if_bge.c revision 1.54 1 /* $NetBSD: if_bge.c,v 1.54 2003/11/11 22:28:58 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.54 2003/11/11 22:28:58 fvdl Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/pci/pcidevs.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/miidevs.h>
120 #include <dev/mii/brgphyreg.h>
121
122 #include <dev/pci/if_bgereg.h>
123
124 #include <uvm/uvm_extern.h>
125
126 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
127
128 int bge_probe(struct device *, struct cfdata *, void *);
129 void bge_attach(struct device *, struct device *, void *);
130 void bge_release_resources(struct bge_softc *);
131 void bge_txeof(struct bge_softc *);
132 void bge_rxeof(struct bge_softc *);
133
134 void bge_tick(void *);
135 void bge_stats_update(struct bge_softc *);
136 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
137 static __inline int bge_cksum_pad(struct mbuf *pkt);
138 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
139
140 int bge_intr(void *);
141 void bge_start(struct ifnet *);
142 int bge_ioctl(struct ifnet *, u_long, caddr_t);
143 int bge_init(struct ifnet *);
144 void bge_stop(struct bge_softc *);
145 void bge_watchdog(struct ifnet *);
146 void bge_shutdown(void *);
147 int bge_ifmedia_upd(struct ifnet *);
148 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
149
150 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
151 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
152
153 void bge_setmulti(struct bge_softc *);
154
155 void bge_handle_events(struct bge_softc *);
156 int bge_alloc_jumbo_mem(struct bge_softc *);
157 void bge_free_jumbo_mem(struct bge_softc *);
158 void *bge_jalloc(struct bge_softc *);
159 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
160 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
161 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
162 int bge_init_rx_ring_std(struct bge_softc *);
163 void bge_free_rx_ring_std(struct bge_softc *);
164 int bge_init_rx_ring_jumbo(struct bge_softc *);
165 void bge_free_rx_ring_jumbo(struct bge_softc *);
166 void bge_free_tx_ring(struct bge_softc *);
167 int bge_init_tx_ring(struct bge_softc *);
168
169 int bge_chipinit(struct bge_softc *);
170 int bge_blockinit(struct bge_softc *);
171 int bge_setpowerstate(struct bge_softc *, int);
172
173 #ifdef notdef
174 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
175 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
176 void bge_vpd_read(struct bge_softc *);
177 #endif
178
179 u_int32_t bge_readmem_ind(struct bge_softc *, int);
180 void bge_writemem_ind(struct bge_softc *, int, int);
181 #ifdef notdef
182 u_int32_t bge_readreg_ind(struct bge_softc *, int);
183 #endif
184 void bge_writereg_ind(struct bge_softc *, int, int);
185
186 int bge_miibus_readreg(struct device *, int, int);
187 void bge_miibus_writereg(struct device *, int, int, int);
188 void bge_miibus_statchg(struct device *);
189
190 void bge_reset(struct bge_softc *);
191
192 void bge_dump_status(struct bge_softc *);
193 void bge_dump_rxbd(struct bge_rx_bd *);
194
195 #define BGE_DEBUG
196 #ifdef BGE_DEBUG
197 #define DPRINTF(x) if (bgedebug) printf x
198 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
199 int bgedebug = 0;
200 #else
201 #define DPRINTF(x)
202 #define DPRINTFN(n,x)
203 #endif
204
205 /* Various chip quirks. */
206 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
207 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
208 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
209 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
210 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
211 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
212 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
213 #define BGE_QUIRK_5705_CORE 0x00000080
214 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
215
216 /* following bugs are common to bcm5700 rev B, all flavours */
217 #define BGE_QUIRK_5700_COMMON \
218 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
219
220 CFATTACH_DECL(bge, sizeof(struct bge_softc),
221 bge_probe, bge_attach, NULL, NULL);
222
223 u_int32_t
224 bge_readmem_ind(sc, off)
225 struct bge_softc *sc;
226 int off;
227 {
228 struct pci_attach_args *pa = &(sc->bge_pa);
229 pcireg_t val;
230
231 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
232 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
233 return val;
234 }
235
236 void
237 bge_writemem_ind(sc, off, val)
238 struct bge_softc *sc;
239 int off, val;
240 {
241 struct pci_attach_args *pa = &(sc->bge_pa);
242
243 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
244 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
245 }
246
247 #ifdef notdef
248 u_int32_t
249 bge_readreg_ind(sc, off)
250 struct bge_softc *sc;
251 int off;
252 {
253 struct pci_attach_args *pa = &(sc->bge_pa);
254
255 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
256 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
257 }
258 #endif
259
260 void
261 bge_writereg_ind(sc, off, val)
262 struct bge_softc *sc;
263 int off, val;
264 {
265 struct pci_attach_args *pa = &(sc->bge_pa);
266
267 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
268 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
269 }
270
271 #ifdef notdef
272 u_int8_t
273 bge_vpd_readbyte(sc, addr)
274 struct bge_softc *sc;
275 int addr;
276 {
277 int i;
278 u_int32_t val;
279 struct pci_attach_args *pa = &(sc->bge_pa);
280
281 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
282 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
283 DELAY(10);
284 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
285 BGE_VPD_FLAG)
286 break;
287 }
288
289 if (i == BGE_TIMEOUT) {
290 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
291 return(0);
292 }
293
294 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
295
296 return((val >> ((addr % 4) * 8)) & 0xFF);
297 }
298
299 void
300 bge_vpd_read_res(sc, res, addr)
301 struct bge_softc *sc;
302 struct vpd_res *res;
303 int addr;
304 {
305 int i;
306 u_int8_t *ptr;
307
308 ptr = (u_int8_t *)res;
309 for (i = 0; i < sizeof(struct vpd_res); i++)
310 ptr[i] = bge_vpd_readbyte(sc, i + addr);
311 }
312
313 void
314 bge_vpd_read(sc)
315 struct bge_softc *sc;
316 {
317 int pos = 0, i;
318 struct vpd_res res;
319
320 if (sc->bge_vpd_prodname != NULL)
321 free(sc->bge_vpd_prodname, M_DEVBUF);
322 if (sc->bge_vpd_readonly != NULL)
323 free(sc->bge_vpd_readonly, M_DEVBUF);
324 sc->bge_vpd_prodname = NULL;
325 sc->bge_vpd_readonly = NULL;
326
327 bge_vpd_read_res(sc, &res, pos);
328
329 if (res.vr_id != VPD_RES_ID) {
330 printf("%s: bad VPD resource id: expected %x got %x\n",
331 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
332 return;
333 }
334
335 pos += sizeof(res);
336 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
337 if (sc->bge_vpd_prodname == NULL)
338 panic("bge_vpd_read");
339 for (i = 0; i < res.vr_len; i++)
340 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
341 sc->bge_vpd_prodname[i] = '\0';
342 pos += i;
343
344 bge_vpd_read_res(sc, &res, pos);
345
346 if (res.vr_id != VPD_RES_READ) {
347 printf("%s: bad VPD resource id: expected %x got %x\n",
348 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
349 return;
350 }
351
352 pos += sizeof(res);
353 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
354 if (sc->bge_vpd_readonly == NULL)
355 panic("bge_vpd_read");
356 for (i = 0; i < res.vr_len + 1; i++)
357 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
358 }
359 #endif
360
361 /*
362 * Read a byte of data stored in the EEPROM at address 'addr.' The
363 * BCM570x supports both the traditional bitbang interface and an
364 * auto access interface for reading the EEPROM. We use the auto
365 * access method.
366 */
367 u_int8_t
368 bge_eeprom_getbyte(sc, addr, dest)
369 struct bge_softc *sc;
370 int addr;
371 u_int8_t *dest;
372 {
373 int i;
374 u_int32_t byte = 0;
375
376 /*
377 * Enable use of auto EEPROM access so we can avoid
378 * having to use the bitbang method.
379 */
380 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
381
382 /* Reset the EEPROM, load the clock period. */
383 CSR_WRITE_4(sc, BGE_EE_ADDR,
384 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
385 DELAY(20);
386
387 /* Issue the read EEPROM command. */
388 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
389
390 /* Wait for completion */
391 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
392 DELAY(10);
393 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
394 break;
395 }
396
397 if (i == BGE_TIMEOUT) {
398 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
399 return(0);
400 }
401
402 /* Get result. */
403 byte = CSR_READ_4(sc, BGE_EE_DATA);
404
405 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
406
407 return(0);
408 }
409
410 /*
411 * Read a sequence of bytes from the EEPROM.
412 */
413 int
414 bge_read_eeprom(sc, dest, off, cnt)
415 struct bge_softc *sc;
416 caddr_t dest;
417 int off;
418 int cnt;
419 {
420 int err = 0, i;
421 u_int8_t byte = 0;
422
423 for (i = 0; i < cnt; i++) {
424 err = bge_eeprom_getbyte(sc, off + i, &byte);
425 if (err)
426 break;
427 *(dest + i) = byte;
428 }
429
430 return(err ? 1 : 0);
431 }
432
433 int
434 bge_miibus_readreg(dev, phy, reg)
435 struct device *dev;
436 int phy, reg;
437 {
438 struct bge_softc *sc = (struct bge_softc *)dev;
439 u_int32_t val;
440 u_int32_t saved_autopoll;
441 int i;
442
443 /*
444 * Several chips with builtin PHYs will incorrectly answer to
445 * other PHY instances than the builtin PHY at id 1.
446 */
447 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
448 return(0);
449
450 /* Reading with autopolling on may trigger PCI errors */
451 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
452 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
453 CSR_WRITE_4(sc, BGE_MI_MODE,
454 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
455 DELAY(40);
456 }
457
458 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
459 BGE_MIPHY(phy)|BGE_MIREG(reg));
460
461 for (i = 0; i < BGE_TIMEOUT; i++) {
462 val = CSR_READ_4(sc, BGE_MI_COMM);
463 if (!(val & BGE_MICOMM_BUSY))
464 break;
465 delay(10);
466 }
467
468 if (i == BGE_TIMEOUT) {
469 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
470 val = 0;
471 goto done;
472 }
473
474 val = CSR_READ_4(sc, BGE_MI_COMM);
475
476 done:
477 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
478 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
479 DELAY(40);
480 }
481
482 if (val & BGE_MICOMM_READFAIL)
483 return(0);
484
485 return(val & 0xFFFF);
486 }
487
488 void
489 bge_miibus_writereg(dev, phy, reg, val)
490 struct device *dev;
491 int phy, reg, val;
492 {
493 struct bge_softc *sc = (struct bge_softc *)dev;
494 u_int32_t saved_autopoll;
495 int i;
496
497 /* Touching the PHY while autopolling is on may trigger PCI errors */
498 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
499 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
500 delay(40);
501 CSR_WRITE_4(sc, BGE_MI_MODE,
502 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
503 delay(10); /* 40 usec is supposed to be adequate */
504 }
505
506 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
507 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
508
509 for (i = 0; i < BGE_TIMEOUT; i++) {
510 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
511 break;
512 delay(10);
513 }
514
515 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
516 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
517 delay(40);
518 }
519
520 if (i == BGE_TIMEOUT) {
521 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
522 }
523 }
524
525 void
526 bge_miibus_statchg(dev)
527 struct device *dev;
528 {
529 struct bge_softc *sc = (struct bge_softc *)dev;
530 struct mii_data *mii = &sc->bge_mii;
531
532 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
533 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
534 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
535 } else {
536 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
537 }
538
539 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
540 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
541 } else {
542 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
543 }
544 }
545
546 /*
547 * Handle events that have triggered interrupts.
548 */
549 void
550 bge_handle_events(sc)
551 struct bge_softc *sc;
552 {
553
554 return;
555 }
556
557 /*
558 * Memory management for jumbo frames.
559 */
560
561 int
562 bge_alloc_jumbo_mem(sc)
563 struct bge_softc *sc;
564 {
565 caddr_t ptr, kva;
566 bus_dma_segment_t seg;
567 int i, rseg, state, error;
568 struct bge_jpool_entry *entry;
569
570 state = error = 0;
571
572 /* Grab a big chunk o' storage. */
573 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
574 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
575 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
576 return ENOBUFS;
577 }
578
579 state = 1;
580 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
581 BUS_DMA_NOWAIT)) {
582 printf("%s: can't map DMA buffers (%d bytes)\n",
583 sc->bge_dev.dv_xname, (int)BGE_JMEM);
584 error = ENOBUFS;
585 goto out;
586 }
587
588 state = 2;
589 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
590 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
591 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
592 error = ENOBUFS;
593 goto out;
594 }
595
596 state = 3;
597 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
598 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
599 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
600 error = ENOBUFS;
601 goto out;
602 }
603
604 state = 4;
605 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
606 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
607
608 SLIST_INIT(&sc->bge_jfree_listhead);
609 SLIST_INIT(&sc->bge_jinuse_listhead);
610
611 /*
612 * Now divide it up into 9K pieces and save the addresses
613 * in an array.
614 */
615 ptr = sc->bge_cdata.bge_jumbo_buf;
616 for (i = 0; i < BGE_JSLOTS; i++) {
617 sc->bge_cdata.bge_jslots[i] = ptr;
618 ptr += BGE_JLEN;
619 entry = malloc(sizeof(struct bge_jpool_entry),
620 M_DEVBUF, M_NOWAIT);
621 if (entry == NULL) {
622 printf("%s: no memory for jumbo buffer queue!\n",
623 sc->bge_dev.dv_xname);
624 error = ENOBUFS;
625 goto out;
626 }
627 entry->slot = i;
628 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
629 entry, jpool_entries);
630 }
631 out:
632 if (error != 0) {
633 switch (state) {
634 case 4:
635 bus_dmamap_unload(sc->bge_dmatag,
636 sc->bge_cdata.bge_rx_jumbo_map);
637 case 3:
638 bus_dmamap_destroy(sc->bge_dmatag,
639 sc->bge_cdata.bge_rx_jumbo_map);
640 case 2:
641 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
642 case 1:
643 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
644 break;
645 default:
646 break;
647 }
648 }
649
650 return error;
651 }
652
653 /*
654 * Allocate a jumbo buffer.
655 */
656 void *
657 bge_jalloc(sc)
658 struct bge_softc *sc;
659 {
660 struct bge_jpool_entry *entry;
661
662 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
663
664 if (entry == NULL) {
665 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
666 return(NULL);
667 }
668
669 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
670 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
671 return(sc->bge_cdata.bge_jslots[entry->slot]);
672 }
673
674 /*
675 * Release a jumbo buffer.
676 */
677 void
678 bge_jfree(m, buf, size, arg)
679 struct mbuf *m;
680 caddr_t buf;
681 size_t size;
682 void *arg;
683 {
684 struct bge_jpool_entry *entry;
685 struct bge_softc *sc;
686 int i, s;
687
688 /* Extract the softc struct pointer. */
689 sc = (struct bge_softc *)arg;
690
691 if (sc == NULL)
692 panic("bge_jfree: can't find softc pointer!");
693
694 /* calculate the slot this buffer belongs to */
695
696 i = ((caddr_t)buf
697 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
698
699 if ((i < 0) || (i >= BGE_JSLOTS))
700 panic("bge_jfree: asked to free buffer that we don't manage!");
701
702 s = splvm();
703 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
704 if (entry == NULL)
705 panic("bge_jfree: buffer not in use!");
706 entry->slot = i;
707 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
708 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
709
710 if (__predict_true(m != NULL))
711 pool_cache_put(&mbpool_cache, m);
712 splx(s);
713 }
714
715
716 /*
717 * Intialize a standard receive ring descriptor.
718 */
719 int
720 bge_newbuf_std(sc, i, m, dmamap)
721 struct bge_softc *sc;
722 int i;
723 struct mbuf *m;
724 bus_dmamap_t dmamap;
725 {
726 struct mbuf *m_new = NULL;
727 struct bge_rx_bd *r;
728 int error;
729
730 if (dmamap == NULL) {
731 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
732 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
733 if (error != 0)
734 return error;
735 }
736
737 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
738
739 if (m == NULL) {
740 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
741 if (m_new == NULL) {
742 return(ENOBUFS);
743 }
744
745 MCLGET(m_new, M_DONTWAIT);
746 if (!(m_new->m_flags & M_EXT)) {
747 m_freem(m_new);
748 return(ENOBUFS);
749 }
750 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
751 if (!sc->bge_rx_alignment_bug)
752 m_adj(m_new, ETHER_ALIGN);
753
754 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
755 BUS_DMA_READ|BUS_DMA_NOWAIT))
756 return(ENOBUFS);
757 } else {
758 m_new = m;
759 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
760 m_new->m_data = m_new->m_ext.ext_buf;
761 if (!sc->bge_rx_alignment_bug)
762 m_adj(m_new, ETHER_ALIGN);
763 }
764
765 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
766 r = &sc->bge_rdata->bge_rx_std_ring[i];
767 bge_set_hostaddr(&r->bge_addr,
768 dmamap->dm_segs[0].ds_addr);
769 r->bge_flags = BGE_RXBDFLAG_END;
770 r->bge_len = m_new->m_len;
771 r->bge_idx = i;
772
773 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
774 offsetof(struct bge_ring_data, bge_rx_std_ring) +
775 i * sizeof (struct bge_rx_bd),
776 sizeof (struct bge_rx_bd),
777 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
778
779 return(0);
780 }
781
782 /*
783 * Initialize a jumbo receive ring descriptor. This allocates
784 * a jumbo buffer from the pool managed internally by the driver.
785 */
786 int
787 bge_newbuf_jumbo(sc, i, m)
788 struct bge_softc *sc;
789 int i;
790 struct mbuf *m;
791 {
792 struct mbuf *m_new = NULL;
793 struct bge_rx_bd *r;
794
795 if (m == NULL) {
796 caddr_t *buf = NULL;
797
798 /* Allocate the mbuf. */
799 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
800 if (m_new == NULL) {
801 return(ENOBUFS);
802 }
803
804 /* Allocate the jumbo buffer */
805 buf = bge_jalloc(sc);
806 if (buf == NULL) {
807 m_freem(m_new);
808 printf("%s: jumbo allocation failed "
809 "-- packet dropped!\n", sc->bge_dev.dv_xname);
810 return(ENOBUFS);
811 }
812
813 /* Attach the buffer to the mbuf. */
814 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
815 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
816 bge_jfree, sc);
817 } else {
818 m_new = m;
819 m_new->m_data = m_new->m_ext.ext_buf;
820 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
821 }
822
823 if (!sc->bge_rx_alignment_bug)
824 m_adj(m_new, ETHER_ALIGN);
825 /* Set up the descriptor. */
826 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
827 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
828 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
829 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
830 r->bge_len = m_new->m_len;
831 r->bge_idx = i;
832
833 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
834 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
835 i * sizeof (struct bge_rx_bd),
836 sizeof (struct bge_rx_bd),
837 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
838
839 return(0);
840 }
841
842 /*
843 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
844 * that's 1MB or memory, which is a lot. For now, we fill only the first
845 * 256 ring entries and hope that our CPU is fast enough to keep up with
846 * the NIC.
847 */
848 int
849 bge_init_rx_ring_std(sc)
850 struct bge_softc *sc;
851 {
852 int i;
853
854 if (sc->bge_flags & BGE_RXRING_VALID)
855 return 0;
856
857 for (i = 0; i < BGE_SSLOTS; i++) {
858 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
859 return(ENOBUFS);
860 }
861
862 sc->bge_std = i - 1;
863 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
864
865 sc->bge_flags |= BGE_RXRING_VALID;
866
867 return(0);
868 }
869
870 void
871 bge_free_rx_ring_std(sc)
872 struct bge_softc *sc;
873 {
874 int i;
875
876 if (!(sc->bge_flags & BGE_RXRING_VALID))
877 return;
878
879 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
880 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
881 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
882 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
883 bus_dmamap_destroy(sc->bge_dmatag,
884 sc->bge_cdata.bge_rx_std_map[i]);
885 }
886 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
887 sizeof(struct bge_rx_bd));
888 }
889
890 sc->bge_flags &= ~BGE_RXRING_VALID;
891 }
892
893 int
894 bge_init_rx_ring_jumbo(sc)
895 struct bge_softc *sc;
896 {
897 int i;
898 volatile struct bge_rcb *rcb;
899
900 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
901 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
902 return(ENOBUFS);
903 };
904
905 sc->bge_jumbo = i - 1;
906
907 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
908 rcb->bge_maxlen_flags = 0;
909 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
910
911 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
912
913 return(0);
914 }
915
916 void
917 bge_free_rx_ring_jumbo(sc)
918 struct bge_softc *sc;
919 {
920 int i;
921
922 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
923 return;
924
925 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
926 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
927 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
928 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
929 }
930 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
931 sizeof(struct bge_rx_bd));
932 }
933
934 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
935 }
936
937 void
938 bge_free_tx_ring(sc)
939 struct bge_softc *sc;
940 {
941 int i, freed;
942 struct txdmamap_pool_entry *dma;
943
944 if (!(sc->bge_flags & BGE_TXRING_VALID))
945 return;
946
947 freed = 0;
948
949 for (i = 0; i < BGE_TX_RING_CNT; i++) {
950 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
951 freed++;
952 m_freem(sc->bge_cdata.bge_tx_chain[i]);
953 sc->bge_cdata.bge_tx_chain[i] = NULL;
954 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
955 link);
956 sc->txdma[i] = 0;
957 }
958 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
959 sizeof(struct bge_tx_bd));
960 }
961
962 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
963 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
964 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
965 free(dma, M_DEVBUF);
966 }
967
968 sc->bge_flags &= ~BGE_TXRING_VALID;
969 }
970
971 int
972 bge_init_tx_ring(sc)
973 struct bge_softc *sc;
974 {
975 int i;
976 bus_dmamap_t dmamap;
977 struct txdmamap_pool_entry *dma;
978
979 if (sc->bge_flags & BGE_TXRING_VALID)
980 return 0;
981
982 sc->bge_txcnt = 0;
983 sc->bge_tx_saved_considx = 0;
984 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
985 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
986 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
987
988 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
989 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
990 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
991
992 SLIST_INIT(&sc->txdma_list);
993 for (i = 0; i < BGE_RSLOTS; i++) {
994 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
995 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
996 &dmamap))
997 return(ENOBUFS);
998 if (dmamap == NULL)
999 panic("dmamap NULL in bge_init_tx_ring");
1000 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1001 if (dma == NULL) {
1002 printf("%s: can't alloc txdmamap_pool_entry\n",
1003 sc->bge_dev.dv_xname);
1004 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1005 return (ENOMEM);
1006 }
1007 dma->dmamap = dmamap;
1008 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1009 }
1010
1011 sc->bge_flags |= BGE_TXRING_VALID;
1012
1013 return(0);
1014 }
1015
1016 void
1017 bge_setmulti(sc)
1018 struct bge_softc *sc;
1019 {
1020 struct ethercom *ac = &sc->ethercom;
1021 struct ifnet *ifp = &ac->ec_if;
1022 struct ether_multi *enm;
1023 struct ether_multistep step;
1024 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1025 u_int32_t h;
1026 int i;
1027
1028 if (ifp->if_flags & IFF_PROMISC)
1029 goto allmulti;
1030
1031 /* Now program new ones. */
1032 ETHER_FIRST_MULTI(step, ac, enm);
1033 while (enm != NULL) {
1034 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1035 /*
1036 * We must listen to a range of multicast addresses.
1037 * For now, just accept all multicasts, rather than
1038 * trying to set only those filter bits needed to match
1039 * the range. (At this time, the only use of address
1040 * ranges is for IP multicast routing, for which the
1041 * range is big enough to require all bits set.)
1042 */
1043 goto allmulti;
1044 }
1045
1046 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1047
1048 /* Just want the 7 least-significant bits. */
1049 h &= 0x7f;
1050
1051 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1052 ETHER_NEXT_MULTI(step, enm);
1053 }
1054
1055 ifp->if_flags &= ~IFF_ALLMULTI;
1056 goto setit;
1057
1058 allmulti:
1059 ifp->if_flags |= IFF_ALLMULTI;
1060 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1061
1062 setit:
1063 for (i = 0; i < 4; i++)
1064 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1065 }
1066
1067 const int bge_swapbits[] = {
1068 0,
1069 BGE_MODECTL_BYTESWAP_DATA,
1070 BGE_MODECTL_WORDSWAP_DATA,
1071 BGE_MODECTL_BYTESWAP_NONFRAME,
1072 BGE_MODECTL_WORDSWAP_NONFRAME,
1073
1074 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1075 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1076 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1077
1078 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1079 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1080
1081 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1082
1083 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1084 BGE_MODECTL_BYTESWAP_NONFRAME,
1085 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1086 BGE_MODECTL_WORDSWAP_NONFRAME,
1087 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1088 BGE_MODECTL_WORDSWAP_NONFRAME,
1089 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1090 BGE_MODECTL_WORDSWAP_NONFRAME,
1091
1092 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1093 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1094 };
1095
1096 int bge_swapindex = 0;
1097
1098 /*
1099 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1100 * self-test results.
1101 */
1102 int
1103 bge_chipinit(sc)
1104 struct bge_softc *sc;
1105 {
1106 u_int32_t cachesize;
1107 int i;
1108 u_int32_t dma_rw_ctl;
1109 struct pci_attach_args *pa = &(sc->bge_pa);
1110
1111
1112 /* Set endianness before we access any non-PCI registers. */
1113 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1114 BGE_INIT);
1115
1116 /* Set power state to D0. */
1117 bge_setpowerstate(sc, 0);
1118
1119 /*
1120 * Check the 'ROM failed' bit on the RX CPU to see if
1121 * self-tests passed.
1122 */
1123 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1124 printf("%s: RX CPU self-diagnostics failed!\n",
1125 sc->bge_dev.dv_xname);
1126 return(ENODEV);
1127 }
1128
1129 /* Clear the MAC control register */
1130 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1131
1132 /*
1133 * Clear the MAC statistics block in the NIC's
1134 * internal memory.
1135 */
1136 for (i = BGE_STATS_BLOCK;
1137 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1138 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1139
1140 for (i = BGE_STATUS_BLOCK;
1141 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1142 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1143
1144 /* Set up the PCI DMA control register. */
1145 if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1146 BGE_PCISTATE_PCI_BUSMODE) {
1147 /* Conventional PCI bus */
1148 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1149 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1150 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1151 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1152 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1153 dma_rw_ctl |= 0x0F;
1154 }
1155 } else {
1156 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1157 /* PCI-X bus */
1158 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1159 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1160 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1161 (0x0F);
1162 /*
1163 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1164 * for hardware bugs, which means we should also clear
1165 * the low-order MINDMA bits. In addition, the 5704
1166 * uses a different encoding of read/write watermarks.
1167 */
1168 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 ||
1169 sc->bge_chipid == BGE_CHIPID_BCM5704_A1 ||
1170 sc->bge_chipid == BGE_CHIPID_BCM5704_A2 ||
1171 sc->bge_chipid == BGE_CHIPID_BCM5704_A3) {
1172 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1173 /* should be 0x1f0000 */
1174 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1175 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1176 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1177 }
1178 else if ((sc->bge_chipid >> 28) ==
1179 (BGE_CHIPID_BCM5703_A0 >> 28)) {
1180 dma_rw_ctl &= 0xfffffff0;
1181 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1182 }
1183 }
1184
1185 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1186
1187 /*
1188 * Set up general mode register.
1189 */
1190 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1191 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1192 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1193
1194 /* Get cache line size. */
1195 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1196
1197 /*
1198 * Avoid violating PCI spec on certain chip revs.
1199 */
1200 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1201 PCIM_CMD_MWIEN) {
1202 switch(cachesize) {
1203 case 1:
1204 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1205 BGE_PCI_WRITE_BNDRY_16BYTES);
1206 break;
1207 case 2:
1208 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1209 BGE_PCI_WRITE_BNDRY_32BYTES);
1210 break;
1211 case 4:
1212 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1213 BGE_PCI_WRITE_BNDRY_64BYTES);
1214 break;
1215 case 8:
1216 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1217 BGE_PCI_WRITE_BNDRY_128BYTES);
1218 break;
1219 case 16:
1220 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1221 BGE_PCI_WRITE_BNDRY_256BYTES);
1222 break;
1223 case 32:
1224 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1225 BGE_PCI_WRITE_BNDRY_512BYTES);
1226 break;
1227 case 64:
1228 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1229 BGE_PCI_WRITE_BNDRY_1024BYTES);
1230 break;
1231 default:
1232 /* Disable PCI memory write and invalidate. */
1233 #if 0
1234 if (bootverbose)
1235 printf("%s: cache line size %d not "
1236 "supported; disabling PCI MWI\n",
1237 sc->bge_dev.dv_xname, cachesize);
1238 #endif
1239 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1240 PCIM_CMD_MWIEN);
1241 break;
1242 }
1243 }
1244
1245 /*
1246 * Disable memory write invalidate. Apparently it is not supported
1247 * properly by these devices.
1248 */
1249 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1250
1251
1252 #ifdef __brokenalpha__
1253 /*
1254 * Must insure that we do not cross an 8K (bytes) boundary
1255 * for DMA reads. Our highest limit is 1K bytes. This is a
1256 * restriction on some ALPHA platforms with early revision
1257 * 21174 PCI chipsets, such as the AlphaPC 164lx
1258 */
1259 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1260 #endif
1261
1262 /* Set the timer prescaler (always 66MHz) */
1263 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1264
1265 return(0);
1266 }
1267
1268 int
1269 bge_blockinit(sc)
1270 struct bge_softc *sc;
1271 {
1272 volatile struct bge_rcb *rcb;
1273 bus_size_t rcb_addr;
1274 int i;
1275 struct ifnet *ifp = &sc->ethercom.ec_if;
1276 bge_hostaddr taddr;
1277
1278 /*
1279 * Initialize the memory window pointer register so that
1280 * we can access the first 32K of internal NIC RAM. This will
1281 * allow us to set up the TX send ring RCBs and the RX return
1282 * ring RCBs, plus other things which live in NIC memory.
1283 */
1284
1285 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1286 BGE_PCI_MEMWIN_BASEADDR, 0);
1287
1288 /* Configure mbuf memory pool */
1289 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1290 if (sc->bge_extram) {
1291 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1292 BGE_EXT_SSRAM);
1293 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1294 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1295 else
1296 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1297 } else {
1298 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1299 BGE_BUFFPOOL_1);
1300 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1301 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1302 else
1303 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1304 }
1305
1306 /* Configure DMA resource pool */
1307 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1308 BGE_DMA_DESCRIPTORS);
1309 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1310 }
1311
1312 /* Configure mbuf pool watermarks */
1313 #ifdef ORIG_WPAUL_VALUES
1314 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1315 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1316 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1317 #else
1318 /* new broadcom docs strongly recommend these: */
1319 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1320 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1321 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1322 } else {
1323 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1324 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1325 }
1326 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1327 #endif
1328
1329 /* Configure DMA resource watermarks */
1330 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1331 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1332
1333 /* Enable buffer manager */
1334 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1335 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1336 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1337
1338 /* Poll for buffer manager start indication */
1339 for (i = 0; i < BGE_TIMEOUT; i++) {
1340 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1341 break;
1342 DELAY(10);
1343 }
1344
1345 if (i == BGE_TIMEOUT) {
1346 printf("%s: buffer manager failed to start\n",
1347 sc->bge_dev.dv_xname);
1348 return(ENXIO);
1349 }
1350 }
1351
1352 /* Enable flow-through queues */
1353 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1354 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1355
1356 /* Wait until queue initialization is complete */
1357 for (i = 0; i < BGE_TIMEOUT; i++) {
1358 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1359 break;
1360 DELAY(10);
1361 }
1362
1363 if (i == BGE_TIMEOUT) {
1364 printf("%s: flow-through queue init failed\n",
1365 sc->bge_dev.dv_xname);
1366 return(ENXIO);
1367 }
1368
1369 /* Initialize the standard RX ring control block */
1370 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1371 bge_set_hostaddr(&rcb->bge_hostaddr,
1372 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1373 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1374 rcb->bge_maxlen_flags =
1375 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1376 } else {
1377 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1378 }
1379 if (sc->bge_extram)
1380 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1381 else
1382 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1383 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1384 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1385 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1386 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1387
1388 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1389 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1390 } else {
1391 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1392 }
1393
1394 /*
1395 * Initialize the jumbo RX ring control block
1396 * We set the 'ring disabled' bit in the flags
1397 * field until we're actually ready to start
1398 * using this ring (i.e. once we set the MTU
1399 * high enough to require it).
1400 */
1401 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1402 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1403 bge_set_hostaddr(&rcb->bge_hostaddr,
1404 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1405 rcb->bge_maxlen_flags =
1406 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1407 BGE_RCB_FLAG_RING_DISABLED);
1408 if (sc->bge_extram)
1409 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1410 else
1411 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1412
1413 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1414 rcb->bge_hostaddr.bge_addr_hi);
1415 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1416 rcb->bge_hostaddr.bge_addr_lo);
1417 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1418 rcb->bge_maxlen_flags);
1419 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1420
1421 /* Set up dummy disabled mini ring RCB */
1422 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1423 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1424 BGE_RCB_FLAG_RING_DISABLED);
1425 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1426 rcb->bge_maxlen_flags);
1427
1428 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1429 offsetof(struct bge_ring_data, bge_info),
1430 sizeof (struct bge_gib),
1431 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1432 }
1433
1434 /*
1435 * Set the BD ring replentish thresholds. The recommended
1436 * values are 1/8th the number of descriptors allocated to
1437 * each ring.
1438 */
1439 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1440 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1441
1442 /*
1443 * Disable all unused send rings by setting the 'ring disabled'
1444 * bit in the flags field of all the TX send ring control blocks.
1445 * These are located in NIC memory.
1446 */
1447 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1448 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1449 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1450 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1451 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1452 rcb_addr += sizeof(struct bge_rcb);
1453 }
1454
1455 /* Configure TX RCB 0 (we use only the first ring) */
1456 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1457 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1458 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1459 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1460 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1461 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1462 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1463 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1464 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1465 }
1466
1467 /* Disable all unused RX return rings */
1468 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1469 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1470 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1471 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1472 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1473 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1474 BGE_RCB_FLAG_RING_DISABLED));
1475 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1476 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1477 (i * (sizeof(u_int64_t))), 0);
1478 rcb_addr += sizeof(struct bge_rcb);
1479 }
1480
1481 /* Initialize RX ring indexes */
1482 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1483 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1484 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1485
1486 /*
1487 * Set up RX return ring 0
1488 * Note that the NIC address for RX return rings is 0x00000000.
1489 * The return rings live entirely within the host, so the
1490 * nicaddr field in the RCB isn't used.
1491 */
1492 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1493 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1494 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1495 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1496 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1497 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1498 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1499
1500 /* Set random backoff seed for TX */
1501 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1502 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1503 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1504 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1505 BGE_TX_BACKOFF_SEED_MASK);
1506
1507 /* Set inter-packet gap */
1508 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1509
1510 /*
1511 * Specify which ring to use for packets that don't match
1512 * any RX rules.
1513 */
1514 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1515
1516 /*
1517 * Configure number of RX lists. One interrupt distribution
1518 * list, sixteen active lists, one bad frames class.
1519 */
1520 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1521
1522 /* Inialize RX list placement stats mask. */
1523 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1524 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1525
1526 /* Disable host coalescing until we get it set up */
1527 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1528
1529 /* Poll to make sure it's shut down. */
1530 for (i = 0; i < BGE_TIMEOUT; i++) {
1531 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1532 break;
1533 DELAY(10);
1534 }
1535
1536 if (i == BGE_TIMEOUT) {
1537 printf("%s: host coalescing engine failed to idle\n",
1538 sc->bge_dev.dv_xname);
1539 return(ENXIO);
1540 }
1541
1542 /* Set up host coalescing defaults */
1543 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1544 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1545 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1546 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1547 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1548 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1549 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1550 }
1551 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1552 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1553
1554 /* Set up address of statistics block */
1555 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1556 bge_set_hostaddr(&taddr,
1557 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1558 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1559 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1560 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1561 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1562 }
1563
1564 /* Set up address of status block */
1565 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1566 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1567 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1568 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1569 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1570 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1571
1572 /* Turn on host coalescing state machine */
1573 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1574
1575 /* Turn on RX BD completion state machine and enable attentions */
1576 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1577 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1578
1579 /* Turn on RX list placement state machine */
1580 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1581
1582 /* Turn on RX list selector state machine. */
1583 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1584 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1585 }
1586
1587 /* Turn on DMA, clear stats */
1588 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1589 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1590 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1591 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1592 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1593
1594 /* Set misc. local control, enable interrupts on attentions */
1595 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1596
1597 #ifdef notdef
1598 /* Assert GPIO pins for PHY reset */
1599 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1600 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1601 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1602 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1603 #endif
1604
1605 #if defined(not_quite_yet)
1606 /* Linux driver enables enable gpio pin #1 on 5700s */
1607 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1608 sc->bge_local_ctrl_reg |=
1609 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1610 }
1611 #endif
1612 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1613
1614 /* Turn on DMA completion state machine */
1615 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1616 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1617 }
1618
1619 /* Turn on write DMA state machine */
1620 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1621 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1622
1623 /* Turn on read DMA state machine */
1624 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1625 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1626
1627 /* Turn on RX data completion state machine */
1628 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1629
1630 /* Turn on RX BD initiator state machine */
1631 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1632
1633 /* Turn on RX data and RX BD initiator state machine */
1634 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1635
1636 /* Turn on Mbuf cluster free state machine */
1637 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1638 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1639 }
1640
1641 /* Turn on send BD completion state machine */
1642 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1643
1644 /* Turn on send data completion state machine */
1645 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1646
1647 /* Turn on send data initiator state machine */
1648 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1649
1650 /* Turn on send BD initiator state machine */
1651 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1652
1653 /* Turn on send BD selector state machine */
1654 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1655
1656 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1657 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1658 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1659
1660 /* ack/clear link change events */
1661 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1662 BGE_MACSTAT_CFG_CHANGED);
1663 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1664
1665 /* Enable PHY auto polling (for MII/GMII only) */
1666 if (sc->bge_tbi) {
1667 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1668 } else {
1669 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1670 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1671 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1672 BGE_EVTENB_MI_INTERRUPT);
1673 }
1674
1675 /* Enable link state change attentions. */
1676 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1677
1678 return(0);
1679 }
1680
1681 static const struct bge_revision {
1682 uint32_t br_chipid;
1683 uint32_t br_quirks;
1684 const char *br_name;
1685 } bge_revisions[] = {
1686 { BGE_CHIPID_BCM5700_A0,
1687 BGE_QUIRK_LINK_STATE_BROKEN,
1688 "BCM5700 A0" },
1689
1690 { BGE_CHIPID_BCM5700_A1,
1691 BGE_QUIRK_LINK_STATE_BROKEN,
1692 "BCM5700 A1" },
1693
1694 { BGE_CHIPID_BCM5700_B0,
1695 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1696 "BCM5700 B0" },
1697
1698 { BGE_CHIPID_BCM5700_B1,
1699 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1700 "BCM5700 B1" },
1701
1702 { BGE_CHIPID_BCM5700_B2,
1703 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1704 "BCM5700 B2" },
1705
1706 /* This is treated like a BCM5700 Bx */
1707 { BGE_CHIPID_BCM5700_ALTIMA,
1708 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1709 "BCM5700 Altima" },
1710
1711 { BGE_CHIPID_BCM5700_C0,
1712 0,
1713 "BCM5700 C0" },
1714
1715 { BGE_CHIPID_BCM5701_A0,
1716 0, /*XXX really, just not known */
1717 "BCM5701 A0" },
1718
1719 { BGE_CHIPID_BCM5701_B0,
1720 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1721 "BCM5701 B0" },
1722
1723 { BGE_CHIPID_BCM5701_B2,
1724 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1725 "BCM5701 B2" },
1726
1727 { BGE_CHIPID_BCM5701_B5,
1728 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1729 "BCM5701 B5" },
1730
1731 { BGE_CHIPID_BCM5703_A0,
1732 0,
1733 "BCM5703 A0" },
1734
1735 { BGE_CHIPID_BCM5703_A1,
1736 0,
1737 "BCM5703 A1" },
1738
1739 { BGE_CHIPID_BCM5703_A2,
1740 BGE_QUIRK_ONLY_PHY_1,
1741 "BCM5703 A2" },
1742
1743 { BGE_CHIPID_BCM5704_A0,
1744 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1745 "BCM5704 A0" },
1746
1747 { BGE_CHIPID_BCM5704_A1,
1748 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1749 "BCM5704 A1" },
1750
1751 { BGE_CHIPID_BCM5704_A2,
1752 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1753 "BCM5704 A2" },
1754
1755 { BGE_CHIPID_BCM5704_A3,
1756 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1757 "BCM5704 A3" },
1758
1759 { BGE_CHIPID_BCM5705_A0,
1760 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1761 "BCM5705 A0" },
1762
1763 { BGE_CHIPID_BCM5705_A1,
1764 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1765 "BCM5705 A1" },
1766
1767 { BGE_CHIPID_BCM5705_A2,
1768 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1769 "BCM5705 A2" },
1770
1771 { BGE_CHIPID_BCM5705_A3,
1772 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1773 "BCM5705 A3" },
1774
1775 { 0, 0, NULL }
1776 };
1777
1778 /*
1779 * Some defaults for major revisions, so that newer steppings
1780 * that we don't know about have a shot at working.
1781 */
1782 static const struct bge_revision bge_majorrevs[] = {
1783 { BGE_ASICREV_BCM5700,
1784 BGE_QUIRK_LINK_STATE_BROKEN,
1785 "unknown BCM5700" },
1786
1787 { BGE_ASICREV_BCM5701,
1788 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1789 "unknown BCM5701" },
1790
1791 { BGE_ASICREV_BCM5703,
1792 0,
1793 "unknown BCM5703" },
1794
1795 { BGE_ASICREV_BCM5704,
1796 BGE_QUIRK_ONLY_PHY_1,
1797 "unknown BCM5704" },
1798
1799 { BGE_ASICREV_BCM5705,
1800 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1801 "unknown BCM5705" },
1802
1803 { 0,
1804 0,
1805 NULL }
1806 };
1807
1808
1809 static const struct bge_revision *
1810 bge_lookup_rev(uint32_t chipid)
1811 {
1812 const struct bge_revision *br;
1813
1814 for (br = bge_revisions; br->br_name != NULL; br++) {
1815 if (br->br_chipid == chipid)
1816 return (br);
1817 }
1818
1819 for (br = bge_majorrevs; br->br_name != NULL; br++) {
1820 if (br->br_chipid == BGE_ASICREV(chipid))
1821 return (br);
1822 }
1823
1824 return (NULL);
1825 }
1826
1827 static const struct bge_product {
1828 pci_vendor_id_t bp_vendor;
1829 pci_product_id_t bp_product;
1830 const char *bp_name;
1831 } bge_products[] = {
1832 /*
1833 * The BCM5700 documentation seems to indicate that the hardware
1834 * still has the Alteon vendor ID burned into it, though it
1835 * should always be overridden by the value in the EEPROM. We'll
1836 * check for it anyway.
1837 */
1838 { PCI_VENDOR_ALTEON,
1839 PCI_PRODUCT_ALTEON_BCM5700,
1840 "Broadcom BCM5700 Gigabit Ethernet",
1841 },
1842 { PCI_VENDOR_ALTEON,
1843 PCI_PRODUCT_ALTEON_BCM5701,
1844 "Broadcom BCM5701 Gigabit Ethernet",
1845 },
1846
1847 { PCI_VENDOR_ALTIMA,
1848 PCI_PRODUCT_ALTIMA_AC1000,
1849 "Altima AC1000 Gigabit Ethernet",
1850 },
1851 { PCI_VENDOR_ALTIMA,
1852 PCI_PRODUCT_ALTIMA_AC1001,
1853 "Altima AC1001 Gigabit Ethernet",
1854 },
1855 { PCI_VENDOR_ALTIMA,
1856 PCI_PRODUCT_ALTIMA_AC9100,
1857 "Altima AC9100 Gigabit Ethernet",
1858 },
1859
1860 { PCI_VENDOR_BROADCOM,
1861 PCI_PRODUCT_BROADCOM_BCM5700,
1862 "Broadcom BCM5700 Gigabit Ethernet",
1863 },
1864 { PCI_VENDOR_BROADCOM,
1865 PCI_PRODUCT_BROADCOM_BCM5701,
1866 "Broadcom BCM5701 Gigabit Ethernet",
1867 },
1868 { PCI_VENDOR_BROADCOM,
1869 PCI_PRODUCT_BROADCOM_BCM5702,
1870 "Broadcom BCM5702 Gigabit Ethernet",
1871 },
1872 { PCI_VENDOR_BROADCOM,
1873 PCI_PRODUCT_BROADCOM_BCM5702X,
1874 "Broadcom BCM5702X Gigabit Ethernet" },
1875
1876 { PCI_VENDOR_BROADCOM,
1877 PCI_PRODUCT_BROADCOM_BCM5703,
1878 "Broadcom BCM5703 Gigabit Ethernet",
1879 },
1880 { PCI_VENDOR_BROADCOM,
1881 PCI_PRODUCT_BROADCOM_BCM5703X,
1882 "Broadcom BCM5703X Gigabit Ethernet",
1883 },
1884
1885 { PCI_VENDOR_BROADCOM,
1886 PCI_PRODUCT_BROADCOM_BCM5704C,
1887 "Broadcom BCM5704C Dual Gigabit Ethernet",
1888 },
1889 { PCI_VENDOR_BROADCOM,
1890 PCI_PRODUCT_BROADCOM_BCM5704S,
1891 "Broadcom BCM5704S Dual Gigabit Ethernet",
1892 },
1893
1894 { PCI_VENDOR_BROADCOM,
1895 PCI_PRODUCT_BROADCOM_BCM5705,
1896 "Broadcom BCM5705 Gigabit Ethernet",
1897 },
1898 { PCI_VENDOR_BROADCOM,
1899 PCI_PRODUCT_BROADCOM_BCM5705_ALT,
1900 "Broadcom BCM5705 Gigabit Ethernet",
1901 },
1902 { PCI_VENDOR_BROADCOM,
1903 PCI_PRODUCT_BROADCOM_BCM5705M,
1904 "Broadcom BCM5705M Gigabit Ethernet",
1905 },
1906
1907 { PCI_VENDOR_BROADCOM,
1908 PCI_PRODUCT_BROADCOM_BCM5901,
1909 "Broadcom BCM5901 Fast Ethernet",
1910 },
1911 { PCI_VENDOR_BROADCOM,
1912 PCI_PRODUCT_BROADCOM_BCM5901A2,
1913 "Broadcom BCM5901A2 Fast Ethernet",
1914 },
1915
1916 { PCI_VENDOR_BROADCOM,
1917 PCI_PRODUCT_BROADCOM_BCM5782,
1918 "Broadcom BCM5782 Gigabit Ethernet",
1919 },
1920
1921 { PCI_VENDOR_SCHNEIDERKOCH,
1922 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1923 "SysKonnect SK-9Dx1 Gigabit Ethernet",
1924 },
1925
1926 { PCI_VENDOR_3COM,
1927 PCI_PRODUCT_3COM_3C996,
1928 "3Com 3c996 Gigabit Ethernet",
1929 },
1930
1931 { 0,
1932 0,
1933 NULL },
1934 };
1935
1936 static const struct bge_product *
1937 bge_lookup(const struct pci_attach_args *pa)
1938 {
1939 const struct bge_product *bp;
1940
1941 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1942 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1943 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1944 return (bp);
1945 }
1946
1947 return (NULL);
1948 }
1949
1950 int
1951 bge_setpowerstate(sc, powerlevel)
1952 struct bge_softc *sc;
1953 int powerlevel;
1954 {
1955 #ifdef NOTYET
1956 u_int32_t pm_ctl = 0;
1957
1958 /* XXX FIXME: make sure indirect accesses enabled? */
1959 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1960 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1961 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1962
1963 /* clear the PME_assert bit and power state bits, enable PME */
1964 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1965 pm_ctl &= ~PCIM_PSTAT_DMASK;
1966 pm_ctl |= (1 << 8);
1967
1968 if (powerlevel == 0) {
1969 pm_ctl |= PCIM_PSTAT_D0;
1970 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1971 pm_ctl, 2);
1972 DELAY(10000);
1973 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1974 DELAY(10000);
1975
1976 #ifdef NOTYET
1977 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1978 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1979 #endif
1980 DELAY(40); DELAY(40); DELAY(40);
1981 DELAY(10000); /* above not quite adequate on 5700 */
1982 return 0;
1983 }
1984
1985
1986 /*
1987 * Entering ACPI power states D1-D3 is achieved by wiggling
1988 * GMII gpio pins. Example code assumes all hardware vendors
1989 * followed Broadom's sample pcb layout. Until we verify that
1990 * for all supported OEM cards, states D1-D3 are unsupported.
1991 */
1992 printf("%s: power state %d unimplemented; check GPIO pins\n",
1993 sc->bge_dev.dv_xname, powerlevel);
1994 #endif
1995 return EOPNOTSUPP;
1996 }
1997
1998
1999 /*
2000 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2001 * against our list and return its name if we find a match. Note
2002 * that since the Broadcom controller contains VPD support, we
2003 * can get the device name string from the controller itself instead
2004 * of the compiled-in string. This is a little slow, but it guarantees
2005 * we'll always announce the right product name.
2006 */
2007 int
2008 bge_probe(parent, match, aux)
2009 struct device *parent;
2010 struct cfdata *match;
2011 void *aux;
2012 {
2013 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2014
2015 if (bge_lookup(pa) != NULL)
2016 return (1);
2017
2018 return (0);
2019 }
2020
2021 void
2022 bge_attach(parent, self, aux)
2023 struct device *parent, *self;
2024 void *aux;
2025 {
2026 struct bge_softc *sc = (struct bge_softc *)self;
2027 struct pci_attach_args *pa = aux;
2028 const struct bge_product *bp;
2029 const struct bge_revision *br;
2030 pci_chipset_tag_t pc = pa->pa_pc;
2031 pci_intr_handle_t ih;
2032 const char *intrstr = NULL;
2033 bus_dma_segment_t seg;
2034 int rseg;
2035 u_int32_t hwcfg = 0;
2036 u_int32_t mac_addr = 0;
2037 u_int32_t command;
2038 struct ifnet *ifp;
2039 caddr_t kva;
2040 u_char eaddr[ETHER_ADDR_LEN];
2041 pcireg_t memtype;
2042 bus_addr_t memaddr;
2043 bus_size_t memsize;
2044 u_int32_t pm_ctl;
2045
2046 bp = bge_lookup(pa);
2047 KASSERT(bp != NULL);
2048
2049 sc->bge_pa = *pa;
2050
2051 aprint_naive(": Ethernet controller\n");
2052 aprint_normal(": %s\n", bp->bp_name);
2053
2054 /*
2055 * Map control/status registers.
2056 */
2057 DPRINTFN(5, ("Map control/status regs\n"));
2058 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2059 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2060 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2061 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2062
2063 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2064 aprint_error("%s: failed to enable memory mapping!\n",
2065 sc->bge_dev.dv_xname);
2066 return;
2067 }
2068
2069 DPRINTFN(5, ("pci_mem_find\n"));
2070 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2071 switch (memtype) {
2072 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2073 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2074 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2075 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2076 &memaddr, &memsize) == 0)
2077 break;
2078 default:
2079 aprint_error("%s: can't find mem space\n",
2080 sc->bge_dev.dv_xname);
2081 return;
2082 }
2083
2084 DPRINTFN(5, ("pci_intr_map\n"));
2085 if (pci_intr_map(pa, &ih)) {
2086 aprint_error("%s: couldn't map interrupt\n",
2087 sc->bge_dev.dv_xname);
2088 return;
2089 }
2090
2091 DPRINTFN(5, ("pci_intr_string\n"));
2092 intrstr = pci_intr_string(pc, ih);
2093
2094 DPRINTFN(5, ("pci_intr_establish\n"));
2095 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2096
2097 if (sc->bge_intrhand == NULL) {
2098 aprint_error("%s: couldn't establish interrupt",
2099 sc->bge_dev.dv_xname);
2100 if (intrstr != NULL)
2101 aprint_normal(" at %s", intrstr);
2102 aprint_normal("\n");
2103 return;
2104 }
2105 aprint_normal("%s: interrupting at %s\n",
2106 sc->bge_dev.dv_xname, intrstr);
2107
2108 /*
2109 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2110 * can clobber the chip's PCI config-space power control registers,
2111 * leaving the card in D3 powersave state.
2112 * We do not have memory-mapped registers in this state,
2113 * so force device into D0 state before starting initialization.
2114 */
2115 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2116 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2117 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2118 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2119 DELAY(1000); /* 27 usec is allegedly sufficent */
2120
2121 /* Try to reset the chip. */
2122 DPRINTFN(5, ("bge_reset\n"));
2123 bge_reset(sc);
2124
2125 if (bge_chipinit(sc)) {
2126 aprint_error("%s: chip initialization failed\n",
2127 sc->bge_dev.dv_xname);
2128 bge_release_resources(sc);
2129 return;
2130 }
2131
2132 /*
2133 * Get station address from the EEPROM.
2134 */
2135 mac_addr = bge_readmem_ind(sc, 0x0c14);
2136 if ((mac_addr >> 16) == 0x484b) {
2137 eaddr[0] = (u_char)(mac_addr >> 8);
2138 eaddr[1] = (u_char)(mac_addr >> 0);
2139 mac_addr = bge_readmem_ind(sc, 0x0c18);
2140 eaddr[2] = (u_char)(mac_addr >> 24);
2141 eaddr[3] = (u_char)(mac_addr >> 16);
2142 eaddr[4] = (u_char)(mac_addr >> 8);
2143 eaddr[5] = (u_char)(mac_addr >> 0);
2144 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2145 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2146 aprint_error("%s: failed to read station address\n",
2147 sc->bge_dev.dv_xname);
2148 bge_release_resources(sc);
2149 return;
2150 }
2151
2152 /*
2153 * Save ASIC rev. Look up any quirks associated with this
2154 * ASIC.
2155 */
2156 sc->bge_chipid =
2157 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2158 BGE_PCIMISCCTL_ASICREV;
2159 br = bge_lookup_rev(sc->bge_chipid);
2160
2161 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2162
2163 if (br == NULL) {
2164 aprint_normal("unknown ASIC 0x%08x", sc->bge_chipid);
2165 sc->bge_quirks = 0;
2166 } else {
2167 aprint_normal("ASIC %s", br->br_name);
2168 sc->bge_quirks |= br->br_quirks;
2169 }
2170 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2171
2172 /* Allocate the general information block and ring buffers. */
2173 if (pci_dma64_available(pa))
2174 sc->bge_dmatag = pa->pa_dmat64;
2175 else
2176 sc->bge_dmatag = pa->pa_dmat;
2177 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2178 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2179 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2180 aprint_error("%s: can't alloc rx buffers\n",
2181 sc->bge_dev.dv_xname);
2182 return;
2183 }
2184 DPRINTFN(5, ("bus_dmamem_map\n"));
2185 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2186 sizeof(struct bge_ring_data), &kva,
2187 BUS_DMA_NOWAIT)) {
2188 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2189 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2190 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2191 return;
2192 }
2193 DPRINTFN(5, ("bus_dmamem_create\n"));
2194 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2195 sizeof(struct bge_ring_data), 0,
2196 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2197 aprint_error("%s: can't create DMA map\n",
2198 sc->bge_dev.dv_xname);
2199 bus_dmamem_unmap(sc->bge_dmatag, kva,
2200 sizeof(struct bge_ring_data));
2201 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2202 return;
2203 }
2204 DPRINTFN(5, ("bus_dmamem_load\n"));
2205 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2206 sizeof(struct bge_ring_data), NULL,
2207 BUS_DMA_NOWAIT)) {
2208 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2209 bus_dmamem_unmap(sc->bge_dmatag, kva,
2210 sizeof(struct bge_ring_data));
2211 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2212 return;
2213 }
2214
2215 DPRINTFN(5, ("bzero\n"));
2216 sc->bge_rdata = (struct bge_ring_data *)kva;
2217
2218 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2219
2220 /* Try to allocate memory for jumbo buffers. */
2221 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2222 if (bge_alloc_jumbo_mem(sc)) {
2223 aprint_error("%s: jumbo buffer allocation failed\n",
2224 sc->bge_dev.dv_xname);
2225 } else
2226 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2227 }
2228
2229 /* Set default tuneable values. */
2230 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2231 sc->bge_rx_coal_ticks = 150;
2232 sc->bge_rx_max_coal_bds = 64;
2233 #ifdef ORIG_WPAUL_VALUES
2234 sc->bge_tx_coal_ticks = 150;
2235 sc->bge_tx_max_coal_bds = 128;
2236 #else
2237 sc->bge_tx_coal_ticks = 300;
2238 sc->bge_tx_max_coal_bds = 400;
2239 #endif
2240
2241 /* Set up ifnet structure */
2242 ifp = &sc->ethercom.ec_if;
2243 ifp->if_softc = sc;
2244 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2245 ifp->if_ioctl = bge_ioctl;
2246 ifp->if_start = bge_start;
2247 ifp->if_init = bge_init;
2248 ifp->if_watchdog = bge_watchdog;
2249 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2250 IFQ_SET_READY(&ifp->if_snd);
2251 DPRINTFN(5, ("bcopy\n"));
2252 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2253
2254 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2255 sc->ethercom.ec_if.if_capabilities |=
2256 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2257 sc->ethercom.ec_capabilities |=
2258 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2259
2260 /*
2261 * Do MII setup.
2262 */
2263 DPRINTFN(5, ("mii setup\n"));
2264 sc->bge_mii.mii_ifp = ifp;
2265 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2266 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2267 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2268
2269 /*
2270 * Figure out what sort of media we have by checking the
2271 * hardware config word in the first 32k of NIC internal memory,
2272 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2273 * cards, this value appears to be unset. If that's the
2274 * case, we have to rely on identifying the NIC by its PCI
2275 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2276 */
2277 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2278 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2279 } else {
2280 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2281 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2282 hwcfg = be32toh(hwcfg);
2283 }
2284 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2285 sc->bge_tbi = 1;
2286
2287 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2288 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2289 SK_SUBSYSID_9D41)
2290 sc->bge_tbi = 1;
2291
2292 if (sc->bge_tbi) {
2293 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2294 bge_ifmedia_sts);
2295 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2296 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2297 0, NULL);
2298 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2299 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2300 } else {
2301 /*
2302 * Do transceiver setup.
2303 */
2304 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2305 bge_ifmedia_sts);
2306 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2307 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
2308
2309 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2310 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2311 ifmedia_add(&sc->bge_mii.mii_media,
2312 IFM_ETHER|IFM_MANUAL, 0, NULL);
2313 ifmedia_set(&sc->bge_mii.mii_media,
2314 IFM_ETHER|IFM_MANUAL);
2315 } else
2316 ifmedia_set(&sc->bge_mii.mii_media,
2317 IFM_ETHER|IFM_AUTO);
2318 }
2319
2320 /*
2321 * When using the BCM5701 in PCI-X mode, data corruption has
2322 * been observed in the first few bytes of some received packets.
2323 * Aligning the packet buffer in memory eliminates the corruption.
2324 * Unfortunately, this misaligns the packet payloads. On platforms
2325 * which do not support unaligned accesses, we will realign the
2326 * payloads by copying the received packets.
2327 */
2328 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2329 /* If in PCI-X mode, work around the alignment bug. */
2330 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2331 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2332 BGE_PCISTATE_PCI_BUSSPEED)
2333 sc->bge_rx_alignment_bug = 1;
2334 }
2335
2336 /*
2337 * Call MI attach routine.
2338 */
2339 DPRINTFN(5, ("if_attach\n"));
2340 if_attach(ifp);
2341 DPRINTFN(5, ("ether_ifattach\n"));
2342 ether_ifattach(ifp, eaddr);
2343 DPRINTFN(5, ("callout_init\n"));
2344 callout_init(&sc->bge_timeout);
2345 }
2346
2347 void
2348 bge_release_resources(sc)
2349 struct bge_softc *sc;
2350 {
2351 if (sc->bge_vpd_prodname != NULL)
2352 free(sc->bge_vpd_prodname, M_DEVBUF);
2353
2354 if (sc->bge_vpd_readonly != NULL)
2355 free(sc->bge_vpd_readonly, M_DEVBUF);
2356 }
2357
2358 void
2359 bge_reset(sc)
2360 struct bge_softc *sc;
2361 {
2362 struct pci_attach_args *pa = &sc->bge_pa;
2363 u_int32_t cachesize, command, pcistate;
2364 int i, val = 0;
2365
2366 /* Save some important PCI state. */
2367 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2368 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2369 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2370
2371 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2372 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2373 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2374
2375 /* Issue global reset */
2376 bge_writereg_ind(sc, BGE_MISC_CFG,
2377 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2378
2379 DELAY(1000);
2380
2381 /* Reset some of the PCI state that got zapped by reset */
2382 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2383 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2384 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2385 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2386 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2387 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2388
2389 /* Enable memory arbiter. */
2390 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2391 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2392 }
2393
2394 /*
2395 * Prevent PXE restart: write a magic number to the
2396 * general communications memory at 0xB50.
2397 */
2398 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2399
2400 /*
2401 * Poll the value location we just wrote until
2402 * we see the 1's complement of the magic number.
2403 * This indicates that the firmware initialization
2404 * is complete.
2405 */
2406 for (i = 0; i < 750; i++) {
2407 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2408 if (val == ~BGE_MAGIC_NUMBER)
2409 break;
2410 DELAY(1000);
2411 }
2412
2413 if (i == 750) {
2414 printf("%s: firmware handshake timed out, val = %x\n",
2415 sc->bge_dev.dv_xname, val);
2416 return;
2417 }
2418
2419 /*
2420 * XXX Wait for the value of the PCISTATE register to
2421 * return to its original pre-reset state. This is a
2422 * fairly good indicator of reset completion. If we don't
2423 * wait for the reset to fully complete, trying to read
2424 * from the device's non-PCI registers may yield garbage
2425 * results.
2426 */
2427 for (i = 0; i < BGE_TIMEOUT; i++) {
2428 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2429 pcistate)
2430 break;
2431 DELAY(10);
2432 }
2433
2434 /* Enable memory arbiter. */
2435 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2436 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2437 }
2438
2439 /* Fix up byte swapping */
2440 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2441
2442 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2443
2444 DELAY(10000);
2445 }
2446
2447 /*
2448 * Frame reception handling. This is called if there's a frame
2449 * on the receive return list.
2450 *
2451 * Note: we have to be able to handle two possibilities here:
2452 * 1) the frame is from the jumbo recieve ring
2453 * 2) the frame is from the standard receive ring
2454 */
2455
2456 void
2457 bge_rxeof(sc)
2458 struct bge_softc *sc;
2459 {
2460 struct ifnet *ifp;
2461 int stdcnt = 0, jumbocnt = 0;
2462 int have_tag = 0;
2463 u_int16_t vlan_tag = 0;
2464 bus_dmamap_t dmamap;
2465 bus_addr_t offset, toff;
2466 bus_size_t tlen;
2467 int tosync;
2468
2469 ifp = &sc->ethercom.ec_if;
2470
2471 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2472 offsetof(struct bge_ring_data, bge_status_block),
2473 sizeof (struct bge_status_block),
2474 BUS_DMASYNC_POSTREAD);
2475
2476 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2477 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2478 sc->bge_rx_saved_considx;
2479
2480 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2481
2482 if (tosync < 0) {
2483 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2484 sizeof (struct bge_rx_bd);
2485 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2486 toff, tlen, BUS_DMASYNC_POSTREAD);
2487 tosync = -tosync;
2488 }
2489
2490 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2491 offset, tosync * sizeof (struct bge_rx_bd),
2492 BUS_DMASYNC_POSTREAD);
2493
2494 while(sc->bge_rx_saved_considx !=
2495 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2496 struct bge_rx_bd *cur_rx;
2497 u_int32_t rxidx;
2498 struct mbuf *m = NULL;
2499
2500 cur_rx = &sc->bge_rdata->
2501 bge_rx_return_ring[sc->bge_rx_saved_considx];
2502
2503 rxidx = cur_rx->bge_idx;
2504 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2505
2506 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2507 have_tag = 1;
2508 vlan_tag = cur_rx->bge_vlan_tag;
2509 }
2510
2511 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2512 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2513 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2514 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2515 jumbocnt++;
2516 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2517 ifp->if_ierrors++;
2518 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2519 continue;
2520 }
2521 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2522 NULL)== ENOBUFS) {
2523 ifp->if_ierrors++;
2524 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2525 continue;
2526 }
2527 } else {
2528 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2529 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2530 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2531 stdcnt++;
2532 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2533 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2534 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2535 ifp->if_ierrors++;
2536 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2537 continue;
2538 }
2539 if (bge_newbuf_std(sc, sc->bge_std,
2540 NULL, dmamap) == ENOBUFS) {
2541 ifp->if_ierrors++;
2542 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2543 continue;
2544 }
2545 }
2546
2547 ifp->if_ipackets++;
2548 #ifndef __NO_STRICT_ALIGNMENT
2549 /*
2550 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2551 * the Rx buffer has the layer-2 header unaligned.
2552 * If our CPU requires alignment, re-align by copying.
2553 */
2554 if (sc->bge_rx_alignment_bug) {
2555 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2556 cur_rx->bge_len);
2557 m->m_data += ETHER_ALIGN;
2558 }
2559 #endif
2560
2561 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2562 m->m_pkthdr.rcvif = ifp;
2563
2564 #if NBPFILTER > 0
2565 /*
2566 * Handle BPF listeners. Let the BPF user see the packet.
2567 */
2568 if (ifp->if_bpf)
2569 bpf_mtap(ifp->if_bpf, m);
2570 #endif
2571
2572 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2573
2574 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2575 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2576 /*
2577 * Rx transport checksum-offload may also
2578 * have bugs with packets which, when transmitted,
2579 * were `runts' requiring padding.
2580 */
2581 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2582 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2583 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2584 m->m_pkthdr.csum_data =
2585 cur_rx->bge_tcp_udp_csum;
2586 m->m_pkthdr.csum_flags |=
2587 (M_CSUM_TCPv4|M_CSUM_UDPv4|
2588 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2589 }
2590
2591 /*
2592 * If we received a packet with a vlan tag, pass it
2593 * to vlan_input() instead of ether_input().
2594 */
2595 if (have_tag) {
2596 struct m_tag *mtag;
2597
2598 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2599 M_NOWAIT);
2600 if (mtag != NULL) {
2601 *(u_int *)(mtag + 1) = vlan_tag;
2602 m_tag_prepend(m, mtag);
2603 have_tag = vlan_tag = 0;
2604 } else {
2605 printf("%s: no mbuf for tag\n", ifp->if_xname);
2606 m_freem(m);
2607 have_tag = vlan_tag = 0;
2608 continue;
2609 }
2610 }
2611 (*ifp->if_input)(ifp, m);
2612 }
2613
2614 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2615 if (stdcnt)
2616 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2617 if (jumbocnt)
2618 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2619 }
2620
2621 void
2622 bge_txeof(sc)
2623 struct bge_softc *sc;
2624 {
2625 struct bge_tx_bd *cur_tx = NULL;
2626 struct ifnet *ifp;
2627 struct txdmamap_pool_entry *dma;
2628 bus_addr_t offset, toff;
2629 bus_size_t tlen;
2630 int tosync;
2631 struct mbuf *m;
2632
2633 ifp = &sc->ethercom.ec_if;
2634
2635 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2636 offsetof(struct bge_ring_data, bge_status_block),
2637 sizeof (struct bge_status_block),
2638 BUS_DMASYNC_POSTREAD);
2639
2640 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2641 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2642 sc->bge_tx_saved_considx;
2643
2644 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2645
2646 if (tosync < 0) {
2647 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2648 sizeof (struct bge_tx_bd);
2649 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2650 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2651 tosync = -tosync;
2652 }
2653
2654 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2655 offset, tosync * sizeof (struct bge_tx_bd),
2656 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2657
2658 /*
2659 * Go through our tx ring and free mbufs for those
2660 * frames that have been sent.
2661 */
2662 while (sc->bge_tx_saved_considx !=
2663 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2664 u_int32_t idx = 0;
2665
2666 idx = sc->bge_tx_saved_considx;
2667 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2668 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2669 ifp->if_opackets++;
2670 m = sc->bge_cdata.bge_tx_chain[idx];
2671 if (m != NULL) {
2672 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2673 dma = sc->txdma[idx];
2674 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2675 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2676 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2677 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2678 sc->txdma[idx] = NULL;
2679
2680 m_freem(m);
2681 }
2682 sc->bge_txcnt--;
2683 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2684 ifp->if_timer = 0;
2685 }
2686
2687 if (cur_tx != NULL)
2688 ifp->if_flags &= ~IFF_OACTIVE;
2689 }
2690
2691 int
2692 bge_intr(xsc)
2693 void *xsc;
2694 {
2695 struct bge_softc *sc;
2696 struct ifnet *ifp;
2697
2698 sc = xsc;
2699 ifp = &sc->ethercom.ec_if;
2700
2701 #ifdef notdef
2702 /* Avoid this for now -- checking this register is expensive. */
2703 /* Make sure this is really our interrupt. */
2704 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2705 return (0);
2706 #endif
2707 /* Ack interrupt and stop others from occuring. */
2708 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2709
2710 /*
2711 * Process link state changes.
2712 * Grrr. The link status word in the status block does
2713 * not work correctly on the BCM5700 rev AX and BX chips,
2714 * according to all avaibable information. Hence, we have
2715 * to enable MII interrupts in order to properly obtain
2716 * async link changes. Unfortunately, this also means that
2717 * we have to read the MAC status register to detect link
2718 * changes, thereby adding an additional register access to
2719 * the interrupt handler.
2720 */
2721
2722 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2723 u_int32_t status;
2724
2725 status = CSR_READ_4(sc, BGE_MAC_STS);
2726 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2727 sc->bge_link = 0;
2728 callout_stop(&sc->bge_timeout);
2729 bge_tick(sc);
2730 /* Clear the interrupt */
2731 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2732 BGE_EVTENB_MI_INTERRUPT);
2733 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2734 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2735 BRGPHY_INTRS);
2736 }
2737 } else {
2738 if (sc->bge_rdata->bge_status_block.bge_status &
2739 BGE_STATFLAG_LINKSTATE_CHANGED) {
2740 sc->bge_link = 0;
2741 callout_stop(&sc->bge_timeout);
2742 bge_tick(sc);
2743 /* Clear the interrupt */
2744 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2745 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2746 BGE_MACSTAT_LINK_CHANGED);
2747 }
2748 }
2749
2750 if (ifp->if_flags & IFF_RUNNING) {
2751 /* Check RX return ring producer/consumer */
2752 bge_rxeof(sc);
2753
2754 /* Check TX ring producer/consumer */
2755 bge_txeof(sc);
2756 }
2757
2758 bge_handle_events(sc);
2759
2760 /* Re-enable interrupts. */
2761 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2762
2763 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2764 bge_start(ifp);
2765
2766 return (1);
2767 }
2768
2769 void
2770 bge_tick(xsc)
2771 void *xsc;
2772 {
2773 struct bge_softc *sc = xsc;
2774 struct mii_data *mii = &sc->bge_mii;
2775 struct ifmedia *ifm = NULL;
2776 struct ifnet *ifp = &sc->ethercom.ec_if;
2777 int s;
2778
2779 s = splnet();
2780
2781 bge_stats_update(sc);
2782 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2783 if (sc->bge_link) {
2784 splx(s);
2785 return;
2786 }
2787
2788 if (sc->bge_tbi) {
2789 ifm = &sc->bge_ifmedia;
2790 if (CSR_READ_4(sc, BGE_MAC_STS) &
2791 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2792 sc->bge_link++;
2793 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2794 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2795 bge_start(ifp);
2796 }
2797 splx(s);
2798 return;
2799 }
2800
2801 mii_tick(mii);
2802
2803 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2804 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2805 sc->bge_link++;
2806 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2807 bge_start(ifp);
2808 }
2809
2810 splx(s);
2811 }
2812
2813 void
2814 bge_stats_update(sc)
2815 struct bge_softc *sc;
2816 {
2817 struct ifnet *ifp = &sc->ethercom.ec_if;
2818 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2819 bus_size_t rstats = BGE_RX_STATS;
2820
2821 #define READ_RSTAT(sc, stats, stat) \
2822 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
2823
2824 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2825 ifp->if_collisions +=
2826 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
2827 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
2828 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
2829 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
2830 return;
2831 }
2832
2833 #undef READ_RSTAT
2834 #define READ_STAT(sc, stats, stat) \
2835 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2836
2837 ifp->if_collisions +=
2838 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2839 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2840 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2841 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2842 ifp->if_collisions;
2843
2844 #undef READ_STAT
2845
2846 #ifdef notdef
2847 ifp->if_collisions +=
2848 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2849 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2850 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2851 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2852 ifp->if_collisions;
2853 #endif
2854 }
2855
2856 /*
2857 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
2858 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
2859 * but when such padded frames employ the bge IP/TCP checksum offload,
2860 * the hardware checksum assist gives incorrect results (possibly
2861 * from incorporating its own padding into the UDP/TCP checksum; who knows).
2862 * If we pad such runts with zeros, the onboard checksum comes out correct.
2863 */
2864 static __inline int
2865 bge_cksum_pad(struct mbuf *pkt)
2866 {
2867 struct mbuf *last = NULL;
2868 int padlen;
2869
2870 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
2871
2872 /* if there's only the packet-header and we can pad there, use it. */
2873 if (pkt->m_pkthdr.len == pkt->m_len &&
2874 !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
2875 last = pkt;
2876 } else {
2877 /*
2878 * Walk packet chain to find last mbuf. We will either
2879 * pad there, or append a new mbuf and pad it
2880 * (thus perhaps avoiding the bcm5700 dma-min bug).
2881 */
2882 for (last = pkt; last->m_next != NULL; last = last->m_next) {
2883 (void) 0; /* do nothing*/
2884 }
2885
2886 /* `last' now points to last in chain. */
2887 if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
2888 (void) 0; /* we can pad here, in-place. */
2889 } else {
2890 /* Allocate new empty mbuf, pad it. Compact later. */
2891 struct mbuf *n;
2892 MGET(n, M_DONTWAIT, MT_DATA);
2893 n->m_len = 0;
2894 last->m_next = n;
2895 last = n;
2896 }
2897 }
2898
2899 #ifdef DEBUG
2900 /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
2901 KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
2902 #endif
2903 /* Now zero the pad area, to avoid the bge cksum-assist bug */
2904 memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
2905 last->m_len += padlen;
2906 pkt->m_pkthdr.len += padlen;
2907 return 0;
2908 }
2909
2910 /*
2911 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
2912 */
2913 static __inline int
2914 bge_compact_dma_runt(struct mbuf *pkt)
2915 {
2916 struct mbuf *m, *prev;
2917 int totlen, prevlen;
2918
2919 prev = NULL;
2920 totlen = 0;
2921 prevlen = -1;
2922
2923 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
2924 int mlen = m->m_len;
2925 int shortfall = 8 - mlen ;
2926
2927 totlen += mlen;
2928 if (mlen == 0) {
2929 continue;
2930 }
2931 if (mlen >= 8)
2932 continue;
2933
2934 /* If we get here, mbuf data is too small for DMA engine.
2935 * Try to fix by shuffling data to prev or next in chain.
2936 * If that fails, do a compacting deep-copy of the whole chain.
2937 */
2938
2939 /* Internal frag. If fits in prev, copy it there. */
2940 if (prev && !M_READONLY(prev) &&
2941 M_TRAILINGSPACE(prev) >= m->m_len) {
2942 bcopy(m->m_data,
2943 prev->m_data+prev->m_len,
2944 mlen);
2945 prev->m_len += mlen;
2946 m->m_len = 0;
2947 /* XXX stitch chain */
2948 prev->m_next = m_free(m);
2949 m = prev;
2950 continue;
2951 }
2952 else if (m->m_next != NULL && !M_READONLY(m) &&
2953 M_TRAILINGSPACE(m) >= shortfall &&
2954 m->m_next->m_len >= (8 + shortfall)) {
2955 /* m is writable and have enough data in next, pull up. */
2956
2957 bcopy(m->m_next->m_data,
2958 m->m_data+m->m_len,
2959 shortfall);
2960 m->m_len += shortfall;
2961 m->m_next->m_len -= shortfall;
2962 m->m_next->m_data += shortfall;
2963 }
2964 else if (m->m_next == NULL || 1) {
2965 /* Got a runt at the very end of the packet.
2966 * borrow data from the tail of the preceding mbuf and
2967 * update its length in-place. (The original data is still
2968 * valid, so we can do this even if prev is not writable.)
2969 */
2970
2971 /* if we'd make prev a runt, just move all of its data. */
2972 #ifdef DEBUG
2973 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
2974 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
2975 #endif
2976 if ((prev->m_len - shortfall) < 8)
2977 shortfall = prev->m_len;
2978
2979 #ifdef notyet /* just do the safe slow thing for now */
2980 if (!M_READONLY(m)) {
2981 if (M_LEADINGSPACE(m) < shorfall) {
2982 void *m_dat;
2983 m_dat = (m->m_flags & M_PKTHDR) ?
2984 m->m_pktdat : m->dat;
2985 memmove(m_dat, mtod(m, void*), m->m_len);
2986 m->m_data = m_dat;
2987 }
2988 } else
2989 #endif /* just do the safe slow thing */
2990 {
2991 struct mbuf * n = NULL;
2992 int newprevlen = prev->m_len - shortfall;
2993
2994 MGET(n, M_NOWAIT, MT_DATA);
2995 if (n == NULL)
2996 return ENOBUFS;
2997 KASSERT(m->m_len + shortfall < MLEN
2998 /*,
2999 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3000
3001 /* first copy the data we're stealing from prev */
3002 bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3003
3004 /* update prev->m_len accordingly */
3005 prev->m_len -= shortfall;
3006
3007 /* copy data from runt m */
3008 bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3009
3010 /* n holds what we stole from prev, plus m */
3011 n->m_len = shortfall + m->m_len;
3012
3013 /* stitch n into chain and free m */
3014 n->m_next = m->m_next;
3015 prev->m_next = n;
3016 /* KASSERT(m->m_next == NULL); */
3017 m->m_next = NULL;
3018 m_free(m);
3019 m = n; /* for continuing loop */
3020 }
3021 }
3022 prevlen = m->m_len;
3023 }
3024 return 0;
3025 }
3026
3027 /*
3028 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3029 * pointers to descriptors.
3030 */
3031 int
3032 bge_encap(sc, m_head, txidx)
3033 struct bge_softc *sc;
3034 struct mbuf *m_head;
3035 u_int32_t *txidx;
3036 {
3037 struct bge_tx_bd *f = NULL;
3038 u_int32_t frag, cur, cnt = 0;
3039 u_int16_t csum_flags = 0;
3040 struct txdmamap_pool_entry *dma;
3041 bus_dmamap_t dmamap;
3042 int i = 0;
3043 struct m_tag *mtag;
3044
3045 cur = frag = *txidx;
3046
3047 if (m_head->m_pkthdr.csum_flags) {
3048 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3049 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3050 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3051 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3052 }
3053
3054 /*
3055 * If we were asked to do an outboard checksum, and the NIC
3056 * has the bug where it sometimes adds in the Ethernet padding,
3057 * explicitly pad with zeros so the cksum will be correct either way.
3058 * (For now, do this for all chip versions, until newer
3059 * are confirmed to not require the workaround.)
3060 */
3061 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3062 #ifdef notyet
3063 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3064 #endif
3065 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3066 goto check_dma_bug;
3067
3068 if (bge_cksum_pad(m_head) != 0)
3069 return ENOBUFS;
3070
3071 check_dma_bug:
3072 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3073 goto doit;
3074 /*
3075 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3076 * less than eight bytes. If we encounter a teeny mbuf
3077 * at the end of a chain, we can pad. Otherwise, copy.
3078 */
3079 if (bge_compact_dma_runt(m_head) != 0)
3080 return ENOBUFS;
3081
3082 doit:
3083 dma = SLIST_FIRST(&sc->txdma_list);
3084 if (dma == NULL)
3085 return ENOBUFS;
3086 dmamap = dma->dmamap;
3087
3088 /*
3089 * Start packing the mbufs in this chain into
3090 * the fragment pointers. Stop when we run out
3091 * of fragments or hit the end of the mbuf chain.
3092 */
3093 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3094 BUS_DMA_NOWAIT))
3095 return(ENOBUFS);
3096
3097 mtag = sc->ethercom.ec_nvlans ?
3098 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3099
3100 for (i = 0; i < dmamap->dm_nsegs; i++) {
3101 f = &sc->bge_rdata->bge_tx_ring[frag];
3102 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3103 break;
3104 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3105 f->bge_len = dmamap->dm_segs[i].ds_len;
3106 f->bge_flags = csum_flags;
3107
3108 if (mtag != NULL) {
3109 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3110 f->bge_vlan_tag = *(u_int *)(mtag + 1);
3111 } else {
3112 f->bge_vlan_tag = 0;
3113 }
3114 /*
3115 * Sanity check: avoid coming within 16 descriptors
3116 * of the end of the ring.
3117 */
3118 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
3119 return(ENOBUFS);
3120 cur = frag;
3121 BGE_INC(frag, BGE_TX_RING_CNT);
3122 cnt++;
3123 }
3124
3125 if (i < dmamap->dm_nsegs)
3126 return ENOBUFS;
3127
3128 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3129 BUS_DMASYNC_PREWRITE);
3130
3131 if (frag == sc->bge_tx_saved_considx)
3132 return(ENOBUFS);
3133
3134 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3135 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3136 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3137 sc->txdma[cur] = dma;
3138 sc->bge_txcnt += cnt;
3139
3140 *txidx = frag;
3141
3142 return(0);
3143 }
3144
3145 /*
3146 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3147 * to the mbuf data regions directly in the transmit descriptors.
3148 */
3149 void
3150 bge_start(ifp)
3151 struct ifnet *ifp;
3152 {
3153 struct bge_softc *sc;
3154 struct mbuf *m_head = NULL;
3155 u_int32_t prodidx = 0;
3156 int pkts = 0;
3157
3158 sc = ifp->if_softc;
3159
3160 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3161 return;
3162
3163 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
3164
3165 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3166 IFQ_POLL(&ifp->if_snd, m_head);
3167 if (m_head == NULL)
3168 break;
3169
3170 #if 0
3171 /*
3172 * XXX
3173 * safety overkill. If this is a fragmented packet chain
3174 * with delayed TCP/UDP checksums, then only encapsulate
3175 * it if we have enough descriptors to handle the entire
3176 * chain at once.
3177 * (paranoia -- may not actually be needed)
3178 */
3179 if (m_head->m_flags & M_FIRSTFRAG &&
3180 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3181 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3182 m_head->m_pkthdr.csum_data + 16) {
3183 ifp->if_flags |= IFF_OACTIVE;
3184 break;
3185 }
3186 }
3187 #endif
3188
3189 /*
3190 * Pack the data into the transmit ring. If we
3191 * don't have room, set the OACTIVE flag and wait
3192 * for the NIC to drain the ring.
3193 */
3194 if (bge_encap(sc, m_head, &prodidx)) {
3195 ifp->if_flags |= IFF_OACTIVE;
3196 break;
3197 }
3198
3199 /* now we are committed to transmit the packet */
3200 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3201 pkts++;
3202
3203 #if NBPFILTER > 0
3204 /*
3205 * If there's a BPF listener, bounce a copy of this frame
3206 * to him.
3207 */
3208 if (ifp->if_bpf)
3209 bpf_mtap(ifp->if_bpf, m_head);
3210 #endif
3211 }
3212 if (pkts == 0)
3213 return;
3214
3215 /* Transmit */
3216 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3217 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3218 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3219
3220 /*
3221 * Set a timeout in case the chip goes out to lunch.
3222 */
3223 ifp->if_timer = 5;
3224 }
3225
3226 int
3227 bge_init(ifp)
3228 struct ifnet *ifp;
3229 {
3230 struct bge_softc *sc = ifp->if_softc;
3231 u_int16_t *m;
3232 int s, error;
3233
3234 s = splnet();
3235
3236 ifp = &sc->ethercom.ec_if;
3237
3238 /* Cancel pending I/O and flush buffers. */
3239 bge_stop(sc);
3240 bge_reset(sc);
3241 bge_chipinit(sc);
3242
3243 /*
3244 * Init the various state machines, ring
3245 * control blocks and firmware.
3246 */
3247 error = bge_blockinit(sc);
3248 if (error != 0) {
3249 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3250 error);
3251 splx(s);
3252 return error;
3253 }
3254
3255 ifp = &sc->ethercom.ec_if;
3256
3257 /* Specify MTU. */
3258 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3259 ETHER_HDR_LEN + ETHER_CRC_LEN);
3260
3261 /* Load our MAC address. */
3262 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3263 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3264 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3265
3266 /* Enable or disable promiscuous mode as needed. */
3267 if (ifp->if_flags & IFF_PROMISC) {
3268 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3269 } else {
3270 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3271 }
3272
3273 /* Program multicast filter. */
3274 bge_setmulti(sc);
3275
3276 /* Init RX ring. */
3277 bge_init_rx_ring_std(sc);
3278
3279 /* Init jumbo RX ring. */
3280 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3281 bge_init_rx_ring_jumbo(sc);
3282
3283 /* Init our RX return ring index */
3284 sc->bge_rx_saved_considx = 0;
3285
3286 /* Init TX ring. */
3287 bge_init_tx_ring(sc);
3288
3289 /* Turn on transmitter */
3290 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3291
3292 /* Turn on receiver */
3293 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3294
3295 /* Tell firmware we're alive. */
3296 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3297
3298 /* Enable host interrupts. */
3299 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3300 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3301 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3302
3303 bge_ifmedia_upd(ifp);
3304
3305 ifp->if_flags |= IFF_RUNNING;
3306 ifp->if_flags &= ~IFF_OACTIVE;
3307
3308 splx(s);
3309
3310 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3311
3312 return 0;
3313 }
3314
3315 /*
3316 * Set media options.
3317 */
3318 int
3319 bge_ifmedia_upd(ifp)
3320 struct ifnet *ifp;
3321 {
3322 struct bge_softc *sc = ifp->if_softc;
3323 struct mii_data *mii = &sc->bge_mii;
3324 struct ifmedia *ifm = &sc->bge_ifmedia;
3325
3326 /* If this is a 1000baseX NIC, enable the TBI port. */
3327 if (sc->bge_tbi) {
3328 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3329 return(EINVAL);
3330 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3331 case IFM_AUTO:
3332 break;
3333 case IFM_1000_SX:
3334 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3335 BGE_CLRBIT(sc, BGE_MAC_MODE,
3336 BGE_MACMODE_HALF_DUPLEX);
3337 } else {
3338 BGE_SETBIT(sc, BGE_MAC_MODE,
3339 BGE_MACMODE_HALF_DUPLEX);
3340 }
3341 break;
3342 default:
3343 return(EINVAL);
3344 }
3345 return(0);
3346 }
3347
3348 sc->bge_link = 0;
3349 mii_mediachg(mii);
3350
3351 return(0);
3352 }
3353
3354 /*
3355 * Report current media status.
3356 */
3357 void
3358 bge_ifmedia_sts(ifp, ifmr)
3359 struct ifnet *ifp;
3360 struct ifmediareq *ifmr;
3361 {
3362 struct bge_softc *sc = ifp->if_softc;
3363 struct mii_data *mii = &sc->bge_mii;
3364
3365 if (sc->bge_tbi) {
3366 ifmr->ifm_status = IFM_AVALID;
3367 ifmr->ifm_active = IFM_ETHER;
3368 if (CSR_READ_4(sc, BGE_MAC_STS) &
3369 BGE_MACSTAT_TBI_PCS_SYNCHED)
3370 ifmr->ifm_status |= IFM_ACTIVE;
3371 ifmr->ifm_active |= IFM_1000_SX;
3372 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3373 ifmr->ifm_active |= IFM_HDX;
3374 else
3375 ifmr->ifm_active |= IFM_FDX;
3376 return;
3377 }
3378
3379 mii_pollstat(mii);
3380 ifmr->ifm_active = mii->mii_media_active;
3381 ifmr->ifm_status = mii->mii_media_status;
3382 }
3383
3384 int
3385 bge_ioctl(ifp, command, data)
3386 struct ifnet *ifp;
3387 u_long command;
3388 caddr_t data;
3389 {
3390 struct bge_softc *sc = ifp->if_softc;
3391 struct ifreq *ifr = (struct ifreq *) data;
3392 int s, error = 0;
3393 struct mii_data *mii;
3394
3395 s = splnet();
3396
3397 switch(command) {
3398 case SIOCSIFFLAGS:
3399 if (ifp->if_flags & IFF_UP) {
3400 /*
3401 * If only the state of the PROMISC flag changed,
3402 * then just use the 'set promisc mode' command
3403 * instead of reinitializing the entire NIC. Doing
3404 * a full re-init means reloading the firmware and
3405 * waiting for it to start up, which may take a
3406 * second or two.
3407 */
3408 if (ifp->if_flags & IFF_RUNNING &&
3409 ifp->if_flags & IFF_PROMISC &&
3410 !(sc->bge_if_flags & IFF_PROMISC)) {
3411 BGE_SETBIT(sc, BGE_RX_MODE,
3412 BGE_RXMODE_RX_PROMISC);
3413 } else if (ifp->if_flags & IFF_RUNNING &&
3414 !(ifp->if_flags & IFF_PROMISC) &&
3415 sc->bge_if_flags & IFF_PROMISC) {
3416 BGE_CLRBIT(sc, BGE_RX_MODE,
3417 BGE_RXMODE_RX_PROMISC);
3418 } else
3419 bge_init(ifp);
3420 } else {
3421 if (ifp->if_flags & IFF_RUNNING) {
3422 bge_stop(sc);
3423 }
3424 }
3425 sc->bge_if_flags = ifp->if_flags;
3426 error = 0;
3427 break;
3428 case SIOCSIFMEDIA:
3429 case SIOCGIFMEDIA:
3430 if (sc->bge_tbi) {
3431 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3432 command);
3433 } else {
3434 mii = &sc->bge_mii;
3435 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3436 command);
3437 }
3438 error = 0;
3439 break;
3440 default:
3441 error = ether_ioctl(ifp, command, data);
3442 if (error == ENETRESET) {
3443 bge_setmulti(sc);
3444 error = 0;
3445 }
3446 break;
3447 }
3448
3449 splx(s);
3450
3451 return(error);
3452 }
3453
3454 void
3455 bge_watchdog(ifp)
3456 struct ifnet *ifp;
3457 {
3458 struct bge_softc *sc;
3459
3460 sc = ifp->if_softc;
3461
3462 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3463
3464 ifp->if_flags &= ~IFF_RUNNING;
3465 bge_init(ifp);
3466
3467 ifp->if_oerrors++;
3468 }
3469
3470 static void
3471 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3472 {
3473 int i;
3474
3475 BGE_CLRBIT(sc, reg, bit);
3476
3477 for (i = 0; i < BGE_TIMEOUT; i++) {
3478 if ((CSR_READ_4(sc, reg) & bit) == 0)
3479 return;
3480 delay(100);
3481 }
3482
3483 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3484 sc->bge_dev.dv_xname, (u_long) reg, bit);
3485 }
3486
3487 /*
3488 * Stop the adapter and free any mbufs allocated to the
3489 * RX and TX lists.
3490 */
3491 void
3492 bge_stop(sc)
3493 struct bge_softc *sc;
3494 {
3495 struct ifnet *ifp = &sc->ethercom.ec_if;
3496
3497 callout_stop(&sc->bge_timeout);
3498
3499 /*
3500 * Disable all of the receiver blocks
3501 */
3502 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3503 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3504 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3505 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3506 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3507 }
3508 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3509 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3510 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3511
3512 /*
3513 * Disable all of the transmit blocks
3514 */
3515 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3516 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3517 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3518 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3519 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3520 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3521 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3522 }
3523 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3524
3525 /*
3526 * Shut down all of the memory managers and related
3527 * state machines.
3528 */
3529 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3530 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3531 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3532 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3533 }
3534
3535 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3536 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3537
3538 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3539 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3540 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3541 }
3542
3543 /* Disable host interrupts. */
3544 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3545 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3546
3547 /*
3548 * Tell firmware we're shutting down.
3549 */
3550 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3551
3552 /* Free the RX lists. */
3553 bge_free_rx_ring_std(sc);
3554
3555 /* Free jumbo RX list. */
3556 bge_free_rx_ring_jumbo(sc);
3557
3558 /* Free TX buffers. */
3559 bge_free_tx_ring(sc);
3560
3561 /*
3562 * Isolate/power down the PHY.
3563 */
3564 if (!sc->bge_tbi)
3565 mii_down(&sc->bge_mii);
3566
3567 sc->bge_link = 0;
3568
3569 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3570
3571 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3572 }
3573
3574 /*
3575 * Stop all chip I/O so that the kernel's probe routines don't
3576 * get confused by errant DMAs when rebooting.
3577 */
3578 void
3579 bge_shutdown(xsc)
3580 void *xsc;
3581 {
3582 struct bge_softc *sc = (struct bge_softc *)xsc;
3583
3584 bge_stop(sc);
3585 bge_reset(sc);
3586 }
3587