   2759 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2760 		DELAY(10);
   2761 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2762 			break;
   2763 	}
   2764 
   2765 	if (i == BGE_TIMEOUT * 2) {
   2766 		aprint_error_dev(sc->bge_dev,
   2767 		    "host coalescing engine failed to idle\n");
   2768 		return ENXIO;
   2769 	}
   2770 
   2771 	/* 5718 step 35, 36, 37 */
   2772 	/* Set up host coalescing defaults */
   2773 	mutex_enter(sc->sc_intr_lock);
   2774 	const uint32_t rx_coal_ticks = sc->bge_rx_coal_ticks;
   2775 	const uint32_t tx_coal_ticks = sc->bge_tx_coal_ticks;
   2776 	const uint32_t rx_max_coal_bds = sc->bge_rx_max_coal_bds;
   2777 	const uint32_t tx_max_coal_bds = sc->bge_tx_max_coal_bds;
   2778 	mutex_exit(sc->sc_intr_lock);
   2779 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_coal_ticks);
   2780 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, tx_coal_ticks);
   2781 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_max_coal_bds);
   2782 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, tx_max_coal_bds);
   2783 	if (!(BGE_IS_5705_PLUS(sc))) {
   2784 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2785 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2786 	}
   2787 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2788 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2789 
   2790 	/* Set up address of statistics block */
   2791 	if (BGE_IS_5700_FAMILY(sc)) {
   2792 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2793 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2794 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2795 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2796 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2797 	}
   2798 
   2799 	/* 5718 step 38 */
   2800 	/* Set up address of status block */
   2801 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2802 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2803 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2804 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2805 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2806 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2807 
   2808 	/* Set up status block size. */
   2809 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2810 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2811 		val = BGE_STATBLKSZ_FULL;
   2812 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2813 	} else {
   2814 		val = BGE_STATBLKSZ_32BYTE;
   2815 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2816 	}
   2817 
   2818 	/* 5718 step 39, 57XX step 73 */
   2819 	/* Turn on host coalescing state machine */
   2820 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2821 
   2822 	/* 5718 step 40, 57XX step 74 */
   2823 	/* Turn on RX BD completion state machine and enable attentions */
   2824 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2825 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2826 
   2827 	/* 5718 step 41, 57XX step 75 */
   2828 	/* Turn on RX list placement state machine */
   2829 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2830 
   2831 	/* 57XX step 76 */
   2832 	/* Turn on RX list selector state machine. */
   2833 	if (!(BGE_IS_5705_PLUS(sc)))
   2834 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2835 
   2836 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2837 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2838 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2839 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2840 
   2841 	if (sc->bge_flags & BGEF_FIBER_TBI)
   2842 		val |= BGE_PORTMODE_TBI;
   2843 	else if (sc->bge_flags & BGEF_FIBER_MII)
   2844 		val |= BGE_PORTMODE_GMII;
   2845 	else
   2846 		val |= BGE_PORTMODE_MII;
   2847 
   2848 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   2849 	/* Allow APE to send/receive frames. */
   2850 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2851 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2852 
   2853 	/* Turn on DMA, clear stats */
   2854 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2855 	/* 5718 step 44 */
   2856 	DELAY(40);
   2857 
   2858 	/* 5718 step 45, 57XX step 79 */
   2859 	/* Set misc. local control, enable interrupts on attentions */
   2860 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2861 	if (BGE_IS_5717_PLUS(sc)) {
   2862 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2863 		/* 5718 step 46 */
   2864 		DELAY(100);
   2865 	}
   2866 
   2867 	/* 57XX step 81 */
   2868 	/* Turn on DMA completion state machine */
   2869 	if (!(BGE_IS_5705_PLUS(sc)))
   2870 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2871 
   2872 	/* 5718 step 47, 57XX step 82 */
   2873 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2874 
   2875 	/* 5718 step 48 */
   2876 	/* Enable host coalescing bug fix. */
   2877 	if (BGE_IS_5755_PLUS(sc))
   2878 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2879 
   2880 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2881 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2882 
   2883 	/* Turn on write DMA state machine */
   2884 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2885 	/* 5718 step 49 */
   2886 	DELAY(40);
   2887 
   2888 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2889 
   2890 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   2891 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2892 
   2893 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2894 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2895 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2896 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2897 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2898 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2899 
   2900 	if (sc->bge_flags & BGEF_PCIE)
   2901 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2902 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2903 		if (ifp->if_mtu <= ETHERMTU)
   2904 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
   2905 	}
   2906 	if (sc->bge_flags & BGEF_TSO) {
   2907 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2908 		if (BGE_IS_5717_PLUS(sc))
   2909 			val |= BGE_RDMAMODE_TSO6_ENABLE;
   2910 	}
   2911 
   2912 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2913 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2914 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   2915 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   2916 		/*
   2917 		 * Allow multiple outstanding read requests from
   2918 		 * non-LSO read DMA engine.
   2919 		 */
   2920 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2921 	}
   2922 
   2923 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2924 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2925 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2926 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   2927 	    BGE_IS_57765_PLUS(sc)) {
   2928 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2929 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
   2930 		else
   2931 			rdmareg = BGE_RDMA_RSRVCTRL;
   2932 		dmactl = CSR_READ_4(sc, rdmareg);
   2933 		/*
   2934 		 * Adjust tx margin to prevent TX data corruption and
   2935 		 * fix internal FIFO overflow.
   2936 		 */
   2937 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2938 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2939 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   2940 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   2941 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   2942 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   2943 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   2944 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   2945 		}
   2946 		/*
   2947 		 * Enable fix for read DMA FIFO overruns.
   2948 		 * The fix is to limit the number of RX BDs
   2949 		 * the hardware would fetch at a time.
   2950 		 */
   2951 		CSR_WRITE_4(sc, rdmareg, dmactl |
   2952 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   2953 	}
   2954 
   2955 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   2956 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2957 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2958 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2959 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2960 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2961 		/*
   2962 		 * Allow 4KB burst length reads for non-LSO frames.
   2963 		 * Enable 512B burst length reads for buffer descriptors.
   2964 		 */
   2965 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2966 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2967 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   2968 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2969 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2970 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
   2971 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
   2972 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2973 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2974 	}
   2975 	/* Turn on read DMA state machine */
   2976 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   2977 	/* 5718 step 52 */
   2978 	delay(40);
   2979 
   2980 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   2981 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
   2982 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
   2983 			if ((val & 0xFFFF) > BGE_FRAMELEN)
   2984 				break;
   2985 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
   2986 				break;
   2987 		}
   2988 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
   2989 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   2990 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2991 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
   2992 			else
   2993 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
   2994 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   2995 		}
   2996 	}
   2997 
   2998 	/* 5718 step 56, 57XX step 84 */
   2999 	/* Turn on RX data completion state machine */
   3000 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3001 
   3002 	/* Turn on RX data and RX BD initiator state machine */
   3003 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   3004 
   3005 	/* 57XX step 85 */
   3006 	/* Turn on Mbuf cluster free state machine */
   3007 	if (!BGE_IS_5705_PLUS(sc))
   3008 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3009 
   3010 	/* 5718 step 57, 57XX step 86 */
   3011 	/* Turn on send data completion state machine */
   3012 	val = BGE_SDCMODE_ENABLE;
   3013 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   3014 		val |= BGE_SDCMODE_CDELAY;
   3015 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   3016 
   3017 	/* 5718 step 58 */
   3018 	/* Turn on send BD completion state machine */
   3019 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3020 
   3021 	/* 57XX step 88 */
   3022 	/* Turn on RX BD initiator state machine */
   3023 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3024 
   3025 	/* 5718 step 60, 57XX step 90 */
   3026 	/* Turn on send data initiator state machine */
   3027 	if (sc->bge_flags & BGEF_TSO) {
   3028 		/* XXX: magic value from Linux driver */
   3029 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   3030 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   3031 	} else
   3032 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3033 
   3034 	/* 5718 step 61, 57XX step 91 */
   3035 	/* Turn on send BD initiator state machine */
   3036 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3037 
   3038 	/* 5718 step 62, 57XX step 92 */
   3039 	/* Turn on send BD selector state machine */
   3040 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3041 
   3042 	/* 5718 step 31, 57XX step 60 */
   3043 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   3044 	/* 5718 step 32, 57XX step 61 */
   3045 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   3046 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   3047 
   3048 	/* ack/clear link change events */
   3049 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3050 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3051 	    BGE_MACSTAT_LINK_CHANGED);
   3052 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3053 
   3054 	/*
   3055 	 * Enable attention when the link has changed state for
   3056 	 * devices that use auto polling.
   3057 	 */
   3058 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3059 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3060 	} else {
   3061 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3062 			mimode = BGE_MIMODE_500KHZ_CONST;
   3063 		else
   3064 			mimode = BGE_MIMODE_BASE;
   3065 		/* 5718 step 68. 5718 step 69 (optionally). */
   3066 		if (BGE_IS_5700_FAMILY(sc) ||
   3067 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
   3068 			mimode |= BGE_MIMODE_AUTOPOLL;
   3069 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3070 		}
   3071 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3072 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3073 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3074 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3075 			    BGE_EVTENB_MI_INTERRUPT);
   3076 	}
   3077 
   3078 	/*
   3079 	 * Clear any pending link state attention.
   3080 	 * Otherwise some link state change events may be lost until attention
   3081 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3082 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3083 	 * state change attentions implies clearing pending attention.
   3084 	 */
   3085 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3086 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3087 	    BGE_MACSTAT_LINK_CHANGED);
   3088 
   3089 	/* Enable link state change attentions. */
   3090 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3091 
   3092 	return 0;
   3093 }
   3094 
   3095 static const struct bge_revision *
   3096 bge_lookup_rev(uint32_t chipid)
   3097 {
   3098 	const struct bge_revision *br;
   3099 
   3100 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3101 		if (br->br_chipid == chipid)
   3102 			return br;
   3103 	}
   3104 
   3105 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3106 		if (br->br_chipid == BGE_ASICREV(chipid))
   3107 			return br;
   3108 	}
   3109 
   3110 	return NULL;
   3111 }
   3112 
   3113 static const struct bge_product *
   3114 bge_lookup(const struct pci_attach_args *pa)
   3115 {
   3116 	const struct bge_product *bp;
   3117 
   3118 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3119 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3120 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3121 			return bp;
   3122 	}
   3123 
   3124 	return NULL;
   3125 }
   3126 
   3127 static uint32_t
   3128 bge_chipid(const struct pci_attach_args *pa)
   3129 {
   3130 	uint32_t id;
   3131 
   3132 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3133 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3134 
   3135 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3136 		switch (PCI_PRODUCT(pa->pa_id)) {
   3137 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3138 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3139 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3140 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3141 		case PCI_PRODUCT_BROADCOM_BCM5725:
   3142 		case PCI_PRODUCT_BROADCOM_BCM5727:
   3143 		case PCI_PRODUCT_BROADCOM_BCM5762:
   3144 		case PCI_PRODUCT_BROADCOM_BCM57764:
   3145 		case PCI_PRODUCT_BROADCOM_BCM57767:
   3146 		case PCI_PRODUCT_BROADCOM_BCM57787:
   3147 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3148 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3149 			break;
   3150 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3151 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3152 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3153 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3154 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3155 		case PCI_PRODUCT_BROADCOM_BCM57782:
   3156 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3157 		case PCI_PRODUCT_BROADCOM_BCM57786:
   3158 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3159 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3160 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3161 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3162 			break;
   3163 		default:
   3164 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3165 			    BGE_PCI_PRODID_ASICREV);
   3166 			break;
   3167 		}
   3168 	}
   3169 
   3170 	return id;
   3171 }
   3172 
   3173 /*
   3174  * Return true if MSI can be used with this device.
   3175  */
   3176 static int
   3177 bge_can_use_msi(struct bge_softc *sc)
   3178 {
   3179 	int can_use_msi = 0;
   3180 
   3181 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3182 	case BGE_ASICREV_BCM5714_A0:
   3183 	case BGE_ASICREV_BCM5714:
   3184 		/*
   3185 		 * Apparently, MSI doesn't work when these chips are
   3186 		 * configured in single-port mode.
   3187 		 */
   3188 		break;
   3189 	case BGE_ASICREV_BCM5750:
   3190 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
   3191 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
   3192 			can_use_msi = 1;
   3193 		break;
   3194 	default:
   3195 		if (BGE_IS_575X_PLUS(sc))
   3196 			can_use_msi = 1;
   3197 	}
   3198 	return can_use_msi;
   3199 }
   3200 
   3201 /*
   3202  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3203  * against our list and return its name if we find a match. Note
   3204  * that since the Broadcom controller contains VPD support, we
   3205  * can get the device name string from the controller itself instead
   3206  * of the compiled-in string. This is a little slow, but it guarantees
   3207  * we'll always announce the right product name.
   3208  */
   3209 static int
   3210 bge_probe(device_t parent, cfdata_t match, void *aux)
   3211 {
   3212 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3213 
   3214 	if (bge_lookup(pa) != NULL)
   3215 		return 1;
   3216 
   3217 	return 0;
   3218 }
   3219 
   3220 static void
   3221 bge_attach(device_t parent, device_t self, void *aux)
   3222 {
   3223 	struct bge_softc * const sc = device_private(self);
   3224 	struct pci_attach_args * const pa = aux;
   3225 	prop_dictionary_t dict;
   3226 	const struct bge_product *bp;
   3227 	const struct bge_revision *br;
   3228 	pci_chipset_tag_t	pc;
   3229 	const char		*intrstr = NULL;
   3230 	uint32_t		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
   3231 	uint32_t		command;
   3232 	struct ifnet		*ifp;
   3233 	struct mii_data * const mii = &sc->bge_mii;
   3234 	uint32_t		misccfg, mimode, macmode;
   3235 	void *			kva;
   3236 	u_char			eaddr[ETHER_ADDR_LEN];
   3237 	pcireg_t		memtype, subid, reg;
   3238 	bus_addr_t		memaddr;
   3239 	uint32_t		pm_ctl;
   3240 	bool			no_seeprom;
   3241 	int			capmask, trys;
   3242 	int			mii_flags;
   3243 	int			map_flags;
   3244 	char intrbuf[PCI_INTRSTR_LEN];
   3245 
   3246 	bp = bge_lookup(pa);
   3247 	KASSERT(bp != NULL);
   3248 
   3249 	sc->sc_pc = pa->pa_pc;
   3250 	sc->sc_pcitag = pa->pa_tag;
   3251 	sc->bge_dev = self;
   3252 
   3253 	sc->bge_pa = *pa;
   3254 	pc = sc->sc_pc;
   3255 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3256 
   3257 	aprint_naive(": Ethernet controller\n");
   3258 	aprint_normal(": %s Ethernet\n", bp->bp_name);
   3259 
   3260 	/*
   3261 	 * Map control/status registers.
   3262 	 */
   3263 	DPRINTFN(5, ("Map control/status regs\n"));
   3264 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3265 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3266 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3267 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3268 
   3269 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3270 		aprint_error_dev(sc->bge_dev,
   3271 		    "failed to enable memory mapping!\n");
   3272 		return;
   3273 	}
   3274 
   3275 	DPRINTFN(5, ("pci_mem_find\n"));
   3276 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3277 	switch (memtype) {
   3278 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3279 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3280 #if 0
   3281 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3282 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3283 		    &memaddr, &sc->bge_bsize) == 0)
   3284 			break;
   3285 #else
   3286 		/*
   3287 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3288 		 * system get NMI on boot (PR#48451). This problem might not be
   3289 		 * the driver's bug but our PCI common part's bug. Until we
   3290 		 * find a real reason, we ignore the prefetchable bit.
   3291 		 */
   3292 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
   3293 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
   3294 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3295 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
   3296 			    map_flags, &sc->bge_bhandle) == 0) {
   3297 				sc->bge_btag = pa->pa_memt;
   3298 				break;
   3299 			}
   3300 		}
   3301 #endif
   3302 		/* FALLTHROUGH */
   3303 	default:
   3304 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3305 		return;
   3306 	}
   3307 
   3308 	sc->bge_txrx_stopping = false;
   3309 
   3310 	/* Save various chip information. */
   3311 	sc->bge_chipid = bge_chipid(pa);
   3312 	sc->bge_phy_addr = bge_phy_addr(sc);
   3313 
   3314 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3315 	    &sc->bge_pciecap, NULL) != 0) {
   3316 		/* PCIe */
   3317 		sc->bge_flags |= BGEF_PCIE;
   3318 		/* Extract supported maximum payload size. */
   3319 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3320 		    sc->bge_pciecap + PCIE_DCAP);
   3321 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3322 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3323 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3324 			sc->bge_expmrq = 2048;
   3325 		else
   3326 			sc->bge_expmrq = 4096;
   3327 		bge_set_max_readrq(sc);
   3328 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
   3329 		/* PCIe without PCIe cap */
   3330 		sc->bge_flags |= BGEF_PCIE;
   3331 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3332 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3333 		/* PCI-X */
   3334 		sc->bge_flags |= BGEF_PCIX;
   3335 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3336 			&sc->bge_pcixcap, NULL) == 0)
   3337 			aprint_error_dev(sc->bge_dev,
   3338 			    "unable to find PCIX capability\n");
   3339 	}
   3340 
   3341 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3342 		/*
   3343 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3344 		 * can clobber the chip's PCI config-space power control
   3345 		 * registers, leaving the card in D3 powersave state. We do
   3346 		 * not have memory-mapped registers in this state, so force
   3347 		 * device into D0 state before starting initialization.
   3348 		 */
   3349 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3350 		pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
   3351 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3352 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3353 		DELAY(1000);	/* 27 usec is allegedly sufficient */
   3354 	}
   3355 
   3356 	/* Save chipset family. */
   3357 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3358 	case BGE_ASICREV_BCM5717:
   3359 	case BGE_ASICREV_BCM5719:
   3360 	case BGE_ASICREV_BCM5720:
   3361 		sc->bge_flags |= BGEF_5717_PLUS;
   3362 		/* FALLTHROUGH */
   3363 	case BGE_ASICREV_BCM5762:
   3364 	case BGE_ASICREV_BCM57765:
   3365 	case BGE_ASICREV_BCM57766:
   3366 		if (!BGE_IS_5717_PLUS(sc))
   3367 			sc->bge_flags |= BGEF_57765_FAMILY;
   3368 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
   3369 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
   3370 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3371 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3372 			/*
   3373 			 * Enable work around for DMA engine miscalculation
   3374 			 * of TXMBUF available space.
   3375 			 */
   3376 			sc->bge_flags |= BGEF_RDMA_BUG;
   3377 
   3378 			if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3379 			    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
   3380 				/* Jumbo frame on BCM5719 A0 does not work. */
   3381 				sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
   3382 			}
   3383 		}
   3384 		break;
   3385 	case BGE_ASICREV_BCM5755:
   3386 	case BGE_ASICREV_BCM5761:
   3387 	case BGE_ASICREV_BCM5784:
   3388 	case BGE_ASICREV_BCM5785:
   3389 	case BGE_ASICREV_BCM5787:
   3390 	case BGE_ASICREV_BCM57780:
   3391 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
   3392 		break;
   3393 	case BGE_ASICREV_BCM5700:
   3394 	case BGE_ASICREV_BCM5701:
   3395 	case BGE_ASICREV_BCM5703:
   3396 	case BGE_ASICREV_BCM5704:
   3397 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
   3398 		break;
   3399 	case BGE_ASICREV_BCM5714_A0:
   3400 	case BGE_ASICREV_BCM5780:
   3401 	case BGE_ASICREV_BCM5714:
   3402 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
   3403 		/* FALLTHROUGH */
   3404 	case BGE_ASICREV_BCM5750:
   3405 	case BGE_ASICREV_BCM5752:
   3406 	case BGE_ASICREV_BCM5906:
   3407 		sc->bge_flags |= BGEF_575X_PLUS;
   3408 		/* FALLTHROUGH */
   3409 	case BGE_ASICREV_BCM5705:
   3410 		sc->bge_flags |= BGEF_5705_PLUS;
   3411 		break;
   3412 	}
   3413 
   3414 	/* Identify chips with APE processor. */
   3415 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3416 	case BGE_ASICREV_BCM5717:
   3417 	case BGE_ASICREV_BCM5719:
   3418 	case BGE_ASICREV_BCM5720:
   3419 	case BGE_ASICREV_BCM5761:
   3420 	case BGE_ASICREV_BCM5762:
   3421 		sc->bge_flags |= BGEF_APE;
   3422 		break;
   3423 	}
   3424 
   3425 	/*
   3426 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
   3427 	 * not actually a MAC controller bug but an issue with the embedded
   3428 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
   3429 	 */
   3430 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
   3431 		sc->bge_flags |= BGEF_40BIT_BUG;
   3432 
   3433 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3434 	if ((sc->bge_flags & BGEF_APE) != 0) {
   3435 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3436 #if 0
   3437 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3438 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3439 			&sc->bge_apesize)) {
   3440 			aprint_error_dev(sc->bge_dev,
   3441 			    "couldn't map BAR2 memory\n");
   3442 			return;
   3443 		}
   3444 #else
   3445 		/*
   3446 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3447 		 * system get NMI on boot (PR#48451). This problem might not be
   3448 		 * the driver's bug but our PCI common part's bug. Until we
   3449 		 * find a real reason, we ignore the prefetchable bit.
   3450 		 */
   3451 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
   3452 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
   3453 			aprint_error_dev(sc->bge_dev,
   3454 			    "couldn't map BAR2 memory\n");
   3455 			return;
   3456 		}
   3457 
   3458 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3459 		if (bus_space_map(pa->pa_memt, memaddr,
   3460 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
   3461 			aprint_error_dev(sc->bge_dev,
   3462 			    "couldn't map BAR2 memory\n");
   3463 			return;
   3464 		}
   3465 		sc->bge_apetag = pa->pa_memt;
   3466 #endif
   3467 
   3468 		/* Enable APE register/memory access by host driver. */
   3469 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3470 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3471 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3472 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3473 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3474 
   3475 		bge_ape_lock_init(sc);
   3476 		bge_ape_read_fw_ver(sc);
   3477 	}
   3478 
   3479 	/* Identify the chips that use an CPMU. */
   3480 	if (BGE_IS_5717_PLUS(sc) ||
   3481 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3482 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3483 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3484 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3485 		sc->bge_flags |= BGEF_CPMU_PRESENT;
   3486 
   3487 	/*
   3488 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3489 	 * been observed in the first few bytes of some received packets.
   3490 	 * Aligning the packet buffer in memory eliminates the corruption.
   3491 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3492 	 * which do not support unaligned accesses, we will realign the
   3493 	 * payloads by copying the received packets.
   3494 	 */
   3495 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3496 	    sc->bge_flags & BGEF_PCIX)
   3497 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
   3498 
   3499 	if (BGE_IS_5700_FAMILY(sc))
   3500 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
   3501 
   3502 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3503 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3504 
   3505 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3506 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3507 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3508 		sc->bge_flags |= BGEF_IS_5788;
   3509 
   3510 	/*
   3511 	 * Some controllers seem to require a special firmware to use
   3512 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3513 	 * claims that the TSO performed by the firmware is slower than
   3514 	 * hardware based TSO. Moreover the firmware based TSO has one
   3515 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3516 	 * header is greater than 80 bytes. The workaround for the TSO
   3517 	 * bug exist but it seems it's too expensive than not using
   3518 	 * TSO at all. Some hardware also have the TSO bug so limit
   3519 	 * the TSO to the controllers that are not affected TSO issues
   3520 	 * (e.g. 5755 or higher).
   3521 	 */
   3522 	if (BGE_IS_5755_PLUS(sc)) {
   3523 		/*
   3524 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3525 		 * explicit device id check is required.
   3526 		 */
   3527 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3528 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3529 			sc->bge_flags |= BGEF_TSO;
   3530 		/* TSO on BCM5719 A0 does not work. */
   3531 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3532 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3533 			sc->bge_flags &= ~BGEF_TSO;
   3534 	}
   3535 
   3536 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3537 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3538 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3539 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3540 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3541 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3542 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3543 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3544 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3545 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3546 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3547 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3548 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3549 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3550 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3551 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3552 		/* These chips are 10/100 only. */
   3553 		capmask &= ~BMSR_EXTSTAT;
   3554 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3555 	}
   3556 
   3557 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3558 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3559 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3560 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3561 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3562 
   3563 	/* Set various PHY bug flags. */
   3564 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3565 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3566 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
   3567 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3568 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3569 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
   3570 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3571 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
   3572 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3573 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3574 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3575 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
   3576 	if (BGE_IS_5705_PLUS(sc) &&
   3577 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3578 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3579 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3580 	    !BGE_IS_57765_PLUS(sc)) {
   3581 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3582 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3583 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3584 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3585 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3586 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3587 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
   3588 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3589 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
   3590 		} else
   3591 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
   3592 	}
   3593 
   3594 	/*
   3595 	 * SEEPROM check.
   3596 	 * First check if firmware knows we do not have SEEPROM.
   3597 	 */
   3598 	if (prop_dictionary_get_bool(device_properties(self),
   3599 	    "without-seeprom", &no_seeprom) && no_seeprom)
   3600 		sc->bge_flags |= BGEF_NO_EEPROM;
   3601 
   3602 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3603 		sc->bge_flags |= BGEF_NO_EEPROM;
   3604 
   3605 	/* Now check the 'ROM failed' bit on the RX CPU */
   3606 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3607 		sc->bge_flags |= BGEF_NO_EEPROM;
   3608 
   3609 	sc->bge_asf_mode = 0;
   3610 	/* No ASF if APE present. */
   3611 	if ((sc->bge_flags & BGEF_APE) == 0) {
   3612 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3613 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3614 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3615 			    BGE_HWCFG_ASF) {
   3616 				sc->bge_asf_mode |= ASF_ENABLE;
   3617 				sc->bge_asf_mode |= ASF_STACKUP;
   3618 				if (BGE_IS_575X_PLUS(sc))
   3619 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3620 			}
   3621 		}
   3622 	}
   3623 
   3624 	int counts[PCI_INTR_TYPE_SIZE] = {
   3625 		[PCI_INTR_TYPE_INTX] = 1,
   3626 		[PCI_INTR_TYPE_MSI] = 1,
   3627 		[PCI_INTR_TYPE_MSIX] = 1,
   3628 	};
   3629 	int max_type = PCI_INTR_TYPE_MSIX;
   3630 
   3631 	if (!bge_can_use_msi(sc)) {
   3632 		/* MSI broken, allow only INTx */
   3633 		max_type = PCI_INTR_TYPE_INTX;
   3634 	}
   3635 
   3636 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
   3637 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
   3638 		return;
   3639 	}
   3640 
   3641 	DPRINTFN(5, ("pci_intr_string\n"));
   3642 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
   3643 	    sizeof(intrbuf));
   3644 	DPRINTFN(5, ("pci_intr_establish\n"));
   3645 	sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
   3646 	    IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
   3647 	if (sc->bge_intrhand == NULL) {
   3648 		pci_intr_release(pc, sc->bge_pihp, 1);
   3649 		sc->bge_pihp = NULL;
   3650 
   3651 		aprint_error_dev(self, "couldn't establish interrupt");
   3652 		if (intrstr != NULL)
   3653 			aprint_error(" at %s", intrstr);
   3654 		aprint_error("\n");
   3655 		return;
   3656 	}
   3657 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3658 
   3659 	switch (pci_intr_type(pc, sc->bge_pihp[0])) {
   3660 	case PCI_INTR_TYPE_MSIX:
   3661 	case PCI_INTR_TYPE_MSI:
   3662 		KASSERT(bge_can_use_msi(sc));
   3663 		sc->bge_flags |= BGEF_MSI;
   3664 		break;
   3665 	default:
   3666 		/* nothing to do */
   3667 		break;
   3668 	}
   3669 
   3670 	char wqname[MAXCOMLEN];
   3671 	snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->bge_dev));
   3672 	int error = workqueue_create(&sc->sc_reset_wq, wqname,
   3673 	    bge_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK,
   3674 	    WQ_MPSAFE);
   3675 	if (error) {
   3676 		aprint_error_dev(sc->bge_dev,
   3677 		    "unable to create reset workqueue\n");
   3678 		return;
   3679 	}
   3680 
   3681 
   3682 	/*
   3683 	 * All controllers except BCM5700 supports tagged status but
   3684 	 * we use tagged status only for MSI case on BCM5717. Otherwise
   3685 	 * MSI on BCM5717 does not work.
   3686 	 */
   3687 	if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
   3688 		sc->bge_flags |= BGEF_TAGGED_STATUS;
   3689 
   3690 	/*
   3691 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3692 	 * lock in bge_reset().
   3693 	 */
   3694 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   3695 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3696 	delay(1000);
   3697 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3698 
   3699 	bge_stop_fw(sc);
   3700 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   3701 	if (bge_reset(sc))
   3702 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3703 
   3704 	/*
   3705 	 * Read the hardware config word in the first 32k of NIC internal
   3706 	 * memory, or fall back to the config word in the EEPROM.
   3707 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3708 	 */
   3709 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
   3710 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3711 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3712 		uint32_t tmp;
   3713 
   3714 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3715 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3716 		    BGE_SRAM_DATA_VER_SHIFT;
   3717 		if ((0 < tmp) && (tmp < 0x100))
   3718 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3719 		if (sc->bge_flags & BGEF_PCIE)
   3720 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3721 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3722 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3723 		if (BGE_IS_5717_PLUS(sc))
   3724 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
   3725 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
   3726 		bge_read_eeprom(sc, (void *)&hwcfg,
   3727 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3728 		hwcfg = be32toh(hwcfg);
   3729 	}
   3730 	aprint_normal_dev(sc->bge_dev,
   3731 	    "HW config %08x, %08x, %08x, %08x %08x\n",
   3732 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
   3733 
   3734 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   3735 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   3736 
   3737 	if (bge_chipinit(sc)) {
   3738 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3739 		bge_release_resources(sc);
   3740 		return;
   3741 	}
   3742 
   3743 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   3744 		BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
   3745 		    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
   3746 		DELAY(100);
   3747 	}
   3748 
   3749 	/* Set MI_MODE */
   3750 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3751 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3752 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3753 	else
   3754 		mimode |= BGE_MIMODE_BASE;
   3755 	CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
   3756 	DELAY(80);
   3757 
   3758 	/*
   3759 	 * Get station address from the EEPROM.
   3760 	 */
   3761 	if (bge_get_eaddr(sc, eaddr)) {
   3762 		aprint_error_dev(sc->bge_dev,
   3763 		    "failed to read station address\n");
   3764 		bge_release_resources(sc);
   3765 		return;
   3766 	}
   3767 
   3768 	br = bge_lookup_rev(sc->bge_chipid);
   3769 
   3770 	if (br == NULL) {
   3771 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3772 		    sc->bge_chipid);
   3773 	} else {
   3774 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3775 		    br->br_name, sc->bge_chipid);
   3776 	}
   3777 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3778 
   3779 	/* Allocate the general information block and ring buffers. */
   3780 	if (pci_dma64_available(pa)) {
   3781 		sc->bge_dmatag = pa->pa_dmat64;
   3782 		sc->bge_dmatag32 = pa->pa_dmat;
   3783 		sc->bge_dma64 = true;
   3784 	} else {
   3785 		sc->bge_dmatag = pa->pa_dmat;
   3786 		sc->bge_dmatag32 = pa->pa_dmat;
   3787 		sc->bge_dma64 = false;
   3788 	}
   3789 
   3790 	/* 40bit DMA workaround */
   3791 	if (sizeof(bus_addr_t) > 4) {
   3792 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
   3793 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
   3794 
   3795 			if (bus_dmatag_subregion(olddmatag, 0,
   3796 			    (bus_addr_t)__MASK(40),
   3797 			    &(sc->bge_dmatag), BUS_DMA_WAITOK) != 0) {
   3798 				aprint_error_dev(self,
   3799 				    "WARNING: failed to restrict dma range,"
   3800 				    " falling back to parent bus dma range\n");
   3801 				sc->bge_dmatag = olddmatag;
   3802 			}
   3803 		}
   3804 	}
   3805 	SLIST_INIT(&sc->txdma_list);
   3806 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3807 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3808 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3809 		&sc->bge_ring_rseg, BUS_DMA_WAITOK)) {
   3810 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3811 		return;
   3812 	}
   3813 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3814 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3815 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3816 			   BUS_DMA_WAITOK)) {
   3817 		aprint_error_dev(sc->bge_dev,
   3818 		    "can't map DMA buffers (%zu bytes)\n",
   3819 		    sizeof(struct bge_ring_data));
   3820 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3821 		    sc->bge_ring_rseg);
   3822 		return;
   3823 	}
   3824 	DPRINTFN(5, ("bus_dmamap_create\n"));
   3825 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3826 	    sizeof(struct bge_ring_data), 0,
   3827 	    BUS_DMA_WAITOK, &sc->bge_ring_map)) {
   3828 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3829 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3830 				 sizeof(struct bge_ring_data));
   3831 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3832 		    sc->bge_ring_rseg);
   3833 		return;
   3834 	}
   3835 	DPRINTFN(5, ("bus_dmamap_load\n"));
   3836 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3837 			    sizeof(struct bge_ring_data), NULL,
   3838 			    BUS_DMA_WAITOK)) {
   3839 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3840 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3841 				 sizeof(struct bge_ring_data));
   3842 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3843 		    sc->bge_ring_rseg);
   3844 		return;
   3845 	}
   3846 
   3847 	DPRINTFN(5, ("bzero\n"));
   3848 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3849 
   3850 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3851 
   3852 	/* Try to allocate memory for jumbo buffers. */
   3853 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3854 		if (bge_alloc_jumbo_mem(sc)) {
   3855 			aprint_error_dev(sc->bge_dev,
   3856 			    "jumbo buffer allocation failed\n");
   3857 		} else
   3858 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3859 	}
   3860 
   3861 	/* Set default tuneable values. */
   3862 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3863 	sc->bge_rx_coal_ticks = 150;
   3864 	sc->bge_rx_max_coal_bds = 64;
   3865 	sc->bge_tx_coal_ticks = 300;
   3866 	sc->bge_tx_max_coal_bds = 400;
   3867 	if (BGE_IS_5705_PLUS(sc)) {
   3868 		sc->bge_tx_coal_ticks = (12 * 5);
   3869 		sc->bge_tx_max_coal_bds = (12 * 5);
   3870 			aprint_verbose_dev(sc->bge_dev,
   3871 			    "setting short Tx thresholds\n");
   3872 	}
   3873 
   3874 	if (BGE_IS_5717_PLUS(sc))
   3875 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3876 	else if (BGE_IS_5705_PLUS(sc))
   3877 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3878 	else
   3879 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3880 
   3881 	sc->sc_mcast_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3882 	sc->sc_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
   3883 
   3884 	/* Set up ifnet structure */
   3885 	ifp = &sc->ethercom.ec_if;
   3886 	ifp->if_softc = sc;
   3887 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3888 	ifp->if_extflags = IFEF_MPSAFE;
   3889 	ifp->if_ioctl = bge_ioctl;
   3890 	ifp->if_stop = bge_stop;
   3891 	ifp->if_start = bge_start;
   3892 	ifp->if_init = bge_init;
   3893 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3894 	IFQ_SET_READY(&ifp->if_snd);
   3895 	DPRINTFN(5, ("strcpy if_xname\n"));
   3896 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3897 
   3898 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3899 		sc->ethercom.ec_if.if_capabilities |=
   3900 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3901 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3902 		sc->ethercom.ec_if.if_capabilities |=
   3903 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3904 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3905 #endif
   3906 	sc->ethercom.ec_capabilities |=
   3907 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3908 	sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
   3909 
   3910 	if (sc->bge_flags & BGEF_TSO)
   3911 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3912 
   3913 	/*
   3914 	 * Do MII setup.
   3915 	 */
   3916 	DPRINTFN(5, ("mii setup\n"));
   3917 	mii->mii_ifp = ifp;
   3918 	mii->mii_readreg = bge_miibus_readreg;
   3919 	mii->mii_writereg = bge_miibus_writereg;
   3920 	mii->mii_statchg = bge_miibus_statchg;
   3921 
   3922 	/*
   3923 	 * Figure out what sort of media we have by checking the hardware
   3924 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   3925 	 * unset. If that's the case, we have to rely on identifying the NIC
   3926 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   3927 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   3928 	 */
   3929 	if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
   3930 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3931 		if (BGE_IS_5705_PLUS(sc)) {
   3932 			sc->bge_flags |= BGEF_FIBER_MII;
   3933 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3934 		} else
   3935 			sc->bge_flags |= BGEF_FIBER_TBI;
   3936 	}
   3937 
   3938 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
   3939 	if (BGE_IS_JUMBO_CAPABLE(sc))
   3940 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
   3941 
   3942 	/* set phyflags and chipid before mii_attach() */
   3943 	dict = device_properties(self);
   3944 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
   3945 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3946 
   3947 	macmode = CSR_READ_4(sc, BGE_MAC_MODE);
   3948 	macmode &= ~BGE_MACMODE_PORTMODE;
   3949 	/* Initialize ifmedia structures. */
   3950 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3951 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
   3952 		    macmode | BGE_PORTMODE_TBI);
   3953 		DELAY(40);
   3954 
   3955 		struct ifmedia * const ifm = &sc->bge_ifmedia;
   3956 		sc->ethercom.ec_ifmedia = ifm;
   3957 
   3958 		ifmedia_init_with_lock(ifm, IFM_IMASK,
   3959 		    bge_ifmedia_upd, bge_ifmedia_sts, sc->sc_intr_lock);
   3960 		ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX, 0, NULL);
   3961 		ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
   3962 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
   3963 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
   3964 		/* Pretend the user requested this setting */
   3965 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3966 	} else {
   3967 		uint16_t phyreg;
   3968 		int rv;
   3969 		/*
   3970 		 * Do transceiver setup and tell the firmware the
   3971 		 * driver is down so we can try to get access the
   3972 		 * probe if ASF is running.  Retry a couple of times
   3973 		 * if we get a conflict with the ASF firmware accessing
   3974 		 * the PHY.
   3975 		 */
   3976 		if (sc->bge_flags & BGEF_FIBER_MII)
   3977 			macmode |= BGE_PORTMODE_GMII;
   3978 		else
   3979 			macmode |= BGE_PORTMODE_MII;
   3980 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
   3981 		DELAY(40);
   3982 
   3983 		/*
   3984 		 * Do transceiver setup and tell the firmware the
   3985 		 * driver is down so we can try to get access the
   3986 		 * probe if ASF is running.  Retry a couple of times
   3987 		 * if we get a conflict with the ASF firmware accessing
   3988 		 * the PHY.
   3989 		 */
   3990 		trys = 0;
   3991 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3992 		sc->ethercom.ec_mii = mii;
   3993 		ifmedia_init_with_lock(&mii->mii_media, 0, bge_ifmedia_upd,
   3994 		    bge_ifmedia_sts, sc->sc_intr_lock);
   3995 		mii_flags = MIIF_DOPAUSE;
   3996 		if (sc->bge_flags & BGEF_FIBER_MII)
   3997 			mii_flags |= MIIF_HAVEFIBER;
   3998 again:
   3999 		bge_asf_driver_up(sc);
   4000 		mutex_enter(sc->sc_intr_lock);
   4001 		rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   4002 		    MII_BMCR, &phyreg);
   4003 		if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
   4004 			int i;
   4005 
   4006 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   4007 			    MII_BMCR, BMCR_RESET);
   4008 			/* Wait up to 500ms for it to complete. */
   4009 			for (i = 0; i < 500; i++) {
   4010 				bge_miibus_readreg(sc->bge_dev,
   4011 				    sc->bge_phy_addr, MII_BMCR, &phyreg);
   4012 				if ((phyreg & BMCR_RESET) == 0)
   4013 					break;
   4014 				DELAY(1000);
   4015 			}
   4016 		}
   4017 		mutex_exit(sc->sc_intr_lock);
   4018 
   4019 		mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
   4020 		    MII_OFFSET_ANY, mii_flags);
   4021 
   4022 		if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
   4023 			goto again;
   4024 
   4025 		if (LIST_EMPTY(&mii->mii_phys)) {
   4026 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   4027 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
   4028 			    0, NULL);
   4029 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
   4030 		} else
   4031 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   4032 
   4033 		/*
   4034 		 * Now tell the firmware we are going up after probing the PHY
   4035 		 */
   4036 		if (sc->bge_asf_mode & ASF_STACKUP)
   4037 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4038 	}
   4039 
   4040 	/*
   4041 	 * Call MI attach routine.
   4042 	 */
   4043 	DPRINTFN(5, ("if_initialize\n"));
   4044 	if_initialize(ifp);
   4045 	ifp->if_percpuq = if_percpuq_create(ifp);
   4046 	if_deferred_start_init(ifp, NULL);
   4047 	if_register(ifp);
   4048 
   4049 	DPRINTFN(5, ("ether_ifattach\n"));
   4050 	ether_ifattach(ifp, eaddr);
   4051 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   4052 
   4053 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   4054 		RND_TYPE_NET, RND_FLAG_DEFAULT);
   4055 #ifdef BGE_EVENT_COUNTERS
   4056 	/*
   4057 	 * Attach event counters.
   4058 	 */
   4059 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   4060 	    NULL, device_xname(sc->bge_dev), "intr");
   4061 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
   4062 	    NULL, device_xname(sc->bge_dev), "intr_spurious");
   4063 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
   4064 	    NULL, device_xname(sc->bge_dev), "intr_spurious2");
   4065 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   4066 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   4067 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   4068 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   4069 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   4070 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   4071 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   4072 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   4073 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   4074 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   4075 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   4076 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   4077 #endif /* BGE_EVENT_COUNTERS */
   4078 	DPRINTFN(5, ("callout_init\n"));
   4079 	callout_init(&sc->bge_timeout, CALLOUT_MPSAFE);
   4080 	callout_setfunc(&sc->bge_timeout, bge_tick, sc);
   4081 
   4082 	if (pmf_device_register(self, NULL, NULL))
   4083 		pmf_class_network_register(self, ifp);
   4084 	else
   4085 		aprint_error_dev(self, "couldn't establish power handler\n");
   4086 
   4087 	bge_sysctl_init(sc);
   4088 
   4089 #ifdef BGE_DEBUG
   4090 	bge_debug_info(sc);
   4091 #endif
   4092 
   4093 	sc->bge_attached = true;
   4094 }
   4095 
   4096 /*
   4097  * Stop all chip I/O so that the kernel's probe routines don't
   4098  * get confused by errant DMAs when rebooting.
   4099  */
   4100 static int
   4101 bge_detach(device_t self, int flags __unused)
   4102 {
   4103 	struct bge_softc * const sc = device_private(self);
   4104 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4105 
   4106 	if (!sc->bge_attached)
   4107 		return 0;
   4108 
   4109 	IFNET_LOCK(ifp);
   4110 
   4111 	/* Stop the interface. Callouts are stopped in it. */
   4112 	bge_stop(ifp, 1);
   4113 	sc->bge_detaching = true;
   4114 
   4115 	IFNET_UNLOCK(ifp);
   4116 
   4117 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   4118 
   4119 	ether_ifdetach(ifp);
   4120 	if_detach(ifp);
   4121 
   4122 	/* Delete all remaining media. */
   4123 	ifmedia_fini(&sc->bge_mii.mii_media);
   4124 
   4125 	bge_release_resources(sc);
   4126 
   4127 	return 0;
   4128 }
   4129 
   4130 static void
   4131 bge_release_resources(struct bge_softc *sc)
   4132 {
   4133 
   4134 	/* Detach sysctl */
   4135 	if (sc->bge_log != NULL)
   4136 		sysctl_teardown(&sc->bge_log);
   4137 
   4138 	callout_destroy(&sc->bge_timeout);
   4139 
   4140 #ifdef BGE_EVENT_COUNTERS
   4141 	/* Detach event counters. */
   4142 	evcnt_detach(&sc->bge_ev_intr);
   4143 	evcnt_detach(&sc->bge_ev_intr_spurious);
   4144 	evcnt_detach(&sc->bge_ev_intr_spurious2);
   4145 	evcnt_detach(&sc->bge_ev_tx_xoff);
   4146 	evcnt_detach(&sc->bge_ev_tx_xon);
   4147 	evcnt_detach(&sc->bge_ev_rx_xoff);
   4148 	evcnt_detach(&sc->bge_ev_rx_xon);
   4149 	evcnt_detach(&sc->bge_ev_rx_macctl);
   4150 	evcnt_detach(&sc->bge_ev_xoffentered);
   4151 #endif /* BGE_EVENT_COUNTERS */
   4152 
   4153 	mutex_obj_free(sc->sc_intr_lock);
   4154 	mutex_obj_free(sc->sc_mcast_lock);
   4155 
   4156 	/* Disestablish the interrupt handler */
   4157 	if (sc->bge_intrhand != NULL) {
   4158 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   4159 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
   4160 		sc->bge_intrhand = NULL;
   4161 	}
   4162 
   4163 	if (sc->bge_cdata.bge_jumbo_buf != NULL)
   4164 		bge_free_jumbo_mem(sc);
   4165 
   4166 	if (sc->bge_dmatag != NULL) {
   4167 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   4168 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   4169 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   4170 		    sizeof(struct bge_ring_data));
   4171 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   4172 		    sc->bge_ring_rseg);
   4173 	}
   4174 
   4175 	/* Unmap the device registers */
   4176 	if (sc->bge_bsize != 0) {
   4177 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   4178 		sc->bge_bsize = 0;
   4179 	}
   4180 
   4181 	/* Unmap the APE registers */
   4182 	if (sc->bge_apesize != 0) {
   4183 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   4184 		    sc->bge_apesize);
   4185 		sc->bge_apesize = 0;
   4186 	}
   4187 }
   4188 
   4189 static int
   4190 bge_reset(struct bge_softc *sc)
   4191 {
   4192 	uint32_t cachesize, command;
   4193 	uint32_t reset, mac_mode, mac_mode_mask;
   4194 	pcireg_t devctl, reg;
   4195 	int i, val;
   4196 	void (*write_op)(struct bge_softc *, int, int);
   4197 
   4198 	/* Make mask for BGE_MAC_MODE register. */
   4199 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   4200 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4201 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   4202 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   4203 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   4204 
   4205 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   4206 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   4207 		if (sc->bge_flags & BGEF_PCIE)
   4208 			write_op = bge_writemem_direct;
   4209 		else
   4210 			write_op = bge_writemem_ind;
   4211 	} else
   4212 		write_op = bge_writereg_ind;
   4213 
   4214 	/* 57XX step 4 */
   4215 	/* Acquire the NVM lock */
   4216 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
   4217 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4218 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4219 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4220 		for (i = 0; i < 8000; i++) {
   4221 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4222 			    BGE_NVRAMSWARB_GNT1)
   4223 				break;
   4224 			DELAY(20);
   4225 		}
   4226 		if (i == 8000) {
   4227 			printf("%s: NVRAM lock timedout!\n",
   4228 			    device_xname(sc->bge_dev));
   4229 		}
   4230 	}
   4231 
   4232 	/* Take APE lock when performing reset. */
   4233 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4234 
   4235 	/* 57XX step 3 */
   4236 	/* Save some important PCI state. */
   4237 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4238 	/* 5718 reset step 3 */
   4239 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4240 
   4241 	/* 5718 reset step 5, 57XX step 5b-5d */
   4242 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4243 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4244 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4245 
   4246 	/* XXX ???: Disable fastboot on controllers that support it. */
   4247 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4248 	    BGE_IS_5755_PLUS(sc))
   4249 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4250 
   4251 	/* 5718 reset step 2, 57XX step 6 */
   4252 	/*
   4253 	 * Write the magic number to SRAM at offset 0xB50.
   4254 	 * When firmware finishes its initialization it will
   4255 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4256 	 */
   4257 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4258 
   4259 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   4260 		val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   4261 		val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   4262 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   4263 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
   4264 	}
   4265 
   4266 	/* 5718 reset step 6, 57XX step 7 */
   4267 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4268 	/*
   4269 	 * XXX: from FreeBSD/Linux; no documentation
   4270 	 */
   4271 	if (sc->bge_flags & BGEF_PCIE) {
   4272 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
   4273 		    !BGE_IS_57765_PLUS(sc) &&
   4274 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4275 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4276 			/* PCI Express 1.0 system */
   4277 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4278 			    BGE_PHY_PCIE_SCRAM_MODE);
   4279 		}
   4280 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4281 			/*
   4282 			 * Prevent PCI Express link training
   4283 			 * during global reset.
   4284 			 */
   4285 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4286 			reset |= (1 << 29);
   4287 		}
   4288 	}
   4289 
   4290 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4291 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4292 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4293 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4294 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4295 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4296 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4297 	}
   4298 
   4299 	/*
   4300 	 * Set GPHY Power Down Override to leave GPHY
   4301 	 * powered up in D0 uninitialized.
   4302 	 */
   4303 	if (BGE_IS_5705_PLUS(sc) &&
   4304 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4305 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4306 
   4307 	/* Issue global reset */
   4308 	write_op(sc, BGE_MISC_CFG, reset);
   4309 
   4310 	/* 5718 reset step 7, 57XX step 8 */
   4311 	if (sc->bge_flags & BGEF_PCIE)
   4312 		delay(100*1000); /* too big */
   4313 	else
   4314 		delay(1000);
   4315 
   4316 	if (sc->bge_flags & BGEF_PCIE) {
   4317 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4318 			DELAY(500000);
   4319 			/* XXX: Magic Numbers */
   4320 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4321 			    BGE_PCI_UNKNOWN0);
   4322 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4323 			    BGE_PCI_UNKNOWN0,
   4324 			    reg | (1 << 15));
   4325 		}
   4326 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4327 		    sc->bge_pciecap + PCIE_DCSR);
   4328 		/* Clear enable no snoop and disable relaxed ordering. */
   4329 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4330 		    PCIE_DCSR_ENA_NO_SNOOP);
   4331 
   4332 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4333 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4334 			devctl &= ~(0x00e0);
   4335 		/* Clear device status register. Write 1b to clear */
   4336 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4337 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4338 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4339 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4340 		bge_set_max_readrq(sc);
   4341 	}
   4342 
   4343 	/* From Linux: dummy read to flush PCI posted writes */
   4344 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4345 
   4346 	/*
   4347 	 * Reset some of the PCI state that got zapped by reset
   4348 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4349 	 * set, too.
   4350 	 */
   4351 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4352 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4353 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4354 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4355 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4356 	    (sc->bge_flags & BGEF_PCIX) != 0)
   4357 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4358 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4359 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4360 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4361 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4362 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4363 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4364 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4365 
   4366 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
   4367 	if (sc->bge_flags & BGEF_PCIX) {
   4368 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4369 		    + PCIX_CMD);
   4370 		/* Set max memory read byte count to 2K */
   4371 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   4372 			reg &= ~PCIX_CMD_BYTECNT_MASK;
   4373 			reg |= PCIX_CMD_BCNT_2048;
   4374 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
   4375 			/*
   4376 			 * For 5704, set max outstanding split transaction
   4377 			 * field to 0 (0 means it supports 1 request)
   4378 			 */
   4379 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
   4380 			    | PCIX_CMD_BYTECNT_MASK);
   4381 			reg |= PCIX_CMD_BCNT_2048;
   4382 		}
   4383 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4384 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4385 	}
   4386 
   4387 	/* 5718 reset step 10, 57XX step 12 */
   4388 	/* Enable memory arbiter. */
   4389 	if (BGE_IS_5714_FAMILY(sc)) {
   4390 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4391 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4392 	} else
   4393 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4394 
   4395 	/* XXX 5721, 5751 and 5752 */
   4396 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4397 		/* Step 19: */
   4398 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4399 		/* Step 20: */
   4400 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4401 	}
   4402 
   4403 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4404 	/* Fix up byte swapping */
   4405 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4406 
   4407 	/* 5718 reset step 13, 57XX step 17 */
   4408 	/* Poll until the firmware initialization is complete */
   4409 	bge_poll_fw(sc);
   4410 
   4411 	/* 57XX step 21 */
   4412 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4413 		pcireg_t msidata;
   4414 
   4415 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4416 		    BGE_PCI_MSI_DATA);
   4417 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4418 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4419 		    msidata);
   4420 	}
   4421 
   4422 	/* 57XX step 18 */
   4423 	/* Write mac mode. */
   4424 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4425 	/* Restore mac_mode_mask's bits using mac_mode */
   4426 	val = (val & ~mac_mode_mask) | mac_mode;
   4427 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4428 	DELAY(40);
   4429 
   4430 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4431 
   4432 	/*
   4433 	 * The 5704 in TBI mode apparently needs some special
   4434 	 * adjustment to insure the SERDES drive level is set
   4435 	 * to 1.2V.
   4436 	 */
   4437 	if (sc->bge_flags & BGEF_FIBER_TBI &&
   4438 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4439 		uint32_t serdescfg;
   4440 
   4441 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4442 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4443 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4444 	}
   4445 
   4446 	if (sc->bge_flags & BGEF_PCIE &&
   4447 	    !BGE_IS_57765_PLUS(sc) &&
   4448 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4449 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4450 		uint32_t v;
   4451 
   4452 		/* Enable PCI Express bug fix */
   4453 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4454 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4455 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4456 	}
   4457 
   4458 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4459 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4460 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4461 
   4462 	return 0;
   4463 }
   4464 
   4465 /*
   4466  * Frame reception handling. This is called if there's a frame
   4467  * on the receive return list.
   4468  *
   4469  * Note: we have to be able to handle two possibilities here:
   4470  * 1) the frame is from the jumbo receive ring
   4471  * 2) the frame is from the standard receive ring
   4472  */
   4473 
   4474 static void
   4475 bge_rxeof(struct bge_softc *sc)
   4476 {
   4477 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4478 	uint16_t rx_prod, rx_cons;
   4479 	int stdcnt = 0, jumbocnt = 0;
   4480 	bus_dmamap_t dmamap;
   4481 	bus_addr_t offset, toff;
   4482 	bus_size_t tlen;
   4483 	int tosync;
   4484 
   4485 	KASSERT(mutex_owned(sc->sc_intr_lock));
   4486 
   4487 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4488 	    offsetof(struct bge_ring_data, bge_status_block),
   4489 	    sizeof(struct bge_status_block),
   4490 	    BUS_DMASYNC_POSTREAD);
   4491 
   4492 	rx_cons = sc->bge_rx_saved_considx;
   4493 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4494 
   4495 	/* Nothing to do */
   4496 	if (rx_cons == rx_prod)
   4497 		return;
   4498 
   4499 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4500 	tosync = rx_prod - rx_cons;
   4501 
   4502 	if (tosync != 0)
   4503 		rnd_add_uint32(&sc->rnd_source, tosync);
   4504 
   4505 	toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
   4506 
   4507 	if (tosync < 0) {
   4508 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4509 		    sizeof(struct bge_rx_bd);
   4510 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4511 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4512 		tosync = rx_prod;
   4513 		toff = offset;
   4514 	}
   4515 
   4516 	if (tosync != 0) {
   4517 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4518 		    toff, tosync * sizeof(struct bge_rx_bd),
   4519 		    BUS_DMASYNC_POSTREAD);
   4520 	}
   4521 
   4522 	while (rx_cons != rx_prod) {
   4523 		struct bge_rx_bd	*cur_rx;
   4524 		uint32_t		rxidx;
   4525 		struct mbuf		*m = NULL;
   4526 
   4527 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4528 
   4529 		rxidx = cur_rx->bge_idx;
   4530 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4531 
   4532 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4533 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4534 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4535 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4536 			jumbocnt++;
   4537 			bus_dmamap_sync(sc->bge_dmatag,
   4538 			    sc->bge_cdata.bge_rx_jumbo_map,
   4539 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4540 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4541 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4542 				if_statinc(ifp, if_ierrors);
   4543 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4544 				continue;
   4545 			}
   4546 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4547 					     NULL) == ENOBUFS) {
   4548 				if_statinc(ifp, if_ierrors);
   4549 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4550 				continue;
   4551 			}
   4552 		} else {
   4553 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4554 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4555 
   4556 			stdcnt++;
   4557 			sc->bge_std_cnt--;
   4558 
   4559 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4560 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4561 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4562 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4563 
   4564 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4565 				m_free(m);
   4566 				if_statinc(ifp, if_ierrors);
   4567 				continue;
   4568 			}
   4569 		}
   4570 
   4571 #ifndef __NO_STRICT_ALIGNMENT
   4572 		/*
   4573 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4574 		 * the Rx buffer has the layer-2 header unaligned.
   4575 		 * If our CPU requires alignment, re-align by copying.
   4576 		 */
   4577 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
   4578 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4579 				cur_rx->bge_len);
   4580 			m->m_data += ETHER_ALIGN;
   4581 		}
   4582 #endif
   4583 
   4584 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4585 		m_set_rcvif(m, ifp);
   4586 
   4587 		bge_rxcsum(sc, cur_rx, m);
   4588 
   4589 		/*
   4590 		 * If we received a packet with a vlan tag, pass it
   4591 		 * to vlan_input() instead of ether_input().
   4592 		 */
   4593 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   4594 			vlan_set_tag(m, cur_rx->bge_vlan_tag);
   4595 
   4596 		if_percpuq_enqueue(ifp->if_percpuq, m);
   4597 	}
   4598 
   4599 	sc->bge_rx_saved_considx = rx_cons;
   4600 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4601 	if (stdcnt)
   4602 		bge_fill_rx_ring_std(sc);
   4603 	if (jumbocnt)
   4604 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4605 }
   4606 
   4607 static void
   4608 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4609 {
   4610 
   4611 	if (BGE_IS_57765_PLUS(sc)) {
   4612 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4613 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4614 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4615 			if ((cur_rx->bge_error_flag &
   4616 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4617 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4618 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4619 				m->m_pkthdr.csum_data =
   4620 				    cur_rx->bge_tcp_udp_csum;
   4621 				m->m_pkthdr.csum_flags |=
   4622 				    (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
   4623 			}
   4624 		}
   4625 	} else {
   4626 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4627 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4628 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4629 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4630 		/*
   4631 		 * Rx transport checksum-offload may also
   4632 		 * have bugs with packets which, when transmitted,
   4633 		 * were `runts' requiring padding.
   4634 		 */
   4635 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4636 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4637 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4638 			m->m_pkthdr.csum_data =
   4639 			    cur_rx->bge_tcp_udp_csum;
   4640 			m->m_pkthdr.csum_flags |=
   4641 			    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
   4642 		}
   4643 	}
   4644 }
   4645 
   4646 static void
   4647 bge_txeof(struct bge_softc *sc)
   4648 {
   4649 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4650 	struct bge_tx_bd *cur_tx = NULL;
   4651 	struct txdmamap_pool_entry *dma;
   4652 	bus_addr_t offset, toff;
   4653 	bus_size_t tlen;
   4654 	int tosync;
   4655 	struct mbuf *m;
   4656 
   4657 	KASSERT(mutex_owned(sc->sc_intr_lock));
   4658 
   4659 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4660 	    offsetof(struct bge_ring_data, bge_status_block),
   4661 	    sizeof(struct bge_status_block),
   4662 	    BUS_DMASYNC_POSTREAD);
   4663 
   4664 	const uint16_t hw_cons_idx =
   4665 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx;
   4666 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4667 	tosync = hw_cons_idx - sc->bge_tx_saved_considx;
   4668 
   4669 	if (tosync != 0)
   4670 		rnd_add_uint32(&sc->rnd_source, tosync);
   4671 
   4672 	toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
   4673 
   4674 	if (tosync < 0) {
   4675 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4676 		    sizeof(struct bge_tx_bd);
   4677 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4678 		    toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4679 		tosync = hw_cons_idx;
   4680 		toff = offset;
   4681 	}
   4682 
   4683 	if (tosync != 0) {
   4684 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4685 		    toff, tosync * sizeof(struct bge_tx_bd),
   4686 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4687 	}
   4688 
   4689 	/*
   4690 	 * Go through our tx ring and free mbufs for those
   4691 	 * frames that have been sent.
   4692 	 */
   4693 	while (sc->bge_tx_saved_considx != hw_cons_idx) {
   4694 		uint32_t idx = sc->bge_tx_saved_considx;
   4695 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4696 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4697 			if_statinc(ifp, if_opackets);
   4698 		m = sc->bge_cdata.bge_tx_chain[idx];
   4699 		if (m != NULL) {
   4700 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4701 			dma = sc->txdma[idx];
   4702 			if (dma->is_dma32) {
   4703 				bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
   4704 				    0, dma->dmamap32->dm_mapsize,
   4705 				    BUS_DMASYNC_POSTWRITE);
   4706 				bus_dmamap_unload(
   4707 				    sc->bge_dmatag32, dma->dmamap32);
   4708 			} else {
   4709 				bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
   4710 				    0, dma->dmamap->dm_mapsize,
   4711 				    BUS_DMASYNC_POSTWRITE);
   4712 				bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4713 			}
   4714 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4715 			sc->txdma[idx] = NULL;
   4716 
   4717 			m_freem(m);
   4718 		}
   4719 		sc->bge_txcnt--;
   4720 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4721 		sc->bge_tx_sending = false;
   4722 	}
   4723 }
   4724 
   4725 static int
   4726 bge_intr(void *xsc)
   4727 {
   4728 	struct bge_softc * const sc = xsc;
   4729 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4730 	uint32_t pcistate, statusword, statustag;
   4731 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4732 
   4733 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4734 	if (BGE_IS_5717_PLUS(sc))
   4735 		intrmask = 0;
   4736 
   4737 	mutex_enter(sc->sc_intr_lock);
   4738 	if (sc->bge_txrx_stopping) {
   4739 		mutex_exit(sc->sc_intr_lock);
   4740 		return 1;
   4741 	}
   4742 
   4743 	/*
   4744 	 * It is possible for the interrupt to arrive before
   4745 	 * the status block is updated prior to the interrupt.
   4746 	 * Reading the PCI State register will confirm whether the
   4747 	 * interrupt is ours and will flush the status block.
   4748 	 */
   4749 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
   4750 
   4751 	/* read status word from status block */
   4752 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4753 	    offsetof(struct bge_ring_data, bge_status_block),
   4754 	    sizeof(struct bge_status_block),
   4755 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4756 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4757 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
   4758 
   4759 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
   4760 		if (sc->bge_lasttag == statustag &&
   4761 		    (~pcistate & intrmask)) {
   4762 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
   4763 			mutex_exit(sc->sc_intr_lock);
   4764 			return 0;
   4765 		}
   4766 		sc->bge_lasttag = statustag;
   4767 	} else {
   4768 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
   4769 		    !(~pcistate & intrmask)) {
   4770 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
   4771 			mutex_exit(sc->sc_intr_lock);
   4772 			return 0;
   4773 		}
   4774 		statustag = 0;
   4775 	}
   4776 	/* Ack interrupt and stop others from occurring. */
   4777 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4778 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   4779 
   4780 	/* clear status word */
   4781 	sc->bge_rdata->bge_status_block.bge_status = 0;
   4782 
   4783 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4784 	    offsetof(struct bge_ring_data, bge_status_block),
   4785 	    sizeof(struct bge_status_block),
   4786 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4787 
   4788 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4789 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4790 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4791 		bge_link_upd(sc);
   4792 
   4793 	/* Check RX return ring producer/consumer */
   4794 	bge_rxeof(sc);
   4795 
   4796 	/* Check TX ring producer/consumer */
   4797 	bge_txeof(sc);
   4798 
   4799 	if (sc->bge_pending_rxintr_change) {
   4800 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4801 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4802 
   4803 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4804 		DELAY(10);
   4805 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4806 
   4807 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4808 		DELAY(10);
   4809 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4810 
   4811 		sc->bge_pending_rxintr_change = false;
   4812 	}
   4813 	bge_handle_events(sc);
   4814 
   4815 	/* Re-enable interrupts. */
   4816 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
   4817 
   4818 	if_schedule_deferred_start(ifp);
   4819 
   4820 	mutex_exit(sc->sc_intr_lock);
   4821 
   4822 	return 1;
   4823 }
   4824 
   4825 static void
   4826 bge_asf_driver_up(struct bge_softc *sc)
   4827 {
   4828 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4829 		/* Send ASF heartbeat approx. every 2s */
   4830 		if (sc->bge_asf_count)
   4831 			sc->bge_asf_count --;
   4832 		else {
   4833 			sc->bge_asf_count = 2;
   4834 
   4835 			bge_wait_for_event_ack(sc);
   4836 
   4837 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4838 			    BGE_FW_CMD_DRV_ALIVE3);
   4839 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4840 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4841 			    BGE_FW_HB_TIMEOUT_SEC);
   4842 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4843 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4844 			    BGE_RX_CPU_DRV_EVENT);
   4845 		}
   4846 	}
   4847 }
   4848 
   4849 static void
   4850 bge_tick(void *xsc)
   4851 {
   4852 	struct bge_softc * const sc = xsc;
   4853 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4854 	struct mii_data * const mii = &sc->bge_mii;
   4855 
   4856 	mutex_enter(sc->sc_intr_lock);
   4857 
   4858 	if (BGE_IS_5705_PLUS(sc))
   4859 		bge_stats_update_regs(sc);
   4860 	else
   4861 		bge_stats_update(sc);
   4862 
   4863 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4864 		/*
   4865 		 * Since in TBI mode auto-polling can't be used we should poll
   4866 		 * link status manually. Here we register pending link event
   4867 		 * and trigger interrupt.
   4868 		 */
   4869 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4870 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4871 	} else {
   4872 		/*
   4873 		 * Do not touch PHY if we have link up. This could break
   4874 		 * IPMI/ASF mode or produce extra input errors.
   4875 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4876 		 */
   4877 		if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4878 			mii_tick(mii);
   4879 		}
   4880 	}
   4881 
   4882 	bge_asf_driver_up(sc);
   4883 
   4884 	const bool ok = bge_watchdog_tick(ifp);
   4885 	if (ok)
   4886 		callout_schedule(&sc->bge_timeout, hz);
   4887 	mutex_exit(sc->sc_intr_lock);
   4888 }
   4889 
   4890 static void
   4891 bge_stats_update_regs(struct bge_softc *sc)
   4892 {
   4893 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4894 
   4895 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4896 
   4897 	if_statadd_ref(ifp, nsr, if_collisions,
   4898 	    CSR_READ_4(sc, BGE_MAC_STATS +
   4899 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
   4900 
   4901 	/*
   4902 	 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
   4903 	 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
   4904 	 * (silicon bug). There's no reliable workaround so just
   4905 	 * ignore the counter
   4906 	 */
   4907 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   4908 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
   4909 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
   4910 		if_statadd_ref(ifp, nsr, if_ierrors,
   4911 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
   4912 	}
   4913 	if_statadd_ref(ifp, nsr, if_ierrors,
   4914 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
   4915 	if_statadd_ref(ifp, nsr, if_ierrors,
   4916 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
   4917 
   4918 	IF_STAT_PUTREF(ifp);
   4919 
   4920 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   4921 		uint32_t val, ucast, mcast, bcast;
   4922 
   4923 		ucast = CSR_READ_4(sc, BGE_MAC_STATS +
   4924 		    offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
   4925 		mcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4926 		    offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
   4927 		bcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4928 		    offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
   4929 
   4930 		/*
   4931 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
   4932 		 * frames, it's safe to disable workaround for DMA engine's
   4933 		 * miscalculation of TXMBUF space.
   4934 		 */
   4935 		if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
   4936 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   4937 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   4938 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
   4939 			else
   4940 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
   4941 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   4942 			sc->bge_flags &= ~BGEF_RDMA_BUG;
   4943 		}
   4944 	}
   4945 }
   4946 
   4947 static void
   4948 bge_stats_update(struct bge_softc *sc)
   4949 {
   4950 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4951 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4952 
   4953 #define READ_STAT(sc, stats, stat) \
   4954 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4955 
   4956 	uint64_t collisions =
   4957 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4958 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4959 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4960 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
   4961 
   4962 	if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
   4963 	sc->bge_if_collisions = collisions;
   4964 
   4965 
   4966 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4967 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4968 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4969 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4970 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4971 		      READ_STAT(sc, stats,
   4972 				xoffPauseFramesReceived.bge_addr_lo));
   4973 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4974 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4975 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4976 		      READ_STAT(sc, stats,
   4977 				macControlFramesReceived.bge_addr_lo));
   4978 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4979 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4980 
   4981 #undef READ_STAT
   4982 }
   4983 
   4984 /*
   4985  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4986  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4987  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4988  * the hardware checksum assist gives incorrect results (possibly
   4989  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4990  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4991  */
   4992 static inline int
   4993 bge_cksum_pad(struct mbuf *pkt)
   4994 {
   4995 	struct mbuf *last = NULL;
   4996 	int padlen;
   4997 
   4998 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   4999 
   5000 	/* if there's only the packet-header and we can pad there, use it. */
   5001 	if (pkt->m_pkthdr.len == pkt->m_len &&
   5002 	    M_TRAILINGSPACE(pkt) >= padlen) {
   5003 		last = pkt;
   5004 	} else {
   5005 		/*
   5006 		 * Walk packet chain to find last mbuf. We will either
   5007 		 * pad there, or append a new mbuf and pad it
   5008 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   5009 		 */
   5010 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   5011 			continue; /* do nothing */
   5012 		}
   5013 
   5014 		/* `last' now points to last in chain. */
   5015 		if (M_TRAILINGSPACE(last) < padlen) {
   5016 			/* Allocate new empty mbuf, pad it. Compact later. */
   5017 			struct mbuf *n;
   5018 			MGET(n, M_DONTWAIT, MT_DATA);
   5019 			if (n == NULL)
   5020 				return ENOBUFS;
   5021 			n->m_len = 0;
   5022 			last->m_next = n;
   5023 			last = n;
   5024 		}
   5025 	}
   5026 
   5027 	KDASSERT(!M_READONLY(last));
   5028 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   5029 
   5030 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   5031 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   5032 	last->m_len += padlen;
   5033 	pkt->m_pkthdr.len += padlen;
   5034 	return 0;
   5035 }
   5036 
   5037 /*
   5038  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   5039  */
   5040 static inline int
   5041 bge_compact_dma_runt(struct mbuf *pkt)
   5042 {
   5043 	struct mbuf	*m, *prev;
   5044 	int		totlen;
   5045 
   5046 	prev = NULL;
   5047 	totlen = 0;
   5048 
   5049 	for (m = pkt; m != NULL; prev = m, m = m->m_next) {
   5050 		int mlen = m->m_len;
   5051 		int shortfall = 8 - mlen ;
   5052 
   5053 		totlen += mlen;
   5054 		if (mlen == 0)
   5055 			continue;
   5056 		if (mlen >= 8)
   5057 			continue;
   5058 
   5059 		/*
   5060 		 * If we get here, mbuf data is too small for DMA engine.
   5061 		 * Try to fix by shuffling data to prev or next in chain.
   5062 		 * If that fails, do a compacting deep-copy of the whole chain.
   5063 		 */
   5064 
   5065 		/* Internal frag. If fits in prev, copy it there. */
   5066 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   5067 			memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   5068 			prev->m_len += mlen;
   5069 			m->m_len = 0;
   5070 			/* XXX stitch chain */
   5071 			prev->m_next = m_free(m);
   5072 			m = prev;
   5073 			continue;
   5074 		} else if (m->m_next != NULL &&
   5075 			    M_TRAILINGSPACE(m) >= shortfall &&
   5076 			    m->m_next->m_len >= (8 + shortfall)) {
   5077 		    /* m is writable and have enough data in next, pull up. */
   5078 
   5079 			memcpy(m->m_data + m->m_len, m->m_next->m_data,
   5080 			    shortfall);
   5081 			m->m_len += shortfall;
   5082 			m->m_next->m_len -= shortfall;
   5083 			m->m_next->m_data += shortfall;
   5084 		} else if (m->m_next == NULL || 1) {
   5085 			/*
   5086 			 * Got a runt at the very end of the packet.
   5087 			 * borrow data from the tail of the preceding mbuf and
   5088 			 * update its length in-place. (The original data is
   5089 			 * still valid, so we can do this even if prev is not
   5090 			 * writable.)
   5091 			 */
   5092 
   5093 			/*
   5094 			 * If we'd make prev a runt, just move all of its data.
   5095 			 */
   5096 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   5097 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   5098 
   5099 			if ((prev->m_len - shortfall) < 8)
   5100 				shortfall = prev->m_len;
   5101 
   5102 #ifdef notyet	/* just do the safe slow thing for now */
   5103 			if (!M_READONLY(m)) {
   5104 				if (M_LEADINGSPACE(m) < shorfall) {
   5105 					void *m_dat;
   5106 					m_dat = M_BUFADDR(m);
   5107 					memmove(m_dat, mtod(m, void*),
   5108 					    m->m_len);
   5109 					m->m_data = m_dat;
   5110 				}
   5111 			} else
   5112 #endif	/* just do the safe slow thing */
   5113 			{
   5114 				struct mbuf * n = NULL;
   5115 				int newprevlen = prev->m_len - shortfall;
   5116 
   5117 				MGET(n, M_NOWAIT, MT_DATA);
   5118 				if (n == NULL)
   5119 				   return ENOBUFS;
   5120 				KASSERT(m->m_len + shortfall < MLEN
   5121 					/*,
   5122 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   5123 
   5124 				/* first copy the data we're stealing from prev */
   5125 				memcpy(n->m_data, prev->m_data + newprevlen,
   5126 				    shortfall);
   5127 
   5128 				/* update prev->m_len accordingly */
   5129 				prev->m_len -= shortfall;
   5130 
   5131 				/* copy data from runt m */
   5132 				memcpy(n->m_data + shortfall, m->m_data,
   5133 				    m->m_len);
   5134 
   5135 				/* n holds what we stole from prev, plus m */
   5136 				n->m_len = shortfall + m->m_len;
   5137 
   5138 				/* stitch n into chain and free m */
   5139 				n->m_next = m->m_next;
   5140 				prev->m_next = n;
   5141 				/* KASSERT(m->m_next == NULL); */
   5142 				m->m_next = NULL;
   5143 				m_free(m);
   5144 				m = n;	/* for continuing loop */
   5145 			}
   5146 		}
   5147 	}
   5148 	return 0;
   5149 }
   5150 
   5151 /*
   5152  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   5153  * pointers to descriptors.
   5154  */
   5155 static int
   5156 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   5157 {
   5158 	struct bge_tx_bd	*f, *prev_f;
   5159 	uint32_t		frag, cur;
   5160 	uint16_t		csum_flags = 0;
   5161 	uint16_t		txbd_tso_flags = 0;
   5162 	struct txdmamap_pool_entry *dma;
   5163 	bus_dmamap_t dmamap;
   5164 	bus_dma_tag_t dmatag;
   5165 	int			i = 0;
   5166 	int			use_tso, maxsegsize, error;
   5167 	bool			have_vtag;
   5168 	uint16_t		vtag;
   5169 	bool			remap;
   5170 
   5171 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5172 
   5173 	if (m_head->m_pkthdr.csum_flags) {
   5174 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5175 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   5176 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
   5177 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   5178 	}
   5179 
   5180 	/*
   5181 	 * If we were asked to do an outboard checksum, and the NIC
   5182 	 * has the bug where it sometimes adds in the Ethernet padding,
   5183 	 * explicitly pad with zeros so the cksum will be correct either way.
   5184 	 * (For now, do this for all chip versions, until newer
   5185 	 * are confirmed to not require the workaround.)
   5186 	 */
   5187 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   5188 #ifdef notyet
   5189 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   5190 #endif
   5191 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   5192 		goto check_dma_bug;
   5193 
   5194 	if (bge_cksum_pad(m_head) != 0)
   5195 		return ENOBUFS;
   5196 
   5197 check_dma_bug:
   5198 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   5199 		goto doit;
   5200 
   5201 	/*
   5202 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   5203 	 * less than eight bytes.  If we encounter a teeny mbuf
   5204 	 * at the end of a chain, we can pad.  Otherwise, copy.
   5205 	 */
   5206 	if (bge_compact_dma_runt(m_head) != 0)
   5207 		return ENOBUFS;
   5208 
   5209 doit:
   5210 	dma = SLIST_FIRST(&sc->txdma_list);
   5211 	if (dma == NULL) {
   5212 		return ENOBUFS;
   5213 	}
   5214 	dmamap = dma->dmamap;
   5215 	dmatag = sc->bge_dmatag;
   5216 	dma->is_dma32 = false;
   5217 
   5218 	/*
   5219 	 * Set up any necessary TSO state before we start packing...
   5220 	 */
   5221 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   5222 	if (!use_tso) {
   5223 		maxsegsize = 0;
   5224 	} else {	/* TSO setup */
   5225 		unsigned  mss;
   5226 		struct ether_header *eh;
   5227 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   5228 		unsigned bge_hlen;
   5229 		struct mbuf * m0 = m_head;
   5230 		struct ip *ip;
   5231 		struct tcphdr *th;
   5232 		int iphl, hlen;
   5233 
   5234 		/*
   5235 		 * XXX It would be nice if the mbuf pkthdr had offset
   5236 		 * fields for the protocol headers.
   5237 		 */
   5238 
   5239 		eh = mtod(m0, struct ether_header *);
   5240 		switch (htons(eh->ether_type)) {
   5241 		case ETHERTYPE_IP:
   5242 			offset = ETHER_HDR_LEN;
   5243 			break;
   5244 
   5245 		case ETHERTYPE_VLAN:
   5246 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   5247 			break;
   5248 
   5249 		default:
   5250 			/*
   5251 			 * Don't support this protocol or encapsulation.
   5252 			 */
   5253 			return ENOBUFS;
   5254 		}
   5255 
   5256 		/*
   5257 		 * TCP/IP headers are in the first mbuf; we can do
   5258 		 * this the easy way.
   5259 		 */
   5260 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   5261 		hlen = iphl + offset;
   5262 		if (__predict_false(m0->m_len <
   5263 				    (hlen + sizeof(struct tcphdr)))) {
   5264 
   5265 			aprint_error_dev(sc->bge_dev,
   5266 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   5267 			    "not handled yet\n",
   5268 			    m0->m_len, hlen+ sizeof(struct tcphdr));
   5269 #ifdef NOTYET
   5270 			/*
   5271 			 * XXX jonathan (at) NetBSD.org: untested.
   5272 			 * how to force this branch to be taken?
   5273 			 */
   5274 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
   5275 
   5276 			m_copydata(m0, offset, sizeof(ip), &ip);
   5277 			m_copydata(m0, hlen, sizeof(th), &th);
   5278 
   5279 			ip.ip_len = 0;
   5280 
   5281 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   5282 			    sizeof(ip.ip_len), &ip.ip_len);
   5283 
   5284 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   5285 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   5286 
   5287 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   5288 			    sizeof(th.th_sum), &th.th_sum);
   5289 
   5290 			hlen += th.th_off << 2;
   5291 			iptcp_opt_words	= hlen;
   5292 #else
   5293 			/*
   5294 			 * if_wm "hard" case not yet supported, can we not
   5295 			 * mandate it out of existence?
   5296 			 */
   5297 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5298 
   5299 			return ENOBUFS;
   5300 #endif
   5301 		} else {
   5302 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5303 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5304 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5305 
   5306 			/* Total IP/TCP options, in 32-bit words */
   5307 			iptcp_opt_words = (ip_tcp_hlen
   5308 					   - sizeof(struct tcphdr)
   5309 					   - sizeof(struct ip)) >> 2;
   5310 		}
   5311 		if (BGE_IS_575X_PLUS(sc)) {
   5312 			th->th_sum = 0;
   5313 			csum_flags = 0;
   5314 		} else {
   5315 			/*
   5316 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5317 			 * Requires TSO firmware patch for 5701/5703/5704.
   5318 			 */
   5319 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5320 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5321 		}
   5322 
   5323 		mss = m_head->m_pkthdr.segsz;
   5324 		txbd_tso_flags |=
   5325 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5326 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5327 
   5328 		/*
   5329 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5330 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5331 		 * the NIC copies 40 bytes of IP/TCP header from the
   5332 		 * supplied header into the IP/TCP header portion of
   5333 		 * each post-TSO-segment. If the supplied packet has IP or
   5334 		 * TCP options, we need to tell the NIC to copy those extra
   5335 		 * bytes into each  post-TSO header, in addition to the normal
   5336 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5337 		 * Unfortunately, the driver encoding of option length
   5338 		 * varies across different ASIC families.
   5339 		 */
   5340 		tcp_seg_flags = 0;
   5341 		bge_hlen = ip_tcp_hlen >> 2;
   5342 		if (BGE_IS_5717_PLUS(sc)) {
   5343 			tcp_seg_flags = (bge_hlen & 0x3) << 14;
   5344 			txbd_tso_flags |=
   5345 			    ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
   5346 		} else if (BGE_IS_5705_PLUS(sc)) {
   5347 			tcp_seg_flags = bge_hlen << 11;
   5348 		} else {
   5349 			/* XXX iptcp_opt_words or bge_hlen ? */
   5350 			txbd_tso_flags |= iptcp_opt_words << 12;
   5351 		}
   5352 		maxsegsize = mss | tcp_seg_flags;
   5353 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5354 		ip->ip_sum = 0;
   5355 
   5356 	}	/* TSO setup */
   5357 
   5358 	have_vtag = vlan_has_tag(m_head);
   5359 	if (have_vtag)
   5360 		vtag = vlan_get_tag(m_head);
   5361 
   5362 	/*
   5363 	 * Start packing the mbufs in this chain into
   5364 	 * the fragment pointers. Stop when we run out
   5365 	 * of fragments or hit the end of the mbuf chain.
   5366 	 */
   5367 	remap = true;
   5368 load_again:
   5369 	error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
   5370 	if (__predict_false(error)) {
   5371 		if (error == EFBIG && remap) {
   5372 			struct mbuf *m;
   5373 			remap = false;
   5374 			m = m_defrag(m_head, M_NOWAIT);
   5375 			if (m != NULL) {
   5376 				KASSERT(m == m_head);
   5377 				goto load_again;
   5378 			}
   5379 		}
   5380 		return error;
   5381 	}
   5382 	/*
   5383 	 * Sanity check: avoid coming within 16 descriptors
   5384 	 * of the end of the ring.
   5385 	 */
   5386 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5387 		BGE_TSO_PRINTF(("%s: "
   5388 		    " dmamap_load_mbuf too close to ring wrap\n",
   5389 		    device_xname(sc->bge_dev)));
   5390 		goto fail_unload;
   5391 	}
   5392 
   5393 	/* Iterate over dmap-map fragments. */
   5394 	f = prev_f = NULL;
   5395 	cur = frag = *txidx;
   5396 
   5397 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5398 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5399 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5400 			break;
   5401 
   5402 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5403 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5404 		if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
   5405 		    (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
   5406 		    ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
   5407 		    (prev_f != NULL &&
   5408 		     prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
   5409 		   ) {
   5410 			/*
   5411 			 * watchdog timeout issue was observed with TSO,
   5412 			 * limiting DMA address space to 32bits seems to
   5413 			 * address the issue.
   5414 			 */
   5415 			bus_dmamap_unload(dmatag, dmamap);
   5416 			dmatag = sc->bge_dmatag32;
   5417 			dmamap = dma->dmamap32;
   5418 			dma->is_dma32 = true;
   5419 			remap = true;
   5420 			goto load_again;
   5421 		}
   5422 
   5423 		/*
   5424 		 * For 5751 and follow-ons, for TSO we must turn
   5425 		 * off checksum-assist flag in the tx-descr, and
   5426 		 * supply the ASIC-revision-specific encoding
   5427 		 * of TSO flags and segsize.
   5428 		 */
   5429 		if (use_tso) {
   5430 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5431 				f->bge_rsvd = maxsegsize;
   5432 				f->bge_flags = csum_flags | txbd_tso_flags;
   5433 			} else {
   5434 				f->bge_rsvd = 0;
   5435 				f->bge_flags =
   5436 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5437 			}
   5438 		} else {
   5439 			f->bge_rsvd = 0;
   5440 			f->bge_flags = csum_flags;
   5441 		}
   5442 
   5443 		if (have_vtag) {
   5444 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5445 			f->bge_vlan_tag = vtag;
   5446 		} else {
   5447 			f->bge_vlan_tag = 0;
   5448 		}
   5449 		prev_f = f;
   5450 		cur = frag;
   5451 		BGE_INC(frag, BGE_TX_RING_CNT);
   5452 	}
   5453 
   5454 	if (i < dmamap->dm_nsegs) {
   5455 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5456 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5457 		goto fail_unload;
   5458 	}
   5459 
   5460 	bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
   5461 	    BUS_DMASYNC_PREWRITE);
   5462 
   5463 	if (frag == sc->bge_tx_saved_considx) {
   5464 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5465 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5466 
   5467 		goto fail_unload;
   5468 	}
   5469 
   5470 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5471 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5472 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5473 	sc->txdma[cur] = dma;
   5474 	sc->bge_txcnt += dmamap->dm_nsegs;
   5475 
   5476 	*txidx = frag;
   5477 
   5478 	return 0;
   5479 
   5480 fail_unload:
   5481 	bus_dmamap_unload(dmatag, dmamap);
   5482 
   5483 	return ENOBUFS;
   5484 }
   5485 
   5486 
   5487 static void
   5488 bge_start(struct ifnet *ifp)
   5489 {
   5490 	struct bge_softc * const sc = ifp->if_softc;
   5491 
   5492 	mutex_enter(sc->sc_intr_lock);
   5493 	if (!sc->bge_txrx_stopping)
   5494 		bge_start_locked(ifp);
   5495 	mutex_exit(sc->sc_intr_lock);
   5496 }
   5497 
   5498 /*
   5499  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5500  * to the mbuf data regions directly in the transmit descriptors.
   5501  */
   5502 static void
   5503 bge_start_locked(struct ifnet *ifp)
   5504 {
   5505 	struct bge_softc * const sc = ifp->if_softc;
   5506 	struct mbuf *m_head = NULL;
   5507 	struct mbuf *m;
   5508 	uint32_t prodidx;
   5509 	int pkts = 0;
   5510 	int error;
   5511 
   5512 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5513 
   5514 	prodidx = sc->bge_tx_prodidx;
   5515 
   5516 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5517 		IFQ_POLL(&ifp->if_snd, m_head);
   5518 		if (m_head == NULL)
   5519 			break;
   5520 
   5521 #if 0
   5522 		/*
   5523 		 * XXX
   5524 		 * safety overkill.  If this is a fragmented packet chain
   5525 		 * with delayed TCP/UDP checksums, then only encapsulate
   5526 		 * it if we have enough descriptors to handle the entire
   5527 		 * chain at once.
   5528 		 * (paranoia -- may not actually be needed)
   5529 		 */
   5530 		if (m_head->m_flags & M_FIRSTFRAG &&
   5531 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5532 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5533 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5534 				ifp->if_flags |= IFF_OACTIVE;
   5535 				break;
   5536 			}
   5537 		}
   5538 #endif
   5539 
   5540 		/*
   5541 		 * Pack the data into the transmit ring. If we
   5542 		 * don't have room, set the OACTIVE flag and wait
   5543 		 * for the NIC to drain the ring.
   5544 		 */
   5545 		error = bge_encap(sc, m_head, &prodidx);
   5546 		if (__predict_false(error)) {
   5547 			if (SLIST_EMPTY(&sc->txdma_list)) {
   5548 				/* just wait for the transmit ring to drain */
   5549 				break;
   5550 			}
   5551 			IFQ_DEQUEUE(&ifp->if_snd, m);
   5552 			KASSERT(m == m_head);
   5553 			m_freem(m_head);
   5554 			continue;
   5555 		}
   5556 
   5557 		/* now we are committed to transmit the packet */
   5558 		IFQ_DEQUEUE(&ifp->if_snd, m);
   5559 		KASSERT(m == m_head);
   5560 		pkts++;
   5561 
   5562 		/*
   5563 		 * If there's a BPF listener, bounce a copy of this frame
   5564 		 * to him.
   5565 		 */
   5566 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5567 	}
   5568 	if (pkts == 0)
   5569 		return;
   5570 
   5571 	/* Transmit */
   5572 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5573 	/* 5700 b2 errata */
   5574 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5575 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5576 
   5577 	sc->bge_tx_prodidx = prodidx;
   5578 	sc->bge_tx_lastsent = time_uptime;
   5579 	sc->bge_tx_sending = true;
   5580 }
   5581 
   5582 static int
   5583 bge_init(struct ifnet *ifp)
   5584 {
   5585 	struct bge_softc * const sc = ifp->if_softc;
   5586 	const uint16_t *m;
   5587 	uint32_t mode, reg;
   5588 	int error = 0;
   5589 
   5590 	ASSERT_SLEEPABLE();
   5591 	KASSERT(IFNET_LOCKED(ifp));
   5592 	KASSERT(ifp == &sc->ethercom.ec_if);
   5593 
   5594 	if (sc->bge_detaching)
   5595 		return ENXIO;
   5596 
   5597 	/* Cancel pending I/O and flush buffers. */
   5598 	bge_stop(ifp, 0);
   5599 
   5600 	bge_stop_fw(sc);
   5601 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5602 	bge_reset(sc);
   5603 	bge_sig_legacy(sc, BGE_RESET_START);
   5604 
   5605 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5606 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5607 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
   5608 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
   5609 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5610 
   5611 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   5612 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
   5613 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   5614 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   5615 
   5616 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
   5617 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
   5618 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
   5619 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
   5620 
   5621 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
   5622 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
   5623 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
   5624 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
   5625 	}
   5626 
   5627 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   5628 		pcireg_t aercap;
   5629 
   5630 		reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
   5631 		reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
   5632 		    | BGE_PCIE_PWRMNG_L1THRESH_4MS
   5633 		    | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
   5634 		CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
   5635 
   5636 		reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
   5637 		reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
   5638 		    | BGE_PCIE_EIDLE_DELAY_13CLK;
   5639 		CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
   5640 
   5641 		/* Clear correctable error */
   5642 		if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
   5643 		    PCI_EXTCAP_AER, &aercap, NULL) != 0)
   5644 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   5645 			    aercap + PCI_AER_COR_STATUS, 0xffffffff);
   5646 
   5647 		reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   5648 		reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   5649 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   5650 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
   5651 	}
   5652 
   5653 	bge_sig_post_reset(sc, BGE_RESET_START);
   5654 
   5655 	bge_chipinit(sc);
   5656 
   5657 	/*
   5658 	 * Init the various state machines, ring
   5659 	 * control blocks and firmware.
   5660 	 */
   5661 	error = bge_blockinit(sc);
   5662 	if (error != 0) {
   5663 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5664 		    error);
   5665 		return error;
   5666 	}
   5667 
   5668 	/* 5718 step 25, 57XX step 54 */
   5669 	/* Specify MTU. */
   5670 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5671 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5672 
   5673 	/* 5718 step 23 */
   5674 	/* Load our MAC address. */
   5675 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5676 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5677 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
   5678 	    ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
   5679 
   5680 	/* Enable or disable promiscuous mode as needed. */
   5681 	if (ifp->if_flags & IFF_PROMISC)
   5682 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5683 	else
   5684 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5685 
   5686 	/* Program multicast filter. */
   5687 	mutex_enter(sc->sc_mcast_lock);
   5688 	bge_setmulti(sc);
   5689 	mutex_exit(sc->sc_mcast_lock);
   5690 
   5691 	/* Init RX ring. */
   5692 	bge_init_rx_ring_std(sc);
   5693 
   5694 	/*
   5695 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5696 	 * memory to insure that the chip has in fact read the first
   5697 	 * entry of the ring.
   5698 	 */
   5699 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5700 		u_int i;
   5701 		for (i = 0; i < 10; i++) {
   5702 			DELAY(20);
   5703 			uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5704 			if (v == (MCLBYTES - ETHER_ALIGN))
   5705 				break;
   5706 		}
   5707 		if (i == 10)
   5708 			aprint_error_dev(sc->bge_dev,
   5709 			    "5705 A0 chip failed to load RX ring\n");
   5710 	}
   5711 
   5712 	/* Init jumbo RX ring. */
   5713 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5714 		bge_init_rx_ring_jumbo(sc);
   5715 
   5716 	/* Init our RX return ring index */
   5717 	sc->bge_rx_saved_considx = 0;
   5718 
   5719 	/* Init TX ring. */
   5720 	bge_init_tx_ring(sc);
   5721 
   5722 	/* 5718 step 63, 57XX step 94 */
   5723 	/* Enable TX MAC state machine lockup fix. */
   5724 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5725 	if (BGE_IS_5755_PLUS(sc) ||
   5726 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5727 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5728 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   5729 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   5730 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5731 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5732 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5733 	}
   5734 
   5735 	/* Turn on transmitter */
   5736 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5737 	/* 5718 step 64 */
   5738 	DELAY(100);
   5739 
   5740 	/* 5718 step 65, 57XX step 95 */
   5741 	/* Turn on receiver */
   5742 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5743 	if (BGE_IS_5755_PLUS(sc))
   5744 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5745 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   5746 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
   5747 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5748 	/* 5718 step 66 */
   5749 	DELAY(10);
   5750 
   5751 	/* 5718 step 12, 57XX step 37 */
   5752 	/*
   5753 	 * XXX Documents of 5718 series and 577xx say the recommended value
   5754 	 * is 1, but tg3 set 1 only on 57765 series.
   5755 	 */
   5756 	if (BGE_IS_57765_PLUS(sc))
   5757 		reg = 1;
   5758 	else
   5759 		reg = 2;
   5760 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
   5761 
   5762 	/* Tell firmware we're alive. */
   5763 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5764 
   5765 	/* Enable host interrupts. */
   5766 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5767 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5768 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5769 
   5770 	mutex_enter(sc->sc_intr_lock);
   5771 	if ((error = bge_ifmedia_upd(ifp)) == 0) {
   5772 		sc->bge_txrx_stopping = false;
   5773 
   5774 		/* IFNET_LOCKED asserted above */
   5775 		ifp->if_flags |= IFF_RUNNING;
   5776 
   5777 		callout_schedule(&sc->bge_timeout, hz);
   5778 	}
   5779 	mutex_exit(sc->sc_intr_lock);
   5780 
   5781 	mutex_enter(sc->sc_mcast_lock);
   5782 	sc->bge_if_flags = ifp->if_flags;
   5783 	mutex_exit(sc->sc_mcast_lock);
   5784 
   5785 	return error;
   5786 }
   5787 
   5788 /*
   5789  * Set media options.
   5790  */
   5791 static int
   5792 bge_ifmedia_upd(struct ifnet *ifp)
   5793 {
   5794 	struct bge_softc * const sc = ifp->if_softc;
   5795 	struct mii_data * const mii = &sc->bge_mii;
   5796 	struct ifmedia * const ifm = &sc->bge_ifmedia;
   5797 	int rc;
   5798 
   5799 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5800 
   5801 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5802 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5803 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5804 			return EINVAL;
   5805 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5806 		case IFM_AUTO:
   5807 			/*
   5808 			 * The BCM5704 ASIC appears to have a special
   5809 			 * mechanism for programming the autoneg
   5810 			 * advertisement registers in TBI mode.
   5811 			 */
   5812 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5813 				uint32_t sgdig;
   5814 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5815 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5816 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5817 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5818 					sgdig |= BGE_SGDIGCFG_AUTO |
   5819 					    BGE_SGDIGCFG_PAUSE_CAP |
   5820 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5821 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5822 					    sgdig | BGE_SGDIGCFG_SEND);
   5823 					DELAY(5);
   5824 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5825 					    sgdig);
   5826 				}
   5827 			}
   5828 			break;
   5829 		case IFM_1000_SX:
   5830 			if ((ifm->ifm_media & IFM_FDX) != 0) {
   5831 				BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   5832 				    BGE_MACMODE_HALF_DUPLEX);
   5833 			} else {
   5834 				BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
   5835 				    BGE_MACMODE_HALF_DUPLEX);
   5836 			}
   5837 			DELAY(40);
   5838 			break;
   5839 		default:
   5840 			return EINVAL;
   5841 		}
   5842 		/* XXX 802.3x flow control for 1000BASE-SX */
   5843 		return 0;
   5844 	}
   5845 
   5846 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
   5847 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
   5848 		uint32_t reg;
   5849 
   5850 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5851 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
   5852 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
   5853 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5854 		}
   5855 	}
   5856 
   5857 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5858 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5859 		return 0;
   5860 
   5861 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5862 		uint32_t reg;
   5863 
   5864 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
   5865 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
   5866 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
   5867 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
   5868 			delay(40);
   5869 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
   5870 		}
   5871 	}
   5872 
   5873 	/*
   5874 	 * Force an interrupt so that we will call bge_link_upd
   5875 	 * if needed and clear any pending link state attention.
   5876 	 * Without this we are not getting any further interrupts
   5877 	 * for link state changes and thus will not UP the link and
   5878 	 * not be able to send in bge_start. The only way to get
   5879 	 * things working was to receive a packet and get a RX intr.
   5880 	 */
   5881 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5882 	    sc->bge_flags & BGEF_IS_5788)
   5883 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5884 	else
   5885 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5886 
   5887 	return rc;
   5888 }
   5889 
   5890 /*
   5891  * Report current media status.
   5892  */
   5893 static void
   5894 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5895 {
   5896 	struct bge_softc * const sc = ifp->if_softc;
   5897 	struct mii_data * const mii = &sc->bge_mii;
   5898 
   5899 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5900 
   5901 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5902 		ifmr->ifm_status = IFM_AVALID;
   5903 		ifmr->ifm_active = IFM_ETHER;
   5904 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5905 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5906 			ifmr->ifm_status |= IFM_ACTIVE;
   5907 		ifmr->ifm_active |= IFM_1000_SX;
   5908 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5909 			ifmr->ifm_active |= IFM_HDX;
   5910 		else
   5911 			ifmr->ifm_active |= IFM_FDX;
   5912 		return;
   5913 	}
   5914 
   5915 	mii_pollstat(mii);
   5916 	ifmr->ifm_status = mii->mii_media_status;
   5917 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5918 	    sc->bge_flowflags;
   5919 }
   5920 
   5921 static int
   5922 bge_ifflags_cb(struct ethercom *ec)
   5923 {
   5924 	struct ifnet * const ifp = &ec->ec_if;
   5925 	struct bge_softc * const sc = ifp->if_softc;
   5926 	int ret = 0;
   5927 
   5928 	KASSERT(IFNET_LOCKED(ifp));
   5929 	mutex_enter(sc->sc_mcast_lock);
   5930 
   5931 	u_short change = ifp->if_flags ^ sc->bge_if_flags;
   5932 
   5933 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
   5934 		ret = ENETRESET;
   5935 	} else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
   5936 		if ((ifp->if_flags & IFF_PROMISC) == 0)
   5937 			BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5938 		else
   5939 			BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5940 
   5941 		bge_setmulti(sc);
   5942 	}
   5943 
   5944 	sc->bge_if_flags = ifp->if_flags;
   5945 	mutex_exit(sc->sc_mcast_lock);
   5946 
   5947 	return ret;
   5948 }
   5949 
   5950 static int
   5951 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5952 {
   5953 	struct bge_softc * const sc = ifp->if_softc;
   5954 	struct ifreq * const ifr = (struct ifreq *) data;
   5955 	int error = 0;
   5956 
   5957 	switch (command) {
   5958 	case SIOCADDMULTI:
   5959 	case SIOCDELMULTI:
   5960 		break;
   5961 	default:
   5962 		KASSERT(IFNET_LOCKED(ifp));
   5963 	}
   5964 
   5965 	const int s = splnet();
   5966 
   5967 	switch (command) {
   5968 	case SIOCSIFMEDIA:
   5969 		mutex_enter(sc->sc_intr_lock);
   5970 		/* XXX Flow control is not supported for 1000BASE-SX */
   5971 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5972 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5973 			sc->bge_flowflags = 0;
   5974 		}
   5975 
   5976 		/* Flow control requires full-duplex mode. */
   5977 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5978 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5979 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5980 		}
   5981 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5982 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5983 				/* We can do both TXPAUSE and RXPAUSE. */
   5984 				ifr->ifr_media |=
   5985 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5986 			}
   5987 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5988 		}
   5989 		mutex_exit(sc->sc_intr_lock);
   5990 
   5991 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5992 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   5993 			    command);
   5994 		} else {
   5995 			struct mii_data * const mii = &sc->bge_mii;
   5996 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   5997 			    command);
   5998 		}
   5999 		break;
   6000 	default:
   6001 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   6002 			break;
   6003 
   6004 		error = 0;
   6005 
   6006 		if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
   6007 			mutex_enter(sc->sc_mcast_lock);
   6008 			if (sc->bge_if_flags & IFF_RUNNING) {
   6009 				bge_setmulti(sc);
   6010 			}
   6011 			mutex_exit(sc->sc_mcast_lock);
   6012 		}
   6013 		break;
   6014 	}
   6015 
   6016 	splx(s);
   6017 
   6018 	return error;
   6019 }
   6020 
   6021 static bool
   6022 bge_watchdog_check(struct bge_softc * const sc)
   6023 {
   6024 
   6025 	KASSERT(mutex_owned(sc->sc_intr_lock));
   6026 
   6027 	if (!sc->bge_tx_sending)
   6028 		return true;
   6029 
   6030 	if (time_uptime - sc->bge_tx_lastsent <= bge_watchdog_timeout)
   6031 		return true;
   6032 
   6033 	/* If pause frames are active then don't reset the hardware. */
   6034 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
   6035 		const uint32_t status = CSR_READ_4(sc, BGE_RX_STS);
   6036 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
   6037 			/*
   6038 			 * If link partner has us in XOFF state then wait for
   6039 			 * the condition to clear.
   6040 			 */
   6041 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   6042 			sc->bge_tx_lastsent = time_uptime;
   6043 			return true;
   6044 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
   6045 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
   6046 			/*
   6047 			 * If link partner has us in XOFF state then wait for
   6048 			 * the condition to clear.
   6049 			 */
   6050 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   6051 			sc->bge_tx_lastsent = time_uptime;
   6052 			return true;
   6053 		}
   6054 		/*
   6055 		 * Any other condition is unexpected and the controller
   6056 		 * should be reset.
   6057 		 */
   6058 	}
   6059 
   6060 	return false;
   6061 }
   6062 
   6063 static bool
   6064 bge_watchdog_tick(struct ifnet *ifp)
   6065 {
   6066 	struct bge_softc * const sc = ifp->if_softc;
   6067 
   6068 	KASSERT(mutex_owned(sc->sc_intr_lock));
   6069 
   6070 	if (!sc->sc_trigger_reset && bge_watchdog_check(sc))
   6071 		return true;
   6072 
   6073 	if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0)
   6074 		workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
   6075 
   6076 	return false;
   6077 }
   6078 
   6079 /*
   6080  * Perform an interface watchdog reset.
   6081  */
   6082 static void
   6083 bge_handle_reset_work(struct work *work, void *arg)
   6084 {
   6085 	struct bge_softc * const sc = arg;
   6086 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   6087 
   6088 	printf("%s: watchdog timeout -- resetting\n", ifp->if_xname);
   6089 
   6090 	/* Don't want ioctl operations to happen */
   6091 	IFNET_LOCK(ifp);
   6092 
   6093 	/* reset the interface. */
   6094 	bge_init(ifp);
   6095 
   6096 	IFNET_UNLOCK(ifp);
   6097 
   6098 	/*
   6099 	 * There are still some upper layer processing which call
   6100 	 * ifp->if_start(). e.g. ALTQ or one CPU system
   6101 	 */
   6102 	/* Try to get more packets going. */
   6103 	ifp->if_start(ifp);
   6104 
   6105 	atomic_store_relaxed(&sc->sc_reset_pending, 0);
   6106 }
   6107 
   6108 static void
   6109 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   6110 {
   6111 	int i;
   6112 
   6113 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   6114 
   6115 	for (i = 0; i < 1000; i++) {
   6116 		delay(100);
   6117 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   6118 			return;
   6119 	}
   6120 
   6121 	/*
   6122 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   6123 	 * on some environment (and once after boot?)
   6124 	 */
   6125 	if (reg != BGE_SRS_MODE)
   6126 		aprint_error_dev(sc->bge_dev,
   6127 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   6128 		    (u_long)reg, bit);
   6129 }
   6130 
   6131 /*
   6132  * Stop the adapter and free any mbufs allocated to the
   6133  * RX and TX lists.
   6134  */
   6135 static void
   6136 bge_stop(struct ifnet *ifp, int disable)
   6137 {
   6138 	struct bge_softc * const sc = ifp->if_softc;
   6139 
   6140 	ASSERT_SLEEPABLE();
   6141 	KASSERT(IFNET_LOCKED(ifp));
   6142 
   6143 	mutex_enter(sc->sc_intr_lock);
   6144 	sc->bge_txrx_stopping = true;
   6145 	mutex_exit(sc->sc_intr_lock);
   6146 
   6147 	callout_halt(&sc->bge_timeout, NULL);
   6148 
   6149 	/* Disable host interrupts. */
   6150 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   6151 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   6152 
   6153 	/*
   6154 	 * Tell firmware we're shutting down.
   6155 	 */
   6156 	bge_stop_fw(sc);
   6157 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   6158 
   6159 	/*
   6160 	 * Disable all of the receiver blocks.
   6161 	 */
   6162 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   6163 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   6164 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   6165 	if (BGE_IS_5700_FAMILY(sc))
   6166 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   6167 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   6168 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   6169 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   6170 
   6171 	/*
   6172 	 * Disable all of the transmit blocks.
   6173 	 */
   6174 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   6175 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   6176 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   6177 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   6178 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   6179 	if (BGE_IS_5700_FAMILY(sc))
   6180 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   6181 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   6182 
   6183 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   6184 	delay(40);
   6185 
   6186 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   6187 
   6188 	/*
   6189 	 * Shut down all of the memory managers and related
   6190 	 * state machines.
   6191 	 */
   6192 	/* 5718 step 5a,5b */
   6193 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   6194 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   6195 	if (BGE_IS_5700_FAMILY(sc))
   6196 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   6197 
   6198 	/* 5718 step 5c,5d */
   6199 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   6200 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   6201 
   6202 	if (BGE_IS_5700_FAMILY(sc)) {
   6203 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   6204 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   6205 	}
   6206 
   6207 	bge_reset(sc);
   6208 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   6209 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   6210 
   6211 	/*
   6212 	 * Keep the ASF firmware running if up.
   6213 	 */
   6214 	if (sc->bge_asf_mode & ASF_STACKUP)
   6215 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6216 	else
   6217 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6218 
   6219 	/* Free the RX lists. */
   6220 	bge_free_rx_ring_std(sc);
   6221 
   6222 	/* Free jumbo RX list. */
   6223 	if (BGE_IS_JUMBO_CAPABLE(sc))
   6224 		bge_free_rx_ring_jumbo(sc);
   6225 
   6226 	/* Free TX buffers. */
   6227 	bge_free_tx_ring(sc, disable);
   6228 
   6229 	/*
   6230 	 * Isolate/power down the PHY.
   6231 	 */
   6232 	if (!(sc->bge_flags & BGEF_FIBER_TBI)) {
   6233 		mutex_enter(sc->sc_intr_lock);
   6234 		mii_down(&sc->bge_mii);
   6235 		mutex_exit(sc->sc_intr_lock);
   6236 	}
   6237 
   6238 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   6239 
   6240 	/* Clear MAC's link state (PHY may still have link UP). */
   6241 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6242 
   6243 	ifp->if_flags &= ~IFF_RUNNING;
   6244 
   6245 	mutex_enter(sc->sc_mcast_lock);
   6246 	sc->bge_if_flags = ifp->if_flags;
   6247 	mutex_exit(sc->sc_mcast_lock);
   6248 }
   6249 
   6250 static void
   6251 bge_link_upd(struct bge_softc *sc)
   6252 {
   6253 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   6254 	struct mii_data * const mii = &sc->bge_mii;
   6255 	uint32_t status;
   6256 	uint16_t phyval;
   6257 	int link;
   6258 
   6259 	KASSERT(sc->sc_intr_lock);
   6260 
   6261 	/* Clear 'pending link event' flag */
   6262 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   6263 
   6264 	/*
   6265 	 * Process link state changes.
   6266 	 * Grrr. The link status word in the status block does
   6267 	 * not work correctly on the BCM5700 rev AX and BX chips,
   6268 	 * according to all available information. Hence, we have
   6269 	 * to enable MII interrupts in order to properly obtain
   6270 	 * async link changes. Unfortunately, this also means that
   6271 	 * we have to read the MAC status register to detect link
   6272 	 * changes, thereby adding an additional register access to
   6273 	 * the interrupt handler.
   6274 	 */
   6275 
   6276 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   6277 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6278 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   6279 			mii_pollstat(mii);
   6280 
   6281 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6282 			    mii->mii_media_status & IFM_ACTIVE &&
   6283 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6284 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6285 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6286 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6287 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6288 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6289 
   6290 			/* Clear the interrupt */
   6291 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   6292 			    BGE_EVTENB_MI_INTERRUPT);
   6293 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   6294 			    BRGPHY_MII_ISR, &phyval);
   6295 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   6296 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   6297 		}
   6298 		return;
   6299 	}
   6300 
   6301 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   6302 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6303 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   6304 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6305 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6306 				if (BGE_ASICREV(sc->bge_chipid)
   6307 				    == BGE_ASICREV_BCM5704) {
   6308 					BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   6309 					    BGE_MACMODE_TBI_SEND_CFGS);
   6310 					DELAY(40);
   6311 				}
   6312 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   6313 				if_link_state_change(ifp, LINK_STATE_UP);
   6314 			}
   6315 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6316 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6317 			if_link_state_change(ifp, LINK_STATE_DOWN);
   6318 		}
   6319 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   6320 		/*
   6321 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   6322 		 * bit in status word always set. Workaround this bug by
   6323 		 * reading PHY link status directly.
   6324 		 */
   6325 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   6326 		    BGE_STS_LINK : 0;
   6327 
   6328 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   6329 			mii_pollstat(mii);
   6330 
   6331 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6332 			    mii->mii_media_status & IFM_ACTIVE &&
   6333 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6334 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6335 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6336 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6337 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6338 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6339 		}
   6340 	} else {
   6341 		/*
   6342 		 * For controllers that call mii_tick, we have to poll
   6343 		 * link status.
   6344 		 */
   6345 		mii_pollstat(mii);
   6346 	}
   6347 
   6348 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   6349 		uint32_t reg, scale;
   6350 
   6351 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
   6352 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
   6353 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
   6354 			scale = 65;
   6355 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
   6356 			scale = 6;
   6357 		else
   6358 			scale = 12;
   6359 
   6360 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
   6361 		    ~BGE_MISCCFG_TIMER_PRESCALER;
   6362 		reg |= scale << 1;
   6363 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
   6364 	}
   6365 	/* Clear the attention */
   6366 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   6367 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   6368 	    BGE_MACSTAT_LINK_CHANGED);
   6369 }
   6370 
   6371 static int
   6372 bge_sysctl_verify(SYSCTLFN_ARGS)
   6373 {
   6374 	int error, t;
   6375 	struct sysctlnode node;
   6376 
   6377 	node = *rnode;
   6378 	t = *(int*)rnode->sysctl_data;
   6379 	node.sysctl_data = &t;
   6380 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   6381 	if (error || newp == NULL)
   6382 		return error;
   6383 
   6384 #if 0
   6385 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   6386 	    node.sysctl_num, rnode->sysctl_num));
   6387 #endif
   6388 
   6389 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   6390 		if (t < 0 || t >= NBGE_RX_THRESH)
   6391 			return EINVAL;
   6392 		bge_update_all_threshes(t);
   6393 	} else
   6394 		return EINVAL;
   6395 
   6396 	*(int*)rnode->sysctl_data = t;
   6397 
   6398 	return 0;
   6399 }
   6400 
   6401 /*
   6402  * Set up sysctl(3) MIB, hw.bge.*.
   6403  */
   6404 static void
   6405 bge_sysctl_init(struct bge_softc *sc)
   6406 {
   6407 	int rc, bge_root_num;
   6408 	const struct sysctlnode *node;
   6409 
   6410 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6411 	    0, CTLTYPE_NODE, "bge",
   6412 	    SYSCTL_DESCR("BGE interface controls"),
   6413 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   6414 		goto out;
   6415 	}
   6416 
   6417 	bge_root_num = node->sysctl_num;
   6418 
   6419 	/* BGE Rx interrupt mitigation level */
   6420 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6421 	    CTLFLAG_READWRITE,
   6422 	    CTLTYPE_INT, "rx_lvl",
   6423 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   6424 	    bge_sysctl_verify, 0,
   6425 	    &bge_rx_thresh_lvl,
   6426 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   6427 	    CTL_EOL)) != 0) {
   6428 		goto out;
   6429 	}
   6430 
   6431 	bge_rxthresh_nodenum = node->sysctl_num;
   6432 
   6433 #ifdef BGE_DEBUG
   6434 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6435 	    CTLFLAG_READWRITE,
   6436 	    CTLTYPE_BOOL, "trigger_reset",
   6437 	    SYSCTL_DESCR("Trigger an interface reset"),
   6438 	    NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE,
   6439 	    CTL_EOL)) != 0) {
   6440 		goto out;
   6441 	}
   6442 #endif
   6443 	return;
   6444 
   6445 out:
   6446 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   6447 }
   6448 
   6449 #ifdef BGE_DEBUG
   6450 void
   6451 bge_debug_info(struct bge_softc *sc)
   6452 {
   6453 
   6454 	printf("Hardware Flags:\n");
   6455 	if (BGE_IS_57765_PLUS(sc))
   6456 		printf(" - 57765 Plus\n");
   6457 	if (BGE_IS_5717_PLUS(sc))
   6458 		printf(" - 5717 Plus\n");
   6459 	if (BGE_IS_5755_PLUS(sc))
   6460 		printf(" - 5755 Plus\n");
   6461 	if (BGE_IS_575X_PLUS(sc))
   6462 		printf(" - 575X Plus\n");
   6463 	if (BGE_IS_5705_PLUS(sc))
   6464 		printf(" - 5705 Plus\n");
   6465 	if (BGE_IS_5714_FAMILY(sc))
   6466 		printf(" - 5714 Family\n");
   6467 	if (BGE_IS_5700_FAMILY(sc))
   6468 		printf(" - 5700 Family\n");
   6469 	if (sc->bge_flags & BGEF_IS_5788)
   6470 		printf(" - 5788\n");
   6471 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
   6472 		printf(" - Supports Jumbo Frames\n");
   6473 	if (sc->bge_flags & BGEF_NO_EEPROM)
   6474 		printf(" - No EEPROM\n");
   6475 	if (sc->bge_flags & BGEF_PCIX)
   6476 		printf(" - PCI-X Bus\n");
   6477 	if (sc->bge_flags & BGEF_PCIE)
   6478 		printf(" - PCI Express Bus\n");
   6479 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
   6480 		printf(" - RX Alignment Bug\n");
   6481 	if (sc->bge_flags & BGEF_APE)
   6482 		printf(" - APE\n");
   6483 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
   6484 		printf(" - CPMU\n");
   6485 	if (sc->bge_flags & BGEF_TSO)
   6486 		printf(" - TSO\n");
   6487 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   6488 		printf(" - TAGGED_STATUS\n");
   6489 
   6490 	/* PHY related */
   6491 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
   6492 		printf(" - No 3 LEDs\n");
   6493 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
   6494 		printf(" - CRC bug\n");
   6495 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
   6496 		printf(" - ADC bug\n");
   6497 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
   6498 		printf(" - 5704 A0 bug\n");
   6499 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
   6500 		printf(" - jitter bug\n");
   6501 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
   6502 		printf(" - BER bug\n");
   6503 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
   6504 		printf(" - adjust trim\n");
   6505 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
   6506 		printf(" - no wirespeed\n");
   6507 
   6508 	/* ASF related */
   6509 	if (sc->bge_asf_mode & ASF_ENABLE)
   6510 		printf(" - ASF enable\n");
   6511 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
   6512 		printf(" - ASF new handshake\n");
   6513 	if (sc->bge_asf_mode & ASF_STACKUP)
   6514 		printf(" - ASF stackup\n");
   6515 }
   6516 #endif /* BGE_DEBUG */
   6517 
   6518 static int
   6519 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   6520 {
   6521 	prop_dictionary_t dict;
   6522 	prop_data_t ea;
   6523 
   6524 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
   6525 		return 1;
   6526 
   6527 	dict = device_properties(sc->bge_dev);
   6528 	ea = prop_dictionary_get(dict, "mac-address");
   6529 	if (ea != NULL) {
   6530 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   6531 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   6532 		memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
   6533 		return 0;
   6534 	}
   6535 
   6536 	return 1;
   6537 }
   6538 
   6539 static int
   6540 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   6541 {
   6542 	uint32_t mac_addr;
   6543 
   6544 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   6545 	if ((mac_addr >> 16) == 0x484b) {
   6546 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   6547 		ether_addr[1] = (uint8_t)mac_addr;
   6548 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   6549 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   6550 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   6551 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   6552 		ether_addr[5] = (uint8_t)mac_addr;
   6553 		return 0;
   6554 	}
   6555 	return 1;
   6556 }
   6557 
   6558 static int
   6559 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   6560 {
   6561 	int mac_offset = BGE_EE_MAC_OFFSET;
   6562 
   6563 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6564 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   6565 
   6566 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   6567 	    ETHER_ADDR_LEN));
   6568 }
   6569 
   6570 static int
   6571 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   6572 {
   6573 
   6574 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6575 		return 1;
   6576 
   6577 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   6578 	   ETHER_ADDR_LEN));
   6579 }
   6580 
   6581 static int
   6582 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6583 {
   6584 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6585 		/* NOTE: Order is critical */
   6586 		bge_get_eaddr_fw,
   6587 		bge_get_eaddr_mem,
   6588 		bge_get_eaddr_nvram,
   6589 		bge_get_eaddr_eeprom,
   6590 		NULL
   6591 	};
   6592 	const bge_eaddr_fcn_t *func;
   6593 
   6594 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6595 		if ((*func)(sc, eaddr) == 0)
   6596 			break;
   6597 	}
   6598 	return *func == NULL ? ENXIO : 0;
   6599 }
   6600