Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.63
      1 /*	$NetBSD: if_bge.c,v 1.63 2004/03/20 02:04:07 jonathan Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.63 2004/03/20 02:04:07 jonathan Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "vlan.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/device.h>
     95 #include <sys/socket.h>
     96 
     97 #include <net/if.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_media.h>
    100 #include <net/if_ether.h>
    101 
    102 #ifdef INET
    103 #include <netinet/in.h>
    104 #include <netinet/in_systm.h>
    105 #include <netinet/in_var.h>
    106 #include <netinet/ip.h>
    107 #endif
    108 
    109 #if NBPFILTER > 0
    110 #include <net/bpf.h>
    111 #endif
    112 
    113 #include <dev/pci/pcireg.h>
    114 #include <dev/pci/pcivar.h>
    115 #include <dev/pci/pcidevs.h>
    116 
    117 #include <dev/mii/mii.h>
    118 #include <dev/mii/miivar.h>
    119 #include <dev/mii/miidevs.h>
    120 #include <dev/mii/brgphyreg.h>
    121 
    122 #include <dev/pci/if_bgereg.h>
    123 
    124 #include <uvm/uvm_extern.h>
    125 
    126 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    127 
    128 
    129 /*
    130  * Tunable thresholds for rx-side bge interrupt mitigation.
    131  */
    132 
    133 /*
    134  * The pairs of values below were obtained from empirical measurement
    135  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    136  * interrupt for every N packets received, where N is, approximately,
    137  * the second value (rx_max_bds) in each pair.  The values are chosen
    138  * such that moving from one pair to the succeeding pair was observed
    139  * to roughly halve interrupt rate under sustained input packet load.
    140  * The values were empirically chosen to avoid overflowing internal
    141  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    142  * results in internal wrapping and higher interrupt rates.
    143  * The limit of 46 frames was chosen to match NFS workloads.
    144  *
    145  * These values also work well on bcm5701, bcm5704C, and (less
    146  * tested) bcm5703.  On other chipsets, (including the Altima chip
    147  * family), the larger values may overflow internal chip limits,
    148  * leading to increasing interrupt rates rather than lower interrupt
    149  * rates.
    150  *
    151  * Applications using heavy interrupt mitigation (interrupting every
    152  * 32 or 46 frames) in both directions may need to increase the TCP
    153  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    154  * full link bandwidth, due to ACKs and window updates lingering
    155  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    156  */
    157 struct bge_load_rx_thresh {
    158 	int rx_ticks;
    159 	int rx_max_bds; }
    160 bge_rx_threshes[] = {
    161 	{ 32,   2 },
    162 	{ 50,   4 },
    163 	{ 100,  8 },
    164 	{ 192, 16 },
    165 	{ 416, 32 },
    166 	{ 598, 46 }
    167 };
    168 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    169 
    170 /* XXX patchable; should be sysctl'able */
    171 int	bge_auto_thresh = 0;
    172 
    173 int bge_probe(struct device *, struct cfdata *, void *);
    174 void bge_attach(struct device *, struct device *, void *);
    175 void bge_release_resources(struct bge_softc *);
    176 void bge_txeof(struct bge_softc *);
    177 void bge_rxeof(struct bge_softc *);
    178 
    179 void bge_tick(void *);
    180 void bge_stats_update(struct bge_softc *);
    181 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    182 static __inline int bge_cksum_pad(struct mbuf *pkt);
    183 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
    184 
    185 int bge_intr(void *);
    186 void bge_start(struct ifnet *);
    187 int bge_ioctl(struct ifnet *, u_long, caddr_t);
    188 int bge_init(struct ifnet *);
    189 void bge_stop(struct bge_softc *);
    190 void bge_watchdog(struct ifnet *);
    191 void bge_shutdown(void *);
    192 int bge_ifmedia_upd(struct ifnet *);
    193 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    194 
    195 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
    196 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
    197 
    198 void bge_setmulti(struct bge_softc *);
    199 
    200 void bge_handle_events(struct bge_softc *);
    201 int bge_alloc_jumbo_mem(struct bge_softc *);
    202 void bge_free_jumbo_mem(struct bge_softc *);
    203 void *bge_jalloc(struct bge_softc *);
    204 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
    205 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
    206 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    207 int bge_init_rx_ring_std(struct bge_softc *);
    208 void bge_free_rx_ring_std(struct bge_softc *);
    209 int bge_init_rx_ring_jumbo(struct bge_softc *);
    210 void bge_free_rx_ring_jumbo(struct bge_softc *);
    211 void bge_free_tx_ring(struct bge_softc *);
    212 int bge_init_tx_ring(struct bge_softc *);
    213 
    214 int bge_chipinit(struct bge_softc *);
    215 int bge_blockinit(struct bge_softc *);
    216 int bge_setpowerstate(struct bge_softc *, int);
    217 
    218 #ifdef notdef
    219 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
    220 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
    221 void bge_vpd_read(struct bge_softc *);
    222 #endif
    223 
    224 u_int32_t bge_readmem_ind(struct bge_softc *, int);
    225 void bge_writemem_ind(struct bge_softc *, int, int);
    226 #ifdef notdef
    227 u_int32_t bge_readreg_ind(struct bge_softc *, int);
    228 #endif
    229 void bge_writereg_ind(struct bge_softc *, int, int);
    230 
    231 int bge_miibus_readreg(struct device *, int, int);
    232 void bge_miibus_writereg(struct device *, int, int, int);
    233 void bge_miibus_statchg(struct device *);
    234 
    235 void bge_reset(struct bge_softc *);
    236 
    237 void	bge_set_thresh(struct ifnet *  /*ifp*/, int /*lvl*/);
    238 void	bge_update_all_threshes(int /*lvl*/);
    239 
    240 void bge_dump_status(struct bge_softc *);
    241 void bge_dump_rxbd(struct bge_rx_bd *);
    242 
    243 #define BGE_DEBUG
    244 #ifdef BGE_DEBUG
    245 #define DPRINTF(x)	if (bgedebug) printf x
    246 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    247 int	bgedebug = 0;
    248 #else
    249 #define DPRINTF(x)
    250 #define DPRINTFN(n,x)
    251 #endif
    252 
    253 /* Various chip quirks. */
    254 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    255 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    256 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    257 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    258 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    259 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    260 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    261 #define	BGE_QUIRK_5705_CORE		0x00000080
    262 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    263 
    264 /* following bugs are common to bcm5700 rev B, all flavours */
    265 #define BGE_QUIRK_5700_COMMON \
    266 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    267 
    268 CFATTACH_DECL(bge, sizeof(struct bge_softc),
    269     bge_probe, bge_attach, NULL, NULL);
    270 
    271 u_int32_t
    272 bge_readmem_ind(sc, off)
    273 	struct bge_softc *sc;
    274 	int off;
    275 {
    276 	struct pci_attach_args	*pa = &(sc->bge_pa);
    277 	pcireg_t val;
    278 
    279 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    280 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    281 	return val;
    282 }
    283 
    284 void
    285 bge_writemem_ind(sc, off, val)
    286 	struct bge_softc *sc;
    287 	int off, val;
    288 {
    289 	struct pci_attach_args	*pa = &(sc->bge_pa);
    290 
    291 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    292 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    293 }
    294 
    295 #ifdef notdef
    296 u_int32_t
    297 bge_readreg_ind(sc, off)
    298 	struct bge_softc *sc;
    299 	int off;
    300 {
    301 	struct pci_attach_args	*pa = &(sc->bge_pa);
    302 
    303 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    304 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    305 }
    306 #endif
    307 
    308 void
    309 bge_writereg_ind(sc, off, val)
    310 	struct bge_softc *sc;
    311 	int off, val;
    312 {
    313 	struct pci_attach_args	*pa = &(sc->bge_pa);
    314 
    315 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    316 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    317 }
    318 
    319 #ifdef notdef
    320 u_int8_t
    321 bge_vpd_readbyte(sc, addr)
    322 	struct bge_softc *sc;
    323 	int addr;
    324 {
    325 	int i;
    326 	u_int32_t val;
    327 	struct pci_attach_args	*pa = &(sc->bge_pa);
    328 
    329 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    330 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    331 		DELAY(10);
    332 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    333 		    BGE_VPD_FLAG)
    334 			break;
    335 	}
    336 
    337 	if (i == BGE_TIMEOUT) {
    338 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    339 		return(0);
    340 	}
    341 
    342 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    343 
    344 	return((val >> ((addr % 4) * 8)) & 0xFF);
    345 }
    346 
    347 void
    348 bge_vpd_read_res(sc, res, addr)
    349 	struct bge_softc *sc;
    350 	struct vpd_res *res;
    351 	int addr;
    352 {
    353 	int i;
    354 	u_int8_t *ptr;
    355 
    356 	ptr = (u_int8_t *)res;
    357 	for (i = 0; i < sizeof(struct vpd_res); i++)
    358 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    359 }
    360 
    361 void
    362 bge_vpd_read(sc)
    363 	struct bge_softc *sc;
    364 {
    365 	int pos = 0, i;
    366 	struct vpd_res res;
    367 
    368 	if (sc->bge_vpd_prodname != NULL)
    369 		free(sc->bge_vpd_prodname, M_DEVBUF);
    370 	if (sc->bge_vpd_readonly != NULL)
    371 		free(sc->bge_vpd_readonly, M_DEVBUF);
    372 	sc->bge_vpd_prodname = NULL;
    373 	sc->bge_vpd_readonly = NULL;
    374 
    375 	bge_vpd_read_res(sc, &res, pos);
    376 
    377 	if (res.vr_id != VPD_RES_ID) {
    378 		printf("%s: bad VPD resource id: expected %x got %x\n",
    379 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    380 		return;
    381 	}
    382 
    383 	pos += sizeof(res);
    384 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    385 	if (sc->bge_vpd_prodname == NULL)
    386 		panic("bge_vpd_read");
    387 	for (i = 0; i < res.vr_len; i++)
    388 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    389 	sc->bge_vpd_prodname[i] = '\0';
    390 	pos += i;
    391 
    392 	bge_vpd_read_res(sc, &res, pos);
    393 
    394 	if (res.vr_id != VPD_RES_READ) {
    395 		printf("%s: bad VPD resource id: expected %x got %x\n",
    396 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    397 		return;
    398 	}
    399 
    400 	pos += sizeof(res);
    401 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    402 	if (sc->bge_vpd_readonly == NULL)
    403 		panic("bge_vpd_read");
    404 	for (i = 0; i < res.vr_len + 1; i++)
    405 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    406 }
    407 #endif
    408 
    409 /*
    410  * Read a byte of data stored in the EEPROM at address 'addr.' The
    411  * BCM570x supports both the traditional bitbang interface and an
    412  * auto access interface for reading the EEPROM. We use the auto
    413  * access method.
    414  */
    415 u_int8_t
    416 bge_eeprom_getbyte(sc, addr, dest)
    417 	struct bge_softc *sc;
    418 	int addr;
    419 	u_int8_t *dest;
    420 {
    421 	int i;
    422 	u_int32_t byte = 0;
    423 
    424 	/*
    425 	 * Enable use of auto EEPROM access so we can avoid
    426 	 * having to use the bitbang method.
    427 	 */
    428 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    429 
    430 	/* Reset the EEPROM, load the clock period. */
    431 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    432 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    433 	DELAY(20);
    434 
    435 	/* Issue the read EEPROM command. */
    436 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    437 
    438 	/* Wait for completion */
    439 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    440 		DELAY(10);
    441 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    442 			break;
    443 	}
    444 
    445 	if (i == BGE_TIMEOUT) {
    446 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    447 		return(0);
    448 	}
    449 
    450 	/* Get result. */
    451 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    452 
    453 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    454 
    455 	return(0);
    456 }
    457 
    458 /*
    459  * Read a sequence of bytes from the EEPROM.
    460  */
    461 int
    462 bge_read_eeprom(sc, dest, off, cnt)
    463 	struct bge_softc *sc;
    464 	caddr_t dest;
    465 	int off;
    466 	int cnt;
    467 {
    468 	int err = 0, i;
    469 	u_int8_t byte = 0;
    470 
    471 	for (i = 0; i < cnt; i++) {
    472 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    473 		if (err)
    474 			break;
    475 		*(dest + i) = byte;
    476 	}
    477 
    478 	return(err ? 1 : 0);
    479 }
    480 
    481 int
    482 bge_miibus_readreg(dev, phy, reg)
    483 	struct device *dev;
    484 	int phy, reg;
    485 {
    486 	struct bge_softc *sc = (struct bge_softc *)dev;
    487 	u_int32_t val;
    488 	u_int32_t saved_autopoll;
    489 	int i;
    490 
    491 	/*
    492 	 * Several chips with builtin PHYs will incorrectly answer to
    493 	 * other PHY instances than the builtin PHY at id 1.
    494 	 */
    495 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    496 		return(0);
    497 
    498 	/* Reading with autopolling on may trigger PCI errors */
    499 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    500 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    501 		CSR_WRITE_4(sc, BGE_MI_MODE,
    502 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    503 		DELAY(40);
    504 	}
    505 
    506 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    507 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    508 
    509 	for (i = 0; i < BGE_TIMEOUT; i++) {
    510 		val = CSR_READ_4(sc, BGE_MI_COMM);
    511 		if (!(val & BGE_MICOMM_BUSY))
    512 			break;
    513 		delay(10);
    514 	}
    515 
    516 	if (i == BGE_TIMEOUT) {
    517 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    518 		val = 0;
    519 		goto done;
    520 	}
    521 
    522 	val = CSR_READ_4(sc, BGE_MI_COMM);
    523 
    524 done:
    525 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    526 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    527 		DELAY(40);
    528 	}
    529 
    530 	if (val & BGE_MICOMM_READFAIL)
    531 		return(0);
    532 
    533 	return(val & 0xFFFF);
    534 }
    535 
    536 void
    537 bge_miibus_writereg(dev, phy, reg, val)
    538 	struct device *dev;
    539 	int phy, reg, val;
    540 {
    541 	struct bge_softc *sc = (struct bge_softc *)dev;
    542 	u_int32_t saved_autopoll;
    543 	int i;
    544 
    545 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    546 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    547 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    548 		delay(40);
    549 		CSR_WRITE_4(sc, BGE_MI_MODE,
    550 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    551 		delay(10); /* 40 usec is supposed to be adequate */
    552 	}
    553 
    554 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    555 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    556 
    557 	for (i = 0; i < BGE_TIMEOUT; i++) {
    558 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    559 			break;
    560 		delay(10);
    561 	}
    562 
    563 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    564 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    565 		delay(40);
    566 	}
    567 
    568 	if (i == BGE_TIMEOUT) {
    569 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    570 	}
    571 }
    572 
    573 void
    574 bge_miibus_statchg(dev)
    575 	struct device *dev;
    576 {
    577 	struct bge_softc *sc = (struct bge_softc *)dev;
    578 	struct mii_data *mii = &sc->bge_mii;
    579 
    580 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    581 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    582 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    583 	} else {
    584 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    585 	}
    586 
    587 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    588 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    589 	} else {
    590 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    591 	}
    592 }
    593 
    594 /*
    595  * Update rx threshold levels to values in a particular slot
    596  * of the interrupt-mitigation table bge_rx_threshes.
    597  */
    598 void
    599 bge_set_thresh(struct ifnet *ifp, int lvl)
    600 {
    601 	struct bge_softc *sc = ifp->if_softc;
    602 	int s;
    603 
    604 	/* For now, just save the new Rx-intr thresholds and record
    605 	 * that a threshold update is pending.  Updating the hardware
    606 	 * registers here (even at splhigh()) is observed to
    607 	 * occasionaly cause glitches where Rx-interrupts are not
    608 	 * honoured for up to 10 seconds. jonathan (at) netbsd.org, 2003-04-05
    609 	 */
    610 	s = splnet();
    611 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    612 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    613 	sc->bge_pending_rxintr_change = 1;
    614 	splx(s);
    615 
    616 	 return;
    617 }
    618 
    619 
    620 /*
    621  * Update Rx thresholds of all bge devices
    622  */
    623 void
    624 bge_update_all_threshes(int lvl)
    625 {
    626 	struct ifnet *ifp;
    627 	const char * const namebuf = "bge";
    628 	int namelen;
    629 
    630 	if (lvl < 0)
    631 		lvl = 0;
    632 	else if( lvl >= NBGE_RX_THRESH)
    633 		lvl = NBGE_RX_THRESH - 1;
    634 
    635 	namelen = strlen(namebuf);
    636 	/*
    637 	 * Now search all the interfaces for this name/number
    638 	 */
    639 	TAILQ_FOREACH(ifp, &ifnet, if_list) {
    640 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0 )
    641 		      continue;
    642 		/* We got a match: update if doing auto-threshold-tuning */
    643 		if (bge_auto_thresh)
    644 			bge_set_thresh(ifp->if_softc, lvl);
    645 	}
    646 }
    647 
    648 /*
    649  * Handle events that have triggered interrupts.
    650  */
    651 void
    652 bge_handle_events(sc)
    653 	struct bge_softc		*sc;
    654 {
    655 
    656 	return;
    657 }
    658 
    659 /*
    660  * Memory management for jumbo frames.
    661  */
    662 
    663 int
    664 bge_alloc_jumbo_mem(sc)
    665 	struct bge_softc		*sc;
    666 {
    667 	caddr_t			ptr, kva;
    668 	bus_dma_segment_t	seg;
    669 	int		i, rseg, state, error;
    670 	struct bge_jpool_entry   *entry;
    671 
    672 	state = error = 0;
    673 
    674 	/* Grab a big chunk o' storage. */
    675 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    676 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    677 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    678 		return ENOBUFS;
    679 	}
    680 
    681 	state = 1;
    682 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    683 	    BUS_DMA_NOWAIT)) {
    684 		printf("%s: can't map DMA buffers (%d bytes)\n",
    685 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    686 		error = ENOBUFS;
    687 		goto out;
    688 	}
    689 
    690 	state = 2;
    691 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    692 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    693 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
    694 		error = ENOBUFS;
    695 		goto out;
    696 	}
    697 
    698 	state = 3;
    699 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    700 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    701 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
    702 		error = ENOBUFS;
    703 		goto out;
    704 	}
    705 
    706 	state = 4;
    707 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    708 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
    709 
    710 	SLIST_INIT(&sc->bge_jfree_listhead);
    711 	SLIST_INIT(&sc->bge_jinuse_listhead);
    712 
    713 	/*
    714 	 * Now divide it up into 9K pieces and save the addresses
    715 	 * in an array.
    716 	 */
    717 	ptr = sc->bge_cdata.bge_jumbo_buf;
    718 	for (i = 0; i < BGE_JSLOTS; i++) {
    719 		sc->bge_cdata.bge_jslots[i] = ptr;
    720 		ptr += BGE_JLEN;
    721 		entry = malloc(sizeof(struct bge_jpool_entry),
    722 		    M_DEVBUF, M_NOWAIT);
    723 		if (entry == NULL) {
    724 			printf("%s: no memory for jumbo buffer queue!\n",
    725 			    sc->bge_dev.dv_xname);
    726 			error = ENOBUFS;
    727 			goto out;
    728 		}
    729 		entry->slot = i;
    730 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    731 				 entry, jpool_entries);
    732 	}
    733 out:
    734 	if (error != 0) {
    735 		switch (state) {
    736 		case 4:
    737 			bus_dmamap_unload(sc->bge_dmatag,
    738 			    sc->bge_cdata.bge_rx_jumbo_map);
    739 		case 3:
    740 			bus_dmamap_destroy(sc->bge_dmatag,
    741 			    sc->bge_cdata.bge_rx_jumbo_map);
    742 		case 2:
    743 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    744 		case 1:
    745 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    746 			break;
    747 		default:
    748 			break;
    749 		}
    750 	}
    751 
    752 	return error;
    753 }
    754 
    755 /*
    756  * Allocate a jumbo buffer.
    757  */
    758 void *
    759 bge_jalloc(sc)
    760 	struct bge_softc		*sc;
    761 {
    762 	struct bge_jpool_entry   *entry;
    763 
    764 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    765 
    766 	if (entry == NULL) {
    767 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    768 		return(NULL);
    769 	}
    770 
    771 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    772 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    773 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    774 }
    775 
    776 /*
    777  * Release a jumbo buffer.
    778  */
    779 void
    780 bge_jfree(m, buf, size, arg)
    781 	struct mbuf	*m;
    782 	caddr_t		buf;
    783 	size_t		size;
    784 	void		*arg;
    785 {
    786 	struct bge_jpool_entry *entry;
    787 	struct bge_softc *sc;
    788 	int i, s;
    789 
    790 	/* Extract the softc struct pointer. */
    791 	sc = (struct bge_softc *)arg;
    792 
    793 	if (sc == NULL)
    794 		panic("bge_jfree: can't find softc pointer!");
    795 
    796 	/* calculate the slot this buffer belongs to */
    797 
    798 	i = ((caddr_t)buf
    799 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    800 
    801 	if ((i < 0) || (i >= BGE_JSLOTS))
    802 		panic("bge_jfree: asked to free buffer that we don't manage!");
    803 
    804 	s = splvm();
    805 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    806 	if (entry == NULL)
    807 		panic("bge_jfree: buffer not in use!");
    808 	entry->slot = i;
    809 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    810 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    811 
    812 	if (__predict_true(m != NULL))
    813   		pool_cache_put(&mbpool_cache, m);
    814 	splx(s);
    815 }
    816 
    817 
    818 /*
    819  * Intialize a standard receive ring descriptor.
    820  */
    821 int
    822 bge_newbuf_std(sc, i, m, dmamap)
    823 	struct bge_softc	*sc;
    824 	int			i;
    825 	struct mbuf		*m;
    826 	bus_dmamap_t dmamap;
    827 {
    828 	struct mbuf		*m_new = NULL;
    829 	struct bge_rx_bd	*r;
    830 	int			error;
    831 
    832 	if (dmamap == NULL) {
    833 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    834 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    835 		if (error != 0)
    836 			return error;
    837 	}
    838 
    839 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    840 
    841 	if (m == NULL) {
    842 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    843 		if (m_new == NULL) {
    844 			return(ENOBUFS);
    845 		}
    846 
    847 		MCLGET(m_new, M_DONTWAIT);
    848 		if (!(m_new->m_flags & M_EXT)) {
    849 			m_freem(m_new);
    850 			return(ENOBUFS);
    851 		}
    852 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    853 		if (!sc->bge_rx_alignment_bug)
    854 		    m_adj(m_new, ETHER_ALIGN);
    855 
    856 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    857 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    858 			return(ENOBUFS);
    859 	} else {
    860 		m_new = m;
    861 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    862 		m_new->m_data = m_new->m_ext.ext_buf;
    863 		if (!sc->bge_rx_alignment_bug)
    864 		    m_adj(m_new, ETHER_ALIGN);
    865 	}
    866 
    867 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    868 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    869 	bge_set_hostaddr(&r->bge_addr,
    870 	    dmamap->dm_segs[0].ds_addr);
    871 	r->bge_flags = BGE_RXBDFLAG_END;
    872 	r->bge_len = m_new->m_len;
    873 	r->bge_idx = i;
    874 
    875 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    876 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    877 		i * sizeof (struct bge_rx_bd),
    878 	    sizeof (struct bge_rx_bd),
    879 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    880 
    881 	return(0);
    882 }
    883 
    884 /*
    885  * Initialize a jumbo receive ring descriptor. This allocates
    886  * a jumbo buffer from the pool managed internally by the driver.
    887  */
    888 int
    889 bge_newbuf_jumbo(sc, i, m)
    890 	struct bge_softc *sc;
    891 	int i;
    892 	struct mbuf *m;
    893 {
    894 	struct mbuf *m_new = NULL;
    895 	struct bge_rx_bd *r;
    896 
    897 	if (m == NULL) {
    898 		caddr_t			*buf = NULL;
    899 
    900 		/* Allocate the mbuf. */
    901 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    902 		if (m_new == NULL) {
    903 			return(ENOBUFS);
    904 		}
    905 
    906 		/* Allocate the jumbo buffer */
    907 		buf = bge_jalloc(sc);
    908 		if (buf == NULL) {
    909 			m_freem(m_new);
    910 			printf("%s: jumbo allocation failed "
    911 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    912 			return(ENOBUFS);
    913 		}
    914 
    915 		/* Attach the buffer to the mbuf. */
    916 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    917 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    918 		    bge_jfree, sc);
    919 	} else {
    920 		m_new = m;
    921 		m_new->m_data = m_new->m_ext.ext_buf;
    922 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    923 	}
    924 
    925 	if (!sc->bge_rx_alignment_bug)
    926 	    m_adj(m_new, ETHER_ALIGN);
    927 	/* Set up the descriptor. */
    928 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    929 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    930 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    931 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    932 	r->bge_len = m_new->m_len;
    933 	r->bge_idx = i;
    934 
    935 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    936 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    937 		i * sizeof (struct bge_rx_bd),
    938 	    sizeof (struct bge_rx_bd),
    939 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    940 
    941 	return(0);
    942 }
    943 
    944 /*
    945  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    946  * that's 1MB or memory, which is a lot. For now, we fill only the first
    947  * 256 ring entries and hope that our CPU is fast enough to keep up with
    948  * the NIC.
    949  */
    950 int
    951 bge_init_rx_ring_std(sc)
    952 	struct bge_softc *sc;
    953 {
    954 	int i;
    955 
    956 	if (sc->bge_flags & BGE_RXRING_VALID)
    957 		return 0;
    958 
    959 	for (i = 0; i < BGE_SSLOTS; i++) {
    960 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    961 			return(ENOBUFS);
    962 	}
    963 
    964 	sc->bge_std = i - 1;
    965 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
    966 
    967 	sc->bge_flags |= BGE_RXRING_VALID;
    968 
    969 	return(0);
    970 }
    971 
    972 void
    973 bge_free_rx_ring_std(sc)
    974 	struct bge_softc *sc;
    975 {
    976 	int i;
    977 
    978 	if (!(sc->bge_flags & BGE_RXRING_VALID))
    979 		return;
    980 
    981 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
    982 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
    983 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
    984 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
    985 			bus_dmamap_destroy(sc->bge_dmatag,
    986 			    sc->bge_cdata.bge_rx_std_map[i]);
    987 		}
    988 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
    989 		    sizeof(struct bge_rx_bd));
    990 	}
    991 
    992 	sc->bge_flags &= ~BGE_RXRING_VALID;
    993 }
    994 
    995 int
    996 bge_init_rx_ring_jumbo(sc)
    997 	struct bge_softc *sc;
    998 {
    999 	int i;
   1000 	volatile struct bge_rcb *rcb;
   1001 
   1002 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1003 		return 0;
   1004 
   1005 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1006 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1007 			return(ENOBUFS);
   1008 	};
   1009 
   1010 	sc->bge_jumbo = i - 1;
   1011 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1012 
   1013 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1014 	rcb->bge_maxlen_flags = 0;
   1015 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1016 
   1017 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1018 
   1019 	return(0);
   1020 }
   1021 
   1022 void
   1023 bge_free_rx_ring_jumbo(sc)
   1024 	struct bge_softc *sc;
   1025 {
   1026 	int i;
   1027 
   1028 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1029 		return;
   1030 
   1031 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1032 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1033 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1034 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1035 		}
   1036 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1037 		    sizeof(struct bge_rx_bd));
   1038 	}
   1039 
   1040 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1041 }
   1042 
   1043 void
   1044 bge_free_tx_ring(sc)
   1045 	struct bge_softc *sc;
   1046 {
   1047 	int i, freed;
   1048 	struct txdmamap_pool_entry *dma;
   1049 
   1050 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1051 		return;
   1052 
   1053 	freed = 0;
   1054 
   1055 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1056 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1057 			freed++;
   1058 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1059 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1060 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1061 					    link);
   1062 			sc->txdma[i] = 0;
   1063 		}
   1064 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1065 		    sizeof(struct bge_tx_bd));
   1066 	}
   1067 
   1068 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1069 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1070 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1071 		free(dma, M_DEVBUF);
   1072 	}
   1073 
   1074 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1075 }
   1076 
   1077 int
   1078 bge_init_tx_ring(sc)
   1079 	struct bge_softc *sc;
   1080 {
   1081 	int i;
   1082 	bus_dmamap_t dmamap;
   1083 	struct txdmamap_pool_entry *dma;
   1084 
   1085 	if (sc->bge_flags & BGE_TXRING_VALID)
   1086 		return 0;
   1087 
   1088 	sc->bge_txcnt = 0;
   1089 	sc->bge_tx_saved_considx = 0;
   1090 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1091 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1092 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1093 
   1094 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1095 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1096 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1097 
   1098 	SLIST_INIT(&sc->txdma_list);
   1099 	for (i = 0; i < BGE_RSLOTS; i++) {
   1100 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
   1101 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1102 		    &dmamap))
   1103 			return(ENOBUFS);
   1104 		if (dmamap == NULL)
   1105 			panic("dmamap NULL in bge_init_tx_ring");
   1106 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1107 		if (dma == NULL) {
   1108 			printf("%s: can't alloc txdmamap_pool_entry\n",
   1109 			    sc->bge_dev.dv_xname);
   1110 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1111 			return (ENOMEM);
   1112 		}
   1113 		dma->dmamap = dmamap;
   1114 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1115 	}
   1116 
   1117 	sc->bge_flags |= BGE_TXRING_VALID;
   1118 
   1119 	return(0);
   1120 }
   1121 
   1122 void
   1123 bge_setmulti(sc)
   1124 	struct bge_softc *sc;
   1125 {
   1126 	struct ethercom		*ac = &sc->ethercom;
   1127 	struct ifnet		*ifp = &ac->ec_if;
   1128 	struct ether_multi	*enm;
   1129 	struct ether_multistep  step;
   1130 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1131 	u_int32_t		h;
   1132 	int			i;
   1133 
   1134 	if (ifp->if_flags & IFF_PROMISC)
   1135 		goto allmulti;
   1136 
   1137 	/* Now program new ones. */
   1138 	ETHER_FIRST_MULTI(step, ac, enm);
   1139 	while (enm != NULL) {
   1140 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1141 			/*
   1142 			 * We must listen to a range of multicast addresses.
   1143 			 * For now, just accept all multicasts, rather than
   1144 			 * trying to set only those filter bits needed to match
   1145 			 * the range.  (At this time, the only use of address
   1146 			 * ranges is for IP multicast routing, for which the
   1147 			 * range is big enough to require all bits set.)
   1148 			 */
   1149 			goto allmulti;
   1150 		}
   1151 
   1152 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1153 
   1154 		/* Just want the 7 least-significant bits. */
   1155 		h &= 0x7f;
   1156 
   1157 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1158 		ETHER_NEXT_MULTI(step, enm);
   1159 	}
   1160 
   1161 	ifp->if_flags &= ~IFF_ALLMULTI;
   1162 	goto setit;
   1163 
   1164  allmulti:
   1165 	ifp->if_flags |= IFF_ALLMULTI;
   1166 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1167 
   1168  setit:
   1169 	for (i = 0; i < 4; i++)
   1170 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1171 }
   1172 
   1173 const int bge_swapbits[] = {
   1174 	0,
   1175 	BGE_MODECTL_BYTESWAP_DATA,
   1176 	BGE_MODECTL_WORDSWAP_DATA,
   1177 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1178 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1179 
   1180 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1181 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1182 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1183 
   1184 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1185 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1186 
   1187 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1188 
   1189 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1190 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1191 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1192 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1193 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1194 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1195 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1196 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1197 
   1198 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1199 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1200 };
   1201 
   1202 int bge_swapindex = 0;
   1203 
   1204 /*
   1205  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1206  * self-test results.
   1207  */
   1208 int
   1209 bge_chipinit(sc)
   1210 	struct bge_softc *sc;
   1211 {
   1212 	u_int32_t		cachesize;
   1213 	int			i;
   1214 	u_int32_t		dma_rw_ctl;
   1215 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1216 
   1217 
   1218 	/* Set endianness before we access any non-PCI registers. */
   1219 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1220 	    BGE_INIT);
   1221 
   1222 	/* Set power state to D0. */
   1223 	bge_setpowerstate(sc, 0);
   1224 
   1225 	/*
   1226 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1227 	 * self-tests passed.
   1228 	 */
   1229 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1230 		printf("%s: RX CPU self-diagnostics failed!\n",
   1231 		    sc->bge_dev.dv_xname);
   1232 		return(ENODEV);
   1233 	}
   1234 
   1235 	/* Clear the MAC control register */
   1236 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1237 
   1238 	/*
   1239 	 * Clear the MAC statistics block in the NIC's
   1240 	 * internal memory.
   1241 	 */
   1242 	for (i = BGE_STATS_BLOCK;
   1243 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1244 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1245 
   1246 	for (i = BGE_STATUS_BLOCK;
   1247 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1248 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1249 
   1250 	/* Set up the PCI DMA control register. */
   1251 	if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
   1252 	    BGE_PCISTATE_PCI_BUSMODE) {
   1253 		/* Conventional PCI bus */
   1254 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
   1255 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1256 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1257 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1258 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1259 			dma_rw_ctl |= 0x0F;
   1260 		}
   1261 	} else {
   1262 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
   1263 		/* PCI-X bus */
   1264 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1265 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1266 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1267 		    (0x0F);
   1268 		/*
   1269 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1270 		 * for hardware bugs, which means we should also clear
   1271 		 * the low-order MINDMA bits.  In addition, the 5704
   1272 		 * uses a different encoding of read/write watermarks.
   1273 		 */
   1274 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1275 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1276 			  /* should be 0x1f0000 */
   1277 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1278 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1279 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1280 		}
   1281 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1282 			dma_rw_ctl &=  0xfffffff0;
   1283 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1284 		}
   1285 	}
   1286 
   1287 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1288 
   1289 	/*
   1290 	 * Set up general mode register.
   1291 	 */
   1292 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1293 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1294 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1295 
   1296 	/* Get cache line size. */
   1297 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1298 
   1299 	/*
   1300 	 * Avoid violating PCI spec on certain chip revs.
   1301 	 */
   1302 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1303 	    PCIM_CMD_MWIEN) {
   1304 		switch(cachesize) {
   1305 		case 1:
   1306 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1307 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1308 			break;
   1309 		case 2:
   1310 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1311 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1312 			break;
   1313 		case 4:
   1314 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1315 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1316 			break;
   1317 		case 8:
   1318 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1319 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1320 			break;
   1321 		case 16:
   1322 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1323 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1324 			break;
   1325 		case 32:
   1326 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1327 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1328 			break;
   1329 		case 64:
   1330 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1331 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1332 			break;
   1333 		default:
   1334 		/* Disable PCI memory write and invalidate. */
   1335 #if 0
   1336 			if (bootverbose)
   1337 				printf("%s: cache line size %d not "
   1338 				    "supported; disabling PCI MWI\n",
   1339 				    sc->bge_dev.dv_xname, cachesize);
   1340 #endif
   1341 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1342 			    PCIM_CMD_MWIEN);
   1343 			break;
   1344 		}
   1345 	}
   1346 
   1347 	/*
   1348 	 * Disable memory write invalidate.  Apparently it is not supported
   1349 	 * properly by these devices.
   1350 	 */
   1351 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1352 
   1353 
   1354 #ifdef __brokenalpha__
   1355 	/*
   1356 	 * Must insure that we do not cross an 8K (bytes) boundary
   1357 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1358 	 * restriction on some ALPHA platforms with early revision
   1359 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1360 	 */
   1361 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1362 #endif
   1363 
   1364 	/* Set the timer prescaler (always 66MHz) */
   1365 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1366 
   1367 	return(0);
   1368 }
   1369 
   1370 int
   1371 bge_blockinit(sc)
   1372 	struct bge_softc *sc;
   1373 {
   1374 	volatile struct bge_rcb		*rcb;
   1375 	bus_size_t		rcb_addr;
   1376 	int			i;
   1377 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1378 	bge_hostaddr		taddr;
   1379 
   1380 	/*
   1381 	 * Initialize the memory window pointer register so that
   1382 	 * we can access the first 32K of internal NIC RAM. This will
   1383 	 * allow us to set up the TX send ring RCBs and the RX return
   1384 	 * ring RCBs, plus other things which live in NIC memory.
   1385 	 */
   1386 
   1387 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1388 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1389 
   1390 	/* Configure mbuf memory pool */
   1391 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1392 		if (sc->bge_extram) {
   1393 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1394 			    BGE_EXT_SSRAM);
   1395 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1396 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1397 			else
   1398 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1399 		} else {
   1400 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1401 			    BGE_BUFFPOOL_1);
   1402 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1403 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1404 			else
   1405 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1406 		}
   1407 
   1408 		/* Configure DMA resource pool */
   1409 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1410 		    BGE_DMA_DESCRIPTORS);
   1411 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1412 	}
   1413 
   1414 	/* Configure mbuf pool watermarks */
   1415 #ifdef ORIG_WPAUL_VALUES
   1416 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1417 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1418 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1419 #else
   1420 	/* new broadcom docs strongly recommend these: */
   1421 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1422 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1423 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1424 	} else {
   1425 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1426 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1427 	}
   1428 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1429 #endif
   1430 
   1431 	/* Configure DMA resource watermarks */
   1432 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1433 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1434 
   1435 	/* Enable buffer manager */
   1436 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1437 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1438 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1439 
   1440 		/* Poll for buffer manager start indication */
   1441 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1442 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1443 				break;
   1444 			DELAY(10);
   1445 		}
   1446 
   1447 		if (i == BGE_TIMEOUT) {
   1448 			printf("%s: buffer manager failed to start\n",
   1449 			    sc->bge_dev.dv_xname);
   1450 			return(ENXIO);
   1451 		}
   1452 	}
   1453 
   1454 	/* Enable flow-through queues */
   1455 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1456 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1457 
   1458 	/* Wait until queue initialization is complete */
   1459 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1460 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1461 			break;
   1462 		DELAY(10);
   1463 	}
   1464 
   1465 	if (i == BGE_TIMEOUT) {
   1466 		printf("%s: flow-through queue init failed\n",
   1467 		    sc->bge_dev.dv_xname);
   1468 		return(ENXIO);
   1469 	}
   1470 
   1471 	/* Initialize the standard RX ring control block */
   1472 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1473 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1474 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1475 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1476 		rcb->bge_maxlen_flags =
   1477 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1478 	} else {
   1479 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1480 	}
   1481 	if (sc->bge_extram)
   1482 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1483 	else
   1484 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1485 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1486 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1487 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1488 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1489 
   1490 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1491 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1492 	} else {
   1493 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1494 	}
   1495 
   1496 	/*
   1497 	 * Initialize the jumbo RX ring control block
   1498 	 * We set the 'ring disabled' bit in the flags
   1499 	 * field until we're actually ready to start
   1500 	 * using this ring (i.e. once we set the MTU
   1501 	 * high enough to require it).
   1502 	 */
   1503 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1504 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1505 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1506 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1507 		rcb->bge_maxlen_flags =
   1508 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1509 			BGE_RCB_FLAG_RING_DISABLED);
   1510 		if (sc->bge_extram)
   1511 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1512 		else
   1513 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1514 
   1515 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1516 		    rcb->bge_hostaddr.bge_addr_hi);
   1517 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1518 		    rcb->bge_hostaddr.bge_addr_lo);
   1519 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1520 		    rcb->bge_maxlen_flags);
   1521 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1522 
   1523 		/* Set up dummy disabled mini ring RCB */
   1524 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1525 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1526 		    BGE_RCB_FLAG_RING_DISABLED);
   1527 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1528 		    rcb->bge_maxlen_flags);
   1529 
   1530 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1531 		    offsetof(struct bge_ring_data, bge_info),
   1532 		    sizeof (struct bge_gib),
   1533 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1534 	}
   1535 
   1536 	/*
   1537 	 * Set the BD ring replentish thresholds. The recommended
   1538 	 * values are 1/8th the number of descriptors allocated to
   1539 	 * each ring.
   1540 	 */
   1541 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1542 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1543 
   1544 	/*
   1545 	 * Disable all unused send rings by setting the 'ring disabled'
   1546 	 * bit in the flags field of all the TX send ring control blocks.
   1547 	 * These are located in NIC memory.
   1548 	 */
   1549 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1550 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1551 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1552 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1553 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1554 		rcb_addr += sizeof(struct bge_rcb);
   1555 	}
   1556 
   1557 	/* Configure TX RCB 0 (we use only the first ring) */
   1558 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1559 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1560 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1561 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1562 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1563 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1564 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1565 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1566 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1567 	}
   1568 
   1569 	/* Disable all unused RX return rings */
   1570 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1571 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1572 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1573 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1574 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1575 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1576                                      BGE_RCB_FLAG_RING_DISABLED));
   1577 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1578 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1579 		    (i * (sizeof(u_int64_t))), 0);
   1580 		rcb_addr += sizeof(struct bge_rcb);
   1581 	}
   1582 
   1583 	/* Initialize RX ring indexes */
   1584 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1585 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1586 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1587 
   1588 	/*
   1589 	 * Set up RX return ring 0
   1590 	 * Note that the NIC address for RX return rings is 0x00000000.
   1591 	 * The return rings live entirely within the host, so the
   1592 	 * nicaddr field in the RCB isn't used.
   1593 	 */
   1594 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1595 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1596 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1597 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1598 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1599 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1600 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1601 
   1602 	/* Set random backoff seed for TX */
   1603 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1604 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1605 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1606 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1607 	    BGE_TX_BACKOFF_SEED_MASK);
   1608 
   1609 	/* Set inter-packet gap */
   1610 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1611 
   1612 	/*
   1613 	 * Specify which ring to use for packets that don't match
   1614 	 * any RX rules.
   1615 	 */
   1616 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1617 
   1618 	/*
   1619 	 * Configure number of RX lists. One interrupt distribution
   1620 	 * list, sixteen active lists, one bad frames class.
   1621 	 */
   1622 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1623 
   1624 	/* Inialize RX list placement stats mask. */
   1625 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1626 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1627 
   1628 	/* Disable host coalescing until we get it set up */
   1629 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1630 
   1631 	/* Poll to make sure it's shut down. */
   1632 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1633 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1634 			break;
   1635 		DELAY(10);
   1636 	}
   1637 
   1638 	if (i == BGE_TIMEOUT) {
   1639 		printf("%s: host coalescing engine failed to idle\n",
   1640 		    sc->bge_dev.dv_xname);
   1641 		return(ENXIO);
   1642 	}
   1643 
   1644 	/* Set up host coalescing defaults */
   1645 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1646 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1647 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1648 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1649 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1650 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1651 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1652 	}
   1653 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1654 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1655 
   1656 	/* Set up address of statistics block */
   1657 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1658 		bge_set_hostaddr(&taddr,
   1659 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1660 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1661 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1662 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1663 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1664 	}
   1665 
   1666 	/* Set up address of status block */
   1667 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1668 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1669 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1670 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1671 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1672 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1673 
   1674 	/* Turn on host coalescing state machine */
   1675 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1676 
   1677 	/* Turn on RX BD completion state machine and enable attentions */
   1678 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1679 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1680 
   1681 	/* Turn on RX list placement state machine */
   1682 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1683 
   1684 	/* Turn on RX list selector state machine. */
   1685 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1686 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1687 	}
   1688 
   1689 	/* Turn on DMA, clear stats */
   1690 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1691 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1692 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1693 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1694 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1695 
   1696 	/* Set misc. local control, enable interrupts on attentions */
   1697 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1698 
   1699 #ifdef notdef
   1700 	/* Assert GPIO pins for PHY reset */
   1701 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1702 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1703 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1704 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1705 #endif
   1706 
   1707 #if defined(not_quite_yet)
   1708 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1709 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1710 		sc->bge_local_ctrl_reg |=
   1711 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1712 	}
   1713 #endif
   1714 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1715 
   1716 	/* Turn on DMA completion state machine */
   1717 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1718 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1719 	}
   1720 
   1721 	/* Turn on write DMA state machine */
   1722 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1723 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1724 
   1725 	/* Turn on read DMA state machine */
   1726 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
   1727 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
   1728 
   1729 	/* Turn on RX data completion state machine */
   1730 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1731 
   1732 	/* Turn on RX BD initiator state machine */
   1733 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1734 
   1735 	/* Turn on RX data and RX BD initiator state machine */
   1736 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1737 
   1738 	/* Turn on Mbuf cluster free state machine */
   1739 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1740 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1741 	}
   1742 
   1743 	/* Turn on send BD completion state machine */
   1744 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1745 
   1746 	/* Turn on send data completion state machine */
   1747 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1748 
   1749 	/* Turn on send data initiator state machine */
   1750 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1751 
   1752 	/* Turn on send BD initiator state machine */
   1753 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1754 
   1755 	/* Turn on send BD selector state machine */
   1756 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1757 
   1758 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1759 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1760 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1761 
   1762 	/* ack/clear link change events */
   1763 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1764 	    BGE_MACSTAT_CFG_CHANGED);
   1765 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1766 
   1767 	/* Enable PHY auto polling (for MII/GMII only) */
   1768 	if (sc->bge_tbi) {
   1769 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1770  	} else {
   1771 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1772 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1773 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1774 			    BGE_EVTENB_MI_INTERRUPT);
   1775 	}
   1776 
   1777 	/* Enable link state change attentions. */
   1778 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1779 
   1780 	return(0);
   1781 }
   1782 
   1783 static const struct bge_revision {
   1784 	uint32_t		br_chipid;
   1785 	uint32_t		br_quirks;
   1786 	const char		*br_name;
   1787 } bge_revisions[] = {
   1788 	{ BGE_CHIPID_BCM5700_A0,
   1789 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1790 	  "BCM5700 A0" },
   1791 
   1792 	{ BGE_CHIPID_BCM5700_A1,
   1793 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1794 	  "BCM5700 A1" },
   1795 
   1796 	{ BGE_CHIPID_BCM5700_B0,
   1797 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1798 	  "BCM5700 B0" },
   1799 
   1800 	{ BGE_CHIPID_BCM5700_B1,
   1801 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1802 	  "BCM5700 B1" },
   1803 
   1804 	{ BGE_CHIPID_BCM5700_B2,
   1805 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1806 	  "BCM5700 B2" },
   1807 
   1808 	/* This is treated like a BCM5700 Bx */
   1809 	{ BGE_CHIPID_BCM5700_ALTIMA,
   1810 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1811 	  "BCM5700 Altima" },
   1812 
   1813 	{ BGE_CHIPID_BCM5700_C0,
   1814 	  0,
   1815 	  "BCM5700 C0" },
   1816 
   1817 	{ BGE_CHIPID_BCM5701_A0,
   1818 	  0, /*XXX really, just not known */
   1819 	  "BCM5701 A0" },
   1820 
   1821 	{ BGE_CHIPID_BCM5701_B0,
   1822 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1823 	  "BCM5701 B0" },
   1824 
   1825 	{ BGE_CHIPID_BCM5701_B2,
   1826 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1827 	  "BCM5701 B2" },
   1828 
   1829 	{ BGE_CHIPID_BCM5701_B5,
   1830 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1831 	  "BCM5701 B5" },
   1832 
   1833 	{ BGE_CHIPID_BCM5703_A0,
   1834 	  0,
   1835 	  "BCM5703 A0" },
   1836 
   1837 	{ BGE_CHIPID_BCM5703_A1,
   1838 	  0,
   1839 	  "BCM5703 A1" },
   1840 
   1841 	{ BGE_CHIPID_BCM5703_A2,
   1842 	  BGE_QUIRK_ONLY_PHY_1,
   1843 	  "BCM5703 A2" },
   1844 
   1845 	{ BGE_CHIPID_BCM5703_A3,
   1846 	  BGE_QUIRK_ONLY_PHY_1,
   1847 	  "BCM5703 A3" },
   1848 
   1849 	{ BGE_CHIPID_BCM5704_A0,
   1850   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1851 	  "BCM5704 A0" },
   1852 
   1853 	{ BGE_CHIPID_BCM5704_A1,
   1854   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1855 	  "BCM5704 A1" },
   1856 
   1857 	{ BGE_CHIPID_BCM5704_A2,
   1858   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1859 	  "BCM5704 A2" },
   1860 
   1861 	{ BGE_CHIPID_BCM5704_A3,
   1862   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1863 	  "BCM5704 A3" },
   1864 
   1865 	{ BGE_CHIPID_BCM5705_A0,
   1866 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1867 	  "BCM5705 A0" },
   1868 
   1869 	{ BGE_CHIPID_BCM5705_A1,
   1870 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1871 	  "BCM5705 A1" },
   1872 
   1873 	{ BGE_CHIPID_BCM5705_A2,
   1874 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1875 	  "BCM5705 A2" },
   1876 
   1877 	{ BGE_CHIPID_BCM5705_A3,
   1878 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1879 	  "BCM5705 A3" },
   1880 
   1881 	{ 0, 0, NULL }
   1882 };
   1883 
   1884 /*
   1885  * Some defaults for major revisions, so that newer steppings
   1886  * that we don't know about have a shot at working.
   1887  */
   1888 static const struct bge_revision bge_majorrevs[] = {
   1889 	{ BGE_ASICREV_BCM5700,
   1890 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1891 	  "unknown BCM5700" },
   1892 
   1893 	{ BGE_ASICREV_BCM5701,
   1894 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1895 	  "unknown BCM5701" },
   1896 
   1897 	{ BGE_ASICREV_BCM5703,
   1898 	  0,
   1899 	  "unknown BCM5703" },
   1900 
   1901 	{ BGE_ASICREV_BCM5704,
   1902 	  BGE_QUIRK_ONLY_PHY_1,
   1903 	  "unknown BCM5704" },
   1904 
   1905 	{ BGE_ASICREV_BCM5705,
   1906 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1907 	  "unknown BCM5705" },
   1908 
   1909 	{ 0,
   1910 	  0,
   1911 	  NULL }
   1912 };
   1913 
   1914 
   1915 static const struct bge_revision *
   1916 bge_lookup_rev(uint32_t chipid)
   1917 {
   1918 	const struct bge_revision *br;
   1919 
   1920 	for (br = bge_revisions; br->br_name != NULL; br++) {
   1921 		if (br->br_chipid == chipid)
   1922 			return (br);
   1923 	}
   1924 
   1925 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   1926 		if (br->br_chipid == BGE_ASICREV(chipid))
   1927 			return (br);
   1928 	}
   1929 
   1930 	return (NULL);
   1931 }
   1932 
   1933 static const struct bge_product {
   1934 	pci_vendor_id_t		bp_vendor;
   1935 	pci_product_id_t	bp_product;
   1936 	const char		*bp_name;
   1937 } bge_products[] = {
   1938 	/*
   1939 	 * The BCM5700 documentation seems to indicate that the hardware
   1940 	 * still has the Alteon vendor ID burned into it, though it
   1941 	 * should always be overridden by the value in the EEPROM.  We'll
   1942 	 * check for it anyway.
   1943 	 */
   1944 	{ PCI_VENDOR_ALTEON,
   1945 	  PCI_PRODUCT_ALTEON_BCM5700,
   1946 	  "Broadcom BCM5700 Gigabit Ethernet",
   1947 	  },
   1948 	{ PCI_VENDOR_ALTEON,
   1949 	  PCI_PRODUCT_ALTEON_BCM5701,
   1950 	  "Broadcom BCM5701 Gigabit Ethernet",
   1951 	  },
   1952 
   1953 	{ PCI_VENDOR_ALTIMA,
   1954 	  PCI_PRODUCT_ALTIMA_AC1000,
   1955 	  "Altima AC1000 Gigabit Ethernet",
   1956 	  },
   1957 	{ PCI_VENDOR_ALTIMA,
   1958 	  PCI_PRODUCT_ALTIMA_AC1001,
   1959 	  "Altima AC1001 Gigabit Ethernet",
   1960 	   },
   1961 	{ PCI_VENDOR_ALTIMA,
   1962 	  PCI_PRODUCT_ALTIMA_AC9100,
   1963 	  "Altima AC9100 Gigabit Ethernet",
   1964 	  },
   1965 
   1966 	{ PCI_VENDOR_BROADCOM,
   1967 	  PCI_PRODUCT_BROADCOM_BCM5700,
   1968 	  "Broadcom BCM5700 Gigabit Ethernet",
   1969 	  },
   1970 	{ PCI_VENDOR_BROADCOM,
   1971 	  PCI_PRODUCT_BROADCOM_BCM5701,
   1972 	  "Broadcom BCM5701 Gigabit Ethernet",
   1973 	  },
   1974 	{ PCI_VENDOR_BROADCOM,
   1975 	  PCI_PRODUCT_BROADCOM_BCM5702,
   1976 	  "Broadcom BCM5702 Gigabit Ethernet",
   1977 	  },
   1978 	{ PCI_VENDOR_BROADCOM,
   1979 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   1980 	  "Broadcom BCM5702X Gigabit Ethernet" },
   1981 
   1982 	{ PCI_VENDOR_BROADCOM,
   1983 	  PCI_PRODUCT_BROADCOM_BCM5703,
   1984 	  "Broadcom BCM5703 Gigabit Ethernet",
   1985 	  },
   1986 	{ PCI_VENDOR_BROADCOM,
   1987 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   1988 	  "Broadcom BCM5703X Gigabit Ethernet",
   1989 	  },
   1990 	{ PCI_VENDOR_BROADCOM,
   1991 	  PCI_PRODUCT_BROADCOM_BCM5703A3,
   1992 	  "Broadcom BCM5703A3 Gigabit Ethernet",
   1993 	  },
   1994 
   1995    	{ PCI_VENDOR_BROADCOM,
   1996 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   1997 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   1998 	  },
   1999    	{ PCI_VENDOR_BROADCOM,
   2000 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   2001 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   2002 	  },
   2003 
   2004    	{ PCI_VENDOR_BROADCOM,
   2005 	  PCI_PRODUCT_BROADCOM_BCM5705,
   2006 	  "Broadcom BCM5705 Gigabit Ethernet",
   2007 	  },
   2008    	{ PCI_VENDOR_BROADCOM,
   2009 	  PCI_PRODUCT_BROADCOM_BCM5705_ALT,
   2010 	  "Broadcom BCM5705 Gigabit Ethernet",
   2011 	  },
   2012    	{ PCI_VENDOR_BROADCOM,
   2013 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   2014 	  "Broadcom BCM5705M Gigabit Ethernet",
   2015 	  },
   2016 
   2017    	{ PCI_VENDOR_BROADCOM,
   2018 	  PCI_PRODUCT_BROADCOM_BCM5901,
   2019 	  "Broadcom BCM5901 Fast Ethernet",
   2020 	  },
   2021    	{ PCI_VENDOR_BROADCOM,
   2022 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   2023 	  "Broadcom BCM5901A2 Fast Ethernet",
   2024 	  },
   2025 
   2026    	{ PCI_VENDOR_BROADCOM,
   2027 	  PCI_PRODUCT_BROADCOM_BCM5782,
   2028 	  "Broadcom BCM5782 Gigabit Ethernet",
   2029 	  },
   2030 
   2031 	{ PCI_VENDOR_SCHNEIDERKOCH,
   2032 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   2033 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   2034 	  },
   2035 
   2036 	{ PCI_VENDOR_3COM,
   2037 	  PCI_PRODUCT_3COM_3C996,
   2038 	  "3Com 3c996 Gigabit Ethernet",
   2039 	  },
   2040 
   2041 	{ 0,
   2042 	  0,
   2043 	  NULL },
   2044 };
   2045 
   2046 static const struct bge_product *
   2047 bge_lookup(const struct pci_attach_args *pa)
   2048 {
   2049 	const struct bge_product *bp;
   2050 
   2051 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2052 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2053 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2054 			return (bp);
   2055 	}
   2056 
   2057 	return (NULL);
   2058 }
   2059 
   2060 int
   2061 bge_setpowerstate(sc, powerlevel)
   2062 	struct bge_softc *sc;
   2063 	int powerlevel;
   2064 {
   2065 #ifdef NOTYET
   2066 	u_int32_t pm_ctl = 0;
   2067 
   2068 	/* XXX FIXME: make sure indirect accesses enabled? */
   2069 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2070 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2071 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2072 
   2073 	/* clear the PME_assert bit and power state bits, enable PME */
   2074 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2075 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2076 	pm_ctl |= (1 << 8);
   2077 
   2078 	if (powerlevel == 0) {
   2079 		pm_ctl |= PCIM_PSTAT_D0;
   2080 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2081 		    pm_ctl, 2);
   2082 		DELAY(10000);
   2083 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2084 		DELAY(10000);
   2085 
   2086 #ifdef NOTYET
   2087 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2088 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2089 #endif
   2090 		DELAY(40); DELAY(40); DELAY(40);
   2091 		DELAY(10000);	/* above not quite adequate on 5700 */
   2092 		return 0;
   2093 	}
   2094 
   2095 
   2096 	/*
   2097 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2098 	 * GMII gpio pins. Example code assumes all hardware vendors
   2099 	 * followed Broadom's sample pcb layout. Until we verify that
   2100 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2101 	 */
   2102 	printf("%s: power state %d unimplemented; check GPIO pins\n",
   2103 	       sc->bge_dev.dv_xname, powerlevel);
   2104 #endif
   2105 	return EOPNOTSUPP;
   2106 }
   2107 
   2108 
   2109 /*
   2110  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2111  * against our list and return its name if we find a match. Note
   2112  * that since the Broadcom controller contains VPD support, we
   2113  * can get the device name string from the controller itself instead
   2114  * of the compiled-in string. This is a little slow, but it guarantees
   2115  * we'll always announce the right product name.
   2116  */
   2117 int
   2118 bge_probe(parent, match, aux)
   2119 	struct device *parent;
   2120 	struct cfdata *match;
   2121 	void *aux;
   2122 {
   2123 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2124 
   2125 	if (bge_lookup(pa) != NULL)
   2126 		return (1);
   2127 
   2128 	return (0);
   2129 }
   2130 
   2131 void
   2132 bge_attach(parent, self, aux)
   2133 	struct device *parent, *self;
   2134 	void *aux;
   2135 {
   2136 	struct bge_softc	*sc = (struct bge_softc *)self;
   2137 	struct pci_attach_args	*pa = aux;
   2138 	const struct bge_product *bp;
   2139 	const struct bge_revision *br;
   2140 	pci_chipset_tag_t	pc = pa->pa_pc;
   2141 	pci_intr_handle_t	ih;
   2142 	const char		*intrstr = NULL;
   2143 	bus_dma_segment_t	seg;
   2144 	int			rseg;
   2145 	u_int32_t		hwcfg = 0;
   2146 	u_int32_t		mac_addr = 0;
   2147 	u_int32_t		command;
   2148 	struct ifnet		*ifp;
   2149 	caddr_t			kva;
   2150 	u_char			eaddr[ETHER_ADDR_LEN];
   2151 	pcireg_t		memtype;
   2152 	bus_addr_t		memaddr;
   2153 	bus_size_t		memsize;
   2154 	u_int32_t		pm_ctl;
   2155 
   2156 	bp = bge_lookup(pa);
   2157 	KASSERT(bp != NULL);
   2158 
   2159 	sc->bge_pa = *pa;
   2160 
   2161 	aprint_naive(": Ethernet controller\n");
   2162 	aprint_normal(": %s\n", bp->bp_name);
   2163 
   2164 	/*
   2165 	 * Map control/status registers.
   2166 	 */
   2167 	DPRINTFN(5, ("Map control/status regs\n"));
   2168 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2169 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2170 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   2171 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2172 
   2173 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2174 		aprint_error("%s: failed to enable memory mapping!\n",
   2175 		    sc->bge_dev.dv_xname);
   2176 		return;
   2177 	}
   2178 
   2179 	DPRINTFN(5, ("pci_mem_find\n"));
   2180 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   2181  	switch (memtype) {
   2182 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2183 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2184 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2185 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2186 		    &memaddr, &memsize) == 0)
   2187 			break;
   2188 	default:
   2189 		aprint_error("%s: can't find mem space\n",
   2190 		    sc->bge_dev.dv_xname);
   2191 		return;
   2192 	}
   2193 
   2194 	DPRINTFN(5, ("pci_intr_map\n"));
   2195 	if (pci_intr_map(pa, &ih)) {
   2196 		aprint_error("%s: couldn't map interrupt\n",
   2197 		    sc->bge_dev.dv_xname);
   2198 		return;
   2199 	}
   2200 
   2201 	DPRINTFN(5, ("pci_intr_string\n"));
   2202 	intrstr = pci_intr_string(pc, ih);
   2203 
   2204 	DPRINTFN(5, ("pci_intr_establish\n"));
   2205 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2206 
   2207 	if (sc->bge_intrhand == NULL) {
   2208 		aprint_error("%s: couldn't establish interrupt",
   2209 		    sc->bge_dev.dv_xname);
   2210 		if (intrstr != NULL)
   2211 			aprint_normal(" at %s", intrstr);
   2212 		aprint_normal("\n");
   2213 		return;
   2214 	}
   2215 	aprint_normal("%s: interrupting at %s\n",
   2216 	    sc->bge_dev.dv_xname, intrstr);
   2217 
   2218 	/*
   2219 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2220 	 * can clobber the chip's PCI config-space power control registers,
   2221 	 * leaving the card in D3 powersave state.
   2222 	 * We do not have memory-mapped registers in this state,
   2223 	 * so force device into D0 state before starting initialization.
   2224 	 */
   2225 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
   2226 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2227 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2228 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2229 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2230 
   2231 	/* Try to reset the chip. */
   2232 	DPRINTFN(5, ("bge_reset\n"));
   2233 	bge_reset(sc);
   2234 
   2235 	if (bge_chipinit(sc)) {
   2236 		aprint_error("%s: chip initialization failed\n",
   2237 		    sc->bge_dev.dv_xname);
   2238 		bge_release_resources(sc);
   2239 		return;
   2240 	}
   2241 
   2242 	/*
   2243 	 * Get station address from the EEPROM.
   2244 	 */
   2245 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   2246 	if ((mac_addr >> 16) == 0x484b) {
   2247 		eaddr[0] = (u_char)(mac_addr >> 8);
   2248 		eaddr[1] = (u_char)(mac_addr >> 0);
   2249 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   2250 		eaddr[2] = (u_char)(mac_addr >> 24);
   2251 		eaddr[3] = (u_char)(mac_addr >> 16);
   2252 		eaddr[4] = (u_char)(mac_addr >> 8);
   2253 		eaddr[5] = (u_char)(mac_addr >> 0);
   2254 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
   2255 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   2256 		aprint_error("%s: failed to read station address\n",
   2257 		    sc->bge_dev.dv_xname);
   2258 		bge_release_resources(sc);
   2259 		return;
   2260 	}
   2261 
   2262 	/*
   2263 	 * Save ASIC rev.  Look up any quirks associated with this
   2264 	 * ASIC.
   2265 	 */
   2266 	sc->bge_chipid =
   2267 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   2268 	    BGE_PCIMISCCTL_ASICREV;
   2269 	br = bge_lookup_rev(sc->bge_chipid);
   2270 
   2271 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
   2272 
   2273 	if (br == NULL) {
   2274 		aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
   2275 		sc->bge_quirks = 0;
   2276 	} else {
   2277 		aprint_normal("ASIC %s (0x%04x)",
   2278 		    br->br_name, sc->bge_chipid >> 16);
   2279 		sc->bge_quirks |= br->br_quirks;
   2280 	}
   2281 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2282 
   2283 	/* Allocate the general information block and ring buffers. */
   2284 	if (pci_dma64_available(pa))
   2285 		sc->bge_dmatag = pa->pa_dmat64;
   2286 	else
   2287 		sc->bge_dmatag = pa->pa_dmat;
   2288 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2289 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2290 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2291 		aprint_error("%s: can't alloc rx buffers\n",
   2292 		    sc->bge_dev.dv_xname);
   2293 		return;
   2294 	}
   2295 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2296 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2297 			   sizeof(struct bge_ring_data), &kva,
   2298 			   BUS_DMA_NOWAIT)) {
   2299 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
   2300 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   2301 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2302 		return;
   2303 	}
   2304 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2305 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2306 	    sizeof(struct bge_ring_data), 0,
   2307 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2308 		aprint_error("%s: can't create DMA map\n",
   2309 		    sc->bge_dev.dv_xname);
   2310 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2311 				 sizeof(struct bge_ring_data));
   2312 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2313 		return;
   2314 	}
   2315 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2316 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2317 			    sizeof(struct bge_ring_data), NULL,
   2318 			    BUS_DMA_NOWAIT)) {
   2319 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2320 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2321 				 sizeof(struct bge_ring_data));
   2322 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2323 		return;
   2324 	}
   2325 
   2326 	DPRINTFN(5, ("bzero\n"));
   2327 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2328 
   2329 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2330 
   2331 	/* Try to allocate memory for jumbo buffers. */
   2332 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2333 		if (bge_alloc_jumbo_mem(sc)) {
   2334 			aprint_error("%s: jumbo buffer allocation failed\n",
   2335 			    sc->bge_dev.dv_xname);
   2336 		} else
   2337 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2338 	}
   2339 
   2340 	/* Set default tuneable values. */
   2341 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2342 	sc->bge_rx_coal_ticks = 150;
   2343 	sc->bge_rx_max_coal_bds = 64;
   2344 #ifdef ORIG_WPAUL_VALUES
   2345 	sc->bge_tx_coal_ticks = 150;
   2346 	sc->bge_tx_max_coal_bds = 128;
   2347 #else
   2348 	sc->bge_tx_coal_ticks = 300;
   2349 	sc->bge_tx_max_coal_bds = 400;
   2350 #endif
   2351 
   2352 	/* Set up ifnet structure */
   2353 	ifp = &sc->ethercom.ec_if;
   2354 	ifp->if_softc = sc;
   2355 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2356 	ifp->if_ioctl = bge_ioctl;
   2357 	ifp->if_start = bge_start;
   2358 	ifp->if_init = bge_init;
   2359 	ifp->if_watchdog = bge_watchdog;
   2360 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2361 	IFQ_SET_READY(&ifp->if_snd);
   2362 	DPRINTFN(5, ("bcopy\n"));
   2363 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   2364 
   2365 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2366 		sc->ethercom.ec_if.if_capabilities |=
   2367 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   2368 	sc->ethercom.ec_capabilities |=
   2369 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2370 
   2371 	/*
   2372 	 * Do MII setup.
   2373 	 */
   2374 	DPRINTFN(5, ("mii setup\n"));
   2375 	sc->bge_mii.mii_ifp = ifp;
   2376 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2377 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2378 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2379 
   2380 	/*
   2381 	 * Figure out what sort of media we have by checking the
   2382 	 * hardware config word in the first 32k of NIC internal memory,
   2383 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2384 	 * cards, this value appears to be unset. If that's the
   2385 	 * case, we have to rely on identifying the NIC by its PCI
   2386 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2387 	 */
   2388 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2389 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2390 	} else {
   2391 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
   2392 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2393 		hwcfg = be32toh(hwcfg);
   2394 	}
   2395 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2396 		sc->bge_tbi = 1;
   2397 
   2398 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2399 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   2400 	    SK_SUBSYSID_9D41)
   2401 		sc->bge_tbi = 1;
   2402 
   2403 	if (sc->bge_tbi) {
   2404 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2405 		    bge_ifmedia_sts);
   2406 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2407 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2408 			    0, NULL);
   2409 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2410 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2411 	} else {
   2412 		/*
   2413 		 * Do transceiver setup.
   2414 		 */
   2415 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2416 			     bge_ifmedia_sts);
   2417 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2418 			   MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
   2419 
   2420 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   2421 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   2422 			ifmedia_add(&sc->bge_mii.mii_media,
   2423 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2424 			ifmedia_set(&sc->bge_mii.mii_media,
   2425 				    IFM_ETHER|IFM_MANUAL);
   2426 		} else
   2427 			ifmedia_set(&sc->bge_mii.mii_media,
   2428 				    IFM_ETHER|IFM_AUTO);
   2429 	}
   2430 
   2431 	/*
   2432 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2433 	 * been observed in the first few bytes of some received packets.
   2434 	 * Aligning the packet buffer in memory eliminates the corruption.
   2435 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2436 	 * which do not support unaligned accesses, we will realign the
   2437 	 * payloads by copying the received packets.
   2438 	 */
   2439 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2440 		/* If in PCI-X mode, work around the alignment bug. */
   2441 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
   2442                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2443                          BGE_PCISTATE_PCI_BUSSPEED)
   2444 		sc->bge_rx_alignment_bug = 1;
   2445         }
   2446 
   2447 	/*
   2448 	 * Call MI attach routine.
   2449 	 */
   2450 	DPRINTFN(5, ("if_attach\n"));
   2451 	if_attach(ifp);
   2452 	DPRINTFN(5, ("ether_ifattach\n"));
   2453 	ether_ifattach(ifp, eaddr);
   2454 	DPRINTFN(5, ("callout_init\n"));
   2455 	callout_init(&sc->bge_timeout);
   2456 }
   2457 
   2458 void
   2459 bge_release_resources(sc)
   2460 	struct bge_softc *sc;
   2461 {
   2462 	if (sc->bge_vpd_prodname != NULL)
   2463 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2464 
   2465 	if (sc->bge_vpd_readonly != NULL)
   2466 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2467 }
   2468 
   2469 void
   2470 bge_reset(sc)
   2471 	struct bge_softc *sc;
   2472 {
   2473 	struct pci_attach_args *pa = &sc->bge_pa;
   2474 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2475 	int i, val = 0;
   2476 
   2477 	/* Save some important PCI state. */
   2478 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   2479 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   2480 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   2481 
   2482 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2483 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2484 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2485 
   2486 	/* Issue global reset */
   2487 	bge_writereg_ind(sc, BGE_MISC_CFG,
   2488 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
   2489 
   2490 	DELAY(1000);
   2491 
   2492 	/* Reset some of the PCI state that got zapped by reset */
   2493 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2494 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2495 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2496 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   2497 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   2498 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2499 
   2500 	/* Enable memory arbiter. */
   2501 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2502 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2503 	}
   2504 
   2505 	/*
   2506 	 * Prevent PXE restart: write a magic number to the
   2507 	 * general communications memory at 0xB50.
   2508 	 */
   2509 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2510 
   2511 	/*
   2512 	 * Poll the value location we just wrote until
   2513 	 * we see the 1's complement of the magic number.
   2514 	 * This indicates that the firmware initialization
   2515 	 * is complete.
   2516 	 */
   2517 	for (i = 0; i < 750; i++) {
   2518 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2519 		if (val == ~BGE_MAGIC_NUMBER)
   2520 			break;
   2521 		DELAY(1000);
   2522 	}
   2523 
   2524 	if (i == 750) {
   2525 		printf("%s: firmware handshake timed out, val = %x\n",
   2526 		    sc->bge_dev.dv_xname, val);
   2527 		return;
   2528 	}
   2529 
   2530 	/*
   2531 	 * XXX Wait for the value of the PCISTATE register to
   2532 	 * return to its original pre-reset state. This is a
   2533 	 * fairly good indicator of reset completion. If we don't
   2534 	 * wait for the reset to fully complete, trying to read
   2535 	 * from the device's non-PCI registers may yield garbage
   2536 	 * results.
   2537 	 */
   2538 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2539 		new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
   2540 		    BGE_PCI_PCISTATE);
   2541 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   2542 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   2543 			break;
   2544 		DELAY(10);
   2545 	}
   2546 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   2547 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   2548 		printf("%s: pcistate failed to revert\n",
   2549 		    sc->bge_dev.dv_xname);
   2550 	}
   2551 
   2552 	/* Enable memory arbiter. */
   2553 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2554 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2555 	}
   2556 
   2557 	/* Fix up byte swapping */
   2558 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2559 
   2560 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2561 
   2562 	DELAY(10000);
   2563 }
   2564 
   2565 /*
   2566  * Frame reception handling. This is called if there's a frame
   2567  * on the receive return list.
   2568  *
   2569  * Note: we have to be able to handle two possibilities here:
   2570  * 1) the frame is from the jumbo recieve ring
   2571  * 2) the frame is from the standard receive ring
   2572  */
   2573 
   2574 void
   2575 bge_rxeof(sc)
   2576 	struct bge_softc *sc;
   2577 {
   2578 	struct ifnet *ifp;
   2579 	int stdcnt = 0, jumbocnt = 0;
   2580 	int have_tag = 0;
   2581 	u_int16_t vlan_tag = 0;
   2582 	bus_dmamap_t dmamap;
   2583 	bus_addr_t offset, toff;
   2584 	bus_size_t tlen;
   2585 	int tosync;
   2586 
   2587 	ifp = &sc->ethercom.ec_if;
   2588 
   2589 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2590 	    offsetof(struct bge_ring_data, bge_status_block),
   2591 	    sizeof (struct bge_status_block),
   2592 	    BUS_DMASYNC_POSTREAD);
   2593 
   2594 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2595 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2596 	    sc->bge_rx_saved_considx;
   2597 
   2598 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2599 
   2600 	if (tosync < 0) {
   2601 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2602 		    sizeof (struct bge_rx_bd);
   2603 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2604 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2605 		tosync = -tosync;
   2606 	}
   2607 
   2608 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2609 	    offset, tosync * sizeof (struct bge_rx_bd),
   2610 	    BUS_DMASYNC_POSTREAD);
   2611 
   2612 	while(sc->bge_rx_saved_considx !=
   2613 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2614 		struct bge_rx_bd	*cur_rx;
   2615 		u_int32_t		rxidx;
   2616 		struct mbuf		*m = NULL;
   2617 
   2618 		cur_rx = &sc->bge_rdata->
   2619 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2620 
   2621 		rxidx = cur_rx->bge_idx;
   2622 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   2623 
   2624 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   2625 			have_tag = 1;
   2626 			vlan_tag = cur_rx->bge_vlan_tag;
   2627 		}
   2628 
   2629 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2630 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2631 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2632 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2633 			jumbocnt++;
   2634 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2635 				ifp->if_ierrors++;
   2636 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2637 				continue;
   2638 			}
   2639 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2640 					     NULL)== ENOBUFS) {
   2641 				ifp->if_ierrors++;
   2642 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2643 				continue;
   2644 			}
   2645 		} else {
   2646 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2647 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2648 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2649 			stdcnt++;
   2650 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2651 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2652 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2653 				ifp->if_ierrors++;
   2654 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2655 				continue;
   2656 			}
   2657 			if (bge_newbuf_std(sc, sc->bge_std,
   2658 			    NULL, dmamap) == ENOBUFS) {
   2659 				ifp->if_ierrors++;
   2660 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2661 				continue;
   2662 			}
   2663 		}
   2664 
   2665 		ifp->if_ipackets++;
   2666 #ifndef __NO_STRICT_ALIGNMENT
   2667                 /*
   2668                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2669                  * the Rx buffer has the layer-2 header unaligned.
   2670                  * If our CPU requires alignment, re-align by copying.
   2671                  */
   2672 		if (sc->bge_rx_alignment_bug) {
   2673 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
   2674                                 cur_rx->bge_len);
   2675 			m->m_data += ETHER_ALIGN;
   2676 		}
   2677 #endif
   2678 
   2679 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   2680 		m->m_pkthdr.rcvif = ifp;
   2681 
   2682 #if NBPFILTER > 0
   2683 		/*
   2684 		 * Handle BPF listeners. Let the BPF user see the packet.
   2685 		 */
   2686 		if (ifp->if_bpf)
   2687 			bpf_mtap(ifp->if_bpf, m);
   2688 #endif
   2689 
   2690 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   2691 
   2692 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2693 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2694 		/*
   2695 		 * Rx transport checksum-offload may also
   2696 		 * have bugs with packets which, when transmitted,
   2697 		 * were `runts' requiring padding.
   2698 		 */
   2699 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   2700 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   2701 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   2702 			m->m_pkthdr.csum_data =
   2703 			    cur_rx->bge_tcp_udp_csum;
   2704 			m->m_pkthdr.csum_flags |=
   2705 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   2706 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   2707 		}
   2708 
   2709 		/*
   2710 		 * If we received a packet with a vlan tag, pass it
   2711 		 * to vlan_input() instead of ether_input().
   2712 		 */
   2713 		if (have_tag) {
   2714 			struct m_tag *mtag;
   2715 
   2716 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   2717 			    M_NOWAIT);
   2718 			if (mtag != NULL) {
   2719 				*(u_int *)(mtag + 1) = vlan_tag;
   2720 				m_tag_prepend(m, mtag);
   2721 				have_tag = vlan_tag = 0;
   2722 			} else {
   2723 				printf("%s: no mbuf for tag\n", ifp->if_xname);
   2724 				m_freem(m);
   2725 				have_tag = vlan_tag = 0;
   2726 				continue;
   2727 			}
   2728 		}
   2729 		(*ifp->if_input)(ifp, m);
   2730 	}
   2731 
   2732 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   2733 	if (stdcnt)
   2734 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   2735 	if (jumbocnt)
   2736 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   2737 }
   2738 
   2739 void
   2740 bge_txeof(sc)
   2741 	struct bge_softc *sc;
   2742 {
   2743 	struct bge_tx_bd *cur_tx = NULL;
   2744 	struct ifnet *ifp;
   2745 	struct txdmamap_pool_entry *dma;
   2746 	bus_addr_t offset, toff;
   2747 	bus_size_t tlen;
   2748 	int tosync;
   2749 	struct mbuf *m;
   2750 
   2751 	ifp = &sc->ethercom.ec_if;
   2752 
   2753 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2754 	    offsetof(struct bge_ring_data, bge_status_block),
   2755 	    sizeof (struct bge_status_block),
   2756 	    BUS_DMASYNC_POSTREAD);
   2757 
   2758 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   2759 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   2760 	    sc->bge_tx_saved_considx;
   2761 
   2762 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   2763 
   2764 	if (tosync < 0) {
   2765 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   2766 		    sizeof (struct bge_tx_bd);
   2767 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2768 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2769 		tosync = -tosync;
   2770 	}
   2771 
   2772 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2773 	    offset, tosync * sizeof (struct bge_tx_bd),
   2774 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2775 
   2776 	/*
   2777 	 * Go through our tx ring and free mbufs for those
   2778 	 * frames that have been sent.
   2779 	 */
   2780 	while (sc->bge_tx_saved_considx !=
   2781 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   2782 		u_int32_t		idx = 0;
   2783 
   2784 		idx = sc->bge_tx_saved_considx;
   2785 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   2786 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   2787 			ifp->if_opackets++;
   2788 		m = sc->bge_cdata.bge_tx_chain[idx];
   2789 		if (m != NULL) {
   2790 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   2791 			dma = sc->txdma[idx];
   2792 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   2793 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2794 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   2795 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2796 			sc->txdma[idx] = NULL;
   2797 
   2798 			m_freem(m);
   2799 		}
   2800 		sc->bge_txcnt--;
   2801 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   2802 		ifp->if_timer = 0;
   2803 	}
   2804 
   2805 	if (cur_tx != NULL)
   2806 		ifp->if_flags &= ~IFF_OACTIVE;
   2807 }
   2808 
   2809 int
   2810 bge_intr(xsc)
   2811 	void *xsc;
   2812 {
   2813 	struct bge_softc *sc;
   2814 	struct ifnet *ifp;
   2815 
   2816 	sc = xsc;
   2817 	ifp = &sc->ethercom.ec_if;
   2818 
   2819 #ifdef notdef
   2820 	/* Avoid this for now -- checking this register is expensive. */
   2821 	/* Make sure this is really our interrupt. */
   2822 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   2823 		return (0);
   2824 #endif
   2825 	/* Ack interrupt and stop others from occuring. */
   2826 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   2827 
   2828 	/*
   2829 	 * Process link state changes.
   2830 	 * Grrr. The link status word in the status block does
   2831 	 * not work correctly on the BCM5700 rev AX and BX chips,
   2832 	 * according to all avaibable information. Hence, we have
   2833 	 * to enable MII interrupts in order to properly obtain
   2834 	 * async link changes. Unfortunately, this also means that
   2835 	 * we have to read the MAC status register to detect link
   2836 	 * changes, thereby adding an additional register access to
   2837 	 * the interrupt handler.
   2838 	 */
   2839 
   2840 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   2841 		u_int32_t		status;
   2842 
   2843 		status = CSR_READ_4(sc, BGE_MAC_STS);
   2844 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   2845 			sc->bge_link = 0;
   2846 			callout_stop(&sc->bge_timeout);
   2847 			bge_tick(sc);
   2848 			/* Clear the interrupt */
   2849 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2850 			    BGE_EVTENB_MI_INTERRUPT);
   2851 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   2852 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   2853 			    BRGPHY_INTRS);
   2854 		}
   2855 	} else {
   2856 		if (sc->bge_rdata->bge_status_block.bge_status &
   2857 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   2858 			sc->bge_link = 0;
   2859 			callout_stop(&sc->bge_timeout);
   2860 			bge_tick(sc);
   2861 			/* Clear the interrupt */
   2862 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   2863 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   2864 			    BGE_MACSTAT_LINK_CHANGED);
   2865 		}
   2866 	}
   2867 
   2868 	if (ifp->if_flags & IFF_RUNNING) {
   2869 		/* Check RX return ring producer/consumer */
   2870 		bge_rxeof(sc);
   2871 
   2872 		/* Check TX ring producer/consumer */
   2873 		bge_txeof(sc);
   2874 	}
   2875 
   2876 	if (sc->bge_pending_rxintr_change) {
   2877 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   2878 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   2879 		uint32_t junk;
   2880 
   2881 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   2882 		DELAY(10);
   2883 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   2884 
   2885 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   2886 		DELAY(10);
   2887 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   2888 
   2889 		sc->bge_pending_rxintr_change = 0;
   2890 	}
   2891 	bge_handle_events(sc);
   2892 
   2893 	/* Re-enable interrupts. */
   2894 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2895 
   2896 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   2897 		bge_start(ifp);
   2898 
   2899 	return (1);
   2900 }
   2901 
   2902 void
   2903 bge_tick(xsc)
   2904 	void *xsc;
   2905 {
   2906 	struct bge_softc *sc = xsc;
   2907 	struct mii_data *mii = &sc->bge_mii;
   2908 	struct ifmedia *ifm = NULL;
   2909 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2910 	int s;
   2911 
   2912 	s = splnet();
   2913 
   2914 	bge_stats_update(sc);
   2915 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2916 	if (sc->bge_link) {
   2917 		splx(s);
   2918 		return;
   2919 	}
   2920 
   2921 	if (sc->bge_tbi) {
   2922 		ifm = &sc->bge_ifmedia;
   2923 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   2924 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   2925 			sc->bge_link++;
   2926 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   2927 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2928 				bge_start(ifp);
   2929 		}
   2930 		splx(s);
   2931 		return;
   2932 	}
   2933 
   2934 	mii_tick(mii);
   2935 
   2936 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   2937 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   2938 		sc->bge_link++;
   2939 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2940 			bge_start(ifp);
   2941 	}
   2942 
   2943 	splx(s);
   2944 }
   2945 
   2946 void
   2947 bge_stats_update(sc)
   2948 	struct bge_softc *sc;
   2949 {
   2950 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2951 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   2952 	bus_size_t rstats = BGE_RX_STATS;
   2953 
   2954 #define READ_RSTAT(sc, stats, stat) \
   2955 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   2956 
   2957 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   2958 		ifp->if_collisions +=
   2959 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   2960 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   2961 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   2962 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   2963 		return;
   2964 	}
   2965 
   2966 #undef READ_RSTAT
   2967 #define READ_STAT(sc, stats, stat) \
   2968 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   2969 
   2970 	ifp->if_collisions +=
   2971 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   2972 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   2973 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   2974 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   2975 	  ifp->if_collisions;
   2976 
   2977 #undef READ_STAT
   2978 
   2979 #ifdef notdef
   2980 	ifp->if_collisions +=
   2981 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   2982 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   2983 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   2984 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   2985 	   ifp->if_collisions;
   2986 #endif
   2987 }
   2988 
   2989 /*
   2990  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   2991  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   2992  * but when such padded frames employ the  bge IP/TCP checksum offload,
   2993  * the hardware checksum assist gives incorrect results (possibly
   2994  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   2995  * If we pad such runts with zeros, the onboard checksum comes out correct.
   2996  */
   2997 static __inline int
   2998 bge_cksum_pad(struct mbuf *pkt)
   2999 {
   3000 	struct mbuf *last = NULL;
   3001 	int padlen;
   3002 
   3003 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3004 
   3005 	/* if there's only the packet-header and we can pad there, use it. */
   3006 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3007 	    !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
   3008 		last = pkt;
   3009 	} else {
   3010 		/*
   3011 		 * Walk packet chain to find last mbuf. We will either
   3012 		 * pad there, or append a new mbuf and pad it
   3013 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3014 		 */
   3015 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3016 	      	       (void) 0; /* do nothing*/
   3017 		}
   3018 
   3019 		/* `last' now points to last in chain. */
   3020 		if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
   3021 			(void) 0; /* we can pad here, in-place. */
   3022 		} else {
   3023 			/* Allocate new empty mbuf, pad it. Compact later. */
   3024 			struct mbuf *n;
   3025 			MGET(n, M_DONTWAIT, MT_DATA);
   3026 			n->m_len = 0;
   3027 			last->m_next = n;
   3028 			last = n;
   3029 		}
   3030 	}
   3031 
   3032 #ifdef DEBUG
   3033 	  /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
   3034 	  KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
   3035 #endif
   3036 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3037 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
   3038 	last->m_len += padlen;
   3039 	pkt->m_pkthdr.len += padlen;
   3040 	return 0;
   3041 }
   3042 
   3043 /*
   3044  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3045  */
   3046 static __inline int
   3047 bge_compact_dma_runt(struct mbuf *pkt)
   3048 {
   3049 	struct mbuf	*m, *prev;
   3050 	int 		totlen, prevlen;
   3051 
   3052 	prev = NULL;
   3053 	totlen = 0;
   3054 	prevlen = -1;
   3055 
   3056 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3057 		int mlen = m->m_len;
   3058 		int shortfall = 8 - mlen ;
   3059 
   3060 		totlen += mlen;
   3061 		if (mlen == 0) {
   3062 			continue;
   3063 		}
   3064 		if (mlen >= 8)
   3065 			continue;
   3066 
   3067 		/* If we get here, mbuf data is too small for DMA engine.
   3068 		 * Try to fix by shuffling data to prev or next in chain.
   3069 		 * If that fails, do a compacting deep-copy of the whole chain.
   3070 		 */
   3071 
   3072 		/* Internal frag. If fits in prev, copy it there. */
   3073 		if (prev && !M_READONLY(prev) &&
   3074 		      M_TRAILINGSPACE(prev) >= m->m_len) {
   3075 		  	bcopy(m->m_data,
   3076 			      prev->m_data+prev->m_len,
   3077 			      mlen);
   3078 			prev->m_len += mlen;
   3079 			m->m_len = 0;
   3080 			/* XXX stitch chain */
   3081 			prev->m_next = m_free(m);
   3082 			m = prev;
   3083 			continue;
   3084 		}
   3085 		else if (m->m_next != NULL && !M_READONLY(m) &&
   3086 			     M_TRAILINGSPACE(m) >= shortfall &&
   3087 			     m->m_next->m_len >= (8 + shortfall)) {
   3088 		    /* m is writable and have enough data in next, pull up. */
   3089 
   3090 		  	bcopy(m->m_next->m_data,
   3091 			      m->m_data+m->m_len,
   3092 			      shortfall);
   3093 			m->m_len += shortfall;
   3094 			m->m_next->m_len -= shortfall;
   3095 			m->m_next->m_data += shortfall;
   3096 		}
   3097 		else if (m->m_next == NULL || 1) {
   3098 		  	/* Got a runt at the very end of the packet.
   3099 			 * borrow data from the tail of the preceding mbuf and
   3100 			 * update its length in-place. (The original data is still
   3101 			 * valid, so we can do this even if prev is not writable.)
   3102 			 */
   3103 
   3104 			/* if we'd make prev a runt, just move all of its data. */
   3105 #ifdef DEBUG
   3106 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3107 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3108 #endif
   3109 			if ((prev->m_len - shortfall) < 8)
   3110 				shortfall = prev->m_len;
   3111 
   3112 #ifdef notyet	/* just do the safe slow thing for now */
   3113 			if (!M_READONLY(m)) {
   3114 				if (M_LEADINGSPACE(m) < shorfall) {
   3115 					void *m_dat;
   3116 					m_dat = (m->m_flags & M_PKTHDR) ?
   3117 					  m->m_pktdat : m->dat;
   3118 					memmove(m_dat, mtod(m, void*), m->m_len);
   3119 					m->m_data = m_dat;
   3120 				    }
   3121 			} else
   3122 #endif	/* just do the safe slow thing */
   3123 			{
   3124 				struct mbuf * n = NULL;
   3125 				int newprevlen = prev->m_len - shortfall;
   3126 
   3127 				MGET(n, M_NOWAIT, MT_DATA);
   3128 				if (n == NULL)
   3129 				   return ENOBUFS;
   3130 				KASSERT(m->m_len + shortfall < MLEN
   3131 					/*,
   3132 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3133 
   3134 				/* first copy the data we're stealing from prev */
   3135 				bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
   3136 
   3137 				/* update prev->m_len accordingly */
   3138 				prev->m_len -= shortfall;
   3139 
   3140 				/* copy data from runt m */
   3141 				bcopy(m->m_data, n->m_data + shortfall, m->m_len);
   3142 
   3143 				/* n holds what we stole from prev, plus m */
   3144 				n->m_len = shortfall + m->m_len;
   3145 
   3146 				/* stitch n into chain and free m */
   3147 				n->m_next = m->m_next;
   3148 				prev->m_next = n;
   3149 				/* KASSERT(m->m_next == NULL); */
   3150 				m->m_next = NULL;
   3151 				m_free(m);
   3152 				m = n;	/* for continuing loop */
   3153 			}
   3154 		}
   3155 		prevlen = m->m_len;
   3156 	}
   3157 	return 0;
   3158 }
   3159 
   3160 /*
   3161  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3162  * pointers to descriptors.
   3163  */
   3164 int
   3165 bge_encap(sc, m_head, txidx)
   3166 	struct bge_softc *sc;
   3167 	struct mbuf *m_head;
   3168 	u_int32_t *txidx;
   3169 {
   3170 	struct bge_tx_bd	*f = NULL;
   3171 	u_int32_t		frag, cur, cnt = 0;
   3172 	u_int16_t		csum_flags = 0;
   3173 	struct txdmamap_pool_entry *dma;
   3174 	bus_dmamap_t dmamap;
   3175 	int			i = 0;
   3176 	struct m_tag		*mtag;
   3177 
   3178 	cur = frag = *txidx;
   3179 
   3180 	if (m_head->m_pkthdr.csum_flags) {
   3181 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3182 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3183 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3184 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3185 	}
   3186 
   3187 	/*
   3188 	 * If we were asked to do an outboard checksum, and the NIC
   3189 	 * has the bug where it sometimes adds in the Ethernet padding,
   3190 	 * explicitly pad with zeros so the cksum will be correct either way.
   3191 	 * (For now, do this for all chip versions, until newer
   3192 	 * are confirmed to not require the workaround.)
   3193 	 */
   3194 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3195 #ifdef notyet
   3196 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3197 #endif
   3198 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3199 		goto check_dma_bug;
   3200 
   3201 	if (bge_cksum_pad(m_head) != 0)
   3202 	    return ENOBUFS;
   3203 
   3204 check_dma_bug:
   3205 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3206 		goto doit;
   3207 	/*
   3208 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3209 	 * less than eight bytes.  If we encounter a teeny mbuf
   3210 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3211 	 */
   3212 	if (bge_compact_dma_runt(m_head) != 0)
   3213 		return ENOBUFS;
   3214 
   3215 doit:
   3216 	dma = SLIST_FIRST(&sc->txdma_list);
   3217 	if (dma == NULL)
   3218 		return ENOBUFS;
   3219 	dmamap = dma->dmamap;
   3220 
   3221 	/*
   3222 	 * Start packing the mbufs in this chain into
   3223 	 * the fragment pointers. Stop when we run out
   3224 	 * of fragments or hit the end of the mbuf chain.
   3225 	 */
   3226 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3227 	    BUS_DMA_NOWAIT))
   3228 		return(ENOBUFS);
   3229 
   3230 	mtag = sc->ethercom.ec_nvlans ?
   3231 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3232 
   3233 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3234 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3235 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3236 			break;
   3237 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3238 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3239 		f->bge_flags = csum_flags;
   3240 
   3241 		if (mtag != NULL) {
   3242 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3243 			f->bge_vlan_tag = *(u_int *)(mtag + 1);
   3244 		} else {
   3245 			f->bge_vlan_tag = 0;
   3246 		}
   3247 		/*
   3248 		 * Sanity check: avoid coming within 16 descriptors
   3249 		 * of the end of the ring.
   3250 		 */
   3251 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
   3252 			return(ENOBUFS);
   3253 		cur = frag;
   3254 		BGE_INC(frag, BGE_TX_RING_CNT);
   3255 		cnt++;
   3256 	}
   3257 
   3258 	if (i < dmamap->dm_nsegs)
   3259 		return ENOBUFS;
   3260 
   3261 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3262 	    BUS_DMASYNC_PREWRITE);
   3263 
   3264 	if (frag == sc->bge_tx_saved_considx)
   3265 		return(ENOBUFS);
   3266 
   3267 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3268 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3269 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3270 	sc->txdma[cur] = dma;
   3271 	sc->bge_txcnt += cnt;
   3272 
   3273 	*txidx = frag;
   3274 
   3275 	return(0);
   3276 }
   3277 
   3278 /*
   3279  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3280  * to the mbuf data regions directly in the transmit descriptors.
   3281  */
   3282 void
   3283 bge_start(ifp)
   3284 	struct ifnet *ifp;
   3285 {
   3286 	struct bge_softc *sc;
   3287 	struct mbuf *m_head = NULL;
   3288 	u_int32_t prodidx = 0;
   3289 	int pkts = 0;
   3290 
   3291 	sc = ifp->if_softc;
   3292 
   3293 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   3294 		return;
   3295 
   3296 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
   3297 
   3298 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3299 		IFQ_POLL(&ifp->if_snd, m_head);
   3300 		if (m_head == NULL)
   3301 			break;
   3302 
   3303 #if 0
   3304 		/*
   3305 		 * XXX
   3306 		 * safety overkill.  If this is a fragmented packet chain
   3307 		 * with delayed TCP/UDP checksums, then only encapsulate
   3308 		 * it if we have enough descriptors to handle the entire
   3309 		 * chain at once.
   3310 		 * (paranoia -- may not actually be needed)
   3311 		 */
   3312 		if (m_head->m_flags & M_FIRSTFRAG &&
   3313 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3314 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3315 			    m_head->m_pkthdr.csum_data + 16) {
   3316 				ifp->if_flags |= IFF_OACTIVE;
   3317 				break;
   3318 			}
   3319 		}
   3320 #endif
   3321 
   3322 		/*
   3323 		 * Pack the data into the transmit ring. If we
   3324 		 * don't have room, set the OACTIVE flag and wait
   3325 		 * for the NIC to drain the ring.
   3326 		 */
   3327 		if (bge_encap(sc, m_head, &prodidx)) {
   3328 			ifp->if_flags |= IFF_OACTIVE;
   3329 			break;
   3330 		}
   3331 
   3332 		/* now we are committed to transmit the packet */
   3333 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3334 		pkts++;
   3335 
   3336 #if NBPFILTER > 0
   3337 		/*
   3338 		 * If there's a BPF listener, bounce a copy of this frame
   3339 		 * to him.
   3340 		 */
   3341 		if (ifp->if_bpf)
   3342 			bpf_mtap(ifp->if_bpf, m_head);
   3343 #endif
   3344 	}
   3345 	if (pkts == 0)
   3346 		return;
   3347 
   3348 	/* Transmit */
   3349 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3350 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   3351 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3352 
   3353 	/*
   3354 	 * Set a timeout in case the chip goes out to lunch.
   3355 	 */
   3356 	ifp->if_timer = 5;
   3357 }
   3358 
   3359 int
   3360 bge_init(ifp)
   3361 	struct ifnet *ifp;
   3362 {
   3363 	struct bge_softc *sc = ifp->if_softc;
   3364 	u_int16_t *m;
   3365 	int s, error;
   3366 
   3367 	s = splnet();
   3368 
   3369 	ifp = &sc->ethercom.ec_if;
   3370 
   3371 	/* Cancel pending I/O and flush buffers. */
   3372 	bge_stop(sc);
   3373 	bge_reset(sc);
   3374 	bge_chipinit(sc);
   3375 
   3376 	/*
   3377 	 * Init the various state machines, ring
   3378 	 * control blocks and firmware.
   3379 	 */
   3380 	error = bge_blockinit(sc);
   3381 	if (error != 0) {
   3382 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   3383 		    error);
   3384 		splx(s);
   3385 		return error;
   3386 	}
   3387 
   3388 	ifp = &sc->ethercom.ec_if;
   3389 
   3390 	/* Specify MTU. */
   3391 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3392 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
   3393 
   3394 	/* Load our MAC address. */
   3395 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   3396 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3397 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3398 
   3399 	/* Enable or disable promiscuous mode as needed. */
   3400 	if (ifp->if_flags & IFF_PROMISC) {
   3401 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3402 	} else {
   3403 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3404 	}
   3405 
   3406 	/* Program multicast filter. */
   3407 	bge_setmulti(sc);
   3408 
   3409 	/* Init RX ring. */
   3410 	bge_init_rx_ring_std(sc);
   3411 
   3412 	/* Init jumbo RX ring. */
   3413 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3414 		bge_init_rx_ring_jumbo(sc);
   3415 
   3416 	/* Init our RX return ring index */
   3417 	sc->bge_rx_saved_considx = 0;
   3418 
   3419 	/* Init TX ring. */
   3420 	bge_init_tx_ring(sc);
   3421 
   3422 	/* Turn on transmitter */
   3423 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3424 
   3425 	/* Turn on receiver */
   3426 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3427 
   3428 	/* Tell firmware we're alive. */
   3429 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3430 
   3431 	/* Enable host interrupts. */
   3432 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   3433 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3434 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3435 
   3436 	bge_ifmedia_upd(ifp);
   3437 
   3438 	ifp->if_flags |= IFF_RUNNING;
   3439 	ifp->if_flags &= ~IFF_OACTIVE;
   3440 
   3441 	splx(s);
   3442 
   3443 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3444 
   3445 	return 0;
   3446 }
   3447 
   3448 /*
   3449  * Set media options.
   3450  */
   3451 int
   3452 bge_ifmedia_upd(ifp)
   3453 	struct ifnet *ifp;
   3454 {
   3455 	struct bge_softc *sc = ifp->if_softc;
   3456 	struct mii_data *mii = &sc->bge_mii;
   3457 	struct ifmedia *ifm = &sc->bge_ifmedia;
   3458 
   3459 	/* If this is a 1000baseX NIC, enable the TBI port. */
   3460 	if (sc->bge_tbi) {
   3461 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   3462 			return(EINVAL);
   3463 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   3464 		case IFM_AUTO:
   3465 			break;
   3466 		case IFM_1000_SX:
   3467 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   3468 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3469 				    BGE_MACMODE_HALF_DUPLEX);
   3470 			} else {
   3471 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3472 				    BGE_MACMODE_HALF_DUPLEX);
   3473 			}
   3474 			break;
   3475 		default:
   3476 			return(EINVAL);
   3477 		}
   3478 		return(0);
   3479 	}
   3480 
   3481 	sc->bge_link = 0;
   3482 	mii_mediachg(mii);
   3483 
   3484 	return(0);
   3485 }
   3486 
   3487 /*
   3488  * Report current media status.
   3489  */
   3490 void
   3491 bge_ifmedia_sts(ifp, ifmr)
   3492 	struct ifnet *ifp;
   3493 	struct ifmediareq *ifmr;
   3494 {
   3495 	struct bge_softc *sc = ifp->if_softc;
   3496 	struct mii_data *mii = &sc->bge_mii;
   3497 
   3498 	if (sc->bge_tbi) {
   3499 		ifmr->ifm_status = IFM_AVALID;
   3500 		ifmr->ifm_active = IFM_ETHER;
   3501 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3502 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   3503 			ifmr->ifm_status |= IFM_ACTIVE;
   3504 		ifmr->ifm_active |= IFM_1000_SX;
   3505 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   3506 			ifmr->ifm_active |= IFM_HDX;
   3507 		else
   3508 			ifmr->ifm_active |= IFM_FDX;
   3509 		return;
   3510 	}
   3511 
   3512 	mii_pollstat(mii);
   3513 	ifmr->ifm_active = mii->mii_media_active;
   3514 	ifmr->ifm_status = mii->mii_media_status;
   3515 }
   3516 
   3517 int
   3518 bge_ioctl(ifp, command, data)
   3519 	struct ifnet *ifp;
   3520 	u_long command;
   3521 	caddr_t data;
   3522 {
   3523 	struct bge_softc *sc = ifp->if_softc;
   3524 	struct ifreq *ifr = (struct ifreq *) data;
   3525 	int s, error = 0;
   3526 	struct mii_data *mii;
   3527 
   3528 	s = splnet();
   3529 
   3530 	switch(command) {
   3531 	case SIOCSIFFLAGS:
   3532 		if (ifp->if_flags & IFF_UP) {
   3533 			/*
   3534 			 * If only the state of the PROMISC flag changed,
   3535 			 * then just use the 'set promisc mode' command
   3536 			 * instead of reinitializing the entire NIC. Doing
   3537 			 * a full re-init means reloading the firmware and
   3538 			 * waiting for it to start up, which may take a
   3539 			 * second or two.
   3540 			 */
   3541 			if (ifp->if_flags & IFF_RUNNING &&
   3542 			    ifp->if_flags & IFF_PROMISC &&
   3543 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   3544 				BGE_SETBIT(sc, BGE_RX_MODE,
   3545 				    BGE_RXMODE_RX_PROMISC);
   3546 			} else if (ifp->if_flags & IFF_RUNNING &&
   3547 			    !(ifp->if_flags & IFF_PROMISC) &&
   3548 			    sc->bge_if_flags & IFF_PROMISC) {
   3549 				BGE_CLRBIT(sc, BGE_RX_MODE,
   3550 				    BGE_RXMODE_RX_PROMISC);
   3551 			} else
   3552 				bge_init(ifp);
   3553 		} else {
   3554 			if (ifp->if_flags & IFF_RUNNING) {
   3555 				bge_stop(sc);
   3556 			}
   3557 		}
   3558 		sc->bge_if_flags = ifp->if_flags;
   3559 		error = 0;
   3560 		break;
   3561 	case SIOCSIFMEDIA:
   3562 	case SIOCGIFMEDIA:
   3563 		if (sc->bge_tbi) {
   3564 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   3565 			    command);
   3566 		} else {
   3567 			mii = &sc->bge_mii;
   3568 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   3569 			    command);
   3570 		}
   3571 		error = 0;
   3572 		break;
   3573 	default:
   3574 		error = ether_ioctl(ifp, command, data);
   3575 		if (error == ENETRESET) {
   3576 			bge_setmulti(sc);
   3577 			error = 0;
   3578 		}
   3579 		break;
   3580 	}
   3581 
   3582 	splx(s);
   3583 
   3584 	return(error);
   3585 }
   3586 
   3587 void
   3588 bge_watchdog(ifp)
   3589 	struct ifnet *ifp;
   3590 {
   3591 	struct bge_softc *sc;
   3592 
   3593 	sc = ifp->if_softc;
   3594 
   3595 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   3596 
   3597 	ifp->if_flags &= ~IFF_RUNNING;
   3598 	bge_init(ifp);
   3599 
   3600 	ifp->if_oerrors++;
   3601 }
   3602 
   3603 static void
   3604 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   3605 {
   3606 	int i;
   3607 
   3608 	BGE_CLRBIT(sc, reg, bit);
   3609 
   3610 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3611 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   3612 			return;
   3613 		delay(100);
   3614 	}
   3615 
   3616 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
   3617 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
   3618 }
   3619 
   3620 /*
   3621  * Stop the adapter and free any mbufs allocated to the
   3622  * RX and TX lists.
   3623  */
   3624 void
   3625 bge_stop(sc)
   3626 	struct bge_softc *sc;
   3627 {
   3628 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3629 
   3630 	callout_stop(&sc->bge_timeout);
   3631 
   3632 	/*
   3633 	 * Disable all of the receiver blocks
   3634 	 */
   3635 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3636 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3637 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   3638 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3639 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   3640 	}
   3641 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   3642 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3643 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   3644 
   3645 	/*
   3646 	 * Disable all of the transmit blocks
   3647 	 */
   3648 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3649 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3650 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3651 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   3652 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   3653 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3654 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   3655 	}
   3656 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3657 
   3658 	/*
   3659 	 * Shut down all of the memory managers and related
   3660 	 * state machines.
   3661 	 */
   3662 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   3663 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   3664 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3665 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3666 	}
   3667 
   3668 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   3669 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   3670 
   3671 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3672 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   3673 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   3674 	}
   3675 
   3676 	/* Disable host interrupts. */
   3677 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3678 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3679 
   3680 	/*
   3681 	 * Tell firmware we're shutting down.
   3682 	 */
   3683 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3684 
   3685 	/* Free the RX lists. */
   3686 	bge_free_rx_ring_std(sc);
   3687 
   3688 	/* Free jumbo RX list. */
   3689 	bge_free_rx_ring_jumbo(sc);
   3690 
   3691 	/* Free TX buffers. */
   3692 	bge_free_tx_ring(sc);
   3693 
   3694 	/*
   3695 	 * Isolate/power down the PHY.
   3696 	 */
   3697 	if (!sc->bge_tbi)
   3698 		mii_down(&sc->bge_mii);
   3699 
   3700 	sc->bge_link = 0;
   3701 
   3702 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   3703 
   3704 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3705 }
   3706 
   3707 /*
   3708  * Stop all chip I/O so that the kernel's probe routines don't
   3709  * get confused by errant DMAs when rebooting.
   3710  */
   3711 void
   3712 bge_shutdown(xsc)
   3713 	void *xsc;
   3714 {
   3715 	struct bge_softc *sc = (struct bge_softc *)xsc;
   3716 
   3717 	bge_stop(sc);
   3718 	bge_reset(sc);
   3719 }
   3720