if_bge.c revision 1.42 1 /* $NetBSD: if_bge.c,v 1.42 2003/06/30 13:20:21 ragge Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include "bpfilter.h"
82 #include "vlan.h"
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98
99 #ifdef INET
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip.h>
104 #endif
105
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/miidevs.h>
117 #include <dev/mii/brgphyreg.h>
118
119 #include <dev/pci/if_bgereg.h>
120
121 #include <uvm/uvm_extern.h>
122
123 int bge_probe(struct device *, struct cfdata *, void *);
124 void bge_attach(struct device *, struct device *, void *);
125 void bge_release_resources(struct bge_softc *);
126 void bge_txeof(struct bge_softc *);
127 void bge_rxeof(struct bge_softc *);
128
129 void bge_tick(void *);
130 void bge_stats_update(struct bge_softc *);
131 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
132
133 int bge_intr(void *);
134 void bge_start(struct ifnet *);
135 int bge_ioctl(struct ifnet *, u_long, caddr_t);
136 int bge_init(struct ifnet *);
137 void bge_stop(struct bge_softc *);
138 void bge_watchdog(struct ifnet *);
139 void bge_shutdown(void *);
140 int bge_ifmedia_upd(struct ifnet *);
141 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
142
143 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
144 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
145
146 void bge_setmulti(struct bge_softc *);
147
148 void bge_handle_events(struct bge_softc *);
149 int bge_alloc_jumbo_mem(struct bge_softc *);
150 void bge_free_jumbo_mem(struct bge_softc *);
151 void *bge_jalloc(struct bge_softc *);
152 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
153 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
154 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
155 int bge_init_rx_ring_std(struct bge_softc *);
156 void bge_free_rx_ring_std(struct bge_softc *);
157 int bge_init_rx_ring_jumbo(struct bge_softc *);
158 void bge_free_rx_ring_jumbo(struct bge_softc *);
159 void bge_free_tx_ring(struct bge_softc *);
160 int bge_init_tx_ring(struct bge_softc *);
161
162 int bge_chipinit(struct bge_softc *);
163 int bge_blockinit(struct bge_softc *);
164 int bge_setpowerstate(struct bge_softc *, int);
165
166 #ifdef notdef
167 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
168 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
169 void bge_vpd_read(struct bge_softc *);
170 #endif
171
172 u_int32_t bge_readmem_ind(struct bge_softc *, int);
173 void bge_writemem_ind(struct bge_softc *, int, int);
174 #ifdef notdef
175 u_int32_t bge_readreg_ind(struct bge_softc *, int);
176 #endif
177 void bge_writereg_ind(struct bge_softc *, int, int);
178
179 int bge_miibus_readreg(struct device *, int, int);
180 void bge_miibus_writereg(struct device *, int, int, int);
181 void bge_miibus_statchg(struct device *);
182
183 void bge_reset(struct bge_softc *);
184
185 void bge_dump_status(struct bge_softc *);
186 void bge_dump_rxbd(struct bge_rx_bd *);
187
188 #define BGE_DEBUG
189 #ifdef BGE_DEBUG
190 #define DPRINTF(x) if (bgedebug) printf x
191 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
192 int bgedebug = 0;
193 #else
194 #define DPRINTF(x)
195 #define DPRINTFN(n,x)
196 #endif
197
198 /* Various chip quirks. */
199 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
200 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
201 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
202 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
203 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
204 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
205 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
206
207 /* following bugs are common to bcm5700 rev B, all flavours */
208 #define BGE_QUIRK_5700_COMMON \
209 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
210
211 CFATTACH_DECL(bge, sizeof(struct bge_softc),
212 bge_probe, bge_attach, NULL, NULL);
213
214 u_int32_t
215 bge_readmem_ind(sc, off)
216 struct bge_softc *sc;
217 int off;
218 {
219 struct pci_attach_args *pa = &(sc->bge_pa);
220 pcireg_t val;
221
222 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
223 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
224 return val;
225 }
226
227 void
228 bge_writemem_ind(sc, off, val)
229 struct bge_softc *sc;
230 int off, val;
231 {
232 struct pci_attach_args *pa = &(sc->bge_pa);
233
234 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
235 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
236 }
237
238 #ifdef notdef
239 u_int32_t
240 bge_readreg_ind(sc, off)
241 struct bge_softc *sc;
242 int off;
243 {
244 struct pci_attach_args *pa = &(sc->bge_pa);
245
246 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
247 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
248 }
249 #endif
250
251 void
252 bge_writereg_ind(sc, off, val)
253 struct bge_softc *sc;
254 int off, val;
255 {
256 struct pci_attach_args *pa = &(sc->bge_pa);
257
258 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
259 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
260 }
261
262 #ifdef notdef
263 u_int8_t
264 bge_vpd_readbyte(sc, addr)
265 struct bge_softc *sc;
266 int addr;
267 {
268 int i;
269 u_int32_t val;
270 struct pci_attach_args *pa = &(sc->bge_pa);
271
272 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
273 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
274 DELAY(10);
275 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
276 BGE_VPD_FLAG)
277 break;
278 }
279
280 if (i == BGE_TIMEOUT) {
281 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
282 return(0);
283 }
284
285 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
286
287 return((val >> ((addr % 4) * 8)) & 0xFF);
288 }
289
290 void
291 bge_vpd_read_res(sc, res, addr)
292 struct bge_softc *sc;
293 struct vpd_res *res;
294 int addr;
295 {
296 int i;
297 u_int8_t *ptr;
298
299 ptr = (u_int8_t *)res;
300 for (i = 0; i < sizeof(struct vpd_res); i++)
301 ptr[i] = bge_vpd_readbyte(sc, i + addr);
302 }
303
304 void
305 bge_vpd_read(sc)
306 struct bge_softc *sc;
307 {
308 int pos = 0, i;
309 struct vpd_res res;
310
311 if (sc->bge_vpd_prodname != NULL)
312 free(sc->bge_vpd_prodname, M_DEVBUF);
313 if (sc->bge_vpd_readonly != NULL)
314 free(sc->bge_vpd_readonly, M_DEVBUF);
315 sc->bge_vpd_prodname = NULL;
316 sc->bge_vpd_readonly = NULL;
317
318 bge_vpd_read_res(sc, &res, pos);
319
320 if (res.vr_id != VPD_RES_ID) {
321 printf("%s: bad VPD resource id: expected %x got %x\n",
322 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
323 return;
324 }
325
326 pos += sizeof(res);
327 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
328 if (sc->bge_vpd_prodname == NULL)
329 panic("bge_vpd_read");
330 for (i = 0; i < res.vr_len; i++)
331 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
332 sc->bge_vpd_prodname[i] = '\0';
333 pos += i;
334
335 bge_vpd_read_res(sc, &res, pos);
336
337 if (res.vr_id != VPD_RES_READ) {
338 printf("%s: bad VPD resource id: expected %x got %x\n",
339 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
340 return;
341 }
342
343 pos += sizeof(res);
344 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
345 if (sc->bge_vpd_readonly == NULL)
346 panic("bge_vpd_read");
347 for (i = 0; i < res.vr_len + 1; i++)
348 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
349 }
350 #endif
351
352 /*
353 * Read a byte of data stored in the EEPROM at address 'addr.' The
354 * BCM570x supports both the traditional bitbang interface and an
355 * auto access interface for reading the EEPROM. We use the auto
356 * access method.
357 */
358 u_int8_t
359 bge_eeprom_getbyte(sc, addr, dest)
360 struct bge_softc *sc;
361 int addr;
362 u_int8_t *dest;
363 {
364 int i;
365 u_int32_t byte = 0;
366
367 /*
368 * Enable use of auto EEPROM access so we can avoid
369 * having to use the bitbang method.
370 */
371 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
372
373 /* Reset the EEPROM, load the clock period. */
374 CSR_WRITE_4(sc, BGE_EE_ADDR,
375 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
376 DELAY(20);
377
378 /* Issue the read EEPROM command. */
379 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
380
381 /* Wait for completion */
382 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
383 DELAY(10);
384 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
385 break;
386 }
387
388 if (i == BGE_TIMEOUT) {
389 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
390 return(0);
391 }
392
393 /* Get result. */
394 byte = CSR_READ_4(sc, BGE_EE_DATA);
395
396 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
397
398 return(0);
399 }
400
401 /*
402 * Read a sequence of bytes from the EEPROM.
403 */
404 int
405 bge_read_eeprom(sc, dest, off, cnt)
406 struct bge_softc *sc;
407 caddr_t dest;
408 int off;
409 int cnt;
410 {
411 int err = 0, i;
412 u_int8_t byte = 0;
413
414 for (i = 0; i < cnt; i++) {
415 err = bge_eeprom_getbyte(sc, off + i, &byte);
416 if (err)
417 break;
418 *(dest + i) = byte;
419 }
420
421 return(err ? 1 : 0);
422 }
423
424 int
425 bge_miibus_readreg(dev, phy, reg)
426 struct device *dev;
427 int phy, reg;
428 {
429 struct bge_softc *sc = (struct bge_softc *)dev;
430 struct ifnet *ifp;
431 u_int32_t val;
432 u_int32_t saved_autopoll;
433 int i;
434
435 ifp = &sc->ethercom.ec_if;
436
437 /*
438 * Several chips with builtin PHYs will incorrectly answer to
439 * other PHY instances than the builtin PHY at id 1.
440 */
441 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
442 return(0);
443
444 /* Reading with autopolling on may trigger PCI errors */
445 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
446 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
447 CSR_WRITE_4(sc, BGE_MI_MODE,
448 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
449 DELAY(40);
450 }
451
452 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
453 BGE_MIPHY(phy)|BGE_MIREG(reg));
454
455 for (i = 0; i < BGE_TIMEOUT; i++) {
456 val = CSR_READ_4(sc, BGE_MI_COMM);
457 if (!(val & BGE_MICOMM_BUSY))
458 break;
459 delay(10);
460 }
461
462 if (i == BGE_TIMEOUT) {
463 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
464 val = 0;
465 goto done;
466 }
467
468 val = CSR_READ_4(sc, BGE_MI_COMM);
469
470 done:
471 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
472 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
473 DELAY(40);
474 }
475
476 if (val & BGE_MICOMM_READFAIL)
477 return(0);
478
479 return(val & 0xFFFF);
480 }
481
482 void
483 bge_miibus_writereg(dev, phy, reg, val)
484 struct device *dev;
485 int phy, reg, val;
486 {
487 struct bge_softc *sc = (struct bge_softc *)dev;
488 u_int32_t saved_autopoll;
489 int i;
490
491 /* Touching the PHY while autopolling is on may trigger PCI errors */
492 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
493 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
494 delay(40);
495 CSR_WRITE_4(sc, BGE_MI_MODE,
496 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
497 delay(10); /* 40 usec is supposed to be adequate */
498 }
499
500 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
501 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
502
503 for (i = 0; i < BGE_TIMEOUT; i++) {
504 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
505 break;
506 delay(10);
507 }
508
509 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
510 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
511 delay(40);
512 }
513
514 if (i == BGE_TIMEOUT) {
515 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
516 }
517 }
518
519 void
520 bge_miibus_statchg(dev)
521 struct device *dev;
522 {
523 struct bge_softc *sc = (struct bge_softc *)dev;
524 struct mii_data *mii = &sc->bge_mii;
525
526 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
527 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
528 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
529 } else {
530 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
531 }
532
533 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
534 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
535 } else {
536 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
537 }
538 }
539
540 /*
541 * Handle events that have triggered interrupts.
542 */
543 void
544 bge_handle_events(sc)
545 struct bge_softc *sc;
546 {
547
548 return;
549 }
550
551 /*
552 * Memory management for jumbo frames.
553 */
554
555 int
556 bge_alloc_jumbo_mem(sc)
557 struct bge_softc *sc;
558 {
559 caddr_t ptr, kva;
560 bus_dma_segment_t seg;
561 int i, rseg, state, error;
562 struct bge_jpool_entry *entry;
563
564 state = error = 0;
565
566 /* Grab a big chunk o' storage. */
567 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
568 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
569 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
570 return ENOBUFS;
571 }
572
573 state = 1;
574 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
575 BUS_DMA_NOWAIT)) {
576 printf("%s: can't map DMA buffers (%d bytes)\n",
577 sc->bge_dev.dv_xname, (int)BGE_JMEM);
578 error = ENOBUFS;
579 goto out;
580 }
581
582 state = 2;
583 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
584 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
585 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
586 error = ENOBUFS;
587 goto out;
588 }
589
590 state = 3;
591 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
592 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
593 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
594 error = ENOBUFS;
595 goto out;
596 }
597
598 state = 4;
599 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
600 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
601
602 SLIST_INIT(&sc->bge_jfree_listhead);
603 SLIST_INIT(&sc->bge_jinuse_listhead);
604
605 /*
606 * Now divide it up into 9K pieces and save the addresses
607 * in an array.
608 */
609 ptr = sc->bge_cdata.bge_jumbo_buf;
610 for (i = 0; i < BGE_JSLOTS; i++) {
611 sc->bge_cdata.bge_jslots[i] = ptr;
612 ptr += BGE_JLEN;
613 entry = malloc(sizeof(struct bge_jpool_entry),
614 M_DEVBUF, M_NOWAIT);
615 if (entry == NULL) {
616 printf("%s: no memory for jumbo buffer queue!\n",
617 sc->bge_dev.dv_xname);
618 error = ENOBUFS;
619 goto out;
620 }
621 entry->slot = i;
622 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
623 entry, jpool_entries);
624 }
625 out:
626 if (error != 0) {
627 switch (state) {
628 case 4:
629 bus_dmamap_unload(sc->bge_dmatag,
630 sc->bge_cdata.bge_rx_jumbo_map);
631 case 3:
632 bus_dmamap_destroy(sc->bge_dmatag,
633 sc->bge_cdata.bge_rx_jumbo_map);
634 case 2:
635 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
636 case 1:
637 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
638 break;
639 default:
640 break;
641 }
642 }
643
644 return error;
645 }
646
647 /*
648 * Allocate a jumbo buffer.
649 */
650 void *
651 bge_jalloc(sc)
652 struct bge_softc *sc;
653 {
654 struct bge_jpool_entry *entry;
655
656 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
657
658 if (entry == NULL) {
659 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
660 return(NULL);
661 }
662
663 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
664 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
665 return(sc->bge_cdata.bge_jslots[entry->slot]);
666 }
667
668 /*
669 * Release a jumbo buffer.
670 */
671 void
672 bge_jfree(m, buf, size, arg)
673 struct mbuf *m;
674 caddr_t buf;
675 size_t size;
676 void *arg;
677 {
678 struct bge_jpool_entry *entry;
679 struct bge_softc *sc;
680 int i, s;
681
682 /* Extract the softc struct pointer. */
683 sc = (struct bge_softc *)arg;
684
685 if (sc == NULL)
686 panic("bge_jfree: can't find softc pointer!");
687
688 /* calculate the slot this buffer belongs to */
689
690 i = ((caddr_t)buf
691 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
692
693 if ((i < 0) || (i >= BGE_JSLOTS))
694 panic("bge_jfree: asked to free buffer that we don't manage!");
695
696 s = splvm();
697 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
698 if (entry == NULL)
699 panic("bge_jfree: buffer not in use!");
700 entry->slot = i;
701 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
702 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
703
704 if (__predict_true(m != NULL))
705 pool_cache_put(&mbpool_cache, m);
706 splx(s);
707 }
708
709
710 /*
711 * Intialize a standard receive ring descriptor.
712 */
713 int
714 bge_newbuf_std(sc, i, m, dmamap)
715 struct bge_softc *sc;
716 int i;
717 struct mbuf *m;
718 bus_dmamap_t dmamap;
719 {
720 struct mbuf *m_new = NULL;
721 struct bge_rx_bd *r;
722 int error;
723
724 if (dmamap == NULL) {
725 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
726 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
727 if (error != 0)
728 return error;
729 }
730
731 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
732
733 if (m == NULL) {
734 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
735 if (m_new == NULL) {
736 return(ENOBUFS);
737 }
738
739 MCLGET(m_new, M_DONTWAIT);
740 if (!(m_new->m_flags & M_EXT)) {
741 m_freem(m_new);
742 return(ENOBUFS);
743 }
744 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
745 if (!sc->bge_rx_alignment_bug)
746 m_adj(m_new, ETHER_ALIGN);
747
748 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
749 BUS_DMA_READ|BUS_DMA_NOWAIT))
750 return(ENOBUFS);
751 } else {
752 m_new = m;
753 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
754 m_new->m_data = m_new->m_ext.ext_buf;
755 if (!sc->bge_rx_alignment_bug)
756 m_adj(m_new, ETHER_ALIGN);
757 }
758
759 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
760 r = &sc->bge_rdata->bge_rx_std_ring[i];
761 bge_set_hostaddr(&r->bge_addr,
762 dmamap->dm_segs[0].ds_addr);
763 r->bge_flags = BGE_RXBDFLAG_END;
764 r->bge_len = m_new->m_len;
765 r->bge_idx = i;
766
767 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
768 offsetof(struct bge_ring_data, bge_rx_std_ring) +
769 i * sizeof (struct bge_rx_bd),
770 sizeof (struct bge_rx_bd),
771 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
772
773 return(0);
774 }
775
776 /*
777 * Initialize a jumbo receive ring descriptor. This allocates
778 * a jumbo buffer from the pool managed internally by the driver.
779 */
780 int
781 bge_newbuf_jumbo(sc, i, m)
782 struct bge_softc *sc;
783 int i;
784 struct mbuf *m;
785 {
786 struct mbuf *m_new = NULL;
787 struct bge_rx_bd *r;
788
789 if (m == NULL) {
790 caddr_t *buf = NULL;
791
792 /* Allocate the mbuf. */
793 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
794 if (m_new == NULL) {
795 return(ENOBUFS);
796 }
797
798 /* Allocate the jumbo buffer */
799 buf = bge_jalloc(sc);
800 if (buf == NULL) {
801 m_freem(m_new);
802 printf("%s: jumbo allocation failed "
803 "-- packet dropped!\n", sc->bge_dev.dv_xname);
804 return(ENOBUFS);
805 }
806
807 /* Attach the buffer to the mbuf. */
808 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
809 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
810 bge_jfree, sc);
811 } else {
812 m_new = m;
813 m_new->m_data = m_new->m_ext.ext_buf;
814 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
815 }
816
817 if (!sc->bge_rx_alignment_bug)
818 m_adj(m_new, ETHER_ALIGN);
819 /* Set up the descriptor. */
820 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
821 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
822 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
823 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
824 r->bge_len = m_new->m_len;
825 r->bge_idx = i;
826
827 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
828 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
829 i * sizeof (struct bge_rx_bd),
830 sizeof (struct bge_rx_bd),
831 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
832
833 return(0);
834 }
835
836 /*
837 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
838 * that's 1MB or memory, which is a lot. For now, we fill only the first
839 * 256 ring entries and hope that our CPU is fast enough to keep up with
840 * the NIC.
841 */
842 int
843 bge_init_rx_ring_std(sc)
844 struct bge_softc *sc;
845 {
846 int i;
847
848 if (sc->bge_flags & BGE_RXRING_VALID)
849 return 0;
850
851 for (i = 0; i < BGE_SSLOTS; i++) {
852 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
853 return(ENOBUFS);
854 }
855
856 sc->bge_std = i - 1;
857 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
858
859 sc->bge_flags |= BGE_RXRING_VALID;
860
861 return(0);
862 }
863
864 void
865 bge_free_rx_ring_std(sc)
866 struct bge_softc *sc;
867 {
868 int i;
869
870 if (!(sc->bge_flags & BGE_RXRING_VALID))
871 return;
872
873 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
874 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
875 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
876 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
877 bus_dmamap_destroy(sc->bge_dmatag,
878 sc->bge_cdata.bge_rx_std_map[i]);
879 }
880 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
881 sizeof(struct bge_rx_bd));
882 }
883
884 sc->bge_flags &= ~BGE_RXRING_VALID;
885 }
886
887 int
888 bge_init_rx_ring_jumbo(sc)
889 struct bge_softc *sc;
890 {
891 int i;
892 volatile struct bge_rcb *rcb;
893
894 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
895 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
896 return(ENOBUFS);
897 };
898
899 sc->bge_jumbo = i - 1;
900
901 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
902 rcb->bge_maxlen_flags = 0;
903 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
904
905 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
906
907 return(0);
908 }
909
910 void
911 bge_free_rx_ring_jumbo(sc)
912 struct bge_softc *sc;
913 {
914 int i;
915
916 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
917 return;
918
919 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
920 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
921 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
922 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
923 }
924 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
925 sizeof(struct bge_rx_bd));
926 }
927
928 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
929 }
930
931 void
932 bge_free_tx_ring(sc)
933 struct bge_softc *sc;
934 {
935 int i, freed;
936 struct txdmamap_pool_entry *dma;
937
938 if (!(sc->bge_flags & BGE_TXRING_VALID))
939 return;
940
941 freed = 0;
942
943 for (i = 0; i < BGE_TX_RING_CNT; i++) {
944 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
945 freed++;
946 m_freem(sc->bge_cdata.bge_tx_chain[i]);
947 sc->bge_cdata.bge_tx_chain[i] = NULL;
948 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
949 link);
950 sc->txdma[i] = 0;
951 }
952 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
953 sizeof(struct bge_tx_bd));
954 }
955
956 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
957 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
958 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
959 free(dma, M_DEVBUF);
960 }
961
962 sc->bge_flags &= ~BGE_TXRING_VALID;
963 }
964
965 int
966 bge_init_tx_ring(sc)
967 struct bge_softc *sc;
968 {
969 int i;
970 bus_dmamap_t dmamap;
971 struct txdmamap_pool_entry *dma;
972
973 if (sc->bge_flags & BGE_TXRING_VALID)
974 return 0;
975
976 sc->bge_txcnt = 0;
977 sc->bge_tx_saved_considx = 0;
978 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
979 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
980 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
981
982 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
983 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
984 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
985
986 SLIST_INIT(&sc->txdma_list);
987 for (i = 0; i < BGE_RSLOTS; i++) {
988 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
989 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
990 &dmamap))
991 return(ENOBUFS);
992 if (dmamap == NULL)
993 panic("dmamap NULL in bge_init_tx_ring");
994 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
995 if (dma == NULL) {
996 printf("%s: can't alloc txdmamap_pool_entry\n",
997 sc->bge_dev.dv_xname);
998 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
999 return (ENOMEM);
1000 }
1001 dma->dmamap = dmamap;
1002 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1003 }
1004
1005 sc->bge_flags |= BGE_TXRING_VALID;
1006
1007 return(0);
1008 }
1009
1010 void
1011 bge_setmulti(sc)
1012 struct bge_softc *sc;
1013 {
1014 struct ethercom *ac = &sc->ethercom;
1015 struct ifnet *ifp = &ac->ec_if;
1016 struct ether_multi *enm;
1017 struct ether_multistep step;
1018 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1019 u_int32_t h;
1020 int i;
1021
1022 if (ifp->if_flags & IFF_PROMISC)
1023 goto allmulti;
1024
1025 /* Now program new ones. */
1026 ETHER_FIRST_MULTI(step, ac, enm);
1027 while (enm != NULL) {
1028 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1029 /*
1030 * We must listen to a range of multicast addresses.
1031 * For now, just accept all multicasts, rather than
1032 * trying to set only those filter bits needed to match
1033 * the range. (At this time, the only use of address
1034 * ranges is for IP multicast routing, for which the
1035 * range is big enough to require all bits set.)
1036 */
1037 goto allmulti;
1038 }
1039
1040 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1041
1042 /* Just want the 7 least-significant bits. */
1043 h &= 0x7f;
1044
1045 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1046 ETHER_NEXT_MULTI(step, enm);
1047 }
1048
1049 ifp->if_flags &= ~IFF_ALLMULTI;
1050 goto setit;
1051
1052 allmulti:
1053 ifp->if_flags |= IFF_ALLMULTI;
1054 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1055
1056 setit:
1057 for (i = 0; i < 4; i++)
1058 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1059 }
1060
1061 const int bge_swapbits[] = {
1062 0,
1063 BGE_MODECTL_BYTESWAP_DATA,
1064 BGE_MODECTL_WORDSWAP_DATA,
1065 BGE_MODECTL_BYTESWAP_NONFRAME,
1066 BGE_MODECTL_WORDSWAP_NONFRAME,
1067
1068 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1069 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1070 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1071
1072 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1073 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1074
1075 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1076
1077 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1078 BGE_MODECTL_BYTESWAP_NONFRAME,
1079 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1080 BGE_MODECTL_WORDSWAP_NONFRAME,
1081 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1082 BGE_MODECTL_WORDSWAP_NONFRAME,
1083 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1084 BGE_MODECTL_WORDSWAP_NONFRAME,
1085
1086 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1087 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1088 };
1089
1090 int bge_swapindex = 0;
1091
1092 /*
1093 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1094 * self-test results.
1095 */
1096 int
1097 bge_chipinit(sc)
1098 struct bge_softc *sc;
1099 {
1100 u_int32_t cachesize;
1101 int i;
1102 u_int32_t dma_rw_ctl;
1103 struct pci_attach_args *pa = &(sc->bge_pa);
1104
1105
1106 /* Set endianness before we access any non-PCI registers. */
1107 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1108 BGE_INIT);
1109
1110 /* Set power state to D0. */
1111 bge_setpowerstate(sc, 0);
1112
1113 /*
1114 * Check the 'ROM failed' bit on the RX CPU to see if
1115 * self-tests passed.
1116 */
1117 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1118 printf("%s: RX CPU self-diagnostics failed!\n",
1119 sc->bge_dev.dv_xname);
1120 return(ENODEV);
1121 }
1122
1123 /* Clear the MAC control register */
1124 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1125
1126 /*
1127 * Clear the MAC statistics block in the NIC's
1128 * internal memory.
1129 */
1130 for (i = BGE_STATS_BLOCK;
1131 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1132 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1133
1134 for (i = BGE_STATUS_BLOCK;
1135 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1136 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1137
1138 /* Set up the PCI DMA control register. */
1139 if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1140 BGE_PCISTATE_PCI_BUSMODE) {
1141 /* Conventional PCI bus */
1142 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1143 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1144 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1145 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1146 (0x0F));
1147 } else {
1148 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1149 /* PCI-X bus */
1150 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1151 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1152 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1153 (0x0F);
1154 /*
1155 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1156 * for hardware bugs, which means we should also clear
1157 * the low-order MINDMA bits. In addition, the 5704
1158 * uses a different encoding of read/write watermarks.
1159 */
1160 if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0 ||
1161 sc->bge_asicrev == BGE_ASICREV_BCM5704_A1 ||
1162 sc->bge_asicrev == BGE_ASICREV_BCM5704_A2) {
1163 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1164 /* should be 0x1f0000 */
1165 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1166 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1167 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1168 }
1169 else if ((sc->bge_asicrev >> 28) ==
1170 (BGE_ASICREV_BCM5703_A0 >> 28)) {
1171 dma_rw_ctl &= 0xfffffff0;
1172 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1173 }
1174 }
1175
1176 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1177
1178 /*
1179 * Set up general mode register.
1180 */
1181 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1182 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1183 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1184 BGE_MODECTL_RX_NO_PHDR_CSUM);
1185
1186 /* Get cache line size. */
1187 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1188
1189 /*
1190 * Avoid violating PCI spec on certain chip revs.
1191 */
1192 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1193 PCIM_CMD_MWIEN) {
1194 switch(cachesize) {
1195 case 1:
1196 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1197 BGE_PCI_WRITE_BNDRY_16BYTES);
1198 break;
1199 case 2:
1200 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1201 BGE_PCI_WRITE_BNDRY_32BYTES);
1202 break;
1203 case 4:
1204 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1205 BGE_PCI_WRITE_BNDRY_64BYTES);
1206 break;
1207 case 8:
1208 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1209 BGE_PCI_WRITE_BNDRY_128BYTES);
1210 break;
1211 case 16:
1212 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1213 BGE_PCI_WRITE_BNDRY_256BYTES);
1214 break;
1215 case 32:
1216 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1217 BGE_PCI_WRITE_BNDRY_512BYTES);
1218 break;
1219 case 64:
1220 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1221 BGE_PCI_WRITE_BNDRY_1024BYTES);
1222 break;
1223 default:
1224 /* Disable PCI memory write and invalidate. */
1225 #if 0
1226 if (bootverbose)
1227 printf("%s: cache line size %d not "
1228 "supported; disabling PCI MWI\n",
1229 sc->bge_dev.dv_xname, cachesize);
1230 #endif
1231 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1232 PCIM_CMD_MWIEN);
1233 break;
1234 }
1235 }
1236
1237 /*
1238 * Disable memory write invalidate. Apparently it is not supported
1239 * properly by these devices.
1240 */
1241 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1242
1243
1244 #ifdef __brokenalpha__
1245 /*
1246 * Must insure that we do not cross an 8K (bytes) boundary
1247 * for DMA reads. Our highest limit is 1K bytes. This is a
1248 * restriction on some ALPHA platforms with early revision
1249 * 21174 PCI chipsets, such as the AlphaPC 164lx
1250 */
1251 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1252 #endif
1253
1254 /* Set the timer prescaler (always 66MHz) */
1255 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1256
1257 return(0);
1258 }
1259
1260 int
1261 bge_blockinit(sc)
1262 struct bge_softc *sc;
1263 {
1264 volatile struct bge_rcb *rcb;
1265 bus_size_t rcb_addr;
1266 int i;
1267 struct ifnet *ifp = &sc->ethercom.ec_if;
1268 bge_hostaddr taddr;
1269
1270 /*
1271 * Initialize the memory window pointer register so that
1272 * we can access the first 32K of internal NIC RAM. This will
1273 * allow us to set up the TX send ring RCBs and the RX return
1274 * ring RCBs, plus other things which live in NIC memory.
1275 */
1276
1277 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1278 BGE_PCI_MEMWIN_BASEADDR, 0);
1279
1280 /* Configure mbuf memory pool */
1281 if (sc->bge_extram) {
1282 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1283 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1284 } else {
1285 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1286 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1287 }
1288
1289 /* Configure DMA resource pool */
1290 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1291 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1292
1293 /* Configure mbuf pool watermarks */
1294 #ifdef ORIG_WPAUL_VALUES
1295 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1296 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1297 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1298 #else
1299 /* new broadcom docs strongly recommend these: */
1300 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1301 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1302 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1303 #endif
1304
1305 /* Configure DMA resource watermarks */
1306 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1307 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1308
1309 /* Enable buffer manager */
1310 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1311 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1312
1313 /* Poll for buffer manager start indication */
1314 for (i = 0; i < BGE_TIMEOUT; i++) {
1315 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1316 break;
1317 DELAY(10);
1318 }
1319
1320 if (i == BGE_TIMEOUT) {
1321 printf("%s: buffer manager failed to start\n",
1322 sc->bge_dev.dv_xname);
1323 return(ENXIO);
1324 }
1325
1326 /* Enable flow-through queues */
1327 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1328 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1329
1330 /* Wait until queue initialization is complete */
1331 for (i = 0; i < BGE_TIMEOUT; i++) {
1332 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1333 break;
1334 DELAY(10);
1335 }
1336
1337 if (i == BGE_TIMEOUT) {
1338 printf("%s: flow-through queue init failed\n",
1339 sc->bge_dev.dv_xname);
1340 return(ENXIO);
1341 }
1342
1343 /* Initialize the standard RX ring control block */
1344 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1345 bge_set_hostaddr(&rcb->bge_hostaddr,
1346 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1347 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1348 if (sc->bge_extram)
1349 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1350 else
1351 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1352 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1353 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1354 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1355 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1356
1357 /*
1358 * Initialize the jumbo RX ring control block
1359 * We set the 'ring disabled' bit in the flags
1360 * field until we're actually ready to start
1361 * using this ring (i.e. once we set the MTU
1362 * high enough to require it).
1363 */
1364 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1365 bge_set_hostaddr(&rcb->bge_hostaddr,
1366 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1367 rcb->bge_maxlen_flags =
1368 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED);
1369 if (sc->bge_extram)
1370 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1371 else
1372 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1373
1374 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1375 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1376 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1377 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1378
1379 /* Set up dummy disabled mini ring RCB */
1380 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1381 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1382 BGE_RCB_FLAG_RING_DISABLED);
1383 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1384
1385 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1386 offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1387 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1388
1389 /*
1390 * Set the BD ring replentish thresholds. The recommended
1391 * values are 1/8th the number of descriptors allocated to
1392 * each ring.
1393 */
1394 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1395 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1396
1397 /*
1398 * Disable all unused send rings by setting the 'ring disabled'
1399 * bit in the flags field of all the TX send ring control blocks.
1400 * These are located in NIC memory.
1401 */
1402 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1403 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1404 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1405 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1406 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1407 rcb_addr += sizeof(struct bge_rcb);
1408 }
1409
1410 /* Configure TX RCB 0 (we use only the first ring) */
1411 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1412 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1413 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1414 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1415 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1416 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1417 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1418 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1419
1420 /* Disable all unused RX return rings */
1421 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1422 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1423 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1424 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1425 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1426 BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,
1427 BGE_RCB_FLAG_RING_DISABLED));
1428 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1429 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1430 (i * (sizeof(u_int64_t))), 0);
1431 rcb_addr += sizeof(struct bge_rcb);
1432 }
1433
1434 /* Initialize RX ring indexes */
1435 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1436 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1437 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1438
1439 /*
1440 * Set up RX return ring 0
1441 * Note that the NIC address for RX return rings is 0x00000000.
1442 * The return rings live entirely within the host, so the
1443 * nicaddr field in the RCB isn't used.
1444 */
1445 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1446 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1447 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1448 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1449 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1450 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1451 BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,0));
1452
1453 /* Set random backoff seed for TX */
1454 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1455 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1456 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1457 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1458 BGE_TX_BACKOFF_SEED_MASK);
1459
1460 /* Set inter-packet gap */
1461 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1462
1463 /*
1464 * Specify which ring to use for packets that don't match
1465 * any RX rules.
1466 */
1467 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1468
1469 /*
1470 * Configure number of RX lists. One interrupt distribution
1471 * list, sixteen active lists, one bad frames class.
1472 */
1473 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1474
1475 /* Inialize RX list placement stats mask. */
1476 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1477 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1478
1479 /* Disable host coalescing until we get it set up */
1480 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1481
1482 /* Poll to make sure it's shut down. */
1483 for (i = 0; i < BGE_TIMEOUT; i++) {
1484 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1485 break;
1486 DELAY(10);
1487 }
1488
1489 if (i == BGE_TIMEOUT) {
1490 printf("%s: host coalescing engine failed to idle\n",
1491 sc->bge_dev.dv_xname);
1492 return(ENXIO);
1493 }
1494
1495 /* Set up host coalescing defaults */
1496 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1497 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1498 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1499 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1500 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1501 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1502 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1503 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1504 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1505
1506 /* Set up address of statistics block */
1507 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1508 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1509 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1510 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1511
1512 /* Set up address of status block */
1513 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1514 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1515 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1516 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1517 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1518 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1519
1520 /* Turn on host coalescing state machine */
1521 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1522
1523 /* Turn on RX BD completion state machine and enable attentions */
1524 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1525 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1526
1527 /* Turn on RX list placement state machine */
1528 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1529
1530 /* Turn on RX list selector state machine. */
1531 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1532
1533 /* Turn on DMA, clear stats */
1534 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1535 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1536 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1537 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1538 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1539
1540 /* Set misc. local control, enable interrupts on attentions */
1541 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1542
1543 #ifdef notdef
1544 /* Assert GPIO pins for PHY reset */
1545 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1546 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1547 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1548 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1549 #endif
1550
1551 #if defined(not_quite_yet)
1552 /* Linux driver enables enable gpio pin #1 on 5700s */
1553 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
1554 sc->bge_local_ctrl_reg |=
1555 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1556 }
1557 #endif
1558 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1559
1560 /* Turn on DMA completion state machine */
1561 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1562
1563 /* Turn on write DMA state machine */
1564 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1565 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1566
1567 /* Turn on read DMA state machine */
1568 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1569 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1570
1571 /* Turn on RX data completion state machine */
1572 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1573
1574 /* Turn on RX BD initiator state machine */
1575 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1576
1577 /* Turn on RX data and RX BD initiator state machine */
1578 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1579
1580 /* Turn on Mbuf cluster free state machine */
1581 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1582
1583 /* Turn on send BD completion state machine */
1584 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1585
1586 /* Turn on send data completion state machine */
1587 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1588
1589 /* Turn on send data initiator state machine */
1590 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1591
1592 /* Turn on send BD initiator state machine */
1593 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1594
1595 /* Turn on send BD selector state machine */
1596 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1597
1598 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1599 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1600 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1601
1602 /* init LED register */
1603 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1604
1605 /* ack/clear link change events */
1606 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1607 BGE_MACSTAT_CFG_CHANGED);
1608 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1609
1610 /* Enable PHY auto polling (for MII/GMII only) */
1611 if (sc->bge_tbi) {
1612 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1613 } else {
1614 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1615 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1616 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1617 BGE_EVTENB_MI_INTERRUPT);
1618 }
1619
1620 /* Enable link state change attentions. */
1621 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1622
1623 return(0);
1624 }
1625
1626 static const struct bge_revision {
1627 uint32_t br_asicrev;
1628 uint32_t br_quirks;
1629 const char *br_name;
1630 } bge_revisions[] = {
1631 { BGE_ASICREV_BCM5700_A0,
1632 BGE_QUIRK_LINK_STATE_BROKEN,
1633 "BCM5700 A0" },
1634
1635 { BGE_ASICREV_BCM5700_A1,
1636 BGE_QUIRK_LINK_STATE_BROKEN,
1637 "BCM5700 A1" },
1638
1639 { BGE_ASICREV_BCM5700_B0,
1640 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1641 "BCM5700 B0" },
1642
1643 { BGE_ASICREV_BCM5700_B1,
1644 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1645 "BCM5700 B1" },
1646
1647 { BGE_ASICREV_BCM5700_B2,
1648 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1649 "BCM5700 B2" },
1650
1651 /* This is treated like a BCM5700 Bx */
1652 { BGE_ASICREV_BCM5700_ALTIMA,
1653 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1654 "BCM5700 Altima" },
1655
1656 { BGE_ASICREV_BCM5700_C0,
1657 0,
1658 "BCM5700 C0" },
1659
1660 { BGE_ASICREV_BCM5701_A0,
1661 0, /*XXX really, just not known */
1662 "BCM5701 A0" },
1663
1664 { BGE_ASICREV_BCM5701_B0,
1665 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1666 "BCM5701 B0" },
1667
1668 { BGE_ASICREV_BCM5701_B2,
1669 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1670 "BCM5701 B2" },
1671
1672 { BGE_ASICREV_BCM5701_B5,
1673 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1674 "BCM5701 B5" },
1675
1676 { BGE_ASICREV_BCM5703_A0,
1677 0,
1678 "BCM5703 A0" },
1679
1680 { BGE_ASICREV_BCM5703_A1,
1681 0,
1682 "BCM5703 A1" },
1683
1684 { BGE_ASICREV_BCM5703_A2,
1685 BGE_QUIRK_ONLY_PHY_1,
1686 "BCM5703 A2" },
1687
1688 { BGE_ASICREV_BCM5704_A0,
1689 BGE_QUIRK_ONLY_PHY_1,
1690 "BCM5704 A0" },
1691
1692 { BGE_ASICREV_BCM5704_A1,
1693 BGE_QUIRK_ONLY_PHY_1,
1694 "BCM5704 A1" },
1695
1696 { BGE_ASICREV_BCM5704_A2,
1697 BGE_QUIRK_ONLY_PHY_1,
1698 "BCM5704 A2" },
1699
1700 { 0, 0, NULL }
1701 };
1702
1703 static const struct bge_revision *
1704 bge_lookup_rev(uint32_t asicrev)
1705 {
1706 const struct bge_revision *br;
1707
1708 for (br = bge_revisions; br->br_name != NULL; br++) {
1709 if (br->br_asicrev == asicrev)
1710 return (br);
1711 }
1712
1713 return (NULL);
1714 }
1715
1716 static const struct bge_product {
1717 pci_vendor_id_t bp_vendor;
1718 pci_product_id_t bp_product;
1719 const char *bp_name;
1720 } bge_products[] = {
1721 /*
1722 * The BCM5700 documentation seems to indicate that the hardware
1723 * still has the Alteon vendor ID burned into it, though it
1724 * should always be overridden by the value in the EEPROM. We'll
1725 * check for it anyway.
1726 */
1727 { PCI_VENDOR_ALTEON,
1728 PCI_PRODUCT_ALTEON_BCM5700,
1729 "Broadcom BCM5700 Gigabit Ethernet" },
1730 { PCI_VENDOR_ALTEON,
1731 PCI_PRODUCT_ALTEON_BCM5701,
1732 "Broadcom BCM5701 Gigabit Ethernet" },
1733
1734 { PCI_VENDOR_ALTIMA,
1735 PCI_PRODUCT_ALTIMA_AC1000,
1736 "Altima AC1000 Gigabit Ethernet" },
1737 { PCI_VENDOR_ALTIMA,
1738 PCI_PRODUCT_ALTIMA_AC1001,
1739 "Altima AC1001 Gigabit Ethernet" },
1740 { PCI_VENDOR_ALTIMA,
1741 PCI_PRODUCT_ALTIMA_AC9100,
1742 "Altima AC9100 Gigabit Ethernet" },
1743
1744 { PCI_VENDOR_BROADCOM,
1745 PCI_PRODUCT_BROADCOM_BCM5700,
1746 "Broadcom BCM5700 Gigabit Ethernet" },
1747 { PCI_VENDOR_BROADCOM,
1748 PCI_PRODUCT_BROADCOM_BCM5701,
1749 "Broadcom BCM5701 Gigabit Ethernet" },
1750 { PCI_VENDOR_BROADCOM,
1751 PCI_PRODUCT_BROADCOM_BCM5702,
1752 "Broadcom BCM5702 Gigabit Ethernet" },
1753 { PCI_VENDOR_BROADCOM,
1754 PCI_PRODUCT_BROADCOM_BCM5702X,
1755 "Broadcom BCM5702X Gigabit Ethernet" },
1756 { PCI_VENDOR_BROADCOM,
1757 PCI_PRODUCT_BROADCOM_BCM5703,
1758 "Broadcom BCM5703 Gigabit Ethernet" },
1759 { PCI_VENDOR_BROADCOM,
1760 PCI_PRODUCT_BROADCOM_BCM5703X,
1761 "Broadcom BCM5703X Gigabit Ethernet" },
1762 { PCI_VENDOR_BROADCOM,
1763 PCI_PRODUCT_BROADCOM_BCM5704C,
1764 "Broadcom BCM5704C Dual Gigabit Ethernet" },
1765 { PCI_VENDOR_BROADCOM,
1766 PCI_PRODUCT_BROADCOM_BCM5704S,
1767 "Broadcom BCM5704S Dual Gigabit Ethernet" },
1768
1769
1770 { PCI_VENDOR_SCHNEIDERKOCH,
1771 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1772 "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1773
1774 { PCI_VENDOR_3COM,
1775 PCI_PRODUCT_3COM_3C996,
1776 "3Com 3c996 Gigabit Ethernet" },
1777
1778 { 0,
1779 0,
1780 NULL },
1781 };
1782
1783 static const struct bge_product *
1784 bge_lookup(const struct pci_attach_args *pa)
1785 {
1786 const struct bge_product *bp;
1787
1788 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1789 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1790 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1791 return (bp);
1792 }
1793
1794 return (NULL);
1795 }
1796
1797 int
1798 bge_setpowerstate(sc, powerlevel)
1799 struct bge_softc *sc;
1800 int powerlevel;
1801 {
1802 #ifdef NOTYET
1803 u_int32_t pm_ctl = 0;
1804
1805 /* XXX FIXME: make sure indirect accesses enabled? */
1806 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1807 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1808 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1809
1810 /* clear the PME_assert bit and power state bits, enable PME */
1811 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1812 pm_ctl &= ~PCIM_PSTAT_DMASK;
1813 pm_ctl |= (1 << 8);
1814
1815 if (powerlevel == 0) {
1816 pm_ctl |= PCIM_PSTAT_D0;
1817 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1818 pm_ctl, 2);
1819 DELAY(10000);
1820 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1821 DELAY(10000);
1822
1823 #ifdef NOTYET
1824 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1825 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1826 #endif
1827 DELAY(40); DELAY(40); DELAY(40);
1828 DELAY(10000); /* above not quite adequate on 5700 */
1829 return 0;
1830 }
1831
1832
1833 /*
1834 * Entering ACPI power states D1-D3 is achieved by wiggling
1835 * GMII gpio pins. Example code assumes all hardware vendors
1836 * followed Broadom's sample pcb layout. Until we verify that
1837 * for all supported OEM cards, states D1-D3 are unsupported.
1838 */
1839 printf("%s: power state %d unimplemented; check GPIO pins\n",
1840 sc->bge_dev.dv_xname, powerlevel);
1841 #endif
1842 return EOPNOTSUPP;
1843 }
1844
1845
1846 /*
1847 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1848 * against our list and return its name if we find a match. Note
1849 * that since the Broadcom controller contains VPD support, we
1850 * can get the device name string from the controller itself instead
1851 * of the compiled-in string. This is a little slow, but it guarantees
1852 * we'll always announce the right product name.
1853 */
1854 int
1855 bge_probe(parent, match, aux)
1856 struct device *parent;
1857 struct cfdata *match;
1858 void *aux;
1859 {
1860 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1861
1862 if (bge_lookup(pa) != NULL)
1863 return (1);
1864
1865 return (0);
1866 }
1867
1868 void
1869 bge_attach(parent, self, aux)
1870 struct device *parent, *self;
1871 void *aux;
1872 {
1873 struct bge_softc *sc = (struct bge_softc *)self;
1874 struct pci_attach_args *pa = aux;
1875 const struct bge_product *bp;
1876 const struct bge_revision *br;
1877 pci_chipset_tag_t pc = pa->pa_pc;
1878 pci_intr_handle_t ih;
1879 const char *intrstr = NULL;
1880 bus_dma_segment_t seg;
1881 int rseg;
1882 u_int32_t hwcfg = 0;
1883 u_int32_t mac_addr = 0;
1884 u_int32_t command;
1885 struct ifnet *ifp;
1886 caddr_t kva;
1887 u_char eaddr[ETHER_ADDR_LEN];
1888 pcireg_t memtype;
1889 bus_addr_t memaddr;
1890 bus_size_t memsize;
1891 u_int32_t pm_ctl;
1892
1893 bp = bge_lookup(pa);
1894 KASSERT(bp != NULL);
1895
1896 sc->bge_pa = *pa;
1897
1898 aprint_naive(": Ethernet controller\n");
1899 aprint_normal(": %s\n", bp->bp_name);
1900
1901 /*
1902 * Map control/status registers.
1903 */
1904 DPRINTFN(5, ("Map control/status regs\n"));
1905 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1906 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1907 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1908 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1909
1910 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1911 aprint_error("%s: failed to enable memory mapping!\n",
1912 sc->bge_dev.dv_xname);
1913 return;
1914 }
1915
1916 DPRINTFN(5, ("pci_mem_find\n"));
1917 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1918 switch (memtype) {
1919 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1920 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1921 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1922 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1923 &memaddr, &memsize) == 0)
1924 break;
1925 default:
1926 aprint_error("%s: can't find mem space\n",
1927 sc->bge_dev.dv_xname);
1928 return;
1929 }
1930
1931 DPRINTFN(5, ("pci_intr_map\n"));
1932 if (pci_intr_map(pa, &ih)) {
1933 aprint_error("%s: couldn't map interrupt\n",
1934 sc->bge_dev.dv_xname);
1935 return;
1936 }
1937
1938 DPRINTFN(5, ("pci_intr_string\n"));
1939 intrstr = pci_intr_string(pc, ih);
1940
1941 DPRINTFN(5, ("pci_intr_establish\n"));
1942 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1943
1944 if (sc->bge_intrhand == NULL) {
1945 aprint_error("%s: couldn't establish interrupt",
1946 sc->bge_dev.dv_xname);
1947 if (intrstr != NULL)
1948 aprint_normal(" at %s", intrstr);
1949 aprint_normal("\n");
1950 return;
1951 }
1952 aprint_normal("%s: interrupting at %s\n",
1953 sc->bge_dev.dv_xname, intrstr);
1954
1955 /*
1956 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
1957 * can clobber the chip's PCI config-space power control registers,
1958 * leaving the card in D3 powersave state.
1959 * We do not have memory-mapped registers in this state,
1960 * so force device into D0 state before starting initialization.
1961 */
1962 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
1963 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
1964 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
1965 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
1966 DELAY(1000); /* 27 usec is allegedly sufficent */
1967
1968 /* Try to reset the chip. */
1969 DPRINTFN(5, ("bge_reset\n"));
1970 bge_reset(sc);
1971
1972 if (bge_chipinit(sc)) {
1973 aprint_error("%s: chip initialization failed\n",
1974 sc->bge_dev.dv_xname);
1975 bge_release_resources(sc);
1976 return;
1977 }
1978
1979 /*
1980 * Get station address from the EEPROM.
1981 */
1982 mac_addr = bge_readmem_ind(sc, 0x0c14);
1983 if ((mac_addr >> 16) == 0x484b) {
1984 eaddr[0] = (u_char)(mac_addr >> 8);
1985 eaddr[1] = (u_char)(mac_addr >> 0);
1986 mac_addr = bge_readmem_ind(sc, 0x0c18);
1987 eaddr[2] = (u_char)(mac_addr >> 24);
1988 eaddr[3] = (u_char)(mac_addr >> 16);
1989 eaddr[4] = (u_char)(mac_addr >> 8);
1990 eaddr[5] = (u_char)(mac_addr >> 0);
1991 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
1992 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1993 aprint_error("%s: failed to read station address\n",
1994 sc->bge_dev.dv_xname);
1995 bge_release_resources(sc);
1996 return;
1997 }
1998
1999 /*
2000 * Save ASIC rev. Look up any quirks associated with this
2001 * ASIC.
2002 */
2003 sc->bge_asicrev =
2004 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2005 BGE_PCIMISCCTL_ASICREV;
2006 br = bge_lookup_rev(sc->bge_asicrev);
2007
2008 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2009 if (br == NULL) {
2010 aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
2011 sc->bge_quirks = 0;
2012 } else {
2013 aprint_normal("ASIC %s", br->br_name);
2014 sc->bge_quirks = br->br_quirks;
2015 }
2016 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2017
2018 /* Allocate the general information block and ring buffers. */
2019 if (pci_dma64_available(pa))
2020 sc->bge_dmatag = pa->pa_dmat64;
2021 else
2022 sc->bge_dmatag = pa->pa_dmat;
2023 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2024 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2025 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2026 aprint_error("%s: can't alloc rx buffers\n",
2027 sc->bge_dev.dv_xname);
2028 return;
2029 }
2030 DPRINTFN(5, ("bus_dmamem_map\n"));
2031 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2032 sizeof(struct bge_ring_data), &kva,
2033 BUS_DMA_NOWAIT)) {
2034 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2035 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2036 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2037 return;
2038 }
2039 DPRINTFN(5, ("bus_dmamem_create\n"));
2040 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2041 sizeof(struct bge_ring_data), 0,
2042 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2043 aprint_error("%s: can't create DMA map\n",
2044 sc->bge_dev.dv_xname);
2045 bus_dmamem_unmap(sc->bge_dmatag, kva,
2046 sizeof(struct bge_ring_data));
2047 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2048 return;
2049 }
2050 DPRINTFN(5, ("bus_dmamem_load\n"));
2051 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2052 sizeof(struct bge_ring_data), NULL,
2053 BUS_DMA_NOWAIT)) {
2054 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2055 bus_dmamem_unmap(sc->bge_dmatag, kva,
2056 sizeof(struct bge_ring_data));
2057 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2058 return;
2059 }
2060
2061 DPRINTFN(5, ("bzero\n"));
2062 sc->bge_rdata = (struct bge_ring_data *)kva;
2063
2064 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2065
2066 /* Try to allocate memory for jumbo buffers. */
2067 if (bge_alloc_jumbo_mem(sc)) {
2068 aprint_error("%s: jumbo buffer allocation failed\n",
2069 sc->bge_dev.dv_xname);
2070 } else
2071 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2072
2073 /* Set default tuneable values. */
2074 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2075 sc->bge_rx_coal_ticks = 150;
2076 sc->bge_rx_max_coal_bds = 64;
2077 #ifdef ORIG_WPAUL_VALUES
2078 sc->bge_tx_coal_ticks = 150;
2079 sc->bge_tx_max_coal_bds = 128;
2080 #else
2081 sc->bge_tx_coal_ticks = 300;
2082 sc->bge_tx_max_coal_bds = 400;
2083 #endif
2084
2085 /* Set up ifnet structure */
2086 ifp = &sc->ethercom.ec_if;
2087 ifp->if_softc = sc;
2088 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2089 ifp->if_ioctl = bge_ioctl;
2090 ifp->if_start = bge_start;
2091 ifp->if_init = bge_init;
2092 ifp->if_watchdog = bge_watchdog;
2093 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2094 IFQ_SET_READY(&ifp->if_snd);
2095 DPRINTFN(5, ("bcopy\n"));
2096 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2097
2098 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2099 sc->ethercom.ec_if.if_capabilities |=
2100 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2101 sc->ethercom.ec_capabilities |=
2102 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2103
2104 /*
2105 * Do MII setup.
2106 */
2107 DPRINTFN(5, ("mii setup\n"));
2108 sc->bge_mii.mii_ifp = ifp;
2109 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2110 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2111 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2112
2113 /*
2114 * Figure out what sort of media we have by checking the
2115 * hardware config word in the first 32k of NIC internal memory,
2116 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2117 * cards, this value appears to be unset. If that's the
2118 * case, we have to rely on identifying the NIC by its PCI
2119 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2120 */
2121 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2122 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2123 } else {
2124 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2125 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2126 hwcfg = be32toh(hwcfg);
2127 }
2128 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2129 sc->bge_tbi = 1;
2130
2131 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2132 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2133 SK_SUBSYSID_9D41)
2134 sc->bge_tbi = 1;
2135
2136 if (sc->bge_tbi) {
2137 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2138 bge_ifmedia_sts);
2139 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2140 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2141 0, NULL);
2142 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2143 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2144 } else {
2145 /*
2146 * Do transceiver setup.
2147 */
2148 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2149 bge_ifmedia_sts);
2150 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2151 MII_PHY_ANY, MII_OFFSET_ANY, 0);
2152
2153 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2154 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2155 ifmedia_add(&sc->bge_mii.mii_media,
2156 IFM_ETHER|IFM_MANUAL, 0, NULL);
2157 ifmedia_set(&sc->bge_mii.mii_media,
2158 IFM_ETHER|IFM_MANUAL);
2159 } else
2160 ifmedia_set(&sc->bge_mii.mii_media,
2161 IFM_ETHER|IFM_AUTO);
2162 }
2163
2164 /*
2165 * When using the BCM5701 in PCI-X mode, data corruption has
2166 * been observed in the first few bytes of some received packets.
2167 * Aligning the packet buffer in memory eliminates the corruption.
2168 * Unfortunately, this misaligns the packet payloads. On platforms
2169 * which do not support unaligned accesses, we will realign the
2170 * payloads by copying the received packets.
2171 */
2172 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2173 /* If in PCI-X mode, work around the alignment bug. */
2174 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2175 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2176 BGE_PCISTATE_PCI_BUSSPEED)
2177 sc->bge_rx_alignment_bug = 1;
2178 }
2179
2180 /*
2181 * Call MI attach routine.
2182 */
2183 DPRINTFN(5, ("if_attach\n"));
2184 if_attach(ifp);
2185 DPRINTFN(5, ("ether_ifattach\n"));
2186 ether_ifattach(ifp, eaddr);
2187 DPRINTFN(5, ("callout_init\n"));
2188 callout_init(&sc->bge_timeout);
2189 }
2190
2191 void
2192 bge_release_resources(sc)
2193 struct bge_softc *sc;
2194 {
2195 if (sc->bge_vpd_prodname != NULL)
2196 free(sc->bge_vpd_prodname, M_DEVBUF);
2197
2198 if (sc->bge_vpd_readonly != NULL)
2199 free(sc->bge_vpd_readonly, M_DEVBUF);
2200 }
2201
2202 void
2203 bge_reset(sc)
2204 struct bge_softc *sc;
2205 {
2206 struct pci_attach_args *pa = &sc->bge_pa;
2207 u_int32_t cachesize, command, pcistate;
2208 int i, val = 0;
2209
2210 /* Save some important PCI state. */
2211 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2212 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2213 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2214
2215 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2216 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2217 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2218
2219 /* Issue global reset */
2220 bge_writereg_ind(sc, BGE_MISC_CFG,
2221 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2222
2223 DELAY(1000);
2224
2225 /* Reset some of the PCI state that got zapped by reset */
2226 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2227 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2228 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2229 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2230 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2231 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2232
2233 /* Enable memory arbiter. */
2234 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2235
2236 /*
2237 * Prevent PXE restart: write a magic number to the
2238 * general communications memory at 0xB50.
2239 */
2240 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2241
2242 /*
2243 * Poll the value location we just wrote until
2244 * we see the 1's complement of the magic number.
2245 * This indicates that the firmware initialization
2246 * is complete.
2247 */
2248 for (i = 0; i < 750; i++) {
2249 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2250 if (val == ~BGE_MAGIC_NUMBER)
2251 break;
2252 DELAY(1000);
2253 }
2254
2255 if (i == 750) {
2256 printf("%s: firmware handshake timed out, val = %x\n",
2257 sc->bge_dev.dv_xname, val);
2258 return;
2259 }
2260
2261 /*
2262 * XXX Wait for the value of the PCISTATE register to
2263 * return to its original pre-reset state. This is a
2264 * fairly good indicator of reset completion. If we don't
2265 * wait for the reset to fully complete, trying to read
2266 * from the device's non-PCI registers may yield garbage
2267 * results.
2268 */
2269 for (i = 0; i < BGE_TIMEOUT; i++) {
2270 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2271 pcistate)
2272 break;
2273 DELAY(10);
2274 }
2275
2276 /* Enable memory arbiter. */
2277 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2278
2279 /* Fix up byte swapping */
2280 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2281
2282 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2283
2284 DELAY(10000);
2285 }
2286
2287 /*
2288 * Frame reception handling. This is called if there's a frame
2289 * on the receive return list.
2290 *
2291 * Note: we have to be able to handle two possibilities here:
2292 * 1) the frame is from the jumbo recieve ring
2293 * 2) the frame is from the standard receive ring
2294 */
2295
2296 void
2297 bge_rxeof(sc)
2298 struct bge_softc *sc;
2299 {
2300 struct ifnet *ifp;
2301 int stdcnt = 0, jumbocnt = 0;
2302 int have_tag = 0;
2303 u_int16_t vlan_tag = 0;
2304 bus_dmamap_t dmamap;
2305 bus_addr_t offset, toff;
2306 bus_size_t tlen;
2307 int tosync;
2308
2309 ifp = &sc->ethercom.ec_if;
2310
2311 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2312 offsetof(struct bge_ring_data, bge_status_block),
2313 sizeof (struct bge_status_block),
2314 BUS_DMASYNC_POSTREAD);
2315
2316 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2317 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2318 sc->bge_rx_saved_considx;
2319
2320 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2321
2322 if (tosync < 0) {
2323 tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
2324 sizeof (struct bge_rx_bd);
2325 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2326 toff, tlen, BUS_DMASYNC_POSTREAD);
2327 tosync = -tosync;
2328 }
2329
2330 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2331 offset, tosync * sizeof (struct bge_rx_bd),
2332 BUS_DMASYNC_POSTREAD);
2333
2334 while(sc->bge_rx_saved_considx !=
2335 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2336 struct bge_rx_bd *cur_rx;
2337 u_int32_t rxidx;
2338 struct mbuf *m = NULL;
2339
2340 cur_rx = &sc->bge_rdata->
2341 bge_rx_return_ring[sc->bge_rx_saved_considx];
2342
2343 rxidx = cur_rx->bge_idx;
2344 BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2345
2346 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2347 have_tag = 1;
2348 vlan_tag = cur_rx->bge_vlan_tag;
2349 }
2350
2351 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2352 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2353 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2354 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2355 jumbocnt++;
2356 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2357 ifp->if_ierrors++;
2358 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2359 continue;
2360 }
2361 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2362 NULL)== ENOBUFS) {
2363 ifp->if_ierrors++;
2364 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2365 continue;
2366 }
2367 } else {
2368 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2369 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2370 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2371 stdcnt++;
2372 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2373 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2374 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2375 ifp->if_ierrors++;
2376 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2377 continue;
2378 }
2379 if (bge_newbuf_std(sc, sc->bge_std,
2380 NULL, dmamap) == ENOBUFS) {
2381 ifp->if_ierrors++;
2382 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2383 continue;
2384 }
2385 }
2386
2387 ifp->if_ipackets++;
2388 #ifndef __NO_STRICT_ALIGNMENT
2389 /*
2390 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2391 * the Rx buffer has the layer-2 header unaligned.
2392 * If our CPU requires alignment, re-align by copying.
2393 */
2394 if (sc->bge_rx_alignment_bug) {
2395 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2396 cur_rx->bge_len);
2397 m->m_data += ETHER_ALIGN;
2398 }
2399 #endif
2400
2401 m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2402 m->m_pkthdr.rcvif = ifp;
2403
2404 #if NBPFILTER > 0
2405 /*
2406 * Handle BPF listeners. Let the BPF user see the packet.
2407 */
2408 if (ifp->if_bpf)
2409 bpf_mtap(ifp->if_bpf, m);
2410 #endif
2411
2412 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
2413 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2414 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2415 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2416 #if 0 /* XXX appears to be broken */
2417 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2418 m->m_pkthdr.csum_data =
2419 cur_rx->bge_tcp_udp_csum;
2420 m->m_pkthdr.csum_flags |=
2421 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2422 }
2423 #endif
2424 }
2425
2426 /*
2427 * If we received a packet with a vlan tag, pass it
2428 * to vlan_input() instead of ether_input().
2429 */
2430 if (have_tag) {
2431 struct m_tag *mtag;
2432
2433 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2434 M_NOWAIT);
2435 if (mtag != NULL) {
2436 *(u_int *)(mtag + 1) = vlan_tag;
2437 m_tag_prepend(m, mtag);
2438 have_tag = vlan_tag = 0;
2439 } else {
2440 printf("%s: no mbuf for tag\n", ifp->if_xname);
2441 m_freem(m);
2442 have_tag = vlan_tag = 0;
2443 continue;
2444 }
2445 }
2446 (*ifp->if_input)(ifp, m);
2447 }
2448
2449 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2450 if (stdcnt)
2451 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2452 if (jumbocnt)
2453 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2454 }
2455
2456 void
2457 bge_txeof(sc)
2458 struct bge_softc *sc;
2459 {
2460 struct bge_tx_bd *cur_tx = NULL;
2461 struct ifnet *ifp;
2462 struct txdmamap_pool_entry *dma;
2463 bus_addr_t offset, toff;
2464 bus_size_t tlen;
2465 int tosync;
2466 struct mbuf *m;
2467
2468 ifp = &sc->ethercom.ec_if;
2469
2470 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2471 offsetof(struct bge_ring_data, bge_status_block),
2472 sizeof (struct bge_status_block),
2473 BUS_DMASYNC_POSTREAD);
2474
2475 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2476 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2477 sc->bge_tx_saved_considx;
2478
2479 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2480
2481 if (tosync < 0) {
2482 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2483 sizeof (struct bge_tx_bd);
2484 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2485 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2486 tosync = -tosync;
2487 }
2488
2489 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2490 offset, tosync * sizeof (struct bge_tx_bd),
2491 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2492
2493 /*
2494 * Go through our tx ring and free mbufs for those
2495 * frames that have been sent.
2496 */
2497 while (sc->bge_tx_saved_considx !=
2498 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2499 u_int32_t idx = 0;
2500
2501 idx = sc->bge_tx_saved_considx;
2502 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2503 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2504 ifp->if_opackets++;
2505 m = sc->bge_cdata.bge_tx_chain[idx];
2506 if (m != NULL) {
2507 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2508 dma = sc->txdma[idx];
2509 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2510 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2511 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2512 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2513 sc->txdma[idx] = NULL;
2514
2515 m_freem(m);
2516 }
2517 sc->bge_txcnt--;
2518 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2519 ifp->if_timer = 0;
2520 }
2521
2522 if (cur_tx != NULL)
2523 ifp->if_flags &= ~IFF_OACTIVE;
2524 }
2525
2526 int
2527 bge_intr(xsc)
2528 void *xsc;
2529 {
2530 struct bge_softc *sc;
2531 struct ifnet *ifp;
2532
2533 sc = xsc;
2534 ifp = &sc->ethercom.ec_if;
2535
2536 #ifdef notdef
2537 /* Avoid this for now -- checking this register is expensive. */
2538 /* Make sure this is really our interrupt. */
2539 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2540 return (0);
2541 #endif
2542 /* Ack interrupt and stop others from occuring. */
2543 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2544
2545 /*
2546 * Process link state changes.
2547 * Grrr. The link status word in the status block does
2548 * not work correctly on the BCM5700 rev AX and BX chips,
2549 * according to all avaibable information. Hence, we have
2550 * to enable MII interrupts in order to properly obtain
2551 * async link changes. Unfortunately, this also means that
2552 * we have to read the MAC status register to detect link
2553 * changes, thereby adding an additional register access to
2554 * the interrupt handler.
2555 */
2556
2557 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2558 u_int32_t status;
2559
2560 status = CSR_READ_4(sc, BGE_MAC_STS);
2561 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2562 sc->bge_link = 0;
2563 callout_stop(&sc->bge_timeout);
2564 bge_tick(sc);
2565 /* Clear the interrupt */
2566 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2567 BGE_EVTENB_MI_INTERRUPT);
2568 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2569 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2570 BRGPHY_INTRS);
2571 }
2572 } else {
2573 if (sc->bge_rdata->bge_status_block.bge_status &
2574 BGE_STATFLAG_LINKSTATE_CHANGED) {
2575 sc->bge_link = 0;
2576 callout_stop(&sc->bge_timeout);
2577 bge_tick(sc);
2578 /* Clear the interrupt */
2579 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2580 BGE_MACSTAT_CFG_CHANGED);
2581 }
2582 }
2583
2584 if (ifp->if_flags & IFF_RUNNING) {
2585 /* Check RX return ring producer/consumer */
2586 bge_rxeof(sc);
2587
2588 /* Check TX ring producer/consumer */
2589 bge_txeof(sc);
2590 }
2591
2592 bge_handle_events(sc);
2593
2594 /* Re-enable interrupts. */
2595 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2596
2597 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2598 bge_start(ifp);
2599
2600 return (1);
2601 }
2602
2603 void
2604 bge_tick(xsc)
2605 void *xsc;
2606 {
2607 struct bge_softc *sc = xsc;
2608 struct mii_data *mii = &sc->bge_mii;
2609 struct ifmedia *ifm = NULL;
2610 struct ifnet *ifp = &sc->ethercom.ec_if;
2611 int s;
2612
2613 s = splnet();
2614
2615 bge_stats_update(sc);
2616 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2617 if (sc->bge_link) {
2618 splx(s);
2619 return;
2620 }
2621
2622 if (sc->bge_tbi) {
2623 ifm = &sc->bge_ifmedia;
2624 if (CSR_READ_4(sc, BGE_MAC_STS) &
2625 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2626 sc->bge_link++;
2627 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2628 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2629 bge_start(ifp);
2630 }
2631 splx(s);
2632 return;
2633 }
2634
2635 mii_tick(mii);
2636
2637 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2638 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2639 sc->bge_link++;
2640 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2641 bge_start(ifp);
2642 }
2643
2644 splx(s);
2645 }
2646
2647 void
2648 bge_stats_update(sc)
2649 struct bge_softc *sc;
2650 {
2651 struct ifnet *ifp = &sc->ethercom.ec_if;
2652 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2653
2654 #define READ_STAT(sc, stats, stat) \
2655 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2656
2657 ifp->if_collisions +=
2658 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2659 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2660 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2661 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2662 ifp->if_collisions;
2663
2664 #undef READ_STAT
2665
2666 #ifdef notdef
2667 ifp->if_collisions +=
2668 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2669 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2670 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2671 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2672 ifp->if_collisions;
2673 #endif
2674 }
2675
2676 /*
2677 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2678 * pointers to descriptors.
2679 */
2680 int
2681 bge_encap(sc, m_head, txidx)
2682 struct bge_softc *sc;
2683 struct mbuf *m_head;
2684 u_int32_t *txidx;
2685 {
2686 struct bge_tx_bd *f = NULL;
2687 u_int32_t frag, cur, cnt = 0;
2688 u_int16_t csum_flags = 0;
2689 struct txdmamap_pool_entry *dma;
2690 bus_dmamap_t dmamap;
2691 int i = 0;
2692 struct m_tag *mtag;
2693 struct mbuf *prev, *m;
2694 int totlen, prevlen;
2695
2696 cur = frag = *txidx;
2697
2698 if (m_head->m_pkthdr.csum_flags) {
2699 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2700 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2701 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2702 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2703 }
2704
2705 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
2706 goto doit;
2707 /*
2708 * bcm5700 Revision B silicon cannot handle DMA descriptors with
2709 * less than eight bytes. If we encounter a teeny mbuf
2710 * at the end of a chain, we can pad. Otherwise, copy.
2711 */
2712 prev = NULL;
2713 totlen = 0;
2714 for (m = m_head; m != NULL; prev = m,m = m->m_next) {
2715 int mlen = m->m_len;
2716
2717 totlen += mlen;
2718 if (mlen == 0) {
2719 /* print a warning? */
2720 continue;
2721 }
2722 if (mlen >= 8)
2723 continue;
2724
2725 /* If we get here, mbuf data is too small for DMA engine. */
2726 if (m->m_next != 0) {
2727 /* Internal frag. If fits in prev, copy it there. */
2728 if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
2729 !M_READONLY(prev)) {
2730 bcopy(m->m_data,
2731 prev->m_data+prev->m_len,
2732 mlen);
2733 prev->m_len += mlen;
2734 m->m_len = 0;
2735 MFREE(m, prev->m_next); /* XXX stitch chain */
2736 m = prev;
2737 continue;
2738 } else {
2739 struct mbuf *n;
2740 /* slow copy */
2741 slowcopy:
2742 n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
2743 m_freem(m_head);
2744 if (n == 0)
2745 return 0;
2746 m_head = n;
2747 goto doit;
2748 }
2749 } else if ((totlen -mlen +8) >= 1500) {
2750 goto slowcopy;
2751 }
2752 prevlen = m->m_len;
2753 }
2754
2755 doit:
2756 dma = SLIST_FIRST(&sc->txdma_list);
2757 if (dma == NULL)
2758 return ENOBUFS;
2759 dmamap = dma->dmamap;
2760
2761 /*
2762 * Start packing the mbufs in this chain into
2763 * the fragment pointers. Stop when we run out
2764 * of fragments or hit the end of the mbuf chain.
2765 */
2766 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2767 BUS_DMA_NOWAIT))
2768 return(ENOBUFS);
2769
2770 mtag = sc->ethercom.ec_nvlans ?
2771 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
2772
2773 for (i = 0; i < dmamap->dm_nsegs; i++) {
2774 f = &sc->bge_rdata->bge_tx_ring[frag];
2775 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2776 break;
2777 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2778 f->bge_len = dmamap->dm_segs[i].ds_len;
2779 f->bge_flags = csum_flags;
2780
2781 if (mtag != NULL) {
2782 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2783 f->bge_vlan_tag = *(u_int *)(mtag + 1);
2784 } else {
2785 f->bge_vlan_tag = 0;
2786 }
2787 /*
2788 * Sanity check: avoid coming within 16 descriptors
2789 * of the end of the ring.
2790 */
2791 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2792 return(ENOBUFS);
2793 cur = frag;
2794 BGE_INC(frag, BGE_TX_RING_CNT);
2795 cnt++;
2796 }
2797
2798 if (i < dmamap->dm_nsegs)
2799 return ENOBUFS;
2800
2801 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2802 BUS_DMASYNC_PREWRITE);
2803
2804 if (frag == sc->bge_tx_saved_considx)
2805 return(ENOBUFS);
2806
2807 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2808 sc->bge_cdata.bge_tx_chain[cur] = m_head;
2809 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2810 sc->txdma[cur] = dma;
2811 sc->bge_txcnt += cnt;
2812
2813 *txidx = frag;
2814
2815 return(0);
2816 }
2817
2818 /*
2819 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2820 * to the mbuf data regions directly in the transmit descriptors.
2821 */
2822 void
2823 bge_start(ifp)
2824 struct ifnet *ifp;
2825 {
2826 struct bge_softc *sc;
2827 struct mbuf *m_head = NULL;
2828 u_int32_t prodidx = 0;
2829 int pkts = 0;
2830
2831 sc = ifp->if_softc;
2832
2833 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2834 return;
2835
2836 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2837
2838 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2839 IFQ_POLL(&ifp->if_snd, m_head);
2840 if (m_head == NULL)
2841 break;
2842
2843 #if 0
2844 /*
2845 * XXX
2846 * safety overkill. If this is a fragmented packet chain
2847 * with delayed TCP/UDP checksums, then only encapsulate
2848 * it if we have enough descriptors to handle the entire
2849 * chain at once.
2850 * (paranoia -- may not actually be needed)
2851 */
2852 if (m_head->m_flags & M_FIRSTFRAG &&
2853 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2854 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2855 m_head->m_pkthdr.csum_data + 16) {
2856 ifp->if_flags |= IFF_OACTIVE;
2857 break;
2858 }
2859 }
2860 #endif
2861
2862 /*
2863 * Pack the data into the transmit ring. If we
2864 * don't have room, set the OACTIVE flag and wait
2865 * for the NIC to drain the ring.
2866 */
2867 if (bge_encap(sc, m_head, &prodidx)) {
2868 ifp->if_flags |= IFF_OACTIVE;
2869 break;
2870 }
2871
2872 /* now we are committed to transmit the packet */
2873 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2874 pkts++;
2875
2876 #if NBPFILTER > 0
2877 /*
2878 * If there's a BPF listener, bounce a copy of this frame
2879 * to him.
2880 */
2881 if (ifp->if_bpf)
2882 bpf_mtap(ifp->if_bpf, m_head);
2883 #endif
2884 }
2885 if (pkts == 0)
2886 return;
2887
2888 /* Transmit */
2889 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2890 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
2891 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2892
2893 /*
2894 * Set a timeout in case the chip goes out to lunch.
2895 */
2896 ifp->if_timer = 5;
2897 }
2898
2899 int
2900 bge_init(ifp)
2901 struct ifnet *ifp;
2902 {
2903 struct bge_softc *sc = ifp->if_softc;
2904 u_int16_t *m;
2905 int s, error;
2906
2907 s = splnet();
2908
2909 ifp = &sc->ethercom.ec_if;
2910
2911 /* Cancel pending I/O and flush buffers. */
2912 bge_stop(sc);
2913 bge_reset(sc);
2914 bge_chipinit(sc);
2915
2916 /*
2917 * Init the various state machines, ring
2918 * control blocks and firmware.
2919 */
2920 error = bge_blockinit(sc);
2921 if (error != 0) {
2922 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2923 error);
2924 splx(s);
2925 return error;
2926 }
2927
2928 ifp = &sc->ethercom.ec_if;
2929
2930 /* Specify MTU. */
2931 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2932 ETHER_HDR_LEN + ETHER_CRC_LEN);
2933
2934 /* Load our MAC address. */
2935 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2936 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2937 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2938
2939 /* Enable or disable promiscuous mode as needed. */
2940 if (ifp->if_flags & IFF_PROMISC) {
2941 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2942 } else {
2943 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2944 }
2945
2946 /* Program multicast filter. */
2947 bge_setmulti(sc);
2948
2949 /* Init RX ring. */
2950 bge_init_rx_ring_std(sc);
2951
2952 /* Init jumbo RX ring. */
2953 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2954 bge_init_rx_ring_jumbo(sc);
2955
2956 /* Init our RX return ring index */
2957 sc->bge_rx_saved_considx = 0;
2958
2959 /* Init TX ring. */
2960 bge_init_tx_ring(sc);
2961
2962 /* Turn on transmitter */
2963 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2964
2965 /* Turn on receiver */
2966 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2967
2968 /* Tell firmware we're alive. */
2969 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2970
2971 /* Enable host interrupts. */
2972 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2973 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2974 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2975
2976 bge_ifmedia_upd(ifp);
2977
2978 ifp->if_flags |= IFF_RUNNING;
2979 ifp->if_flags &= ~IFF_OACTIVE;
2980
2981 splx(s);
2982
2983 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2984
2985 return 0;
2986 }
2987
2988 /*
2989 * Set media options.
2990 */
2991 int
2992 bge_ifmedia_upd(ifp)
2993 struct ifnet *ifp;
2994 {
2995 struct bge_softc *sc = ifp->if_softc;
2996 struct mii_data *mii = &sc->bge_mii;
2997 struct ifmedia *ifm = &sc->bge_ifmedia;
2998
2999 /* If this is a 1000baseX NIC, enable the TBI port. */
3000 if (sc->bge_tbi) {
3001 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3002 return(EINVAL);
3003 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3004 case IFM_AUTO:
3005 break;
3006 case IFM_1000_SX:
3007 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3008 BGE_CLRBIT(sc, BGE_MAC_MODE,
3009 BGE_MACMODE_HALF_DUPLEX);
3010 } else {
3011 BGE_SETBIT(sc, BGE_MAC_MODE,
3012 BGE_MACMODE_HALF_DUPLEX);
3013 }
3014 break;
3015 default:
3016 return(EINVAL);
3017 }
3018 return(0);
3019 }
3020
3021 sc->bge_link = 0;
3022 mii_mediachg(mii);
3023
3024 return(0);
3025 }
3026
3027 /*
3028 * Report current media status.
3029 */
3030 void
3031 bge_ifmedia_sts(ifp, ifmr)
3032 struct ifnet *ifp;
3033 struct ifmediareq *ifmr;
3034 {
3035 struct bge_softc *sc = ifp->if_softc;
3036 struct mii_data *mii = &sc->bge_mii;
3037
3038 if (sc->bge_tbi) {
3039 ifmr->ifm_status = IFM_AVALID;
3040 ifmr->ifm_active = IFM_ETHER;
3041 if (CSR_READ_4(sc, BGE_MAC_STS) &
3042 BGE_MACSTAT_TBI_PCS_SYNCHED)
3043 ifmr->ifm_status |= IFM_ACTIVE;
3044 ifmr->ifm_active |= IFM_1000_SX;
3045 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3046 ifmr->ifm_active |= IFM_HDX;
3047 else
3048 ifmr->ifm_active |= IFM_FDX;
3049 return;
3050 }
3051
3052 mii_pollstat(mii);
3053 ifmr->ifm_active = mii->mii_media_active;
3054 ifmr->ifm_status = mii->mii_media_status;
3055 }
3056
3057 int
3058 bge_ioctl(ifp, command, data)
3059 struct ifnet *ifp;
3060 u_long command;
3061 caddr_t data;
3062 {
3063 struct bge_softc *sc = ifp->if_softc;
3064 struct ifreq *ifr = (struct ifreq *) data;
3065 int s, error = 0;
3066 struct mii_data *mii;
3067
3068 s = splnet();
3069
3070 switch(command) {
3071 case SIOCSIFFLAGS:
3072 if (ifp->if_flags & IFF_UP) {
3073 /*
3074 * If only the state of the PROMISC flag changed,
3075 * then just use the 'set promisc mode' command
3076 * instead of reinitializing the entire NIC. Doing
3077 * a full re-init means reloading the firmware and
3078 * waiting for it to start up, which may take a
3079 * second or two.
3080 */
3081 if (ifp->if_flags & IFF_RUNNING &&
3082 ifp->if_flags & IFF_PROMISC &&
3083 !(sc->bge_if_flags & IFF_PROMISC)) {
3084 BGE_SETBIT(sc, BGE_RX_MODE,
3085 BGE_RXMODE_RX_PROMISC);
3086 } else if (ifp->if_flags & IFF_RUNNING &&
3087 !(ifp->if_flags & IFF_PROMISC) &&
3088 sc->bge_if_flags & IFF_PROMISC) {
3089 BGE_CLRBIT(sc, BGE_RX_MODE,
3090 BGE_RXMODE_RX_PROMISC);
3091 } else
3092 bge_init(ifp);
3093 } else {
3094 if (ifp->if_flags & IFF_RUNNING) {
3095 bge_stop(sc);
3096 }
3097 }
3098 sc->bge_if_flags = ifp->if_flags;
3099 error = 0;
3100 break;
3101 case SIOCSIFMEDIA:
3102 case SIOCGIFMEDIA:
3103 if (sc->bge_tbi) {
3104 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3105 command);
3106 } else {
3107 mii = &sc->bge_mii;
3108 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3109 command);
3110 }
3111 error = 0;
3112 break;
3113 default:
3114 error = ether_ioctl(ifp, command, data);
3115 if (error == ENETRESET) {
3116 bge_setmulti(sc);
3117 error = 0;
3118 }
3119 break;
3120 }
3121
3122 splx(s);
3123
3124 return(error);
3125 }
3126
3127 void
3128 bge_watchdog(ifp)
3129 struct ifnet *ifp;
3130 {
3131 struct bge_softc *sc;
3132
3133 sc = ifp->if_softc;
3134
3135 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3136
3137 ifp->if_flags &= ~IFF_RUNNING;
3138 bge_init(ifp);
3139
3140 ifp->if_oerrors++;
3141 }
3142
3143 static void
3144 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3145 {
3146 int i;
3147
3148 BGE_CLRBIT(sc, reg, bit);
3149
3150 for (i = 0; i < BGE_TIMEOUT; i++) {
3151 if ((CSR_READ_4(sc, reg) & bit) == 0)
3152 return;
3153 delay(100);
3154 }
3155
3156 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3157 sc->bge_dev.dv_xname, (u_long) reg, bit);
3158 }
3159
3160 /*
3161 * Stop the adapter and free any mbufs allocated to the
3162 * RX and TX lists.
3163 */
3164 void
3165 bge_stop(sc)
3166 struct bge_softc *sc;
3167 {
3168 struct ifnet *ifp = &sc->ethercom.ec_if;
3169
3170 callout_stop(&sc->bge_timeout);
3171
3172 /*
3173 * Disable all of the receiver blocks
3174 */
3175 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3176 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3177 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3178 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3179 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3180 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3181 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3182
3183 /*
3184 * Disable all of the transmit blocks
3185 */
3186 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3187 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3188 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3189 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3190 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3191 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3192 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3193
3194 /*
3195 * Shut down all of the memory managers and related
3196 * state machines.
3197 */
3198 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3199 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3200 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3201
3202 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3203 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3204
3205 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3206 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3207
3208 /* Disable host interrupts. */
3209 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3210 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3211
3212 /*
3213 * Tell firmware we're shutting down.
3214 */
3215 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3216
3217 /* Free the RX lists. */
3218 bge_free_rx_ring_std(sc);
3219
3220 /* Free jumbo RX list. */
3221 bge_free_rx_ring_jumbo(sc);
3222
3223 /* Free TX buffers. */
3224 bge_free_tx_ring(sc);
3225
3226 /*
3227 * Isolate/power down the PHY.
3228 */
3229 if (!sc->bge_tbi)
3230 mii_down(&sc->bge_mii);
3231
3232 sc->bge_link = 0;
3233
3234 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3235
3236 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3237 }
3238
3239 /*
3240 * Stop all chip I/O so that the kernel's probe routines don't
3241 * get confused by errant DMAs when rebooting.
3242 */
3243 void
3244 bge_shutdown(xsc)
3245 void *xsc;
3246 {
3247 struct bge_softc *sc = (struct bge_softc *)xsc;
3248
3249 bge_stop(sc);
3250 bge_reset(sc);
3251 }
3252