Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.58
      1 /*	$NetBSD: if_bge.c,v 1.58 2004/01/22 02:29:46 jonathan Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.58 2004/01/22 02:29:46 jonathan Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "vlan.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/device.h>
     95 #include <sys/socket.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #ifdef INET
    103 #include <netinet/in.h>
    104 #include <netinet/in_systm.h>
    105 #include <netinet/in_var.h>
    106 #include <netinet/ip.h>
    107 #endif
    108 
    109 #if NBPFILTER > 0
    110 #include <net/bpf.h>
    111 #endif
    112 
    113 #include <dev/pci/pcireg.h>
    114 #include <dev/pci/pcivar.h>
    115 #include <dev/pci/pcidevs.h>
    116 
    117 #include <dev/mii/mii.h>
    118 #include <dev/mii/miivar.h>
    119 #include <dev/mii/miidevs.h>
    120 #include <dev/mii/brgphyreg.h>
    121 
    122 #include <dev/pci/if_bgereg.h>
    123 
    124 #include <uvm/uvm_extern.h>
    125 
    126 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    127 
    128 int bge_probe(struct device *, struct cfdata *, void *);
    129 void bge_attach(struct device *, struct device *, void *);
    130 void bge_release_resources(struct bge_softc *);
    131 void bge_txeof(struct bge_softc *);
    132 void bge_rxeof(struct bge_softc *);
    133 
    134 void bge_tick(void *);
    135 void bge_stats_update(struct bge_softc *);
    136 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    137 static __inline int bge_cksum_pad(struct mbuf *pkt);
    138 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
    139 
    140 int bge_intr(void *);
    141 void bge_start(struct ifnet *);
    142 int bge_ioctl(struct ifnet *, u_long, caddr_t);
    143 int bge_init(struct ifnet *);
    144 void bge_stop(struct bge_softc *);
    145 void bge_watchdog(struct ifnet *);
    146 void bge_shutdown(void *);
    147 int bge_ifmedia_upd(struct ifnet *);
    148 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    149 
    150 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
    151 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
    152 
    153 void bge_setmulti(struct bge_softc *);
    154 
    155 void bge_handle_events(struct bge_softc *);
    156 int bge_alloc_jumbo_mem(struct bge_softc *);
    157 void bge_free_jumbo_mem(struct bge_softc *);
    158 void *bge_jalloc(struct bge_softc *);
    159 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
    160 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
    161 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    162 int bge_init_rx_ring_std(struct bge_softc *);
    163 void bge_free_rx_ring_std(struct bge_softc *);
    164 int bge_init_rx_ring_jumbo(struct bge_softc *);
    165 void bge_free_rx_ring_jumbo(struct bge_softc *);
    166 void bge_free_tx_ring(struct bge_softc *);
    167 int bge_init_tx_ring(struct bge_softc *);
    168 
    169 int bge_chipinit(struct bge_softc *);
    170 int bge_blockinit(struct bge_softc *);
    171 int bge_setpowerstate(struct bge_softc *, int);
    172 
    173 #ifdef notdef
    174 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
    175 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
    176 void bge_vpd_read(struct bge_softc *);
    177 #endif
    178 
    179 u_int32_t bge_readmem_ind(struct bge_softc *, int);
    180 void bge_writemem_ind(struct bge_softc *, int, int);
    181 #ifdef notdef
    182 u_int32_t bge_readreg_ind(struct bge_softc *, int);
    183 #endif
    184 void bge_writereg_ind(struct bge_softc *, int, int);
    185 
    186 int bge_miibus_readreg(struct device *, int, int);
    187 void bge_miibus_writereg(struct device *, int, int, int);
    188 void bge_miibus_statchg(struct device *);
    189 
    190 void bge_reset(struct bge_softc *);
    191 
    192 void bge_dump_status(struct bge_softc *);
    193 void bge_dump_rxbd(struct bge_rx_bd *);
    194 
    195 #define BGE_DEBUG
    196 #ifdef BGE_DEBUG
    197 #define DPRINTF(x)	if (bgedebug) printf x
    198 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    199 int	bgedebug = 0;
    200 #else
    201 #define DPRINTF(x)
    202 #define DPRINTFN(n,x)
    203 #endif
    204 
    205 /* Various chip quirks. */
    206 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    207 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    208 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    209 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    210 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    211 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    212 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    213 #define	BGE_QUIRK_5705_CORE		0x00000080
    214 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    215 
    216 /* following bugs are common to bcm5700 rev B, all flavours */
    217 #define BGE_QUIRK_5700_COMMON \
    218 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    219 
    220 CFATTACH_DECL(bge, sizeof(struct bge_softc),
    221     bge_probe, bge_attach, NULL, NULL);
    222 
    223 u_int32_t
    224 bge_readmem_ind(sc, off)
    225 	struct bge_softc *sc;
    226 	int off;
    227 {
    228 	struct pci_attach_args	*pa = &(sc->bge_pa);
    229 	pcireg_t val;
    230 
    231 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    232 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    233 	return val;
    234 }
    235 
    236 void
    237 bge_writemem_ind(sc, off, val)
    238 	struct bge_softc *sc;
    239 	int off, val;
    240 {
    241 	struct pci_attach_args	*pa = &(sc->bge_pa);
    242 
    243 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    244 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    245 }
    246 
    247 #ifdef notdef
    248 u_int32_t
    249 bge_readreg_ind(sc, off)
    250 	struct bge_softc *sc;
    251 	int off;
    252 {
    253 	struct pci_attach_args	*pa = &(sc->bge_pa);
    254 
    255 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    256 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    257 }
    258 #endif
    259 
    260 void
    261 bge_writereg_ind(sc, off, val)
    262 	struct bge_softc *sc;
    263 	int off, val;
    264 {
    265 	struct pci_attach_args	*pa = &(sc->bge_pa);
    266 
    267 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    268 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    269 }
    270 
    271 #ifdef notdef
    272 u_int8_t
    273 bge_vpd_readbyte(sc, addr)
    274 	struct bge_softc *sc;
    275 	int addr;
    276 {
    277 	int i;
    278 	u_int32_t val;
    279 	struct pci_attach_args	*pa = &(sc->bge_pa);
    280 
    281 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    282 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    283 		DELAY(10);
    284 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    285 		    BGE_VPD_FLAG)
    286 			break;
    287 	}
    288 
    289 	if (i == BGE_TIMEOUT) {
    290 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    291 		return(0);
    292 	}
    293 
    294 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    295 
    296 	return((val >> ((addr % 4) * 8)) & 0xFF);
    297 }
    298 
    299 void
    300 bge_vpd_read_res(sc, res, addr)
    301 	struct bge_softc *sc;
    302 	struct vpd_res *res;
    303 	int addr;
    304 {
    305 	int i;
    306 	u_int8_t *ptr;
    307 
    308 	ptr = (u_int8_t *)res;
    309 	for (i = 0; i < sizeof(struct vpd_res); i++)
    310 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    311 }
    312 
    313 void
    314 bge_vpd_read(sc)
    315 	struct bge_softc *sc;
    316 {
    317 	int pos = 0, i;
    318 	struct vpd_res res;
    319 
    320 	if (sc->bge_vpd_prodname != NULL)
    321 		free(sc->bge_vpd_prodname, M_DEVBUF);
    322 	if (sc->bge_vpd_readonly != NULL)
    323 		free(sc->bge_vpd_readonly, M_DEVBUF);
    324 	sc->bge_vpd_prodname = NULL;
    325 	sc->bge_vpd_readonly = NULL;
    326 
    327 	bge_vpd_read_res(sc, &res, pos);
    328 
    329 	if (res.vr_id != VPD_RES_ID) {
    330 		printf("%s: bad VPD resource id: expected %x got %x\n",
    331 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    332 		return;
    333 	}
    334 
    335 	pos += sizeof(res);
    336 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    337 	if (sc->bge_vpd_prodname == NULL)
    338 		panic("bge_vpd_read");
    339 	for (i = 0; i < res.vr_len; i++)
    340 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    341 	sc->bge_vpd_prodname[i] = '\0';
    342 	pos += i;
    343 
    344 	bge_vpd_read_res(sc, &res, pos);
    345 
    346 	if (res.vr_id != VPD_RES_READ) {
    347 		printf("%s: bad VPD resource id: expected %x got %x\n",
    348 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    349 		return;
    350 	}
    351 
    352 	pos += sizeof(res);
    353 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    354 	if (sc->bge_vpd_readonly == NULL)
    355 		panic("bge_vpd_read");
    356 	for (i = 0; i < res.vr_len + 1; i++)
    357 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    358 }
    359 #endif
    360 
    361 /*
    362  * Read a byte of data stored in the EEPROM at address 'addr.' The
    363  * BCM570x supports both the traditional bitbang interface and an
    364  * auto access interface for reading the EEPROM. We use the auto
    365  * access method.
    366  */
    367 u_int8_t
    368 bge_eeprom_getbyte(sc, addr, dest)
    369 	struct bge_softc *sc;
    370 	int addr;
    371 	u_int8_t *dest;
    372 {
    373 	int i;
    374 	u_int32_t byte = 0;
    375 
    376 	/*
    377 	 * Enable use of auto EEPROM access so we can avoid
    378 	 * having to use the bitbang method.
    379 	 */
    380 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    381 
    382 	/* Reset the EEPROM, load the clock period. */
    383 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    384 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    385 	DELAY(20);
    386 
    387 	/* Issue the read EEPROM command. */
    388 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    389 
    390 	/* Wait for completion */
    391 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    392 		DELAY(10);
    393 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    394 			break;
    395 	}
    396 
    397 	if (i == BGE_TIMEOUT) {
    398 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    399 		return(0);
    400 	}
    401 
    402 	/* Get result. */
    403 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    404 
    405 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    406 
    407 	return(0);
    408 }
    409 
    410 /*
    411  * Read a sequence of bytes from the EEPROM.
    412  */
    413 int
    414 bge_read_eeprom(sc, dest, off, cnt)
    415 	struct bge_softc *sc;
    416 	caddr_t dest;
    417 	int off;
    418 	int cnt;
    419 {
    420 	int err = 0, i;
    421 	u_int8_t byte = 0;
    422 
    423 	for (i = 0; i < cnt; i++) {
    424 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    425 		if (err)
    426 			break;
    427 		*(dest + i) = byte;
    428 	}
    429 
    430 	return(err ? 1 : 0);
    431 }
    432 
    433 int
    434 bge_miibus_readreg(dev, phy, reg)
    435 	struct device *dev;
    436 	int phy, reg;
    437 {
    438 	struct bge_softc *sc = (struct bge_softc *)dev;
    439 	u_int32_t val;
    440 	u_int32_t saved_autopoll;
    441 	int i;
    442 
    443 	/*
    444 	 * Several chips with builtin PHYs will incorrectly answer to
    445 	 * other PHY instances than the builtin PHY at id 1.
    446 	 */
    447 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    448 		return(0);
    449 
    450 	/* Reading with autopolling on may trigger PCI errors */
    451 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    452 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    453 		CSR_WRITE_4(sc, BGE_MI_MODE,
    454 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    455 		DELAY(40);
    456 	}
    457 
    458 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    459 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    460 
    461 	for (i = 0; i < BGE_TIMEOUT; i++) {
    462 		val = CSR_READ_4(sc, BGE_MI_COMM);
    463 		if (!(val & BGE_MICOMM_BUSY))
    464 			break;
    465 		delay(10);
    466 	}
    467 
    468 	if (i == BGE_TIMEOUT) {
    469 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    470 		val = 0;
    471 		goto done;
    472 	}
    473 
    474 	val = CSR_READ_4(sc, BGE_MI_COMM);
    475 
    476 done:
    477 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    478 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    479 		DELAY(40);
    480 	}
    481 
    482 	if (val & BGE_MICOMM_READFAIL)
    483 		return(0);
    484 
    485 	return(val & 0xFFFF);
    486 }
    487 
    488 void
    489 bge_miibus_writereg(dev, phy, reg, val)
    490 	struct device *dev;
    491 	int phy, reg, val;
    492 {
    493 	struct bge_softc *sc = (struct bge_softc *)dev;
    494 	u_int32_t saved_autopoll;
    495 	int i;
    496 
    497 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    498 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    499 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    500 		delay(40);
    501 		CSR_WRITE_4(sc, BGE_MI_MODE,
    502 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    503 		delay(10); /* 40 usec is supposed to be adequate */
    504 	}
    505 
    506 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    507 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    508 
    509 	for (i = 0; i < BGE_TIMEOUT; i++) {
    510 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    511 			break;
    512 		delay(10);
    513 	}
    514 
    515 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    516 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    517 		delay(40);
    518 	}
    519 
    520 	if (i == BGE_TIMEOUT) {
    521 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    522 	}
    523 }
    524 
    525 void
    526 bge_miibus_statchg(dev)
    527 	struct device *dev;
    528 {
    529 	struct bge_softc *sc = (struct bge_softc *)dev;
    530 	struct mii_data *mii = &sc->bge_mii;
    531 
    532 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    533 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    534 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    535 	} else {
    536 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    537 	}
    538 
    539 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    540 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    541 	} else {
    542 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    543 	}
    544 }
    545 
    546 /*
    547  * Handle events that have triggered interrupts.
    548  */
    549 void
    550 bge_handle_events(sc)
    551 	struct bge_softc		*sc;
    552 {
    553 
    554 	return;
    555 }
    556 
    557 /*
    558  * Memory management for jumbo frames.
    559  */
    560 
    561 int
    562 bge_alloc_jumbo_mem(sc)
    563 	struct bge_softc		*sc;
    564 {
    565 	caddr_t			ptr, kva;
    566 	bus_dma_segment_t	seg;
    567 	int		i, rseg, state, error;
    568 	struct bge_jpool_entry   *entry;
    569 
    570 	state = error = 0;
    571 
    572 	/* Grab a big chunk o' storage. */
    573 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    574 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    575 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    576 		return ENOBUFS;
    577 	}
    578 
    579 	state = 1;
    580 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    581 	    BUS_DMA_NOWAIT)) {
    582 		printf("%s: can't map DMA buffers (%d bytes)\n",
    583 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    584 		error = ENOBUFS;
    585 		goto out;
    586 	}
    587 
    588 	state = 2;
    589 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    590 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    591 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
    592 		error = ENOBUFS;
    593 		goto out;
    594 	}
    595 
    596 	state = 3;
    597 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    598 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    599 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
    600 		error = ENOBUFS;
    601 		goto out;
    602 	}
    603 
    604 	state = 4;
    605 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    606 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
    607 
    608 	SLIST_INIT(&sc->bge_jfree_listhead);
    609 	SLIST_INIT(&sc->bge_jinuse_listhead);
    610 
    611 	/*
    612 	 * Now divide it up into 9K pieces and save the addresses
    613 	 * in an array.
    614 	 */
    615 	ptr = sc->bge_cdata.bge_jumbo_buf;
    616 	for (i = 0; i < BGE_JSLOTS; i++) {
    617 		sc->bge_cdata.bge_jslots[i] = ptr;
    618 		ptr += BGE_JLEN;
    619 		entry = malloc(sizeof(struct bge_jpool_entry),
    620 		    M_DEVBUF, M_NOWAIT);
    621 		if (entry == NULL) {
    622 			printf("%s: no memory for jumbo buffer queue!\n",
    623 			    sc->bge_dev.dv_xname);
    624 			error = ENOBUFS;
    625 			goto out;
    626 		}
    627 		entry->slot = i;
    628 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    629 				 entry, jpool_entries);
    630 	}
    631 out:
    632 	if (error != 0) {
    633 		switch (state) {
    634 		case 4:
    635 			bus_dmamap_unload(sc->bge_dmatag,
    636 			    sc->bge_cdata.bge_rx_jumbo_map);
    637 		case 3:
    638 			bus_dmamap_destroy(sc->bge_dmatag,
    639 			    sc->bge_cdata.bge_rx_jumbo_map);
    640 		case 2:
    641 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    642 		case 1:
    643 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    644 			break;
    645 		default:
    646 			break;
    647 		}
    648 	}
    649 
    650 	return error;
    651 }
    652 
    653 /*
    654  * Allocate a jumbo buffer.
    655  */
    656 void *
    657 bge_jalloc(sc)
    658 	struct bge_softc		*sc;
    659 {
    660 	struct bge_jpool_entry   *entry;
    661 
    662 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    663 
    664 	if (entry == NULL) {
    665 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    666 		return(NULL);
    667 	}
    668 
    669 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    670 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    671 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    672 }
    673 
    674 /*
    675  * Release a jumbo buffer.
    676  */
    677 void
    678 bge_jfree(m, buf, size, arg)
    679 	struct mbuf	*m;
    680 	caddr_t		buf;
    681 	size_t		size;
    682 	void		*arg;
    683 {
    684 	struct bge_jpool_entry *entry;
    685 	struct bge_softc *sc;
    686 	int i, s;
    687 
    688 	/* Extract the softc struct pointer. */
    689 	sc = (struct bge_softc *)arg;
    690 
    691 	if (sc == NULL)
    692 		panic("bge_jfree: can't find softc pointer!");
    693 
    694 	/* calculate the slot this buffer belongs to */
    695 
    696 	i = ((caddr_t)buf
    697 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    698 
    699 	if ((i < 0) || (i >= BGE_JSLOTS))
    700 		panic("bge_jfree: asked to free buffer that we don't manage!");
    701 
    702 	s = splvm();
    703 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    704 	if (entry == NULL)
    705 		panic("bge_jfree: buffer not in use!");
    706 	entry->slot = i;
    707 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    708 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    709 
    710 	if (__predict_true(m != NULL))
    711   		pool_cache_put(&mbpool_cache, m);
    712 	splx(s);
    713 }
    714 
    715 
    716 /*
    717  * Intialize a standard receive ring descriptor.
    718  */
    719 int
    720 bge_newbuf_std(sc, i, m, dmamap)
    721 	struct bge_softc	*sc;
    722 	int			i;
    723 	struct mbuf		*m;
    724 	bus_dmamap_t dmamap;
    725 {
    726 	struct mbuf		*m_new = NULL;
    727 	struct bge_rx_bd	*r;
    728 	int			error;
    729 
    730 	if (dmamap == NULL) {
    731 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    732 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    733 		if (error != 0)
    734 			return error;
    735 	}
    736 
    737 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    738 
    739 	if (m == NULL) {
    740 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    741 		if (m_new == NULL) {
    742 			return(ENOBUFS);
    743 		}
    744 
    745 		MCLGET(m_new, M_DONTWAIT);
    746 		if (!(m_new->m_flags & M_EXT)) {
    747 			m_freem(m_new);
    748 			return(ENOBUFS);
    749 		}
    750 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    751 		if (!sc->bge_rx_alignment_bug)
    752 		    m_adj(m_new, ETHER_ALIGN);
    753 
    754 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    755 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    756 			return(ENOBUFS);
    757 	} else {
    758 		m_new = m;
    759 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    760 		m_new->m_data = m_new->m_ext.ext_buf;
    761 		if (!sc->bge_rx_alignment_bug)
    762 		    m_adj(m_new, ETHER_ALIGN);
    763 	}
    764 
    765 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    766 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    767 	bge_set_hostaddr(&r->bge_addr,
    768 	    dmamap->dm_segs[0].ds_addr);
    769 	r->bge_flags = BGE_RXBDFLAG_END;
    770 	r->bge_len = m_new->m_len;
    771 	r->bge_idx = i;
    772 
    773 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    774 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    775 		i * sizeof (struct bge_rx_bd),
    776 	    sizeof (struct bge_rx_bd),
    777 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    778 
    779 	return(0);
    780 }
    781 
    782 /*
    783  * Initialize a jumbo receive ring descriptor. This allocates
    784  * a jumbo buffer from the pool managed internally by the driver.
    785  */
    786 int
    787 bge_newbuf_jumbo(sc, i, m)
    788 	struct bge_softc *sc;
    789 	int i;
    790 	struct mbuf *m;
    791 {
    792 	struct mbuf *m_new = NULL;
    793 	struct bge_rx_bd *r;
    794 
    795 	if (m == NULL) {
    796 		caddr_t			*buf = NULL;
    797 
    798 		/* Allocate the mbuf. */
    799 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    800 		if (m_new == NULL) {
    801 			return(ENOBUFS);
    802 		}
    803 
    804 		/* Allocate the jumbo buffer */
    805 		buf = bge_jalloc(sc);
    806 		if (buf == NULL) {
    807 			m_freem(m_new);
    808 			printf("%s: jumbo allocation failed "
    809 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    810 			return(ENOBUFS);
    811 		}
    812 
    813 		/* Attach the buffer to the mbuf. */
    814 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    815 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    816 		    bge_jfree, sc);
    817 	} else {
    818 		m_new = m;
    819 		m_new->m_data = m_new->m_ext.ext_buf;
    820 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    821 	}
    822 
    823 	if (!sc->bge_rx_alignment_bug)
    824 	    m_adj(m_new, ETHER_ALIGN);
    825 	/* Set up the descriptor. */
    826 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    827 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    828 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    829 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    830 	r->bge_len = m_new->m_len;
    831 	r->bge_idx = i;
    832 
    833 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    834 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    835 		i * sizeof (struct bge_rx_bd),
    836 	    sizeof (struct bge_rx_bd),
    837 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    838 
    839 	return(0);
    840 }
    841 
    842 /*
    843  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    844  * that's 1MB or memory, which is a lot. For now, we fill only the first
    845  * 256 ring entries and hope that our CPU is fast enough to keep up with
    846  * the NIC.
    847  */
    848 int
    849 bge_init_rx_ring_std(sc)
    850 	struct bge_softc *sc;
    851 {
    852 	int i;
    853 
    854 	if (sc->bge_flags & BGE_RXRING_VALID)
    855 		return 0;
    856 
    857 	for (i = 0; i < BGE_SSLOTS; i++) {
    858 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    859 			return(ENOBUFS);
    860 	}
    861 
    862 	sc->bge_std = i - 1;
    863 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
    864 
    865 	sc->bge_flags |= BGE_RXRING_VALID;
    866 
    867 	return(0);
    868 }
    869 
    870 void
    871 bge_free_rx_ring_std(sc)
    872 	struct bge_softc *sc;
    873 {
    874 	int i;
    875 
    876 	if (!(sc->bge_flags & BGE_RXRING_VALID))
    877 		return;
    878 
    879 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
    880 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
    881 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
    882 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
    883 			bus_dmamap_destroy(sc->bge_dmatag,
    884 			    sc->bge_cdata.bge_rx_std_map[i]);
    885 		}
    886 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
    887 		    sizeof(struct bge_rx_bd));
    888 	}
    889 
    890 	sc->bge_flags &= ~BGE_RXRING_VALID;
    891 }
    892 
    893 int
    894 bge_init_rx_ring_jumbo(sc)
    895 	struct bge_softc *sc;
    896 {
    897 	int i;
    898 	volatile struct bge_rcb *rcb;
    899 
    900 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    901 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
    902 			return(ENOBUFS);
    903 	};
    904 
    905 	sc->bge_jumbo = i - 1;
    906 
    907 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
    908 	rcb->bge_maxlen_flags = 0;
    909 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
    910 
    911 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
    912 
    913 	return(0);
    914 }
    915 
    916 void
    917 bge_free_rx_ring_jumbo(sc)
    918 	struct bge_softc *sc;
    919 {
    920 	int i;
    921 
    922 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
    923 		return;
    924 
    925 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
    926 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
    927 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
    928 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
    929 		}
    930 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
    931 		    sizeof(struct bge_rx_bd));
    932 	}
    933 
    934 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
    935 }
    936 
    937 void
    938 bge_free_tx_ring(sc)
    939 	struct bge_softc *sc;
    940 {
    941 	int i, freed;
    942 	struct txdmamap_pool_entry *dma;
    943 
    944 	if (!(sc->bge_flags & BGE_TXRING_VALID))
    945 		return;
    946 
    947 	freed = 0;
    948 
    949 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
    950 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
    951 			freed++;
    952 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
    953 			sc->bge_cdata.bge_tx_chain[i] = NULL;
    954 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
    955 					    link);
    956 			sc->txdma[i] = 0;
    957 		}
    958 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
    959 		    sizeof(struct bge_tx_bd));
    960 	}
    961 
    962 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
    963 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
    964 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
    965 		free(dma, M_DEVBUF);
    966 	}
    967 
    968 	sc->bge_flags &= ~BGE_TXRING_VALID;
    969 }
    970 
    971 int
    972 bge_init_tx_ring(sc)
    973 	struct bge_softc *sc;
    974 {
    975 	int i;
    976 	bus_dmamap_t dmamap;
    977 	struct txdmamap_pool_entry *dma;
    978 
    979 	if (sc->bge_flags & BGE_TXRING_VALID)
    980 		return 0;
    981 
    982 	sc->bge_txcnt = 0;
    983 	sc->bge_tx_saved_considx = 0;
    984 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    985 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
    986 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    987 
    988 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
    989 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
    990 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
    991 
    992 	SLIST_INIT(&sc->txdma_list);
    993 	for (i = 0; i < BGE_RSLOTS; i++) {
    994 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
    995 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
    996 		    &dmamap))
    997 			return(ENOBUFS);
    998 		if (dmamap == NULL)
    999 			panic("dmamap NULL in bge_init_tx_ring");
   1000 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1001 		if (dma == NULL) {
   1002 			printf("%s: can't alloc txdmamap_pool_entry\n",
   1003 			    sc->bge_dev.dv_xname);
   1004 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1005 			return (ENOMEM);
   1006 		}
   1007 		dma->dmamap = dmamap;
   1008 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1009 	}
   1010 
   1011 	sc->bge_flags |= BGE_TXRING_VALID;
   1012 
   1013 	return(0);
   1014 }
   1015 
   1016 void
   1017 bge_setmulti(sc)
   1018 	struct bge_softc *sc;
   1019 {
   1020 	struct ethercom		*ac = &sc->ethercom;
   1021 	struct ifnet		*ifp = &ac->ec_if;
   1022 	struct ether_multi	*enm;
   1023 	struct ether_multistep  step;
   1024 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1025 	u_int32_t		h;
   1026 	int			i;
   1027 
   1028 	if (ifp->if_flags & IFF_PROMISC)
   1029 		goto allmulti;
   1030 
   1031 	/* Now program new ones. */
   1032 	ETHER_FIRST_MULTI(step, ac, enm);
   1033 	while (enm != NULL) {
   1034 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1035 			/*
   1036 			 * We must listen to a range of multicast addresses.
   1037 			 * For now, just accept all multicasts, rather than
   1038 			 * trying to set only those filter bits needed to match
   1039 			 * the range.  (At this time, the only use of address
   1040 			 * ranges is for IP multicast routing, for which the
   1041 			 * range is big enough to require all bits set.)
   1042 			 */
   1043 			goto allmulti;
   1044 		}
   1045 
   1046 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1047 
   1048 		/* Just want the 7 least-significant bits. */
   1049 		h &= 0x7f;
   1050 
   1051 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1052 		ETHER_NEXT_MULTI(step, enm);
   1053 	}
   1054 
   1055 	ifp->if_flags &= ~IFF_ALLMULTI;
   1056 	goto setit;
   1057 
   1058  allmulti:
   1059 	ifp->if_flags |= IFF_ALLMULTI;
   1060 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1061 
   1062  setit:
   1063 	for (i = 0; i < 4; i++)
   1064 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1065 }
   1066 
   1067 const int bge_swapbits[] = {
   1068 	0,
   1069 	BGE_MODECTL_BYTESWAP_DATA,
   1070 	BGE_MODECTL_WORDSWAP_DATA,
   1071 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1072 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1073 
   1074 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1075 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1076 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1077 
   1078 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1079 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1080 
   1081 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1082 
   1083 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1084 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1085 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1086 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1087 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1088 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1089 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1090 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1091 
   1092 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1093 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1094 };
   1095 
   1096 int bge_swapindex = 0;
   1097 
   1098 /*
   1099  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1100  * self-test results.
   1101  */
   1102 int
   1103 bge_chipinit(sc)
   1104 	struct bge_softc *sc;
   1105 {
   1106 	u_int32_t		cachesize;
   1107 	int			i;
   1108 	u_int32_t		dma_rw_ctl;
   1109 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1110 
   1111 
   1112 	/* Set endianness before we access any non-PCI registers. */
   1113 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1114 	    BGE_INIT);
   1115 
   1116 	/* Set power state to D0. */
   1117 	bge_setpowerstate(sc, 0);
   1118 
   1119 	/*
   1120 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1121 	 * self-tests passed.
   1122 	 */
   1123 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1124 		printf("%s: RX CPU self-diagnostics failed!\n",
   1125 		    sc->bge_dev.dv_xname);
   1126 		return(ENODEV);
   1127 	}
   1128 
   1129 	/* Clear the MAC control register */
   1130 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1131 
   1132 	/*
   1133 	 * Clear the MAC statistics block in the NIC's
   1134 	 * internal memory.
   1135 	 */
   1136 	for (i = BGE_STATS_BLOCK;
   1137 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1138 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1139 
   1140 	for (i = BGE_STATUS_BLOCK;
   1141 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1142 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1143 
   1144 	/* Set up the PCI DMA control register. */
   1145 	if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
   1146 	    BGE_PCISTATE_PCI_BUSMODE) {
   1147 		/* Conventional PCI bus */
   1148 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
   1149 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1150 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1151 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1152 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1153 			dma_rw_ctl |= 0x0F;
   1154 		}
   1155 	} else {
   1156 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
   1157 		/* PCI-X bus */
   1158 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1159 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1160 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1161 		    (0x0F);
   1162 		/*
   1163 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1164 		 * for hardware bugs, which means we should also clear
   1165 		 * the low-order MINDMA bits.  In addition, the 5704
   1166 		 * uses a different encoding of read/write watermarks.
   1167 		 */
   1168 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1169 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1170 			  /* should be 0x1f0000 */
   1171 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1172 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1173 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1174 		}
   1175 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1176 			dma_rw_ctl &=  0xfffffff0;
   1177 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1178 		}
   1179 	}
   1180 
   1181 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1182 
   1183 	/*
   1184 	 * Set up general mode register.
   1185 	 */
   1186 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1187 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1188 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1189 
   1190 	/* Get cache line size. */
   1191 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1192 
   1193 	/*
   1194 	 * Avoid violating PCI spec on certain chip revs.
   1195 	 */
   1196 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1197 	    PCIM_CMD_MWIEN) {
   1198 		switch(cachesize) {
   1199 		case 1:
   1200 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1201 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1202 			break;
   1203 		case 2:
   1204 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1205 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1206 			break;
   1207 		case 4:
   1208 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1209 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1210 			break;
   1211 		case 8:
   1212 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1213 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1214 			break;
   1215 		case 16:
   1216 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1217 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1218 			break;
   1219 		case 32:
   1220 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1221 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1222 			break;
   1223 		case 64:
   1224 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1225 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1226 			break;
   1227 		default:
   1228 		/* Disable PCI memory write and invalidate. */
   1229 #if 0
   1230 			if (bootverbose)
   1231 				printf("%s: cache line size %d not "
   1232 				    "supported; disabling PCI MWI\n",
   1233 				    sc->bge_dev.dv_xname, cachesize);
   1234 #endif
   1235 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1236 			    PCIM_CMD_MWIEN);
   1237 			break;
   1238 		}
   1239 	}
   1240 
   1241 	/*
   1242 	 * Disable memory write invalidate.  Apparently it is not supported
   1243 	 * properly by these devices.
   1244 	 */
   1245 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1246 
   1247 
   1248 #ifdef __brokenalpha__
   1249 	/*
   1250 	 * Must insure that we do not cross an 8K (bytes) boundary
   1251 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1252 	 * restriction on some ALPHA platforms with early revision
   1253 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1254 	 */
   1255 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1256 #endif
   1257 
   1258 	/* Set the timer prescaler (always 66MHz) */
   1259 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1260 
   1261 	return(0);
   1262 }
   1263 
   1264 int
   1265 bge_blockinit(sc)
   1266 	struct bge_softc *sc;
   1267 {
   1268 	volatile struct bge_rcb		*rcb;
   1269 	bus_size_t		rcb_addr;
   1270 	int			i;
   1271 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1272 	bge_hostaddr		taddr;
   1273 
   1274 	/*
   1275 	 * Initialize the memory window pointer register so that
   1276 	 * we can access the first 32K of internal NIC RAM. This will
   1277 	 * allow us to set up the TX send ring RCBs and the RX return
   1278 	 * ring RCBs, plus other things which live in NIC memory.
   1279 	 */
   1280 
   1281 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1282 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1283 
   1284 	/* Configure mbuf memory pool */
   1285 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1286 		if (sc->bge_extram) {
   1287 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1288 			    BGE_EXT_SSRAM);
   1289 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1290 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1291 			else
   1292 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1293 		} else {
   1294 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1295 			    BGE_BUFFPOOL_1);
   1296 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1297 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1298 			else
   1299 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1300 		}
   1301 
   1302 		/* Configure DMA resource pool */
   1303 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1304 		    BGE_DMA_DESCRIPTORS);
   1305 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1306 	}
   1307 
   1308 	/* Configure mbuf pool watermarks */
   1309 #ifdef ORIG_WPAUL_VALUES
   1310 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1311 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1312 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1313 #else
   1314 	/* new broadcom docs strongly recommend these: */
   1315 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1316 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1317 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1318 	} else {
   1319 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1320 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1321 	}
   1322 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1323 #endif
   1324 
   1325 	/* Configure DMA resource watermarks */
   1326 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1327 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1328 
   1329 	/* Enable buffer manager */
   1330 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1331 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1332 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1333 
   1334 		/* Poll for buffer manager start indication */
   1335 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1336 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1337 				break;
   1338 			DELAY(10);
   1339 		}
   1340 
   1341 		if (i == BGE_TIMEOUT) {
   1342 			printf("%s: buffer manager failed to start\n",
   1343 			    sc->bge_dev.dv_xname);
   1344 			return(ENXIO);
   1345 		}
   1346 	}
   1347 
   1348 	/* Enable flow-through queues */
   1349 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1350 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1351 
   1352 	/* Wait until queue initialization is complete */
   1353 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1354 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1355 			break;
   1356 		DELAY(10);
   1357 	}
   1358 
   1359 	if (i == BGE_TIMEOUT) {
   1360 		printf("%s: flow-through queue init failed\n",
   1361 		    sc->bge_dev.dv_xname);
   1362 		return(ENXIO);
   1363 	}
   1364 
   1365 	/* Initialize the standard RX ring control block */
   1366 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1367 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1368 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1369 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1370 		rcb->bge_maxlen_flags =
   1371 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1372 	} else {
   1373 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1374 	}
   1375 	if (sc->bge_extram)
   1376 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1377 	else
   1378 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1379 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1380 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1381 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1382 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1383 
   1384 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1385 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1386 	} else {
   1387 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1388 	}
   1389 
   1390 	/*
   1391 	 * Initialize the jumbo RX ring control block
   1392 	 * We set the 'ring disabled' bit in the flags
   1393 	 * field until we're actually ready to start
   1394 	 * using this ring (i.e. once we set the MTU
   1395 	 * high enough to require it).
   1396 	 */
   1397 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1398 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1399 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1400 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1401 		rcb->bge_maxlen_flags =
   1402 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1403 			BGE_RCB_FLAG_RING_DISABLED);
   1404 		if (sc->bge_extram)
   1405 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1406 		else
   1407 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1408 
   1409 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1410 		    rcb->bge_hostaddr.bge_addr_hi);
   1411 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1412 		    rcb->bge_hostaddr.bge_addr_lo);
   1413 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1414 		    rcb->bge_maxlen_flags);
   1415 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1416 
   1417 		/* Set up dummy disabled mini ring RCB */
   1418 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1419 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1420 		    BGE_RCB_FLAG_RING_DISABLED);
   1421 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1422 		    rcb->bge_maxlen_flags);
   1423 
   1424 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1425 		    offsetof(struct bge_ring_data, bge_info),
   1426 		    sizeof (struct bge_gib),
   1427 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1428 	}
   1429 
   1430 	/*
   1431 	 * Set the BD ring replentish thresholds. The recommended
   1432 	 * values are 1/8th the number of descriptors allocated to
   1433 	 * each ring.
   1434 	 */
   1435 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1436 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1437 
   1438 	/*
   1439 	 * Disable all unused send rings by setting the 'ring disabled'
   1440 	 * bit in the flags field of all the TX send ring control blocks.
   1441 	 * These are located in NIC memory.
   1442 	 */
   1443 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1444 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1445 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1446 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1447 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1448 		rcb_addr += sizeof(struct bge_rcb);
   1449 	}
   1450 
   1451 	/* Configure TX RCB 0 (we use only the first ring) */
   1452 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1453 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1454 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1455 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1456 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1457 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1458 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1459 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1460 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1461 	}
   1462 
   1463 	/* Disable all unused RX return rings */
   1464 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1465 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1466 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1467 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1468 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1469 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1470                                      BGE_RCB_FLAG_RING_DISABLED));
   1471 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1472 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1473 		    (i * (sizeof(u_int64_t))), 0);
   1474 		rcb_addr += sizeof(struct bge_rcb);
   1475 	}
   1476 
   1477 	/* Initialize RX ring indexes */
   1478 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1479 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1480 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1481 
   1482 	/*
   1483 	 * Set up RX return ring 0
   1484 	 * Note that the NIC address for RX return rings is 0x00000000.
   1485 	 * The return rings live entirely within the host, so the
   1486 	 * nicaddr field in the RCB isn't used.
   1487 	 */
   1488 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1489 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1490 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1491 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1492 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1493 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1494 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1495 
   1496 	/* Set random backoff seed for TX */
   1497 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1498 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1499 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1500 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1501 	    BGE_TX_BACKOFF_SEED_MASK);
   1502 
   1503 	/* Set inter-packet gap */
   1504 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1505 
   1506 	/*
   1507 	 * Specify which ring to use for packets that don't match
   1508 	 * any RX rules.
   1509 	 */
   1510 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1511 
   1512 	/*
   1513 	 * Configure number of RX lists. One interrupt distribution
   1514 	 * list, sixteen active lists, one bad frames class.
   1515 	 */
   1516 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1517 
   1518 	/* Inialize RX list placement stats mask. */
   1519 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1520 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1521 
   1522 	/* Disable host coalescing until we get it set up */
   1523 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1524 
   1525 	/* Poll to make sure it's shut down. */
   1526 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1527 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1528 			break;
   1529 		DELAY(10);
   1530 	}
   1531 
   1532 	if (i == BGE_TIMEOUT) {
   1533 		printf("%s: host coalescing engine failed to idle\n",
   1534 		    sc->bge_dev.dv_xname);
   1535 		return(ENXIO);
   1536 	}
   1537 
   1538 	/* Set up host coalescing defaults */
   1539 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1540 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1541 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1542 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1543 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1544 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1545 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1546 	}
   1547 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1548 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1549 
   1550 	/* Set up address of statistics block */
   1551 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1552 		bge_set_hostaddr(&taddr,
   1553 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1554 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1555 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1556 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1557 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1558 	}
   1559 
   1560 	/* Set up address of status block */
   1561 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1562 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1563 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1564 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1565 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1566 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1567 
   1568 	/* Turn on host coalescing state machine */
   1569 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1570 
   1571 	/* Turn on RX BD completion state machine and enable attentions */
   1572 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1573 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1574 
   1575 	/* Turn on RX list placement state machine */
   1576 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1577 
   1578 	/* Turn on RX list selector state machine. */
   1579 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1580 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1581 	}
   1582 
   1583 	/* Turn on DMA, clear stats */
   1584 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1585 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1586 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1587 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1588 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1589 
   1590 	/* Set misc. local control, enable interrupts on attentions */
   1591 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1592 
   1593 #ifdef notdef
   1594 	/* Assert GPIO pins for PHY reset */
   1595 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1596 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1597 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1598 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1599 #endif
   1600 
   1601 #if defined(not_quite_yet)
   1602 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1603 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1604 		sc->bge_local_ctrl_reg |=
   1605 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1606 	}
   1607 #endif
   1608 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1609 
   1610 	/* Turn on DMA completion state machine */
   1611 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1612 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1613 	}
   1614 
   1615 	/* Turn on write DMA state machine */
   1616 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1617 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1618 
   1619 	/* Turn on read DMA state machine */
   1620 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
   1621 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
   1622 
   1623 	/* Turn on RX data completion state machine */
   1624 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1625 
   1626 	/* Turn on RX BD initiator state machine */
   1627 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1628 
   1629 	/* Turn on RX data and RX BD initiator state machine */
   1630 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1631 
   1632 	/* Turn on Mbuf cluster free state machine */
   1633 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1634 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1635 	}
   1636 
   1637 	/* Turn on send BD completion state machine */
   1638 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1639 
   1640 	/* Turn on send data completion state machine */
   1641 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1642 
   1643 	/* Turn on send data initiator state machine */
   1644 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1645 
   1646 	/* Turn on send BD initiator state machine */
   1647 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1648 
   1649 	/* Turn on send BD selector state machine */
   1650 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1651 
   1652 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1653 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1654 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1655 
   1656 	/* ack/clear link change events */
   1657 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1658 	    BGE_MACSTAT_CFG_CHANGED);
   1659 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1660 
   1661 	/* Enable PHY auto polling (for MII/GMII only) */
   1662 	if (sc->bge_tbi) {
   1663 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1664  	} else {
   1665 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1666 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1667 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1668 			    BGE_EVTENB_MI_INTERRUPT);
   1669 	}
   1670 
   1671 	/* Enable link state change attentions. */
   1672 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1673 
   1674 	return(0);
   1675 }
   1676 
   1677 static const struct bge_revision {
   1678 	uint32_t		br_chipid;
   1679 	uint32_t		br_quirks;
   1680 	const char		*br_name;
   1681 } bge_revisions[] = {
   1682 	{ BGE_CHIPID_BCM5700_A0,
   1683 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1684 	  "BCM5700 A0" },
   1685 
   1686 	{ BGE_CHIPID_BCM5700_A1,
   1687 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1688 	  "BCM5700 A1" },
   1689 
   1690 	{ BGE_CHIPID_BCM5700_B0,
   1691 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1692 	  "BCM5700 B0" },
   1693 
   1694 	{ BGE_CHIPID_BCM5700_B1,
   1695 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1696 	  "BCM5700 B1" },
   1697 
   1698 	{ BGE_CHIPID_BCM5700_B2,
   1699 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1700 	  "BCM5700 B2" },
   1701 
   1702 	/* This is treated like a BCM5700 Bx */
   1703 	{ BGE_CHIPID_BCM5700_ALTIMA,
   1704 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1705 	  "BCM5700 Altima" },
   1706 
   1707 	{ BGE_CHIPID_BCM5700_C0,
   1708 	  0,
   1709 	  "BCM5700 C0" },
   1710 
   1711 	{ BGE_CHIPID_BCM5701_A0,
   1712 	  0, /*XXX really, just not known */
   1713 	  "BCM5701 A0" },
   1714 
   1715 	{ BGE_CHIPID_BCM5701_B0,
   1716 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1717 	  "BCM5701 B0" },
   1718 
   1719 	{ BGE_CHIPID_BCM5701_B2,
   1720 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1721 	  "BCM5701 B2" },
   1722 
   1723 	{ BGE_CHIPID_BCM5701_B5,
   1724 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1725 	  "BCM5701 B5" },
   1726 
   1727 	{ BGE_CHIPID_BCM5703_A0,
   1728 	  0,
   1729 	  "BCM5703 A0" },
   1730 
   1731 	{ BGE_CHIPID_BCM5703_A1,
   1732 	  0,
   1733 	  "BCM5703 A1" },
   1734 
   1735 	{ BGE_CHIPID_BCM5703_A2,
   1736 	  BGE_QUIRK_ONLY_PHY_1,
   1737 	  "BCM5703 A2" },
   1738 
   1739 	{ BGE_CHIPID_BCM5703_A3,
   1740 	  BGE_QUIRK_ONLY_PHY_1,
   1741 	  "BCM5703 A3" },
   1742 
   1743 	{ BGE_CHIPID_BCM5704_A0,
   1744   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1745 	  "BCM5704 A0" },
   1746 
   1747 	{ BGE_CHIPID_BCM5704_A1,
   1748   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1749 	  "BCM5704 A1" },
   1750 
   1751 	{ BGE_CHIPID_BCM5704_A2,
   1752   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1753 	  "BCM5704 A2" },
   1754 
   1755 	{ BGE_CHIPID_BCM5704_A3,
   1756   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1757 	  "BCM5704 A3" },
   1758 
   1759 	{ BGE_CHIPID_BCM5705_A0,
   1760 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1761 	  "BCM5705 A0" },
   1762 
   1763 	{ BGE_CHIPID_BCM5705_A1,
   1764 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1765 	  "BCM5705 A1" },
   1766 
   1767 	{ BGE_CHIPID_BCM5705_A2,
   1768 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1769 	  "BCM5705 A2" },
   1770 
   1771 	{ BGE_CHIPID_BCM5705_A3,
   1772 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1773 	  "BCM5705 A3" },
   1774 
   1775 	{ 0, 0, NULL }
   1776 };
   1777 
   1778 /*
   1779  * Some defaults for major revisions, so that newer steppings
   1780  * that we don't know about have a shot at working.
   1781  */
   1782 static const struct bge_revision bge_majorrevs[] = {
   1783 	{ BGE_ASICREV_BCM5700,
   1784 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1785 	  "unknown BCM5700" },
   1786 
   1787 	{ BGE_ASICREV_BCM5701,
   1788 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1789 	  "unknown BCM5701" },
   1790 
   1791 	{ BGE_ASICREV_BCM5703,
   1792 	  0,
   1793 	  "unknown BCM5703" },
   1794 
   1795 	{ BGE_ASICREV_BCM5704,
   1796 	  BGE_QUIRK_ONLY_PHY_1,
   1797 	  "unknown BCM5704" },
   1798 
   1799 	{ BGE_ASICREV_BCM5705,
   1800 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1801 	  "unknown BCM5705" },
   1802 
   1803 	{ 0,
   1804 	  0,
   1805 	  NULL }
   1806 };
   1807 
   1808 
   1809 static const struct bge_revision *
   1810 bge_lookup_rev(uint32_t chipid)
   1811 {
   1812 	const struct bge_revision *br;
   1813 
   1814 	for (br = bge_revisions; br->br_name != NULL; br++) {
   1815 		if (br->br_chipid == chipid)
   1816 			return (br);
   1817 	}
   1818 
   1819 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   1820 		if (br->br_chipid == BGE_ASICREV(chipid))
   1821 			return (br);
   1822 	}
   1823 
   1824 	return (NULL);
   1825 }
   1826 
   1827 static const struct bge_product {
   1828 	pci_vendor_id_t		bp_vendor;
   1829 	pci_product_id_t	bp_product;
   1830 	const char		*bp_name;
   1831 } bge_products[] = {
   1832 	/*
   1833 	 * The BCM5700 documentation seems to indicate that the hardware
   1834 	 * still has the Alteon vendor ID burned into it, though it
   1835 	 * should always be overridden by the value in the EEPROM.  We'll
   1836 	 * check for it anyway.
   1837 	 */
   1838 	{ PCI_VENDOR_ALTEON,
   1839 	  PCI_PRODUCT_ALTEON_BCM5700,
   1840 	  "Broadcom BCM5700 Gigabit Ethernet",
   1841 	  },
   1842 	{ PCI_VENDOR_ALTEON,
   1843 	  PCI_PRODUCT_ALTEON_BCM5701,
   1844 	  "Broadcom BCM5701 Gigabit Ethernet",
   1845 	  },
   1846 
   1847 	{ PCI_VENDOR_ALTIMA,
   1848 	  PCI_PRODUCT_ALTIMA_AC1000,
   1849 	  "Altima AC1000 Gigabit Ethernet",
   1850 	  },
   1851 	{ PCI_VENDOR_ALTIMA,
   1852 	  PCI_PRODUCT_ALTIMA_AC1001,
   1853 	  "Altima AC1001 Gigabit Ethernet",
   1854 	   },
   1855 	{ PCI_VENDOR_ALTIMA,
   1856 	  PCI_PRODUCT_ALTIMA_AC9100,
   1857 	  "Altima AC9100 Gigabit Ethernet",
   1858 	  },
   1859 
   1860 	{ PCI_VENDOR_BROADCOM,
   1861 	  PCI_PRODUCT_BROADCOM_BCM5700,
   1862 	  "Broadcom BCM5700 Gigabit Ethernet",
   1863 	  },
   1864 	{ PCI_VENDOR_BROADCOM,
   1865 	  PCI_PRODUCT_BROADCOM_BCM5701,
   1866 	  "Broadcom BCM5701 Gigabit Ethernet",
   1867 	  },
   1868 	{ PCI_VENDOR_BROADCOM,
   1869 	  PCI_PRODUCT_BROADCOM_BCM5702,
   1870 	  "Broadcom BCM5702 Gigabit Ethernet",
   1871 	  },
   1872 	{ PCI_VENDOR_BROADCOM,
   1873 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   1874 	  "Broadcom BCM5702X Gigabit Ethernet" },
   1875 
   1876 	{ PCI_VENDOR_BROADCOM,
   1877 	  PCI_PRODUCT_BROADCOM_BCM5703,
   1878 	  "Broadcom BCM5703 Gigabit Ethernet",
   1879 	  },
   1880 	{ PCI_VENDOR_BROADCOM,
   1881 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   1882 	  "Broadcom BCM5703X Gigabit Ethernet",
   1883 	  },
   1884 	{ PCI_VENDOR_BROADCOM,
   1885 	  PCI_PRODUCT_BROADCOM_BCM5703A3,
   1886 	  "Broadcom BCM5703A3 Gigabit Ethernet",
   1887 	  },
   1888 
   1889    	{ PCI_VENDOR_BROADCOM,
   1890 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   1891 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   1892 	  },
   1893    	{ PCI_VENDOR_BROADCOM,
   1894 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   1895 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   1896 	  },
   1897 
   1898    	{ PCI_VENDOR_BROADCOM,
   1899 	  PCI_PRODUCT_BROADCOM_BCM5705,
   1900 	  "Broadcom BCM5705 Gigabit Ethernet",
   1901 	  },
   1902    	{ PCI_VENDOR_BROADCOM,
   1903 	  PCI_PRODUCT_BROADCOM_BCM5705_ALT,
   1904 	  "Broadcom BCM5705 Gigabit Ethernet",
   1905 	  },
   1906    	{ PCI_VENDOR_BROADCOM,
   1907 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   1908 	  "Broadcom BCM5705M Gigabit Ethernet",
   1909 	  },
   1910 
   1911    	{ PCI_VENDOR_BROADCOM,
   1912 	  PCI_PRODUCT_BROADCOM_BCM5901,
   1913 	  "Broadcom BCM5901 Fast Ethernet",
   1914 	  },
   1915    	{ PCI_VENDOR_BROADCOM,
   1916 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   1917 	  "Broadcom BCM5901A2 Fast Ethernet",
   1918 	  },
   1919 
   1920    	{ PCI_VENDOR_BROADCOM,
   1921 	  PCI_PRODUCT_BROADCOM_BCM5782,
   1922 	  "Broadcom BCM5782 Gigabit Ethernet",
   1923 	  },
   1924 
   1925 	{ PCI_VENDOR_SCHNEIDERKOCH,
   1926 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   1927 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   1928 	  },
   1929 
   1930 	{ PCI_VENDOR_3COM,
   1931 	  PCI_PRODUCT_3COM_3C996,
   1932 	  "3Com 3c996 Gigabit Ethernet",
   1933 	  },
   1934 
   1935 	{ 0,
   1936 	  0,
   1937 	  NULL },
   1938 };
   1939 
   1940 static const struct bge_product *
   1941 bge_lookup(const struct pci_attach_args *pa)
   1942 {
   1943 	const struct bge_product *bp;
   1944 
   1945 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   1946 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   1947 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   1948 			return (bp);
   1949 	}
   1950 
   1951 	return (NULL);
   1952 }
   1953 
   1954 int
   1955 bge_setpowerstate(sc, powerlevel)
   1956 	struct bge_softc *sc;
   1957 	int powerlevel;
   1958 {
   1959 #ifdef NOTYET
   1960 	u_int32_t pm_ctl = 0;
   1961 
   1962 	/* XXX FIXME: make sure indirect accesses enabled? */
   1963 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   1964 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   1965 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   1966 
   1967 	/* clear the PME_assert bit and power state bits, enable PME */
   1968 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   1969 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   1970 	pm_ctl |= (1 << 8);
   1971 
   1972 	if (powerlevel == 0) {
   1973 		pm_ctl |= PCIM_PSTAT_D0;
   1974 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   1975 		    pm_ctl, 2);
   1976 		DELAY(10000);
   1977 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1978 		DELAY(10000);
   1979 
   1980 #ifdef NOTYET
   1981 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   1982 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   1983 #endif
   1984 		DELAY(40); DELAY(40); DELAY(40);
   1985 		DELAY(10000);	/* above not quite adequate on 5700 */
   1986 		return 0;
   1987 	}
   1988 
   1989 
   1990 	/*
   1991 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   1992 	 * GMII gpio pins. Example code assumes all hardware vendors
   1993 	 * followed Broadom's sample pcb layout. Until we verify that
   1994 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   1995 	 */
   1996 	printf("%s: power state %d unimplemented; check GPIO pins\n",
   1997 	       sc->bge_dev.dv_xname, powerlevel);
   1998 #endif
   1999 	return EOPNOTSUPP;
   2000 }
   2001 
   2002 
   2003 /*
   2004  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2005  * against our list and return its name if we find a match. Note
   2006  * that since the Broadcom controller contains VPD support, we
   2007  * can get the device name string from the controller itself instead
   2008  * of the compiled-in string. This is a little slow, but it guarantees
   2009  * we'll always announce the right product name.
   2010  */
   2011 int
   2012 bge_probe(parent, match, aux)
   2013 	struct device *parent;
   2014 	struct cfdata *match;
   2015 	void *aux;
   2016 {
   2017 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2018 
   2019 	if (bge_lookup(pa) != NULL)
   2020 		return (1);
   2021 
   2022 	return (0);
   2023 }
   2024 
   2025 void
   2026 bge_attach(parent, self, aux)
   2027 	struct device *parent, *self;
   2028 	void *aux;
   2029 {
   2030 	struct bge_softc	*sc = (struct bge_softc *)self;
   2031 	struct pci_attach_args	*pa = aux;
   2032 	const struct bge_product *bp;
   2033 	const struct bge_revision *br;
   2034 	pci_chipset_tag_t	pc = pa->pa_pc;
   2035 	pci_intr_handle_t	ih;
   2036 	const char		*intrstr = NULL;
   2037 	bus_dma_segment_t	seg;
   2038 	int			rseg;
   2039 	u_int32_t		hwcfg = 0;
   2040 	u_int32_t		mac_addr = 0;
   2041 	u_int32_t		command;
   2042 	struct ifnet		*ifp;
   2043 	caddr_t			kva;
   2044 	u_char			eaddr[ETHER_ADDR_LEN];
   2045 	pcireg_t		memtype;
   2046 	bus_addr_t		memaddr;
   2047 	bus_size_t		memsize;
   2048 	u_int32_t		pm_ctl;
   2049 
   2050 	bp = bge_lookup(pa);
   2051 	KASSERT(bp != NULL);
   2052 
   2053 	sc->bge_pa = *pa;
   2054 
   2055 	aprint_naive(": Ethernet controller\n");
   2056 	aprint_normal(": %s\n", bp->bp_name);
   2057 
   2058 	/*
   2059 	 * Map control/status registers.
   2060 	 */
   2061 	DPRINTFN(5, ("Map control/status regs\n"));
   2062 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2063 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2064 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   2065 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2066 
   2067 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2068 		aprint_error("%s: failed to enable memory mapping!\n",
   2069 		    sc->bge_dev.dv_xname);
   2070 		return;
   2071 	}
   2072 
   2073 	DPRINTFN(5, ("pci_mem_find\n"));
   2074 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   2075  	switch (memtype) {
   2076 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2077 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2078 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2079 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2080 		    &memaddr, &memsize) == 0)
   2081 			break;
   2082 	default:
   2083 		aprint_error("%s: can't find mem space\n",
   2084 		    sc->bge_dev.dv_xname);
   2085 		return;
   2086 	}
   2087 
   2088 	DPRINTFN(5, ("pci_intr_map\n"));
   2089 	if (pci_intr_map(pa, &ih)) {
   2090 		aprint_error("%s: couldn't map interrupt\n",
   2091 		    sc->bge_dev.dv_xname);
   2092 		return;
   2093 	}
   2094 
   2095 	DPRINTFN(5, ("pci_intr_string\n"));
   2096 	intrstr = pci_intr_string(pc, ih);
   2097 
   2098 	DPRINTFN(5, ("pci_intr_establish\n"));
   2099 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2100 
   2101 	if (sc->bge_intrhand == NULL) {
   2102 		aprint_error("%s: couldn't establish interrupt",
   2103 		    sc->bge_dev.dv_xname);
   2104 		if (intrstr != NULL)
   2105 			aprint_normal(" at %s", intrstr);
   2106 		aprint_normal("\n");
   2107 		return;
   2108 	}
   2109 	aprint_normal("%s: interrupting at %s\n",
   2110 	    sc->bge_dev.dv_xname, intrstr);
   2111 
   2112 	/*
   2113 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2114 	 * can clobber the chip's PCI config-space power control registers,
   2115 	 * leaving the card in D3 powersave state.
   2116 	 * We do not have memory-mapped registers in this state,
   2117 	 * so force device into D0 state before starting initialization.
   2118 	 */
   2119 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
   2120 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2121 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2122 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2123 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2124 
   2125 	/* Try to reset the chip. */
   2126 	DPRINTFN(5, ("bge_reset\n"));
   2127 	bge_reset(sc);
   2128 
   2129 	if (bge_chipinit(sc)) {
   2130 		aprint_error("%s: chip initialization failed\n",
   2131 		    sc->bge_dev.dv_xname);
   2132 		bge_release_resources(sc);
   2133 		return;
   2134 	}
   2135 
   2136 	/*
   2137 	 * Get station address from the EEPROM.
   2138 	 */
   2139 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   2140 	if ((mac_addr >> 16) == 0x484b) {
   2141 		eaddr[0] = (u_char)(mac_addr >> 8);
   2142 		eaddr[1] = (u_char)(mac_addr >> 0);
   2143 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   2144 		eaddr[2] = (u_char)(mac_addr >> 24);
   2145 		eaddr[3] = (u_char)(mac_addr >> 16);
   2146 		eaddr[4] = (u_char)(mac_addr >> 8);
   2147 		eaddr[5] = (u_char)(mac_addr >> 0);
   2148 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
   2149 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   2150 		aprint_error("%s: failed to read station address\n",
   2151 		    sc->bge_dev.dv_xname);
   2152 		bge_release_resources(sc);
   2153 		return;
   2154 	}
   2155 
   2156 	/*
   2157 	 * Save ASIC rev.  Look up any quirks associated with this
   2158 	 * ASIC.
   2159 	 */
   2160 	sc->bge_chipid =
   2161 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   2162 	    BGE_PCIMISCCTL_ASICREV;
   2163 	br = bge_lookup_rev(sc->bge_chipid);
   2164 
   2165 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
   2166 
   2167 	if (br == NULL) {
   2168 		aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
   2169 		sc->bge_quirks = 0;
   2170 	} else {
   2171 		aprint_normal("ASIC %s (0x%04x)",
   2172 		    br->br_name, sc->bge_chipid >> 16);
   2173 		sc->bge_quirks |= br->br_quirks;
   2174 	}
   2175 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2176 
   2177 	/* Allocate the general information block and ring buffers. */
   2178 	if (pci_dma64_available(pa))
   2179 		sc->bge_dmatag = pa->pa_dmat64;
   2180 	else
   2181 		sc->bge_dmatag = pa->pa_dmat;
   2182 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2183 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2184 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2185 		aprint_error("%s: can't alloc rx buffers\n",
   2186 		    sc->bge_dev.dv_xname);
   2187 		return;
   2188 	}
   2189 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2190 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2191 			   sizeof(struct bge_ring_data), &kva,
   2192 			   BUS_DMA_NOWAIT)) {
   2193 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
   2194 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   2195 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2196 		return;
   2197 	}
   2198 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2199 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2200 	    sizeof(struct bge_ring_data), 0,
   2201 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2202 		aprint_error("%s: can't create DMA map\n",
   2203 		    sc->bge_dev.dv_xname);
   2204 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2205 				 sizeof(struct bge_ring_data));
   2206 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2207 		return;
   2208 	}
   2209 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2210 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2211 			    sizeof(struct bge_ring_data), NULL,
   2212 			    BUS_DMA_NOWAIT)) {
   2213 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2214 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2215 				 sizeof(struct bge_ring_data));
   2216 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2217 		return;
   2218 	}
   2219 
   2220 	DPRINTFN(5, ("bzero\n"));
   2221 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2222 
   2223 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2224 
   2225 	/* Try to allocate memory for jumbo buffers. */
   2226 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2227 		if (bge_alloc_jumbo_mem(sc)) {
   2228 			aprint_error("%s: jumbo buffer allocation failed\n",
   2229 			    sc->bge_dev.dv_xname);
   2230 		} else
   2231 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2232 	}
   2233 
   2234 	/* Set default tuneable values. */
   2235 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2236 	sc->bge_rx_coal_ticks = 150;
   2237 	sc->bge_rx_max_coal_bds = 64;
   2238 #ifdef ORIG_WPAUL_VALUES
   2239 	sc->bge_tx_coal_ticks = 150;
   2240 	sc->bge_tx_max_coal_bds = 128;
   2241 #else
   2242 	sc->bge_tx_coal_ticks = 300;
   2243 	sc->bge_tx_max_coal_bds = 400;
   2244 #endif
   2245 
   2246 	/* Set up ifnet structure */
   2247 	ifp = &sc->ethercom.ec_if;
   2248 	ifp->if_softc = sc;
   2249 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2250 	ifp->if_ioctl = bge_ioctl;
   2251 	ifp->if_start = bge_start;
   2252 	ifp->if_init = bge_init;
   2253 	ifp->if_watchdog = bge_watchdog;
   2254 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2255 	IFQ_SET_READY(&ifp->if_snd);
   2256 	DPRINTFN(5, ("bcopy\n"));
   2257 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   2258 
   2259 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2260 		sc->ethercom.ec_if.if_capabilities |=
   2261 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   2262 	sc->ethercom.ec_capabilities |=
   2263 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2264 
   2265 	/*
   2266 	 * Do MII setup.
   2267 	 */
   2268 	DPRINTFN(5, ("mii setup\n"));
   2269 	sc->bge_mii.mii_ifp = ifp;
   2270 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2271 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2272 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2273 
   2274 	/*
   2275 	 * Figure out what sort of media we have by checking the
   2276 	 * hardware config word in the first 32k of NIC internal memory,
   2277 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2278 	 * cards, this value appears to be unset. If that's the
   2279 	 * case, we have to rely on identifying the NIC by its PCI
   2280 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2281 	 */
   2282 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2283 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2284 	} else {
   2285 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
   2286 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2287 		hwcfg = be32toh(hwcfg);
   2288 	}
   2289 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2290 		sc->bge_tbi = 1;
   2291 
   2292 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2293 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   2294 	    SK_SUBSYSID_9D41)
   2295 		sc->bge_tbi = 1;
   2296 
   2297 	if (sc->bge_tbi) {
   2298 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2299 		    bge_ifmedia_sts);
   2300 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2301 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2302 			    0, NULL);
   2303 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2304 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2305 	} else {
   2306 		/*
   2307 		 * Do transceiver setup.
   2308 		 */
   2309 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2310 			     bge_ifmedia_sts);
   2311 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2312 			   MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
   2313 
   2314 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   2315 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   2316 			ifmedia_add(&sc->bge_mii.mii_media,
   2317 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2318 			ifmedia_set(&sc->bge_mii.mii_media,
   2319 				    IFM_ETHER|IFM_MANUAL);
   2320 		} else
   2321 			ifmedia_set(&sc->bge_mii.mii_media,
   2322 				    IFM_ETHER|IFM_AUTO);
   2323 	}
   2324 
   2325 	/*
   2326 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2327 	 * been observed in the first few bytes of some received packets.
   2328 	 * Aligning the packet buffer in memory eliminates the corruption.
   2329 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2330 	 * which do not support unaligned accesses, we will realign the
   2331 	 * payloads by copying the received packets.
   2332 	 */
   2333 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2334 		/* If in PCI-X mode, work around the alignment bug. */
   2335 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
   2336                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2337                          BGE_PCISTATE_PCI_BUSSPEED)
   2338 		sc->bge_rx_alignment_bug = 1;
   2339         }
   2340 
   2341 	/*
   2342 	 * Call MI attach routine.
   2343 	 */
   2344 	DPRINTFN(5, ("if_attach\n"));
   2345 	if_attach(ifp);
   2346 	DPRINTFN(5, ("ether_ifattach\n"));
   2347 	ether_ifattach(ifp, eaddr);
   2348 	DPRINTFN(5, ("callout_init\n"));
   2349 	callout_init(&sc->bge_timeout);
   2350 }
   2351 
   2352 void
   2353 bge_release_resources(sc)
   2354 	struct bge_softc *sc;
   2355 {
   2356 	if (sc->bge_vpd_prodname != NULL)
   2357 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2358 
   2359 	if (sc->bge_vpd_readonly != NULL)
   2360 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2361 }
   2362 
   2363 void
   2364 bge_reset(sc)
   2365 	struct bge_softc *sc;
   2366 {
   2367 	struct pci_attach_args *pa = &sc->bge_pa;
   2368 	u_int32_t cachesize, command, pcistate;
   2369 	int i, val = 0;
   2370 
   2371 	/* Save some important PCI state. */
   2372 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   2373 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   2374 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   2375 
   2376 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2377 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2378 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2379 
   2380 	/* Issue global reset */
   2381 	bge_writereg_ind(sc, BGE_MISC_CFG,
   2382 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
   2383 
   2384 	DELAY(1000);
   2385 
   2386 	/* Reset some of the PCI state that got zapped by reset */
   2387 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2388 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2389 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2390 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   2391 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   2392 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2393 
   2394 	/* Enable memory arbiter. */
   2395 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2396 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2397 	}
   2398 
   2399 	/*
   2400 	 * Prevent PXE restart: write a magic number to the
   2401 	 * general communications memory at 0xB50.
   2402 	 */
   2403 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2404 
   2405 	/*
   2406 	 * Poll the value location we just wrote until
   2407 	 * we see the 1's complement of the magic number.
   2408 	 * This indicates that the firmware initialization
   2409 	 * is complete.
   2410 	 */
   2411 	for (i = 0; i < 750; i++) {
   2412 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2413 		if (val == ~BGE_MAGIC_NUMBER)
   2414 			break;
   2415 		DELAY(1000);
   2416 	}
   2417 
   2418 	if (i == 750) {
   2419 		printf("%s: firmware handshake timed out, val = %x\n",
   2420 		    sc->bge_dev.dv_xname, val);
   2421 		return;
   2422 	}
   2423 
   2424 	/*
   2425 	 * XXX Wait for the value of the PCISTATE register to
   2426 	 * return to its original pre-reset state. This is a
   2427 	 * fairly good indicator of reset completion. If we don't
   2428 	 * wait for the reset to fully complete, trying to read
   2429 	 * from the device's non-PCI registers may yield garbage
   2430 	 * results.
   2431 	 */
   2432 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2433 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
   2434 		    pcistate)
   2435 			break;
   2436 		DELAY(10);
   2437 	}
   2438 
   2439 	/* Enable memory arbiter. */
   2440 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2441 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2442 	}
   2443 
   2444 	/* Fix up byte swapping */
   2445 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2446 
   2447 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2448 
   2449 	DELAY(10000);
   2450 }
   2451 
   2452 /*
   2453  * Frame reception handling. This is called if there's a frame
   2454  * on the receive return list.
   2455  *
   2456  * Note: we have to be able to handle two possibilities here:
   2457  * 1) the frame is from the jumbo recieve ring
   2458  * 2) the frame is from the standard receive ring
   2459  */
   2460 
   2461 void
   2462 bge_rxeof(sc)
   2463 	struct bge_softc *sc;
   2464 {
   2465 	struct ifnet *ifp;
   2466 	int stdcnt = 0, jumbocnt = 0;
   2467 	int have_tag = 0;
   2468 	u_int16_t vlan_tag = 0;
   2469 	bus_dmamap_t dmamap;
   2470 	bus_addr_t offset, toff;
   2471 	bus_size_t tlen;
   2472 	int tosync;
   2473 
   2474 	ifp = &sc->ethercom.ec_if;
   2475 
   2476 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2477 	    offsetof(struct bge_ring_data, bge_status_block),
   2478 	    sizeof (struct bge_status_block),
   2479 	    BUS_DMASYNC_POSTREAD);
   2480 
   2481 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2482 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2483 	    sc->bge_rx_saved_considx;
   2484 
   2485 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2486 
   2487 	if (tosync < 0) {
   2488 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2489 		    sizeof (struct bge_rx_bd);
   2490 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2491 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2492 		tosync = -tosync;
   2493 	}
   2494 
   2495 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2496 	    offset, tosync * sizeof (struct bge_rx_bd),
   2497 	    BUS_DMASYNC_POSTREAD);
   2498 
   2499 	while(sc->bge_rx_saved_considx !=
   2500 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2501 		struct bge_rx_bd	*cur_rx;
   2502 		u_int32_t		rxidx;
   2503 		struct mbuf		*m = NULL;
   2504 
   2505 		cur_rx = &sc->bge_rdata->
   2506 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2507 
   2508 		rxidx = cur_rx->bge_idx;
   2509 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   2510 
   2511 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   2512 			have_tag = 1;
   2513 			vlan_tag = cur_rx->bge_vlan_tag;
   2514 		}
   2515 
   2516 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2517 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2518 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2519 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2520 			jumbocnt++;
   2521 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2522 				ifp->if_ierrors++;
   2523 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2524 				continue;
   2525 			}
   2526 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2527 					     NULL)== ENOBUFS) {
   2528 				ifp->if_ierrors++;
   2529 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2530 				continue;
   2531 			}
   2532 		} else {
   2533 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2534 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2535 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2536 			stdcnt++;
   2537 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2538 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2539 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2540 				ifp->if_ierrors++;
   2541 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2542 				continue;
   2543 			}
   2544 			if (bge_newbuf_std(sc, sc->bge_std,
   2545 			    NULL, dmamap) == ENOBUFS) {
   2546 				ifp->if_ierrors++;
   2547 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2548 				continue;
   2549 			}
   2550 		}
   2551 
   2552 		ifp->if_ipackets++;
   2553 #ifndef __NO_STRICT_ALIGNMENT
   2554                 /*
   2555                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2556                  * the Rx buffer has the layer-2 header unaligned.
   2557                  * If our CPU requires alignment, re-align by copying.
   2558                  */
   2559 		if (sc->bge_rx_alignment_bug) {
   2560 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
   2561                                 cur_rx->bge_len);
   2562 			m->m_data += ETHER_ALIGN;
   2563 		}
   2564 #endif
   2565 
   2566 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   2567 		m->m_pkthdr.rcvif = ifp;
   2568 
   2569 #if NBPFILTER > 0
   2570 		/*
   2571 		 * Handle BPF listeners. Let the BPF user see the packet.
   2572 		 */
   2573 		if (ifp->if_bpf)
   2574 			bpf_mtap(ifp->if_bpf, m);
   2575 #endif
   2576 
   2577 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   2578 
   2579 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2580 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2581 		/*
   2582 		 * Rx transport checksum-offload may also
   2583 		 * have bugs with packets which, when transmitted,
   2584 		 * were `runts' requiring padding.
   2585 		 */
   2586 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   2587 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   2588 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   2589 			m->m_pkthdr.csum_data =
   2590 			    cur_rx->bge_tcp_udp_csum;
   2591 			m->m_pkthdr.csum_flags |=
   2592 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   2593 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   2594 		}
   2595 
   2596 		/*
   2597 		 * If we received a packet with a vlan tag, pass it
   2598 		 * to vlan_input() instead of ether_input().
   2599 		 */
   2600 		if (have_tag) {
   2601 			struct m_tag *mtag;
   2602 
   2603 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   2604 			    M_NOWAIT);
   2605 			if (mtag != NULL) {
   2606 				*(u_int *)(mtag + 1) = vlan_tag;
   2607 				m_tag_prepend(m, mtag);
   2608 				have_tag = vlan_tag = 0;
   2609 			} else {
   2610 				printf("%s: no mbuf for tag\n", ifp->if_xname);
   2611 				m_freem(m);
   2612 				have_tag = vlan_tag = 0;
   2613 				continue;
   2614 			}
   2615 		}
   2616 		(*ifp->if_input)(ifp, m);
   2617 	}
   2618 
   2619 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   2620 	if (stdcnt)
   2621 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   2622 	if (jumbocnt)
   2623 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   2624 }
   2625 
   2626 void
   2627 bge_txeof(sc)
   2628 	struct bge_softc *sc;
   2629 {
   2630 	struct bge_tx_bd *cur_tx = NULL;
   2631 	struct ifnet *ifp;
   2632 	struct txdmamap_pool_entry *dma;
   2633 	bus_addr_t offset, toff;
   2634 	bus_size_t tlen;
   2635 	int tosync;
   2636 	struct mbuf *m;
   2637 
   2638 	ifp = &sc->ethercom.ec_if;
   2639 
   2640 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2641 	    offsetof(struct bge_ring_data, bge_status_block),
   2642 	    sizeof (struct bge_status_block),
   2643 	    BUS_DMASYNC_POSTREAD);
   2644 
   2645 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   2646 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   2647 	    sc->bge_tx_saved_considx;
   2648 
   2649 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   2650 
   2651 	if (tosync < 0) {
   2652 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   2653 		    sizeof (struct bge_tx_bd);
   2654 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2655 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2656 		tosync = -tosync;
   2657 	}
   2658 
   2659 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2660 	    offset, tosync * sizeof (struct bge_tx_bd),
   2661 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2662 
   2663 	/*
   2664 	 * Go through our tx ring and free mbufs for those
   2665 	 * frames that have been sent.
   2666 	 */
   2667 	while (sc->bge_tx_saved_considx !=
   2668 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   2669 		u_int32_t		idx = 0;
   2670 
   2671 		idx = sc->bge_tx_saved_considx;
   2672 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   2673 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   2674 			ifp->if_opackets++;
   2675 		m = sc->bge_cdata.bge_tx_chain[idx];
   2676 		if (m != NULL) {
   2677 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   2678 			dma = sc->txdma[idx];
   2679 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   2680 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2681 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   2682 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2683 			sc->txdma[idx] = NULL;
   2684 
   2685 			m_freem(m);
   2686 		}
   2687 		sc->bge_txcnt--;
   2688 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   2689 		ifp->if_timer = 0;
   2690 	}
   2691 
   2692 	if (cur_tx != NULL)
   2693 		ifp->if_flags &= ~IFF_OACTIVE;
   2694 }
   2695 
   2696 int
   2697 bge_intr(xsc)
   2698 	void *xsc;
   2699 {
   2700 	struct bge_softc *sc;
   2701 	struct ifnet *ifp;
   2702 
   2703 	sc = xsc;
   2704 	ifp = &sc->ethercom.ec_if;
   2705 
   2706 #ifdef notdef
   2707 	/* Avoid this for now -- checking this register is expensive. */
   2708 	/* Make sure this is really our interrupt. */
   2709 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   2710 		return (0);
   2711 #endif
   2712 	/* Ack interrupt and stop others from occuring. */
   2713 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   2714 
   2715 	/*
   2716 	 * Process link state changes.
   2717 	 * Grrr. The link status word in the status block does
   2718 	 * not work correctly on the BCM5700 rev AX and BX chips,
   2719 	 * according to all avaibable information. Hence, we have
   2720 	 * to enable MII interrupts in order to properly obtain
   2721 	 * async link changes. Unfortunately, this also means that
   2722 	 * we have to read the MAC status register to detect link
   2723 	 * changes, thereby adding an additional register access to
   2724 	 * the interrupt handler.
   2725 	 */
   2726 
   2727 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   2728 		u_int32_t		status;
   2729 
   2730 		status = CSR_READ_4(sc, BGE_MAC_STS);
   2731 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   2732 			sc->bge_link = 0;
   2733 			callout_stop(&sc->bge_timeout);
   2734 			bge_tick(sc);
   2735 			/* Clear the interrupt */
   2736 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2737 			    BGE_EVTENB_MI_INTERRUPT);
   2738 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   2739 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   2740 			    BRGPHY_INTRS);
   2741 		}
   2742 	} else {
   2743 		if (sc->bge_rdata->bge_status_block.bge_status &
   2744 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   2745 			sc->bge_link = 0;
   2746 			callout_stop(&sc->bge_timeout);
   2747 			bge_tick(sc);
   2748 			/* Clear the interrupt */
   2749 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   2750 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   2751 			    BGE_MACSTAT_LINK_CHANGED);
   2752 		}
   2753 	}
   2754 
   2755 	if (ifp->if_flags & IFF_RUNNING) {
   2756 		/* Check RX return ring producer/consumer */
   2757 		bge_rxeof(sc);
   2758 
   2759 		/* Check TX ring producer/consumer */
   2760 		bge_txeof(sc);
   2761 	}
   2762 
   2763 	if (sc->bge_pending_rxintr_change) {
   2764 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   2765 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   2766 		uint32_t junk;
   2767 
   2768 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   2769 		DELAY(10);
   2770 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   2771 
   2772 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   2773 		DELAY(10);
   2774 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   2775 
   2776 		sc->bge_pending_rxintr_change = 0;
   2777 	}
   2778 	bge_handle_events(sc);
   2779 
   2780 	/* Re-enable interrupts. */
   2781 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2782 
   2783 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   2784 		bge_start(ifp);
   2785 
   2786 	return (1);
   2787 }
   2788 
   2789 void
   2790 bge_tick(xsc)
   2791 	void *xsc;
   2792 {
   2793 	struct bge_softc *sc = xsc;
   2794 	struct mii_data *mii = &sc->bge_mii;
   2795 	struct ifmedia *ifm = NULL;
   2796 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2797 	int s;
   2798 
   2799 	s = splnet();
   2800 
   2801 	bge_stats_update(sc);
   2802 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2803 	if (sc->bge_link) {
   2804 		splx(s);
   2805 		return;
   2806 	}
   2807 
   2808 	if (sc->bge_tbi) {
   2809 		ifm = &sc->bge_ifmedia;
   2810 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   2811 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   2812 			sc->bge_link++;
   2813 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   2814 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2815 				bge_start(ifp);
   2816 		}
   2817 		splx(s);
   2818 		return;
   2819 	}
   2820 
   2821 	mii_tick(mii);
   2822 
   2823 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   2824 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   2825 		sc->bge_link++;
   2826 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2827 			bge_start(ifp);
   2828 	}
   2829 
   2830 	splx(s);
   2831 }
   2832 
   2833 void
   2834 bge_stats_update(sc)
   2835 	struct bge_softc *sc;
   2836 {
   2837 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2838 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   2839 	bus_size_t rstats = BGE_RX_STATS;
   2840 
   2841 #define READ_RSTAT(sc, stats, stat) \
   2842 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   2843 
   2844 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   2845 		ifp->if_collisions +=
   2846 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   2847 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   2848 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   2849 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   2850 		return;
   2851 	}
   2852 
   2853 #undef READ_RSTAT
   2854 #define READ_STAT(sc, stats, stat) \
   2855 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   2856 
   2857 	ifp->if_collisions +=
   2858 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   2859 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   2860 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   2861 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   2862 	  ifp->if_collisions;
   2863 
   2864 #undef READ_STAT
   2865 
   2866 #ifdef notdef
   2867 	ifp->if_collisions +=
   2868 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   2869 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   2870 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   2871 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   2872 	   ifp->if_collisions;
   2873 #endif
   2874 }
   2875 
   2876 /*
   2877  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   2878  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   2879  * but when such padded frames employ the  bge IP/TCP checksum offload,
   2880  * the hardware checksum assist gives incorrect results (possibly
   2881  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   2882  * If we pad such runts with zeros, the onboard checksum comes out correct.
   2883  */
   2884 static __inline int
   2885 bge_cksum_pad(struct mbuf *pkt)
   2886 {
   2887 	struct mbuf *last = NULL;
   2888 	int padlen;
   2889 
   2890 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   2891 
   2892 	/* if there's only the packet-header and we can pad there, use it. */
   2893 	if (pkt->m_pkthdr.len == pkt->m_len &&
   2894 	    !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
   2895 		last = pkt;
   2896 	} else {
   2897 		/*
   2898 		 * Walk packet chain to find last mbuf. We will either
   2899 		 * pad there, or append a new mbuf and pad it
   2900 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   2901 		 */
   2902 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   2903 	      	       (void) 0; /* do nothing*/
   2904 		}
   2905 
   2906 		/* `last' now points to last in chain. */
   2907 		if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
   2908 			(void) 0; /* we can pad here, in-place. */
   2909 		} else {
   2910 			/* Allocate new empty mbuf, pad it. Compact later. */
   2911 			struct mbuf *n;
   2912 			MGET(n, M_DONTWAIT, MT_DATA);
   2913 			n->m_len = 0;
   2914 			last->m_next = n;
   2915 			last = n;
   2916 		}
   2917 	}
   2918 
   2919 #ifdef DEBUG
   2920 	  /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
   2921 	  KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
   2922 #endif
   2923 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   2924 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
   2925 	last->m_len += padlen;
   2926 	pkt->m_pkthdr.len += padlen;
   2927 	return 0;
   2928 }
   2929 
   2930 /*
   2931  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   2932  */
   2933 static __inline int
   2934 bge_compact_dma_runt(struct mbuf *pkt)
   2935 {
   2936 	struct mbuf	*m, *prev;
   2937 	int 		totlen, prevlen;
   2938 
   2939 	prev = NULL;
   2940 	totlen = 0;
   2941 	prevlen = -1;
   2942 
   2943 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   2944 		int mlen = m->m_len;
   2945 		int shortfall = 8 - mlen ;
   2946 
   2947 		totlen += mlen;
   2948 		if (mlen == 0) {
   2949 			continue;
   2950 		}
   2951 		if (mlen >= 8)
   2952 			continue;
   2953 
   2954 		/* If we get here, mbuf data is too small for DMA engine.
   2955 		 * Try to fix by shuffling data to prev or next in chain.
   2956 		 * If that fails, do a compacting deep-copy of the whole chain.
   2957 		 */
   2958 
   2959 		/* Internal frag. If fits in prev, copy it there. */
   2960 		if (prev && !M_READONLY(prev) &&
   2961 		      M_TRAILINGSPACE(prev) >= m->m_len) {
   2962 		  	bcopy(m->m_data,
   2963 			      prev->m_data+prev->m_len,
   2964 			      mlen);
   2965 			prev->m_len += mlen;
   2966 			m->m_len = 0;
   2967 			/* XXX stitch chain */
   2968 			prev->m_next = m_free(m);
   2969 			m = prev;
   2970 			continue;
   2971 		}
   2972 		else if (m->m_next != NULL && !M_READONLY(m) &&
   2973 			     M_TRAILINGSPACE(m) >= shortfall &&
   2974 			     m->m_next->m_len >= (8 + shortfall)) {
   2975 		    /* m is writable and have enough data in next, pull up. */
   2976 
   2977 		  	bcopy(m->m_next->m_data,
   2978 			      m->m_data+m->m_len,
   2979 			      shortfall);
   2980 			m->m_len += shortfall;
   2981 			m->m_next->m_len -= shortfall;
   2982 			m->m_next->m_data += shortfall;
   2983 		}
   2984 		else if (m->m_next == NULL || 1) {
   2985 		  	/* Got a runt at the very end of the packet.
   2986 			 * borrow data from the tail of the preceding mbuf and
   2987 			 * update its length in-place. (The original data is still
   2988 			 * valid, so we can do this even if prev is not writable.)
   2989 			 */
   2990 
   2991 			/* if we'd make prev a runt, just move all of its data. */
   2992 #ifdef DEBUG
   2993 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   2994 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   2995 #endif
   2996 			if ((prev->m_len - shortfall) < 8)
   2997 				shortfall = prev->m_len;
   2998 
   2999 #ifdef notyet	/* just do the safe slow thing for now */
   3000 			if (!M_READONLY(m)) {
   3001 				if (M_LEADINGSPACE(m) < shorfall) {
   3002 					void *m_dat;
   3003 					m_dat = (m->m_flags & M_PKTHDR) ?
   3004 					  m->m_pktdat : m->dat;
   3005 					memmove(m_dat, mtod(m, void*), m->m_len);
   3006 					m->m_data = m_dat;
   3007 				    }
   3008 			} else
   3009 #endif	/* just do the safe slow thing */
   3010 			{
   3011 				struct mbuf * n = NULL;
   3012 				int newprevlen = prev->m_len - shortfall;
   3013 
   3014 				MGET(n, M_NOWAIT, MT_DATA);
   3015 				if (n == NULL)
   3016 				   return ENOBUFS;
   3017 				KASSERT(m->m_len + shortfall < MLEN
   3018 					/*,
   3019 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3020 
   3021 				/* first copy the data we're stealing from prev */
   3022 				bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
   3023 
   3024 				/* update prev->m_len accordingly */
   3025 				prev->m_len -= shortfall;
   3026 
   3027 				/* copy data from runt m */
   3028 				bcopy(m->m_data, n->m_data + shortfall, m->m_len);
   3029 
   3030 				/* n holds what we stole from prev, plus m */
   3031 				n->m_len = shortfall + m->m_len;
   3032 
   3033 				/* stitch n into chain and free m */
   3034 				n->m_next = m->m_next;
   3035 				prev->m_next = n;
   3036 				/* KASSERT(m->m_next == NULL); */
   3037 				m->m_next = NULL;
   3038 				m_free(m);
   3039 				m = n;	/* for continuing loop */
   3040 			}
   3041 		}
   3042 		prevlen = m->m_len;
   3043 	}
   3044 	return 0;
   3045 }
   3046 
   3047 /*
   3048  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3049  * pointers to descriptors.
   3050  */
   3051 int
   3052 bge_encap(sc, m_head, txidx)
   3053 	struct bge_softc *sc;
   3054 	struct mbuf *m_head;
   3055 	u_int32_t *txidx;
   3056 {
   3057 	struct bge_tx_bd	*f = NULL;
   3058 	u_int32_t		frag, cur, cnt = 0;
   3059 	u_int16_t		csum_flags = 0;
   3060 	struct txdmamap_pool_entry *dma;
   3061 	bus_dmamap_t dmamap;
   3062 	int			i = 0;
   3063 	struct m_tag		*mtag;
   3064 
   3065 	cur = frag = *txidx;
   3066 
   3067 	if (m_head->m_pkthdr.csum_flags) {
   3068 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3069 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3070 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3071 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3072 	}
   3073 
   3074 	/*
   3075 	 * If we were asked to do an outboard checksum, and the NIC
   3076 	 * has the bug where it sometimes adds in the Ethernet padding,
   3077 	 * explicitly pad with zeros so the cksum will be correct either way.
   3078 	 * (For now, do this for all chip versions, until newer
   3079 	 * are confirmed to not require the workaround.)
   3080 	 */
   3081 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3082 #ifdef notyet
   3083 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3084 #endif
   3085 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3086 		goto check_dma_bug;
   3087 
   3088 	if (bge_cksum_pad(m_head) != 0)
   3089 	    return ENOBUFS;
   3090 
   3091 check_dma_bug:
   3092 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3093 		goto doit;
   3094 	/*
   3095 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3096 	 * less than eight bytes.  If we encounter a teeny mbuf
   3097 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3098 	 */
   3099 	if (bge_compact_dma_runt(m_head) != 0)
   3100 		return ENOBUFS;
   3101 
   3102 doit:
   3103 	dma = SLIST_FIRST(&sc->txdma_list);
   3104 	if (dma == NULL)
   3105 		return ENOBUFS;
   3106 	dmamap = dma->dmamap;
   3107 
   3108 	/*
   3109 	 * Start packing the mbufs in this chain into
   3110 	 * the fragment pointers. Stop when we run out
   3111 	 * of fragments or hit the end of the mbuf chain.
   3112 	 */
   3113 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3114 	    BUS_DMA_NOWAIT))
   3115 		return(ENOBUFS);
   3116 
   3117 	mtag = sc->ethercom.ec_nvlans ?
   3118 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3119 
   3120 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3121 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3122 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3123 			break;
   3124 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3125 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3126 		f->bge_flags = csum_flags;
   3127 
   3128 		if (mtag != NULL) {
   3129 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3130 			f->bge_vlan_tag = *(u_int *)(mtag + 1);
   3131 		} else {
   3132 			f->bge_vlan_tag = 0;
   3133 		}
   3134 		/*
   3135 		 * Sanity check: avoid coming within 16 descriptors
   3136 		 * of the end of the ring.
   3137 		 */
   3138 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
   3139 			return(ENOBUFS);
   3140 		cur = frag;
   3141 		BGE_INC(frag, BGE_TX_RING_CNT);
   3142 		cnt++;
   3143 	}
   3144 
   3145 	if (i < dmamap->dm_nsegs)
   3146 		return ENOBUFS;
   3147 
   3148 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3149 	    BUS_DMASYNC_PREWRITE);
   3150 
   3151 	if (frag == sc->bge_tx_saved_considx)
   3152 		return(ENOBUFS);
   3153 
   3154 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3155 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3156 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3157 	sc->txdma[cur] = dma;
   3158 	sc->bge_txcnt += cnt;
   3159 
   3160 	*txidx = frag;
   3161 
   3162 	return(0);
   3163 }
   3164 
   3165 /*
   3166  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3167  * to the mbuf data regions directly in the transmit descriptors.
   3168  */
   3169 void
   3170 bge_start(ifp)
   3171 	struct ifnet *ifp;
   3172 {
   3173 	struct bge_softc *sc;
   3174 	struct mbuf *m_head = NULL;
   3175 	u_int32_t prodidx = 0;
   3176 	int pkts = 0;
   3177 
   3178 	sc = ifp->if_softc;
   3179 
   3180 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   3181 		return;
   3182 
   3183 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
   3184 
   3185 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3186 		IFQ_POLL(&ifp->if_snd, m_head);
   3187 		if (m_head == NULL)
   3188 			break;
   3189 
   3190 #if 0
   3191 		/*
   3192 		 * XXX
   3193 		 * safety overkill.  If this is a fragmented packet chain
   3194 		 * with delayed TCP/UDP checksums, then only encapsulate
   3195 		 * it if we have enough descriptors to handle the entire
   3196 		 * chain at once.
   3197 		 * (paranoia -- may not actually be needed)
   3198 		 */
   3199 		if (m_head->m_flags & M_FIRSTFRAG &&
   3200 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3201 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3202 			    m_head->m_pkthdr.csum_data + 16) {
   3203 				ifp->if_flags |= IFF_OACTIVE;
   3204 				break;
   3205 			}
   3206 		}
   3207 #endif
   3208 
   3209 		/*
   3210 		 * Pack the data into the transmit ring. If we
   3211 		 * don't have room, set the OACTIVE flag and wait
   3212 		 * for the NIC to drain the ring.
   3213 		 */
   3214 		if (bge_encap(sc, m_head, &prodidx)) {
   3215 			ifp->if_flags |= IFF_OACTIVE;
   3216 			break;
   3217 		}
   3218 
   3219 		/* now we are committed to transmit the packet */
   3220 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3221 		pkts++;
   3222 
   3223 #if NBPFILTER > 0
   3224 		/*
   3225 		 * If there's a BPF listener, bounce a copy of this frame
   3226 		 * to him.
   3227 		 */
   3228 		if (ifp->if_bpf)
   3229 			bpf_mtap(ifp->if_bpf, m_head);
   3230 #endif
   3231 	}
   3232 	if (pkts == 0)
   3233 		return;
   3234 
   3235 	/* Transmit */
   3236 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3237 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   3238 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3239 
   3240 	/*
   3241 	 * Set a timeout in case the chip goes out to lunch.
   3242 	 */
   3243 	ifp->if_timer = 5;
   3244 }
   3245 
   3246 int
   3247 bge_init(ifp)
   3248 	struct ifnet *ifp;
   3249 {
   3250 	struct bge_softc *sc = ifp->if_softc;
   3251 	u_int16_t *m;
   3252 	int s, error;
   3253 
   3254 	s = splnet();
   3255 
   3256 	ifp = &sc->ethercom.ec_if;
   3257 
   3258 	/* Cancel pending I/O and flush buffers. */
   3259 	bge_stop(sc);
   3260 	bge_reset(sc);
   3261 	bge_chipinit(sc);
   3262 
   3263 	/*
   3264 	 * Init the various state machines, ring
   3265 	 * control blocks and firmware.
   3266 	 */
   3267 	error = bge_blockinit(sc);
   3268 	if (error != 0) {
   3269 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   3270 		    error);
   3271 		splx(s);
   3272 		return error;
   3273 	}
   3274 
   3275 	ifp = &sc->ethercom.ec_if;
   3276 
   3277 	/* Specify MTU. */
   3278 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3279 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
   3280 
   3281 	/* Load our MAC address. */
   3282 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   3283 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3284 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3285 
   3286 	/* Enable or disable promiscuous mode as needed. */
   3287 	if (ifp->if_flags & IFF_PROMISC) {
   3288 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3289 	} else {
   3290 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3291 	}
   3292 
   3293 	/* Program multicast filter. */
   3294 	bge_setmulti(sc);
   3295 
   3296 	/* Init RX ring. */
   3297 	bge_init_rx_ring_std(sc);
   3298 
   3299 	/* Init jumbo RX ring. */
   3300 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3301 		bge_init_rx_ring_jumbo(sc);
   3302 
   3303 	/* Init our RX return ring index */
   3304 	sc->bge_rx_saved_considx = 0;
   3305 
   3306 	/* Init TX ring. */
   3307 	bge_init_tx_ring(sc);
   3308 
   3309 	/* Turn on transmitter */
   3310 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3311 
   3312 	/* Turn on receiver */
   3313 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3314 
   3315 	/* Tell firmware we're alive. */
   3316 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3317 
   3318 	/* Enable host interrupts. */
   3319 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   3320 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3321 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3322 
   3323 	bge_ifmedia_upd(ifp);
   3324 
   3325 	ifp->if_flags |= IFF_RUNNING;
   3326 	ifp->if_flags &= ~IFF_OACTIVE;
   3327 
   3328 	splx(s);
   3329 
   3330 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3331 
   3332 	return 0;
   3333 }
   3334 
   3335 /*
   3336  * Set media options.
   3337  */
   3338 int
   3339 bge_ifmedia_upd(ifp)
   3340 	struct ifnet *ifp;
   3341 {
   3342 	struct bge_softc *sc = ifp->if_softc;
   3343 	struct mii_data *mii = &sc->bge_mii;
   3344 	struct ifmedia *ifm = &sc->bge_ifmedia;
   3345 
   3346 	/* If this is a 1000baseX NIC, enable the TBI port. */
   3347 	if (sc->bge_tbi) {
   3348 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   3349 			return(EINVAL);
   3350 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   3351 		case IFM_AUTO:
   3352 			break;
   3353 		case IFM_1000_SX:
   3354 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   3355 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3356 				    BGE_MACMODE_HALF_DUPLEX);
   3357 			} else {
   3358 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3359 				    BGE_MACMODE_HALF_DUPLEX);
   3360 			}
   3361 			break;
   3362 		default:
   3363 			return(EINVAL);
   3364 		}
   3365 		return(0);
   3366 	}
   3367 
   3368 	sc->bge_link = 0;
   3369 	mii_mediachg(mii);
   3370 
   3371 	return(0);
   3372 }
   3373 
   3374 /*
   3375  * Report current media status.
   3376  */
   3377 void
   3378 bge_ifmedia_sts(ifp, ifmr)
   3379 	struct ifnet *ifp;
   3380 	struct ifmediareq *ifmr;
   3381 {
   3382 	struct bge_softc *sc = ifp->if_softc;
   3383 	struct mii_data *mii = &sc->bge_mii;
   3384 
   3385 	if (sc->bge_tbi) {
   3386 		ifmr->ifm_status = IFM_AVALID;
   3387 		ifmr->ifm_active = IFM_ETHER;
   3388 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3389 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   3390 			ifmr->ifm_status |= IFM_ACTIVE;
   3391 		ifmr->ifm_active |= IFM_1000_SX;
   3392 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   3393 			ifmr->ifm_active |= IFM_HDX;
   3394 		else
   3395 			ifmr->ifm_active |= IFM_FDX;
   3396 		return;
   3397 	}
   3398 
   3399 	mii_pollstat(mii);
   3400 	ifmr->ifm_active = mii->mii_media_active;
   3401 	ifmr->ifm_status = mii->mii_media_status;
   3402 }
   3403 
   3404 int
   3405 bge_ioctl(ifp, command, data)
   3406 	struct ifnet *ifp;
   3407 	u_long command;
   3408 	caddr_t data;
   3409 {
   3410 	struct bge_softc *sc = ifp->if_softc;
   3411 	struct ifreq *ifr = (struct ifreq *) data;
   3412 	int s, error = 0;
   3413 	struct mii_data *mii;
   3414 
   3415 	s = splnet();
   3416 
   3417 	switch(command) {
   3418 	case SIOCSIFFLAGS:
   3419 		if (ifp->if_flags & IFF_UP) {
   3420 			/*
   3421 			 * If only the state of the PROMISC flag changed,
   3422 			 * then just use the 'set promisc mode' command
   3423 			 * instead of reinitializing the entire NIC. Doing
   3424 			 * a full re-init means reloading the firmware and
   3425 			 * waiting for it to start up, which may take a
   3426 			 * second or two.
   3427 			 */
   3428 			if (ifp->if_flags & IFF_RUNNING &&
   3429 			    ifp->if_flags & IFF_PROMISC &&
   3430 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   3431 				BGE_SETBIT(sc, BGE_RX_MODE,
   3432 				    BGE_RXMODE_RX_PROMISC);
   3433 			} else if (ifp->if_flags & IFF_RUNNING &&
   3434 			    !(ifp->if_flags & IFF_PROMISC) &&
   3435 			    sc->bge_if_flags & IFF_PROMISC) {
   3436 				BGE_CLRBIT(sc, BGE_RX_MODE,
   3437 				    BGE_RXMODE_RX_PROMISC);
   3438 			} else
   3439 				bge_init(ifp);
   3440 		} else {
   3441 			if (ifp->if_flags & IFF_RUNNING) {
   3442 				bge_stop(sc);
   3443 			}
   3444 		}
   3445 		sc->bge_if_flags = ifp->if_flags;
   3446 		error = 0;
   3447 		break;
   3448 	case SIOCSIFMEDIA:
   3449 	case SIOCGIFMEDIA:
   3450 		if (sc->bge_tbi) {
   3451 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   3452 			    command);
   3453 		} else {
   3454 			mii = &sc->bge_mii;
   3455 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   3456 			    command);
   3457 		}
   3458 		error = 0;
   3459 		break;
   3460 	default:
   3461 		error = ether_ioctl(ifp, command, data);
   3462 		if (error == ENETRESET) {
   3463 			bge_setmulti(sc);
   3464 			error = 0;
   3465 		}
   3466 		break;
   3467 	}
   3468 
   3469 	splx(s);
   3470 
   3471 	return(error);
   3472 }
   3473 
   3474 void
   3475 bge_watchdog(ifp)
   3476 	struct ifnet *ifp;
   3477 {
   3478 	struct bge_softc *sc;
   3479 
   3480 	sc = ifp->if_softc;
   3481 
   3482 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   3483 
   3484 	ifp->if_flags &= ~IFF_RUNNING;
   3485 	bge_init(ifp);
   3486 
   3487 	ifp->if_oerrors++;
   3488 }
   3489 
   3490 static void
   3491 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   3492 {
   3493 	int i;
   3494 
   3495 	BGE_CLRBIT(sc, reg, bit);
   3496 
   3497 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3498 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   3499 			return;
   3500 		delay(100);
   3501 	}
   3502 
   3503 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
   3504 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
   3505 }
   3506 
   3507 /*
   3508  * Stop the adapter and free any mbufs allocated to the
   3509  * RX and TX lists.
   3510  */
   3511 void
   3512 bge_stop(sc)
   3513 	struct bge_softc *sc;
   3514 {
   3515 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3516 
   3517 	callout_stop(&sc->bge_timeout);
   3518 
   3519 	/*
   3520 	 * Disable all of the receiver blocks
   3521 	 */
   3522 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3523 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3524 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   3525 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3526 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   3527 	}
   3528 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   3529 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3530 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   3531 
   3532 	/*
   3533 	 * Disable all of the transmit blocks
   3534 	 */
   3535 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3536 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3537 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3538 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   3539 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   3540 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3541 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   3542 	}
   3543 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3544 
   3545 	/*
   3546 	 * Shut down all of the memory managers and related
   3547 	 * state machines.
   3548 	 */
   3549 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   3550 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   3551 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3552 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3553 	}
   3554 
   3555 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   3556 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   3557 
   3558 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3559 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   3560 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   3561 	}
   3562 
   3563 	/* Disable host interrupts. */
   3564 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3565 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3566 
   3567 	/*
   3568 	 * Tell firmware we're shutting down.
   3569 	 */
   3570 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3571 
   3572 	/* Free the RX lists. */
   3573 	bge_free_rx_ring_std(sc);
   3574 
   3575 	/* Free jumbo RX list. */
   3576 	bge_free_rx_ring_jumbo(sc);
   3577 
   3578 	/* Free TX buffers. */
   3579 	bge_free_tx_ring(sc);
   3580 
   3581 	/*
   3582 	 * Isolate/power down the PHY.
   3583 	 */
   3584 	if (!sc->bge_tbi)
   3585 		mii_down(&sc->bge_mii);
   3586 
   3587 	sc->bge_link = 0;
   3588 
   3589 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   3590 
   3591 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3592 }
   3593 
   3594 /*
   3595  * Stop all chip I/O so that the kernel's probe routines don't
   3596  * get confused by errant DMAs when rebooting.
   3597  */
   3598 void
   3599 bge_shutdown(xsc)
   3600 	void *xsc;
   3601 {
   3602 	struct bge_softc *sc = (struct bge_softc *)xsc;
   3603 
   3604 	bge_stop(sc);
   3605 	bge_reset(sc);
   3606 }
   3607