if_bge.c revision 1.44 1 /* $NetBSD: if_bge.c,v 1.44 2003/07/17 11:44:27 hannken Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.44 2003/07/17 11:44:27 hannken Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/pci/pcidevs.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/miidevs.h>
120 #include <dev/mii/brgphyreg.h>
121
122 #include <dev/pci/if_bgereg.h>
123
124 #include <uvm/uvm_extern.h>
125
126 int bge_probe(struct device *, struct cfdata *, void *);
127 void bge_attach(struct device *, struct device *, void *);
128 void bge_release_resources(struct bge_softc *);
129 void bge_txeof(struct bge_softc *);
130 void bge_rxeof(struct bge_softc *);
131
132 void bge_tick(void *);
133 void bge_stats_update(struct bge_softc *);
134 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
135
136 int bge_intr(void *);
137 void bge_start(struct ifnet *);
138 int bge_ioctl(struct ifnet *, u_long, caddr_t);
139 int bge_init(struct ifnet *);
140 void bge_stop(struct bge_softc *);
141 void bge_watchdog(struct ifnet *);
142 void bge_shutdown(void *);
143 int bge_ifmedia_upd(struct ifnet *);
144 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
145
146 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
147 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
148
149 void bge_setmulti(struct bge_softc *);
150
151 void bge_handle_events(struct bge_softc *);
152 int bge_alloc_jumbo_mem(struct bge_softc *);
153 void bge_free_jumbo_mem(struct bge_softc *);
154 void *bge_jalloc(struct bge_softc *);
155 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
156 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
157 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
158 int bge_init_rx_ring_std(struct bge_softc *);
159 void bge_free_rx_ring_std(struct bge_softc *);
160 int bge_init_rx_ring_jumbo(struct bge_softc *);
161 void bge_free_rx_ring_jumbo(struct bge_softc *);
162 void bge_free_tx_ring(struct bge_softc *);
163 int bge_init_tx_ring(struct bge_softc *);
164
165 int bge_chipinit(struct bge_softc *);
166 int bge_blockinit(struct bge_softc *);
167 int bge_setpowerstate(struct bge_softc *, int);
168
169 #ifdef notdef
170 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
171 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
172 void bge_vpd_read(struct bge_softc *);
173 #endif
174
175 u_int32_t bge_readmem_ind(struct bge_softc *, int);
176 void bge_writemem_ind(struct bge_softc *, int, int);
177 #ifdef notdef
178 u_int32_t bge_readreg_ind(struct bge_softc *, int);
179 #endif
180 void bge_writereg_ind(struct bge_softc *, int, int);
181
182 int bge_miibus_readreg(struct device *, int, int);
183 void bge_miibus_writereg(struct device *, int, int, int);
184 void bge_miibus_statchg(struct device *);
185
186 void bge_reset(struct bge_softc *);
187
188 void bge_dump_status(struct bge_softc *);
189 void bge_dump_rxbd(struct bge_rx_bd *);
190
191 #define BGE_DEBUG
192 #ifdef BGE_DEBUG
193 #define DPRINTF(x) if (bgedebug) printf x
194 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
195 int bgedebug = 0;
196 #else
197 #define DPRINTF(x)
198 #define DPRINTFN(n,x)
199 #endif
200
201 /* Various chip quirks. */
202 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
203 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
204 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
205 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
206 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
207 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
208 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
209 #define BGE_QUIRK_5705_CORE 0x00000080
210
211 /* following bugs are common to bcm5700 rev B, all flavours */
212 #define BGE_QUIRK_5700_COMMON \
213 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
214
215 CFATTACH_DECL(bge, sizeof(struct bge_softc),
216 bge_probe, bge_attach, NULL, NULL);
217
218 u_int32_t
219 bge_readmem_ind(sc, off)
220 struct bge_softc *sc;
221 int off;
222 {
223 struct pci_attach_args *pa = &(sc->bge_pa);
224 pcireg_t val;
225
226 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
227 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
228 return val;
229 }
230
231 void
232 bge_writemem_ind(sc, off, val)
233 struct bge_softc *sc;
234 int off, val;
235 {
236 struct pci_attach_args *pa = &(sc->bge_pa);
237
238 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
239 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
240 }
241
242 #ifdef notdef
243 u_int32_t
244 bge_readreg_ind(sc, off)
245 struct bge_softc *sc;
246 int off;
247 {
248 struct pci_attach_args *pa = &(sc->bge_pa);
249
250 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
251 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
252 }
253 #endif
254
255 void
256 bge_writereg_ind(sc, off, val)
257 struct bge_softc *sc;
258 int off, val;
259 {
260 struct pci_attach_args *pa = &(sc->bge_pa);
261
262 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
263 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
264 }
265
266 #ifdef notdef
267 u_int8_t
268 bge_vpd_readbyte(sc, addr)
269 struct bge_softc *sc;
270 int addr;
271 {
272 int i;
273 u_int32_t val;
274 struct pci_attach_args *pa = &(sc->bge_pa);
275
276 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
277 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
278 DELAY(10);
279 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
280 BGE_VPD_FLAG)
281 break;
282 }
283
284 if (i == BGE_TIMEOUT) {
285 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
286 return(0);
287 }
288
289 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
290
291 return((val >> ((addr % 4) * 8)) & 0xFF);
292 }
293
294 void
295 bge_vpd_read_res(sc, res, addr)
296 struct bge_softc *sc;
297 struct vpd_res *res;
298 int addr;
299 {
300 int i;
301 u_int8_t *ptr;
302
303 ptr = (u_int8_t *)res;
304 for (i = 0; i < sizeof(struct vpd_res); i++)
305 ptr[i] = bge_vpd_readbyte(sc, i + addr);
306 }
307
308 void
309 bge_vpd_read(sc)
310 struct bge_softc *sc;
311 {
312 int pos = 0, i;
313 struct vpd_res res;
314
315 if (sc->bge_vpd_prodname != NULL)
316 free(sc->bge_vpd_prodname, M_DEVBUF);
317 if (sc->bge_vpd_readonly != NULL)
318 free(sc->bge_vpd_readonly, M_DEVBUF);
319 sc->bge_vpd_prodname = NULL;
320 sc->bge_vpd_readonly = NULL;
321
322 bge_vpd_read_res(sc, &res, pos);
323
324 if (res.vr_id != VPD_RES_ID) {
325 printf("%s: bad VPD resource id: expected %x got %x\n",
326 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
327 return;
328 }
329
330 pos += sizeof(res);
331 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
332 if (sc->bge_vpd_prodname == NULL)
333 panic("bge_vpd_read");
334 for (i = 0; i < res.vr_len; i++)
335 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
336 sc->bge_vpd_prodname[i] = '\0';
337 pos += i;
338
339 bge_vpd_read_res(sc, &res, pos);
340
341 if (res.vr_id != VPD_RES_READ) {
342 printf("%s: bad VPD resource id: expected %x got %x\n",
343 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
344 return;
345 }
346
347 pos += sizeof(res);
348 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
349 if (sc->bge_vpd_readonly == NULL)
350 panic("bge_vpd_read");
351 for (i = 0; i < res.vr_len + 1; i++)
352 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
353 }
354 #endif
355
356 /*
357 * Read a byte of data stored in the EEPROM at address 'addr.' The
358 * BCM570x supports both the traditional bitbang interface and an
359 * auto access interface for reading the EEPROM. We use the auto
360 * access method.
361 */
362 u_int8_t
363 bge_eeprom_getbyte(sc, addr, dest)
364 struct bge_softc *sc;
365 int addr;
366 u_int8_t *dest;
367 {
368 int i;
369 u_int32_t byte = 0;
370
371 /*
372 * Enable use of auto EEPROM access so we can avoid
373 * having to use the bitbang method.
374 */
375 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
376
377 /* Reset the EEPROM, load the clock period. */
378 CSR_WRITE_4(sc, BGE_EE_ADDR,
379 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
380 DELAY(20);
381
382 /* Issue the read EEPROM command. */
383 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
384
385 /* Wait for completion */
386 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
387 DELAY(10);
388 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
389 break;
390 }
391
392 if (i == BGE_TIMEOUT) {
393 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
394 return(0);
395 }
396
397 /* Get result. */
398 byte = CSR_READ_4(sc, BGE_EE_DATA);
399
400 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
401
402 return(0);
403 }
404
405 /*
406 * Read a sequence of bytes from the EEPROM.
407 */
408 int
409 bge_read_eeprom(sc, dest, off, cnt)
410 struct bge_softc *sc;
411 caddr_t dest;
412 int off;
413 int cnt;
414 {
415 int err = 0, i;
416 u_int8_t byte = 0;
417
418 for (i = 0; i < cnt; i++) {
419 err = bge_eeprom_getbyte(sc, off + i, &byte);
420 if (err)
421 break;
422 *(dest + i) = byte;
423 }
424
425 return(err ? 1 : 0);
426 }
427
428 int
429 bge_miibus_readreg(dev, phy, reg)
430 struct device *dev;
431 int phy, reg;
432 {
433 struct bge_softc *sc = (struct bge_softc *)dev;
434 struct ifnet *ifp;
435 u_int32_t val;
436 u_int32_t saved_autopoll;
437 int i;
438
439 ifp = &sc->ethercom.ec_if;
440
441 /*
442 * Several chips with builtin PHYs will incorrectly answer to
443 * other PHY instances than the builtin PHY at id 1.
444 */
445 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
446 return(0);
447
448 /* Reading with autopolling on may trigger PCI errors */
449 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
450 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
451 CSR_WRITE_4(sc, BGE_MI_MODE,
452 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
453 DELAY(40);
454 }
455
456 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
457 BGE_MIPHY(phy)|BGE_MIREG(reg));
458
459 for (i = 0; i < BGE_TIMEOUT; i++) {
460 val = CSR_READ_4(sc, BGE_MI_COMM);
461 if (!(val & BGE_MICOMM_BUSY))
462 break;
463 delay(10);
464 }
465
466 if (i == BGE_TIMEOUT) {
467 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
468 val = 0;
469 goto done;
470 }
471
472 val = CSR_READ_4(sc, BGE_MI_COMM);
473
474 done:
475 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
476 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
477 DELAY(40);
478 }
479
480 if (val & BGE_MICOMM_READFAIL)
481 return(0);
482
483 return(val & 0xFFFF);
484 }
485
486 void
487 bge_miibus_writereg(dev, phy, reg, val)
488 struct device *dev;
489 int phy, reg, val;
490 {
491 struct bge_softc *sc = (struct bge_softc *)dev;
492 u_int32_t saved_autopoll;
493 int i;
494
495 /* Touching the PHY while autopolling is on may trigger PCI errors */
496 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
497 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
498 delay(40);
499 CSR_WRITE_4(sc, BGE_MI_MODE,
500 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
501 delay(10); /* 40 usec is supposed to be adequate */
502 }
503
504 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
505 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
506
507 for (i = 0; i < BGE_TIMEOUT; i++) {
508 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
509 break;
510 delay(10);
511 }
512
513 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
514 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
515 delay(40);
516 }
517
518 if (i == BGE_TIMEOUT) {
519 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
520 }
521 }
522
523 void
524 bge_miibus_statchg(dev)
525 struct device *dev;
526 {
527 struct bge_softc *sc = (struct bge_softc *)dev;
528 struct mii_data *mii = &sc->bge_mii;
529
530 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
531 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
532 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
533 } else {
534 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
535 }
536
537 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
538 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
539 } else {
540 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
541 }
542 }
543
544 /*
545 * Handle events that have triggered interrupts.
546 */
547 void
548 bge_handle_events(sc)
549 struct bge_softc *sc;
550 {
551
552 return;
553 }
554
555 /*
556 * Memory management for jumbo frames.
557 */
558
559 int
560 bge_alloc_jumbo_mem(sc)
561 struct bge_softc *sc;
562 {
563 caddr_t ptr, kva;
564 bus_dma_segment_t seg;
565 int i, rseg, state, error;
566 struct bge_jpool_entry *entry;
567
568 state = error = 0;
569
570 /* Grab a big chunk o' storage. */
571 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
572 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
573 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
574 return ENOBUFS;
575 }
576
577 state = 1;
578 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
579 BUS_DMA_NOWAIT)) {
580 printf("%s: can't map DMA buffers (%d bytes)\n",
581 sc->bge_dev.dv_xname, (int)BGE_JMEM);
582 error = ENOBUFS;
583 goto out;
584 }
585
586 state = 2;
587 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
588 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
589 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
590 error = ENOBUFS;
591 goto out;
592 }
593
594 state = 3;
595 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
596 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
597 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
598 error = ENOBUFS;
599 goto out;
600 }
601
602 state = 4;
603 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
604 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
605
606 SLIST_INIT(&sc->bge_jfree_listhead);
607 SLIST_INIT(&sc->bge_jinuse_listhead);
608
609 /*
610 * Now divide it up into 9K pieces and save the addresses
611 * in an array.
612 */
613 ptr = sc->bge_cdata.bge_jumbo_buf;
614 for (i = 0; i < BGE_JSLOTS; i++) {
615 sc->bge_cdata.bge_jslots[i] = ptr;
616 ptr += BGE_JLEN;
617 entry = malloc(sizeof(struct bge_jpool_entry),
618 M_DEVBUF, M_NOWAIT);
619 if (entry == NULL) {
620 printf("%s: no memory for jumbo buffer queue!\n",
621 sc->bge_dev.dv_xname);
622 error = ENOBUFS;
623 goto out;
624 }
625 entry->slot = i;
626 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
627 entry, jpool_entries);
628 }
629 out:
630 if (error != 0) {
631 switch (state) {
632 case 4:
633 bus_dmamap_unload(sc->bge_dmatag,
634 sc->bge_cdata.bge_rx_jumbo_map);
635 case 3:
636 bus_dmamap_destroy(sc->bge_dmatag,
637 sc->bge_cdata.bge_rx_jumbo_map);
638 case 2:
639 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
640 case 1:
641 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
642 break;
643 default:
644 break;
645 }
646 }
647
648 return error;
649 }
650
651 /*
652 * Allocate a jumbo buffer.
653 */
654 void *
655 bge_jalloc(sc)
656 struct bge_softc *sc;
657 {
658 struct bge_jpool_entry *entry;
659
660 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
661
662 if (entry == NULL) {
663 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
664 return(NULL);
665 }
666
667 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
668 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
669 return(sc->bge_cdata.bge_jslots[entry->slot]);
670 }
671
672 /*
673 * Release a jumbo buffer.
674 */
675 void
676 bge_jfree(m, buf, size, arg)
677 struct mbuf *m;
678 caddr_t buf;
679 size_t size;
680 void *arg;
681 {
682 struct bge_jpool_entry *entry;
683 struct bge_softc *sc;
684 int i, s;
685
686 /* Extract the softc struct pointer. */
687 sc = (struct bge_softc *)arg;
688
689 if (sc == NULL)
690 panic("bge_jfree: can't find softc pointer!");
691
692 /* calculate the slot this buffer belongs to */
693
694 i = ((caddr_t)buf
695 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
696
697 if ((i < 0) || (i >= BGE_JSLOTS))
698 panic("bge_jfree: asked to free buffer that we don't manage!");
699
700 s = splvm();
701 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
702 if (entry == NULL)
703 panic("bge_jfree: buffer not in use!");
704 entry->slot = i;
705 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
706 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
707
708 if (__predict_true(m != NULL))
709 pool_cache_put(&mbpool_cache, m);
710 splx(s);
711 }
712
713
714 /*
715 * Intialize a standard receive ring descriptor.
716 */
717 int
718 bge_newbuf_std(sc, i, m, dmamap)
719 struct bge_softc *sc;
720 int i;
721 struct mbuf *m;
722 bus_dmamap_t dmamap;
723 {
724 struct mbuf *m_new = NULL;
725 struct bge_rx_bd *r;
726 int error;
727
728 if (dmamap == NULL) {
729 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
730 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
731 if (error != 0)
732 return error;
733 }
734
735 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
736
737 if (m == NULL) {
738 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
739 if (m_new == NULL) {
740 return(ENOBUFS);
741 }
742
743 MCLGET(m_new, M_DONTWAIT);
744 if (!(m_new->m_flags & M_EXT)) {
745 m_freem(m_new);
746 return(ENOBUFS);
747 }
748 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
749 if (!sc->bge_rx_alignment_bug)
750 m_adj(m_new, ETHER_ALIGN);
751
752 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
753 BUS_DMA_READ|BUS_DMA_NOWAIT))
754 return(ENOBUFS);
755 } else {
756 m_new = m;
757 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
758 m_new->m_data = m_new->m_ext.ext_buf;
759 if (!sc->bge_rx_alignment_bug)
760 m_adj(m_new, ETHER_ALIGN);
761 }
762
763 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
764 r = &sc->bge_rdata->bge_rx_std_ring[i];
765 bge_set_hostaddr(&r->bge_addr,
766 dmamap->dm_segs[0].ds_addr);
767 r->bge_flags = BGE_RXBDFLAG_END;
768 r->bge_len = m_new->m_len;
769 r->bge_idx = i;
770
771 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
772 offsetof(struct bge_ring_data, bge_rx_std_ring) +
773 i * sizeof (struct bge_rx_bd),
774 sizeof (struct bge_rx_bd),
775 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
776
777 return(0);
778 }
779
780 /*
781 * Initialize a jumbo receive ring descriptor. This allocates
782 * a jumbo buffer from the pool managed internally by the driver.
783 */
784 int
785 bge_newbuf_jumbo(sc, i, m)
786 struct bge_softc *sc;
787 int i;
788 struct mbuf *m;
789 {
790 struct mbuf *m_new = NULL;
791 struct bge_rx_bd *r;
792
793 if (m == NULL) {
794 caddr_t *buf = NULL;
795
796 /* Allocate the mbuf. */
797 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
798 if (m_new == NULL) {
799 return(ENOBUFS);
800 }
801
802 /* Allocate the jumbo buffer */
803 buf = bge_jalloc(sc);
804 if (buf == NULL) {
805 m_freem(m_new);
806 printf("%s: jumbo allocation failed "
807 "-- packet dropped!\n", sc->bge_dev.dv_xname);
808 return(ENOBUFS);
809 }
810
811 /* Attach the buffer to the mbuf. */
812 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
813 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
814 bge_jfree, sc);
815 } else {
816 m_new = m;
817 m_new->m_data = m_new->m_ext.ext_buf;
818 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
819 }
820
821 if (!sc->bge_rx_alignment_bug)
822 m_adj(m_new, ETHER_ALIGN);
823 /* Set up the descriptor. */
824 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
825 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
826 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
827 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
828 r->bge_len = m_new->m_len;
829 r->bge_idx = i;
830
831 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
832 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
833 i * sizeof (struct bge_rx_bd),
834 sizeof (struct bge_rx_bd),
835 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
836
837 return(0);
838 }
839
840 /*
841 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
842 * that's 1MB or memory, which is a lot. For now, we fill only the first
843 * 256 ring entries and hope that our CPU is fast enough to keep up with
844 * the NIC.
845 */
846 int
847 bge_init_rx_ring_std(sc)
848 struct bge_softc *sc;
849 {
850 int i;
851
852 if (sc->bge_flags & BGE_RXRING_VALID)
853 return 0;
854
855 for (i = 0; i < BGE_SSLOTS; i++) {
856 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
857 return(ENOBUFS);
858 }
859
860 sc->bge_std = i - 1;
861 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
862
863 sc->bge_flags |= BGE_RXRING_VALID;
864
865 return(0);
866 }
867
868 void
869 bge_free_rx_ring_std(sc)
870 struct bge_softc *sc;
871 {
872 int i;
873
874 if (!(sc->bge_flags & BGE_RXRING_VALID))
875 return;
876
877 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
878 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
879 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
880 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
881 bus_dmamap_destroy(sc->bge_dmatag,
882 sc->bge_cdata.bge_rx_std_map[i]);
883 }
884 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
885 sizeof(struct bge_rx_bd));
886 }
887
888 sc->bge_flags &= ~BGE_RXRING_VALID;
889 }
890
891 int
892 bge_init_rx_ring_jumbo(sc)
893 struct bge_softc *sc;
894 {
895 int i;
896 volatile struct bge_rcb *rcb;
897
898 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
899 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
900 return(ENOBUFS);
901 };
902
903 sc->bge_jumbo = i - 1;
904
905 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
906 rcb->bge_maxlen_flags = 0;
907 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
908
909 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
910
911 return(0);
912 }
913
914 void
915 bge_free_rx_ring_jumbo(sc)
916 struct bge_softc *sc;
917 {
918 int i;
919
920 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
921 return;
922
923 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
924 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
925 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
926 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
927 }
928 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
929 sizeof(struct bge_rx_bd));
930 }
931
932 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
933 }
934
935 void
936 bge_free_tx_ring(sc)
937 struct bge_softc *sc;
938 {
939 int i, freed;
940 struct txdmamap_pool_entry *dma;
941
942 if (!(sc->bge_flags & BGE_TXRING_VALID))
943 return;
944
945 freed = 0;
946
947 for (i = 0; i < BGE_TX_RING_CNT; i++) {
948 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
949 freed++;
950 m_freem(sc->bge_cdata.bge_tx_chain[i]);
951 sc->bge_cdata.bge_tx_chain[i] = NULL;
952 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
953 link);
954 sc->txdma[i] = 0;
955 }
956 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
957 sizeof(struct bge_tx_bd));
958 }
959
960 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
961 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
962 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
963 free(dma, M_DEVBUF);
964 }
965
966 sc->bge_flags &= ~BGE_TXRING_VALID;
967 }
968
969 int
970 bge_init_tx_ring(sc)
971 struct bge_softc *sc;
972 {
973 int i;
974 bus_dmamap_t dmamap;
975 struct txdmamap_pool_entry *dma;
976
977 if (sc->bge_flags & BGE_TXRING_VALID)
978 return 0;
979
980 sc->bge_txcnt = 0;
981 sc->bge_tx_saved_considx = 0;
982 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
983 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
984 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
985
986 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
987 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
988 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
989
990 SLIST_INIT(&sc->txdma_list);
991 for (i = 0; i < BGE_RSLOTS; i++) {
992 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
993 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
994 &dmamap))
995 return(ENOBUFS);
996 if (dmamap == NULL)
997 panic("dmamap NULL in bge_init_tx_ring");
998 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
999 if (dma == NULL) {
1000 printf("%s: can't alloc txdmamap_pool_entry\n",
1001 sc->bge_dev.dv_xname);
1002 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1003 return (ENOMEM);
1004 }
1005 dma->dmamap = dmamap;
1006 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1007 }
1008
1009 sc->bge_flags |= BGE_TXRING_VALID;
1010
1011 return(0);
1012 }
1013
1014 void
1015 bge_setmulti(sc)
1016 struct bge_softc *sc;
1017 {
1018 struct ethercom *ac = &sc->ethercom;
1019 struct ifnet *ifp = &ac->ec_if;
1020 struct ether_multi *enm;
1021 struct ether_multistep step;
1022 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1023 u_int32_t h;
1024 int i;
1025
1026 if (ifp->if_flags & IFF_PROMISC)
1027 goto allmulti;
1028
1029 /* Now program new ones. */
1030 ETHER_FIRST_MULTI(step, ac, enm);
1031 while (enm != NULL) {
1032 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1033 /*
1034 * We must listen to a range of multicast addresses.
1035 * For now, just accept all multicasts, rather than
1036 * trying to set only those filter bits needed to match
1037 * the range. (At this time, the only use of address
1038 * ranges is for IP multicast routing, for which the
1039 * range is big enough to require all bits set.)
1040 */
1041 goto allmulti;
1042 }
1043
1044 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1045
1046 /* Just want the 7 least-significant bits. */
1047 h &= 0x7f;
1048
1049 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1050 ETHER_NEXT_MULTI(step, enm);
1051 }
1052
1053 ifp->if_flags &= ~IFF_ALLMULTI;
1054 goto setit;
1055
1056 allmulti:
1057 ifp->if_flags |= IFF_ALLMULTI;
1058 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1059
1060 setit:
1061 for (i = 0; i < 4; i++)
1062 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1063 }
1064
1065 const int bge_swapbits[] = {
1066 0,
1067 BGE_MODECTL_BYTESWAP_DATA,
1068 BGE_MODECTL_WORDSWAP_DATA,
1069 BGE_MODECTL_BYTESWAP_NONFRAME,
1070 BGE_MODECTL_WORDSWAP_NONFRAME,
1071
1072 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1073 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1074 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1075
1076 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1077 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1078
1079 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1080
1081 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1082 BGE_MODECTL_BYTESWAP_NONFRAME,
1083 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1084 BGE_MODECTL_WORDSWAP_NONFRAME,
1085 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1086 BGE_MODECTL_WORDSWAP_NONFRAME,
1087 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1088 BGE_MODECTL_WORDSWAP_NONFRAME,
1089
1090 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1091 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1092 };
1093
1094 int bge_swapindex = 0;
1095
1096 /*
1097 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1098 * self-test results.
1099 */
1100 int
1101 bge_chipinit(sc)
1102 struct bge_softc *sc;
1103 {
1104 u_int32_t cachesize;
1105 int i;
1106 u_int32_t dma_rw_ctl;
1107 struct pci_attach_args *pa = &(sc->bge_pa);
1108
1109
1110 /* Set endianness before we access any non-PCI registers. */
1111 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1112 BGE_INIT);
1113
1114 /* Set power state to D0. */
1115 bge_setpowerstate(sc, 0);
1116
1117 /*
1118 * Check the 'ROM failed' bit on the RX CPU to see if
1119 * self-tests passed.
1120 */
1121 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1122 printf("%s: RX CPU self-diagnostics failed!\n",
1123 sc->bge_dev.dv_xname);
1124 return(ENODEV);
1125 }
1126
1127 /* Clear the MAC control register */
1128 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1129
1130 /*
1131 * Clear the MAC statistics block in the NIC's
1132 * internal memory.
1133 */
1134 for (i = BGE_STATS_BLOCK;
1135 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1136 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1137
1138 for (i = BGE_STATUS_BLOCK;
1139 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1140 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1141
1142 /* Set up the PCI DMA control register. */
1143 if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1144 BGE_PCISTATE_PCI_BUSMODE) {
1145 /* Conventional PCI bus */
1146 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1147 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1148 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1149 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1150 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1151 dma_rw_ctl |= 0x0F;
1152 }
1153 } else {
1154 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1155 /* PCI-X bus */
1156 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1157 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1158 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1159 (0x0F);
1160 /*
1161 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1162 * for hardware bugs, which means we should also clear
1163 * the low-order MINDMA bits. In addition, the 5704
1164 * uses a different encoding of read/write watermarks.
1165 */
1166 if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0 ||
1167 sc->bge_asicrev == BGE_ASICREV_BCM5704_A1 ||
1168 sc->bge_asicrev == BGE_ASICREV_BCM5704_A2) {
1169 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1170 /* should be 0x1f0000 */
1171 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1172 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1173 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1174 }
1175 else if ((sc->bge_asicrev >> 28) ==
1176 (BGE_ASICREV_BCM5703_A0 >> 28)) {
1177 dma_rw_ctl &= 0xfffffff0;
1178 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1179 }
1180 }
1181
1182 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1183
1184 /*
1185 * Set up general mode register.
1186 */
1187 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1188 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1189 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1190 BGE_MODECTL_RX_NO_PHDR_CSUM);
1191
1192 /* Get cache line size. */
1193 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1194
1195 /*
1196 * Avoid violating PCI spec on certain chip revs.
1197 */
1198 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1199 PCIM_CMD_MWIEN) {
1200 switch(cachesize) {
1201 case 1:
1202 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1203 BGE_PCI_WRITE_BNDRY_16BYTES);
1204 break;
1205 case 2:
1206 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1207 BGE_PCI_WRITE_BNDRY_32BYTES);
1208 break;
1209 case 4:
1210 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1211 BGE_PCI_WRITE_BNDRY_64BYTES);
1212 break;
1213 case 8:
1214 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1215 BGE_PCI_WRITE_BNDRY_128BYTES);
1216 break;
1217 case 16:
1218 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1219 BGE_PCI_WRITE_BNDRY_256BYTES);
1220 break;
1221 case 32:
1222 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1223 BGE_PCI_WRITE_BNDRY_512BYTES);
1224 break;
1225 case 64:
1226 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1227 BGE_PCI_WRITE_BNDRY_1024BYTES);
1228 break;
1229 default:
1230 /* Disable PCI memory write and invalidate. */
1231 #if 0
1232 if (bootverbose)
1233 printf("%s: cache line size %d not "
1234 "supported; disabling PCI MWI\n",
1235 sc->bge_dev.dv_xname, cachesize);
1236 #endif
1237 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1238 PCIM_CMD_MWIEN);
1239 break;
1240 }
1241 }
1242
1243 /*
1244 * Disable memory write invalidate. Apparently it is not supported
1245 * properly by these devices.
1246 */
1247 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1248
1249
1250 #ifdef __brokenalpha__
1251 /*
1252 * Must insure that we do not cross an 8K (bytes) boundary
1253 * for DMA reads. Our highest limit is 1K bytes. This is a
1254 * restriction on some ALPHA platforms with early revision
1255 * 21174 PCI chipsets, such as the AlphaPC 164lx
1256 */
1257 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1258 #endif
1259
1260 /* Set the timer prescaler (always 66MHz) */
1261 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1262
1263 return(0);
1264 }
1265
1266 int
1267 bge_blockinit(sc)
1268 struct bge_softc *sc;
1269 {
1270 volatile struct bge_rcb *rcb;
1271 bus_size_t rcb_addr;
1272 int i;
1273 struct ifnet *ifp = &sc->ethercom.ec_if;
1274 bge_hostaddr taddr;
1275
1276 /*
1277 * Initialize the memory window pointer register so that
1278 * we can access the first 32K of internal NIC RAM. This will
1279 * allow us to set up the TX send ring RCBs and the RX return
1280 * ring RCBs, plus other things which live in NIC memory.
1281 */
1282
1283 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1284 BGE_PCI_MEMWIN_BASEADDR, 0);
1285
1286 /* Configure mbuf memory pool */
1287 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1288 if (sc->bge_extram) {
1289 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1290 BGE_EXT_SSRAM);
1291 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1292 } else {
1293 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1294 BGE_BUFFPOOL_1);
1295 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1296 }
1297
1298 /* Configure DMA resource pool */
1299 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1300 BGE_DMA_DESCRIPTORS);
1301 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1302 }
1303
1304 /* Configure mbuf pool watermarks */
1305 #ifdef ORIG_WPAUL_VALUES
1306 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1307 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1308 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1309 #else
1310 /* new broadcom docs strongly recommend these: */
1311 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1312 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1313 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1314 } else {
1315 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1316 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1317 }
1318 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1319 #endif
1320
1321 /* Configure DMA resource watermarks */
1322 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1323 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1324
1325 /* Enable buffer manager */
1326 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1327 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1328 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1329
1330 /* Poll for buffer manager start indication */
1331 for (i = 0; i < BGE_TIMEOUT; i++) {
1332 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1333 break;
1334 DELAY(10);
1335 }
1336
1337 if (i == BGE_TIMEOUT) {
1338 printf("%s: buffer manager failed to start\n",
1339 sc->bge_dev.dv_xname);
1340 return(ENXIO);
1341 }
1342 }
1343
1344 /* Enable flow-through queues */
1345 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1346 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1347
1348 /* Wait until queue initialization is complete */
1349 for (i = 0; i < BGE_TIMEOUT; i++) {
1350 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1351 break;
1352 DELAY(10);
1353 }
1354
1355 if (i == BGE_TIMEOUT) {
1356 printf("%s: flow-through queue init failed\n",
1357 sc->bge_dev.dv_xname);
1358 return(ENXIO);
1359 }
1360
1361 /* Initialize the standard RX ring control block */
1362 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1363 bge_set_hostaddr(&rcb->bge_hostaddr,
1364 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1365 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1366 rcb->bge_maxlen_flags =
1367 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1368 } else {
1369 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1370 }
1371 if (sc->bge_extram)
1372 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1373 else
1374 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1375 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1376 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1377 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1378 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1379
1380 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1381 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1382 } else {
1383 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1384 }
1385
1386 /*
1387 * Initialize the jumbo RX ring control block
1388 * We set the 'ring disabled' bit in the flags
1389 * field until we're actually ready to start
1390 * using this ring (i.e. once we set the MTU
1391 * high enough to require it).
1392 */
1393 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1394 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1395 bge_set_hostaddr(&rcb->bge_hostaddr,
1396 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1397 rcb->bge_maxlen_flags =
1398 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1399 BGE_RCB_FLAG_RING_DISABLED);
1400 if (sc->bge_extram)
1401 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1402 else
1403 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1404
1405 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1406 rcb->bge_hostaddr.bge_addr_hi);
1407 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1408 rcb->bge_hostaddr.bge_addr_lo);
1409 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1410 rcb->bge_maxlen_flags);
1411 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1412
1413 /* Set up dummy disabled mini ring RCB */
1414 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1415 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1416 BGE_RCB_FLAG_RING_DISABLED);
1417 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1418 rcb->bge_maxlen_flags);
1419
1420 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1421 offsetof(struct bge_ring_data, bge_info),
1422 sizeof (struct bge_gib),
1423 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1424 }
1425
1426 /*
1427 * Set the BD ring replentish thresholds. The recommended
1428 * values are 1/8th the number of descriptors allocated to
1429 * each ring.
1430 */
1431 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1432 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1433
1434 /*
1435 * Disable all unused send rings by setting the 'ring disabled'
1436 * bit in the flags field of all the TX send ring control blocks.
1437 * These are located in NIC memory.
1438 */
1439 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1440 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1441 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1442 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1443 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1444 rcb_addr += sizeof(struct bge_rcb);
1445 }
1446
1447 /* Configure TX RCB 0 (we use only the first ring) */
1448 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1449 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1450 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1451 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1452 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1453 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1454 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1455 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1456 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1457 }
1458
1459 /* Disable all unused RX return rings */
1460 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1461 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1462 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1463 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1464 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1465 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1466 BGE_RCB_FLAG_RING_DISABLED));
1467 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1468 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1469 (i * (sizeof(u_int64_t))), 0);
1470 rcb_addr += sizeof(struct bge_rcb);
1471 }
1472
1473 /* Initialize RX ring indexes */
1474 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1475 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1476 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1477
1478 /*
1479 * Set up RX return ring 0
1480 * Note that the NIC address for RX return rings is 0x00000000.
1481 * The return rings live entirely within the host, so the
1482 * nicaddr field in the RCB isn't used.
1483 */
1484 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1485 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1486 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1487 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1488 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1489 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1490 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1491
1492 /* Set random backoff seed for TX */
1493 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1494 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1495 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1496 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1497 BGE_TX_BACKOFF_SEED_MASK);
1498
1499 /* Set inter-packet gap */
1500 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1501
1502 /*
1503 * Specify which ring to use for packets that don't match
1504 * any RX rules.
1505 */
1506 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1507
1508 /*
1509 * Configure number of RX lists. One interrupt distribution
1510 * list, sixteen active lists, one bad frames class.
1511 */
1512 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1513
1514 /* Inialize RX list placement stats mask. */
1515 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1516 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1517
1518 /* Disable host coalescing until we get it set up */
1519 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1520
1521 /* Poll to make sure it's shut down. */
1522 for (i = 0; i < BGE_TIMEOUT; i++) {
1523 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1524 break;
1525 DELAY(10);
1526 }
1527
1528 if (i == BGE_TIMEOUT) {
1529 printf("%s: host coalescing engine failed to idle\n",
1530 sc->bge_dev.dv_xname);
1531 return(ENXIO);
1532 }
1533
1534 /* Set up host coalescing defaults */
1535 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1536 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1537 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1538 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1539 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1540 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1541 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1542 }
1543 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1544 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1545
1546 /* Set up address of statistics block */
1547 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1548 bge_set_hostaddr(&taddr,
1549 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1550 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1551 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1552 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1553 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1554 }
1555
1556 /* Set up address of status block */
1557 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1558 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1559 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1560 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1561 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1562 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1563
1564 /* Turn on host coalescing state machine */
1565 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1566
1567 /* Turn on RX BD completion state machine and enable attentions */
1568 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1569 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1570
1571 /* Turn on RX list placement state machine */
1572 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1573
1574 /* Turn on RX list selector state machine. */
1575 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1576 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1577 }
1578
1579 /* Turn on DMA, clear stats */
1580 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1581 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1582 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1583 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1584 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1585
1586 /* Set misc. local control, enable interrupts on attentions */
1587 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1588
1589 #ifdef notdef
1590 /* Assert GPIO pins for PHY reset */
1591 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1592 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1593 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1594 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1595 #endif
1596
1597 #if defined(not_quite_yet)
1598 /* Linux driver enables enable gpio pin #1 on 5700s */
1599 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
1600 sc->bge_local_ctrl_reg |=
1601 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1602 }
1603 #endif
1604 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1605
1606 /* Turn on DMA completion state machine */
1607 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1608 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1609 }
1610
1611 /* Turn on write DMA state machine */
1612 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1613 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1614
1615 /* Turn on read DMA state machine */
1616 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1617 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1618
1619 /* Turn on RX data completion state machine */
1620 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1621
1622 /* Turn on RX BD initiator state machine */
1623 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1624
1625 /* Turn on RX data and RX BD initiator state machine */
1626 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1627
1628 /* Turn on Mbuf cluster free state machine */
1629 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1630 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1631 }
1632
1633 /* Turn on send BD completion state machine */
1634 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1635
1636 /* Turn on send data completion state machine */
1637 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1638
1639 /* Turn on send data initiator state machine */
1640 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1641
1642 /* Turn on send BD initiator state machine */
1643 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1644
1645 /* Turn on send BD selector state machine */
1646 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1647
1648 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1649 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1650 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1651
1652 /* init LED register */
1653 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1654
1655 /* ack/clear link change events */
1656 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1657 BGE_MACSTAT_CFG_CHANGED);
1658 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1659
1660 /* Enable PHY auto polling (for MII/GMII only) */
1661 if (sc->bge_tbi) {
1662 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1663 } else {
1664 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1665 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1666 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1667 BGE_EVTENB_MI_INTERRUPT);
1668 }
1669
1670 /* Enable link state change attentions. */
1671 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1672
1673 return(0);
1674 }
1675
1676 static const struct bge_revision {
1677 uint32_t br_asicrev;
1678 uint32_t br_quirks;
1679 const char *br_name;
1680 } bge_revisions[] = {
1681 { BGE_ASICREV_BCM5700_A0,
1682 BGE_QUIRK_LINK_STATE_BROKEN,
1683 "BCM5700 A0" },
1684
1685 { BGE_ASICREV_BCM5700_A1,
1686 BGE_QUIRK_LINK_STATE_BROKEN,
1687 "BCM5700 A1" },
1688
1689 { BGE_ASICREV_BCM5700_B0,
1690 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1691 "BCM5700 B0" },
1692
1693 { BGE_ASICREV_BCM5700_B1,
1694 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1695 "BCM5700 B1" },
1696
1697 { BGE_ASICREV_BCM5700_B2,
1698 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1699 "BCM5700 B2" },
1700
1701 /* This is treated like a BCM5700 Bx */
1702 { BGE_ASICREV_BCM5700_ALTIMA,
1703 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1704 "BCM5700 Altima" },
1705
1706 { BGE_ASICREV_BCM5700_C0,
1707 0,
1708 "BCM5700 C0" },
1709
1710 { BGE_ASICREV_BCM5701_A0,
1711 0, /*XXX really, just not known */
1712 "BCM5701 A0" },
1713
1714 { BGE_ASICREV_BCM5701_B0,
1715 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1716 "BCM5701 B0" },
1717
1718 { BGE_ASICREV_BCM5701_B2,
1719 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1720 "BCM5701 B2" },
1721
1722 { BGE_ASICREV_BCM5701_B5,
1723 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1724 "BCM5701 B5" },
1725
1726 { BGE_ASICREV_BCM5703_A0,
1727 0,
1728 "BCM5703 A0" },
1729
1730 { BGE_ASICREV_BCM5703_A1,
1731 0,
1732 "BCM5703 A1" },
1733
1734 { BGE_ASICREV_BCM5703_A2,
1735 BGE_QUIRK_ONLY_PHY_1,
1736 "BCM5703 A2" },
1737
1738 { BGE_ASICREV_BCM5704_A0,
1739 BGE_QUIRK_ONLY_PHY_1,
1740 "BCM5704 A0" },
1741
1742 { BGE_ASICREV_BCM5704_A1,
1743 BGE_QUIRK_ONLY_PHY_1,
1744 "BCM5704 A1" },
1745
1746 { BGE_ASICREV_BCM5704_A2,
1747 BGE_QUIRK_ONLY_PHY_1,
1748 "BCM5704 A2" },
1749
1750 { BGE_ASICREV_BCM5705_A1,
1751 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1752 "BCM5705 A1" },
1753
1754 { 0, 0, NULL }
1755 };
1756
1757 static const struct bge_revision *
1758 bge_lookup_rev(uint32_t asicrev)
1759 {
1760 const struct bge_revision *br;
1761
1762 for (br = bge_revisions; br->br_name != NULL; br++) {
1763 if (br->br_asicrev == asicrev)
1764 return (br);
1765 }
1766
1767 return (NULL);
1768 }
1769
1770 static const struct bge_product {
1771 pci_vendor_id_t bp_vendor;
1772 pci_product_id_t bp_product;
1773 const char *bp_name;
1774 } bge_products[] = {
1775 /*
1776 * The BCM5700 documentation seems to indicate that the hardware
1777 * still has the Alteon vendor ID burned into it, though it
1778 * should always be overridden by the value in the EEPROM. We'll
1779 * check for it anyway.
1780 */
1781 { PCI_VENDOR_ALTEON,
1782 PCI_PRODUCT_ALTEON_BCM5700,
1783 "Broadcom BCM5700 Gigabit Ethernet" },
1784 { PCI_VENDOR_ALTEON,
1785 PCI_PRODUCT_ALTEON_BCM5701,
1786 "Broadcom BCM5701 Gigabit Ethernet" },
1787
1788 { PCI_VENDOR_ALTIMA,
1789 PCI_PRODUCT_ALTIMA_AC1000,
1790 "Altima AC1000 Gigabit Ethernet" },
1791 { PCI_VENDOR_ALTIMA,
1792 PCI_PRODUCT_ALTIMA_AC1001,
1793 "Altima AC1001 Gigabit Ethernet" },
1794 { PCI_VENDOR_ALTIMA,
1795 PCI_PRODUCT_ALTIMA_AC9100,
1796 "Altima AC9100 Gigabit Ethernet" },
1797
1798 { PCI_VENDOR_BROADCOM,
1799 PCI_PRODUCT_BROADCOM_BCM5700,
1800 "Broadcom BCM5700 Gigabit Ethernet" },
1801 { PCI_VENDOR_BROADCOM,
1802 PCI_PRODUCT_BROADCOM_BCM5701,
1803 "Broadcom BCM5701 Gigabit Ethernet" },
1804 { PCI_VENDOR_BROADCOM,
1805 PCI_PRODUCT_BROADCOM_BCM5702,
1806 "Broadcom BCM5702 Gigabit Ethernet" },
1807 { PCI_VENDOR_BROADCOM,
1808 PCI_PRODUCT_BROADCOM_BCM5702X,
1809 "Broadcom BCM5702X Gigabit Ethernet" },
1810 { PCI_VENDOR_BROADCOM,
1811 PCI_PRODUCT_BROADCOM_BCM5703,
1812 "Broadcom BCM5703 Gigabit Ethernet" },
1813 { PCI_VENDOR_BROADCOM,
1814 PCI_PRODUCT_BROADCOM_BCM5703X,
1815 "Broadcom BCM5703X Gigabit Ethernet" },
1816 { PCI_VENDOR_BROADCOM,
1817 PCI_PRODUCT_BROADCOM_BCM5704C,
1818 "Broadcom BCM5704C Dual Gigabit Ethernet" },
1819 { PCI_VENDOR_BROADCOM,
1820 PCI_PRODUCT_BROADCOM_BCM5704S,
1821 "Broadcom BCM5704S Dual Gigabit Ethernet" },
1822 { PCI_VENDOR_BROADCOM,
1823 PCI_PRODUCT_BROADCOM_BCM5705M,
1824 "Broadcom BCM5705M Gigabit Ethernet" },
1825
1826 { PCI_VENDOR_SCHNEIDERKOCH,
1827 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1828 "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1829
1830 { PCI_VENDOR_3COM,
1831 PCI_PRODUCT_3COM_3C996,
1832 "3Com 3c996 Gigabit Ethernet" },
1833
1834 { 0,
1835 0,
1836 NULL },
1837 };
1838
1839 static const struct bge_product *
1840 bge_lookup(const struct pci_attach_args *pa)
1841 {
1842 const struct bge_product *bp;
1843
1844 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1845 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1846 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1847 return (bp);
1848 }
1849
1850 return (NULL);
1851 }
1852
1853 int
1854 bge_setpowerstate(sc, powerlevel)
1855 struct bge_softc *sc;
1856 int powerlevel;
1857 {
1858 #ifdef NOTYET
1859 u_int32_t pm_ctl = 0;
1860
1861 /* XXX FIXME: make sure indirect accesses enabled? */
1862 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1863 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1864 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1865
1866 /* clear the PME_assert bit and power state bits, enable PME */
1867 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1868 pm_ctl &= ~PCIM_PSTAT_DMASK;
1869 pm_ctl |= (1 << 8);
1870
1871 if (powerlevel == 0) {
1872 pm_ctl |= PCIM_PSTAT_D0;
1873 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1874 pm_ctl, 2);
1875 DELAY(10000);
1876 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1877 DELAY(10000);
1878
1879 #ifdef NOTYET
1880 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1881 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1882 #endif
1883 DELAY(40); DELAY(40); DELAY(40);
1884 DELAY(10000); /* above not quite adequate on 5700 */
1885 return 0;
1886 }
1887
1888
1889 /*
1890 * Entering ACPI power states D1-D3 is achieved by wiggling
1891 * GMII gpio pins. Example code assumes all hardware vendors
1892 * followed Broadom's sample pcb layout. Until we verify that
1893 * for all supported OEM cards, states D1-D3 are unsupported.
1894 */
1895 printf("%s: power state %d unimplemented; check GPIO pins\n",
1896 sc->bge_dev.dv_xname, powerlevel);
1897 #endif
1898 return EOPNOTSUPP;
1899 }
1900
1901
1902 /*
1903 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1904 * against our list and return its name if we find a match. Note
1905 * that since the Broadcom controller contains VPD support, we
1906 * can get the device name string from the controller itself instead
1907 * of the compiled-in string. This is a little slow, but it guarantees
1908 * we'll always announce the right product name.
1909 */
1910 int
1911 bge_probe(parent, match, aux)
1912 struct device *parent;
1913 struct cfdata *match;
1914 void *aux;
1915 {
1916 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1917
1918 if (bge_lookup(pa) != NULL)
1919 return (1);
1920
1921 return (0);
1922 }
1923
1924 void
1925 bge_attach(parent, self, aux)
1926 struct device *parent, *self;
1927 void *aux;
1928 {
1929 struct bge_softc *sc = (struct bge_softc *)self;
1930 struct pci_attach_args *pa = aux;
1931 const struct bge_product *bp;
1932 const struct bge_revision *br;
1933 pci_chipset_tag_t pc = pa->pa_pc;
1934 pci_intr_handle_t ih;
1935 const char *intrstr = NULL;
1936 bus_dma_segment_t seg;
1937 int rseg;
1938 u_int32_t hwcfg = 0;
1939 u_int32_t mac_addr = 0;
1940 u_int32_t command;
1941 struct ifnet *ifp;
1942 caddr_t kva;
1943 u_char eaddr[ETHER_ADDR_LEN];
1944 pcireg_t memtype;
1945 bus_addr_t memaddr;
1946 bus_size_t memsize;
1947 u_int32_t pm_ctl;
1948
1949 bp = bge_lookup(pa);
1950 KASSERT(bp != NULL);
1951
1952 sc->bge_pa = *pa;
1953
1954 aprint_naive(": Ethernet controller\n");
1955 aprint_normal(": %s\n", bp->bp_name);
1956
1957 /*
1958 * Map control/status registers.
1959 */
1960 DPRINTFN(5, ("Map control/status regs\n"));
1961 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1962 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1963 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1964 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1965
1966 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1967 aprint_error("%s: failed to enable memory mapping!\n",
1968 sc->bge_dev.dv_xname);
1969 return;
1970 }
1971
1972 DPRINTFN(5, ("pci_mem_find\n"));
1973 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1974 switch (memtype) {
1975 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1976 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1977 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1978 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1979 &memaddr, &memsize) == 0)
1980 break;
1981 default:
1982 aprint_error("%s: can't find mem space\n",
1983 sc->bge_dev.dv_xname);
1984 return;
1985 }
1986
1987 DPRINTFN(5, ("pci_intr_map\n"));
1988 if (pci_intr_map(pa, &ih)) {
1989 aprint_error("%s: couldn't map interrupt\n",
1990 sc->bge_dev.dv_xname);
1991 return;
1992 }
1993
1994 DPRINTFN(5, ("pci_intr_string\n"));
1995 intrstr = pci_intr_string(pc, ih);
1996
1997 DPRINTFN(5, ("pci_intr_establish\n"));
1998 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1999
2000 if (sc->bge_intrhand == NULL) {
2001 aprint_error("%s: couldn't establish interrupt",
2002 sc->bge_dev.dv_xname);
2003 if (intrstr != NULL)
2004 aprint_normal(" at %s", intrstr);
2005 aprint_normal("\n");
2006 return;
2007 }
2008 aprint_normal("%s: interrupting at %s\n",
2009 sc->bge_dev.dv_xname, intrstr);
2010
2011 /*
2012 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2013 * can clobber the chip's PCI config-space power control registers,
2014 * leaving the card in D3 powersave state.
2015 * We do not have memory-mapped registers in this state,
2016 * so force device into D0 state before starting initialization.
2017 */
2018 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2019 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2020 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2021 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2022 DELAY(1000); /* 27 usec is allegedly sufficent */
2023
2024 /* Try to reset the chip. */
2025 DPRINTFN(5, ("bge_reset\n"));
2026 bge_reset(sc);
2027
2028 if (bge_chipinit(sc)) {
2029 aprint_error("%s: chip initialization failed\n",
2030 sc->bge_dev.dv_xname);
2031 bge_release_resources(sc);
2032 return;
2033 }
2034
2035 /*
2036 * Get station address from the EEPROM.
2037 */
2038 mac_addr = bge_readmem_ind(sc, 0x0c14);
2039 if ((mac_addr >> 16) == 0x484b) {
2040 eaddr[0] = (u_char)(mac_addr >> 8);
2041 eaddr[1] = (u_char)(mac_addr >> 0);
2042 mac_addr = bge_readmem_ind(sc, 0x0c18);
2043 eaddr[2] = (u_char)(mac_addr >> 24);
2044 eaddr[3] = (u_char)(mac_addr >> 16);
2045 eaddr[4] = (u_char)(mac_addr >> 8);
2046 eaddr[5] = (u_char)(mac_addr >> 0);
2047 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2048 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2049 aprint_error("%s: failed to read station address\n",
2050 sc->bge_dev.dv_xname);
2051 bge_release_resources(sc);
2052 return;
2053 }
2054
2055 /*
2056 * Save ASIC rev. Look up any quirks associated with this
2057 * ASIC.
2058 */
2059 sc->bge_asicrev =
2060 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2061 BGE_PCIMISCCTL_ASICREV;
2062 br = bge_lookup_rev(sc->bge_asicrev);
2063
2064 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2065 if (br == NULL) {
2066 aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
2067 sc->bge_quirks = 0;
2068 } else {
2069 aprint_normal("ASIC %s", br->br_name);
2070 sc->bge_quirks = br->br_quirks;
2071 }
2072 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2073
2074 /* Allocate the general information block and ring buffers. */
2075 if (pci_dma64_available(pa))
2076 sc->bge_dmatag = pa->pa_dmat64;
2077 else
2078 sc->bge_dmatag = pa->pa_dmat;
2079 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2080 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2081 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2082 aprint_error("%s: can't alloc rx buffers\n",
2083 sc->bge_dev.dv_xname);
2084 return;
2085 }
2086 DPRINTFN(5, ("bus_dmamem_map\n"));
2087 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2088 sizeof(struct bge_ring_data), &kva,
2089 BUS_DMA_NOWAIT)) {
2090 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2091 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2092 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2093 return;
2094 }
2095 DPRINTFN(5, ("bus_dmamem_create\n"));
2096 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2097 sizeof(struct bge_ring_data), 0,
2098 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2099 aprint_error("%s: can't create DMA map\n",
2100 sc->bge_dev.dv_xname);
2101 bus_dmamem_unmap(sc->bge_dmatag, kva,
2102 sizeof(struct bge_ring_data));
2103 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2104 return;
2105 }
2106 DPRINTFN(5, ("bus_dmamem_load\n"));
2107 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2108 sizeof(struct bge_ring_data), NULL,
2109 BUS_DMA_NOWAIT)) {
2110 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2111 bus_dmamem_unmap(sc->bge_dmatag, kva,
2112 sizeof(struct bge_ring_data));
2113 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2114 return;
2115 }
2116
2117 DPRINTFN(5, ("bzero\n"));
2118 sc->bge_rdata = (struct bge_ring_data *)kva;
2119
2120 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2121
2122 /* Try to allocate memory for jumbo buffers. */
2123 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2124 if (bge_alloc_jumbo_mem(sc)) {
2125 aprint_error("%s: jumbo buffer allocation failed\n",
2126 sc->bge_dev.dv_xname);
2127 } else
2128 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2129 }
2130
2131 /* Set default tuneable values. */
2132 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2133 sc->bge_rx_coal_ticks = 150;
2134 sc->bge_rx_max_coal_bds = 64;
2135 #ifdef ORIG_WPAUL_VALUES
2136 sc->bge_tx_coal_ticks = 150;
2137 sc->bge_tx_max_coal_bds = 128;
2138 #else
2139 sc->bge_tx_coal_ticks = 300;
2140 sc->bge_tx_max_coal_bds = 400;
2141 #endif
2142
2143 /* Set up ifnet structure */
2144 ifp = &sc->ethercom.ec_if;
2145 ifp->if_softc = sc;
2146 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2147 ifp->if_ioctl = bge_ioctl;
2148 ifp->if_start = bge_start;
2149 ifp->if_init = bge_init;
2150 ifp->if_watchdog = bge_watchdog;
2151 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2152 IFQ_SET_READY(&ifp->if_snd);
2153 DPRINTFN(5, ("bcopy\n"));
2154 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2155
2156 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2157 sc->ethercom.ec_if.if_capabilities |=
2158 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2159 sc->ethercom.ec_capabilities |=
2160 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2161
2162 /*
2163 * Do MII setup.
2164 */
2165 DPRINTFN(5, ("mii setup\n"));
2166 sc->bge_mii.mii_ifp = ifp;
2167 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2168 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2169 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2170
2171 /*
2172 * Figure out what sort of media we have by checking the
2173 * hardware config word in the first 32k of NIC internal memory,
2174 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2175 * cards, this value appears to be unset. If that's the
2176 * case, we have to rely on identifying the NIC by its PCI
2177 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2178 */
2179 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2180 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2181 } else {
2182 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2183 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2184 hwcfg = be32toh(hwcfg);
2185 }
2186 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2187 sc->bge_tbi = 1;
2188
2189 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2190 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2191 SK_SUBSYSID_9D41)
2192 sc->bge_tbi = 1;
2193
2194 if (sc->bge_tbi) {
2195 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2196 bge_ifmedia_sts);
2197 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2198 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2199 0, NULL);
2200 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2201 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2202 } else {
2203 /*
2204 * Do transceiver setup.
2205 */
2206 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2207 bge_ifmedia_sts);
2208 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2209 MII_PHY_ANY, MII_OFFSET_ANY, 0);
2210
2211 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2212 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2213 ifmedia_add(&sc->bge_mii.mii_media,
2214 IFM_ETHER|IFM_MANUAL, 0, NULL);
2215 ifmedia_set(&sc->bge_mii.mii_media,
2216 IFM_ETHER|IFM_MANUAL);
2217 } else
2218 ifmedia_set(&sc->bge_mii.mii_media,
2219 IFM_ETHER|IFM_AUTO);
2220 }
2221
2222 /*
2223 * When using the BCM5701 in PCI-X mode, data corruption has
2224 * been observed in the first few bytes of some received packets.
2225 * Aligning the packet buffer in memory eliminates the corruption.
2226 * Unfortunately, this misaligns the packet payloads. On platforms
2227 * which do not support unaligned accesses, we will realign the
2228 * payloads by copying the received packets.
2229 */
2230 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2231 /* If in PCI-X mode, work around the alignment bug. */
2232 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2233 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2234 BGE_PCISTATE_PCI_BUSSPEED)
2235 sc->bge_rx_alignment_bug = 1;
2236 }
2237
2238 /*
2239 * Call MI attach routine.
2240 */
2241 DPRINTFN(5, ("if_attach\n"));
2242 if_attach(ifp);
2243 DPRINTFN(5, ("ether_ifattach\n"));
2244 ether_ifattach(ifp, eaddr);
2245 DPRINTFN(5, ("callout_init\n"));
2246 callout_init(&sc->bge_timeout);
2247 }
2248
2249 void
2250 bge_release_resources(sc)
2251 struct bge_softc *sc;
2252 {
2253 if (sc->bge_vpd_prodname != NULL)
2254 free(sc->bge_vpd_prodname, M_DEVBUF);
2255
2256 if (sc->bge_vpd_readonly != NULL)
2257 free(sc->bge_vpd_readonly, M_DEVBUF);
2258 }
2259
2260 void
2261 bge_reset(sc)
2262 struct bge_softc *sc;
2263 {
2264 struct pci_attach_args *pa = &sc->bge_pa;
2265 u_int32_t cachesize, command, pcistate;
2266 int i, val = 0;
2267
2268 /* Save some important PCI state. */
2269 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2270 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2271 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2272
2273 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2274 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2275 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2276
2277 /* Issue global reset */
2278 bge_writereg_ind(sc, BGE_MISC_CFG,
2279 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2280
2281 DELAY(1000);
2282
2283 /* Reset some of the PCI state that got zapped by reset */
2284 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2285 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2286 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2287 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2288 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2289 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2290
2291 /* Enable memory arbiter. */
2292 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2293 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2294 }
2295
2296 /*
2297 * Prevent PXE restart: write a magic number to the
2298 * general communications memory at 0xB50.
2299 */
2300 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2301
2302 /*
2303 * Poll the value location we just wrote until
2304 * we see the 1's complement of the magic number.
2305 * This indicates that the firmware initialization
2306 * is complete.
2307 */
2308 for (i = 0; i < 750; i++) {
2309 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2310 if (val == ~BGE_MAGIC_NUMBER)
2311 break;
2312 DELAY(1000);
2313 }
2314
2315 if (i == 750) {
2316 printf("%s: firmware handshake timed out, val = %x\n",
2317 sc->bge_dev.dv_xname, val);
2318 return;
2319 }
2320
2321 /*
2322 * XXX Wait for the value of the PCISTATE register to
2323 * return to its original pre-reset state. This is a
2324 * fairly good indicator of reset completion. If we don't
2325 * wait for the reset to fully complete, trying to read
2326 * from the device's non-PCI registers may yield garbage
2327 * results.
2328 */
2329 for (i = 0; i < BGE_TIMEOUT; i++) {
2330 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2331 pcistate)
2332 break;
2333 DELAY(10);
2334 }
2335
2336 /* Enable memory arbiter. */
2337 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2338 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2339 }
2340
2341 /* Fix up byte swapping */
2342 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2343
2344 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2345
2346 DELAY(10000);
2347 }
2348
2349 /*
2350 * Frame reception handling. This is called if there's a frame
2351 * on the receive return list.
2352 *
2353 * Note: we have to be able to handle two possibilities here:
2354 * 1) the frame is from the jumbo recieve ring
2355 * 2) the frame is from the standard receive ring
2356 */
2357
2358 void
2359 bge_rxeof(sc)
2360 struct bge_softc *sc;
2361 {
2362 struct ifnet *ifp;
2363 int stdcnt = 0, jumbocnt = 0;
2364 int have_tag = 0;
2365 u_int16_t vlan_tag = 0;
2366 bus_dmamap_t dmamap;
2367 bus_addr_t offset, toff;
2368 bus_size_t tlen;
2369 int tosync;
2370
2371 ifp = &sc->ethercom.ec_if;
2372
2373 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2374 offsetof(struct bge_ring_data, bge_status_block),
2375 sizeof (struct bge_status_block),
2376 BUS_DMASYNC_POSTREAD);
2377
2378 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2379 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2380 sc->bge_rx_saved_considx;
2381
2382 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2383
2384 if (tosync < 0) {
2385 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2386 sizeof (struct bge_rx_bd);
2387 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2388 toff, tlen, BUS_DMASYNC_POSTREAD);
2389 tosync = -tosync;
2390 }
2391
2392 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2393 offset, tosync * sizeof (struct bge_rx_bd),
2394 BUS_DMASYNC_POSTREAD);
2395
2396 while(sc->bge_rx_saved_considx !=
2397 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2398 struct bge_rx_bd *cur_rx;
2399 u_int32_t rxidx;
2400 struct mbuf *m = NULL;
2401
2402 cur_rx = &sc->bge_rdata->
2403 bge_rx_return_ring[sc->bge_rx_saved_considx];
2404
2405 rxidx = cur_rx->bge_idx;
2406 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2407
2408 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2409 have_tag = 1;
2410 vlan_tag = cur_rx->bge_vlan_tag;
2411 }
2412
2413 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2414 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2415 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2416 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2417 jumbocnt++;
2418 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2419 ifp->if_ierrors++;
2420 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2421 continue;
2422 }
2423 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2424 NULL)== ENOBUFS) {
2425 ifp->if_ierrors++;
2426 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2427 continue;
2428 }
2429 } else {
2430 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2431 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2432 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2433 stdcnt++;
2434 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2435 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2436 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2437 ifp->if_ierrors++;
2438 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2439 continue;
2440 }
2441 if (bge_newbuf_std(sc, sc->bge_std,
2442 NULL, dmamap) == ENOBUFS) {
2443 ifp->if_ierrors++;
2444 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2445 continue;
2446 }
2447 }
2448
2449 ifp->if_ipackets++;
2450 #ifndef __NO_STRICT_ALIGNMENT
2451 /*
2452 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2453 * the Rx buffer has the layer-2 header unaligned.
2454 * If our CPU requires alignment, re-align by copying.
2455 */
2456 if (sc->bge_rx_alignment_bug) {
2457 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2458 cur_rx->bge_len);
2459 m->m_data += ETHER_ALIGN;
2460 }
2461 #endif
2462
2463 m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2464 m->m_pkthdr.rcvif = ifp;
2465
2466 #if NBPFILTER > 0
2467 /*
2468 * Handle BPF listeners. Let the BPF user see the packet.
2469 */
2470 if (ifp->if_bpf)
2471 bpf_mtap(ifp->if_bpf, m);
2472 #endif
2473
2474 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
2475 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2476 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2477 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2478 #if 0 /* XXX appears to be broken */
2479 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2480 m->m_pkthdr.csum_data =
2481 cur_rx->bge_tcp_udp_csum;
2482 m->m_pkthdr.csum_flags |=
2483 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2484 }
2485 #endif
2486 }
2487
2488 /*
2489 * If we received a packet with a vlan tag, pass it
2490 * to vlan_input() instead of ether_input().
2491 */
2492 if (have_tag) {
2493 struct m_tag *mtag;
2494
2495 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2496 M_NOWAIT);
2497 if (mtag != NULL) {
2498 *(u_int *)(mtag + 1) = vlan_tag;
2499 m_tag_prepend(m, mtag);
2500 have_tag = vlan_tag = 0;
2501 } else {
2502 printf("%s: no mbuf for tag\n", ifp->if_xname);
2503 m_freem(m);
2504 have_tag = vlan_tag = 0;
2505 continue;
2506 }
2507 }
2508 (*ifp->if_input)(ifp, m);
2509 }
2510
2511 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2512 if (stdcnt)
2513 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2514 if (jumbocnt)
2515 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2516 }
2517
2518 void
2519 bge_txeof(sc)
2520 struct bge_softc *sc;
2521 {
2522 struct bge_tx_bd *cur_tx = NULL;
2523 struct ifnet *ifp;
2524 struct txdmamap_pool_entry *dma;
2525 bus_addr_t offset, toff;
2526 bus_size_t tlen;
2527 int tosync;
2528 struct mbuf *m;
2529
2530 ifp = &sc->ethercom.ec_if;
2531
2532 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2533 offsetof(struct bge_ring_data, bge_status_block),
2534 sizeof (struct bge_status_block),
2535 BUS_DMASYNC_POSTREAD);
2536
2537 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2538 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2539 sc->bge_tx_saved_considx;
2540
2541 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2542
2543 if (tosync < 0) {
2544 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2545 sizeof (struct bge_tx_bd);
2546 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2547 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2548 tosync = -tosync;
2549 }
2550
2551 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2552 offset, tosync * sizeof (struct bge_tx_bd),
2553 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2554
2555 /*
2556 * Go through our tx ring and free mbufs for those
2557 * frames that have been sent.
2558 */
2559 while (sc->bge_tx_saved_considx !=
2560 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2561 u_int32_t idx = 0;
2562
2563 idx = sc->bge_tx_saved_considx;
2564 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2565 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2566 ifp->if_opackets++;
2567 m = sc->bge_cdata.bge_tx_chain[idx];
2568 if (m != NULL) {
2569 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2570 dma = sc->txdma[idx];
2571 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2572 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2573 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2574 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2575 sc->txdma[idx] = NULL;
2576
2577 m_freem(m);
2578 }
2579 sc->bge_txcnt--;
2580 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2581 ifp->if_timer = 0;
2582 }
2583
2584 if (cur_tx != NULL)
2585 ifp->if_flags &= ~IFF_OACTIVE;
2586 }
2587
2588 int
2589 bge_intr(xsc)
2590 void *xsc;
2591 {
2592 struct bge_softc *sc;
2593 struct ifnet *ifp;
2594
2595 sc = xsc;
2596 ifp = &sc->ethercom.ec_if;
2597
2598 #ifdef notdef
2599 /* Avoid this for now -- checking this register is expensive. */
2600 /* Make sure this is really our interrupt. */
2601 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2602 return (0);
2603 #endif
2604 /* Ack interrupt and stop others from occuring. */
2605 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2606
2607 /*
2608 * Process link state changes.
2609 * Grrr. The link status word in the status block does
2610 * not work correctly on the BCM5700 rev AX and BX chips,
2611 * according to all avaibable information. Hence, we have
2612 * to enable MII interrupts in order to properly obtain
2613 * async link changes. Unfortunately, this also means that
2614 * we have to read the MAC status register to detect link
2615 * changes, thereby adding an additional register access to
2616 * the interrupt handler.
2617 */
2618
2619 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2620 u_int32_t status;
2621
2622 status = CSR_READ_4(sc, BGE_MAC_STS);
2623 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2624 sc->bge_link = 0;
2625 callout_stop(&sc->bge_timeout);
2626 bge_tick(sc);
2627 /* Clear the interrupt */
2628 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2629 BGE_EVTENB_MI_INTERRUPT);
2630 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2631 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2632 BRGPHY_INTRS);
2633 }
2634 } else {
2635 if (sc->bge_rdata->bge_status_block.bge_status &
2636 BGE_STATFLAG_LINKSTATE_CHANGED) {
2637 sc->bge_link = 0;
2638 callout_stop(&sc->bge_timeout);
2639 bge_tick(sc);
2640 /* Clear the interrupt */
2641 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2642 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2643 BGE_MACSTAT_LINK_CHANGED);
2644 }
2645 }
2646
2647 if (ifp->if_flags & IFF_RUNNING) {
2648 /* Check RX return ring producer/consumer */
2649 bge_rxeof(sc);
2650
2651 /* Check TX ring producer/consumer */
2652 bge_txeof(sc);
2653 }
2654
2655 bge_handle_events(sc);
2656
2657 /* Re-enable interrupts. */
2658 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2659
2660 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2661 bge_start(ifp);
2662
2663 return (1);
2664 }
2665
2666 void
2667 bge_tick(xsc)
2668 void *xsc;
2669 {
2670 struct bge_softc *sc = xsc;
2671 struct mii_data *mii = &sc->bge_mii;
2672 struct ifmedia *ifm = NULL;
2673 struct ifnet *ifp = &sc->ethercom.ec_if;
2674 int s;
2675
2676 s = splnet();
2677
2678 bge_stats_update(sc);
2679 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2680 if (sc->bge_link) {
2681 splx(s);
2682 return;
2683 }
2684
2685 if (sc->bge_tbi) {
2686 ifm = &sc->bge_ifmedia;
2687 if (CSR_READ_4(sc, BGE_MAC_STS) &
2688 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2689 sc->bge_link++;
2690 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2691 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2692 bge_start(ifp);
2693 }
2694 splx(s);
2695 return;
2696 }
2697
2698 mii_tick(mii);
2699
2700 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2701 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2702 sc->bge_link++;
2703 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2704 bge_start(ifp);
2705 }
2706
2707 splx(s);
2708 }
2709
2710 void
2711 bge_stats_update(sc)
2712 struct bge_softc *sc;
2713 {
2714 struct ifnet *ifp = &sc->ethercom.ec_if;
2715 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2716 bus_size_t rstats = BGE_RX_STATS;
2717
2718 #define READ_RSTAT(sc, stats, stat) \
2719 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
2720
2721 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2722 ifp->if_collisions +=
2723 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
2724 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
2725 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
2726 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
2727 return;
2728 }
2729
2730 #undef READ_RSTAT
2731 #define READ_STAT(sc, stats, stat) \
2732 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2733
2734 ifp->if_collisions +=
2735 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2736 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2737 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2738 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2739 ifp->if_collisions;
2740
2741 #undef READ_STAT
2742
2743 #ifdef notdef
2744 ifp->if_collisions +=
2745 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2746 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2747 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2748 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2749 ifp->if_collisions;
2750 #endif
2751 }
2752
2753 /*
2754 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2755 * pointers to descriptors.
2756 */
2757 int
2758 bge_encap(sc, m_head, txidx)
2759 struct bge_softc *sc;
2760 struct mbuf *m_head;
2761 u_int32_t *txidx;
2762 {
2763 struct bge_tx_bd *f = NULL;
2764 u_int32_t frag, cur, cnt = 0;
2765 u_int16_t csum_flags = 0;
2766 struct txdmamap_pool_entry *dma;
2767 bus_dmamap_t dmamap;
2768 int i = 0;
2769 struct m_tag *mtag;
2770 struct mbuf *prev, *m;
2771 int totlen, prevlen;
2772
2773 cur = frag = *txidx;
2774
2775 if (m_head->m_pkthdr.csum_flags) {
2776 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2777 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2778 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2779 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2780 }
2781
2782 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
2783 goto doit;
2784 /*
2785 * bcm5700 Revision B silicon cannot handle DMA descriptors with
2786 * less than eight bytes. If we encounter a teeny mbuf
2787 * at the end of a chain, we can pad. Otherwise, copy.
2788 */
2789 prev = NULL;
2790 totlen = 0;
2791 for (m = m_head; m != NULL; prev = m,m = m->m_next) {
2792 int mlen = m->m_len;
2793
2794 totlen += mlen;
2795 if (mlen == 0) {
2796 /* print a warning? */
2797 continue;
2798 }
2799 if (mlen >= 8)
2800 continue;
2801
2802 /* If we get here, mbuf data is too small for DMA engine. */
2803 if (m->m_next != 0) {
2804 /* Internal frag. If fits in prev, copy it there. */
2805 if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
2806 !M_READONLY(prev)) {
2807 bcopy(m->m_data,
2808 prev->m_data+prev->m_len,
2809 mlen);
2810 prev->m_len += mlen;
2811 m->m_len = 0;
2812 MFREE(m, prev->m_next); /* XXX stitch chain */
2813 m = prev;
2814 continue;
2815 } else {
2816 struct mbuf *n;
2817 /* slow copy */
2818 slowcopy:
2819 n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
2820 m_freem(m_head);
2821 if (n == 0)
2822 return 0;
2823 m_head = n;
2824 goto doit;
2825 }
2826 } else if ((totlen -mlen +8) >= 1500) {
2827 goto slowcopy;
2828 }
2829 prevlen = m->m_len;
2830 }
2831
2832 doit:
2833 dma = SLIST_FIRST(&sc->txdma_list);
2834 if (dma == NULL)
2835 return ENOBUFS;
2836 dmamap = dma->dmamap;
2837
2838 /*
2839 * Start packing the mbufs in this chain into
2840 * the fragment pointers. Stop when we run out
2841 * of fragments or hit the end of the mbuf chain.
2842 */
2843 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2844 BUS_DMA_NOWAIT))
2845 return(ENOBUFS);
2846
2847 mtag = sc->ethercom.ec_nvlans ?
2848 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
2849
2850 for (i = 0; i < dmamap->dm_nsegs; i++) {
2851 f = &sc->bge_rdata->bge_tx_ring[frag];
2852 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2853 break;
2854 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2855 f->bge_len = dmamap->dm_segs[i].ds_len;
2856 f->bge_flags = csum_flags;
2857
2858 if (mtag != NULL) {
2859 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2860 f->bge_vlan_tag = *(u_int *)(mtag + 1);
2861 } else {
2862 f->bge_vlan_tag = 0;
2863 }
2864 /*
2865 * Sanity check: avoid coming within 16 descriptors
2866 * of the end of the ring.
2867 */
2868 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2869 return(ENOBUFS);
2870 cur = frag;
2871 BGE_INC(frag, BGE_TX_RING_CNT);
2872 cnt++;
2873 }
2874
2875 if (i < dmamap->dm_nsegs)
2876 return ENOBUFS;
2877
2878 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2879 BUS_DMASYNC_PREWRITE);
2880
2881 if (frag == sc->bge_tx_saved_considx)
2882 return(ENOBUFS);
2883
2884 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2885 sc->bge_cdata.bge_tx_chain[cur] = m_head;
2886 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2887 sc->txdma[cur] = dma;
2888 sc->bge_txcnt += cnt;
2889
2890 *txidx = frag;
2891
2892 return(0);
2893 }
2894
2895 /*
2896 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2897 * to the mbuf data regions directly in the transmit descriptors.
2898 */
2899 void
2900 bge_start(ifp)
2901 struct ifnet *ifp;
2902 {
2903 struct bge_softc *sc;
2904 struct mbuf *m_head = NULL;
2905 u_int32_t prodidx = 0;
2906 int pkts = 0;
2907
2908 sc = ifp->if_softc;
2909
2910 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2911 return;
2912
2913 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2914
2915 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2916 IFQ_POLL(&ifp->if_snd, m_head);
2917 if (m_head == NULL)
2918 break;
2919
2920 #if 0
2921 /*
2922 * XXX
2923 * safety overkill. If this is a fragmented packet chain
2924 * with delayed TCP/UDP checksums, then only encapsulate
2925 * it if we have enough descriptors to handle the entire
2926 * chain at once.
2927 * (paranoia -- may not actually be needed)
2928 */
2929 if (m_head->m_flags & M_FIRSTFRAG &&
2930 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2931 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2932 m_head->m_pkthdr.csum_data + 16) {
2933 ifp->if_flags |= IFF_OACTIVE;
2934 break;
2935 }
2936 }
2937 #endif
2938
2939 /*
2940 * Pack the data into the transmit ring. If we
2941 * don't have room, set the OACTIVE flag and wait
2942 * for the NIC to drain the ring.
2943 */
2944 if (bge_encap(sc, m_head, &prodidx)) {
2945 ifp->if_flags |= IFF_OACTIVE;
2946 break;
2947 }
2948
2949 /* now we are committed to transmit the packet */
2950 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2951 pkts++;
2952
2953 #if NBPFILTER > 0
2954 /*
2955 * If there's a BPF listener, bounce a copy of this frame
2956 * to him.
2957 */
2958 if (ifp->if_bpf)
2959 bpf_mtap(ifp->if_bpf, m_head);
2960 #endif
2961 }
2962 if (pkts == 0)
2963 return;
2964
2965 /* Transmit */
2966 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2967 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
2968 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2969
2970 /*
2971 * Set a timeout in case the chip goes out to lunch.
2972 */
2973 ifp->if_timer = 5;
2974 }
2975
2976 int
2977 bge_init(ifp)
2978 struct ifnet *ifp;
2979 {
2980 struct bge_softc *sc = ifp->if_softc;
2981 u_int16_t *m;
2982 int s, error;
2983
2984 s = splnet();
2985
2986 ifp = &sc->ethercom.ec_if;
2987
2988 /* Cancel pending I/O and flush buffers. */
2989 bge_stop(sc);
2990 bge_reset(sc);
2991 bge_chipinit(sc);
2992
2993 /*
2994 * Init the various state machines, ring
2995 * control blocks and firmware.
2996 */
2997 error = bge_blockinit(sc);
2998 if (error != 0) {
2999 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3000 error);
3001 splx(s);
3002 return error;
3003 }
3004
3005 ifp = &sc->ethercom.ec_if;
3006
3007 /* Specify MTU. */
3008 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3009 ETHER_HDR_LEN + ETHER_CRC_LEN);
3010
3011 /* Load our MAC address. */
3012 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3013 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3014 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3015
3016 /* Enable or disable promiscuous mode as needed. */
3017 if (ifp->if_flags & IFF_PROMISC) {
3018 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3019 } else {
3020 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3021 }
3022
3023 /* Program multicast filter. */
3024 bge_setmulti(sc);
3025
3026 /* Init RX ring. */
3027 bge_init_rx_ring_std(sc);
3028
3029 /* Init jumbo RX ring. */
3030 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3031 bge_init_rx_ring_jumbo(sc);
3032
3033 /* Init our RX return ring index */
3034 sc->bge_rx_saved_considx = 0;
3035
3036 /* Init TX ring. */
3037 bge_init_tx_ring(sc);
3038
3039 /* Turn on transmitter */
3040 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3041
3042 /* Turn on receiver */
3043 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3044
3045 /* Tell firmware we're alive. */
3046 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3047
3048 /* Enable host interrupts. */
3049 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3050 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3051 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3052
3053 bge_ifmedia_upd(ifp);
3054
3055 ifp->if_flags |= IFF_RUNNING;
3056 ifp->if_flags &= ~IFF_OACTIVE;
3057
3058 splx(s);
3059
3060 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3061
3062 return 0;
3063 }
3064
3065 /*
3066 * Set media options.
3067 */
3068 int
3069 bge_ifmedia_upd(ifp)
3070 struct ifnet *ifp;
3071 {
3072 struct bge_softc *sc = ifp->if_softc;
3073 struct mii_data *mii = &sc->bge_mii;
3074 struct ifmedia *ifm = &sc->bge_ifmedia;
3075
3076 /* If this is a 1000baseX NIC, enable the TBI port. */
3077 if (sc->bge_tbi) {
3078 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3079 return(EINVAL);
3080 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3081 case IFM_AUTO:
3082 break;
3083 case IFM_1000_SX:
3084 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3085 BGE_CLRBIT(sc, BGE_MAC_MODE,
3086 BGE_MACMODE_HALF_DUPLEX);
3087 } else {
3088 BGE_SETBIT(sc, BGE_MAC_MODE,
3089 BGE_MACMODE_HALF_DUPLEX);
3090 }
3091 break;
3092 default:
3093 return(EINVAL);
3094 }
3095 return(0);
3096 }
3097
3098 sc->bge_link = 0;
3099 mii_mediachg(mii);
3100
3101 return(0);
3102 }
3103
3104 /*
3105 * Report current media status.
3106 */
3107 void
3108 bge_ifmedia_sts(ifp, ifmr)
3109 struct ifnet *ifp;
3110 struct ifmediareq *ifmr;
3111 {
3112 struct bge_softc *sc = ifp->if_softc;
3113 struct mii_data *mii = &sc->bge_mii;
3114
3115 if (sc->bge_tbi) {
3116 ifmr->ifm_status = IFM_AVALID;
3117 ifmr->ifm_active = IFM_ETHER;
3118 if (CSR_READ_4(sc, BGE_MAC_STS) &
3119 BGE_MACSTAT_TBI_PCS_SYNCHED)
3120 ifmr->ifm_status |= IFM_ACTIVE;
3121 ifmr->ifm_active |= IFM_1000_SX;
3122 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3123 ifmr->ifm_active |= IFM_HDX;
3124 else
3125 ifmr->ifm_active |= IFM_FDX;
3126 return;
3127 }
3128
3129 mii_pollstat(mii);
3130 ifmr->ifm_active = mii->mii_media_active;
3131 ifmr->ifm_status = mii->mii_media_status;
3132 }
3133
3134 int
3135 bge_ioctl(ifp, command, data)
3136 struct ifnet *ifp;
3137 u_long command;
3138 caddr_t data;
3139 {
3140 struct bge_softc *sc = ifp->if_softc;
3141 struct ifreq *ifr = (struct ifreq *) data;
3142 int s, error = 0;
3143 struct mii_data *mii;
3144
3145 s = splnet();
3146
3147 switch(command) {
3148 case SIOCSIFFLAGS:
3149 if (ifp->if_flags & IFF_UP) {
3150 /*
3151 * If only the state of the PROMISC flag changed,
3152 * then just use the 'set promisc mode' command
3153 * instead of reinitializing the entire NIC. Doing
3154 * a full re-init means reloading the firmware and
3155 * waiting for it to start up, which may take a
3156 * second or two.
3157 */
3158 if (ifp->if_flags & IFF_RUNNING &&
3159 ifp->if_flags & IFF_PROMISC &&
3160 !(sc->bge_if_flags & IFF_PROMISC)) {
3161 BGE_SETBIT(sc, BGE_RX_MODE,
3162 BGE_RXMODE_RX_PROMISC);
3163 } else if (ifp->if_flags & IFF_RUNNING &&
3164 !(ifp->if_flags & IFF_PROMISC) &&
3165 sc->bge_if_flags & IFF_PROMISC) {
3166 BGE_CLRBIT(sc, BGE_RX_MODE,
3167 BGE_RXMODE_RX_PROMISC);
3168 } else
3169 bge_init(ifp);
3170 } else {
3171 if (ifp->if_flags & IFF_RUNNING) {
3172 bge_stop(sc);
3173 }
3174 }
3175 sc->bge_if_flags = ifp->if_flags;
3176 error = 0;
3177 break;
3178 case SIOCSIFMEDIA:
3179 case SIOCGIFMEDIA:
3180 if (sc->bge_tbi) {
3181 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3182 command);
3183 } else {
3184 mii = &sc->bge_mii;
3185 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3186 command);
3187 }
3188 error = 0;
3189 break;
3190 default:
3191 error = ether_ioctl(ifp, command, data);
3192 if (error == ENETRESET) {
3193 bge_setmulti(sc);
3194 error = 0;
3195 }
3196 break;
3197 }
3198
3199 splx(s);
3200
3201 return(error);
3202 }
3203
3204 void
3205 bge_watchdog(ifp)
3206 struct ifnet *ifp;
3207 {
3208 struct bge_softc *sc;
3209
3210 sc = ifp->if_softc;
3211
3212 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3213
3214 ifp->if_flags &= ~IFF_RUNNING;
3215 bge_init(ifp);
3216
3217 ifp->if_oerrors++;
3218 }
3219
3220 static void
3221 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3222 {
3223 int i;
3224
3225 BGE_CLRBIT(sc, reg, bit);
3226
3227 for (i = 0; i < BGE_TIMEOUT; i++) {
3228 if ((CSR_READ_4(sc, reg) & bit) == 0)
3229 return;
3230 delay(100);
3231 }
3232
3233 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3234 sc->bge_dev.dv_xname, (u_long) reg, bit);
3235 }
3236
3237 /*
3238 * Stop the adapter and free any mbufs allocated to the
3239 * RX and TX lists.
3240 */
3241 void
3242 bge_stop(sc)
3243 struct bge_softc *sc;
3244 {
3245 struct ifnet *ifp = &sc->ethercom.ec_if;
3246
3247 callout_stop(&sc->bge_timeout);
3248
3249 /*
3250 * Disable all of the receiver blocks
3251 */
3252 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3253 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3254 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3255 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3256 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3257 }
3258 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3259 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3260 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3261
3262 /*
3263 * Disable all of the transmit blocks
3264 */
3265 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3266 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3267 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3268 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3269 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3270 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3271 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3272 }
3273 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3274
3275 /*
3276 * Shut down all of the memory managers and related
3277 * state machines.
3278 */
3279 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3280 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3281 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3282 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3283 }
3284
3285 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3286 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3287
3288 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3289 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3290 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3291 }
3292
3293 /* Disable host interrupts. */
3294 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3295 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3296
3297 /*
3298 * Tell firmware we're shutting down.
3299 */
3300 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3301
3302 /* Free the RX lists. */
3303 bge_free_rx_ring_std(sc);
3304
3305 /* Free jumbo RX list. */
3306 bge_free_rx_ring_jumbo(sc);
3307
3308 /* Free TX buffers. */
3309 bge_free_tx_ring(sc);
3310
3311 /*
3312 * Isolate/power down the PHY.
3313 */
3314 if (!sc->bge_tbi)
3315 mii_down(&sc->bge_mii);
3316
3317 sc->bge_link = 0;
3318
3319 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3320
3321 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3322 }
3323
3324 /*
3325 * Stop all chip I/O so that the kernel's probe routines don't
3326 * get confused by errant DMAs when rebooting.
3327 */
3328 void
3329 bge_shutdown(xsc)
3330 void *xsc;
3331 {
3332 struct bge_softc *sc = (struct bge_softc *)xsc;
3333
3334 bge_stop(sc);
3335 bge_reset(sc);
3336 }
3337