Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.43
      1 /*	$NetBSD: if_bge.c,v 1.43 2003/07/14 15:47:24 lukem Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.43 2003/07/14 15:47:24 lukem Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "vlan.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/device.h>
     95 #include <sys/socket.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #ifdef INET
    103 #include <netinet/in.h>
    104 #include <netinet/in_systm.h>
    105 #include <netinet/in_var.h>
    106 #include <netinet/ip.h>
    107 #endif
    108 
    109 #if NBPFILTER > 0
    110 #include <net/bpf.h>
    111 #endif
    112 
    113 #include <dev/pci/pcireg.h>
    114 #include <dev/pci/pcivar.h>
    115 #include <dev/pci/pcidevs.h>
    116 
    117 #include <dev/mii/mii.h>
    118 #include <dev/mii/miivar.h>
    119 #include <dev/mii/miidevs.h>
    120 #include <dev/mii/brgphyreg.h>
    121 
    122 #include <dev/pci/if_bgereg.h>
    123 
    124 #include <uvm/uvm_extern.h>
    125 
    126 int bge_probe(struct device *, struct cfdata *, void *);
    127 void bge_attach(struct device *, struct device *, void *);
    128 void bge_release_resources(struct bge_softc *);
    129 void bge_txeof(struct bge_softc *);
    130 void bge_rxeof(struct bge_softc *);
    131 
    132 void bge_tick(void *);
    133 void bge_stats_update(struct bge_softc *);
    134 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    135 
    136 int bge_intr(void *);
    137 void bge_start(struct ifnet *);
    138 int bge_ioctl(struct ifnet *, u_long, caddr_t);
    139 int bge_init(struct ifnet *);
    140 void bge_stop(struct bge_softc *);
    141 void bge_watchdog(struct ifnet *);
    142 void bge_shutdown(void *);
    143 int bge_ifmedia_upd(struct ifnet *);
    144 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    145 
    146 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
    147 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
    148 
    149 void bge_setmulti(struct bge_softc *);
    150 
    151 void bge_handle_events(struct bge_softc *);
    152 int bge_alloc_jumbo_mem(struct bge_softc *);
    153 void bge_free_jumbo_mem(struct bge_softc *);
    154 void *bge_jalloc(struct bge_softc *);
    155 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
    156 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
    157 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    158 int bge_init_rx_ring_std(struct bge_softc *);
    159 void bge_free_rx_ring_std(struct bge_softc *);
    160 int bge_init_rx_ring_jumbo(struct bge_softc *);
    161 void bge_free_rx_ring_jumbo(struct bge_softc *);
    162 void bge_free_tx_ring(struct bge_softc *);
    163 int bge_init_tx_ring(struct bge_softc *);
    164 
    165 int bge_chipinit(struct bge_softc *);
    166 int bge_blockinit(struct bge_softc *);
    167 int bge_setpowerstate(struct bge_softc *, int);
    168 
    169 #ifdef notdef
    170 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
    171 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
    172 void bge_vpd_read(struct bge_softc *);
    173 #endif
    174 
    175 u_int32_t bge_readmem_ind(struct bge_softc *, int);
    176 void bge_writemem_ind(struct bge_softc *, int, int);
    177 #ifdef notdef
    178 u_int32_t bge_readreg_ind(struct bge_softc *, int);
    179 #endif
    180 void bge_writereg_ind(struct bge_softc *, int, int);
    181 
    182 int bge_miibus_readreg(struct device *, int, int);
    183 void bge_miibus_writereg(struct device *, int, int, int);
    184 void bge_miibus_statchg(struct device *);
    185 
    186 void bge_reset(struct bge_softc *);
    187 
    188 void bge_dump_status(struct bge_softc *);
    189 void bge_dump_rxbd(struct bge_rx_bd *);
    190 
    191 #define BGE_DEBUG
    192 #ifdef BGE_DEBUG
    193 #define DPRINTF(x)	if (bgedebug) printf x
    194 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    195 int	bgedebug = 0;
    196 #else
    197 #define DPRINTF(x)
    198 #define DPRINTFN(n,x)
    199 #endif
    200 
    201 /* Various chip quirks. */
    202 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    203 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    204 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    205 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    206 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    207 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    208 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    209 
    210 /* following bugs are common to bcm5700 rev B, all flavours */
    211 #define BGE_QUIRK_5700_COMMON \
    212 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    213 
    214 CFATTACH_DECL(bge, sizeof(struct bge_softc),
    215     bge_probe, bge_attach, NULL, NULL);
    216 
    217 u_int32_t
    218 bge_readmem_ind(sc, off)
    219 	struct bge_softc *sc;
    220 	int off;
    221 {
    222 	struct pci_attach_args	*pa = &(sc->bge_pa);
    223 	pcireg_t val;
    224 
    225 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    226 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    227 	return val;
    228 }
    229 
    230 void
    231 bge_writemem_ind(sc, off, val)
    232 	struct bge_softc *sc;
    233 	int off, val;
    234 {
    235 	struct pci_attach_args	*pa = &(sc->bge_pa);
    236 
    237 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    238 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    239 }
    240 
    241 #ifdef notdef
    242 u_int32_t
    243 bge_readreg_ind(sc, off)
    244 	struct bge_softc *sc;
    245 	int off;
    246 {
    247 	struct pci_attach_args	*pa = &(sc->bge_pa);
    248 
    249 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    250 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    251 }
    252 #endif
    253 
    254 void
    255 bge_writereg_ind(sc, off, val)
    256 	struct bge_softc *sc;
    257 	int off, val;
    258 {
    259 	struct pci_attach_args	*pa = &(sc->bge_pa);
    260 
    261 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    262 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    263 }
    264 
    265 #ifdef notdef
    266 u_int8_t
    267 bge_vpd_readbyte(sc, addr)
    268 	struct bge_softc *sc;
    269 	int addr;
    270 {
    271 	int i;
    272 	u_int32_t val;
    273 	struct pci_attach_args	*pa = &(sc->bge_pa);
    274 
    275 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    276 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    277 		DELAY(10);
    278 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    279 		    BGE_VPD_FLAG)
    280 			break;
    281 	}
    282 
    283 	if (i == BGE_TIMEOUT) {
    284 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    285 		return(0);
    286 	}
    287 
    288 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    289 
    290 	return((val >> ((addr % 4) * 8)) & 0xFF);
    291 }
    292 
    293 void
    294 bge_vpd_read_res(sc, res, addr)
    295 	struct bge_softc *sc;
    296 	struct vpd_res *res;
    297 	int addr;
    298 {
    299 	int i;
    300 	u_int8_t *ptr;
    301 
    302 	ptr = (u_int8_t *)res;
    303 	for (i = 0; i < sizeof(struct vpd_res); i++)
    304 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    305 }
    306 
    307 void
    308 bge_vpd_read(sc)
    309 	struct bge_softc *sc;
    310 {
    311 	int pos = 0, i;
    312 	struct vpd_res res;
    313 
    314 	if (sc->bge_vpd_prodname != NULL)
    315 		free(sc->bge_vpd_prodname, M_DEVBUF);
    316 	if (sc->bge_vpd_readonly != NULL)
    317 		free(sc->bge_vpd_readonly, M_DEVBUF);
    318 	sc->bge_vpd_prodname = NULL;
    319 	sc->bge_vpd_readonly = NULL;
    320 
    321 	bge_vpd_read_res(sc, &res, pos);
    322 
    323 	if (res.vr_id != VPD_RES_ID) {
    324 		printf("%s: bad VPD resource id: expected %x got %x\n",
    325 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    326 		return;
    327 	}
    328 
    329 	pos += sizeof(res);
    330 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    331 	if (sc->bge_vpd_prodname == NULL)
    332 		panic("bge_vpd_read");
    333 	for (i = 0; i < res.vr_len; i++)
    334 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    335 	sc->bge_vpd_prodname[i] = '\0';
    336 	pos += i;
    337 
    338 	bge_vpd_read_res(sc, &res, pos);
    339 
    340 	if (res.vr_id != VPD_RES_READ) {
    341 		printf("%s: bad VPD resource id: expected %x got %x\n",
    342 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    343 		return;
    344 	}
    345 
    346 	pos += sizeof(res);
    347 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    348 	if (sc->bge_vpd_readonly == NULL)
    349 		panic("bge_vpd_read");
    350 	for (i = 0; i < res.vr_len + 1; i++)
    351 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    352 }
    353 #endif
    354 
    355 /*
    356  * Read a byte of data stored in the EEPROM at address 'addr.' The
    357  * BCM570x supports both the traditional bitbang interface and an
    358  * auto access interface for reading the EEPROM. We use the auto
    359  * access method.
    360  */
    361 u_int8_t
    362 bge_eeprom_getbyte(sc, addr, dest)
    363 	struct bge_softc *sc;
    364 	int addr;
    365 	u_int8_t *dest;
    366 {
    367 	int i;
    368 	u_int32_t byte = 0;
    369 
    370 	/*
    371 	 * Enable use of auto EEPROM access so we can avoid
    372 	 * having to use the bitbang method.
    373 	 */
    374 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    375 
    376 	/* Reset the EEPROM, load the clock period. */
    377 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    378 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    379 	DELAY(20);
    380 
    381 	/* Issue the read EEPROM command. */
    382 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    383 
    384 	/* Wait for completion */
    385 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    386 		DELAY(10);
    387 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    388 			break;
    389 	}
    390 
    391 	if (i == BGE_TIMEOUT) {
    392 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    393 		return(0);
    394 	}
    395 
    396 	/* Get result. */
    397 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    398 
    399 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    400 
    401 	return(0);
    402 }
    403 
    404 /*
    405  * Read a sequence of bytes from the EEPROM.
    406  */
    407 int
    408 bge_read_eeprom(sc, dest, off, cnt)
    409 	struct bge_softc *sc;
    410 	caddr_t dest;
    411 	int off;
    412 	int cnt;
    413 {
    414 	int err = 0, i;
    415 	u_int8_t byte = 0;
    416 
    417 	for (i = 0; i < cnt; i++) {
    418 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    419 		if (err)
    420 			break;
    421 		*(dest + i) = byte;
    422 	}
    423 
    424 	return(err ? 1 : 0);
    425 }
    426 
    427 int
    428 bge_miibus_readreg(dev, phy, reg)
    429 	struct device *dev;
    430 	int phy, reg;
    431 {
    432 	struct bge_softc *sc = (struct bge_softc *)dev;
    433 	struct ifnet *ifp;
    434 	u_int32_t val;
    435 	u_int32_t saved_autopoll;
    436 	int i;
    437 
    438 	ifp = &sc->ethercom.ec_if;
    439 
    440 	/*
    441 	 * Several chips with builtin PHYs will incorrectly answer to
    442 	 * other PHY instances than the builtin PHY at id 1.
    443 	 */
    444 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    445 		return(0);
    446 
    447 	/* Reading with autopolling on may trigger PCI errors */
    448 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    449 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    450 		CSR_WRITE_4(sc, BGE_MI_MODE,
    451 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    452 		DELAY(40);
    453 	}
    454 
    455 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    456 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    457 
    458 	for (i = 0; i < BGE_TIMEOUT; i++) {
    459 		val = CSR_READ_4(sc, BGE_MI_COMM);
    460 		if (!(val & BGE_MICOMM_BUSY))
    461 			break;
    462 		delay(10);
    463 	}
    464 
    465 	if (i == BGE_TIMEOUT) {
    466 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    467 		val = 0;
    468 		goto done;
    469 	}
    470 
    471 	val = CSR_READ_4(sc, BGE_MI_COMM);
    472 
    473 done:
    474 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    475 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    476 		DELAY(40);
    477 	}
    478 
    479 	if (val & BGE_MICOMM_READFAIL)
    480 		return(0);
    481 
    482 	return(val & 0xFFFF);
    483 }
    484 
    485 void
    486 bge_miibus_writereg(dev, phy, reg, val)
    487 	struct device *dev;
    488 	int phy, reg, val;
    489 {
    490 	struct bge_softc *sc = (struct bge_softc *)dev;
    491 	u_int32_t saved_autopoll;
    492 	int i;
    493 
    494 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    495 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    496 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    497 		delay(40);
    498 		CSR_WRITE_4(sc, BGE_MI_MODE,
    499 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    500 		delay(10); /* 40 usec is supposed to be adequate */
    501 	}
    502 
    503 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    504 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    505 
    506 	for (i = 0; i < BGE_TIMEOUT; i++) {
    507 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    508 			break;
    509 		delay(10);
    510 	}
    511 
    512 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    513 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    514 		delay(40);
    515 	}
    516 
    517 	if (i == BGE_TIMEOUT) {
    518 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    519 	}
    520 }
    521 
    522 void
    523 bge_miibus_statchg(dev)
    524 	struct device *dev;
    525 {
    526 	struct bge_softc *sc = (struct bge_softc *)dev;
    527 	struct mii_data *mii = &sc->bge_mii;
    528 
    529 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    530 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    531 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    532 	} else {
    533 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    534 	}
    535 
    536 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    537 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    538 	} else {
    539 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    540 	}
    541 }
    542 
    543 /*
    544  * Handle events that have triggered interrupts.
    545  */
    546 void
    547 bge_handle_events(sc)
    548 	struct bge_softc		*sc;
    549 {
    550 
    551 	return;
    552 }
    553 
    554 /*
    555  * Memory management for jumbo frames.
    556  */
    557 
    558 int
    559 bge_alloc_jumbo_mem(sc)
    560 	struct bge_softc		*sc;
    561 {
    562 	caddr_t			ptr, kva;
    563 	bus_dma_segment_t	seg;
    564 	int		i, rseg, state, error;
    565 	struct bge_jpool_entry   *entry;
    566 
    567 	state = error = 0;
    568 
    569 	/* Grab a big chunk o' storage. */
    570 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    571 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    572 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    573 		return ENOBUFS;
    574 	}
    575 
    576 	state = 1;
    577 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    578 	    BUS_DMA_NOWAIT)) {
    579 		printf("%s: can't map DMA buffers (%d bytes)\n",
    580 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    581 		error = ENOBUFS;
    582 		goto out;
    583 	}
    584 
    585 	state = 2;
    586 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    587 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    588 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
    589 		error = ENOBUFS;
    590 		goto out;
    591 	}
    592 
    593 	state = 3;
    594 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    595 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    596 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
    597 		error = ENOBUFS;
    598 		goto out;
    599 	}
    600 
    601 	state = 4;
    602 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    603 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
    604 
    605 	SLIST_INIT(&sc->bge_jfree_listhead);
    606 	SLIST_INIT(&sc->bge_jinuse_listhead);
    607 
    608 	/*
    609 	 * Now divide it up into 9K pieces and save the addresses
    610 	 * in an array.
    611 	 */
    612 	ptr = sc->bge_cdata.bge_jumbo_buf;
    613 	for (i = 0; i < BGE_JSLOTS; i++) {
    614 		sc->bge_cdata.bge_jslots[i] = ptr;
    615 		ptr += BGE_JLEN;
    616 		entry = malloc(sizeof(struct bge_jpool_entry),
    617 		    M_DEVBUF, M_NOWAIT);
    618 		if (entry == NULL) {
    619 			printf("%s: no memory for jumbo buffer queue!\n",
    620 			    sc->bge_dev.dv_xname);
    621 			error = ENOBUFS;
    622 			goto out;
    623 		}
    624 		entry->slot = i;
    625 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    626 				 entry, jpool_entries);
    627 	}
    628 out:
    629 	if (error != 0) {
    630 		switch (state) {
    631 		case 4:
    632 			bus_dmamap_unload(sc->bge_dmatag,
    633 			    sc->bge_cdata.bge_rx_jumbo_map);
    634 		case 3:
    635 			bus_dmamap_destroy(sc->bge_dmatag,
    636 			    sc->bge_cdata.bge_rx_jumbo_map);
    637 		case 2:
    638 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    639 		case 1:
    640 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    641 			break;
    642 		default:
    643 			break;
    644 		}
    645 	}
    646 
    647 	return error;
    648 }
    649 
    650 /*
    651  * Allocate a jumbo buffer.
    652  */
    653 void *
    654 bge_jalloc(sc)
    655 	struct bge_softc		*sc;
    656 {
    657 	struct bge_jpool_entry   *entry;
    658 
    659 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    660 
    661 	if (entry == NULL) {
    662 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    663 		return(NULL);
    664 	}
    665 
    666 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    667 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    668 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    669 }
    670 
    671 /*
    672  * Release a jumbo buffer.
    673  */
    674 void
    675 bge_jfree(m, buf, size, arg)
    676 	struct mbuf	*m;
    677 	caddr_t		buf;
    678 	size_t		size;
    679 	void		*arg;
    680 {
    681 	struct bge_jpool_entry *entry;
    682 	struct bge_softc *sc;
    683 	int i, s;
    684 
    685 	/* Extract the softc struct pointer. */
    686 	sc = (struct bge_softc *)arg;
    687 
    688 	if (sc == NULL)
    689 		panic("bge_jfree: can't find softc pointer!");
    690 
    691 	/* calculate the slot this buffer belongs to */
    692 
    693 	i = ((caddr_t)buf
    694 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    695 
    696 	if ((i < 0) || (i >= BGE_JSLOTS))
    697 		panic("bge_jfree: asked to free buffer that we don't manage!");
    698 
    699 	s = splvm();
    700 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    701 	if (entry == NULL)
    702 		panic("bge_jfree: buffer not in use!");
    703 	entry->slot = i;
    704 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    705 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    706 
    707 	if (__predict_true(m != NULL))
    708   		pool_cache_put(&mbpool_cache, m);
    709 	splx(s);
    710 }
    711 
    712 
    713 /*
    714  * Intialize a standard receive ring descriptor.
    715  */
    716 int
    717 bge_newbuf_std(sc, i, m, dmamap)
    718 	struct bge_softc	*sc;
    719 	int			i;
    720 	struct mbuf		*m;
    721 	bus_dmamap_t dmamap;
    722 {
    723 	struct mbuf		*m_new = NULL;
    724 	struct bge_rx_bd	*r;
    725 	int			error;
    726 
    727 	if (dmamap == NULL) {
    728 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    729 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    730 		if (error != 0)
    731 			return error;
    732 	}
    733 
    734 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    735 
    736 	if (m == NULL) {
    737 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    738 		if (m_new == NULL) {
    739 			return(ENOBUFS);
    740 		}
    741 
    742 		MCLGET(m_new, M_DONTWAIT);
    743 		if (!(m_new->m_flags & M_EXT)) {
    744 			m_freem(m_new);
    745 			return(ENOBUFS);
    746 		}
    747 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    748 		if (!sc->bge_rx_alignment_bug)
    749 		    m_adj(m_new, ETHER_ALIGN);
    750 
    751 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    752 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    753 			return(ENOBUFS);
    754 	} else {
    755 		m_new = m;
    756 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    757 		m_new->m_data = m_new->m_ext.ext_buf;
    758 		if (!sc->bge_rx_alignment_bug)
    759 		    m_adj(m_new, ETHER_ALIGN);
    760 	}
    761 
    762 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    763 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    764 	bge_set_hostaddr(&r->bge_addr,
    765 	    dmamap->dm_segs[0].ds_addr);
    766 	r->bge_flags = BGE_RXBDFLAG_END;
    767 	r->bge_len = m_new->m_len;
    768 	r->bge_idx = i;
    769 
    770 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    771 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    772 		i * sizeof (struct bge_rx_bd),
    773 	    sizeof (struct bge_rx_bd),
    774 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    775 
    776 	return(0);
    777 }
    778 
    779 /*
    780  * Initialize a jumbo receive ring descriptor. This allocates
    781  * a jumbo buffer from the pool managed internally by the driver.
    782  */
    783 int
    784 bge_newbuf_jumbo(sc, i, m)
    785 	struct bge_softc *sc;
    786 	int i;
    787 	struct mbuf *m;
    788 {
    789 	struct mbuf *m_new = NULL;
    790 	struct bge_rx_bd *r;
    791 
    792 	if (m == NULL) {
    793 		caddr_t			*buf = NULL;
    794 
    795 		/* Allocate the mbuf. */
    796 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    797 		if (m_new == NULL) {
    798 			return(ENOBUFS);
    799 		}
    800 
    801 		/* Allocate the jumbo buffer */
    802 		buf = bge_jalloc(sc);
    803 		if (buf == NULL) {
    804 			m_freem(m_new);
    805 			printf("%s: jumbo allocation failed "
    806 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    807 			return(ENOBUFS);
    808 		}
    809 
    810 		/* Attach the buffer to the mbuf. */
    811 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    812 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    813 		    bge_jfree, sc);
    814 	} else {
    815 		m_new = m;
    816 		m_new->m_data = m_new->m_ext.ext_buf;
    817 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    818 	}
    819 
    820 	if (!sc->bge_rx_alignment_bug)
    821 	    m_adj(m_new, ETHER_ALIGN);
    822 	/* Set up the descriptor. */
    823 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    824 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    825 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    826 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    827 	r->bge_len = m_new->m_len;
    828 	r->bge_idx = i;
    829 
    830 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    831 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    832 		i * sizeof (struct bge_rx_bd),
    833 	    sizeof (struct bge_rx_bd),
    834 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    835 
    836 	return(0);
    837 }
    838 
    839 /*
    840  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    841  * that's 1MB or memory, which is a lot. For now, we fill only the first
    842  * 256 ring entries and hope that our CPU is fast enough to keep up with
    843  * the NIC.
    844  */
    845 int
    846 bge_init_rx_ring_std(sc)
    847 	struct bge_softc *sc;
    848 {
    849 	int i;
    850 
    851 	if (sc->bge_flags & BGE_RXRING_VALID)
    852 		return 0;
    853 
    854 	for (i = 0; i < BGE_SSLOTS; i++) {
    855 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    856 			return(ENOBUFS);
    857 	}
    858 
    859 	sc->bge_std = i - 1;
    860 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
    861 
    862 	sc->bge_flags |= BGE_RXRING_VALID;
    863 
    864 	return(0);
    865 }
    866 
    867 void
    868 bge_free_rx_ring_std(sc)
    869 	struct bge_softc *sc;
    870 {
    871 	int i;
    872 
    873 	if (!(sc->bge_flags & BGE_RXRING_VALID))
    874 		return;
    875 
    876 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
    877 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
    878 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
    879 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
    880 			bus_dmamap_destroy(sc->bge_dmatag,
    881 			    sc->bge_cdata.bge_rx_std_map[i]);
    882 		}
    883 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
    884 		    sizeof(struct bge_rx_bd));
    885 	}
    886 
    887 	sc->bge_flags &= ~BGE_RXRING_VALID;
    888 }
    889 
    890 int
    891 bge_init_rx_ring_jumbo(sc)
    892 	struct bge_softc *sc;
    893 {
    894 	int i;
    895 	volatile struct bge_rcb *rcb;
    896 
    897 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    898 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
    899 			return(ENOBUFS);
    900 	};
    901 
    902 	sc->bge_jumbo = i - 1;
    903 
    904 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
    905 	rcb->bge_maxlen_flags = 0;
    906 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
    907 
    908 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
    909 
    910 	return(0);
    911 }
    912 
    913 void
    914 bge_free_rx_ring_jumbo(sc)
    915 	struct bge_softc *sc;
    916 {
    917 	int i;
    918 
    919 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
    920 		return;
    921 
    922 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    923 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
    924 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
    925 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
    926 		}
    927 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
    928 		    sizeof(struct bge_rx_bd));
    929 	}
    930 
    931 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
    932 }
    933 
    934 void
    935 bge_free_tx_ring(sc)
    936 	struct bge_softc *sc;
    937 {
    938 	int i, freed;
    939 	struct txdmamap_pool_entry *dma;
    940 
    941 	if (!(sc->bge_flags & BGE_TXRING_VALID))
    942 		return;
    943 
    944 	freed = 0;
    945 
    946 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
    947 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
    948 			freed++;
    949 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
    950 			sc->bge_cdata.bge_tx_chain[i] = NULL;
    951 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
    952 					    link);
    953 			sc->txdma[i] = 0;
    954 		}
    955 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
    956 		    sizeof(struct bge_tx_bd));
    957 	}
    958 
    959 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
    960 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
    961 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
    962 		free(dma, M_DEVBUF);
    963 	}
    964 
    965 	sc->bge_flags &= ~BGE_TXRING_VALID;
    966 }
    967 
    968 int
    969 bge_init_tx_ring(sc)
    970 	struct bge_softc *sc;
    971 {
    972 	int i;
    973 	bus_dmamap_t dmamap;
    974 	struct txdmamap_pool_entry *dma;
    975 
    976 	if (sc->bge_flags & BGE_TXRING_VALID)
    977 		return 0;
    978 
    979 	sc->bge_txcnt = 0;
    980 	sc->bge_tx_saved_considx = 0;
    981 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    982 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
    983 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    984 
    985 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
    986 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
    987 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    988 
    989 	SLIST_INIT(&sc->txdma_list);
    990 	for (i = 0; i < BGE_RSLOTS; i++) {
    991 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
    992 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
    993 		    &dmamap))
    994 			return(ENOBUFS);
    995 		if (dmamap == NULL)
    996 			panic("dmamap NULL in bge_init_tx_ring");
    997 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
    998 		if (dma == NULL) {
    999 			printf("%s: can't alloc txdmamap_pool_entry\n",
   1000 			    sc->bge_dev.dv_xname);
   1001 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1002 			return (ENOMEM);
   1003 		}
   1004 		dma->dmamap = dmamap;
   1005 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1006 	}
   1007 
   1008 	sc->bge_flags |= BGE_TXRING_VALID;
   1009 
   1010 	return(0);
   1011 }
   1012 
   1013 void
   1014 bge_setmulti(sc)
   1015 	struct bge_softc *sc;
   1016 {
   1017 	struct ethercom		*ac = &sc->ethercom;
   1018 	struct ifnet		*ifp = &ac->ec_if;
   1019 	struct ether_multi	*enm;
   1020 	struct ether_multistep  step;
   1021 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1022 	u_int32_t		h;
   1023 	int			i;
   1024 
   1025 	if (ifp->if_flags & IFF_PROMISC)
   1026 		goto allmulti;
   1027 
   1028 	/* Now program new ones. */
   1029 	ETHER_FIRST_MULTI(step, ac, enm);
   1030 	while (enm != NULL) {
   1031 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1032 			/*
   1033 			 * We must listen to a range of multicast addresses.
   1034 			 * For now, just accept all multicasts, rather than
   1035 			 * trying to set only those filter bits needed to match
   1036 			 * the range.  (At this time, the only use of address
   1037 			 * ranges is for IP multicast routing, for which the
   1038 			 * range is big enough to require all bits set.)
   1039 			 */
   1040 			goto allmulti;
   1041 		}
   1042 
   1043 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1044 
   1045 		/* Just want the 7 least-significant bits. */
   1046 		h &= 0x7f;
   1047 
   1048 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1049 		ETHER_NEXT_MULTI(step, enm);
   1050 	}
   1051 
   1052 	ifp->if_flags &= ~IFF_ALLMULTI;
   1053 	goto setit;
   1054 
   1055  allmulti:
   1056 	ifp->if_flags |= IFF_ALLMULTI;
   1057 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1058 
   1059  setit:
   1060 	for (i = 0; i < 4; i++)
   1061 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1062 }
   1063 
   1064 const int bge_swapbits[] = {
   1065 	0,
   1066 	BGE_MODECTL_BYTESWAP_DATA,
   1067 	BGE_MODECTL_WORDSWAP_DATA,
   1068 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1069 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1070 
   1071 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1072 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1073 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1074 
   1075 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1076 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1077 
   1078 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1079 
   1080 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1081 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1082 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1083 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1084 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1085 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1086 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1087 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1088 
   1089 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1090 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1091 };
   1092 
   1093 int bge_swapindex = 0;
   1094 
   1095 /*
   1096  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1097  * self-test results.
   1098  */
   1099 int
   1100 bge_chipinit(sc)
   1101 	struct bge_softc *sc;
   1102 {
   1103 	u_int32_t		cachesize;
   1104 	int			i;
   1105 	u_int32_t		dma_rw_ctl;
   1106 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1107 
   1108 
   1109 	/* Set endianness before we access any non-PCI registers. */
   1110 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1111 	    BGE_INIT);
   1112 
   1113 	/* Set power state to D0. */
   1114 	bge_setpowerstate(sc, 0);
   1115 
   1116 	/*
   1117 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1118 	 * self-tests passed.
   1119 	 */
   1120 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1121 		printf("%s: RX CPU self-diagnostics failed!\n",
   1122 		    sc->bge_dev.dv_xname);
   1123 		return(ENODEV);
   1124 	}
   1125 
   1126 	/* Clear the MAC control register */
   1127 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1128 
   1129 	/*
   1130 	 * Clear the MAC statistics block in the NIC's
   1131 	 * internal memory.
   1132 	 */
   1133 	for (i = BGE_STATS_BLOCK;
   1134 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1135 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1136 
   1137 	for (i = BGE_STATUS_BLOCK;
   1138 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1139 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1140 
   1141 	/* Set up the PCI DMA control register. */
   1142 	if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
   1143 	    BGE_PCISTATE_PCI_BUSMODE) {
   1144 		/* Conventional PCI bus */
   1145 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
   1146 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1147 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1148 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1149 		   (0x0F));
   1150 	} else {
   1151 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
   1152 		/* PCI-X bus */
   1153 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1154 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1155 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1156 		    (0x0F);
   1157 		/*
   1158 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1159 		 * for hardware bugs, which means we should also clear
   1160 		 * the low-order MINDMA bits.  In addition, the 5704
   1161 		 * uses a different encoding of read/write watermarks.
   1162 		 */
   1163 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0 ||
   1164 		    sc->bge_asicrev == BGE_ASICREV_BCM5704_A1 ||
   1165 		    sc->bge_asicrev == BGE_ASICREV_BCM5704_A2) {
   1166 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1167 			  /* should be 0x1f0000 */
   1168 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1169 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1170 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1171 		}
   1172 		else if ((sc->bge_asicrev >> 28) ==
   1173 			 (BGE_ASICREV_BCM5703_A0 >> 28)) {
   1174 			dma_rw_ctl &=  0xfffffff0;
   1175 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1176 		}
   1177 	}
   1178 
   1179 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1180 
   1181 	/*
   1182 	 * Set up general mode register.
   1183 	 */
   1184 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1185 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1186 		    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
   1187 		    BGE_MODECTL_RX_NO_PHDR_CSUM);
   1188 
   1189 	/* Get cache line size. */
   1190 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1191 
   1192 	/*
   1193 	 * Avoid violating PCI spec on certain chip revs.
   1194 	 */
   1195 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1196 	    PCIM_CMD_MWIEN) {
   1197 		switch(cachesize) {
   1198 		case 1:
   1199 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1200 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1201 			break;
   1202 		case 2:
   1203 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1204 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1205 			break;
   1206 		case 4:
   1207 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1208 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1209 			break;
   1210 		case 8:
   1211 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1212 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1213 			break;
   1214 		case 16:
   1215 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1216 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1217 			break;
   1218 		case 32:
   1219 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1220 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1221 			break;
   1222 		case 64:
   1223 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1224 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1225 			break;
   1226 		default:
   1227 		/* Disable PCI memory write and invalidate. */
   1228 #if 0
   1229 			if (bootverbose)
   1230 				printf("%s: cache line size %d not "
   1231 				    "supported; disabling PCI MWI\n",
   1232 				    sc->bge_dev.dv_xname, cachesize);
   1233 #endif
   1234 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1235 			    PCIM_CMD_MWIEN);
   1236 			break;
   1237 		}
   1238 	}
   1239 
   1240 	/*
   1241 	 * Disable memory write invalidate.  Apparently it is not supported
   1242 	 * properly by these devices.
   1243 	 */
   1244 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1245 
   1246 
   1247 #ifdef __brokenalpha__
   1248 	/*
   1249 	 * Must insure that we do not cross an 8K (bytes) boundary
   1250 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1251 	 * restriction on some ALPHA platforms with early revision
   1252 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1253 	 */
   1254 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1255 #endif
   1256 
   1257 	/* Set the timer prescaler (always 66MHz) */
   1258 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1259 
   1260 	return(0);
   1261 }
   1262 
   1263 int
   1264 bge_blockinit(sc)
   1265 	struct bge_softc *sc;
   1266 {
   1267 	volatile struct bge_rcb		*rcb;
   1268 	bus_size_t		rcb_addr;
   1269 	int			i;
   1270 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1271 	bge_hostaddr		taddr;
   1272 
   1273 	/*
   1274 	 * Initialize the memory window pointer register so that
   1275 	 * we can access the first 32K of internal NIC RAM. This will
   1276 	 * allow us to set up the TX send ring RCBs and the RX return
   1277 	 * ring RCBs, plus other things which live in NIC memory.
   1278 	 */
   1279 
   1280 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1281 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1282 
   1283 	/* Configure mbuf memory pool */
   1284 	if (sc->bge_extram) {
   1285 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
   1286 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1287 	} else {
   1288 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
   1289 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1290 	}
   1291 
   1292 	/* Configure DMA resource pool */
   1293 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
   1294 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1295 
   1296 	/* Configure mbuf pool watermarks */
   1297 #ifdef ORIG_WPAUL_VALUES
   1298 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1299 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1300 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1301 #else
   1302 	/* new broadcom docs strongly recommend these: */
   1303 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1304 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1305 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1306 #endif
   1307 
   1308 	/* Configure DMA resource watermarks */
   1309 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1310 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1311 
   1312 	/* Enable buffer manager */
   1313 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1314 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1315 
   1316 	/* Poll for buffer manager start indication */
   1317 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1318 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1319 			break;
   1320 		DELAY(10);
   1321 	}
   1322 
   1323 	if (i == BGE_TIMEOUT) {
   1324 		printf("%s: buffer manager failed to start\n",
   1325 		    sc->bge_dev.dv_xname);
   1326 		return(ENXIO);
   1327 	}
   1328 
   1329 	/* Enable flow-through queues */
   1330 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1331 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1332 
   1333 	/* Wait until queue initialization is complete */
   1334 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1335 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1336 			break;
   1337 		DELAY(10);
   1338 	}
   1339 
   1340 	if (i == BGE_TIMEOUT) {
   1341 		printf("%s: flow-through queue init failed\n",
   1342 		    sc->bge_dev.dv_xname);
   1343 		return(ENXIO);
   1344 	}
   1345 
   1346 	/* Initialize the standard RX ring control block */
   1347 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1348 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1349 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1350 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1351 	if (sc->bge_extram)
   1352 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1353 	else
   1354 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1355 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1356 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1357 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1358 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1359 
   1360 	/*
   1361 	 * Initialize the jumbo RX ring control block
   1362 	 * We set the 'ring disabled' bit in the flags
   1363 	 * field until we're actually ready to start
   1364 	 * using this ring (i.e. once we set the MTU
   1365 	 * high enough to require it).
   1366 	 */
   1367 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1368 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1369 	    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1370 	rcb->bge_maxlen_flags =
   1371 	   BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED);
   1372 	if (sc->bge_extram)
   1373 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1374 	else
   1375 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1376 
   1377 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1378 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1379 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1380 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1381 
   1382 	/* Set up dummy disabled mini ring RCB */
   1383 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1384 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1385 	    BGE_RCB_FLAG_RING_DISABLED);
   1386 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1387 
   1388 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1389 	    offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
   1390 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1391 
   1392 	/*
   1393 	 * Set the BD ring replentish thresholds. The recommended
   1394 	 * values are 1/8th the number of descriptors allocated to
   1395 	 * each ring.
   1396 	 */
   1397 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1398 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1399 
   1400 	/*
   1401 	 * Disable all unused send rings by setting the 'ring disabled'
   1402 	 * bit in the flags field of all the TX send ring control blocks.
   1403 	 * These are located in NIC memory.
   1404 	 */
   1405 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1406 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1407 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1408 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1409 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1410 		rcb_addr += sizeof(struct bge_rcb);
   1411 	}
   1412 
   1413 	/* Configure TX RCB 0 (we use only the first ring) */
   1414 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1415 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1416 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1417 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1418 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1419 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1420 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1421 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1422 
   1423 	/* Disable all unused RX return rings */
   1424 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1425 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1426 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1427 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1428 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1429 			    BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,
   1430                                      BGE_RCB_FLAG_RING_DISABLED));
   1431 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1432 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1433 		    (i * (sizeof(u_int64_t))), 0);
   1434 		rcb_addr += sizeof(struct bge_rcb);
   1435 	}
   1436 
   1437 	/* Initialize RX ring indexes */
   1438 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1439 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1440 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1441 
   1442 	/*
   1443 	 * Set up RX return ring 0
   1444 	 * Note that the NIC address for RX return rings is 0x00000000.
   1445 	 * The return rings live entirely within the host, so the
   1446 	 * nicaddr field in the RCB isn't used.
   1447 	 */
   1448 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1449 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1450 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1451 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1452 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1453 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1454 	    BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,0));
   1455 
   1456 	/* Set random backoff seed for TX */
   1457 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1458 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1459 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1460 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1461 	    BGE_TX_BACKOFF_SEED_MASK);
   1462 
   1463 	/* Set inter-packet gap */
   1464 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1465 
   1466 	/*
   1467 	 * Specify which ring to use for packets that don't match
   1468 	 * any RX rules.
   1469 	 */
   1470 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1471 
   1472 	/*
   1473 	 * Configure number of RX lists. One interrupt distribution
   1474 	 * list, sixteen active lists, one bad frames class.
   1475 	 */
   1476 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1477 
   1478 	/* Inialize RX list placement stats mask. */
   1479 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1480 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1481 
   1482 	/* Disable host coalescing until we get it set up */
   1483 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1484 
   1485 	/* Poll to make sure it's shut down. */
   1486 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1487 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1488 			break;
   1489 		DELAY(10);
   1490 	}
   1491 
   1492 	if (i == BGE_TIMEOUT) {
   1493 		printf("%s: host coalescing engine failed to idle\n",
   1494 		    sc->bge_dev.dv_xname);
   1495 		return(ENXIO);
   1496 	}
   1497 
   1498 	/* Set up host coalescing defaults */
   1499 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1500 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1501 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1502 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1503 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1504 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1505 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1506 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1507 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1508 
   1509 	/* Set up address of statistics block */
   1510 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1511 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1512 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1513 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1514 
   1515 	/* Set up address of status block */
   1516 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1517 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1518 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1519 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1520 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1521 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1522 
   1523 	/* Turn on host coalescing state machine */
   1524 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1525 
   1526 	/* Turn on RX BD completion state machine and enable attentions */
   1527 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1528 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1529 
   1530 	/* Turn on RX list placement state machine */
   1531 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1532 
   1533 	/* Turn on RX list selector state machine. */
   1534 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1535 
   1536 	/* Turn on DMA, clear stats */
   1537 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1538 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1539 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1540 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1541 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1542 
   1543 	/* Set misc. local control, enable interrupts on attentions */
   1544 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1545 
   1546 #ifdef notdef
   1547 	/* Assert GPIO pins for PHY reset */
   1548 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1549 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1550 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1551 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1552 #endif
   1553 
   1554 #if defined(not_quite_yet)
   1555 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1556 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
   1557 		sc->bge_local_ctrl_reg |=
   1558 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1559 	}
   1560 #endif
   1561 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1562 
   1563 	/* Turn on DMA completion state machine */
   1564 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1565 
   1566 	/* Turn on write DMA state machine */
   1567 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1568 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1569 
   1570 	/* Turn on read DMA state machine */
   1571 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
   1572 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
   1573 
   1574 	/* Turn on RX data completion state machine */
   1575 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1576 
   1577 	/* Turn on RX BD initiator state machine */
   1578 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1579 
   1580 	/* Turn on RX data and RX BD initiator state machine */
   1581 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1582 
   1583 	/* Turn on Mbuf cluster free state machine */
   1584 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1585 
   1586 	/* Turn on send BD completion state machine */
   1587 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1588 
   1589 	/* Turn on send data completion state machine */
   1590 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1591 
   1592 	/* Turn on send data initiator state machine */
   1593 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1594 
   1595 	/* Turn on send BD initiator state machine */
   1596 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1597 
   1598 	/* Turn on send BD selector state machine */
   1599 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1600 
   1601 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1602 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1603 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1604 
   1605 	/* init LED register */
   1606 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
   1607 
   1608 	/* ack/clear link change events */
   1609 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1610 	    BGE_MACSTAT_CFG_CHANGED);
   1611 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1612 
   1613 	/* Enable PHY auto polling (for MII/GMII only) */
   1614 	if (sc->bge_tbi) {
   1615 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1616  	} else {
   1617 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1618 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1619 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1620 			    BGE_EVTENB_MI_INTERRUPT);
   1621 	}
   1622 
   1623 	/* Enable link state change attentions. */
   1624 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1625 
   1626 	return(0);
   1627 }
   1628 
   1629 static const struct bge_revision {
   1630 	uint32_t		br_asicrev;
   1631 	uint32_t		br_quirks;
   1632 	const char		*br_name;
   1633 } bge_revisions[] = {
   1634 	{ BGE_ASICREV_BCM5700_A0,
   1635 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1636 	  "BCM5700 A0" },
   1637 
   1638 	{ BGE_ASICREV_BCM5700_A1,
   1639 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1640 	  "BCM5700 A1" },
   1641 
   1642 	{ BGE_ASICREV_BCM5700_B0,
   1643 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1644 	  "BCM5700 B0" },
   1645 
   1646 	{ BGE_ASICREV_BCM5700_B1,
   1647 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1648 	  "BCM5700 B1" },
   1649 
   1650 	{ BGE_ASICREV_BCM5700_B2,
   1651 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1652 	  "BCM5700 B2" },
   1653 
   1654 	/* This is treated like a BCM5700 Bx */
   1655 	{ BGE_ASICREV_BCM5700_ALTIMA,
   1656 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1657 	  "BCM5700 Altima" },
   1658 
   1659 	{ BGE_ASICREV_BCM5700_C0,
   1660 	  0,
   1661 	  "BCM5700 C0" },
   1662 
   1663 	{ BGE_ASICREV_BCM5701_A0,
   1664 	  0, /*XXX really, just not known */
   1665 	  "BCM5701 A0" },
   1666 
   1667 	{ BGE_ASICREV_BCM5701_B0,
   1668 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1669 	  "BCM5701 B0" },
   1670 
   1671 	{ BGE_ASICREV_BCM5701_B2,
   1672 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1673 	  "BCM5701 B2" },
   1674 
   1675 	{ BGE_ASICREV_BCM5701_B5,
   1676 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1677 	  "BCM5701 B5" },
   1678 
   1679 	{ BGE_ASICREV_BCM5703_A0,
   1680 	  0,
   1681 	  "BCM5703 A0" },
   1682 
   1683 	{ BGE_ASICREV_BCM5703_A1,
   1684 	  0,
   1685 	  "BCM5703 A1" },
   1686 
   1687 	{ BGE_ASICREV_BCM5703_A2,
   1688 	  BGE_QUIRK_ONLY_PHY_1,
   1689 	  "BCM5703 A2" },
   1690 
   1691 	{ BGE_ASICREV_BCM5704_A0,
   1692   	  BGE_QUIRK_ONLY_PHY_1,
   1693 	  "BCM5704 A0" },
   1694 
   1695 	{ BGE_ASICREV_BCM5704_A1,
   1696   	  BGE_QUIRK_ONLY_PHY_1,
   1697 	  "BCM5704 A1" },
   1698 
   1699 	{ BGE_ASICREV_BCM5704_A2,
   1700   	  BGE_QUIRK_ONLY_PHY_1,
   1701 	  "BCM5704 A2" },
   1702 
   1703 	{ 0, 0, NULL }
   1704 };
   1705 
   1706 static const struct bge_revision *
   1707 bge_lookup_rev(uint32_t asicrev)
   1708 {
   1709 	const struct bge_revision *br;
   1710 
   1711 	for (br = bge_revisions; br->br_name != NULL; br++) {
   1712 		if (br->br_asicrev == asicrev)
   1713 			return (br);
   1714 	}
   1715 
   1716 	return (NULL);
   1717 }
   1718 
   1719 static const struct bge_product {
   1720 	pci_vendor_id_t		bp_vendor;
   1721 	pci_product_id_t	bp_product;
   1722 	const char		*bp_name;
   1723 } bge_products[] = {
   1724 	/*
   1725 	 * The BCM5700 documentation seems to indicate that the hardware
   1726 	 * still has the Alteon vendor ID burned into it, though it
   1727 	 * should always be overridden by the value in the EEPROM.  We'll
   1728 	 * check for it anyway.
   1729 	 */
   1730 	{ PCI_VENDOR_ALTEON,
   1731 	  PCI_PRODUCT_ALTEON_BCM5700,
   1732 	  "Broadcom BCM5700 Gigabit Ethernet" },
   1733 	{ PCI_VENDOR_ALTEON,
   1734 	  PCI_PRODUCT_ALTEON_BCM5701,
   1735 	  "Broadcom BCM5701 Gigabit Ethernet" },
   1736 
   1737 	{ PCI_VENDOR_ALTIMA,
   1738 	  PCI_PRODUCT_ALTIMA_AC1000,
   1739 	  "Altima AC1000 Gigabit Ethernet" },
   1740 	{ PCI_VENDOR_ALTIMA,
   1741 	  PCI_PRODUCT_ALTIMA_AC1001,
   1742 	  "Altima AC1001 Gigabit Ethernet" },
   1743 	{ PCI_VENDOR_ALTIMA,
   1744 	  PCI_PRODUCT_ALTIMA_AC9100,
   1745 	  "Altima AC9100 Gigabit Ethernet" },
   1746 
   1747 	{ PCI_VENDOR_BROADCOM,
   1748 	  PCI_PRODUCT_BROADCOM_BCM5700,
   1749 	  "Broadcom BCM5700 Gigabit Ethernet" },
   1750 	{ PCI_VENDOR_BROADCOM,
   1751 	  PCI_PRODUCT_BROADCOM_BCM5701,
   1752 	  "Broadcom BCM5701 Gigabit Ethernet" },
   1753 	{ PCI_VENDOR_BROADCOM,
   1754 	  PCI_PRODUCT_BROADCOM_BCM5702,
   1755 	  "Broadcom BCM5702 Gigabit Ethernet" },
   1756 	{ PCI_VENDOR_BROADCOM,
   1757 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   1758 	  "Broadcom BCM5702X Gigabit Ethernet" },
   1759 	{ PCI_VENDOR_BROADCOM,
   1760 	  PCI_PRODUCT_BROADCOM_BCM5703,
   1761 	  "Broadcom BCM5703 Gigabit Ethernet" },
   1762 	{ PCI_VENDOR_BROADCOM,
   1763 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   1764 	  "Broadcom BCM5703X Gigabit Ethernet" },
   1765    	{ PCI_VENDOR_BROADCOM,
   1766 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   1767 	  "Broadcom BCM5704C Dual Gigabit Ethernet" },
   1768    	{ PCI_VENDOR_BROADCOM,
   1769 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   1770 	  "Broadcom BCM5704S Dual Gigabit Ethernet" },
   1771 
   1772 
   1773 	{ PCI_VENDOR_SCHNEIDERKOCH,
   1774 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   1775 	  "SysKonnect SK-9Dx1 Gigabit Ethernet" },
   1776 
   1777 	{ PCI_VENDOR_3COM,
   1778 	  PCI_PRODUCT_3COM_3C996,
   1779 	  "3Com 3c996 Gigabit Ethernet" },
   1780 
   1781 	{ 0,
   1782 	  0,
   1783 	  NULL },
   1784 };
   1785 
   1786 static const struct bge_product *
   1787 bge_lookup(const struct pci_attach_args *pa)
   1788 {
   1789 	const struct bge_product *bp;
   1790 
   1791 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   1792 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   1793 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   1794 			return (bp);
   1795 	}
   1796 
   1797 	return (NULL);
   1798 }
   1799 
   1800 int
   1801 bge_setpowerstate(sc, powerlevel)
   1802 	struct bge_softc *sc;
   1803 	int powerlevel;
   1804 {
   1805 #ifdef NOTYET
   1806 	u_int32_t pm_ctl = 0;
   1807 
   1808 	/* XXX FIXME: make sure indirect accesses enabled? */
   1809 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   1810 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   1811 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   1812 
   1813 	/* clear the PME_assert bit and power state bits, enable PME */
   1814 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   1815 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   1816 	pm_ctl |= (1 << 8);
   1817 
   1818 	if (powerlevel == 0) {
   1819 		pm_ctl |= PCIM_PSTAT_D0;
   1820 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   1821 		    pm_ctl, 2);
   1822 		DELAY(10000);
   1823 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1824 		DELAY(10000);
   1825 
   1826 #ifdef NOTYET
   1827 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   1828 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   1829 #endif
   1830 		DELAY(40); DELAY(40); DELAY(40);
   1831 		DELAY(10000);	/* above not quite adequate on 5700 */
   1832 		return 0;
   1833 	}
   1834 
   1835 
   1836 	/*
   1837 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   1838 	 * GMII gpio pins. Example code assumes all hardware vendors
   1839 	 * followed Broadom's sample pcb layout. Until we verify that
   1840 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   1841 	 */
   1842 	printf("%s: power state %d unimplemented; check GPIO pins\n",
   1843 	       sc->bge_dev.dv_xname, powerlevel);
   1844 #endif
   1845 	return EOPNOTSUPP;
   1846 }
   1847 
   1848 
   1849 /*
   1850  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   1851  * against our list and return its name if we find a match. Note
   1852  * that since the Broadcom controller contains VPD support, we
   1853  * can get the device name string from the controller itself instead
   1854  * of the compiled-in string. This is a little slow, but it guarantees
   1855  * we'll always announce the right product name.
   1856  */
   1857 int
   1858 bge_probe(parent, match, aux)
   1859 	struct device *parent;
   1860 	struct cfdata *match;
   1861 	void *aux;
   1862 {
   1863 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   1864 
   1865 	if (bge_lookup(pa) != NULL)
   1866 		return (1);
   1867 
   1868 	return (0);
   1869 }
   1870 
   1871 void
   1872 bge_attach(parent, self, aux)
   1873 	struct device *parent, *self;
   1874 	void *aux;
   1875 {
   1876 	struct bge_softc	*sc = (struct bge_softc *)self;
   1877 	struct pci_attach_args	*pa = aux;
   1878 	const struct bge_product *bp;
   1879 	const struct bge_revision *br;
   1880 	pci_chipset_tag_t	pc = pa->pa_pc;
   1881 	pci_intr_handle_t	ih;
   1882 	const char		*intrstr = NULL;
   1883 	bus_dma_segment_t	seg;
   1884 	int			rseg;
   1885 	u_int32_t		hwcfg = 0;
   1886 	u_int32_t		mac_addr = 0;
   1887 	u_int32_t		command;
   1888 	struct ifnet		*ifp;
   1889 	caddr_t			kva;
   1890 	u_char			eaddr[ETHER_ADDR_LEN];
   1891 	pcireg_t		memtype;
   1892 	bus_addr_t		memaddr;
   1893 	bus_size_t		memsize;
   1894 	u_int32_t		pm_ctl;
   1895 
   1896 	bp = bge_lookup(pa);
   1897 	KASSERT(bp != NULL);
   1898 
   1899 	sc->bge_pa = *pa;
   1900 
   1901 	aprint_naive(": Ethernet controller\n");
   1902 	aprint_normal(": %s\n", bp->bp_name);
   1903 
   1904 	/*
   1905 	 * Map control/status registers.
   1906 	 */
   1907 	DPRINTFN(5, ("Map control/status regs\n"));
   1908 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1909 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   1910 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   1911 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   1912 
   1913 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   1914 		aprint_error("%s: failed to enable memory mapping!\n",
   1915 		    sc->bge_dev.dv_xname);
   1916 		return;
   1917 	}
   1918 
   1919 	DPRINTFN(5, ("pci_mem_find\n"));
   1920 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   1921  	switch (memtype) {
   1922 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   1923 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   1924 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   1925 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   1926 		    &memaddr, &memsize) == 0)
   1927 			break;
   1928 	default:
   1929 		aprint_error("%s: can't find mem space\n",
   1930 		    sc->bge_dev.dv_xname);
   1931 		return;
   1932 	}
   1933 
   1934 	DPRINTFN(5, ("pci_intr_map\n"));
   1935 	if (pci_intr_map(pa, &ih)) {
   1936 		aprint_error("%s: couldn't map interrupt\n",
   1937 		    sc->bge_dev.dv_xname);
   1938 		return;
   1939 	}
   1940 
   1941 	DPRINTFN(5, ("pci_intr_string\n"));
   1942 	intrstr = pci_intr_string(pc, ih);
   1943 
   1944 	DPRINTFN(5, ("pci_intr_establish\n"));
   1945 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   1946 
   1947 	if (sc->bge_intrhand == NULL) {
   1948 		aprint_error("%s: couldn't establish interrupt",
   1949 		    sc->bge_dev.dv_xname);
   1950 		if (intrstr != NULL)
   1951 			aprint_normal(" at %s", intrstr);
   1952 		aprint_normal("\n");
   1953 		return;
   1954 	}
   1955 	aprint_normal("%s: interrupting at %s\n",
   1956 	    sc->bge_dev.dv_xname, intrstr);
   1957 
   1958 	/*
   1959 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   1960 	 * can clobber the chip's PCI config-space power control registers,
   1961 	 * leaving the card in D3 powersave state.
   1962 	 * We do not have memory-mapped registers in this state,
   1963 	 * so force device into D0 state before starting initialization.
   1964 	 */
   1965 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
   1966 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   1967 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   1968 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   1969 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   1970 
   1971 	/* Try to reset the chip. */
   1972 	DPRINTFN(5, ("bge_reset\n"));
   1973 	bge_reset(sc);
   1974 
   1975 	if (bge_chipinit(sc)) {
   1976 		aprint_error("%s: chip initialization failed\n",
   1977 		    sc->bge_dev.dv_xname);
   1978 		bge_release_resources(sc);
   1979 		return;
   1980 	}
   1981 
   1982 	/*
   1983 	 * Get station address from the EEPROM.
   1984 	 */
   1985 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   1986 	if ((mac_addr >> 16) == 0x484b) {
   1987 		eaddr[0] = (u_char)(mac_addr >> 8);
   1988 		eaddr[1] = (u_char)(mac_addr >> 0);
   1989 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   1990 		eaddr[2] = (u_char)(mac_addr >> 24);
   1991 		eaddr[3] = (u_char)(mac_addr >> 16);
   1992 		eaddr[4] = (u_char)(mac_addr >> 8);
   1993 		eaddr[5] = (u_char)(mac_addr >> 0);
   1994 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
   1995 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   1996 		aprint_error("%s: failed to read station address\n",
   1997 		    sc->bge_dev.dv_xname);
   1998 		bge_release_resources(sc);
   1999 		return;
   2000 	}
   2001 
   2002 	/*
   2003 	 * Save ASIC rev.  Look up any quirks associated with this
   2004 	 * ASIC.
   2005 	 */
   2006 	sc->bge_asicrev =
   2007 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   2008 	    BGE_PCIMISCCTL_ASICREV;
   2009 	br = bge_lookup_rev(sc->bge_asicrev);
   2010 
   2011 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
   2012 	if (br == NULL) {
   2013 		aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
   2014 		sc->bge_quirks = 0;
   2015 	} else {
   2016 		aprint_normal("ASIC %s", br->br_name);
   2017 		sc->bge_quirks = br->br_quirks;
   2018 	}
   2019 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2020 
   2021 	/* Allocate the general information block and ring buffers. */
   2022 	if (pci_dma64_available(pa))
   2023 		sc->bge_dmatag = pa->pa_dmat64;
   2024 	else
   2025 		sc->bge_dmatag = pa->pa_dmat;
   2026 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2027 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2028 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2029 		aprint_error("%s: can't alloc rx buffers\n",
   2030 		    sc->bge_dev.dv_xname);
   2031 		return;
   2032 	}
   2033 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2034 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2035 			   sizeof(struct bge_ring_data), &kva,
   2036 			   BUS_DMA_NOWAIT)) {
   2037 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
   2038 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   2039 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2040 		return;
   2041 	}
   2042 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2043 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2044 	    sizeof(struct bge_ring_data), 0,
   2045 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2046 		aprint_error("%s: can't create DMA map\n",
   2047 		    sc->bge_dev.dv_xname);
   2048 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2049 				 sizeof(struct bge_ring_data));
   2050 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2051 		return;
   2052 	}
   2053 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2054 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2055 			    sizeof(struct bge_ring_data), NULL,
   2056 			    BUS_DMA_NOWAIT)) {
   2057 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2058 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2059 				 sizeof(struct bge_ring_data));
   2060 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2061 		return;
   2062 	}
   2063 
   2064 	DPRINTFN(5, ("bzero\n"));
   2065 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2066 
   2067 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2068 
   2069 	/* Try to allocate memory for jumbo buffers. */
   2070 	if (bge_alloc_jumbo_mem(sc)) {
   2071 		aprint_error("%s: jumbo buffer allocation failed\n",
   2072 		    sc->bge_dev.dv_xname);
   2073 	} else
   2074 		sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2075 
   2076 	/* Set default tuneable values. */
   2077 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2078 	sc->bge_rx_coal_ticks = 150;
   2079 	sc->bge_rx_max_coal_bds = 64;
   2080 #ifdef ORIG_WPAUL_VALUES
   2081 	sc->bge_tx_coal_ticks = 150;
   2082 	sc->bge_tx_max_coal_bds = 128;
   2083 #else
   2084 	sc->bge_tx_coal_ticks = 300;
   2085 	sc->bge_tx_max_coal_bds = 400;
   2086 #endif
   2087 
   2088 	/* Set up ifnet structure */
   2089 	ifp = &sc->ethercom.ec_if;
   2090 	ifp->if_softc = sc;
   2091 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2092 	ifp->if_ioctl = bge_ioctl;
   2093 	ifp->if_start = bge_start;
   2094 	ifp->if_init = bge_init;
   2095 	ifp->if_watchdog = bge_watchdog;
   2096 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2097 	IFQ_SET_READY(&ifp->if_snd);
   2098 	DPRINTFN(5, ("bcopy\n"));
   2099 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   2100 
   2101 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2102 		sc->ethercom.ec_if.if_capabilities |=
   2103 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   2104 	sc->ethercom.ec_capabilities |=
   2105 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2106 
   2107 	/*
   2108 	 * Do MII setup.
   2109 	 */
   2110 	DPRINTFN(5, ("mii setup\n"));
   2111 	sc->bge_mii.mii_ifp = ifp;
   2112 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2113 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2114 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2115 
   2116 	/*
   2117 	 * Figure out what sort of media we have by checking the
   2118 	 * hardware config word in the first 32k of NIC internal memory,
   2119 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2120 	 * cards, this value appears to be unset. If that's the
   2121 	 * case, we have to rely on identifying the NIC by its PCI
   2122 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2123 	 */
   2124 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2125 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2126 	} else {
   2127 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
   2128 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2129 		hwcfg = be32toh(hwcfg);
   2130 	}
   2131 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2132 		sc->bge_tbi = 1;
   2133 
   2134 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2135 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   2136 	    SK_SUBSYSID_9D41)
   2137 		sc->bge_tbi = 1;
   2138 
   2139 	if (sc->bge_tbi) {
   2140 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2141 		    bge_ifmedia_sts);
   2142 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2143 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2144 			    0, NULL);
   2145 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2146 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2147 	} else {
   2148 		/*
   2149 		 * Do transceiver setup.
   2150 		 */
   2151 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2152 			     bge_ifmedia_sts);
   2153 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2154 			   MII_PHY_ANY, MII_OFFSET_ANY, 0);
   2155 
   2156 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   2157 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   2158 			ifmedia_add(&sc->bge_mii.mii_media,
   2159 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2160 			ifmedia_set(&sc->bge_mii.mii_media,
   2161 				    IFM_ETHER|IFM_MANUAL);
   2162 		} else
   2163 			ifmedia_set(&sc->bge_mii.mii_media,
   2164 				    IFM_ETHER|IFM_AUTO);
   2165 	}
   2166 
   2167 	/*
   2168 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2169 	 * been observed in the first few bytes of some received packets.
   2170 	 * Aligning the packet buffer in memory eliminates the corruption.
   2171 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2172 	 * which do not support unaligned accesses, we will realign the
   2173 	 * payloads by copying the received packets.
   2174 	 */
   2175 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2176 		/* If in PCI-X mode, work around the alignment bug. */
   2177 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
   2178                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2179                          BGE_PCISTATE_PCI_BUSSPEED)
   2180 		sc->bge_rx_alignment_bug = 1;
   2181         }
   2182 
   2183 	/*
   2184 	 * Call MI attach routine.
   2185 	 */
   2186 	DPRINTFN(5, ("if_attach\n"));
   2187 	if_attach(ifp);
   2188 	DPRINTFN(5, ("ether_ifattach\n"));
   2189 	ether_ifattach(ifp, eaddr);
   2190 	DPRINTFN(5, ("callout_init\n"));
   2191 	callout_init(&sc->bge_timeout);
   2192 }
   2193 
   2194 void
   2195 bge_release_resources(sc)
   2196 	struct bge_softc *sc;
   2197 {
   2198 	if (sc->bge_vpd_prodname != NULL)
   2199 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2200 
   2201 	if (sc->bge_vpd_readonly != NULL)
   2202 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2203 }
   2204 
   2205 void
   2206 bge_reset(sc)
   2207 	struct bge_softc *sc;
   2208 {
   2209 	struct pci_attach_args *pa = &sc->bge_pa;
   2210 	u_int32_t cachesize, command, pcistate;
   2211 	int i, val = 0;
   2212 
   2213 	/* Save some important PCI state. */
   2214 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   2215 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   2216 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   2217 
   2218 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2219 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2220 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2221 
   2222 	/* Issue global reset */
   2223 	bge_writereg_ind(sc, BGE_MISC_CFG,
   2224 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
   2225 
   2226 	DELAY(1000);
   2227 
   2228 	/* Reset some of the PCI state that got zapped by reset */
   2229 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2230 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2231 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2232 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   2233 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   2234 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2235 
   2236 	/* Enable memory arbiter. */
   2237 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2238 
   2239 	/*
   2240 	 * Prevent PXE restart: write a magic number to the
   2241 	 * general communications memory at 0xB50.
   2242 	 */
   2243 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2244 
   2245 	/*
   2246 	 * Poll the value location we just wrote until
   2247 	 * we see the 1's complement of the magic number.
   2248 	 * This indicates that the firmware initialization
   2249 	 * is complete.
   2250 	 */
   2251 	for (i = 0; i < 750; i++) {
   2252 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2253 		if (val == ~BGE_MAGIC_NUMBER)
   2254 			break;
   2255 		DELAY(1000);
   2256 	}
   2257 
   2258 	if (i == 750) {
   2259 		printf("%s: firmware handshake timed out, val = %x\n",
   2260 		    sc->bge_dev.dv_xname, val);
   2261 		return;
   2262 	}
   2263 
   2264 	/*
   2265 	 * XXX Wait for the value of the PCISTATE register to
   2266 	 * return to its original pre-reset state. This is a
   2267 	 * fairly good indicator of reset completion. If we don't
   2268 	 * wait for the reset to fully complete, trying to read
   2269 	 * from the device's non-PCI registers may yield garbage
   2270 	 * results.
   2271 	 */
   2272 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2273 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
   2274 		    pcistate)
   2275 			break;
   2276 		DELAY(10);
   2277 	}
   2278 
   2279 	/* Enable memory arbiter. */
   2280 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2281 
   2282 	/* Fix up byte swapping */
   2283 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2284 
   2285 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2286 
   2287 	DELAY(10000);
   2288 }
   2289 
   2290 /*
   2291  * Frame reception handling. This is called if there's a frame
   2292  * on the receive return list.
   2293  *
   2294  * Note: we have to be able to handle two possibilities here:
   2295  * 1) the frame is from the jumbo recieve ring
   2296  * 2) the frame is from the standard receive ring
   2297  */
   2298 
   2299 void
   2300 bge_rxeof(sc)
   2301 	struct bge_softc *sc;
   2302 {
   2303 	struct ifnet *ifp;
   2304 	int stdcnt = 0, jumbocnt = 0;
   2305 	int have_tag = 0;
   2306 	u_int16_t vlan_tag = 0;
   2307 	bus_dmamap_t dmamap;
   2308 	bus_addr_t offset, toff;
   2309 	bus_size_t tlen;
   2310 	int tosync;
   2311 
   2312 	ifp = &sc->ethercom.ec_if;
   2313 
   2314 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2315 	    offsetof(struct bge_ring_data, bge_status_block),
   2316 	    sizeof (struct bge_status_block),
   2317 	    BUS_DMASYNC_POSTREAD);
   2318 
   2319 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2320 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2321 	    sc->bge_rx_saved_considx;
   2322 
   2323 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2324 
   2325 	if (tosync < 0) {
   2326 		tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
   2327 		    sizeof (struct bge_rx_bd);
   2328 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2329 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2330 		tosync = -tosync;
   2331 	}
   2332 
   2333 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2334 	    offset, tosync * sizeof (struct bge_rx_bd),
   2335 	    BUS_DMASYNC_POSTREAD);
   2336 
   2337 	while(sc->bge_rx_saved_considx !=
   2338 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2339 		struct bge_rx_bd	*cur_rx;
   2340 		u_int32_t		rxidx;
   2341 		struct mbuf		*m = NULL;
   2342 
   2343 		cur_rx = &sc->bge_rdata->
   2344 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2345 
   2346 		rxidx = cur_rx->bge_idx;
   2347 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
   2348 
   2349 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   2350 			have_tag = 1;
   2351 			vlan_tag = cur_rx->bge_vlan_tag;
   2352 		}
   2353 
   2354 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2355 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2356 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2357 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2358 			jumbocnt++;
   2359 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2360 				ifp->if_ierrors++;
   2361 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2362 				continue;
   2363 			}
   2364 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2365 					     NULL)== ENOBUFS) {
   2366 				ifp->if_ierrors++;
   2367 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2368 				continue;
   2369 			}
   2370 		} else {
   2371 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2372 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2373 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2374 			stdcnt++;
   2375 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2376 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2377 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2378 				ifp->if_ierrors++;
   2379 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2380 				continue;
   2381 			}
   2382 			if (bge_newbuf_std(sc, sc->bge_std,
   2383 			    NULL, dmamap) == ENOBUFS) {
   2384 				ifp->if_ierrors++;
   2385 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2386 				continue;
   2387 			}
   2388 		}
   2389 
   2390 		ifp->if_ipackets++;
   2391 #ifndef __NO_STRICT_ALIGNMENT
   2392                 /*
   2393                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2394                  * the Rx buffer has the layer-2 header unaligned.
   2395                  * If our CPU requires alignment, re-align by copying.
   2396                  */
   2397 		if (sc->bge_rx_alignment_bug) {
   2398 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
   2399                                 cur_rx->bge_len);
   2400 			m->m_data += ETHER_ALIGN;
   2401 		}
   2402 #endif
   2403 
   2404 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
   2405 		m->m_pkthdr.rcvif = ifp;
   2406 
   2407 #if NBPFILTER > 0
   2408 		/*
   2409 		 * Handle BPF listeners. Let the BPF user see the packet.
   2410 		 */
   2411 		if (ifp->if_bpf)
   2412 			bpf_mtap(ifp->if_bpf, m);
   2413 #endif
   2414 
   2415 		if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
   2416 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2417 			if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2418 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2419 #if 0	/* XXX appears to be broken */
   2420 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   2421 				m->m_pkthdr.csum_data =
   2422 				    cur_rx->bge_tcp_udp_csum;
   2423 				m->m_pkthdr.csum_flags |=
   2424 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
   2425 			}
   2426 #endif
   2427 		}
   2428 
   2429 		/*
   2430 		 * If we received a packet with a vlan tag, pass it
   2431 		 * to vlan_input() instead of ether_input().
   2432 		 */
   2433 		if (have_tag) {
   2434 			struct m_tag *mtag;
   2435 
   2436 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   2437 			    M_NOWAIT);
   2438 			if (mtag != NULL) {
   2439 				*(u_int *)(mtag + 1) = vlan_tag;
   2440 				m_tag_prepend(m, mtag);
   2441 				have_tag = vlan_tag = 0;
   2442 			} else {
   2443 				printf("%s: no mbuf for tag\n", ifp->if_xname);
   2444 				m_freem(m);
   2445 				have_tag = vlan_tag = 0;
   2446 				continue;
   2447 			}
   2448 		}
   2449 		(*ifp->if_input)(ifp, m);
   2450 	}
   2451 
   2452 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   2453 	if (stdcnt)
   2454 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   2455 	if (jumbocnt)
   2456 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   2457 }
   2458 
   2459 void
   2460 bge_txeof(sc)
   2461 	struct bge_softc *sc;
   2462 {
   2463 	struct bge_tx_bd *cur_tx = NULL;
   2464 	struct ifnet *ifp;
   2465 	struct txdmamap_pool_entry *dma;
   2466 	bus_addr_t offset, toff;
   2467 	bus_size_t tlen;
   2468 	int tosync;
   2469 	struct mbuf *m;
   2470 
   2471 	ifp = &sc->ethercom.ec_if;
   2472 
   2473 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2474 	    offsetof(struct bge_ring_data, bge_status_block),
   2475 	    sizeof (struct bge_status_block),
   2476 	    BUS_DMASYNC_POSTREAD);
   2477 
   2478 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   2479 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   2480 	    sc->bge_tx_saved_considx;
   2481 
   2482 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   2483 
   2484 	if (tosync < 0) {
   2485 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   2486 		    sizeof (struct bge_tx_bd);
   2487 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2488 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2489 		tosync = -tosync;
   2490 	}
   2491 
   2492 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2493 	    offset, tosync * sizeof (struct bge_tx_bd),
   2494 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2495 
   2496 	/*
   2497 	 * Go through our tx ring and free mbufs for those
   2498 	 * frames that have been sent.
   2499 	 */
   2500 	while (sc->bge_tx_saved_considx !=
   2501 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   2502 		u_int32_t		idx = 0;
   2503 
   2504 		idx = sc->bge_tx_saved_considx;
   2505 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   2506 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   2507 			ifp->if_opackets++;
   2508 		m = sc->bge_cdata.bge_tx_chain[idx];
   2509 		if (m != NULL) {
   2510 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   2511 			dma = sc->txdma[idx];
   2512 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   2513 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2514 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   2515 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2516 			sc->txdma[idx] = NULL;
   2517 
   2518 			m_freem(m);
   2519 		}
   2520 		sc->bge_txcnt--;
   2521 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   2522 		ifp->if_timer = 0;
   2523 	}
   2524 
   2525 	if (cur_tx != NULL)
   2526 		ifp->if_flags &= ~IFF_OACTIVE;
   2527 }
   2528 
   2529 int
   2530 bge_intr(xsc)
   2531 	void *xsc;
   2532 {
   2533 	struct bge_softc *sc;
   2534 	struct ifnet *ifp;
   2535 
   2536 	sc = xsc;
   2537 	ifp = &sc->ethercom.ec_if;
   2538 
   2539 #ifdef notdef
   2540 	/* Avoid this for now -- checking this register is expensive. */
   2541 	/* Make sure this is really our interrupt. */
   2542 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   2543 		return (0);
   2544 #endif
   2545 	/* Ack interrupt and stop others from occuring. */
   2546 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   2547 
   2548 	/*
   2549 	 * Process link state changes.
   2550 	 * Grrr. The link status word in the status block does
   2551 	 * not work correctly on the BCM5700 rev AX and BX chips,
   2552 	 * according to all avaibable information. Hence, we have
   2553 	 * to enable MII interrupts in order to properly obtain
   2554 	 * async link changes. Unfortunately, this also means that
   2555 	 * we have to read the MAC status register to detect link
   2556 	 * changes, thereby adding an additional register access to
   2557 	 * the interrupt handler.
   2558 	 */
   2559 
   2560 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   2561 		u_int32_t		status;
   2562 
   2563 		status = CSR_READ_4(sc, BGE_MAC_STS);
   2564 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   2565 			sc->bge_link = 0;
   2566 			callout_stop(&sc->bge_timeout);
   2567 			bge_tick(sc);
   2568 			/* Clear the interrupt */
   2569 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2570 			    BGE_EVTENB_MI_INTERRUPT);
   2571 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   2572 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   2573 			    BRGPHY_INTRS);
   2574 		}
   2575 	} else {
   2576 		if (sc->bge_rdata->bge_status_block.bge_status &
   2577 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   2578 			sc->bge_link = 0;
   2579 			callout_stop(&sc->bge_timeout);
   2580 			bge_tick(sc);
   2581 			/* Clear the interrupt */
   2582 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   2583 			    BGE_MACSTAT_CFG_CHANGED);
   2584 		}
   2585 	}
   2586 
   2587 	if (ifp->if_flags & IFF_RUNNING) {
   2588 		/* Check RX return ring producer/consumer */
   2589 		bge_rxeof(sc);
   2590 
   2591 		/* Check TX ring producer/consumer */
   2592 		bge_txeof(sc);
   2593 	}
   2594 
   2595 	bge_handle_events(sc);
   2596 
   2597 	/* Re-enable interrupts. */
   2598 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2599 
   2600 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   2601 		bge_start(ifp);
   2602 
   2603 	return (1);
   2604 }
   2605 
   2606 void
   2607 bge_tick(xsc)
   2608 	void *xsc;
   2609 {
   2610 	struct bge_softc *sc = xsc;
   2611 	struct mii_data *mii = &sc->bge_mii;
   2612 	struct ifmedia *ifm = NULL;
   2613 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2614 	int s;
   2615 
   2616 	s = splnet();
   2617 
   2618 	bge_stats_update(sc);
   2619 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2620 	if (sc->bge_link) {
   2621 		splx(s);
   2622 		return;
   2623 	}
   2624 
   2625 	if (sc->bge_tbi) {
   2626 		ifm = &sc->bge_ifmedia;
   2627 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   2628 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   2629 			sc->bge_link++;
   2630 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   2631 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2632 				bge_start(ifp);
   2633 		}
   2634 		splx(s);
   2635 		return;
   2636 	}
   2637 
   2638 	mii_tick(mii);
   2639 
   2640 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   2641 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   2642 		sc->bge_link++;
   2643 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2644 			bge_start(ifp);
   2645 	}
   2646 
   2647 	splx(s);
   2648 }
   2649 
   2650 void
   2651 bge_stats_update(sc)
   2652 	struct bge_softc *sc;
   2653 {
   2654 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2655 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   2656 
   2657 #define READ_STAT(sc, stats, stat) \
   2658 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   2659 
   2660 	ifp->if_collisions +=
   2661 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   2662 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   2663 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   2664 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   2665 	  ifp->if_collisions;
   2666 
   2667 #undef READ_STAT
   2668 
   2669 #ifdef notdef
   2670 	ifp->if_collisions +=
   2671 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   2672 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   2673 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   2674 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   2675 	   ifp->if_collisions;
   2676 #endif
   2677 }
   2678 
   2679 /*
   2680  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   2681  * pointers to descriptors.
   2682  */
   2683 int
   2684 bge_encap(sc, m_head, txidx)
   2685 	struct bge_softc *sc;
   2686 	struct mbuf *m_head;
   2687 	u_int32_t *txidx;
   2688 {
   2689 	struct bge_tx_bd	*f = NULL;
   2690 	u_int32_t		frag, cur, cnt = 0;
   2691 	u_int16_t		csum_flags = 0;
   2692 	struct txdmamap_pool_entry *dma;
   2693 	bus_dmamap_t dmamap;
   2694 	int			i = 0;
   2695 	struct m_tag		*mtag;
   2696 	struct mbuf		*prev, *m;
   2697 	int			totlen, prevlen;
   2698 
   2699 	cur = frag = *txidx;
   2700 
   2701 	if (m_head->m_pkthdr.csum_flags) {
   2702 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   2703 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   2704 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   2705 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   2706 	}
   2707 
   2708 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   2709 		goto doit;
   2710 	/*
   2711 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   2712 	 * less than eight bytes.  If we encounter a teeny mbuf
   2713 	 * at the end of a chain, we can pad.  Otherwise, copy.
   2714 	 */
   2715 	prev = NULL;
   2716 	totlen = 0;
   2717 	for (m = m_head; m != NULL; prev = m,m = m->m_next) {
   2718 		int mlen = m->m_len;
   2719 
   2720 		totlen += mlen;
   2721 		if (mlen == 0) {
   2722 			/* print a warning? */
   2723 			continue;
   2724 		}
   2725 		if (mlen >= 8)
   2726 			continue;
   2727 
   2728 		/* If we get here, mbuf data is too small for DMA engine. */
   2729 		if (m->m_next != 0) {
   2730 			  /* Internal frag. If fits in prev, copy it there. */
   2731 			  if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
   2732 			      !M_READONLY(prev)) {
   2733 			  	bcopy(m->m_data,
   2734 				      prev->m_data+prev->m_len,
   2735 				      mlen);
   2736 				prev->m_len += mlen;
   2737 				m->m_len = 0;
   2738 				MFREE(m, prev->m_next); /* XXX stitch chain */
   2739 				m = prev;
   2740 				continue;
   2741 			  } else {
   2742 				struct mbuf *n;
   2743 				/* slow copy */
   2744 slowcopy:
   2745 			  	n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
   2746 				m_freem(m_head);
   2747 				if (n == 0)
   2748 					return 0;
   2749 				m_head  = n;
   2750 				goto doit;
   2751 			  }
   2752 		} else if ((totlen -mlen +8) >= 1500) {
   2753 			goto slowcopy;
   2754 		}
   2755 		prevlen = m->m_len;
   2756 	}
   2757 
   2758 doit:
   2759 	dma = SLIST_FIRST(&sc->txdma_list);
   2760 	if (dma == NULL)
   2761 		return ENOBUFS;
   2762 	dmamap = dma->dmamap;
   2763 
   2764 	/*
   2765 	 * Start packing the mbufs in this chain into
   2766 	 * the fragment pointers. Stop when we run out
   2767 	 * of fragments or hit the end of the mbuf chain.
   2768 	 */
   2769 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   2770 	    BUS_DMA_NOWAIT))
   2771 		return(ENOBUFS);
   2772 
   2773 	mtag = sc->ethercom.ec_nvlans ?
   2774 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   2775 
   2776 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   2777 		f = &sc->bge_rdata->bge_tx_ring[frag];
   2778 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   2779 			break;
   2780 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   2781 		f->bge_len = dmamap->dm_segs[i].ds_len;
   2782 		f->bge_flags = csum_flags;
   2783 
   2784 		if (mtag != NULL) {
   2785 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   2786 			f->bge_vlan_tag = *(u_int *)(mtag + 1);
   2787 		} else {
   2788 			f->bge_vlan_tag = 0;
   2789 		}
   2790 		/*
   2791 		 * Sanity check: avoid coming within 16 descriptors
   2792 		 * of the end of the ring.
   2793 		 */
   2794 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
   2795 			return(ENOBUFS);
   2796 		cur = frag;
   2797 		BGE_INC(frag, BGE_TX_RING_CNT);
   2798 		cnt++;
   2799 	}
   2800 
   2801 	if (i < dmamap->dm_nsegs)
   2802 		return ENOBUFS;
   2803 
   2804 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   2805 	    BUS_DMASYNC_PREWRITE);
   2806 
   2807 	if (frag == sc->bge_tx_saved_considx)
   2808 		return(ENOBUFS);
   2809 
   2810 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   2811 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   2812 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   2813 	sc->txdma[cur] = dma;
   2814 	sc->bge_txcnt += cnt;
   2815 
   2816 	*txidx = frag;
   2817 
   2818 	return(0);
   2819 }
   2820 
   2821 /*
   2822  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   2823  * to the mbuf data regions directly in the transmit descriptors.
   2824  */
   2825 void
   2826 bge_start(ifp)
   2827 	struct ifnet *ifp;
   2828 {
   2829 	struct bge_softc *sc;
   2830 	struct mbuf *m_head = NULL;
   2831 	u_int32_t prodidx = 0;
   2832 	int pkts = 0;
   2833 
   2834 	sc = ifp->if_softc;
   2835 
   2836 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   2837 		return;
   2838 
   2839 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
   2840 
   2841 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   2842 		IFQ_POLL(&ifp->if_snd, m_head);
   2843 		if (m_head == NULL)
   2844 			break;
   2845 
   2846 #if 0
   2847 		/*
   2848 		 * XXX
   2849 		 * safety overkill.  If this is a fragmented packet chain
   2850 		 * with delayed TCP/UDP checksums, then only encapsulate
   2851 		 * it if we have enough descriptors to handle the entire
   2852 		 * chain at once.
   2853 		 * (paranoia -- may not actually be needed)
   2854 		 */
   2855 		if (m_head->m_flags & M_FIRSTFRAG &&
   2856 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   2857 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   2858 			    m_head->m_pkthdr.csum_data + 16) {
   2859 				ifp->if_flags |= IFF_OACTIVE;
   2860 				break;
   2861 			}
   2862 		}
   2863 #endif
   2864 
   2865 		/*
   2866 		 * Pack the data into the transmit ring. If we
   2867 		 * don't have room, set the OACTIVE flag and wait
   2868 		 * for the NIC to drain the ring.
   2869 		 */
   2870 		if (bge_encap(sc, m_head, &prodidx)) {
   2871 			ifp->if_flags |= IFF_OACTIVE;
   2872 			break;
   2873 		}
   2874 
   2875 		/* now we are committed to transmit the packet */
   2876 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   2877 		pkts++;
   2878 
   2879 #if NBPFILTER > 0
   2880 		/*
   2881 		 * If there's a BPF listener, bounce a copy of this frame
   2882 		 * to him.
   2883 		 */
   2884 		if (ifp->if_bpf)
   2885 			bpf_mtap(ifp->if_bpf, m_head);
   2886 #endif
   2887 	}
   2888 	if (pkts == 0)
   2889 		return;
   2890 
   2891 	/* Transmit */
   2892 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   2893 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   2894 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   2895 
   2896 	/*
   2897 	 * Set a timeout in case the chip goes out to lunch.
   2898 	 */
   2899 	ifp->if_timer = 5;
   2900 }
   2901 
   2902 int
   2903 bge_init(ifp)
   2904 	struct ifnet *ifp;
   2905 {
   2906 	struct bge_softc *sc = ifp->if_softc;
   2907 	u_int16_t *m;
   2908 	int s, error;
   2909 
   2910 	s = splnet();
   2911 
   2912 	ifp = &sc->ethercom.ec_if;
   2913 
   2914 	/* Cancel pending I/O and flush buffers. */
   2915 	bge_stop(sc);
   2916 	bge_reset(sc);
   2917 	bge_chipinit(sc);
   2918 
   2919 	/*
   2920 	 * Init the various state machines, ring
   2921 	 * control blocks and firmware.
   2922 	 */
   2923 	error = bge_blockinit(sc);
   2924 	if (error != 0) {
   2925 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   2926 		    error);
   2927 		splx(s);
   2928 		return error;
   2929 	}
   2930 
   2931 	ifp = &sc->ethercom.ec_if;
   2932 
   2933 	/* Specify MTU. */
   2934 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   2935 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
   2936 
   2937 	/* Load our MAC address. */
   2938 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   2939 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   2940 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   2941 
   2942 	/* Enable or disable promiscuous mode as needed. */
   2943 	if (ifp->if_flags & IFF_PROMISC) {
   2944 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   2945 	} else {
   2946 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   2947 	}
   2948 
   2949 	/* Program multicast filter. */
   2950 	bge_setmulti(sc);
   2951 
   2952 	/* Init RX ring. */
   2953 	bge_init_rx_ring_std(sc);
   2954 
   2955 	/* Init jumbo RX ring. */
   2956 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   2957 		bge_init_rx_ring_jumbo(sc);
   2958 
   2959 	/* Init our RX return ring index */
   2960 	sc->bge_rx_saved_considx = 0;
   2961 
   2962 	/* Init TX ring. */
   2963 	bge_init_tx_ring(sc);
   2964 
   2965 	/* Turn on transmitter */
   2966 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   2967 
   2968 	/* Turn on receiver */
   2969 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   2970 
   2971 	/* Tell firmware we're alive. */
   2972 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   2973 
   2974 	/* Enable host interrupts. */
   2975 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   2976 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   2977 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2978 
   2979 	bge_ifmedia_upd(ifp);
   2980 
   2981 	ifp->if_flags |= IFF_RUNNING;
   2982 	ifp->if_flags &= ~IFF_OACTIVE;
   2983 
   2984 	splx(s);
   2985 
   2986 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2987 
   2988 	return 0;
   2989 }
   2990 
   2991 /*
   2992  * Set media options.
   2993  */
   2994 int
   2995 bge_ifmedia_upd(ifp)
   2996 	struct ifnet *ifp;
   2997 {
   2998 	struct bge_softc *sc = ifp->if_softc;
   2999 	struct mii_data *mii = &sc->bge_mii;
   3000 	struct ifmedia *ifm = &sc->bge_ifmedia;
   3001 
   3002 	/* If this is a 1000baseX NIC, enable the TBI port. */
   3003 	if (sc->bge_tbi) {
   3004 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   3005 			return(EINVAL);
   3006 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   3007 		case IFM_AUTO:
   3008 			break;
   3009 		case IFM_1000_SX:
   3010 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   3011 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3012 				    BGE_MACMODE_HALF_DUPLEX);
   3013 			} else {
   3014 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3015 				    BGE_MACMODE_HALF_DUPLEX);
   3016 			}
   3017 			break;
   3018 		default:
   3019 			return(EINVAL);
   3020 		}
   3021 		return(0);
   3022 	}
   3023 
   3024 	sc->bge_link = 0;
   3025 	mii_mediachg(mii);
   3026 
   3027 	return(0);
   3028 }
   3029 
   3030 /*
   3031  * Report current media status.
   3032  */
   3033 void
   3034 bge_ifmedia_sts(ifp, ifmr)
   3035 	struct ifnet *ifp;
   3036 	struct ifmediareq *ifmr;
   3037 {
   3038 	struct bge_softc *sc = ifp->if_softc;
   3039 	struct mii_data *mii = &sc->bge_mii;
   3040 
   3041 	if (sc->bge_tbi) {
   3042 		ifmr->ifm_status = IFM_AVALID;
   3043 		ifmr->ifm_active = IFM_ETHER;
   3044 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3045 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   3046 			ifmr->ifm_status |= IFM_ACTIVE;
   3047 		ifmr->ifm_active |= IFM_1000_SX;
   3048 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   3049 			ifmr->ifm_active |= IFM_HDX;
   3050 		else
   3051 			ifmr->ifm_active |= IFM_FDX;
   3052 		return;
   3053 	}
   3054 
   3055 	mii_pollstat(mii);
   3056 	ifmr->ifm_active = mii->mii_media_active;
   3057 	ifmr->ifm_status = mii->mii_media_status;
   3058 }
   3059 
   3060 int
   3061 bge_ioctl(ifp, command, data)
   3062 	struct ifnet *ifp;
   3063 	u_long command;
   3064 	caddr_t data;
   3065 {
   3066 	struct bge_softc *sc = ifp->if_softc;
   3067 	struct ifreq *ifr = (struct ifreq *) data;
   3068 	int s, error = 0;
   3069 	struct mii_data *mii;
   3070 
   3071 	s = splnet();
   3072 
   3073 	switch(command) {
   3074 	case SIOCSIFFLAGS:
   3075 		if (ifp->if_flags & IFF_UP) {
   3076 			/*
   3077 			 * If only the state of the PROMISC flag changed,
   3078 			 * then just use the 'set promisc mode' command
   3079 			 * instead of reinitializing the entire NIC. Doing
   3080 			 * a full re-init means reloading the firmware and
   3081 			 * waiting for it to start up, which may take a
   3082 			 * second or two.
   3083 			 */
   3084 			if (ifp->if_flags & IFF_RUNNING &&
   3085 			    ifp->if_flags & IFF_PROMISC &&
   3086 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   3087 				BGE_SETBIT(sc, BGE_RX_MODE,
   3088 				    BGE_RXMODE_RX_PROMISC);
   3089 			} else if (ifp->if_flags & IFF_RUNNING &&
   3090 			    !(ifp->if_flags & IFF_PROMISC) &&
   3091 			    sc->bge_if_flags & IFF_PROMISC) {
   3092 				BGE_CLRBIT(sc, BGE_RX_MODE,
   3093 				    BGE_RXMODE_RX_PROMISC);
   3094 			} else
   3095 				bge_init(ifp);
   3096 		} else {
   3097 			if (ifp->if_flags & IFF_RUNNING) {
   3098 				bge_stop(sc);
   3099 			}
   3100 		}
   3101 		sc->bge_if_flags = ifp->if_flags;
   3102 		error = 0;
   3103 		break;
   3104 	case SIOCSIFMEDIA:
   3105 	case SIOCGIFMEDIA:
   3106 		if (sc->bge_tbi) {
   3107 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   3108 			    command);
   3109 		} else {
   3110 			mii = &sc->bge_mii;
   3111 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   3112 			    command);
   3113 		}
   3114 		error = 0;
   3115 		break;
   3116 	default:
   3117 		error = ether_ioctl(ifp, command, data);
   3118 		if (error == ENETRESET) {
   3119 			bge_setmulti(sc);
   3120 			error = 0;
   3121 		}
   3122 		break;
   3123 	}
   3124 
   3125 	splx(s);
   3126 
   3127 	return(error);
   3128 }
   3129 
   3130 void
   3131 bge_watchdog(ifp)
   3132 	struct ifnet *ifp;
   3133 {
   3134 	struct bge_softc *sc;
   3135 
   3136 	sc = ifp->if_softc;
   3137 
   3138 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   3139 
   3140 	ifp->if_flags &= ~IFF_RUNNING;
   3141 	bge_init(ifp);
   3142 
   3143 	ifp->if_oerrors++;
   3144 }
   3145 
   3146 static void
   3147 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   3148 {
   3149 	int i;
   3150 
   3151 	BGE_CLRBIT(sc, reg, bit);
   3152 
   3153 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3154 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   3155 			return;
   3156 		delay(100);
   3157 	}
   3158 
   3159 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
   3160 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
   3161 }
   3162 
   3163 /*
   3164  * Stop the adapter and free any mbufs allocated to the
   3165  * RX and TX lists.
   3166  */
   3167 void
   3168 bge_stop(sc)
   3169 	struct bge_softc *sc;
   3170 {
   3171 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3172 
   3173 	callout_stop(&sc->bge_timeout);
   3174 
   3175 	/*
   3176 	 * Disable all of the receiver blocks
   3177 	 */
   3178 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3179 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3180 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   3181 	bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   3182 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   3183 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3184 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   3185 
   3186 	/*
   3187 	 * Disable all of the transmit blocks
   3188 	 */
   3189 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3190 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3191 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3192 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   3193 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   3194 	bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   3195 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3196 
   3197 	/*
   3198 	 * Shut down all of the memory managers and related
   3199 	 * state machines.
   3200 	 */
   3201 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   3202 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   3203 	bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3204 
   3205 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   3206 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   3207 
   3208 	bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   3209 	bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   3210 
   3211 	/* Disable host interrupts. */
   3212 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3213 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3214 
   3215 	/*
   3216 	 * Tell firmware we're shutting down.
   3217 	 */
   3218 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3219 
   3220 	/* Free the RX lists. */
   3221 	bge_free_rx_ring_std(sc);
   3222 
   3223 	/* Free jumbo RX list. */
   3224 	bge_free_rx_ring_jumbo(sc);
   3225 
   3226 	/* Free TX buffers. */
   3227 	bge_free_tx_ring(sc);
   3228 
   3229 	/*
   3230 	 * Isolate/power down the PHY.
   3231 	 */
   3232 	if (!sc->bge_tbi)
   3233 		mii_down(&sc->bge_mii);
   3234 
   3235 	sc->bge_link = 0;
   3236 
   3237 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   3238 
   3239 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3240 }
   3241 
   3242 /*
   3243  * Stop all chip I/O so that the kernel's probe routines don't
   3244  * get confused by errant DMAs when rebooting.
   3245  */
   3246 void
   3247 bge_shutdown(xsc)
   3248 	void *xsc;
   3249 {
   3250 	struct bge_softc *sc = (struct bge_softc *)xsc;
   3251 
   3252 	bge_stop(sc);
   3253 	bge_reset(sc);
   3254 }
   3255