if_bge.c revision 1.58 1 /* $NetBSD: if_bge.c,v 1.58 2004/01/22 02:29:46 jonathan Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.58 2004/01/22 02:29:46 jonathan Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/pci/pcidevs.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/miidevs.h>
120 #include <dev/mii/brgphyreg.h>
121
122 #include <dev/pci/if_bgereg.h>
123
124 #include <uvm/uvm_extern.h>
125
126 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
127
128 int bge_probe(struct device *, struct cfdata *, void *);
129 void bge_attach(struct device *, struct device *, void *);
130 void bge_release_resources(struct bge_softc *);
131 void bge_txeof(struct bge_softc *);
132 void bge_rxeof(struct bge_softc *);
133
134 void bge_tick(void *);
135 void bge_stats_update(struct bge_softc *);
136 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
137 static __inline int bge_cksum_pad(struct mbuf *pkt);
138 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
139
140 int bge_intr(void *);
141 void bge_start(struct ifnet *);
142 int bge_ioctl(struct ifnet *, u_long, caddr_t);
143 int bge_init(struct ifnet *);
144 void bge_stop(struct bge_softc *);
145 void bge_watchdog(struct ifnet *);
146 void bge_shutdown(void *);
147 int bge_ifmedia_upd(struct ifnet *);
148 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
149
150 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
151 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
152
153 void bge_setmulti(struct bge_softc *);
154
155 void bge_handle_events(struct bge_softc *);
156 int bge_alloc_jumbo_mem(struct bge_softc *);
157 void bge_free_jumbo_mem(struct bge_softc *);
158 void *bge_jalloc(struct bge_softc *);
159 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
160 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
161 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
162 int bge_init_rx_ring_std(struct bge_softc *);
163 void bge_free_rx_ring_std(struct bge_softc *);
164 int bge_init_rx_ring_jumbo(struct bge_softc *);
165 void bge_free_rx_ring_jumbo(struct bge_softc *);
166 void bge_free_tx_ring(struct bge_softc *);
167 int bge_init_tx_ring(struct bge_softc *);
168
169 int bge_chipinit(struct bge_softc *);
170 int bge_blockinit(struct bge_softc *);
171 int bge_setpowerstate(struct bge_softc *, int);
172
173 #ifdef notdef
174 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
175 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
176 void bge_vpd_read(struct bge_softc *);
177 #endif
178
179 u_int32_t bge_readmem_ind(struct bge_softc *, int);
180 void bge_writemem_ind(struct bge_softc *, int, int);
181 #ifdef notdef
182 u_int32_t bge_readreg_ind(struct bge_softc *, int);
183 #endif
184 void bge_writereg_ind(struct bge_softc *, int, int);
185
186 int bge_miibus_readreg(struct device *, int, int);
187 void bge_miibus_writereg(struct device *, int, int, int);
188 void bge_miibus_statchg(struct device *);
189
190 void bge_reset(struct bge_softc *);
191
192 void bge_dump_status(struct bge_softc *);
193 void bge_dump_rxbd(struct bge_rx_bd *);
194
195 #define BGE_DEBUG
196 #ifdef BGE_DEBUG
197 #define DPRINTF(x) if (bgedebug) printf x
198 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
199 int bgedebug = 0;
200 #else
201 #define DPRINTF(x)
202 #define DPRINTFN(n,x)
203 #endif
204
205 /* Various chip quirks. */
206 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
207 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
208 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
209 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
210 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
211 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
212 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
213 #define BGE_QUIRK_5705_CORE 0x00000080
214 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
215
216 /* following bugs are common to bcm5700 rev B, all flavours */
217 #define BGE_QUIRK_5700_COMMON \
218 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
219
220 CFATTACH_DECL(bge, sizeof(struct bge_softc),
221 bge_probe, bge_attach, NULL, NULL);
222
223 u_int32_t
224 bge_readmem_ind(sc, off)
225 struct bge_softc *sc;
226 int off;
227 {
228 struct pci_attach_args *pa = &(sc->bge_pa);
229 pcireg_t val;
230
231 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
232 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
233 return val;
234 }
235
236 void
237 bge_writemem_ind(sc, off, val)
238 struct bge_softc *sc;
239 int off, val;
240 {
241 struct pci_attach_args *pa = &(sc->bge_pa);
242
243 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
244 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
245 }
246
247 #ifdef notdef
248 u_int32_t
249 bge_readreg_ind(sc, off)
250 struct bge_softc *sc;
251 int off;
252 {
253 struct pci_attach_args *pa = &(sc->bge_pa);
254
255 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
256 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
257 }
258 #endif
259
260 void
261 bge_writereg_ind(sc, off, val)
262 struct bge_softc *sc;
263 int off, val;
264 {
265 struct pci_attach_args *pa = &(sc->bge_pa);
266
267 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
268 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
269 }
270
271 #ifdef notdef
272 u_int8_t
273 bge_vpd_readbyte(sc, addr)
274 struct bge_softc *sc;
275 int addr;
276 {
277 int i;
278 u_int32_t val;
279 struct pci_attach_args *pa = &(sc->bge_pa);
280
281 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
282 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
283 DELAY(10);
284 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
285 BGE_VPD_FLAG)
286 break;
287 }
288
289 if (i == BGE_TIMEOUT) {
290 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
291 return(0);
292 }
293
294 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
295
296 return((val >> ((addr % 4) * 8)) & 0xFF);
297 }
298
299 void
300 bge_vpd_read_res(sc, res, addr)
301 struct bge_softc *sc;
302 struct vpd_res *res;
303 int addr;
304 {
305 int i;
306 u_int8_t *ptr;
307
308 ptr = (u_int8_t *)res;
309 for (i = 0; i < sizeof(struct vpd_res); i++)
310 ptr[i] = bge_vpd_readbyte(sc, i + addr);
311 }
312
313 void
314 bge_vpd_read(sc)
315 struct bge_softc *sc;
316 {
317 int pos = 0, i;
318 struct vpd_res res;
319
320 if (sc->bge_vpd_prodname != NULL)
321 free(sc->bge_vpd_prodname, M_DEVBUF);
322 if (sc->bge_vpd_readonly != NULL)
323 free(sc->bge_vpd_readonly, M_DEVBUF);
324 sc->bge_vpd_prodname = NULL;
325 sc->bge_vpd_readonly = NULL;
326
327 bge_vpd_read_res(sc, &res, pos);
328
329 if (res.vr_id != VPD_RES_ID) {
330 printf("%s: bad VPD resource id: expected %x got %x\n",
331 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
332 return;
333 }
334
335 pos += sizeof(res);
336 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
337 if (sc->bge_vpd_prodname == NULL)
338 panic("bge_vpd_read");
339 for (i = 0; i < res.vr_len; i++)
340 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
341 sc->bge_vpd_prodname[i] = '\0';
342 pos += i;
343
344 bge_vpd_read_res(sc, &res, pos);
345
346 if (res.vr_id != VPD_RES_READ) {
347 printf("%s: bad VPD resource id: expected %x got %x\n",
348 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
349 return;
350 }
351
352 pos += sizeof(res);
353 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
354 if (sc->bge_vpd_readonly == NULL)
355 panic("bge_vpd_read");
356 for (i = 0; i < res.vr_len + 1; i++)
357 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
358 }
359 #endif
360
361 /*
362 * Read a byte of data stored in the EEPROM at address 'addr.' The
363 * BCM570x supports both the traditional bitbang interface and an
364 * auto access interface for reading the EEPROM. We use the auto
365 * access method.
366 */
367 u_int8_t
368 bge_eeprom_getbyte(sc, addr, dest)
369 struct bge_softc *sc;
370 int addr;
371 u_int8_t *dest;
372 {
373 int i;
374 u_int32_t byte = 0;
375
376 /*
377 * Enable use of auto EEPROM access so we can avoid
378 * having to use the bitbang method.
379 */
380 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
381
382 /* Reset the EEPROM, load the clock period. */
383 CSR_WRITE_4(sc, BGE_EE_ADDR,
384 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
385 DELAY(20);
386
387 /* Issue the read EEPROM command. */
388 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
389
390 /* Wait for completion */
391 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
392 DELAY(10);
393 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
394 break;
395 }
396
397 if (i == BGE_TIMEOUT) {
398 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
399 return(0);
400 }
401
402 /* Get result. */
403 byte = CSR_READ_4(sc, BGE_EE_DATA);
404
405 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
406
407 return(0);
408 }
409
410 /*
411 * Read a sequence of bytes from the EEPROM.
412 */
413 int
414 bge_read_eeprom(sc, dest, off, cnt)
415 struct bge_softc *sc;
416 caddr_t dest;
417 int off;
418 int cnt;
419 {
420 int err = 0, i;
421 u_int8_t byte = 0;
422
423 for (i = 0; i < cnt; i++) {
424 err = bge_eeprom_getbyte(sc, off + i, &byte);
425 if (err)
426 break;
427 *(dest + i) = byte;
428 }
429
430 return(err ? 1 : 0);
431 }
432
433 int
434 bge_miibus_readreg(dev, phy, reg)
435 struct device *dev;
436 int phy, reg;
437 {
438 struct bge_softc *sc = (struct bge_softc *)dev;
439 u_int32_t val;
440 u_int32_t saved_autopoll;
441 int i;
442
443 /*
444 * Several chips with builtin PHYs will incorrectly answer to
445 * other PHY instances than the builtin PHY at id 1.
446 */
447 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
448 return(0);
449
450 /* Reading with autopolling on may trigger PCI errors */
451 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
452 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
453 CSR_WRITE_4(sc, BGE_MI_MODE,
454 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
455 DELAY(40);
456 }
457
458 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
459 BGE_MIPHY(phy)|BGE_MIREG(reg));
460
461 for (i = 0; i < BGE_TIMEOUT; i++) {
462 val = CSR_READ_4(sc, BGE_MI_COMM);
463 if (!(val & BGE_MICOMM_BUSY))
464 break;
465 delay(10);
466 }
467
468 if (i == BGE_TIMEOUT) {
469 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
470 val = 0;
471 goto done;
472 }
473
474 val = CSR_READ_4(sc, BGE_MI_COMM);
475
476 done:
477 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
478 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
479 DELAY(40);
480 }
481
482 if (val & BGE_MICOMM_READFAIL)
483 return(0);
484
485 return(val & 0xFFFF);
486 }
487
488 void
489 bge_miibus_writereg(dev, phy, reg, val)
490 struct device *dev;
491 int phy, reg, val;
492 {
493 struct bge_softc *sc = (struct bge_softc *)dev;
494 u_int32_t saved_autopoll;
495 int i;
496
497 /* Touching the PHY while autopolling is on may trigger PCI errors */
498 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
499 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
500 delay(40);
501 CSR_WRITE_4(sc, BGE_MI_MODE,
502 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
503 delay(10); /* 40 usec is supposed to be adequate */
504 }
505
506 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
507 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
508
509 for (i = 0; i < BGE_TIMEOUT; i++) {
510 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
511 break;
512 delay(10);
513 }
514
515 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
516 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
517 delay(40);
518 }
519
520 if (i == BGE_TIMEOUT) {
521 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
522 }
523 }
524
525 void
526 bge_miibus_statchg(dev)
527 struct device *dev;
528 {
529 struct bge_softc *sc = (struct bge_softc *)dev;
530 struct mii_data *mii = &sc->bge_mii;
531
532 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
533 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
534 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
535 } else {
536 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
537 }
538
539 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
540 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
541 } else {
542 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
543 }
544 }
545
546 /*
547 * Handle events that have triggered interrupts.
548 */
549 void
550 bge_handle_events(sc)
551 struct bge_softc *sc;
552 {
553
554 return;
555 }
556
557 /*
558 * Memory management for jumbo frames.
559 */
560
561 int
562 bge_alloc_jumbo_mem(sc)
563 struct bge_softc *sc;
564 {
565 caddr_t ptr, kva;
566 bus_dma_segment_t seg;
567 int i, rseg, state, error;
568 struct bge_jpool_entry *entry;
569
570 state = error = 0;
571
572 /* Grab a big chunk o' storage. */
573 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
574 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
575 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
576 return ENOBUFS;
577 }
578
579 state = 1;
580 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
581 BUS_DMA_NOWAIT)) {
582 printf("%s: can't map DMA buffers (%d bytes)\n",
583 sc->bge_dev.dv_xname, (int)BGE_JMEM);
584 error = ENOBUFS;
585 goto out;
586 }
587
588 state = 2;
589 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
590 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
591 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
592 error = ENOBUFS;
593 goto out;
594 }
595
596 state = 3;
597 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
598 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
599 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
600 error = ENOBUFS;
601 goto out;
602 }
603
604 state = 4;
605 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
606 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
607
608 SLIST_INIT(&sc->bge_jfree_listhead);
609 SLIST_INIT(&sc->bge_jinuse_listhead);
610
611 /*
612 * Now divide it up into 9K pieces and save the addresses
613 * in an array.
614 */
615 ptr = sc->bge_cdata.bge_jumbo_buf;
616 for (i = 0; i < BGE_JSLOTS; i++) {
617 sc->bge_cdata.bge_jslots[i] = ptr;
618 ptr += BGE_JLEN;
619 entry = malloc(sizeof(struct bge_jpool_entry),
620 M_DEVBUF, M_NOWAIT);
621 if (entry == NULL) {
622 printf("%s: no memory for jumbo buffer queue!\n",
623 sc->bge_dev.dv_xname);
624 error = ENOBUFS;
625 goto out;
626 }
627 entry->slot = i;
628 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
629 entry, jpool_entries);
630 }
631 out:
632 if (error != 0) {
633 switch (state) {
634 case 4:
635 bus_dmamap_unload(sc->bge_dmatag,
636 sc->bge_cdata.bge_rx_jumbo_map);
637 case 3:
638 bus_dmamap_destroy(sc->bge_dmatag,
639 sc->bge_cdata.bge_rx_jumbo_map);
640 case 2:
641 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
642 case 1:
643 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
644 break;
645 default:
646 break;
647 }
648 }
649
650 return error;
651 }
652
653 /*
654 * Allocate a jumbo buffer.
655 */
656 void *
657 bge_jalloc(sc)
658 struct bge_softc *sc;
659 {
660 struct bge_jpool_entry *entry;
661
662 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
663
664 if (entry == NULL) {
665 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
666 return(NULL);
667 }
668
669 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
670 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
671 return(sc->bge_cdata.bge_jslots[entry->slot]);
672 }
673
674 /*
675 * Release a jumbo buffer.
676 */
677 void
678 bge_jfree(m, buf, size, arg)
679 struct mbuf *m;
680 caddr_t buf;
681 size_t size;
682 void *arg;
683 {
684 struct bge_jpool_entry *entry;
685 struct bge_softc *sc;
686 int i, s;
687
688 /* Extract the softc struct pointer. */
689 sc = (struct bge_softc *)arg;
690
691 if (sc == NULL)
692 panic("bge_jfree: can't find softc pointer!");
693
694 /* calculate the slot this buffer belongs to */
695
696 i = ((caddr_t)buf
697 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
698
699 if ((i < 0) || (i >= BGE_JSLOTS))
700 panic("bge_jfree: asked to free buffer that we don't manage!");
701
702 s = splvm();
703 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
704 if (entry == NULL)
705 panic("bge_jfree: buffer not in use!");
706 entry->slot = i;
707 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
708 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
709
710 if (__predict_true(m != NULL))
711 pool_cache_put(&mbpool_cache, m);
712 splx(s);
713 }
714
715
716 /*
717 * Intialize a standard receive ring descriptor.
718 */
719 int
720 bge_newbuf_std(sc, i, m, dmamap)
721 struct bge_softc *sc;
722 int i;
723 struct mbuf *m;
724 bus_dmamap_t dmamap;
725 {
726 struct mbuf *m_new = NULL;
727 struct bge_rx_bd *r;
728 int error;
729
730 if (dmamap == NULL) {
731 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
732 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
733 if (error != 0)
734 return error;
735 }
736
737 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
738
739 if (m == NULL) {
740 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
741 if (m_new == NULL) {
742 return(ENOBUFS);
743 }
744
745 MCLGET(m_new, M_DONTWAIT);
746 if (!(m_new->m_flags & M_EXT)) {
747 m_freem(m_new);
748 return(ENOBUFS);
749 }
750 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
751 if (!sc->bge_rx_alignment_bug)
752 m_adj(m_new, ETHER_ALIGN);
753
754 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
755 BUS_DMA_READ|BUS_DMA_NOWAIT))
756 return(ENOBUFS);
757 } else {
758 m_new = m;
759 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
760 m_new->m_data = m_new->m_ext.ext_buf;
761 if (!sc->bge_rx_alignment_bug)
762 m_adj(m_new, ETHER_ALIGN);
763 }
764
765 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
766 r = &sc->bge_rdata->bge_rx_std_ring[i];
767 bge_set_hostaddr(&r->bge_addr,
768 dmamap->dm_segs[0].ds_addr);
769 r->bge_flags = BGE_RXBDFLAG_END;
770 r->bge_len = m_new->m_len;
771 r->bge_idx = i;
772
773 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
774 offsetof(struct bge_ring_data, bge_rx_std_ring) +
775 i * sizeof (struct bge_rx_bd),
776 sizeof (struct bge_rx_bd),
777 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
778
779 return(0);
780 }
781
782 /*
783 * Initialize a jumbo receive ring descriptor. This allocates
784 * a jumbo buffer from the pool managed internally by the driver.
785 */
786 int
787 bge_newbuf_jumbo(sc, i, m)
788 struct bge_softc *sc;
789 int i;
790 struct mbuf *m;
791 {
792 struct mbuf *m_new = NULL;
793 struct bge_rx_bd *r;
794
795 if (m == NULL) {
796 caddr_t *buf = NULL;
797
798 /* Allocate the mbuf. */
799 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
800 if (m_new == NULL) {
801 return(ENOBUFS);
802 }
803
804 /* Allocate the jumbo buffer */
805 buf = bge_jalloc(sc);
806 if (buf == NULL) {
807 m_freem(m_new);
808 printf("%s: jumbo allocation failed "
809 "-- packet dropped!\n", sc->bge_dev.dv_xname);
810 return(ENOBUFS);
811 }
812
813 /* Attach the buffer to the mbuf. */
814 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
815 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
816 bge_jfree, sc);
817 } else {
818 m_new = m;
819 m_new->m_data = m_new->m_ext.ext_buf;
820 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
821 }
822
823 if (!sc->bge_rx_alignment_bug)
824 m_adj(m_new, ETHER_ALIGN);
825 /* Set up the descriptor. */
826 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
827 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
828 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
829 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
830 r->bge_len = m_new->m_len;
831 r->bge_idx = i;
832
833 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
834 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
835 i * sizeof (struct bge_rx_bd),
836 sizeof (struct bge_rx_bd),
837 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
838
839 return(0);
840 }
841
842 /*
843 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
844 * that's 1MB or memory, which is a lot. For now, we fill only the first
845 * 256 ring entries and hope that our CPU is fast enough to keep up with
846 * the NIC.
847 */
848 int
849 bge_init_rx_ring_std(sc)
850 struct bge_softc *sc;
851 {
852 int i;
853
854 if (sc->bge_flags & BGE_RXRING_VALID)
855 return 0;
856
857 for (i = 0; i < BGE_SSLOTS; i++) {
858 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
859 return(ENOBUFS);
860 }
861
862 sc->bge_std = i - 1;
863 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
864
865 sc->bge_flags |= BGE_RXRING_VALID;
866
867 return(0);
868 }
869
870 void
871 bge_free_rx_ring_std(sc)
872 struct bge_softc *sc;
873 {
874 int i;
875
876 if (!(sc->bge_flags & BGE_RXRING_VALID))
877 return;
878
879 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
880 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
881 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
882 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
883 bus_dmamap_destroy(sc->bge_dmatag,
884 sc->bge_cdata.bge_rx_std_map[i]);
885 }
886 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
887 sizeof(struct bge_rx_bd));
888 }
889
890 sc->bge_flags &= ~BGE_RXRING_VALID;
891 }
892
893 int
894 bge_init_rx_ring_jumbo(sc)
895 struct bge_softc *sc;
896 {
897 int i;
898 volatile struct bge_rcb *rcb;
899
900 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
901 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
902 return(ENOBUFS);
903 };
904
905 sc->bge_jumbo = i - 1;
906
907 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
908 rcb->bge_maxlen_flags = 0;
909 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
910
911 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
912
913 return(0);
914 }
915
916 void
917 bge_free_rx_ring_jumbo(sc)
918 struct bge_softc *sc;
919 {
920 int i;
921
922 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
923 return;
924
925 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
926 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
927 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
928 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
929 }
930 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
931 sizeof(struct bge_rx_bd));
932 }
933
934 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
935 }
936
937 void
938 bge_free_tx_ring(sc)
939 struct bge_softc *sc;
940 {
941 int i, freed;
942 struct txdmamap_pool_entry *dma;
943
944 if (!(sc->bge_flags & BGE_TXRING_VALID))
945 return;
946
947 freed = 0;
948
949 for (i = 0; i < BGE_TX_RING_CNT; i++) {
950 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
951 freed++;
952 m_freem(sc->bge_cdata.bge_tx_chain[i]);
953 sc->bge_cdata.bge_tx_chain[i] = NULL;
954 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
955 link);
956 sc->txdma[i] = 0;
957 }
958 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
959 sizeof(struct bge_tx_bd));
960 }
961
962 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
963 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
964 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
965 free(dma, M_DEVBUF);
966 }
967
968 sc->bge_flags &= ~BGE_TXRING_VALID;
969 }
970
971 int
972 bge_init_tx_ring(sc)
973 struct bge_softc *sc;
974 {
975 int i;
976 bus_dmamap_t dmamap;
977 struct txdmamap_pool_entry *dma;
978
979 if (sc->bge_flags & BGE_TXRING_VALID)
980 return 0;
981
982 sc->bge_txcnt = 0;
983 sc->bge_tx_saved_considx = 0;
984 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
985 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
986 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
987
988 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
989 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
990 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
991
992 SLIST_INIT(&sc->txdma_list);
993 for (i = 0; i < BGE_RSLOTS; i++) {
994 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
995 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
996 &dmamap))
997 return(ENOBUFS);
998 if (dmamap == NULL)
999 panic("dmamap NULL in bge_init_tx_ring");
1000 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1001 if (dma == NULL) {
1002 printf("%s: can't alloc txdmamap_pool_entry\n",
1003 sc->bge_dev.dv_xname);
1004 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1005 return (ENOMEM);
1006 }
1007 dma->dmamap = dmamap;
1008 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1009 }
1010
1011 sc->bge_flags |= BGE_TXRING_VALID;
1012
1013 return(0);
1014 }
1015
1016 void
1017 bge_setmulti(sc)
1018 struct bge_softc *sc;
1019 {
1020 struct ethercom *ac = &sc->ethercom;
1021 struct ifnet *ifp = &ac->ec_if;
1022 struct ether_multi *enm;
1023 struct ether_multistep step;
1024 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1025 u_int32_t h;
1026 int i;
1027
1028 if (ifp->if_flags & IFF_PROMISC)
1029 goto allmulti;
1030
1031 /* Now program new ones. */
1032 ETHER_FIRST_MULTI(step, ac, enm);
1033 while (enm != NULL) {
1034 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1035 /*
1036 * We must listen to a range of multicast addresses.
1037 * For now, just accept all multicasts, rather than
1038 * trying to set only those filter bits needed to match
1039 * the range. (At this time, the only use of address
1040 * ranges is for IP multicast routing, for which the
1041 * range is big enough to require all bits set.)
1042 */
1043 goto allmulti;
1044 }
1045
1046 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1047
1048 /* Just want the 7 least-significant bits. */
1049 h &= 0x7f;
1050
1051 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1052 ETHER_NEXT_MULTI(step, enm);
1053 }
1054
1055 ifp->if_flags &= ~IFF_ALLMULTI;
1056 goto setit;
1057
1058 allmulti:
1059 ifp->if_flags |= IFF_ALLMULTI;
1060 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1061
1062 setit:
1063 for (i = 0; i < 4; i++)
1064 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1065 }
1066
1067 const int bge_swapbits[] = {
1068 0,
1069 BGE_MODECTL_BYTESWAP_DATA,
1070 BGE_MODECTL_WORDSWAP_DATA,
1071 BGE_MODECTL_BYTESWAP_NONFRAME,
1072 BGE_MODECTL_WORDSWAP_NONFRAME,
1073
1074 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1075 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1076 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1077
1078 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1079 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1080
1081 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1082
1083 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1084 BGE_MODECTL_BYTESWAP_NONFRAME,
1085 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1086 BGE_MODECTL_WORDSWAP_NONFRAME,
1087 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1088 BGE_MODECTL_WORDSWAP_NONFRAME,
1089 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1090 BGE_MODECTL_WORDSWAP_NONFRAME,
1091
1092 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1093 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1094 };
1095
1096 int bge_swapindex = 0;
1097
1098 /*
1099 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1100 * self-test results.
1101 */
1102 int
1103 bge_chipinit(sc)
1104 struct bge_softc *sc;
1105 {
1106 u_int32_t cachesize;
1107 int i;
1108 u_int32_t dma_rw_ctl;
1109 struct pci_attach_args *pa = &(sc->bge_pa);
1110
1111
1112 /* Set endianness before we access any non-PCI registers. */
1113 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1114 BGE_INIT);
1115
1116 /* Set power state to D0. */
1117 bge_setpowerstate(sc, 0);
1118
1119 /*
1120 * Check the 'ROM failed' bit on the RX CPU to see if
1121 * self-tests passed.
1122 */
1123 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1124 printf("%s: RX CPU self-diagnostics failed!\n",
1125 sc->bge_dev.dv_xname);
1126 return(ENODEV);
1127 }
1128
1129 /* Clear the MAC control register */
1130 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1131
1132 /*
1133 * Clear the MAC statistics block in the NIC's
1134 * internal memory.
1135 */
1136 for (i = BGE_STATS_BLOCK;
1137 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1138 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1139
1140 for (i = BGE_STATUS_BLOCK;
1141 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1142 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1143
1144 /* Set up the PCI DMA control register. */
1145 if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1146 BGE_PCISTATE_PCI_BUSMODE) {
1147 /* Conventional PCI bus */
1148 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1149 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1150 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1151 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1152 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1153 dma_rw_ctl |= 0x0F;
1154 }
1155 } else {
1156 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1157 /* PCI-X bus */
1158 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1159 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1160 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1161 (0x0F);
1162 /*
1163 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1164 * for hardware bugs, which means we should also clear
1165 * the low-order MINDMA bits. In addition, the 5704
1166 * uses a different encoding of read/write watermarks.
1167 */
1168 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1169 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1170 /* should be 0x1f0000 */
1171 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1172 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1173 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1174 }
1175 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1176 dma_rw_ctl &= 0xfffffff0;
1177 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1178 }
1179 }
1180
1181 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1182
1183 /*
1184 * Set up general mode register.
1185 */
1186 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1187 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1188 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1189
1190 /* Get cache line size. */
1191 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1192
1193 /*
1194 * Avoid violating PCI spec on certain chip revs.
1195 */
1196 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1197 PCIM_CMD_MWIEN) {
1198 switch(cachesize) {
1199 case 1:
1200 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1201 BGE_PCI_WRITE_BNDRY_16BYTES);
1202 break;
1203 case 2:
1204 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1205 BGE_PCI_WRITE_BNDRY_32BYTES);
1206 break;
1207 case 4:
1208 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1209 BGE_PCI_WRITE_BNDRY_64BYTES);
1210 break;
1211 case 8:
1212 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1213 BGE_PCI_WRITE_BNDRY_128BYTES);
1214 break;
1215 case 16:
1216 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1217 BGE_PCI_WRITE_BNDRY_256BYTES);
1218 break;
1219 case 32:
1220 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1221 BGE_PCI_WRITE_BNDRY_512BYTES);
1222 break;
1223 case 64:
1224 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1225 BGE_PCI_WRITE_BNDRY_1024BYTES);
1226 break;
1227 default:
1228 /* Disable PCI memory write and invalidate. */
1229 #if 0
1230 if (bootverbose)
1231 printf("%s: cache line size %d not "
1232 "supported; disabling PCI MWI\n",
1233 sc->bge_dev.dv_xname, cachesize);
1234 #endif
1235 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1236 PCIM_CMD_MWIEN);
1237 break;
1238 }
1239 }
1240
1241 /*
1242 * Disable memory write invalidate. Apparently it is not supported
1243 * properly by these devices.
1244 */
1245 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1246
1247
1248 #ifdef __brokenalpha__
1249 /*
1250 * Must insure that we do not cross an 8K (bytes) boundary
1251 * for DMA reads. Our highest limit is 1K bytes. This is a
1252 * restriction on some ALPHA platforms with early revision
1253 * 21174 PCI chipsets, such as the AlphaPC 164lx
1254 */
1255 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1256 #endif
1257
1258 /* Set the timer prescaler (always 66MHz) */
1259 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1260
1261 return(0);
1262 }
1263
1264 int
1265 bge_blockinit(sc)
1266 struct bge_softc *sc;
1267 {
1268 volatile struct bge_rcb *rcb;
1269 bus_size_t rcb_addr;
1270 int i;
1271 struct ifnet *ifp = &sc->ethercom.ec_if;
1272 bge_hostaddr taddr;
1273
1274 /*
1275 * Initialize the memory window pointer register so that
1276 * we can access the first 32K of internal NIC RAM. This will
1277 * allow us to set up the TX send ring RCBs and the RX return
1278 * ring RCBs, plus other things which live in NIC memory.
1279 */
1280
1281 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1282 BGE_PCI_MEMWIN_BASEADDR, 0);
1283
1284 /* Configure mbuf memory pool */
1285 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1286 if (sc->bge_extram) {
1287 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1288 BGE_EXT_SSRAM);
1289 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1290 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1291 else
1292 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1293 } else {
1294 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1295 BGE_BUFFPOOL_1);
1296 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1297 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1298 else
1299 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1300 }
1301
1302 /* Configure DMA resource pool */
1303 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1304 BGE_DMA_DESCRIPTORS);
1305 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1306 }
1307
1308 /* Configure mbuf pool watermarks */
1309 #ifdef ORIG_WPAUL_VALUES
1310 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1311 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1312 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1313 #else
1314 /* new broadcom docs strongly recommend these: */
1315 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1316 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1317 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1318 } else {
1319 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1320 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1321 }
1322 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1323 #endif
1324
1325 /* Configure DMA resource watermarks */
1326 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1327 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1328
1329 /* Enable buffer manager */
1330 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1331 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1332 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1333
1334 /* Poll for buffer manager start indication */
1335 for (i = 0; i < BGE_TIMEOUT; i++) {
1336 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1337 break;
1338 DELAY(10);
1339 }
1340
1341 if (i == BGE_TIMEOUT) {
1342 printf("%s: buffer manager failed to start\n",
1343 sc->bge_dev.dv_xname);
1344 return(ENXIO);
1345 }
1346 }
1347
1348 /* Enable flow-through queues */
1349 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1350 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1351
1352 /* Wait until queue initialization is complete */
1353 for (i = 0; i < BGE_TIMEOUT; i++) {
1354 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1355 break;
1356 DELAY(10);
1357 }
1358
1359 if (i == BGE_TIMEOUT) {
1360 printf("%s: flow-through queue init failed\n",
1361 sc->bge_dev.dv_xname);
1362 return(ENXIO);
1363 }
1364
1365 /* Initialize the standard RX ring control block */
1366 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1367 bge_set_hostaddr(&rcb->bge_hostaddr,
1368 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1369 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1370 rcb->bge_maxlen_flags =
1371 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1372 } else {
1373 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1374 }
1375 if (sc->bge_extram)
1376 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1377 else
1378 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1379 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1380 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1381 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1382 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1383
1384 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1385 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1386 } else {
1387 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1388 }
1389
1390 /*
1391 * Initialize the jumbo RX ring control block
1392 * We set the 'ring disabled' bit in the flags
1393 * field until we're actually ready to start
1394 * using this ring (i.e. once we set the MTU
1395 * high enough to require it).
1396 */
1397 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1398 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1399 bge_set_hostaddr(&rcb->bge_hostaddr,
1400 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1401 rcb->bge_maxlen_flags =
1402 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1403 BGE_RCB_FLAG_RING_DISABLED);
1404 if (sc->bge_extram)
1405 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1406 else
1407 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1408
1409 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1410 rcb->bge_hostaddr.bge_addr_hi);
1411 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1412 rcb->bge_hostaddr.bge_addr_lo);
1413 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1414 rcb->bge_maxlen_flags);
1415 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1416
1417 /* Set up dummy disabled mini ring RCB */
1418 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1419 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1420 BGE_RCB_FLAG_RING_DISABLED);
1421 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1422 rcb->bge_maxlen_flags);
1423
1424 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1425 offsetof(struct bge_ring_data, bge_info),
1426 sizeof (struct bge_gib),
1427 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1428 }
1429
1430 /*
1431 * Set the BD ring replentish thresholds. The recommended
1432 * values are 1/8th the number of descriptors allocated to
1433 * each ring.
1434 */
1435 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1436 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1437
1438 /*
1439 * Disable all unused send rings by setting the 'ring disabled'
1440 * bit in the flags field of all the TX send ring control blocks.
1441 * These are located in NIC memory.
1442 */
1443 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1444 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1445 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1446 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1447 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1448 rcb_addr += sizeof(struct bge_rcb);
1449 }
1450
1451 /* Configure TX RCB 0 (we use only the first ring) */
1452 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1453 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1454 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1455 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1456 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1457 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1458 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1459 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1460 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1461 }
1462
1463 /* Disable all unused RX return rings */
1464 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1465 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1466 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1467 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1468 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1469 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1470 BGE_RCB_FLAG_RING_DISABLED));
1471 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1472 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1473 (i * (sizeof(u_int64_t))), 0);
1474 rcb_addr += sizeof(struct bge_rcb);
1475 }
1476
1477 /* Initialize RX ring indexes */
1478 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1479 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1480 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1481
1482 /*
1483 * Set up RX return ring 0
1484 * Note that the NIC address for RX return rings is 0x00000000.
1485 * The return rings live entirely within the host, so the
1486 * nicaddr field in the RCB isn't used.
1487 */
1488 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1489 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1490 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1491 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1492 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1493 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1494 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1495
1496 /* Set random backoff seed for TX */
1497 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1498 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1499 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1500 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1501 BGE_TX_BACKOFF_SEED_MASK);
1502
1503 /* Set inter-packet gap */
1504 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1505
1506 /*
1507 * Specify which ring to use for packets that don't match
1508 * any RX rules.
1509 */
1510 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1511
1512 /*
1513 * Configure number of RX lists. One interrupt distribution
1514 * list, sixteen active lists, one bad frames class.
1515 */
1516 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1517
1518 /* Inialize RX list placement stats mask. */
1519 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1520 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1521
1522 /* Disable host coalescing until we get it set up */
1523 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1524
1525 /* Poll to make sure it's shut down. */
1526 for (i = 0; i < BGE_TIMEOUT; i++) {
1527 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1528 break;
1529 DELAY(10);
1530 }
1531
1532 if (i == BGE_TIMEOUT) {
1533 printf("%s: host coalescing engine failed to idle\n",
1534 sc->bge_dev.dv_xname);
1535 return(ENXIO);
1536 }
1537
1538 /* Set up host coalescing defaults */
1539 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1540 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1541 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1542 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1543 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1544 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1545 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1546 }
1547 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1548 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1549
1550 /* Set up address of statistics block */
1551 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1552 bge_set_hostaddr(&taddr,
1553 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1554 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1555 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1556 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1557 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1558 }
1559
1560 /* Set up address of status block */
1561 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1562 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1563 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1564 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1565 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1566 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1567
1568 /* Turn on host coalescing state machine */
1569 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1570
1571 /* Turn on RX BD completion state machine and enable attentions */
1572 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1573 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1574
1575 /* Turn on RX list placement state machine */
1576 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1577
1578 /* Turn on RX list selector state machine. */
1579 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1580 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1581 }
1582
1583 /* Turn on DMA, clear stats */
1584 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1585 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1586 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1587 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1588 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1589
1590 /* Set misc. local control, enable interrupts on attentions */
1591 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1592
1593 #ifdef notdef
1594 /* Assert GPIO pins for PHY reset */
1595 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1596 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1597 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1598 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1599 #endif
1600
1601 #if defined(not_quite_yet)
1602 /* Linux driver enables enable gpio pin #1 on 5700s */
1603 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1604 sc->bge_local_ctrl_reg |=
1605 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1606 }
1607 #endif
1608 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1609
1610 /* Turn on DMA completion state machine */
1611 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1612 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1613 }
1614
1615 /* Turn on write DMA state machine */
1616 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1617 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1618
1619 /* Turn on read DMA state machine */
1620 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1621 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1622
1623 /* Turn on RX data completion state machine */
1624 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1625
1626 /* Turn on RX BD initiator state machine */
1627 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1628
1629 /* Turn on RX data and RX BD initiator state machine */
1630 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1631
1632 /* Turn on Mbuf cluster free state machine */
1633 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1634 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1635 }
1636
1637 /* Turn on send BD completion state machine */
1638 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1639
1640 /* Turn on send data completion state machine */
1641 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1642
1643 /* Turn on send data initiator state machine */
1644 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1645
1646 /* Turn on send BD initiator state machine */
1647 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1648
1649 /* Turn on send BD selector state machine */
1650 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1651
1652 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1653 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1654 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1655
1656 /* ack/clear link change events */
1657 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1658 BGE_MACSTAT_CFG_CHANGED);
1659 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1660
1661 /* Enable PHY auto polling (for MII/GMII only) */
1662 if (sc->bge_tbi) {
1663 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1664 } else {
1665 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1666 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1667 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1668 BGE_EVTENB_MI_INTERRUPT);
1669 }
1670
1671 /* Enable link state change attentions. */
1672 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1673
1674 return(0);
1675 }
1676
1677 static const struct bge_revision {
1678 uint32_t br_chipid;
1679 uint32_t br_quirks;
1680 const char *br_name;
1681 } bge_revisions[] = {
1682 { BGE_CHIPID_BCM5700_A0,
1683 BGE_QUIRK_LINK_STATE_BROKEN,
1684 "BCM5700 A0" },
1685
1686 { BGE_CHIPID_BCM5700_A1,
1687 BGE_QUIRK_LINK_STATE_BROKEN,
1688 "BCM5700 A1" },
1689
1690 { BGE_CHIPID_BCM5700_B0,
1691 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1692 "BCM5700 B0" },
1693
1694 { BGE_CHIPID_BCM5700_B1,
1695 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1696 "BCM5700 B1" },
1697
1698 { BGE_CHIPID_BCM5700_B2,
1699 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1700 "BCM5700 B2" },
1701
1702 /* This is treated like a BCM5700 Bx */
1703 { BGE_CHIPID_BCM5700_ALTIMA,
1704 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1705 "BCM5700 Altima" },
1706
1707 { BGE_CHIPID_BCM5700_C0,
1708 0,
1709 "BCM5700 C0" },
1710
1711 { BGE_CHIPID_BCM5701_A0,
1712 0, /*XXX really, just not known */
1713 "BCM5701 A0" },
1714
1715 { BGE_CHIPID_BCM5701_B0,
1716 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1717 "BCM5701 B0" },
1718
1719 { BGE_CHIPID_BCM5701_B2,
1720 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1721 "BCM5701 B2" },
1722
1723 { BGE_CHIPID_BCM5701_B5,
1724 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1725 "BCM5701 B5" },
1726
1727 { BGE_CHIPID_BCM5703_A0,
1728 0,
1729 "BCM5703 A0" },
1730
1731 { BGE_CHIPID_BCM5703_A1,
1732 0,
1733 "BCM5703 A1" },
1734
1735 { BGE_CHIPID_BCM5703_A2,
1736 BGE_QUIRK_ONLY_PHY_1,
1737 "BCM5703 A2" },
1738
1739 { BGE_CHIPID_BCM5703_A3,
1740 BGE_QUIRK_ONLY_PHY_1,
1741 "BCM5703 A3" },
1742
1743 { BGE_CHIPID_BCM5704_A0,
1744 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1745 "BCM5704 A0" },
1746
1747 { BGE_CHIPID_BCM5704_A1,
1748 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1749 "BCM5704 A1" },
1750
1751 { BGE_CHIPID_BCM5704_A2,
1752 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1753 "BCM5704 A2" },
1754
1755 { BGE_CHIPID_BCM5704_A3,
1756 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1757 "BCM5704 A3" },
1758
1759 { BGE_CHIPID_BCM5705_A0,
1760 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1761 "BCM5705 A0" },
1762
1763 { BGE_CHIPID_BCM5705_A1,
1764 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1765 "BCM5705 A1" },
1766
1767 { BGE_CHIPID_BCM5705_A2,
1768 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1769 "BCM5705 A2" },
1770
1771 { BGE_CHIPID_BCM5705_A3,
1772 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1773 "BCM5705 A3" },
1774
1775 { 0, 0, NULL }
1776 };
1777
1778 /*
1779 * Some defaults for major revisions, so that newer steppings
1780 * that we don't know about have a shot at working.
1781 */
1782 static const struct bge_revision bge_majorrevs[] = {
1783 { BGE_ASICREV_BCM5700,
1784 BGE_QUIRK_LINK_STATE_BROKEN,
1785 "unknown BCM5700" },
1786
1787 { BGE_ASICREV_BCM5701,
1788 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1789 "unknown BCM5701" },
1790
1791 { BGE_ASICREV_BCM5703,
1792 0,
1793 "unknown BCM5703" },
1794
1795 { BGE_ASICREV_BCM5704,
1796 BGE_QUIRK_ONLY_PHY_1,
1797 "unknown BCM5704" },
1798
1799 { BGE_ASICREV_BCM5705,
1800 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1801 "unknown BCM5705" },
1802
1803 { 0,
1804 0,
1805 NULL }
1806 };
1807
1808
1809 static const struct bge_revision *
1810 bge_lookup_rev(uint32_t chipid)
1811 {
1812 const struct bge_revision *br;
1813
1814 for (br = bge_revisions; br->br_name != NULL; br++) {
1815 if (br->br_chipid == chipid)
1816 return (br);
1817 }
1818
1819 for (br = bge_majorrevs; br->br_name != NULL; br++) {
1820 if (br->br_chipid == BGE_ASICREV(chipid))
1821 return (br);
1822 }
1823
1824 return (NULL);
1825 }
1826
1827 static const struct bge_product {
1828 pci_vendor_id_t bp_vendor;
1829 pci_product_id_t bp_product;
1830 const char *bp_name;
1831 } bge_products[] = {
1832 /*
1833 * The BCM5700 documentation seems to indicate that the hardware
1834 * still has the Alteon vendor ID burned into it, though it
1835 * should always be overridden by the value in the EEPROM. We'll
1836 * check for it anyway.
1837 */
1838 { PCI_VENDOR_ALTEON,
1839 PCI_PRODUCT_ALTEON_BCM5700,
1840 "Broadcom BCM5700 Gigabit Ethernet",
1841 },
1842 { PCI_VENDOR_ALTEON,
1843 PCI_PRODUCT_ALTEON_BCM5701,
1844 "Broadcom BCM5701 Gigabit Ethernet",
1845 },
1846
1847 { PCI_VENDOR_ALTIMA,
1848 PCI_PRODUCT_ALTIMA_AC1000,
1849 "Altima AC1000 Gigabit Ethernet",
1850 },
1851 { PCI_VENDOR_ALTIMA,
1852 PCI_PRODUCT_ALTIMA_AC1001,
1853 "Altima AC1001 Gigabit Ethernet",
1854 },
1855 { PCI_VENDOR_ALTIMA,
1856 PCI_PRODUCT_ALTIMA_AC9100,
1857 "Altima AC9100 Gigabit Ethernet",
1858 },
1859
1860 { PCI_VENDOR_BROADCOM,
1861 PCI_PRODUCT_BROADCOM_BCM5700,
1862 "Broadcom BCM5700 Gigabit Ethernet",
1863 },
1864 { PCI_VENDOR_BROADCOM,
1865 PCI_PRODUCT_BROADCOM_BCM5701,
1866 "Broadcom BCM5701 Gigabit Ethernet",
1867 },
1868 { PCI_VENDOR_BROADCOM,
1869 PCI_PRODUCT_BROADCOM_BCM5702,
1870 "Broadcom BCM5702 Gigabit Ethernet",
1871 },
1872 { PCI_VENDOR_BROADCOM,
1873 PCI_PRODUCT_BROADCOM_BCM5702X,
1874 "Broadcom BCM5702X Gigabit Ethernet" },
1875
1876 { PCI_VENDOR_BROADCOM,
1877 PCI_PRODUCT_BROADCOM_BCM5703,
1878 "Broadcom BCM5703 Gigabit Ethernet",
1879 },
1880 { PCI_VENDOR_BROADCOM,
1881 PCI_PRODUCT_BROADCOM_BCM5703X,
1882 "Broadcom BCM5703X Gigabit Ethernet",
1883 },
1884 { PCI_VENDOR_BROADCOM,
1885 PCI_PRODUCT_BROADCOM_BCM5703A3,
1886 "Broadcom BCM5703A3 Gigabit Ethernet",
1887 },
1888
1889 { PCI_VENDOR_BROADCOM,
1890 PCI_PRODUCT_BROADCOM_BCM5704C,
1891 "Broadcom BCM5704C Dual Gigabit Ethernet",
1892 },
1893 { PCI_VENDOR_BROADCOM,
1894 PCI_PRODUCT_BROADCOM_BCM5704S,
1895 "Broadcom BCM5704S Dual Gigabit Ethernet",
1896 },
1897
1898 { PCI_VENDOR_BROADCOM,
1899 PCI_PRODUCT_BROADCOM_BCM5705,
1900 "Broadcom BCM5705 Gigabit Ethernet",
1901 },
1902 { PCI_VENDOR_BROADCOM,
1903 PCI_PRODUCT_BROADCOM_BCM5705_ALT,
1904 "Broadcom BCM5705 Gigabit Ethernet",
1905 },
1906 { PCI_VENDOR_BROADCOM,
1907 PCI_PRODUCT_BROADCOM_BCM5705M,
1908 "Broadcom BCM5705M Gigabit Ethernet",
1909 },
1910
1911 { PCI_VENDOR_BROADCOM,
1912 PCI_PRODUCT_BROADCOM_BCM5901,
1913 "Broadcom BCM5901 Fast Ethernet",
1914 },
1915 { PCI_VENDOR_BROADCOM,
1916 PCI_PRODUCT_BROADCOM_BCM5901A2,
1917 "Broadcom BCM5901A2 Fast Ethernet",
1918 },
1919
1920 { PCI_VENDOR_BROADCOM,
1921 PCI_PRODUCT_BROADCOM_BCM5782,
1922 "Broadcom BCM5782 Gigabit Ethernet",
1923 },
1924
1925 { PCI_VENDOR_SCHNEIDERKOCH,
1926 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1927 "SysKonnect SK-9Dx1 Gigabit Ethernet",
1928 },
1929
1930 { PCI_VENDOR_3COM,
1931 PCI_PRODUCT_3COM_3C996,
1932 "3Com 3c996 Gigabit Ethernet",
1933 },
1934
1935 { 0,
1936 0,
1937 NULL },
1938 };
1939
1940 static const struct bge_product *
1941 bge_lookup(const struct pci_attach_args *pa)
1942 {
1943 const struct bge_product *bp;
1944
1945 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1946 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1947 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1948 return (bp);
1949 }
1950
1951 return (NULL);
1952 }
1953
1954 int
1955 bge_setpowerstate(sc, powerlevel)
1956 struct bge_softc *sc;
1957 int powerlevel;
1958 {
1959 #ifdef NOTYET
1960 u_int32_t pm_ctl = 0;
1961
1962 /* XXX FIXME: make sure indirect accesses enabled? */
1963 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1964 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1965 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1966
1967 /* clear the PME_assert bit and power state bits, enable PME */
1968 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1969 pm_ctl &= ~PCIM_PSTAT_DMASK;
1970 pm_ctl |= (1 << 8);
1971
1972 if (powerlevel == 0) {
1973 pm_ctl |= PCIM_PSTAT_D0;
1974 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1975 pm_ctl, 2);
1976 DELAY(10000);
1977 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1978 DELAY(10000);
1979
1980 #ifdef NOTYET
1981 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1982 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1983 #endif
1984 DELAY(40); DELAY(40); DELAY(40);
1985 DELAY(10000); /* above not quite adequate on 5700 */
1986 return 0;
1987 }
1988
1989
1990 /*
1991 * Entering ACPI power states D1-D3 is achieved by wiggling
1992 * GMII gpio pins. Example code assumes all hardware vendors
1993 * followed Broadom's sample pcb layout. Until we verify that
1994 * for all supported OEM cards, states D1-D3 are unsupported.
1995 */
1996 printf("%s: power state %d unimplemented; check GPIO pins\n",
1997 sc->bge_dev.dv_xname, powerlevel);
1998 #endif
1999 return EOPNOTSUPP;
2000 }
2001
2002
2003 /*
2004 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2005 * against our list and return its name if we find a match. Note
2006 * that since the Broadcom controller contains VPD support, we
2007 * can get the device name string from the controller itself instead
2008 * of the compiled-in string. This is a little slow, but it guarantees
2009 * we'll always announce the right product name.
2010 */
2011 int
2012 bge_probe(parent, match, aux)
2013 struct device *parent;
2014 struct cfdata *match;
2015 void *aux;
2016 {
2017 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2018
2019 if (bge_lookup(pa) != NULL)
2020 return (1);
2021
2022 return (0);
2023 }
2024
2025 void
2026 bge_attach(parent, self, aux)
2027 struct device *parent, *self;
2028 void *aux;
2029 {
2030 struct bge_softc *sc = (struct bge_softc *)self;
2031 struct pci_attach_args *pa = aux;
2032 const struct bge_product *bp;
2033 const struct bge_revision *br;
2034 pci_chipset_tag_t pc = pa->pa_pc;
2035 pci_intr_handle_t ih;
2036 const char *intrstr = NULL;
2037 bus_dma_segment_t seg;
2038 int rseg;
2039 u_int32_t hwcfg = 0;
2040 u_int32_t mac_addr = 0;
2041 u_int32_t command;
2042 struct ifnet *ifp;
2043 caddr_t kva;
2044 u_char eaddr[ETHER_ADDR_LEN];
2045 pcireg_t memtype;
2046 bus_addr_t memaddr;
2047 bus_size_t memsize;
2048 u_int32_t pm_ctl;
2049
2050 bp = bge_lookup(pa);
2051 KASSERT(bp != NULL);
2052
2053 sc->bge_pa = *pa;
2054
2055 aprint_naive(": Ethernet controller\n");
2056 aprint_normal(": %s\n", bp->bp_name);
2057
2058 /*
2059 * Map control/status registers.
2060 */
2061 DPRINTFN(5, ("Map control/status regs\n"));
2062 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2063 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2064 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2065 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2066
2067 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2068 aprint_error("%s: failed to enable memory mapping!\n",
2069 sc->bge_dev.dv_xname);
2070 return;
2071 }
2072
2073 DPRINTFN(5, ("pci_mem_find\n"));
2074 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2075 switch (memtype) {
2076 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2077 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2078 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2079 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2080 &memaddr, &memsize) == 0)
2081 break;
2082 default:
2083 aprint_error("%s: can't find mem space\n",
2084 sc->bge_dev.dv_xname);
2085 return;
2086 }
2087
2088 DPRINTFN(5, ("pci_intr_map\n"));
2089 if (pci_intr_map(pa, &ih)) {
2090 aprint_error("%s: couldn't map interrupt\n",
2091 sc->bge_dev.dv_xname);
2092 return;
2093 }
2094
2095 DPRINTFN(5, ("pci_intr_string\n"));
2096 intrstr = pci_intr_string(pc, ih);
2097
2098 DPRINTFN(5, ("pci_intr_establish\n"));
2099 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2100
2101 if (sc->bge_intrhand == NULL) {
2102 aprint_error("%s: couldn't establish interrupt",
2103 sc->bge_dev.dv_xname);
2104 if (intrstr != NULL)
2105 aprint_normal(" at %s", intrstr);
2106 aprint_normal("\n");
2107 return;
2108 }
2109 aprint_normal("%s: interrupting at %s\n",
2110 sc->bge_dev.dv_xname, intrstr);
2111
2112 /*
2113 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2114 * can clobber the chip's PCI config-space power control registers,
2115 * leaving the card in D3 powersave state.
2116 * We do not have memory-mapped registers in this state,
2117 * so force device into D0 state before starting initialization.
2118 */
2119 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2120 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2121 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2122 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2123 DELAY(1000); /* 27 usec is allegedly sufficent */
2124
2125 /* Try to reset the chip. */
2126 DPRINTFN(5, ("bge_reset\n"));
2127 bge_reset(sc);
2128
2129 if (bge_chipinit(sc)) {
2130 aprint_error("%s: chip initialization failed\n",
2131 sc->bge_dev.dv_xname);
2132 bge_release_resources(sc);
2133 return;
2134 }
2135
2136 /*
2137 * Get station address from the EEPROM.
2138 */
2139 mac_addr = bge_readmem_ind(sc, 0x0c14);
2140 if ((mac_addr >> 16) == 0x484b) {
2141 eaddr[0] = (u_char)(mac_addr >> 8);
2142 eaddr[1] = (u_char)(mac_addr >> 0);
2143 mac_addr = bge_readmem_ind(sc, 0x0c18);
2144 eaddr[2] = (u_char)(mac_addr >> 24);
2145 eaddr[3] = (u_char)(mac_addr >> 16);
2146 eaddr[4] = (u_char)(mac_addr >> 8);
2147 eaddr[5] = (u_char)(mac_addr >> 0);
2148 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2149 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2150 aprint_error("%s: failed to read station address\n",
2151 sc->bge_dev.dv_xname);
2152 bge_release_resources(sc);
2153 return;
2154 }
2155
2156 /*
2157 * Save ASIC rev. Look up any quirks associated with this
2158 * ASIC.
2159 */
2160 sc->bge_chipid =
2161 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2162 BGE_PCIMISCCTL_ASICREV;
2163 br = bge_lookup_rev(sc->bge_chipid);
2164
2165 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2166
2167 if (br == NULL) {
2168 aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
2169 sc->bge_quirks = 0;
2170 } else {
2171 aprint_normal("ASIC %s (0x%04x)",
2172 br->br_name, sc->bge_chipid >> 16);
2173 sc->bge_quirks |= br->br_quirks;
2174 }
2175 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2176
2177 /* Allocate the general information block and ring buffers. */
2178 if (pci_dma64_available(pa))
2179 sc->bge_dmatag = pa->pa_dmat64;
2180 else
2181 sc->bge_dmatag = pa->pa_dmat;
2182 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2183 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2184 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2185 aprint_error("%s: can't alloc rx buffers\n",
2186 sc->bge_dev.dv_xname);
2187 return;
2188 }
2189 DPRINTFN(5, ("bus_dmamem_map\n"));
2190 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2191 sizeof(struct bge_ring_data), &kva,
2192 BUS_DMA_NOWAIT)) {
2193 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2194 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2195 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2196 return;
2197 }
2198 DPRINTFN(5, ("bus_dmamem_create\n"));
2199 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2200 sizeof(struct bge_ring_data), 0,
2201 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2202 aprint_error("%s: can't create DMA map\n",
2203 sc->bge_dev.dv_xname);
2204 bus_dmamem_unmap(sc->bge_dmatag, kva,
2205 sizeof(struct bge_ring_data));
2206 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2207 return;
2208 }
2209 DPRINTFN(5, ("bus_dmamem_load\n"));
2210 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2211 sizeof(struct bge_ring_data), NULL,
2212 BUS_DMA_NOWAIT)) {
2213 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2214 bus_dmamem_unmap(sc->bge_dmatag, kva,
2215 sizeof(struct bge_ring_data));
2216 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2217 return;
2218 }
2219
2220 DPRINTFN(5, ("bzero\n"));
2221 sc->bge_rdata = (struct bge_ring_data *)kva;
2222
2223 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2224
2225 /* Try to allocate memory for jumbo buffers. */
2226 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2227 if (bge_alloc_jumbo_mem(sc)) {
2228 aprint_error("%s: jumbo buffer allocation failed\n",
2229 sc->bge_dev.dv_xname);
2230 } else
2231 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2232 }
2233
2234 /* Set default tuneable values. */
2235 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2236 sc->bge_rx_coal_ticks = 150;
2237 sc->bge_rx_max_coal_bds = 64;
2238 #ifdef ORIG_WPAUL_VALUES
2239 sc->bge_tx_coal_ticks = 150;
2240 sc->bge_tx_max_coal_bds = 128;
2241 #else
2242 sc->bge_tx_coal_ticks = 300;
2243 sc->bge_tx_max_coal_bds = 400;
2244 #endif
2245
2246 /* Set up ifnet structure */
2247 ifp = &sc->ethercom.ec_if;
2248 ifp->if_softc = sc;
2249 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2250 ifp->if_ioctl = bge_ioctl;
2251 ifp->if_start = bge_start;
2252 ifp->if_init = bge_init;
2253 ifp->if_watchdog = bge_watchdog;
2254 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2255 IFQ_SET_READY(&ifp->if_snd);
2256 DPRINTFN(5, ("bcopy\n"));
2257 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2258
2259 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2260 sc->ethercom.ec_if.if_capabilities |=
2261 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2262 sc->ethercom.ec_capabilities |=
2263 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2264
2265 /*
2266 * Do MII setup.
2267 */
2268 DPRINTFN(5, ("mii setup\n"));
2269 sc->bge_mii.mii_ifp = ifp;
2270 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2271 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2272 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2273
2274 /*
2275 * Figure out what sort of media we have by checking the
2276 * hardware config word in the first 32k of NIC internal memory,
2277 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2278 * cards, this value appears to be unset. If that's the
2279 * case, we have to rely on identifying the NIC by its PCI
2280 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2281 */
2282 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2283 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2284 } else {
2285 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2286 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2287 hwcfg = be32toh(hwcfg);
2288 }
2289 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2290 sc->bge_tbi = 1;
2291
2292 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2293 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2294 SK_SUBSYSID_9D41)
2295 sc->bge_tbi = 1;
2296
2297 if (sc->bge_tbi) {
2298 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2299 bge_ifmedia_sts);
2300 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2301 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2302 0, NULL);
2303 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2304 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2305 } else {
2306 /*
2307 * Do transceiver setup.
2308 */
2309 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2310 bge_ifmedia_sts);
2311 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2312 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
2313
2314 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2315 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2316 ifmedia_add(&sc->bge_mii.mii_media,
2317 IFM_ETHER|IFM_MANUAL, 0, NULL);
2318 ifmedia_set(&sc->bge_mii.mii_media,
2319 IFM_ETHER|IFM_MANUAL);
2320 } else
2321 ifmedia_set(&sc->bge_mii.mii_media,
2322 IFM_ETHER|IFM_AUTO);
2323 }
2324
2325 /*
2326 * When using the BCM5701 in PCI-X mode, data corruption has
2327 * been observed in the first few bytes of some received packets.
2328 * Aligning the packet buffer in memory eliminates the corruption.
2329 * Unfortunately, this misaligns the packet payloads. On platforms
2330 * which do not support unaligned accesses, we will realign the
2331 * payloads by copying the received packets.
2332 */
2333 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2334 /* If in PCI-X mode, work around the alignment bug. */
2335 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2336 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2337 BGE_PCISTATE_PCI_BUSSPEED)
2338 sc->bge_rx_alignment_bug = 1;
2339 }
2340
2341 /*
2342 * Call MI attach routine.
2343 */
2344 DPRINTFN(5, ("if_attach\n"));
2345 if_attach(ifp);
2346 DPRINTFN(5, ("ether_ifattach\n"));
2347 ether_ifattach(ifp, eaddr);
2348 DPRINTFN(5, ("callout_init\n"));
2349 callout_init(&sc->bge_timeout);
2350 }
2351
2352 void
2353 bge_release_resources(sc)
2354 struct bge_softc *sc;
2355 {
2356 if (sc->bge_vpd_prodname != NULL)
2357 free(sc->bge_vpd_prodname, M_DEVBUF);
2358
2359 if (sc->bge_vpd_readonly != NULL)
2360 free(sc->bge_vpd_readonly, M_DEVBUF);
2361 }
2362
2363 void
2364 bge_reset(sc)
2365 struct bge_softc *sc;
2366 {
2367 struct pci_attach_args *pa = &sc->bge_pa;
2368 u_int32_t cachesize, command, pcistate;
2369 int i, val = 0;
2370
2371 /* Save some important PCI state. */
2372 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2373 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2374 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2375
2376 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2377 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2378 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2379
2380 /* Issue global reset */
2381 bge_writereg_ind(sc, BGE_MISC_CFG,
2382 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2383
2384 DELAY(1000);
2385
2386 /* Reset some of the PCI state that got zapped by reset */
2387 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2388 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2389 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2390 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2391 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2392 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2393
2394 /* Enable memory arbiter. */
2395 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2396 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2397 }
2398
2399 /*
2400 * Prevent PXE restart: write a magic number to the
2401 * general communications memory at 0xB50.
2402 */
2403 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2404
2405 /*
2406 * Poll the value location we just wrote until
2407 * we see the 1's complement of the magic number.
2408 * This indicates that the firmware initialization
2409 * is complete.
2410 */
2411 for (i = 0; i < 750; i++) {
2412 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2413 if (val == ~BGE_MAGIC_NUMBER)
2414 break;
2415 DELAY(1000);
2416 }
2417
2418 if (i == 750) {
2419 printf("%s: firmware handshake timed out, val = %x\n",
2420 sc->bge_dev.dv_xname, val);
2421 return;
2422 }
2423
2424 /*
2425 * XXX Wait for the value of the PCISTATE register to
2426 * return to its original pre-reset state. This is a
2427 * fairly good indicator of reset completion. If we don't
2428 * wait for the reset to fully complete, trying to read
2429 * from the device's non-PCI registers may yield garbage
2430 * results.
2431 */
2432 for (i = 0; i < BGE_TIMEOUT; i++) {
2433 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2434 pcistate)
2435 break;
2436 DELAY(10);
2437 }
2438
2439 /* Enable memory arbiter. */
2440 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2441 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2442 }
2443
2444 /* Fix up byte swapping */
2445 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2446
2447 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2448
2449 DELAY(10000);
2450 }
2451
2452 /*
2453 * Frame reception handling. This is called if there's a frame
2454 * on the receive return list.
2455 *
2456 * Note: we have to be able to handle two possibilities here:
2457 * 1) the frame is from the jumbo recieve ring
2458 * 2) the frame is from the standard receive ring
2459 */
2460
2461 void
2462 bge_rxeof(sc)
2463 struct bge_softc *sc;
2464 {
2465 struct ifnet *ifp;
2466 int stdcnt = 0, jumbocnt = 0;
2467 int have_tag = 0;
2468 u_int16_t vlan_tag = 0;
2469 bus_dmamap_t dmamap;
2470 bus_addr_t offset, toff;
2471 bus_size_t tlen;
2472 int tosync;
2473
2474 ifp = &sc->ethercom.ec_if;
2475
2476 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2477 offsetof(struct bge_ring_data, bge_status_block),
2478 sizeof (struct bge_status_block),
2479 BUS_DMASYNC_POSTREAD);
2480
2481 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2482 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2483 sc->bge_rx_saved_considx;
2484
2485 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2486
2487 if (tosync < 0) {
2488 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2489 sizeof (struct bge_rx_bd);
2490 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2491 toff, tlen, BUS_DMASYNC_POSTREAD);
2492 tosync = -tosync;
2493 }
2494
2495 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2496 offset, tosync * sizeof (struct bge_rx_bd),
2497 BUS_DMASYNC_POSTREAD);
2498
2499 while(sc->bge_rx_saved_considx !=
2500 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2501 struct bge_rx_bd *cur_rx;
2502 u_int32_t rxidx;
2503 struct mbuf *m = NULL;
2504
2505 cur_rx = &sc->bge_rdata->
2506 bge_rx_return_ring[sc->bge_rx_saved_considx];
2507
2508 rxidx = cur_rx->bge_idx;
2509 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2510
2511 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2512 have_tag = 1;
2513 vlan_tag = cur_rx->bge_vlan_tag;
2514 }
2515
2516 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2517 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2518 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2519 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2520 jumbocnt++;
2521 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2522 ifp->if_ierrors++;
2523 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2524 continue;
2525 }
2526 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2527 NULL)== ENOBUFS) {
2528 ifp->if_ierrors++;
2529 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2530 continue;
2531 }
2532 } else {
2533 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2534 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2535 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2536 stdcnt++;
2537 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2538 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2539 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2540 ifp->if_ierrors++;
2541 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2542 continue;
2543 }
2544 if (bge_newbuf_std(sc, sc->bge_std,
2545 NULL, dmamap) == ENOBUFS) {
2546 ifp->if_ierrors++;
2547 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2548 continue;
2549 }
2550 }
2551
2552 ifp->if_ipackets++;
2553 #ifndef __NO_STRICT_ALIGNMENT
2554 /*
2555 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2556 * the Rx buffer has the layer-2 header unaligned.
2557 * If our CPU requires alignment, re-align by copying.
2558 */
2559 if (sc->bge_rx_alignment_bug) {
2560 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2561 cur_rx->bge_len);
2562 m->m_data += ETHER_ALIGN;
2563 }
2564 #endif
2565
2566 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2567 m->m_pkthdr.rcvif = ifp;
2568
2569 #if NBPFILTER > 0
2570 /*
2571 * Handle BPF listeners. Let the BPF user see the packet.
2572 */
2573 if (ifp->if_bpf)
2574 bpf_mtap(ifp->if_bpf, m);
2575 #endif
2576
2577 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2578
2579 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2580 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2581 /*
2582 * Rx transport checksum-offload may also
2583 * have bugs with packets which, when transmitted,
2584 * were `runts' requiring padding.
2585 */
2586 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2587 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2588 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2589 m->m_pkthdr.csum_data =
2590 cur_rx->bge_tcp_udp_csum;
2591 m->m_pkthdr.csum_flags |=
2592 (M_CSUM_TCPv4|M_CSUM_UDPv4|
2593 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2594 }
2595
2596 /*
2597 * If we received a packet with a vlan tag, pass it
2598 * to vlan_input() instead of ether_input().
2599 */
2600 if (have_tag) {
2601 struct m_tag *mtag;
2602
2603 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2604 M_NOWAIT);
2605 if (mtag != NULL) {
2606 *(u_int *)(mtag + 1) = vlan_tag;
2607 m_tag_prepend(m, mtag);
2608 have_tag = vlan_tag = 0;
2609 } else {
2610 printf("%s: no mbuf for tag\n", ifp->if_xname);
2611 m_freem(m);
2612 have_tag = vlan_tag = 0;
2613 continue;
2614 }
2615 }
2616 (*ifp->if_input)(ifp, m);
2617 }
2618
2619 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2620 if (stdcnt)
2621 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2622 if (jumbocnt)
2623 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2624 }
2625
2626 void
2627 bge_txeof(sc)
2628 struct bge_softc *sc;
2629 {
2630 struct bge_tx_bd *cur_tx = NULL;
2631 struct ifnet *ifp;
2632 struct txdmamap_pool_entry *dma;
2633 bus_addr_t offset, toff;
2634 bus_size_t tlen;
2635 int tosync;
2636 struct mbuf *m;
2637
2638 ifp = &sc->ethercom.ec_if;
2639
2640 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2641 offsetof(struct bge_ring_data, bge_status_block),
2642 sizeof (struct bge_status_block),
2643 BUS_DMASYNC_POSTREAD);
2644
2645 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2646 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2647 sc->bge_tx_saved_considx;
2648
2649 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2650
2651 if (tosync < 0) {
2652 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2653 sizeof (struct bge_tx_bd);
2654 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2655 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2656 tosync = -tosync;
2657 }
2658
2659 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2660 offset, tosync * sizeof (struct bge_tx_bd),
2661 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2662
2663 /*
2664 * Go through our tx ring and free mbufs for those
2665 * frames that have been sent.
2666 */
2667 while (sc->bge_tx_saved_considx !=
2668 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2669 u_int32_t idx = 0;
2670
2671 idx = sc->bge_tx_saved_considx;
2672 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2673 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2674 ifp->if_opackets++;
2675 m = sc->bge_cdata.bge_tx_chain[idx];
2676 if (m != NULL) {
2677 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2678 dma = sc->txdma[idx];
2679 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2680 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2681 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2682 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2683 sc->txdma[idx] = NULL;
2684
2685 m_freem(m);
2686 }
2687 sc->bge_txcnt--;
2688 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2689 ifp->if_timer = 0;
2690 }
2691
2692 if (cur_tx != NULL)
2693 ifp->if_flags &= ~IFF_OACTIVE;
2694 }
2695
2696 int
2697 bge_intr(xsc)
2698 void *xsc;
2699 {
2700 struct bge_softc *sc;
2701 struct ifnet *ifp;
2702
2703 sc = xsc;
2704 ifp = &sc->ethercom.ec_if;
2705
2706 #ifdef notdef
2707 /* Avoid this for now -- checking this register is expensive. */
2708 /* Make sure this is really our interrupt. */
2709 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2710 return (0);
2711 #endif
2712 /* Ack interrupt and stop others from occuring. */
2713 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2714
2715 /*
2716 * Process link state changes.
2717 * Grrr. The link status word in the status block does
2718 * not work correctly on the BCM5700 rev AX and BX chips,
2719 * according to all avaibable information. Hence, we have
2720 * to enable MII interrupts in order to properly obtain
2721 * async link changes. Unfortunately, this also means that
2722 * we have to read the MAC status register to detect link
2723 * changes, thereby adding an additional register access to
2724 * the interrupt handler.
2725 */
2726
2727 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2728 u_int32_t status;
2729
2730 status = CSR_READ_4(sc, BGE_MAC_STS);
2731 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2732 sc->bge_link = 0;
2733 callout_stop(&sc->bge_timeout);
2734 bge_tick(sc);
2735 /* Clear the interrupt */
2736 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2737 BGE_EVTENB_MI_INTERRUPT);
2738 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2739 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2740 BRGPHY_INTRS);
2741 }
2742 } else {
2743 if (sc->bge_rdata->bge_status_block.bge_status &
2744 BGE_STATFLAG_LINKSTATE_CHANGED) {
2745 sc->bge_link = 0;
2746 callout_stop(&sc->bge_timeout);
2747 bge_tick(sc);
2748 /* Clear the interrupt */
2749 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2750 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2751 BGE_MACSTAT_LINK_CHANGED);
2752 }
2753 }
2754
2755 if (ifp->if_flags & IFF_RUNNING) {
2756 /* Check RX return ring producer/consumer */
2757 bge_rxeof(sc);
2758
2759 /* Check TX ring producer/consumer */
2760 bge_txeof(sc);
2761 }
2762
2763 if (sc->bge_pending_rxintr_change) {
2764 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
2765 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
2766 uint32_t junk;
2767
2768 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
2769 DELAY(10);
2770 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
2771
2772 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
2773 DELAY(10);
2774 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
2775
2776 sc->bge_pending_rxintr_change = 0;
2777 }
2778 bge_handle_events(sc);
2779
2780 /* Re-enable interrupts. */
2781 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2782
2783 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2784 bge_start(ifp);
2785
2786 return (1);
2787 }
2788
2789 void
2790 bge_tick(xsc)
2791 void *xsc;
2792 {
2793 struct bge_softc *sc = xsc;
2794 struct mii_data *mii = &sc->bge_mii;
2795 struct ifmedia *ifm = NULL;
2796 struct ifnet *ifp = &sc->ethercom.ec_if;
2797 int s;
2798
2799 s = splnet();
2800
2801 bge_stats_update(sc);
2802 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2803 if (sc->bge_link) {
2804 splx(s);
2805 return;
2806 }
2807
2808 if (sc->bge_tbi) {
2809 ifm = &sc->bge_ifmedia;
2810 if (CSR_READ_4(sc, BGE_MAC_STS) &
2811 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2812 sc->bge_link++;
2813 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2814 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2815 bge_start(ifp);
2816 }
2817 splx(s);
2818 return;
2819 }
2820
2821 mii_tick(mii);
2822
2823 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2824 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2825 sc->bge_link++;
2826 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2827 bge_start(ifp);
2828 }
2829
2830 splx(s);
2831 }
2832
2833 void
2834 bge_stats_update(sc)
2835 struct bge_softc *sc;
2836 {
2837 struct ifnet *ifp = &sc->ethercom.ec_if;
2838 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2839 bus_size_t rstats = BGE_RX_STATS;
2840
2841 #define READ_RSTAT(sc, stats, stat) \
2842 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
2843
2844 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2845 ifp->if_collisions +=
2846 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
2847 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
2848 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
2849 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
2850 return;
2851 }
2852
2853 #undef READ_RSTAT
2854 #define READ_STAT(sc, stats, stat) \
2855 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2856
2857 ifp->if_collisions +=
2858 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2859 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2860 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2861 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2862 ifp->if_collisions;
2863
2864 #undef READ_STAT
2865
2866 #ifdef notdef
2867 ifp->if_collisions +=
2868 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2869 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2870 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2871 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2872 ifp->if_collisions;
2873 #endif
2874 }
2875
2876 /*
2877 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
2878 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
2879 * but when such padded frames employ the bge IP/TCP checksum offload,
2880 * the hardware checksum assist gives incorrect results (possibly
2881 * from incorporating its own padding into the UDP/TCP checksum; who knows).
2882 * If we pad such runts with zeros, the onboard checksum comes out correct.
2883 */
2884 static __inline int
2885 bge_cksum_pad(struct mbuf *pkt)
2886 {
2887 struct mbuf *last = NULL;
2888 int padlen;
2889
2890 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
2891
2892 /* if there's only the packet-header and we can pad there, use it. */
2893 if (pkt->m_pkthdr.len == pkt->m_len &&
2894 !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
2895 last = pkt;
2896 } else {
2897 /*
2898 * Walk packet chain to find last mbuf. We will either
2899 * pad there, or append a new mbuf and pad it
2900 * (thus perhaps avoiding the bcm5700 dma-min bug).
2901 */
2902 for (last = pkt; last->m_next != NULL; last = last->m_next) {
2903 (void) 0; /* do nothing*/
2904 }
2905
2906 /* `last' now points to last in chain. */
2907 if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
2908 (void) 0; /* we can pad here, in-place. */
2909 } else {
2910 /* Allocate new empty mbuf, pad it. Compact later. */
2911 struct mbuf *n;
2912 MGET(n, M_DONTWAIT, MT_DATA);
2913 n->m_len = 0;
2914 last->m_next = n;
2915 last = n;
2916 }
2917 }
2918
2919 #ifdef DEBUG
2920 /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
2921 KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
2922 #endif
2923 /* Now zero the pad area, to avoid the bge cksum-assist bug */
2924 memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
2925 last->m_len += padlen;
2926 pkt->m_pkthdr.len += padlen;
2927 return 0;
2928 }
2929
2930 /*
2931 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
2932 */
2933 static __inline int
2934 bge_compact_dma_runt(struct mbuf *pkt)
2935 {
2936 struct mbuf *m, *prev;
2937 int totlen, prevlen;
2938
2939 prev = NULL;
2940 totlen = 0;
2941 prevlen = -1;
2942
2943 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
2944 int mlen = m->m_len;
2945 int shortfall = 8 - mlen ;
2946
2947 totlen += mlen;
2948 if (mlen == 0) {
2949 continue;
2950 }
2951 if (mlen >= 8)
2952 continue;
2953
2954 /* If we get here, mbuf data is too small for DMA engine.
2955 * Try to fix by shuffling data to prev or next in chain.
2956 * If that fails, do a compacting deep-copy of the whole chain.
2957 */
2958
2959 /* Internal frag. If fits in prev, copy it there. */
2960 if (prev && !M_READONLY(prev) &&
2961 M_TRAILINGSPACE(prev) >= m->m_len) {
2962 bcopy(m->m_data,
2963 prev->m_data+prev->m_len,
2964 mlen);
2965 prev->m_len += mlen;
2966 m->m_len = 0;
2967 /* XXX stitch chain */
2968 prev->m_next = m_free(m);
2969 m = prev;
2970 continue;
2971 }
2972 else if (m->m_next != NULL && !M_READONLY(m) &&
2973 M_TRAILINGSPACE(m) >= shortfall &&
2974 m->m_next->m_len >= (8 + shortfall)) {
2975 /* m is writable and have enough data in next, pull up. */
2976
2977 bcopy(m->m_next->m_data,
2978 m->m_data+m->m_len,
2979 shortfall);
2980 m->m_len += shortfall;
2981 m->m_next->m_len -= shortfall;
2982 m->m_next->m_data += shortfall;
2983 }
2984 else if (m->m_next == NULL || 1) {
2985 /* Got a runt at the very end of the packet.
2986 * borrow data from the tail of the preceding mbuf and
2987 * update its length in-place. (The original data is still
2988 * valid, so we can do this even if prev is not writable.)
2989 */
2990
2991 /* if we'd make prev a runt, just move all of its data. */
2992 #ifdef DEBUG
2993 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
2994 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
2995 #endif
2996 if ((prev->m_len - shortfall) < 8)
2997 shortfall = prev->m_len;
2998
2999 #ifdef notyet /* just do the safe slow thing for now */
3000 if (!M_READONLY(m)) {
3001 if (M_LEADINGSPACE(m) < shorfall) {
3002 void *m_dat;
3003 m_dat = (m->m_flags & M_PKTHDR) ?
3004 m->m_pktdat : m->dat;
3005 memmove(m_dat, mtod(m, void*), m->m_len);
3006 m->m_data = m_dat;
3007 }
3008 } else
3009 #endif /* just do the safe slow thing */
3010 {
3011 struct mbuf * n = NULL;
3012 int newprevlen = prev->m_len - shortfall;
3013
3014 MGET(n, M_NOWAIT, MT_DATA);
3015 if (n == NULL)
3016 return ENOBUFS;
3017 KASSERT(m->m_len + shortfall < MLEN
3018 /*,
3019 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3020
3021 /* first copy the data we're stealing from prev */
3022 bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3023
3024 /* update prev->m_len accordingly */
3025 prev->m_len -= shortfall;
3026
3027 /* copy data from runt m */
3028 bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3029
3030 /* n holds what we stole from prev, plus m */
3031 n->m_len = shortfall + m->m_len;
3032
3033 /* stitch n into chain and free m */
3034 n->m_next = m->m_next;
3035 prev->m_next = n;
3036 /* KASSERT(m->m_next == NULL); */
3037 m->m_next = NULL;
3038 m_free(m);
3039 m = n; /* for continuing loop */
3040 }
3041 }
3042 prevlen = m->m_len;
3043 }
3044 return 0;
3045 }
3046
3047 /*
3048 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3049 * pointers to descriptors.
3050 */
3051 int
3052 bge_encap(sc, m_head, txidx)
3053 struct bge_softc *sc;
3054 struct mbuf *m_head;
3055 u_int32_t *txidx;
3056 {
3057 struct bge_tx_bd *f = NULL;
3058 u_int32_t frag, cur, cnt = 0;
3059 u_int16_t csum_flags = 0;
3060 struct txdmamap_pool_entry *dma;
3061 bus_dmamap_t dmamap;
3062 int i = 0;
3063 struct m_tag *mtag;
3064
3065 cur = frag = *txidx;
3066
3067 if (m_head->m_pkthdr.csum_flags) {
3068 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3069 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3070 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3071 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3072 }
3073
3074 /*
3075 * If we were asked to do an outboard checksum, and the NIC
3076 * has the bug where it sometimes adds in the Ethernet padding,
3077 * explicitly pad with zeros so the cksum will be correct either way.
3078 * (For now, do this for all chip versions, until newer
3079 * are confirmed to not require the workaround.)
3080 */
3081 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3082 #ifdef notyet
3083 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3084 #endif
3085 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3086 goto check_dma_bug;
3087
3088 if (bge_cksum_pad(m_head) != 0)
3089 return ENOBUFS;
3090
3091 check_dma_bug:
3092 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3093 goto doit;
3094 /*
3095 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3096 * less than eight bytes. If we encounter a teeny mbuf
3097 * at the end of a chain, we can pad. Otherwise, copy.
3098 */
3099 if (bge_compact_dma_runt(m_head) != 0)
3100 return ENOBUFS;
3101
3102 doit:
3103 dma = SLIST_FIRST(&sc->txdma_list);
3104 if (dma == NULL)
3105 return ENOBUFS;
3106 dmamap = dma->dmamap;
3107
3108 /*
3109 * Start packing the mbufs in this chain into
3110 * the fragment pointers. Stop when we run out
3111 * of fragments or hit the end of the mbuf chain.
3112 */
3113 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3114 BUS_DMA_NOWAIT))
3115 return(ENOBUFS);
3116
3117 mtag = sc->ethercom.ec_nvlans ?
3118 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3119
3120 for (i = 0; i < dmamap->dm_nsegs; i++) {
3121 f = &sc->bge_rdata->bge_tx_ring[frag];
3122 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3123 break;
3124 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3125 f->bge_len = dmamap->dm_segs[i].ds_len;
3126 f->bge_flags = csum_flags;
3127
3128 if (mtag != NULL) {
3129 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3130 f->bge_vlan_tag = *(u_int *)(mtag + 1);
3131 } else {
3132 f->bge_vlan_tag = 0;
3133 }
3134 /*
3135 * Sanity check: avoid coming within 16 descriptors
3136 * of the end of the ring.
3137 */
3138 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
3139 return(ENOBUFS);
3140 cur = frag;
3141 BGE_INC(frag, BGE_TX_RING_CNT);
3142 cnt++;
3143 }
3144
3145 if (i < dmamap->dm_nsegs)
3146 return ENOBUFS;
3147
3148 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3149 BUS_DMASYNC_PREWRITE);
3150
3151 if (frag == sc->bge_tx_saved_considx)
3152 return(ENOBUFS);
3153
3154 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3155 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3156 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3157 sc->txdma[cur] = dma;
3158 sc->bge_txcnt += cnt;
3159
3160 *txidx = frag;
3161
3162 return(0);
3163 }
3164
3165 /*
3166 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3167 * to the mbuf data regions directly in the transmit descriptors.
3168 */
3169 void
3170 bge_start(ifp)
3171 struct ifnet *ifp;
3172 {
3173 struct bge_softc *sc;
3174 struct mbuf *m_head = NULL;
3175 u_int32_t prodidx = 0;
3176 int pkts = 0;
3177
3178 sc = ifp->if_softc;
3179
3180 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3181 return;
3182
3183 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
3184
3185 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3186 IFQ_POLL(&ifp->if_snd, m_head);
3187 if (m_head == NULL)
3188 break;
3189
3190 #if 0
3191 /*
3192 * XXX
3193 * safety overkill. If this is a fragmented packet chain
3194 * with delayed TCP/UDP checksums, then only encapsulate
3195 * it if we have enough descriptors to handle the entire
3196 * chain at once.
3197 * (paranoia -- may not actually be needed)
3198 */
3199 if (m_head->m_flags & M_FIRSTFRAG &&
3200 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3201 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3202 m_head->m_pkthdr.csum_data + 16) {
3203 ifp->if_flags |= IFF_OACTIVE;
3204 break;
3205 }
3206 }
3207 #endif
3208
3209 /*
3210 * Pack the data into the transmit ring. If we
3211 * don't have room, set the OACTIVE flag and wait
3212 * for the NIC to drain the ring.
3213 */
3214 if (bge_encap(sc, m_head, &prodidx)) {
3215 ifp->if_flags |= IFF_OACTIVE;
3216 break;
3217 }
3218
3219 /* now we are committed to transmit the packet */
3220 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3221 pkts++;
3222
3223 #if NBPFILTER > 0
3224 /*
3225 * If there's a BPF listener, bounce a copy of this frame
3226 * to him.
3227 */
3228 if (ifp->if_bpf)
3229 bpf_mtap(ifp->if_bpf, m_head);
3230 #endif
3231 }
3232 if (pkts == 0)
3233 return;
3234
3235 /* Transmit */
3236 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3237 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3238 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3239
3240 /*
3241 * Set a timeout in case the chip goes out to lunch.
3242 */
3243 ifp->if_timer = 5;
3244 }
3245
3246 int
3247 bge_init(ifp)
3248 struct ifnet *ifp;
3249 {
3250 struct bge_softc *sc = ifp->if_softc;
3251 u_int16_t *m;
3252 int s, error;
3253
3254 s = splnet();
3255
3256 ifp = &sc->ethercom.ec_if;
3257
3258 /* Cancel pending I/O and flush buffers. */
3259 bge_stop(sc);
3260 bge_reset(sc);
3261 bge_chipinit(sc);
3262
3263 /*
3264 * Init the various state machines, ring
3265 * control blocks and firmware.
3266 */
3267 error = bge_blockinit(sc);
3268 if (error != 0) {
3269 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3270 error);
3271 splx(s);
3272 return error;
3273 }
3274
3275 ifp = &sc->ethercom.ec_if;
3276
3277 /* Specify MTU. */
3278 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3279 ETHER_HDR_LEN + ETHER_CRC_LEN);
3280
3281 /* Load our MAC address. */
3282 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3283 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3284 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3285
3286 /* Enable or disable promiscuous mode as needed. */
3287 if (ifp->if_flags & IFF_PROMISC) {
3288 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3289 } else {
3290 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3291 }
3292
3293 /* Program multicast filter. */
3294 bge_setmulti(sc);
3295
3296 /* Init RX ring. */
3297 bge_init_rx_ring_std(sc);
3298
3299 /* Init jumbo RX ring. */
3300 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3301 bge_init_rx_ring_jumbo(sc);
3302
3303 /* Init our RX return ring index */
3304 sc->bge_rx_saved_considx = 0;
3305
3306 /* Init TX ring. */
3307 bge_init_tx_ring(sc);
3308
3309 /* Turn on transmitter */
3310 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3311
3312 /* Turn on receiver */
3313 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3314
3315 /* Tell firmware we're alive. */
3316 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3317
3318 /* Enable host interrupts. */
3319 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3320 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3321 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3322
3323 bge_ifmedia_upd(ifp);
3324
3325 ifp->if_flags |= IFF_RUNNING;
3326 ifp->if_flags &= ~IFF_OACTIVE;
3327
3328 splx(s);
3329
3330 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3331
3332 return 0;
3333 }
3334
3335 /*
3336 * Set media options.
3337 */
3338 int
3339 bge_ifmedia_upd(ifp)
3340 struct ifnet *ifp;
3341 {
3342 struct bge_softc *sc = ifp->if_softc;
3343 struct mii_data *mii = &sc->bge_mii;
3344 struct ifmedia *ifm = &sc->bge_ifmedia;
3345
3346 /* If this is a 1000baseX NIC, enable the TBI port. */
3347 if (sc->bge_tbi) {
3348 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3349 return(EINVAL);
3350 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3351 case IFM_AUTO:
3352 break;
3353 case IFM_1000_SX:
3354 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3355 BGE_CLRBIT(sc, BGE_MAC_MODE,
3356 BGE_MACMODE_HALF_DUPLEX);
3357 } else {
3358 BGE_SETBIT(sc, BGE_MAC_MODE,
3359 BGE_MACMODE_HALF_DUPLEX);
3360 }
3361 break;
3362 default:
3363 return(EINVAL);
3364 }
3365 return(0);
3366 }
3367
3368 sc->bge_link = 0;
3369 mii_mediachg(mii);
3370
3371 return(0);
3372 }
3373
3374 /*
3375 * Report current media status.
3376 */
3377 void
3378 bge_ifmedia_sts(ifp, ifmr)
3379 struct ifnet *ifp;
3380 struct ifmediareq *ifmr;
3381 {
3382 struct bge_softc *sc = ifp->if_softc;
3383 struct mii_data *mii = &sc->bge_mii;
3384
3385 if (sc->bge_tbi) {
3386 ifmr->ifm_status = IFM_AVALID;
3387 ifmr->ifm_active = IFM_ETHER;
3388 if (CSR_READ_4(sc, BGE_MAC_STS) &
3389 BGE_MACSTAT_TBI_PCS_SYNCHED)
3390 ifmr->ifm_status |= IFM_ACTIVE;
3391 ifmr->ifm_active |= IFM_1000_SX;
3392 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3393 ifmr->ifm_active |= IFM_HDX;
3394 else
3395 ifmr->ifm_active |= IFM_FDX;
3396 return;
3397 }
3398
3399 mii_pollstat(mii);
3400 ifmr->ifm_active = mii->mii_media_active;
3401 ifmr->ifm_status = mii->mii_media_status;
3402 }
3403
3404 int
3405 bge_ioctl(ifp, command, data)
3406 struct ifnet *ifp;
3407 u_long command;
3408 caddr_t data;
3409 {
3410 struct bge_softc *sc = ifp->if_softc;
3411 struct ifreq *ifr = (struct ifreq *) data;
3412 int s, error = 0;
3413 struct mii_data *mii;
3414
3415 s = splnet();
3416
3417 switch(command) {
3418 case SIOCSIFFLAGS:
3419 if (ifp->if_flags & IFF_UP) {
3420 /*
3421 * If only the state of the PROMISC flag changed,
3422 * then just use the 'set promisc mode' command
3423 * instead of reinitializing the entire NIC. Doing
3424 * a full re-init means reloading the firmware and
3425 * waiting for it to start up, which may take a
3426 * second or two.
3427 */
3428 if (ifp->if_flags & IFF_RUNNING &&
3429 ifp->if_flags & IFF_PROMISC &&
3430 !(sc->bge_if_flags & IFF_PROMISC)) {
3431 BGE_SETBIT(sc, BGE_RX_MODE,
3432 BGE_RXMODE_RX_PROMISC);
3433 } else if (ifp->if_flags & IFF_RUNNING &&
3434 !(ifp->if_flags & IFF_PROMISC) &&
3435 sc->bge_if_flags & IFF_PROMISC) {
3436 BGE_CLRBIT(sc, BGE_RX_MODE,
3437 BGE_RXMODE_RX_PROMISC);
3438 } else
3439 bge_init(ifp);
3440 } else {
3441 if (ifp->if_flags & IFF_RUNNING) {
3442 bge_stop(sc);
3443 }
3444 }
3445 sc->bge_if_flags = ifp->if_flags;
3446 error = 0;
3447 break;
3448 case SIOCSIFMEDIA:
3449 case SIOCGIFMEDIA:
3450 if (sc->bge_tbi) {
3451 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3452 command);
3453 } else {
3454 mii = &sc->bge_mii;
3455 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3456 command);
3457 }
3458 error = 0;
3459 break;
3460 default:
3461 error = ether_ioctl(ifp, command, data);
3462 if (error == ENETRESET) {
3463 bge_setmulti(sc);
3464 error = 0;
3465 }
3466 break;
3467 }
3468
3469 splx(s);
3470
3471 return(error);
3472 }
3473
3474 void
3475 bge_watchdog(ifp)
3476 struct ifnet *ifp;
3477 {
3478 struct bge_softc *sc;
3479
3480 sc = ifp->if_softc;
3481
3482 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3483
3484 ifp->if_flags &= ~IFF_RUNNING;
3485 bge_init(ifp);
3486
3487 ifp->if_oerrors++;
3488 }
3489
3490 static void
3491 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3492 {
3493 int i;
3494
3495 BGE_CLRBIT(sc, reg, bit);
3496
3497 for (i = 0; i < BGE_TIMEOUT; i++) {
3498 if ((CSR_READ_4(sc, reg) & bit) == 0)
3499 return;
3500 delay(100);
3501 }
3502
3503 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3504 sc->bge_dev.dv_xname, (u_long) reg, bit);
3505 }
3506
3507 /*
3508 * Stop the adapter and free any mbufs allocated to the
3509 * RX and TX lists.
3510 */
3511 void
3512 bge_stop(sc)
3513 struct bge_softc *sc;
3514 {
3515 struct ifnet *ifp = &sc->ethercom.ec_if;
3516
3517 callout_stop(&sc->bge_timeout);
3518
3519 /*
3520 * Disable all of the receiver blocks
3521 */
3522 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3523 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3524 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3525 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3526 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3527 }
3528 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3529 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3530 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3531
3532 /*
3533 * Disable all of the transmit blocks
3534 */
3535 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3536 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3537 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3538 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3539 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3540 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3541 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3542 }
3543 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3544
3545 /*
3546 * Shut down all of the memory managers and related
3547 * state machines.
3548 */
3549 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3550 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3551 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3552 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3553 }
3554
3555 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3556 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3557
3558 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3559 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3560 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3561 }
3562
3563 /* Disable host interrupts. */
3564 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3565 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3566
3567 /*
3568 * Tell firmware we're shutting down.
3569 */
3570 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3571
3572 /* Free the RX lists. */
3573 bge_free_rx_ring_std(sc);
3574
3575 /* Free jumbo RX list. */
3576 bge_free_rx_ring_jumbo(sc);
3577
3578 /* Free TX buffers. */
3579 bge_free_tx_ring(sc);
3580
3581 /*
3582 * Isolate/power down the PHY.
3583 */
3584 if (!sc->bge_tbi)
3585 mii_down(&sc->bge_mii);
3586
3587 sc->bge_link = 0;
3588
3589 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3590
3591 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3592 }
3593
3594 /*
3595 * Stop all chip I/O so that the kernel's probe routines don't
3596 * get confused by errant DMAs when rebooting.
3597 */
3598 void
3599 bge_shutdown(xsc)
3600 void *xsc;
3601 {
3602 struct bge_softc *sc = (struct bge_softc *)xsc;
3603
3604 bge_stop(sc);
3605 bge_reset(sc);
3606 }
3607