if_bge.c revision 1.398 1 /* $NetBSD: if_bge.c,v 1.398 2025/05/26 08:27:04 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.398 2025/05/26 08:27:04 bouyer Exp $");
83
84 #include <sys/param.h>
85 #include <sys/types.h>
86
87 #include <sys/callout.h>
88 #include <sys/device.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mbuf.h>
92 #include <sys/rndsource.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/sysctl.h>
96 #include <sys/systm.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 #include <net/bpf.h>
103
104 /* Headers for TCP Segmentation Offload (TSO) */
105 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
106 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
107 #include <netinet/ip.h> /* for struct ip */
108 #include <netinet/tcp.h> /* for struct tcphdr */
109
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/miidevs.h>
117 #include <dev/mii/brgphyreg.h>
118
119 #include <dev/pci/if_bgereg.h>
120 #include <dev/pci/if_bgevar.h>
121
122 #include <prop/proplib.h>
123
124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
125
126
127 /*
128 * Tunable thresholds for rx-side bge interrupt mitigation.
129 */
130
131 /*
132 * The pairs of values below were obtained from empirical measurement
133 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
134 * interrupt for every N packets received, where N is, approximately,
135 * the second value (rx_max_bds) in each pair. The values are chosen
136 * such that moving from one pair to the succeeding pair was observed
137 * to roughly halve interrupt rate under sustained input packet load.
138 * The values were empirically chosen to avoid overflowing internal
139 * limits on the bcm5700: increasing rx_ticks much beyond 600
140 * results in internal wrapping and higher interrupt rates.
141 * The limit of 46 frames was chosen to match NFS workloads.
142 *
143 * These values also work well on bcm5701, bcm5704C, and (less
144 * tested) bcm5703. On other chipsets, (including the Altima chip
145 * family), the larger values may overflow internal chip limits,
146 * leading to increasing interrupt rates rather than lower interrupt
147 * rates.
148 *
149 * Applications using heavy interrupt mitigation (interrupting every
150 * 32 or 46 frames) in both directions may need to increase the TCP
151 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
152 * full link bandwidth, due to ACKs and window updates lingering
153 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
154 */
155 static const struct bge_load_rx_thresh {
156 int rx_ticks;
157 int rx_max_bds; }
158 bge_rx_threshes[] = {
159 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
160 { 32, 2 },
161 { 50, 4 },
162 { 100, 8 },
163 { 192, 16 },
164 { 416, 32 },
165 { 598, 46 }
166 };
167 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
168
169 /* XXX patchable; should be sysctl'able */
170 static int bge_auto_thresh = 1;
171 static int bge_rx_thresh_lvl;
172
173 static int bge_rxthresh_nodenum;
174
175 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
176
177 static uint32_t bge_chipid(const struct pci_attach_args *);
178 static int bge_can_use_msi(struct bge_softc *);
179 static int bge_probe(device_t, cfdata_t, void *);
180 static void bge_attach(device_t, device_t, void *);
181 static int bge_detach(device_t, int);
182 static void bge_release_resources(struct bge_softc *);
183
184 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
185 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
186 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
187 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
188 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
189
190 static void bge_txeof(struct bge_softc *);
191 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
192 static void bge_rxeof(struct bge_softc *);
193
194 static void bge_asf_driver_up (struct bge_softc *);
195 static void bge_tick(void *);
196 static void bge_stats_update(struct bge_softc *);
197 static void bge_stats_update_regs(struct bge_softc *);
198 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
199
200 static int bge_intr(void *);
201 static void bge_start(struct ifnet *);
202 static void bge_start_locked(struct ifnet *);
203 static int bge_ifflags_cb(struct ethercom *);
204 static int bge_ioctl(struct ifnet *, u_long, void *);
205 static int bge_init(struct ifnet *);
206 static void bge_stop(struct ifnet *, int);
207 static bool bge_watchdog_tick(struct ifnet *);
208 static int bge_ifmedia_upd(struct ifnet *);
209 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
210 static void bge_handle_reset_work(struct work *, void *);
211
212 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
213 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
214
215 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
216 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
217 static void bge_setmulti(struct bge_softc *);
218
219 static void bge_handle_events(struct bge_softc *);
220 static int bge_alloc_jumbo_mem(struct bge_softc *);
221 static void bge_free_jumbo_mem(struct bge_softc *);
222 static void *bge_jalloc(struct bge_softc *);
223 static void bge_jfree(struct mbuf *, void *, size_t, void *);
224 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
225 static int bge_init_rx_ring_jumbo(struct bge_softc *);
226 static void bge_free_rx_ring_jumbo(struct bge_softc *);
227
228 static int bge_newbuf_std(struct bge_softc *, int);
229 static int bge_init_rx_ring_std(struct bge_softc *);
230 static void bge_fill_rx_ring_std(struct bge_softc *);
231 static void bge_free_rx_ring_std(struct bge_softc *m);
232
233 static void bge_free_tx_ring(struct bge_softc *m, bool);
234 static int bge_init_tx_ring(struct bge_softc *);
235
236 static int bge_chipinit(struct bge_softc *);
237 static int bge_blockinit(struct bge_softc *);
238 static int bge_phy_addr(struct bge_softc *);
239 static uint32_t bge_readmem_ind(struct bge_softc *, int);
240 static void bge_writemem_ind(struct bge_softc *, int, int);
241 static void bge_writembx(struct bge_softc *, int, int);
242 static void bge_writembx_flush(struct bge_softc *, int, int);
243 static void bge_writemem_direct(struct bge_softc *, int, int);
244 static void bge_writereg_ind(struct bge_softc *, int, int);
245 static void bge_set_max_readrq(struct bge_softc *);
246
247 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
248 static int bge_miibus_writereg(device_t, int, int, uint16_t);
249 static void bge_miibus_statchg(struct ifnet *);
250
251 #define BGE_RESET_SHUTDOWN 0
252 #define BGE_RESET_START 1
253 #define BGE_RESET_SUSPEND 2
254 static void bge_sig_post_reset(struct bge_softc *, int);
255 static void bge_sig_legacy(struct bge_softc *, int);
256 static void bge_sig_pre_reset(struct bge_softc *, int);
257 static void bge_wait_for_event_ack(struct bge_softc *);
258 static void bge_stop_fw(struct bge_softc *);
259 static int bge_reset(struct bge_softc *);
260 static void bge_link_upd(struct bge_softc *);
261 static void bge_sysctl_init(struct bge_softc *);
262 static int bge_sysctl_verify(SYSCTLFN_PROTO);
263
264 static void bge_ape_lock_init(struct bge_softc *);
265 static void bge_ape_read_fw_ver(struct bge_softc *);
266 static int bge_ape_lock(struct bge_softc *, int);
267 static void bge_ape_unlock(struct bge_softc *, int);
268 static void bge_ape_send_event(struct bge_softc *, uint32_t);
269 static void bge_ape_driver_state_change(struct bge_softc *, int);
270
271 #ifdef BGE_DEBUG
272 #define DPRINTF(x) if (bgedebug) printf x
273 #define DPRINTFN(n, x) if (bgedebug >= (n)) printf x
274 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
275 int bgedebug = 0;
276 int bge_tso_debug = 0;
277 void bge_debug_info(struct bge_softc *);
278 #else
279 #define DPRINTF(x)
280 #define DPRINTFN(n, x)
281 #define BGE_TSO_PRINTF(x)
282 #endif
283
284 #ifdef BGE_EVENT_COUNTERS
285 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
286 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
287 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
288 #else
289 #define BGE_EVCNT_INCR(ev) /* nothing */
290 #define BGE_EVCNT_ADD(ev, val) /* nothing */
291 #define BGE_EVCNT_UPD(ev, val) /* nothing */
292 #endif
293
294 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
295 /*
296 * The BCM5700 documentation seems to indicate that the hardware still has the
297 * Alteon vendor ID burned into it, though it should always be overridden by
298 * the value in the EEPROM. We'll check for it anyway.
299 */
300 static const struct bge_product {
301 pci_vendor_id_t bp_vendor;
302 pci_product_id_t bp_product;
303 const char *bp_name;
304 } bge_products[] = {
305 { VIDDID(ALTEON, BCM5700), "Broadcom BCM5700 Gigabit" },
306 { VIDDID(ALTEON, BCM5701), "Broadcom BCM5701 Gigabit" },
307 { VIDDID(ALTIMA, AC1000), "Altima AC1000 Gigabit" },
308 { VIDDID(ALTIMA, AC1001), "Altima AC1001 Gigabit" },
309 { VIDDID(ALTIMA, AC1003), "Altima AC1003 Gigabit" },
310 { VIDDID(ALTIMA, AC9100), "Altima AC9100 Gigabit" },
311 { VIDDID(APPLE, BCM5701), "APPLE BCM5701 Gigabit" },
312 { VIDDID(BROADCOM, BCM5700), "Broadcom BCM5700 Gigabit" },
313 { VIDDID(BROADCOM, BCM5701), "Broadcom BCM5701 Gigabit" },
314 { VIDDID(BROADCOM, BCM5702), "Broadcom BCM5702 Gigabit" },
315 { VIDDID(BROADCOM, BCM5702FE), "Broadcom BCM5702FE Fast" },
316 { VIDDID(BROADCOM, BCM5702X), "Broadcom BCM5702X Gigabit" },
317 { VIDDID(BROADCOM, BCM5703), "Broadcom BCM5703 Gigabit" },
318 { VIDDID(BROADCOM, BCM5703X), "Broadcom BCM5703X Gigabit" },
319 { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
320 { VIDDID(BROADCOM, BCM5704C), "Broadcom BCM5704C Dual Gigabit" },
321 { VIDDID(BROADCOM, BCM5704S), "Broadcom BCM5704S Dual Gigabit" },
322 { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
323 { VIDDID(BROADCOM, BCM5705), "Broadcom BCM5705 Gigabit" },
324 { VIDDID(BROADCOM, BCM5705F), "Broadcom BCM5705F Gigabit" },
325 { VIDDID(BROADCOM, BCM5705K), "Broadcom BCM5705K Gigabit" },
326 { VIDDID(BROADCOM, BCM5705M), "Broadcom BCM5705M Gigabit" },
327 { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
328 { VIDDID(BROADCOM, BCM5714), "Broadcom BCM5714 Gigabit" },
329 { VIDDID(BROADCOM, BCM5714S), "Broadcom BCM5714S Gigabit" },
330 { VIDDID(BROADCOM, BCM5715), "Broadcom BCM5715 Gigabit" },
331 { VIDDID(BROADCOM, BCM5715S), "Broadcom BCM5715S Gigabit" },
332 { VIDDID(BROADCOM, BCM5717), "Broadcom BCM5717 Gigabit" },
333 { VIDDID(BROADCOM, BCM5717C), "Broadcom BCM5717 Gigabit" },
334 { VIDDID(BROADCOM, BCM5718), "Broadcom BCM5718 Gigabit" },
335 { VIDDID(BROADCOM, BCM5719), "Broadcom BCM5719 Gigabit" },
336 { VIDDID(BROADCOM, BCM5720), "Broadcom BCM5720 Gigabit" },
337 { VIDDID(BROADCOM, BCM5721), "Broadcom BCM5721 Gigabit" },
338 { VIDDID(BROADCOM, BCM5722), "Broadcom BCM5722 Gigabit" },
339 { VIDDID(BROADCOM, BCM5723), "Broadcom BCM5723 Gigabit" },
340 { VIDDID(BROADCOM, BCM5725), "Broadcom BCM5725 Gigabit" },
341 { VIDDID(BROADCOM, BCM5727), "Broadcom BCM5727 Gigabit" },
342 { VIDDID(BROADCOM, BCM5750), "Broadcom BCM5750 Gigabit" },
343 { VIDDID(BROADCOM, BCM5751), "Broadcom BCM5751 Gigabit" },
344 { VIDDID(BROADCOM, BCM5751F), "Broadcom BCM5751F Gigabit" },
345 { VIDDID(BROADCOM, BCM5751M), "Broadcom BCM5751M Gigabit" },
346 { VIDDID(BROADCOM, BCM5752), "Broadcom BCM5752 Gigabit" },
347 { VIDDID(BROADCOM, BCM5752M), "Broadcom BCM5752M Gigabit" },
348 { VIDDID(BROADCOM, BCM5753), "Broadcom BCM5753 Gigabit" },
349 { VIDDID(BROADCOM, BCM5753F), "Broadcom BCM5753F Gigabit" },
350 { VIDDID(BROADCOM, BCM5753M), "Broadcom BCM5753M Gigabit" },
351 { VIDDID(BROADCOM, BCM5754), "Broadcom BCM5754 Gigabit" },
352 { VIDDID(BROADCOM, BCM5754M), "Broadcom BCM5754M Gigabit" },
353 { VIDDID(BROADCOM, BCM5755), "Broadcom BCM5755 Gigabit" },
354 { VIDDID(BROADCOM, BCM5755M), "Broadcom BCM5755M Gigabit" },
355 { VIDDID(BROADCOM, BCM5756), "Broadcom BCM5756 Gigabit" },
356 { VIDDID(BROADCOM, BCM5761), "Broadcom BCM5761 Gigabit" },
357 { VIDDID(BROADCOM, BCM5761E), "Broadcom BCM5761E Gigabit" },
358 { VIDDID(BROADCOM, BCM5761S), "Broadcom BCM5761S Gigabit" },
359 { VIDDID(BROADCOM, BCM5761SE), "Broadcom BCM5761SE Gigabit" },
360 { VIDDID(BROADCOM, BCM5762), "Broadcom BCM5762 Gigabit" },
361 { VIDDID(BROADCOM, BCM5764), "Broadcom BCM5764 Gigabit" },
362 { VIDDID(BROADCOM, BCM5780), "Broadcom BCM5780 Gigabit" },
363 { VIDDID(BROADCOM, BCM5780S), "Broadcom BCM5780S Gigabit" },
364 { VIDDID(BROADCOM, BCM5781), "Broadcom BCM5781 Gigabit" },
365 { VIDDID(BROADCOM, BCM5782), "Broadcom BCM5782 Gigabit" },
366 { VIDDID(BROADCOM, BCM5784M), "BCM5784M NetLink 1000baseT" },
367 { VIDDID(BROADCOM, BCM5785F), "BCM5785F NetLink 10/100" },
368 { VIDDID(BROADCOM, BCM5785G), "BCM5785G NetLink 1000baseT" },
369 { VIDDID(BROADCOM, BCM5786), "Broadcom BCM5786 Gigabit" },
370 { VIDDID(BROADCOM, BCM5787), "Broadcom BCM5787 Gigabit" },
371 { VIDDID(BROADCOM, BCM5787F), "Broadcom BCM5787F 10/100" },
372 { VIDDID(BROADCOM, BCM5787M), "Broadcom BCM5787M Gigabit" },
373 { VIDDID(BROADCOM, BCM5788), "Broadcom BCM5788 Gigabit" },
374 { VIDDID(BROADCOM, BCM5789), "Broadcom BCM5789 Gigabit" },
375 { VIDDID(BROADCOM, BCM5901), "Broadcom BCM5901 Fast" },
376 { VIDDID(BROADCOM, BCM5901A2), "Broadcom BCM5901A2 Fast" },
377 { VIDDID(BROADCOM, BCM5903M), "Broadcom BCM5903M Fast" },
378 { VIDDID(BROADCOM, BCM5906), "Broadcom BCM5906 Fast" },
379 { VIDDID(BROADCOM, BCM5906M), "Broadcom BCM5906M Fast" },
380 { VIDDID(BROADCOM, BCM57760), "Broadcom BCM57760 Gigabit" },
381 { VIDDID(BROADCOM, BCM57761), "Broadcom BCM57761 Gigabit" },
382 { VIDDID(BROADCOM, BCM57762), "Broadcom BCM57762 Gigabit" },
383 { VIDDID(BROADCOM, BCM57764), "Broadcom BCM57764 Gigabit" },
384 { VIDDID(BROADCOM, BCM57765), "Broadcom BCM57765 Gigabit" },
385 { VIDDID(BROADCOM, BCM57766), "Broadcom BCM57766 Gigabit" },
386 { VIDDID(BROADCOM, BCM57767), "Broadcom BCM57767 Gigabit" },
387 { VIDDID(BROADCOM, BCM57780), "Broadcom BCM57780 Gigabit" },
388 { VIDDID(BROADCOM, BCM57781), "Broadcom BCM57781 Gigabit" },
389 { VIDDID(BROADCOM, BCM57782), "Broadcom BCM57782 Gigabit" },
390 { VIDDID(BROADCOM, BCM57785), "Broadcom BCM57785 Gigabit" },
391 { VIDDID(BROADCOM, BCM57786), "Broadcom BCM57786 Gigabit" },
392 { VIDDID(BROADCOM, BCM57787), "Broadcom BCM57787 Gigabit" },
393 { VIDDID(BROADCOM, BCM57788), "Broadcom BCM57788 Gigabit" },
394 { VIDDID(BROADCOM, BCM57790), "Broadcom BCM57790 Gigabit" },
395 { VIDDID(BROADCOM, BCM57791), "Broadcom BCM57791 Gigabit" },
396 { VIDDID(BROADCOM, BCM57795), "Broadcom BCM57795 Gigabit" },
397 { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
398 { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
399 { VIDDID(3COM, 3C996), "3Com 3c996 Gigabit" },
400 { VIDDID(FUJITSU4, PW008GE4), "Fujitsu PW008GE4 Gigabit" },
401 { VIDDID(FUJITSU4, PW008GE5), "Fujitsu PW008GE5 Gigabit" },
402 { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
403 { 0, 0, NULL },
404 };
405
406 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
407 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
408 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
409 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
410 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
411 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
412 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
413 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
414 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
415
416 static const struct bge_revision {
417 uint32_t br_chipid;
418 const char *br_name;
419 } bge_revisions[] = {
420 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
421 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
422 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
423 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
424 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
425 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
426 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
427 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
428 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
429 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
430 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
431 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
432 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
433 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
434 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
435 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
436 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
437 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
438 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
439 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
440 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
441 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
442 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
443 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
444 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
445 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
446 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
447 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
448 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
449 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
450 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
451 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
452 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
453 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
454 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
455 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
456 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
457 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
458 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
459 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
460 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
461 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
462 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
463 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
464 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
465 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
466 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
467 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
468 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
469 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
470 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
471 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
472 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
473 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
474 { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
475 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
476 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
477 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
478 /* 5754 and 5787 share the same ASIC ID */
479 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
480 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
481 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
482 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
483 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
484 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
485 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
486 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
487 { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
488 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
489 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
490
491 { 0, NULL }
492 };
493
494 /*
495 * Some defaults for major revisions, so that newer steppings
496 * that we don't know about have a shot at working.
497 */
498 static const struct bge_revision bge_majorrevs[] = {
499 { BGE_ASICREV_BCM5700, "unknown BCM5700" },
500 { BGE_ASICREV_BCM5701, "unknown BCM5701" },
501 { BGE_ASICREV_BCM5703, "unknown BCM5703" },
502 { BGE_ASICREV_BCM5704, "unknown BCM5704" },
503 { BGE_ASICREV_BCM5705, "unknown BCM5705" },
504 { BGE_ASICREV_BCM5750, "unknown BCM5750" },
505 { BGE_ASICREV_BCM5714, "unknown BCM5714" },
506 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
507 { BGE_ASICREV_BCM5752, "unknown BCM5752" },
508 { BGE_ASICREV_BCM5780, "unknown BCM5780" },
509 { BGE_ASICREV_BCM5755, "unknown BCM5755" },
510 { BGE_ASICREV_BCM5761, "unknown BCM5761" },
511 { BGE_ASICREV_BCM5784, "unknown BCM5784" },
512 { BGE_ASICREV_BCM5785, "unknown BCM5785" },
513 /* 5754 and 5787 share the same ASIC ID */
514 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
515 { BGE_ASICREV_BCM5906, "unknown BCM5906" },
516 { BGE_ASICREV_BCM57765, "unknown BCM57765" },
517 { BGE_ASICREV_BCM57766, "unknown BCM57766" },
518 { BGE_ASICREV_BCM57780, "unknown BCM57780" },
519 { BGE_ASICREV_BCM5717, "unknown BCM5717" },
520 { BGE_ASICREV_BCM5719, "unknown BCM5719" },
521 { BGE_ASICREV_BCM5720, "unknown BCM5720" },
522 { BGE_ASICREV_BCM5762, "unknown BCM5762" },
523
524 { 0, NULL }
525 };
526
527 static int bge_allow_asf = 1;
528
529 #ifndef BGE_WATCHDOG_TIMEOUT
530 #define BGE_WATCHDOG_TIMEOUT 5
531 #endif
532 static int bge_watchdog_timeout = BGE_WATCHDOG_TIMEOUT;
533
534
535 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
536 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
537
538 static uint32_t
539 bge_readmem_ind(struct bge_softc *sc, int off)
540 {
541 pcireg_t val;
542
543 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
544 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
545 return 0;
546
547 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
548 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
549 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
550 return val;
551 }
552
553 static void
554 bge_writemem_ind(struct bge_softc *sc, int off, int val)
555 {
556
557 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
558 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
559 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
560 }
561
562 /*
563 * PCI Express only
564 */
565 static void
566 bge_set_max_readrq(struct bge_softc *sc)
567 {
568 pcireg_t val;
569
570 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
571 + PCIE_DCSR);
572 val &= ~PCIE_DCSR_MAX_READ_REQ;
573 switch (sc->bge_expmrq) {
574 case 2048:
575 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
576 break;
577 case 4096:
578 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
579 break;
580 default:
581 panic("incorrect expmrq value(%d)", sc->bge_expmrq);
582 break;
583 }
584 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
585 + PCIE_DCSR, val);
586 }
587
588 #ifdef notdef
589 static uint32_t
590 bge_readreg_ind(struct bge_softc *sc, int off)
591 {
592 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
593 return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
594 }
595 #endif
596
597 static void
598 bge_writereg_ind(struct bge_softc *sc, int off, int val)
599 {
600 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
601 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
602 }
603
604 static void
605 bge_writemem_direct(struct bge_softc *sc, int off, int val)
606 {
607 CSR_WRITE_4(sc, off, val);
608 }
609
610 static void
611 bge_writembx(struct bge_softc *sc, int off, int val)
612 {
613 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
614 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
615
616 CSR_WRITE_4(sc, off, val);
617 }
618
619 static void
620 bge_writembx_flush(struct bge_softc *sc, int off, int val)
621 {
622 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
623 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
624
625 CSR_WRITE_4_FLUSH(sc, off, val);
626 }
627
628 /*
629 * Clear all stale locks and select the lock for this driver instance.
630 */
631 void
632 bge_ape_lock_init(struct bge_softc *sc)
633 {
634 struct pci_attach_args *pa = &(sc->bge_pa);
635 uint32_t bit, regbase;
636 int i;
637
638 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
639 regbase = BGE_APE_LOCK_GRANT;
640 else
641 regbase = BGE_APE_PER_LOCK_GRANT;
642
643 /* Clear any stale locks. */
644 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
645 switch (i) {
646 case BGE_APE_LOCK_PHY0:
647 case BGE_APE_LOCK_PHY1:
648 case BGE_APE_LOCK_PHY2:
649 case BGE_APE_LOCK_PHY3:
650 bit = BGE_APE_LOCK_GRANT_DRIVER0;
651 break;
652 default:
653 if (pa->pa_function == 0)
654 bit = BGE_APE_LOCK_GRANT_DRIVER0;
655 else
656 bit = (1 << pa->pa_function);
657 }
658 APE_WRITE_4(sc, regbase + 4 * i, bit);
659 }
660
661 /* Select the PHY lock based on the device's function number. */
662 switch (pa->pa_function) {
663 case 0:
664 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
665 break;
666 case 1:
667 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
668 break;
669 case 2:
670 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
671 break;
672 case 3:
673 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
674 break;
675 default:
676 printf("%s: PHY lock not supported on function\n",
677 device_xname(sc->bge_dev));
678 break;
679 }
680 }
681
682 /*
683 * Check for APE firmware, set flags, and print version info.
684 */
685 void
686 bge_ape_read_fw_ver(struct bge_softc *sc)
687 {
688 const char *fwtype;
689 uint32_t apedata, features;
690
691 /* Check for a valid APE signature in shared memory. */
692 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
693 if (apedata != BGE_APE_SEG_SIG_MAGIC) {
694 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
695 return;
696 }
697
698 /* Check if APE firmware is running. */
699 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
700 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
701 printf("%s: APE signature found but FW status not ready! "
702 "0x%08x\n", device_xname(sc->bge_dev), apedata);
703 return;
704 }
705
706 sc->bge_mfw_flags |= BGE_MFW_ON_APE;
707
708 /* Fetch the APE firmware type and version. */
709 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
710 features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
711 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
712 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
713 fwtype = "NCSI";
714 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
715 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
716 fwtype = "DASH";
717 } else
718 fwtype = "UNKN";
719
720 /* Print the APE firmware version. */
721 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
722 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
723 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
724 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
725 (apedata & BGE_APE_FW_VERSION_BLDMSK));
726 }
727
728 int
729 bge_ape_lock(struct bge_softc *sc, int locknum)
730 {
731 struct pci_attach_args *pa = &(sc->bge_pa);
732 uint32_t bit, gnt, req, status;
733 int i, off;
734
735 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
736 return 0;
737
738 /* Lock request/grant registers have different bases. */
739 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
740 req = BGE_APE_LOCK_REQ;
741 gnt = BGE_APE_LOCK_GRANT;
742 } else {
743 req = BGE_APE_PER_LOCK_REQ;
744 gnt = BGE_APE_PER_LOCK_GRANT;
745 }
746
747 off = 4 * locknum;
748
749 switch (locknum) {
750 case BGE_APE_LOCK_GPIO:
751 /* Lock required when using GPIO. */
752 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
753 return 0;
754 if (pa->pa_function == 0)
755 bit = BGE_APE_LOCK_REQ_DRIVER0;
756 else
757 bit = (1 << pa->pa_function);
758 break;
759 case BGE_APE_LOCK_GRC:
760 /* Lock required to reset the device. */
761 if (pa->pa_function == 0)
762 bit = BGE_APE_LOCK_REQ_DRIVER0;
763 else
764 bit = (1 << pa->pa_function);
765 break;
766 case BGE_APE_LOCK_MEM:
767 /* Lock required when accessing certain APE memory. */
768 if (pa->pa_function == 0)
769 bit = BGE_APE_LOCK_REQ_DRIVER0;
770 else
771 bit = (1 << pa->pa_function);
772 break;
773 case BGE_APE_LOCK_PHY0:
774 case BGE_APE_LOCK_PHY1:
775 case BGE_APE_LOCK_PHY2:
776 case BGE_APE_LOCK_PHY3:
777 /* Lock required when accessing PHYs. */
778 bit = BGE_APE_LOCK_REQ_DRIVER0;
779 break;
780 default:
781 return EINVAL;
782 }
783
784 /* Request a lock. */
785 APE_WRITE_4_FLUSH(sc, req + off, bit);
786
787 /* Wait up to 1 second to acquire lock. */
788 for (i = 0; i < 20000; i++) {
789 status = APE_READ_4(sc, gnt + off);
790 if (status == bit)
791 break;
792 DELAY(50);
793 }
794
795 /* Handle any errors. */
796 if (status != bit) {
797 printf("%s: APE lock %d request failed! "
798 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
799 device_xname(sc->bge_dev),
800 locknum, req + off, bit & 0xFFFF, gnt + off,
801 status & 0xFFFF);
802 /* Revoke the lock request. */
803 APE_WRITE_4(sc, gnt + off, bit);
804 return EBUSY;
805 }
806
807 return 0;
808 }
809
810 void
811 bge_ape_unlock(struct bge_softc *sc, int locknum)
812 {
813 struct pci_attach_args *pa = &(sc->bge_pa);
814 uint32_t bit, gnt;
815 int off;
816
817 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
818 return;
819
820 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
821 gnt = BGE_APE_LOCK_GRANT;
822 else
823 gnt = BGE_APE_PER_LOCK_GRANT;
824
825 off = 4 * locknum;
826
827 switch (locknum) {
828 case BGE_APE_LOCK_GPIO:
829 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
830 return;
831 if (pa->pa_function == 0)
832 bit = BGE_APE_LOCK_GRANT_DRIVER0;
833 else
834 bit = (1 << pa->pa_function);
835 break;
836 case BGE_APE_LOCK_GRC:
837 if (pa->pa_function == 0)
838 bit = BGE_APE_LOCK_GRANT_DRIVER0;
839 else
840 bit = (1 << pa->pa_function);
841 break;
842 case BGE_APE_LOCK_MEM:
843 if (pa->pa_function == 0)
844 bit = BGE_APE_LOCK_GRANT_DRIVER0;
845 else
846 bit = (1 << pa->pa_function);
847 break;
848 case BGE_APE_LOCK_PHY0:
849 case BGE_APE_LOCK_PHY1:
850 case BGE_APE_LOCK_PHY2:
851 case BGE_APE_LOCK_PHY3:
852 bit = BGE_APE_LOCK_GRANT_DRIVER0;
853 break;
854 default:
855 return;
856 }
857
858 /* Write and flush for consecutive bge_ape_lock() */
859 APE_WRITE_4_FLUSH(sc, gnt + off, bit);
860 }
861
862 /*
863 * Send an event to the APE firmware.
864 */
865 void
866 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
867 {
868 uint32_t apedata;
869 int i;
870
871 /* NCSI does not support APE events. */
872 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
873 return;
874
875 /* Wait up to 1ms for APE to service previous event. */
876 for (i = 10; i > 0; i--) {
877 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
878 break;
879 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
880 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
881 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
882 BGE_APE_EVENT_STATUS_EVENT_PENDING);
883 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
884 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
885 break;
886 }
887 bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
888 DELAY(100);
889 }
890 if (i == 0) {
891 printf("%s: APE event 0x%08x send timed out\n",
892 device_xname(sc->bge_dev), event);
893 }
894 }
895
896 void
897 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
898 {
899 uint32_t apedata, event;
900
901 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
902 return;
903
904 switch (kind) {
905 case BGE_RESET_START:
906 /* If this is the first load, clear the load counter. */
907 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
908 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
909 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
910 else {
911 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
912 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
913 }
914 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
915 BGE_APE_HOST_SEG_SIG_MAGIC);
916 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
917 BGE_APE_HOST_SEG_LEN_MAGIC);
918
919 /* Add some version info if bge(4) supports it. */
920 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
921 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
922 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
923 BGE_APE_HOST_BEHAV_NO_PHYLOCK);
924 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
925 BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
926 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
927 BGE_APE_HOST_DRVR_STATE_START);
928 event = BGE_APE_EVENT_STATUS_STATE_START;
929 break;
930 case BGE_RESET_SHUTDOWN:
931 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
932 BGE_APE_HOST_DRVR_STATE_UNLOAD);
933 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
934 break;
935 case BGE_RESET_SUSPEND:
936 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
937 break;
938 default:
939 return;
940 }
941
942 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
943 BGE_APE_EVENT_STATUS_STATE_CHNGE);
944 }
945
946 static uint8_t
947 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
948 {
949 uint32_t access, byte = 0;
950 int i;
951
952 /* Lock. */
953 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
954 for (i = 0; i < 8000; i++) {
955 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
956 break;
957 DELAY(20);
958 }
959 if (i == 8000)
960 return 1;
961
962 /* Enable access. */
963 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
964 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
965
966 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
967 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
968 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
969 DELAY(10);
970 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
971 DELAY(10);
972 break;
973 }
974 }
975
976 if (i == BGE_TIMEOUT * 10) {
977 aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
978 return 1;
979 }
980
981 /* Get result. */
982 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
983
984 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
985
986 /* Disable access. */
987 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
988
989 /* Unlock. */
990 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
991
992 return 0;
993 }
994
995 /*
996 * Read a sequence of bytes from NVRAM.
997 */
998 static int
999 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1000 {
1001 int error = 0, i;
1002 uint8_t byte = 0;
1003
1004 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1005 return 1;
1006
1007 for (i = 0; i < cnt; i++) {
1008 error = bge_nvram_getbyte(sc, off + i, &byte);
1009 if (error)
1010 break;
1011 *(dest + i) = byte;
1012 }
1013
1014 return error ? 1 : 0;
1015 }
1016
1017 /*
1018 * Read a byte of data stored in the EEPROM at address 'addr.' The
1019 * BCM570x supports both the traditional bitbang interface and an
1020 * auto access interface for reading the EEPROM. We use the auto
1021 * access method.
1022 */
1023 static uint8_t
1024 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1025 {
1026 int i;
1027 uint32_t byte = 0;
1028
1029 /*
1030 * Enable use of auto EEPROM access so we can avoid
1031 * having to use the bitbang method.
1032 */
1033 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1034
1035 /* Reset the EEPROM, load the clock period. */
1036 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1037 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1038 DELAY(20);
1039
1040 /* Issue the read EEPROM command. */
1041 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1042
1043 /* Wait for completion */
1044 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1045 DELAY(10);
1046 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1047 break;
1048 }
1049
1050 if (i == BGE_TIMEOUT * 10) {
1051 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1052 return 1;
1053 }
1054
1055 /* Get result. */
1056 byte = CSR_READ_4(sc, BGE_EE_DATA);
1057
1058 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1059
1060 return 0;
1061 }
1062
1063 /*
1064 * Read a sequence of bytes from the EEPROM.
1065 */
1066 static int
1067 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1068 {
1069 int error = 0, i;
1070 uint8_t byte = 0;
1071 char *dest = destv;
1072
1073 for (i = 0; i < cnt; i++) {
1074 error = bge_eeprom_getbyte(sc, off + i, &byte);
1075 if (error)
1076 break;
1077 *(dest + i) = byte;
1078 }
1079
1080 return error ? 1 : 0;
1081 }
1082
1083 static int
1084 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1085 {
1086 struct bge_softc * const sc = device_private(dev);
1087 uint32_t data;
1088 uint32_t autopoll;
1089 int rv = 0;
1090 int i;
1091
1092 KASSERT(mutex_owned(sc->sc_intr_lock));
1093
1094 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1095 return -1;
1096
1097 /* Reading with autopolling on may trigger PCI errors */
1098 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1099 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1100 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1101 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1102 DELAY(80);
1103 }
1104
1105 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1106 BGE_MIPHY(phy) | BGE_MIREG(reg));
1107
1108 for (i = 0; i < BGE_TIMEOUT; i++) {
1109 delay(10);
1110 data = CSR_READ_4(sc, BGE_MI_COMM);
1111 if (!(data & BGE_MICOMM_BUSY)) {
1112 DELAY(5);
1113 data = CSR_READ_4(sc, BGE_MI_COMM);
1114 break;
1115 }
1116 }
1117
1118 if (i == BGE_TIMEOUT) {
1119 aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1120 rv = ETIMEDOUT;
1121 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1122 /* XXX This error occurs on some devices while attaching. */
1123 aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1124 rv = EIO;
1125 } else
1126 *val = data & BGE_MICOMM_DATA;
1127
1128 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1129 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1130 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1131 DELAY(80);
1132 }
1133
1134 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1135
1136 return rv;
1137 }
1138
1139 static int
1140 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1141 {
1142 struct bge_softc * const sc = device_private(dev);
1143 uint32_t data, autopoll;
1144 int rv = 0;
1145 int i;
1146
1147 KASSERT(mutex_owned(sc->sc_intr_lock));
1148
1149 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1150 (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1151 return 0;
1152
1153 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1154 return -1;
1155
1156 /* Reading with autopolling on may trigger PCI errors */
1157 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1158 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1159 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1160 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1161 DELAY(80);
1162 }
1163
1164 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1165 BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1166
1167 for (i = 0; i < BGE_TIMEOUT; i++) {
1168 delay(10);
1169 data = CSR_READ_4(sc, BGE_MI_COMM);
1170 if (!(data & BGE_MICOMM_BUSY)) {
1171 delay(5);
1172 data = CSR_READ_4(sc, BGE_MI_COMM);
1173 break;
1174 }
1175 }
1176
1177 if (i == BGE_TIMEOUT) {
1178 aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1179 rv = ETIMEDOUT;
1180 } else if ((data & BGE_MICOMM_READFAIL) != 0) {
1181 aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1182 rv = EIO;
1183 }
1184
1185 if (autopoll & BGE_MIMODE_AUTOPOLL) {
1186 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1187 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1188 delay(80);
1189 }
1190
1191 bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1192
1193 return rv;
1194 }
1195
1196 static void
1197 bge_miibus_statchg(struct ifnet *ifp)
1198 {
1199 struct bge_softc * const sc = ifp->if_softc;
1200 struct mii_data *mii = &sc->bge_mii;
1201 uint32_t mac_mode, rx_mode, tx_mode;
1202
1203 KASSERT(mutex_owned(sc->sc_intr_lock));
1204
1205 /*
1206 * Get flow control negotiation result.
1207 */
1208 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1209 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1210 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1211
1212 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1213 mii->mii_media_status & IFM_ACTIVE &&
1214 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1215 BGE_STS_SETBIT(sc, BGE_STS_LINK);
1216 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1217 (!(mii->mii_media_status & IFM_ACTIVE) ||
1218 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1219 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1220
1221 if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1222 return;
1223
1224 /* Set the port mode (MII/GMII) to match the link speed. */
1225 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1226 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1227 tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1228 rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1229 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1230 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1231 mac_mode |= BGE_PORTMODE_GMII;
1232 else
1233 mac_mode |= BGE_PORTMODE_MII;
1234
1235 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1236 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1237 if ((mii->mii_media_active & IFM_FDX) != 0) {
1238 if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1239 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1240 if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1241 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1242 } else
1243 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1244
1245 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1246 DELAY(40);
1247 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1248 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1249 }
1250
1251 /*
1252 * Update rx threshold levels to values in a particular slot
1253 * of the interrupt-mitigation table bge_rx_threshes.
1254 */
1255 static void
1256 bge_set_thresh(struct ifnet *ifp, int lvl)
1257 {
1258 struct bge_softc * const sc = ifp->if_softc;
1259
1260 /*
1261 * For now, just save the new Rx-intr thresholds and record
1262 * that a threshold update is pending. Updating the hardware
1263 * registers here (even at splhigh()) is observed to
1264 * occasionally cause glitches where Rx-interrupts are not
1265 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
1266 */
1267 mutex_enter(sc->sc_intr_lock);
1268 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1269 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1270 sc->bge_pending_rxintr_change = true;
1271 mutex_exit(sc->sc_intr_lock);
1272 }
1273
1274
1275 /*
1276 * Update Rx thresholds of all bge devices
1277 */
1278 static void
1279 bge_update_all_threshes(int lvl)
1280 {
1281 const char * const namebuf = "bge";
1282 const size_t namelen = strlen(namebuf);
1283 struct ifnet *ifp;
1284
1285 if (lvl < 0)
1286 lvl = 0;
1287 else if (lvl >= NBGE_RX_THRESH)
1288 lvl = NBGE_RX_THRESH - 1;
1289
1290 /*
1291 * Now search all the interfaces for this name/number
1292 */
1293 int s = pserialize_read_enter();
1294 IFNET_READER_FOREACH(ifp) {
1295 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1296 continue;
1297 /* We got a match: update if doing auto-threshold-tuning */
1298 if (bge_auto_thresh)
1299 bge_set_thresh(ifp, lvl);
1300 }
1301 pserialize_read_exit(s);
1302 }
1303
1304 /*
1305 * Handle events that have triggered interrupts.
1306 */
1307 static void
1308 bge_handle_events(struct bge_softc *sc)
1309 {
1310
1311 return;
1312 }
1313
1314 /*
1315 * Memory management for jumbo frames.
1316 */
1317
1318 static int
1319 bge_alloc_jumbo_mem(struct bge_softc *sc)
1320 {
1321 char *ptr, *kva;
1322 int i, rseg, state, error;
1323 struct bge_jpool_entry *entry;
1324
1325 state = error = 0;
1326
1327 /* Grab a big chunk o' storage. */
1328 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1329 &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_WAITOK)) {
1330 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1331 return ENOBUFS;
1332 }
1333
1334 state = 1;
1335 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg,
1336 rseg, BGE_JMEM, (void **)&kva, BUS_DMA_WAITOK)) {
1337 aprint_error_dev(sc->bge_dev,
1338 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1339 error = ENOBUFS;
1340 goto out;
1341 }
1342
1343 state = 2;
1344 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1345 BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_jumbo_map)) {
1346 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1347 error = ENOBUFS;
1348 goto out;
1349 }
1350
1351 state = 3;
1352 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1353 kva, BGE_JMEM, NULL, BUS_DMA_WAITOK)) {
1354 aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1355 error = ENOBUFS;
1356 goto out;
1357 }
1358
1359 state = 4;
1360 sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1361 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1362
1363 SLIST_INIT(&sc->bge_jfree_listhead);
1364 SLIST_INIT(&sc->bge_jinuse_listhead);
1365
1366 /*
1367 * Now divide it up into 9K pieces and save the addresses
1368 * in an array.
1369 */
1370 ptr = sc->bge_cdata.bge_jumbo_buf;
1371 for (i = 0; i < BGE_JSLOTS; i++) {
1372 sc->bge_cdata.bge_jslots[i] = ptr;
1373 ptr += BGE_JLEN;
1374 entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
1375 entry->slot = i;
1376 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1377 entry, jpool_entries);
1378 }
1379 out:
1380 if (error != 0) {
1381 switch (state) {
1382 case 4:
1383 bus_dmamap_unload(sc->bge_dmatag,
1384 sc->bge_cdata.bge_rx_jumbo_map);
1385 /* FALLTHROUGH */
1386 case 3:
1387 bus_dmamap_destroy(sc->bge_dmatag,
1388 sc->bge_cdata.bge_rx_jumbo_map);
1389 /* FALLTHROUGH */
1390 case 2:
1391 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1392 /* FALLTHROUGH */
1393 case 1:
1394 bus_dmamem_free(sc->bge_dmatag,
1395 &sc->bge_cdata.bge_rx_jumbo_seg, rseg);
1396 break;
1397 default:
1398 break;
1399 }
1400 }
1401
1402 return error;
1403 }
1404
1405 static void
1406 bge_free_jumbo_mem(struct bge_softc *sc)
1407 {
1408 struct bge_jpool_entry *entry, *tmp;
1409
1410 KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead));
1411
1412 SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) {
1413 kmem_free(entry, sizeof(*entry));
1414 }
1415
1416 bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
1417
1418 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
1419
1420 bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM);
1421
1422 bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1);
1423 }
1424
1425 /*
1426 * Allocate a jumbo buffer.
1427 */
1428 static void *
1429 bge_jalloc(struct bge_softc *sc)
1430 {
1431 struct bge_jpool_entry *entry;
1432
1433 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1434
1435 if (entry == NULL) {
1436 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1437 return NULL;
1438 }
1439
1440 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1441 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1442 return sc->bge_cdata.bge_jslots[entry->slot];
1443 }
1444
1445 /*
1446 * Release a jumbo buffer.
1447 */
1448 static void
1449 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1450 {
1451 struct bge_jpool_entry *entry;
1452 struct bge_softc * const sc = arg;
1453
1454 if (sc == NULL)
1455 panic("bge_jfree: can't find softc pointer!");
1456
1457 /* calculate the slot this buffer belongs to */
1458 int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1459
1460 if (i < 0 || i >= BGE_JSLOTS)
1461 panic("bge_jfree: asked to free buffer that we don't manage!");
1462
1463 mutex_enter(sc->sc_intr_lock);
1464 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1465 if (entry == NULL)
1466 panic("bge_jfree: buffer not in use!");
1467 entry->slot = i;
1468 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1469 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1470 mutex_exit(sc->sc_intr_lock);
1471
1472 if (__predict_true(m != NULL))
1473 pool_cache_put(mb_cache, m);
1474 }
1475
1476
1477 /*
1478 * Initialize a standard receive ring descriptor.
1479 */
1480 static int
1481 bge_newbuf_std(struct bge_softc *sc, int i)
1482 {
1483 const bus_dmamap_t dmamap = sc->bge_cdata.bge_rx_std_map[i];
1484 struct mbuf *m;
1485
1486 MGETHDR(m, M_DONTWAIT, MT_DATA);
1487 if (m == NULL)
1488 return ENOBUFS;
1489 MCLAIM(m, &sc->ethercom.ec_rx_mowner);
1490
1491 MCLGET(m, M_DONTWAIT);
1492 if (!(m->m_flags & M_EXT)) {
1493 m_freem(m);
1494 return ENOBUFS;
1495 }
1496 m->m_len = m->m_pkthdr.len = MCLBYTES;
1497
1498 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1499 m_adj(m, ETHER_ALIGN);
1500 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,
1501 BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1502 m_freem(m);
1503 return ENOBUFS;
1504 }
1505 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1506 BUS_DMASYNC_PREREAD);
1507 sc->bge_cdata.bge_rx_std_chain[i] = m;
1508
1509 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1510 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1511 i * sizeof(struct bge_rx_bd),
1512 sizeof(struct bge_rx_bd),
1513 BUS_DMASYNC_POSTWRITE);
1514
1515 struct bge_rx_bd * const r = &sc->bge_rdata->bge_rx_std_ring[i];
1516 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1517 r->bge_flags = BGE_RXBDFLAG_END;
1518 r->bge_len = m->m_len;
1519 r->bge_idx = i;
1520
1521 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1522 offsetof(struct bge_ring_data, bge_rx_std_ring) +
1523 i * sizeof(struct bge_rx_bd),
1524 sizeof(struct bge_rx_bd),
1525 BUS_DMASYNC_PREWRITE);
1526
1527 sc->bge_std_cnt++;
1528
1529 return 0;
1530 }
1531
1532 /*
1533 * Initialize a jumbo receive ring descriptor. This allocates
1534 * a jumbo buffer from the pool managed internally by the driver.
1535 */
1536 static int
1537 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1538 {
1539 struct mbuf *m_new = NULL;
1540 struct bge_rx_bd *r;
1541 void *buf = NULL;
1542
1543 if (m == NULL) {
1544
1545 /* Allocate the mbuf. */
1546 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1547 if (m_new == NULL)
1548 return ENOBUFS;
1549 MCLAIM(m, &sc->ethercom.ec_rx_mowner);
1550
1551 /* Allocate the jumbo buffer */
1552 buf = bge_jalloc(sc);
1553 if (buf == NULL) {
1554 m_freem(m_new);
1555 aprint_error_dev(sc->bge_dev,
1556 "jumbo allocation failed -- packet dropped!\n");
1557 return ENOBUFS;
1558 }
1559
1560 /* Attach the buffer to the mbuf. */
1561 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1562 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1563 bge_jfree, sc);
1564 m_new->m_flags |= M_EXT_RW;
1565 } else {
1566 m_new = m;
1567 buf = m_new->m_data = m_new->m_ext.ext_buf;
1568 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1569 }
1570 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1571 m_adj(m_new, ETHER_ALIGN);
1572 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1573 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1574 BGE_JLEN, BUS_DMASYNC_PREREAD);
1575
1576 /* Set up the descriptor. */
1577 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1578 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1579 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1580 r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1581 r->bge_len = m_new->m_len;
1582 r->bge_idx = i;
1583
1584 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1585 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1586 i * sizeof(struct bge_rx_bd),
1587 sizeof(struct bge_rx_bd),
1588 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1589
1590 return 0;
1591 }
1592
1593 static int
1594 bge_init_rx_ring_std(struct bge_softc *sc)
1595 {
1596 bus_dmamap_t dmamap;
1597 int error = 0;
1598 u_int i;
1599
1600 if (sc->bge_flags & BGEF_RXRING_VALID)
1601 return 0;
1602
1603 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1604 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1605 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmamap);
1606 if (error)
1607 goto uncreate;
1608
1609 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1610 memset(&sc->bge_rdata->bge_rx_std_ring[i], 0,
1611 sizeof(struct bge_rx_bd));
1612 }
1613
1614 sc->bge_std = i - 1;
1615 sc->bge_std_cnt = 0;
1616 bge_fill_rx_ring_std(sc);
1617
1618 sc->bge_flags |= BGEF_RXRING_VALID;
1619
1620 return 0;
1621
1622 uncreate:
1623 while (--i) {
1624 bus_dmamap_destroy(sc->bge_dmatag,
1625 sc->bge_cdata.bge_rx_std_map[i]);
1626 }
1627 return error;
1628 }
1629
1630 static void
1631 bge_fill_rx_ring_std(struct bge_softc *sc)
1632 {
1633 int i = sc->bge_std;
1634 bool post = false;
1635
1636 while (sc->bge_std_cnt < BGE_STD_RX_RING_CNT) {
1637 BGE_INC(i, BGE_STD_RX_RING_CNT);
1638
1639 if (bge_newbuf_std(sc, i) != 0)
1640 break;
1641
1642 sc->bge_std = i;
1643 post = true;
1644 }
1645
1646 if (post)
1647 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1648 }
1649
1650
1651 static void
1652 bge_free_rx_ring_std(struct bge_softc *sc)
1653 {
1654
1655 if (!(sc->bge_flags & BGEF_RXRING_VALID))
1656 return;
1657
1658 for (u_int i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1659 const bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i];
1660 struct mbuf * const m = sc->bge_cdata.bge_rx_std_chain[i];
1661 if (m != NULL) {
1662 bus_dmamap_sync(sc->bge_dmatag, dmap, 0,
1663 dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1664 bus_dmamap_unload(sc->bge_dmatag, dmap);
1665 m_freem(m);
1666 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1667 }
1668 bus_dmamap_destroy(sc->bge_dmatag,
1669 sc->bge_cdata.bge_rx_std_map[i]);
1670 sc->bge_cdata.bge_rx_std_map[i] = NULL;
1671 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1672 sizeof(struct bge_rx_bd));
1673 }
1674
1675 sc->bge_flags &= ~BGEF_RXRING_VALID;
1676 }
1677
1678 static int
1679 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1680 {
1681 int i;
1682 volatile struct bge_rcb *rcb;
1683
1684 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1685 return 0;
1686
1687 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1688 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1689 return ENOBUFS;
1690 }
1691
1692 sc->bge_jumbo = i - 1;
1693 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1694
1695 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1696 rcb->bge_maxlen_flags = 0;
1697 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1698
1699 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1700
1701 return 0;
1702 }
1703
1704 static void
1705 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1706 {
1707 int i;
1708
1709 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1710 return;
1711
1712 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1713 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1714 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1715 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1716 sizeof(struct bge_rx_bd));
1717 }
1718
1719 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1720 }
1721
1722 static void
1723 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1724 {
1725 int i;
1726 struct txdmamap_pool_entry *dma;
1727
1728 if (!(sc->bge_flags & BGEF_TXRING_VALID))
1729 return;
1730
1731 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1732 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1733 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1734 sc->bge_cdata.bge_tx_chain[i] = NULL;
1735 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1736 link);
1737 sc->txdma[i] = 0;
1738 }
1739 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1740 sizeof(struct bge_tx_bd));
1741 }
1742
1743 if (disable) {
1744 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1745 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1746 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1747 if (sc->bge_dma64) {
1748 bus_dmamap_destroy(sc->bge_dmatag32,
1749 dma->dmamap32);
1750 }
1751 kmem_free(dma, sizeof(*dma));
1752 }
1753 SLIST_INIT(&sc->txdma_list);
1754 }
1755
1756 sc->bge_flags &= ~BGEF_TXRING_VALID;
1757 }
1758
1759 static int
1760 bge_init_tx_ring(struct bge_softc *sc)
1761 {
1762 struct ifnet * const ifp = &sc->ethercom.ec_if;
1763 int i;
1764 bus_dmamap_t dmamap, dmamap32;
1765 bus_size_t maxsegsz;
1766 struct txdmamap_pool_entry *dma;
1767
1768 if (sc->bge_flags & BGEF_TXRING_VALID)
1769 return 0;
1770
1771 sc->bge_txcnt = 0;
1772 sc->bge_tx_saved_considx = 0;
1773
1774 /* Initialize transmit producer index for host-memory send ring. */
1775 sc->bge_tx_prodidx = 0;
1776 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1777 /* 5700 b2 errata */
1778 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1779 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1780
1781 /* NIC-memory send ring not used; initialize to zero. */
1782 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1783 /* 5700 b2 errata */
1784 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1785 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1786
1787 /* Limit DMA segment size for some chips */
1788 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1789 (ifp->if_mtu <= ETHERMTU))
1790 maxsegsz = 2048;
1791 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1792 maxsegsz = 4096;
1793 else
1794 maxsegsz = ETHER_MAX_LEN_JUMBO;
1795
1796 if (SLIST_FIRST(&sc->txdma_list) != NULL)
1797 goto alloc_done;
1798
1799 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1800 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1801 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1802 &dmamap))
1803 return ENOBUFS;
1804 if (dmamap == NULL)
1805 panic("dmamap NULL in bge_init_tx_ring");
1806 if (sc->bge_dma64) {
1807 if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1808 BGE_NTXSEG, maxsegsz, 0,
1809 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
1810 &dmamap32)) {
1811 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1812 return ENOBUFS;
1813 }
1814 if (dmamap32 == NULL)
1815 panic("dmamap32 NULL in bge_init_tx_ring");
1816 } else
1817 dmamap32 = dmamap;
1818 dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
1819 if (dma == NULL) {
1820 aprint_error_dev(sc->bge_dev,
1821 "can't alloc txdmamap_pool_entry\n");
1822 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1823 if (sc->bge_dma64)
1824 bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1825 return ENOMEM;
1826 }
1827 dma->dmamap = dmamap;
1828 dma->dmamap32 = dmamap32;
1829 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1830 }
1831 alloc_done:
1832 sc->bge_flags |= BGEF_TXRING_VALID;
1833
1834 return 0;
1835 }
1836
1837 static void
1838 bge_setmulti(struct bge_softc *sc)
1839 {
1840 struct ethercom * const ec = &sc->ethercom;
1841 struct ether_multi *enm;
1842 struct ether_multistep step;
1843 uint32_t hashes[4] = { 0, 0, 0, 0 };
1844 uint32_t h;
1845 int i;
1846
1847 KASSERT(mutex_owned(sc->sc_mcast_lock));
1848 if (sc->bge_if_flags & IFF_PROMISC)
1849 goto allmulti;
1850
1851 /* Now program new ones. */
1852 ETHER_LOCK(ec);
1853 ETHER_FIRST_MULTI(step, ec, enm);
1854 while (enm != NULL) {
1855 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1856 /*
1857 * We must listen to a range of multicast addresses.
1858 * For now, just accept all multicasts, rather than
1859 * trying to set only those filter bits needed to match
1860 * the range. (At this time, the only use of address
1861 * ranges is for IP multicast routing, for which the
1862 * range is big enough to require all bits set.)
1863 */
1864 ETHER_UNLOCK(ec);
1865 goto allmulti;
1866 }
1867
1868 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1869
1870 /* Just want the 7 least-significant bits. */
1871 h &= 0x7f;
1872
1873 hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1874 ETHER_NEXT_MULTI(step, enm);
1875 }
1876 ec->ec_flags &= ~ETHER_F_ALLMULTI;
1877 ETHER_UNLOCK(ec);
1878
1879 goto setit;
1880
1881 allmulti:
1882 ETHER_LOCK(ec);
1883 ec->ec_flags |= ETHER_F_ALLMULTI;
1884 ETHER_UNLOCK(ec);
1885 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1886
1887 setit:
1888 for (i = 0; i < 4; i++)
1889 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1890 }
1891
1892 static void
1893 bge_sig_pre_reset(struct bge_softc *sc, int type)
1894 {
1895
1896 /*
1897 * Some chips don't like this so only do this if ASF is enabled
1898 */
1899 if (sc->bge_asf_mode)
1900 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1901
1902 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1903 switch (type) {
1904 case BGE_RESET_START:
1905 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1906 BGE_FW_DRV_STATE_START);
1907 break;
1908 case BGE_RESET_SHUTDOWN:
1909 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1910 BGE_FW_DRV_STATE_UNLOAD);
1911 break;
1912 case BGE_RESET_SUSPEND:
1913 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1914 BGE_FW_DRV_STATE_SUSPEND);
1915 break;
1916 }
1917 }
1918
1919 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1920 bge_ape_driver_state_change(sc, type);
1921 }
1922
1923 static void
1924 bge_sig_post_reset(struct bge_softc *sc, int type)
1925 {
1926
1927 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1928 switch (type) {
1929 case BGE_RESET_START:
1930 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1931 BGE_FW_DRV_STATE_START_DONE);
1932 /* START DONE */
1933 break;
1934 case BGE_RESET_SHUTDOWN:
1935 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1936 BGE_FW_DRV_STATE_UNLOAD_DONE);
1937 break;
1938 }
1939 }
1940
1941 if (type == BGE_RESET_SHUTDOWN)
1942 bge_ape_driver_state_change(sc, type);
1943 }
1944
1945 static void
1946 bge_sig_legacy(struct bge_softc *sc, int type)
1947 {
1948
1949 if (sc->bge_asf_mode) {
1950 switch (type) {
1951 case BGE_RESET_START:
1952 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1953 BGE_FW_DRV_STATE_START);
1954 break;
1955 case BGE_RESET_SHUTDOWN:
1956 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1957 BGE_FW_DRV_STATE_UNLOAD);
1958 break;
1959 }
1960 }
1961 }
1962
1963 static void
1964 bge_wait_for_event_ack(struct bge_softc *sc)
1965 {
1966 int i;
1967
1968 /* wait up to 2500usec */
1969 for (i = 0; i < 250; i++) {
1970 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1971 BGE_RX_CPU_DRV_EVENT))
1972 break;
1973 DELAY(10);
1974 }
1975 }
1976
1977 static void
1978 bge_stop_fw(struct bge_softc *sc)
1979 {
1980
1981 if (sc->bge_asf_mode) {
1982 bge_wait_for_event_ack(sc);
1983
1984 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1985 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1986 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1987
1988 bge_wait_for_event_ack(sc);
1989 }
1990 }
1991
1992 static int
1993 bge_poll_fw(struct bge_softc *sc)
1994 {
1995 uint32_t val;
1996 int i;
1997
1998 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1999 for (i = 0; i < BGE_TIMEOUT; i++) {
2000 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2001 if (val & BGE_VCPU_STATUS_INIT_DONE)
2002 break;
2003 DELAY(100);
2004 }
2005 if (i >= BGE_TIMEOUT) {
2006 aprint_error_dev(sc->bge_dev, "reset timed out\n");
2007 return -1;
2008 }
2009 } else {
2010 /*
2011 * Poll the value location we just wrote until
2012 * we see the 1's complement of the magic number.
2013 * This indicates that the firmware initialization
2014 * is complete.
2015 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2016 */
2017 for (i = 0; i < BGE_TIMEOUT; i++) {
2018 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2019 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2020 break;
2021 DELAY(10);
2022 }
2023
2024 if ((i >= BGE_TIMEOUT)
2025 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2026 aprint_error_dev(sc->bge_dev,
2027 "firmware handshake timed out, val = %x\n", val);
2028 return -1;
2029 }
2030 }
2031
2032 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2033 /* tg3 says we have to wait extra time */
2034 delay(10 * 1000);
2035 }
2036
2037 return 0;
2038 }
2039
2040 int
2041 bge_phy_addr(struct bge_softc *sc)
2042 {
2043 struct pci_attach_args *pa = &(sc->bge_pa);
2044 int phy_addr = 1;
2045
2046 /*
2047 * PHY address mapping for various devices.
2048 *
2049 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2050 * ---------+-------+-------+-------+-------+
2051 * BCM57XX | 1 | X | X | X |
2052 * BCM5704 | 1 | X | 1 | X |
2053 * BCM5717 | 1 | 8 | 2 | 9 |
2054 * BCM5719 | 1 | 8 | 2 | 9 |
2055 * BCM5720 | 1 | 8 | 2 | 9 |
2056 *
2057 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2058 * ---------+-------+-------+-------+-------+
2059 * BCM57XX | X | X | X | X |
2060 * BCM5704 | X | X | X | X |
2061 * BCM5717 | X | X | X | X |
2062 * BCM5719 | 3 | 10 | 4 | 11 |
2063 * BCM5720 | X | X | X | X |
2064 *
2065 * Other addresses may respond but they are not
2066 * IEEE compliant PHYs and should be ignored.
2067 */
2068 switch (BGE_ASICREV(sc->bge_chipid)) {
2069 case BGE_ASICREV_BCM5717:
2070 case BGE_ASICREV_BCM5719:
2071 case BGE_ASICREV_BCM5720:
2072 phy_addr = pa->pa_function;
2073 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2074 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2075 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2076 } else {
2077 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2078 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2079 }
2080 }
2081
2082 return phy_addr;
2083 }
2084
2085 /*
2086 * Do endian, PCI and DMA initialization. Also check the on-board ROM
2087 * self-test results.
2088 */
2089 static int
2090 bge_chipinit(struct bge_softc *sc)
2091 {
2092 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2093 int i;
2094
2095 /* Set endianness before we access any non-PCI registers. */
2096 misc_ctl = BGE_INIT;
2097 if (sc->bge_flags & BGEF_TAGGED_STATUS)
2098 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2099 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2100 misc_ctl);
2101
2102 /*
2103 * Clear the MAC statistics block in the NIC's
2104 * internal memory.
2105 */
2106 for (i = BGE_STATS_BLOCK;
2107 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2108 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2109
2110 for (i = BGE_STATUS_BLOCK;
2111 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2112 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2113
2114 /* 5717 workaround from tg3 */
2115 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2116 /* Save */
2117 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2118
2119 /* Temporary modify MODE_CTL to control TLP */
2120 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2121 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2122
2123 /* Control TLP */
2124 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2125 BGE_TLP_PHYCTL1);
2126 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2127 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2128
2129 /* Restore */
2130 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2131 }
2132
2133 if (BGE_IS_57765_FAMILY(sc)) {
2134 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2135 /* Save */
2136 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2137
2138 /* Temporary modify MODE_CTL to control TLP */
2139 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2140 CSR_WRITE_4(sc, BGE_MODE_CTL,
2141 reg | BGE_MODECTL_PCIE_TLPADDR1);
2142
2143 /* Control TLP */
2144 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2145 BGE_TLP_PHYCTL5);
2146 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2147 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2148
2149 /* Restore */
2150 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2151 }
2152 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2153 /*
2154 * For the 57766 and non Ax versions of 57765, bootcode
2155 * needs to setup the PCIE Fast Training Sequence (FTS)
2156 * value to prevent transmit hangs.
2157 */
2158 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2159 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2160 reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2161
2162 /* Save */
2163 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2164
2165 /* Temporary modify MODE_CTL to control TLP */
2166 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2167 CSR_WRITE_4(sc, BGE_MODE_CTL,
2168 reg | BGE_MODECTL_PCIE_TLPADDR0);
2169
2170 /* Control TLP */
2171 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2172 BGE_TLP_FTSMAX);
2173 reg &= ~BGE_TLP_FTSMAX_MSK;
2174 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2175 reg | BGE_TLP_FTSMAX_VAL);
2176
2177 /* Restore */
2178 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2179 }
2180
2181 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2182 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2183 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2184 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2185 }
2186
2187 /* Set up the PCI DMA control register. */
2188 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2189 if (sc->bge_flags & BGEF_PCIE) {
2190 /* Read watermark not used, 128 bytes for write. */
2191 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2192 device_xname(sc->bge_dev)));
2193 if (sc->bge_mps >= 256)
2194 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2195 else
2196 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2197 } else if (sc->bge_flags & BGEF_PCIX) {
2198 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2199 device_xname(sc->bge_dev)));
2200 /* PCI-X bus */
2201 if (BGE_IS_5714_FAMILY(sc)) {
2202 /* 256 bytes for read and write. */
2203 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2204 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2205
2206 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2207 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2208 else
2209 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2210 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2211 /*
2212 * In the BCM5703, the DMA read watermark should
2213 * be set to less than or equal to the maximum
2214 * memory read byte count of the PCI-X command
2215 * register.
2216 */
2217 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2218 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2219 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2220 /* 1536 bytes for read, 384 bytes for write. */
2221 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2222 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2223 } else {
2224 /* 384 bytes for read and write. */
2225 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2226 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2227 (0x0F);
2228 }
2229
2230 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2231 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2232 uint32_t tmp;
2233
2234 /* Set ONEDMA_ATONCE for hardware workaround. */
2235 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2236 if (tmp == 6 || tmp == 7)
2237 dma_rw_ctl |=
2238 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2239
2240 /* Set PCI-X DMA write workaround. */
2241 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2242 }
2243 } else {
2244 /* Conventional PCI bus: 256 bytes for read and write. */
2245 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2246 device_xname(sc->bge_dev)));
2247 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2248 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2249
2250 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2251 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2252 dma_rw_ctl |= 0x0F;
2253 }
2254
2255 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2256 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2257 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2258 BGE_PCIDMARWCTL_ASRT_ALL_BE;
2259
2260 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2261 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2262 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2263
2264 if (BGE_IS_57765_PLUS(sc)) {
2265 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2266 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2267 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2268
2269 /*
2270 * Enable HW workaround for controllers that misinterpret
2271 * a status tag update and leave interrupts permanently
2272 * disabled.
2273 */
2274 if (!BGE_IS_57765_FAMILY(sc) &&
2275 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2276 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2277 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2278 }
2279
2280 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2281 dma_rw_ctl);
2282
2283 /*
2284 * Set up general mode register.
2285 */
2286 mode_ctl = BGE_DMA_SWAP_OPTIONS;
2287 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2288 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2289 /* Retain Host-2-BMC settings written by APE firmware. */
2290 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2291 (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2292 BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2293 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2294 }
2295 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2296 BGE_MODECTL_TX_NO_PHDR_CSUM;
2297
2298 /*
2299 * BCM5701 B5 have a bug causing data corruption when using
2300 * 64-bit DMA reads, which can be terminated early and then
2301 * completed later as 32-bit accesses, in combination with
2302 * certain bridges.
2303 */
2304 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2305 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2306 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2307
2308 /*
2309 * Tell the firmware the driver is running
2310 */
2311 if (sc->bge_asf_mode & ASF_STACKUP)
2312 mode_ctl |= BGE_MODECTL_STACKUP;
2313
2314 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2315
2316 /*
2317 * Disable memory write invalidate. Apparently it is not supported
2318 * properly by these devices.
2319 */
2320 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2321 PCI_COMMAND_INVALIDATE_ENABLE);
2322
2323 #ifdef __brokenalpha__
2324 /*
2325 * Must insure that we do not cross an 8K (bytes) boundary
2326 * for DMA reads. Our highest limit is 1K bytes. This is a
2327 * restriction on some ALPHA platforms with early revision
2328 * 21174 PCI chipsets, such as the AlphaPC 164lx
2329 */
2330 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2331 #endif
2332
2333 /* Set the timer prescaler (always 66MHz) */
2334 CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2335
2336 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2337 DELAY(40); /* XXX */
2338
2339 /* Put PHY into ready state */
2340 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2341 DELAY(40);
2342 }
2343
2344 return 0;
2345 }
2346
2347 static int
2348 bge_blockinit(struct bge_softc *sc)
2349 {
2350 volatile struct bge_rcb *rcb;
2351 bus_size_t rcb_addr;
2352 struct ifnet * const ifp = &sc->ethercom.ec_if;
2353 bge_hostaddr taddr;
2354 uint32_t dmactl, rdmareg, mimode, val;
2355 int i, limit;
2356
2357 /*
2358 * Initialize the memory window pointer register so that
2359 * we can access the first 32K of internal NIC RAM. This will
2360 * allow us to set up the TX send ring RCBs and the RX return
2361 * ring RCBs, plus other things which live in NIC memory.
2362 */
2363 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2364
2365 if (!BGE_IS_5705_PLUS(sc)) {
2366 /* 57XX step 33 */
2367 /* Configure mbuf memory pool */
2368 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2369
2370 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2371 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2372 else
2373 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2374
2375 /* 57XX step 34 */
2376 /* Configure DMA resource pool */
2377 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2378 BGE_DMA_DESCRIPTORS);
2379 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2380 }
2381
2382 /* 5718 step 11, 57XX step 35 */
2383 /*
2384 * Configure mbuf pool watermarks. New broadcom docs strongly
2385 * recommend these.
2386 */
2387 if (BGE_IS_5717_PLUS(sc)) {
2388 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2389 if (ifp->if_mtu > ETHERMTU) {
2390 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2391 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2392 } else {
2393 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2394 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2395 }
2396 } else if (BGE_IS_5705_PLUS(sc)) {
2397 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2398
2399 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2400 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2401 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2402 } else {
2403 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2404 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2405 }
2406 } else {
2407 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2408 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2409 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2410 }
2411
2412 /* 57XX step 36 */
2413 /* Configure DMA resource watermarks */
2414 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2415 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2416
2417 /* 5718 step 13, 57XX step 38 */
2418 /* Enable buffer manager */
2419 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2420 /*
2421 * Change the arbitration algorithm of TXMBUF read request to
2422 * round-robin instead of priority based for BCM5719. When
2423 * TXFIFO is almost empty, RDMA will hold its request until
2424 * TXFIFO is not almost empty.
2425 */
2426 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2427 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2428 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2429 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2430 sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2431 val |= BGE_BMANMODE_LOMBUF_ATTN;
2432 CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2433
2434 /* 57XX step 39 */
2435 /* Poll for buffer manager start indication */
2436 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2437 DELAY(10);
2438 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2439 break;
2440 }
2441
2442 if (i == BGE_TIMEOUT * 2) {
2443 aprint_error_dev(sc->bge_dev,
2444 "buffer manager failed to start\n");
2445 return ENXIO;
2446 }
2447
2448 /* 57XX step 40 */
2449 /* Enable flow-through queues */
2450 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2451 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2452
2453 /* Wait until queue initialization is complete */
2454 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2455 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2456 break;
2457 DELAY(10);
2458 }
2459
2460 if (i == BGE_TIMEOUT * 2) {
2461 aprint_error_dev(sc->bge_dev,
2462 "flow-through queue init failed\n");
2463 return ENXIO;
2464 }
2465
2466 /*
2467 * Summary of rings supported by the controller:
2468 *
2469 * Standard Receive Producer Ring
2470 * - This ring is used to feed receive buffers for "standard"
2471 * sized frames (typically 1536 bytes) to the controller.
2472 *
2473 * Jumbo Receive Producer Ring
2474 * - This ring is used to feed receive buffers for jumbo sized
2475 * frames (i.e. anything bigger than the "standard" frames)
2476 * to the controller.
2477 *
2478 * Mini Receive Producer Ring
2479 * - This ring is used to feed receive buffers for "mini"
2480 * sized frames to the controller.
2481 * - This feature required external memory for the controller
2482 * but was never used in a production system. Should always
2483 * be disabled.
2484 *
2485 * Receive Return Ring
2486 * - After the controller has placed an incoming frame into a
2487 * receive buffer that buffer is moved into a receive return
2488 * ring. The driver is then responsible to passing the
2489 * buffer up to the stack. Many versions of the controller
2490 * support multiple RR rings.
2491 *
2492 * Send Ring
2493 * - This ring is used for outgoing frames. Many versions of
2494 * the controller support multiple send rings.
2495 */
2496
2497 /* 5718 step 15, 57XX step 41 */
2498 /* Initialize the standard RX ring control block */
2499 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2500 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2501 /* 5718 step 16 */
2502 if (BGE_IS_57765_PLUS(sc)) {
2503 /*
2504 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2505 * Bits 15-2 : Maximum RX frame size
2506 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2507 * Bit 0 : Reserved
2508 */
2509 rcb->bge_maxlen_flags =
2510 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2511 } else if (BGE_IS_5705_PLUS(sc)) {
2512 /*
2513 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2514 * Bits 15-2 : Reserved (should be 0)
2515 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2516 * Bit 0 : Reserved
2517 */
2518 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2519 } else {
2520 /*
2521 * Ring size is always XXX entries
2522 * Bits 31-16: Maximum RX frame size
2523 * Bits 15-2 : Reserved (should be 0)
2524 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2525 * Bit 0 : Reserved
2526 */
2527 rcb->bge_maxlen_flags =
2528 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2529 }
2530 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2531 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2532 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2533 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2534 else
2535 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2536 /* Write the standard receive producer ring control block. */
2537 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2538 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2539 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2540 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2541
2542 /* Reset the standard receive producer ring producer index. */
2543 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2544
2545 /* 57XX step 42 */
2546 /*
2547 * Initialize the jumbo RX ring control block
2548 * We set the 'ring disabled' bit in the flags
2549 * field until we're actually ready to start
2550 * using this ring (i.e. once we set the MTU
2551 * high enough to require it).
2552 */
2553 if (BGE_IS_JUMBO_CAPABLE(sc)) {
2554 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2555 BGE_HOSTADDR(rcb->bge_hostaddr,
2556 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2557 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2558 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2559 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2560 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2561 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2562 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2563 else
2564 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2565 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2566 rcb->bge_hostaddr.bge_addr_hi);
2567 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2568 rcb->bge_hostaddr.bge_addr_lo);
2569 /* Program the jumbo receive producer ring RCB parameters. */
2570 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2571 rcb->bge_maxlen_flags);
2572 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2573 /* Reset the jumbo receive producer ring producer index. */
2574 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2575 }
2576
2577 /* 57XX step 43 */
2578 /* Disable the mini receive producer ring RCB. */
2579 if (BGE_IS_5700_FAMILY(sc)) {
2580 /* Set up dummy disabled mini ring RCB */
2581 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2582 rcb->bge_maxlen_flags =
2583 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2584 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2585 rcb->bge_maxlen_flags);
2586 /* Reset the mini receive producer ring producer index. */
2587 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2588
2589 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2590 offsetof(struct bge_ring_data, bge_info),
2591 sizeof(struct bge_gib),
2592 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2593 }
2594
2595 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2596 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2597 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2598 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2599 sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2600 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2601 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2602 }
2603 /* 5718 step 14, 57XX step 44 */
2604 /*
2605 * The BD ring replenish thresholds control how often the
2606 * hardware fetches new BD's from the producer rings in host
2607 * memory. Setting the value too low on a busy system can
2608 * starve the hardware and reduce the throughput.
2609 *
2610 * Set the BD ring replenish thresholds. The recommended
2611 * values are 1/8th the number of descriptors allocated to
2612 * each ring, but since we try to avoid filling the entire
2613 * ring we set these to the minimal value of 8. This needs to
2614 * be done on several of the supported chip revisions anyway,
2615 * to work around HW bugs.
2616 */
2617 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2618 if (BGE_IS_JUMBO_CAPABLE(sc))
2619 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2620
2621 /* 5718 step 18 */
2622 if (BGE_IS_5717_PLUS(sc)) {
2623 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2624 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2625 }
2626
2627 /* 57XX step 45 */
2628 /*
2629 * Disable all send rings by setting the 'ring disabled' bit
2630 * in the flags field of all the TX send ring control blocks,
2631 * located in NIC memory.
2632 */
2633 if (BGE_IS_5700_FAMILY(sc)) {
2634 /* 5700 to 5704 had 16 send rings. */
2635 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2636 } else if (BGE_IS_5717_PLUS(sc)) {
2637 limit = BGE_TX_RINGS_5717_MAX;
2638 } else if (BGE_IS_57765_FAMILY(sc) ||
2639 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2640 limit = BGE_TX_RINGS_57765_MAX;
2641 } else
2642 limit = 1;
2643 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2644 for (i = 0; i < limit; i++) {
2645 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2646 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2647 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2648 rcb_addr += sizeof(struct bge_rcb);
2649 }
2650
2651 /* 57XX step 46 and 47 */
2652 /* Configure send ring RCB 0 (we use only the first ring) */
2653 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2654 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2655 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2656 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2657 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2658 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2659 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2660 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2661 else
2662 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2663 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2664 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2665 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2666
2667 /* 57XX step 48 */
2668 /*
2669 * Disable all receive return rings by setting the
2670 * 'ring disabled' bit in the flags field of all the receive
2671 * return ring control blocks, located in NIC memory.
2672 */
2673 if (BGE_IS_5717_PLUS(sc)) {
2674 /* Should be 17, use 16 until we get an SRAM map. */
2675 limit = 16;
2676 } else if (BGE_IS_5700_FAMILY(sc))
2677 limit = BGE_RX_RINGS_MAX;
2678 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2679 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2680 BGE_IS_57765_FAMILY(sc))
2681 limit = 4;
2682 else
2683 limit = 1;
2684 /* Disable all receive return rings */
2685 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2686 for (i = 0; i < limit; i++) {
2687 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2688 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2689 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2690 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2691 BGE_RCB_FLAG_RING_DISABLED));
2692 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2693 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2694 (i * (sizeof(uint64_t))), 0);
2695 rcb_addr += sizeof(struct bge_rcb);
2696 }
2697
2698 /* 57XX step 49 */
2699 /*
2700 * Set up receive return ring 0. Note that the NIC address
2701 * for RX return rings is 0x0. The return rings live entirely
2702 * within the host, so the nicaddr field in the RCB isn't used.
2703 */
2704 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2705 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2706 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2707 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2708 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2709 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2710 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2711
2712 /* 5718 step 24, 57XX step 53 */
2713 /* Set random backoff seed for TX */
2714 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2715 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2716 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2717 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2718 BGE_TX_BACKOFF_SEED_MASK);
2719
2720 /* 5718 step 26, 57XX step 55 */
2721 /* Set inter-packet gap */
2722 val = 0x2620;
2723 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2724 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2725 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2726 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2727 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2728
2729 /* 5718 step 27, 57XX step 56 */
2730 /*
2731 * Specify which ring to use for packets that don't match
2732 * any RX rules.
2733 */
2734 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2735
2736 /* 5718 step 28, 57XX step 57 */
2737 /*
2738 * Configure number of RX lists. One interrupt distribution
2739 * list, sixteen active lists, one bad frames class.
2740 */
2741 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2742
2743 /* 5718 step 29, 57XX step 58 */
2744 /* Initialize RX list placement stats mask. */
2745 if (BGE_IS_575X_PLUS(sc)) {
2746 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2747 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2748 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2749 } else
2750 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2751
2752 /* 5718 step 30, 57XX step 59 */
2753 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2754
2755 /* 5718 step 33, 57XX step 62 */
2756 /* Disable host coalescing until we get it set up */
2757 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2758
2759 /* 5718 step 34, 57XX step 63 */
2760 /* Poll to make sure it's shut down. */
2761 for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2762 DELAY(10);
2763 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2764 break;
2765 }
2766
2767 if (i == BGE_TIMEOUT * 2) {
2768 aprint_error_dev(sc->bge_dev,
2769 "host coalescing engine failed to idle\n");
2770 return ENXIO;
2771 }
2772
2773 /* 5718 step 35, 36, 37 */
2774 /* Set up host coalescing defaults */
2775 mutex_enter(sc->sc_intr_lock);
2776 const uint32_t rx_coal_ticks = sc->bge_rx_coal_ticks;
2777 const uint32_t tx_coal_ticks = sc->bge_tx_coal_ticks;
2778 const uint32_t rx_max_coal_bds = sc->bge_rx_max_coal_bds;
2779 const uint32_t tx_max_coal_bds = sc->bge_tx_max_coal_bds;
2780 mutex_exit(sc->sc_intr_lock);
2781 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_coal_ticks);
2782 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, tx_coal_ticks);
2783 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_max_coal_bds);
2784 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, tx_max_coal_bds);
2785 if (!(BGE_IS_5705_PLUS(sc))) {
2786 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2787 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2788 }
2789 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2790 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2791
2792 /* Set up address of statistics block */
2793 if (BGE_IS_5700_FAMILY(sc)) {
2794 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2795 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2796 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2797 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2798 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2799 }
2800
2801 /* 5718 step 38 */
2802 /* Set up address of status block */
2803 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2804 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2805 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2806 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2807 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2808 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2809
2810 /* Set up status block size. */
2811 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2812 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2813 val = BGE_STATBLKSZ_FULL;
2814 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2815 } else {
2816 val = BGE_STATBLKSZ_32BYTE;
2817 bzero(&sc->bge_rdata->bge_status_block, 32);
2818 }
2819
2820 /* 5718 step 39, 57XX step 73 */
2821 /* Turn on host coalescing state machine */
2822 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2823
2824 /* 5718 step 40, 57XX step 74 */
2825 /* Turn on RX BD completion state machine and enable attentions */
2826 CSR_WRITE_4(sc, BGE_RBDC_MODE,
2827 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2828
2829 /* 5718 step 41, 57XX step 75 */
2830 /* Turn on RX list placement state machine */
2831 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2832
2833 /* 57XX step 76 */
2834 /* Turn on RX list selector state machine. */
2835 if (!(BGE_IS_5705_PLUS(sc)))
2836 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2837
2838 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2839 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2840 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2841 BGE_MACMODE_FRMHDR_DMA_ENB;
2842
2843 if (sc->bge_flags & BGEF_FIBER_TBI)
2844 val |= BGE_PORTMODE_TBI;
2845 else if (sc->bge_flags & BGEF_FIBER_MII)
2846 val |= BGE_PORTMODE_GMII;
2847 else
2848 val |= BGE_PORTMODE_MII;
2849
2850 /* 5718 step 42 and 43, 57XX step 77 and 78 */
2851 /* Allow APE to send/receive frames. */
2852 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2853 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2854
2855 /* Turn on DMA, clear stats */
2856 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2857 /* 5718 step 44 */
2858 DELAY(40);
2859
2860 /* 5718 step 45, 57XX step 79 */
2861 /* Set misc. local control, enable interrupts on attentions */
2862 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2863 if (BGE_IS_5717_PLUS(sc)) {
2864 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2865 /* 5718 step 46 */
2866 DELAY(100);
2867 }
2868
2869 /* 57XX step 81 */
2870 /* Turn on DMA completion state machine */
2871 if (!(BGE_IS_5705_PLUS(sc)))
2872 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2873
2874 /* 5718 step 47, 57XX step 82 */
2875 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2876
2877 /* 5718 step 48 */
2878 /* Enable host coalescing bug fix. */
2879 if (BGE_IS_5755_PLUS(sc))
2880 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2881
2882 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2883 val |= BGE_WDMAMODE_BURST_ALL_DATA;
2884
2885 /* Turn on write DMA state machine */
2886 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2887 /* 5718 step 49 */
2888 DELAY(40);
2889
2890 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2891
2892 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2893 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2894
2895 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2896 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2897 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2898 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2899 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2900 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2901
2902 if (sc->bge_flags & BGEF_PCIE)
2903 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2904 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2905 if (ifp->if_mtu <= ETHERMTU)
2906 val |= BGE_RDMAMODE_JMB_2K_MMRR;
2907 }
2908 if (sc->bge_flags & BGEF_TSO) {
2909 val |= BGE_RDMAMODE_TSO4_ENABLE;
2910 if (BGE_IS_5717_PLUS(sc))
2911 val |= BGE_RDMAMODE_TSO6_ENABLE;
2912 }
2913
2914 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2915 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2916 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2917 BGE_RDMAMODE_H2BNC_VLAN_DET;
2918 /*
2919 * Allow multiple outstanding read requests from
2920 * non-LSO read DMA engine.
2921 */
2922 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2923 }
2924
2925 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2926 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2927 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2928 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2929 BGE_IS_57765_PLUS(sc)) {
2930 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2931 rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2932 else
2933 rdmareg = BGE_RDMA_RSRVCTRL;
2934 dmactl = CSR_READ_4(sc, rdmareg);
2935 /*
2936 * Adjust tx margin to prevent TX data corruption and
2937 * fix internal FIFO overflow.
2938 */
2939 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2940 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2941 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2942 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2943 BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2944 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2945 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2946 BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2947 }
2948 /*
2949 * Enable fix for read DMA FIFO overruns.
2950 * The fix is to limit the number of RX BDs
2951 * the hardware would fetch at a time.
2952 */
2953 CSR_WRITE_4(sc, rdmareg, dmactl |
2954 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2955 }
2956
2957 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2958 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2959 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2960 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2961 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2962 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2963 /*
2964 * Allow 4KB burst length reads for non-LSO frames.
2965 * Enable 512B burst length reads for buffer descriptors.
2966 */
2967 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2968 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2969 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2970 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2971 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2972 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2973 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2974 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2975 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2976 }
2977 /* Turn on read DMA state machine */
2978 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2979 /* 5718 step 52 */
2980 delay(40);
2981
2982 if (sc->bge_flags & BGEF_RDMA_BUG) {
2983 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2984 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2985 if ((val & 0xFFFF) > BGE_FRAMELEN)
2986 break;
2987 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2988 break;
2989 }
2990 if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2991 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2992 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2993 val |= BGE_RDMA_TX_LENGTH_WA_5719;
2994 else
2995 val |= BGE_RDMA_TX_LENGTH_WA_5720;
2996 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2997 }
2998 }
2999
3000 /* 5718 step 56, 57XX step 84 */
3001 /* Turn on RX data completion state machine */
3002 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3003
3004 /* Turn on RX data and RX BD initiator state machine */
3005 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3006
3007 /* 57XX step 85 */
3008 /* Turn on Mbuf cluster free state machine */
3009 if (!BGE_IS_5705_PLUS(sc))
3010 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3011
3012 /* 5718 step 57, 57XX step 86 */
3013 /* Turn on send data completion state machine */
3014 val = BGE_SDCMODE_ENABLE;
3015 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3016 val |= BGE_SDCMODE_CDELAY;
3017 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3018
3019 /* 5718 step 58 */
3020 /* Turn on send BD completion state machine */
3021 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3022
3023 /* 57XX step 88 */
3024 /* Turn on RX BD initiator state machine */
3025 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3026
3027 /* 5718 step 60, 57XX step 90 */
3028 /* Turn on send data initiator state machine */
3029 if (sc->bge_flags & BGEF_TSO) {
3030 /* XXX: magic value from Linux driver */
3031 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3032 BGE_SDIMODE_HW_LSO_PRE_DMA);
3033 } else
3034 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3035
3036 /* 5718 step 61, 57XX step 91 */
3037 /* Turn on send BD initiator state machine */
3038 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3039
3040 /* 5718 step 62, 57XX step 92 */
3041 /* Turn on send BD selector state machine */
3042 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3043
3044 /* 5718 step 31, 57XX step 60 */
3045 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3046 /* 5718 step 32, 57XX step 61 */
3047 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3048 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3049
3050 /* ack/clear link change events */
3051 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3052 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3053 BGE_MACSTAT_LINK_CHANGED);
3054 CSR_WRITE_4(sc, BGE_MI_STS, 0);
3055
3056 /*
3057 * Enable attention when the link has changed state for
3058 * devices that use auto polling.
3059 */
3060 if (sc->bge_flags & BGEF_FIBER_TBI) {
3061 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3062 } else {
3063 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3064 mimode = BGE_MIMODE_500KHZ_CONST;
3065 else
3066 mimode = BGE_MIMODE_BASE;
3067 /* 5718 step 68. 5718 step 69 (optionally). */
3068 if (BGE_IS_5700_FAMILY(sc) ||
3069 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3070 mimode |= BGE_MIMODE_AUTOPOLL;
3071 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3072 }
3073 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3074 CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3075 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3076 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3077 BGE_EVTENB_MI_INTERRUPT);
3078 }
3079
3080 /*
3081 * Clear any pending link state attention.
3082 * Otherwise some link state change events may be lost until attention
3083 * is cleared by bge_intr() -> bge_link_upd() sequence.
3084 * It's not necessary on newer BCM chips - perhaps enabling link
3085 * state change attentions implies clearing pending attention.
3086 */
3087 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3088 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3089 BGE_MACSTAT_LINK_CHANGED);
3090
3091 /* Enable link state change attentions. */
3092 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3093
3094 return 0;
3095 }
3096
3097 static const struct bge_revision *
3098 bge_lookup_rev(uint32_t chipid)
3099 {
3100 const struct bge_revision *br;
3101
3102 for (br = bge_revisions; br->br_name != NULL; br++) {
3103 if (br->br_chipid == chipid)
3104 return br;
3105 }
3106
3107 for (br = bge_majorrevs; br->br_name != NULL; br++) {
3108 if (br->br_chipid == BGE_ASICREV(chipid))
3109 return br;
3110 }
3111
3112 return NULL;
3113 }
3114
3115 static const struct bge_product *
3116 bge_lookup(const struct pci_attach_args *pa)
3117 {
3118 const struct bge_product *bp;
3119
3120 for (bp = bge_products; bp->bp_name != NULL; bp++) {
3121 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3122 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3123 return bp;
3124 }
3125
3126 return NULL;
3127 }
3128
3129 static uint32_t
3130 bge_chipid(const struct pci_attach_args *pa)
3131 {
3132 uint32_t id;
3133
3134 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3135 >> BGE_PCIMISCCTL_ASICREV_SHIFT;
3136
3137 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3138 switch (PCI_PRODUCT(pa->pa_id)) {
3139 case PCI_PRODUCT_BROADCOM_BCM5717:
3140 case PCI_PRODUCT_BROADCOM_BCM5718:
3141 case PCI_PRODUCT_BROADCOM_BCM5719:
3142 case PCI_PRODUCT_BROADCOM_BCM5720:
3143 case PCI_PRODUCT_BROADCOM_BCM5725:
3144 case PCI_PRODUCT_BROADCOM_BCM5727:
3145 case PCI_PRODUCT_BROADCOM_BCM5762:
3146 case PCI_PRODUCT_BROADCOM_BCM57764:
3147 case PCI_PRODUCT_BROADCOM_BCM57767:
3148 case PCI_PRODUCT_BROADCOM_BCM57787:
3149 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3150 BGE_PCI_GEN2_PRODID_ASICREV);
3151 break;
3152 case PCI_PRODUCT_BROADCOM_BCM57761:
3153 case PCI_PRODUCT_BROADCOM_BCM57762:
3154 case PCI_PRODUCT_BROADCOM_BCM57765:
3155 case PCI_PRODUCT_BROADCOM_BCM57766:
3156 case PCI_PRODUCT_BROADCOM_BCM57781:
3157 case PCI_PRODUCT_BROADCOM_BCM57782:
3158 case PCI_PRODUCT_BROADCOM_BCM57785:
3159 case PCI_PRODUCT_BROADCOM_BCM57786:
3160 case PCI_PRODUCT_BROADCOM_BCM57791:
3161 case PCI_PRODUCT_BROADCOM_BCM57795:
3162 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3163 BGE_PCI_GEN15_PRODID_ASICREV);
3164 break;
3165 default:
3166 id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3167 BGE_PCI_PRODID_ASICREV);
3168 break;
3169 }
3170 }
3171
3172 return id;
3173 }
3174
3175 /*
3176 * Return true if MSI can be used with this device.
3177 */
3178 static int
3179 bge_can_use_msi(struct bge_softc *sc)
3180 {
3181 int can_use_msi = 0;
3182
3183 switch (BGE_ASICREV(sc->bge_chipid)) {
3184 case BGE_ASICREV_BCM5714_A0:
3185 case BGE_ASICREV_BCM5714:
3186 /*
3187 * Apparently, MSI doesn't work when these chips are
3188 * configured in single-port mode.
3189 */
3190 break;
3191 case BGE_ASICREV_BCM5750:
3192 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3193 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3194 can_use_msi = 1;
3195 break;
3196 default:
3197 if (BGE_IS_575X_PLUS(sc))
3198 can_use_msi = 1;
3199 }
3200 return can_use_msi;
3201 }
3202
3203 /*
3204 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3205 * against our list and return its name if we find a match. Note
3206 * that since the Broadcom controller contains VPD support, we
3207 * can get the device name string from the controller itself instead
3208 * of the compiled-in string. This is a little slow, but it guarantees
3209 * we'll always announce the right product name.
3210 */
3211 static int
3212 bge_probe(device_t parent, cfdata_t match, void *aux)
3213 {
3214 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3215
3216 if (bge_lookup(pa) != NULL)
3217 return 1;
3218
3219 return 0;
3220 }
3221
3222 static void
3223 bge_attach(device_t parent, device_t self, void *aux)
3224 {
3225 struct bge_softc * const sc = device_private(self);
3226 struct pci_attach_args * const pa = aux;
3227 prop_dictionary_t dict;
3228 const struct bge_product *bp;
3229 const struct bge_revision *br;
3230 pci_chipset_tag_t pc;
3231 const char *intrstr = NULL;
3232 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3233 uint32_t command;
3234 struct ifnet *ifp;
3235 struct mii_data * const mii = &sc->bge_mii;
3236 uint32_t misccfg, mimode, macmode;
3237 void * kva;
3238 u_char eaddr[ETHER_ADDR_LEN];
3239 pcireg_t memtype, subid, reg;
3240 bus_addr_t memaddr;
3241 uint32_t pm_ctl;
3242 bool no_seeprom;
3243 int capmask, trys;
3244 int mii_flags;
3245 int map_flags;
3246 char intrbuf[PCI_INTRSTR_LEN];
3247
3248 bp = bge_lookup(pa);
3249 KASSERT(bp != NULL);
3250
3251 sc->sc_pc = pa->pa_pc;
3252 sc->sc_pcitag = pa->pa_tag;
3253 sc->bge_dev = self;
3254
3255 sc->bge_pa = *pa;
3256 pc = sc->sc_pc;
3257 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3258
3259 aprint_naive(": Ethernet controller\n");
3260 aprint_normal(": %s Ethernet\n", bp->bp_name);
3261
3262 /*
3263 * Map control/status registers.
3264 */
3265 DPRINTFN(5, ("Map control/status regs\n"));
3266 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3267 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3268 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3269 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3270
3271 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3272 aprint_error_dev(sc->bge_dev,
3273 "failed to enable memory mapping!\n");
3274 return;
3275 }
3276
3277 DPRINTFN(5, ("pci_mem_find\n"));
3278 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3279 switch (memtype) {
3280 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3281 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3282 #if 0
3283 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3284 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3285 &memaddr, &sc->bge_bsize) == 0)
3286 break;
3287 #else
3288 /*
3289 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3290 * system get NMI on boot (PR#48451). This problem might not be
3291 * the driver's bug but our PCI common part's bug. Until we
3292 * find a real reason, we ignore the prefetchable bit.
3293 */
3294 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3295 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3296 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3297 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3298 map_flags, &sc->bge_bhandle) == 0) {
3299 sc->bge_btag = pa->pa_memt;
3300 break;
3301 }
3302 }
3303 #endif
3304 /* FALLTHROUGH */
3305 default:
3306 aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3307 return;
3308 }
3309
3310 sc->bge_txrx_stopping = false;
3311
3312 /* Save various chip information. */
3313 sc->bge_chipid = bge_chipid(pa);
3314 sc->bge_phy_addr = bge_phy_addr(sc);
3315
3316 if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3317 &sc->bge_pciecap, NULL) != 0) {
3318 /* PCIe */
3319 sc->bge_flags |= BGEF_PCIE;
3320 /* Extract supported maximum payload size. */
3321 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3322 sc->bge_pciecap + PCIE_DCAP);
3323 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3324 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3325 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3326 sc->bge_expmrq = 2048;
3327 else
3328 sc->bge_expmrq = 4096;
3329 bge_set_max_readrq(sc);
3330 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3331 /* PCIe without PCIe cap */
3332 sc->bge_flags |= BGEF_PCIE;
3333 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3334 BGE_PCISTATE_PCI_BUSMODE) == 0) {
3335 /* PCI-X */
3336 sc->bge_flags |= BGEF_PCIX;
3337 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3338 &sc->bge_pcixcap, NULL) == 0)
3339 aprint_error_dev(sc->bge_dev,
3340 "unable to find PCIX capability\n");
3341 }
3342
3343 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3344 /*
3345 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3346 * can clobber the chip's PCI config-space power control
3347 * registers, leaving the card in D3 powersave state. We do
3348 * not have memory-mapped registers in this state, so force
3349 * device into D0 state before starting initialization.
3350 */
3351 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3352 pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3353 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3354 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3355 DELAY(1000); /* 27 usec is allegedly sufficient */
3356 }
3357
3358 /* Save chipset family. */
3359 switch (BGE_ASICREV(sc->bge_chipid)) {
3360 case BGE_ASICREV_BCM5717:
3361 case BGE_ASICREV_BCM5719:
3362 case BGE_ASICREV_BCM5720:
3363 sc->bge_flags |= BGEF_5717_PLUS;
3364 /* FALLTHROUGH */
3365 case BGE_ASICREV_BCM5762:
3366 case BGE_ASICREV_BCM57765:
3367 case BGE_ASICREV_BCM57766:
3368 if (!BGE_IS_5717_PLUS(sc))
3369 sc->bge_flags |= BGEF_57765_FAMILY;
3370 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3371 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3372 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3373 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3374 /*
3375 * Enable work around for DMA engine miscalculation
3376 * of TXMBUF available space.
3377 */
3378 sc->bge_flags |= BGEF_RDMA_BUG;
3379
3380 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3381 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3382 /* Jumbo frame on BCM5719 A0 does not work. */
3383 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3384 }
3385 }
3386 break;
3387 case BGE_ASICREV_BCM5755:
3388 case BGE_ASICREV_BCM5761:
3389 case BGE_ASICREV_BCM5784:
3390 case BGE_ASICREV_BCM5785:
3391 case BGE_ASICREV_BCM5787:
3392 case BGE_ASICREV_BCM57780:
3393 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3394 break;
3395 case BGE_ASICREV_BCM5700:
3396 case BGE_ASICREV_BCM5701:
3397 case BGE_ASICREV_BCM5703:
3398 case BGE_ASICREV_BCM5704:
3399 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3400 break;
3401 case BGE_ASICREV_BCM5714_A0:
3402 case BGE_ASICREV_BCM5780:
3403 case BGE_ASICREV_BCM5714:
3404 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3405 /* FALLTHROUGH */
3406 case BGE_ASICREV_BCM5750:
3407 case BGE_ASICREV_BCM5752:
3408 case BGE_ASICREV_BCM5906:
3409 sc->bge_flags |= BGEF_575X_PLUS;
3410 /* FALLTHROUGH */
3411 case BGE_ASICREV_BCM5705:
3412 sc->bge_flags |= BGEF_5705_PLUS;
3413 break;
3414 }
3415
3416 /* Identify chips with APE processor. */
3417 switch (BGE_ASICREV(sc->bge_chipid)) {
3418 case BGE_ASICREV_BCM5717:
3419 case BGE_ASICREV_BCM5719:
3420 case BGE_ASICREV_BCM5720:
3421 case BGE_ASICREV_BCM5761:
3422 case BGE_ASICREV_BCM5762:
3423 sc->bge_flags |= BGEF_APE;
3424 break;
3425 }
3426
3427 /*
3428 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3429 * not actually a MAC controller bug but an issue with the embedded
3430 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3431 */
3432 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3433 sc->bge_flags |= BGEF_40BIT_BUG;
3434
3435 /* Chips with APE need BAR2 access for APE registers/memory. */
3436 if ((sc->bge_flags & BGEF_APE) != 0) {
3437 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3438 #if 0
3439 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3440 &sc->bge_apetag, &sc->bge_apehandle, NULL,
3441 &sc->bge_apesize)) {
3442 aprint_error_dev(sc->bge_dev,
3443 "couldn't map BAR2 memory\n");
3444 return;
3445 }
3446 #else
3447 /*
3448 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3449 * system get NMI on boot (PR#48451). This problem might not be
3450 * the driver's bug but our PCI common part's bug. Until we
3451 * find a real reason, we ignore the prefetchable bit.
3452 */
3453 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3454 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3455 aprint_error_dev(sc->bge_dev,
3456 "couldn't map BAR2 memory\n");
3457 return;
3458 }
3459
3460 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3461 if (bus_space_map(pa->pa_memt, memaddr,
3462 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3463 aprint_error_dev(sc->bge_dev,
3464 "couldn't map BAR2 memory\n");
3465 return;
3466 }
3467 sc->bge_apetag = pa->pa_memt;
3468 #endif
3469
3470 /* Enable APE register/memory access by host driver. */
3471 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3472 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3473 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3474 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3475 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3476
3477 bge_ape_lock_init(sc);
3478 bge_ape_read_fw_ver(sc);
3479 }
3480
3481 /* Identify the chips that use an CPMU. */
3482 if (BGE_IS_5717_PLUS(sc) ||
3483 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3484 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3485 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3486 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3487 sc->bge_flags |= BGEF_CPMU_PRESENT;
3488
3489 /*
3490 * When using the BCM5701 in PCI-X mode, data corruption has
3491 * been observed in the first few bytes of some received packets.
3492 * Aligning the packet buffer in memory eliminates the corruption.
3493 * Unfortunately, this misaligns the packet payloads. On platforms
3494 * which do not support unaligned accesses, we will realign the
3495 * payloads by copying the received packets.
3496 */
3497 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3498 sc->bge_flags & BGEF_PCIX)
3499 sc->bge_flags |= BGEF_RX_ALIGNBUG;
3500
3501 if (BGE_IS_5700_FAMILY(sc))
3502 sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3503
3504 misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3505 misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3506
3507 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3508 (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3509 misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3510 sc->bge_flags |= BGEF_IS_5788;
3511
3512 /*
3513 * Some controllers seem to require a special firmware to use
3514 * TSO. But the firmware is not available to FreeBSD and Linux
3515 * claims that the TSO performed by the firmware is slower than
3516 * hardware based TSO. Moreover the firmware based TSO has one
3517 * known bug which can't handle TSO if ethernet header + IP/TCP
3518 * header is greater than 80 bytes. The workaround for the TSO
3519 * bug exist but it seems it's too expensive than not using
3520 * TSO at all. Some hardware also have the TSO bug so limit
3521 * the TSO to the controllers that are not affected TSO issues
3522 * (e.g. 5755 or higher).
3523 */
3524 if (BGE_IS_5755_PLUS(sc)) {
3525 /*
3526 * BCM5754 and BCM5787 shares the same ASIC id so
3527 * explicit device id check is required.
3528 */
3529 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3530 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3531 sc->bge_flags |= BGEF_TSO;
3532 /* TSO on BCM5719 A0 does not work. */
3533 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3534 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3535 sc->bge_flags &= ~BGEF_TSO;
3536 }
3537
3538 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3539 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3540 (misccfg == 0x4000 || misccfg == 0x8000)) ||
3541 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3542 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3543 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3544 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3545 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3546 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3547 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3548 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3549 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3550 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3551 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3552 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3553 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3554 /* These chips are 10/100 only. */
3555 capmask &= ~BMSR_EXTSTAT;
3556 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3557 }
3558
3559 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3560 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3561 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3562 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3563 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3564
3565 /* Set various PHY bug flags. */
3566 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3567 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3568 sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3569 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3570 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3571 sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3572 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3573 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3574 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3575 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3576 PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3577 sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3578 if (BGE_IS_5705_PLUS(sc) &&
3579 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3580 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3581 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3582 !BGE_IS_57765_PLUS(sc)) {
3583 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3584 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3585 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3586 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3587 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3588 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3589 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3590 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3591 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3592 } else
3593 sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3594 }
3595
3596 /*
3597 * SEEPROM check.
3598 * First check if firmware knows we do not have SEEPROM.
3599 */
3600 if (prop_dictionary_get_bool(device_properties(self),
3601 "without-seeprom", &no_seeprom) && no_seeprom)
3602 sc->bge_flags |= BGEF_NO_EEPROM;
3603
3604 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3605 sc->bge_flags |= BGEF_NO_EEPROM;
3606
3607 /* Now check the 'ROM failed' bit on the RX CPU */
3608 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3609 sc->bge_flags |= BGEF_NO_EEPROM;
3610
3611 sc->bge_asf_mode = 0;
3612 /* No ASF if APE present. */
3613 if ((sc->bge_flags & BGEF_APE) == 0) {
3614 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3615 BGE_SRAM_DATA_SIG_MAGIC)) {
3616 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3617 BGE_HWCFG_ASF) {
3618 sc->bge_asf_mode |= ASF_ENABLE;
3619 sc->bge_asf_mode |= ASF_STACKUP;
3620 if (BGE_IS_575X_PLUS(sc))
3621 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3622 }
3623 }
3624 }
3625
3626 int counts[PCI_INTR_TYPE_SIZE] = {
3627 [PCI_INTR_TYPE_INTX] = 1,
3628 [PCI_INTR_TYPE_MSI] = 1,
3629 [PCI_INTR_TYPE_MSIX] = 1,
3630 };
3631 int max_type = PCI_INTR_TYPE_MSIX;
3632
3633 if (!bge_can_use_msi(sc)) {
3634 /* MSI broken, allow only INTx */
3635 max_type = PCI_INTR_TYPE_INTX;
3636 }
3637
3638 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3639 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3640 return;
3641 }
3642
3643 DPRINTFN(5, ("pci_intr_string\n"));
3644 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3645 sizeof(intrbuf));
3646 pci_intr_setattr(pc, &sc->bge_pihp[0], PCI_INTR_MPSAFE, true);
3647 DPRINTFN(5, ("pci_intr_establish\n"));
3648 sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3649 IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3650 if (sc->bge_intrhand == NULL) {
3651 pci_intr_release(pc, sc->bge_pihp, 1);
3652 sc->bge_pihp = NULL;
3653
3654 aprint_error_dev(self, "couldn't establish interrupt");
3655 if (intrstr != NULL)
3656 aprint_error(" at %s", intrstr);
3657 aprint_error("\n");
3658 return;
3659 }
3660 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3661
3662 switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3663 case PCI_INTR_TYPE_MSIX:
3664 case PCI_INTR_TYPE_MSI:
3665 KASSERT(bge_can_use_msi(sc));
3666 sc->bge_flags |= BGEF_MSI;
3667 break;
3668 default:
3669 /* nothing to do */
3670 break;
3671 }
3672
3673 char wqname[MAXCOMLEN];
3674 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->bge_dev));
3675 int error = workqueue_create(&sc->sc_reset_wq, wqname,
3676 bge_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK,
3677 WQ_MPSAFE);
3678 if (error) {
3679 aprint_error_dev(sc->bge_dev,
3680 "unable to create reset workqueue\n");
3681 return;
3682 }
3683
3684
3685 /*
3686 * All controllers except BCM5700 supports tagged status but
3687 * we use tagged status only for MSI case on BCM5717. Otherwise
3688 * MSI on BCM5717 does not work.
3689 */
3690 if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3691 sc->bge_flags |= BGEF_TAGGED_STATUS;
3692
3693 /*
3694 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3695 * lock in bge_reset().
3696 */
3697 CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3698 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3699 delay(1000);
3700 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3701
3702 bge_stop_fw(sc);
3703 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3704 if (bge_reset(sc))
3705 aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3706
3707 /*
3708 * Read the hardware config word in the first 32k of NIC internal
3709 * memory, or fall back to the config word in the EEPROM.
3710 * Note: on some BCM5700 cards, this value appears to be unset.
3711 */
3712 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3713 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3714 BGE_SRAM_DATA_SIG_MAGIC) {
3715 uint32_t tmp;
3716
3717 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3718 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3719 BGE_SRAM_DATA_VER_SHIFT;
3720 if ((0 < tmp) && (tmp < 0x100))
3721 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3722 if (sc->bge_flags & BGEF_PCIE)
3723 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3724 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3725 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3726 if (BGE_IS_5717_PLUS(sc))
3727 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3728 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3729 bge_read_eeprom(sc, (void *)&hwcfg,
3730 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3731 hwcfg = be32toh(hwcfg);
3732 }
3733 aprint_normal_dev(sc->bge_dev,
3734 "HW config %08x, %08x, %08x, %08x %08x\n",
3735 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3736
3737 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3738 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3739
3740 if (bge_chipinit(sc)) {
3741 aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3742 bge_release_resources(sc);
3743 return;
3744 }
3745
3746 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3747 BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3748 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3749 DELAY(100);
3750 }
3751
3752 /* Set MI_MODE */
3753 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3754 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3755 mimode |= BGE_MIMODE_500KHZ_CONST;
3756 else
3757 mimode |= BGE_MIMODE_BASE;
3758 CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3759 DELAY(80);
3760
3761 /*
3762 * Get station address from the EEPROM.
3763 */
3764 if (bge_get_eaddr(sc, eaddr)) {
3765 aprint_error_dev(sc->bge_dev,
3766 "failed to read station address\n");
3767 bge_release_resources(sc);
3768 return;
3769 }
3770
3771 br = bge_lookup_rev(sc->bge_chipid);
3772
3773 if (br == NULL) {
3774 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3775 sc->bge_chipid);
3776 } else {
3777 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3778 br->br_name, sc->bge_chipid);
3779 }
3780 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3781
3782 /* Allocate the general information block and ring buffers. */
3783 if (pci_dma64_available(pa)) {
3784 sc->bge_dmatag = pa->pa_dmat64;
3785 sc->bge_dmatag32 = pa->pa_dmat;
3786 sc->bge_dma64 = true;
3787 } else {
3788 sc->bge_dmatag = pa->pa_dmat;
3789 sc->bge_dmatag32 = pa->pa_dmat;
3790 sc->bge_dma64 = false;
3791 }
3792
3793 /* 40bit DMA workaround */
3794 if (sizeof(bus_addr_t) > 4) {
3795 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3796 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3797
3798 if (bus_dmatag_subregion(olddmatag, 0,
3799 (bus_addr_t)__MASK(40),
3800 &(sc->bge_dmatag), BUS_DMA_WAITOK) != 0) {
3801 aprint_error_dev(self,
3802 "WARNING: failed to restrict dma range,"
3803 " falling back to parent bus dma range\n");
3804 sc->bge_dmatag = olddmatag;
3805 }
3806 }
3807 }
3808 SLIST_INIT(&sc->txdma_list);
3809 DPRINTFN(5, ("bus_dmamem_alloc\n"));
3810 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3811 PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3812 &sc->bge_ring_rseg, BUS_DMA_WAITOK)) {
3813 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3814 return;
3815 }
3816 DPRINTFN(5, ("bus_dmamem_map\n"));
3817 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3818 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3819 BUS_DMA_WAITOK)) {
3820 aprint_error_dev(sc->bge_dev,
3821 "can't map DMA buffers (%zu bytes)\n",
3822 sizeof(struct bge_ring_data));
3823 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3824 sc->bge_ring_rseg);
3825 return;
3826 }
3827 DPRINTFN(5, ("bus_dmamap_create\n"));
3828 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3829 sizeof(struct bge_ring_data), 0,
3830 BUS_DMA_WAITOK, &sc->bge_ring_map)) {
3831 aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3832 bus_dmamem_unmap(sc->bge_dmatag, kva,
3833 sizeof(struct bge_ring_data));
3834 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3835 sc->bge_ring_rseg);
3836 return;
3837 }
3838 DPRINTFN(5, ("bus_dmamap_load\n"));
3839 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3840 sizeof(struct bge_ring_data), NULL,
3841 BUS_DMA_WAITOK)) {
3842 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3843 bus_dmamem_unmap(sc->bge_dmatag, kva,
3844 sizeof(struct bge_ring_data));
3845 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3846 sc->bge_ring_rseg);
3847 return;
3848 }
3849
3850 DPRINTFN(5, ("bzero\n"));
3851 sc->bge_rdata = (struct bge_ring_data *)kva;
3852
3853 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3854
3855 /* Try to allocate memory for jumbo buffers. */
3856 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3857 if (bge_alloc_jumbo_mem(sc)) {
3858 aprint_error_dev(sc->bge_dev,
3859 "jumbo buffer allocation failed\n");
3860 } else
3861 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3862 }
3863
3864 /* Set default tuneable values. */
3865 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3866 sc->bge_rx_coal_ticks = 150;
3867 sc->bge_rx_max_coal_bds = 64;
3868 sc->bge_tx_coal_ticks = 300;
3869 sc->bge_tx_max_coal_bds = 400;
3870 if (BGE_IS_5705_PLUS(sc)) {
3871 sc->bge_tx_coal_ticks = (12 * 5);
3872 sc->bge_tx_max_coal_bds = (12 * 5);
3873 aprint_verbose_dev(sc->bge_dev,
3874 "setting short Tx thresholds\n");
3875 }
3876
3877 if (BGE_IS_5717_PLUS(sc))
3878 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3879 else if (BGE_IS_5705_PLUS(sc))
3880 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3881 else
3882 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3883
3884 sc->sc_mcast_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
3885 sc->sc_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
3886
3887 /* Set up ifnet structure */
3888 ifp = &sc->ethercom.ec_if;
3889 ifp->if_softc = sc;
3890 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3891 ifp->if_extflags = IFEF_MPSAFE;
3892 ifp->if_ioctl = bge_ioctl;
3893 ifp->if_stop = bge_stop;
3894 ifp->if_start = bge_start;
3895 ifp->if_init = bge_init;
3896 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3897 IFQ_SET_READY(&ifp->if_snd);
3898 DPRINTFN(5, ("strcpy if_xname\n"));
3899 strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3900
3901 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3902 sc->ethercom.ec_if.if_capabilities |=
3903 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3904 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
3905 sc->ethercom.ec_if.if_capabilities |=
3906 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3907 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3908 #endif
3909 sc->ethercom.ec_capabilities |=
3910 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3911 sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3912
3913 if (sc->bge_flags & BGEF_TSO)
3914 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3915
3916 /*
3917 * Do MII setup.
3918 */
3919 DPRINTFN(5, ("mii setup\n"));
3920 mii->mii_ifp = ifp;
3921 mii->mii_readreg = bge_miibus_readreg;
3922 mii->mii_writereg = bge_miibus_writereg;
3923 mii->mii_statchg = bge_miibus_statchg;
3924
3925 /*
3926 * Figure out what sort of media we have by checking the hardware
3927 * config word. Note: on some BCM5700 cards, this value appears to be
3928 * unset. If that's the case, we have to rely on identifying the NIC
3929 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3930 * The SysKonnect SK-9D41 is a 1000baseSX card.
3931 */
3932 if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3933 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3934 if (BGE_IS_5705_PLUS(sc)) {
3935 sc->bge_flags |= BGEF_FIBER_MII;
3936 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3937 } else
3938 sc->bge_flags |= BGEF_FIBER_TBI;
3939 }
3940
3941 /* Set bge_phy_flags before prop_dictionary_set_uint32() */
3942 if (BGE_IS_JUMBO_CAPABLE(sc))
3943 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3944
3945 /* set phyflags and chipid before mii_attach() */
3946 dict = device_properties(self);
3947 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3948 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3949
3950 macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3951 macmode &= ~BGE_MACMODE_PORTMODE;
3952 /* Initialize ifmedia structures. */
3953 if (sc->bge_flags & BGEF_FIBER_TBI) {
3954 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3955 macmode | BGE_PORTMODE_TBI);
3956 DELAY(40);
3957
3958 struct ifmedia * const ifm = &sc->bge_ifmedia;
3959 sc->ethercom.ec_ifmedia = ifm;
3960
3961 ifmedia_init_with_lock(ifm, IFM_IMASK,
3962 bge_ifmedia_upd, bge_ifmedia_sts, sc->sc_intr_lock);
3963 ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX, 0, NULL);
3964 ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
3965 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
3966 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
3967 /* Pretend the user requested this setting */
3968 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3969 } else {
3970 uint16_t phyreg;
3971 int rv;
3972 /*
3973 * Do transceiver setup and tell the firmware the
3974 * driver is down so we can try to get access the
3975 * probe if ASF is running. Retry a couple of times
3976 * if we get a conflict with the ASF firmware accessing
3977 * the PHY.
3978 */
3979 if (sc->bge_flags & BGEF_FIBER_MII)
3980 macmode |= BGE_PORTMODE_GMII;
3981 else
3982 macmode |= BGE_PORTMODE_MII;
3983 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3984 DELAY(40);
3985
3986 /*
3987 * Do transceiver setup and tell the firmware the
3988 * driver is down so we can try to get access the
3989 * probe if ASF is running. Retry a couple of times
3990 * if we get a conflict with the ASF firmware accessing
3991 * the PHY.
3992 */
3993 trys = 0;
3994 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3995 sc->ethercom.ec_mii = mii;
3996 ifmedia_init_with_lock(&mii->mii_media, 0, bge_ifmedia_upd,
3997 bge_ifmedia_sts, sc->sc_intr_lock);
3998 mii_flags = MIIF_DOPAUSE;
3999 if (sc->bge_flags & BGEF_FIBER_MII)
4000 mii_flags |= MIIF_HAVEFIBER;
4001 again:
4002 bge_asf_driver_up(sc);
4003 mutex_enter(sc->sc_intr_lock);
4004 rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
4005 MII_BMCR, &phyreg);
4006 if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
4007 int i;
4008
4009 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
4010 MII_BMCR, BMCR_RESET);
4011 /* Wait up to 500ms for it to complete. */
4012 for (i = 0; i < 500; i++) {
4013 bge_miibus_readreg(sc->bge_dev,
4014 sc->bge_phy_addr, MII_BMCR, &phyreg);
4015 if ((phyreg & BMCR_RESET) == 0)
4016 break;
4017 DELAY(1000);
4018 }
4019 }
4020 mutex_exit(sc->sc_intr_lock);
4021
4022 mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
4023 MII_OFFSET_ANY, mii_flags);
4024
4025 if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
4026 goto again;
4027
4028 if (LIST_EMPTY(&mii->mii_phys)) {
4029 aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4030 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
4031 0, NULL);
4032 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
4033 } else
4034 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
4035
4036 /*
4037 * Now tell the firmware we are going up after probing the PHY
4038 */
4039 if (sc->bge_asf_mode & ASF_STACKUP)
4040 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4041 }
4042
4043 /*
4044 * Call MI attach routine.
4045 */
4046 DPRINTFN(5, ("if_initialize\n"));
4047 if_initialize(ifp);
4048 ifp->if_percpuq = if_percpuq_create(ifp);
4049 if_deferred_start_init(ifp, NULL);
4050 if_register(ifp);
4051
4052 DPRINTFN(5, ("ether_ifattach\n"));
4053 ether_ifattach(ifp, eaddr);
4054 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4055
4056 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4057 RND_TYPE_NET, RND_FLAG_DEFAULT);
4058 #ifdef BGE_EVENT_COUNTERS
4059 /*
4060 * Attach event counters.
4061 */
4062 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4063 NULL, device_xname(sc->bge_dev), "intr");
4064 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
4065 NULL, device_xname(sc->bge_dev), "intr_spurious");
4066 evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
4067 NULL, device_xname(sc->bge_dev), "intr_spurious2");
4068 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4069 NULL, device_xname(sc->bge_dev), "tx_xoff");
4070 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4071 NULL, device_xname(sc->bge_dev), "tx_xon");
4072 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4073 NULL, device_xname(sc->bge_dev), "rx_xoff");
4074 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4075 NULL, device_xname(sc->bge_dev), "rx_xon");
4076 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4077 NULL, device_xname(sc->bge_dev), "rx_macctl");
4078 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4079 NULL, device_xname(sc->bge_dev), "xoffentered");
4080 #endif /* BGE_EVENT_COUNTERS */
4081 DPRINTFN(5, ("callout_init\n"));
4082 callout_init(&sc->bge_timeout, CALLOUT_MPSAFE);
4083 callout_setfunc(&sc->bge_timeout, bge_tick, sc);
4084
4085 if (pmf_device_register(self, NULL, NULL))
4086 pmf_class_network_register(self, ifp);
4087 else
4088 aprint_error_dev(self, "couldn't establish power handler\n");
4089
4090 bge_sysctl_init(sc);
4091
4092 #ifdef BGE_DEBUG
4093 bge_debug_info(sc);
4094 #endif
4095
4096 sc->bge_attached = true;
4097 }
4098
4099 /*
4100 * Stop all chip I/O so that the kernel's probe routines don't
4101 * get confused by errant DMAs when rebooting.
4102 */
4103 static int
4104 bge_detach(device_t self, int flags __unused)
4105 {
4106 struct bge_softc * const sc = device_private(self);
4107 struct ifnet * const ifp = &sc->ethercom.ec_if;
4108
4109 if (!sc->bge_attached)
4110 return 0;
4111
4112 IFNET_LOCK(ifp);
4113
4114 /* Stop the interface. Callouts are stopped in it. */
4115 bge_stop(ifp, 1);
4116 sc->bge_detaching = true;
4117
4118 IFNET_UNLOCK(ifp);
4119
4120 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4121
4122 ether_ifdetach(ifp);
4123 if_detach(ifp);
4124
4125 /* Delete all remaining media. */
4126 ifmedia_fini(&sc->bge_mii.mii_media);
4127
4128 bge_release_resources(sc);
4129
4130 return 0;
4131 }
4132
4133 static void
4134 bge_release_resources(struct bge_softc *sc)
4135 {
4136
4137 /* Detach sysctl */
4138 if (sc->bge_log != NULL)
4139 sysctl_teardown(&sc->bge_log);
4140
4141 callout_destroy(&sc->bge_timeout);
4142
4143 #ifdef BGE_EVENT_COUNTERS
4144 /* Detach event counters. */
4145 evcnt_detach(&sc->bge_ev_intr);
4146 evcnt_detach(&sc->bge_ev_intr_spurious);
4147 evcnt_detach(&sc->bge_ev_intr_spurious2);
4148 evcnt_detach(&sc->bge_ev_tx_xoff);
4149 evcnt_detach(&sc->bge_ev_tx_xon);
4150 evcnt_detach(&sc->bge_ev_rx_xoff);
4151 evcnt_detach(&sc->bge_ev_rx_xon);
4152 evcnt_detach(&sc->bge_ev_rx_macctl);
4153 evcnt_detach(&sc->bge_ev_xoffentered);
4154 #endif /* BGE_EVENT_COUNTERS */
4155
4156 /* Disestablish the interrupt handler */
4157 if (sc->bge_intrhand != NULL) {
4158 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4159 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4160 sc->bge_intrhand = NULL;
4161 }
4162
4163 if (sc->bge_cdata.bge_jumbo_buf != NULL)
4164 bge_free_jumbo_mem(sc);
4165
4166 if (sc->bge_dmatag != NULL) {
4167 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4168 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4169 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4170 sizeof(struct bge_ring_data));
4171 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4172 sc->bge_ring_rseg);
4173 }
4174
4175 /* Unmap the device registers */
4176 if (sc->bge_bsize != 0) {
4177 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4178 sc->bge_bsize = 0;
4179 }
4180
4181 /* Unmap the APE registers */
4182 if (sc->bge_apesize != 0) {
4183 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4184 sc->bge_apesize);
4185 sc->bge_apesize = 0;
4186 }
4187 if (sc->sc_intr_lock) {
4188 mutex_obj_free(sc->sc_intr_lock);
4189 sc->sc_intr_lock = NULL;
4190 }
4191 if (sc->sc_mcast_lock) {
4192 mutex_obj_free(sc->sc_mcast_lock);
4193 sc->sc_mcast_lock = NULL;
4194 }
4195 }
4196
4197 static int
4198 bge_reset(struct bge_softc *sc)
4199 {
4200 uint32_t cachesize, command;
4201 uint32_t reset, mac_mode, mac_mode_mask;
4202 pcireg_t devctl, reg;
4203 int i, val;
4204 void (*write_op)(struct bge_softc *, int, int);
4205
4206 /* Make mask for BGE_MAC_MODE register. */
4207 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4208 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4209 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4210 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4211 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4212
4213 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4214 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4215 if (sc->bge_flags & BGEF_PCIE)
4216 write_op = bge_writemem_direct;
4217 else
4218 write_op = bge_writemem_ind;
4219 } else
4220 write_op = bge_writereg_ind;
4221
4222 /* 57XX step 4 */
4223 /* Acquire the NVM lock */
4224 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4225 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4226 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4227 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4228 for (i = 0; i < 8000; i++) {
4229 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4230 BGE_NVRAMSWARB_GNT1)
4231 break;
4232 DELAY(20);
4233 }
4234 if (i == 8000) {
4235 printf("%s: NVRAM lock timedout!\n",
4236 device_xname(sc->bge_dev));
4237 }
4238 }
4239
4240 /* Take APE lock when performing reset. */
4241 bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4242
4243 /* 57XX step 3 */
4244 /* Save some important PCI state. */
4245 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4246 /* 5718 reset step 3 */
4247 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4248
4249 /* 5718 reset step 5, 57XX step 5b-5d */
4250 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4251 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4252 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4253
4254 /* XXX ???: Disable fastboot on controllers that support it. */
4255 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4256 BGE_IS_5755_PLUS(sc))
4257 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4258
4259 /* 5718 reset step 2, 57XX step 6 */
4260 /*
4261 * Write the magic number to SRAM at offset 0xB50.
4262 * When firmware finishes its initialization it will
4263 * write ~BGE_MAGIC_NUMBER to the same location.
4264 */
4265 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4266
4267 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4268 val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4269 val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4270 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4271 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4272 }
4273
4274 /* 5718 reset step 6, 57XX step 7 */
4275 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4276 /*
4277 * XXX: from FreeBSD/Linux; no documentation
4278 */
4279 if (sc->bge_flags & BGEF_PCIE) {
4280 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4281 !BGE_IS_57765_PLUS(sc) &&
4282 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4283 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4284 /* PCI Express 1.0 system */
4285 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4286 BGE_PHY_PCIE_SCRAM_MODE);
4287 }
4288 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4289 /*
4290 * Prevent PCI Express link training
4291 * during global reset.
4292 */
4293 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4294 reset |= (1 << 29);
4295 }
4296 }
4297
4298 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4299 i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4300 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4301 i | BGE_VCPU_STATUS_DRV_RESET);
4302 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4303 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4304 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4305 }
4306
4307 /*
4308 * Set GPHY Power Down Override to leave GPHY
4309 * powered up in D0 uninitialized.
4310 */
4311 if (BGE_IS_5705_PLUS(sc) &&
4312 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4313 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4314
4315 /* Issue global reset */
4316 write_op(sc, BGE_MISC_CFG, reset);
4317
4318 /* 5718 reset step 7, 57XX step 8 */
4319 if (sc->bge_flags & BGEF_PCIE)
4320 delay(100*1000); /* too big */
4321 else
4322 delay(1000);
4323
4324 if (sc->bge_flags & BGEF_PCIE) {
4325 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4326 DELAY(500000);
4327 /* XXX: Magic Numbers */
4328 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4329 BGE_PCI_UNKNOWN0);
4330 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4331 BGE_PCI_UNKNOWN0,
4332 reg | (1 << 15));
4333 }
4334 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4335 sc->bge_pciecap + PCIE_DCSR);
4336 /* Clear enable no snoop and disable relaxed ordering. */
4337 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4338 PCIE_DCSR_ENA_NO_SNOOP);
4339
4340 /* Set PCIE max payload size to 128 for older PCIe devices */
4341 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4342 devctl &= ~(0x00e0);
4343 /* Clear device status register. Write 1b to clear */
4344 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4345 | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4346 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4347 sc->bge_pciecap + PCIE_DCSR, devctl);
4348 bge_set_max_readrq(sc);
4349 }
4350
4351 /* From Linux: dummy read to flush PCI posted writes */
4352 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4353
4354 /*
4355 * Reset some of the PCI state that got zapped by reset
4356 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4357 * set, too.
4358 */
4359 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4360 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4361 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4362 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4363 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4364 (sc->bge_flags & BGEF_PCIX) != 0)
4365 val |= BGE_PCISTATE_RETRY_SAME_DMA;
4366 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4367 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4368 BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4369 BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4370 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4371 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4372 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4373
4374 /* 57xx step 11: disable PCI-X Relaxed Ordering. */
4375 if (sc->bge_flags & BGEF_PCIX) {
4376 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4377 + PCIX_CMD);
4378 /* Set max memory read byte count to 2K */
4379 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4380 reg &= ~PCIX_CMD_BYTECNT_MASK;
4381 reg |= PCIX_CMD_BCNT_2048;
4382 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4383 /*
4384 * For 5704, set max outstanding split transaction
4385 * field to 0 (0 means it supports 1 request)
4386 */
4387 reg &= ~(PCIX_CMD_SPLTRANS_MASK
4388 | PCIX_CMD_BYTECNT_MASK);
4389 reg |= PCIX_CMD_BCNT_2048;
4390 }
4391 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4392 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4393 }
4394
4395 /* 5718 reset step 10, 57XX step 12 */
4396 /* Enable memory arbiter. */
4397 if (BGE_IS_5714_FAMILY(sc)) {
4398 val = CSR_READ_4(sc, BGE_MARB_MODE);
4399 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4400 } else
4401 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4402
4403 /* XXX 5721, 5751 and 5752 */
4404 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4405 /* Step 19: */
4406 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4407 /* Step 20: */
4408 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4409 }
4410
4411 /* 5718 reset step 12, 57XX step 15 and 16 */
4412 /* Fix up byte swapping */
4413 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4414
4415 /* 5718 reset step 13, 57XX step 17 */
4416 /* Poll until the firmware initialization is complete */
4417 bge_poll_fw(sc);
4418
4419 /* 57XX step 21 */
4420 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4421 pcireg_t msidata;
4422
4423 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4424 BGE_PCI_MSI_DATA);
4425 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4426 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4427 msidata);
4428 }
4429
4430 /* 57XX step 18 */
4431 /* Write mac mode. */
4432 val = CSR_READ_4(sc, BGE_MAC_MODE);
4433 /* Restore mac_mode_mask's bits using mac_mode */
4434 val = (val & ~mac_mode_mask) | mac_mode;
4435 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4436 DELAY(40);
4437
4438 bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4439
4440 /*
4441 * The 5704 in TBI mode apparently needs some special
4442 * adjustment to insure the SERDES drive level is set
4443 * to 1.2V.
4444 */
4445 if (sc->bge_flags & BGEF_FIBER_TBI &&
4446 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4447 uint32_t serdescfg;
4448
4449 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4450 serdescfg = (serdescfg & ~0xFFF) | 0x880;
4451 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4452 }
4453
4454 if (sc->bge_flags & BGEF_PCIE &&
4455 !BGE_IS_57765_PLUS(sc) &&
4456 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4457 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4458 uint32_t v;
4459
4460 /* Enable PCI Express bug fix */
4461 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4462 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4463 v | BGE_TLP_DATA_FIFO_PROTECT);
4464 }
4465
4466 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4467 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4468 CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4469
4470 return 0;
4471 }
4472
4473 /*
4474 * Frame reception handling. This is called if there's a frame
4475 * on the receive return list.
4476 *
4477 * Note: we have to be able to handle two possibilities here:
4478 * 1) the frame is from the jumbo receive ring
4479 * 2) the frame is from the standard receive ring
4480 */
4481
4482 static void
4483 bge_rxeof(struct bge_softc *sc)
4484 {
4485 struct ifnet * const ifp = &sc->ethercom.ec_if;
4486 uint16_t rx_prod, rx_cons;
4487 int stdcnt = 0, jumbocnt = 0;
4488 bus_dmamap_t dmamap;
4489 bus_addr_t offset, toff;
4490 bus_size_t tlen;
4491 int tosync;
4492
4493 KASSERT(mutex_owned(sc->sc_intr_lock));
4494
4495 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4496 offsetof(struct bge_ring_data, bge_status_block),
4497 sizeof(struct bge_status_block),
4498 BUS_DMASYNC_POSTREAD);
4499
4500 rx_cons = sc->bge_rx_saved_considx;
4501 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4502
4503 /* Nothing to do */
4504 if (rx_cons == rx_prod)
4505 return;
4506
4507 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4508 tosync = rx_prod - rx_cons;
4509
4510 if (tosync != 0)
4511 rnd_add_uint32(&sc->rnd_source, tosync);
4512
4513 toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
4514
4515 if (tosync < 0) {
4516 tlen = (sc->bge_return_ring_cnt - rx_cons) *
4517 sizeof(struct bge_rx_bd);
4518 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4519 toff, tlen, BUS_DMASYNC_POSTREAD);
4520 tosync = rx_prod;
4521 toff = offset;
4522 }
4523
4524 if (tosync != 0) {
4525 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4526 toff, tosync * sizeof(struct bge_rx_bd),
4527 BUS_DMASYNC_POSTREAD);
4528 }
4529
4530 while (rx_cons != rx_prod) {
4531 struct bge_rx_bd *cur_rx;
4532 uint32_t rxidx;
4533 struct mbuf *m = NULL;
4534
4535 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4536
4537 rxidx = cur_rx->bge_idx;
4538 BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4539
4540 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4541 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4542 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4543 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4544 jumbocnt++;
4545 bus_dmamap_sync(sc->bge_dmatag,
4546 sc->bge_cdata.bge_rx_jumbo_map,
4547 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4548 BGE_JLEN, BUS_DMASYNC_POSTREAD);
4549 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4550 if_statinc(ifp, if_ierrors);
4551 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4552 continue;
4553 }
4554 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4555 NULL) == ENOBUFS) {
4556 if_statinc(ifp, if_ierrors);
4557 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4558 continue;
4559 }
4560 } else {
4561 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4562 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4563
4564 stdcnt++;
4565 sc->bge_std_cnt--;
4566
4567 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4568 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4569 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4570 bus_dmamap_unload(sc->bge_dmatag, dmamap);
4571
4572 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4573 m_free(m);
4574 if_statinc(ifp, if_ierrors);
4575 continue;
4576 }
4577 }
4578
4579 #ifndef __NO_STRICT_ALIGNMENT
4580 /*
4581 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4582 * the Rx buffer has the layer-2 header unaligned.
4583 * If our CPU requires alignment, re-align by copying.
4584 */
4585 if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4586 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4587 cur_rx->bge_len);
4588 m->m_data += ETHER_ALIGN;
4589 }
4590 #endif
4591
4592 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4593 m_set_rcvif(m, ifp);
4594
4595 bge_rxcsum(sc, cur_rx, m);
4596
4597 /*
4598 * If we received a packet with a vlan tag, pass it
4599 * to vlan_input() instead of ether_input().
4600 */
4601 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4602 vlan_set_tag(m, cur_rx->bge_vlan_tag);
4603
4604 if_percpuq_enqueue(ifp->if_percpuq, m);
4605 }
4606
4607 sc->bge_rx_saved_considx = rx_cons;
4608 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4609 if (stdcnt)
4610 bge_fill_rx_ring_std(sc);
4611 if (jumbocnt)
4612 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4613 }
4614
4615 static void
4616 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4617 {
4618
4619 if (BGE_IS_57765_PLUS(sc)) {
4620 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4621 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4622 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4623 if ((cur_rx->bge_error_flag &
4624 BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4625 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4626 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4627 m->m_pkthdr.csum_data =
4628 cur_rx->bge_tcp_udp_csum;
4629 m->m_pkthdr.csum_flags |=
4630 (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4631 }
4632 }
4633 } else {
4634 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4635 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4636 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4637 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4638 /*
4639 * Rx transport checksum-offload may also
4640 * have bugs with packets which, when transmitted,
4641 * were `runts' requiring padding.
4642 */
4643 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4644 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4645 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4646 m->m_pkthdr.csum_data =
4647 cur_rx->bge_tcp_udp_csum;
4648 m->m_pkthdr.csum_flags |=
4649 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4650 }
4651 }
4652 }
4653
4654 static void
4655 bge_txeof(struct bge_softc *sc)
4656 {
4657 struct ifnet * const ifp = &sc->ethercom.ec_if;
4658 struct bge_tx_bd *cur_tx = NULL;
4659 struct txdmamap_pool_entry *dma;
4660 bus_addr_t offset, toff;
4661 bus_size_t tlen;
4662 int tosync;
4663 struct mbuf *m;
4664
4665 KASSERT(mutex_owned(sc->sc_intr_lock));
4666
4667 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4668 offsetof(struct bge_ring_data, bge_status_block),
4669 sizeof(struct bge_status_block),
4670 BUS_DMASYNC_POSTREAD);
4671
4672 const uint16_t hw_cons_idx =
4673 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx;
4674 offset = offsetof(struct bge_ring_data, bge_tx_ring);
4675 tosync = hw_cons_idx - sc->bge_tx_saved_considx;
4676
4677 if (tosync != 0)
4678 rnd_add_uint32(&sc->rnd_source, tosync);
4679
4680 toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
4681
4682 if (tosync < 0) {
4683 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4684 sizeof(struct bge_tx_bd);
4685 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4686 toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4687 tosync = hw_cons_idx;
4688 toff = offset;
4689 }
4690
4691 if (tosync != 0) {
4692 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4693 toff, tosync * sizeof(struct bge_tx_bd),
4694 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4695 }
4696
4697 /*
4698 * Go through our tx ring and free mbufs for those
4699 * frames that have been sent.
4700 */
4701 while (sc->bge_tx_saved_considx != hw_cons_idx) {
4702 uint32_t idx = sc->bge_tx_saved_considx;
4703 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4704 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4705 if_statinc(ifp, if_opackets);
4706 m = sc->bge_cdata.bge_tx_chain[idx];
4707 if (m != NULL) {
4708 sc->bge_cdata.bge_tx_chain[idx] = NULL;
4709 dma = sc->txdma[idx];
4710 if (dma->is_dma32) {
4711 bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4712 0, dma->dmamap32->dm_mapsize,
4713 BUS_DMASYNC_POSTWRITE);
4714 bus_dmamap_unload(
4715 sc->bge_dmatag32, dma->dmamap32);
4716 } else {
4717 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4718 0, dma->dmamap->dm_mapsize,
4719 BUS_DMASYNC_POSTWRITE);
4720 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4721 }
4722 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4723 sc->txdma[idx] = NULL;
4724
4725 m_freem(m);
4726 }
4727 sc->bge_txcnt--;
4728 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4729 sc->bge_tx_sending = false;
4730 }
4731 }
4732
4733 static int
4734 bge_intr(void *xsc)
4735 {
4736 struct bge_softc * const sc = xsc;
4737 struct ifnet * const ifp = &sc->ethercom.ec_if;
4738 uint32_t pcistate, statusword, statustag;
4739 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4740
4741 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4742 if (BGE_IS_5717_PLUS(sc))
4743 intrmask = 0;
4744
4745 mutex_enter(sc->sc_intr_lock);
4746 if (sc->bge_txrx_stopping) {
4747 mutex_exit(sc->sc_intr_lock);
4748 return 1;
4749 }
4750
4751 /*
4752 * It is possible for the interrupt to arrive before
4753 * the status block is updated prior to the interrupt.
4754 * Reading the PCI State register will confirm whether the
4755 * interrupt is ours and will flush the status block.
4756 */
4757 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4758
4759 /* read status word from status block */
4760 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4761 offsetof(struct bge_ring_data, bge_status_block),
4762 sizeof(struct bge_status_block),
4763 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4764 statusword = sc->bge_rdata->bge_status_block.bge_status;
4765 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4766
4767 if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4768 if (sc->bge_lasttag == statustag &&
4769 (~pcistate & intrmask)) {
4770 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4771 mutex_exit(sc->sc_intr_lock);
4772 return 0;
4773 }
4774 sc->bge_lasttag = statustag;
4775 } else {
4776 if (!(statusword & BGE_STATFLAG_UPDATED) &&
4777 !(~pcistate & intrmask)) {
4778 BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4779 mutex_exit(sc->sc_intr_lock);
4780 return 0;
4781 }
4782 statustag = 0;
4783 }
4784 /* Ack interrupt and stop others from occurring. */
4785 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4786 BGE_EVCNT_INCR(sc->bge_ev_intr);
4787
4788 /* clear status word */
4789 sc->bge_rdata->bge_status_block.bge_status = 0;
4790
4791 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4792 offsetof(struct bge_ring_data, bge_status_block),
4793 sizeof(struct bge_status_block),
4794 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4795
4796 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4797 statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4798 BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4799 bge_link_upd(sc);
4800
4801 /* Check RX return ring producer/consumer */
4802 bge_rxeof(sc);
4803
4804 /* Check TX ring producer/consumer */
4805 bge_txeof(sc);
4806
4807 if (sc->bge_pending_rxintr_change) {
4808 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4809 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4810
4811 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4812 DELAY(10);
4813 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4814
4815 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4816 DELAY(10);
4817 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4818
4819 sc->bge_pending_rxintr_change = false;
4820 }
4821 bge_handle_events(sc);
4822
4823 /* Re-enable interrupts. */
4824 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4825
4826 if_schedule_deferred_start(ifp);
4827
4828 mutex_exit(sc->sc_intr_lock);
4829
4830 return 1;
4831 }
4832
4833 static void
4834 bge_asf_driver_up(struct bge_softc *sc)
4835 {
4836 if (sc->bge_asf_mode & ASF_STACKUP) {
4837 /* Send ASF heartbeat approx. every 2s */
4838 if (sc->bge_asf_count)
4839 sc->bge_asf_count --;
4840 else {
4841 sc->bge_asf_count = 2;
4842
4843 bge_wait_for_event_ack(sc);
4844
4845 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4846 BGE_FW_CMD_DRV_ALIVE3);
4847 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4848 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4849 BGE_FW_HB_TIMEOUT_SEC);
4850 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4851 CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4852 BGE_RX_CPU_DRV_EVENT);
4853 }
4854 }
4855 }
4856
4857 static void
4858 bge_tick(void *xsc)
4859 {
4860 struct bge_softc * const sc = xsc;
4861 struct ifnet * const ifp = &sc->ethercom.ec_if;
4862 struct mii_data * const mii = &sc->bge_mii;
4863
4864 mutex_enter(sc->sc_intr_lock);
4865
4866 if (BGE_IS_5705_PLUS(sc))
4867 bge_stats_update_regs(sc);
4868 else
4869 bge_stats_update(sc);
4870
4871 if (sc->bge_flags & BGEF_FIBER_TBI) {
4872 /*
4873 * Since in TBI mode auto-polling can't be used we should poll
4874 * link status manually. Here we register pending link event
4875 * and trigger interrupt.
4876 */
4877 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4878 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4879 } else {
4880 /*
4881 * Do not touch PHY if we have link up. This could break
4882 * IPMI/ASF mode or produce extra input errors.
4883 * (extra input errors was reported for bcm5701 & bcm5704).
4884 */
4885 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4886 mii_tick(mii);
4887 }
4888 }
4889
4890 bge_asf_driver_up(sc);
4891
4892 const bool ok = bge_watchdog_tick(ifp);
4893 if (ok)
4894 callout_schedule(&sc->bge_timeout, hz);
4895 mutex_exit(sc->sc_intr_lock);
4896 }
4897
4898 static void
4899 bge_stats_update_regs(struct bge_softc *sc)
4900 {
4901 struct ifnet * const ifp = &sc->ethercom.ec_if;
4902
4903 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4904
4905 if_statadd_ref(ifp, nsr, if_collisions,
4906 CSR_READ_4(sc, BGE_MAC_STATS +
4907 offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
4908
4909 /*
4910 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4911 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4912 * (silicon bug). There's no reliable workaround so just
4913 * ignore the counter
4914 */
4915 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4916 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4917 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4918 if_statadd_ref(ifp, nsr, if_ierrors,
4919 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4920 }
4921 if_statadd_ref(ifp, nsr, if_ierrors,
4922 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
4923 if_statadd_ref(ifp, nsr, if_ierrors,
4924 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
4925
4926 IF_STAT_PUTREF(ifp);
4927
4928 if (sc->bge_flags & BGEF_RDMA_BUG) {
4929 uint32_t val, ucast, mcast, bcast;
4930
4931 ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4932 offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4933 mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4934 offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4935 bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4936 offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4937
4938 /*
4939 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4940 * frames, it's safe to disable workaround for DMA engine's
4941 * miscalculation of TXMBUF space.
4942 */
4943 if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4944 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4945 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4946 val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4947 else
4948 val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4949 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4950 sc->bge_flags &= ~BGEF_RDMA_BUG;
4951 }
4952 }
4953 }
4954
4955 static void
4956 bge_stats_update(struct bge_softc *sc)
4957 {
4958 struct ifnet * const ifp = &sc->ethercom.ec_if;
4959 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4960
4961 #define READ_STAT(sc, stats, stat) \
4962 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4963
4964 uint64_t collisions =
4965 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4966 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4967 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4968 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
4969
4970 if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
4971 sc->bge_if_collisions = collisions;
4972
4973
4974 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4975 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4976 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4977 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4978 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4979 READ_STAT(sc, stats,
4980 xoffPauseFramesReceived.bge_addr_lo));
4981 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4982 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4983 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4984 READ_STAT(sc, stats,
4985 macControlFramesReceived.bge_addr_lo));
4986 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4987 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4988
4989 #undef READ_STAT
4990 }
4991
4992 /*
4993 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4994 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4995 * but when such padded frames employ the bge IP/TCP checksum offload,
4996 * the hardware checksum assist gives incorrect results (possibly
4997 * from incorporating its own padding into the UDP/TCP checksum; who knows).
4998 * If we pad such runts with zeros, the onboard checksum comes out correct.
4999 */
5000 static inline int
5001 bge_cksum_pad(struct mbuf *pkt)
5002 {
5003 struct mbuf *last = NULL;
5004 int padlen;
5005
5006 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
5007
5008 /* if there's only the packet-header and we can pad there, use it. */
5009 if (pkt->m_pkthdr.len == pkt->m_len &&
5010 M_TRAILINGSPACE(pkt) >= padlen) {
5011 last = pkt;
5012 } else {
5013 /*
5014 * Walk packet chain to find last mbuf. We will either
5015 * pad there, or append a new mbuf and pad it
5016 * (thus perhaps avoiding the bcm5700 dma-min bug).
5017 */
5018 for (last = pkt; last->m_next != NULL; last = last->m_next) {
5019 continue; /* do nothing */
5020 }
5021
5022 /* `last' now points to last in chain. */
5023 if (M_TRAILINGSPACE(last) < padlen) {
5024 /* Allocate new empty mbuf, pad it. Compact later. */
5025 struct mbuf *n;
5026 MGET(n, M_DONTWAIT, MT_DATA);
5027 if (n == NULL)
5028 return ENOBUFS;
5029 MCLAIM(n, last->m_owner);
5030 n->m_len = 0;
5031 last->m_next = n;
5032 last = n;
5033 }
5034 }
5035
5036 KDASSERT(!M_READONLY(last));
5037 KDASSERT(M_TRAILINGSPACE(last) >= padlen);
5038
5039 /* Now zero the pad area, to avoid the bge cksum-assist bug */
5040 memset(mtod(last, char *) + last->m_len, 0, padlen);
5041 last->m_len += padlen;
5042 pkt->m_pkthdr.len += padlen;
5043 return 0;
5044 }
5045
5046 /*
5047 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
5048 */
5049 static inline int
5050 bge_compact_dma_runt(struct mbuf *pkt)
5051 {
5052 struct mbuf *m, *prev;
5053 int totlen;
5054
5055 prev = NULL;
5056 totlen = 0;
5057
5058 for (m = pkt; m != NULL; prev = m, m = m->m_next) {
5059 int mlen = m->m_len;
5060 int shortfall = 8 - mlen ;
5061
5062 totlen += mlen;
5063 if (mlen == 0)
5064 continue;
5065 if (mlen >= 8)
5066 continue;
5067
5068 /*
5069 * If we get here, mbuf data is too small for DMA engine.
5070 * Try to fix by shuffling data to prev or next in chain.
5071 * If that fails, do a compacting deep-copy of the whole chain.
5072 */
5073
5074 /* Internal frag. If fits in prev, copy it there. */
5075 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5076 memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5077 prev->m_len += mlen;
5078 m->m_len = 0;
5079 /* XXX stitch chain */
5080 prev->m_next = m_free(m);
5081 m = prev;
5082 continue;
5083 } else if (m->m_next != NULL &&
5084 M_TRAILINGSPACE(m) >= shortfall &&
5085 m->m_next->m_len >= (8 + shortfall)) {
5086 /* m is writable and have enough data in next, pull up. */
5087
5088 memcpy(m->m_data + m->m_len, m->m_next->m_data,
5089 shortfall);
5090 m->m_len += shortfall;
5091 m->m_next->m_len -= shortfall;
5092 m->m_next->m_data += shortfall;
5093 } else if (m->m_next == NULL || 1) {
5094 /*
5095 * Got a runt at the very end of the packet.
5096 * borrow data from the tail of the preceding mbuf and
5097 * update its length in-place. (The original data is
5098 * still valid, so we can do this even if prev is not
5099 * writable.)
5100 */
5101
5102 /*
5103 * If we'd make prev a runt, just move all of its data.
5104 */
5105 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5106 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5107
5108 if ((prev->m_len - shortfall) < 8)
5109 shortfall = prev->m_len;
5110
5111 #ifdef notyet /* just do the safe slow thing for now */
5112 if (!M_READONLY(m)) {
5113 if (M_LEADINGSPACE(m) < shorfall) {
5114 void *m_dat;
5115 m_dat = M_BUFADDR(m);
5116 memmove(m_dat, mtod(m, void*),
5117 m->m_len);
5118 m->m_data = m_dat;
5119 }
5120 } else
5121 #endif /* just do the safe slow thing */
5122 {
5123 struct mbuf * n = NULL;
5124 int newprevlen = prev->m_len - shortfall;
5125
5126 MGET(n, M_NOWAIT, MT_DATA);
5127 if (n == NULL)
5128 return ENOBUFS;
5129 MCLAIM(n, prev->m_owner);
5130 KASSERT(m->m_len + shortfall < MLEN
5131 /*,
5132 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5133
5134 /* first copy the data we're stealing from prev */
5135 memcpy(n->m_data, prev->m_data + newprevlen,
5136 shortfall);
5137
5138 /* update prev->m_len accordingly */
5139 prev->m_len -= shortfall;
5140
5141 /* copy data from runt m */
5142 memcpy(n->m_data + shortfall, m->m_data,
5143 m->m_len);
5144
5145 /* n holds what we stole from prev, plus m */
5146 n->m_len = shortfall + m->m_len;
5147
5148 /* stitch n into chain and free m */
5149 n->m_next = m->m_next;
5150 prev->m_next = n;
5151 /* KASSERT(m->m_next == NULL); */
5152 m->m_next = NULL;
5153 m_free(m);
5154 m = n; /* for continuing loop */
5155 }
5156 }
5157 }
5158 return 0;
5159 }
5160
5161 /*
5162 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5163 * pointers to descriptors.
5164 */
5165 static int
5166 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5167 {
5168 struct bge_tx_bd *f, *prev_f;
5169 uint32_t frag, cur;
5170 uint16_t csum_flags = 0;
5171 uint16_t txbd_tso_flags = 0;
5172 struct txdmamap_pool_entry *dma;
5173 bus_dmamap_t dmamap;
5174 bus_dma_tag_t dmatag;
5175 int i = 0;
5176 int use_tso, maxsegsize, error;
5177 bool have_vtag;
5178 uint16_t vtag;
5179 bool remap;
5180
5181 KASSERT(mutex_owned(sc->sc_intr_lock));
5182
5183 if (m_head->m_pkthdr.csum_flags) {
5184 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5185 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5186 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5187 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5188 }
5189
5190 /*
5191 * If we were asked to do an outboard checksum, and the NIC
5192 * has the bug where it sometimes adds in the Ethernet padding,
5193 * explicitly pad with zeros so the cksum will be correct either way.
5194 * (For now, do this for all chip versions, until newer
5195 * are confirmed to not require the workaround.)
5196 */
5197 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5198 #ifdef notyet
5199 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5200 #endif
5201 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5202 goto check_dma_bug;
5203
5204 if (bge_cksum_pad(m_head) != 0)
5205 return ENOBUFS;
5206
5207 check_dma_bug:
5208 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5209 goto doit;
5210
5211 /*
5212 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5213 * less than eight bytes. If we encounter a teeny mbuf
5214 * at the end of a chain, we can pad. Otherwise, copy.
5215 */
5216 if (bge_compact_dma_runt(m_head) != 0)
5217 return ENOBUFS;
5218
5219 doit:
5220 dma = SLIST_FIRST(&sc->txdma_list);
5221 if (dma == NULL) {
5222 return ENOBUFS;
5223 }
5224 dmamap = dma->dmamap;
5225 dmatag = sc->bge_dmatag;
5226 dma->is_dma32 = false;
5227
5228 /*
5229 * Set up any necessary TSO state before we start packing...
5230 */
5231 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5232 if (!use_tso) {
5233 maxsegsize = 0;
5234 } else { /* TSO setup */
5235 unsigned mss;
5236 struct ether_header *eh;
5237 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5238 unsigned bge_hlen;
5239 struct mbuf * m0 = m_head;
5240 struct ip *ip;
5241 struct tcphdr *th;
5242 int iphl, hlen;
5243
5244 /*
5245 * XXX It would be nice if the mbuf pkthdr had offset
5246 * fields for the protocol headers.
5247 */
5248
5249 eh = mtod(m0, struct ether_header *);
5250 switch (htons(eh->ether_type)) {
5251 case ETHERTYPE_IP:
5252 offset = ETHER_HDR_LEN;
5253 break;
5254
5255 case ETHERTYPE_VLAN:
5256 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5257 break;
5258
5259 default:
5260 /*
5261 * Don't support this protocol or encapsulation.
5262 */
5263 return ENOBUFS;
5264 }
5265
5266 /*
5267 * TCP/IP headers are in the first mbuf; we can do
5268 * this the easy way.
5269 */
5270 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5271 hlen = iphl + offset;
5272 if (__predict_false(m0->m_len <
5273 (hlen + sizeof(struct tcphdr)))) {
5274
5275 aprint_error_dev(sc->bge_dev,
5276 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5277 "not handled yet\n",
5278 m0->m_len, hlen+ sizeof(struct tcphdr));
5279 #ifdef NOTYET
5280 /*
5281 * XXX jonathan (at) NetBSD.org: untested.
5282 * how to force this branch to be taken?
5283 */
5284 BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5285
5286 m_copydata(m0, offset, sizeof(ip), &ip);
5287 m_copydata(m0, hlen, sizeof(th), &th);
5288
5289 ip.ip_len = 0;
5290
5291 m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5292 sizeof(ip.ip_len), &ip.ip_len);
5293
5294 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5295 ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5296
5297 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5298 sizeof(th.th_sum), &th.th_sum);
5299
5300 hlen += th.th_off << 2;
5301 iptcp_opt_words = hlen;
5302 #else
5303 /*
5304 * if_wm "hard" case not yet supported, can we not
5305 * mandate it out of existence?
5306 */
5307 (void) ip; (void)th; (void) ip_tcp_hlen;
5308
5309 return ENOBUFS;
5310 #endif
5311 } else {
5312 ip = (struct ip *) (mtod(m0, char *) + offset);
5313 th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5314 ip_tcp_hlen = iphl + (th->th_off << 2);
5315
5316 /* Total IP/TCP options, in 32-bit words */
5317 iptcp_opt_words = (ip_tcp_hlen
5318 - sizeof(struct tcphdr)
5319 - sizeof(struct ip)) >> 2;
5320 }
5321 if (BGE_IS_575X_PLUS(sc)) {
5322 th->th_sum = 0;
5323 csum_flags = 0;
5324 } else {
5325 /*
5326 * XXX jonathan (at) NetBSD.org: 5705 untested.
5327 * Requires TSO firmware patch for 5701/5703/5704.
5328 */
5329 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5330 ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5331 }
5332
5333 mss = m_head->m_pkthdr.segsz;
5334 txbd_tso_flags |=
5335 BGE_TXBDFLAG_CPU_PRE_DMA |
5336 BGE_TXBDFLAG_CPU_POST_DMA;
5337
5338 /*
5339 * Our NIC TSO-assist assumes TSO has standard, optionless
5340 * IPv4 and TCP headers, which total 40 bytes. By default,
5341 * the NIC copies 40 bytes of IP/TCP header from the
5342 * supplied header into the IP/TCP header portion of
5343 * each post-TSO-segment. If the supplied packet has IP or
5344 * TCP options, we need to tell the NIC to copy those extra
5345 * bytes into each post-TSO header, in addition to the normal
5346 * 40-byte IP/TCP header (and to leave space accordingly).
5347 * Unfortunately, the driver encoding of option length
5348 * varies across different ASIC families.
5349 */
5350 tcp_seg_flags = 0;
5351 bge_hlen = ip_tcp_hlen >> 2;
5352 if (BGE_IS_5717_PLUS(sc)) {
5353 tcp_seg_flags = (bge_hlen & 0x3) << 14;
5354 txbd_tso_flags |=
5355 ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5356 } else if (BGE_IS_5705_PLUS(sc)) {
5357 tcp_seg_flags = bge_hlen << 11;
5358 } else {
5359 /* XXX iptcp_opt_words or bge_hlen ? */
5360 txbd_tso_flags |= iptcp_opt_words << 12;
5361 }
5362 maxsegsize = mss | tcp_seg_flags;
5363 ip->ip_len = htons(mss + ip_tcp_hlen);
5364 ip->ip_sum = 0;
5365
5366 } /* TSO setup */
5367
5368 have_vtag = vlan_has_tag(m_head);
5369 if (have_vtag)
5370 vtag = vlan_get_tag(m_head);
5371
5372 /*
5373 * Start packing the mbufs in this chain into
5374 * the fragment pointers. Stop when we run out
5375 * of fragments or hit the end of the mbuf chain.
5376 */
5377 remap = true;
5378 load_again:
5379 error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5380 if (__predict_false(error)) {
5381 if (error == EFBIG && remap) {
5382 struct mbuf *m;
5383 remap = false;
5384 m = m_defrag(m_head, M_NOWAIT);
5385 if (m != NULL) {
5386 KASSERT(m == m_head);
5387 goto load_again;
5388 }
5389 }
5390 return error;
5391 }
5392 /*
5393 * Sanity check: avoid coming within 16 descriptors
5394 * of the end of the ring.
5395 */
5396 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5397 BGE_TSO_PRINTF(("%s: "
5398 " dmamap_load_mbuf too close to ring wrap\n",
5399 device_xname(sc->bge_dev)));
5400 goto fail_unload;
5401 }
5402
5403 /* Iterate over dmap-map fragments. */
5404 f = prev_f = NULL;
5405 cur = frag = *txidx;
5406
5407 for (i = 0; i < dmamap->dm_nsegs; i++) {
5408 f = &sc->bge_rdata->bge_tx_ring[frag];
5409 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5410 break;
5411
5412 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5413 f->bge_len = dmamap->dm_segs[i].ds_len;
5414 if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5415 (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5416 ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5417 (prev_f != NULL &&
5418 prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5419 ) {
5420 /*
5421 * watchdog timeout issue was observed with TSO,
5422 * limiting DMA address space to 32bits seems to
5423 * address the issue.
5424 */
5425 bus_dmamap_unload(dmatag, dmamap);
5426 dmatag = sc->bge_dmatag32;
5427 dmamap = dma->dmamap32;
5428 dma->is_dma32 = true;
5429 remap = true;
5430 goto load_again;
5431 }
5432
5433 /*
5434 * For 5751 and follow-ons, for TSO we must turn
5435 * off checksum-assist flag in the tx-descr, and
5436 * supply the ASIC-revision-specific encoding
5437 * of TSO flags and segsize.
5438 */
5439 if (use_tso) {
5440 if (BGE_IS_575X_PLUS(sc) || i == 0) {
5441 f->bge_rsvd = maxsegsize;
5442 f->bge_flags = csum_flags | txbd_tso_flags;
5443 } else {
5444 f->bge_rsvd = 0;
5445 f->bge_flags =
5446 (csum_flags | txbd_tso_flags) & 0x0fff;
5447 }
5448 } else {
5449 f->bge_rsvd = 0;
5450 f->bge_flags = csum_flags;
5451 }
5452
5453 if (have_vtag) {
5454 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5455 f->bge_vlan_tag = vtag;
5456 } else {
5457 f->bge_vlan_tag = 0;
5458 }
5459 prev_f = f;
5460 cur = frag;
5461 BGE_INC(frag, BGE_TX_RING_CNT);
5462 }
5463
5464 if (i < dmamap->dm_nsegs) {
5465 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5466 device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5467 goto fail_unload;
5468 }
5469
5470 bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5471 BUS_DMASYNC_PREWRITE);
5472
5473 if (frag == sc->bge_tx_saved_considx) {
5474 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5475 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5476
5477 goto fail_unload;
5478 }
5479
5480 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5481 sc->bge_cdata.bge_tx_chain[cur] = m_head;
5482 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5483 sc->txdma[cur] = dma;
5484 sc->bge_txcnt += dmamap->dm_nsegs;
5485
5486 *txidx = frag;
5487
5488 return 0;
5489
5490 fail_unload:
5491 bus_dmamap_unload(dmatag, dmamap);
5492
5493 return ENOBUFS;
5494 }
5495
5496
5497 static void
5498 bge_start(struct ifnet *ifp)
5499 {
5500 struct bge_softc * const sc = ifp->if_softc;
5501
5502 mutex_enter(sc->sc_intr_lock);
5503 if (!sc->bge_txrx_stopping)
5504 bge_start_locked(ifp);
5505 mutex_exit(sc->sc_intr_lock);
5506 }
5507
5508 /*
5509 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5510 * to the mbuf data regions directly in the transmit descriptors.
5511 */
5512 static void
5513 bge_start_locked(struct ifnet *ifp)
5514 {
5515 struct bge_softc * const sc = ifp->if_softc;
5516 struct mbuf *m_head = NULL;
5517 struct mbuf *m;
5518 uint32_t prodidx;
5519 int pkts = 0;
5520 int error;
5521
5522 KASSERT(mutex_owned(sc->sc_intr_lock));
5523
5524 prodidx = sc->bge_tx_prodidx;
5525
5526 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5527 IFQ_POLL(&ifp->if_snd, m_head);
5528 if (m_head == NULL)
5529 break;
5530
5531 #if 0
5532 /*
5533 * XXX
5534 * safety overkill. If this is a fragmented packet chain
5535 * with delayed TCP/UDP checksums, then only encapsulate
5536 * it if we have enough descriptors to handle the entire
5537 * chain at once.
5538 * (paranoia -- may not actually be needed)
5539 */
5540 if (m_head->m_flags & M_FIRSTFRAG &&
5541 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5542 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5543 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5544 ifp->if_flags |= IFF_OACTIVE;
5545 break;
5546 }
5547 }
5548 #endif
5549
5550 /*
5551 * Pack the data into the transmit ring. If we
5552 * don't have room, set the OACTIVE flag and wait
5553 * for the NIC to drain the ring.
5554 */
5555 error = bge_encap(sc, m_head, &prodidx);
5556 if (__predict_false(error)) {
5557 if (SLIST_EMPTY(&sc->txdma_list)) {
5558 /* just wait for the transmit ring to drain */
5559 break;
5560 }
5561 IFQ_DEQUEUE(&ifp->if_snd, m);
5562 KASSERT(m == m_head);
5563 m_freem(m_head);
5564 continue;
5565 }
5566
5567 /* now we are committed to transmit the packet */
5568 IFQ_DEQUEUE(&ifp->if_snd, m);
5569 KASSERT(m == m_head);
5570 pkts++;
5571
5572 /*
5573 * If there's a BPF listener, bounce a copy of this frame
5574 * to him.
5575 */
5576 bpf_mtap(ifp, m_head, BPF_D_OUT);
5577 }
5578 if (pkts == 0)
5579 return;
5580
5581 /* Transmit */
5582 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5583 /* 5700 b2 errata */
5584 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5585 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5586
5587 sc->bge_tx_prodidx = prodidx;
5588 sc->bge_tx_lastsent = time_uptime;
5589 sc->bge_tx_sending = true;
5590 }
5591
5592 static int
5593 bge_init(struct ifnet *ifp)
5594 {
5595 struct bge_softc * const sc = ifp->if_softc;
5596 const uint16_t *m;
5597 uint32_t mode, reg;
5598 int error = 0;
5599
5600 ASSERT_SLEEPABLE();
5601 KASSERT(IFNET_LOCKED(ifp));
5602 KASSERT(ifp == &sc->ethercom.ec_if);
5603
5604 if (sc->bge_detaching)
5605 return ENXIO;
5606
5607 /* Cancel pending I/O and flush buffers. */
5608 bge_stop(ifp, 0);
5609
5610 bge_stop_fw(sc);
5611 bge_sig_pre_reset(sc, BGE_RESET_START);
5612 bge_reset(sc);
5613 bge_sig_legacy(sc, BGE_RESET_START);
5614
5615 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5616 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5617 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5618 BGE_CPMU_CTRL_LINK_IDLE_MODE);
5619 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5620
5621 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5622 reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5623 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5624 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5625
5626 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5627 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5628 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5629 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5630
5631 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5632 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5633 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5634 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5635 }
5636
5637 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5638 pcireg_t aercap;
5639
5640 reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5641 reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5642 | BGE_PCIE_PWRMNG_L1THRESH_4MS
5643 | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5644 CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5645
5646 reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5647 reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5648 | BGE_PCIE_EIDLE_DELAY_13CLK;
5649 CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5650
5651 /* Clear correctable error */
5652 if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5653 PCI_EXTCAP_AER, &aercap, NULL) != 0)
5654 pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5655 aercap + PCI_AER_COR_STATUS, 0xffffffff);
5656
5657 reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5658 reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5659 | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5660 CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5661 }
5662
5663 bge_sig_post_reset(sc, BGE_RESET_START);
5664
5665 bge_chipinit(sc);
5666
5667 /*
5668 * Init the various state machines, ring
5669 * control blocks and firmware.
5670 */
5671 error = bge_blockinit(sc);
5672 if (error != 0) {
5673 aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5674 error);
5675 return error;
5676 }
5677
5678 /* 5718 step 25, 57XX step 54 */
5679 /* Specify MTU. */
5680 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5681 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5682
5683 /* 5718 step 23 */
5684 /* Load our MAC address. */
5685 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5686 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5687 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5688 ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5689
5690 /* Enable or disable promiscuous mode as needed. */
5691 if (ifp->if_flags & IFF_PROMISC)
5692 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5693 else
5694 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5695
5696 /* Program multicast filter. */
5697 mutex_enter(sc->sc_mcast_lock);
5698 bge_setmulti(sc);
5699 mutex_exit(sc->sc_mcast_lock);
5700
5701 /* Init RX ring. */
5702 bge_init_rx_ring_std(sc);
5703
5704 /*
5705 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5706 * memory to insure that the chip has in fact read the first
5707 * entry of the ring.
5708 */
5709 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5710 u_int i;
5711 for (i = 0; i < 10; i++) {
5712 DELAY(20);
5713 uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5714 if (v == (MCLBYTES - ETHER_ALIGN))
5715 break;
5716 }
5717 if (i == 10)
5718 aprint_error_dev(sc->bge_dev,
5719 "5705 A0 chip failed to load RX ring\n");
5720 }
5721
5722 /* Init jumbo RX ring. */
5723 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5724 bge_init_rx_ring_jumbo(sc);
5725
5726 /* Init our RX return ring index */
5727 sc->bge_rx_saved_considx = 0;
5728
5729 /* Init TX ring. */
5730 bge_init_tx_ring(sc);
5731
5732 /* 5718 step 63, 57XX step 94 */
5733 /* Enable TX MAC state machine lockup fix. */
5734 mode = CSR_READ_4(sc, BGE_TX_MODE);
5735 if (BGE_IS_5755_PLUS(sc) ||
5736 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5737 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5738 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5739 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5740 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5741 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5742 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5743 }
5744
5745 /* Turn on transmitter */
5746 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5747 /* 5718 step 64 */
5748 DELAY(100);
5749
5750 /* 5718 step 65, 57XX step 95 */
5751 /* Turn on receiver */
5752 mode = CSR_READ_4(sc, BGE_RX_MODE);
5753 if (BGE_IS_5755_PLUS(sc))
5754 mode |= BGE_RXMODE_IPV6_ENABLE;
5755 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5756 mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5757 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5758 /* 5718 step 66 */
5759 DELAY(10);
5760
5761 /* 5718 step 12, 57XX step 37 */
5762 /*
5763 * XXX Documents of 5718 series and 577xx say the recommended value
5764 * is 1, but tg3 set 1 only on 57765 series.
5765 */
5766 if (BGE_IS_57765_PLUS(sc))
5767 reg = 1;
5768 else
5769 reg = 2;
5770 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5771
5772 /* Tell firmware we're alive. */
5773 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5774
5775 /* Enable host interrupts. */
5776 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5777 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5778 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5779
5780 mutex_enter(sc->sc_intr_lock);
5781 if ((error = bge_ifmedia_upd(ifp)) == 0) {
5782 sc->bge_txrx_stopping = false;
5783
5784 /* IFNET_LOCKED asserted above */
5785 ifp->if_flags |= IFF_RUNNING;
5786
5787 callout_schedule(&sc->bge_timeout, hz);
5788 }
5789 mutex_exit(sc->sc_intr_lock);
5790
5791 mutex_enter(sc->sc_mcast_lock);
5792 sc->bge_if_flags = ifp->if_flags;
5793 mutex_exit(sc->sc_mcast_lock);
5794
5795 return error;
5796 }
5797
5798 /*
5799 * Set media options.
5800 */
5801 static int
5802 bge_ifmedia_upd(struct ifnet *ifp)
5803 {
5804 struct bge_softc * const sc = ifp->if_softc;
5805 struct mii_data * const mii = &sc->bge_mii;
5806 struct ifmedia * const ifm = &sc->bge_ifmedia;
5807 int rc;
5808
5809 KASSERT(mutex_owned(sc->sc_intr_lock));
5810
5811 /* If this is a 1000baseX NIC, enable the TBI port. */
5812 if (sc->bge_flags & BGEF_FIBER_TBI) {
5813 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5814 return EINVAL;
5815 switch (IFM_SUBTYPE(ifm->ifm_media)) {
5816 case IFM_AUTO:
5817 /*
5818 * The BCM5704 ASIC appears to have a special
5819 * mechanism for programming the autoneg
5820 * advertisement registers in TBI mode.
5821 */
5822 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5823 uint32_t sgdig;
5824 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5825 if (sgdig & BGE_SGDIGSTS_DONE) {
5826 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5827 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5828 sgdig |= BGE_SGDIGCFG_AUTO |
5829 BGE_SGDIGCFG_PAUSE_CAP |
5830 BGE_SGDIGCFG_ASYM_PAUSE;
5831 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5832 sgdig | BGE_SGDIGCFG_SEND);
5833 DELAY(5);
5834 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5835 sgdig);
5836 }
5837 }
5838 break;
5839 case IFM_1000_SX:
5840 if ((ifm->ifm_media & IFM_FDX) != 0) {
5841 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5842 BGE_MACMODE_HALF_DUPLEX);
5843 } else {
5844 BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5845 BGE_MACMODE_HALF_DUPLEX);
5846 }
5847 DELAY(40);
5848 break;
5849 default:
5850 return EINVAL;
5851 }
5852 /* XXX 802.3x flow control for 1000BASE-SX */
5853 return 0;
5854 }
5855
5856 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5857 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5858 uint32_t reg;
5859
5860 reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5861 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5862 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5863 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5864 }
5865 }
5866
5867 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5868 if ((rc = mii_mediachg(mii)) == ENXIO)
5869 return 0;
5870
5871 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5872 uint32_t reg;
5873
5874 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5875 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5876 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5877 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5878 delay(40);
5879 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5880 }
5881 }
5882
5883 /*
5884 * Force an interrupt so that we will call bge_link_upd
5885 * if needed and clear any pending link state attention.
5886 * Without this we are not getting any further interrupts
5887 * for link state changes and thus will not UP the link and
5888 * not be able to send in bge_start. The only way to get
5889 * things working was to receive a packet and get a RX intr.
5890 */
5891 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5892 sc->bge_flags & BGEF_IS_5788)
5893 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5894 else
5895 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5896
5897 return rc;
5898 }
5899
5900 /*
5901 * Report current media status.
5902 */
5903 static void
5904 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5905 {
5906 struct bge_softc * const sc = ifp->if_softc;
5907 struct mii_data * const mii = &sc->bge_mii;
5908
5909 KASSERT(mutex_owned(sc->sc_intr_lock));
5910
5911 if (sc->bge_flags & BGEF_FIBER_TBI) {
5912 ifmr->ifm_status = IFM_AVALID;
5913 ifmr->ifm_active = IFM_ETHER;
5914 if (CSR_READ_4(sc, BGE_MAC_STS) &
5915 BGE_MACSTAT_TBI_PCS_SYNCHED)
5916 ifmr->ifm_status |= IFM_ACTIVE;
5917 ifmr->ifm_active |= IFM_1000_SX;
5918 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5919 ifmr->ifm_active |= IFM_HDX;
5920 else
5921 ifmr->ifm_active |= IFM_FDX;
5922 return;
5923 }
5924
5925 mii_pollstat(mii);
5926 ifmr->ifm_status = mii->mii_media_status;
5927 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5928 sc->bge_flowflags;
5929 }
5930
5931 static int
5932 bge_ifflags_cb(struct ethercom *ec)
5933 {
5934 struct ifnet * const ifp = &ec->ec_if;
5935 struct bge_softc * const sc = ifp->if_softc;
5936 int ret = 0;
5937
5938 KASSERT(IFNET_LOCKED(ifp));
5939 mutex_enter(sc->sc_mcast_lock);
5940
5941 u_short change = ifp->if_flags ^ sc->bge_if_flags;
5942 sc->bge_if_flags = ifp->if_flags;
5943
5944 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
5945 ret = ENETRESET;
5946 } else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
5947 if ((ifp->if_flags & IFF_PROMISC) == 0)
5948 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5949 else
5950 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5951
5952 bge_setmulti(sc);
5953 }
5954
5955 mutex_exit(sc->sc_mcast_lock);
5956
5957 return ret;
5958 }
5959
5960 static int
5961 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5962 {
5963 struct bge_softc * const sc = ifp->if_softc;
5964 struct ifreq * const ifr = (struct ifreq *) data;
5965 int error = 0;
5966
5967 switch (command) {
5968 case SIOCADDMULTI:
5969 case SIOCDELMULTI:
5970 break;
5971 default:
5972 KASSERT(IFNET_LOCKED(ifp));
5973 }
5974
5975 const int s = splnet();
5976
5977 switch (command) {
5978 case SIOCSIFMEDIA:
5979 mutex_enter(sc->sc_intr_lock);
5980 /* XXX Flow control is not supported for 1000BASE-SX */
5981 if (sc->bge_flags & BGEF_FIBER_TBI) {
5982 ifr->ifr_media &= ~IFM_ETH_FMASK;
5983 sc->bge_flowflags = 0;
5984 }
5985
5986 /* Flow control requires full-duplex mode. */
5987 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5988 (ifr->ifr_media & IFM_FDX) == 0) {
5989 ifr->ifr_media &= ~IFM_ETH_FMASK;
5990 }
5991 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5992 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5993 /* We can do both TXPAUSE and RXPAUSE. */
5994 ifr->ifr_media |=
5995 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5996 }
5997 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5998 }
5999 mutex_exit(sc->sc_intr_lock);
6000
6001 if (sc->bge_flags & BGEF_FIBER_TBI) {
6002 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
6003 command);
6004 } else {
6005 struct mii_data * const mii = &sc->bge_mii;
6006 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
6007 command);
6008 }
6009 break;
6010 default:
6011 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
6012 break;
6013
6014 error = 0;
6015
6016 if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
6017 mutex_enter(sc->sc_mcast_lock);
6018 if (sc->bge_if_flags & IFF_RUNNING) {
6019 bge_setmulti(sc);
6020 }
6021 mutex_exit(sc->sc_mcast_lock);
6022 }
6023 break;
6024 }
6025
6026 splx(s);
6027
6028 return error;
6029 }
6030
6031 static bool
6032 bge_watchdog_check(struct bge_softc * const sc)
6033 {
6034
6035 KASSERT(mutex_owned(sc->sc_intr_lock));
6036
6037 if (!sc->bge_tx_sending)
6038 return true;
6039
6040 if (time_uptime - sc->bge_tx_lastsent <= bge_watchdog_timeout)
6041 return true;
6042
6043 /* If pause frames are active then don't reset the hardware. */
6044 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
6045 const uint32_t status = CSR_READ_4(sc, BGE_RX_STS);
6046 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
6047 /*
6048 * If link partner has us in XOFF state then wait for
6049 * the condition to clear.
6050 */
6051 CSR_WRITE_4(sc, BGE_RX_STS, status);
6052 sc->bge_tx_lastsent = time_uptime;
6053 return true;
6054 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
6055 (status & BGE_RXSTAT_RCVD_XON) != 0) {
6056 /*
6057 * If link partner has us in XOFF state then wait for
6058 * the condition to clear.
6059 */
6060 CSR_WRITE_4(sc, BGE_RX_STS, status);
6061 sc->bge_tx_lastsent = time_uptime;
6062 return true;
6063 }
6064 /*
6065 * Any other condition is unexpected and the controller
6066 * should be reset.
6067 */
6068 }
6069
6070 return false;
6071 }
6072
6073 static bool
6074 bge_watchdog_tick(struct ifnet *ifp)
6075 {
6076 struct bge_softc * const sc = ifp->if_softc;
6077
6078 KASSERT(mutex_owned(sc->sc_intr_lock));
6079
6080 if (!sc->sc_trigger_reset && bge_watchdog_check(sc))
6081 return true;
6082
6083 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0)
6084 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
6085
6086 return false;
6087 }
6088
6089 /*
6090 * Perform an interface watchdog reset.
6091 */
6092 static void
6093 bge_handle_reset_work(struct work *work, void *arg)
6094 {
6095 struct bge_softc * const sc = arg;
6096 struct ifnet * const ifp = &sc->ethercom.ec_if;
6097
6098 printf("%s: watchdog timeout -- resetting\n", ifp->if_xname);
6099
6100 /* Don't want ioctl operations to happen */
6101 IFNET_LOCK(ifp);
6102
6103 /* reset the interface. */
6104 bge_init(ifp);
6105
6106 IFNET_UNLOCK(ifp);
6107
6108 /*
6109 * There are still some upper layer processing which call
6110 * ifp->if_start(). e.g. ALTQ or one CPU system
6111 */
6112 /* Try to get more packets going. */
6113 ifp->if_start(ifp);
6114
6115 atomic_store_relaxed(&sc->sc_reset_pending, 0);
6116 }
6117
6118 static void
6119 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
6120 {
6121 int i;
6122
6123 BGE_CLRBIT_FLUSH(sc, reg, bit);
6124
6125 for (i = 0; i < 1000; i++) {
6126 delay(100);
6127 if ((CSR_READ_4(sc, reg) & bit) == 0)
6128 return;
6129 }
6130
6131 /*
6132 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
6133 * on some environment (and once after boot?)
6134 */
6135 if (reg != BGE_SRS_MODE)
6136 aprint_error_dev(sc->bge_dev,
6137 "block failed to stop: reg 0x%lx, bit 0x%08x\n",
6138 (u_long)reg, bit);
6139 }
6140
6141 /*
6142 * Stop the adapter and free any mbufs allocated to the
6143 * RX and TX lists.
6144 */
6145 static void
6146 bge_stop(struct ifnet *ifp, int disable)
6147 {
6148 struct bge_softc * const sc = ifp->if_softc;
6149
6150 ASSERT_SLEEPABLE();
6151 KASSERT(IFNET_LOCKED(ifp));
6152
6153 mutex_enter(sc->sc_intr_lock);
6154 sc->bge_txrx_stopping = true;
6155 mutex_exit(sc->sc_intr_lock);
6156
6157 callout_halt(&sc->bge_timeout, NULL);
6158
6159 /* Disable host interrupts. */
6160 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6161 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
6162
6163 /*
6164 * Tell firmware we're shutting down.
6165 */
6166 bge_stop_fw(sc);
6167 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6168
6169 /*
6170 * Disable all of the receiver blocks.
6171 */
6172 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6173 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6174 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6175 if (BGE_IS_5700_FAMILY(sc))
6176 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6177 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6178 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6179 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6180
6181 /*
6182 * Disable all of the transmit blocks.
6183 */
6184 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6185 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6186 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6187 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6188 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6189 if (BGE_IS_5700_FAMILY(sc))
6190 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6191 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6192
6193 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6194 delay(40);
6195
6196 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6197
6198 /*
6199 * Shut down all of the memory managers and related
6200 * state machines.
6201 */
6202 /* 5718 step 5a,5b */
6203 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6204 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6205 if (BGE_IS_5700_FAMILY(sc))
6206 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6207
6208 /* 5718 step 5c,5d */
6209 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6210 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6211
6212 if (BGE_IS_5700_FAMILY(sc)) {
6213 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6214 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6215 }
6216
6217 bge_reset(sc);
6218 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6219 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6220
6221 /*
6222 * Keep the ASF firmware running if up.
6223 */
6224 if (sc->bge_asf_mode & ASF_STACKUP)
6225 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6226 else
6227 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6228
6229 /* Free the RX lists. */
6230 bge_free_rx_ring_std(sc);
6231
6232 /* Free jumbo RX list. */
6233 if (BGE_IS_JUMBO_CAPABLE(sc))
6234 bge_free_rx_ring_jumbo(sc);
6235
6236 /* Free TX buffers. */
6237 bge_free_tx_ring(sc, disable);
6238
6239 /*
6240 * Isolate/power down the PHY.
6241 */
6242 if (!(sc->bge_flags & BGEF_FIBER_TBI)) {
6243 mutex_enter(sc->sc_intr_lock);
6244 mii_down(&sc->bge_mii);
6245 mutex_exit(sc->sc_intr_lock);
6246 }
6247
6248 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6249
6250 /* Clear MAC's link state (PHY may still have link UP). */
6251 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6252
6253 ifp->if_flags &= ~IFF_RUNNING;
6254
6255 mutex_enter(sc->sc_mcast_lock);
6256 sc->bge_if_flags = ifp->if_flags;
6257 mutex_exit(sc->sc_mcast_lock);
6258 }
6259
6260 static void
6261 bge_link_upd(struct bge_softc *sc)
6262 {
6263 struct ifnet * const ifp = &sc->ethercom.ec_if;
6264 struct mii_data * const mii = &sc->bge_mii;
6265 uint32_t status;
6266 uint16_t phyval;
6267 int link;
6268
6269 KASSERT(sc->sc_intr_lock);
6270
6271 /* Clear 'pending link event' flag */
6272 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6273
6274 /*
6275 * Process link state changes.
6276 * Grrr. The link status word in the status block does
6277 * not work correctly on the BCM5700 rev AX and BX chips,
6278 * according to all available information. Hence, we have
6279 * to enable MII interrupts in order to properly obtain
6280 * async link changes. Unfortunately, this also means that
6281 * we have to read the MAC status register to detect link
6282 * changes, thereby adding an additional register access to
6283 * the interrupt handler.
6284 */
6285
6286 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6287 status = CSR_READ_4(sc, BGE_MAC_STS);
6288 if (status & BGE_MACSTAT_MI_INTERRUPT) {
6289 mii_pollstat(mii);
6290
6291 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6292 mii->mii_media_status & IFM_ACTIVE &&
6293 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6294 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6295 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6296 (!(mii->mii_media_status & IFM_ACTIVE) ||
6297 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6298 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6299
6300 /* Clear the interrupt */
6301 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6302 BGE_EVTENB_MI_INTERRUPT);
6303 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6304 BRGPHY_MII_ISR, &phyval);
6305 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6306 BRGPHY_MII_IMR, BRGPHY_INTRS);
6307 }
6308 return;
6309 }
6310
6311 if (sc->bge_flags & BGEF_FIBER_TBI) {
6312 status = CSR_READ_4(sc, BGE_MAC_STS);
6313 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6314 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6315 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6316 if (BGE_ASICREV(sc->bge_chipid)
6317 == BGE_ASICREV_BCM5704) {
6318 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6319 BGE_MACMODE_TBI_SEND_CFGS);
6320 DELAY(40);
6321 }
6322 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6323 if_link_state_change(ifp, LINK_STATE_UP);
6324 }
6325 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6326 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6327 if_link_state_change(ifp, LINK_STATE_DOWN);
6328 }
6329 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6330 /*
6331 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6332 * bit in status word always set. Workaround this bug by
6333 * reading PHY link status directly.
6334 */
6335 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6336 BGE_STS_LINK : 0;
6337
6338 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6339 mii_pollstat(mii);
6340
6341 if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6342 mii->mii_media_status & IFM_ACTIVE &&
6343 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6344 BGE_STS_SETBIT(sc, BGE_STS_LINK);
6345 else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6346 (!(mii->mii_media_status & IFM_ACTIVE) ||
6347 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6348 BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6349 }
6350 } else {
6351 /*
6352 * For controllers that call mii_tick, we have to poll
6353 * link status.
6354 */
6355 mii_pollstat(mii);
6356 }
6357
6358 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6359 uint32_t reg, scale;
6360
6361 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6362 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6363 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6364 scale = 65;
6365 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6366 scale = 6;
6367 else
6368 scale = 12;
6369
6370 reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6371 ~BGE_MISCCFG_TIMER_PRESCALER;
6372 reg |= scale << 1;
6373 CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6374 }
6375 /* Clear the attention */
6376 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6377 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6378 BGE_MACSTAT_LINK_CHANGED);
6379 }
6380
6381 static int
6382 bge_sysctl_verify(SYSCTLFN_ARGS)
6383 {
6384 int error, t;
6385 struct sysctlnode node;
6386
6387 node = *rnode;
6388 t = *(int*)rnode->sysctl_data;
6389 node.sysctl_data = &t;
6390 error = sysctl_lookup(SYSCTLFN_CALL(&node));
6391 if (error || newp == NULL)
6392 return error;
6393
6394 #if 0
6395 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6396 node.sysctl_num, rnode->sysctl_num));
6397 #endif
6398
6399 if (node.sysctl_num == bge_rxthresh_nodenum) {
6400 if (t < 0 || t >= NBGE_RX_THRESH)
6401 return EINVAL;
6402 bge_update_all_threshes(t);
6403 } else
6404 return EINVAL;
6405
6406 *(int*)rnode->sysctl_data = t;
6407
6408 return 0;
6409 }
6410
6411 /*
6412 * Set up sysctl(3) MIB, hw.bge.*.
6413 */
6414 static void
6415 bge_sysctl_init(struct bge_softc *sc)
6416 {
6417 int rc, bge_root_num;
6418 const struct sysctlnode *node;
6419
6420 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6421 0, CTLTYPE_NODE, "bge",
6422 SYSCTL_DESCR("BGE interface controls"),
6423 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6424 goto out;
6425 }
6426
6427 bge_root_num = node->sysctl_num;
6428
6429 /* BGE Rx interrupt mitigation level */
6430 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6431 CTLFLAG_READWRITE,
6432 CTLTYPE_INT, "rx_lvl",
6433 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6434 bge_sysctl_verify, 0,
6435 &bge_rx_thresh_lvl,
6436 0, CTL_HW, bge_root_num, CTL_CREATE,
6437 CTL_EOL)) != 0) {
6438 goto out;
6439 }
6440
6441 bge_rxthresh_nodenum = node->sysctl_num;
6442
6443 #ifdef BGE_DEBUG
6444 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6445 CTLFLAG_READWRITE,
6446 CTLTYPE_BOOL, "trigger_reset",
6447 SYSCTL_DESCR("Trigger an interface reset"),
6448 NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE,
6449 CTL_EOL)) != 0) {
6450 goto out;
6451 }
6452 #endif
6453 return;
6454
6455 out:
6456 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6457 }
6458
6459 #ifdef BGE_DEBUG
6460 void
6461 bge_debug_info(struct bge_softc *sc)
6462 {
6463
6464 printf("Hardware Flags:\n");
6465 if (BGE_IS_57765_PLUS(sc))
6466 printf(" - 57765 Plus\n");
6467 if (BGE_IS_5717_PLUS(sc))
6468 printf(" - 5717 Plus\n");
6469 if (BGE_IS_5755_PLUS(sc))
6470 printf(" - 5755 Plus\n");
6471 if (BGE_IS_575X_PLUS(sc))
6472 printf(" - 575X Plus\n");
6473 if (BGE_IS_5705_PLUS(sc))
6474 printf(" - 5705 Plus\n");
6475 if (BGE_IS_5714_FAMILY(sc))
6476 printf(" - 5714 Family\n");
6477 if (BGE_IS_5700_FAMILY(sc))
6478 printf(" - 5700 Family\n");
6479 if (sc->bge_flags & BGEF_IS_5788)
6480 printf(" - 5788\n");
6481 if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6482 printf(" - Supports Jumbo Frames\n");
6483 if (sc->bge_flags & BGEF_NO_EEPROM)
6484 printf(" - No EEPROM\n");
6485 if (sc->bge_flags & BGEF_PCIX)
6486 printf(" - PCI-X Bus\n");
6487 if (sc->bge_flags & BGEF_PCIE)
6488 printf(" - PCI Express Bus\n");
6489 if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6490 printf(" - RX Alignment Bug\n");
6491 if (sc->bge_flags & BGEF_APE)
6492 printf(" - APE\n");
6493 if (sc->bge_flags & BGEF_CPMU_PRESENT)
6494 printf(" - CPMU\n");
6495 if (sc->bge_flags & BGEF_TSO)
6496 printf(" - TSO\n");
6497 if (sc->bge_flags & BGEF_TAGGED_STATUS)
6498 printf(" - TAGGED_STATUS\n");
6499
6500 /* PHY related */
6501 if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6502 printf(" - No 3 LEDs\n");
6503 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6504 printf(" - CRC bug\n");
6505 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6506 printf(" - ADC bug\n");
6507 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6508 printf(" - 5704 A0 bug\n");
6509 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6510 printf(" - jitter bug\n");
6511 if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6512 printf(" - BER bug\n");
6513 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6514 printf(" - adjust trim\n");
6515 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6516 printf(" - no wirespeed\n");
6517
6518 /* ASF related */
6519 if (sc->bge_asf_mode & ASF_ENABLE)
6520 printf(" - ASF enable\n");
6521 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6522 printf(" - ASF new handshake\n");
6523 if (sc->bge_asf_mode & ASF_STACKUP)
6524 printf(" - ASF stackup\n");
6525 }
6526 #endif /* BGE_DEBUG */
6527
6528 static int
6529 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6530 {
6531 prop_dictionary_t dict;
6532 prop_data_t ea;
6533
6534 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6535 return 1;
6536
6537 dict = device_properties(sc->bge_dev);
6538 ea = prop_dictionary_get(dict, "mac-address");
6539 if (ea != NULL) {
6540 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6541 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6542 memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
6543 return 0;
6544 }
6545
6546 return 1;
6547 }
6548
6549 static int
6550 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6551 {
6552 uint32_t mac_addr;
6553
6554 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6555 if ((mac_addr >> 16) == 0x484b) {
6556 ether_addr[0] = (uint8_t)(mac_addr >> 8);
6557 ether_addr[1] = (uint8_t)mac_addr;
6558 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6559 ether_addr[2] = (uint8_t)(mac_addr >> 24);
6560 ether_addr[3] = (uint8_t)(mac_addr >> 16);
6561 ether_addr[4] = (uint8_t)(mac_addr >> 8);
6562 ether_addr[5] = (uint8_t)mac_addr;
6563 return 0;
6564 }
6565 return 1;
6566 }
6567
6568 static int
6569 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6570 {
6571 int mac_offset = BGE_EE_MAC_OFFSET;
6572
6573 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6574 mac_offset = BGE_EE_MAC_OFFSET_5906;
6575
6576 return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6577 ETHER_ADDR_LEN));
6578 }
6579
6580 static int
6581 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6582 {
6583
6584 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6585 return 1;
6586
6587 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6588 ETHER_ADDR_LEN));
6589 }
6590
6591 static int
6592 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6593 {
6594 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6595 /* NOTE: Order is critical */
6596 bge_get_eaddr_fw,
6597 bge_get_eaddr_mem,
6598 bge_get_eaddr_nvram,
6599 bge_get_eaddr_eeprom,
6600 NULL
6601 };
6602 const bge_eaddr_fcn_t *func;
6603
6604 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6605 if ((*func)(sc, eaddr) == 0)
6606 break;
6607 }
6608 return *func == NULL ? ENXIO : 0;
6609 }
6610