if_bge.c revision 1.52 1 /* $NetBSD: if_bge.c,v 1.52 2003/10/23 20:36:36 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.52 2003/10/23 20:36:36 fvdl Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/pci/pcidevs.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/miidevs.h>
120 #include <dev/mii/brgphyreg.h>
121
122 #include <dev/pci/if_bgereg.h>
123
124 #include <uvm/uvm_extern.h>
125
126 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
127
128 int bge_probe(struct device *, struct cfdata *, void *);
129 void bge_attach(struct device *, struct device *, void *);
130 void bge_release_resources(struct bge_softc *);
131 void bge_txeof(struct bge_softc *);
132 void bge_rxeof(struct bge_softc *);
133
134 void bge_tick(void *);
135 void bge_stats_update(struct bge_softc *);
136 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
137 static __inline int bge_cksum_pad(struct mbuf *pkt);
138 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
139
140 int bge_intr(void *);
141 void bge_start(struct ifnet *);
142 int bge_ioctl(struct ifnet *, u_long, caddr_t);
143 int bge_init(struct ifnet *);
144 void bge_stop(struct bge_softc *);
145 void bge_watchdog(struct ifnet *);
146 void bge_shutdown(void *);
147 int bge_ifmedia_upd(struct ifnet *);
148 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
149
150 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
151 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
152
153 void bge_setmulti(struct bge_softc *);
154
155 void bge_handle_events(struct bge_softc *);
156 int bge_alloc_jumbo_mem(struct bge_softc *);
157 void bge_free_jumbo_mem(struct bge_softc *);
158 void *bge_jalloc(struct bge_softc *);
159 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
160 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
161 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
162 int bge_init_rx_ring_std(struct bge_softc *);
163 void bge_free_rx_ring_std(struct bge_softc *);
164 int bge_init_rx_ring_jumbo(struct bge_softc *);
165 void bge_free_rx_ring_jumbo(struct bge_softc *);
166 void bge_free_tx_ring(struct bge_softc *);
167 int bge_init_tx_ring(struct bge_softc *);
168
169 int bge_chipinit(struct bge_softc *);
170 int bge_blockinit(struct bge_softc *);
171 int bge_setpowerstate(struct bge_softc *, int);
172
173 #ifdef notdef
174 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
175 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
176 void bge_vpd_read(struct bge_softc *);
177 #endif
178
179 u_int32_t bge_readmem_ind(struct bge_softc *, int);
180 void bge_writemem_ind(struct bge_softc *, int, int);
181 #ifdef notdef
182 u_int32_t bge_readreg_ind(struct bge_softc *, int);
183 #endif
184 void bge_writereg_ind(struct bge_softc *, int, int);
185
186 int bge_miibus_readreg(struct device *, int, int);
187 void bge_miibus_writereg(struct device *, int, int, int);
188 void bge_miibus_statchg(struct device *);
189
190 void bge_reset(struct bge_softc *);
191
192 void bge_dump_status(struct bge_softc *);
193 void bge_dump_rxbd(struct bge_rx_bd *);
194
195 #define BGE_DEBUG
196 #ifdef BGE_DEBUG
197 #define DPRINTF(x) if (bgedebug) printf x
198 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
199 int bgedebug = 0;
200 #else
201 #define DPRINTF(x)
202 #define DPRINTFN(n,x)
203 #endif
204
205 /* Various chip quirks. */
206 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
207 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
208 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
209 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
210 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
211 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
212 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
213 #define BGE_QUIRK_5705_CORE 0x00000080
214
215 /* following bugs are common to bcm5700 rev B, all flavours */
216 #define BGE_QUIRK_5700_COMMON \
217 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
218
219 CFATTACH_DECL(bge, sizeof(struct bge_softc),
220 bge_probe, bge_attach, NULL, NULL);
221
222 u_int32_t
223 bge_readmem_ind(sc, off)
224 struct bge_softc *sc;
225 int off;
226 {
227 struct pci_attach_args *pa = &(sc->bge_pa);
228 pcireg_t val;
229
230 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
231 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
232 return val;
233 }
234
235 void
236 bge_writemem_ind(sc, off, val)
237 struct bge_softc *sc;
238 int off, val;
239 {
240 struct pci_attach_args *pa = &(sc->bge_pa);
241
242 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
243 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
244 }
245
246 #ifdef notdef
247 u_int32_t
248 bge_readreg_ind(sc, off)
249 struct bge_softc *sc;
250 int off;
251 {
252 struct pci_attach_args *pa = &(sc->bge_pa);
253
254 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
255 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
256 }
257 #endif
258
259 void
260 bge_writereg_ind(sc, off, val)
261 struct bge_softc *sc;
262 int off, val;
263 {
264 struct pci_attach_args *pa = &(sc->bge_pa);
265
266 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
267 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
268 }
269
270 #ifdef notdef
271 u_int8_t
272 bge_vpd_readbyte(sc, addr)
273 struct bge_softc *sc;
274 int addr;
275 {
276 int i;
277 u_int32_t val;
278 struct pci_attach_args *pa = &(sc->bge_pa);
279
280 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
281 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
282 DELAY(10);
283 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
284 BGE_VPD_FLAG)
285 break;
286 }
287
288 if (i == BGE_TIMEOUT) {
289 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
290 return(0);
291 }
292
293 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
294
295 return((val >> ((addr % 4) * 8)) & 0xFF);
296 }
297
298 void
299 bge_vpd_read_res(sc, res, addr)
300 struct bge_softc *sc;
301 struct vpd_res *res;
302 int addr;
303 {
304 int i;
305 u_int8_t *ptr;
306
307 ptr = (u_int8_t *)res;
308 for (i = 0; i < sizeof(struct vpd_res); i++)
309 ptr[i] = bge_vpd_readbyte(sc, i + addr);
310 }
311
312 void
313 bge_vpd_read(sc)
314 struct bge_softc *sc;
315 {
316 int pos = 0, i;
317 struct vpd_res res;
318
319 if (sc->bge_vpd_prodname != NULL)
320 free(sc->bge_vpd_prodname, M_DEVBUF);
321 if (sc->bge_vpd_readonly != NULL)
322 free(sc->bge_vpd_readonly, M_DEVBUF);
323 sc->bge_vpd_prodname = NULL;
324 sc->bge_vpd_readonly = NULL;
325
326 bge_vpd_read_res(sc, &res, pos);
327
328 if (res.vr_id != VPD_RES_ID) {
329 printf("%s: bad VPD resource id: expected %x got %x\n",
330 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
331 return;
332 }
333
334 pos += sizeof(res);
335 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
336 if (sc->bge_vpd_prodname == NULL)
337 panic("bge_vpd_read");
338 for (i = 0; i < res.vr_len; i++)
339 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
340 sc->bge_vpd_prodname[i] = '\0';
341 pos += i;
342
343 bge_vpd_read_res(sc, &res, pos);
344
345 if (res.vr_id != VPD_RES_READ) {
346 printf("%s: bad VPD resource id: expected %x got %x\n",
347 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
348 return;
349 }
350
351 pos += sizeof(res);
352 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
353 if (sc->bge_vpd_readonly == NULL)
354 panic("bge_vpd_read");
355 for (i = 0; i < res.vr_len + 1; i++)
356 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
357 }
358 #endif
359
360 /*
361 * Read a byte of data stored in the EEPROM at address 'addr.' The
362 * BCM570x supports both the traditional bitbang interface and an
363 * auto access interface for reading the EEPROM. We use the auto
364 * access method.
365 */
366 u_int8_t
367 bge_eeprom_getbyte(sc, addr, dest)
368 struct bge_softc *sc;
369 int addr;
370 u_int8_t *dest;
371 {
372 int i;
373 u_int32_t byte = 0;
374
375 /*
376 * Enable use of auto EEPROM access so we can avoid
377 * having to use the bitbang method.
378 */
379 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
380
381 /* Reset the EEPROM, load the clock period. */
382 CSR_WRITE_4(sc, BGE_EE_ADDR,
383 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
384 DELAY(20);
385
386 /* Issue the read EEPROM command. */
387 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
388
389 /* Wait for completion */
390 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
391 DELAY(10);
392 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
393 break;
394 }
395
396 if (i == BGE_TIMEOUT) {
397 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
398 return(0);
399 }
400
401 /* Get result. */
402 byte = CSR_READ_4(sc, BGE_EE_DATA);
403
404 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
405
406 return(0);
407 }
408
409 /*
410 * Read a sequence of bytes from the EEPROM.
411 */
412 int
413 bge_read_eeprom(sc, dest, off, cnt)
414 struct bge_softc *sc;
415 caddr_t dest;
416 int off;
417 int cnt;
418 {
419 int err = 0, i;
420 u_int8_t byte = 0;
421
422 for (i = 0; i < cnt; i++) {
423 err = bge_eeprom_getbyte(sc, off + i, &byte);
424 if (err)
425 break;
426 *(dest + i) = byte;
427 }
428
429 return(err ? 1 : 0);
430 }
431
432 int
433 bge_miibus_readreg(dev, phy, reg)
434 struct device *dev;
435 int phy, reg;
436 {
437 struct bge_softc *sc = (struct bge_softc *)dev;
438 struct ifnet *ifp;
439 u_int32_t val;
440 u_int32_t saved_autopoll;
441 int i;
442
443 ifp = &sc->ethercom.ec_if;
444
445 /*
446 * Several chips with builtin PHYs will incorrectly answer to
447 * other PHY instances than the builtin PHY at id 1.
448 */
449 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
450 return(0);
451
452 /* Reading with autopolling on may trigger PCI errors */
453 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
454 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
455 CSR_WRITE_4(sc, BGE_MI_MODE,
456 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
457 DELAY(40);
458 }
459
460 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
461 BGE_MIPHY(phy)|BGE_MIREG(reg));
462
463 for (i = 0; i < BGE_TIMEOUT; i++) {
464 val = CSR_READ_4(sc, BGE_MI_COMM);
465 if (!(val & BGE_MICOMM_BUSY))
466 break;
467 delay(10);
468 }
469
470 if (i == BGE_TIMEOUT) {
471 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
472 val = 0;
473 goto done;
474 }
475
476 val = CSR_READ_4(sc, BGE_MI_COMM);
477
478 done:
479 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
480 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
481 DELAY(40);
482 }
483
484 if (val & BGE_MICOMM_READFAIL)
485 return(0);
486
487 return(val & 0xFFFF);
488 }
489
490 void
491 bge_miibus_writereg(dev, phy, reg, val)
492 struct device *dev;
493 int phy, reg, val;
494 {
495 struct bge_softc *sc = (struct bge_softc *)dev;
496 u_int32_t saved_autopoll;
497 int i;
498
499 /* Touching the PHY while autopolling is on may trigger PCI errors */
500 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
501 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
502 delay(40);
503 CSR_WRITE_4(sc, BGE_MI_MODE,
504 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
505 delay(10); /* 40 usec is supposed to be adequate */
506 }
507
508 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
509 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
510
511 for (i = 0; i < BGE_TIMEOUT; i++) {
512 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
513 break;
514 delay(10);
515 }
516
517 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
518 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
519 delay(40);
520 }
521
522 if (i == BGE_TIMEOUT) {
523 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
524 }
525 }
526
527 void
528 bge_miibus_statchg(dev)
529 struct device *dev;
530 {
531 struct bge_softc *sc = (struct bge_softc *)dev;
532 struct mii_data *mii = &sc->bge_mii;
533
534 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
535 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
536 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
537 } else {
538 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
539 }
540
541 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
542 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
543 } else {
544 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
545 }
546 }
547
548 /*
549 * Handle events that have triggered interrupts.
550 */
551 void
552 bge_handle_events(sc)
553 struct bge_softc *sc;
554 {
555
556 return;
557 }
558
559 /*
560 * Memory management for jumbo frames.
561 */
562
563 int
564 bge_alloc_jumbo_mem(sc)
565 struct bge_softc *sc;
566 {
567 caddr_t ptr, kva;
568 bus_dma_segment_t seg;
569 int i, rseg, state, error;
570 struct bge_jpool_entry *entry;
571
572 state = error = 0;
573
574 /* Grab a big chunk o' storage. */
575 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
576 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
577 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
578 return ENOBUFS;
579 }
580
581 state = 1;
582 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
583 BUS_DMA_NOWAIT)) {
584 printf("%s: can't map DMA buffers (%d bytes)\n",
585 sc->bge_dev.dv_xname, (int)BGE_JMEM);
586 error = ENOBUFS;
587 goto out;
588 }
589
590 state = 2;
591 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
592 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
593 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
594 error = ENOBUFS;
595 goto out;
596 }
597
598 state = 3;
599 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
600 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
601 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
602 error = ENOBUFS;
603 goto out;
604 }
605
606 state = 4;
607 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
608 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
609
610 SLIST_INIT(&sc->bge_jfree_listhead);
611 SLIST_INIT(&sc->bge_jinuse_listhead);
612
613 /*
614 * Now divide it up into 9K pieces and save the addresses
615 * in an array.
616 */
617 ptr = sc->bge_cdata.bge_jumbo_buf;
618 for (i = 0; i < BGE_JSLOTS; i++) {
619 sc->bge_cdata.bge_jslots[i] = ptr;
620 ptr += BGE_JLEN;
621 entry = malloc(sizeof(struct bge_jpool_entry),
622 M_DEVBUF, M_NOWAIT);
623 if (entry == NULL) {
624 printf("%s: no memory for jumbo buffer queue!\n",
625 sc->bge_dev.dv_xname);
626 error = ENOBUFS;
627 goto out;
628 }
629 entry->slot = i;
630 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
631 entry, jpool_entries);
632 }
633 out:
634 if (error != 0) {
635 switch (state) {
636 case 4:
637 bus_dmamap_unload(sc->bge_dmatag,
638 sc->bge_cdata.bge_rx_jumbo_map);
639 case 3:
640 bus_dmamap_destroy(sc->bge_dmatag,
641 sc->bge_cdata.bge_rx_jumbo_map);
642 case 2:
643 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
644 case 1:
645 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
646 break;
647 default:
648 break;
649 }
650 }
651
652 return error;
653 }
654
655 /*
656 * Allocate a jumbo buffer.
657 */
658 void *
659 bge_jalloc(sc)
660 struct bge_softc *sc;
661 {
662 struct bge_jpool_entry *entry;
663
664 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
665
666 if (entry == NULL) {
667 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
668 return(NULL);
669 }
670
671 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
672 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
673 return(sc->bge_cdata.bge_jslots[entry->slot]);
674 }
675
676 /*
677 * Release a jumbo buffer.
678 */
679 void
680 bge_jfree(m, buf, size, arg)
681 struct mbuf *m;
682 caddr_t buf;
683 size_t size;
684 void *arg;
685 {
686 struct bge_jpool_entry *entry;
687 struct bge_softc *sc;
688 int i, s;
689
690 /* Extract the softc struct pointer. */
691 sc = (struct bge_softc *)arg;
692
693 if (sc == NULL)
694 panic("bge_jfree: can't find softc pointer!");
695
696 /* calculate the slot this buffer belongs to */
697
698 i = ((caddr_t)buf
699 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
700
701 if ((i < 0) || (i >= BGE_JSLOTS))
702 panic("bge_jfree: asked to free buffer that we don't manage!");
703
704 s = splvm();
705 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
706 if (entry == NULL)
707 panic("bge_jfree: buffer not in use!");
708 entry->slot = i;
709 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
710 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
711
712 if (__predict_true(m != NULL))
713 pool_cache_put(&mbpool_cache, m);
714 splx(s);
715 }
716
717
718 /*
719 * Intialize a standard receive ring descriptor.
720 */
721 int
722 bge_newbuf_std(sc, i, m, dmamap)
723 struct bge_softc *sc;
724 int i;
725 struct mbuf *m;
726 bus_dmamap_t dmamap;
727 {
728 struct mbuf *m_new = NULL;
729 struct bge_rx_bd *r;
730 int error;
731
732 if (dmamap == NULL) {
733 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
734 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
735 if (error != 0)
736 return error;
737 }
738
739 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
740
741 if (m == NULL) {
742 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
743 if (m_new == NULL) {
744 return(ENOBUFS);
745 }
746
747 MCLGET(m_new, M_DONTWAIT);
748 if (!(m_new->m_flags & M_EXT)) {
749 m_freem(m_new);
750 return(ENOBUFS);
751 }
752 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
753 if (!sc->bge_rx_alignment_bug)
754 m_adj(m_new, ETHER_ALIGN);
755
756 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
757 BUS_DMA_READ|BUS_DMA_NOWAIT))
758 return(ENOBUFS);
759 } else {
760 m_new = m;
761 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
762 m_new->m_data = m_new->m_ext.ext_buf;
763 if (!sc->bge_rx_alignment_bug)
764 m_adj(m_new, ETHER_ALIGN);
765 }
766
767 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
768 r = &sc->bge_rdata->bge_rx_std_ring[i];
769 bge_set_hostaddr(&r->bge_addr,
770 dmamap->dm_segs[0].ds_addr);
771 r->bge_flags = BGE_RXBDFLAG_END;
772 r->bge_len = m_new->m_len;
773 r->bge_idx = i;
774
775 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
776 offsetof(struct bge_ring_data, bge_rx_std_ring) +
777 i * sizeof (struct bge_rx_bd),
778 sizeof (struct bge_rx_bd),
779 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
780
781 return(0);
782 }
783
784 /*
785 * Initialize a jumbo receive ring descriptor. This allocates
786 * a jumbo buffer from the pool managed internally by the driver.
787 */
788 int
789 bge_newbuf_jumbo(sc, i, m)
790 struct bge_softc *sc;
791 int i;
792 struct mbuf *m;
793 {
794 struct mbuf *m_new = NULL;
795 struct bge_rx_bd *r;
796
797 if (m == NULL) {
798 caddr_t *buf = NULL;
799
800 /* Allocate the mbuf. */
801 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
802 if (m_new == NULL) {
803 return(ENOBUFS);
804 }
805
806 /* Allocate the jumbo buffer */
807 buf = bge_jalloc(sc);
808 if (buf == NULL) {
809 m_freem(m_new);
810 printf("%s: jumbo allocation failed "
811 "-- packet dropped!\n", sc->bge_dev.dv_xname);
812 return(ENOBUFS);
813 }
814
815 /* Attach the buffer to the mbuf. */
816 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
817 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
818 bge_jfree, sc);
819 } else {
820 m_new = m;
821 m_new->m_data = m_new->m_ext.ext_buf;
822 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
823 }
824
825 if (!sc->bge_rx_alignment_bug)
826 m_adj(m_new, ETHER_ALIGN);
827 /* Set up the descriptor. */
828 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
829 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
830 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
831 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
832 r->bge_len = m_new->m_len;
833 r->bge_idx = i;
834
835 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
836 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
837 i * sizeof (struct bge_rx_bd),
838 sizeof (struct bge_rx_bd),
839 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
840
841 return(0);
842 }
843
844 /*
845 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
846 * that's 1MB or memory, which is a lot. For now, we fill only the first
847 * 256 ring entries and hope that our CPU is fast enough to keep up with
848 * the NIC.
849 */
850 int
851 bge_init_rx_ring_std(sc)
852 struct bge_softc *sc;
853 {
854 int i;
855
856 if (sc->bge_flags & BGE_RXRING_VALID)
857 return 0;
858
859 for (i = 0; i < BGE_SSLOTS; i++) {
860 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
861 return(ENOBUFS);
862 }
863
864 sc->bge_std = i - 1;
865 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
866
867 sc->bge_flags |= BGE_RXRING_VALID;
868
869 return(0);
870 }
871
872 void
873 bge_free_rx_ring_std(sc)
874 struct bge_softc *sc;
875 {
876 int i;
877
878 if (!(sc->bge_flags & BGE_RXRING_VALID))
879 return;
880
881 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
882 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
883 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
884 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
885 bus_dmamap_destroy(sc->bge_dmatag,
886 sc->bge_cdata.bge_rx_std_map[i]);
887 }
888 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
889 sizeof(struct bge_rx_bd));
890 }
891
892 sc->bge_flags &= ~BGE_RXRING_VALID;
893 }
894
895 int
896 bge_init_rx_ring_jumbo(sc)
897 struct bge_softc *sc;
898 {
899 int i;
900 volatile struct bge_rcb *rcb;
901
902 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
903 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
904 return(ENOBUFS);
905 };
906
907 sc->bge_jumbo = i - 1;
908
909 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
910 rcb->bge_maxlen_flags = 0;
911 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
912
913 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
914
915 return(0);
916 }
917
918 void
919 bge_free_rx_ring_jumbo(sc)
920 struct bge_softc *sc;
921 {
922 int i;
923
924 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
925 return;
926
927 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
928 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
929 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
930 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
931 }
932 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
933 sizeof(struct bge_rx_bd));
934 }
935
936 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
937 }
938
939 void
940 bge_free_tx_ring(sc)
941 struct bge_softc *sc;
942 {
943 int i, freed;
944 struct txdmamap_pool_entry *dma;
945
946 if (!(sc->bge_flags & BGE_TXRING_VALID))
947 return;
948
949 freed = 0;
950
951 for (i = 0; i < BGE_TX_RING_CNT; i++) {
952 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
953 freed++;
954 m_freem(sc->bge_cdata.bge_tx_chain[i]);
955 sc->bge_cdata.bge_tx_chain[i] = NULL;
956 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
957 link);
958 sc->txdma[i] = 0;
959 }
960 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
961 sizeof(struct bge_tx_bd));
962 }
963
964 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
965 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
966 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
967 free(dma, M_DEVBUF);
968 }
969
970 sc->bge_flags &= ~BGE_TXRING_VALID;
971 }
972
973 int
974 bge_init_tx_ring(sc)
975 struct bge_softc *sc;
976 {
977 int i;
978 bus_dmamap_t dmamap;
979 struct txdmamap_pool_entry *dma;
980
981 if (sc->bge_flags & BGE_TXRING_VALID)
982 return 0;
983
984 sc->bge_txcnt = 0;
985 sc->bge_tx_saved_considx = 0;
986 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
987 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
988 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
989
990 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
991 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
992 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
993
994 SLIST_INIT(&sc->txdma_list);
995 for (i = 0; i < BGE_RSLOTS; i++) {
996 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
997 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
998 &dmamap))
999 return(ENOBUFS);
1000 if (dmamap == NULL)
1001 panic("dmamap NULL in bge_init_tx_ring");
1002 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1003 if (dma == NULL) {
1004 printf("%s: can't alloc txdmamap_pool_entry\n",
1005 sc->bge_dev.dv_xname);
1006 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1007 return (ENOMEM);
1008 }
1009 dma->dmamap = dmamap;
1010 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1011 }
1012
1013 sc->bge_flags |= BGE_TXRING_VALID;
1014
1015 return(0);
1016 }
1017
1018 void
1019 bge_setmulti(sc)
1020 struct bge_softc *sc;
1021 {
1022 struct ethercom *ac = &sc->ethercom;
1023 struct ifnet *ifp = &ac->ec_if;
1024 struct ether_multi *enm;
1025 struct ether_multistep step;
1026 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1027 u_int32_t h;
1028 int i;
1029
1030 if (ifp->if_flags & IFF_PROMISC)
1031 goto allmulti;
1032
1033 /* Now program new ones. */
1034 ETHER_FIRST_MULTI(step, ac, enm);
1035 while (enm != NULL) {
1036 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1037 /*
1038 * We must listen to a range of multicast addresses.
1039 * For now, just accept all multicasts, rather than
1040 * trying to set only those filter bits needed to match
1041 * the range. (At this time, the only use of address
1042 * ranges is for IP multicast routing, for which the
1043 * range is big enough to require all bits set.)
1044 */
1045 goto allmulti;
1046 }
1047
1048 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1049
1050 /* Just want the 7 least-significant bits. */
1051 h &= 0x7f;
1052
1053 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1054 ETHER_NEXT_MULTI(step, enm);
1055 }
1056
1057 ifp->if_flags &= ~IFF_ALLMULTI;
1058 goto setit;
1059
1060 allmulti:
1061 ifp->if_flags |= IFF_ALLMULTI;
1062 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1063
1064 setit:
1065 for (i = 0; i < 4; i++)
1066 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1067 }
1068
1069 const int bge_swapbits[] = {
1070 0,
1071 BGE_MODECTL_BYTESWAP_DATA,
1072 BGE_MODECTL_WORDSWAP_DATA,
1073 BGE_MODECTL_BYTESWAP_NONFRAME,
1074 BGE_MODECTL_WORDSWAP_NONFRAME,
1075
1076 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1077 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1078 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1079
1080 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1081 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1082
1083 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1084
1085 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1086 BGE_MODECTL_BYTESWAP_NONFRAME,
1087 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1088 BGE_MODECTL_WORDSWAP_NONFRAME,
1089 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1090 BGE_MODECTL_WORDSWAP_NONFRAME,
1091 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1092 BGE_MODECTL_WORDSWAP_NONFRAME,
1093
1094 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1095 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1096 };
1097
1098 int bge_swapindex = 0;
1099
1100 /*
1101 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1102 * self-test results.
1103 */
1104 int
1105 bge_chipinit(sc)
1106 struct bge_softc *sc;
1107 {
1108 u_int32_t cachesize;
1109 int i;
1110 u_int32_t dma_rw_ctl;
1111 struct pci_attach_args *pa = &(sc->bge_pa);
1112
1113
1114 /* Set endianness before we access any non-PCI registers. */
1115 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1116 BGE_INIT);
1117
1118 /* Set power state to D0. */
1119 bge_setpowerstate(sc, 0);
1120
1121 /*
1122 * Check the 'ROM failed' bit on the RX CPU to see if
1123 * self-tests passed.
1124 */
1125 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1126 printf("%s: RX CPU self-diagnostics failed!\n",
1127 sc->bge_dev.dv_xname);
1128 return(ENODEV);
1129 }
1130
1131 /* Clear the MAC control register */
1132 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1133
1134 /*
1135 * Clear the MAC statistics block in the NIC's
1136 * internal memory.
1137 */
1138 for (i = BGE_STATS_BLOCK;
1139 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1140 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1141
1142 for (i = BGE_STATUS_BLOCK;
1143 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1144 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1145
1146 /* Set up the PCI DMA control register. */
1147 if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1148 BGE_PCISTATE_PCI_BUSMODE) {
1149 /* Conventional PCI bus */
1150 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1151 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1152 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1153 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1154 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1155 dma_rw_ctl |= 0x0F;
1156 }
1157 } else {
1158 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1159 /* PCI-X bus */
1160 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1161 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1162 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1163 (0x0F);
1164 /*
1165 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1166 * for hardware bugs, which means we should also clear
1167 * the low-order MINDMA bits. In addition, the 5704
1168 * uses a different encoding of read/write watermarks.
1169 */
1170 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 ||
1171 sc->bge_chipid == BGE_CHIPID_BCM5704_A1 ||
1172 sc->bge_chipid == BGE_CHIPID_BCM5704_A2 ||
1173 sc->bge_chipid == BGE_CHIPID_BCM5704_A3) {
1174 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1175 /* should be 0x1f0000 */
1176 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1177 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1178 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1179 }
1180 else if ((sc->bge_chipid >> 28) ==
1181 (BGE_CHIPID_BCM5703_A0 >> 28)) {
1182 dma_rw_ctl &= 0xfffffff0;
1183 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1184 }
1185 }
1186
1187 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1188
1189 /*
1190 * Set up general mode register.
1191 */
1192 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1193 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1194 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1195 BGE_MODECTL_RX_NO_PHDR_CSUM);
1196
1197 /* Get cache line size. */
1198 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1199
1200 /*
1201 * Avoid violating PCI spec on certain chip revs.
1202 */
1203 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1204 PCIM_CMD_MWIEN) {
1205 switch(cachesize) {
1206 case 1:
1207 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1208 BGE_PCI_WRITE_BNDRY_16BYTES);
1209 break;
1210 case 2:
1211 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1212 BGE_PCI_WRITE_BNDRY_32BYTES);
1213 break;
1214 case 4:
1215 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1216 BGE_PCI_WRITE_BNDRY_64BYTES);
1217 break;
1218 case 8:
1219 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1220 BGE_PCI_WRITE_BNDRY_128BYTES);
1221 break;
1222 case 16:
1223 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1224 BGE_PCI_WRITE_BNDRY_256BYTES);
1225 break;
1226 case 32:
1227 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1228 BGE_PCI_WRITE_BNDRY_512BYTES);
1229 break;
1230 case 64:
1231 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1232 BGE_PCI_WRITE_BNDRY_1024BYTES);
1233 break;
1234 default:
1235 /* Disable PCI memory write and invalidate. */
1236 #if 0
1237 if (bootverbose)
1238 printf("%s: cache line size %d not "
1239 "supported; disabling PCI MWI\n",
1240 sc->bge_dev.dv_xname, cachesize);
1241 #endif
1242 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1243 PCIM_CMD_MWIEN);
1244 break;
1245 }
1246 }
1247
1248 /*
1249 * Disable memory write invalidate. Apparently it is not supported
1250 * properly by these devices.
1251 */
1252 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1253
1254
1255 #ifdef __brokenalpha__
1256 /*
1257 * Must insure that we do not cross an 8K (bytes) boundary
1258 * for DMA reads. Our highest limit is 1K bytes. This is a
1259 * restriction on some ALPHA platforms with early revision
1260 * 21174 PCI chipsets, such as the AlphaPC 164lx
1261 */
1262 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1263 #endif
1264
1265 /* Set the timer prescaler (always 66MHz) */
1266 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1267
1268 return(0);
1269 }
1270
1271 int
1272 bge_blockinit(sc)
1273 struct bge_softc *sc;
1274 {
1275 volatile struct bge_rcb *rcb;
1276 bus_size_t rcb_addr;
1277 int i;
1278 struct ifnet *ifp = &sc->ethercom.ec_if;
1279 bge_hostaddr taddr;
1280
1281 /*
1282 * Initialize the memory window pointer register so that
1283 * we can access the first 32K of internal NIC RAM. This will
1284 * allow us to set up the TX send ring RCBs and the RX return
1285 * ring RCBs, plus other things which live in NIC memory.
1286 */
1287
1288 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1289 BGE_PCI_MEMWIN_BASEADDR, 0);
1290
1291 /* Configure mbuf memory pool */
1292 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1293 if (sc->bge_extram) {
1294 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1295 BGE_EXT_SSRAM);
1296 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1297 } else {
1298 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1299 BGE_BUFFPOOL_1);
1300 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1301 }
1302
1303 /* Configure DMA resource pool */
1304 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1305 BGE_DMA_DESCRIPTORS);
1306 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1307 }
1308
1309 /* Configure mbuf pool watermarks */
1310 #ifdef ORIG_WPAUL_VALUES
1311 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1312 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1313 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1314 #else
1315 /* new broadcom docs strongly recommend these: */
1316 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1317 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1318 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1319 } else {
1320 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1321 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1322 }
1323 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1324 #endif
1325
1326 /* Configure DMA resource watermarks */
1327 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1328 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1329
1330 /* Enable buffer manager */
1331 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1332 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1333 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1334
1335 /* Poll for buffer manager start indication */
1336 for (i = 0; i < BGE_TIMEOUT; i++) {
1337 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1338 break;
1339 DELAY(10);
1340 }
1341
1342 if (i == BGE_TIMEOUT) {
1343 printf("%s: buffer manager failed to start\n",
1344 sc->bge_dev.dv_xname);
1345 return(ENXIO);
1346 }
1347 }
1348
1349 /* Enable flow-through queues */
1350 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1351 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1352
1353 /* Wait until queue initialization is complete */
1354 for (i = 0; i < BGE_TIMEOUT; i++) {
1355 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1356 break;
1357 DELAY(10);
1358 }
1359
1360 if (i == BGE_TIMEOUT) {
1361 printf("%s: flow-through queue init failed\n",
1362 sc->bge_dev.dv_xname);
1363 return(ENXIO);
1364 }
1365
1366 /* Initialize the standard RX ring control block */
1367 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1368 bge_set_hostaddr(&rcb->bge_hostaddr,
1369 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1370 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1371 rcb->bge_maxlen_flags =
1372 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1373 } else {
1374 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1375 }
1376 if (sc->bge_extram)
1377 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1378 else
1379 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1380 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1381 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1382 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1383 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1384
1385 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1386 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1387 } else {
1388 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1389 }
1390
1391 /*
1392 * Initialize the jumbo RX ring control block
1393 * We set the 'ring disabled' bit in the flags
1394 * field until we're actually ready to start
1395 * using this ring (i.e. once we set the MTU
1396 * high enough to require it).
1397 */
1398 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1399 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1400 bge_set_hostaddr(&rcb->bge_hostaddr,
1401 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1402 rcb->bge_maxlen_flags =
1403 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1404 BGE_RCB_FLAG_RING_DISABLED);
1405 if (sc->bge_extram)
1406 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1407 else
1408 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1409
1410 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1411 rcb->bge_hostaddr.bge_addr_hi);
1412 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1413 rcb->bge_hostaddr.bge_addr_lo);
1414 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1415 rcb->bge_maxlen_flags);
1416 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1417
1418 /* Set up dummy disabled mini ring RCB */
1419 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1420 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1421 BGE_RCB_FLAG_RING_DISABLED);
1422 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1423 rcb->bge_maxlen_flags);
1424
1425 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1426 offsetof(struct bge_ring_data, bge_info),
1427 sizeof (struct bge_gib),
1428 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1429 }
1430
1431 /*
1432 * Set the BD ring replentish thresholds. The recommended
1433 * values are 1/8th the number of descriptors allocated to
1434 * each ring.
1435 */
1436 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1437 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1438
1439 /*
1440 * Disable all unused send rings by setting the 'ring disabled'
1441 * bit in the flags field of all the TX send ring control blocks.
1442 * These are located in NIC memory.
1443 */
1444 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1445 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1446 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1447 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1448 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1449 rcb_addr += sizeof(struct bge_rcb);
1450 }
1451
1452 /* Configure TX RCB 0 (we use only the first ring) */
1453 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1454 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1455 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1456 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1457 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1458 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1459 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1460 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1461 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1462 }
1463
1464 /* Disable all unused RX return rings */
1465 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1466 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1467 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1468 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1469 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1470 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1471 BGE_RCB_FLAG_RING_DISABLED));
1472 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1473 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1474 (i * (sizeof(u_int64_t))), 0);
1475 rcb_addr += sizeof(struct bge_rcb);
1476 }
1477
1478 /* Initialize RX ring indexes */
1479 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1480 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1481 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1482
1483 /*
1484 * Set up RX return ring 0
1485 * Note that the NIC address for RX return rings is 0x00000000.
1486 * The return rings live entirely within the host, so the
1487 * nicaddr field in the RCB isn't used.
1488 */
1489 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1490 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1491 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1492 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1493 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1494 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1495 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1496
1497 /* Set random backoff seed for TX */
1498 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1499 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1500 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1501 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1502 BGE_TX_BACKOFF_SEED_MASK);
1503
1504 /* Set inter-packet gap */
1505 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1506
1507 /*
1508 * Specify which ring to use for packets that don't match
1509 * any RX rules.
1510 */
1511 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1512
1513 /*
1514 * Configure number of RX lists. One interrupt distribution
1515 * list, sixteen active lists, one bad frames class.
1516 */
1517 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1518
1519 /* Inialize RX list placement stats mask. */
1520 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1521 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1522
1523 /* Disable host coalescing until we get it set up */
1524 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1525
1526 /* Poll to make sure it's shut down. */
1527 for (i = 0; i < BGE_TIMEOUT; i++) {
1528 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1529 break;
1530 DELAY(10);
1531 }
1532
1533 if (i == BGE_TIMEOUT) {
1534 printf("%s: host coalescing engine failed to idle\n",
1535 sc->bge_dev.dv_xname);
1536 return(ENXIO);
1537 }
1538
1539 /* Set up host coalescing defaults */
1540 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1541 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1542 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1543 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1544 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1545 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1546 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1547 }
1548 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1549 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1550
1551 /* Set up address of statistics block */
1552 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1553 bge_set_hostaddr(&taddr,
1554 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1555 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1556 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1557 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1558 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1559 }
1560
1561 /* Set up address of status block */
1562 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1563 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1564 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1565 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1566 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1567 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1568
1569 /* Turn on host coalescing state machine */
1570 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1571
1572 /* Turn on RX BD completion state machine and enable attentions */
1573 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1574 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1575
1576 /* Turn on RX list placement state machine */
1577 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1578
1579 /* Turn on RX list selector state machine. */
1580 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1581 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1582 }
1583
1584 /* Turn on DMA, clear stats */
1585 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1586 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1587 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1588 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1589 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1590
1591 /* Set misc. local control, enable interrupts on attentions */
1592 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1593
1594 #ifdef notdef
1595 /* Assert GPIO pins for PHY reset */
1596 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1597 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1598 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1599 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1600 #endif
1601
1602 #if defined(not_quite_yet)
1603 /* Linux driver enables enable gpio pin #1 on 5700s */
1604 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1605 sc->bge_local_ctrl_reg |=
1606 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1607 }
1608 #endif
1609 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1610
1611 /* Turn on DMA completion state machine */
1612 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1613 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1614 }
1615
1616 /* Turn on write DMA state machine */
1617 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1618 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1619
1620 /* Turn on read DMA state machine */
1621 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1622 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1623
1624 /* Turn on RX data completion state machine */
1625 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1626
1627 /* Turn on RX BD initiator state machine */
1628 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1629
1630 /* Turn on RX data and RX BD initiator state machine */
1631 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1632
1633 /* Turn on Mbuf cluster free state machine */
1634 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1635 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1636 }
1637
1638 /* Turn on send BD completion state machine */
1639 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1640
1641 /* Turn on send data completion state machine */
1642 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1643
1644 /* Turn on send data initiator state machine */
1645 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1646
1647 /* Turn on send BD initiator state machine */
1648 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1649
1650 /* Turn on send BD selector state machine */
1651 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1652
1653 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1654 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1655 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1656
1657 /* ack/clear link change events */
1658 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1659 BGE_MACSTAT_CFG_CHANGED);
1660 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1661
1662 /* Enable PHY auto polling (for MII/GMII only) */
1663 if (sc->bge_tbi) {
1664 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1665 } else {
1666 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1667 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1668 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1669 BGE_EVTENB_MI_INTERRUPT);
1670 }
1671
1672 /* Enable link state change attentions. */
1673 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1674
1675 return(0);
1676 }
1677
1678 static const struct bge_revision {
1679 uint32_t br_chipid;
1680 uint32_t br_quirks;
1681 const char *br_name;
1682 } bge_revisions[] = {
1683 { BGE_CHIPID_BCM5700_A0,
1684 BGE_QUIRK_LINK_STATE_BROKEN,
1685 "BCM5700 A0" },
1686
1687 { BGE_CHIPID_BCM5700_A1,
1688 BGE_QUIRK_LINK_STATE_BROKEN,
1689 "BCM5700 A1" },
1690
1691 { BGE_CHIPID_BCM5700_B0,
1692 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1693 "BCM5700 B0" },
1694
1695 { BGE_CHIPID_BCM5700_B1,
1696 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1697 "BCM5700 B1" },
1698
1699 { BGE_CHIPID_BCM5700_B2,
1700 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1701 "BCM5700 B2" },
1702
1703 /* This is treated like a BCM5700 Bx */
1704 { BGE_CHIPID_BCM5700_ALTIMA,
1705 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1706 "BCM5700 Altima" },
1707
1708 { BGE_CHIPID_BCM5700_C0,
1709 0,
1710 "BCM5700 C0" },
1711
1712 { BGE_CHIPID_BCM5701_A0,
1713 0, /*XXX really, just not known */
1714 "BCM5701 A0" },
1715
1716 { BGE_CHIPID_BCM5701_B0,
1717 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1718 "BCM5701 B0" },
1719
1720 { BGE_CHIPID_BCM5701_B2,
1721 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1722 "BCM5701 B2" },
1723
1724 { BGE_CHIPID_BCM5701_B5,
1725 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1726 "BCM5701 B5" },
1727
1728 { BGE_CHIPID_BCM5703_A0,
1729 0,
1730 "BCM5703 A0" },
1731
1732 { BGE_CHIPID_BCM5703_A1,
1733 0,
1734 "BCM5703 A1" },
1735
1736 { BGE_CHIPID_BCM5703_A2,
1737 BGE_QUIRK_ONLY_PHY_1,
1738 "BCM5703 A2" },
1739
1740 { BGE_CHIPID_BCM5704_A0,
1741 BGE_QUIRK_ONLY_PHY_1,
1742 "BCM5704 A0" },
1743
1744 { BGE_CHIPID_BCM5704_A1,
1745 BGE_QUIRK_ONLY_PHY_1,
1746 "BCM5704 A1" },
1747
1748 { BGE_CHIPID_BCM5704_A2,
1749 BGE_QUIRK_ONLY_PHY_1,
1750 "BCM5704 A2" },
1751
1752 { BGE_CHIPID_BCM5704_A3,
1753 BGE_QUIRK_ONLY_PHY_1,
1754 "BCM5704 A3" },
1755
1756 { BGE_CHIPID_BCM5705_A0,
1757 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1758 "BCM5705 A0" },
1759
1760 { BGE_CHIPID_BCM5705_A1,
1761 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1762 "BCM5705 A1" },
1763
1764 { BGE_CHIPID_BCM5705_A2,
1765 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1766 "BCM5705 A2" },
1767
1768 { BGE_CHIPID_BCM5705_A3,
1769 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1770 "BCM5705 A3" },
1771
1772 { 0, 0, NULL }
1773 };
1774
1775 /*
1776 * Some defaults for major revisions, so that newer steppings
1777 * that we don't know about have a shot at working.
1778 */
1779 static const struct bge_revision bge_majorrevs[] = {
1780 { BGE_ASICREV_BCM5700,
1781 BGE_QUIRK_LINK_STATE_BROKEN,
1782 "unknown BCM5700" },
1783
1784 { BGE_ASICREV_BCM5701,
1785 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1786 "unknown BCM5701" },
1787
1788 { BGE_ASICREV_BCM5703,
1789 0,
1790 "unknown BCM5703" },
1791
1792 { BGE_ASICREV_BCM5704,
1793 BGE_QUIRK_ONLY_PHY_1,
1794 "unknown BCM5704" },
1795
1796 { BGE_ASICREV_BCM5705,
1797 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1798 "unknown BCM5705" },
1799
1800 { 0,
1801 0,
1802 NULL }
1803 };
1804
1805
1806 static const struct bge_revision *
1807 bge_lookup_rev(uint32_t chipid)
1808 {
1809 const struct bge_revision *br;
1810
1811 for (br = bge_revisions; br->br_name != NULL; br++) {
1812 if (br->br_chipid == chipid)
1813 return (br);
1814 }
1815
1816 for (br = bge_majorrevs; br->br_name != NULL; br++) {
1817 if (br->br_chipid == BGE_ASICREV(chipid))
1818 return (br);
1819 }
1820
1821 return (NULL);
1822 }
1823
1824 static const struct bge_product {
1825 pci_vendor_id_t bp_vendor;
1826 pci_product_id_t bp_product;
1827 const char *bp_name;
1828 } bge_products[] = {
1829 /*
1830 * The BCM5700 documentation seems to indicate that the hardware
1831 * still has the Alteon vendor ID burned into it, though it
1832 * should always be overridden by the value in the EEPROM. We'll
1833 * check for it anyway.
1834 */
1835 { PCI_VENDOR_ALTEON,
1836 PCI_PRODUCT_ALTEON_BCM5700,
1837 "Broadcom BCM5700 Gigabit Ethernet",
1838 },
1839 { PCI_VENDOR_ALTEON,
1840 PCI_PRODUCT_ALTEON_BCM5701,
1841 "Broadcom BCM5701 Gigabit Ethernet",
1842 },
1843
1844 { PCI_VENDOR_ALTIMA,
1845 PCI_PRODUCT_ALTIMA_AC1000,
1846 "Altima AC1000 Gigabit Ethernet",
1847 },
1848 { PCI_VENDOR_ALTIMA,
1849 PCI_PRODUCT_ALTIMA_AC1001,
1850 "Altima AC1001 Gigabit Ethernet",
1851 },
1852 { PCI_VENDOR_ALTIMA,
1853 PCI_PRODUCT_ALTIMA_AC9100,
1854 "Altima AC9100 Gigabit Ethernet",
1855 },
1856
1857 { PCI_VENDOR_BROADCOM,
1858 PCI_PRODUCT_BROADCOM_BCM5700,
1859 "Broadcom BCM5700 Gigabit Ethernet",
1860 },
1861 { PCI_VENDOR_BROADCOM,
1862 PCI_PRODUCT_BROADCOM_BCM5701,
1863 "Broadcom BCM5701 Gigabit Ethernet",
1864 },
1865 { PCI_VENDOR_BROADCOM,
1866 PCI_PRODUCT_BROADCOM_BCM5702,
1867 "Broadcom BCM5702 Gigabit Ethernet",
1868 },
1869 { PCI_VENDOR_BROADCOM,
1870 PCI_PRODUCT_BROADCOM_BCM5702X,
1871 "Broadcom BCM5702X Gigabit Ethernet" },
1872
1873 { PCI_VENDOR_BROADCOM,
1874 PCI_PRODUCT_BROADCOM_BCM5703,
1875 "Broadcom BCM5703 Gigabit Ethernet",
1876 },
1877 { PCI_VENDOR_BROADCOM,
1878 PCI_PRODUCT_BROADCOM_BCM5703X,
1879 "Broadcom BCM5703X Gigabit Ethernet",
1880 },
1881
1882 { PCI_VENDOR_BROADCOM,
1883 PCI_PRODUCT_BROADCOM_BCM5704C,
1884 "Broadcom BCM5704C Dual Gigabit Ethernet",
1885 },
1886 { PCI_VENDOR_BROADCOM,
1887 PCI_PRODUCT_BROADCOM_BCM5704S,
1888 "Broadcom BCM5704S Dual Gigabit Ethernet",
1889 },
1890
1891 { PCI_VENDOR_BROADCOM,
1892 PCI_PRODUCT_BROADCOM_BCM5705,
1893 "Broadcom BCM5705 Gigabit Ethernet",
1894 },
1895 { PCI_VENDOR_BROADCOM,
1896 PCI_PRODUCT_BROADCOM_BCM5705_ALT,
1897 "Broadcom BCM5705 Gigabit Ethernet",
1898 },
1899 { PCI_VENDOR_BROADCOM,
1900 PCI_PRODUCT_BROADCOM_BCM5705M,
1901 "Broadcom BCM5705M Gigabit Ethernet",
1902 },
1903
1904 { PCI_VENDOR_BROADCOM,
1905 PCI_PRODUCT_BROADCOM_BCM5901,
1906 "Broadcom BCM5901 Fast Ethernet",
1907 },
1908 { PCI_VENDOR_BROADCOM,
1909 PCI_PRODUCT_BROADCOM_BCM5901A2,
1910 "Broadcom BCM5901A2 Fast Ethernet",
1911 },
1912
1913 { PCI_VENDOR_BROADCOM,
1914 PCI_PRODUCT_BROADCOM_BCM5782,
1915 "Broadcom BCM5782 Gigabit Ethernet",
1916 },
1917
1918 { PCI_VENDOR_SCHNEIDERKOCH,
1919 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1920 "SysKonnect SK-9Dx1 Gigabit Ethernet",
1921 },
1922
1923 { PCI_VENDOR_3COM,
1924 PCI_PRODUCT_3COM_3C996,
1925 "3Com 3c996 Gigabit Ethernet",
1926 },
1927
1928 { 0,
1929 0,
1930 NULL },
1931 };
1932
1933 static const struct bge_product *
1934 bge_lookup(const struct pci_attach_args *pa)
1935 {
1936 const struct bge_product *bp;
1937
1938 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1939 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1940 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1941 return (bp);
1942 }
1943
1944 return (NULL);
1945 }
1946
1947 int
1948 bge_setpowerstate(sc, powerlevel)
1949 struct bge_softc *sc;
1950 int powerlevel;
1951 {
1952 #ifdef NOTYET
1953 u_int32_t pm_ctl = 0;
1954
1955 /* XXX FIXME: make sure indirect accesses enabled? */
1956 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1957 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1958 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1959
1960 /* clear the PME_assert bit and power state bits, enable PME */
1961 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1962 pm_ctl &= ~PCIM_PSTAT_DMASK;
1963 pm_ctl |= (1 << 8);
1964
1965 if (powerlevel == 0) {
1966 pm_ctl |= PCIM_PSTAT_D0;
1967 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1968 pm_ctl, 2);
1969 DELAY(10000);
1970 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1971 DELAY(10000);
1972
1973 #ifdef NOTYET
1974 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1975 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1976 #endif
1977 DELAY(40); DELAY(40); DELAY(40);
1978 DELAY(10000); /* above not quite adequate on 5700 */
1979 return 0;
1980 }
1981
1982
1983 /*
1984 * Entering ACPI power states D1-D3 is achieved by wiggling
1985 * GMII gpio pins. Example code assumes all hardware vendors
1986 * followed Broadom's sample pcb layout. Until we verify that
1987 * for all supported OEM cards, states D1-D3 are unsupported.
1988 */
1989 printf("%s: power state %d unimplemented; check GPIO pins\n",
1990 sc->bge_dev.dv_xname, powerlevel);
1991 #endif
1992 return EOPNOTSUPP;
1993 }
1994
1995
1996 /*
1997 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1998 * against our list and return its name if we find a match. Note
1999 * that since the Broadcom controller contains VPD support, we
2000 * can get the device name string from the controller itself instead
2001 * of the compiled-in string. This is a little slow, but it guarantees
2002 * we'll always announce the right product name.
2003 */
2004 int
2005 bge_probe(parent, match, aux)
2006 struct device *parent;
2007 struct cfdata *match;
2008 void *aux;
2009 {
2010 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2011
2012 if (bge_lookup(pa) != NULL)
2013 return (1);
2014
2015 return (0);
2016 }
2017
2018 void
2019 bge_attach(parent, self, aux)
2020 struct device *parent, *self;
2021 void *aux;
2022 {
2023 struct bge_softc *sc = (struct bge_softc *)self;
2024 struct pci_attach_args *pa = aux;
2025 const struct bge_product *bp;
2026 const struct bge_revision *br;
2027 pci_chipset_tag_t pc = pa->pa_pc;
2028 pci_intr_handle_t ih;
2029 const char *intrstr = NULL;
2030 bus_dma_segment_t seg;
2031 int rseg;
2032 u_int32_t hwcfg = 0;
2033 u_int32_t mac_addr = 0;
2034 u_int32_t command;
2035 struct ifnet *ifp;
2036 caddr_t kva;
2037 u_char eaddr[ETHER_ADDR_LEN];
2038 pcireg_t memtype;
2039 bus_addr_t memaddr;
2040 bus_size_t memsize;
2041 u_int32_t pm_ctl;
2042
2043 bp = bge_lookup(pa);
2044 KASSERT(bp != NULL);
2045
2046 sc->bge_pa = *pa;
2047
2048 aprint_naive(": Ethernet controller\n");
2049 aprint_normal(": %s\n", bp->bp_name);
2050
2051 /*
2052 * Map control/status registers.
2053 */
2054 DPRINTFN(5, ("Map control/status regs\n"));
2055 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2056 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2057 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2058 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2059
2060 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2061 aprint_error("%s: failed to enable memory mapping!\n",
2062 sc->bge_dev.dv_xname);
2063 return;
2064 }
2065
2066 DPRINTFN(5, ("pci_mem_find\n"));
2067 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2068 switch (memtype) {
2069 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2070 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2071 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2072 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2073 &memaddr, &memsize) == 0)
2074 break;
2075 default:
2076 aprint_error("%s: can't find mem space\n",
2077 sc->bge_dev.dv_xname);
2078 return;
2079 }
2080
2081 DPRINTFN(5, ("pci_intr_map\n"));
2082 if (pci_intr_map(pa, &ih)) {
2083 aprint_error("%s: couldn't map interrupt\n",
2084 sc->bge_dev.dv_xname);
2085 return;
2086 }
2087
2088 DPRINTFN(5, ("pci_intr_string\n"));
2089 intrstr = pci_intr_string(pc, ih);
2090
2091 DPRINTFN(5, ("pci_intr_establish\n"));
2092 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2093
2094 if (sc->bge_intrhand == NULL) {
2095 aprint_error("%s: couldn't establish interrupt",
2096 sc->bge_dev.dv_xname);
2097 if (intrstr != NULL)
2098 aprint_normal(" at %s", intrstr);
2099 aprint_normal("\n");
2100 return;
2101 }
2102 aprint_normal("%s: interrupting at %s\n",
2103 sc->bge_dev.dv_xname, intrstr);
2104
2105 /*
2106 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2107 * can clobber the chip's PCI config-space power control registers,
2108 * leaving the card in D3 powersave state.
2109 * We do not have memory-mapped registers in this state,
2110 * so force device into D0 state before starting initialization.
2111 */
2112 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2113 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2114 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2115 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2116 DELAY(1000); /* 27 usec is allegedly sufficent */
2117
2118 /* Try to reset the chip. */
2119 DPRINTFN(5, ("bge_reset\n"));
2120 bge_reset(sc);
2121
2122 if (bge_chipinit(sc)) {
2123 aprint_error("%s: chip initialization failed\n",
2124 sc->bge_dev.dv_xname);
2125 bge_release_resources(sc);
2126 return;
2127 }
2128
2129 /*
2130 * Get station address from the EEPROM.
2131 */
2132 mac_addr = bge_readmem_ind(sc, 0x0c14);
2133 if ((mac_addr >> 16) == 0x484b) {
2134 eaddr[0] = (u_char)(mac_addr >> 8);
2135 eaddr[1] = (u_char)(mac_addr >> 0);
2136 mac_addr = bge_readmem_ind(sc, 0x0c18);
2137 eaddr[2] = (u_char)(mac_addr >> 24);
2138 eaddr[3] = (u_char)(mac_addr >> 16);
2139 eaddr[4] = (u_char)(mac_addr >> 8);
2140 eaddr[5] = (u_char)(mac_addr >> 0);
2141 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2142 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2143 aprint_error("%s: failed to read station address\n",
2144 sc->bge_dev.dv_xname);
2145 bge_release_resources(sc);
2146 return;
2147 }
2148
2149 /*
2150 * Save ASIC rev. Look up any quirks associated with this
2151 * ASIC.
2152 */
2153 sc->bge_chipid =
2154 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2155 BGE_PCIMISCCTL_ASICREV;
2156 br = bge_lookup_rev(sc->bge_chipid);
2157
2158 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2159
2160 if (br == NULL) {
2161 aprint_normal("unknown ASIC 0x%08x", sc->bge_chipid);
2162 sc->bge_quirks = 0;
2163 } else {
2164 aprint_normal("ASIC %s", br->br_name);
2165 sc->bge_quirks |= br->br_quirks;
2166 }
2167 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2168
2169 /* Allocate the general information block and ring buffers. */
2170 if (pci_dma64_available(pa))
2171 sc->bge_dmatag = pa->pa_dmat64;
2172 else
2173 sc->bge_dmatag = pa->pa_dmat;
2174 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2175 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2176 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2177 aprint_error("%s: can't alloc rx buffers\n",
2178 sc->bge_dev.dv_xname);
2179 return;
2180 }
2181 DPRINTFN(5, ("bus_dmamem_map\n"));
2182 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2183 sizeof(struct bge_ring_data), &kva,
2184 BUS_DMA_NOWAIT)) {
2185 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2186 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2187 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2188 return;
2189 }
2190 DPRINTFN(5, ("bus_dmamem_create\n"));
2191 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2192 sizeof(struct bge_ring_data), 0,
2193 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2194 aprint_error("%s: can't create DMA map\n",
2195 sc->bge_dev.dv_xname);
2196 bus_dmamem_unmap(sc->bge_dmatag, kva,
2197 sizeof(struct bge_ring_data));
2198 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2199 return;
2200 }
2201 DPRINTFN(5, ("bus_dmamem_load\n"));
2202 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2203 sizeof(struct bge_ring_data), NULL,
2204 BUS_DMA_NOWAIT)) {
2205 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2206 bus_dmamem_unmap(sc->bge_dmatag, kva,
2207 sizeof(struct bge_ring_data));
2208 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2209 return;
2210 }
2211
2212 DPRINTFN(5, ("bzero\n"));
2213 sc->bge_rdata = (struct bge_ring_data *)kva;
2214
2215 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2216
2217 /* Try to allocate memory for jumbo buffers. */
2218 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2219 if (bge_alloc_jumbo_mem(sc)) {
2220 aprint_error("%s: jumbo buffer allocation failed\n",
2221 sc->bge_dev.dv_xname);
2222 } else
2223 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2224 }
2225
2226 /* Set default tuneable values. */
2227 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2228 sc->bge_rx_coal_ticks = 150;
2229 sc->bge_rx_max_coal_bds = 64;
2230 #ifdef ORIG_WPAUL_VALUES
2231 sc->bge_tx_coal_ticks = 150;
2232 sc->bge_tx_max_coal_bds = 128;
2233 #else
2234 sc->bge_tx_coal_ticks = 300;
2235 sc->bge_tx_max_coal_bds = 400;
2236 #endif
2237
2238 /* Set up ifnet structure */
2239 ifp = &sc->ethercom.ec_if;
2240 ifp->if_softc = sc;
2241 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2242 ifp->if_ioctl = bge_ioctl;
2243 ifp->if_start = bge_start;
2244 ifp->if_init = bge_init;
2245 ifp->if_watchdog = bge_watchdog;
2246 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2247 IFQ_SET_READY(&ifp->if_snd);
2248 DPRINTFN(5, ("bcopy\n"));
2249 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2250
2251 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2252 sc->ethercom.ec_if.if_capabilities |=
2253 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2254 sc->ethercom.ec_capabilities |=
2255 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2256
2257 /*
2258 * Do MII setup.
2259 */
2260 DPRINTFN(5, ("mii setup\n"));
2261 sc->bge_mii.mii_ifp = ifp;
2262 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2263 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2264 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2265
2266 /*
2267 * Figure out what sort of media we have by checking the
2268 * hardware config word in the first 32k of NIC internal memory,
2269 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2270 * cards, this value appears to be unset. If that's the
2271 * case, we have to rely on identifying the NIC by its PCI
2272 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2273 */
2274 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2275 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2276 } else {
2277 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2278 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2279 hwcfg = be32toh(hwcfg);
2280 }
2281 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2282 sc->bge_tbi = 1;
2283
2284 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2285 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2286 SK_SUBSYSID_9D41)
2287 sc->bge_tbi = 1;
2288
2289 if (sc->bge_tbi) {
2290 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2291 bge_ifmedia_sts);
2292 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2293 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2294 0, NULL);
2295 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2296 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2297 } else {
2298 /*
2299 * Do transceiver setup.
2300 */
2301 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2302 bge_ifmedia_sts);
2303 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2304 MII_PHY_ANY, MII_OFFSET_ANY, 0);
2305
2306 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2307 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2308 ifmedia_add(&sc->bge_mii.mii_media,
2309 IFM_ETHER|IFM_MANUAL, 0, NULL);
2310 ifmedia_set(&sc->bge_mii.mii_media,
2311 IFM_ETHER|IFM_MANUAL);
2312 } else
2313 ifmedia_set(&sc->bge_mii.mii_media,
2314 IFM_ETHER|IFM_AUTO);
2315 }
2316
2317 /*
2318 * When using the BCM5701 in PCI-X mode, data corruption has
2319 * been observed in the first few bytes of some received packets.
2320 * Aligning the packet buffer in memory eliminates the corruption.
2321 * Unfortunately, this misaligns the packet payloads. On platforms
2322 * which do not support unaligned accesses, we will realign the
2323 * payloads by copying the received packets.
2324 */
2325 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2326 /* If in PCI-X mode, work around the alignment bug. */
2327 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2328 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2329 BGE_PCISTATE_PCI_BUSSPEED)
2330 sc->bge_rx_alignment_bug = 1;
2331 }
2332
2333 /*
2334 * Call MI attach routine.
2335 */
2336 DPRINTFN(5, ("if_attach\n"));
2337 if_attach(ifp);
2338 DPRINTFN(5, ("ether_ifattach\n"));
2339 ether_ifattach(ifp, eaddr);
2340 DPRINTFN(5, ("callout_init\n"));
2341 callout_init(&sc->bge_timeout);
2342 }
2343
2344 void
2345 bge_release_resources(sc)
2346 struct bge_softc *sc;
2347 {
2348 if (sc->bge_vpd_prodname != NULL)
2349 free(sc->bge_vpd_prodname, M_DEVBUF);
2350
2351 if (sc->bge_vpd_readonly != NULL)
2352 free(sc->bge_vpd_readonly, M_DEVBUF);
2353 }
2354
2355 void
2356 bge_reset(sc)
2357 struct bge_softc *sc;
2358 {
2359 struct pci_attach_args *pa = &sc->bge_pa;
2360 u_int32_t cachesize, command, pcistate;
2361 int i, val = 0;
2362
2363 /* Save some important PCI state. */
2364 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2365 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2366 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2367
2368 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2369 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2370 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2371
2372 /* Issue global reset */
2373 bge_writereg_ind(sc, BGE_MISC_CFG,
2374 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2375
2376 DELAY(1000);
2377
2378 /* Reset some of the PCI state that got zapped by reset */
2379 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2380 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2381 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2382 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2383 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2384 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2385
2386 /* Enable memory arbiter. */
2387 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2388 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2389 }
2390
2391 /*
2392 * Prevent PXE restart: write a magic number to the
2393 * general communications memory at 0xB50.
2394 */
2395 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2396
2397 /*
2398 * Poll the value location we just wrote until
2399 * we see the 1's complement of the magic number.
2400 * This indicates that the firmware initialization
2401 * is complete.
2402 */
2403 for (i = 0; i < 750; i++) {
2404 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2405 if (val == ~BGE_MAGIC_NUMBER)
2406 break;
2407 DELAY(1000);
2408 }
2409
2410 if (i == 750) {
2411 printf("%s: firmware handshake timed out, val = %x\n",
2412 sc->bge_dev.dv_xname, val);
2413 return;
2414 }
2415
2416 /*
2417 * XXX Wait for the value of the PCISTATE register to
2418 * return to its original pre-reset state. This is a
2419 * fairly good indicator of reset completion. If we don't
2420 * wait for the reset to fully complete, trying to read
2421 * from the device's non-PCI registers may yield garbage
2422 * results.
2423 */
2424 for (i = 0; i < BGE_TIMEOUT; i++) {
2425 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2426 pcistate)
2427 break;
2428 DELAY(10);
2429 }
2430
2431 /* Enable memory arbiter. */
2432 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2433 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2434 }
2435
2436 /* Fix up byte swapping */
2437 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2438
2439 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2440
2441 DELAY(10000);
2442 }
2443
2444 /*
2445 * Frame reception handling. This is called if there's a frame
2446 * on the receive return list.
2447 *
2448 * Note: we have to be able to handle two possibilities here:
2449 * 1) the frame is from the jumbo recieve ring
2450 * 2) the frame is from the standard receive ring
2451 */
2452
2453 void
2454 bge_rxeof(sc)
2455 struct bge_softc *sc;
2456 {
2457 struct ifnet *ifp;
2458 int stdcnt = 0, jumbocnt = 0;
2459 int have_tag = 0;
2460 u_int16_t vlan_tag = 0;
2461 bus_dmamap_t dmamap;
2462 bus_addr_t offset, toff;
2463 bus_size_t tlen;
2464 int tosync;
2465
2466 ifp = &sc->ethercom.ec_if;
2467
2468 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2469 offsetof(struct bge_ring_data, bge_status_block),
2470 sizeof (struct bge_status_block),
2471 BUS_DMASYNC_POSTREAD);
2472
2473 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2474 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2475 sc->bge_rx_saved_considx;
2476
2477 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2478
2479 if (tosync < 0) {
2480 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2481 sizeof (struct bge_rx_bd);
2482 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2483 toff, tlen, BUS_DMASYNC_POSTREAD);
2484 tosync = -tosync;
2485 }
2486
2487 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2488 offset, tosync * sizeof (struct bge_rx_bd),
2489 BUS_DMASYNC_POSTREAD);
2490
2491 while(sc->bge_rx_saved_considx !=
2492 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2493 struct bge_rx_bd *cur_rx;
2494 u_int32_t rxidx;
2495 struct mbuf *m = NULL;
2496
2497 cur_rx = &sc->bge_rdata->
2498 bge_rx_return_ring[sc->bge_rx_saved_considx];
2499
2500 rxidx = cur_rx->bge_idx;
2501 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2502
2503 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2504 have_tag = 1;
2505 vlan_tag = cur_rx->bge_vlan_tag;
2506 }
2507
2508 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2509 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2510 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2511 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2512 jumbocnt++;
2513 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2514 ifp->if_ierrors++;
2515 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2516 continue;
2517 }
2518 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2519 NULL)== ENOBUFS) {
2520 ifp->if_ierrors++;
2521 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2522 continue;
2523 }
2524 } else {
2525 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2526 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2527 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2528 stdcnt++;
2529 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2530 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2531 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2532 ifp->if_ierrors++;
2533 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2534 continue;
2535 }
2536 if (bge_newbuf_std(sc, sc->bge_std,
2537 NULL, dmamap) == ENOBUFS) {
2538 ifp->if_ierrors++;
2539 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2540 continue;
2541 }
2542 }
2543
2544 ifp->if_ipackets++;
2545 #ifndef __NO_STRICT_ALIGNMENT
2546 /*
2547 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2548 * the Rx buffer has the layer-2 header unaligned.
2549 * If our CPU requires alignment, re-align by copying.
2550 */
2551 if (sc->bge_rx_alignment_bug) {
2552 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2553 cur_rx->bge_len);
2554 m->m_data += ETHER_ALIGN;
2555 }
2556 #endif
2557
2558 m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2559 m->m_pkthdr.rcvif = ifp;
2560
2561 #if NBPFILTER > 0
2562 /*
2563 * Handle BPF listeners. Let the BPF user see the packet.
2564 */
2565 if (ifp->if_bpf)
2566 bpf_mtap(ifp->if_bpf, m);
2567 #endif
2568
2569 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2570
2571 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2572 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2573 /*
2574 * Rx transport checksum-offload may also
2575 * have bugs with packets which, when transmitted,
2576 * were `runts' requiring padding.
2577 */
2578 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2579 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2580 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2581 m->m_pkthdr.csum_data =
2582 cur_rx->bge_tcp_udp_csum;
2583 m->m_pkthdr.csum_flags |=
2584 (M_CSUM_TCPv4|M_CSUM_UDPv4|
2585 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2586 }
2587
2588 /*
2589 * If we received a packet with a vlan tag, pass it
2590 * to vlan_input() instead of ether_input().
2591 */
2592 if (have_tag) {
2593 struct m_tag *mtag;
2594
2595 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2596 M_NOWAIT);
2597 if (mtag != NULL) {
2598 *(u_int *)(mtag + 1) = vlan_tag;
2599 m_tag_prepend(m, mtag);
2600 have_tag = vlan_tag = 0;
2601 } else {
2602 printf("%s: no mbuf for tag\n", ifp->if_xname);
2603 m_freem(m);
2604 have_tag = vlan_tag = 0;
2605 continue;
2606 }
2607 }
2608 (*ifp->if_input)(ifp, m);
2609 }
2610
2611 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2612 if (stdcnt)
2613 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2614 if (jumbocnt)
2615 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2616 }
2617
2618 void
2619 bge_txeof(sc)
2620 struct bge_softc *sc;
2621 {
2622 struct bge_tx_bd *cur_tx = NULL;
2623 struct ifnet *ifp;
2624 struct txdmamap_pool_entry *dma;
2625 bus_addr_t offset, toff;
2626 bus_size_t tlen;
2627 int tosync;
2628 struct mbuf *m;
2629
2630 ifp = &sc->ethercom.ec_if;
2631
2632 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2633 offsetof(struct bge_ring_data, bge_status_block),
2634 sizeof (struct bge_status_block),
2635 BUS_DMASYNC_POSTREAD);
2636
2637 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2638 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2639 sc->bge_tx_saved_considx;
2640
2641 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2642
2643 if (tosync < 0) {
2644 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2645 sizeof (struct bge_tx_bd);
2646 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2647 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2648 tosync = -tosync;
2649 }
2650
2651 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2652 offset, tosync * sizeof (struct bge_tx_bd),
2653 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2654
2655 /*
2656 * Go through our tx ring and free mbufs for those
2657 * frames that have been sent.
2658 */
2659 while (sc->bge_tx_saved_considx !=
2660 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2661 u_int32_t idx = 0;
2662
2663 idx = sc->bge_tx_saved_considx;
2664 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2665 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2666 ifp->if_opackets++;
2667 m = sc->bge_cdata.bge_tx_chain[idx];
2668 if (m != NULL) {
2669 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2670 dma = sc->txdma[idx];
2671 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2672 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2673 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2674 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2675 sc->txdma[idx] = NULL;
2676
2677 m_freem(m);
2678 }
2679 sc->bge_txcnt--;
2680 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2681 ifp->if_timer = 0;
2682 }
2683
2684 if (cur_tx != NULL)
2685 ifp->if_flags &= ~IFF_OACTIVE;
2686 }
2687
2688 int
2689 bge_intr(xsc)
2690 void *xsc;
2691 {
2692 struct bge_softc *sc;
2693 struct ifnet *ifp;
2694
2695 sc = xsc;
2696 ifp = &sc->ethercom.ec_if;
2697
2698 #ifdef notdef
2699 /* Avoid this for now -- checking this register is expensive. */
2700 /* Make sure this is really our interrupt. */
2701 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2702 return (0);
2703 #endif
2704 /* Ack interrupt and stop others from occuring. */
2705 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2706
2707 /*
2708 * Process link state changes.
2709 * Grrr. The link status word in the status block does
2710 * not work correctly on the BCM5700 rev AX and BX chips,
2711 * according to all avaibable information. Hence, we have
2712 * to enable MII interrupts in order to properly obtain
2713 * async link changes. Unfortunately, this also means that
2714 * we have to read the MAC status register to detect link
2715 * changes, thereby adding an additional register access to
2716 * the interrupt handler.
2717 */
2718
2719 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2720 u_int32_t status;
2721
2722 status = CSR_READ_4(sc, BGE_MAC_STS);
2723 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2724 sc->bge_link = 0;
2725 callout_stop(&sc->bge_timeout);
2726 bge_tick(sc);
2727 /* Clear the interrupt */
2728 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2729 BGE_EVTENB_MI_INTERRUPT);
2730 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2731 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2732 BRGPHY_INTRS);
2733 }
2734 } else {
2735 if (sc->bge_rdata->bge_status_block.bge_status &
2736 BGE_STATFLAG_LINKSTATE_CHANGED) {
2737 sc->bge_link = 0;
2738 callout_stop(&sc->bge_timeout);
2739 bge_tick(sc);
2740 /* Clear the interrupt */
2741 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2742 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2743 BGE_MACSTAT_LINK_CHANGED);
2744 }
2745 }
2746
2747 if (ifp->if_flags & IFF_RUNNING) {
2748 /* Check RX return ring producer/consumer */
2749 bge_rxeof(sc);
2750
2751 /* Check TX ring producer/consumer */
2752 bge_txeof(sc);
2753 }
2754
2755 bge_handle_events(sc);
2756
2757 /* Re-enable interrupts. */
2758 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2759
2760 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2761 bge_start(ifp);
2762
2763 return (1);
2764 }
2765
2766 void
2767 bge_tick(xsc)
2768 void *xsc;
2769 {
2770 struct bge_softc *sc = xsc;
2771 struct mii_data *mii = &sc->bge_mii;
2772 struct ifmedia *ifm = NULL;
2773 struct ifnet *ifp = &sc->ethercom.ec_if;
2774 int s;
2775
2776 s = splnet();
2777
2778 bge_stats_update(sc);
2779 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2780 if (sc->bge_link) {
2781 splx(s);
2782 return;
2783 }
2784
2785 if (sc->bge_tbi) {
2786 ifm = &sc->bge_ifmedia;
2787 if (CSR_READ_4(sc, BGE_MAC_STS) &
2788 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2789 sc->bge_link++;
2790 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2791 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2792 bge_start(ifp);
2793 }
2794 splx(s);
2795 return;
2796 }
2797
2798 mii_tick(mii);
2799
2800 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2801 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2802 sc->bge_link++;
2803 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2804 bge_start(ifp);
2805 }
2806
2807 splx(s);
2808 }
2809
2810 void
2811 bge_stats_update(sc)
2812 struct bge_softc *sc;
2813 {
2814 struct ifnet *ifp = &sc->ethercom.ec_if;
2815 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2816 bus_size_t rstats = BGE_RX_STATS;
2817
2818 #define READ_RSTAT(sc, stats, stat) \
2819 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
2820
2821 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2822 ifp->if_collisions +=
2823 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
2824 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
2825 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
2826 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
2827 return;
2828 }
2829
2830 #undef READ_RSTAT
2831 #define READ_STAT(sc, stats, stat) \
2832 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2833
2834 ifp->if_collisions +=
2835 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2836 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2837 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2838 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2839 ifp->if_collisions;
2840
2841 #undef READ_STAT
2842
2843 #ifdef notdef
2844 ifp->if_collisions +=
2845 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2846 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2847 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2848 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2849 ifp->if_collisions;
2850 #endif
2851 }
2852
2853 /*
2854 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
2855 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
2856 * but when such padded frames employ the bge IP/TCP checksum offload,
2857 * the hardware checksum assist gives incorrect results (possibly
2858 * from incorporating its own padding into the UDP/TCP checksum; who knows).
2859 * If we pad such runts with zeros, the onboard checksum comes out correct.
2860 */
2861 static __inline int
2862 bge_cksum_pad(struct mbuf *pkt)
2863 {
2864 struct mbuf *last = NULL;
2865 int padlen;
2866
2867 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
2868
2869 /* if there's only the packet-header and we can pad there, use it. */
2870 if (pkt->m_pkthdr.len == pkt->m_len &&
2871 !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
2872 last = pkt;
2873 } else {
2874 /*
2875 * Walk packet chain to find last mbuf. We will either
2876 * pad there, or append a new mbuf and pad it
2877 * (thus perhaps avoiding the bcm5700 dma-min bug).
2878 */
2879 for (last = pkt; last->m_next != NULL; last = last->m_next) {
2880 (void) 0; /* do nothing*/
2881 }
2882
2883 /* `last' now points to last in chain. */
2884 if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
2885 (void) 0; /* we can pad here, in-place. */
2886 } else {
2887 /* Allocate new empty mbuf, pad it. Compact later. */
2888 struct mbuf *n;
2889 MGET(n, M_DONTWAIT, MT_DATA);
2890 n->m_len = 0;
2891 last->m_next = n;
2892 last = n;
2893 }
2894 }
2895
2896 #ifdef DEBUG
2897 /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
2898 KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
2899 #endif
2900 /* Now zero the pad area, to avoid the bge cksum-assist bug */
2901 memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
2902 last->m_len += padlen;
2903 pkt->m_pkthdr.len += padlen;
2904 return 0;
2905 }
2906
2907 /*
2908 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
2909 */
2910 static __inline int
2911 bge_compact_dma_runt(struct mbuf *pkt)
2912 {
2913 struct mbuf *m, *prev;
2914 int totlen, prevlen;
2915
2916 prev = NULL;
2917 totlen = 0;
2918 prevlen = -1;
2919
2920 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
2921 int mlen = m->m_len;
2922 int shortfall = 8 - mlen ;
2923
2924 totlen += mlen;
2925 if (mlen == 0) {
2926 continue;
2927 }
2928 if (mlen >= 8)
2929 continue;
2930
2931 /* If we get here, mbuf data is too small for DMA engine.
2932 * Try to fix by shuffling data to prev or next in chain.
2933 * If that fails, do a compacting deep-copy of the whole chain.
2934 */
2935
2936 /* Internal frag. If fits in prev, copy it there. */
2937 if (prev && !M_READONLY(prev) &&
2938 M_TRAILINGSPACE(prev) >= m->m_len) {
2939 bcopy(m->m_data,
2940 prev->m_data+prev->m_len,
2941 mlen);
2942 prev->m_len += mlen;
2943 m->m_len = 0;
2944 /* XXX stitch chain */
2945 prev->m_next = m_free(m);
2946 m = prev;
2947 continue;
2948 }
2949 else if (m->m_next != NULL && !M_READONLY(m) &&
2950 M_TRAILINGSPACE(m) >= shortfall &&
2951 m->m_next->m_len >= (8 + shortfall)) {
2952 /* m is writable and have enough data in next, pull up. */
2953
2954 bcopy(m->m_next->m_data,
2955 m->m_data+m->m_len,
2956 shortfall);
2957 m->m_len += shortfall;
2958 m->m_next->m_len -= shortfall;
2959 m->m_next->m_data += shortfall;
2960 }
2961 else if (m->m_next == NULL || 1) {
2962 /* Got a runt at the very end of the packet.
2963 * borrow data from the tail of the preceding mbuf and
2964 * update its length in-place. (The original data is still
2965 * valid, so we can do this even if prev is not writable.)
2966 */
2967
2968 /* if we'd make prev a runt, just move all of its data. */
2969 #ifdef DEBUG
2970 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
2971 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
2972 #endif
2973 if ((prev->m_len - shortfall) < 8)
2974 shortfall = prev->m_len;
2975
2976 #ifdef notyet /* just do the safe slow thing for now */
2977 if (!M_READONLY(m)) {
2978 if (M_LEADINGSPACE(m) < shorfall) {
2979 void *m_dat;
2980 m_dat = (m->m_flags & M_PKTHDR) ?
2981 m->m_pktdat : m->dat;
2982 memmove(m_dat, mtod(m, void*), m->m_len);
2983 m->m_data = m_dat;
2984 }
2985 } else
2986 #endif /* just do the safe slow thing */
2987 {
2988 struct mbuf * n = NULL;
2989 int newprevlen = prev->m_len - shortfall;
2990
2991 MGET(n, M_NOWAIT, MT_DATA);
2992 if (n == NULL)
2993 return ENOBUFS;
2994 KASSERT(m->m_len + shortfall < MLEN
2995 /*,
2996 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
2997
2998 /* first copy the data we're stealing from prev */
2999 bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3000
3001 /* update prev->m_len accordingly */
3002 prev->m_len -= shortfall;
3003
3004 /* copy data from runt m */
3005 bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3006
3007 /* n holds what we stole from prev, plus m */
3008 n->m_len = shortfall + m->m_len;
3009
3010 /* stitch n into chain and free m */
3011 n->m_next = m->m_next;
3012 prev->m_next = n;
3013 /* KASSERT(m->m_next == NULL); */
3014 m->m_next = NULL;
3015 m_free(m);
3016 m = n; /* for continuing loop */
3017 }
3018 }
3019 prevlen = m->m_len;
3020 }
3021 return 0;
3022 }
3023
3024 /*
3025 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3026 * pointers to descriptors.
3027 */
3028 int
3029 bge_encap(sc, m_head, txidx)
3030 struct bge_softc *sc;
3031 struct mbuf *m_head;
3032 u_int32_t *txidx;
3033 {
3034 struct bge_tx_bd *f = NULL;
3035 u_int32_t frag, cur, cnt = 0;
3036 u_int16_t csum_flags = 0;
3037 struct txdmamap_pool_entry *dma;
3038 bus_dmamap_t dmamap;
3039 int i = 0;
3040 struct m_tag *mtag;
3041
3042 cur = frag = *txidx;
3043
3044 if (m_head->m_pkthdr.csum_flags) {
3045 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3046 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3047 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3048 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3049 }
3050
3051 /*
3052 * If we were asked to do an outboard checksum, and the NIC
3053 * has the bug where it sometimes adds in the Ethernet padding,
3054 * explicitly pad with zeros so the cksum will be correct either way.
3055 * (For now, do this for all chip versions, until newer
3056 * are confirmed to not require the workaround.)
3057 */
3058 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3059 #ifdef notyet
3060 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3061 #endif
3062 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3063 goto check_dma_bug;
3064
3065 if (bge_cksum_pad(m_head) != 0)
3066 return ENOBUFS;
3067
3068 check_dma_bug:
3069 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3070 goto doit;
3071 /*
3072 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3073 * less than eight bytes. If we encounter a teeny mbuf
3074 * at the end of a chain, we can pad. Otherwise, copy.
3075 */
3076 if (bge_compact_dma_runt(m_head) != 0)
3077 return ENOBUFS;
3078
3079 doit:
3080 dma = SLIST_FIRST(&sc->txdma_list);
3081 if (dma == NULL)
3082 return ENOBUFS;
3083 dmamap = dma->dmamap;
3084
3085 /*
3086 * Start packing the mbufs in this chain into
3087 * the fragment pointers. Stop when we run out
3088 * of fragments or hit the end of the mbuf chain.
3089 */
3090 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3091 BUS_DMA_NOWAIT))
3092 return(ENOBUFS);
3093
3094 mtag = sc->ethercom.ec_nvlans ?
3095 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3096
3097 for (i = 0; i < dmamap->dm_nsegs; i++) {
3098 f = &sc->bge_rdata->bge_tx_ring[frag];
3099 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3100 break;
3101 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3102 f->bge_len = dmamap->dm_segs[i].ds_len;
3103 f->bge_flags = csum_flags;
3104
3105 if (mtag != NULL) {
3106 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3107 f->bge_vlan_tag = *(u_int *)(mtag + 1);
3108 } else {
3109 f->bge_vlan_tag = 0;
3110 }
3111 /*
3112 * Sanity check: avoid coming within 16 descriptors
3113 * of the end of the ring.
3114 */
3115 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
3116 return(ENOBUFS);
3117 cur = frag;
3118 BGE_INC(frag, BGE_TX_RING_CNT);
3119 cnt++;
3120 }
3121
3122 if (i < dmamap->dm_nsegs)
3123 return ENOBUFS;
3124
3125 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3126 BUS_DMASYNC_PREWRITE);
3127
3128 if (frag == sc->bge_tx_saved_considx)
3129 return(ENOBUFS);
3130
3131 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3132 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3133 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3134 sc->txdma[cur] = dma;
3135 sc->bge_txcnt += cnt;
3136
3137 *txidx = frag;
3138
3139 return(0);
3140 }
3141
3142 /*
3143 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3144 * to the mbuf data regions directly in the transmit descriptors.
3145 */
3146 void
3147 bge_start(ifp)
3148 struct ifnet *ifp;
3149 {
3150 struct bge_softc *sc;
3151 struct mbuf *m_head = NULL;
3152 u_int32_t prodidx = 0;
3153 int pkts = 0;
3154
3155 sc = ifp->if_softc;
3156
3157 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3158 return;
3159
3160 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
3161
3162 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3163 IFQ_POLL(&ifp->if_snd, m_head);
3164 if (m_head == NULL)
3165 break;
3166
3167 #if 0
3168 /*
3169 * XXX
3170 * safety overkill. If this is a fragmented packet chain
3171 * with delayed TCP/UDP checksums, then only encapsulate
3172 * it if we have enough descriptors to handle the entire
3173 * chain at once.
3174 * (paranoia -- may not actually be needed)
3175 */
3176 if (m_head->m_flags & M_FIRSTFRAG &&
3177 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3178 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3179 m_head->m_pkthdr.csum_data + 16) {
3180 ifp->if_flags |= IFF_OACTIVE;
3181 break;
3182 }
3183 }
3184 #endif
3185
3186 /*
3187 * Pack the data into the transmit ring. If we
3188 * don't have room, set the OACTIVE flag and wait
3189 * for the NIC to drain the ring.
3190 */
3191 if (bge_encap(sc, m_head, &prodidx)) {
3192 ifp->if_flags |= IFF_OACTIVE;
3193 break;
3194 }
3195
3196 /* now we are committed to transmit the packet */
3197 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3198 pkts++;
3199
3200 #if NBPFILTER > 0
3201 /*
3202 * If there's a BPF listener, bounce a copy of this frame
3203 * to him.
3204 */
3205 if (ifp->if_bpf)
3206 bpf_mtap(ifp->if_bpf, m_head);
3207 #endif
3208 }
3209 if (pkts == 0)
3210 return;
3211
3212 /* Transmit */
3213 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3214 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3215 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3216
3217 /*
3218 * Set a timeout in case the chip goes out to lunch.
3219 */
3220 ifp->if_timer = 5;
3221 }
3222
3223 int
3224 bge_init(ifp)
3225 struct ifnet *ifp;
3226 {
3227 struct bge_softc *sc = ifp->if_softc;
3228 u_int16_t *m;
3229 int s, error;
3230
3231 s = splnet();
3232
3233 ifp = &sc->ethercom.ec_if;
3234
3235 /* Cancel pending I/O and flush buffers. */
3236 bge_stop(sc);
3237 bge_reset(sc);
3238 bge_chipinit(sc);
3239
3240 /*
3241 * Init the various state machines, ring
3242 * control blocks and firmware.
3243 */
3244 error = bge_blockinit(sc);
3245 if (error != 0) {
3246 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3247 error);
3248 splx(s);
3249 return error;
3250 }
3251
3252 ifp = &sc->ethercom.ec_if;
3253
3254 /* Specify MTU. */
3255 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3256 ETHER_HDR_LEN + ETHER_CRC_LEN);
3257
3258 /* Load our MAC address. */
3259 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3260 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3261 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3262
3263 /* Enable or disable promiscuous mode as needed. */
3264 if (ifp->if_flags & IFF_PROMISC) {
3265 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3266 } else {
3267 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3268 }
3269
3270 /* Program multicast filter. */
3271 bge_setmulti(sc);
3272
3273 /* Init RX ring. */
3274 bge_init_rx_ring_std(sc);
3275
3276 /* Init jumbo RX ring. */
3277 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3278 bge_init_rx_ring_jumbo(sc);
3279
3280 /* Init our RX return ring index */
3281 sc->bge_rx_saved_considx = 0;
3282
3283 /* Init TX ring. */
3284 bge_init_tx_ring(sc);
3285
3286 /* Turn on transmitter */
3287 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3288
3289 /* Turn on receiver */
3290 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3291
3292 /* Tell firmware we're alive. */
3293 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3294
3295 /* Enable host interrupts. */
3296 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3297 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3298 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3299
3300 bge_ifmedia_upd(ifp);
3301
3302 ifp->if_flags |= IFF_RUNNING;
3303 ifp->if_flags &= ~IFF_OACTIVE;
3304
3305 splx(s);
3306
3307 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3308
3309 return 0;
3310 }
3311
3312 /*
3313 * Set media options.
3314 */
3315 int
3316 bge_ifmedia_upd(ifp)
3317 struct ifnet *ifp;
3318 {
3319 struct bge_softc *sc = ifp->if_softc;
3320 struct mii_data *mii = &sc->bge_mii;
3321 struct ifmedia *ifm = &sc->bge_ifmedia;
3322
3323 /* If this is a 1000baseX NIC, enable the TBI port. */
3324 if (sc->bge_tbi) {
3325 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3326 return(EINVAL);
3327 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3328 case IFM_AUTO:
3329 break;
3330 case IFM_1000_SX:
3331 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3332 BGE_CLRBIT(sc, BGE_MAC_MODE,
3333 BGE_MACMODE_HALF_DUPLEX);
3334 } else {
3335 BGE_SETBIT(sc, BGE_MAC_MODE,
3336 BGE_MACMODE_HALF_DUPLEX);
3337 }
3338 break;
3339 default:
3340 return(EINVAL);
3341 }
3342 return(0);
3343 }
3344
3345 sc->bge_link = 0;
3346 mii_mediachg(mii);
3347
3348 return(0);
3349 }
3350
3351 /*
3352 * Report current media status.
3353 */
3354 void
3355 bge_ifmedia_sts(ifp, ifmr)
3356 struct ifnet *ifp;
3357 struct ifmediareq *ifmr;
3358 {
3359 struct bge_softc *sc = ifp->if_softc;
3360 struct mii_data *mii = &sc->bge_mii;
3361
3362 if (sc->bge_tbi) {
3363 ifmr->ifm_status = IFM_AVALID;
3364 ifmr->ifm_active = IFM_ETHER;
3365 if (CSR_READ_4(sc, BGE_MAC_STS) &
3366 BGE_MACSTAT_TBI_PCS_SYNCHED)
3367 ifmr->ifm_status |= IFM_ACTIVE;
3368 ifmr->ifm_active |= IFM_1000_SX;
3369 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3370 ifmr->ifm_active |= IFM_HDX;
3371 else
3372 ifmr->ifm_active |= IFM_FDX;
3373 return;
3374 }
3375
3376 mii_pollstat(mii);
3377 ifmr->ifm_active = mii->mii_media_active;
3378 ifmr->ifm_status = mii->mii_media_status;
3379 }
3380
3381 int
3382 bge_ioctl(ifp, command, data)
3383 struct ifnet *ifp;
3384 u_long command;
3385 caddr_t data;
3386 {
3387 struct bge_softc *sc = ifp->if_softc;
3388 struct ifreq *ifr = (struct ifreq *) data;
3389 int s, error = 0;
3390 struct mii_data *mii;
3391
3392 s = splnet();
3393
3394 switch(command) {
3395 case SIOCSIFFLAGS:
3396 if (ifp->if_flags & IFF_UP) {
3397 /*
3398 * If only the state of the PROMISC flag changed,
3399 * then just use the 'set promisc mode' command
3400 * instead of reinitializing the entire NIC. Doing
3401 * a full re-init means reloading the firmware and
3402 * waiting for it to start up, which may take a
3403 * second or two.
3404 */
3405 if (ifp->if_flags & IFF_RUNNING &&
3406 ifp->if_flags & IFF_PROMISC &&
3407 !(sc->bge_if_flags & IFF_PROMISC)) {
3408 BGE_SETBIT(sc, BGE_RX_MODE,
3409 BGE_RXMODE_RX_PROMISC);
3410 } else if (ifp->if_flags & IFF_RUNNING &&
3411 !(ifp->if_flags & IFF_PROMISC) &&
3412 sc->bge_if_flags & IFF_PROMISC) {
3413 BGE_CLRBIT(sc, BGE_RX_MODE,
3414 BGE_RXMODE_RX_PROMISC);
3415 } else
3416 bge_init(ifp);
3417 } else {
3418 if (ifp->if_flags & IFF_RUNNING) {
3419 bge_stop(sc);
3420 }
3421 }
3422 sc->bge_if_flags = ifp->if_flags;
3423 error = 0;
3424 break;
3425 case SIOCSIFMEDIA:
3426 case SIOCGIFMEDIA:
3427 if (sc->bge_tbi) {
3428 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3429 command);
3430 } else {
3431 mii = &sc->bge_mii;
3432 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3433 command);
3434 }
3435 error = 0;
3436 break;
3437 default:
3438 error = ether_ioctl(ifp, command, data);
3439 if (error == ENETRESET) {
3440 bge_setmulti(sc);
3441 error = 0;
3442 }
3443 break;
3444 }
3445
3446 splx(s);
3447
3448 return(error);
3449 }
3450
3451 void
3452 bge_watchdog(ifp)
3453 struct ifnet *ifp;
3454 {
3455 struct bge_softc *sc;
3456
3457 sc = ifp->if_softc;
3458
3459 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3460
3461 ifp->if_flags &= ~IFF_RUNNING;
3462 bge_init(ifp);
3463
3464 ifp->if_oerrors++;
3465 }
3466
3467 static void
3468 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3469 {
3470 int i;
3471
3472 BGE_CLRBIT(sc, reg, bit);
3473
3474 for (i = 0; i < BGE_TIMEOUT; i++) {
3475 if ((CSR_READ_4(sc, reg) & bit) == 0)
3476 return;
3477 delay(100);
3478 }
3479
3480 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3481 sc->bge_dev.dv_xname, (u_long) reg, bit);
3482 }
3483
3484 /*
3485 * Stop the adapter and free any mbufs allocated to the
3486 * RX and TX lists.
3487 */
3488 void
3489 bge_stop(sc)
3490 struct bge_softc *sc;
3491 {
3492 struct ifnet *ifp = &sc->ethercom.ec_if;
3493
3494 callout_stop(&sc->bge_timeout);
3495
3496 /*
3497 * Disable all of the receiver blocks
3498 */
3499 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3500 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3501 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3502 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3503 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3504 }
3505 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3506 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3507 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3508
3509 /*
3510 * Disable all of the transmit blocks
3511 */
3512 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3513 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3514 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3515 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3516 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3517 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3518 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3519 }
3520 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3521
3522 /*
3523 * Shut down all of the memory managers and related
3524 * state machines.
3525 */
3526 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3527 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3528 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3529 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3530 }
3531
3532 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3533 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3534
3535 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3536 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3537 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3538 }
3539
3540 /* Disable host interrupts. */
3541 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3542 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3543
3544 /*
3545 * Tell firmware we're shutting down.
3546 */
3547 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3548
3549 /* Free the RX lists. */
3550 bge_free_rx_ring_std(sc);
3551
3552 /* Free jumbo RX list. */
3553 bge_free_rx_ring_jumbo(sc);
3554
3555 /* Free TX buffers. */
3556 bge_free_tx_ring(sc);
3557
3558 /*
3559 * Isolate/power down the PHY.
3560 */
3561 if (!sc->bge_tbi)
3562 mii_down(&sc->bge_mii);
3563
3564 sc->bge_link = 0;
3565
3566 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3567
3568 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3569 }
3570
3571 /*
3572 * Stop all chip I/O so that the kernel's probe routines don't
3573 * get confused by errant DMAs when rebooting.
3574 */
3575 void
3576 bge_shutdown(xsc)
3577 void *xsc;
3578 {
3579 struct bge_softc *sc = (struct bge_softc *)xsc;
3580
3581 bge_stop(sc);
3582 bge_reset(sc);
3583 }
3584