if_bge.c revision 1.396 1 /* $NetBSD: if_bge.c,v 1.396 2024/09/14 07:01:33 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.396 2024/09/14 07:01:33 skrll Exp $");
83
84 #include <sys/param.h>
85 #include <sys/types.h>
86
87 #include <sys/callout.h>
88 #include <sys/device.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mbuf.h>
92 #include <sys/rndsource.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/sysctl.h>
96 #include <sys/systm.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 #include <net/bpf.h>
103
104 /* Headers for TCP Segmentation Offload (TSO) */
105 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
106 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
107 #include <netinet/ip.h> /* for struct ip */
108 #include <netinet/tcp.h> /* for struct tcphdr */
109
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/miidevs.h>
117 #include <dev/mii/brgphyreg.h>
118
119 #include <dev/pci/if_bgereg.h>
120 #include <dev/pci/if_bgevar.h>
121
122 #include <prop/proplib.h>
123
124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125
126
127 /*
128 * Tunable thresholds for rx-side bge interrupt mitigation.
129 */
130
131 /*
132 * The pairs of values below were obtained from empirical measurement
133 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
134 * interrupt for every N packets received, where N is, approximately,
135 * the second value (rx_max_bds) in each pair. The values are chosen
136 * such that moving from one pair to the succeeding pair was observed
137 * to roughly halve interrupt rate under sustained input packet load.
138 * The values were empirically chosen to avoid overflowing internal
139 * limits on the bcm5700: increasing rx_ticks much beyond 600
140 * results in internal wrapping and higher interrupt rates.
141 * The limit of 46 frames was chosen to match NFS workloads.
142 *
143 * These values also work well on bcm5701, bcm5704C, and (less
144 * tested) bcm5703. On other chipsets, (including the Altima chip
145 * family), the larger values may overflow internal chip limits,
146 * leading to increasing interrupt rates rather than lower interrupt
147 * rates.
148 *
149 * Applications using heavy interrupt mitigation (interrupting every
150 * 32 or 46 frames) in both directions may need to increase the TCP
151 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
152 * full link bandwidth, due to ACKs and window updates lingering
153 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
154 */
155 static const struct bge_load_rx_thresh {
156 int rx_ticks;
157 int rx_max_bds; }
158 bge_rx_threshes[] = {
159 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
160 { 32, 2 },
161 { 50, 4 },
162 { 100, 8 },
163 { 192, 16 },
164 { 416, 32 },
165 { 598, 46 }
166 };
167 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
168
169 /* XXX patchable; should be sysctl'able */
170 static int bge_auto_thresh = 1;
171 static int bge_rx_thresh_lvl;
172
173 static int bge_rxthresh_nodenum;
174
175 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
176
177 static uint32_t bge_chipid(const struct pci_attach_args *);
178 static int bge_can_use_msi(struct bge_softc *);
179 static int bge_probe(device_t, cfdata_t, void *);
180 static void bge_attach(device_t, device_t, void *);
181 static int bge_detach(device_t, int);
182 static void bge_release_resources(struct bge_softc *);
183
184 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
185 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
186 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
187 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
188 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
189
190 static void bge_txeof(struct bge_softc *);
191 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
192 static void bge_rxeof(struct bge_softc *);
193
194 static void bge_asf_driver_up (struct bge_softc *);
195 static void bge_tick(void *);
196 static void bge_stats_update(struct bge_softc *);
197 static void bge_stats_update_regs(struct bge_softc *);
198 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
199
200 static int bge_intr(void *);
201 static void bge_start(struct ifnet *);
202 static void bge_start_locked(struct ifnet *);
203 static int bge_ifflags_cb(struct ethercom *);
204 static int bge_ioctl(struct ifnet *, u_long, void *);
205 static int bge_init(struct ifnet *);
206 static void bge_stop(struct ifnet *, int);
207 static bool bge_watchdog_tick(struct ifnet *);
208 static int bge_ifmedia_upd(struct ifnet *);
209 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
210 static void bge_handle_reset_work(struct work *, void *);
211
212 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
213 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
214
215 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
216 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
217 static void bge_setmulti(struct bge_softc *);
218
219 static void bge_handle_events(struct bge_softc *);
220 static int bge_alloc_jumbo_mem(struct bge_softc *);
221 static void bge_free_jumbo_mem(struct bge_softc *);
222 static void *bge_jalloc(struct bge_softc *);
223 static void bge_jfree(struct mbuf *, void *, size_t, void *);
224 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
225 static int bge_init_rx_ring_jumbo(struct bge_softc *);
226 static void bge_free_rx_ring_jumbo(struct bge_softc *);
227
228 static int bge_newbuf_std(struct bge_softc *, int);
229 static int bge_init_rx_ring_std(struct bge_softc *);
230 static void bge_fill_rx_ring_std(struct bge_softc *);
231 static void bge_free_rx_ring_std(struct bge_softc *m);
232
233 static void bge_free_tx_ring(struct bge_softc *m, bool);
234 static int bge_init_tx_ring(struct bge_softc *);
235
236 static int bge_chipinit(struct bge_softc *);
237 static int bge_blockinit(struct bge_softc *);
238 static int bge_phy_addr(struct bge_softc *);
239 static uint32_t bge_readmem_ind(struct bge_softc *, int);
240 static void bge_writemem_ind(struct bge_softc *, int, int);
241 static void bge_writembx(struct bge_softc *, int, int);
242 static void bge_writembx_flush(struct bge_softc *, int, int);
243 static void bge_writemem_direct(struct bge_softc *, int, int);
244 static void bge_writereg_ind(struct bge_softc *, int, int);
245 static void bge_set_max_readrq(struct bge_softc *);
246
247 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
248 static int bge_miibus_writereg(device_t, int, int, uint16_t);
249 static void bge_miibus_statchg(struct ifnet *);
250
251 #define BGE_RESET_SHUTDOWN 0
252 #define BGE_RESET_START 1
253 #define BGE_RESET_SUSPEND 2
254 static void bge_sig_post_reset(struct bge_softc *, int);
255 static void bge_sig_legacy(struct bge_softc *, int);
256 static void bge_sig_pre_reset(struct bge_softc *, int);
257 static void bge_wait_for_event_ack(struct bge_softc *);
258 static void bge_stop_fw(struct bge_softc *);
259 static int bge_reset(struct bge_softc *);
260 static void bge_link_upd(struct bge_softc *);
261 static void bge_sysctl_init(struct bge_softc *);
262 static int bge_sysctl_verify(SYSCTLFN_PROTO);
263
264 static void bge_ape_lock_init(struct bge_softc *);
265 static void bge_ape_read_fw_ver(struct bge_softc *);
266 static int bge_ape_lock(struct bge_softc *, int);
267 static void bge_ape_unlock(struct bge_softc *, int);
268 static void bge_ape_send_event(struct bge_softc *, uint32_t);
269 static void bge_ape_driver_state_change(struct bge_softc *, int);
270
271 #ifdef BGE_DEBUG
272 #define DPRINTF(x) if (bgedebug) printf x
273 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
274 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
275 int bgedebug = 0;
276 int bge_tso_debug = 0;
277 void bge_debug_info(struct bge_softc *);
278 #else
279 #define DPRINTF(x)
280 #define DPRINTFN(n, x)
281 #define BGE_TSO_PRINTF(x)
282 #endif
283
284 #ifdef BGE_EVENT_COUNTERS
285 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
286 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
287 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
288 #else
289 #define BGE_EVCNT_INCR(ev) /* nothing */
290 #define BGE_EVCNT_ADD(ev, val) /* nothing */
291 #define BGE_EVCNT_UPD(ev, val) /* nothing */
292 #endif
293
294 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
295 /*
296 * The BCM5700 documentation seems to indicate that the hardware still has the
297 * Alteon vendor ID burned into it, though it should always be overridden by
298 * the value in the EEPROM. We'll check for it anyway.
299 */
300 static const struct bge_product {
301 pci_vendor_id_t bp_vendor;
302 pci_product_id_t bp_product;
303 const char *bp_name;
304 } bge_products[] = {
305 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
306 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
307 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
308 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
309 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
310 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
311 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
312 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
313 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
314 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
315 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
316 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
317 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
318 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
319 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
320 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
321 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
322 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
323 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
324 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
325 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
326 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
327 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
328 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
329 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
330 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
331 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
332 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
333 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
334 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
335 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
336 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
337 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
338 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
339 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
340 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
341 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
342 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
343 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
344 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
345 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
346 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
347 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
348 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
349 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
350 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
351 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
352 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
353 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
354 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
355 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
356 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
357 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
358 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
359 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
360 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
361 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
362 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
363 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
364 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
365 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
366 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
367 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
368 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
369 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
370 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
371 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
372 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
373 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
374 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
375 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
376 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
377 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
378 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
379 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
380 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
381 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
382 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
383 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
384 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
385 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
386 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
387 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
388 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
389 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
390 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
391 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
392 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
393 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
394 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
395 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
396 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
397 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
398 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
399 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
400 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
401 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
402 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
403 { 0, 0, NULL },
404 };
405
406 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
407 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
408 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
409 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
410 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
411 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
412 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
413 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
414 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
415
416 static const struct bge_revision {
417 uint32_t br_chipid;
418 const char *br_name;
419 } bge_revisions[] = {
420 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
421 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
422 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
423 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
424 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
425 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
426 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
427 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
428 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
429 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
430 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
431 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
432 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
433 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
434 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
435 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
436 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
437 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
438 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
439 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
440 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
441 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
442 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
443 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
444 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
445 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
446 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
447 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
448 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
449 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
450 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
451 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
452 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
453 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
454 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
455 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
456 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
457 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
458 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
459 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
460 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
461 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
462 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
463 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
464 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
465 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
466 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
467 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
468 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
469 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
470 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
471 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
472 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
473 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
474 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
475 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
476 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
477 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
478 /* 5754 and 5787 share the same ASIC ID */
479 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
480 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
481 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
482 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
483 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
484 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
485 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
486 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
487 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
488 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
489 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
490
491 { 0, NULL }
492 };
493
494 /*
495 * Some defaults for major revisions, so that newer steppings
496 * that we don't know about have a shot at working.
497 */
498 static const struct bge_revision bge_majorrevs[] = {
499 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
500 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
501 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
502 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
503 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
504 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
505 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
506 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
507 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
508 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
509 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
510 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
511 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
512 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
513 /* 5754 and 5787 share the same ASIC ID */
514 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
515 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
516 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
517 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
518 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
519 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
520 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
521 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
522 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
523
524 { 0, NULL }
525 };
526
527 static int bge_allow_asf = 1;
528
529 #ifndef BGE_WATCHDOG_TIMEOUT
530 #define BGE_WATCHDOG_TIMEOUT 5
531 #endif
532 static int bge_watchdog_timeout = BGE_WATCHDOG_TIMEOUT;
533
534
535 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
536 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
537
538 static uint32_t
539 bge_readmem_ind(struct bge_softc *sc, int off)
540 {
541 pcireg_t val;
542
543 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
544 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
545 return 0;
546
547 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
548 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
549 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
550 return val;
551 }
552
553 static void
554 bge_writemem_ind(struct bge_softc *sc, int off, int val)
555 {
556
557 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
558 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
559 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
560 }
561
562 /*
563 * PCI Express only
564 */
565 static void
566 bge_set_max_readrq(struct bge_softc *sc)
567 {
568 pcireg_t val;
569
570 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
571 + PCIE_DCSR);
572 val &= ~PCIE_DCSR_MAX_READ_REQ;
573 switch (sc->bge_expmrq) {
574 case 2048:
575 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
576 break;
577 case 4096:
578 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
579 break;
580 default:
581 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
582 break;
583 }
584 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
585 + PCIE_DCSR, val);
586 }
587
588 #ifdef notdef
589 static uint32_t
590 bge_readreg_ind(struct bge_softc *sc, int off)
591 {
592 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
593 return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
594 }
595 #endif
596
597 static void
598 bge_writereg_ind(struct bge_softc *sc, int off, int val)
599 {
600 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
601 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
602 }
603
604 static void
605 bge_writemem_direct(struct bge_softc *sc, int off, int val)
606 {
607 CSR_WRITE_4(sc, off, val);
608 }
609
610 static void
611 bge_writembx(struct bge_softc *sc, int off, int val)
612 {
613 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
614 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
615
616 CSR_WRITE_4(sc, off, val);
617 }
618
619 static void
620 bge_writembx_flush(struct bge_softc *sc, int off, int val)
621 {
622 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
623 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
624
625 CSR_WRITE_4_FLUSH(sc, off, val);
626 }
627
628 /*
629 * Clear all stale locks and select the lock for this driver instance.
630 */
631 void
632 bge_ape_lock_init(struct bge_softc *sc)
633 {
634 struct pci_attach_args *pa = &(sc->bge_pa);
635 uint32_t bit, regbase;
636 int i;
637
638 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
639 regbase = BGE_APE_LOCK_GRANT;
640 else
641 regbase = BGE_APE_PER_LOCK_GRANT;
642
643 /* Clear any stale locks. */
644 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
645 switch (i) {
646 case BGE_APE_LOCK_PHY0:
647 case BGE_APE_LOCK_PHY1:
648 case BGE_APE_LOCK_PHY2:
649 case BGE_APE_LOCK_PHY3:
650 bit = BGE_APE_LOCK_GRANT_DRIVER0;
651 break;
652 default:
653 if (pa->pa_function == 0)
654 bit = BGE_APE_LOCK_GRANT_DRIVER0;
655 else
656 bit = (1 << pa->pa_function);
657 }
658 APE_WRITE_4(sc, regbase + 4 * i, bit);
659 }
660
661 /* Select the PHY lock based on the device's function number. */
662 switch (pa->pa_function) {
663 case 0:
664 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
665 break;
666 case 1:
667 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
668 break;
669 case 2:
670 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
671 break;
672 case 3:
673 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
674 break;
675 default:
676 printf("%s: PHY lock not supported on function\n",
677 device_xname(sc->bge_dev));
678 break;
679 }
680 }
681
682 /*
683 * Check for APE firmware, set flags, and print version info.
684 */
685 void
686 bge_ape_read_fw_ver(struct bge_softc *sc)
687 {
688 const char *fwtype;
689 uint32_t apedata, features;
690
691 /* Check for a valid APE signature in shared memory. */
692 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
693 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
694 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
695 return;
696 }
697
698 /* Check if APE firmware is running. */
699 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
700 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
701 printf("%s: APE signature found but FW status not ready! "
702 "0x%08x\n", device_xname(sc->bge_dev), apedata);
703 return;
704 }
705
706 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
707
708 /* Fetch the APE firmware type and version. */
709 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
710 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
711 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
712 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
713 fwtype = "NCSI";
714 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
715 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
716 fwtype = "DASH";
717 } else
718 fwtype = "UNKN";
719
720 /* Print the APE firmware version. */
721 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
722 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
723 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
724 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
725 (apedata & BGE_APE_FW_VERSION_BLDMSK));
726 }
727
728 int
729 bge_ape_lock(struct bge_softc *sc, int locknum)
730 {
731 struct pci_attach_args *pa = &(sc->bge_pa);
732 uint32_t bit, gnt, req, status;
733 int i, off;
734
735 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
736 return 0;
737
738 /* Lock request/grant registers have different bases. */
739 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
740 req = BGE_APE_LOCK_REQ;
741 gnt = BGE_APE_LOCK_GRANT;
742 } else {
743 req = BGE_APE_PER_LOCK_REQ;
744 gnt = BGE_APE_PER_LOCK_GRANT;
745 }
746
747 off = 4 * locknum;
748
749 switch (locknum) {
750 case BGE_APE_LOCK_GPIO:
751 /* Lock required when using GPIO. */
752 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
753 return 0;
754 if (pa->pa_function == 0)
755 bit = BGE_APE_LOCK_REQ_DRIVER0;
756 else
757 bit = (1 << pa->pa_function);
758 break;
759 case BGE_APE_LOCK_GRC:
760 /* Lock required to reset the device. */
761 if (pa->pa_function == 0)
762 bit = BGE_APE_LOCK_REQ_DRIVER0;
763 else
764 bit = (1 << pa->pa_function);
765 break;
766 case BGE_APE_LOCK_MEM:
767 /* Lock required when accessing certain APE memory. */
768 if (pa->pa_function == 0)
769 bit = BGE_APE_LOCK_REQ_DRIVER0;
770 else
771 bit = (1 << pa->pa_function);
772 break;
773 case BGE_APE_LOCK_PHY0:
774 case BGE_APE_LOCK_PHY1:
775 case BGE_APE_LOCK_PHY2:
776 case BGE_APE_LOCK_PHY3:
777 /* Lock required when accessing PHYs. */
778 bit = BGE_APE_LOCK_REQ_DRIVER0;
779 break;
780 default:
781 return EINVAL;
782 }
783
784 /* Request a lock. */
785 APE_WRITE_4_FLUSH(sc, req + off, bit);
786
787 /* Wait up to 1 second to acquire lock. */
788 for (i = 0; i < 20000; i++) {
789 status = APE_READ_4(sc, gnt + off);
790 if (status == bit)
791 break;
792 DELAY(50);
793 }
794
795 /* Handle any errors. */
796 if (status != bit) {
797 printf("%s: APE lock %d request failed! "
798 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
799 device_xname(sc->bge_dev),
800 locknum, req + off, bit & 0xFFFF, gnt + off,
801 status & 0xFFFF);
802 /* Revoke the lock request. */
803 APE_WRITE_4(sc, gnt + off, bit);
804 return EBUSY;
805 }
806
807 return 0;
808 }
809
810 void
811 bge_ape_unlock(struct bge_softc *sc, int locknum)
812 {
813 struct pci_attach_args *pa = &(sc->bge_pa);
814 uint32_t bit, gnt;
815 int off;
816
817 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
818 return;
819
820 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
821 gnt = BGE_APE_LOCK_GRANT;
822 else
823 gnt = BGE_APE_PER_LOCK_GRANT;
824
825 off = 4 * locknum;
826
827 switch (locknum) {
828 case BGE_APE_LOCK_GPIO:
829 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
830 return;
831 if (pa->pa_function == 0)
832 bit = BGE_APE_LOCK_GRANT_DRIVER0;
833 else
834 bit = (1 << pa->pa_function);
835 break;
836 case BGE_APE_LOCK_GRC:
837 if (pa->pa_function == 0)
838 bit = BGE_APE_LOCK_GRANT_DRIVER0;
839 else
840 bit = (1 << pa->pa_function);
841 break;
842 case BGE_APE_LOCK_MEM:
843 if (pa->pa_function == 0)
844 bit = BGE_APE_LOCK_GRANT_DRIVER0;
845 else
846 bit = (1 << pa->pa_function);
847 break;
848 case BGE_APE_LOCK_PHY0:
849 case BGE_APE_LOCK_PHY1:
850 case BGE_APE_LOCK_PHY2:
851 case BGE_APE_LOCK_PHY3:
852 bit = BGE_APE_LOCK_GRANT_DRIVER0;
853 break;
854 default:
855 return;
856 }
857
858 /* Write and flush for consecutive bge_ape_lock() */
859 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
860 }
861
862 /*
863 * Send an event to the APE firmware.
864 */
865 void
866 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
867 {
868 uint32_t apedata;
869 int i;
870
871 /* NCSI does not support APE events. */
872 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
873 return;
874
875 /* Wait up to 1ms for APE to service previous event. */
876 for (i = 10; i > 0; i--) {
877 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
878 break;
879 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
880 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
881 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
882 BGE_APE_EVENT_STATUS_EVENT_PENDING);
883 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
884 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
885 break;
886 }
887 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
888 DELAY(100);
889 }
890 if (i == 0) {
891 printf("%s: APE event 0x%08x send timed out\n",
892 device_xname(sc->bge_dev), event);
893 }
894 }
895
896 void
897 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
898 {
899 uint32_t apedata, event;
900
901 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
902 return;
903
904 switch (kind) {
905 case BGE_RESET_START:
906 /* If this is the first load, clear the load counter. */
907 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
908 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
909 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
910 else {
911 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
912 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
913 }
914 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
915 BGE_APE_HOST_SEG_SIG_MAGIC);
916 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
917 BGE_APE_HOST_SEG_LEN_MAGIC);
918
919 /* Add some version info if bge(4) supports it. */
920 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
921 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
922 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
923 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
924 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
925 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
926 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
927 BGE_APE_HOST_DRVR_STATE_START);
928 event = BGE_APE_EVENT_STATUS_STATE_START;
929 break;
930 case BGE_RESET_SHUTDOWN:
931 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
932 BGE_APE_HOST_DRVR_STATE_UNLOAD);
933 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
934 break;
935 case BGE_RESET_SUSPEND:
936 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
937 break;
938 default:
939 return;
940 }
941
942 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
943 BGE_APE_EVENT_STATUS_STATE_CHNGE);
944 }
945
946 static uint8_t
947 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
948 {
949 uint32_t access, byte = 0;
950 int i;
951
952 /* Lock. */
953 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
954 for (i = 0; i < 8000; i++) {
955 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
956 break;
957 DELAY(20);
958 }
959 if (i == 8000)
960 return 1;
961
962 /* Enable access. */
963 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
964 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
965
966 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
967 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
968 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
969 DELAY(10);
970 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
971 DELAY(10);
972 break;
973 }
974 }
975
976 if (i == BGE_TIMEOUT * 10) {
977 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
978 return 1;
979 }
980
981 /* Get result. */
982 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
983
984 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
985
986 /* Disable access. */
987 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
988
989 /* Unlock. */
990 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
991
992 return 0;
993 }
994
995 /*
996 * Read a sequence of bytes from NVRAM.
997 */
998 static int
999 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1000 {
1001 int error = 0, i;
1002 uint8_t byte = 0;
1003
1004 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1005 return 1;
1006
1007 for (i = 0; i < cnt; i++) {
1008 error = bge_nvram_getbyte(sc, off + i, &byte);
1009 if (error)
1010 break;
1011 *(dest + i) = byte;
1012 }
1013
1014 return error ? 1 : 0;
1015 }
1016
1017 /*
1018 * Read a byte of data stored in the EEPROM at address 'addr.' The
1019 * BCM570x supports both the traditional bitbang interface and an
1020 * auto access interface for reading the EEPROM. We use the auto
1021 * access method.
1022 */
1023 static uint8_t
1024 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1025 {
1026 int i;
1027 uint32_t byte = 0;
1028
1029 /*
1030 * Enable use of auto EEPROM access so we can avoid
1031 * having to use the bitbang method.
1032 */
1033 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1034
1035 /* Reset the EEPROM, load the clock period. */
1036 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1037 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1038 DELAY(20);
1039
1040 /* Issue the read EEPROM command. */
1041 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1042
1043 /* Wait for completion */
1044 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1045 DELAY(10);
1046 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1047 break;
1048 }
1049
1050 if (i == BGE_TIMEOUT * 10) {
1051 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1052 return 1;
1053 }
1054
1055 /* Get result. */
1056 byte = CSR_READ_4(sc, BGE_EE_DATA);
1057
1058 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1059
1060 return 0;
1061 }
1062
1063 /*
1064 * Read a sequence of bytes from the EEPROM.
1065 */
1066 static int
1067 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1068 {
1069 int error = 0, i;
1070 uint8_t byte = 0;
1071 char *dest = destv;
1072
1073 for (i = 0; i < cnt; i++) {
1074 error = bge_eeprom_getbyte(sc, off + i, &byte);
1075 if (error)
1076 break;
1077 *(dest + i) = byte;
1078 }
1079
1080 return error ? 1 : 0;
1081 }
1082
1083 static int
1084 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1085 {
1086 struct bge_softc * const sc = device_private(dev);
1087 uint32_t data;
1088 uint32_t autopoll;
1089 int rv = 0;
1090 int i;
1091
1092 KASSERT(mutex_owned(sc->sc_intr_lock));
1093
1094 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1095 return -1;
1096
1097 /* Reading with autopolling on may trigger PCI errors */
1098 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1099 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1100 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1101 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1102 DELAY(80);
1103 }
1104
1105 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1106 BGE_MIPHY(phy) | BGE_MIREG(reg));
1107
1108 for (i = 0; i < BGE_TIMEOUT; i++) {
1109 delay(10);
1110 data = CSR_READ_4(sc, BGE_MI_COMM);
1111 if (!(data & BGE_MICOMM_BUSY)) {
1112 DELAY(5);
1113 data = CSR_READ_4(sc, BGE_MI_COMM);
1114 break;
1115 }
1116 }
1117
1118 if (i == BGE_TIMEOUT) {
1119 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1120 rv = ETIMEDOUT;
1121 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1122 /* XXX This error occurs on some devices while attaching. */
1123 aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1124 rv = EIO;
1125 } else
1126 *val = data & BGE_MICOMM_DATA;
1127
1128 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1129 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1130 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1131 DELAY(80);
1132 }
1133
1134 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1135
1136 return rv;
1137 }
1138
1139 static int
1140 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1141 {
1142 struct bge_softc * const sc = device_private(dev);
1143 uint32_t data, autopoll;
1144 int rv = 0;
1145 int i;
1146
1147 KASSERT(mutex_owned(sc->sc_intr_lock));
1148
1149 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1150 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1151 return 0;
1152
1153 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1154 return -1;
1155
1156 /* Reading with autopolling on may trigger PCI errors */
1157 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1158 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1159 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1160 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1161 DELAY(80);
1162 }
1163
1164 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1165 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1166
1167 for (i = 0; i < BGE_TIMEOUT; i++) {
1168 delay(10);
1169 data = CSR_READ_4(sc, BGE_MI_COMM);
1170 if (!(data & BGE_MICOMM_BUSY)) {
1171 delay(5);
1172 data = CSR_READ_4(sc, BGE_MI_COMM);
1173 break;
1174 }
1175 }
1176
1177 if (i == BGE_TIMEOUT) {
1178 aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1179 rv = ETIMEDOUT;
1180 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1181 aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1182 rv = EIO;
1183 }
1184
1185 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1186 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1187 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1188 delay(80);
1189 }
1190
1191 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1192
1193 return rv;
1194 }
1195
1196 static void
1197 bge_miibus_statchg(struct ifnet *ifp)
1198 {
1199 struct bge_softc * const sc = ifp->if_softc;
1200 struct mii_data *mii = &sc->bge_mii;
1201 uint32_t mac_mode, rx_mode, tx_mode;
1202
1203 KASSERT(mutex_owned(sc->sc_intr_lock));
1204
1205 /*
1206 * Get flow control negotiation result.
1207 */
1208 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1209 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1210 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1211
1212 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1213 mii->mii_media_status & IFM_ACTIVE &&
1214 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1215 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1216 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1217 (!(mii->mii_media_status & IFM_ACTIVE) ||
1218 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1219 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1220
1221 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1222 return;
1223
1224 /* Set the port mode (MII/GMII) to match the link speed. */
1225 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1226 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1227 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1228 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1229 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1230 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1231 mac_mode |= BGE_PORTMODE_GMII;
1232 else
1233 mac_mode |= BGE_PORTMODE_MII;
1234
1235 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1236 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1237 if ((mii->mii_media_active & IFM_FDX) != 0) {
1238 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1239 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1240 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1241 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1242 } else
1243 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1244
1245 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1246 DELAY(40);
1247 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1248 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1249 }
1250
1251 /*
1252 * Update rx threshold levels to values in a particular slot
1253 * of the interrupt-mitigation table bge_rx_threshes.
1254 */
1255 static void
1256 bge_set_thresh(struct ifnet *ifp, int lvl)
1257 {
1258 struct bge_softc * const sc = ifp->if_softc;
1259
1260 /*
1261 * For now, just save the new Rx-intr thresholds and record
1262 * that a threshold update is pending. Updating the hardware
1263 * registers here (even at splhigh()) is observed to
1264 * occasionally cause glitches where Rx-interrupts are not
1265 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1266 */
1267 mutex_enter(sc->sc_intr_lock);
1268 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1269 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1270 sc->bge_pending_rxintr_change = true;
1271 mutex_exit(sc->sc_intr_lock);
1272 }
1273
1274
1275 /*
1276 * Update Rx thresholds of all bge devices
1277 */
1278 static void
1279 bge_update_all_threshes(int lvl)
1280 {
1281 const char * const namebuf = "bge";
1282 const size_t namelen = strlen(namebuf);
1283 struct ifnet *ifp;
1284
1285 if (lvl < 0)
1286 lvl = 0;
1287 else if (lvl >= NBGE_RX_THRESH)
1288 lvl = NBGE_RX_THRESH - 1;
1289
1290 /*
1291 * Now search all the interfaces for this name/number
1292 */
1293 int s = pserialize_read_enter();
1294 IFNET_READER_FOREACH(ifp) {
1295 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1296 continue;
1297 /* We got a match: update if doing auto-threshold-tuning */
1298 if (bge_auto_thresh)
1299 bge_set_thresh(ifp, lvl);
1300 }
1301 pserialize_read_exit(s);
1302 }
1303
1304 /*
1305 * Handle events that have triggered interrupts.
1306 */
1307 static void
1308 bge_handle_events(struct bge_softc *sc)
1309 {
1310
1311 return;
1312 }
1313
1314 /*
1315 * Memory management for jumbo frames.
1316 */
1317
1318 static int
1319 bge_alloc_jumbo_mem(struct bge_softc *sc)
1320 {
1321 char *ptr, *kva;
1322 int i, rseg, state, error;
1323 struct bge_jpool_entry *entry;
1324
1325 state = error = 0;
1326
1327 /* Grab a big chunk o' storage. */
1328 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1329 &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_WAITOK)) {
1330 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1331 return ENOBUFS;
1332 }
1333
1334 state = 1;
1335 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg,
1336 rseg, BGE_JMEM, (void **)&kva, BUS_DMA_WAITOK)) {
1337 aprint_error_dev(sc->bge_dev,
1338 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1339 error = ENOBUFS;
1340 goto out;
1341 }
1342
1343 state = 2;
1344 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1345 BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_jumbo_map)) {
1346 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1347 error = ENOBUFS;
1348 goto out;
1349 }
1350
1351 state = 3;
1352 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1353 kva, BGE_JMEM, NULL, BUS_DMA_WAITOK)) {
1354 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1355 error = ENOBUFS;
1356 goto out;
1357 }
1358
1359 state = 4;
1360 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1361 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1362
1363 SLIST_INIT(&sc->bge_jfree_listhead);
1364 SLIST_INIT(&sc->bge_jinuse_listhead);
1365
1366 /*
1367 * Now divide it up into 9K pieces and save the addresses
1368 * in an array.
1369 */
1370 ptr = sc->bge_cdata.bge_jumbo_buf;
1371 for (i = 0; i < BGE_JSLOTS; i++) {
1372 sc->bge_cdata.bge_jslots[i] = ptr;
1373 ptr += BGE_JLEN;
1374 entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
1375 entry->slot = i;
1376 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1377 entry, jpool_entries);
1378 }
1379 out:
1380 if (error != 0) {
1381 switch (state) {
1382 case 4:
1383 bus_dmamap_unload(sc->bge_dmatag,
1384 sc->bge_cdata.bge_rx_jumbo_map);
1385 /* FALLTHROUGH */
1386 case 3:
1387 bus_dmamap_destroy(sc->bge_dmatag,
1388 sc->bge_cdata.bge_rx_jumbo_map);
1389 /* FALLTHROUGH */
1390 case 2:
1391 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1392 /* FALLTHROUGH */
1393 case 1:
1394 bus_dmamem_free(sc->bge_dmatag,
1395 &sc->bge_cdata.bge_rx_jumbo_seg, rseg);
1396 break;
1397 default:
1398 break;
1399 }
1400 }
1401
1402 return error;
1403 }
1404
1405 static void
1406 bge_free_jumbo_mem(struct bge_softc *sc)
1407 {
1408 struct bge_jpool_entry *entry, *tmp;
1409
1410 KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead));
1411
1412 SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) {
1413 kmem_free(entry, sizeof(*entry));
1414 }
1415
1416 bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
1417
1418 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
1419
1420 bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM);
1421
1422 bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1);
1423 }
1424
1425 /*
1426 * Allocate a jumbo buffer.
1427 */
1428 static void *
1429 bge_jalloc(struct bge_softc *sc)
1430 {
1431 struct bge_jpool_entry *entry;
1432
1433 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1434
1435 if (entry == NULL) {
1436 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1437 return NULL;
1438 }
1439
1440 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1441 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1442 return sc->bge_cdata.bge_jslots[entry->slot];
1443 }
1444
1445 /*
1446 * Release a jumbo buffer.
1447 */
1448 static void
1449 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1450 {
1451 struct bge_jpool_entry *entry;
1452 struct bge_softc * const sc = arg;
1453
1454 if (sc == NULL)
1455 panic("bge_jfree: can't find softc pointer!");
1456
1457 /* calculate the slot this buffer belongs to */
1458 int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1459
1460 if (i < 0 || i >= BGE_JSLOTS)
1461 panic("bge_jfree: asked to free buffer that we don't manage!");
1462
1463 mutex_enter(sc->sc_intr_lock);
1464 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1465 if (entry == NULL)
1466 panic("bge_jfree: buffer not in use!");
1467 entry->slot = i;
1468 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1469 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1470 mutex_exit(sc->sc_intr_lock);
1471
1472 if (__predict_true(m != NULL))
1473 pool_cache_put(mb_cache, m);
1474 }
1475
1476
1477 /*
1478 * Initialize a standard receive ring descriptor.
1479 */
1480 static int
1481 bge_newbuf_std(struct bge_softc *sc, int i)
1482 {
1483 const bus_dmamap_t dmamap = sc->bge_cdata.bge_rx_std_map[i];
1484 struct mbuf *m;
1485
1486 MGETHDR(m, M_DONTWAIT, MT_DATA);
1487 if (m == NULL)
1488 return ENOBUFS;
1489
1490 MCLGET(m, M_DONTWAIT);
1491 if (!(m->m_flags & M_EXT)) {
1492 m_freem(m);
1493 return ENOBUFS;
1494 }
1495 m->m_len = m->m_pkthdr.len = MCLBYTES;
1496
1497 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1498 m_adj(m, ETHER_ALIGN);
1499 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,
1500 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1501 m_freem(m);
1502 return ENOBUFS;
1503 }
1504 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1505 BUS_DMASYNC_PREREAD);
1506 sc->bge_cdata.bge_rx_std_chain[i] = m;
1507
1508 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1509 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1510 i * sizeof(struct bge_rx_bd),
1511 sizeof(struct bge_rx_bd),
1512 BUS_DMASYNC_POSTWRITE);
1513
1514 struct bge_rx_bd * const r = &sc->bge_rdata->bge_rx_std_ring[i];
1515 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1516 r->bge_flags = BGE_RXBDFLAG_END;
1517 r->bge_len = m->m_len;
1518 r->bge_idx = i;
1519
1520 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1521 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1522 i * sizeof(struct bge_rx_bd),
1523 sizeof(struct bge_rx_bd),
1524 BUS_DMASYNC_PREWRITE);
1525
1526 sc->bge_std_cnt++;
1527
1528 return 0;
1529 }
1530
1531 /*
1532 * Initialize a jumbo receive ring descriptor. This allocates
1533 * a jumbo buffer from the pool managed internally by the driver.
1534 */
1535 static int
1536 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1537 {
1538 struct mbuf *m_new = NULL;
1539 struct bge_rx_bd *r;
1540 void *buf = NULL;
1541
1542 if (m == NULL) {
1543
1544 /* Allocate the mbuf. */
1545 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1546 if (m_new == NULL)
1547 return ENOBUFS;
1548
1549 /* Allocate the jumbo buffer */
1550 buf = bge_jalloc(sc);
1551 if (buf == NULL) {
1552 m_freem(m_new);
1553 aprint_error_dev(sc->bge_dev,
1554 "jumbo allocation failed -- packet dropped!\n");
1555 return ENOBUFS;
1556 }
1557
1558 /* Attach the buffer to the mbuf. */
1559 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1560 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1561 bge_jfree, sc);
1562 m_new->m_flags |= M_EXT_RW;
1563 } else {
1564 m_new = m;
1565 buf = m_new->m_data = m_new->m_ext.ext_buf;
1566 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1567 }
1568 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1569 m_adj(m_new, ETHER_ALIGN);
1570 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1571 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1572 BGE_JLEN, BUS_DMASYNC_PREREAD);
1573
1574 /* Set up the descriptor. */
1575 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1576 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1577 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1578 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1579 r->bge_len = m_new->m_len;
1580 r->bge_idx = i;
1581
1582 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1583 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1584 i * sizeof(struct bge_rx_bd),
1585 sizeof(struct bge_rx_bd),
1586 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1587
1588 return 0;
1589 }
1590
1591 static int
1592 bge_init_rx_ring_std(struct bge_softc *sc)
1593 {
1594 bus_dmamap_t dmamap;
1595 int error = 0;
1596 u_int i;
1597
1598 if (sc->bge_flags & BGEF_RXRING_VALID)
1599 return 0;
1600
1601 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1602 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1603 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmamap);
1604 if (error)
1605 goto uncreate;
1606
1607 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1608 memset(&sc->bge_rdata->bge_rx_std_ring[i], 0,
1609 sizeof(struct bge_rx_bd));
1610 }
1611
1612 sc->bge_std = i - 1;
1613 sc->bge_std_cnt = 0;
1614 bge_fill_rx_ring_std(sc);
1615
1616 sc->bge_flags |= BGEF_RXRING_VALID;
1617
1618 return 0;
1619
1620 uncreate:
1621 while (--i) {
1622 bus_dmamap_destroy(sc->bge_dmatag,
1623 sc->bge_cdata.bge_rx_std_map[i]);
1624 }
1625 return error;
1626 }
1627
1628 static void
1629 bge_fill_rx_ring_std(struct bge_softc *sc)
1630 {
1631 int i = sc->bge_std;
1632 bool post = false;
1633
1634 while (sc->bge_std_cnt < BGE_STD_RX_RING_CNT) {
1635 BGE_INC(i, BGE_STD_RX_RING_CNT);
1636
1637 if (bge_newbuf_std(sc, i) != 0)
1638 break;
1639
1640 sc->bge_std = i;
1641 post = true;
1642 }
1643
1644 if (post)
1645 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1646 }
1647
1648
1649 static void
1650 bge_free_rx_ring_std(struct bge_softc *sc)
1651 {
1652
1653 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1654 return;
1655
1656 for (u_int i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1657 const bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i];
1658 struct mbuf * const m = sc->bge_cdata.bge_rx_std_chain[i];
1659 if (m != NULL) {
1660 bus_dmamap_sync(sc->bge_dmatag, dmap, 0,
1661 dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1662 bus_dmamap_unload(sc->bge_dmatag, dmap);
1663 m_freem(m);
1664 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1665 }
1666 bus_dmamap_destroy(sc->bge_dmatag,
1667 sc->bge_cdata.bge_rx_std_map[i]);
1668 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1669 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1670 sizeof(struct bge_rx_bd));
1671 }
1672
1673 sc->bge_flags &= ~BGEF_RXRING_VALID;
1674 }
1675
1676 static int
1677 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1678 {
1679 int i;
1680 volatile struct bge_rcb *rcb;
1681
1682 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1683 return 0;
1684
1685 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1686 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1687 return ENOBUFS;
1688 }
1689
1690 sc->bge_jumbo = i - 1;
1691 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1692
1693 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1694 rcb->bge_maxlen_flags = 0;
1695 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1696
1697 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1698
1699 return 0;
1700 }
1701
1702 static void
1703 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1704 {
1705 int i;
1706
1707 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1708 return;
1709
1710 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1711 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1712 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1713 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1714 sizeof(struct bge_rx_bd));
1715 }
1716
1717 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1718 }
1719
1720 static void
1721 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1722 {
1723 int i;
1724 struct txdmamap_pool_entry *dma;
1725
1726 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1727 return;
1728
1729 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1730 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1731 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1732 sc->bge_cdata.bge_tx_chain[i] = NULL;
1733 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1734 link);
1735 sc->txdma[i] = 0;
1736 }
1737 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1738 sizeof(struct bge_tx_bd));
1739 }
1740
1741 if (disable) {
1742 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1743 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1744 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1745 if (sc->bge_dma64) {
1746 bus_dmamap_destroy(sc->bge_dmatag32,
1747 dma->dmamap32);
1748 }
1749 kmem_free(dma, sizeof(*dma));
1750 }
1751 SLIST_INIT(&sc->txdma_list);
1752 }
1753
1754 sc->bge_flags &= ~BGEF_TXRING_VALID;
1755 }
1756
1757 static int
1758 bge_init_tx_ring(struct bge_softc *sc)
1759 {
1760 struct ifnet * const ifp = &sc->ethercom.ec_if;
1761 int i;
1762 bus_dmamap_t dmamap, dmamap32;
1763 bus_size_t maxsegsz;
1764 struct txdmamap_pool_entry *dma;
1765
1766 if (sc->bge_flags & BGEF_TXRING_VALID)
1767 return 0;
1768
1769 sc->bge_txcnt = 0;
1770 sc->bge_tx_saved_considx = 0;
1771
1772 /* Initialize transmit producer index for host-memory send ring. */
1773 sc->bge_tx_prodidx = 0;
1774 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1775 /* 5700 b2 errata */
1776 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1777 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1778
1779 /* NIC-memory send ring not used; initialize to zero. */
1780 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1781 /* 5700 b2 errata */
1782 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1783 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1784
1785 /* Limit DMA segment size for some chips */
1786 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1787 (ifp->if_mtu <= ETHERMTU))
1788 maxsegsz = 2048;
1789 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1790 maxsegsz = 4096;
1791 else
1792 maxsegsz = ETHER_MAX_LEN_JUMBO;
1793
1794 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1795 goto alloc_done;
1796
1797 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1798 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1799 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1800 &dmamap))
1801 return ENOBUFS;
1802 if (dmamap == NULL)
1803 panic("dmamap NULL in bge_init_tx_ring");
1804 if (sc->bge_dma64) {
1805 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1806 BGE_NTXSEG, maxsegsz, 0,
1807 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1808 &dmamap32)) {
1809 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1810 return ENOBUFS;
1811 }
1812 if (dmamap32 == NULL)
1813 panic("dmamap32 NULL in bge_init_tx_ring");
1814 } else
1815 dmamap32 = dmamap;
1816 dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
1817 if (dma == NULL) {
1818 aprint_error_dev(sc->bge_dev,
1819 "can't alloc txdmamap_pool_entry\n");
1820 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1821 if (sc->bge_dma64)
1822 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1823 return ENOMEM;
1824 }
1825 dma->dmamap = dmamap;
1826 dma->dmamap32 = dmamap32;
1827 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1828 }
1829 alloc_done:
1830 sc->bge_flags |= BGEF_TXRING_VALID;
1831
1832 return 0;
1833 }
1834
1835 static void
1836 bge_setmulti(struct bge_softc *sc)
1837 {
1838 struct ethercom * const ec = &sc->ethercom;
1839 struct ether_multi *enm;
1840 struct ether_multistep step;
1841 uint32_t hashes[4] = { 0, 0, 0, 0 };
1842 uint32_t h;
1843 int i;
1844
1845 KASSERT(mutex_owned(sc->sc_mcast_lock));
1846 if (sc->bge_if_flags & IFF_PROMISC)
1847 goto allmulti;
1848
1849 /* Now program new ones. */
1850 ETHER_LOCK(ec);
1851 ETHER_FIRST_MULTI(step, ec, enm);
1852 while (enm != NULL) {
1853 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1854 /*
1855 * We must listen to a range of multicast addresses.
1856 * For now, just accept all multicasts, rather than
1857 * trying to set only those filter bits needed to match
1858 * the range. (At this time, the only use of address
1859 * ranges is for IP multicast routing, for which the
1860 * range is big enough to require all bits set.)
1861 */
1862 ETHER_UNLOCK(ec);
1863 goto allmulti;
1864 }
1865
1866 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1867
1868 /* Just want the 7 least-significant bits. */
1869 h &= 0x7f;
1870
1871 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1872 ETHER_NEXT_MULTI(step, enm);
1873 }
1874 ec->ec_flags &= ~ETHER_F_ALLMULTI;
1875 ETHER_UNLOCK(ec);
1876
1877 goto setit;
1878
1879 allmulti:
1880 ETHER_LOCK(ec);
1881 ec->ec_flags |= ETHER_F_ALLMULTI;
1882 ETHER_UNLOCK(ec);
1883 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1884
1885 setit:
1886 for (i = 0; i < 4; i++)
1887 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1888 }
1889
1890 static void
1891 bge_sig_pre_reset(struct bge_softc *sc, int type)
1892 {
1893
1894 /*
1895 * Some chips don't like this so only do this if ASF is enabled
1896 */
1897 if (sc->bge_asf_mode)
1898 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1899
1900 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1901 switch (type) {
1902 case BGE_RESET_START:
1903 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1904 BGE_FW_DRV_STATE_START);
1905 break;
1906 case BGE_RESET_SHUTDOWN:
1907 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1908 BGE_FW_DRV_STATE_UNLOAD);
1909 break;
1910 case BGE_RESET_SUSPEND:
1911 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1912 BGE_FW_DRV_STATE_SUSPEND);
1913 break;
1914 }
1915 }
1916
1917 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1918 bge_ape_driver_state_change(sc, type);
1919 }
1920
1921 static void
1922 bge_sig_post_reset(struct bge_softc *sc, int type)
1923 {
1924
1925 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1926 switch (type) {
1927 case BGE_RESET_START:
1928 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1929 BGE_FW_DRV_STATE_START_DONE);
1930 /* START DONE */
1931 break;
1932 case BGE_RESET_SHUTDOWN:
1933 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1934 BGE_FW_DRV_STATE_UNLOAD_DONE);
1935 break;
1936 }
1937 }
1938
1939 if (type == BGE_RESET_SHUTDOWN)
1940 bge_ape_driver_state_change(sc, type);
1941 }
1942
1943 static void
1944 bge_sig_legacy(struct bge_softc *sc, int type)
1945 {
1946
1947 if (sc->bge_asf_mode) {
1948 switch (type) {
1949 case BGE_RESET_START:
1950 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1951 BGE_FW_DRV_STATE_START);
1952 break;
1953 case BGE_RESET_SHUTDOWN:
1954 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1955 BGE_FW_DRV_STATE_UNLOAD);
1956 break;
1957 }
1958 }
1959 }
1960
1961 static void
1962 bge_wait_for_event_ack(struct bge_softc *sc)
1963 {
1964 int i;
1965
1966 /* wait up to 2500usec */
1967 for (i = 0; i < 250; i++) {
1968 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1969 BGE_RX_CPU_DRV_EVENT))
1970 break;
1971 DELAY(10);
1972 }
1973 }
1974
1975 static void
1976 bge_stop_fw(struct bge_softc *sc)
1977 {
1978
1979 if (sc->bge_asf_mode) {
1980 bge_wait_for_event_ack(sc);
1981
1982 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1983 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1984 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1985
1986 bge_wait_for_event_ack(sc);
1987 }
1988 }
1989
1990 static int
1991 bge_poll_fw(struct bge_softc *sc)
1992 {
1993 uint32_t val;
1994 int i;
1995
1996 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1997 for (i = 0; i < BGE_TIMEOUT; i++) {
1998 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1999 if (val & BGE_VCPU_STATUS_INIT_DONE)
2000 break;
2001 DELAY(100);
2002 }
2003 if (i >= BGE_TIMEOUT) {
2004 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2005 return -1;
2006 }
2007 } else {
2008 /*
2009 * Poll the value location we just wrote until
2010 * we see the 1's complement of the magic number.
2011 * This indicates that the firmware initialization
2012 * is complete.
2013 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2014 */
2015 for (i = 0; i < BGE_TIMEOUT; i++) {
2016 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2017 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2018 break;
2019 DELAY(10);
2020 }
2021
2022 if ((i >= BGE_TIMEOUT)
2023 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2024 aprint_error_dev(sc->bge_dev,
2025 "firmware handshake timed out, val = %x\n", val);
2026 return -1;
2027 }
2028 }
2029
2030 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2031 /* tg3 says we have to wait extra time */
2032 delay(10 * 1000);
2033 }
2034
2035 return 0;
2036 }
2037
2038 int
2039 bge_phy_addr(struct bge_softc *sc)
2040 {
2041 struct pci_attach_args *pa = &(sc->bge_pa);
2042 int phy_addr = 1;
2043
2044 /*
2045 * PHY address mapping for various devices.
2046 *
2047 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2048 * ---------+-------+-------+-------+-------+
2049 * BCM57XX | 1 | X | X | X |
2050 * BCM5704 | 1 | X | 1 | X |
2051 * BCM5717 | 1 | 8 | 2 | 9 |
2052 * BCM5719 | 1 | 8 | 2 | 9 |
2053 * BCM5720 | 1 | 8 | 2 | 9 |
2054 *
2055 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2056 * ---------+-------+-------+-------+-------+
2057 * BCM57XX | X | X | X | X |
2058 * BCM5704 | X | X | X | X |
2059 * BCM5717 | X | X | X | X |
2060 * BCM5719 | 3 | 10 | 4 | 11 |
2061 * BCM5720 | X | X | X | X |
2062 *
2063 * Other addresses may respond but they are not
2064 * IEEE compliant PHYs and should be ignored.
2065 */
2066 switch (BGE_ASICREV(sc->bge_chipid)) {
2067 case BGE_ASICREV_BCM5717:
2068 case BGE_ASICREV_BCM5719:
2069 case BGE_ASICREV_BCM5720:
2070 phy_addr = pa->pa_function;
2071 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2072 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2073 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2074 } else {
2075 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2076 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2077 }
2078 }
2079
2080 return phy_addr;
2081 }
2082
2083 /*
2084 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2085 * self-test results.
2086 */
2087 static int
2088 bge_chipinit(struct bge_softc *sc)
2089 {
2090 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2091 int i;
2092
2093 /* Set endianness before we access any non-PCI registers. */
2094 misc_ctl = BGE_INIT;
2095 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2096 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2097 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2098 misc_ctl);
2099
2100 /*
2101 * Clear the MAC statistics block in the NIC's
2102 * internal memory.
2103 */
2104 for (i = BGE_STATS_BLOCK;
2105 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2106 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2107
2108 for (i = BGE_STATUS_BLOCK;
2109 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2110 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2111
2112 /* 5717 workaround from tg3 */
2113 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2114 /* Save */
2115 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2116
2117 /* Temporary modify MODE_CTL to control TLP */
2118 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2119 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2120
2121 /* Control TLP */
2122 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2123 BGE_TLP_PHYCTL1);
2124 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2125 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2126
2127 /* Restore */
2128 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2129 }
2130
2131 if (BGE_IS_57765_FAMILY(sc)) {
2132 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2133 /* Save */
2134 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2135
2136 /* Temporary modify MODE_CTL to control TLP */
2137 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2138 CSR_WRITE_4(sc, BGE_MODE_CTL,
2139 reg | BGE_MODECTL_PCIE_TLPADDR1);
2140
2141 /* Control TLP */
2142 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2143 BGE_TLP_PHYCTL5);
2144 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2145 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2146
2147 /* Restore */
2148 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2149 }
2150 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2151 /*
2152 * For the 57766 and non Ax versions of 57765, bootcode
2153 * needs to setup the PCIE Fast Training Sequence (FTS)
2154 * value to prevent transmit hangs.
2155 */
2156 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2157 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2158 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2159
2160 /* Save */
2161 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2162
2163 /* Temporary modify MODE_CTL to control TLP */
2164 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2165 CSR_WRITE_4(sc, BGE_MODE_CTL,
2166 reg | BGE_MODECTL_PCIE_TLPADDR0);
2167
2168 /* Control TLP */
2169 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2170 BGE_TLP_FTSMAX);
2171 reg &= ~BGE_TLP_FTSMAX_MSK;
2172 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2173 reg | BGE_TLP_FTSMAX_VAL);
2174
2175 /* Restore */
2176 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2177 }
2178
2179 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2180 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2181 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2182 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2183 }
2184
2185 /* Set up the PCI DMA control register. */
2186 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2187 if (sc->bge_flags & BGEF_PCIE) {
2188 /* Read watermark not used, 128 bytes for write. */
2189 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2190 device_xname(sc->bge_dev)));
2191 if (sc->bge_mps >= 256)
2192 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2193 else
2194 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2195 } else if (sc->bge_flags & BGEF_PCIX) {
2196 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2197 device_xname(sc->bge_dev)));
2198 /* PCI-X bus */
2199 if (BGE_IS_5714_FAMILY(sc)) {
2200 /* 256 bytes for read and write. */
2201 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2202 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2203
2204 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2205 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2206 else
2207 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2208 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2209 /*
2210 * In the BCM5703, the DMA read watermark should
2211 * be set to less than or equal to the maximum
2212 * memory read byte count of the PCI-X command
2213 * register.
2214 */
2215 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2216 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2217 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2218 /* 1536 bytes for read, 384 bytes for write. */
2219 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2220 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2221 } else {
2222 /* 384 bytes for read and write. */
2223 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2224 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2225 (0x0F);
2226 }
2227
2228 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2229 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2230 uint32_t tmp;
2231
2232 /* Set ONEDMA_ATONCE for hardware workaround. */
2233 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2234 if (tmp == 6 || tmp == 7)
2235 dma_rw_ctl |=
2236 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2237
2238 /* Set PCI-X DMA write workaround. */
2239 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2240 }
2241 } else {
2242 /* Conventional PCI bus: 256 bytes for read and write. */
2243 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2244 device_xname(sc->bge_dev)));
2245 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2246 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2247
2248 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2249 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2250 dma_rw_ctl |= 0x0F;
2251 }
2252
2253 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2254 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2255 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2256 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2257
2258 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2259 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2260 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2261
2262 if (BGE_IS_57765_PLUS(sc)) {
2263 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2264 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2265 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2266
2267 /*
2268 * Enable HW workaround for controllers that misinterpret
2269 * a status tag update and leave interrupts permanently
2270 * disabled.
2271 */
2272 if (!BGE_IS_57765_FAMILY(sc) &&
2273 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2274 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2275 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2276 }
2277
2278 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2279 dma_rw_ctl);
2280
2281 /*
2282 * Set up general mode register.
2283 */
2284 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2285 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2286 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2287 /* Retain Host-2-BMC settings written by APE firmware. */
2288 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2289 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2290 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2291 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2292 }
2293 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2294 BGE_MODECTL_TX_NO_PHDR_CSUM;
2295
2296 /*
2297 * BCM5701 B5 have a bug causing data corruption when using
2298 * 64-bit DMA reads, which can be terminated early and then
2299 * completed later as 32-bit accesses, in combination with
2300 * certain bridges.
2301 */
2302 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2303 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2304 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2305
2306 /*
2307 * Tell the firmware the driver is running
2308 */
2309 if (sc->bge_asf_mode & ASF_STACKUP)
2310 mode_ctl |= BGE_MODECTL_STACKUP;
2311
2312 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2313
2314 /*
2315 * Disable memory write invalidate. Apparently it is not supported
2316 * properly by these devices.
2317 */
2318 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2319 PCI_COMMAND_INVALIDATE_ENABLE);
2320
2321 #ifdef __brokenalpha__
2322 /*
2323 * Must insure that we do not cross an 8K (bytes) boundary
2324 * for DMA reads. Our highest limit is 1K bytes. This is a
2325 * restriction on some ALPHA platforms with early revision
2326 * 21174 PCI chipsets, such as the AlphaPC 164lx
2327 */
2328 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2329 #endif
2330
2331 /* Set the timer prescaler (always 66MHz) */
2332 CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2333
2334 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2335 DELAY(40); /* XXX */
2336
2337 /* Put PHY into ready state */
2338 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2339 DELAY(40);
2340 }
2341
2342 return 0;
2343 }
2344
2345 static int
2346 bge_blockinit(struct bge_softc *sc)
2347 {
2348 volatile struct bge_rcb *rcb;
2349 bus_size_t rcb_addr;
2350 struct ifnet * const ifp = &sc->ethercom.ec_if;
2351 bge_hostaddr taddr;
2352 uint32_t dmactl, rdmareg, mimode, val;
2353 int i, limit;
2354
2355 /*
2356 * Initialize the memory window pointer register so that
2357 * we can access the first 32K of internal NIC RAM. This will
2358 * allow us to set up the TX send ring RCBs and the RX return
2359 * ring RCBs, plus other things which live in NIC memory.
2360 */
2361 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2362
2363 if (!BGE_IS_5705_PLUS(sc)) {
2364 /* 57XX step 33 */
2365 /* Configure mbuf memory pool */
2366 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2367
2368 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2369 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2370 else
2371 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2372
2373 /* 57XX step 34 */
2374 /* Configure DMA resource pool */
2375 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2376 BGE_DMA_DESCRIPTORS);
2377 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2378 }
2379
2380 /* 5718 step 11, 57XX step 35 */
2381 /*
2382 * Configure mbuf pool watermarks. New broadcom docs strongly
2383 * recommend these.
2384 */
2385 if (BGE_IS_5717_PLUS(sc)) {
2386 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2387 if (ifp->if_mtu > ETHERMTU) {
2388 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2389 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2390 } else {
2391 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2392 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2393 }
2394 } else if (BGE_IS_5705_PLUS(sc)) {
2395 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2396
2397 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2398 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2399 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2400 } else {
2401 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2402 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2403 }
2404 } else {
2405 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2406 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2407 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2408 }
2409
2410 /* 57XX step 36 */
2411 /* Configure DMA resource watermarks */
2412 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2413 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2414
2415 /* 5718 step 13, 57XX step 38 */
2416 /* Enable buffer manager */
2417 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2418 /*
2419 * Change the arbitration algorithm of TXMBUF read request to
2420 * round-robin instead of priority based for BCM5719. When
2421 * TXFIFO is almost empty, RDMA will hold its request until
2422 * TXFIFO is not almost empty.
2423 */
2424 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2425 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2426 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2427 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2428 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2429 val |= BGE_BMANMODE_LOMBUF_ATTN;
2430 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2431
2432 /* 57XX step 39 */
2433 /* Poll for buffer manager start indication */
2434 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2435 DELAY(10);
2436 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2437 break;
2438 }
2439
2440 if (i == BGE_TIMEOUT * 2) {
2441 aprint_error_dev(sc->bge_dev,
2442 "buffer manager failed to start\n");
2443 return ENXIO;
2444 }
2445
2446 /* 57XX step 40 */
2447 /* Enable flow-through queues */
2448 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2449 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2450
2451 /* Wait until queue initialization is complete */
2452 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2453 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2454 break;
2455 DELAY(10);
2456 }
2457
2458 if (i == BGE_TIMEOUT * 2) {
2459 aprint_error_dev(sc->bge_dev,
2460 "flow-through queue init failed\n");
2461 return ENXIO;
2462 }
2463
2464 /*
2465 * Summary of rings supported by the controller:
2466 *
2467 * Standard Receive Producer Ring
2468 * - This ring is used to feed receive buffers for "standard"
2469 * sized frames (typically 1536 bytes) to the controller.
2470 *
2471 * Jumbo Receive Producer Ring
2472 * - This ring is used to feed receive buffers for jumbo sized
2473 * frames (i.e. anything bigger than the "standard" frames)
2474 * to the controller.
2475 *
2476 * Mini Receive Producer Ring
2477 * - This ring is used to feed receive buffers for "mini"
2478 * sized frames to the controller.
2479 * - This feature required external memory for the controller
2480 * but was never used in a production system. Should always
2481 * be disabled.
2482 *
2483 * Receive Return Ring
2484 * - After the controller has placed an incoming frame into a
2485 * receive buffer that buffer is moved into a receive return
2486 * ring. The driver is then responsible to passing the
2487 * buffer up to the stack. Many versions of the controller
2488 * support multiple RR rings.
2489 *
2490 * Send Ring
2491 * - This ring is used for outgoing frames. Many versions of
2492 * the controller support multiple send rings.
2493 */
2494
2495 /* 5718 step 15, 57XX step 41 */
2496 /* Initialize the standard RX ring control block */
2497 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2498 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2499 /* 5718 step 16 */
2500 if (BGE_IS_57765_PLUS(sc)) {
2501 /*
2502 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2503 * Bits 15-2 : Maximum RX frame size
2504 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2505 * Bit 0 : Reserved
2506 */
2507 rcb->bge_maxlen_flags =
2508 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2509 } else if (BGE_IS_5705_PLUS(sc)) {
2510 /*
2511 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2512 * Bits 15-2 : Reserved (should be 0)
2513 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2514 * Bit 0 : Reserved
2515 */
2516 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2517 } else {
2518 /*
2519 * Ring size is always XXX entries
2520 * Bits 31-16: Maximum RX frame size
2521 * Bits 15-2 : Reserved (should be 0)
2522 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2523 * Bit 0 : Reserved
2524 */
2525 rcb->bge_maxlen_flags =
2526 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2527 }
2528 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2529 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2530 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2531 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2532 else
2533 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2534 /* Write the standard receive producer ring control block. */
2535 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2536 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2537 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2538 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2539
2540 /* Reset the standard receive producer ring producer index. */
2541 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2542
2543 /* 57XX step 42 */
2544 /*
2545 * Initialize the jumbo RX ring control block
2546 * We set the 'ring disabled' bit in the flags
2547 * field until we're actually ready to start
2548 * using this ring (i.e. once we set the MTU
2549 * high enough to require it).
2550 */
2551 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2552 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2553 BGE_HOSTADDR(rcb->bge_hostaddr,
2554 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2555 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2556 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2557 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2558 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2559 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2560 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2561 else
2562 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2563 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2564 rcb->bge_hostaddr.bge_addr_hi);
2565 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2566 rcb->bge_hostaddr.bge_addr_lo);
2567 /* Program the jumbo receive producer ring RCB parameters. */
2568 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2569 rcb->bge_maxlen_flags);
2570 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2571 /* Reset the jumbo receive producer ring producer index. */
2572 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2573 }
2574
2575 /* 57XX step 43 */
2576 /* Disable the mini receive producer ring RCB. */
2577 if (BGE_IS_5700_FAMILY(sc)) {
2578 /* Set up dummy disabled mini ring RCB */
2579 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2580 rcb->bge_maxlen_flags =
2581 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2582 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2583 rcb->bge_maxlen_flags);
2584 /* Reset the mini receive producer ring producer index. */
2585 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2586
2587 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2588 offsetof(struct bge_ring_data, bge_info),
2589 sizeof(struct bge_gib),
2590 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2591 }
2592
2593 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2594 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2595 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2596 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2597 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2598 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2599 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2600 }
2601 /* 5718 step 14, 57XX step 44 */
2602 /*
2603 * The BD ring replenish thresholds control how often the
2604 * hardware fetches new BD's from the producer rings in host
2605 * memory. Setting the value too low on a busy system can
2606 * starve the hardware and reduce the throughput.
2607 *
2608 * Set the BD ring replenish thresholds. The recommended
2609 * values are 1/8th the number of descriptors allocated to
2610 * each ring, but since we try to avoid filling the entire
2611 * ring we set these to the minimal value of 8. This needs to
2612 * be done on several of the supported chip revisions anyway,
2613 * to work around HW bugs.
2614 */
2615 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2616 if (BGE_IS_JUMBO_CAPABLE(sc))
2617 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2618
2619 /* 5718 step 18 */
2620 if (BGE_IS_5717_PLUS(sc)) {
2621 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2622 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2623 }
2624
2625 /* 57XX step 45 */
2626 /*
2627 * Disable all send rings by setting the 'ring disabled' bit
2628 * in the flags field of all the TX send ring control blocks,
2629 * located in NIC memory.
2630 */
2631 if (BGE_IS_5700_FAMILY(sc)) {
2632 /* 5700 to 5704 had 16 send rings. */
2633 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2634 } else if (BGE_IS_5717_PLUS(sc)) {
2635 limit = BGE_TX_RINGS_5717_MAX;
2636 } else if (BGE_IS_57765_FAMILY(sc) ||
2637 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2638 limit = BGE_TX_RINGS_57765_MAX;
2639 } else
2640 limit = 1;
2641 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2642 for (i = 0; i < limit; i++) {
2643 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2644 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2645 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2646 rcb_addr += sizeof(struct bge_rcb);
2647 }
2648
2649 /* 57XX step 46 and 47 */
2650 /* Configure send ring RCB 0 (we use only the first ring) */
2651 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2652 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2653 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2654 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2655 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2656 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2657 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2658 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2659 else
2660 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2661 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2662 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2663 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2664
2665 /* 57XX step 48 */
2666 /*
2667 * Disable all receive return rings by setting the
2668 * 'ring disabled' bit in the flags field of all the receive
2669 * return ring control blocks, located in NIC memory.
2670 */
2671 if (BGE_IS_5717_PLUS(sc)) {
2672 /* Should be 17, use 16 until we get an SRAM map. */
2673 limit = 16;
2674 } else if (BGE_IS_5700_FAMILY(sc))
2675 limit = BGE_RX_RINGS_MAX;
2676 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2677 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2678 BGE_IS_57765_FAMILY(sc))
2679 limit = 4;
2680 else
2681 limit = 1;
2682 /* Disable all receive return rings */
2683 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2684 for (i = 0; i < limit; i++) {
2685 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2686 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2687 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2688 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2689 BGE_RCB_FLAG_RING_DISABLED));
2690 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2691 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2692 (i * (sizeof(uint64_t))), 0);
2693 rcb_addr += sizeof(struct bge_rcb);
2694 }
2695
2696 /* 57XX step 49 */
2697 /*
2698 * Set up receive return ring 0. Note that the NIC address
2699 * for RX return rings is 0x0. The return rings live entirely
2700 * within the host, so the nicaddr field in the RCB isn't used.
2701 */
2702 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2703 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2704 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2705 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2706 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2707 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2708 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2709
2710 /* 5718 step 24, 57XX step 53 */
2711 /* Set random backoff seed for TX */
2712 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2713 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2714 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2715 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2716 BGE_TX_BACKOFF_SEED_MASK);
2717
2718 /* 5718 step 26, 57XX step 55 */
2719 /* Set inter-packet gap */
2720 val = 0x2620;
2721 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2722 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2723 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2724 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2725 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2726
2727 /* 5718 step 27, 57XX step 56 */
2728 /*
2729 * Specify which ring to use for packets that don't match
2730 * any RX rules.
2731 */
2732 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2733
2734 /* 5718 step 28, 57XX step 57 */
2735 /*
2736 * Configure number of RX lists. One interrupt distribution
2737 * list, sixteen active lists, one bad frames class.
2738 */
2739 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2740
2741 /* 5718 step 29, 57XX step 58 */
2742 /* Initialize RX list placement stats mask. */
2743 if (BGE_IS_575X_PLUS(sc)) {
2744 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2745 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2746 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2747 } else
2748 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2749
2750 /* 5718 step 30, 57XX step 59 */
2751 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2752
2753 /* 5718 step 33, 57XX step 62 */
2754 /* Disable host coalescing until we get it set up */
2755 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2756
2757 /* 5718 step 34, 57XX step 63 */
2758 /* Poll to make sure it's shut down. */
2759 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2760 DELAY(10);
2761 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2762 break;
2763 }
2764
2765 if (i == BGE_TIMEOUT * 2) {
2766 aprint_error_dev(sc->bge_dev,
2767 "host coalescing engine failed to idle\n");
2768 return ENXIO;
2769 }
2770
2771 /* 5718 step 35, 36, 37 */
2772 /* Set up host coalescing defaults */
2773 mutex_enter(sc->sc_intr_lock);
2774 const uint32_t rx_coal_ticks = sc->bge_rx_coal_ticks;
2775 const uint32_t tx_coal_ticks = sc->bge_tx_coal_ticks;
2776 const uint32_t rx_max_coal_bds = sc->bge_rx_max_coal_bds;
2777 const uint32_t tx_max_coal_bds = sc->bge_tx_max_coal_bds;
2778 mutex_exit(sc->sc_intr_lock);
2779 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_coal_ticks);
2780 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, tx_coal_ticks);
2781 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_max_coal_bds);
2782 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, tx_max_coal_bds);
2783 if (!(BGE_IS_5705_PLUS(sc))) {
2784 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2785 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2786 }
2787 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2788 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2789
2790 /* Set up address of statistics block */
2791 if (BGE_IS_5700_FAMILY(sc)) {
2792 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2793 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2794 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2795 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2796 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2797 }
2798
2799 /* 5718 step 38 */
2800 /* Set up address of status block */
2801 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2802 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2803 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2804 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2805 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2806 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2807
2808 /* Set up status block size. */
2809 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2810 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2811 val = BGE_STATBLKSZ_FULL;
2812 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2813 } else {
2814 val = BGE_STATBLKSZ_32BYTE;
2815 bzero(&sc->bge_rdata->bge_status_block, 32);
2816 }
2817
2818 /* 5718 step 39, 57XX step 73 */
2819 /* Turn on host coalescing state machine */
2820 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2821
2822 /* 5718 step 40, 57XX step 74 */
2823 /* Turn on RX BD completion state machine and enable attentions */
2824 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2825 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2826
2827 /* 5718 step 41, 57XX step 75 */
2828 /* Turn on RX list placement state machine */
2829 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2830
2831 /* 57XX step 76 */
2832 /* Turn on RX list selector state machine. */
2833 if (!(BGE_IS_5705_PLUS(sc)))
2834 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2835
2836 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2837 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2838 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2839 BGE_MACMODE_FRMHDR_DMA_ENB;
2840
2841 if (sc->bge_flags & BGEF_FIBER_TBI)
2842 val |= BGE_PORTMODE_TBI;
2843 else if (sc->bge_flags & BGEF_FIBER_MII)
2844 val |= BGE_PORTMODE_GMII;
2845 else
2846 val |= BGE_PORTMODE_MII;
2847
2848 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2849 /* Allow APE to send/receive frames. */
2850 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2851 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2852
2853 /* Turn on DMA, clear stats */
2854 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2855 /* 5718 step 44 */
2856 DELAY(40);
2857
2858 /* 5718 step 45, 57XX step 79 */
2859 /* Set misc. local control, enable interrupts on attentions */
2860 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2861 if (BGE_IS_5717_PLUS(sc)) {
2862 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2863 /* 5718 step 46 */
2864 DELAY(100);
2865 }
2866
2867 /* 57XX step 81 */
2868 /* Turn on DMA completion state machine */
2869 if (!(BGE_IS_5705_PLUS(sc)))
2870 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2871
2872 /* 5718 step 47, 57XX step 82 */
2873 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2874
2875 /* 5718 step 48 */
2876 /* Enable host coalescing bug fix. */
2877 if (BGE_IS_5755_PLUS(sc))
2878 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2879
2880 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2881 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2882
2883 /* Turn on write DMA state machine */
2884 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2885 /* 5718 step 49 */
2886 DELAY(40);
2887
2888 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2889
2890 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2891 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2892
2893 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2894 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2895 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2896 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2897 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2898 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2899
2900 if (sc->bge_flags & BGEF_PCIE)
2901 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2902 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2903 if (ifp->if_mtu <= ETHERMTU)
2904 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2905 }
2906 if (sc->bge_flags & BGEF_TSO) {
2907 val |= BGE_RDMAMODE_TSO4_ENABLE;
2908 if (BGE_IS_5717_PLUS(sc))
2909 val |= BGE_RDMAMODE_TSO6_ENABLE;
2910 }
2911
2912 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2913 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2914 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2915 BGE_RDMAMODE_H2BNC_VLAN_DET;
2916 /*
2917 * Allow multiple outstanding read requests from
2918 * non-LSO read DMA engine.
2919 */
2920 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2921 }
2922
2923 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2924 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2925 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2926 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2927 BGE_IS_57765_PLUS(sc)) {
2928 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2929 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2930 else
2931 rdmareg = BGE_RDMA_RSRVCTRL;
2932 dmactl = CSR_READ_4(sc, rdmareg);
2933 /*
2934 * Adjust tx margin to prevent TX data corruption and
2935 * fix internal FIFO overflow.
2936 */
2937 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2938 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2939 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2940 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2941 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2942 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2943 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2944 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2945 }
2946 /*
2947 * Enable fix for read DMA FIFO overruns.
2948 * The fix is to limit the number of RX BDs
2949 * the hardware would fetch at a time.
2950 */
2951 CSR_WRITE_4(sc, rdmareg, dmactl |
2952 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2953 }
2954
2955 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2956 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2957 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2958 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2959 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2960 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2961 /*
2962 * Allow 4KB burst length reads for non-LSO frames.
2963 * Enable 512B burst length reads for buffer descriptors.
2964 */
2965 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2966 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2967 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2968 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2969 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2970 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2971 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2972 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2973 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2974 }
2975 /* Turn on read DMA state machine */
2976 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2977 /* 5718 step 52 */
2978 delay(40);
2979
2980 if (sc->bge_flags & BGEF_RDMA_BUG) {
2981 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2982 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2983 if ((val & 0xFFFF) > BGE_FRAMELEN)
2984 break;
2985 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2986 break;
2987 }
2988 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2989 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2990 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2991 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2992 else
2993 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2994 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2995 }
2996 }
2997
2998 /* 5718 step 56, 57XX step 84 */
2999 /* Turn on RX data completion state machine */
3000 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3001
3002 /* Turn on RX data and RX BD initiator state machine */
3003 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3004
3005 /* 57XX step 85 */
3006 /* Turn on Mbuf cluster free state machine */
3007 if (!BGE_IS_5705_PLUS(sc))
3008 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3009
3010 /* 5718 step 57, 57XX step 86 */
3011 /* Turn on send data completion state machine */
3012 val = BGE_SDCMODE_ENABLE;
3013 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3014 val |= BGE_SDCMODE_CDELAY;
3015 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3016
3017 /* 5718 step 58 */
3018 /* Turn on send BD completion state machine */
3019 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3020
3021 /* 57XX step 88 */
3022 /* Turn on RX BD initiator state machine */
3023 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3024
3025 /* 5718 step 60, 57XX step 90 */
3026 /* Turn on send data initiator state machine */
3027 if (sc->bge_flags & BGEF_TSO) {
3028 /* XXX: magic value from Linux driver */
3029 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3030 BGE_SDIMODE_HW_LSO_PRE_DMA);
3031 } else
3032 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3033
3034 /* 5718 step 61, 57XX step 91 */
3035 /* Turn on send BD initiator state machine */
3036 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3037
3038 /* 5718 step 62, 57XX step 92 */
3039 /* Turn on send BD selector state machine */
3040 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3041
3042 /* 5718 step 31, 57XX step 60 */
3043 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3044 /* 5718 step 32, 57XX step 61 */
3045 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3046 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3047
3048 /* ack/clear link change events */
3049 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3050 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3051 BGE_MACSTAT_LINK_CHANGED);
3052 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3053
3054 /*
3055 * Enable attention when the link has changed state for
3056 * devices that use auto polling.
3057 */
3058 if (sc->bge_flags & BGEF_FIBER_TBI) {
3059 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3060 } else {
3061 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3062 mimode = BGE_MIMODE_500KHZ_CONST;
3063 else
3064 mimode = BGE_MIMODE_BASE;
3065 /* 5718 step 68. 5718 step 69 (optionally). */
3066 if (BGE_IS_5700_FAMILY(sc) ||
3067 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3068 mimode |= BGE_MIMODE_AUTOPOLL;
3069 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3070 }
3071 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3072 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3073 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3074 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3075 BGE_EVTENB_MI_INTERRUPT);
3076 }
3077
3078 /*
3079 * Clear any pending link state attention.
3080 * Otherwise some link state change events may be lost until attention
3081 * is cleared by bge_intr() -> bge_link_upd() sequence.
3082 * It's not necessary on newer BCM chips - perhaps enabling link
3083 * state change attentions implies clearing pending attention.
3084 */
3085 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3086 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3087 BGE_MACSTAT_LINK_CHANGED);
3088
3089 /* Enable link state change attentions. */
3090 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3091
3092 return 0;
3093 }
3094
3095 static const struct bge_revision *
3096 bge_lookup_rev(uint32_t chipid)
3097 {
3098 const struct bge_revision *br;
3099
3100 for (br = bge_revisions; br->br_name != NULL; br++) {
3101 if (br->br_chipid == chipid)
3102 return br;
3103 }
3104
3105 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3106 if (br->br_chipid == BGE_ASICREV(chipid))
3107 return br;
3108 }
3109
3110 return NULL;
3111 }
3112
3113 static const struct bge_product *
3114 bge_lookup(const struct pci_attach_args *pa)
3115 {
3116 const struct bge_product *bp;
3117
3118 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3119 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3120 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3121 return bp;
3122 }
3123
3124 return NULL;
3125 }
3126
3127 static uint32_t
3128 bge_chipid(const struct pci_attach_args *pa)
3129 {
3130 uint32_t id;
3131
3132 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3133 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3134
3135 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3136 switch (PCI_PRODUCT(pa->pa_id)) {
3137 case PCI_PRODUCT_BROADCOM_BCM5717:
3138 case PCI_PRODUCT_BROADCOM_BCM5718:
3139 case PCI_PRODUCT_BROADCOM_BCM5719:
3140 case PCI_PRODUCT_BROADCOM_BCM5720:
3141 case PCI_PRODUCT_BROADCOM_BCM5725:
3142 case PCI_PRODUCT_BROADCOM_BCM5727:
3143 case PCI_PRODUCT_BROADCOM_BCM5762:
3144 case PCI_PRODUCT_BROADCOM_BCM57764:
3145 case PCI_PRODUCT_BROADCOM_BCM57767:
3146 case PCI_PRODUCT_BROADCOM_BCM57787:
3147 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3148 BGE_PCI_GEN2_PRODID_ASICREV);
3149 break;
3150 case PCI_PRODUCT_BROADCOM_BCM57761:
3151 case PCI_PRODUCT_BROADCOM_BCM57762:
3152 case PCI_PRODUCT_BROADCOM_BCM57765:
3153 case PCI_PRODUCT_BROADCOM_BCM57766:
3154 case PCI_PRODUCT_BROADCOM_BCM57781:
3155 case PCI_PRODUCT_BROADCOM_BCM57782:
3156 case PCI_PRODUCT_BROADCOM_BCM57785:
3157 case PCI_PRODUCT_BROADCOM_BCM57786:
3158 case PCI_PRODUCT_BROADCOM_BCM57791:
3159 case PCI_PRODUCT_BROADCOM_BCM57795:
3160 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3161 BGE_PCI_GEN15_PRODID_ASICREV);
3162 break;
3163 default:
3164 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3165 BGE_PCI_PRODID_ASICREV);
3166 break;
3167 }
3168 }
3169
3170 return id;
3171 }
3172
3173 /*
3174 * Return true if MSI can be used with this device.
3175 */
3176 static int
3177 bge_can_use_msi(struct bge_softc *sc)
3178 {
3179 int can_use_msi = 0;
3180
3181 switch (BGE_ASICREV(sc->bge_chipid)) {
3182 case BGE_ASICREV_BCM5714_A0:
3183 case BGE_ASICREV_BCM5714:
3184 /*
3185 * Apparently, MSI doesn't work when these chips are
3186 * configured in single-port mode.
3187 */
3188 break;
3189 case BGE_ASICREV_BCM5750:
3190 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3191 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3192 can_use_msi = 1;
3193 break;
3194 default:
3195 if (BGE_IS_575X_PLUS(sc))
3196 can_use_msi = 1;
3197 }
3198 return can_use_msi;
3199 }
3200
3201 /*
3202 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3203 * against our list and return its name if we find a match. Note
3204 * that since the Broadcom controller contains VPD support, we
3205 * can get the device name string from the controller itself instead
3206 * of the compiled-in string. This is a little slow, but it guarantees
3207 * we'll always announce the right product name.
3208 */
3209 static int
3210 bge_probe(device_t parent, cfdata_t match, void *aux)
3211 {
3212 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3213
3214 if (bge_lookup(pa) != NULL)
3215 return 1;
3216
3217 return 0;
3218 }
3219
3220 static void
3221 bge_attach(device_t parent, device_t self, void *aux)
3222 {
3223 struct bge_softc * const sc = device_private(self);
3224 struct pci_attach_args * const pa = aux;
3225 prop_dictionary_t dict;
3226 const struct bge_product *bp;
3227 const struct bge_revision *br;
3228 pci_chipset_tag_t pc;
3229 const char *intrstr = NULL;
3230 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3231 uint32_t command;
3232 struct ifnet *ifp;
3233 struct mii_data * const mii = &sc->bge_mii;
3234 uint32_t misccfg, mimode, macmode;
3235 void * kva;
3236 u_char eaddr[ETHER_ADDR_LEN];
3237 pcireg_t memtype, subid, reg;
3238 bus_addr_t memaddr;
3239 uint32_t pm_ctl;
3240 bool no_seeprom;
3241 int capmask, trys;
3242 int mii_flags;
3243 int map_flags;
3244 char intrbuf[PCI_INTRSTR_LEN];
3245
3246 bp = bge_lookup(pa);
3247 KASSERT(bp != NULL);
3248
3249 sc->sc_pc = pa->pa_pc;
3250 sc->sc_pcitag = pa->pa_tag;
3251 sc->bge_dev = self;
3252
3253 sc->bge_pa = *pa;
3254 pc = sc->sc_pc;
3255 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3256
3257 aprint_naive(": Ethernet controller\n");
3258 aprint_normal(": %s Ethernet\n", bp->bp_name);
3259
3260 /*
3261 * Map control/status registers.
3262 */
3263 DPRINTFN(5, ("Map control/status regs\n"));
3264 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3265 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3266 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3267 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3268
3269 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3270 aprint_error_dev(sc->bge_dev,
3271 "failed to enable memory mapping!\n");
3272 return;
3273 }
3274
3275 DPRINTFN(5, ("pci_mem_find\n"));
3276 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3277 switch (memtype) {
3278 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3279 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3280 #if 0
3281 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3282 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3283 &memaddr, &sc->bge_bsize) == 0)
3284 break;
3285 #else
3286 /*
3287 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3288 * system get NMI on boot (PR#48451). This problem might not be
3289 * the driver's bug but our PCI common part's bug. Until we
3290 * find a real reason, we ignore the prefetchable bit.
3291 */
3292 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3293 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3294 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3295 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3296 map_flags, &sc->bge_bhandle) == 0) {
3297 sc->bge_btag = pa->pa_memt;
3298 break;
3299 }
3300 }
3301 #endif
3302 /* FALLTHROUGH */
3303 default:
3304 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3305 return;
3306 }
3307
3308 sc->bge_txrx_stopping = false;
3309
3310 /* Save various chip information. */
3311 sc->bge_chipid = bge_chipid(pa);
3312 sc->bge_phy_addr = bge_phy_addr(sc);
3313
3314 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3315 &sc->bge_pciecap, NULL) != 0) {
3316 /* PCIe */
3317 sc->bge_flags |= BGEF_PCIE;
3318 /* Extract supported maximum payload size. */
3319 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3320 sc->bge_pciecap + PCIE_DCAP);
3321 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3322 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3323 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3324 sc->bge_expmrq = 2048;
3325 else
3326 sc->bge_expmrq = 4096;
3327 bge_set_max_readrq(sc);
3328 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3329 /* PCIe without PCIe cap */
3330 sc->bge_flags |= BGEF_PCIE;
3331 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3332 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3333 /* PCI-X */
3334 sc->bge_flags |= BGEF_PCIX;
3335 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3336 &sc->bge_pcixcap, NULL) == 0)
3337 aprint_error_dev(sc->bge_dev,
3338 "unable to find PCIX capability\n");
3339 }
3340
3341 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3342 /*
3343 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3344 * can clobber the chip's PCI config-space power control
3345 * registers, leaving the card in D3 powersave state. We do
3346 * not have memory-mapped registers in this state, so force
3347 * device into D0 state before starting initialization.
3348 */
3349 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3350 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3351 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3352 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3353 DELAY(1000); /* 27 usec is allegedly sufficient */
3354 }
3355
3356 /* Save chipset family. */
3357 switch (BGE_ASICREV(sc->bge_chipid)) {
3358 case BGE_ASICREV_BCM5717:
3359 case BGE_ASICREV_BCM5719:
3360 case BGE_ASICREV_BCM5720:
3361 sc->bge_flags |= BGEF_5717_PLUS;
3362 /* FALLTHROUGH */
3363 case BGE_ASICREV_BCM5762:
3364 case BGE_ASICREV_BCM57765:
3365 case BGE_ASICREV_BCM57766:
3366 if (!BGE_IS_5717_PLUS(sc))
3367 sc->bge_flags |= BGEF_57765_FAMILY;
3368 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3369 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3370 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3371 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3372 /*
3373 * Enable work around for DMA engine miscalculation
3374 * of TXMBUF available space.
3375 */
3376 sc->bge_flags |= BGEF_RDMA_BUG;
3377
3378 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3379 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3380 /* Jumbo frame on BCM5719 A0 does not work. */
3381 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3382 }
3383 }
3384 break;
3385 case BGE_ASICREV_BCM5755:
3386 case BGE_ASICREV_BCM5761:
3387 case BGE_ASICREV_BCM5784:
3388 case BGE_ASICREV_BCM5785:
3389 case BGE_ASICREV_BCM5787:
3390 case BGE_ASICREV_BCM57780:
3391 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3392 break;
3393 case BGE_ASICREV_BCM5700:
3394 case BGE_ASICREV_BCM5701:
3395 case BGE_ASICREV_BCM5703:
3396 case BGE_ASICREV_BCM5704:
3397 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3398 break;
3399 case BGE_ASICREV_BCM5714_A0:
3400 case BGE_ASICREV_BCM5780:
3401 case BGE_ASICREV_BCM5714:
3402 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3403 /* FALLTHROUGH */
3404 case BGE_ASICREV_BCM5750:
3405 case BGE_ASICREV_BCM5752:
3406 case BGE_ASICREV_BCM5906:
3407 sc->bge_flags |= BGEF_575X_PLUS;
3408 /* FALLTHROUGH */
3409 case BGE_ASICREV_BCM5705:
3410 sc->bge_flags |= BGEF_5705_PLUS;
3411 break;
3412 }
3413
3414 /* Identify chips with APE processor. */
3415 switch (BGE_ASICREV(sc->bge_chipid)) {
3416 case BGE_ASICREV_BCM5717:
3417 case BGE_ASICREV_BCM5719:
3418 case BGE_ASICREV_BCM5720:
3419 case BGE_ASICREV_BCM5761:
3420 case BGE_ASICREV_BCM5762:
3421 sc->bge_flags |= BGEF_APE;
3422 break;
3423 }
3424
3425 /*
3426 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3427 * not actually a MAC controller bug but an issue with the embedded
3428 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3429 */
3430 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3431 sc->bge_flags |= BGEF_40BIT_BUG;
3432
3433 /* Chips with APE need BAR2 access for APE registers/memory. */
3434 if ((sc->bge_flags & BGEF_APE) != 0) {
3435 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3436 #if 0
3437 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3438 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3439 &sc->bge_apesize)) {
3440 aprint_error_dev(sc->bge_dev,
3441 "couldn't map BAR2 memory\n");
3442 return;
3443 }
3444 #else
3445 /*
3446 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3447 * system get NMI on boot (PR#48451). This problem might not be
3448 * the driver's bug but our PCI common part's bug. Until we
3449 * find a real reason, we ignore the prefetchable bit.
3450 */
3451 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3452 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3453 aprint_error_dev(sc->bge_dev,
3454 "couldn't map BAR2 memory\n");
3455 return;
3456 }
3457
3458 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3459 if (bus_space_map(pa->pa_memt, memaddr,
3460 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3461 aprint_error_dev(sc->bge_dev,
3462 "couldn't map BAR2 memory\n");
3463 return;
3464 }
3465 sc->bge_apetag = pa->pa_memt;
3466 #endif
3467
3468 /* Enable APE register/memory access by host driver. */
3469 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3470 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3471 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3472 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3473 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3474
3475 bge_ape_lock_init(sc);
3476 bge_ape_read_fw_ver(sc);
3477 }
3478
3479 /* Identify the chips that use an CPMU. */
3480 if (BGE_IS_5717_PLUS(sc) ||
3481 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3482 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3483 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3484 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3485 sc->bge_flags |= BGEF_CPMU_PRESENT;
3486
3487 /*
3488 * When using the BCM5701 in PCI-X mode, data corruption has
3489 * been observed in the first few bytes of some received packets.
3490 * Aligning the packet buffer in memory eliminates the corruption.
3491 * Unfortunately, this misaligns the packet payloads. On platforms
3492 * which do not support unaligned accesses, we will realign the
3493 * payloads by copying the received packets.
3494 */
3495 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3496 sc->bge_flags & BGEF_PCIX)
3497 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3498
3499 if (BGE_IS_5700_FAMILY(sc))
3500 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3501
3502 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3503 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3504
3505 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3506 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3507 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3508 sc->bge_flags |= BGEF_IS_5788;
3509
3510 /*
3511 * Some controllers seem to require a special firmware to use
3512 * TSO. But the firmware is not available to FreeBSD and Linux
3513 * claims that the TSO performed by the firmware is slower than
3514 * hardware based TSO. Moreover the firmware based TSO has one
3515 * known bug which can't handle TSO if ethernet header + IP/TCP
3516 * header is greater than 80 bytes. The workaround for the TSO
3517 * bug exist but it seems it's too expensive than not using
3518 * TSO at all. Some hardware also have the TSO bug so limit
3519 * the TSO to the controllers that are not affected TSO issues
3520 * (e.g. 5755 or higher).
3521 */
3522 if (BGE_IS_5755_PLUS(sc)) {
3523 /*
3524 * BCM5754 and BCM5787 shares the same ASIC id so
3525 * explicit device id check is required.
3526 */
3527 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3528 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3529 sc->bge_flags |= BGEF_TSO;
3530 /* TSO on BCM5719 A0 does not work. */
3531 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3532 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3533 sc->bge_flags &= ~BGEF_TSO;
3534 }
3535
3536 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3537 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3538 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3539 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3540 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3541 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3542 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3543 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3544 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3545 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3546 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3547 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3548 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3549 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3550 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3551 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3552 /* These chips are 10/100 only. */
3553 capmask &= ~BMSR_EXTSTAT;
3554 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3555 }
3556
3557 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3558 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3559 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3560 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3561 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3562
3563 /* Set various PHY bug flags. */
3564 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3565 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3566 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3567 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3568 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3569 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3570 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3571 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3572 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3573 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3574 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3575 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3576 if (BGE_IS_5705_PLUS(sc) &&
3577 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3578 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3579 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3580 !BGE_IS_57765_PLUS(sc)) {
3581 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3582 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3583 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3584 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3585 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3586 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3587 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3588 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3589 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3590 } else
3591 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3592 }
3593
3594 /*
3595 * SEEPROM check.
3596 * First check if firmware knows we do not have SEEPROM.
3597 */
3598 if (prop_dictionary_get_bool(device_properties(self),
3599 "without-seeprom", &no_seeprom) && no_seeprom)
3600 sc->bge_flags |= BGEF_NO_EEPROM;
3601
3602 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3603 sc->bge_flags |= BGEF_NO_EEPROM;
3604
3605 /* Now check the 'ROM failed' bit on the RX CPU */
3606 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3607 sc->bge_flags |= BGEF_NO_EEPROM;
3608
3609 sc->bge_asf_mode = 0;
3610 /* No ASF if APE present. */
3611 if ((sc->bge_flags & BGEF_APE) == 0) {
3612 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3613 BGE_SRAM_DATA_SIG_MAGIC)) {
3614 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3615 BGE_HWCFG_ASF) {
3616 sc->bge_asf_mode |= ASF_ENABLE;
3617 sc->bge_asf_mode |= ASF_STACKUP;
3618 if (BGE_IS_575X_PLUS(sc))
3619 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3620 }
3621 }
3622 }
3623
3624 int counts[PCI_INTR_TYPE_SIZE] = {
3625 [PCI_INTR_TYPE_INTX] = 1,
3626 [PCI_INTR_TYPE_MSI] = 1,
3627 [PCI_INTR_TYPE_MSIX] = 1,
3628 };
3629 int max_type = PCI_INTR_TYPE_MSIX;
3630
3631 if (!bge_can_use_msi(sc)) {
3632 /* MSI broken, allow only INTx */
3633 max_type = PCI_INTR_TYPE_INTX;
3634 }
3635
3636 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3637 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3638 return;
3639 }
3640
3641 DPRINTFN(5, ("pci_intr_string\n"));
3642 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3643 sizeof(intrbuf));
3644 DPRINTFN(5, ("pci_intr_establish\n"));
3645 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3646 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3647 if (sc->bge_intrhand == NULL) {
3648 pci_intr_release(pc, sc->bge_pihp, 1);
3649 sc->bge_pihp = NULL;
3650
3651 aprint_error_dev(self, "couldn't establish interrupt");
3652 if (intrstr != NULL)
3653 aprint_error(" at %s", intrstr);
3654 aprint_error("\n");
3655 return;
3656 }
3657 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3658
3659 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3660 case PCI_INTR_TYPE_MSIX:
3661 case PCI_INTR_TYPE_MSI:
3662 KASSERT(bge_can_use_msi(sc));
3663 sc->bge_flags |= BGEF_MSI;
3664 break;
3665 default:
3666 /* nothing to do */
3667 break;
3668 }
3669
3670 char wqname[MAXCOMLEN];
3671 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->bge_dev));
3672 int error = workqueue_create(&sc->sc_reset_wq, wqname,
3673 bge_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK,
3674 WQ_MPSAFE);
3675 if (error) {
3676 aprint_error_dev(sc->bge_dev,
3677 "unable to create reset workqueue\n");
3678 return;
3679 }
3680
3681
3682 /*
3683 * All controllers except BCM5700 supports tagged status but
3684 * we use tagged status only for MSI case on BCM5717. Otherwise
3685 * MSI on BCM5717 does not work.
3686 */
3687 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3688 sc->bge_flags |= BGEF_TAGGED_STATUS;
3689
3690 /*
3691 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3692 * lock in bge_reset().
3693 */
3694 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3695 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3696 delay(1000);
3697 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3698
3699 bge_stop_fw(sc);
3700 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3701 if (bge_reset(sc))
3702 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3703
3704 /*
3705 * Read the hardware config word in the first 32k of NIC internal
3706 * memory, or fall back to the config word in the EEPROM.
3707 * Note: on some BCM5700 cards, this value appears to be unset.
3708 */
3709 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3710 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3711 BGE_SRAM_DATA_SIG_MAGIC) {
3712 uint32_t tmp;
3713
3714 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3715 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3716 BGE_SRAM_DATA_VER_SHIFT;
3717 if ((0 < tmp) && (tmp < 0x100))
3718 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3719 if (sc->bge_flags & BGEF_PCIE)
3720 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3721 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3722 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3723 if (BGE_IS_5717_PLUS(sc))
3724 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3725 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3726 bge_read_eeprom(sc, (void *)&hwcfg,
3727 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3728 hwcfg = be32toh(hwcfg);
3729 }
3730 aprint_normal_dev(sc->bge_dev,
3731 "HW config %08x, %08x, %08x, %08x %08x\n",
3732 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3733
3734 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3735 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3736
3737 if (bge_chipinit(sc)) {
3738 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3739 bge_release_resources(sc);
3740 return;
3741 }
3742
3743 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3744 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3745 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3746 DELAY(100);
3747 }
3748
3749 /* Set MI_MODE */
3750 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3751 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3752 mimode |= BGE_MIMODE_500KHZ_CONST;
3753 else
3754 mimode |= BGE_MIMODE_BASE;
3755 CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3756 DELAY(80);
3757
3758 /*
3759 * Get station address from the EEPROM.
3760 */
3761 if (bge_get_eaddr(sc, eaddr)) {
3762 aprint_error_dev(sc->bge_dev,
3763 "failed to read station address\n");
3764 bge_release_resources(sc);
3765 return;
3766 }
3767
3768 br = bge_lookup_rev(sc->bge_chipid);
3769
3770 if (br == NULL) {
3771 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3772 sc->bge_chipid);
3773 } else {
3774 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3775 br->br_name, sc->bge_chipid);
3776 }
3777 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3778
3779 /* Allocate the general information block and ring buffers. */
3780 if (pci_dma64_available(pa)) {
3781 sc->bge_dmatag = pa->pa_dmat64;
3782 sc->bge_dmatag32 = pa->pa_dmat;
3783 sc->bge_dma64 = true;
3784 } else {
3785 sc->bge_dmatag = pa->pa_dmat;
3786 sc->bge_dmatag32 = pa->pa_dmat;
3787 sc->bge_dma64 = false;
3788 }
3789
3790 /* 40bit DMA workaround */
3791 if (sizeof(bus_addr_t) > 4) {
3792 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3793 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3794
3795 if (bus_dmatag_subregion(olddmatag, 0,
3796 (bus_addr_t)__MASK(40),
3797 &(sc->bge_dmatag), BUS_DMA_WAITOK) != 0) {
3798 aprint_error_dev(self,
3799 "WARNING: failed to restrict dma range,"
3800 " falling back to parent bus dma range\n");
3801 sc->bge_dmatag = olddmatag;
3802 }
3803 }
3804 }
3805 SLIST_INIT(&sc->txdma_list);
3806 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3807 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3808 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3809 &sc->bge_ring_rseg, BUS_DMA_WAITOK)) {
3810 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3811 return;
3812 }
3813 DPRINTFN(5, ("bus_dmamem_map\n"));
3814 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3815 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3816 BUS_DMA_WAITOK)) {
3817 aprint_error_dev(sc->bge_dev,
3818 "can't map DMA buffers (%zu bytes)\n",
3819 sizeof(struct bge_ring_data));
3820 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3821 sc->bge_ring_rseg);
3822 return;
3823 }
3824 DPRINTFN(5, ("bus_dmamap_create\n"));
3825 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3826 sizeof(struct bge_ring_data), 0,
3827 BUS_DMA_WAITOK, &sc->bge_ring_map)) {
3828 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3829 bus_dmamem_unmap(sc->bge_dmatag, kva,
3830 sizeof(struct bge_ring_data));
3831 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3832 sc->bge_ring_rseg);
3833 return;
3834 }
3835 DPRINTFN(5, ("bus_dmamap_load\n"));
3836 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3837 sizeof(struct bge_ring_data), NULL,
3838 BUS_DMA_WAITOK)) {
3839 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3840 bus_dmamem_unmap(sc->bge_dmatag, kva,
3841 sizeof(struct bge_ring_data));
3842 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3843 sc->bge_ring_rseg);
3844 return;
3845 }
3846
3847 DPRINTFN(5, ("bzero\n"));
3848 sc->bge_rdata = (struct bge_ring_data *)kva;
3849
3850 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3851
3852 /* Try to allocate memory for jumbo buffers. */
3853 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3854 if (bge_alloc_jumbo_mem(sc)) {
3855 aprint_error_dev(sc->bge_dev,
3856 "jumbo buffer allocation failed\n");
3857 } else
3858 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3859 }
3860
3861 /* Set default tuneable values. */
3862 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3863 sc->bge_rx_coal_ticks = 150;
3864 sc->bge_rx_max_coal_bds = 64;
3865 sc->bge_tx_coal_ticks = 300;
3866 sc->bge_tx_max_coal_bds = 400;
3867 if (BGE_IS_5705_PLUS(sc)) {
3868 sc->bge_tx_coal_ticks = (12 * 5);
3869 sc->bge_tx_max_coal_bds = (12 * 5);
3870 aprint_verbose_dev(sc->bge_dev,
3871 "setting short Tx thresholds\n");
3872 }
3873
3874 if (BGE_IS_5717_PLUS(sc))
3875 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3876 else if (BGE_IS_5705_PLUS(sc))
3877 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3878 else
3879 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3880
3881 sc->sc_mcast_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3882 sc->sc_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
3883
3884 /* Set up ifnet structure */
3885 ifp = &sc->ethercom.ec_if;
3886 ifp->if_softc = sc;
3887 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3888 ifp->if_extflags = IFEF_MPSAFE;
3889 ifp->if_ioctl = bge_ioctl;
3890 ifp->if_stop = bge_stop;
3891 ifp->if_start = bge_start;
3892 ifp->if_init = bge_init;
3893 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3894 IFQ_SET_READY(&ifp->if_snd);
3895 DPRINTFN(5, ("strcpy if_xname\n"));
3896 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3897
3898 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3899 sc->ethercom.ec_if.if_capabilities |=
3900 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3901 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3902 sc->ethercom.ec_if.if_capabilities |=
3903 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3904 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3905 #endif
3906 sc->ethercom.ec_capabilities |=
3907 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3908 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3909
3910 if (sc->bge_flags & BGEF_TSO)
3911 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3912
3913 /*
3914 * Do MII setup.
3915 */
3916 DPRINTFN(5, ("mii setup\n"));
3917 mii->mii_ifp = ifp;
3918 mii->mii_readreg = bge_miibus_readreg;
3919 mii->mii_writereg = bge_miibus_writereg;
3920 mii->mii_statchg = bge_miibus_statchg;
3921
3922 /*
3923 * Figure out what sort of media we have by checking the hardware
3924 * config word. Note: on some BCM5700 cards, this value appears to be
3925 * unset. If that's the case, we have to rely on identifying the NIC
3926 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3927 * The SysKonnect SK-9D41 is a 1000baseSX card.
3928 */
3929 if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3930 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3931 if (BGE_IS_5705_PLUS(sc)) {
3932 sc->bge_flags |= BGEF_FIBER_MII;
3933 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3934 } else
3935 sc->bge_flags |= BGEF_FIBER_TBI;
3936 }
3937
3938 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3939 if (BGE_IS_JUMBO_CAPABLE(sc))
3940 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3941
3942 /* set phyflags and chipid before mii_attach() */
3943 dict = device_properties(self);
3944 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3945 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3946
3947 macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3948 macmode &= ~BGE_MACMODE_PORTMODE;
3949 /* Initialize ifmedia structures. */
3950 if (sc->bge_flags & BGEF_FIBER_TBI) {
3951 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3952 macmode | BGE_PORTMODE_TBI);
3953 DELAY(40);
3954
3955 struct ifmedia * const ifm = &sc->bge_ifmedia;
3956 sc->ethercom.ec_ifmedia = ifm;
3957
3958 ifmedia_init_with_lock(ifm, IFM_IMASK,
3959 bge_ifmedia_upd, bge_ifmedia_sts, sc->sc_intr_lock);
3960 ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX, 0, NULL);
3961 ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
3962 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
3963 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
3964 /* Pretend the user requested this setting */
3965 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3966 } else {
3967 uint16_t phyreg;
3968 int rv;
3969 /*
3970 * Do transceiver setup and tell the firmware the
3971 * driver is down so we can try to get access the
3972 * probe if ASF is running. Retry a couple of times
3973 * if we get a conflict with the ASF firmware accessing
3974 * the PHY.
3975 */
3976 if (sc->bge_flags & BGEF_FIBER_MII)
3977 macmode |= BGE_PORTMODE_GMII;
3978 else
3979 macmode |= BGE_PORTMODE_MII;
3980 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3981 DELAY(40);
3982
3983 /*
3984 * Do transceiver setup and tell the firmware the
3985 * driver is down so we can try to get access the
3986 * probe if ASF is running. Retry a couple of times
3987 * if we get a conflict with the ASF firmware accessing
3988 * the PHY.
3989 */
3990 trys = 0;
3991 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3992 sc->ethercom.ec_mii = mii;
3993 ifmedia_init_with_lock(&mii->mii_media, 0, bge_ifmedia_upd,
3994 bge_ifmedia_sts, sc->sc_intr_lock);
3995 mii_flags = MIIF_DOPAUSE;
3996 if (sc->bge_flags & BGEF_FIBER_MII)
3997 mii_flags |= MIIF_HAVEFIBER;
3998 again:
3999 bge_asf_driver_up(sc);
4000 mutex_enter(sc->sc_intr_lock);
4001 rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
4002 MII_BMCR, &phyreg);
4003 if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
4004 int i;
4005
4006 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
4007 MII_BMCR, BMCR_RESET);
4008 /* Wait up to 500ms for it to complete. */
4009 for (i = 0; i < 500; i++) {
4010 bge_miibus_readreg(sc->bge_dev,
4011 sc->bge_phy_addr, MII_BMCR, &phyreg);
4012 if ((phyreg & BMCR_RESET) == 0)
4013 break;
4014 DELAY(1000);
4015 }
4016 }
4017 mutex_exit(sc->sc_intr_lock);
4018
4019 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
4020 MII_OFFSET_ANY, mii_flags);
4021
4022 if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
4023 goto again;
4024
4025 if (LIST_EMPTY(&mii->mii_phys)) {
4026 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4027 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
4028 0, NULL);
4029 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
4030 } else
4031 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
4032
4033 /*
4034 * Now tell the firmware we are going up after probing the PHY
4035 */
4036 if (sc->bge_asf_mode & ASF_STACKUP)
4037 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4038 }
4039
4040 /*
4041 * Call MI attach routine.
4042 */
4043 DPRINTFN(5, ("if_initialize\n"));
4044 if_initialize(ifp);
4045 ifp->if_percpuq = if_percpuq_create(ifp);
4046 if_deferred_start_init(ifp, NULL);
4047 if_register(ifp);
4048
4049 DPRINTFN(5, ("ether_ifattach\n"));
4050 ether_ifattach(ifp, eaddr);
4051 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4052
4053 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4054 RND_TYPE_NET, RND_FLAG_DEFAULT);
4055 #ifdef BGE_EVENT_COUNTERS
4056 /*
4057 * Attach event counters.
4058 */
4059 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4060 NULL, device_xname(sc->bge_dev), "intr");
4061 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
4062 NULL, device_xname(sc->bge_dev), "intr_spurious");
4063 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
4064 NULL, device_xname(sc->bge_dev), "intr_spurious2");
4065 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4066 NULL, device_xname(sc->bge_dev), "tx_xoff");
4067 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4068 NULL, device_xname(sc->bge_dev), "tx_xon");
4069 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4070 NULL, device_xname(sc->bge_dev), "rx_xoff");
4071 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4072 NULL, device_xname(sc->bge_dev), "rx_xon");
4073 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4074 NULL, device_xname(sc->bge_dev), "rx_macctl");
4075 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4076 NULL, device_xname(sc->bge_dev), "xoffentered");
4077 #endif /* BGE_EVENT_COUNTERS */
4078 DPRINTFN(5, ("callout_init\n"));
4079 callout_init(&sc->bge_timeout, CALLOUT_MPSAFE);
4080 callout_setfunc(&sc->bge_timeout, bge_tick, sc);
4081
4082 if (pmf_device_register(self, NULL, NULL))
4083 pmf_class_network_register(self, ifp);
4084 else
4085 aprint_error_dev(self, "couldn't establish power handler\n");
4086
4087 bge_sysctl_init(sc);
4088
4089 #ifdef BGE_DEBUG
4090 bge_debug_info(sc);
4091 #endif
4092
4093 sc->bge_attached = true;
4094 }
4095
4096 /*
4097 * Stop all chip I/O so that the kernel's probe routines don't
4098 * get confused by errant DMAs when rebooting.
4099 */
4100 static int
4101 bge_detach(device_t self, int flags __unused)
4102 {
4103 struct bge_softc * const sc = device_private(self);
4104 struct ifnet * const ifp = &sc->ethercom.ec_if;
4105
4106 if (!sc->bge_attached)
4107 return 0;
4108
4109 IFNET_LOCK(ifp);
4110
4111 /* Stop the interface. Callouts are stopped in it. */
4112 bge_stop(ifp, 1);
4113 sc->bge_detaching = true;
4114
4115 IFNET_UNLOCK(ifp);
4116
4117 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4118
4119 ether_ifdetach(ifp);
4120 if_detach(ifp);
4121
4122 /* Delete all remaining media. */
4123 ifmedia_fini(&sc->bge_mii.mii_media);
4124
4125 bge_release_resources(sc);
4126
4127 return 0;
4128 }
4129
4130 static void
4131 bge_release_resources(struct bge_softc *sc)
4132 {
4133
4134 /* Detach sysctl */
4135 if (sc->bge_log != NULL)
4136 sysctl_teardown(&sc->bge_log);
4137
4138 callout_destroy(&sc->bge_timeout);
4139
4140 #ifdef BGE_EVENT_COUNTERS
4141 /* Detach event counters. */
4142 evcnt_detach(&sc->bge_ev_intr);
4143 evcnt_detach(&sc->bge_ev_intr_spurious);
4144 evcnt_detach(&sc->bge_ev_intr_spurious2);
4145 evcnt_detach(&sc->bge_ev_tx_xoff);
4146 evcnt_detach(&sc->bge_ev_tx_xon);
4147 evcnt_detach(&sc->bge_ev_rx_xoff);
4148 evcnt_detach(&sc->bge_ev_rx_xon);
4149 evcnt_detach(&sc->bge_ev_rx_macctl);
4150 evcnt_detach(&sc->bge_ev_xoffentered);
4151 #endif /* BGE_EVENT_COUNTERS */
4152
4153 /* Disestablish the interrupt handler */
4154 if (sc->bge_intrhand != NULL) {
4155 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4156 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4157 sc->bge_intrhand = NULL;
4158 }
4159
4160 if (sc->bge_cdata.bge_jumbo_buf != NULL)
4161 bge_free_jumbo_mem(sc);
4162
4163 if (sc->bge_dmatag != NULL) {
4164 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4165 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4166 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4167 sizeof(struct bge_ring_data));
4168 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4169 sc->bge_ring_rseg);
4170 }
4171
4172 /* Unmap the device registers */
4173 if (sc->bge_bsize != 0) {
4174 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4175 sc->bge_bsize = 0;
4176 }
4177
4178 /* Unmap the APE registers */
4179 if (sc->bge_apesize != 0) {
4180 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4181 sc->bge_apesize);
4182 sc->bge_apesize = 0;
4183 }
4184 if (sc->sc_intr_lock) {
4185 mutex_obj_free(sc->sc_intr_lock);
4186 sc->sc_intr_lock = NULL;
4187 }
4188 if (sc->sc_mcast_lock) {
4189 mutex_obj_free(sc->sc_mcast_lock);
4190 sc->sc_mcast_lock = NULL;
4191 }
4192 }
4193
4194 static int
4195 bge_reset(struct bge_softc *sc)
4196 {
4197 uint32_t cachesize, command;
4198 uint32_t reset, mac_mode, mac_mode_mask;
4199 pcireg_t devctl, reg;
4200 int i, val;
4201 void (*write_op)(struct bge_softc *, int, int);
4202
4203 /* Make mask for BGE_MAC_MODE register. */
4204 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4205 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4206 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4207 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4208 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4209
4210 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4211 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4212 if (sc->bge_flags & BGEF_PCIE)
4213 write_op = bge_writemem_direct;
4214 else
4215 write_op = bge_writemem_ind;
4216 } else
4217 write_op = bge_writereg_ind;
4218
4219 /* 57XX step 4 */
4220 /* Acquire the NVM lock */
4221 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4222 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4223 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4224 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4225 for (i = 0; i < 8000; i++) {
4226 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4227 BGE_NVRAMSWARB_GNT1)
4228 break;
4229 DELAY(20);
4230 }
4231 if (i == 8000) {
4232 printf("%s: NVRAM lock timedout!\n",
4233 device_xname(sc->bge_dev));
4234 }
4235 }
4236
4237 /* Take APE lock when performing reset. */
4238 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4239
4240 /* 57XX step 3 */
4241 /* Save some important PCI state. */
4242 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4243 /* 5718 reset step 3 */
4244 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4245
4246 /* 5718 reset step 5, 57XX step 5b-5d */
4247 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4248 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4249 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4250
4251 /* XXX ???: Disable fastboot on controllers that support it. */
4252 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4253 BGE_IS_5755_PLUS(sc))
4254 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4255
4256 /* 5718 reset step 2, 57XX step 6 */
4257 /*
4258 * Write the magic number to SRAM at offset 0xB50.
4259 * When firmware finishes its initialization it will
4260 * write ~BGE_MAGIC_NUMBER to the same location.
4261 */
4262 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4263
4264 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4265 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4266 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4267 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4268 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4269 }
4270
4271 /* 5718 reset step 6, 57XX step 7 */
4272 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4273 /*
4274 * XXX: from FreeBSD/Linux; no documentation
4275 */
4276 if (sc->bge_flags & BGEF_PCIE) {
4277 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4278 !BGE_IS_57765_PLUS(sc) &&
4279 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4280 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4281 /* PCI Express 1.0 system */
4282 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4283 BGE_PHY_PCIE_SCRAM_MODE);
4284 }
4285 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4286 /*
4287 * Prevent PCI Express link training
4288 * during global reset.
4289 */
4290 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4291 reset |= (1 << 29);
4292 }
4293 }
4294
4295 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4296 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4297 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4298 i | BGE_VCPU_STATUS_DRV_RESET);
4299 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4300 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4301 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4302 }
4303
4304 /*
4305 * Set GPHY Power Down Override to leave GPHY
4306 * powered up in D0 uninitialized.
4307 */
4308 if (BGE_IS_5705_PLUS(sc) &&
4309 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4310 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4311
4312 /* Issue global reset */
4313 write_op(sc, BGE_MISC_CFG, reset);
4314
4315 /* 5718 reset step 7, 57XX step 8 */
4316 if (sc->bge_flags & BGEF_PCIE)
4317 delay(100*1000); /* too big */
4318 else
4319 delay(1000);
4320
4321 if (sc->bge_flags & BGEF_PCIE) {
4322 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4323 DELAY(500000);
4324 /* XXX: Magic Numbers */
4325 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4326 BGE_PCI_UNKNOWN0);
4327 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4328 BGE_PCI_UNKNOWN0,
4329 reg | (1 << 15));
4330 }
4331 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4332 sc->bge_pciecap + PCIE_DCSR);
4333 /* Clear enable no snoop and disable relaxed ordering. */
4334 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4335 PCIE_DCSR_ENA_NO_SNOOP);
4336
4337 /* Set PCIE max payload size to 128 for older PCIe devices */
4338 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4339 devctl &= ~(0x00e0);
4340 /* Clear device status register. Write 1b to clear */
4341 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4342 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4343 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4344 sc->bge_pciecap + PCIE_DCSR, devctl);
4345 bge_set_max_readrq(sc);
4346 }
4347
4348 /* From Linux: dummy read to flush PCI posted writes */
4349 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4350
4351 /*
4352 * Reset some of the PCI state that got zapped by reset
4353 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4354 * set, too.
4355 */
4356 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4357 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4358 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4359 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4360 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4361 (sc->bge_flags & BGEF_PCIX) != 0)
4362 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4363 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4364 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4365 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4366 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4367 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4368 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4369 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4370
4371 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4372 if (sc->bge_flags & BGEF_PCIX) {
4373 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4374 + PCIX_CMD);
4375 /* Set max memory read byte count to 2K */
4376 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4377 reg &= ~PCIX_CMD_BYTECNT_MASK;
4378 reg |= PCIX_CMD_BCNT_2048;
4379 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4380 /*
4381 * For 5704, set max outstanding split transaction
4382 * field to 0 (0 means it supports 1 request)
4383 */
4384 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4385 | PCIX_CMD_BYTECNT_MASK);
4386 reg |= PCIX_CMD_BCNT_2048;
4387 }
4388 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4389 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4390 }
4391
4392 /* 5718 reset step 10, 57XX step 12 */
4393 /* Enable memory arbiter. */
4394 if (BGE_IS_5714_FAMILY(sc)) {
4395 val = CSR_READ_4(sc, BGE_MARB_MODE);
4396 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4397 } else
4398 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4399
4400 /* XXX 5721, 5751 and 5752 */
4401 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4402 /* Step 19: */
4403 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4404 /* Step 20: */
4405 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4406 }
4407
4408 /* 5718 reset step 12, 57XX step 15 and 16 */
4409 /* Fix up byte swapping */
4410 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4411
4412 /* 5718 reset step 13, 57XX step 17 */
4413 /* Poll until the firmware initialization is complete */
4414 bge_poll_fw(sc);
4415
4416 /* 57XX step 21 */
4417 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4418 pcireg_t msidata;
4419
4420 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4421 BGE_PCI_MSI_DATA);
4422 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4423 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4424 msidata);
4425 }
4426
4427 /* 57XX step 18 */
4428 /* Write mac mode. */
4429 val = CSR_READ_4(sc, BGE_MAC_MODE);
4430 /* Restore mac_mode_mask's bits using mac_mode */
4431 val = (val & ~mac_mode_mask) | mac_mode;
4432 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4433 DELAY(40);
4434
4435 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4436
4437 /*
4438 * The 5704 in TBI mode apparently needs some special
4439 * adjustment to insure the SERDES drive level is set
4440 * to 1.2V.
4441 */
4442 if (sc->bge_flags & BGEF_FIBER_TBI &&
4443 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4444 uint32_t serdescfg;
4445
4446 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4447 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4448 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4449 }
4450
4451 if (sc->bge_flags & BGEF_PCIE &&
4452 !BGE_IS_57765_PLUS(sc) &&
4453 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4454 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4455 uint32_t v;
4456
4457 /* Enable PCI Express bug fix */
4458 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4459 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4460 v | BGE_TLP_DATA_FIFO_PROTECT);
4461 }
4462
4463 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4464 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4465 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4466
4467 return 0;
4468 }
4469
4470 /*
4471 * Frame reception handling. This is called if there's a frame
4472 * on the receive return list.
4473 *
4474 * Note: we have to be able to handle two possibilities here:
4475 * 1) the frame is from the jumbo receive ring
4476 * 2) the frame is from the standard receive ring
4477 */
4478
4479 static void
4480 bge_rxeof(struct bge_softc *sc)
4481 {
4482 struct ifnet * const ifp = &sc->ethercom.ec_if;
4483 uint16_t rx_prod, rx_cons;
4484 int stdcnt = 0, jumbocnt = 0;
4485 bus_dmamap_t dmamap;
4486 bus_addr_t offset, toff;
4487 bus_size_t tlen;
4488 int tosync;
4489
4490 KASSERT(mutex_owned(sc->sc_intr_lock));
4491
4492 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4493 offsetof(struct bge_ring_data, bge_status_block),
4494 sizeof(struct bge_status_block),
4495 BUS_DMASYNC_POSTREAD);
4496
4497 rx_cons = sc->bge_rx_saved_considx;
4498 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4499
4500 /* Nothing to do */
4501 if (rx_cons == rx_prod)
4502 return;
4503
4504 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4505 tosync = rx_prod - rx_cons;
4506
4507 if (tosync != 0)
4508 rnd_add_uint32(&sc->rnd_source, tosync);
4509
4510 toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
4511
4512 if (tosync < 0) {
4513 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4514 sizeof(struct bge_rx_bd);
4515 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4516 toff, tlen, BUS_DMASYNC_POSTREAD);
4517 tosync = rx_prod;
4518 toff = offset;
4519 }
4520
4521 if (tosync != 0) {
4522 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4523 toff, tosync * sizeof(struct bge_rx_bd),
4524 BUS_DMASYNC_POSTREAD);
4525 }
4526
4527 while (rx_cons != rx_prod) {
4528 struct bge_rx_bd *cur_rx;
4529 uint32_t rxidx;
4530 struct mbuf *m = NULL;
4531
4532 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4533
4534 rxidx = cur_rx->bge_idx;
4535 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4536
4537 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4538 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4539 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4540 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4541 jumbocnt++;
4542 bus_dmamap_sync(sc->bge_dmatag,
4543 sc->bge_cdata.bge_rx_jumbo_map,
4544 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4545 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4546 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4547 if_statinc(ifp, if_ierrors);
4548 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4549 continue;
4550 }
4551 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4552 NULL) == ENOBUFS) {
4553 if_statinc(ifp, if_ierrors);
4554 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4555 continue;
4556 }
4557 } else {
4558 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4559 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4560
4561 stdcnt++;
4562 sc->bge_std_cnt--;
4563
4564 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4565 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4566 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4567 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4568
4569 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4570 m_free(m);
4571 if_statinc(ifp, if_ierrors);
4572 continue;
4573 }
4574 }
4575
4576 #ifndef __NO_STRICT_ALIGNMENT
4577 /*
4578 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4579 * the Rx buffer has the layer-2 header unaligned.
4580 * If our CPU requires alignment, re-align by copying.
4581 */
4582 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4583 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4584 cur_rx->bge_len);
4585 m->m_data += ETHER_ALIGN;
4586 }
4587 #endif
4588
4589 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4590 m_set_rcvif(m, ifp);
4591
4592 bge_rxcsum(sc, cur_rx, m);
4593
4594 /*
4595 * If we received a packet with a vlan tag, pass it
4596 * to vlan_input() instead of ether_input().
4597 */
4598 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4599 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4600
4601 if_percpuq_enqueue(ifp->if_percpuq, m);
4602 }
4603
4604 sc->bge_rx_saved_considx = rx_cons;
4605 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4606 if (stdcnt)
4607 bge_fill_rx_ring_std(sc);
4608 if (jumbocnt)
4609 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4610 }
4611
4612 static void
4613 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4614 {
4615
4616 if (BGE_IS_57765_PLUS(sc)) {
4617 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4618 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4619 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4620 if ((cur_rx->bge_error_flag &
4621 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4622 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4623 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4624 m->m_pkthdr.csum_data =
4625 cur_rx->bge_tcp_udp_csum;
4626 m->m_pkthdr.csum_flags |=
4627 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4628 }
4629 }
4630 } else {
4631 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4632 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4633 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4634 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4635 /*
4636 * Rx transport checksum-offload may also
4637 * have bugs with packets which, when transmitted,
4638 * were `runts' requiring padding.
4639 */
4640 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4641 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4642 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4643 m->m_pkthdr.csum_data =
4644 cur_rx->bge_tcp_udp_csum;
4645 m->m_pkthdr.csum_flags |=
4646 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4647 }
4648 }
4649 }
4650
4651 static void
4652 bge_txeof(struct bge_softc *sc)
4653 {
4654 struct ifnet * const ifp = &sc->ethercom.ec_if;
4655 struct bge_tx_bd *cur_tx = NULL;
4656 struct txdmamap_pool_entry *dma;
4657 bus_addr_t offset, toff;
4658 bus_size_t tlen;
4659 int tosync;
4660 struct mbuf *m;
4661
4662 KASSERT(mutex_owned(sc->sc_intr_lock));
4663
4664 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4665 offsetof(struct bge_ring_data, bge_status_block),
4666 sizeof(struct bge_status_block),
4667 BUS_DMASYNC_POSTREAD);
4668
4669 const uint16_t hw_cons_idx =
4670 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx;
4671 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4672 tosync = hw_cons_idx - sc->bge_tx_saved_considx;
4673
4674 if (tosync != 0)
4675 rnd_add_uint32(&sc->rnd_source, tosync);
4676
4677 toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
4678
4679 if (tosync < 0) {
4680 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4681 sizeof(struct bge_tx_bd);
4682 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4683 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4684 tosync = hw_cons_idx;
4685 toff = offset;
4686 }
4687
4688 if (tosync != 0) {
4689 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4690 toff, tosync * sizeof(struct bge_tx_bd),
4691 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4692 }
4693
4694 /*
4695 * Go through our tx ring and free mbufs for those
4696 * frames that have been sent.
4697 */
4698 while (sc->bge_tx_saved_considx != hw_cons_idx) {
4699 uint32_t idx = sc->bge_tx_saved_considx;
4700 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4701 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4702 if_statinc(ifp, if_opackets);
4703 m = sc->bge_cdata.bge_tx_chain[idx];
4704 if (m != NULL) {
4705 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4706 dma = sc->txdma[idx];
4707 if (dma->is_dma32) {
4708 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4709 0, dma->dmamap32->dm_mapsize,
4710 BUS_DMASYNC_POSTWRITE);
4711 bus_dmamap_unload(
4712 sc->bge_dmatag32, dma->dmamap32);
4713 } else {
4714 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4715 0, dma->dmamap->dm_mapsize,
4716 BUS_DMASYNC_POSTWRITE);
4717 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4718 }
4719 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4720 sc->txdma[idx] = NULL;
4721
4722 m_freem(m);
4723 }
4724 sc->bge_txcnt--;
4725 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4726 sc->bge_tx_sending = false;
4727 }
4728 }
4729
4730 static int
4731 bge_intr(void *xsc)
4732 {
4733 struct bge_softc * const sc = xsc;
4734 struct ifnet * const ifp = &sc->ethercom.ec_if;
4735 uint32_t pcistate, statusword, statustag;
4736 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4737
4738 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4739 if (BGE_IS_5717_PLUS(sc))
4740 intrmask = 0;
4741
4742 mutex_enter(sc->sc_intr_lock);
4743 if (sc->bge_txrx_stopping) {
4744 mutex_exit(sc->sc_intr_lock);
4745 return 1;
4746 }
4747
4748 /*
4749 * It is possible for the interrupt to arrive before
4750 * the status block is updated prior to the interrupt.
4751 * Reading the PCI State register will confirm whether the
4752 * interrupt is ours and will flush the status block.
4753 */
4754 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4755
4756 /* read status word from status block */
4757 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4758 offsetof(struct bge_ring_data, bge_status_block),
4759 sizeof(struct bge_status_block),
4760 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4761 statusword = sc->bge_rdata->bge_status_block.bge_status;
4762 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4763
4764 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4765 if (sc->bge_lasttag == statustag &&
4766 (~pcistate & intrmask)) {
4767 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4768 mutex_exit(sc->sc_intr_lock);
4769 return 0;
4770 }
4771 sc->bge_lasttag = statustag;
4772 } else {
4773 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4774 !(~pcistate & intrmask)) {
4775 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4776 mutex_exit(sc->sc_intr_lock);
4777 return 0;
4778 }
4779 statustag = 0;
4780 }
4781 /* Ack interrupt and stop others from occurring. */
4782 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4783 BGE_EVCNT_INCR(sc->bge_ev_intr);
4784
4785 /* clear status word */
4786 sc->bge_rdata->bge_status_block.bge_status = 0;
4787
4788 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4789 offsetof(struct bge_ring_data, bge_status_block),
4790 sizeof(struct bge_status_block),
4791 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4792
4793 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4794 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4795 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4796 bge_link_upd(sc);
4797
4798 /* Check RX return ring producer/consumer */
4799 bge_rxeof(sc);
4800
4801 /* Check TX ring producer/consumer */
4802 bge_txeof(sc);
4803
4804 if (sc->bge_pending_rxintr_change) {
4805 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4806 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4807
4808 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4809 DELAY(10);
4810 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4811
4812 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4813 DELAY(10);
4814 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4815
4816 sc->bge_pending_rxintr_change = false;
4817 }
4818 bge_handle_events(sc);
4819
4820 /* Re-enable interrupts. */
4821 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4822
4823 if_schedule_deferred_start(ifp);
4824
4825 mutex_exit(sc->sc_intr_lock);
4826
4827 return 1;
4828 }
4829
4830 static void
4831 bge_asf_driver_up(struct bge_softc *sc)
4832 {
4833 if (sc->bge_asf_mode & ASF_STACKUP) {
4834 /* Send ASF heartbeat approx. every 2s */
4835 if (sc->bge_asf_count)
4836 sc->bge_asf_count --;
4837 else {
4838 sc->bge_asf_count = 2;
4839
4840 bge_wait_for_event_ack(sc);
4841
4842 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4843 BGE_FW_CMD_DRV_ALIVE3);
4844 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4845 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4846 BGE_FW_HB_TIMEOUT_SEC);
4847 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4848 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4849 BGE_RX_CPU_DRV_EVENT);
4850 }
4851 }
4852 }
4853
4854 static void
4855 bge_tick(void *xsc)
4856 {
4857 struct bge_softc * const sc = xsc;
4858 struct ifnet * const ifp = &sc->ethercom.ec_if;
4859 struct mii_data * const mii = &sc->bge_mii;
4860
4861 mutex_enter(sc->sc_intr_lock);
4862
4863 if (BGE_IS_5705_PLUS(sc))
4864 bge_stats_update_regs(sc);
4865 else
4866 bge_stats_update(sc);
4867
4868 if (sc->bge_flags & BGEF_FIBER_TBI) {
4869 /*
4870 * Since in TBI mode auto-polling can't be used we should poll
4871 * link status manually. Here we register pending link event
4872 * and trigger interrupt.
4873 */
4874 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4875 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4876 } else {
4877 /*
4878 * Do not touch PHY if we have link up. This could break
4879 * IPMI/ASF mode or produce extra input errors.
4880 * (extra input errors was reported for bcm5701 & bcm5704).
4881 */
4882 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4883 mii_tick(mii);
4884 }
4885 }
4886
4887 bge_asf_driver_up(sc);
4888
4889 const bool ok = bge_watchdog_tick(ifp);
4890 if (ok)
4891 callout_schedule(&sc->bge_timeout, hz);
4892 mutex_exit(sc->sc_intr_lock);
4893 }
4894
4895 static void
4896 bge_stats_update_regs(struct bge_softc *sc)
4897 {
4898 struct ifnet * const ifp = &sc->ethercom.ec_if;
4899
4900 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4901
4902 if_statadd_ref(ifp, nsr, if_collisions,
4903 CSR_READ_4(sc, BGE_MAC_STATS +
4904 offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
4905
4906 /*
4907 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4908 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4909 * (silicon bug). There's no reliable workaround so just
4910 * ignore the counter
4911 */
4912 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4913 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4914 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4915 if_statadd_ref(ifp, nsr, if_ierrors,
4916 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4917 }
4918 if_statadd_ref(ifp, nsr, if_ierrors,
4919 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
4920 if_statadd_ref(ifp, nsr, if_ierrors,
4921 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
4922
4923 IF_STAT_PUTREF(ifp);
4924
4925 if (sc->bge_flags & BGEF_RDMA_BUG) {
4926 uint32_t val, ucast, mcast, bcast;
4927
4928 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4929 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4930 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4931 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4932 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4933 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4934
4935 /*
4936 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4937 * frames, it's safe to disable workaround for DMA engine's
4938 * miscalculation of TXMBUF space.
4939 */
4940 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4941 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4942 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4943 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4944 else
4945 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4946 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4947 sc->bge_flags &= ~BGEF_RDMA_BUG;
4948 }
4949 }
4950 }
4951
4952 static void
4953 bge_stats_update(struct bge_softc *sc)
4954 {
4955 struct ifnet * const ifp = &sc->ethercom.ec_if;
4956 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4957
4958 #define READ_STAT(sc, stats, stat) \
4959 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4960
4961 uint64_t collisions =
4962 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4963 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4964 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4965 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
4966
4967 if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
4968 sc->bge_if_collisions = collisions;
4969
4970
4971 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4972 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4973 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4974 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4975 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4976 READ_STAT(sc, stats,
4977 xoffPauseFramesReceived.bge_addr_lo));
4978 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4979 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4980 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4981 READ_STAT(sc, stats,
4982 macControlFramesReceived.bge_addr_lo));
4983 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4984 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4985
4986 #undef READ_STAT
4987 }
4988
4989 /*
4990 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4991 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4992 * but when such padded frames employ the bge IP/TCP checksum offload,
4993 * the hardware checksum assist gives incorrect results (possibly
4994 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4995 * If we pad such runts with zeros, the onboard checksum comes out correct.
4996 */
4997 static inline int
4998 bge_cksum_pad(struct mbuf *pkt)
4999 {
5000 struct mbuf *last = NULL;
5001 int padlen;
5002
5003 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
5004
5005 /* if there's only the packet-header and we can pad there, use it. */
5006 if (pkt->m_pkthdr.len == pkt->m_len &&
5007 M_TRAILINGSPACE(pkt) >= padlen) {
5008 last = pkt;
5009 } else {
5010 /*
5011 * Walk packet chain to find last mbuf. We will either
5012 * pad there, or append a new mbuf and pad it
5013 * (thus perhaps avoiding the bcm5700 dma-min bug).
5014 */
5015 for (last = pkt; last->m_next != NULL; last = last->m_next) {
5016 continue; /* do nothing */
5017 }
5018
5019 /* `last' now points to last in chain. */
5020 if (M_TRAILINGSPACE(last) < padlen) {
5021 /* Allocate new empty mbuf, pad it. Compact later. */
5022 struct mbuf *n;
5023 MGET(n, M_DONTWAIT, MT_DATA);
5024 if (n == NULL)
5025 return ENOBUFS;
5026 n->m_len = 0;
5027 last->m_next = n;
5028 last = n;
5029 }
5030 }
5031
5032 KDASSERT(!M_READONLY(last));
5033 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
5034
5035 /* Now zero the pad area, to avoid the bge cksum-assist bug */
5036 memset(mtod(last, char *) + last->m_len, 0, padlen);
5037 last->m_len += padlen;
5038 pkt->m_pkthdr.len += padlen;
5039 return 0;
5040 }
5041
5042 /*
5043 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
5044 */
5045 static inline int
5046 bge_compact_dma_runt(struct mbuf *pkt)
5047 {
5048 struct mbuf *m, *prev;
5049 int totlen;
5050
5051 prev = NULL;
5052 totlen = 0;
5053
5054 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
5055 int mlen = m->m_len;
5056 int shortfall = 8 - mlen ;
5057
5058 totlen += mlen;
5059 if (mlen == 0)
5060 continue;
5061 if (mlen >= 8)
5062 continue;
5063
5064 /*
5065 * If we get here, mbuf data is too small for DMA engine.
5066 * Try to fix by shuffling data to prev or next in chain.
5067 * If that fails, do a compacting deep-copy of the whole chain.
5068 */
5069
5070 /* Internal frag. If fits in prev, copy it there. */
5071 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5072 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5073 prev->m_len += mlen;
5074 m->m_len = 0;
5075 /* XXX stitch chain */
5076 prev->m_next = m_free(m);
5077 m = prev;
5078 continue;
5079 } else if (m->m_next != NULL &&
5080 M_TRAILINGSPACE(m) >= shortfall &&
5081 m->m_next->m_len >= (8 + shortfall)) {
5082 /* m is writable and have enough data in next, pull up. */
5083
5084 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5085 shortfall);
5086 m->m_len += shortfall;
5087 m->m_next->m_len -= shortfall;
5088 m->m_next->m_data += shortfall;
5089 } else if (m->m_next == NULL || 1) {
5090 /*
5091 * Got a runt at the very end of the packet.
5092 * borrow data from the tail of the preceding mbuf and
5093 * update its length in-place. (The original data is
5094 * still valid, so we can do this even if prev is not
5095 * writable.)
5096 */
5097
5098 /*
5099 * If we'd make prev a runt, just move all of its data.
5100 */
5101 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5102 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5103
5104 if ((prev->m_len - shortfall) < 8)
5105 shortfall = prev->m_len;
5106
5107 #ifdef notyet /* just do the safe slow thing for now */
5108 if (!M_READONLY(m)) {
5109 if (M_LEADINGSPACE(m) < shorfall) {
5110 void *m_dat;
5111 m_dat = M_BUFADDR(m);
5112 memmove(m_dat, mtod(m, void*),
5113 m->m_len);
5114 m->m_data = m_dat;
5115 }
5116 } else
5117 #endif /* just do the safe slow thing */
5118 {
5119 struct mbuf * n = NULL;
5120 int newprevlen = prev->m_len - shortfall;
5121
5122 MGET(n, M_NOWAIT, MT_DATA);
5123 if (n == NULL)
5124 return ENOBUFS;
5125 KASSERT(m->m_len + shortfall < MLEN
5126 /*,
5127 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5128
5129 /* first copy the data we're stealing from prev */
5130 memcpy(n->m_data, prev->m_data + newprevlen,
5131 shortfall);
5132
5133 /* update prev->m_len accordingly */
5134 prev->m_len -= shortfall;
5135
5136 /* copy data from runt m */
5137 memcpy(n->m_data + shortfall, m->m_data,
5138 m->m_len);
5139
5140 /* n holds what we stole from prev, plus m */
5141 n->m_len = shortfall + m->m_len;
5142
5143 /* stitch n into chain and free m */
5144 n->m_next = m->m_next;
5145 prev->m_next = n;
5146 /* KASSERT(m->m_next == NULL); */
5147 m->m_next = NULL;
5148 m_free(m);
5149 m = n; /* for continuing loop */
5150 }
5151 }
5152 }
5153 return 0;
5154 }
5155
5156 /*
5157 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5158 * pointers to descriptors.
5159 */
5160 static int
5161 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5162 {
5163 struct bge_tx_bd *f, *prev_f;
5164 uint32_t frag, cur;
5165 uint16_t csum_flags = 0;
5166 uint16_t txbd_tso_flags = 0;
5167 struct txdmamap_pool_entry *dma;
5168 bus_dmamap_t dmamap;
5169 bus_dma_tag_t dmatag;
5170 int i = 0;
5171 int use_tso, maxsegsize, error;
5172 bool have_vtag;
5173 uint16_t vtag;
5174 bool remap;
5175
5176 KASSERT(mutex_owned(sc->sc_intr_lock));
5177
5178 if (m_head->m_pkthdr.csum_flags) {
5179 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5180 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5181 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5182 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5183 }
5184
5185 /*
5186 * If we were asked to do an outboard checksum, and the NIC
5187 * has the bug where it sometimes adds in the Ethernet padding,
5188 * explicitly pad with zeros so the cksum will be correct either way.
5189 * (For now, do this for all chip versions, until newer
5190 * are confirmed to not require the workaround.)
5191 */
5192 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5193 #ifdef notyet
5194 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5195 #endif
5196 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5197 goto check_dma_bug;
5198
5199 if (bge_cksum_pad(m_head) != 0)
5200 return ENOBUFS;
5201
5202 check_dma_bug:
5203 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5204 goto doit;
5205
5206 /*
5207 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5208 * less than eight bytes. If we encounter a teeny mbuf
5209 * at the end of a chain, we can pad. Otherwise, copy.
5210 */
5211 if (bge_compact_dma_runt(m_head) != 0)
5212 return ENOBUFS;
5213
5214 doit:
5215 dma = SLIST_FIRST(&sc->txdma_list);
5216 if (dma == NULL) {
5217 return ENOBUFS;
5218 }
5219 dmamap = dma->dmamap;
5220 dmatag = sc->bge_dmatag;
5221 dma->is_dma32 = false;
5222
5223 /*
5224 * Set up any necessary TSO state before we start packing...
5225 */
5226 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5227 if (!use_tso) {
5228 maxsegsize = 0;
5229 } else { /* TSO setup */
5230 unsigned mss;
5231 struct ether_header *eh;
5232 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5233 unsigned bge_hlen;
5234 struct mbuf * m0 = m_head;
5235 struct ip *ip;
5236 struct tcphdr *th;
5237 int iphl, hlen;
5238
5239 /*
5240 * XXX It would be nice if the mbuf pkthdr had offset
5241 * fields for the protocol headers.
5242 */
5243
5244 eh = mtod(m0, struct ether_header *);
5245 switch (htons(eh->ether_type)) {
5246 case ETHERTYPE_IP:
5247 offset = ETHER_HDR_LEN;
5248 break;
5249
5250 case ETHERTYPE_VLAN:
5251 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5252 break;
5253
5254 default:
5255 /*
5256 * Don't support this protocol or encapsulation.
5257 */
5258 return ENOBUFS;
5259 }
5260
5261 /*
5262 * TCP/IP headers are in the first mbuf; we can do
5263 * this the easy way.
5264 */
5265 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5266 hlen = iphl + offset;
5267 if (__predict_false(m0->m_len <
5268 (hlen + sizeof(struct tcphdr)))) {
5269
5270 aprint_error_dev(sc->bge_dev,
5271 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5272 "not handled yet\n",
5273 m0->m_len, hlen+ sizeof(struct tcphdr));
5274 #ifdef NOTYET
5275 /*
5276 * XXX jonathan (at) NetBSD.org: untested.
5277 * how to force this branch to be taken?
5278 */
5279 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5280
5281 m_copydata(m0, offset, sizeof(ip), &ip);
5282 m_copydata(m0, hlen, sizeof(th), &th);
5283
5284 ip.ip_len = 0;
5285
5286 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5287 sizeof(ip.ip_len), &ip.ip_len);
5288
5289 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5290 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5291
5292 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5293 sizeof(th.th_sum), &th.th_sum);
5294
5295 hlen += th.th_off << 2;
5296 iptcp_opt_words = hlen;
5297 #else
5298 /*
5299 * if_wm "hard" case not yet supported, can we not
5300 * mandate it out of existence?
5301 */
5302 (void) ip; (void)th; (void) ip_tcp_hlen;
5303
5304 return ENOBUFS;
5305 #endif
5306 } else {
5307 ip = (struct ip *) (mtod(m0, char *) + offset);
5308 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5309 ip_tcp_hlen = iphl + (th->th_off << 2);
5310
5311 /* Total IP/TCP options, in 32-bit words */
5312 iptcp_opt_words = (ip_tcp_hlen
5313 - sizeof(struct tcphdr)
5314 - sizeof(struct ip)) >> 2;
5315 }
5316 if (BGE_IS_575X_PLUS(sc)) {
5317 th->th_sum = 0;
5318 csum_flags = 0;
5319 } else {
5320 /*
5321 * XXX jonathan (at) NetBSD.org: 5705 untested.
5322 * Requires TSO firmware patch for 5701/5703/5704.
5323 */
5324 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5325 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5326 }
5327
5328 mss = m_head->m_pkthdr.segsz;
5329 txbd_tso_flags |=
5330 BGE_TXBDFLAG_CPU_PRE_DMA |
5331 BGE_TXBDFLAG_CPU_POST_DMA;
5332
5333 /*
5334 * Our NIC TSO-assist assumes TSO has standard, optionless
5335 * IPv4 and TCP headers, which total 40 bytes. By default,
5336 * the NIC copies 40 bytes of IP/TCP header from the
5337 * supplied header into the IP/TCP header portion of
5338 * each post-TSO-segment. If the supplied packet has IP or
5339 * TCP options, we need to tell the NIC to copy those extra
5340 * bytes into each post-TSO header, in addition to the normal
5341 * 40-byte IP/TCP header (and to leave space accordingly).
5342 * Unfortunately, the driver encoding of option length
5343 * varies across different ASIC families.
5344 */
5345 tcp_seg_flags = 0;
5346 bge_hlen = ip_tcp_hlen >> 2;
5347 if (BGE_IS_5717_PLUS(sc)) {
5348 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5349 txbd_tso_flags |=
5350 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5351 } else if (BGE_IS_5705_PLUS(sc)) {
5352 tcp_seg_flags = bge_hlen << 11;
5353 } else {
5354 /* XXX iptcp_opt_words or bge_hlen ? */
5355 txbd_tso_flags |= iptcp_opt_words << 12;
5356 }
5357 maxsegsize = mss | tcp_seg_flags;
5358 ip->ip_len = htons(mss + ip_tcp_hlen);
5359 ip->ip_sum = 0;
5360
5361 } /* TSO setup */
5362
5363 have_vtag = vlan_has_tag(m_head);
5364 if (have_vtag)
5365 vtag = vlan_get_tag(m_head);
5366
5367 /*
5368 * Start packing the mbufs in this chain into
5369 * the fragment pointers. Stop when we run out
5370 * of fragments or hit the end of the mbuf chain.
5371 */
5372 remap = true;
5373 load_again:
5374 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5375 if (__predict_false(error)) {
5376 if (error == EFBIG && remap) {
5377 struct mbuf *m;
5378 remap = false;
5379 m = m_defrag(m_head, M_NOWAIT);
5380 if (m != NULL) {
5381 KASSERT(m == m_head);
5382 goto load_again;
5383 }
5384 }
5385 return error;
5386 }
5387 /*
5388 * Sanity check: avoid coming within 16 descriptors
5389 * of the end of the ring.
5390 */
5391 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5392 BGE_TSO_PRINTF(("%s: "
5393 " dmamap_load_mbuf too close to ring wrap\n",
5394 device_xname(sc->bge_dev)));
5395 goto fail_unload;
5396 }
5397
5398 /* Iterate over dmap-map fragments. */
5399 f = prev_f = NULL;
5400 cur = frag = *txidx;
5401
5402 for (i = 0; i < dmamap->dm_nsegs; i++) {
5403 f = &sc->bge_rdata->bge_tx_ring[frag];
5404 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5405 break;
5406
5407 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5408 f->bge_len = dmamap->dm_segs[i].ds_len;
5409 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5410 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5411 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5412 (prev_f != NULL &&
5413 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5414 ) {
5415 /*
5416 * watchdog timeout issue was observed with TSO,
5417 * limiting DMA address space to 32bits seems to
5418 * address the issue.
5419 */
5420 bus_dmamap_unload(dmatag, dmamap);
5421 dmatag = sc->bge_dmatag32;
5422 dmamap = dma->dmamap32;
5423 dma->is_dma32 = true;
5424 remap = true;
5425 goto load_again;
5426 }
5427
5428 /*
5429 * For 5751 and follow-ons, for TSO we must turn
5430 * off checksum-assist flag in the tx-descr, and
5431 * supply the ASIC-revision-specific encoding
5432 * of TSO flags and segsize.
5433 */
5434 if (use_tso) {
5435 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5436 f->bge_rsvd = maxsegsize;
5437 f->bge_flags = csum_flags | txbd_tso_flags;
5438 } else {
5439 f->bge_rsvd = 0;
5440 f->bge_flags =
5441 (csum_flags | txbd_tso_flags) & 0x0fff;
5442 }
5443 } else {
5444 f->bge_rsvd = 0;
5445 f->bge_flags = csum_flags;
5446 }
5447
5448 if (have_vtag) {
5449 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5450 f->bge_vlan_tag = vtag;
5451 } else {
5452 f->bge_vlan_tag = 0;
5453 }
5454 prev_f = f;
5455 cur = frag;
5456 BGE_INC(frag, BGE_TX_RING_CNT);
5457 }
5458
5459 if (i < dmamap->dm_nsegs) {
5460 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5461 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5462 goto fail_unload;
5463 }
5464
5465 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5466 BUS_DMASYNC_PREWRITE);
5467
5468 if (frag == sc->bge_tx_saved_considx) {
5469 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5470 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5471
5472 goto fail_unload;
5473 }
5474
5475 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5476 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5477 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5478 sc->txdma[cur] = dma;
5479 sc->bge_txcnt += dmamap->dm_nsegs;
5480
5481 *txidx = frag;
5482
5483 return 0;
5484
5485 fail_unload:
5486 bus_dmamap_unload(dmatag, dmamap);
5487
5488 return ENOBUFS;
5489 }
5490
5491
5492 static void
5493 bge_start(struct ifnet *ifp)
5494 {
5495 struct bge_softc * const sc = ifp->if_softc;
5496
5497 mutex_enter(sc->sc_intr_lock);
5498 if (!sc->bge_txrx_stopping)
5499 bge_start_locked(ifp);
5500 mutex_exit(sc->sc_intr_lock);
5501 }
5502
5503 /*
5504 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5505 * to the mbuf data regions directly in the transmit descriptors.
5506 */
5507 static void
5508 bge_start_locked(struct ifnet *ifp)
5509 {
5510 struct bge_softc * const sc = ifp->if_softc;
5511 struct mbuf *m_head = NULL;
5512 struct mbuf *m;
5513 uint32_t prodidx;
5514 int pkts = 0;
5515 int error;
5516
5517 KASSERT(mutex_owned(sc->sc_intr_lock));
5518
5519 prodidx = sc->bge_tx_prodidx;
5520
5521 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5522 IFQ_POLL(&ifp->if_snd, m_head);
5523 if (m_head == NULL)
5524 break;
5525
5526 #if 0
5527 /*
5528 * XXX
5529 * safety overkill. If this is a fragmented packet chain
5530 * with delayed TCP/UDP checksums, then only encapsulate
5531 * it if we have enough descriptors to handle the entire
5532 * chain at once.
5533 * (paranoia -- may not actually be needed)
5534 */
5535 if (m_head->m_flags & M_FIRSTFRAG &&
5536 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5537 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5538 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5539 ifp->if_flags |= IFF_OACTIVE;
5540 break;
5541 }
5542 }
5543 #endif
5544
5545 /*
5546 * Pack the data into the transmit ring. If we
5547 * don't have room, set the OACTIVE flag and wait
5548 * for the NIC to drain the ring.
5549 */
5550 error = bge_encap(sc, m_head, &prodidx);
5551 if (__predict_false(error)) {
5552 if (SLIST_EMPTY(&sc->txdma_list)) {
5553 /* just wait for the transmit ring to drain */
5554 break;
5555 }
5556 IFQ_DEQUEUE(&ifp->if_snd, m);
5557 KASSERT(m == m_head);
5558 m_freem(m_head);
5559 continue;
5560 }
5561
5562 /* now we are committed to transmit the packet */
5563 IFQ_DEQUEUE(&ifp->if_snd, m);
5564 KASSERT(m == m_head);
5565 pkts++;
5566
5567 /*
5568 * If there's a BPF listener, bounce a copy of this frame
5569 * to him.
5570 */
5571 bpf_mtap(ifp, m_head, BPF_D_OUT);
5572 }
5573 if (pkts == 0)
5574 return;
5575
5576 /* Transmit */
5577 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5578 /* 5700 b2 errata */
5579 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5580 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5581
5582 sc->bge_tx_prodidx = prodidx;
5583 sc->bge_tx_lastsent = time_uptime;
5584 sc->bge_tx_sending = true;
5585 }
5586
5587 static int
5588 bge_init(struct ifnet *ifp)
5589 {
5590 struct bge_softc * const sc = ifp->if_softc;
5591 const uint16_t *m;
5592 uint32_t mode, reg;
5593 int error = 0;
5594
5595 ASSERT_SLEEPABLE();
5596 KASSERT(IFNET_LOCKED(ifp));
5597 KASSERT(ifp == &sc->ethercom.ec_if);
5598
5599 if (sc->bge_detaching)
5600 return ENXIO;
5601
5602 /* Cancel pending I/O and flush buffers. */
5603 bge_stop(ifp, 0);
5604
5605 bge_stop_fw(sc);
5606 bge_sig_pre_reset(sc, BGE_RESET_START);
5607 bge_reset(sc);
5608 bge_sig_legacy(sc, BGE_RESET_START);
5609
5610 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5611 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5612 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5613 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5614 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5615
5616 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5617 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5618 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5619 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5620
5621 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5622 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5623 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5624 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5625
5626 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5627 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5628 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5629 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5630 }
5631
5632 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5633 pcireg_t aercap;
5634
5635 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5636 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5637 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5638 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5639 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5640
5641 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5642 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5643 | BGE_PCIE_EIDLE_DELAY_13CLK;
5644 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5645
5646 /* Clear correctable error */
5647 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5648 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5649 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5650 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5651
5652 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5653 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5654 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5655 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5656 }
5657
5658 bge_sig_post_reset(sc, BGE_RESET_START);
5659
5660 bge_chipinit(sc);
5661
5662 /*
5663 * Init the various state machines, ring
5664 * control blocks and firmware.
5665 */
5666 error = bge_blockinit(sc);
5667 if (error != 0) {
5668 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5669 error);
5670 return error;
5671 }
5672
5673 /* 5718 step 25, 57XX step 54 */
5674 /* Specify MTU. */
5675 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5676 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5677
5678 /* 5718 step 23 */
5679 /* Load our MAC address. */
5680 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5681 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5682 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5683 ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5684
5685 /* Enable or disable promiscuous mode as needed. */
5686 if (ifp->if_flags & IFF_PROMISC)
5687 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5688 else
5689 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5690
5691 /* Program multicast filter. */
5692 mutex_enter(sc->sc_mcast_lock);
5693 bge_setmulti(sc);
5694 mutex_exit(sc->sc_mcast_lock);
5695
5696 /* Init RX ring. */
5697 bge_init_rx_ring_std(sc);
5698
5699 /*
5700 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5701 * memory to insure that the chip has in fact read the first
5702 * entry of the ring.
5703 */
5704 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5705 u_int i;
5706 for (i = 0; i < 10; i++) {
5707 DELAY(20);
5708 uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5709 if (v == (MCLBYTES - ETHER_ALIGN))
5710 break;
5711 }
5712 if (i == 10)
5713 aprint_error_dev(sc->bge_dev,
5714 "5705 A0 chip failed to load RX ring\n");
5715 }
5716
5717 /* Init jumbo RX ring. */
5718 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5719 bge_init_rx_ring_jumbo(sc);
5720
5721 /* Init our RX return ring index */
5722 sc->bge_rx_saved_considx = 0;
5723
5724 /* Init TX ring. */
5725 bge_init_tx_ring(sc);
5726
5727 /* 5718 step 63, 57XX step 94 */
5728 /* Enable TX MAC state machine lockup fix. */
5729 mode = CSR_READ_4(sc, BGE_TX_MODE);
5730 if (BGE_IS_5755_PLUS(sc) ||
5731 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5732 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5733 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5734 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5735 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5736 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5737 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5738 }
5739
5740 /* Turn on transmitter */
5741 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5742 /* 5718 step 64 */
5743 DELAY(100);
5744
5745 /* 5718 step 65, 57XX step 95 */
5746 /* Turn on receiver */
5747 mode = CSR_READ_4(sc, BGE_RX_MODE);
5748 if (BGE_IS_5755_PLUS(sc))
5749 mode |= BGE_RXMODE_IPV6_ENABLE;
5750 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5751 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5752 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5753 /* 5718 step 66 */
5754 DELAY(10);
5755
5756 /* 5718 step 12, 57XX step 37 */
5757 /*
5758 * XXX Documents of 5718 series and 577xx say the recommended value
5759 * is 1, but tg3 set 1 only on 57765 series.
5760 */
5761 if (BGE_IS_57765_PLUS(sc))
5762 reg = 1;
5763 else
5764 reg = 2;
5765 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5766
5767 /* Tell firmware we're alive. */
5768 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5769
5770 /* Enable host interrupts. */
5771 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5772 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5773 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5774
5775 mutex_enter(sc->sc_intr_lock);
5776 if ((error = bge_ifmedia_upd(ifp)) == 0) {
5777 sc->bge_txrx_stopping = false;
5778
5779 /* IFNET_LOCKED asserted above */
5780 ifp->if_flags |= IFF_RUNNING;
5781
5782 callout_schedule(&sc->bge_timeout, hz);
5783 }
5784 mutex_exit(sc->sc_intr_lock);
5785
5786 mutex_enter(sc->sc_mcast_lock);
5787 sc->bge_if_flags = ifp->if_flags;
5788 mutex_exit(sc->sc_mcast_lock);
5789
5790 return error;
5791 }
5792
5793 /*
5794 * Set media options.
5795 */
5796 static int
5797 bge_ifmedia_upd(struct ifnet *ifp)
5798 {
5799 struct bge_softc * const sc = ifp->if_softc;
5800 struct mii_data * const mii = &sc->bge_mii;
5801 struct ifmedia * const ifm = &sc->bge_ifmedia;
5802 int rc;
5803
5804 KASSERT(mutex_owned(sc->sc_intr_lock));
5805
5806 /* If this is a 1000baseX NIC, enable the TBI port. */
5807 if (sc->bge_flags & BGEF_FIBER_TBI) {
5808 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5809 return EINVAL;
5810 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5811 case IFM_AUTO:
5812 /*
5813 * The BCM5704 ASIC appears to have a special
5814 * mechanism for programming the autoneg
5815 * advertisement registers in TBI mode.
5816 */
5817 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5818 uint32_t sgdig;
5819 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5820 if (sgdig & BGE_SGDIGSTS_DONE) {
5821 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5822 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5823 sgdig |= BGE_SGDIGCFG_AUTO |
5824 BGE_SGDIGCFG_PAUSE_CAP |
5825 BGE_SGDIGCFG_ASYM_PAUSE;
5826 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5827 sgdig | BGE_SGDIGCFG_SEND);
5828 DELAY(5);
5829 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5830 sgdig);
5831 }
5832 }
5833 break;
5834 case IFM_1000_SX:
5835 if ((ifm->ifm_media & IFM_FDX) != 0) {
5836 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5837 BGE_MACMODE_HALF_DUPLEX);
5838 } else {
5839 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5840 BGE_MACMODE_HALF_DUPLEX);
5841 }
5842 DELAY(40);
5843 break;
5844 default:
5845 return EINVAL;
5846 }
5847 /* XXX 802.3x flow control for 1000BASE-SX */
5848 return 0;
5849 }
5850
5851 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5852 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5853 uint32_t reg;
5854
5855 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5856 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5857 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5858 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5859 }
5860 }
5861
5862 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5863 if ((rc = mii_mediachg(mii)) == ENXIO)
5864 return 0;
5865
5866 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5867 uint32_t reg;
5868
5869 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5870 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5871 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5872 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5873 delay(40);
5874 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5875 }
5876 }
5877
5878 /*
5879 * Force an interrupt so that we will call bge_link_upd
5880 * if needed and clear any pending link state attention.
5881 * Without this we are not getting any further interrupts
5882 * for link state changes and thus will not UP the link and
5883 * not be able to send in bge_start. The only way to get
5884 * things working was to receive a packet and get a RX intr.
5885 */
5886 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5887 sc->bge_flags & BGEF_IS_5788)
5888 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5889 else
5890 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5891
5892 return rc;
5893 }
5894
5895 /*
5896 * Report current media status.
5897 */
5898 static void
5899 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5900 {
5901 struct bge_softc * const sc = ifp->if_softc;
5902 struct mii_data * const mii = &sc->bge_mii;
5903
5904 KASSERT(mutex_owned(sc->sc_intr_lock));
5905
5906 if (sc->bge_flags & BGEF_FIBER_TBI) {
5907 ifmr->ifm_status = IFM_AVALID;
5908 ifmr->ifm_active = IFM_ETHER;
5909 if (CSR_READ_4(sc, BGE_MAC_STS) &
5910 BGE_MACSTAT_TBI_PCS_SYNCHED)
5911 ifmr->ifm_status |= IFM_ACTIVE;
5912 ifmr->ifm_active |= IFM_1000_SX;
5913 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5914 ifmr->ifm_active |= IFM_HDX;
5915 else
5916 ifmr->ifm_active |= IFM_FDX;
5917 return;
5918 }
5919
5920 mii_pollstat(mii);
5921 ifmr->ifm_status = mii->mii_media_status;
5922 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5923 sc->bge_flowflags;
5924 }
5925
5926 static int
5927 bge_ifflags_cb(struct ethercom *ec)
5928 {
5929 struct ifnet * const ifp = &ec->ec_if;
5930 struct bge_softc * const sc = ifp->if_softc;
5931 int ret = 0;
5932
5933 KASSERT(IFNET_LOCKED(ifp));
5934 mutex_enter(sc->sc_mcast_lock);
5935
5936 u_short change = ifp->if_flags ^ sc->bge_if_flags;
5937 sc->bge_if_flags = ifp->if_flags;
5938
5939 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
5940 ret = ENETRESET;
5941 } else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
5942 if ((ifp->if_flags & IFF_PROMISC) == 0)
5943 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5944 else
5945 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5946
5947 bge_setmulti(sc);
5948 }
5949
5950 mutex_exit(sc->sc_mcast_lock);
5951
5952 return ret;
5953 }
5954
5955 static int
5956 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5957 {
5958 struct bge_softc * const sc = ifp->if_softc;
5959 struct ifreq * const ifr = (struct ifreq *) data;
5960 int error = 0;
5961
5962 switch (command) {
5963 case SIOCADDMULTI:
5964 case SIOCDELMULTI:
5965 break;
5966 default:
5967 KASSERT(IFNET_LOCKED(ifp));
5968 }
5969
5970 const int s = splnet();
5971
5972 switch (command) {
5973 case SIOCSIFMEDIA:
5974 mutex_enter(sc->sc_intr_lock);
5975 /* XXX Flow control is not supported for 1000BASE-SX */
5976 if (sc->bge_flags & BGEF_FIBER_TBI) {
5977 ifr->ifr_media &= ~IFM_ETH_FMASK;
5978 sc->bge_flowflags = 0;
5979 }
5980
5981 /* Flow control requires full-duplex mode. */
5982 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5983 (ifr->ifr_media & IFM_FDX) == 0) {
5984 ifr->ifr_media &= ~IFM_ETH_FMASK;
5985 }
5986 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5987 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5988 /* We can do both TXPAUSE and RXPAUSE. */
5989 ifr->ifr_media |=
5990 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5991 }
5992 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5993 }
5994 mutex_exit(sc->sc_intr_lock);
5995
5996 if (sc->bge_flags & BGEF_FIBER_TBI) {
5997 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5998 command);
5999 } else {
6000 struct mii_data * const mii = &sc->bge_mii;
6001 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
6002 command);
6003 }
6004 break;
6005 default:
6006 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
6007 break;
6008
6009 error = 0;
6010
6011 if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
6012 mutex_enter(sc->sc_mcast_lock);
6013 if (sc->bge_if_flags & IFF_RUNNING) {
6014 bge_setmulti(sc);
6015 }
6016 mutex_exit(sc->sc_mcast_lock);
6017 }
6018 break;
6019 }
6020
6021 splx(s);
6022
6023 return error;
6024 }
6025
6026 static bool
6027 bge_watchdog_check(struct bge_softc * const sc)
6028 {
6029
6030 KASSERT(mutex_owned(sc->sc_intr_lock));
6031
6032 if (!sc->bge_tx_sending)
6033 return true;
6034
6035 if (time_uptime - sc->bge_tx_lastsent <= bge_watchdog_timeout)
6036 return true;
6037
6038 /* If pause frames are active then don't reset the hardware. */
6039 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
6040 const uint32_t status = CSR_READ_4(sc, BGE_RX_STS);
6041 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
6042 /*
6043 * If link partner has us in XOFF state then wait for
6044 * the condition to clear.
6045 */
6046 CSR_WRITE_4(sc, BGE_RX_STS, status);
6047 sc->bge_tx_lastsent = time_uptime;
6048 return true;
6049 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
6050 (status & BGE_RXSTAT_RCVD_XON) != 0) {
6051 /*
6052 * If link partner has us in XOFF state then wait for
6053 * the condition to clear.
6054 */
6055 CSR_WRITE_4(sc, BGE_RX_STS, status);
6056 sc->bge_tx_lastsent = time_uptime;
6057 return true;
6058 }
6059 /*
6060 * Any other condition is unexpected and the controller
6061 * should be reset.
6062 */
6063 }
6064
6065 return false;
6066 }
6067
6068 static bool
6069 bge_watchdog_tick(struct ifnet *ifp)
6070 {
6071 struct bge_softc * const sc = ifp->if_softc;
6072
6073 KASSERT(mutex_owned(sc->sc_intr_lock));
6074
6075 if (!sc->sc_trigger_reset && bge_watchdog_check(sc))
6076 return true;
6077
6078 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0)
6079 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
6080
6081 return false;
6082 }
6083
6084 /*
6085 * Perform an interface watchdog reset.
6086 */
6087 static void
6088 bge_handle_reset_work(struct work *work, void *arg)
6089 {
6090 struct bge_softc * const sc = arg;
6091 struct ifnet * const ifp = &sc->ethercom.ec_if;
6092
6093 printf("%s: watchdog timeout -- resetting\n", ifp->if_xname);
6094
6095 /* Don't want ioctl operations to happen */
6096 IFNET_LOCK(ifp);
6097
6098 /* reset the interface. */
6099 bge_init(ifp);
6100
6101 IFNET_UNLOCK(ifp);
6102
6103 /*
6104 * There are still some upper layer processing which call
6105 * ifp->if_start(). e.g. ALTQ or one CPU system
6106 */
6107 /* Try to get more packets going. */
6108 ifp->if_start(ifp);
6109
6110 atomic_store_relaxed(&sc->sc_reset_pending, 0);
6111 }
6112
6113 static void
6114 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
6115 {
6116 int i;
6117
6118 BGE_CLRBIT_FLUSH(sc, reg, bit);
6119
6120 for (i = 0; i < 1000; i++) {
6121 delay(100);
6122 if ((CSR_READ_4(sc, reg) & bit) == 0)
6123 return;
6124 }
6125
6126 /*
6127 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
6128 * on some environment (and once after boot?)
6129 */
6130 if (reg != BGE_SRS_MODE)
6131 aprint_error_dev(sc->bge_dev,
6132 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
6133 (u_long)reg, bit);
6134 }
6135
6136 /*
6137 * Stop the adapter and free any mbufs allocated to the
6138 * RX and TX lists.
6139 */
6140 static void
6141 bge_stop(struct ifnet *ifp, int disable)
6142 {
6143 struct bge_softc * const sc = ifp->if_softc;
6144
6145 ASSERT_SLEEPABLE();
6146 KASSERT(IFNET_LOCKED(ifp));
6147
6148 mutex_enter(sc->sc_intr_lock);
6149 sc->bge_txrx_stopping = true;
6150 mutex_exit(sc->sc_intr_lock);
6151
6152 callout_halt(&sc->bge_timeout, NULL);
6153
6154 /* Disable host interrupts. */
6155 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6156 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
6157
6158 /*
6159 * Tell firmware we're shutting down.
6160 */
6161 bge_stop_fw(sc);
6162 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6163
6164 /*
6165 * Disable all of the receiver blocks.
6166 */
6167 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6168 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6169 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6170 if (BGE_IS_5700_FAMILY(sc))
6171 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6172 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6173 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6174 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6175
6176 /*
6177 * Disable all of the transmit blocks.
6178 */
6179 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6180 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6181 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6182 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6183 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6184 if (BGE_IS_5700_FAMILY(sc))
6185 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6186 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6187
6188 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6189 delay(40);
6190
6191 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6192
6193 /*
6194 * Shut down all of the memory managers and related
6195 * state machines.
6196 */
6197 /* 5718 step 5a,5b */
6198 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6199 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6200 if (BGE_IS_5700_FAMILY(sc))
6201 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6202
6203 /* 5718 step 5c,5d */
6204 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6205 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6206
6207 if (BGE_IS_5700_FAMILY(sc)) {
6208 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6209 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6210 }
6211
6212 bge_reset(sc);
6213 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6214 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6215
6216 /*
6217 * Keep the ASF firmware running if up.
6218 */
6219 if (sc->bge_asf_mode & ASF_STACKUP)
6220 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6221 else
6222 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6223
6224 /* Free the RX lists. */
6225 bge_free_rx_ring_std(sc);
6226
6227 /* Free jumbo RX list. */
6228 if (BGE_IS_JUMBO_CAPABLE(sc))
6229 bge_free_rx_ring_jumbo(sc);
6230
6231 /* Free TX buffers. */
6232 bge_free_tx_ring(sc, disable);
6233
6234 /*
6235 * Isolate/power down the PHY.
6236 */
6237 if (!(sc->bge_flags & BGEF_FIBER_TBI)) {
6238 mutex_enter(sc->sc_intr_lock);
6239 mii_down(&sc->bge_mii);
6240 mutex_exit(sc->sc_intr_lock);
6241 }
6242
6243 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6244
6245 /* Clear MAC's link state (PHY may still have link UP). */
6246 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6247
6248 ifp->if_flags &= ~IFF_RUNNING;
6249
6250 mutex_enter(sc->sc_mcast_lock);
6251 sc->bge_if_flags = ifp->if_flags;
6252 mutex_exit(sc->sc_mcast_lock);
6253 }
6254
6255 static void
6256 bge_link_upd(struct bge_softc *sc)
6257 {
6258 struct ifnet * const ifp = &sc->ethercom.ec_if;
6259 struct mii_data * const mii = &sc->bge_mii;
6260 uint32_t status;
6261 uint16_t phyval;
6262 int link;
6263
6264 KASSERT(sc->sc_intr_lock);
6265
6266 /* Clear 'pending link event' flag */
6267 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6268
6269 /*
6270 * Process link state changes.
6271 * Grrr. The link status word in the status block does
6272 * not work correctly on the BCM5700 rev AX and BX chips,
6273 * according to all available information. Hence, we have
6274 * to enable MII interrupts in order to properly obtain
6275 * async link changes. Unfortunately, this also means that
6276 * we have to read the MAC status register to detect link
6277 * changes, thereby adding an additional register access to
6278 * the interrupt handler.
6279 */
6280
6281 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6282 status = CSR_READ_4(sc, BGE_MAC_STS);
6283 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6284 mii_pollstat(mii);
6285
6286 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6287 mii->mii_media_status & IFM_ACTIVE &&
6288 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6289 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6290 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6291 (!(mii->mii_media_status & IFM_ACTIVE) ||
6292 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6293 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6294
6295 /* Clear the interrupt */
6296 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6297 BGE_EVTENB_MI_INTERRUPT);
6298 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6299 BRGPHY_MII_ISR, &phyval);
6300 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6301 BRGPHY_MII_IMR, BRGPHY_INTRS);
6302 }
6303 return;
6304 }
6305
6306 if (sc->bge_flags & BGEF_FIBER_TBI) {
6307 status = CSR_READ_4(sc, BGE_MAC_STS);
6308 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6309 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6310 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6311 if (BGE_ASICREV(sc->bge_chipid)
6312 == BGE_ASICREV_BCM5704) {
6313 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6314 BGE_MACMODE_TBI_SEND_CFGS);
6315 DELAY(40);
6316 }
6317 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6318 if_link_state_change(ifp, LINK_STATE_UP);
6319 }
6320 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6321 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6322 if_link_state_change(ifp, LINK_STATE_DOWN);
6323 }
6324 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6325 /*
6326 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6327 * bit in status word always set. Workaround this bug by
6328 * reading PHY link status directly.
6329 */
6330 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6331 BGE_STS_LINK : 0;
6332
6333 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6334 mii_pollstat(mii);
6335
6336 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6337 mii->mii_media_status & IFM_ACTIVE &&
6338 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6339 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6340 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6341 (!(mii->mii_media_status & IFM_ACTIVE) ||
6342 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6343 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6344 }
6345 } else {
6346 /*
6347 * For controllers that call mii_tick, we have to poll
6348 * link status.
6349 */
6350 mii_pollstat(mii);
6351 }
6352
6353 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6354 uint32_t reg, scale;
6355
6356 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6357 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6358 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6359 scale = 65;
6360 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6361 scale = 6;
6362 else
6363 scale = 12;
6364
6365 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6366 ~BGE_MISCCFG_TIMER_PRESCALER;
6367 reg |= scale << 1;
6368 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6369 }
6370 /* Clear the attention */
6371 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6372 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6373 BGE_MACSTAT_LINK_CHANGED);
6374 }
6375
6376 static int
6377 bge_sysctl_verify(SYSCTLFN_ARGS)
6378 {
6379 int error, t;
6380 struct sysctlnode node;
6381
6382 node = *rnode;
6383 t = *(int*)rnode->sysctl_data;
6384 node.sysctl_data = &t;
6385 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6386 if (error || newp == NULL)
6387 return error;
6388
6389 #if 0
6390 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6391 node.sysctl_num, rnode->sysctl_num));
6392 #endif
6393
6394 if (node.sysctl_num == bge_rxthresh_nodenum) {
6395 if (t < 0 || t >= NBGE_RX_THRESH)
6396 return EINVAL;
6397 bge_update_all_threshes(t);
6398 } else
6399 return EINVAL;
6400
6401 *(int*)rnode->sysctl_data = t;
6402
6403 return 0;
6404 }
6405
6406 /*
6407 * Set up sysctl(3) MIB, hw.bge.*.
6408 */
6409 static void
6410 bge_sysctl_init(struct bge_softc *sc)
6411 {
6412 int rc, bge_root_num;
6413 const struct sysctlnode *node;
6414
6415 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6416 0, CTLTYPE_NODE, "bge",
6417 SYSCTL_DESCR("BGE interface controls"),
6418 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6419 goto out;
6420 }
6421
6422 bge_root_num = node->sysctl_num;
6423
6424 /* BGE Rx interrupt mitigation level */
6425 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6426 CTLFLAG_READWRITE,
6427 CTLTYPE_INT, "rx_lvl",
6428 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6429 bge_sysctl_verify, 0,
6430 &bge_rx_thresh_lvl,
6431 0, CTL_HW, bge_root_num, CTL_CREATE,
6432 CTL_EOL)) != 0) {
6433 goto out;
6434 }
6435
6436 bge_rxthresh_nodenum = node->sysctl_num;
6437
6438 #ifdef BGE_DEBUG
6439 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6440 CTLFLAG_READWRITE,
6441 CTLTYPE_BOOL, "trigger_reset",
6442 SYSCTL_DESCR("Trigger an interface reset"),
6443 NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE,
6444 CTL_EOL)) != 0) {
6445 goto out;
6446 }
6447 #endif
6448 return;
6449
6450 out:
6451 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6452 }
6453
6454 #ifdef BGE_DEBUG
6455 void
6456 bge_debug_info(struct bge_softc *sc)
6457 {
6458
6459 printf("Hardware Flags:\n");
6460 if (BGE_IS_57765_PLUS(sc))
6461 printf(" - 57765 Plus\n");
6462 if (BGE_IS_5717_PLUS(sc))
6463 printf(" - 5717 Plus\n");
6464 if (BGE_IS_5755_PLUS(sc))
6465 printf(" - 5755 Plus\n");
6466 if (BGE_IS_575X_PLUS(sc))
6467 printf(" - 575X Plus\n");
6468 if (BGE_IS_5705_PLUS(sc))
6469 printf(" - 5705 Plus\n");
6470 if (BGE_IS_5714_FAMILY(sc))
6471 printf(" - 5714 Family\n");
6472 if (BGE_IS_5700_FAMILY(sc))
6473 printf(" - 5700 Family\n");
6474 if (sc->bge_flags & BGEF_IS_5788)
6475 printf(" - 5788\n");
6476 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6477 printf(" - Supports Jumbo Frames\n");
6478 if (sc->bge_flags & BGEF_NO_EEPROM)
6479 printf(" - No EEPROM\n");
6480 if (sc->bge_flags & BGEF_PCIX)
6481 printf(" - PCI-X Bus\n");
6482 if (sc->bge_flags & BGEF_PCIE)
6483 printf(" - PCI Express Bus\n");
6484 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6485 printf(" - RX Alignment Bug\n");
6486 if (sc->bge_flags & BGEF_APE)
6487 printf(" - APE\n");
6488 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6489 printf(" - CPMU\n");
6490 if (sc->bge_flags & BGEF_TSO)
6491 printf(" - TSO\n");
6492 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6493 printf(" - TAGGED_STATUS\n");
6494
6495 /* PHY related */
6496 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6497 printf(" - No 3 LEDs\n");
6498 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6499 printf(" - CRC bug\n");
6500 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6501 printf(" - ADC bug\n");
6502 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6503 printf(" - 5704 A0 bug\n");
6504 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6505 printf(" - jitter bug\n");
6506 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6507 printf(" - BER bug\n");
6508 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6509 printf(" - adjust trim\n");
6510 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6511 printf(" - no wirespeed\n");
6512
6513 /* ASF related */
6514 if (sc->bge_asf_mode & ASF_ENABLE)
6515 printf(" - ASF enable\n");
6516 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6517 printf(" - ASF new handshake\n");
6518 if (sc->bge_asf_mode & ASF_STACKUP)
6519 printf(" - ASF stackup\n");
6520 }
6521 #endif /* BGE_DEBUG */
6522
6523 static int
6524 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6525 {
6526 prop_dictionary_t dict;
6527 prop_data_t ea;
6528
6529 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6530 return 1;
6531
6532 dict = device_properties(sc->bge_dev);
6533 ea = prop_dictionary_get(dict, "mac-address");
6534 if (ea != NULL) {
6535 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6536 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6537 memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
6538 return 0;
6539 }
6540
6541 return 1;
6542 }
6543
6544 static int
6545 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6546 {
6547 uint32_t mac_addr;
6548
6549 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6550 if ((mac_addr >> 16) == 0x484b) {
6551 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6552 ether_addr[1] = (uint8_t)mac_addr;
6553 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6554 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6555 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6556 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6557 ether_addr[5] = (uint8_t)mac_addr;
6558 return 0;
6559 }
6560 return 1;
6561 }
6562
6563 static int
6564 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6565 {
6566 int mac_offset = BGE_EE_MAC_OFFSET;
6567
6568 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6569 mac_offset = BGE_EE_MAC_OFFSET_5906;
6570
6571 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6572 ETHER_ADDR_LEN));
6573 }
6574
6575 static int
6576 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6577 {
6578
6579 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6580 return 1;
6581
6582 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6583 ETHER_ADDR_LEN));
6584 }
6585
6586 static int
6587 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6588 {
6589 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6590 /* NOTE: Order is critical */
6591 bge_get_eaddr_fw,
6592 bge_get_eaddr_mem,
6593 bge_get_eaddr_nvram,
6594 bge_get_eaddr_eeprom,
6595 NULL
6596 };
6597 const bge_eaddr_fcn_t *func;
6598
6599 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6600 if ((*func)(sc, eaddr) == 0)
6601 break;
6602 }
6603 return *func == NULL ? ENXIO : 0;
6604 }
6605