if_bge.c revision 1.49 1 /* $NetBSD: if_bge.c,v 1.49 2003/08/27 23:13:50 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.49 2003/08/27 23:13:50 fvdl Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/pci/pcidevs.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/miidevs.h>
120 #include <dev/mii/brgphyreg.h>
121
122 #include <dev/pci/if_bgereg.h>
123
124 #include <uvm/uvm_extern.h>
125
126 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
127
128 int bge_probe(struct device *, struct cfdata *, void *);
129 void bge_attach(struct device *, struct device *, void *);
130 void bge_release_resources(struct bge_softc *);
131 void bge_txeof(struct bge_softc *);
132 void bge_rxeof(struct bge_softc *);
133
134 void bge_tick(void *);
135 void bge_stats_update(struct bge_softc *);
136 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
137 static __inline int bge_cksum_pad(struct mbuf *pkt);
138 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
139
140 int bge_intr(void *);
141 void bge_start(struct ifnet *);
142 int bge_ioctl(struct ifnet *, u_long, caddr_t);
143 int bge_init(struct ifnet *);
144 void bge_stop(struct bge_softc *);
145 void bge_watchdog(struct ifnet *);
146 void bge_shutdown(void *);
147 int bge_ifmedia_upd(struct ifnet *);
148 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
149
150 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
151 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
152
153 void bge_setmulti(struct bge_softc *);
154
155 void bge_handle_events(struct bge_softc *);
156 int bge_alloc_jumbo_mem(struct bge_softc *);
157 void bge_free_jumbo_mem(struct bge_softc *);
158 void *bge_jalloc(struct bge_softc *);
159 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
160 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
161 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
162 int bge_init_rx_ring_std(struct bge_softc *);
163 void bge_free_rx_ring_std(struct bge_softc *);
164 int bge_init_rx_ring_jumbo(struct bge_softc *);
165 void bge_free_rx_ring_jumbo(struct bge_softc *);
166 void bge_free_tx_ring(struct bge_softc *);
167 int bge_init_tx_ring(struct bge_softc *);
168
169 int bge_chipinit(struct bge_softc *);
170 int bge_blockinit(struct bge_softc *);
171 int bge_setpowerstate(struct bge_softc *, int);
172
173 #ifdef notdef
174 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
175 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
176 void bge_vpd_read(struct bge_softc *);
177 #endif
178
179 u_int32_t bge_readmem_ind(struct bge_softc *, int);
180 void bge_writemem_ind(struct bge_softc *, int, int);
181 #ifdef notdef
182 u_int32_t bge_readreg_ind(struct bge_softc *, int);
183 #endif
184 void bge_writereg_ind(struct bge_softc *, int, int);
185
186 int bge_miibus_readreg(struct device *, int, int);
187 void bge_miibus_writereg(struct device *, int, int, int);
188 void bge_miibus_statchg(struct device *);
189
190 void bge_reset(struct bge_softc *);
191
192 void bge_dump_status(struct bge_softc *);
193 void bge_dump_rxbd(struct bge_rx_bd *);
194
195 #define BGE_DEBUG
196 #ifdef BGE_DEBUG
197 #define DPRINTF(x) if (bgedebug) printf x
198 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
199 int bgedebug = 0;
200 #else
201 #define DPRINTF(x)
202 #define DPRINTFN(n,x)
203 #endif
204
205 /* Various chip quirks. */
206 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
207 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
208 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
209 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
210 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
211 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
212 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
213 #define BGE_QUIRK_5705_CORE 0x00000080
214
215 /* following bugs are common to bcm5700 rev B, all flavours */
216 #define BGE_QUIRK_5700_COMMON \
217 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
218
219 CFATTACH_DECL(bge, sizeof(struct bge_softc),
220 bge_probe, bge_attach, NULL, NULL);
221
222 u_int32_t
223 bge_readmem_ind(sc, off)
224 struct bge_softc *sc;
225 int off;
226 {
227 struct pci_attach_args *pa = &(sc->bge_pa);
228 pcireg_t val;
229
230 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
231 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
232 return val;
233 }
234
235 void
236 bge_writemem_ind(sc, off, val)
237 struct bge_softc *sc;
238 int off, val;
239 {
240 struct pci_attach_args *pa = &(sc->bge_pa);
241
242 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
243 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
244 }
245
246 #ifdef notdef
247 u_int32_t
248 bge_readreg_ind(sc, off)
249 struct bge_softc *sc;
250 int off;
251 {
252 struct pci_attach_args *pa = &(sc->bge_pa);
253
254 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
255 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
256 }
257 #endif
258
259 void
260 bge_writereg_ind(sc, off, val)
261 struct bge_softc *sc;
262 int off, val;
263 {
264 struct pci_attach_args *pa = &(sc->bge_pa);
265
266 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
267 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
268 }
269
270 #ifdef notdef
271 u_int8_t
272 bge_vpd_readbyte(sc, addr)
273 struct bge_softc *sc;
274 int addr;
275 {
276 int i;
277 u_int32_t val;
278 struct pci_attach_args *pa = &(sc->bge_pa);
279
280 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
281 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
282 DELAY(10);
283 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
284 BGE_VPD_FLAG)
285 break;
286 }
287
288 if (i == BGE_TIMEOUT) {
289 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
290 return(0);
291 }
292
293 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
294
295 return((val >> ((addr % 4) * 8)) & 0xFF);
296 }
297
298 void
299 bge_vpd_read_res(sc, res, addr)
300 struct bge_softc *sc;
301 struct vpd_res *res;
302 int addr;
303 {
304 int i;
305 u_int8_t *ptr;
306
307 ptr = (u_int8_t *)res;
308 for (i = 0; i < sizeof(struct vpd_res); i++)
309 ptr[i] = bge_vpd_readbyte(sc, i + addr);
310 }
311
312 void
313 bge_vpd_read(sc)
314 struct bge_softc *sc;
315 {
316 int pos = 0, i;
317 struct vpd_res res;
318
319 if (sc->bge_vpd_prodname != NULL)
320 free(sc->bge_vpd_prodname, M_DEVBUF);
321 if (sc->bge_vpd_readonly != NULL)
322 free(sc->bge_vpd_readonly, M_DEVBUF);
323 sc->bge_vpd_prodname = NULL;
324 sc->bge_vpd_readonly = NULL;
325
326 bge_vpd_read_res(sc, &res, pos);
327
328 if (res.vr_id != VPD_RES_ID) {
329 printf("%s: bad VPD resource id: expected %x got %x\n",
330 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
331 return;
332 }
333
334 pos += sizeof(res);
335 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
336 if (sc->bge_vpd_prodname == NULL)
337 panic("bge_vpd_read");
338 for (i = 0; i < res.vr_len; i++)
339 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
340 sc->bge_vpd_prodname[i] = '\0';
341 pos += i;
342
343 bge_vpd_read_res(sc, &res, pos);
344
345 if (res.vr_id != VPD_RES_READ) {
346 printf("%s: bad VPD resource id: expected %x got %x\n",
347 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
348 return;
349 }
350
351 pos += sizeof(res);
352 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
353 if (sc->bge_vpd_readonly == NULL)
354 panic("bge_vpd_read");
355 for (i = 0; i < res.vr_len + 1; i++)
356 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
357 }
358 #endif
359
360 /*
361 * Read a byte of data stored in the EEPROM at address 'addr.' The
362 * BCM570x supports both the traditional bitbang interface and an
363 * auto access interface for reading the EEPROM. We use the auto
364 * access method.
365 */
366 u_int8_t
367 bge_eeprom_getbyte(sc, addr, dest)
368 struct bge_softc *sc;
369 int addr;
370 u_int8_t *dest;
371 {
372 int i;
373 u_int32_t byte = 0;
374
375 /*
376 * Enable use of auto EEPROM access so we can avoid
377 * having to use the bitbang method.
378 */
379 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
380
381 /* Reset the EEPROM, load the clock period. */
382 CSR_WRITE_4(sc, BGE_EE_ADDR,
383 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
384 DELAY(20);
385
386 /* Issue the read EEPROM command. */
387 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
388
389 /* Wait for completion */
390 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
391 DELAY(10);
392 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
393 break;
394 }
395
396 if (i == BGE_TIMEOUT) {
397 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
398 return(0);
399 }
400
401 /* Get result. */
402 byte = CSR_READ_4(sc, BGE_EE_DATA);
403
404 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
405
406 return(0);
407 }
408
409 /*
410 * Read a sequence of bytes from the EEPROM.
411 */
412 int
413 bge_read_eeprom(sc, dest, off, cnt)
414 struct bge_softc *sc;
415 caddr_t dest;
416 int off;
417 int cnt;
418 {
419 int err = 0, i;
420 u_int8_t byte = 0;
421
422 for (i = 0; i < cnt; i++) {
423 err = bge_eeprom_getbyte(sc, off + i, &byte);
424 if (err)
425 break;
426 *(dest + i) = byte;
427 }
428
429 return(err ? 1 : 0);
430 }
431
432 int
433 bge_miibus_readreg(dev, phy, reg)
434 struct device *dev;
435 int phy, reg;
436 {
437 struct bge_softc *sc = (struct bge_softc *)dev;
438 struct ifnet *ifp;
439 u_int32_t val;
440 u_int32_t saved_autopoll;
441 int i;
442
443 ifp = &sc->ethercom.ec_if;
444
445 /*
446 * Several chips with builtin PHYs will incorrectly answer to
447 * other PHY instances than the builtin PHY at id 1.
448 */
449 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
450 return(0);
451
452 /* Reading with autopolling on may trigger PCI errors */
453 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
454 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
455 CSR_WRITE_4(sc, BGE_MI_MODE,
456 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
457 DELAY(40);
458 }
459
460 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
461 BGE_MIPHY(phy)|BGE_MIREG(reg));
462
463 for (i = 0; i < BGE_TIMEOUT; i++) {
464 val = CSR_READ_4(sc, BGE_MI_COMM);
465 if (!(val & BGE_MICOMM_BUSY))
466 break;
467 delay(10);
468 }
469
470 if (i == BGE_TIMEOUT) {
471 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
472 val = 0;
473 goto done;
474 }
475
476 val = CSR_READ_4(sc, BGE_MI_COMM);
477
478 done:
479 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
480 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
481 DELAY(40);
482 }
483
484 if (val & BGE_MICOMM_READFAIL)
485 return(0);
486
487 return(val & 0xFFFF);
488 }
489
490 void
491 bge_miibus_writereg(dev, phy, reg, val)
492 struct device *dev;
493 int phy, reg, val;
494 {
495 struct bge_softc *sc = (struct bge_softc *)dev;
496 u_int32_t saved_autopoll;
497 int i;
498
499 /* Touching the PHY while autopolling is on may trigger PCI errors */
500 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
501 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
502 delay(40);
503 CSR_WRITE_4(sc, BGE_MI_MODE,
504 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
505 delay(10); /* 40 usec is supposed to be adequate */
506 }
507
508 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
509 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
510
511 for (i = 0; i < BGE_TIMEOUT; i++) {
512 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
513 break;
514 delay(10);
515 }
516
517 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
518 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
519 delay(40);
520 }
521
522 if (i == BGE_TIMEOUT) {
523 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
524 }
525 }
526
527 void
528 bge_miibus_statchg(dev)
529 struct device *dev;
530 {
531 struct bge_softc *sc = (struct bge_softc *)dev;
532 struct mii_data *mii = &sc->bge_mii;
533
534 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
535 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
536 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
537 } else {
538 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
539 }
540
541 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
542 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
543 } else {
544 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
545 }
546 }
547
548 /*
549 * Handle events that have triggered interrupts.
550 */
551 void
552 bge_handle_events(sc)
553 struct bge_softc *sc;
554 {
555
556 return;
557 }
558
559 /*
560 * Memory management for jumbo frames.
561 */
562
563 int
564 bge_alloc_jumbo_mem(sc)
565 struct bge_softc *sc;
566 {
567 caddr_t ptr, kva;
568 bus_dma_segment_t seg;
569 int i, rseg, state, error;
570 struct bge_jpool_entry *entry;
571
572 state = error = 0;
573
574 /* Grab a big chunk o' storage. */
575 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
576 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
577 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
578 return ENOBUFS;
579 }
580
581 state = 1;
582 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
583 BUS_DMA_NOWAIT)) {
584 printf("%s: can't map DMA buffers (%d bytes)\n",
585 sc->bge_dev.dv_xname, (int)BGE_JMEM);
586 error = ENOBUFS;
587 goto out;
588 }
589
590 state = 2;
591 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
592 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
593 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
594 error = ENOBUFS;
595 goto out;
596 }
597
598 state = 3;
599 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
600 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
601 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
602 error = ENOBUFS;
603 goto out;
604 }
605
606 state = 4;
607 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
608 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
609
610 SLIST_INIT(&sc->bge_jfree_listhead);
611 SLIST_INIT(&sc->bge_jinuse_listhead);
612
613 /*
614 * Now divide it up into 9K pieces and save the addresses
615 * in an array.
616 */
617 ptr = sc->bge_cdata.bge_jumbo_buf;
618 for (i = 0; i < BGE_JSLOTS; i++) {
619 sc->bge_cdata.bge_jslots[i] = ptr;
620 ptr += BGE_JLEN;
621 entry = malloc(sizeof(struct bge_jpool_entry),
622 M_DEVBUF, M_NOWAIT);
623 if (entry == NULL) {
624 printf("%s: no memory for jumbo buffer queue!\n",
625 sc->bge_dev.dv_xname);
626 error = ENOBUFS;
627 goto out;
628 }
629 entry->slot = i;
630 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
631 entry, jpool_entries);
632 }
633 out:
634 if (error != 0) {
635 switch (state) {
636 case 4:
637 bus_dmamap_unload(sc->bge_dmatag,
638 sc->bge_cdata.bge_rx_jumbo_map);
639 case 3:
640 bus_dmamap_destroy(sc->bge_dmatag,
641 sc->bge_cdata.bge_rx_jumbo_map);
642 case 2:
643 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
644 case 1:
645 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
646 break;
647 default:
648 break;
649 }
650 }
651
652 return error;
653 }
654
655 /*
656 * Allocate a jumbo buffer.
657 */
658 void *
659 bge_jalloc(sc)
660 struct bge_softc *sc;
661 {
662 struct bge_jpool_entry *entry;
663
664 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
665
666 if (entry == NULL) {
667 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
668 return(NULL);
669 }
670
671 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
672 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
673 return(sc->bge_cdata.bge_jslots[entry->slot]);
674 }
675
676 /*
677 * Release a jumbo buffer.
678 */
679 void
680 bge_jfree(m, buf, size, arg)
681 struct mbuf *m;
682 caddr_t buf;
683 size_t size;
684 void *arg;
685 {
686 struct bge_jpool_entry *entry;
687 struct bge_softc *sc;
688 int i, s;
689
690 /* Extract the softc struct pointer. */
691 sc = (struct bge_softc *)arg;
692
693 if (sc == NULL)
694 panic("bge_jfree: can't find softc pointer!");
695
696 /* calculate the slot this buffer belongs to */
697
698 i = ((caddr_t)buf
699 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
700
701 if ((i < 0) || (i >= BGE_JSLOTS))
702 panic("bge_jfree: asked to free buffer that we don't manage!");
703
704 s = splvm();
705 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
706 if (entry == NULL)
707 panic("bge_jfree: buffer not in use!");
708 entry->slot = i;
709 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
710 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
711
712 if (__predict_true(m != NULL))
713 pool_cache_put(&mbpool_cache, m);
714 splx(s);
715 }
716
717
718 /*
719 * Intialize a standard receive ring descriptor.
720 */
721 int
722 bge_newbuf_std(sc, i, m, dmamap)
723 struct bge_softc *sc;
724 int i;
725 struct mbuf *m;
726 bus_dmamap_t dmamap;
727 {
728 struct mbuf *m_new = NULL;
729 struct bge_rx_bd *r;
730 int error;
731
732 if (dmamap == NULL) {
733 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
734 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
735 if (error != 0)
736 return error;
737 }
738
739 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
740
741 if (m == NULL) {
742 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
743 if (m_new == NULL) {
744 return(ENOBUFS);
745 }
746
747 MCLGET(m_new, M_DONTWAIT);
748 if (!(m_new->m_flags & M_EXT)) {
749 m_freem(m_new);
750 return(ENOBUFS);
751 }
752 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
753 if (!sc->bge_rx_alignment_bug)
754 m_adj(m_new, ETHER_ALIGN);
755
756 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
757 BUS_DMA_READ|BUS_DMA_NOWAIT))
758 return(ENOBUFS);
759 } else {
760 m_new = m;
761 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
762 m_new->m_data = m_new->m_ext.ext_buf;
763 if (!sc->bge_rx_alignment_bug)
764 m_adj(m_new, ETHER_ALIGN);
765 }
766
767 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
768 r = &sc->bge_rdata->bge_rx_std_ring[i];
769 bge_set_hostaddr(&r->bge_addr,
770 dmamap->dm_segs[0].ds_addr);
771 r->bge_flags = BGE_RXBDFLAG_END;
772 r->bge_len = m_new->m_len;
773 r->bge_idx = i;
774
775 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
776 offsetof(struct bge_ring_data, bge_rx_std_ring) +
777 i * sizeof (struct bge_rx_bd),
778 sizeof (struct bge_rx_bd),
779 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
780
781 return(0);
782 }
783
784 /*
785 * Initialize a jumbo receive ring descriptor. This allocates
786 * a jumbo buffer from the pool managed internally by the driver.
787 */
788 int
789 bge_newbuf_jumbo(sc, i, m)
790 struct bge_softc *sc;
791 int i;
792 struct mbuf *m;
793 {
794 struct mbuf *m_new = NULL;
795 struct bge_rx_bd *r;
796
797 if (m == NULL) {
798 caddr_t *buf = NULL;
799
800 /* Allocate the mbuf. */
801 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
802 if (m_new == NULL) {
803 return(ENOBUFS);
804 }
805
806 /* Allocate the jumbo buffer */
807 buf = bge_jalloc(sc);
808 if (buf == NULL) {
809 m_freem(m_new);
810 printf("%s: jumbo allocation failed "
811 "-- packet dropped!\n", sc->bge_dev.dv_xname);
812 return(ENOBUFS);
813 }
814
815 /* Attach the buffer to the mbuf. */
816 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
817 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
818 bge_jfree, sc);
819 } else {
820 m_new = m;
821 m_new->m_data = m_new->m_ext.ext_buf;
822 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
823 }
824
825 if (!sc->bge_rx_alignment_bug)
826 m_adj(m_new, ETHER_ALIGN);
827 /* Set up the descriptor. */
828 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
829 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
830 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
831 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
832 r->bge_len = m_new->m_len;
833 r->bge_idx = i;
834
835 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
836 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
837 i * sizeof (struct bge_rx_bd),
838 sizeof (struct bge_rx_bd),
839 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
840
841 return(0);
842 }
843
844 /*
845 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
846 * that's 1MB or memory, which is a lot. For now, we fill only the first
847 * 256 ring entries and hope that our CPU is fast enough to keep up with
848 * the NIC.
849 */
850 int
851 bge_init_rx_ring_std(sc)
852 struct bge_softc *sc;
853 {
854 int i;
855
856 if (sc->bge_flags & BGE_RXRING_VALID)
857 return 0;
858
859 for (i = 0; i < BGE_SSLOTS; i++) {
860 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
861 return(ENOBUFS);
862 }
863
864 sc->bge_std = i - 1;
865 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
866
867 sc->bge_flags |= BGE_RXRING_VALID;
868
869 return(0);
870 }
871
872 void
873 bge_free_rx_ring_std(sc)
874 struct bge_softc *sc;
875 {
876 int i;
877
878 if (!(sc->bge_flags & BGE_RXRING_VALID))
879 return;
880
881 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
882 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
883 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
884 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
885 bus_dmamap_destroy(sc->bge_dmatag,
886 sc->bge_cdata.bge_rx_std_map[i]);
887 }
888 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
889 sizeof(struct bge_rx_bd));
890 }
891
892 sc->bge_flags &= ~BGE_RXRING_VALID;
893 }
894
895 int
896 bge_init_rx_ring_jumbo(sc)
897 struct bge_softc *sc;
898 {
899 int i;
900 volatile struct bge_rcb *rcb;
901
902 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
903 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
904 return(ENOBUFS);
905 };
906
907 sc->bge_jumbo = i - 1;
908
909 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
910 rcb->bge_maxlen_flags = 0;
911 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
912
913 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
914
915 return(0);
916 }
917
918 void
919 bge_free_rx_ring_jumbo(sc)
920 struct bge_softc *sc;
921 {
922 int i;
923
924 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
925 return;
926
927 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
928 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
929 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
930 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
931 }
932 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
933 sizeof(struct bge_rx_bd));
934 }
935
936 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
937 }
938
939 void
940 bge_free_tx_ring(sc)
941 struct bge_softc *sc;
942 {
943 int i, freed;
944 struct txdmamap_pool_entry *dma;
945
946 if (!(sc->bge_flags & BGE_TXRING_VALID))
947 return;
948
949 freed = 0;
950
951 for (i = 0; i < BGE_TX_RING_CNT; i++) {
952 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
953 freed++;
954 m_freem(sc->bge_cdata.bge_tx_chain[i]);
955 sc->bge_cdata.bge_tx_chain[i] = NULL;
956 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
957 link);
958 sc->txdma[i] = 0;
959 }
960 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
961 sizeof(struct bge_tx_bd));
962 }
963
964 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
965 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
966 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
967 free(dma, M_DEVBUF);
968 }
969
970 sc->bge_flags &= ~BGE_TXRING_VALID;
971 }
972
973 int
974 bge_init_tx_ring(sc)
975 struct bge_softc *sc;
976 {
977 int i;
978 bus_dmamap_t dmamap;
979 struct txdmamap_pool_entry *dma;
980
981 if (sc->bge_flags & BGE_TXRING_VALID)
982 return 0;
983
984 sc->bge_txcnt = 0;
985 sc->bge_tx_saved_considx = 0;
986 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
987 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
988 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
989
990 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
991 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
992 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
993
994 SLIST_INIT(&sc->txdma_list);
995 for (i = 0; i < BGE_RSLOTS; i++) {
996 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
997 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
998 &dmamap))
999 return(ENOBUFS);
1000 if (dmamap == NULL)
1001 panic("dmamap NULL in bge_init_tx_ring");
1002 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1003 if (dma == NULL) {
1004 printf("%s: can't alloc txdmamap_pool_entry\n",
1005 sc->bge_dev.dv_xname);
1006 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1007 return (ENOMEM);
1008 }
1009 dma->dmamap = dmamap;
1010 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1011 }
1012
1013 sc->bge_flags |= BGE_TXRING_VALID;
1014
1015 return(0);
1016 }
1017
1018 void
1019 bge_setmulti(sc)
1020 struct bge_softc *sc;
1021 {
1022 struct ethercom *ac = &sc->ethercom;
1023 struct ifnet *ifp = &ac->ec_if;
1024 struct ether_multi *enm;
1025 struct ether_multistep step;
1026 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1027 u_int32_t h;
1028 int i;
1029
1030 if (ifp->if_flags & IFF_PROMISC)
1031 goto allmulti;
1032
1033 /* Now program new ones. */
1034 ETHER_FIRST_MULTI(step, ac, enm);
1035 while (enm != NULL) {
1036 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1037 /*
1038 * We must listen to a range of multicast addresses.
1039 * For now, just accept all multicasts, rather than
1040 * trying to set only those filter bits needed to match
1041 * the range. (At this time, the only use of address
1042 * ranges is for IP multicast routing, for which the
1043 * range is big enough to require all bits set.)
1044 */
1045 goto allmulti;
1046 }
1047
1048 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1049
1050 /* Just want the 7 least-significant bits. */
1051 h &= 0x7f;
1052
1053 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1054 ETHER_NEXT_MULTI(step, enm);
1055 }
1056
1057 ifp->if_flags &= ~IFF_ALLMULTI;
1058 goto setit;
1059
1060 allmulti:
1061 ifp->if_flags |= IFF_ALLMULTI;
1062 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1063
1064 setit:
1065 for (i = 0; i < 4; i++)
1066 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1067 }
1068
1069 const int bge_swapbits[] = {
1070 0,
1071 BGE_MODECTL_BYTESWAP_DATA,
1072 BGE_MODECTL_WORDSWAP_DATA,
1073 BGE_MODECTL_BYTESWAP_NONFRAME,
1074 BGE_MODECTL_WORDSWAP_NONFRAME,
1075
1076 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1077 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1078 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1079
1080 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1081 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1082
1083 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1084
1085 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1086 BGE_MODECTL_BYTESWAP_NONFRAME,
1087 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1088 BGE_MODECTL_WORDSWAP_NONFRAME,
1089 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1090 BGE_MODECTL_WORDSWAP_NONFRAME,
1091 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1092 BGE_MODECTL_WORDSWAP_NONFRAME,
1093
1094 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1095 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1096 };
1097
1098 int bge_swapindex = 0;
1099
1100 /*
1101 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1102 * self-test results.
1103 */
1104 int
1105 bge_chipinit(sc)
1106 struct bge_softc *sc;
1107 {
1108 u_int32_t cachesize;
1109 int i;
1110 u_int32_t dma_rw_ctl;
1111 struct pci_attach_args *pa = &(sc->bge_pa);
1112
1113
1114 /* Set endianness before we access any non-PCI registers. */
1115 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1116 BGE_INIT);
1117
1118 /* Set power state to D0. */
1119 bge_setpowerstate(sc, 0);
1120
1121 /*
1122 * Check the 'ROM failed' bit on the RX CPU to see if
1123 * self-tests passed.
1124 */
1125 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1126 printf("%s: RX CPU self-diagnostics failed!\n",
1127 sc->bge_dev.dv_xname);
1128 return(ENODEV);
1129 }
1130
1131 /* Clear the MAC control register */
1132 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1133
1134 /*
1135 * Clear the MAC statistics block in the NIC's
1136 * internal memory.
1137 */
1138 for (i = BGE_STATS_BLOCK;
1139 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1140 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1141
1142 for (i = BGE_STATUS_BLOCK;
1143 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1144 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1145
1146 /* Set up the PCI DMA control register. */
1147 if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1148 BGE_PCISTATE_PCI_BUSMODE) {
1149 /* Conventional PCI bus */
1150 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1151 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1152 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1153 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1154 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1155 dma_rw_ctl |= 0x0F;
1156 }
1157 } else {
1158 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1159 /* PCI-X bus */
1160 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1161 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1162 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1163 (0x0F);
1164 /*
1165 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1166 * for hardware bugs, which means we should also clear
1167 * the low-order MINDMA bits. In addition, the 5704
1168 * uses a different encoding of read/write watermarks.
1169 */
1170 if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0 ||
1171 sc->bge_asicrev == BGE_ASICREV_BCM5704_A1 ||
1172 sc->bge_asicrev == BGE_ASICREV_BCM5704_A2 ||
1173 sc->bge_asicrev == BGE_ASICREV_BCM5704_A3) {
1174 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1175 /* should be 0x1f0000 */
1176 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1177 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1178 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1179 }
1180 else if ((sc->bge_asicrev >> 28) ==
1181 (BGE_ASICREV_BCM5703_A0 >> 28)) {
1182 dma_rw_ctl &= 0xfffffff0;
1183 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1184 }
1185 }
1186
1187 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1188
1189 /*
1190 * Set up general mode register.
1191 */
1192 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1193 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1194 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1195 BGE_MODECTL_RX_NO_PHDR_CSUM);
1196
1197 /* Get cache line size. */
1198 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1199
1200 /*
1201 * Avoid violating PCI spec on certain chip revs.
1202 */
1203 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1204 PCIM_CMD_MWIEN) {
1205 switch(cachesize) {
1206 case 1:
1207 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1208 BGE_PCI_WRITE_BNDRY_16BYTES);
1209 break;
1210 case 2:
1211 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1212 BGE_PCI_WRITE_BNDRY_32BYTES);
1213 break;
1214 case 4:
1215 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1216 BGE_PCI_WRITE_BNDRY_64BYTES);
1217 break;
1218 case 8:
1219 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1220 BGE_PCI_WRITE_BNDRY_128BYTES);
1221 break;
1222 case 16:
1223 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1224 BGE_PCI_WRITE_BNDRY_256BYTES);
1225 break;
1226 case 32:
1227 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1228 BGE_PCI_WRITE_BNDRY_512BYTES);
1229 break;
1230 case 64:
1231 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1232 BGE_PCI_WRITE_BNDRY_1024BYTES);
1233 break;
1234 default:
1235 /* Disable PCI memory write and invalidate. */
1236 #if 0
1237 if (bootverbose)
1238 printf("%s: cache line size %d not "
1239 "supported; disabling PCI MWI\n",
1240 sc->bge_dev.dv_xname, cachesize);
1241 #endif
1242 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1243 PCIM_CMD_MWIEN);
1244 break;
1245 }
1246 }
1247
1248 /*
1249 * Disable memory write invalidate. Apparently it is not supported
1250 * properly by these devices.
1251 */
1252 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1253
1254
1255 #ifdef __brokenalpha__
1256 /*
1257 * Must insure that we do not cross an 8K (bytes) boundary
1258 * for DMA reads. Our highest limit is 1K bytes. This is a
1259 * restriction on some ALPHA platforms with early revision
1260 * 21174 PCI chipsets, such as the AlphaPC 164lx
1261 */
1262 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1263 #endif
1264
1265 /* Set the timer prescaler (always 66MHz) */
1266 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1267
1268 return(0);
1269 }
1270
1271 int
1272 bge_blockinit(sc)
1273 struct bge_softc *sc;
1274 {
1275 volatile struct bge_rcb *rcb;
1276 bus_size_t rcb_addr;
1277 int i;
1278 struct ifnet *ifp = &sc->ethercom.ec_if;
1279 bge_hostaddr taddr;
1280
1281 /*
1282 * Initialize the memory window pointer register so that
1283 * we can access the first 32K of internal NIC RAM. This will
1284 * allow us to set up the TX send ring RCBs and the RX return
1285 * ring RCBs, plus other things which live in NIC memory.
1286 */
1287
1288 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1289 BGE_PCI_MEMWIN_BASEADDR, 0);
1290
1291 /* Configure mbuf memory pool */
1292 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1293 if (sc->bge_extram) {
1294 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1295 BGE_EXT_SSRAM);
1296 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1297 } else {
1298 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1299 BGE_BUFFPOOL_1);
1300 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1301 }
1302
1303 /* Configure DMA resource pool */
1304 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1305 BGE_DMA_DESCRIPTORS);
1306 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1307 }
1308
1309 /* Configure mbuf pool watermarks */
1310 #ifdef ORIG_WPAUL_VALUES
1311 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1312 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1313 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1314 #else
1315 /* new broadcom docs strongly recommend these: */
1316 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1317 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1318 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1319 } else {
1320 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1321 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1322 }
1323 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1324 #endif
1325
1326 /* Configure DMA resource watermarks */
1327 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1328 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1329
1330 /* Enable buffer manager */
1331 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1332 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1333 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1334
1335 /* Poll for buffer manager start indication */
1336 for (i = 0; i < BGE_TIMEOUT; i++) {
1337 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1338 break;
1339 DELAY(10);
1340 }
1341
1342 if (i == BGE_TIMEOUT) {
1343 printf("%s: buffer manager failed to start\n",
1344 sc->bge_dev.dv_xname);
1345 return(ENXIO);
1346 }
1347 }
1348
1349 /* Enable flow-through queues */
1350 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1351 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1352
1353 /* Wait until queue initialization is complete */
1354 for (i = 0; i < BGE_TIMEOUT; i++) {
1355 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1356 break;
1357 DELAY(10);
1358 }
1359
1360 if (i == BGE_TIMEOUT) {
1361 printf("%s: flow-through queue init failed\n",
1362 sc->bge_dev.dv_xname);
1363 return(ENXIO);
1364 }
1365
1366 /* Initialize the standard RX ring control block */
1367 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1368 bge_set_hostaddr(&rcb->bge_hostaddr,
1369 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1370 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1371 rcb->bge_maxlen_flags =
1372 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1373 } else {
1374 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1375 }
1376 if (sc->bge_extram)
1377 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1378 else
1379 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1380 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1381 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1382 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1383 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1384
1385 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1386 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1387 } else {
1388 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1389 }
1390
1391 /*
1392 * Initialize the jumbo RX ring control block
1393 * We set the 'ring disabled' bit in the flags
1394 * field until we're actually ready to start
1395 * using this ring (i.e. once we set the MTU
1396 * high enough to require it).
1397 */
1398 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1399 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1400 bge_set_hostaddr(&rcb->bge_hostaddr,
1401 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1402 rcb->bge_maxlen_flags =
1403 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1404 BGE_RCB_FLAG_RING_DISABLED);
1405 if (sc->bge_extram)
1406 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1407 else
1408 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1409
1410 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1411 rcb->bge_hostaddr.bge_addr_hi);
1412 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1413 rcb->bge_hostaddr.bge_addr_lo);
1414 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1415 rcb->bge_maxlen_flags);
1416 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1417
1418 /* Set up dummy disabled mini ring RCB */
1419 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1420 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1421 BGE_RCB_FLAG_RING_DISABLED);
1422 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1423 rcb->bge_maxlen_flags);
1424
1425 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1426 offsetof(struct bge_ring_data, bge_info),
1427 sizeof (struct bge_gib),
1428 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1429 }
1430
1431 /*
1432 * Set the BD ring replentish thresholds. The recommended
1433 * values are 1/8th the number of descriptors allocated to
1434 * each ring.
1435 */
1436 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1437 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1438
1439 /*
1440 * Disable all unused send rings by setting the 'ring disabled'
1441 * bit in the flags field of all the TX send ring control blocks.
1442 * These are located in NIC memory.
1443 */
1444 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1445 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1446 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1447 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1448 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1449 rcb_addr += sizeof(struct bge_rcb);
1450 }
1451
1452 /* Configure TX RCB 0 (we use only the first ring) */
1453 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1454 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1455 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1456 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1457 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1458 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1459 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1460 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1461 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1462 }
1463
1464 /* Disable all unused RX return rings */
1465 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1466 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1467 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1468 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1469 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1470 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1471 BGE_RCB_FLAG_RING_DISABLED));
1472 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1473 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1474 (i * (sizeof(u_int64_t))), 0);
1475 rcb_addr += sizeof(struct bge_rcb);
1476 }
1477
1478 /* Initialize RX ring indexes */
1479 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1480 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1481 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1482
1483 /*
1484 * Set up RX return ring 0
1485 * Note that the NIC address for RX return rings is 0x00000000.
1486 * The return rings live entirely within the host, so the
1487 * nicaddr field in the RCB isn't used.
1488 */
1489 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1490 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1491 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1492 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1493 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1494 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1495 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1496
1497 /* Set random backoff seed for TX */
1498 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1499 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1500 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1501 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1502 BGE_TX_BACKOFF_SEED_MASK);
1503
1504 /* Set inter-packet gap */
1505 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1506
1507 /*
1508 * Specify which ring to use for packets that don't match
1509 * any RX rules.
1510 */
1511 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1512
1513 /*
1514 * Configure number of RX lists. One interrupt distribution
1515 * list, sixteen active lists, one bad frames class.
1516 */
1517 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1518
1519 /* Inialize RX list placement stats mask. */
1520 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1521 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1522
1523 /* Disable host coalescing until we get it set up */
1524 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1525
1526 /* Poll to make sure it's shut down. */
1527 for (i = 0; i < BGE_TIMEOUT; i++) {
1528 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1529 break;
1530 DELAY(10);
1531 }
1532
1533 if (i == BGE_TIMEOUT) {
1534 printf("%s: host coalescing engine failed to idle\n",
1535 sc->bge_dev.dv_xname);
1536 return(ENXIO);
1537 }
1538
1539 /* Set up host coalescing defaults */
1540 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1541 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1542 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1543 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1544 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1545 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1546 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1547 }
1548 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1549 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1550
1551 /* Set up address of statistics block */
1552 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1553 bge_set_hostaddr(&taddr,
1554 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1555 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1556 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1557 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1558 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1559 }
1560
1561 /* Set up address of status block */
1562 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1563 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1564 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1565 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1566 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1567 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1568
1569 /* Turn on host coalescing state machine */
1570 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1571
1572 /* Turn on RX BD completion state machine and enable attentions */
1573 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1574 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1575
1576 /* Turn on RX list placement state machine */
1577 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1578
1579 /* Turn on RX list selector state machine. */
1580 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1581 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1582 }
1583
1584 /* Turn on DMA, clear stats */
1585 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1586 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1587 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1588 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1589 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1590
1591 /* Set misc. local control, enable interrupts on attentions */
1592 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1593
1594 #ifdef notdef
1595 /* Assert GPIO pins for PHY reset */
1596 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1597 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1598 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1599 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1600 #endif
1601
1602 #if defined(not_quite_yet)
1603 /* Linux driver enables enable gpio pin #1 on 5700s */
1604 if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
1605 sc->bge_local_ctrl_reg |=
1606 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1607 }
1608 #endif
1609 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1610
1611 /* Turn on DMA completion state machine */
1612 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1613 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1614 }
1615
1616 /* Turn on write DMA state machine */
1617 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1618 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1619
1620 /* Turn on read DMA state machine */
1621 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1622 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1623
1624 /* Turn on RX data completion state machine */
1625 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1626
1627 /* Turn on RX BD initiator state machine */
1628 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1629
1630 /* Turn on RX data and RX BD initiator state machine */
1631 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1632
1633 /* Turn on Mbuf cluster free state machine */
1634 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1635 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1636 }
1637
1638 /* Turn on send BD completion state machine */
1639 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1640
1641 /* Turn on send data completion state machine */
1642 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1643
1644 /* Turn on send data initiator state machine */
1645 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1646
1647 /* Turn on send BD initiator state machine */
1648 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1649
1650 /* Turn on send BD selector state machine */
1651 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1652
1653 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1654 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1655 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1656
1657 /* init LED register */
1658 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1659
1660 /* ack/clear link change events */
1661 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1662 BGE_MACSTAT_CFG_CHANGED);
1663 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1664
1665 /* Enable PHY auto polling (for MII/GMII only) */
1666 if (sc->bge_tbi) {
1667 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1668 } else {
1669 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1670 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1671 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1672 BGE_EVTENB_MI_INTERRUPT);
1673 }
1674
1675 /* Enable link state change attentions. */
1676 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1677
1678 return(0);
1679 }
1680
1681 static const struct bge_revision {
1682 uint32_t br_asicrev;
1683 uint32_t br_quirks;
1684 const char *br_name;
1685 } bge_revisions[] = {
1686 { BGE_ASICREV_BCM5700_A0,
1687 BGE_QUIRK_LINK_STATE_BROKEN,
1688 "BCM5700 A0" },
1689
1690 { BGE_ASICREV_BCM5700_A1,
1691 BGE_QUIRK_LINK_STATE_BROKEN,
1692 "BCM5700 A1" },
1693
1694 { BGE_ASICREV_BCM5700_B0,
1695 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1696 "BCM5700 B0" },
1697
1698 { BGE_ASICREV_BCM5700_B1,
1699 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1700 "BCM5700 B1" },
1701
1702 { BGE_ASICREV_BCM5700_B2,
1703 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1704 "BCM5700 B2" },
1705
1706 /* This is treated like a BCM5700 Bx */
1707 { BGE_ASICREV_BCM5700_ALTIMA,
1708 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1709 "BCM5700 Altima" },
1710
1711 { BGE_ASICREV_BCM5700_C0,
1712 0,
1713 "BCM5700 C0" },
1714
1715 { BGE_ASICREV_BCM5701_A0,
1716 0, /*XXX really, just not known */
1717 "BCM5701 A0" },
1718
1719 { BGE_ASICREV_BCM5701_B0,
1720 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1721 "BCM5701 B0" },
1722
1723 { BGE_ASICREV_BCM5701_B2,
1724 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1725 "BCM5701 B2" },
1726
1727 { BGE_ASICREV_BCM5701_B5,
1728 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1729 "BCM5701 B5" },
1730
1731 { BGE_ASICREV_BCM5703_A0,
1732 0,
1733 "BCM5703 A0" },
1734
1735 { BGE_ASICREV_BCM5703_A1,
1736 0,
1737 "BCM5703 A1" },
1738
1739 { BGE_ASICREV_BCM5703_A2,
1740 BGE_QUIRK_ONLY_PHY_1,
1741 "BCM5703 A2" },
1742
1743 { BGE_ASICREV_BCM5704_A0,
1744 BGE_QUIRK_ONLY_PHY_1,
1745 "BCM5704 A0" },
1746
1747 { BGE_ASICREV_BCM5704_A1,
1748 BGE_QUIRK_ONLY_PHY_1,
1749 "BCM5704 A1" },
1750
1751 { BGE_ASICREV_BCM5704_A2,
1752 BGE_QUIRK_ONLY_PHY_1,
1753 "BCM5704 A2" },
1754
1755 { BGE_ASICREV_BCM5704_A3,
1756 BGE_QUIRK_ONLY_PHY_1,
1757 "BCM5704 A3" },
1758
1759 { BGE_ASICREV_BCM5705_A1,
1760 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1761 "BCM5705 A1" },
1762
1763 { 0, 0, NULL }
1764 };
1765
1766 static const struct bge_revision *
1767 bge_lookup_rev(uint32_t asicrev)
1768 {
1769 const struct bge_revision *br;
1770
1771 for (br = bge_revisions; br->br_name != NULL; br++) {
1772 if (br->br_asicrev == asicrev)
1773 return (br);
1774 }
1775
1776 return (NULL);
1777 }
1778
1779 static const struct bge_product {
1780 pci_vendor_id_t bp_vendor;
1781 pci_product_id_t bp_product;
1782 const char *bp_name;
1783 } bge_products[] = {
1784 /*
1785 * The BCM5700 documentation seems to indicate that the hardware
1786 * still has the Alteon vendor ID burned into it, though it
1787 * should always be overridden by the value in the EEPROM. We'll
1788 * check for it anyway.
1789 */
1790 { PCI_VENDOR_ALTEON,
1791 PCI_PRODUCT_ALTEON_BCM5700,
1792 "Broadcom BCM5700 Gigabit Ethernet" },
1793 { PCI_VENDOR_ALTEON,
1794 PCI_PRODUCT_ALTEON_BCM5701,
1795 "Broadcom BCM5701 Gigabit Ethernet" },
1796
1797 { PCI_VENDOR_ALTIMA,
1798 PCI_PRODUCT_ALTIMA_AC1000,
1799 "Altima AC1000 Gigabit Ethernet" },
1800 { PCI_VENDOR_ALTIMA,
1801 PCI_PRODUCT_ALTIMA_AC1001,
1802 "Altima AC1001 Gigabit Ethernet" },
1803 { PCI_VENDOR_ALTIMA,
1804 PCI_PRODUCT_ALTIMA_AC9100,
1805 "Altima AC9100 Gigabit Ethernet" },
1806
1807 { PCI_VENDOR_BROADCOM,
1808 PCI_PRODUCT_BROADCOM_BCM5700,
1809 "Broadcom BCM5700 Gigabit Ethernet" },
1810 { PCI_VENDOR_BROADCOM,
1811 PCI_PRODUCT_BROADCOM_BCM5701,
1812 "Broadcom BCM5701 Gigabit Ethernet" },
1813 { PCI_VENDOR_BROADCOM,
1814 PCI_PRODUCT_BROADCOM_BCM5702,
1815 "Broadcom BCM5702 Gigabit Ethernet" },
1816 { PCI_VENDOR_BROADCOM,
1817 PCI_PRODUCT_BROADCOM_BCM5702X,
1818 "Broadcom BCM5702X Gigabit Ethernet" },
1819 { PCI_VENDOR_BROADCOM,
1820 PCI_PRODUCT_BROADCOM_BCM5703,
1821 "Broadcom BCM5703 Gigabit Ethernet" },
1822 { PCI_VENDOR_BROADCOM,
1823 PCI_PRODUCT_BROADCOM_BCM5703X,
1824 "Broadcom BCM5703X Gigabit Ethernet" },
1825 { PCI_VENDOR_BROADCOM,
1826 PCI_PRODUCT_BROADCOM_BCM5704C,
1827 "Broadcom BCM5704C Dual Gigabit Ethernet" },
1828 { PCI_VENDOR_BROADCOM,
1829 PCI_PRODUCT_BROADCOM_BCM5704S,
1830 "Broadcom BCM5704S Dual Gigabit Ethernet" },
1831 { PCI_VENDOR_BROADCOM,
1832 PCI_PRODUCT_BROADCOM_BCM5705M,
1833 "Broadcom BCM5705M Gigabit Ethernet" },
1834
1835 { PCI_VENDOR_SCHNEIDERKOCH,
1836 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1837 "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1838
1839 { PCI_VENDOR_3COM,
1840 PCI_PRODUCT_3COM_3C996,
1841 "3Com 3c996 Gigabit Ethernet" },
1842
1843 { 0,
1844 0,
1845 NULL },
1846 };
1847
1848 static const struct bge_product *
1849 bge_lookup(const struct pci_attach_args *pa)
1850 {
1851 const struct bge_product *bp;
1852
1853 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1854 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1855 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1856 return (bp);
1857 }
1858
1859 return (NULL);
1860 }
1861
1862 int
1863 bge_setpowerstate(sc, powerlevel)
1864 struct bge_softc *sc;
1865 int powerlevel;
1866 {
1867 #ifdef NOTYET
1868 u_int32_t pm_ctl = 0;
1869
1870 /* XXX FIXME: make sure indirect accesses enabled? */
1871 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1872 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1873 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1874
1875 /* clear the PME_assert bit and power state bits, enable PME */
1876 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1877 pm_ctl &= ~PCIM_PSTAT_DMASK;
1878 pm_ctl |= (1 << 8);
1879
1880 if (powerlevel == 0) {
1881 pm_ctl |= PCIM_PSTAT_D0;
1882 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1883 pm_ctl, 2);
1884 DELAY(10000);
1885 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1886 DELAY(10000);
1887
1888 #ifdef NOTYET
1889 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1890 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1891 #endif
1892 DELAY(40); DELAY(40); DELAY(40);
1893 DELAY(10000); /* above not quite adequate on 5700 */
1894 return 0;
1895 }
1896
1897
1898 /*
1899 * Entering ACPI power states D1-D3 is achieved by wiggling
1900 * GMII gpio pins. Example code assumes all hardware vendors
1901 * followed Broadom's sample pcb layout. Until we verify that
1902 * for all supported OEM cards, states D1-D3 are unsupported.
1903 */
1904 printf("%s: power state %d unimplemented; check GPIO pins\n",
1905 sc->bge_dev.dv_xname, powerlevel);
1906 #endif
1907 return EOPNOTSUPP;
1908 }
1909
1910
1911 /*
1912 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1913 * against our list and return its name if we find a match. Note
1914 * that since the Broadcom controller contains VPD support, we
1915 * can get the device name string from the controller itself instead
1916 * of the compiled-in string. This is a little slow, but it guarantees
1917 * we'll always announce the right product name.
1918 */
1919 int
1920 bge_probe(parent, match, aux)
1921 struct device *parent;
1922 struct cfdata *match;
1923 void *aux;
1924 {
1925 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1926
1927 if (bge_lookup(pa) != NULL)
1928 return (1);
1929
1930 return (0);
1931 }
1932
1933 void
1934 bge_attach(parent, self, aux)
1935 struct device *parent, *self;
1936 void *aux;
1937 {
1938 struct bge_softc *sc = (struct bge_softc *)self;
1939 struct pci_attach_args *pa = aux;
1940 const struct bge_product *bp;
1941 const struct bge_revision *br;
1942 pci_chipset_tag_t pc = pa->pa_pc;
1943 pci_intr_handle_t ih;
1944 const char *intrstr = NULL;
1945 bus_dma_segment_t seg;
1946 int rseg;
1947 u_int32_t hwcfg = 0;
1948 u_int32_t mac_addr = 0;
1949 u_int32_t command;
1950 struct ifnet *ifp;
1951 caddr_t kva;
1952 u_char eaddr[ETHER_ADDR_LEN];
1953 pcireg_t memtype;
1954 bus_addr_t memaddr;
1955 bus_size_t memsize;
1956 u_int32_t pm_ctl;
1957
1958 bp = bge_lookup(pa);
1959 KASSERT(bp != NULL);
1960
1961 sc->bge_pa = *pa;
1962
1963 aprint_naive(": Ethernet controller\n");
1964 aprint_normal(": %s\n", bp->bp_name);
1965
1966 /*
1967 * Map control/status registers.
1968 */
1969 DPRINTFN(5, ("Map control/status regs\n"));
1970 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1971 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1972 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1973 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1974
1975 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1976 aprint_error("%s: failed to enable memory mapping!\n",
1977 sc->bge_dev.dv_xname);
1978 return;
1979 }
1980
1981 DPRINTFN(5, ("pci_mem_find\n"));
1982 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1983 switch (memtype) {
1984 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1985 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1986 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1987 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1988 &memaddr, &memsize) == 0)
1989 break;
1990 default:
1991 aprint_error("%s: can't find mem space\n",
1992 sc->bge_dev.dv_xname);
1993 return;
1994 }
1995
1996 DPRINTFN(5, ("pci_intr_map\n"));
1997 if (pci_intr_map(pa, &ih)) {
1998 aprint_error("%s: couldn't map interrupt\n",
1999 sc->bge_dev.dv_xname);
2000 return;
2001 }
2002
2003 DPRINTFN(5, ("pci_intr_string\n"));
2004 intrstr = pci_intr_string(pc, ih);
2005
2006 DPRINTFN(5, ("pci_intr_establish\n"));
2007 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2008
2009 if (sc->bge_intrhand == NULL) {
2010 aprint_error("%s: couldn't establish interrupt",
2011 sc->bge_dev.dv_xname);
2012 if (intrstr != NULL)
2013 aprint_normal(" at %s", intrstr);
2014 aprint_normal("\n");
2015 return;
2016 }
2017 aprint_normal("%s: interrupting at %s\n",
2018 sc->bge_dev.dv_xname, intrstr);
2019
2020 /*
2021 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2022 * can clobber the chip's PCI config-space power control registers,
2023 * leaving the card in D3 powersave state.
2024 * We do not have memory-mapped registers in this state,
2025 * so force device into D0 state before starting initialization.
2026 */
2027 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2028 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2029 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2030 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2031 DELAY(1000); /* 27 usec is allegedly sufficent */
2032
2033 /* Try to reset the chip. */
2034 DPRINTFN(5, ("bge_reset\n"));
2035 bge_reset(sc);
2036
2037 if (bge_chipinit(sc)) {
2038 aprint_error("%s: chip initialization failed\n",
2039 sc->bge_dev.dv_xname);
2040 bge_release_resources(sc);
2041 return;
2042 }
2043
2044 /*
2045 * Get station address from the EEPROM.
2046 */
2047 mac_addr = bge_readmem_ind(sc, 0x0c14);
2048 if ((mac_addr >> 16) == 0x484b) {
2049 eaddr[0] = (u_char)(mac_addr >> 8);
2050 eaddr[1] = (u_char)(mac_addr >> 0);
2051 mac_addr = bge_readmem_ind(sc, 0x0c18);
2052 eaddr[2] = (u_char)(mac_addr >> 24);
2053 eaddr[3] = (u_char)(mac_addr >> 16);
2054 eaddr[4] = (u_char)(mac_addr >> 8);
2055 eaddr[5] = (u_char)(mac_addr >> 0);
2056 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2057 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2058 aprint_error("%s: failed to read station address\n",
2059 sc->bge_dev.dv_xname);
2060 bge_release_resources(sc);
2061 return;
2062 }
2063
2064 /*
2065 * Save ASIC rev. Look up any quirks associated with this
2066 * ASIC.
2067 */
2068 sc->bge_asicrev =
2069 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2070 BGE_PCIMISCCTL_ASICREV;
2071 br = bge_lookup_rev(sc->bge_asicrev);
2072
2073 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2074 if (br == NULL) {
2075 aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
2076 sc->bge_quirks = 0;
2077 } else {
2078 aprint_normal("ASIC %s", br->br_name);
2079 sc->bge_quirks = br->br_quirks;
2080 }
2081 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2082
2083 /* Allocate the general information block and ring buffers. */
2084 if (pci_dma64_available(pa))
2085 sc->bge_dmatag = pa->pa_dmat64;
2086 else
2087 sc->bge_dmatag = pa->pa_dmat;
2088 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2089 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2090 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2091 aprint_error("%s: can't alloc rx buffers\n",
2092 sc->bge_dev.dv_xname);
2093 return;
2094 }
2095 DPRINTFN(5, ("bus_dmamem_map\n"));
2096 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2097 sizeof(struct bge_ring_data), &kva,
2098 BUS_DMA_NOWAIT)) {
2099 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2100 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2101 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2102 return;
2103 }
2104 DPRINTFN(5, ("bus_dmamem_create\n"));
2105 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2106 sizeof(struct bge_ring_data), 0,
2107 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2108 aprint_error("%s: can't create DMA map\n",
2109 sc->bge_dev.dv_xname);
2110 bus_dmamem_unmap(sc->bge_dmatag, kva,
2111 sizeof(struct bge_ring_data));
2112 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2113 return;
2114 }
2115 DPRINTFN(5, ("bus_dmamem_load\n"));
2116 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2117 sizeof(struct bge_ring_data), NULL,
2118 BUS_DMA_NOWAIT)) {
2119 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2120 bus_dmamem_unmap(sc->bge_dmatag, kva,
2121 sizeof(struct bge_ring_data));
2122 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2123 return;
2124 }
2125
2126 DPRINTFN(5, ("bzero\n"));
2127 sc->bge_rdata = (struct bge_ring_data *)kva;
2128
2129 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2130
2131 /* Try to allocate memory for jumbo buffers. */
2132 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2133 if (bge_alloc_jumbo_mem(sc)) {
2134 aprint_error("%s: jumbo buffer allocation failed\n",
2135 sc->bge_dev.dv_xname);
2136 } else
2137 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2138 }
2139
2140 /* Set default tuneable values. */
2141 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2142 sc->bge_rx_coal_ticks = 150;
2143 sc->bge_rx_max_coal_bds = 64;
2144 #ifdef ORIG_WPAUL_VALUES
2145 sc->bge_tx_coal_ticks = 150;
2146 sc->bge_tx_max_coal_bds = 128;
2147 #else
2148 sc->bge_tx_coal_ticks = 300;
2149 sc->bge_tx_max_coal_bds = 400;
2150 #endif
2151
2152 /* Set up ifnet structure */
2153 ifp = &sc->ethercom.ec_if;
2154 ifp->if_softc = sc;
2155 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2156 ifp->if_ioctl = bge_ioctl;
2157 ifp->if_start = bge_start;
2158 ifp->if_init = bge_init;
2159 ifp->if_watchdog = bge_watchdog;
2160 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2161 IFQ_SET_READY(&ifp->if_snd);
2162 DPRINTFN(5, ("bcopy\n"));
2163 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2164
2165 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2166 sc->ethercom.ec_if.if_capabilities |=
2167 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2168 sc->ethercom.ec_capabilities |=
2169 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2170
2171 /*
2172 * Do MII setup.
2173 */
2174 DPRINTFN(5, ("mii setup\n"));
2175 sc->bge_mii.mii_ifp = ifp;
2176 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2177 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2178 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2179
2180 /*
2181 * Figure out what sort of media we have by checking the
2182 * hardware config word in the first 32k of NIC internal memory,
2183 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2184 * cards, this value appears to be unset. If that's the
2185 * case, we have to rely on identifying the NIC by its PCI
2186 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2187 */
2188 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2189 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2190 } else {
2191 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2192 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2193 hwcfg = be32toh(hwcfg);
2194 }
2195 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2196 sc->bge_tbi = 1;
2197
2198 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2199 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2200 SK_SUBSYSID_9D41)
2201 sc->bge_tbi = 1;
2202
2203 if (sc->bge_tbi) {
2204 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2205 bge_ifmedia_sts);
2206 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2207 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2208 0, NULL);
2209 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2210 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2211 } else {
2212 /*
2213 * Do transceiver setup.
2214 */
2215 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2216 bge_ifmedia_sts);
2217 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2218 MII_PHY_ANY, MII_OFFSET_ANY, 0);
2219
2220 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2221 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2222 ifmedia_add(&sc->bge_mii.mii_media,
2223 IFM_ETHER|IFM_MANUAL, 0, NULL);
2224 ifmedia_set(&sc->bge_mii.mii_media,
2225 IFM_ETHER|IFM_MANUAL);
2226 } else
2227 ifmedia_set(&sc->bge_mii.mii_media,
2228 IFM_ETHER|IFM_AUTO);
2229 }
2230
2231 /*
2232 * When using the BCM5701 in PCI-X mode, data corruption has
2233 * been observed in the first few bytes of some received packets.
2234 * Aligning the packet buffer in memory eliminates the corruption.
2235 * Unfortunately, this misaligns the packet payloads. On platforms
2236 * which do not support unaligned accesses, we will realign the
2237 * payloads by copying the received packets.
2238 */
2239 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2240 /* If in PCI-X mode, work around the alignment bug. */
2241 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2242 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2243 BGE_PCISTATE_PCI_BUSSPEED)
2244 sc->bge_rx_alignment_bug = 1;
2245 }
2246
2247 /*
2248 * Call MI attach routine.
2249 */
2250 DPRINTFN(5, ("if_attach\n"));
2251 if_attach(ifp);
2252 DPRINTFN(5, ("ether_ifattach\n"));
2253 ether_ifattach(ifp, eaddr);
2254 DPRINTFN(5, ("callout_init\n"));
2255 callout_init(&sc->bge_timeout);
2256 }
2257
2258 void
2259 bge_release_resources(sc)
2260 struct bge_softc *sc;
2261 {
2262 if (sc->bge_vpd_prodname != NULL)
2263 free(sc->bge_vpd_prodname, M_DEVBUF);
2264
2265 if (sc->bge_vpd_readonly != NULL)
2266 free(sc->bge_vpd_readonly, M_DEVBUF);
2267 }
2268
2269 void
2270 bge_reset(sc)
2271 struct bge_softc *sc;
2272 {
2273 struct pci_attach_args *pa = &sc->bge_pa;
2274 u_int32_t cachesize, command, pcistate;
2275 int i, val = 0;
2276
2277 /* Save some important PCI state. */
2278 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2279 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2280 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2281
2282 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2283 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2284 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2285
2286 /* Issue global reset */
2287 bge_writereg_ind(sc, BGE_MISC_CFG,
2288 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2289
2290 DELAY(1000);
2291
2292 /* Reset some of the PCI state that got zapped by reset */
2293 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2294 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2295 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2296 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2297 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2298 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2299
2300 /* Enable memory arbiter. */
2301 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2302 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2303 }
2304
2305 /*
2306 * Prevent PXE restart: write a magic number to the
2307 * general communications memory at 0xB50.
2308 */
2309 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2310
2311 /*
2312 * Poll the value location we just wrote until
2313 * we see the 1's complement of the magic number.
2314 * This indicates that the firmware initialization
2315 * is complete.
2316 */
2317 for (i = 0; i < 750; i++) {
2318 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2319 if (val == ~BGE_MAGIC_NUMBER)
2320 break;
2321 DELAY(1000);
2322 }
2323
2324 if (i == 750) {
2325 printf("%s: firmware handshake timed out, val = %x\n",
2326 sc->bge_dev.dv_xname, val);
2327 return;
2328 }
2329
2330 /*
2331 * XXX Wait for the value of the PCISTATE register to
2332 * return to its original pre-reset state. This is a
2333 * fairly good indicator of reset completion. If we don't
2334 * wait for the reset to fully complete, trying to read
2335 * from the device's non-PCI registers may yield garbage
2336 * results.
2337 */
2338 for (i = 0; i < BGE_TIMEOUT; i++) {
2339 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2340 pcistate)
2341 break;
2342 DELAY(10);
2343 }
2344
2345 /* Enable memory arbiter. */
2346 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2347 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2348 }
2349
2350 /* Fix up byte swapping */
2351 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2352
2353 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2354
2355 DELAY(10000);
2356 }
2357
2358 /*
2359 * Frame reception handling. This is called if there's a frame
2360 * on the receive return list.
2361 *
2362 * Note: we have to be able to handle two possibilities here:
2363 * 1) the frame is from the jumbo recieve ring
2364 * 2) the frame is from the standard receive ring
2365 */
2366
2367 void
2368 bge_rxeof(sc)
2369 struct bge_softc *sc;
2370 {
2371 struct ifnet *ifp;
2372 int stdcnt = 0, jumbocnt = 0;
2373 int have_tag = 0;
2374 u_int16_t vlan_tag = 0;
2375 bus_dmamap_t dmamap;
2376 bus_addr_t offset, toff;
2377 bus_size_t tlen;
2378 int tosync;
2379
2380 ifp = &sc->ethercom.ec_if;
2381
2382 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2383 offsetof(struct bge_ring_data, bge_status_block),
2384 sizeof (struct bge_status_block),
2385 BUS_DMASYNC_POSTREAD);
2386
2387 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2388 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2389 sc->bge_rx_saved_considx;
2390
2391 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2392
2393 if (tosync < 0) {
2394 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2395 sizeof (struct bge_rx_bd);
2396 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2397 toff, tlen, BUS_DMASYNC_POSTREAD);
2398 tosync = -tosync;
2399 }
2400
2401 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2402 offset, tosync * sizeof (struct bge_rx_bd),
2403 BUS_DMASYNC_POSTREAD);
2404
2405 while(sc->bge_rx_saved_considx !=
2406 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2407 struct bge_rx_bd *cur_rx;
2408 u_int32_t rxidx;
2409 struct mbuf *m = NULL;
2410
2411 cur_rx = &sc->bge_rdata->
2412 bge_rx_return_ring[sc->bge_rx_saved_considx];
2413
2414 rxidx = cur_rx->bge_idx;
2415 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2416
2417 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2418 have_tag = 1;
2419 vlan_tag = cur_rx->bge_vlan_tag;
2420 }
2421
2422 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2423 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2424 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2425 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2426 jumbocnt++;
2427 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2428 ifp->if_ierrors++;
2429 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2430 continue;
2431 }
2432 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2433 NULL)== ENOBUFS) {
2434 ifp->if_ierrors++;
2435 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2436 continue;
2437 }
2438 } else {
2439 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2440 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2441 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2442 stdcnt++;
2443 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2444 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2445 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2446 ifp->if_ierrors++;
2447 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2448 continue;
2449 }
2450 if (bge_newbuf_std(sc, sc->bge_std,
2451 NULL, dmamap) == ENOBUFS) {
2452 ifp->if_ierrors++;
2453 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2454 continue;
2455 }
2456 }
2457
2458 ifp->if_ipackets++;
2459 #ifndef __NO_STRICT_ALIGNMENT
2460 /*
2461 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2462 * the Rx buffer has the layer-2 header unaligned.
2463 * If our CPU requires alignment, re-align by copying.
2464 */
2465 if (sc->bge_rx_alignment_bug) {
2466 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2467 cur_rx->bge_len);
2468 m->m_data += ETHER_ALIGN;
2469 }
2470 #endif
2471
2472 m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2473 m->m_pkthdr.rcvif = ifp;
2474
2475 #if NBPFILTER > 0
2476 /*
2477 * Handle BPF listeners. Let the BPF user see the packet.
2478 */
2479 if (ifp->if_bpf)
2480 bpf_mtap(ifp->if_bpf, m);
2481 #endif
2482
2483 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2484
2485 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2486 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2487 /*
2488 * Rx transport checksum-offload may also
2489 * have bugs with packets which, when transmitted,
2490 * were `runts' requiring padding.
2491 */
2492 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2493 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2494 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2495 m->m_pkthdr.csum_data =
2496 cur_rx->bge_tcp_udp_csum;
2497 m->m_pkthdr.csum_flags |=
2498 (M_CSUM_TCPv4|M_CSUM_UDPv4|
2499 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2500 }
2501
2502 /*
2503 * If we received a packet with a vlan tag, pass it
2504 * to vlan_input() instead of ether_input().
2505 */
2506 if (have_tag) {
2507 struct m_tag *mtag;
2508
2509 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2510 M_NOWAIT);
2511 if (mtag != NULL) {
2512 *(u_int *)(mtag + 1) = vlan_tag;
2513 m_tag_prepend(m, mtag);
2514 have_tag = vlan_tag = 0;
2515 } else {
2516 printf("%s: no mbuf for tag\n", ifp->if_xname);
2517 m_freem(m);
2518 have_tag = vlan_tag = 0;
2519 continue;
2520 }
2521 }
2522 (*ifp->if_input)(ifp, m);
2523 }
2524
2525 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2526 if (stdcnt)
2527 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2528 if (jumbocnt)
2529 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2530 }
2531
2532 void
2533 bge_txeof(sc)
2534 struct bge_softc *sc;
2535 {
2536 struct bge_tx_bd *cur_tx = NULL;
2537 struct ifnet *ifp;
2538 struct txdmamap_pool_entry *dma;
2539 bus_addr_t offset, toff;
2540 bus_size_t tlen;
2541 int tosync;
2542 struct mbuf *m;
2543
2544 ifp = &sc->ethercom.ec_if;
2545
2546 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2547 offsetof(struct bge_ring_data, bge_status_block),
2548 sizeof (struct bge_status_block),
2549 BUS_DMASYNC_POSTREAD);
2550
2551 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2552 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2553 sc->bge_tx_saved_considx;
2554
2555 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2556
2557 if (tosync < 0) {
2558 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2559 sizeof (struct bge_tx_bd);
2560 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2561 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2562 tosync = -tosync;
2563 }
2564
2565 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2566 offset, tosync * sizeof (struct bge_tx_bd),
2567 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2568
2569 /*
2570 * Go through our tx ring and free mbufs for those
2571 * frames that have been sent.
2572 */
2573 while (sc->bge_tx_saved_considx !=
2574 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2575 u_int32_t idx = 0;
2576
2577 idx = sc->bge_tx_saved_considx;
2578 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2579 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2580 ifp->if_opackets++;
2581 m = sc->bge_cdata.bge_tx_chain[idx];
2582 if (m != NULL) {
2583 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2584 dma = sc->txdma[idx];
2585 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2586 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2587 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2588 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2589 sc->txdma[idx] = NULL;
2590
2591 m_freem(m);
2592 }
2593 sc->bge_txcnt--;
2594 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2595 ifp->if_timer = 0;
2596 }
2597
2598 if (cur_tx != NULL)
2599 ifp->if_flags &= ~IFF_OACTIVE;
2600 }
2601
2602 int
2603 bge_intr(xsc)
2604 void *xsc;
2605 {
2606 struct bge_softc *sc;
2607 struct ifnet *ifp;
2608
2609 sc = xsc;
2610 ifp = &sc->ethercom.ec_if;
2611
2612 #ifdef notdef
2613 /* Avoid this for now -- checking this register is expensive. */
2614 /* Make sure this is really our interrupt. */
2615 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2616 return (0);
2617 #endif
2618 /* Ack interrupt and stop others from occuring. */
2619 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2620
2621 /*
2622 * Process link state changes.
2623 * Grrr. The link status word in the status block does
2624 * not work correctly on the BCM5700 rev AX and BX chips,
2625 * according to all avaibable information. Hence, we have
2626 * to enable MII interrupts in order to properly obtain
2627 * async link changes. Unfortunately, this also means that
2628 * we have to read the MAC status register to detect link
2629 * changes, thereby adding an additional register access to
2630 * the interrupt handler.
2631 */
2632
2633 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2634 u_int32_t status;
2635
2636 status = CSR_READ_4(sc, BGE_MAC_STS);
2637 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2638 sc->bge_link = 0;
2639 callout_stop(&sc->bge_timeout);
2640 bge_tick(sc);
2641 /* Clear the interrupt */
2642 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2643 BGE_EVTENB_MI_INTERRUPT);
2644 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2645 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2646 BRGPHY_INTRS);
2647 }
2648 } else {
2649 if (sc->bge_rdata->bge_status_block.bge_status &
2650 BGE_STATFLAG_LINKSTATE_CHANGED) {
2651 sc->bge_link = 0;
2652 callout_stop(&sc->bge_timeout);
2653 bge_tick(sc);
2654 /* Clear the interrupt */
2655 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2656 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2657 BGE_MACSTAT_LINK_CHANGED);
2658 }
2659 }
2660
2661 if (ifp->if_flags & IFF_RUNNING) {
2662 /* Check RX return ring producer/consumer */
2663 bge_rxeof(sc);
2664
2665 /* Check TX ring producer/consumer */
2666 bge_txeof(sc);
2667 }
2668
2669 bge_handle_events(sc);
2670
2671 /* Re-enable interrupts. */
2672 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2673
2674 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2675 bge_start(ifp);
2676
2677 return (1);
2678 }
2679
2680 void
2681 bge_tick(xsc)
2682 void *xsc;
2683 {
2684 struct bge_softc *sc = xsc;
2685 struct mii_data *mii = &sc->bge_mii;
2686 struct ifmedia *ifm = NULL;
2687 struct ifnet *ifp = &sc->ethercom.ec_if;
2688 int s;
2689
2690 s = splnet();
2691
2692 bge_stats_update(sc);
2693 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2694 if (sc->bge_link) {
2695 splx(s);
2696 return;
2697 }
2698
2699 if (sc->bge_tbi) {
2700 ifm = &sc->bge_ifmedia;
2701 if (CSR_READ_4(sc, BGE_MAC_STS) &
2702 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2703 sc->bge_link++;
2704 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2705 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2706 bge_start(ifp);
2707 }
2708 splx(s);
2709 return;
2710 }
2711
2712 mii_tick(mii);
2713
2714 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2715 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2716 sc->bge_link++;
2717 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2718 bge_start(ifp);
2719 }
2720
2721 splx(s);
2722 }
2723
2724 void
2725 bge_stats_update(sc)
2726 struct bge_softc *sc;
2727 {
2728 struct ifnet *ifp = &sc->ethercom.ec_if;
2729 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2730 bus_size_t rstats = BGE_RX_STATS;
2731
2732 #define READ_RSTAT(sc, stats, stat) \
2733 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
2734
2735 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2736 ifp->if_collisions +=
2737 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
2738 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
2739 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
2740 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
2741 return;
2742 }
2743
2744 #undef READ_RSTAT
2745 #define READ_STAT(sc, stats, stat) \
2746 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2747
2748 ifp->if_collisions +=
2749 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2750 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2751 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2752 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2753 ifp->if_collisions;
2754
2755 #undef READ_STAT
2756
2757 #ifdef notdef
2758 ifp->if_collisions +=
2759 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2760 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2761 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2762 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2763 ifp->if_collisions;
2764 #endif
2765 }
2766
2767 /*
2768 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
2769 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
2770 * but when such padded frames employ the bge IP/TCP checksum offload,
2771 * the hardware checksum assist gives incorrect results (possibly
2772 * from incorporating its own padding into the UDP/TCP checksum; who knows).
2773 * If we pad such runts with zeros, the onboard checksum comes out correct.
2774 */
2775 static __inline int
2776 bge_cksum_pad(struct mbuf *pkt)
2777 {
2778 struct mbuf *last = NULL;
2779 int padlen;
2780
2781 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
2782
2783 /* if there's only the packet-header and we can pad there, use it. */
2784 if (pkt->m_pkthdr.len == pkt->m_len &&
2785 !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
2786 last = pkt;
2787 } else {
2788 /*
2789 * Walk packet chain to find last mbuf. We will either
2790 * pad there, or append a new mbuf and pad it
2791 * (thus perhaps avoiding the bcm5700 dma-min bug).
2792 */
2793 for (last = pkt; last->m_next != NULL; last = last->m_next) {
2794 (void) 0; /* do nothing*/
2795 }
2796
2797 /* `last' now points to last in chain. */
2798 if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
2799 (void) 0; /* we can pad here, in-place. */
2800 } else {
2801 /* Allocate new empty mbuf, pad it. Compact later. */
2802 struct mbuf *n;
2803 MGET(n, M_DONTWAIT, MT_DATA);
2804 n->m_len = 0;
2805 last->m_next = n;
2806 last = n;
2807 }
2808 }
2809
2810 #ifdef DEBUG
2811 /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
2812 KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
2813 #endif
2814 /* Now zero the pad area, to avoid the bge cksum-assist bug */
2815 memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
2816 last->m_len += padlen;
2817 pkt->m_pkthdr.len += padlen;
2818 return 0;
2819 }
2820
2821 /*
2822 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
2823 */
2824 static __inline int
2825 bge_compact_dma_runt(struct mbuf *pkt)
2826 {
2827 struct mbuf *m, *prev;
2828 int totlen, prevlen;
2829
2830 prev = NULL;
2831 totlen = 0;
2832 prevlen = -1;
2833
2834 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
2835 int mlen = m->m_len;
2836 int shortfall = 8 - mlen ;
2837
2838 totlen += mlen;
2839 if (mlen == 0) {
2840 continue;
2841 }
2842 if (mlen >= 8)
2843 continue;
2844
2845 /* If we get here, mbuf data is too small for DMA engine.
2846 * Try to fix by shuffling data to prev or next in chain.
2847 * If that fails, do a compacting deep-copy of the whole chain.
2848 */
2849
2850 /* Internal frag. If fits in prev, copy it there. */
2851 if (prev && !M_READONLY(prev) &&
2852 M_TRAILINGSPACE(prev) >= m->m_len) {
2853 bcopy(m->m_data,
2854 prev->m_data+prev->m_len,
2855 mlen);
2856 prev->m_len += mlen;
2857 m->m_len = 0;
2858 /* XXX stitch chain */
2859 prev->m_next = m_free(m);
2860 m = prev;
2861 continue;
2862 }
2863 else if (m->m_next != NULL && !M_READONLY(m) &&
2864 M_TRAILINGSPACE(m) >= shortfall &&
2865 m->m_next->m_len >= (8 + shortfall)) {
2866 /* m is writable and have enough data in next, pull up. */
2867
2868 bcopy(m->m_next->m_data,
2869 m->m_data+m->m_len,
2870 shortfall);
2871 m->m_len += shortfall;
2872 m->m_next->m_len -= shortfall;
2873 m->m_next->m_data += shortfall;
2874 }
2875 else if (m->m_next == NULL || 1) {
2876 /* Got a runt at the very end of the packet.
2877 * borrow data from the tail of the preceding mbuf and
2878 * update its length in-place. (The original data is still
2879 * valid, so we can do this even if prev is not writable.)
2880 */
2881
2882 /* if we'd make prev a runt, just move all of its data. */
2883 #ifdef DEBUG
2884 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
2885 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
2886 #endif
2887 if ((prev->m_len - shortfall) < 8)
2888 shortfall = prev->m_len;
2889
2890 #ifdef notyet /* just do the safe slow thing for now */
2891 if (!M_READONLY(m)) {
2892 if (M_LEADINGSPACE(m) < shorfall) {
2893 void *m_dat;
2894 m_dat = (m->m_flags & M_PKTHDR) ?
2895 m->m_pktdat : m->dat;
2896 memmove(m_dat, mtod(m, void*), m->m_len);
2897 m->m_data = m_dat;
2898 }
2899 } else
2900 #endif /* just do the safe slow thing */
2901 {
2902 struct mbuf * n = NULL;
2903 int newprevlen = prev->m_len - shortfall;
2904
2905 MGET(n, M_NOWAIT, MT_DATA);
2906 if (n == NULL)
2907 return ENOBUFS;
2908 KASSERT(m->m_len + shortfall < MLEN
2909 /*,
2910 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
2911
2912 /* first copy the data we're stealing from prev */
2913 bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
2914
2915 /* update prev->m_len accordingly */
2916 prev->m_len -= shortfall;
2917
2918 /* copy data from runt m */
2919 bcopy(m->m_data, n->m_data + shortfall, m->m_len);
2920
2921 /* n holds what we stole from prev, plus m */
2922 n->m_len = shortfall + m->m_len;
2923
2924 /* stitch n into chain and free m */
2925 n->m_next = m->m_next;
2926 prev->m_next = n;
2927 /* KASSERT(m->m_next == NULL); */
2928 m->m_next = NULL;
2929 m_free(m);
2930 m = n; /* for continuing loop */
2931 }
2932 }
2933 prevlen = m->m_len;
2934 }
2935 return 0;
2936 }
2937
2938 /*
2939 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2940 * pointers to descriptors.
2941 */
2942 int
2943 bge_encap(sc, m_head, txidx)
2944 struct bge_softc *sc;
2945 struct mbuf *m_head;
2946 u_int32_t *txidx;
2947 {
2948 struct bge_tx_bd *f = NULL;
2949 u_int32_t frag, cur, cnt = 0;
2950 u_int16_t csum_flags = 0;
2951 struct txdmamap_pool_entry *dma;
2952 bus_dmamap_t dmamap;
2953 int i = 0;
2954 struct m_tag *mtag;
2955
2956 cur = frag = *txidx;
2957
2958 if (m_head->m_pkthdr.csum_flags) {
2959 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2960 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2961 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2962 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2963 }
2964
2965 /*
2966 * If we were asked to do an outboard checksum, and the NIC
2967 * has the bug where it sometimes adds in the Ethernet padding,
2968 * explicitly pad with zeros so the cksum will be correct either way.
2969 * (For now, do this for all chip versions, until newer
2970 * are confirmed to not require the workaround.)
2971 */
2972 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
2973 #ifdef notyet
2974 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
2975 #endif
2976 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
2977 goto check_dma_bug;
2978
2979 if (bge_cksum_pad(m_head) != 0)
2980 return ENOBUFS;
2981
2982 check_dma_bug:
2983 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
2984 goto doit;
2985 /*
2986 * bcm5700 Revision B silicon cannot handle DMA descriptors with
2987 * less than eight bytes. If we encounter a teeny mbuf
2988 * at the end of a chain, we can pad. Otherwise, copy.
2989 */
2990 if (bge_compact_dma_runt(m_head) != 0)
2991 return ENOBUFS;
2992
2993 doit:
2994 dma = SLIST_FIRST(&sc->txdma_list);
2995 if (dma == NULL)
2996 return ENOBUFS;
2997 dmamap = dma->dmamap;
2998
2999 /*
3000 * Start packing the mbufs in this chain into
3001 * the fragment pointers. Stop when we run out
3002 * of fragments or hit the end of the mbuf chain.
3003 */
3004 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3005 BUS_DMA_NOWAIT))
3006 return(ENOBUFS);
3007
3008 mtag = sc->ethercom.ec_nvlans ?
3009 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3010
3011 for (i = 0; i < dmamap->dm_nsegs; i++) {
3012 f = &sc->bge_rdata->bge_tx_ring[frag];
3013 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3014 break;
3015 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3016 f->bge_len = dmamap->dm_segs[i].ds_len;
3017 f->bge_flags = csum_flags;
3018
3019 if (mtag != NULL) {
3020 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3021 f->bge_vlan_tag = *(u_int *)(mtag + 1);
3022 } else {
3023 f->bge_vlan_tag = 0;
3024 }
3025 /*
3026 * Sanity check: avoid coming within 16 descriptors
3027 * of the end of the ring.
3028 */
3029 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
3030 return(ENOBUFS);
3031 cur = frag;
3032 BGE_INC(frag, BGE_TX_RING_CNT);
3033 cnt++;
3034 }
3035
3036 if (i < dmamap->dm_nsegs)
3037 return ENOBUFS;
3038
3039 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3040 BUS_DMASYNC_PREWRITE);
3041
3042 if (frag == sc->bge_tx_saved_considx)
3043 return(ENOBUFS);
3044
3045 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3046 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3047 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3048 sc->txdma[cur] = dma;
3049 sc->bge_txcnt += cnt;
3050
3051 *txidx = frag;
3052
3053 return(0);
3054 }
3055
3056 /*
3057 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3058 * to the mbuf data regions directly in the transmit descriptors.
3059 */
3060 void
3061 bge_start(ifp)
3062 struct ifnet *ifp;
3063 {
3064 struct bge_softc *sc;
3065 struct mbuf *m_head = NULL;
3066 u_int32_t prodidx = 0;
3067 int pkts = 0;
3068
3069 sc = ifp->if_softc;
3070
3071 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3072 return;
3073
3074 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
3075
3076 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3077 IFQ_POLL(&ifp->if_snd, m_head);
3078 if (m_head == NULL)
3079 break;
3080
3081 #if 0
3082 /*
3083 * XXX
3084 * safety overkill. If this is a fragmented packet chain
3085 * with delayed TCP/UDP checksums, then only encapsulate
3086 * it if we have enough descriptors to handle the entire
3087 * chain at once.
3088 * (paranoia -- may not actually be needed)
3089 */
3090 if (m_head->m_flags & M_FIRSTFRAG &&
3091 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3092 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3093 m_head->m_pkthdr.csum_data + 16) {
3094 ifp->if_flags |= IFF_OACTIVE;
3095 break;
3096 }
3097 }
3098 #endif
3099
3100 /*
3101 * Pack the data into the transmit ring. If we
3102 * don't have room, set the OACTIVE flag and wait
3103 * for the NIC to drain the ring.
3104 */
3105 if (bge_encap(sc, m_head, &prodidx)) {
3106 ifp->if_flags |= IFF_OACTIVE;
3107 break;
3108 }
3109
3110 /* now we are committed to transmit the packet */
3111 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3112 pkts++;
3113
3114 #if NBPFILTER > 0
3115 /*
3116 * If there's a BPF listener, bounce a copy of this frame
3117 * to him.
3118 */
3119 if (ifp->if_bpf)
3120 bpf_mtap(ifp->if_bpf, m_head);
3121 #endif
3122 }
3123 if (pkts == 0)
3124 return;
3125
3126 /* Transmit */
3127 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3128 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3129 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3130
3131 /*
3132 * Set a timeout in case the chip goes out to lunch.
3133 */
3134 ifp->if_timer = 5;
3135 }
3136
3137 int
3138 bge_init(ifp)
3139 struct ifnet *ifp;
3140 {
3141 struct bge_softc *sc = ifp->if_softc;
3142 u_int16_t *m;
3143 int s, error;
3144
3145 s = splnet();
3146
3147 ifp = &sc->ethercom.ec_if;
3148
3149 /* Cancel pending I/O and flush buffers. */
3150 bge_stop(sc);
3151 bge_reset(sc);
3152 bge_chipinit(sc);
3153
3154 /*
3155 * Init the various state machines, ring
3156 * control blocks and firmware.
3157 */
3158 error = bge_blockinit(sc);
3159 if (error != 0) {
3160 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3161 error);
3162 splx(s);
3163 return error;
3164 }
3165
3166 ifp = &sc->ethercom.ec_if;
3167
3168 /* Specify MTU. */
3169 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3170 ETHER_HDR_LEN + ETHER_CRC_LEN);
3171
3172 /* Load our MAC address. */
3173 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3174 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3175 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3176
3177 /* Enable or disable promiscuous mode as needed. */
3178 if (ifp->if_flags & IFF_PROMISC) {
3179 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3180 } else {
3181 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3182 }
3183
3184 /* Program multicast filter. */
3185 bge_setmulti(sc);
3186
3187 /* Init RX ring. */
3188 bge_init_rx_ring_std(sc);
3189
3190 /* Init jumbo RX ring. */
3191 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3192 bge_init_rx_ring_jumbo(sc);
3193
3194 /* Init our RX return ring index */
3195 sc->bge_rx_saved_considx = 0;
3196
3197 /* Init TX ring. */
3198 bge_init_tx_ring(sc);
3199
3200 /* Turn on transmitter */
3201 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3202
3203 /* Turn on receiver */
3204 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3205
3206 /* Tell firmware we're alive. */
3207 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3208
3209 /* Enable host interrupts. */
3210 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3211 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3212 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3213
3214 bge_ifmedia_upd(ifp);
3215
3216 ifp->if_flags |= IFF_RUNNING;
3217 ifp->if_flags &= ~IFF_OACTIVE;
3218
3219 splx(s);
3220
3221 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3222
3223 return 0;
3224 }
3225
3226 /*
3227 * Set media options.
3228 */
3229 int
3230 bge_ifmedia_upd(ifp)
3231 struct ifnet *ifp;
3232 {
3233 struct bge_softc *sc = ifp->if_softc;
3234 struct mii_data *mii = &sc->bge_mii;
3235 struct ifmedia *ifm = &sc->bge_ifmedia;
3236
3237 /* If this is a 1000baseX NIC, enable the TBI port. */
3238 if (sc->bge_tbi) {
3239 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3240 return(EINVAL);
3241 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3242 case IFM_AUTO:
3243 break;
3244 case IFM_1000_SX:
3245 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3246 BGE_CLRBIT(sc, BGE_MAC_MODE,
3247 BGE_MACMODE_HALF_DUPLEX);
3248 } else {
3249 BGE_SETBIT(sc, BGE_MAC_MODE,
3250 BGE_MACMODE_HALF_DUPLEX);
3251 }
3252 break;
3253 default:
3254 return(EINVAL);
3255 }
3256 return(0);
3257 }
3258
3259 sc->bge_link = 0;
3260 mii_mediachg(mii);
3261
3262 return(0);
3263 }
3264
3265 /*
3266 * Report current media status.
3267 */
3268 void
3269 bge_ifmedia_sts(ifp, ifmr)
3270 struct ifnet *ifp;
3271 struct ifmediareq *ifmr;
3272 {
3273 struct bge_softc *sc = ifp->if_softc;
3274 struct mii_data *mii = &sc->bge_mii;
3275
3276 if (sc->bge_tbi) {
3277 ifmr->ifm_status = IFM_AVALID;
3278 ifmr->ifm_active = IFM_ETHER;
3279 if (CSR_READ_4(sc, BGE_MAC_STS) &
3280 BGE_MACSTAT_TBI_PCS_SYNCHED)
3281 ifmr->ifm_status |= IFM_ACTIVE;
3282 ifmr->ifm_active |= IFM_1000_SX;
3283 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3284 ifmr->ifm_active |= IFM_HDX;
3285 else
3286 ifmr->ifm_active |= IFM_FDX;
3287 return;
3288 }
3289
3290 mii_pollstat(mii);
3291 ifmr->ifm_active = mii->mii_media_active;
3292 ifmr->ifm_status = mii->mii_media_status;
3293 }
3294
3295 int
3296 bge_ioctl(ifp, command, data)
3297 struct ifnet *ifp;
3298 u_long command;
3299 caddr_t data;
3300 {
3301 struct bge_softc *sc = ifp->if_softc;
3302 struct ifreq *ifr = (struct ifreq *) data;
3303 int s, error = 0;
3304 struct mii_data *mii;
3305
3306 s = splnet();
3307
3308 switch(command) {
3309 case SIOCSIFFLAGS:
3310 if (ifp->if_flags & IFF_UP) {
3311 /*
3312 * If only the state of the PROMISC flag changed,
3313 * then just use the 'set promisc mode' command
3314 * instead of reinitializing the entire NIC. Doing
3315 * a full re-init means reloading the firmware and
3316 * waiting for it to start up, which may take a
3317 * second or two.
3318 */
3319 if (ifp->if_flags & IFF_RUNNING &&
3320 ifp->if_flags & IFF_PROMISC &&
3321 !(sc->bge_if_flags & IFF_PROMISC)) {
3322 BGE_SETBIT(sc, BGE_RX_MODE,
3323 BGE_RXMODE_RX_PROMISC);
3324 } else if (ifp->if_flags & IFF_RUNNING &&
3325 !(ifp->if_flags & IFF_PROMISC) &&
3326 sc->bge_if_flags & IFF_PROMISC) {
3327 BGE_CLRBIT(sc, BGE_RX_MODE,
3328 BGE_RXMODE_RX_PROMISC);
3329 } else
3330 bge_init(ifp);
3331 } else {
3332 if (ifp->if_flags & IFF_RUNNING) {
3333 bge_stop(sc);
3334 }
3335 }
3336 sc->bge_if_flags = ifp->if_flags;
3337 error = 0;
3338 break;
3339 case SIOCSIFMEDIA:
3340 case SIOCGIFMEDIA:
3341 if (sc->bge_tbi) {
3342 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3343 command);
3344 } else {
3345 mii = &sc->bge_mii;
3346 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3347 command);
3348 }
3349 error = 0;
3350 break;
3351 default:
3352 error = ether_ioctl(ifp, command, data);
3353 if (error == ENETRESET) {
3354 bge_setmulti(sc);
3355 error = 0;
3356 }
3357 break;
3358 }
3359
3360 splx(s);
3361
3362 return(error);
3363 }
3364
3365 void
3366 bge_watchdog(ifp)
3367 struct ifnet *ifp;
3368 {
3369 struct bge_softc *sc;
3370
3371 sc = ifp->if_softc;
3372
3373 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3374
3375 ifp->if_flags &= ~IFF_RUNNING;
3376 bge_init(ifp);
3377
3378 ifp->if_oerrors++;
3379 }
3380
3381 static void
3382 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3383 {
3384 int i;
3385
3386 BGE_CLRBIT(sc, reg, bit);
3387
3388 for (i = 0; i < BGE_TIMEOUT; i++) {
3389 if ((CSR_READ_4(sc, reg) & bit) == 0)
3390 return;
3391 delay(100);
3392 }
3393
3394 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3395 sc->bge_dev.dv_xname, (u_long) reg, bit);
3396 }
3397
3398 /*
3399 * Stop the adapter and free any mbufs allocated to the
3400 * RX and TX lists.
3401 */
3402 void
3403 bge_stop(sc)
3404 struct bge_softc *sc;
3405 {
3406 struct ifnet *ifp = &sc->ethercom.ec_if;
3407
3408 callout_stop(&sc->bge_timeout);
3409
3410 /*
3411 * Disable all of the receiver blocks
3412 */
3413 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3414 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3415 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3416 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3417 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3418 }
3419 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3420 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3421 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3422
3423 /*
3424 * Disable all of the transmit blocks
3425 */
3426 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3427 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3428 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3429 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3430 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3431 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3432 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3433 }
3434 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3435
3436 /*
3437 * Shut down all of the memory managers and related
3438 * state machines.
3439 */
3440 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3441 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3442 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3443 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3444 }
3445
3446 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3447 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3448
3449 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3450 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3451 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3452 }
3453
3454 /* Disable host interrupts. */
3455 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3456 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3457
3458 /*
3459 * Tell firmware we're shutting down.
3460 */
3461 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3462
3463 /* Free the RX lists. */
3464 bge_free_rx_ring_std(sc);
3465
3466 /* Free jumbo RX list. */
3467 bge_free_rx_ring_jumbo(sc);
3468
3469 /* Free TX buffers. */
3470 bge_free_tx_ring(sc);
3471
3472 /*
3473 * Isolate/power down the PHY.
3474 */
3475 if (!sc->bge_tbi)
3476 mii_down(&sc->bge_mii);
3477
3478 sc->bge_link = 0;
3479
3480 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3481
3482 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3483 }
3484
3485 /*
3486 * Stop all chip I/O so that the kernel's probe routines don't
3487 * get confused by errant DMAs when rebooting.
3488 */
3489 void
3490 bge_shutdown(xsc)
3491 void *xsc;
3492 {
3493 struct bge_softc *sc = (struct bge_softc *)xsc;
3494
3495 bge_stop(sc);
3496 bge_reset(sc);
3497 }
3498