Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.56
      1 /*	$NetBSD: if_bge.c,v 1.56 2003/12/09 15:19:33 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.56 2003/12/09 15:19:33 pooka Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "vlan.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/device.h>
     95 #include <sys/socket.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #ifdef INET
    103 #include <netinet/in.h>
    104 #include <netinet/in_systm.h>
    105 #include <netinet/in_var.h>
    106 #include <netinet/ip.h>
    107 #endif
    108 
    109 #if NBPFILTER > 0
    110 #include <net/bpf.h>
    111 #endif
    112 
    113 #include <dev/pci/pcireg.h>
    114 #include <dev/pci/pcivar.h>
    115 #include <dev/pci/pcidevs.h>
    116 
    117 #include <dev/mii/mii.h>
    118 #include <dev/mii/miivar.h>
    119 #include <dev/mii/miidevs.h>
    120 #include <dev/mii/brgphyreg.h>
    121 
    122 #include <dev/pci/if_bgereg.h>
    123 
    124 #include <uvm/uvm_extern.h>
    125 
    126 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    127 
    128 int bge_probe(struct device *, struct cfdata *, void *);
    129 void bge_attach(struct device *, struct device *, void *);
    130 void bge_release_resources(struct bge_softc *);
    131 void bge_txeof(struct bge_softc *);
    132 void bge_rxeof(struct bge_softc *);
    133 
    134 void bge_tick(void *);
    135 void bge_stats_update(struct bge_softc *);
    136 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    137 static __inline int bge_cksum_pad(struct mbuf *pkt);
    138 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
    139 
    140 int bge_intr(void *);
    141 void bge_start(struct ifnet *);
    142 int bge_ioctl(struct ifnet *, u_long, caddr_t);
    143 int bge_init(struct ifnet *);
    144 void bge_stop(struct bge_softc *);
    145 void bge_watchdog(struct ifnet *);
    146 void bge_shutdown(void *);
    147 int bge_ifmedia_upd(struct ifnet *);
    148 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    149 
    150 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
    151 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
    152 
    153 void bge_setmulti(struct bge_softc *);
    154 
    155 void bge_handle_events(struct bge_softc *);
    156 int bge_alloc_jumbo_mem(struct bge_softc *);
    157 void bge_free_jumbo_mem(struct bge_softc *);
    158 void *bge_jalloc(struct bge_softc *);
    159 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
    160 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
    161 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    162 int bge_init_rx_ring_std(struct bge_softc *);
    163 void bge_free_rx_ring_std(struct bge_softc *);
    164 int bge_init_rx_ring_jumbo(struct bge_softc *);
    165 void bge_free_rx_ring_jumbo(struct bge_softc *);
    166 void bge_free_tx_ring(struct bge_softc *);
    167 int bge_init_tx_ring(struct bge_softc *);
    168 
    169 int bge_chipinit(struct bge_softc *);
    170 int bge_blockinit(struct bge_softc *);
    171 int bge_setpowerstate(struct bge_softc *, int);
    172 
    173 #ifdef notdef
    174 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
    175 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
    176 void bge_vpd_read(struct bge_softc *);
    177 #endif
    178 
    179 u_int32_t bge_readmem_ind(struct bge_softc *, int);
    180 void bge_writemem_ind(struct bge_softc *, int, int);
    181 #ifdef notdef
    182 u_int32_t bge_readreg_ind(struct bge_softc *, int);
    183 #endif
    184 void bge_writereg_ind(struct bge_softc *, int, int);
    185 
    186 int bge_miibus_readreg(struct device *, int, int);
    187 void bge_miibus_writereg(struct device *, int, int, int);
    188 void bge_miibus_statchg(struct device *);
    189 
    190 void bge_reset(struct bge_softc *);
    191 
    192 void bge_dump_status(struct bge_softc *);
    193 void bge_dump_rxbd(struct bge_rx_bd *);
    194 
    195 #define BGE_DEBUG
    196 #ifdef BGE_DEBUG
    197 #define DPRINTF(x)	if (bgedebug) printf x
    198 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    199 int	bgedebug = 0;
    200 #else
    201 #define DPRINTF(x)
    202 #define DPRINTFN(n,x)
    203 #endif
    204 
    205 /* Various chip quirks. */
    206 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    207 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    208 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    209 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    210 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    211 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    212 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    213 #define	BGE_QUIRK_5705_CORE		0x00000080
    214 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    215 
    216 /* following bugs are common to bcm5700 rev B, all flavours */
    217 #define BGE_QUIRK_5700_COMMON \
    218 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    219 
    220 CFATTACH_DECL(bge, sizeof(struct bge_softc),
    221     bge_probe, bge_attach, NULL, NULL);
    222 
    223 u_int32_t
    224 bge_readmem_ind(sc, off)
    225 	struct bge_softc *sc;
    226 	int off;
    227 {
    228 	struct pci_attach_args	*pa = &(sc->bge_pa);
    229 	pcireg_t val;
    230 
    231 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    232 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    233 	return val;
    234 }
    235 
    236 void
    237 bge_writemem_ind(sc, off, val)
    238 	struct bge_softc *sc;
    239 	int off, val;
    240 {
    241 	struct pci_attach_args	*pa = &(sc->bge_pa);
    242 
    243 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    244 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    245 }
    246 
    247 #ifdef notdef
    248 u_int32_t
    249 bge_readreg_ind(sc, off)
    250 	struct bge_softc *sc;
    251 	int off;
    252 {
    253 	struct pci_attach_args	*pa = &(sc->bge_pa);
    254 
    255 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    256 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    257 }
    258 #endif
    259 
    260 void
    261 bge_writereg_ind(sc, off, val)
    262 	struct bge_softc *sc;
    263 	int off, val;
    264 {
    265 	struct pci_attach_args	*pa = &(sc->bge_pa);
    266 
    267 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    268 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    269 }
    270 
    271 #ifdef notdef
    272 u_int8_t
    273 bge_vpd_readbyte(sc, addr)
    274 	struct bge_softc *sc;
    275 	int addr;
    276 {
    277 	int i;
    278 	u_int32_t val;
    279 	struct pci_attach_args	*pa = &(sc->bge_pa);
    280 
    281 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    282 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    283 		DELAY(10);
    284 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    285 		    BGE_VPD_FLAG)
    286 			break;
    287 	}
    288 
    289 	if (i == BGE_TIMEOUT) {
    290 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    291 		return(0);
    292 	}
    293 
    294 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    295 
    296 	return((val >> ((addr % 4) * 8)) & 0xFF);
    297 }
    298 
    299 void
    300 bge_vpd_read_res(sc, res, addr)
    301 	struct bge_softc *sc;
    302 	struct vpd_res *res;
    303 	int addr;
    304 {
    305 	int i;
    306 	u_int8_t *ptr;
    307 
    308 	ptr = (u_int8_t *)res;
    309 	for (i = 0; i < sizeof(struct vpd_res); i++)
    310 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    311 }
    312 
    313 void
    314 bge_vpd_read(sc)
    315 	struct bge_softc *sc;
    316 {
    317 	int pos = 0, i;
    318 	struct vpd_res res;
    319 
    320 	if (sc->bge_vpd_prodname != NULL)
    321 		free(sc->bge_vpd_prodname, M_DEVBUF);
    322 	if (sc->bge_vpd_readonly != NULL)
    323 		free(sc->bge_vpd_readonly, M_DEVBUF);
    324 	sc->bge_vpd_prodname = NULL;
    325 	sc->bge_vpd_readonly = NULL;
    326 
    327 	bge_vpd_read_res(sc, &res, pos);
    328 
    329 	if (res.vr_id != VPD_RES_ID) {
    330 		printf("%s: bad VPD resource id: expected %x got %x\n",
    331 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    332 		return;
    333 	}
    334 
    335 	pos += sizeof(res);
    336 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    337 	if (sc->bge_vpd_prodname == NULL)
    338 		panic("bge_vpd_read");
    339 	for (i = 0; i < res.vr_len; i++)
    340 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    341 	sc->bge_vpd_prodname[i] = '\0';
    342 	pos += i;
    343 
    344 	bge_vpd_read_res(sc, &res, pos);
    345 
    346 	if (res.vr_id != VPD_RES_READ) {
    347 		printf("%s: bad VPD resource id: expected %x got %x\n",
    348 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    349 		return;
    350 	}
    351 
    352 	pos += sizeof(res);
    353 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    354 	if (sc->bge_vpd_readonly == NULL)
    355 		panic("bge_vpd_read");
    356 	for (i = 0; i < res.vr_len + 1; i++)
    357 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    358 }
    359 #endif
    360 
    361 /*
    362  * Read a byte of data stored in the EEPROM at address 'addr.' The
    363  * BCM570x supports both the traditional bitbang interface and an
    364  * auto access interface for reading the EEPROM. We use the auto
    365  * access method.
    366  */
    367 u_int8_t
    368 bge_eeprom_getbyte(sc, addr, dest)
    369 	struct bge_softc *sc;
    370 	int addr;
    371 	u_int8_t *dest;
    372 {
    373 	int i;
    374 	u_int32_t byte = 0;
    375 
    376 	/*
    377 	 * Enable use of auto EEPROM access so we can avoid
    378 	 * having to use the bitbang method.
    379 	 */
    380 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    381 
    382 	/* Reset the EEPROM, load the clock period. */
    383 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    384 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    385 	DELAY(20);
    386 
    387 	/* Issue the read EEPROM command. */
    388 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    389 
    390 	/* Wait for completion */
    391 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    392 		DELAY(10);
    393 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    394 			break;
    395 	}
    396 
    397 	if (i == BGE_TIMEOUT) {
    398 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    399 		return(0);
    400 	}
    401 
    402 	/* Get result. */
    403 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    404 
    405 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    406 
    407 	return(0);
    408 }
    409 
    410 /*
    411  * Read a sequence of bytes from the EEPROM.
    412  */
    413 int
    414 bge_read_eeprom(sc, dest, off, cnt)
    415 	struct bge_softc *sc;
    416 	caddr_t dest;
    417 	int off;
    418 	int cnt;
    419 {
    420 	int err = 0, i;
    421 	u_int8_t byte = 0;
    422 
    423 	for (i = 0; i < cnt; i++) {
    424 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    425 		if (err)
    426 			break;
    427 		*(dest + i) = byte;
    428 	}
    429 
    430 	return(err ? 1 : 0);
    431 }
    432 
    433 int
    434 bge_miibus_readreg(dev, phy, reg)
    435 	struct device *dev;
    436 	int phy, reg;
    437 {
    438 	struct bge_softc *sc = (struct bge_softc *)dev;
    439 	u_int32_t val;
    440 	u_int32_t saved_autopoll;
    441 	int i;
    442 
    443 	/*
    444 	 * Several chips with builtin PHYs will incorrectly answer to
    445 	 * other PHY instances than the builtin PHY at id 1.
    446 	 */
    447 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    448 		return(0);
    449 
    450 	/* Reading with autopolling on may trigger PCI errors */
    451 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    452 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    453 		CSR_WRITE_4(sc, BGE_MI_MODE,
    454 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    455 		DELAY(40);
    456 	}
    457 
    458 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    459 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    460 
    461 	for (i = 0; i < BGE_TIMEOUT; i++) {
    462 		val = CSR_READ_4(sc, BGE_MI_COMM);
    463 		if (!(val & BGE_MICOMM_BUSY))
    464 			break;
    465 		delay(10);
    466 	}
    467 
    468 	if (i == BGE_TIMEOUT) {
    469 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    470 		val = 0;
    471 		goto done;
    472 	}
    473 
    474 	val = CSR_READ_4(sc, BGE_MI_COMM);
    475 
    476 done:
    477 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    478 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    479 		DELAY(40);
    480 	}
    481 
    482 	if (val & BGE_MICOMM_READFAIL)
    483 		return(0);
    484 
    485 	return(val & 0xFFFF);
    486 }
    487 
    488 void
    489 bge_miibus_writereg(dev, phy, reg, val)
    490 	struct device *dev;
    491 	int phy, reg, val;
    492 {
    493 	struct bge_softc *sc = (struct bge_softc *)dev;
    494 	u_int32_t saved_autopoll;
    495 	int i;
    496 
    497 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    498 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    499 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    500 		delay(40);
    501 		CSR_WRITE_4(sc, BGE_MI_MODE,
    502 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    503 		delay(10); /* 40 usec is supposed to be adequate */
    504 	}
    505 
    506 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    507 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    508 
    509 	for (i = 0; i < BGE_TIMEOUT; i++) {
    510 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    511 			break;
    512 		delay(10);
    513 	}
    514 
    515 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    516 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    517 		delay(40);
    518 	}
    519 
    520 	if (i == BGE_TIMEOUT) {
    521 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    522 	}
    523 }
    524 
    525 void
    526 bge_miibus_statchg(dev)
    527 	struct device *dev;
    528 {
    529 	struct bge_softc *sc = (struct bge_softc *)dev;
    530 	struct mii_data *mii = &sc->bge_mii;
    531 
    532 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    533 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    534 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    535 	} else {
    536 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    537 	}
    538 
    539 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    540 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    541 	} else {
    542 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    543 	}
    544 }
    545 
    546 /*
    547  * Handle events that have triggered interrupts.
    548  */
    549 void
    550 bge_handle_events(sc)
    551 	struct bge_softc		*sc;
    552 {
    553 
    554 	return;
    555 }
    556 
    557 /*
    558  * Memory management for jumbo frames.
    559  */
    560 
    561 int
    562 bge_alloc_jumbo_mem(sc)
    563 	struct bge_softc		*sc;
    564 {
    565 	caddr_t			ptr, kva;
    566 	bus_dma_segment_t	seg;
    567 	int		i, rseg, state, error;
    568 	struct bge_jpool_entry   *entry;
    569 
    570 	state = error = 0;
    571 
    572 	/* Grab a big chunk o' storage. */
    573 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    574 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    575 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    576 		return ENOBUFS;
    577 	}
    578 
    579 	state = 1;
    580 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    581 	    BUS_DMA_NOWAIT)) {
    582 		printf("%s: can't map DMA buffers (%d bytes)\n",
    583 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    584 		error = ENOBUFS;
    585 		goto out;
    586 	}
    587 
    588 	state = 2;
    589 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    590 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    591 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
    592 		error = ENOBUFS;
    593 		goto out;
    594 	}
    595 
    596 	state = 3;
    597 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    598 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    599 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
    600 		error = ENOBUFS;
    601 		goto out;
    602 	}
    603 
    604 	state = 4;
    605 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    606 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
    607 
    608 	SLIST_INIT(&sc->bge_jfree_listhead);
    609 	SLIST_INIT(&sc->bge_jinuse_listhead);
    610 
    611 	/*
    612 	 * Now divide it up into 9K pieces and save the addresses
    613 	 * in an array.
    614 	 */
    615 	ptr = sc->bge_cdata.bge_jumbo_buf;
    616 	for (i = 0; i < BGE_JSLOTS; i++) {
    617 		sc->bge_cdata.bge_jslots[i] = ptr;
    618 		ptr += BGE_JLEN;
    619 		entry = malloc(sizeof(struct bge_jpool_entry),
    620 		    M_DEVBUF, M_NOWAIT);
    621 		if (entry == NULL) {
    622 			printf("%s: no memory for jumbo buffer queue!\n",
    623 			    sc->bge_dev.dv_xname);
    624 			error = ENOBUFS;
    625 			goto out;
    626 		}
    627 		entry->slot = i;
    628 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    629 				 entry, jpool_entries);
    630 	}
    631 out:
    632 	if (error != 0) {
    633 		switch (state) {
    634 		case 4:
    635 			bus_dmamap_unload(sc->bge_dmatag,
    636 			    sc->bge_cdata.bge_rx_jumbo_map);
    637 		case 3:
    638 			bus_dmamap_destroy(sc->bge_dmatag,
    639 			    sc->bge_cdata.bge_rx_jumbo_map);
    640 		case 2:
    641 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    642 		case 1:
    643 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    644 			break;
    645 		default:
    646 			break;
    647 		}
    648 	}
    649 
    650 	return error;
    651 }
    652 
    653 /*
    654  * Allocate a jumbo buffer.
    655  */
    656 void *
    657 bge_jalloc(sc)
    658 	struct bge_softc		*sc;
    659 {
    660 	struct bge_jpool_entry   *entry;
    661 
    662 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    663 
    664 	if (entry == NULL) {
    665 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    666 		return(NULL);
    667 	}
    668 
    669 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    670 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    671 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    672 }
    673 
    674 /*
    675  * Release a jumbo buffer.
    676  */
    677 void
    678 bge_jfree(m, buf, size, arg)
    679 	struct mbuf	*m;
    680 	caddr_t		buf;
    681 	size_t		size;
    682 	void		*arg;
    683 {
    684 	struct bge_jpool_entry *entry;
    685 	struct bge_softc *sc;
    686 	int i, s;
    687 
    688 	/* Extract the softc struct pointer. */
    689 	sc = (struct bge_softc *)arg;
    690 
    691 	if (sc == NULL)
    692 		panic("bge_jfree: can't find softc pointer!");
    693 
    694 	/* calculate the slot this buffer belongs to */
    695 
    696 	i = ((caddr_t)buf
    697 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    698 
    699 	if ((i < 0) || (i >= BGE_JSLOTS))
    700 		panic("bge_jfree: asked to free buffer that we don't manage!");
    701 
    702 	s = splvm();
    703 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    704 	if (entry == NULL)
    705 		panic("bge_jfree: buffer not in use!");
    706 	entry->slot = i;
    707 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    708 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    709 
    710 	if (__predict_true(m != NULL))
    711   		pool_cache_put(&mbpool_cache, m);
    712 	splx(s);
    713 }
    714 
    715 
    716 /*
    717  * Intialize a standard receive ring descriptor.
    718  */
    719 int
    720 bge_newbuf_std(sc, i, m, dmamap)
    721 	struct bge_softc	*sc;
    722 	int			i;
    723 	struct mbuf		*m;
    724 	bus_dmamap_t dmamap;
    725 {
    726 	struct mbuf		*m_new = NULL;
    727 	struct bge_rx_bd	*r;
    728 	int			error;
    729 
    730 	if (dmamap == NULL) {
    731 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    732 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    733 		if (error != 0)
    734 			return error;
    735 	}
    736 
    737 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    738 
    739 	if (m == NULL) {
    740 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    741 		if (m_new == NULL) {
    742 			return(ENOBUFS);
    743 		}
    744 
    745 		MCLGET(m_new, M_DONTWAIT);
    746 		if (!(m_new->m_flags & M_EXT)) {
    747 			m_freem(m_new);
    748 			return(ENOBUFS);
    749 		}
    750 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    751 		if (!sc->bge_rx_alignment_bug)
    752 		    m_adj(m_new, ETHER_ALIGN);
    753 
    754 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    755 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    756 			return(ENOBUFS);
    757 	} else {
    758 		m_new = m;
    759 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    760 		m_new->m_data = m_new->m_ext.ext_buf;
    761 		if (!sc->bge_rx_alignment_bug)
    762 		    m_adj(m_new, ETHER_ALIGN);
    763 	}
    764 
    765 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    766 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    767 	bge_set_hostaddr(&r->bge_addr,
    768 	    dmamap->dm_segs[0].ds_addr);
    769 	r->bge_flags = BGE_RXBDFLAG_END;
    770 	r->bge_len = m_new->m_len;
    771 	r->bge_idx = i;
    772 
    773 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    774 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    775 		i * sizeof (struct bge_rx_bd),
    776 	    sizeof (struct bge_rx_bd),
    777 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    778 
    779 	return(0);
    780 }
    781 
    782 /*
    783  * Initialize a jumbo receive ring descriptor. This allocates
    784  * a jumbo buffer from the pool managed internally by the driver.
    785  */
    786 int
    787 bge_newbuf_jumbo(sc, i, m)
    788 	struct bge_softc *sc;
    789 	int i;
    790 	struct mbuf *m;
    791 {
    792 	struct mbuf *m_new = NULL;
    793 	struct bge_rx_bd *r;
    794 
    795 	if (m == NULL) {
    796 		caddr_t			*buf = NULL;
    797 
    798 		/* Allocate the mbuf. */
    799 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    800 		if (m_new == NULL) {
    801 			return(ENOBUFS);
    802 		}
    803 
    804 		/* Allocate the jumbo buffer */
    805 		buf = bge_jalloc(sc);
    806 		if (buf == NULL) {
    807 			m_freem(m_new);
    808 			printf("%s: jumbo allocation failed "
    809 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    810 			return(ENOBUFS);
    811 		}
    812 
    813 		/* Attach the buffer to the mbuf. */
    814 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    815 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    816 		    bge_jfree, sc);
    817 	} else {
    818 		m_new = m;
    819 		m_new->m_data = m_new->m_ext.ext_buf;
    820 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    821 	}
    822 
    823 	if (!sc->bge_rx_alignment_bug)
    824 	    m_adj(m_new, ETHER_ALIGN);
    825 	/* Set up the descriptor. */
    826 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    827 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    828 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    829 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    830 	r->bge_len = m_new->m_len;
    831 	r->bge_idx = i;
    832 
    833 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    834 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    835 		i * sizeof (struct bge_rx_bd),
    836 	    sizeof (struct bge_rx_bd),
    837 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    838 
    839 	return(0);
    840 }
    841 
    842 /*
    843  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    844  * that's 1MB or memory, which is a lot. For now, we fill only the first
    845  * 256 ring entries and hope that our CPU is fast enough to keep up with
    846  * the NIC.
    847  */
    848 int
    849 bge_init_rx_ring_std(sc)
    850 	struct bge_softc *sc;
    851 {
    852 	int i;
    853 
    854 	if (sc->bge_flags & BGE_RXRING_VALID)
    855 		return 0;
    856 
    857 	for (i = 0; i < BGE_SSLOTS; i++) {
    858 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    859 			return(ENOBUFS);
    860 	}
    861 
    862 	sc->bge_std = i - 1;
    863 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
    864 
    865 	sc->bge_flags |= BGE_RXRING_VALID;
    866 
    867 	return(0);
    868 }
    869 
    870 void
    871 bge_free_rx_ring_std(sc)
    872 	struct bge_softc *sc;
    873 {
    874 	int i;
    875 
    876 	if (!(sc->bge_flags & BGE_RXRING_VALID))
    877 		return;
    878 
    879 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
    880 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
    881 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
    882 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
    883 			bus_dmamap_destroy(sc->bge_dmatag,
    884 			    sc->bge_cdata.bge_rx_std_map[i]);
    885 		}
    886 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
    887 		    sizeof(struct bge_rx_bd));
    888 	}
    889 
    890 	sc->bge_flags &= ~BGE_RXRING_VALID;
    891 }
    892 
    893 int
    894 bge_init_rx_ring_jumbo(sc)
    895 	struct bge_softc *sc;
    896 {
    897 	int i;
    898 	volatile struct bge_rcb *rcb;
    899 
    900 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    901 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
    902 			return(ENOBUFS);
    903 	};
    904 
    905 	sc->bge_jumbo = i - 1;
    906 
    907 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
    908 	rcb->bge_maxlen_flags = 0;
    909 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
    910 
    911 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
    912 
    913 	return(0);
    914 }
    915 
    916 void
    917 bge_free_rx_ring_jumbo(sc)
    918 	struct bge_softc *sc;
    919 {
    920 	int i;
    921 
    922 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
    923 		return;
    924 
    925 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    926 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
    927 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
    928 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
    929 		}
    930 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
    931 		    sizeof(struct bge_rx_bd));
    932 	}
    933 
    934 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
    935 }
    936 
    937 void
    938 bge_free_tx_ring(sc)
    939 	struct bge_softc *sc;
    940 {
    941 	int i, freed;
    942 	struct txdmamap_pool_entry *dma;
    943 
    944 	if (!(sc->bge_flags & BGE_TXRING_VALID))
    945 		return;
    946 
    947 	freed = 0;
    948 
    949 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
    950 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
    951 			freed++;
    952 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
    953 			sc->bge_cdata.bge_tx_chain[i] = NULL;
    954 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
    955 					    link);
    956 			sc->txdma[i] = 0;
    957 		}
    958 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
    959 		    sizeof(struct bge_tx_bd));
    960 	}
    961 
    962 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
    963 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
    964 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
    965 		free(dma, M_DEVBUF);
    966 	}
    967 
    968 	sc->bge_flags &= ~BGE_TXRING_VALID;
    969 }
    970 
    971 int
    972 bge_init_tx_ring(sc)
    973 	struct bge_softc *sc;
    974 {
    975 	int i;
    976 	bus_dmamap_t dmamap;
    977 	struct txdmamap_pool_entry *dma;
    978 
    979 	if (sc->bge_flags & BGE_TXRING_VALID)
    980 		return 0;
    981 
    982 	sc->bge_txcnt = 0;
    983 	sc->bge_tx_saved_considx = 0;
    984 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    985 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
    986 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    987 
    988 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
    989 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
    990 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    991 
    992 	SLIST_INIT(&sc->txdma_list);
    993 	for (i = 0; i < BGE_RSLOTS; i++) {
    994 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
    995 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
    996 		    &dmamap))
    997 			return(ENOBUFS);
    998 		if (dmamap == NULL)
    999 			panic("dmamap NULL in bge_init_tx_ring");
   1000 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1001 		if (dma == NULL) {
   1002 			printf("%s: can't alloc txdmamap_pool_entry\n",
   1003 			    sc->bge_dev.dv_xname);
   1004 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1005 			return (ENOMEM);
   1006 		}
   1007 		dma->dmamap = dmamap;
   1008 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1009 	}
   1010 
   1011 	sc->bge_flags |= BGE_TXRING_VALID;
   1012 
   1013 	return(0);
   1014 }
   1015 
   1016 void
   1017 bge_setmulti(sc)
   1018 	struct bge_softc *sc;
   1019 {
   1020 	struct ethercom		*ac = &sc->ethercom;
   1021 	struct ifnet		*ifp = &ac->ec_if;
   1022 	struct ether_multi	*enm;
   1023 	struct ether_multistep  step;
   1024 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1025 	u_int32_t		h;
   1026 	int			i;
   1027 
   1028 	if (ifp->if_flags & IFF_PROMISC)
   1029 		goto allmulti;
   1030 
   1031 	/* Now program new ones. */
   1032 	ETHER_FIRST_MULTI(step, ac, enm);
   1033 	while (enm != NULL) {
   1034 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1035 			/*
   1036 			 * We must listen to a range of multicast addresses.
   1037 			 * For now, just accept all multicasts, rather than
   1038 			 * trying to set only those filter bits needed to match
   1039 			 * the range.  (At this time, the only use of address
   1040 			 * ranges is for IP multicast routing, for which the
   1041 			 * range is big enough to require all bits set.)
   1042 			 */
   1043 			goto allmulti;
   1044 		}
   1045 
   1046 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1047 
   1048 		/* Just want the 7 least-significant bits. */
   1049 		h &= 0x7f;
   1050 
   1051 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1052 		ETHER_NEXT_MULTI(step, enm);
   1053 	}
   1054 
   1055 	ifp->if_flags &= ~IFF_ALLMULTI;
   1056 	goto setit;
   1057 
   1058  allmulti:
   1059 	ifp->if_flags |= IFF_ALLMULTI;
   1060 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1061 
   1062  setit:
   1063 	for (i = 0; i < 4; i++)
   1064 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1065 }
   1066 
   1067 const int bge_swapbits[] = {
   1068 	0,
   1069 	BGE_MODECTL_BYTESWAP_DATA,
   1070 	BGE_MODECTL_WORDSWAP_DATA,
   1071 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1072 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1073 
   1074 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1075 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1076 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1077 
   1078 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1079 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1080 
   1081 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1082 
   1083 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1084 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1085 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1086 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1087 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1088 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1089 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1090 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1091 
   1092 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1093 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1094 };
   1095 
   1096 int bge_swapindex = 0;
   1097 
   1098 /*
   1099  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1100  * self-test results.
   1101  */
   1102 int
   1103 bge_chipinit(sc)
   1104 	struct bge_softc *sc;
   1105 {
   1106 	u_int32_t		cachesize;
   1107 	int			i;
   1108 	u_int32_t		dma_rw_ctl;
   1109 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1110 
   1111 
   1112 	/* Set endianness before we access any non-PCI registers. */
   1113 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1114 	    BGE_INIT);
   1115 
   1116 	/* Set power state to D0. */
   1117 	bge_setpowerstate(sc, 0);
   1118 
   1119 	/*
   1120 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1121 	 * self-tests passed.
   1122 	 */
   1123 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1124 		printf("%s: RX CPU self-diagnostics failed!\n",
   1125 		    sc->bge_dev.dv_xname);
   1126 		return(ENODEV);
   1127 	}
   1128 
   1129 	/* Clear the MAC control register */
   1130 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1131 
   1132 	/*
   1133 	 * Clear the MAC statistics block in the NIC's
   1134 	 * internal memory.
   1135 	 */
   1136 	for (i = BGE_STATS_BLOCK;
   1137 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1138 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1139 
   1140 	for (i = BGE_STATUS_BLOCK;
   1141 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1142 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1143 
   1144 	/* Set up the PCI DMA control register. */
   1145 	if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
   1146 	    BGE_PCISTATE_PCI_BUSMODE) {
   1147 		/* Conventional PCI bus */
   1148 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
   1149 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1150 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1151 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1152 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1153 			dma_rw_ctl |= 0x0F;
   1154 		}
   1155 	} else {
   1156 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
   1157 		/* PCI-X bus */
   1158 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1159 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1160 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1161 		    (0x0F);
   1162 		/*
   1163 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1164 		 * for hardware bugs, which means we should also clear
   1165 		 * the low-order MINDMA bits.  In addition, the 5704
   1166 		 * uses a different encoding of read/write watermarks.
   1167 		 */
   1168 		if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 ||
   1169 		    sc->bge_chipid == BGE_CHIPID_BCM5704_A1 ||
   1170 		    sc->bge_chipid == BGE_CHIPID_BCM5704_A2 ||
   1171 		    sc->bge_chipid == BGE_CHIPID_BCM5704_A3) {
   1172 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1173 			  /* should be 0x1f0000 */
   1174 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1175 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1176 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1177 		}
   1178 		else if ((sc->bge_chipid >> 28) ==
   1179 			 (BGE_CHIPID_BCM5703_A0 >> 28)) {
   1180 			dma_rw_ctl &=  0xfffffff0;
   1181 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1182 		}
   1183 	}
   1184 
   1185 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1186 
   1187 	/*
   1188 	 * Set up general mode register.
   1189 	 */
   1190 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1191 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1192 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1193 
   1194 	/* Get cache line size. */
   1195 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1196 
   1197 	/*
   1198 	 * Avoid violating PCI spec on certain chip revs.
   1199 	 */
   1200 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1201 	    PCIM_CMD_MWIEN) {
   1202 		switch(cachesize) {
   1203 		case 1:
   1204 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1205 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1206 			break;
   1207 		case 2:
   1208 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1209 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1210 			break;
   1211 		case 4:
   1212 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1213 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1214 			break;
   1215 		case 8:
   1216 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1217 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1218 			break;
   1219 		case 16:
   1220 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1221 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1222 			break;
   1223 		case 32:
   1224 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1225 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1226 			break;
   1227 		case 64:
   1228 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1229 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1230 			break;
   1231 		default:
   1232 		/* Disable PCI memory write and invalidate. */
   1233 #if 0
   1234 			if (bootverbose)
   1235 				printf("%s: cache line size %d not "
   1236 				    "supported; disabling PCI MWI\n",
   1237 				    sc->bge_dev.dv_xname, cachesize);
   1238 #endif
   1239 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1240 			    PCIM_CMD_MWIEN);
   1241 			break;
   1242 		}
   1243 	}
   1244 
   1245 	/*
   1246 	 * Disable memory write invalidate.  Apparently it is not supported
   1247 	 * properly by these devices.
   1248 	 */
   1249 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1250 
   1251 
   1252 #ifdef __brokenalpha__
   1253 	/*
   1254 	 * Must insure that we do not cross an 8K (bytes) boundary
   1255 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1256 	 * restriction on some ALPHA platforms with early revision
   1257 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1258 	 */
   1259 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1260 #endif
   1261 
   1262 	/* Set the timer prescaler (always 66MHz) */
   1263 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1264 
   1265 	return(0);
   1266 }
   1267 
   1268 int
   1269 bge_blockinit(sc)
   1270 	struct bge_softc *sc;
   1271 {
   1272 	volatile struct bge_rcb		*rcb;
   1273 	bus_size_t		rcb_addr;
   1274 	int			i;
   1275 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1276 	bge_hostaddr		taddr;
   1277 
   1278 	/*
   1279 	 * Initialize the memory window pointer register so that
   1280 	 * we can access the first 32K of internal NIC RAM. This will
   1281 	 * allow us to set up the TX send ring RCBs and the RX return
   1282 	 * ring RCBs, plus other things which live in NIC memory.
   1283 	 */
   1284 
   1285 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1286 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1287 
   1288 	/* Configure mbuf memory pool */
   1289 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1290 		if (sc->bge_extram) {
   1291 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1292 			    BGE_EXT_SSRAM);
   1293 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1294 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1295 			else
   1296 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1297 		} else {
   1298 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1299 			    BGE_BUFFPOOL_1);
   1300 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1301 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1302 			else
   1303 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1304 		}
   1305 
   1306 		/* Configure DMA resource pool */
   1307 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1308 		    BGE_DMA_DESCRIPTORS);
   1309 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1310 	}
   1311 
   1312 	/* Configure mbuf pool watermarks */
   1313 #ifdef ORIG_WPAUL_VALUES
   1314 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1315 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1316 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1317 #else
   1318 	/* new broadcom docs strongly recommend these: */
   1319 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1320 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1321 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1322 	} else {
   1323 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1324 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1325 	}
   1326 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1327 #endif
   1328 
   1329 	/* Configure DMA resource watermarks */
   1330 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1331 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1332 
   1333 	/* Enable buffer manager */
   1334 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1335 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1336 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1337 
   1338 		/* Poll for buffer manager start indication */
   1339 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1340 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1341 				break;
   1342 			DELAY(10);
   1343 		}
   1344 
   1345 		if (i == BGE_TIMEOUT) {
   1346 			printf("%s: buffer manager failed to start\n",
   1347 			    sc->bge_dev.dv_xname);
   1348 			return(ENXIO);
   1349 		}
   1350 	}
   1351 
   1352 	/* Enable flow-through queues */
   1353 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1354 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1355 
   1356 	/* Wait until queue initialization is complete */
   1357 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1358 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1359 			break;
   1360 		DELAY(10);
   1361 	}
   1362 
   1363 	if (i == BGE_TIMEOUT) {
   1364 		printf("%s: flow-through queue init failed\n",
   1365 		    sc->bge_dev.dv_xname);
   1366 		return(ENXIO);
   1367 	}
   1368 
   1369 	/* Initialize the standard RX ring control block */
   1370 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1371 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1372 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1373 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1374 		rcb->bge_maxlen_flags =
   1375 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1376 	} else {
   1377 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1378 	}
   1379 	if (sc->bge_extram)
   1380 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1381 	else
   1382 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1383 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1384 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1385 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1386 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1387 
   1388 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1389 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1390 	} else {
   1391 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1392 	}
   1393 
   1394 	/*
   1395 	 * Initialize the jumbo RX ring control block
   1396 	 * We set the 'ring disabled' bit in the flags
   1397 	 * field until we're actually ready to start
   1398 	 * using this ring (i.e. once we set the MTU
   1399 	 * high enough to require it).
   1400 	 */
   1401 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1402 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1403 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1404 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1405 		rcb->bge_maxlen_flags =
   1406 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1407 			BGE_RCB_FLAG_RING_DISABLED);
   1408 		if (sc->bge_extram)
   1409 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1410 		else
   1411 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1412 
   1413 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1414 		    rcb->bge_hostaddr.bge_addr_hi);
   1415 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1416 		    rcb->bge_hostaddr.bge_addr_lo);
   1417 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1418 		    rcb->bge_maxlen_flags);
   1419 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1420 
   1421 		/* Set up dummy disabled mini ring RCB */
   1422 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1423 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1424 		    BGE_RCB_FLAG_RING_DISABLED);
   1425 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1426 		    rcb->bge_maxlen_flags);
   1427 
   1428 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1429 		    offsetof(struct bge_ring_data, bge_info),
   1430 		    sizeof (struct bge_gib),
   1431 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1432 	}
   1433 
   1434 	/*
   1435 	 * Set the BD ring replentish thresholds. The recommended
   1436 	 * values are 1/8th the number of descriptors allocated to
   1437 	 * each ring.
   1438 	 */
   1439 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1440 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1441 
   1442 	/*
   1443 	 * Disable all unused send rings by setting the 'ring disabled'
   1444 	 * bit in the flags field of all the TX send ring control blocks.
   1445 	 * These are located in NIC memory.
   1446 	 */
   1447 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1448 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1449 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1450 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1451 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1452 		rcb_addr += sizeof(struct bge_rcb);
   1453 	}
   1454 
   1455 	/* Configure TX RCB 0 (we use only the first ring) */
   1456 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1457 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1458 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1459 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1460 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1461 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1462 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1463 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1464 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1465 	}
   1466 
   1467 	/* Disable all unused RX return rings */
   1468 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1469 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1470 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1471 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1472 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1473 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1474                                      BGE_RCB_FLAG_RING_DISABLED));
   1475 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1476 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1477 		    (i * (sizeof(u_int64_t))), 0);
   1478 		rcb_addr += sizeof(struct bge_rcb);
   1479 	}
   1480 
   1481 	/* Initialize RX ring indexes */
   1482 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1483 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1484 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1485 
   1486 	/*
   1487 	 * Set up RX return ring 0
   1488 	 * Note that the NIC address for RX return rings is 0x00000000.
   1489 	 * The return rings live entirely within the host, so the
   1490 	 * nicaddr field in the RCB isn't used.
   1491 	 */
   1492 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1493 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1494 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1495 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1496 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1497 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1498 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1499 
   1500 	/* Set random backoff seed for TX */
   1501 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1502 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1503 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1504 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1505 	    BGE_TX_BACKOFF_SEED_MASK);
   1506 
   1507 	/* Set inter-packet gap */
   1508 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1509 
   1510 	/*
   1511 	 * Specify which ring to use for packets that don't match
   1512 	 * any RX rules.
   1513 	 */
   1514 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1515 
   1516 	/*
   1517 	 * Configure number of RX lists. One interrupt distribution
   1518 	 * list, sixteen active lists, one bad frames class.
   1519 	 */
   1520 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1521 
   1522 	/* Inialize RX list placement stats mask. */
   1523 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1524 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1525 
   1526 	/* Disable host coalescing until we get it set up */
   1527 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1528 
   1529 	/* Poll to make sure it's shut down. */
   1530 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1531 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1532 			break;
   1533 		DELAY(10);
   1534 	}
   1535 
   1536 	if (i == BGE_TIMEOUT) {
   1537 		printf("%s: host coalescing engine failed to idle\n",
   1538 		    sc->bge_dev.dv_xname);
   1539 		return(ENXIO);
   1540 	}
   1541 
   1542 	/* Set up host coalescing defaults */
   1543 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1544 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1545 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1546 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1547 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1548 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1549 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1550 	}
   1551 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1552 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1553 
   1554 	/* Set up address of statistics block */
   1555 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1556 		bge_set_hostaddr(&taddr,
   1557 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1558 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1559 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1560 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1561 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1562 	}
   1563 
   1564 	/* Set up address of status block */
   1565 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1566 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1567 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1568 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1569 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1570 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1571 
   1572 	/* Turn on host coalescing state machine */
   1573 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1574 
   1575 	/* Turn on RX BD completion state machine and enable attentions */
   1576 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1577 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1578 
   1579 	/* Turn on RX list placement state machine */
   1580 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1581 
   1582 	/* Turn on RX list selector state machine. */
   1583 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1584 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1585 	}
   1586 
   1587 	/* Turn on DMA, clear stats */
   1588 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1589 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1590 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1591 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1592 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1593 
   1594 	/* Set misc. local control, enable interrupts on attentions */
   1595 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1596 
   1597 #ifdef notdef
   1598 	/* Assert GPIO pins for PHY reset */
   1599 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1600 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1601 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1602 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1603 #endif
   1604 
   1605 #if defined(not_quite_yet)
   1606 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1607 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1608 		sc->bge_local_ctrl_reg |=
   1609 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1610 	}
   1611 #endif
   1612 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1613 
   1614 	/* Turn on DMA completion state machine */
   1615 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1616 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1617 	}
   1618 
   1619 	/* Turn on write DMA state machine */
   1620 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1621 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1622 
   1623 	/* Turn on read DMA state machine */
   1624 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
   1625 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
   1626 
   1627 	/* Turn on RX data completion state machine */
   1628 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1629 
   1630 	/* Turn on RX BD initiator state machine */
   1631 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1632 
   1633 	/* Turn on RX data and RX BD initiator state machine */
   1634 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1635 
   1636 	/* Turn on Mbuf cluster free state machine */
   1637 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1638 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1639 	}
   1640 
   1641 	/* Turn on send BD completion state machine */
   1642 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1643 
   1644 	/* Turn on send data completion state machine */
   1645 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1646 
   1647 	/* Turn on send data initiator state machine */
   1648 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1649 
   1650 	/* Turn on send BD initiator state machine */
   1651 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1652 
   1653 	/* Turn on send BD selector state machine */
   1654 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1655 
   1656 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1657 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1658 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1659 
   1660 	/* ack/clear link change events */
   1661 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1662 	    BGE_MACSTAT_CFG_CHANGED);
   1663 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1664 
   1665 	/* Enable PHY auto polling (for MII/GMII only) */
   1666 	if (sc->bge_tbi) {
   1667 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1668  	} else {
   1669 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1670 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1671 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1672 			    BGE_EVTENB_MI_INTERRUPT);
   1673 	}
   1674 
   1675 	/* Enable link state change attentions. */
   1676 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1677 
   1678 	return(0);
   1679 }
   1680 
   1681 static const struct bge_revision {
   1682 	uint32_t		br_chipid;
   1683 	uint32_t		br_quirks;
   1684 	const char		*br_name;
   1685 } bge_revisions[] = {
   1686 	{ BGE_CHIPID_BCM5700_A0,
   1687 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1688 	  "BCM5700 A0" },
   1689 
   1690 	{ BGE_CHIPID_BCM5700_A1,
   1691 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1692 	  "BCM5700 A1" },
   1693 
   1694 	{ BGE_CHIPID_BCM5700_B0,
   1695 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1696 	  "BCM5700 B0" },
   1697 
   1698 	{ BGE_CHIPID_BCM5700_B1,
   1699 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1700 	  "BCM5700 B1" },
   1701 
   1702 	{ BGE_CHIPID_BCM5700_B2,
   1703 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1704 	  "BCM5700 B2" },
   1705 
   1706 	/* This is treated like a BCM5700 Bx */
   1707 	{ BGE_CHIPID_BCM5700_ALTIMA,
   1708 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1709 	  "BCM5700 Altima" },
   1710 
   1711 	{ BGE_CHIPID_BCM5700_C0,
   1712 	  0,
   1713 	  "BCM5700 C0" },
   1714 
   1715 	{ BGE_CHIPID_BCM5701_A0,
   1716 	  0, /*XXX really, just not known */
   1717 	  "BCM5701 A0" },
   1718 
   1719 	{ BGE_CHIPID_BCM5701_B0,
   1720 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1721 	  "BCM5701 B0" },
   1722 
   1723 	{ BGE_CHIPID_BCM5701_B2,
   1724 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1725 	  "BCM5701 B2" },
   1726 
   1727 	{ BGE_CHIPID_BCM5701_B5,
   1728 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1729 	  "BCM5701 B5" },
   1730 
   1731 	{ BGE_CHIPID_BCM5703_A0,
   1732 	  0,
   1733 	  "BCM5703 A0" },
   1734 
   1735 	{ BGE_CHIPID_BCM5703_A1,
   1736 	  0,
   1737 	  "BCM5703 A1" },
   1738 
   1739 	{ BGE_CHIPID_BCM5703_A2,
   1740 	  BGE_QUIRK_ONLY_PHY_1,
   1741 	  "BCM5703 A2" },
   1742 
   1743 	{ BGE_CHIPID_BCM5703_A3,
   1744 	  BGE_QUIRK_ONLY_PHY_1,
   1745 	  "BCM5703 A3" },
   1746 
   1747 	{ BGE_CHIPID_BCM5704_A0,
   1748   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1749 	  "BCM5704 A0" },
   1750 
   1751 	{ BGE_CHIPID_BCM5704_A1,
   1752   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1753 	  "BCM5704 A1" },
   1754 
   1755 	{ BGE_CHIPID_BCM5704_A2,
   1756   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1757 	  "BCM5704 A2" },
   1758 
   1759 	{ BGE_CHIPID_BCM5704_A3,
   1760   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1761 	  "BCM5704 A3" },
   1762 
   1763 	{ BGE_CHIPID_BCM5705_A0,
   1764 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1765 	  "BCM5705 A0" },
   1766 
   1767 	{ BGE_CHIPID_BCM5705_A1,
   1768 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1769 	  "BCM5705 A1" },
   1770 
   1771 	{ BGE_CHIPID_BCM5705_A2,
   1772 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1773 	  "BCM5705 A2" },
   1774 
   1775 	{ BGE_CHIPID_BCM5705_A3,
   1776 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1777 	  "BCM5705 A3" },
   1778 
   1779 	{ 0, 0, NULL }
   1780 };
   1781 
   1782 /*
   1783  * Some defaults for major revisions, so that newer steppings
   1784  * that we don't know about have a shot at working.
   1785  */
   1786 static const struct bge_revision bge_majorrevs[] = {
   1787 	{ BGE_ASICREV_BCM5700,
   1788 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1789 	  "unknown BCM5700" },
   1790 
   1791 	{ BGE_ASICREV_BCM5701,
   1792 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1793 	  "unknown BCM5701" },
   1794 
   1795 	{ BGE_ASICREV_BCM5703,
   1796 	  0,
   1797 	  "unknown BCM5703" },
   1798 
   1799 	{ BGE_ASICREV_BCM5704,
   1800 	  BGE_QUIRK_ONLY_PHY_1,
   1801 	  "unknown BCM5704" },
   1802 
   1803 	{ BGE_ASICREV_BCM5705,
   1804 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1805 	  "unknown BCM5705" },
   1806 
   1807 	{ 0,
   1808 	  0,
   1809 	  NULL }
   1810 };
   1811 
   1812 
   1813 static const struct bge_revision *
   1814 bge_lookup_rev(uint32_t chipid)
   1815 {
   1816 	const struct bge_revision *br;
   1817 
   1818 	for (br = bge_revisions; br->br_name != NULL; br++) {
   1819 		if (br->br_chipid == chipid)
   1820 			return (br);
   1821 	}
   1822 
   1823 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   1824 		if (br->br_chipid == BGE_ASICREV(chipid))
   1825 			return (br);
   1826 	}
   1827 
   1828 	return (NULL);
   1829 }
   1830 
   1831 static const struct bge_product {
   1832 	pci_vendor_id_t		bp_vendor;
   1833 	pci_product_id_t	bp_product;
   1834 	const char		*bp_name;
   1835 } bge_products[] = {
   1836 	/*
   1837 	 * The BCM5700 documentation seems to indicate that the hardware
   1838 	 * still has the Alteon vendor ID burned into it, though it
   1839 	 * should always be overridden by the value in the EEPROM.  We'll
   1840 	 * check for it anyway.
   1841 	 */
   1842 	{ PCI_VENDOR_ALTEON,
   1843 	  PCI_PRODUCT_ALTEON_BCM5700,
   1844 	  "Broadcom BCM5700 Gigabit Ethernet",
   1845 	  },
   1846 	{ PCI_VENDOR_ALTEON,
   1847 	  PCI_PRODUCT_ALTEON_BCM5701,
   1848 	  "Broadcom BCM5701 Gigabit Ethernet",
   1849 	  },
   1850 
   1851 	{ PCI_VENDOR_ALTIMA,
   1852 	  PCI_PRODUCT_ALTIMA_AC1000,
   1853 	  "Altima AC1000 Gigabit Ethernet",
   1854 	  },
   1855 	{ PCI_VENDOR_ALTIMA,
   1856 	  PCI_PRODUCT_ALTIMA_AC1001,
   1857 	  "Altima AC1001 Gigabit Ethernet",
   1858 	   },
   1859 	{ PCI_VENDOR_ALTIMA,
   1860 	  PCI_PRODUCT_ALTIMA_AC9100,
   1861 	  "Altima AC9100 Gigabit Ethernet",
   1862 	  },
   1863 
   1864 	{ PCI_VENDOR_BROADCOM,
   1865 	  PCI_PRODUCT_BROADCOM_BCM5700,
   1866 	  "Broadcom BCM5700 Gigabit Ethernet",
   1867 	  },
   1868 	{ PCI_VENDOR_BROADCOM,
   1869 	  PCI_PRODUCT_BROADCOM_BCM5701,
   1870 	  "Broadcom BCM5701 Gigabit Ethernet",
   1871 	  },
   1872 	{ PCI_VENDOR_BROADCOM,
   1873 	  PCI_PRODUCT_BROADCOM_BCM5702,
   1874 	  "Broadcom BCM5702 Gigabit Ethernet",
   1875 	  },
   1876 	{ PCI_VENDOR_BROADCOM,
   1877 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   1878 	  "Broadcom BCM5702X Gigabit Ethernet" },
   1879 
   1880 	{ PCI_VENDOR_BROADCOM,
   1881 	  PCI_PRODUCT_BROADCOM_BCM5703,
   1882 	  "Broadcom BCM5703 Gigabit Ethernet",
   1883 	  },
   1884 	{ PCI_VENDOR_BROADCOM,
   1885 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   1886 	  "Broadcom BCM5703X Gigabit Ethernet",
   1887 	  },
   1888 	{ PCI_VENDOR_BROADCOM,
   1889 	  PCI_PRODUCT_BROADCOM_BCM5703A3,
   1890 	  "Broadcom BCM5703A3 Gigabit Ethernet",
   1891 	  },
   1892 
   1893    	{ PCI_VENDOR_BROADCOM,
   1894 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   1895 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   1896 	  },
   1897    	{ PCI_VENDOR_BROADCOM,
   1898 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   1899 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   1900 	  },
   1901 
   1902    	{ PCI_VENDOR_BROADCOM,
   1903 	  PCI_PRODUCT_BROADCOM_BCM5705,
   1904 	  "Broadcom BCM5705 Gigabit Ethernet",
   1905 	  },
   1906    	{ PCI_VENDOR_BROADCOM,
   1907 	  PCI_PRODUCT_BROADCOM_BCM5705_ALT,
   1908 	  "Broadcom BCM5705 Gigabit Ethernet",
   1909 	  },
   1910    	{ PCI_VENDOR_BROADCOM,
   1911 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   1912 	  "Broadcom BCM5705M Gigabit Ethernet",
   1913 	  },
   1914 
   1915    	{ PCI_VENDOR_BROADCOM,
   1916 	  PCI_PRODUCT_BROADCOM_BCM5901,
   1917 	  "Broadcom BCM5901 Fast Ethernet",
   1918 	  },
   1919    	{ PCI_VENDOR_BROADCOM,
   1920 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   1921 	  "Broadcom BCM5901A2 Fast Ethernet",
   1922 	  },
   1923 
   1924    	{ PCI_VENDOR_BROADCOM,
   1925 	  PCI_PRODUCT_BROADCOM_BCM5782,
   1926 	  "Broadcom BCM5782 Gigabit Ethernet",
   1927 	  },
   1928 
   1929 	{ PCI_VENDOR_SCHNEIDERKOCH,
   1930 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   1931 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   1932 	  },
   1933 
   1934 	{ PCI_VENDOR_3COM,
   1935 	  PCI_PRODUCT_3COM_3C996,
   1936 	  "3Com 3c996 Gigabit Ethernet",
   1937 	  },
   1938 
   1939 	{ 0,
   1940 	  0,
   1941 	  NULL },
   1942 };
   1943 
   1944 static const struct bge_product *
   1945 bge_lookup(const struct pci_attach_args *pa)
   1946 {
   1947 	const struct bge_product *bp;
   1948 
   1949 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   1950 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   1951 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   1952 			return (bp);
   1953 	}
   1954 
   1955 	return (NULL);
   1956 }
   1957 
   1958 int
   1959 bge_setpowerstate(sc, powerlevel)
   1960 	struct bge_softc *sc;
   1961 	int powerlevel;
   1962 {
   1963 #ifdef NOTYET
   1964 	u_int32_t pm_ctl = 0;
   1965 
   1966 	/* XXX FIXME: make sure indirect accesses enabled? */
   1967 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   1968 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   1969 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   1970 
   1971 	/* clear the PME_assert bit and power state bits, enable PME */
   1972 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   1973 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   1974 	pm_ctl |= (1 << 8);
   1975 
   1976 	if (powerlevel == 0) {
   1977 		pm_ctl |= PCIM_PSTAT_D0;
   1978 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   1979 		    pm_ctl, 2);
   1980 		DELAY(10000);
   1981 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1982 		DELAY(10000);
   1983 
   1984 #ifdef NOTYET
   1985 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   1986 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   1987 #endif
   1988 		DELAY(40); DELAY(40); DELAY(40);
   1989 		DELAY(10000);	/* above not quite adequate on 5700 */
   1990 		return 0;
   1991 	}
   1992 
   1993 
   1994 	/*
   1995 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   1996 	 * GMII gpio pins. Example code assumes all hardware vendors
   1997 	 * followed Broadom's sample pcb layout. Until we verify that
   1998 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   1999 	 */
   2000 	printf("%s: power state %d unimplemented; check GPIO pins\n",
   2001 	       sc->bge_dev.dv_xname, powerlevel);
   2002 #endif
   2003 	return EOPNOTSUPP;
   2004 }
   2005 
   2006 
   2007 /*
   2008  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2009  * against our list and return its name if we find a match. Note
   2010  * that since the Broadcom controller contains VPD support, we
   2011  * can get the device name string from the controller itself instead
   2012  * of the compiled-in string. This is a little slow, but it guarantees
   2013  * we'll always announce the right product name.
   2014  */
   2015 int
   2016 bge_probe(parent, match, aux)
   2017 	struct device *parent;
   2018 	struct cfdata *match;
   2019 	void *aux;
   2020 {
   2021 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2022 
   2023 	if (bge_lookup(pa) != NULL)
   2024 		return (1);
   2025 
   2026 	return (0);
   2027 }
   2028 
   2029 void
   2030 bge_attach(parent, self, aux)
   2031 	struct device *parent, *self;
   2032 	void *aux;
   2033 {
   2034 	struct bge_softc	*sc = (struct bge_softc *)self;
   2035 	struct pci_attach_args	*pa = aux;
   2036 	const struct bge_product *bp;
   2037 	const struct bge_revision *br;
   2038 	pci_chipset_tag_t	pc = pa->pa_pc;
   2039 	pci_intr_handle_t	ih;
   2040 	const char		*intrstr = NULL;
   2041 	bus_dma_segment_t	seg;
   2042 	int			rseg;
   2043 	u_int32_t		hwcfg = 0;
   2044 	u_int32_t		mac_addr = 0;
   2045 	u_int32_t		command;
   2046 	struct ifnet		*ifp;
   2047 	caddr_t			kva;
   2048 	u_char			eaddr[ETHER_ADDR_LEN];
   2049 	pcireg_t		memtype;
   2050 	bus_addr_t		memaddr;
   2051 	bus_size_t		memsize;
   2052 	u_int32_t		pm_ctl;
   2053 
   2054 	bp = bge_lookup(pa);
   2055 	KASSERT(bp != NULL);
   2056 
   2057 	sc->bge_pa = *pa;
   2058 
   2059 	aprint_naive(": Ethernet controller\n");
   2060 	aprint_normal(": %s\n", bp->bp_name);
   2061 
   2062 	/*
   2063 	 * Map control/status registers.
   2064 	 */
   2065 	DPRINTFN(5, ("Map control/status regs\n"));
   2066 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2067 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2068 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   2069 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2070 
   2071 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2072 		aprint_error("%s: failed to enable memory mapping!\n",
   2073 		    sc->bge_dev.dv_xname);
   2074 		return;
   2075 	}
   2076 
   2077 	DPRINTFN(5, ("pci_mem_find\n"));
   2078 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   2079  	switch (memtype) {
   2080 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2081 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2082 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2083 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2084 		    &memaddr, &memsize) == 0)
   2085 			break;
   2086 	default:
   2087 		aprint_error("%s: can't find mem space\n",
   2088 		    sc->bge_dev.dv_xname);
   2089 		return;
   2090 	}
   2091 
   2092 	DPRINTFN(5, ("pci_intr_map\n"));
   2093 	if (pci_intr_map(pa, &ih)) {
   2094 		aprint_error("%s: couldn't map interrupt\n",
   2095 		    sc->bge_dev.dv_xname);
   2096 		return;
   2097 	}
   2098 
   2099 	DPRINTFN(5, ("pci_intr_string\n"));
   2100 	intrstr = pci_intr_string(pc, ih);
   2101 
   2102 	DPRINTFN(5, ("pci_intr_establish\n"));
   2103 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2104 
   2105 	if (sc->bge_intrhand == NULL) {
   2106 		aprint_error("%s: couldn't establish interrupt",
   2107 		    sc->bge_dev.dv_xname);
   2108 		if (intrstr != NULL)
   2109 			aprint_normal(" at %s", intrstr);
   2110 		aprint_normal("\n");
   2111 		return;
   2112 	}
   2113 	aprint_normal("%s: interrupting at %s\n",
   2114 	    sc->bge_dev.dv_xname, intrstr);
   2115 
   2116 	/*
   2117 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2118 	 * can clobber the chip's PCI config-space power control registers,
   2119 	 * leaving the card in D3 powersave state.
   2120 	 * We do not have memory-mapped registers in this state,
   2121 	 * so force device into D0 state before starting initialization.
   2122 	 */
   2123 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
   2124 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2125 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2126 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2127 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2128 
   2129 	/* Try to reset the chip. */
   2130 	DPRINTFN(5, ("bge_reset\n"));
   2131 	bge_reset(sc);
   2132 
   2133 	if (bge_chipinit(sc)) {
   2134 		aprint_error("%s: chip initialization failed\n",
   2135 		    sc->bge_dev.dv_xname);
   2136 		bge_release_resources(sc);
   2137 		return;
   2138 	}
   2139 
   2140 	/*
   2141 	 * Get station address from the EEPROM.
   2142 	 */
   2143 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   2144 	if ((mac_addr >> 16) == 0x484b) {
   2145 		eaddr[0] = (u_char)(mac_addr >> 8);
   2146 		eaddr[1] = (u_char)(mac_addr >> 0);
   2147 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   2148 		eaddr[2] = (u_char)(mac_addr >> 24);
   2149 		eaddr[3] = (u_char)(mac_addr >> 16);
   2150 		eaddr[4] = (u_char)(mac_addr >> 8);
   2151 		eaddr[5] = (u_char)(mac_addr >> 0);
   2152 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
   2153 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   2154 		aprint_error("%s: failed to read station address\n",
   2155 		    sc->bge_dev.dv_xname);
   2156 		bge_release_resources(sc);
   2157 		return;
   2158 	}
   2159 
   2160 	/*
   2161 	 * Save ASIC rev.  Look up any quirks associated with this
   2162 	 * ASIC.
   2163 	 */
   2164 	sc->bge_chipid =
   2165 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   2166 	    BGE_PCIMISCCTL_ASICREV;
   2167 	br = bge_lookup_rev(sc->bge_chipid);
   2168 
   2169 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
   2170 
   2171 	if (br == NULL) {
   2172 		aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
   2173 		sc->bge_quirks = 0;
   2174 	} else {
   2175 		aprint_normal("ASIC %s (0x%04x)",
   2176 		    br->br_name, sc->bge_chipid >> 16);
   2177 		sc->bge_quirks |= br->br_quirks;
   2178 	}
   2179 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2180 
   2181 	/* Allocate the general information block and ring buffers. */
   2182 	if (pci_dma64_available(pa))
   2183 		sc->bge_dmatag = pa->pa_dmat64;
   2184 	else
   2185 		sc->bge_dmatag = pa->pa_dmat;
   2186 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2187 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2188 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2189 		aprint_error("%s: can't alloc rx buffers\n",
   2190 		    sc->bge_dev.dv_xname);
   2191 		return;
   2192 	}
   2193 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2194 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2195 			   sizeof(struct bge_ring_data), &kva,
   2196 			   BUS_DMA_NOWAIT)) {
   2197 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
   2198 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   2199 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2200 		return;
   2201 	}
   2202 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2203 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2204 	    sizeof(struct bge_ring_data), 0,
   2205 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2206 		aprint_error("%s: can't create DMA map\n",
   2207 		    sc->bge_dev.dv_xname);
   2208 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2209 				 sizeof(struct bge_ring_data));
   2210 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2211 		return;
   2212 	}
   2213 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2214 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2215 			    sizeof(struct bge_ring_data), NULL,
   2216 			    BUS_DMA_NOWAIT)) {
   2217 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2218 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2219 				 sizeof(struct bge_ring_data));
   2220 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2221 		return;
   2222 	}
   2223 
   2224 	DPRINTFN(5, ("bzero\n"));
   2225 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2226 
   2227 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2228 
   2229 	/* Try to allocate memory for jumbo buffers. */
   2230 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2231 		if (bge_alloc_jumbo_mem(sc)) {
   2232 			aprint_error("%s: jumbo buffer allocation failed\n",
   2233 			    sc->bge_dev.dv_xname);
   2234 		} else
   2235 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2236 	}
   2237 
   2238 	/* Set default tuneable values. */
   2239 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2240 	sc->bge_rx_coal_ticks = 150;
   2241 	sc->bge_rx_max_coal_bds = 64;
   2242 #ifdef ORIG_WPAUL_VALUES
   2243 	sc->bge_tx_coal_ticks = 150;
   2244 	sc->bge_tx_max_coal_bds = 128;
   2245 #else
   2246 	sc->bge_tx_coal_ticks = 300;
   2247 	sc->bge_tx_max_coal_bds = 400;
   2248 #endif
   2249 
   2250 	/* Set up ifnet structure */
   2251 	ifp = &sc->ethercom.ec_if;
   2252 	ifp->if_softc = sc;
   2253 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2254 	ifp->if_ioctl = bge_ioctl;
   2255 	ifp->if_start = bge_start;
   2256 	ifp->if_init = bge_init;
   2257 	ifp->if_watchdog = bge_watchdog;
   2258 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2259 	IFQ_SET_READY(&ifp->if_snd);
   2260 	DPRINTFN(5, ("bcopy\n"));
   2261 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   2262 
   2263 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2264 		sc->ethercom.ec_if.if_capabilities |=
   2265 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   2266 	sc->ethercom.ec_capabilities |=
   2267 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2268 
   2269 	/*
   2270 	 * Do MII setup.
   2271 	 */
   2272 	DPRINTFN(5, ("mii setup\n"));
   2273 	sc->bge_mii.mii_ifp = ifp;
   2274 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2275 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2276 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2277 
   2278 	/*
   2279 	 * Figure out what sort of media we have by checking the
   2280 	 * hardware config word in the first 32k of NIC internal memory,
   2281 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2282 	 * cards, this value appears to be unset. If that's the
   2283 	 * case, we have to rely on identifying the NIC by its PCI
   2284 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2285 	 */
   2286 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2287 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2288 	} else {
   2289 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
   2290 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2291 		hwcfg = be32toh(hwcfg);
   2292 	}
   2293 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2294 		sc->bge_tbi = 1;
   2295 
   2296 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2297 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   2298 	    SK_SUBSYSID_9D41)
   2299 		sc->bge_tbi = 1;
   2300 
   2301 	if (sc->bge_tbi) {
   2302 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2303 		    bge_ifmedia_sts);
   2304 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2305 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2306 			    0, NULL);
   2307 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2308 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2309 	} else {
   2310 		/*
   2311 		 * Do transceiver setup.
   2312 		 */
   2313 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2314 			     bge_ifmedia_sts);
   2315 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2316 			   MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
   2317 
   2318 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   2319 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   2320 			ifmedia_add(&sc->bge_mii.mii_media,
   2321 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2322 			ifmedia_set(&sc->bge_mii.mii_media,
   2323 				    IFM_ETHER|IFM_MANUAL);
   2324 		} else
   2325 			ifmedia_set(&sc->bge_mii.mii_media,
   2326 				    IFM_ETHER|IFM_AUTO);
   2327 	}
   2328 
   2329 	/*
   2330 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2331 	 * been observed in the first few bytes of some received packets.
   2332 	 * Aligning the packet buffer in memory eliminates the corruption.
   2333 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2334 	 * which do not support unaligned accesses, we will realign the
   2335 	 * payloads by copying the received packets.
   2336 	 */
   2337 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2338 		/* If in PCI-X mode, work around the alignment bug. */
   2339 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
   2340                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2341                          BGE_PCISTATE_PCI_BUSSPEED)
   2342 		sc->bge_rx_alignment_bug = 1;
   2343         }
   2344 
   2345 	/*
   2346 	 * Call MI attach routine.
   2347 	 */
   2348 	DPRINTFN(5, ("if_attach\n"));
   2349 	if_attach(ifp);
   2350 	DPRINTFN(5, ("ether_ifattach\n"));
   2351 	ether_ifattach(ifp, eaddr);
   2352 	DPRINTFN(5, ("callout_init\n"));
   2353 	callout_init(&sc->bge_timeout);
   2354 }
   2355 
   2356 void
   2357 bge_release_resources(sc)
   2358 	struct bge_softc *sc;
   2359 {
   2360 	if (sc->bge_vpd_prodname != NULL)
   2361 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2362 
   2363 	if (sc->bge_vpd_readonly != NULL)
   2364 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2365 }
   2366 
   2367 void
   2368 bge_reset(sc)
   2369 	struct bge_softc *sc;
   2370 {
   2371 	struct pci_attach_args *pa = &sc->bge_pa;
   2372 	u_int32_t cachesize, command, pcistate;
   2373 	int i, val = 0;
   2374 
   2375 	/* Save some important PCI state. */
   2376 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   2377 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   2378 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   2379 
   2380 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2381 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2382 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2383 
   2384 	/* Issue global reset */
   2385 	bge_writereg_ind(sc, BGE_MISC_CFG,
   2386 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
   2387 
   2388 	DELAY(1000);
   2389 
   2390 	/* Reset some of the PCI state that got zapped by reset */
   2391 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2392 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2393 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2394 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   2395 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   2396 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2397 
   2398 	/* Enable memory arbiter. */
   2399 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2400 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2401 	}
   2402 
   2403 	/*
   2404 	 * Prevent PXE restart: write a magic number to the
   2405 	 * general communications memory at 0xB50.
   2406 	 */
   2407 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2408 
   2409 	/*
   2410 	 * Poll the value location we just wrote until
   2411 	 * we see the 1's complement of the magic number.
   2412 	 * This indicates that the firmware initialization
   2413 	 * is complete.
   2414 	 */
   2415 	for (i = 0; i < 750; i++) {
   2416 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2417 		if (val == ~BGE_MAGIC_NUMBER)
   2418 			break;
   2419 		DELAY(1000);
   2420 	}
   2421 
   2422 	if (i == 750) {
   2423 		printf("%s: firmware handshake timed out, val = %x\n",
   2424 		    sc->bge_dev.dv_xname, val);
   2425 		return;
   2426 	}
   2427 
   2428 	/*
   2429 	 * XXX Wait for the value of the PCISTATE register to
   2430 	 * return to its original pre-reset state. This is a
   2431 	 * fairly good indicator of reset completion. If we don't
   2432 	 * wait for the reset to fully complete, trying to read
   2433 	 * from the device's non-PCI registers may yield garbage
   2434 	 * results.
   2435 	 */
   2436 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2437 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
   2438 		    pcistate)
   2439 			break;
   2440 		DELAY(10);
   2441 	}
   2442 
   2443 	/* Enable memory arbiter. */
   2444 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2445 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2446 	}
   2447 
   2448 	/* Fix up byte swapping */
   2449 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2450 
   2451 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2452 
   2453 	DELAY(10000);
   2454 }
   2455 
   2456 /*
   2457  * Frame reception handling. This is called if there's a frame
   2458  * on the receive return list.
   2459  *
   2460  * Note: we have to be able to handle two possibilities here:
   2461  * 1) the frame is from the jumbo recieve ring
   2462  * 2) the frame is from the standard receive ring
   2463  */
   2464 
   2465 void
   2466 bge_rxeof(sc)
   2467 	struct bge_softc *sc;
   2468 {
   2469 	struct ifnet *ifp;
   2470 	int stdcnt = 0, jumbocnt = 0;
   2471 	int have_tag = 0;
   2472 	u_int16_t vlan_tag = 0;
   2473 	bus_dmamap_t dmamap;
   2474 	bus_addr_t offset, toff;
   2475 	bus_size_t tlen;
   2476 	int tosync;
   2477 
   2478 	ifp = &sc->ethercom.ec_if;
   2479 
   2480 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2481 	    offsetof(struct bge_ring_data, bge_status_block),
   2482 	    sizeof (struct bge_status_block),
   2483 	    BUS_DMASYNC_POSTREAD);
   2484 
   2485 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2486 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2487 	    sc->bge_rx_saved_considx;
   2488 
   2489 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2490 
   2491 	if (tosync < 0) {
   2492 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2493 		    sizeof (struct bge_rx_bd);
   2494 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2495 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2496 		tosync = -tosync;
   2497 	}
   2498 
   2499 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2500 	    offset, tosync * sizeof (struct bge_rx_bd),
   2501 	    BUS_DMASYNC_POSTREAD);
   2502 
   2503 	while(sc->bge_rx_saved_considx !=
   2504 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2505 		struct bge_rx_bd	*cur_rx;
   2506 		u_int32_t		rxidx;
   2507 		struct mbuf		*m = NULL;
   2508 
   2509 		cur_rx = &sc->bge_rdata->
   2510 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2511 
   2512 		rxidx = cur_rx->bge_idx;
   2513 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   2514 
   2515 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   2516 			have_tag = 1;
   2517 			vlan_tag = cur_rx->bge_vlan_tag;
   2518 		}
   2519 
   2520 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2521 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2522 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2523 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2524 			jumbocnt++;
   2525 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2526 				ifp->if_ierrors++;
   2527 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2528 				continue;
   2529 			}
   2530 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2531 					     NULL)== ENOBUFS) {
   2532 				ifp->if_ierrors++;
   2533 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2534 				continue;
   2535 			}
   2536 		} else {
   2537 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2538 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2539 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2540 			stdcnt++;
   2541 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2542 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2543 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2544 				ifp->if_ierrors++;
   2545 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2546 				continue;
   2547 			}
   2548 			if (bge_newbuf_std(sc, sc->bge_std,
   2549 			    NULL, dmamap) == ENOBUFS) {
   2550 				ifp->if_ierrors++;
   2551 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2552 				continue;
   2553 			}
   2554 		}
   2555 
   2556 		ifp->if_ipackets++;
   2557 #ifndef __NO_STRICT_ALIGNMENT
   2558                 /*
   2559                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2560                  * the Rx buffer has the layer-2 header unaligned.
   2561                  * If our CPU requires alignment, re-align by copying.
   2562                  */
   2563 		if (sc->bge_rx_alignment_bug) {
   2564 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
   2565                                 cur_rx->bge_len);
   2566 			m->m_data += ETHER_ALIGN;
   2567 		}
   2568 #endif
   2569 
   2570 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   2571 		m->m_pkthdr.rcvif = ifp;
   2572 
   2573 #if NBPFILTER > 0
   2574 		/*
   2575 		 * Handle BPF listeners. Let the BPF user see the packet.
   2576 		 */
   2577 		if (ifp->if_bpf)
   2578 			bpf_mtap(ifp->if_bpf, m);
   2579 #endif
   2580 
   2581 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2582 
   2583 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2584 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2585 		/*
   2586 		 * Rx transport checksum-offload may also
   2587 		 * have bugs with packets which, when transmitted,
   2588 		 * were `runts' requiring padding.
   2589 		 */
   2590 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   2591 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   2592 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   2593 			m->m_pkthdr.csum_data =
   2594 			    cur_rx->bge_tcp_udp_csum;
   2595 			m->m_pkthdr.csum_flags |=
   2596 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   2597 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   2598 		}
   2599 
   2600 		/*
   2601 		 * If we received a packet with a vlan tag, pass it
   2602 		 * to vlan_input() instead of ether_input().
   2603 		 */
   2604 		if (have_tag) {
   2605 			struct m_tag *mtag;
   2606 
   2607 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   2608 			    M_NOWAIT);
   2609 			if (mtag != NULL) {
   2610 				*(u_int *)(mtag + 1) = vlan_tag;
   2611 				m_tag_prepend(m, mtag);
   2612 				have_tag = vlan_tag = 0;
   2613 			} else {
   2614 				printf("%s: no mbuf for tag\n", ifp->if_xname);
   2615 				m_freem(m);
   2616 				have_tag = vlan_tag = 0;
   2617 				continue;
   2618 			}
   2619 		}
   2620 		(*ifp->if_input)(ifp, m);
   2621 	}
   2622 
   2623 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   2624 	if (stdcnt)
   2625 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   2626 	if (jumbocnt)
   2627 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   2628 }
   2629 
   2630 void
   2631 bge_txeof(sc)
   2632 	struct bge_softc *sc;
   2633 {
   2634 	struct bge_tx_bd *cur_tx = NULL;
   2635 	struct ifnet *ifp;
   2636 	struct txdmamap_pool_entry *dma;
   2637 	bus_addr_t offset, toff;
   2638 	bus_size_t tlen;
   2639 	int tosync;
   2640 	struct mbuf *m;
   2641 
   2642 	ifp = &sc->ethercom.ec_if;
   2643 
   2644 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2645 	    offsetof(struct bge_ring_data, bge_status_block),
   2646 	    sizeof (struct bge_status_block),
   2647 	    BUS_DMASYNC_POSTREAD);
   2648 
   2649 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   2650 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   2651 	    sc->bge_tx_saved_considx;
   2652 
   2653 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   2654 
   2655 	if (tosync < 0) {
   2656 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   2657 		    sizeof (struct bge_tx_bd);
   2658 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2659 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2660 		tosync = -tosync;
   2661 	}
   2662 
   2663 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2664 	    offset, tosync * sizeof (struct bge_tx_bd),
   2665 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2666 
   2667 	/*
   2668 	 * Go through our tx ring and free mbufs for those
   2669 	 * frames that have been sent.
   2670 	 */
   2671 	while (sc->bge_tx_saved_considx !=
   2672 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   2673 		u_int32_t		idx = 0;
   2674 
   2675 		idx = sc->bge_tx_saved_considx;
   2676 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   2677 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   2678 			ifp->if_opackets++;
   2679 		m = sc->bge_cdata.bge_tx_chain[idx];
   2680 		if (m != NULL) {
   2681 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   2682 			dma = sc->txdma[idx];
   2683 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   2684 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2685 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   2686 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2687 			sc->txdma[idx] = NULL;
   2688 
   2689 			m_freem(m);
   2690 		}
   2691 		sc->bge_txcnt--;
   2692 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   2693 		ifp->if_timer = 0;
   2694 	}
   2695 
   2696 	if (cur_tx != NULL)
   2697 		ifp->if_flags &= ~IFF_OACTIVE;
   2698 }
   2699 
   2700 int
   2701 bge_intr(xsc)
   2702 	void *xsc;
   2703 {
   2704 	struct bge_softc *sc;
   2705 	struct ifnet *ifp;
   2706 
   2707 	sc = xsc;
   2708 	ifp = &sc->ethercom.ec_if;
   2709 
   2710 #ifdef notdef
   2711 	/* Avoid this for now -- checking this register is expensive. */
   2712 	/* Make sure this is really our interrupt. */
   2713 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   2714 		return (0);
   2715 #endif
   2716 	/* Ack interrupt and stop others from occuring. */
   2717 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   2718 
   2719 	/*
   2720 	 * Process link state changes.
   2721 	 * Grrr. The link status word in the status block does
   2722 	 * not work correctly on the BCM5700 rev AX and BX chips,
   2723 	 * according to all avaibable information. Hence, we have
   2724 	 * to enable MII interrupts in order to properly obtain
   2725 	 * async link changes. Unfortunately, this also means that
   2726 	 * we have to read the MAC status register to detect link
   2727 	 * changes, thereby adding an additional register access to
   2728 	 * the interrupt handler.
   2729 	 */
   2730 
   2731 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   2732 		u_int32_t		status;
   2733 
   2734 		status = CSR_READ_4(sc, BGE_MAC_STS);
   2735 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   2736 			sc->bge_link = 0;
   2737 			callout_stop(&sc->bge_timeout);
   2738 			bge_tick(sc);
   2739 			/* Clear the interrupt */
   2740 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2741 			    BGE_EVTENB_MI_INTERRUPT);
   2742 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   2743 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   2744 			    BRGPHY_INTRS);
   2745 		}
   2746 	} else {
   2747 		if (sc->bge_rdata->bge_status_block.bge_status &
   2748 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   2749 			sc->bge_link = 0;
   2750 			callout_stop(&sc->bge_timeout);
   2751 			bge_tick(sc);
   2752 			/* Clear the interrupt */
   2753 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   2754 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   2755 			    BGE_MACSTAT_LINK_CHANGED);
   2756 		}
   2757 	}
   2758 
   2759 	if (ifp->if_flags & IFF_RUNNING) {
   2760 		/* Check RX return ring producer/consumer */
   2761 		bge_rxeof(sc);
   2762 
   2763 		/* Check TX ring producer/consumer */
   2764 		bge_txeof(sc);
   2765 	}
   2766 
   2767 	bge_handle_events(sc);
   2768 
   2769 	/* Re-enable interrupts. */
   2770 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2771 
   2772 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   2773 		bge_start(ifp);
   2774 
   2775 	return (1);
   2776 }
   2777 
   2778 void
   2779 bge_tick(xsc)
   2780 	void *xsc;
   2781 {
   2782 	struct bge_softc *sc = xsc;
   2783 	struct mii_data *mii = &sc->bge_mii;
   2784 	struct ifmedia *ifm = NULL;
   2785 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2786 	int s;
   2787 
   2788 	s = splnet();
   2789 
   2790 	bge_stats_update(sc);
   2791 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2792 	if (sc->bge_link) {
   2793 		splx(s);
   2794 		return;
   2795 	}
   2796 
   2797 	if (sc->bge_tbi) {
   2798 		ifm = &sc->bge_ifmedia;
   2799 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   2800 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   2801 			sc->bge_link++;
   2802 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   2803 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2804 				bge_start(ifp);
   2805 		}
   2806 		splx(s);
   2807 		return;
   2808 	}
   2809 
   2810 	mii_tick(mii);
   2811 
   2812 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   2813 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   2814 		sc->bge_link++;
   2815 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2816 			bge_start(ifp);
   2817 	}
   2818 
   2819 	splx(s);
   2820 }
   2821 
   2822 void
   2823 bge_stats_update(sc)
   2824 	struct bge_softc *sc;
   2825 {
   2826 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2827 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   2828 	bus_size_t rstats = BGE_RX_STATS;
   2829 
   2830 #define READ_RSTAT(sc, stats, stat) \
   2831 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   2832 
   2833 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   2834 		ifp->if_collisions +=
   2835 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   2836 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   2837 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   2838 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   2839 		return;
   2840 	}
   2841 
   2842 #undef READ_RSTAT
   2843 #define READ_STAT(sc, stats, stat) \
   2844 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   2845 
   2846 	ifp->if_collisions +=
   2847 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   2848 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   2849 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   2850 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   2851 	  ifp->if_collisions;
   2852 
   2853 #undef READ_STAT
   2854 
   2855 #ifdef notdef
   2856 	ifp->if_collisions +=
   2857 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   2858 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   2859 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   2860 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   2861 	   ifp->if_collisions;
   2862 #endif
   2863 }
   2864 
   2865 /*
   2866  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   2867  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   2868  * but when such padded frames employ the  bge IP/TCP checksum offload,
   2869  * the hardware checksum assist gives incorrect results (possibly
   2870  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   2871  * If we pad such runts with zeros, the onboard checksum comes out correct.
   2872  */
   2873 static __inline int
   2874 bge_cksum_pad(struct mbuf *pkt)
   2875 {
   2876 	struct mbuf *last = NULL;
   2877 	int padlen;
   2878 
   2879 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   2880 
   2881 	/* if there's only the packet-header and we can pad there, use it. */
   2882 	if (pkt->m_pkthdr.len == pkt->m_len &&
   2883 	    !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
   2884 		last = pkt;
   2885 	} else {
   2886 		/*
   2887 		 * Walk packet chain to find last mbuf. We will either
   2888 		 * pad there, or append a new mbuf and pad it
   2889 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   2890 		 */
   2891 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   2892 	      	       (void) 0; /* do nothing*/
   2893 		}
   2894 
   2895 		/* `last' now points to last in chain. */
   2896 		if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
   2897 			(void) 0; /* we can pad here, in-place. */
   2898 		} else {
   2899 			/* Allocate new empty mbuf, pad it. Compact later. */
   2900 			struct mbuf *n;
   2901 			MGET(n, M_DONTWAIT, MT_DATA);
   2902 			n->m_len = 0;
   2903 			last->m_next = n;
   2904 			last = n;
   2905 		}
   2906 	}
   2907 
   2908 #ifdef DEBUG
   2909 	  /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
   2910 	  KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
   2911 #endif
   2912 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   2913 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
   2914 	last->m_len += padlen;
   2915 	pkt->m_pkthdr.len += padlen;
   2916 	return 0;
   2917 }
   2918 
   2919 /*
   2920  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   2921  */
   2922 static __inline int
   2923 bge_compact_dma_runt(struct mbuf *pkt)
   2924 {
   2925 	struct mbuf	*m, *prev;
   2926 	int 		totlen, prevlen;
   2927 
   2928 	prev = NULL;
   2929 	totlen = 0;
   2930 	prevlen = -1;
   2931 
   2932 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   2933 		int mlen = m->m_len;
   2934 		int shortfall = 8 - mlen ;
   2935 
   2936 		totlen += mlen;
   2937 		if (mlen == 0) {
   2938 			continue;
   2939 		}
   2940 		if (mlen >= 8)
   2941 			continue;
   2942 
   2943 		/* If we get here, mbuf data is too small for DMA engine.
   2944 		 * Try to fix by shuffling data to prev or next in chain.
   2945 		 * If that fails, do a compacting deep-copy of the whole chain.
   2946 		 */
   2947 
   2948 		/* Internal frag. If fits in prev, copy it there. */
   2949 		if (prev && !M_READONLY(prev) &&
   2950 		      M_TRAILINGSPACE(prev) >= m->m_len) {
   2951 		  	bcopy(m->m_data,
   2952 			      prev->m_data+prev->m_len,
   2953 			      mlen);
   2954 			prev->m_len += mlen;
   2955 			m->m_len = 0;
   2956 			/* XXX stitch chain */
   2957 			prev->m_next = m_free(m);
   2958 			m = prev;
   2959 			continue;
   2960 		}
   2961 		else if (m->m_next != NULL && !M_READONLY(m) &&
   2962 			     M_TRAILINGSPACE(m) >= shortfall &&
   2963 			     m->m_next->m_len >= (8 + shortfall)) {
   2964 		    /* m is writable and have enough data in next, pull up. */
   2965 
   2966 		  	bcopy(m->m_next->m_data,
   2967 			      m->m_data+m->m_len,
   2968 			      shortfall);
   2969 			m->m_len += shortfall;
   2970 			m->m_next->m_len -= shortfall;
   2971 			m->m_next->m_data += shortfall;
   2972 		}
   2973 		else if (m->m_next == NULL || 1) {
   2974 		  	/* Got a runt at the very end of the packet.
   2975 			 * borrow data from the tail of the preceding mbuf and
   2976 			 * update its length in-place. (The original data is still
   2977 			 * valid, so we can do this even if prev is not writable.)
   2978 			 */
   2979 
   2980 			/* if we'd make prev a runt, just move all of its data. */
   2981 #ifdef DEBUG
   2982 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   2983 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   2984 #endif
   2985 			if ((prev->m_len - shortfall) < 8)
   2986 				shortfall = prev->m_len;
   2987 
   2988 #ifdef notyet	/* just do the safe slow thing for now */
   2989 			if (!M_READONLY(m)) {
   2990 				if (M_LEADINGSPACE(m) < shorfall) {
   2991 					void *m_dat;
   2992 					m_dat = (m->m_flags & M_PKTHDR) ?
   2993 					  m->m_pktdat : m->dat;
   2994 					memmove(m_dat, mtod(m, void*), m->m_len);
   2995 					m->m_data = m_dat;
   2996 				    }
   2997 			} else
   2998 #endif	/* just do the safe slow thing */
   2999 			{
   3000 				struct mbuf * n = NULL;
   3001 				int newprevlen = prev->m_len - shortfall;
   3002 
   3003 				MGET(n, M_NOWAIT, MT_DATA);
   3004 				if (n == NULL)
   3005 				   return ENOBUFS;
   3006 				KASSERT(m->m_len + shortfall < MLEN
   3007 					/*,
   3008 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3009 
   3010 				/* first copy the data we're stealing from prev */
   3011 				bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
   3012 
   3013 				/* update prev->m_len accordingly */
   3014 				prev->m_len -= shortfall;
   3015 
   3016 				/* copy data from runt m */
   3017 				bcopy(m->m_data, n->m_data + shortfall, m->m_len);
   3018 
   3019 				/* n holds what we stole from prev, plus m */
   3020 				n->m_len = shortfall + m->m_len;
   3021 
   3022 				/* stitch n into chain and free m */
   3023 				n->m_next = m->m_next;
   3024 				prev->m_next = n;
   3025 				/* KASSERT(m->m_next == NULL); */
   3026 				m->m_next = NULL;
   3027 				m_free(m);
   3028 				m = n;	/* for continuing loop */
   3029 			}
   3030 		}
   3031 		prevlen = m->m_len;
   3032 	}
   3033 	return 0;
   3034 }
   3035 
   3036 /*
   3037  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3038  * pointers to descriptors.
   3039  */
   3040 int
   3041 bge_encap(sc, m_head, txidx)
   3042 	struct bge_softc *sc;
   3043 	struct mbuf *m_head;
   3044 	u_int32_t *txidx;
   3045 {
   3046 	struct bge_tx_bd	*f = NULL;
   3047 	u_int32_t		frag, cur, cnt = 0;
   3048 	u_int16_t		csum_flags = 0;
   3049 	struct txdmamap_pool_entry *dma;
   3050 	bus_dmamap_t dmamap;
   3051 	int			i = 0;
   3052 	struct m_tag		*mtag;
   3053 
   3054 	cur = frag = *txidx;
   3055 
   3056 	if (m_head->m_pkthdr.csum_flags) {
   3057 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3058 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3059 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3060 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3061 	}
   3062 
   3063 	/*
   3064 	 * If we were asked to do an outboard checksum, and the NIC
   3065 	 * has the bug where it sometimes adds in the Ethernet padding,
   3066 	 * explicitly pad with zeros so the cksum will be correct either way.
   3067 	 * (For now, do this for all chip versions, until newer
   3068 	 * are confirmed to not require the workaround.)
   3069 	 */
   3070 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3071 #ifdef notyet
   3072 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3073 #endif
   3074 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3075 		goto check_dma_bug;
   3076 
   3077 	if (bge_cksum_pad(m_head) != 0)
   3078 	    return ENOBUFS;
   3079 
   3080 check_dma_bug:
   3081 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3082 		goto doit;
   3083 	/*
   3084 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3085 	 * less than eight bytes.  If we encounter a teeny mbuf
   3086 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3087 	 */
   3088 	if (bge_compact_dma_runt(m_head) != 0)
   3089 		return ENOBUFS;
   3090 
   3091 doit:
   3092 	dma = SLIST_FIRST(&sc->txdma_list);
   3093 	if (dma == NULL)
   3094 		return ENOBUFS;
   3095 	dmamap = dma->dmamap;
   3096 
   3097 	/*
   3098 	 * Start packing the mbufs in this chain into
   3099 	 * the fragment pointers. Stop when we run out
   3100 	 * of fragments or hit the end of the mbuf chain.
   3101 	 */
   3102 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3103 	    BUS_DMA_NOWAIT))
   3104 		return(ENOBUFS);
   3105 
   3106 	mtag = sc->ethercom.ec_nvlans ?
   3107 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3108 
   3109 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3110 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3111 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3112 			break;
   3113 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3114 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3115 		f->bge_flags = csum_flags;
   3116 
   3117 		if (mtag != NULL) {
   3118 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3119 			f->bge_vlan_tag = *(u_int *)(mtag + 1);
   3120 		} else {
   3121 			f->bge_vlan_tag = 0;
   3122 		}
   3123 		/*
   3124 		 * Sanity check: avoid coming within 16 descriptors
   3125 		 * of the end of the ring.
   3126 		 */
   3127 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
   3128 			return(ENOBUFS);
   3129 		cur = frag;
   3130 		BGE_INC(frag, BGE_TX_RING_CNT);
   3131 		cnt++;
   3132 	}
   3133 
   3134 	if (i < dmamap->dm_nsegs)
   3135 		return ENOBUFS;
   3136 
   3137 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3138 	    BUS_DMASYNC_PREWRITE);
   3139 
   3140 	if (frag == sc->bge_tx_saved_considx)
   3141 		return(ENOBUFS);
   3142 
   3143 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3144 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3145 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3146 	sc->txdma[cur] = dma;
   3147 	sc->bge_txcnt += cnt;
   3148 
   3149 	*txidx = frag;
   3150 
   3151 	return(0);
   3152 }
   3153 
   3154 /*
   3155  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3156  * to the mbuf data regions directly in the transmit descriptors.
   3157  */
   3158 void
   3159 bge_start(ifp)
   3160 	struct ifnet *ifp;
   3161 {
   3162 	struct bge_softc *sc;
   3163 	struct mbuf *m_head = NULL;
   3164 	u_int32_t prodidx = 0;
   3165 	int pkts = 0;
   3166 
   3167 	sc = ifp->if_softc;
   3168 
   3169 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   3170 		return;
   3171 
   3172 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
   3173 
   3174 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3175 		IFQ_POLL(&ifp->if_snd, m_head);
   3176 		if (m_head == NULL)
   3177 			break;
   3178 
   3179 #if 0
   3180 		/*
   3181 		 * XXX
   3182 		 * safety overkill.  If this is a fragmented packet chain
   3183 		 * with delayed TCP/UDP checksums, then only encapsulate
   3184 		 * it if we have enough descriptors to handle the entire
   3185 		 * chain at once.
   3186 		 * (paranoia -- may not actually be needed)
   3187 		 */
   3188 		if (m_head->m_flags & M_FIRSTFRAG &&
   3189 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3190 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3191 			    m_head->m_pkthdr.csum_data + 16) {
   3192 				ifp->if_flags |= IFF_OACTIVE;
   3193 				break;
   3194 			}
   3195 		}
   3196 #endif
   3197 
   3198 		/*
   3199 		 * Pack the data into the transmit ring. If we
   3200 		 * don't have room, set the OACTIVE flag and wait
   3201 		 * for the NIC to drain the ring.
   3202 		 */
   3203 		if (bge_encap(sc, m_head, &prodidx)) {
   3204 			ifp->if_flags |= IFF_OACTIVE;
   3205 			break;
   3206 		}
   3207 
   3208 		/* now we are committed to transmit the packet */
   3209 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3210 		pkts++;
   3211 
   3212 #if NBPFILTER > 0
   3213 		/*
   3214 		 * If there's a BPF listener, bounce a copy of this frame
   3215 		 * to him.
   3216 		 */
   3217 		if (ifp->if_bpf)
   3218 			bpf_mtap(ifp->if_bpf, m_head);
   3219 #endif
   3220 	}
   3221 	if (pkts == 0)
   3222 		return;
   3223 
   3224 	/* Transmit */
   3225 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3226 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   3227 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3228 
   3229 	/*
   3230 	 * Set a timeout in case the chip goes out to lunch.
   3231 	 */
   3232 	ifp->if_timer = 5;
   3233 }
   3234 
   3235 int
   3236 bge_init(ifp)
   3237 	struct ifnet *ifp;
   3238 {
   3239 	struct bge_softc *sc = ifp->if_softc;
   3240 	u_int16_t *m;
   3241 	int s, error;
   3242 
   3243 	s = splnet();
   3244 
   3245 	ifp = &sc->ethercom.ec_if;
   3246 
   3247 	/* Cancel pending I/O and flush buffers. */
   3248 	bge_stop(sc);
   3249 	bge_reset(sc);
   3250 	bge_chipinit(sc);
   3251 
   3252 	/*
   3253 	 * Init the various state machines, ring
   3254 	 * control blocks and firmware.
   3255 	 */
   3256 	error = bge_blockinit(sc);
   3257 	if (error != 0) {
   3258 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   3259 		    error);
   3260 		splx(s);
   3261 		return error;
   3262 	}
   3263 
   3264 	ifp = &sc->ethercom.ec_if;
   3265 
   3266 	/* Specify MTU. */
   3267 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3268 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
   3269 
   3270 	/* Load our MAC address. */
   3271 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   3272 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3273 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3274 
   3275 	/* Enable or disable promiscuous mode as needed. */
   3276 	if (ifp->if_flags & IFF_PROMISC) {
   3277 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3278 	} else {
   3279 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3280 	}
   3281 
   3282 	/* Program multicast filter. */
   3283 	bge_setmulti(sc);
   3284 
   3285 	/* Init RX ring. */
   3286 	bge_init_rx_ring_std(sc);
   3287 
   3288 	/* Init jumbo RX ring. */
   3289 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3290 		bge_init_rx_ring_jumbo(sc);
   3291 
   3292 	/* Init our RX return ring index */
   3293 	sc->bge_rx_saved_considx = 0;
   3294 
   3295 	/* Init TX ring. */
   3296 	bge_init_tx_ring(sc);
   3297 
   3298 	/* Turn on transmitter */
   3299 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3300 
   3301 	/* Turn on receiver */
   3302 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3303 
   3304 	/* Tell firmware we're alive. */
   3305 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3306 
   3307 	/* Enable host interrupts. */
   3308 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   3309 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3310 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3311 
   3312 	bge_ifmedia_upd(ifp);
   3313 
   3314 	ifp->if_flags |= IFF_RUNNING;
   3315 	ifp->if_flags &= ~IFF_OACTIVE;
   3316 
   3317 	splx(s);
   3318 
   3319 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3320 
   3321 	return 0;
   3322 }
   3323 
   3324 /*
   3325  * Set media options.
   3326  */
   3327 int
   3328 bge_ifmedia_upd(ifp)
   3329 	struct ifnet *ifp;
   3330 {
   3331 	struct bge_softc *sc = ifp->if_softc;
   3332 	struct mii_data *mii = &sc->bge_mii;
   3333 	struct ifmedia *ifm = &sc->bge_ifmedia;
   3334 
   3335 	/* If this is a 1000baseX NIC, enable the TBI port. */
   3336 	if (sc->bge_tbi) {
   3337 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   3338 			return(EINVAL);
   3339 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   3340 		case IFM_AUTO:
   3341 			break;
   3342 		case IFM_1000_SX:
   3343 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   3344 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3345 				    BGE_MACMODE_HALF_DUPLEX);
   3346 			} else {
   3347 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3348 				    BGE_MACMODE_HALF_DUPLEX);
   3349 			}
   3350 			break;
   3351 		default:
   3352 			return(EINVAL);
   3353 		}
   3354 		return(0);
   3355 	}
   3356 
   3357 	sc->bge_link = 0;
   3358 	mii_mediachg(mii);
   3359 
   3360 	return(0);
   3361 }
   3362 
   3363 /*
   3364  * Report current media status.
   3365  */
   3366 void
   3367 bge_ifmedia_sts(ifp, ifmr)
   3368 	struct ifnet *ifp;
   3369 	struct ifmediareq *ifmr;
   3370 {
   3371 	struct bge_softc *sc = ifp->if_softc;
   3372 	struct mii_data *mii = &sc->bge_mii;
   3373 
   3374 	if (sc->bge_tbi) {
   3375 		ifmr->ifm_status = IFM_AVALID;
   3376 		ifmr->ifm_active = IFM_ETHER;
   3377 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3378 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   3379 			ifmr->ifm_status |= IFM_ACTIVE;
   3380 		ifmr->ifm_active |= IFM_1000_SX;
   3381 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   3382 			ifmr->ifm_active |= IFM_HDX;
   3383 		else
   3384 			ifmr->ifm_active |= IFM_FDX;
   3385 		return;
   3386 	}
   3387 
   3388 	mii_pollstat(mii);
   3389 	ifmr->ifm_active = mii->mii_media_active;
   3390 	ifmr->ifm_status = mii->mii_media_status;
   3391 }
   3392 
   3393 int
   3394 bge_ioctl(ifp, command, data)
   3395 	struct ifnet *ifp;
   3396 	u_long command;
   3397 	caddr_t data;
   3398 {
   3399 	struct bge_softc *sc = ifp->if_softc;
   3400 	struct ifreq *ifr = (struct ifreq *) data;
   3401 	int s, error = 0;
   3402 	struct mii_data *mii;
   3403 
   3404 	s = splnet();
   3405 
   3406 	switch(command) {
   3407 	case SIOCSIFFLAGS:
   3408 		if (ifp->if_flags & IFF_UP) {
   3409 			/*
   3410 			 * If only the state of the PROMISC flag changed,
   3411 			 * then just use the 'set promisc mode' command
   3412 			 * instead of reinitializing the entire NIC. Doing
   3413 			 * a full re-init means reloading the firmware and
   3414 			 * waiting for it to start up, which may take a
   3415 			 * second or two.
   3416 			 */
   3417 			if (ifp->if_flags & IFF_RUNNING &&
   3418 			    ifp->if_flags & IFF_PROMISC &&
   3419 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   3420 				BGE_SETBIT(sc, BGE_RX_MODE,
   3421 				    BGE_RXMODE_RX_PROMISC);
   3422 			} else if (ifp->if_flags & IFF_RUNNING &&
   3423 			    !(ifp->if_flags & IFF_PROMISC) &&
   3424 			    sc->bge_if_flags & IFF_PROMISC) {
   3425 				BGE_CLRBIT(sc, BGE_RX_MODE,
   3426 				    BGE_RXMODE_RX_PROMISC);
   3427 			} else
   3428 				bge_init(ifp);
   3429 		} else {
   3430 			if (ifp->if_flags & IFF_RUNNING) {
   3431 				bge_stop(sc);
   3432 			}
   3433 		}
   3434 		sc->bge_if_flags = ifp->if_flags;
   3435 		error = 0;
   3436 		break;
   3437 	case SIOCSIFMEDIA:
   3438 	case SIOCGIFMEDIA:
   3439 		if (sc->bge_tbi) {
   3440 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   3441 			    command);
   3442 		} else {
   3443 			mii = &sc->bge_mii;
   3444 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   3445 			    command);
   3446 		}
   3447 		error = 0;
   3448 		break;
   3449 	default:
   3450 		error = ether_ioctl(ifp, command, data);
   3451 		if (error == ENETRESET) {
   3452 			bge_setmulti(sc);
   3453 			error = 0;
   3454 		}
   3455 		break;
   3456 	}
   3457 
   3458 	splx(s);
   3459 
   3460 	return(error);
   3461 }
   3462 
   3463 void
   3464 bge_watchdog(ifp)
   3465 	struct ifnet *ifp;
   3466 {
   3467 	struct bge_softc *sc;
   3468 
   3469 	sc = ifp->if_softc;
   3470 
   3471 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   3472 
   3473 	ifp->if_flags &= ~IFF_RUNNING;
   3474 	bge_init(ifp);
   3475 
   3476 	ifp->if_oerrors++;
   3477 }
   3478 
   3479 static void
   3480 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   3481 {
   3482 	int i;
   3483 
   3484 	BGE_CLRBIT(sc, reg, bit);
   3485 
   3486 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3487 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   3488 			return;
   3489 		delay(100);
   3490 	}
   3491 
   3492 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
   3493 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
   3494 }
   3495 
   3496 /*
   3497  * Stop the adapter and free any mbufs allocated to the
   3498  * RX and TX lists.
   3499  */
   3500 void
   3501 bge_stop(sc)
   3502 	struct bge_softc *sc;
   3503 {
   3504 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3505 
   3506 	callout_stop(&sc->bge_timeout);
   3507 
   3508 	/*
   3509 	 * Disable all of the receiver blocks
   3510 	 */
   3511 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3512 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3513 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   3514 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3515 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   3516 	}
   3517 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   3518 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3519 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   3520 
   3521 	/*
   3522 	 * Disable all of the transmit blocks
   3523 	 */
   3524 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3525 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3526 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3527 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   3528 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   3529 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3530 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   3531 	}
   3532 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3533 
   3534 	/*
   3535 	 * Shut down all of the memory managers and related
   3536 	 * state machines.
   3537 	 */
   3538 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   3539 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   3540 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3541 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3542 	}
   3543 
   3544 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   3545 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   3546 
   3547 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3548 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   3549 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   3550 	}
   3551 
   3552 	/* Disable host interrupts. */
   3553 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3554 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3555 
   3556 	/*
   3557 	 * Tell firmware we're shutting down.
   3558 	 */
   3559 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3560 
   3561 	/* Free the RX lists. */
   3562 	bge_free_rx_ring_std(sc);
   3563 
   3564 	/* Free jumbo RX list. */
   3565 	bge_free_rx_ring_jumbo(sc);
   3566 
   3567 	/* Free TX buffers. */
   3568 	bge_free_tx_ring(sc);
   3569 
   3570 	/*
   3571 	 * Isolate/power down the PHY.
   3572 	 */
   3573 	if (!sc->bge_tbi)
   3574 		mii_down(&sc->bge_mii);
   3575 
   3576 	sc->bge_link = 0;
   3577 
   3578 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   3579 
   3580 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3581 }
   3582 
   3583 /*
   3584  * Stop all chip I/O so that the kernel's probe routines don't
   3585  * get confused by errant DMAs when rebooting.
   3586  */
   3587 void
   3588 bge_shutdown(xsc)
   3589 	void *xsc;
   3590 {
   3591 	struct bge_softc *sc = (struct bge_softc *)xsc;
   3592 
   3593 	bge_stop(sc);
   3594 	bge_reset(sc);
   3595 }
   3596