if_bge.c revision 1.56 1 /* $NetBSD: if_bge.c,v 1.56 2003/12/09 15:19:33 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.56 2003/12/09 15:19:33 pooka Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/pci/pcidevs.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/miidevs.h>
120 #include <dev/mii/brgphyreg.h>
121
122 #include <dev/pci/if_bgereg.h>
123
124 #include <uvm/uvm_extern.h>
125
126 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
127
128 int bge_probe(struct device *, struct cfdata *, void *);
129 void bge_attach(struct device *, struct device *, void *);
130 void bge_release_resources(struct bge_softc *);
131 void bge_txeof(struct bge_softc *);
132 void bge_rxeof(struct bge_softc *);
133
134 void bge_tick(void *);
135 void bge_stats_update(struct bge_softc *);
136 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
137 static __inline int bge_cksum_pad(struct mbuf *pkt);
138 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
139
140 int bge_intr(void *);
141 void bge_start(struct ifnet *);
142 int bge_ioctl(struct ifnet *, u_long, caddr_t);
143 int bge_init(struct ifnet *);
144 void bge_stop(struct bge_softc *);
145 void bge_watchdog(struct ifnet *);
146 void bge_shutdown(void *);
147 int bge_ifmedia_upd(struct ifnet *);
148 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
149
150 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
151 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
152
153 void bge_setmulti(struct bge_softc *);
154
155 void bge_handle_events(struct bge_softc *);
156 int bge_alloc_jumbo_mem(struct bge_softc *);
157 void bge_free_jumbo_mem(struct bge_softc *);
158 void *bge_jalloc(struct bge_softc *);
159 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
160 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
161 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
162 int bge_init_rx_ring_std(struct bge_softc *);
163 void bge_free_rx_ring_std(struct bge_softc *);
164 int bge_init_rx_ring_jumbo(struct bge_softc *);
165 void bge_free_rx_ring_jumbo(struct bge_softc *);
166 void bge_free_tx_ring(struct bge_softc *);
167 int bge_init_tx_ring(struct bge_softc *);
168
169 int bge_chipinit(struct bge_softc *);
170 int bge_blockinit(struct bge_softc *);
171 int bge_setpowerstate(struct bge_softc *, int);
172
173 #ifdef notdef
174 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
175 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
176 void bge_vpd_read(struct bge_softc *);
177 #endif
178
179 u_int32_t bge_readmem_ind(struct bge_softc *, int);
180 void bge_writemem_ind(struct bge_softc *, int, int);
181 #ifdef notdef
182 u_int32_t bge_readreg_ind(struct bge_softc *, int);
183 #endif
184 void bge_writereg_ind(struct bge_softc *, int, int);
185
186 int bge_miibus_readreg(struct device *, int, int);
187 void bge_miibus_writereg(struct device *, int, int, int);
188 void bge_miibus_statchg(struct device *);
189
190 void bge_reset(struct bge_softc *);
191
192 void bge_dump_status(struct bge_softc *);
193 void bge_dump_rxbd(struct bge_rx_bd *);
194
195 #define BGE_DEBUG
196 #ifdef BGE_DEBUG
197 #define DPRINTF(x) if (bgedebug) printf x
198 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
199 int bgedebug = 0;
200 #else
201 #define DPRINTF(x)
202 #define DPRINTFN(n,x)
203 #endif
204
205 /* Various chip quirks. */
206 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
207 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
208 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
209 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
210 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
211 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
212 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
213 #define BGE_QUIRK_5705_CORE 0x00000080
214 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
215
216 /* following bugs are common to bcm5700 rev B, all flavours */
217 #define BGE_QUIRK_5700_COMMON \
218 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
219
220 CFATTACH_DECL(bge, sizeof(struct bge_softc),
221 bge_probe, bge_attach, NULL, NULL);
222
223 u_int32_t
224 bge_readmem_ind(sc, off)
225 struct bge_softc *sc;
226 int off;
227 {
228 struct pci_attach_args *pa = &(sc->bge_pa);
229 pcireg_t val;
230
231 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
232 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
233 return val;
234 }
235
236 void
237 bge_writemem_ind(sc, off, val)
238 struct bge_softc *sc;
239 int off, val;
240 {
241 struct pci_attach_args *pa = &(sc->bge_pa);
242
243 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
244 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
245 }
246
247 #ifdef notdef
248 u_int32_t
249 bge_readreg_ind(sc, off)
250 struct bge_softc *sc;
251 int off;
252 {
253 struct pci_attach_args *pa = &(sc->bge_pa);
254
255 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
256 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
257 }
258 #endif
259
260 void
261 bge_writereg_ind(sc, off, val)
262 struct bge_softc *sc;
263 int off, val;
264 {
265 struct pci_attach_args *pa = &(sc->bge_pa);
266
267 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
268 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
269 }
270
271 #ifdef notdef
272 u_int8_t
273 bge_vpd_readbyte(sc, addr)
274 struct bge_softc *sc;
275 int addr;
276 {
277 int i;
278 u_int32_t val;
279 struct pci_attach_args *pa = &(sc->bge_pa);
280
281 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
282 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
283 DELAY(10);
284 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
285 BGE_VPD_FLAG)
286 break;
287 }
288
289 if (i == BGE_TIMEOUT) {
290 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
291 return(0);
292 }
293
294 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
295
296 return((val >> ((addr % 4) * 8)) & 0xFF);
297 }
298
299 void
300 bge_vpd_read_res(sc, res, addr)
301 struct bge_softc *sc;
302 struct vpd_res *res;
303 int addr;
304 {
305 int i;
306 u_int8_t *ptr;
307
308 ptr = (u_int8_t *)res;
309 for (i = 0; i < sizeof(struct vpd_res); i++)
310 ptr[i] = bge_vpd_readbyte(sc, i + addr);
311 }
312
313 void
314 bge_vpd_read(sc)
315 struct bge_softc *sc;
316 {
317 int pos = 0, i;
318 struct vpd_res res;
319
320 if (sc->bge_vpd_prodname != NULL)
321 free(sc->bge_vpd_prodname, M_DEVBUF);
322 if (sc->bge_vpd_readonly != NULL)
323 free(sc->bge_vpd_readonly, M_DEVBUF);
324 sc->bge_vpd_prodname = NULL;
325 sc->bge_vpd_readonly = NULL;
326
327 bge_vpd_read_res(sc, &res, pos);
328
329 if (res.vr_id != VPD_RES_ID) {
330 printf("%s: bad VPD resource id: expected %x got %x\n",
331 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
332 return;
333 }
334
335 pos += sizeof(res);
336 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
337 if (sc->bge_vpd_prodname == NULL)
338 panic("bge_vpd_read");
339 for (i = 0; i < res.vr_len; i++)
340 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
341 sc->bge_vpd_prodname[i] = '\0';
342 pos += i;
343
344 bge_vpd_read_res(sc, &res, pos);
345
346 if (res.vr_id != VPD_RES_READ) {
347 printf("%s: bad VPD resource id: expected %x got %x\n",
348 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
349 return;
350 }
351
352 pos += sizeof(res);
353 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
354 if (sc->bge_vpd_readonly == NULL)
355 panic("bge_vpd_read");
356 for (i = 0; i < res.vr_len + 1; i++)
357 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
358 }
359 #endif
360
361 /*
362 * Read a byte of data stored in the EEPROM at address 'addr.' The
363 * BCM570x supports both the traditional bitbang interface and an
364 * auto access interface for reading the EEPROM. We use the auto
365 * access method.
366 */
367 u_int8_t
368 bge_eeprom_getbyte(sc, addr, dest)
369 struct bge_softc *sc;
370 int addr;
371 u_int8_t *dest;
372 {
373 int i;
374 u_int32_t byte = 0;
375
376 /*
377 * Enable use of auto EEPROM access so we can avoid
378 * having to use the bitbang method.
379 */
380 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
381
382 /* Reset the EEPROM, load the clock period. */
383 CSR_WRITE_4(sc, BGE_EE_ADDR,
384 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
385 DELAY(20);
386
387 /* Issue the read EEPROM command. */
388 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
389
390 /* Wait for completion */
391 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
392 DELAY(10);
393 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
394 break;
395 }
396
397 if (i == BGE_TIMEOUT) {
398 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
399 return(0);
400 }
401
402 /* Get result. */
403 byte = CSR_READ_4(sc, BGE_EE_DATA);
404
405 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
406
407 return(0);
408 }
409
410 /*
411 * Read a sequence of bytes from the EEPROM.
412 */
413 int
414 bge_read_eeprom(sc, dest, off, cnt)
415 struct bge_softc *sc;
416 caddr_t dest;
417 int off;
418 int cnt;
419 {
420 int err = 0, i;
421 u_int8_t byte = 0;
422
423 for (i = 0; i < cnt; i++) {
424 err = bge_eeprom_getbyte(sc, off + i, &byte);
425 if (err)
426 break;
427 *(dest + i) = byte;
428 }
429
430 return(err ? 1 : 0);
431 }
432
433 int
434 bge_miibus_readreg(dev, phy, reg)
435 struct device *dev;
436 int phy, reg;
437 {
438 struct bge_softc *sc = (struct bge_softc *)dev;
439 u_int32_t val;
440 u_int32_t saved_autopoll;
441 int i;
442
443 /*
444 * Several chips with builtin PHYs will incorrectly answer to
445 * other PHY instances than the builtin PHY at id 1.
446 */
447 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
448 return(0);
449
450 /* Reading with autopolling on may trigger PCI errors */
451 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
452 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
453 CSR_WRITE_4(sc, BGE_MI_MODE,
454 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
455 DELAY(40);
456 }
457
458 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
459 BGE_MIPHY(phy)|BGE_MIREG(reg));
460
461 for (i = 0; i < BGE_TIMEOUT; i++) {
462 val = CSR_READ_4(sc, BGE_MI_COMM);
463 if (!(val & BGE_MICOMM_BUSY))
464 break;
465 delay(10);
466 }
467
468 if (i == BGE_TIMEOUT) {
469 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
470 val = 0;
471 goto done;
472 }
473
474 val = CSR_READ_4(sc, BGE_MI_COMM);
475
476 done:
477 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
478 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
479 DELAY(40);
480 }
481
482 if (val & BGE_MICOMM_READFAIL)
483 return(0);
484
485 return(val & 0xFFFF);
486 }
487
488 void
489 bge_miibus_writereg(dev, phy, reg, val)
490 struct device *dev;
491 int phy, reg, val;
492 {
493 struct bge_softc *sc = (struct bge_softc *)dev;
494 u_int32_t saved_autopoll;
495 int i;
496
497 /* Touching the PHY while autopolling is on may trigger PCI errors */
498 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
499 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
500 delay(40);
501 CSR_WRITE_4(sc, BGE_MI_MODE,
502 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
503 delay(10); /* 40 usec is supposed to be adequate */
504 }
505
506 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
507 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
508
509 for (i = 0; i < BGE_TIMEOUT; i++) {
510 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
511 break;
512 delay(10);
513 }
514
515 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
516 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
517 delay(40);
518 }
519
520 if (i == BGE_TIMEOUT) {
521 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
522 }
523 }
524
525 void
526 bge_miibus_statchg(dev)
527 struct device *dev;
528 {
529 struct bge_softc *sc = (struct bge_softc *)dev;
530 struct mii_data *mii = &sc->bge_mii;
531
532 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
533 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
534 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
535 } else {
536 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
537 }
538
539 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
540 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
541 } else {
542 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
543 }
544 }
545
546 /*
547 * Handle events that have triggered interrupts.
548 */
549 void
550 bge_handle_events(sc)
551 struct bge_softc *sc;
552 {
553
554 return;
555 }
556
557 /*
558 * Memory management for jumbo frames.
559 */
560
561 int
562 bge_alloc_jumbo_mem(sc)
563 struct bge_softc *sc;
564 {
565 caddr_t ptr, kva;
566 bus_dma_segment_t seg;
567 int i, rseg, state, error;
568 struct bge_jpool_entry *entry;
569
570 state = error = 0;
571
572 /* Grab a big chunk o' storage. */
573 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
574 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
575 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
576 return ENOBUFS;
577 }
578
579 state = 1;
580 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
581 BUS_DMA_NOWAIT)) {
582 printf("%s: can't map DMA buffers (%d bytes)\n",
583 sc->bge_dev.dv_xname, (int)BGE_JMEM);
584 error = ENOBUFS;
585 goto out;
586 }
587
588 state = 2;
589 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
590 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
591 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
592 error = ENOBUFS;
593 goto out;
594 }
595
596 state = 3;
597 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
598 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
599 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
600 error = ENOBUFS;
601 goto out;
602 }
603
604 state = 4;
605 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
606 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
607
608 SLIST_INIT(&sc->bge_jfree_listhead);
609 SLIST_INIT(&sc->bge_jinuse_listhead);
610
611 /*
612 * Now divide it up into 9K pieces and save the addresses
613 * in an array.
614 */
615 ptr = sc->bge_cdata.bge_jumbo_buf;
616 for (i = 0; i < BGE_JSLOTS; i++) {
617 sc->bge_cdata.bge_jslots[i] = ptr;
618 ptr += BGE_JLEN;
619 entry = malloc(sizeof(struct bge_jpool_entry),
620 M_DEVBUF, M_NOWAIT);
621 if (entry == NULL) {
622 printf("%s: no memory for jumbo buffer queue!\n",
623 sc->bge_dev.dv_xname);
624 error = ENOBUFS;
625 goto out;
626 }
627 entry->slot = i;
628 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
629 entry, jpool_entries);
630 }
631 out:
632 if (error != 0) {
633 switch (state) {
634 case 4:
635 bus_dmamap_unload(sc->bge_dmatag,
636 sc->bge_cdata.bge_rx_jumbo_map);
637 case 3:
638 bus_dmamap_destroy(sc->bge_dmatag,
639 sc->bge_cdata.bge_rx_jumbo_map);
640 case 2:
641 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
642 case 1:
643 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
644 break;
645 default:
646 break;
647 }
648 }
649
650 return error;
651 }
652
653 /*
654 * Allocate a jumbo buffer.
655 */
656 void *
657 bge_jalloc(sc)
658 struct bge_softc *sc;
659 {
660 struct bge_jpool_entry *entry;
661
662 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
663
664 if (entry == NULL) {
665 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
666 return(NULL);
667 }
668
669 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
670 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
671 return(sc->bge_cdata.bge_jslots[entry->slot]);
672 }
673
674 /*
675 * Release a jumbo buffer.
676 */
677 void
678 bge_jfree(m, buf, size, arg)
679 struct mbuf *m;
680 caddr_t buf;
681 size_t size;
682 void *arg;
683 {
684 struct bge_jpool_entry *entry;
685 struct bge_softc *sc;
686 int i, s;
687
688 /* Extract the softc struct pointer. */
689 sc = (struct bge_softc *)arg;
690
691 if (sc == NULL)
692 panic("bge_jfree: can't find softc pointer!");
693
694 /* calculate the slot this buffer belongs to */
695
696 i = ((caddr_t)buf
697 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
698
699 if ((i < 0) || (i >= BGE_JSLOTS))
700 panic("bge_jfree: asked to free buffer that we don't manage!");
701
702 s = splvm();
703 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
704 if (entry == NULL)
705 panic("bge_jfree: buffer not in use!");
706 entry->slot = i;
707 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
708 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
709
710 if (__predict_true(m != NULL))
711 pool_cache_put(&mbpool_cache, m);
712 splx(s);
713 }
714
715
716 /*
717 * Intialize a standard receive ring descriptor.
718 */
719 int
720 bge_newbuf_std(sc, i, m, dmamap)
721 struct bge_softc *sc;
722 int i;
723 struct mbuf *m;
724 bus_dmamap_t dmamap;
725 {
726 struct mbuf *m_new = NULL;
727 struct bge_rx_bd *r;
728 int error;
729
730 if (dmamap == NULL) {
731 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
732 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
733 if (error != 0)
734 return error;
735 }
736
737 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
738
739 if (m == NULL) {
740 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
741 if (m_new == NULL) {
742 return(ENOBUFS);
743 }
744
745 MCLGET(m_new, M_DONTWAIT);
746 if (!(m_new->m_flags & M_EXT)) {
747 m_freem(m_new);
748 return(ENOBUFS);
749 }
750 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
751 if (!sc->bge_rx_alignment_bug)
752 m_adj(m_new, ETHER_ALIGN);
753
754 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
755 BUS_DMA_READ|BUS_DMA_NOWAIT))
756 return(ENOBUFS);
757 } else {
758 m_new = m;
759 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
760 m_new->m_data = m_new->m_ext.ext_buf;
761 if (!sc->bge_rx_alignment_bug)
762 m_adj(m_new, ETHER_ALIGN);
763 }
764
765 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
766 r = &sc->bge_rdata->bge_rx_std_ring[i];
767 bge_set_hostaddr(&r->bge_addr,
768 dmamap->dm_segs[0].ds_addr);
769 r->bge_flags = BGE_RXBDFLAG_END;
770 r->bge_len = m_new->m_len;
771 r->bge_idx = i;
772
773 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
774 offsetof(struct bge_ring_data, bge_rx_std_ring) +
775 i * sizeof (struct bge_rx_bd),
776 sizeof (struct bge_rx_bd),
777 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
778
779 return(0);
780 }
781
782 /*
783 * Initialize a jumbo receive ring descriptor. This allocates
784 * a jumbo buffer from the pool managed internally by the driver.
785 */
786 int
787 bge_newbuf_jumbo(sc, i, m)
788 struct bge_softc *sc;
789 int i;
790 struct mbuf *m;
791 {
792 struct mbuf *m_new = NULL;
793 struct bge_rx_bd *r;
794
795 if (m == NULL) {
796 caddr_t *buf = NULL;
797
798 /* Allocate the mbuf. */
799 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
800 if (m_new == NULL) {
801 return(ENOBUFS);
802 }
803
804 /* Allocate the jumbo buffer */
805 buf = bge_jalloc(sc);
806 if (buf == NULL) {
807 m_freem(m_new);
808 printf("%s: jumbo allocation failed "
809 "-- packet dropped!\n", sc->bge_dev.dv_xname);
810 return(ENOBUFS);
811 }
812
813 /* Attach the buffer to the mbuf. */
814 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
815 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
816 bge_jfree, sc);
817 } else {
818 m_new = m;
819 m_new->m_data = m_new->m_ext.ext_buf;
820 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
821 }
822
823 if (!sc->bge_rx_alignment_bug)
824 m_adj(m_new, ETHER_ALIGN);
825 /* Set up the descriptor. */
826 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
827 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
828 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
829 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
830 r->bge_len = m_new->m_len;
831 r->bge_idx = i;
832
833 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
834 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
835 i * sizeof (struct bge_rx_bd),
836 sizeof (struct bge_rx_bd),
837 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
838
839 return(0);
840 }
841
842 /*
843 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
844 * that's 1MB or memory, which is a lot. For now, we fill only the first
845 * 256 ring entries and hope that our CPU is fast enough to keep up with
846 * the NIC.
847 */
848 int
849 bge_init_rx_ring_std(sc)
850 struct bge_softc *sc;
851 {
852 int i;
853
854 if (sc->bge_flags & BGE_RXRING_VALID)
855 return 0;
856
857 for (i = 0; i < BGE_SSLOTS; i++) {
858 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
859 return(ENOBUFS);
860 }
861
862 sc->bge_std = i - 1;
863 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
864
865 sc->bge_flags |= BGE_RXRING_VALID;
866
867 return(0);
868 }
869
870 void
871 bge_free_rx_ring_std(sc)
872 struct bge_softc *sc;
873 {
874 int i;
875
876 if (!(sc->bge_flags & BGE_RXRING_VALID))
877 return;
878
879 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
880 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
881 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
882 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
883 bus_dmamap_destroy(sc->bge_dmatag,
884 sc->bge_cdata.bge_rx_std_map[i]);
885 }
886 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
887 sizeof(struct bge_rx_bd));
888 }
889
890 sc->bge_flags &= ~BGE_RXRING_VALID;
891 }
892
893 int
894 bge_init_rx_ring_jumbo(sc)
895 struct bge_softc *sc;
896 {
897 int i;
898 volatile struct bge_rcb *rcb;
899
900 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
901 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
902 return(ENOBUFS);
903 };
904
905 sc->bge_jumbo = i - 1;
906
907 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
908 rcb->bge_maxlen_flags = 0;
909 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
910
911 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
912
913 return(0);
914 }
915
916 void
917 bge_free_rx_ring_jumbo(sc)
918 struct bge_softc *sc;
919 {
920 int i;
921
922 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
923 return;
924
925 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
926 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
927 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
928 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
929 }
930 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
931 sizeof(struct bge_rx_bd));
932 }
933
934 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
935 }
936
937 void
938 bge_free_tx_ring(sc)
939 struct bge_softc *sc;
940 {
941 int i, freed;
942 struct txdmamap_pool_entry *dma;
943
944 if (!(sc->bge_flags & BGE_TXRING_VALID))
945 return;
946
947 freed = 0;
948
949 for (i = 0; i < BGE_TX_RING_CNT; i++) {
950 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
951 freed++;
952 m_freem(sc->bge_cdata.bge_tx_chain[i]);
953 sc->bge_cdata.bge_tx_chain[i] = NULL;
954 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
955 link);
956 sc->txdma[i] = 0;
957 }
958 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
959 sizeof(struct bge_tx_bd));
960 }
961
962 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
963 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
964 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
965 free(dma, M_DEVBUF);
966 }
967
968 sc->bge_flags &= ~BGE_TXRING_VALID;
969 }
970
971 int
972 bge_init_tx_ring(sc)
973 struct bge_softc *sc;
974 {
975 int i;
976 bus_dmamap_t dmamap;
977 struct txdmamap_pool_entry *dma;
978
979 if (sc->bge_flags & BGE_TXRING_VALID)
980 return 0;
981
982 sc->bge_txcnt = 0;
983 sc->bge_tx_saved_considx = 0;
984 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
985 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
986 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
987
988 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
989 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
990 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
991
992 SLIST_INIT(&sc->txdma_list);
993 for (i = 0; i < BGE_RSLOTS; i++) {
994 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
995 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
996 &dmamap))
997 return(ENOBUFS);
998 if (dmamap == NULL)
999 panic("dmamap NULL in bge_init_tx_ring");
1000 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1001 if (dma == NULL) {
1002 printf("%s: can't alloc txdmamap_pool_entry\n",
1003 sc->bge_dev.dv_xname);
1004 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1005 return (ENOMEM);
1006 }
1007 dma->dmamap = dmamap;
1008 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1009 }
1010
1011 sc->bge_flags |= BGE_TXRING_VALID;
1012
1013 return(0);
1014 }
1015
1016 void
1017 bge_setmulti(sc)
1018 struct bge_softc *sc;
1019 {
1020 struct ethercom *ac = &sc->ethercom;
1021 struct ifnet *ifp = &ac->ec_if;
1022 struct ether_multi *enm;
1023 struct ether_multistep step;
1024 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1025 u_int32_t h;
1026 int i;
1027
1028 if (ifp->if_flags & IFF_PROMISC)
1029 goto allmulti;
1030
1031 /* Now program new ones. */
1032 ETHER_FIRST_MULTI(step, ac, enm);
1033 while (enm != NULL) {
1034 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1035 /*
1036 * We must listen to a range of multicast addresses.
1037 * For now, just accept all multicasts, rather than
1038 * trying to set only those filter bits needed to match
1039 * the range. (At this time, the only use of address
1040 * ranges is for IP multicast routing, for which the
1041 * range is big enough to require all bits set.)
1042 */
1043 goto allmulti;
1044 }
1045
1046 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1047
1048 /* Just want the 7 least-significant bits. */
1049 h &= 0x7f;
1050
1051 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1052 ETHER_NEXT_MULTI(step, enm);
1053 }
1054
1055 ifp->if_flags &= ~IFF_ALLMULTI;
1056 goto setit;
1057
1058 allmulti:
1059 ifp->if_flags |= IFF_ALLMULTI;
1060 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1061
1062 setit:
1063 for (i = 0; i < 4; i++)
1064 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1065 }
1066
1067 const int bge_swapbits[] = {
1068 0,
1069 BGE_MODECTL_BYTESWAP_DATA,
1070 BGE_MODECTL_WORDSWAP_DATA,
1071 BGE_MODECTL_BYTESWAP_NONFRAME,
1072 BGE_MODECTL_WORDSWAP_NONFRAME,
1073
1074 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1075 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1076 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1077
1078 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1079 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1080
1081 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1082
1083 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1084 BGE_MODECTL_BYTESWAP_NONFRAME,
1085 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1086 BGE_MODECTL_WORDSWAP_NONFRAME,
1087 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1088 BGE_MODECTL_WORDSWAP_NONFRAME,
1089 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1090 BGE_MODECTL_WORDSWAP_NONFRAME,
1091
1092 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1093 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1094 };
1095
1096 int bge_swapindex = 0;
1097
1098 /*
1099 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1100 * self-test results.
1101 */
1102 int
1103 bge_chipinit(sc)
1104 struct bge_softc *sc;
1105 {
1106 u_int32_t cachesize;
1107 int i;
1108 u_int32_t dma_rw_ctl;
1109 struct pci_attach_args *pa = &(sc->bge_pa);
1110
1111
1112 /* Set endianness before we access any non-PCI registers. */
1113 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1114 BGE_INIT);
1115
1116 /* Set power state to D0. */
1117 bge_setpowerstate(sc, 0);
1118
1119 /*
1120 * Check the 'ROM failed' bit on the RX CPU to see if
1121 * self-tests passed.
1122 */
1123 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1124 printf("%s: RX CPU self-diagnostics failed!\n",
1125 sc->bge_dev.dv_xname);
1126 return(ENODEV);
1127 }
1128
1129 /* Clear the MAC control register */
1130 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1131
1132 /*
1133 * Clear the MAC statistics block in the NIC's
1134 * internal memory.
1135 */
1136 for (i = BGE_STATS_BLOCK;
1137 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1138 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1139
1140 for (i = BGE_STATUS_BLOCK;
1141 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1142 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1143
1144 /* Set up the PCI DMA control register. */
1145 if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1146 BGE_PCISTATE_PCI_BUSMODE) {
1147 /* Conventional PCI bus */
1148 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1149 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1150 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1151 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1152 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1153 dma_rw_ctl |= 0x0F;
1154 }
1155 } else {
1156 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1157 /* PCI-X bus */
1158 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1159 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1160 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1161 (0x0F);
1162 /*
1163 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1164 * for hardware bugs, which means we should also clear
1165 * the low-order MINDMA bits. In addition, the 5704
1166 * uses a different encoding of read/write watermarks.
1167 */
1168 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 ||
1169 sc->bge_chipid == BGE_CHIPID_BCM5704_A1 ||
1170 sc->bge_chipid == BGE_CHIPID_BCM5704_A2 ||
1171 sc->bge_chipid == BGE_CHIPID_BCM5704_A3) {
1172 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1173 /* should be 0x1f0000 */
1174 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1175 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1176 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1177 }
1178 else if ((sc->bge_chipid >> 28) ==
1179 (BGE_CHIPID_BCM5703_A0 >> 28)) {
1180 dma_rw_ctl &= 0xfffffff0;
1181 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1182 }
1183 }
1184
1185 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1186
1187 /*
1188 * Set up general mode register.
1189 */
1190 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1191 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1192 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1193
1194 /* Get cache line size. */
1195 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1196
1197 /*
1198 * Avoid violating PCI spec on certain chip revs.
1199 */
1200 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1201 PCIM_CMD_MWIEN) {
1202 switch(cachesize) {
1203 case 1:
1204 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1205 BGE_PCI_WRITE_BNDRY_16BYTES);
1206 break;
1207 case 2:
1208 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1209 BGE_PCI_WRITE_BNDRY_32BYTES);
1210 break;
1211 case 4:
1212 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1213 BGE_PCI_WRITE_BNDRY_64BYTES);
1214 break;
1215 case 8:
1216 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1217 BGE_PCI_WRITE_BNDRY_128BYTES);
1218 break;
1219 case 16:
1220 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1221 BGE_PCI_WRITE_BNDRY_256BYTES);
1222 break;
1223 case 32:
1224 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1225 BGE_PCI_WRITE_BNDRY_512BYTES);
1226 break;
1227 case 64:
1228 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1229 BGE_PCI_WRITE_BNDRY_1024BYTES);
1230 break;
1231 default:
1232 /* Disable PCI memory write and invalidate. */
1233 #if 0
1234 if (bootverbose)
1235 printf("%s: cache line size %d not "
1236 "supported; disabling PCI MWI\n",
1237 sc->bge_dev.dv_xname, cachesize);
1238 #endif
1239 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1240 PCIM_CMD_MWIEN);
1241 break;
1242 }
1243 }
1244
1245 /*
1246 * Disable memory write invalidate. Apparently it is not supported
1247 * properly by these devices.
1248 */
1249 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1250
1251
1252 #ifdef __brokenalpha__
1253 /*
1254 * Must insure that we do not cross an 8K (bytes) boundary
1255 * for DMA reads. Our highest limit is 1K bytes. This is a
1256 * restriction on some ALPHA platforms with early revision
1257 * 21174 PCI chipsets, such as the AlphaPC 164lx
1258 */
1259 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1260 #endif
1261
1262 /* Set the timer prescaler (always 66MHz) */
1263 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1264
1265 return(0);
1266 }
1267
1268 int
1269 bge_blockinit(sc)
1270 struct bge_softc *sc;
1271 {
1272 volatile struct bge_rcb *rcb;
1273 bus_size_t rcb_addr;
1274 int i;
1275 struct ifnet *ifp = &sc->ethercom.ec_if;
1276 bge_hostaddr taddr;
1277
1278 /*
1279 * Initialize the memory window pointer register so that
1280 * we can access the first 32K of internal NIC RAM. This will
1281 * allow us to set up the TX send ring RCBs and the RX return
1282 * ring RCBs, plus other things which live in NIC memory.
1283 */
1284
1285 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1286 BGE_PCI_MEMWIN_BASEADDR, 0);
1287
1288 /* Configure mbuf memory pool */
1289 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1290 if (sc->bge_extram) {
1291 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1292 BGE_EXT_SSRAM);
1293 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1294 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1295 else
1296 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1297 } else {
1298 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1299 BGE_BUFFPOOL_1);
1300 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1301 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1302 else
1303 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1304 }
1305
1306 /* Configure DMA resource pool */
1307 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1308 BGE_DMA_DESCRIPTORS);
1309 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1310 }
1311
1312 /* Configure mbuf pool watermarks */
1313 #ifdef ORIG_WPAUL_VALUES
1314 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1315 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1316 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1317 #else
1318 /* new broadcom docs strongly recommend these: */
1319 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1320 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1321 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1322 } else {
1323 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1324 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1325 }
1326 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1327 #endif
1328
1329 /* Configure DMA resource watermarks */
1330 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1331 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1332
1333 /* Enable buffer manager */
1334 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1335 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1336 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1337
1338 /* Poll for buffer manager start indication */
1339 for (i = 0; i < BGE_TIMEOUT; i++) {
1340 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1341 break;
1342 DELAY(10);
1343 }
1344
1345 if (i == BGE_TIMEOUT) {
1346 printf("%s: buffer manager failed to start\n",
1347 sc->bge_dev.dv_xname);
1348 return(ENXIO);
1349 }
1350 }
1351
1352 /* Enable flow-through queues */
1353 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1354 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1355
1356 /* Wait until queue initialization is complete */
1357 for (i = 0; i < BGE_TIMEOUT; i++) {
1358 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1359 break;
1360 DELAY(10);
1361 }
1362
1363 if (i == BGE_TIMEOUT) {
1364 printf("%s: flow-through queue init failed\n",
1365 sc->bge_dev.dv_xname);
1366 return(ENXIO);
1367 }
1368
1369 /* Initialize the standard RX ring control block */
1370 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1371 bge_set_hostaddr(&rcb->bge_hostaddr,
1372 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1373 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1374 rcb->bge_maxlen_flags =
1375 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1376 } else {
1377 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1378 }
1379 if (sc->bge_extram)
1380 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1381 else
1382 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1383 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1384 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1385 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1386 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1387
1388 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1389 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1390 } else {
1391 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1392 }
1393
1394 /*
1395 * Initialize the jumbo RX ring control block
1396 * We set the 'ring disabled' bit in the flags
1397 * field until we're actually ready to start
1398 * using this ring (i.e. once we set the MTU
1399 * high enough to require it).
1400 */
1401 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1402 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1403 bge_set_hostaddr(&rcb->bge_hostaddr,
1404 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1405 rcb->bge_maxlen_flags =
1406 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1407 BGE_RCB_FLAG_RING_DISABLED);
1408 if (sc->bge_extram)
1409 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1410 else
1411 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1412
1413 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1414 rcb->bge_hostaddr.bge_addr_hi);
1415 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1416 rcb->bge_hostaddr.bge_addr_lo);
1417 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1418 rcb->bge_maxlen_flags);
1419 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1420
1421 /* Set up dummy disabled mini ring RCB */
1422 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1423 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1424 BGE_RCB_FLAG_RING_DISABLED);
1425 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1426 rcb->bge_maxlen_flags);
1427
1428 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1429 offsetof(struct bge_ring_data, bge_info),
1430 sizeof (struct bge_gib),
1431 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1432 }
1433
1434 /*
1435 * Set the BD ring replentish thresholds. The recommended
1436 * values are 1/8th the number of descriptors allocated to
1437 * each ring.
1438 */
1439 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1440 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1441
1442 /*
1443 * Disable all unused send rings by setting the 'ring disabled'
1444 * bit in the flags field of all the TX send ring control blocks.
1445 * These are located in NIC memory.
1446 */
1447 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1448 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1449 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1450 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1451 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1452 rcb_addr += sizeof(struct bge_rcb);
1453 }
1454
1455 /* Configure TX RCB 0 (we use only the first ring) */
1456 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1457 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1458 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1459 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1460 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1461 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1462 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1463 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1464 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1465 }
1466
1467 /* Disable all unused RX return rings */
1468 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1469 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1470 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1471 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1472 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1473 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1474 BGE_RCB_FLAG_RING_DISABLED));
1475 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1476 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1477 (i * (sizeof(u_int64_t))), 0);
1478 rcb_addr += sizeof(struct bge_rcb);
1479 }
1480
1481 /* Initialize RX ring indexes */
1482 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1483 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1484 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1485
1486 /*
1487 * Set up RX return ring 0
1488 * Note that the NIC address for RX return rings is 0x00000000.
1489 * The return rings live entirely within the host, so the
1490 * nicaddr field in the RCB isn't used.
1491 */
1492 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1493 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1494 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1495 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1496 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1497 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1498 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1499
1500 /* Set random backoff seed for TX */
1501 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1502 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1503 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1504 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1505 BGE_TX_BACKOFF_SEED_MASK);
1506
1507 /* Set inter-packet gap */
1508 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1509
1510 /*
1511 * Specify which ring to use for packets that don't match
1512 * any RX rules.
1513 */
1514 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1515
1516 /*
1517 * Configure number of RX lists. One interrupt distribution
1518 * list, sixteen active lists, one bad frames class.
1519 */
1520 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1521
1522 /* Inialize RX list placement stats mask. */
1523 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1524 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1525
1526 /* Disable host coalescing until we get it set up */
1527 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1528
1529 /* Poll to make sure it's shut down. */
1530 for (i = 0; i < BGE_TIMEOUT; i++) {
1531 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1532 break;
1533 DELAY(10);
1534 }
1535
1536 if (i == BGE_TIMEOUT) {
1537 printf("%s: host coalescing engine failed to idle\n",
1538 sc->bge_dev.dv_xname);
1539 return(ENXIO);
1540 }
1541
1542 /* Set up host coalescing defaults */
1543 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1544 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1545 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1546 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1547 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1548 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1549 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1550 }
1551 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1552 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1553
1554 /* Set up address of statistics block */
1555 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1556 bge_set_hostaddr(&taddr,
1557 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1558 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1559 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1560 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1561 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1562 }
1563
1564 /* Set up address of status block */
1565 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1566 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1567 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1568 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1569 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1570 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1571
1572 /* Turn on host coalescing state machine */
1573 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1574
1575 /* Turn on RX BD completion state machine and enable attentions */
1576 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1577 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1578
1579 /* Turn on RX list placement state machine */
1580 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1581
1582 /* Turn on RX list selector state machine. */
1583 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1584 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1585 }
1586
1587 /* Turn on DMA, clear stats */
1588 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1589 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1590 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1591 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1592 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1593
1594 /* Set misc. local control, enable interrupts on attentions */
1595 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1596
1597 #ifdef notdef
1598 /* Assert GPIO pins for PHY reset */
1599 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1600 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1601 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1602 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1603 #endif
1604
1605 #if defined(not_quite_yet)
1606 /* Linux driver enables enable gpio pin #1 on 5700s */
1607 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1608 sc->bge_local_ctrl_reg |=
1609 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1610 }
1611 #endif
1612 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1613
1614 /* Turn on DMA completion state machine */
1615 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1616 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1617 }
1618
1619 /* Turn on write DMA state machine */
1620 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1621 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1622
1623 /* Turn on read DMA state machine */
1624 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1625 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1626
1627 /* Turn on RX data completion state machine */
1628 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1629
1630 /* Turn on RX BD initiator state machine */
1631 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1632
1633 /* Turn on RX data and RX BD initiator state machine */
1634 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1635
1636 /* Turn on Mbuf cluster free state machine */
1637 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1638 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1639 }
1640
1641 /* Turn on send BD completion state machine */
1642 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1643
1644 /* Turn on send data completion state machine */
1645 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1646
1647 /* Turn on send data initiator state machine */
1648 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1649
1650 /* Turn on send BD initiator state machine */
1651 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1652
1653 /* Turn on send BD selector state machine */
1654 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1655
1656 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1657 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1658 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1659
1660 /* ack/clear link change events */
1661 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1662 BGE_MACSTAT_CFG_CHANGED);
1663 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1664
1665 /* Enable PHY auto polling (for MII/GMII only) */
1666 if (sc->bge_tbi) {
1667 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1668 } else {
1669 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1670 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1671 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1672 BGE_EVTENB_MI_INTERRUPT);
1673 }
1674
1675 /* Enable link state change attentions. */
1676 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1677
1678 return(0);
1679 }
1680
1681 static const struct bge_revision {
1682 uint32_t br_chipid;
1683 uint32_t br_quirks;
1684 const char *br_name;
1685 } bge_revisions[] = {
1686 { BGE_CHIPID_BCM5700_A0,
1687 BGE_QUIRK_LINK_STATE_BROKEN,
1688 "BCM5700 A0" },
1689
1690 { BGE_CHIPID_BCM5700_A1,
1691 BGE_QUIRK_LINK_STATE_BROKEN,
1692 "BCM5700 A1" },
1693
1694 { BGE_CHIPID_BCM5700_B0,
1695 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1696 "BCM5700 B0" },
1697
1698 { BGE_CHIPID_BCM5700_B1,
1699 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1700 "BCM5700 B1" },
1701
1702 { BGE_CHIPID_BCM5700_B2,
1703 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1704 "BCM5700 B2" },
1705
1706 /* This is treated like a BCM5700 Bx */
1707 { BGE_CHIPID_BCM5700_ALTIMA,
1708 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1709 "BCM5700 Altima" },
1710
1711 { BGE_CHIPID_BCM5700_C0,
1712 0,
1713 "BCM5700 C0" },
1714
1715 { BGE_CHIPID_BCM5701_A0,
1716 0, /*XXX really, just not known */
1717 "BCM5701 A0" },
1718
1719 { BGE_CHIPID_BCM5701_B0,
1720 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1721 "BCM5701 B0" },
1722
1723 { BGE_CHIPID_BCM5701_B2,
1724 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1725 "BCM5701 B2" },
1726
1727 { BGE_CHIPID_BCM5701_B5,
1728 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1729 "BCM5701 B5" },
1730
1731 { BGE_CHIPID_BCM5703_A0,
1732 0,
1733 "BCM5703 A0" },
1734
1735 { BGE_CHIPID_BCM5703_A1,
1736 0,
1737 "BCM5703 A1" },
1738
1739 { BGE_CHIPID_BCM5703_A2,
1740 BGE_QUIRK_ONLY_PHY_1,
1741 "BCM5703 A2" },
1742
1743 { BGE_CHIPID_BCM5703_A3,
1744 BGE_QUIRK_ONLY_PHY_1,
1745 "BCM5703 A3" },
1746
1747 { BGE_CHIPID_BCM5704_A0,
1748 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1749 "BCM5704 A0" },
1750
1751 { BGE_CHIPID_BCM5704_A1,
1752 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1753 "BCM5704 A1" },
1754
1755 { BGE_CHIPID_BCM5704_A2,
1756 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1757 "BCM5704 A2" },
1758
1759 { BGE_CHIPID_BCM5704_A3,
1760 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1761 "BCM5704 A3" },
1762
1763 { BGE_CHIPID_BCM5705_A0,
1764 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1765 "BCM5705 A0" },
1766
1767 { BGE_CHIPID_BCM5705_A1,
1768 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1769 "BCM5705 A1" },
1770
1771 { BGE_CHIPID_BCM5705_A2,
1772 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1773 "BCM5705 A2" },
1774
1775 { BGE_CHIPID_BCM5705_A3,
1776 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1777 "BCM5705 A3" },
1778
1779 { 0, 0, NULL }
1780 };
1781
1782 /*
1783 * Some defaults for major revisions, so that newer steppings
1784 * that we don't know about have a shot at working.
1785 */
1786 static const struct bge_revision bge_majorrevs[] = {
1787 { BGE_ASICREV_BCM5700,
1788 BGE_QUIRK_LINK_STATE_BROKEN,
1789 "unknown BCM5700" },
1790
1791 { BGE_ASICREV_BCM5701,
1792 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1793 "unknown BCM5701" },
1794
1795 { BGE_ASICREV_BCM5703,
1796 0,
1797 "unknown BCM5703" },
1798
1799 { BGE_ASICREV_BCM5704,
1800 BGE_QUIRK_ONLY_PHY_1,
1801 "unknown BCM5704" },
1802
1803 { BGE_ASICREV_BCM5705,
1804 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1805 "unknown BCM5705" },
1806
1807 { 0,
1808 0,
1809 NULL }
1810 };
1811
1812
1813 static const struct bge_revision *
1814 bge_lookup_rev(uint32_t chipid)
1815 {
1816 const struct bge_revision *br;
1817
1818 for (br = bge_revisions; br->br_name != NULL; br++) {
1819 if (br->br_chipid == chipid)
1820 return (br);
1821 }
1822
1823 for (br = bge_majorrevs; br->br_name != NULL; br++) {
1824 if (br->br_chipid == BGE_ASICREV(chipid))
1825 return (br);
1826 }
1827
1828 return (NULL);
1829 }
1830
1831 static const struct bge_product {
1832 pci_vendor_id_t bp_vendor;
1833 pci_product_id_t bp_product;
1834 const char *bp_name;
1835 } bge_products[] = {
1836 /*
1837 * The BCM5700 documentation seems to indicate that the hardware
1838 * still has the Alteon vendor ID burned into it, though it
1839 * should always be overridden by the value in the EEPROM. We'll
1840 * check for it anyway.
1841 */
1842 { PCI_VENDOR_ALTEON,
1843 PCI_PRODUCT_ALTEON_BCM5700,
1844 "Broadcom BCM5700 Gigabit Ethernet",
1845 },
1846 { PCI_VENDOR_ALTEON,
1847 PCI_PRODUCT_ALTEON_BCM5701,
1848 "Broadcom BCM5701 Gigabit Ethernet",
1849 },
1850
1851 { PCI_VENDOR_ALTIMA,
1852 PCI_PRODUCT_ALTIMA_AC1000,
1853 "Altima AC1000 Gigabit Ethernet",
1854 },
1855 { PCI_VENDOR_ALTIMA,
1856 PCI_PRODUCT_ALTIMA_AC1001,
1857 "Altima AC1001 Gigabit Ethernet",
1858 },
1859 { PCI_VENDOR_ALTIMA,
1860 PCI_PRODUCT_ALTIMA_AC9100,
1861 "Altima AC9100 Gigabit Ethernet",
1862 },
1863
1864 { PCI_VENDOR_BROADCOM,
1865 PCI_PRODUCT_BROADCOM_BCM5700,
1866 "Broadcom BCM5700 Gigabit Ethernet",
1867 },
1868 { PCI_VENDOR_BROADCOM,
1869 PCI_PRODUCT_BROADCOM_BCM5701,
1870 "Broadcom BCM5701 Gigabit Ethernet",
1871 },
1872 { PCI_VENDOR_BROADCOM,
1873 PCI_PRODUCT_BROADCOM_BCM5702,
1874 "Broadcom BCM5702 Gigabit Ethernet",
1875 },
1876 { PCI_VENDOR_BROADCOM,
1877 PCI_PRODUCT_BROADCOM_BCM5702X,
1878 "Broadcom BCM5702X Gigabit Ethernet" },
1879
1880 { PCI_VENDOR_BROADCOM,
1881 PCI_PRODUCT_BROADCOM_BCM5703,
1882 "Broadcom BCM5703 Gigabit Ethernet",
1883 },
1884 { PCI_VENDOR_BROADCOM,
1885 PCI_PRODUCT_BROADCOM_BCM5703X,
1886 "Broadcom BCM5703X Gigabit Ethernet",
1887 },
1888 { PCI_VENDOR_BROADCOM,
1889 PCI_PRODUCT_BROADCOM_BCM5703A3,
1890 "Broadcom BCM5703A3 Gigabit Ethernet",
1891 },
1892
1893 { PCI_VENDOR_BROADCOM,
1894 PCI_PRODUCT_BROADCOM_BCM5704C,
1895 "Broadcom BCM5704C Dual Gigabit Ethernet",
1896 },
1897 { PCI_VENDOR_BROADCOM,
1898 PCI_PRODUCT_BROADCOM_BCM5704S,
1899 "Broadcom BCM5704S Dual Gigabit Ethernet",
1900 },
1901
1902 { PCI_VENDOR_BROADCOM,
1903 PCI_PRODUCT_BROADCOM_BCM5705,
1904 "Broadcom BCM5705 Gigabit Ethernet",
1905 },
1906 { PCI_VENDOR_BROADCOM,
1907 PCI_PRODUCT_BROADCOM_BCM5705_ALT,
1908 "Broadcom BCM5705 Gigabit Ethernet",
1909 },
1910 { PCI_VENDOR_BROADCOM,
1911 PCI_PRODUCT_BROADCOM_BCM5705M,
1912 "Broadcom BCM5705M Gigabit Ethernet",
1913 },
1914
1915 { PCI_VENDOR_BROADCOM,
1916 PCI_PRODUCT_BROADCOM_BCM5901,
1917 "Broadcom BCM5901 Fast Ethernet",
1918 },
1919 { PCI_VENDOR_BROADCOM,
1920 PCI_PRODUCT_BROADCOM_BCM5901A2,
1921 "Broadcom BCM5901A2 Fast Ethernet",
1922 },
1923
1924 { PCI_VENDOR_BROADCOM,
1925 PCI_PRODUCT_BROADCOM_BCM5782,
1926 "Broadcom BCM5782 Gigabit Ethernet",
1927 },
1928
1929 { PCI_VENDOR_SCHNEIDERKOCH,
1930 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1931 "SysKonnect SK-9Dx1 Gigabit Ethernet",
1932 },
1933
1934 { PCI_VENDOR_3COM,
1935 PCI_PRODUCT_3COM_3C996,
1936 "3Com 3c996 Gigabit Ethernet",
1937 },
1938
1939 { 0,
1940 0,
1941 NULL },
1942 };
1943
1944 static const struct bge_product *
1945 bge_lookup(const struct pci_attach_args *pa)
1946 {
1947 const struct bge_product *bp;
1948
1949 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1950 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1951 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1952 return (bp);
1953 }
1954
1955 return (NULL);
1956 }
1957
1958 int
1959 bge_setpowerstate(sc, powerlevel)
1960 struct bge_softc *sc;
1961 int powerlevel;
1962 {
1963 #ifdef NOTYET
1964 u_int32_t pm_ctl = 0;
1965
1966 /* XXX FIXME: make sure indirect accesses enabled? */
1967 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1968 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1969 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1970
1971 /* clear the PME_assert bit and power state bits, enable PME */
1972 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1973 pm_ctl &= ~PCIM_PSTAT_DMASK;
1974 pm_ctl |= (1 << 8);
1975
1976 if (powerlevel == 0) {
1977 pm_ctl |= PCIM_PSTAT_D0;
1978 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1979 pm_ctl, 2);
1980 DELAY(10000);
1981 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1982 DELAY(10000);
1983
1984 #ifdef NOTYET
1985 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1986 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1987 #endif
1988 DELAY(40); DELAY(40); DELAY(40);
1989 DELAY(10000); /* above not quite adequate on 5700 */
1990 return 0;
1991 }
1992
1993
1994 /*
1995 * Entering ACPI power states D1-D3 is achieved by wiggling
1996 * GMII gpio pins. Example code assumes all hardware vendors
1997 * followed Broadom's sample pcb layout. Until we verify that
1998 * for all supported OEM cards, states D1-D3 are unsupported.
1999 */
2000 printf("%s: power state %d unimplemented; check GPIO pins\n",
2001 sc->bge_dev.dv_xname, powerlevel);
2002 #endif
2003 return EOPNOTSUPP;
2004 }
2005
2006
2007 /*
2008 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2009 * against our list and return its name if we find a match. Note
2010 * that since the Broadcom controller contains VPD support, we
2011 * can get the device name string from the controller itself instead
2012 * of the compiled-in string. This is a little slow, but it guarantees
2013 * we'll always announce the right product name.
2014 */
2015 int
2016 bge_probe(parent, match, aux)
2017 struct device *parent;
2018 struct cfdata *match;
2019 void *aux;
2020 {
2021 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2022
2023 if (bge_lookup(pa) != NULL)
2024 return (1);
2025
2026 return (0);
2027 }
2028
2029 void
2030 bge_attach(parent, self, aux)
2031 struct device *parent, *self;
2032 void *aux;
2033 {
2034 struct bge_softc *sc = (struct bge_softc *)self;
2035 struct pci_attach_args *pa = aux;
2036 const struct bge_product *bp;
2037 const struct bge_revision *br;
2038 pci_chipset_tag_t pc = pa->pa_pc;
2039 pci_intr_handle_t ih;
2040 const char *intrstr = NULL;
2041 bus_dma_segment_t seg;
2042 int rseg;
2043 u_int32_t hwcfg = 0;
2044 u_int32_t mac_addr = 0;
2045 u_int32_t command;
2046 struct ifnet *ifp;
2047 caddr_t kva;
2048 u_char eaddr[ETHER_ADDR_LEN];
2049 pcireg_t memtype;
2050 bus_addr_t memaddr;
2051 bus_size_t memsize;
2052 u_int32_t pm_ctl;
2053
2054 bp = bge_lookup(pa);
2055 KASSERT(bp != NULL);
2056
2057 sc->bge_pa = *pa;
2058
2059 aprint_naive(": Ethernet controller\n");
2060 aprint_normal(": %s\n", bp->bp_name);
2061
2062 /*
2063 * Map control/status registers.
2064 */
2065 DPRINTFN(5, ("Map control/status regs\n"));
2066 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2067 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2068 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2069 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2070
2071 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2072 aprint_error("%s: failed to enable memory mapping!\n",
2073 sc->bge_dev.dv_xname);
2074 return;
2075 }
2076
2077 DPRINTFN(5, ("pci_mem_find\n"));
2078 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2079 switch (memtype) {
2080 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2081 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2082 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2083 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2084 &memaddr, &memsize) == 0)
2085 break;
2086 default:
2087 aprint_error("%s: can't find mem space\n",
2088 sc->bge_dev.dv_xname);
2089 return;
2090 }
2091
2092 DPRINTFN(5, ("pci_intr_map\n"));
2093 if (pci_intr_map(pa, &ih)) {
2094 aprint_error("%s: couldn't map interrupt\n",
2095 sc->bge_dev.dv_xname);
2096 return;
2097 }
2098
2099 DPRINTFN(5, ("pci_intr_string\n"));
2100 intrstr = pci_intr_string(pc, ih);
2101
2102 DPRINTFN(5, ("pci_intr_establish\n"));
2103 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2104
2105 if (sc->bge_intrhand == NULL) {
2106 aprint_error("%s: couldn't establish interrupt",
2107 sc->bge_dev.dv_xname);
2108 if (intrstr != NULL)
2109 aprint_normal(" at %s", intrstr);
2110 aprint_normal("\n");
2111 return;
2112 }
2113 aprint_normal("%s: interrupting at %s\n",
2114 sc->bge_dev.dv_xname, intrstr);
2115
2116 /*
2117 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2118 * can clobber the chip's PCI config-space power control registers,
2119 * leaving the card in D3 powersave state.
2120 * We do not have memory-mapped registers in this state,
2121 * so force device into D0 state before starting initialization.
2122 */
2123 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2124 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2125 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2126 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2127 DELAY(1000); /* 27 usec is allegedly sufficent */
2128
2129 /* Try to reset the chip. */
2130 DPRINTFN(5, ("bge_reset\n"));
2131 bge_reset(sc);
2132
2133 if (bge_chipinit(sc)) {
2134 aprint_error("%s: chip initialization failed\n",
2135 sc->bge_dev.dv_xname);
2136 bge_release_resources(sc);
2137 return;
2138 }
2139
2140 /*
2141 * Get station address from the EEPROM.
2142 */
2143 mac_addr = bge_readmem_ind(sc, 0x0c14);
2144 if ((mac_addr >> 16) == 0x484b) {
2145 eaddr[0] = (u_char)(mac_addr >> 8);
2146 eaddr[1] = (u_char)(mac_addr >> 0);
2147 mac_addr = bge_readmem_ind(sc, 0x0c18);
2148 eaddr[2] = (u_char)(mac_addr >> 24);
2149 eaddr[3] = (u_char)(mac_addr >> 16);
2150 eaddr[4] = (u_char)(mac_addr >> 8);
2151 eaddr[5] = (u_char)(mac_addr >> 0);
2152 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2153 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2154 aprint_error("%s: failed to read station address\n",
2155 sc->bge_dev.dv_xname);
2156 bge_release_resources(sc);
2157 return;
2158 }
2159
2160 /*
2161 * Save ASIC rev. Look up any quirks associated with this
2162 * ASIC.
2163 */
2164 sc->bge_chipid =
2165 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2166 BGE_PCIMISCCTL_ASICREV;
2167 br = bge_lookup_rev(sc->bge_chipid);
2168
2169 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2170
2171 if (br == NULL) {
2172 aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
2173 sc->bge_quirks = 0;
2174 } else {
2175 aprint_normal("ASIC %s (0x%04x)",
2176 br->br_name, sc->bge_chipid >> 16);
2177 sc->bge_quirks |= br->br_quirks;
2178 }
2179 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2180
2181 /* Allocate the general information block and ring buffers. */
2182 if (pci_dma64_available(pa))
2183 sc->bge_dmatag = pa->pa_dmat64;
2184 else
2185 sc->bge_dmatag = pa->pa_dmat;
2186 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2187 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2188 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2189 aprint_error("%s: can't alloc rx buffers\n",
2190 sc->bge_dev.dv_xname);
2191 return;
2192 }
2193 DPRINTFN(5, ("bus_dmamem_map\n"));
2194 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2195 sizeof(struct bge_ring_data), &kva,
2196 BUS_DMA_NOWAIT)) {
2197 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2198 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2199 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2200 return;
2201 }
2202 DPRINTFN(5, ("bus_dmamem_create\n"));
2203 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2204 sizeof(struct bge_ring_data), 0,
2205 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2206 aprint_error("%s: can't create DMA map\n",
2207 sc->bge_dev.dv_xname);
2208 bus_dmamem_unmap(sc->bge_dmatag, kva,
2209 sizeof(struct bge_ring_data));
2210 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2211 return;
2212 }
2213 DPRINTFN(5, ("bus_dmamem_load\n"));
2214 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2215 sizeof(struct bge_ring_data), NULL,
2216 BUS_DMA_NOWAIT)) {
2217 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2218 bus_dmamem_unmap(sc->bge_dmatag, kva,
2219 sizeof(struct bge_ring_data));
2220 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2221 return;
2222 }
2223
2224 DPRINTFN(5, ("bzero\n"));
2225 sc->bge_rdata = (struct bge_ring_data *)kva;
2226
2227 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2228
2229 /* Try to allocate memory for jumbo buffers. */
2230 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2231 if (bge_alloc_jumbo_mem(sc)) {
2232 aprint_error("%s: jumbo buffer allocation failed\n",
2233 sc->bge_dev.dv_xname);
2234 } else
2235 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2236 }
2237
2238 /* Set default tuneable values. */
2239 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2240 sc->bge_rx_coal_ticks = 150;
2241 sc->bge_rx_max_coal_bds = 64;
2242 #ifdef ORIG_WPAUL_VALUES
2243 sc->bge_tx_coal_ticks = 150;
2244 sc->bge_tx_max_coal_bds = 128;
2245 #else
2246 sc->bge_tx_coal_ticks = 300;
2247 sc->bge_tx_max_coal_bds = 400;
2248 #endif
2249
2250 /* Set up ifnet structure */
2251 ifp = &sc->ethercom.ec_if;
2252 ifp->if_softc = sc;
2253 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2254 ifp->if_ioctl = bge_ioctl;
2255 ifp->if_start = bge_start;
2256 ifp->if_init = bge_init;
2257 ifp->if_watchdog = bge_watchdog;
2258 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2259 IFQ_SET_READY(&ifp->if_snd);
2260 DPRINTFN(5, ("bcopy\n"));
2261 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2262
2263 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2264 sc->ethercom.ec_if.if_capabilities |=
2265 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2266 sc->ethercom.ec_capabilities |=
2267 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2268
2269 /*
2270 * Do MII setup.
2271 */
2272 DPRINTFN(5, ("mii setup\n"));
2273 sc->bge_mii.mii_ifp = ifp;
2274 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2275 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2276 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2277
2278 /*
2279 * Figure out what sort of media we have by checking the
2280 * hardware config word in the first 32k of NIC internal memory,
2281 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2282 * cards, this value appears to be unset. If that's the
2283 * case, we have to rely on identifying the NIC by its PCI
2284 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2285 */
2286 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2287 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2288 } else {
2289 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2290 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2291 hwcfg = be32toh(hwcfg);
2292 }
2293 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2294 sc->bge_tbi = 1;
2295
2296 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2297 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2298 SK_SUBSYSID_9D41)
2299 sc->bge_tbi = 1;
2300
2301 if (sc->bge_tbi) {
2302 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2303 bge_ifmedia_sts);
2304 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2305 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2306 0, NULL);
2307 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2308 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2309 } else {
2310 /*
2311 * Do transceiver setup.
2312 */
2313 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2314 bge_ifmedia_sts);
2315 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2316 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
2317
2318 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2319 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2320 ifmedia_add(&sc->bge_mii.mii_media,
2321 IFM_ETHER|IFM_MANUAL, 0, NULL);
2322 ifmedia_set(&sc->bge_mii.mii_media,
2323 IFM_ETHER|IFM_MANUAL);
2324 } else
2325 ifmedia_set(&sc->bge_mii.mii_media,
2326 IFM_ETHER|IFM_AUTO);
2327 }
2328
2329 /*
2330 * When using the BCM5701 in PCI-X mode, data corruption has
2331 * been observed in the first few bytes of some received packets.
2332 * Aligning the packet buffer in memory eliminates the corruption.
2333 * Unfortunately, this misaligns the packet payloads. On platforms
2334 * which do not support unaligned accesses, we will realign the
2335 * payloads by copying the received packets.
2336 */
2337 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2338 /* If in PCI-X mode, work around the alignment bug. */
2339 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2340 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2341 BGE_PCISTATE_PCI_BUSSPEED)
2342 sc->bge_rx_alignment_bug = 1;
2343 }
2344
2345 /*
2346 * Call MI attach routine.
2347 */
2348 DPRINTFN(5, ("if_attach\n"));
2349 if_attach(ifp);
2350 DPRINTFN(5, ("ether_ifattach\n"));
2351 ether_ifattach(ifp, eaddr);
2352 DPRINTFN(5, ("callout_init\n"));
2353 callout_init(&sc->bge_timeout);
2354 }
2355
2356 void
2357 bge_release_resources(sc)
2358 struct bge_softc *sc;
2359 {
2360 if (sc->bge_vpd_prodname != NULL)
2361 free(sc->bge_vpd_prodname, M_DEVBUF);
2362
2363 if (sc->bge_vpd_readonly != NULL)
2364 free(sc->bge_vpd_readonly, M_DEVBUF);
2365 }
2366
2367 void
2368 bge_reset(sc)
2369 struct bge_softc *sc;
2370 {
2371 struct pci_attach_args *pa = &sc->bge_pa;
2372 u_int32_t cachesize, command, pcistate;
2373 int i, val = 0;
2374
2375 /* Save some important PCI state. */
2376 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2377 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2378 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2379
2380 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2381 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2382 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2383
2384 /* Issue global reset */
2385 bge_writereg_ind(sc, BGE_MISC_CFG,
2386 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2387
2388 DELAY(1000);
2389
2390 /* Reset some of the PCI state that got zapped by reset */
2391 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2392 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2393 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2394 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2395 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2396 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2397
2398 /* Enable memory arbiter. */
2399 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2400 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2401 }
2402
2403 /*
2404 * Prevent PXE restart: write a magic number to the
2405 * general communications memory at 0xB50.
2406 */
2407 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2408
2409 /*
2410 * Poll the value location we just wrote until
2411 * we see the 1's complement of the magic number.
2412 * This indicates that the firmware initialization
2413 * is complete.
2414 */
2415 for (i = 0; i < 750; i++) {
2416 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2417 if (val == ~BGE_MAGIC_NUMBER)
2418 break;
2419 DELAY(1000);
2420 }
2421
2422 if (i == 750) {
2423 printf("%s: firmware handshake timed out, val = %x\n",
2424 sc->bge_dev.dv_xname, val);
2425 return;
2426 }
2427
2428 /*
2429 * XXX Wait for the value of the PCISTATE register to
2430 * return to its original pre-reset state. This is a
2431 * fairly good indicator of reset completion. If we don't
2432 * wait for the reset to fully complete, trying to read
2433 * from the device's non-PCI registers may yield garbage
2434 * results.
2435 */
2436 for (i = 0; i < BGE_TIMEOUT; i++) {
2437 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2438 pcistate)
2439 break;
2440 DELAY(10);
2441 }
2442
2443 /* Enable memory arbiter. */
2444 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2445 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2446 }
2447
2448 /* Fix up byte swapping */
2449 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2450
2451 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2452
2453 DELAY(10000);
2454 }
2455
2456 /*
2457 * Frame reception handling. This is called if there's a frame
2458 * on the receive return list.
2459 *
2460 * Note: we have to be able to handle two possibilities here:
2461 * 1) the frame is from the jumbo recieve ring
2462 * 2) the frame is from the standard receive ring
2463 */
2464
2465 void
2466 bge_rxeof(sc)
2467 struct bge_softc *sc;
2468 {
2469 struct ifnet *ifp;
2470 int stdcnt = 0, jumbocnt = 0;
2471 int have_tag = 0;
2472 u_int16_t vlan_tag = 0;
2473 bus_dmamap_t dmamap;
2474 bus_addr_t offset, toff;
2475 bus_size_t tlen;
2476 int tosync;
2477
2478 ifp = &sc->ethercom.ec_if;
2479
2480 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2481 offsetof(struct bge_ring_data, bge_status_block),
2482 sizeof (struct bge_status_block),
2483 BUS_DMASYNC_POSTREAD);
2484
2485 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2486 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2487 sc->bge_rx_saved_considx;
2488
2489 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2490
2491 if (tosync < 0) {
2492 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2493 sizeof (struct bge_rx_bd);
2494 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2495 toff, tlen, BUS_DMASYNC_POSTREAD);
2496 tosync = -tosync;
2497 }
2498
2499 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2500 offset, tosync * sizeof (struct bge_rx_bd),
2501 BUS_DMASYNC_POSTREAD);
2502
2503 while(sc->bge_rx_saved_considx !=
2504 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2505 struct bge_rx_bd *cur_rx;
2506 u_int32_t rxidx;
2507 struct mbuf *m = NULL;
2508
2509 cur_rx = &sc->bge_rdata->
2510 bge_rx_return_ring[sc->bge_rx_saved_considx];
2511
2512 rxidx = cur_rx->bge_idx;
2513 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2514
2515 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2516 have_tag = 1;
2517 vlan_tag = cur_rx->bge_vlan_tag;
2518 }
2519
2520 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2521 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2522 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2523 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2524 jumbocnt++;
2525 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2526 ifp->if_ierrors++;
2527 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2528 continue;
2529 }
2530 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2531 NULL)== ENOBUFS) {
2532 ifp->if_ierrors++;
2533 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2534 continue;
2535 }
2536 } else {
2537 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2538 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2539 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2540 stdcnt++;
2541 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2542 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2543 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2544 ifp->if_ierrors++;
2545 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2546 continue;
2547 }
2548 if (bge_newbuf_std(sc, sc->bge_std,
2549 NULL, dmamap) == ENOBUFS) {
2550 ifp->if_ierrors++;
2551 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2552 continue;
2553 }
2554 }
2555
2556 ifp->if_ipackets++;
2557 #ifndef __NO_STRICT_ALIGNMENT
2558 /*
2559 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2560 * the Rx buffer has the layer-2 header unaligned.
2561 * If our CPU requires alignment, re-align by copying.
2562 */
2563 if (sc->bge_rx_alignment_bug) {
2564 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2565 cur_rx->bge_len);
2566 m->m_data += ETHER_ALIGN;
2567 }
2568 #endif
2569
2570 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2571 m->m_pkthdr.rcvif = ifp;
2572
2573 #if NBPFILTER > 0
2574 /*
2575 * Handle BPF listeners. Let the BPF user see the packet.
2576 */
2577 if (ifp->if_bpf)
2578 bpf_mtap(ifp->if_bpf, m);
2579 #endif
2580
2581 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2582
2583 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2584 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2585 /*
2586 * Rx transport checksum-offload may also
2587 * have bugs with packets which, when transmitted,
2588 * were `runts' requiring padding.
2589 */
2590 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2591 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2592 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2593 m->m_pkthdr.csum_data =
2594 cur_rx->bge_tcp_udp_csum;
2595 m->m_pkthdr.csum_flags |=
2596 (M_CSUM_TCPv4|M_CSUM_UDPv4|
2597 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2598 }
2599
2600 /*
2601 * If we received a packet with a vlan tag, pass it
2602 * to vlan_input() instead of ether_input().
2603 */
2604 if (have_tag) {
2605 struct m_tag *mtag;
2606
2607 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2608 M_NOWAIT);
2609 if (mtag != NULL) {
2610 *(u_int *)(mtag + 1) = vlan_tag;
2611 m_tag_prepend(m, mtag);
2612 have_tag = vlan_tag = 0;
2613 } else {
2614 printf("%s: no mbuf for tag\n", ifp->if_xname);
2615 m_freem(m);
2616 have_tag = vlan_tag = 0;
2617 continue;
2618 }
2619 }
2620 (*ifp->if_input)(ifp, m);
2621 }
2622
2623 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2624 if (stdcnt)
2625 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2626 if (jumbocnt)
2627 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2628 }
2629
2630 void
2631 bge_txeof(sc)
2632 struct bge_softc *sc;
2633 {
2634 struct bge_tx_bd *cur_tx = NULL;
2635 struct ifnet *ifp;
2636 struct txdmamap_pool_entry *dma;
2637 bus_addr_t offset, toff;
2638 bus_size_t tlen;
2639 int tosync;
2640 struct mbuf *m;
2641
2642 ifp = &sc->ethercom.ec_if;
2643
2644 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2645 offsetof(struct bge_ring_data, bge_status_block),
2646 sizeof (struct bge_status_block),
2647 BUS_DMASYNC_POSTREAD);
2648
2649 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2650 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2651 sc->bge_tx_saved_considx;
2652
2653 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2654
2655 if (tosync < 0) {
2656 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2657 sizeof (struct bge_tx_bd);
2658 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2659 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2660 tosync = -tosync;
2661 }
2662
2663 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2664 offset, tosync * sizeof (struct bge_tx_bd),
2665 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2666
2667 /*
2668 * Go through our tx ring and free mbufs for those
2669 * frames that have been sent.
2670 */
2671 while (sc->bge_tx_saved_considx !=
2672 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2673 u_int32_t idx = 0;
2674
2675 idx = sc->bge_tx_saved_considx;
2676 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2677 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2678 ifp->if_opackets++;
2679 m = sc->bge_cdata.bge_tx_chain[idx];
2680 if (m != NULL) {
2681 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2682 dma = sc->txdma[idx];
2683 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2684 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2685 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2686 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2687 sc->txdma[idx] = NULL;
2688
2689 m_freem(m);
2690 }
2691 sc->bge_txcnt--;
2692 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2693 ifp->if_timer = 0;
2694 }
2695
2696 if (cur_tx != NULL)
2697 ifp->if_flags &= ~IFF_OACTIVE;
2698 }
2699
2700 int
2701 bge_intr(xsc)
2702 void *xsc;
2703 {
2704 struct bge_softc *sc;
2705 struct ifnet *ifp;
2706
2707 sc = xsc;
2708 ifp = &sc->ethercom.ec_if;
2709
2710 #ifdef notdef
2711 /* Avoid this for now -- checking this register is expensive. */
2712 /* Make sure this is really our interrupt. */
2713 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2714 return (0);
2715 #endif
2716 /* Ack interrupt and stop others from occuring. */
2717 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2718
2719 /*
2720 * Process link state changes.
2721 * Grrr. The link status word in the status block does
2722 * not work correctly on the BCM5700 rev AX and BX chips,
2723 * according to all avaibable information. Hence, we have
2724 * to enable MII interrupts in order to properly obtain
2725 * async link changes. Unfortunately, this also means that
2726 * we have to read the MAC status register to detect link
2727 * changes, thereby adding an additional register access to
2728 * the interrupt handler.
2729 */
2730
2731 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2732 u_int32_t status;
2733
2734 status = CSR_READ_4(sc, BGE_MAC_STS);
2735 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2736 sc->bge_link = 0;
2737 callout_stop(&sc->bge_timeout);
2738 bge_tick(sc);
2739 /* Clear the interrupt */
2740 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2741 BGE_EVTENB_MI_INTERRUPT);
2742 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2743 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2744 BRGPHY_INTRS);
2745 }
2746 } else {
2747 if (sc->bge_rdata->bge_status_block.bge_status &
2748 BGE_STATFLAG_LINKSTATE_CHANGED) {
2749 sc->bge_link = 0;
2750 callout_stop(&sc->bge_timeout);
2751 bge_tick(sc);
2752 /* Clear the interrupt */
2753 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2754 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2755 BGE_MACSTAT_LINK_CHANGED);
2756 }
2757 }
2758
2759 if (ifp->if_flags & IFF_RUNNING) {
2760 /* Check RX return ring producer/consumer */
2761 bge_rxeof(sc);
2762
2763 /* Check TX ring producer/consumer */
2764 bge_txeof(sc);
2765 }
2766
2767 bge_handle_events(sc);
2768
2769 /* Re-enable interrupts. */
2770 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2771
2772 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2773 bge_start(ifp);
2774
2775 return (1);
2776 }
2777
2778 void
2779 bge_tick(xsc)
2780 void *xsc;
2781 {
2782 struct bge_softc *sc = xsc;
2783 struct mii_data *mii = &sc->bge_mii;
2784 struct ifmedia *ifm = NULL;
2785 struct ifnet *ifp = &sc->ethercom.ec_if;
2786 int s;
2787
2788 s = splnet();
2789
2790 bge_stats_update(sc);
2791 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2792 if (sc->bge_link) {
2793 splx(s);
2794 return;
2795 }
2796
2797 if (sc->bge_tbi) {
2798 ifm = &sc->bge_ifmedia;
2799 if (CSR_READ_4(sc, BGE_MAC_STS) &
2800 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2801 sc->bge_link++;
2802 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2803 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2804 bge_start(ifp);
2805 }
2806 splx(s);
2807 return;
2808 }
2809
2810 mii_tick(mii);
2811
2812 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2813 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2814 sc->bge_link++;
2815 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2816 bge_start(ifp);
2817 }
2818
2819 splx(s);
2820 }
2821
2822 void
2823 bge_stats_update(sc)
2824 struct bge_softc *sc;
2825 {
2826 struct ifnet *ifp = &sc->ethercom.ec_if;
2827 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2828 bus_size_t rstats = BGE_RX_STATS;
2829
2830 #define READ_RSTAT(sc, stats, stat) \
2831 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
2832
2833 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2834 ifp->if_collisions +=
2835 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
2836 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
2837 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
2838 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
2839 return;
2840 }
2841
2842 #undef READ_RSTAT
2843 #define READ_STAT(sc, stats, stat) \
2844 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2845
2846 ifp->if_collisions +=
2847 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2848 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2849 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2850 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2851 ifp->if_collisions;
2852
2853 #undef READ_STAT
2854
2855 #ifdef notdef
2856 ifp->if_collisions +=
2857 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2858 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2859 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2860 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2861 ifp->if_collisions;
2862 #endif
2863 }
2864
2865 /*
2866 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
2867 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
2868 * but when such padded frames employ the bge IP/TCP checksum offload,
2869 * the hardware checksum assist gives incorrect results (possibly
2870 * from incorporating its own padding into the UDP/TCP checksum; who knows).
2871 * If we pad such runts with zeros, the onboard checksum comes out correct.
2872 */
2873 static __inline int
2874 bge_cksum_pad(struct mbuf *pkt)
2875 {
2876 struct mbuf *last = NULL;
2877 int padlen;
2878
2879 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
2880
2881 /* if there's only the packet-header and we can pad there, use it. */
2882 if (pkt->m_pkthdr.len == pkt->m_len &&
2883 !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
2884 last = pkt;
2885 } else {
2886 /*
2887 * Walk packet chain to find last mbuf. We will either
2888 * pad there, or append a new mbuf and pad it
2889 * (thus perhaps avoiding the bcm5700 dma-min bug).
2890 */
2891 for (last = pkt; last->m_next != NULL; last = last->m_next) {
2892 (void) 0; /* do nothing*/
2893 }
2894
2895 /* `last' now points to last in chain. */
2896 if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
2897 (void) 0; /* we can pad here, in-place. */
2898 } else {
2899 /* Allocate new empty mbuf, pad it. Compact later. */
2900 struct mbuf *n;
2901 MGET(n, M_DONTWAIT, MT_DATA);
2902 n->m_len = 0;
2903 last->m_next = n;
2904 last = n;
2905 }
2906 }
2907
2908 #ifdef DEBUG
2909 /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
2910 KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
2911 #endif
2912 /* Now zero the pad area, to avoid the bge cksum-assist bug */
2913 memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
2914 last->m_len += padlen;
2915 pkt->m_pkthdr.len += padlen;
2916 return 0;
2917 }
2918
2919 /*
2920 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
2921 */
2922 static __inline int
2923 bge_compact_dma_runt(struct mbuf *pkt)
2924 {
2925 struct mbuf *m, *prev;
2926 int totlen, prevlen;
2927
2928 prev = NULL;
2929 totlen = 0;
2930 prevlen = -1;
2931
2932 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
2933 int mlen = m->m_len;
2934 int shortfall = 8 - mlen ;
2935
2936 totlen += mlen;
2937 if (mlen == 0) {
2938 continue;
2939 }
2940 if (mlen >= 8)
2941 continue;
2942
2943 /* If we get here, mbuf data is too small for DMA engine.
2944 * Try to fix by shuffling data to prev or next in chain.
2945 * If that fails, do a compacting deep-copy of the whole chain.
2946 */
2947
2948 /* Internal frag. If fits in prev, copy it there. */
2949 if (prev && !M_READONLY(prev) &&
2950 M_TRAILINGSPACE(prev) >= m->m_len) {
2951 bcopy(m->m_data,
2952 prev->m_data+prev->m_len,
2953 mlen);
2954 prev->m_len += mlen;
2955 m->m_len = 0;
2956 /* XXX stitch chain */
2957 prev->m_next = m_free(m);
2958 m = prev;
2959 continue;
2960 }
2961 else if (m->m_next != NULL && !M_READONLY(m) &&
2962 M_TRAILINGSPACE(m) >= shortfall &&
2963 m->m_next->m_len >= (8 + shortfall)) {
2964 /* m is writable and have enough data in next, pull up. */
2965
2966 bcopy(m->m_next->m_data,
2967 m->m_data+m->m_len,
2968 shortfall);
2969 m->m_len += shortfall;
2970 m->m_next->m_len -= shortfall;
2971 m->m_next->m_data += shortfall;
2972 }
2973 else if (m->m_next == NULL || 1) {
2974 /* Got a runt at the very end of the packet.
2975 * borrow data from the tail of the preceding mbuf and
2976 * update its length in-place. (The original data is still
2977 * valid, so we can do this even if prev is not writable.)
2978 */
2979
2980 /* if we'd make prev a runt, just move all of its data. */
2981 #ifdef DEBUG
2982 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
2983 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
2984 #endif
2985 if ((prev->m_len - shortfall) < 8)
2986 shortfall = prev->m_len;
2987
2988 #ifdef notyet /* just do the safe slow thing for now */
2989 if (!M_READONLY(m)) {
2990 if (M_LEADINGSPACE(m) < shorfall) {
2991 void *m_dat;
2992 m_dat = (m->m_flags & M_PKTHDR) ?
2993 m->m_pktdat : m->dat;
2994 memmove(m_dat, mtod(m, void*), m->m_len);
2995 m->m_data = m_dat;
2996 }
2997 } else
2998 #endif /* just do the safe slow thing */
2999 {
3000 struct mbuf * n = NULL;
3001 int newprevlen = prev->m_len - shortfall;
3002
3003 MGET(n, M_NOWAIT, MT_DATA);
3004 if (n == NULL)
3005 return ENOBUFS;
3006 KASSERT(m->m_len + shortfall < MLEN
3007 /*,
3008 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3009
3010 /* first copy the data we're stealing from prev */
3011 bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3012
3013 /* update prev->m_len accordingly */
3014 prev->m_len -= shortfall;
3015
3016 /* copy data from runt m */
3017 bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3018
3019 /* n holds what we stole from prev, plus m */
3020 n->m_len = shortfall + m->m_len;
3021
3022 /* stitch n into chain and free m */
3023 n->m_next = m->m_next;
3024 prev->m_next = n;
3025 /* KASSERT(m->m_next == NULL); */
3026 m->m_next = NULL;
3027 m_free(m);
3028 m = n; /* for continuing loop */
3029 }
3030 }
3031 prevlen = m->m_len;
3032 }
3033 return 0;
3034 }
3035
3036 /*
3037 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3038 * pointers to descriptors.
3039 */
3040 int
3041 bge_encap(sc, m_head, txidx)
3042 struct bge_softc *sc;
3043 struct mbuf *m_head;
3044 u_int32_t *txidx;
3045 {
3046 struct bge_tx_bd *f = NULL;
3047 u_int32_t frag, cur, cnt = 0;
3048 u_int16_t csum_flags = 0;
3049 struct txdmamap_pool_entry *dma;
3050 bus_dmamap_t dmamap;
3051 int i = 0;
3052 struct m_tag *mtag;
3053
3054 cur = frag = *txidx;
3055
3056 if (m_head->m_pkthdr.csum_flags) {
3057 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3058 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3059 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3060 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3061 }
3062
3063 /*
3064 * If we were asked to do an outboard checksum, and the NIC
3065 * has the bug where it sometimes adds in the Ethernet padding,
3066 * explicitly pad with zeros so the cksum will be correct either way.
3067 * (For now, do this for all chip versions, until newer
3068 * are confirmed to not require the workaround.)
3069 */
3070 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3071 #ifdef notyet
3072 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3073 #endif
3074 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3075 goto check_dma_bug;
3076
3077 if (bge_cksum_pad(m_head) != 0)
3078 return ENOBUFS;
3079
3080 check_dma_bug:
3081 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3082 goto doit;
3083 /*
3084 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3085 * less than eight bytes. If we encounter a teeny mbuf
3086 * at the end of a chain, we can pad. Otherwise, copy.
3087 */
3088 if (bge_compact_dma_runt(m_head) != 0)
3089 return ENOBUFS;
3090
3091 doit:
3092 dma = SLIST_FIRST(&sc->txdma_list);
3093 if (dma == NULL)
3094 return ENOBUFS;
3095 dmamap = dma->dmamap;
3096
3097 /*
3098 * Start packing the mbufs in this chain into
3099 * the fragment pointers. Stop when we run out
3100 * of fragments or hit the end of the mbuf chain.
3101 */
3102 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3103 BUS_DMA_NOWAIT))
3104 return(ENOBUFS);
3105
3106 mtag = sc->ethercom.ec_nvlans ?
3107 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3108
3109 for (i = 0; i < dmamap->dm_nsegs; i++) {
3110 f = &sc->bge_rdata->bge_tx_ring[frag];
3111 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3112 break;
3113 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3114 f->bge_len = dmamap->dm_segs[i].ds_len;
3115 f->bge_flags = csum_flags;
3116
3117 if (mtag != NULL) {
3118 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3119 f->bge_vlan_tag = *(u_int *)(mtag + 1);
3120 } else {
3121 f->bge_vlan_tag = 0;
3122 }
3123 /*
3124 * Sanity check: avoid coming within 16 descriptors
3125 * of the end of the ring.
3126 */
3127 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
3128 return(ENOBUFS);
3129 cur = frag;
3130 BGE_INC(frag, BGE_TX_RING_CNT);
3131 cnt++;
3132 }
3133
3134 if (i < dmamap->dm_nsegs)
3135 return ENOBUFS;
3136
3137 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3138 BUS_DMASYNC_PREWRITE);
3139
3140 if (frag == sc->bge_tx_saved_considx)
3141 return(ENOBUFS);
3142
3143 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3144 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3145 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3146 sc->txdma[cur] = dma;
3147 sc->bge_txcnt += cnt;
3148
3149 *txidx = frag;
3150
3151 return(0);
3152 }
3153
3154 /*
3155 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3156 * to the mbuf data regions directly in the transmit descriptors.
3157 */
3158 void
3159 bge_start(ifp)
3160 struct ifnet *ifp;
3161 {
3162 struct bge_softc *sc;
3163 struct mbuf *m_head = NULL;
3164 u_int32_t prodidx = 0;
3165 int pkts = 0;
3166
3167 sc = ifp->if_softc;
3168
3169 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3170 return;
3171
3172 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
3173
3174 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3175 IFQ_POLL(&ifp->if_snd, m_head);
3176 if (m_head == NULL)
3177 break;
3178
3179 #if 0
3180 /*
3181 * XXX
3182 * safety overkill. If this is a fragmented packet chain
3183 * with delayed TCP/UDP checksums, then only encapsulate
3184 * it if we have enough descriptors to handle the entire
3185 * chain at once.
3186 * (paranoia -- may not actually be needed)
3187 */
3188 if (m_head->m_flags & M_FIRSTFRAG &&
3189 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3190 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3191 m_head->m_pkthdr.csum_data + 16) {
3192 ifp->if_flags |= IFF_OACTIVE;
3193 break;
3194 }
3195 }
3196 #endif
3197
3198 /*
3199 * Pack the data into the transmit ring. If we
3200 * don't have room, set the OACTIVE flag and wait
3201 * for the NIC to drain the ring.
3202 */
3203 if (bge_encap(sc, m_head, &prodidx)) {
3204 ifp->if_flags |= IFF_OACTIVE;
3205 break;
3206 }
3207
3208 /* now we are committed to transmit the packet */
3209 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3210 pkts++;
3211
3212 #if NBPFILTER > 0
3213 /*
3214 * If there's a BPF listener, bounce a copy of this frame
3215 * to him.
3216 */
3217 if (ifp->if_bpf)
3218 bpf_mtap(ifp->if_bpf, m_head);
3219 #endif
3220 }
3221 if (pkts == 0)
3222 return;
3223
3224 /* Transmit */
3225 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3226 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3227 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3228
3229 /*
3230 * Set a timeout in case the chip goes out to lunch.
3231 */
3232 ifp->if_timer = 5;
3233 }
3234
3235 int
3236 bge_init(ifp)
3237 struct ifnet *ifp;
3238 {
3239 struct bge_softc *sc = ifp->if_softc;
3240 u_int16_t *m;
3241 int s, error;
3242
3243 s = splnet();
3244
3245 ifp = &sc->ethercom.ec_if;
3246
3247 /* Cancel pending I/O and flush buffers. */
3248 bge_stop(sc);
3249 bge_reset(sc);
3250 bge_chipinit(sc);
3251
3252 /*
3253 * Init the various state machines, ring
3254 * control blocks and firmware.
3255 */
3256 error = bge_blockinit(sc);
3257 if (error != 0) {
3258 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3259 error);
3260 splx(s);
3261 return error;
3262 }
3263
3264 ifp = &sc->ethercom.ec_if;
3265
3266 /* Specify MTU. */
3267 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3268 ETHER_HDR_LEN + ETHER_CRC_LEN);
3269
3270 /* Load our MAC address. */
3271 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3272 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3273 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3274
3275 /* Enable or disable promiscuous mode as needed. */
3276 if (ifp->if_flags & IFF_PROMISC) {
3277 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3278 } else {
3279 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3280 }
3281
3282 /* Program multicast filter. */
3283 bge_setmulti(sc);
3284
3285 /* Init RX ring. */
3286 bge_init_rx_ring_std(sc);
3287
3288 /* Init jumbo RX ring. */
3289 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3290 bge_init_rx_ring_jumbo(sc);
3291
3292 /* Init our RX return ring index */
3293 sc->bge_rx_saved_considx = 0;
3294
3295 /* Init TX ring. */
3296 bge_init_tx_ring(sc);
3297
3298 /* Turn on transmitter */
3299 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3300
3301 /* Turn on receiver */
3302 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3303
3304 /* Tell firmware we're alive. */
3305 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3306
3307 /* Enable host interrupts. */
3308 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3309 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3310 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3311
3312 bge_ifmedia_upd(ifp);
3313
3314 ifp->if_flags |= IFF_RUNNING;
3315 ifp->if_flags &= ~IFF_OACTIVE;
3316
3317 splx(s);
3318
3319 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3320
3321 return 0;
3322 }
3323
3324 /*
3325 * Set media options.
3326 */
3327 int
3328 bge_ifmedia_upd(ifp)
3329 struct ifnet *ifp;
3330 {
3331 struct bge_softc *sc = ifp->if_softc;
3332 struct mii_data *mii = &sc->bge_mii;
3333 struct ifmedia *ifm = &sc->bge_ifmedia;
3334
3335 /* If this is a 1000baseX NIC, enable the TBI port. */
3336 if (sc->bge_tbi) {
3337 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3338 return(EINVAL);
3339 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3340 case IFM_AUTO:
3341 break;
3342 case IFM_1000_SX:
3343 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3344 BGE_CLRBIT(sc, BGE_MAC_MODE,
3345 BGE_MACMODE_HALF_DUPLEX);
3346 } else {
3347 BGE_SETBIT(sc, BGE_MAC_MODE,
3348 BGE_MACMODE_HALF_DUPLEX);
3349 }
3350 break;
3351 default:
3352 return(EINVAL);
3353 }
3354 return(0);
3355 }
3356
3357 sc->bge_link = 0;
3358 mii_mediachg(mii);
3359
3360 return(0);
3361 }
3362
3363 /*
3364 * Report current media status.
3365 */
3366 void
3367 bge_ifmedia_sts(ifp, ifmr)
3368 struct ifnet *ifp;
3369 struct ifmediareq *ifmr;
3370 {
3371 struct bge_softc *sc = ifp->if_softc;
3372 struct mii_data *mii = &sc->bge_mii;
3373
3374 if (sc->bge_tbi) {
3375 ifmr->ifm_status = IFM_AVALID;
3376 ifmr->ifm_active = IFM_ETHER;
3377 if (CSR_READ_4(sc, BGE_MAC_STS) &
3378 BGE_MACSTAT_TBI_PCS_SYNCHED)
3379 ifmr->ifm_status |= IFM_ACTIVE;
3380 ifmr->ifm_active |= IFM_1000_SX;
3381 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3382 ifmr->ifm_active |= IFM_HDX;
3383 else
3384 ifmr->ifm_active |= IFM_FDX;
3385 return;
3386 }
3387
3388 mii_pollstat(mii);
3389 ifmr->ifm_active = mii->mii_media_active;
3390 ifmr->ifm_status = mii->mii_media_status;
3391 }
3392
3393 int
3394 bge_ioctl(ifp, command, data)
3395 struct ifnet *ifp;
3396 u_long command;
3397 caddr_t data;
3398 {
3399 struct bge_softc *sc = ifp->if_softc;
3400 struct ifreq *ifr = (struct ifreq *) data;
3401 int s, error = 0;
3402 struct mii_data *mii;
3403
3404 s = splnet();
3405
3406 switch(command) {
3407 case SIOCSIFFLAGS:
3408 if (ifp->if_flags & IFF_UP) {
3409 /*
3410 * If only the state of the PROMISC flag changed,
3411 * then just use the 'set promisc mode' command
3412 * instead of reinitializing the entire NIC. Doing
3413 * a full re-init means reloading the firmware and
3414 * waiting for it to start up, which may take a
3415 * second or two.
3416 */
3417 if (ifp->if_flags & IFF_RUNNING &&
3418 ifp->if_flags & IFF_PROMISC &&
3419 !(sc->bge_if_flags & IFF_PROMISC)) {
3420 BGE_SETBIT(sc, BGE_RX_MODE,
3421 BGE_RXMODE_RX_PROMISC);
3422 } else if (ifp->if_flags & IFF_RUNNING &&
3423 !(ifp->if_flags & IFF_PROMISC) &&
3424 sc->bge_if_flags & IFF_PROMISC) {
3425 BGE_CLRBIT(sc, BGE_RX_MODE,
3426 BGE_RXMODE_RX_PROMISC);
3427 } else
3428 bge_init(ifp);
3429 } else {
3430 if (ifp->if_flags & IFF_RUNNING) {
3431 bge_stop(sc);
3432 }
3433 }
3434 sc->bge_if_flags = ifp->if_flags;
3435 error = 0;
3436 break;
3437 case SIOCSIFMEDIA:
3438 case SIOCGIFMEDIA:
3439 if (sc->bge_tbi) {
3440 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3441 command);
3442 } else {
3443 mii = &sc->bge_mii;
3444 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3445 command);
3446 }
3447 error = 0;
3448 break;
3449 default:
3450 error = ether_ioctl(ifp, command, data);
3451 if (error == ENETRESET) {
3452 bge_setmulti(sc);
3453 error = 0;
3454 }
3455 break;
3456 }
3457
3458 splx(s);
3459
3460 return(error);
3461 }
3462
3463 void
3464 bge_watchdog(ifp)
3465 struct ifnet *ifp;
3466 {
3467 struct bge_softc *sc;
3468
3469 sc = ifp->if_softc;
3470
3471 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3472
3473 ifp->if_flags &= ~IFF_RUNNING;
3474 bge_init(ifp);
3475
3476 ifp->if_oerrors++;
3477 }
3478
3479 static void
3480 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3481 {
3482 int i;
3483
3484 BGE_CLRBIT(sc, reg, bit);
3485
3486 for (i = 0; i < BGE_TIMEOUT; i++) {
3487 if ((CSR_READ_4(sc, reg) & bit) == 0)
3488 return;
3489 delay(100);
3490 }
3491
3492 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3493 sc->bge_dev.dv_xname, (u_long) reg, bit);
3494 }
3495
3496 /*
3497 * Stop the adapter and free any mbufs allocated to the
3498 * RX and TX lists.
3499 */
3500 void
3501 bge_stop(sc)
3502 struct bge_softc *sc;
3503 {
3504 struct ifnet *ifp = &sc->ethercom.ec_if;
3505
3506 callout_stop(&sc->bge_timeout);
3507
3508 /*
3509 * Disable all of the receiver blocks
3510 */
3511 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3512 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3513 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3514 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3515 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3516 }
3517 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3518 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3519 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3520
3521 /*
3522 * Disable all of the transmit blocks
3523 */
3524 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3525 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3526 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3527 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3528 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3529 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3530 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3531 }
3532 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3533
3534 /*
3535 * Shut down all of the memory managers and related
3536 * state machines.
3537 */
3538 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3539 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3540 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3541 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3542 }
3543
3544 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3545 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3546
3547 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3548 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3549 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3550 }
3551
3552 /* Disable host interrupts. */
3553 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3554 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3555
3556 /*
3557 * Tell firmware we're shutting down.
3558 */
3559 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3560
3561 /* Free the RX lists. */
3562 bge_free_rx_ring_std(sc);
3563
3564 /* Free jumbo RX list. */
3565 bge_free_rx_ring_jumbo(sc);
3566
3567 /* Free TX buffers. */
3568 bge_free_tx_ring(sc);
3569
3570 /*
3571 * Isolate/power down the PHY.
3572 */
3573 if (!sc->bge_tbi)
3574 mii_down(&sc->bge_mii);
3575
3576 sc->bge_link = 0;
3577
3578 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3579
3580 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3581 }
3582
3583 /*
3584 * Stop all chip I/O so that the kernel's probe routines don't
3585 * get confused by errant DMAs when rebooting.
3586 */
3587 void
3588 bge_shutdown(xsc)
3589 void *xsc;
3590 {
3591 struct bge_softc *sc = (struct bge_softc *)xsc;
3592
3593 bge_stop(sc);
3594 bge_reset(sc);
3595 }
3596