Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.64
      1 /*	$NetBSD: if_bge.c,v 1.64 2004/03/27 01:17:49 jonathan Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.64 2004/03/27 01:17:49 jonathan Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "vlan.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/device.h>
     95 #include <sys/socket.h>
     96 #include <sys/sysctl.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #ifdef INET
    104 #include <netinet/in.h>
    105 #include <netinet/in_systm.h>
    106 #include <netinet/in_var.h>
    107 #include <netinet/ip.h>
    108 #endif
    109 
    110 #if NBPFILTER > 0
    111 #include <net/bpf.h>
    112 #endif
    113 
    114 #include <dev/pci/pcireg.h>
    115 #include <dev/pci/pcivar.h>
    116 #include <dev/pci/pcidevs.h>
    117 
    118 #include <dev/mii/mii.h>
    119 #include <dev/mii/miivar.h>
    120 #include <dev/mii/miidevs.h>
    121 #include <dev/mii/brgphyreg.h>
    122 
    123 #include <dev/pci/if_bgereg.h>
    124 
    125 #include <uvm/uvm_extern.h>
    126 
    127 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    128 
    129 
    130 /*
    131  * Tunable thresholds for rx-side bge interrupt mitigation.
    132  */
    133 
    134 /*
    135  * The pairs of values below were obtained from empirical measurement
    136  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    137  * interrupt for every N packets received, where N is, approximately,
    138  * the second value (rx_max_bds) in each pair.  The values are chosen
    139  * such that moving from one pair to the succeeding pair was observed
    140  * to roughly halve interrupt rate under sustained input packet load.
    141  * The values were empirically chosen to avoid overflowing internal
    142  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    143  * results in internal wrapping and higher interrupt rates.
    144  * The limit of 46 frames was chosen to match NFS workloads.
    145  *
    146  * These values also work well on bcm5701, bcm5704C, and (less
    147  * tested) bcm5703.  On other chipsets, (including the Altima chip
    148  * family), the larger values may overflow internal chip limits,
    149  * leading to increasing interrupt rates rather than lower interrupt
    150  * rates.
    151  *
    152  * Applications using heavy interrupt mitigation (interrupting every
    153  * 32 or 46 frames) in both directions may need to increase the TCP
    154  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    155  * full link bandwidth, due to ACKs and window updates lingering
    156  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    157  */
    158 struct bge_load_rx_thresh {
    159 	int rx_ticks;
    160 	int rx_max_bds; }
    161 bge_rx_threshes[] = {
    162 	{ 32,   2 },
    163 	{ 50,   4 },
    164 	{ 100,  8 },
    165 	{ 192, 16 },
    166 	{ 416, 32 },
    167 	{ 598, 46 }
    168 };
    169 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    170 
    171 /* XXX patchable; should be sysctl'able */
    172 static int	bge_auto_thresh = 1;
    173 static int	bge_rx_thresh_lvl;
    174 
    175 #ifdef __NetBSD__
    176 static struct sysctlnode *bge_node_root;
    177 static int bge_rxthresh_nodenum;
    178 #endif /* __NetBSD__ */
    179 
    180 int bge_probe(struct device *, struct cfdata *, void *);
    181 void bge_attach(struct device *, struct device *, void *);
    182 void bge_release_resources(struct bge_softc *);
    183 void bge_txeof(struct bge_softc *);
    184 void bge_rxeof(struct bge_softc *);
    185 
    186 void bge_tick(void *);
    187 void bge_stats_update(struct bge_softc *);
    188 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    189 static __inline int bge_cksum_pad(struct mbuf *pkt);
    190 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
    191 
    192 int bge_intr(void *);
    193 void bge_start(struct ifnet *);
    194 int bge_ioctl(struct ifnet *, u_long, caddr_t);
    195 int bge_init(struct ifnet *);
    196 void bge_stop(struct bge_softc *);
    197 void bge_watchdog(struct ifnet *);
    198 void bge_shutdown(void *);
    199 int bge_ifmedia_upd(struct ifnet *);
    200 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    201 
    202 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
    203 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
    204 
    205 void bge_setmulti(struct bge_softc *);
    206 
    207 void bge_handle_events(struct bge_softc *);
    208 int bge_alloc_jumbo_mem(struct bge_softc *);
    209 void bge_free_jumbo_mem(struct bge_softc *);
    210 void *bge_jalloc(struct bge_softc *);
    211 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
    212 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
    213 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    214 int bge_init_rx_ring_std(struct bge_softc *);
    215 void bge_free_rx_ring_std(struct bge_softc *);
    216 int bge_init_rx_ring_jumbo(struct bge_softc *);
    217 void bge_free_rx_ring_jumbo(struct bge_softc *);
    218 void bge_free_tx_ring(struct bge_softc *);
    219 int bge_init_tx_ring(struct bge_softc *);
    220 
    221 int bge_chipinit(struct bge_softc *);
    222 int bge_blockinit(struct bge_softc *);
    223 int bge_setpowerstate(struct bge_softc *, int);
    224 
    225 #ifdef notdef
    226 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
    227 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
    228 void bge_vpd_read(struct bge_softc *);
    229 #endif
    230 
    231 u_int32_t bge_readmem_ind(struct bge_softc *, int);
    232 void bge_writemem_ind(struct bge_softc *, int, int);
    233 #ifdef notdef
    234 u_int32_t bge_readreg_ind(struct bge_softc *, int);
    235 #endif
    236 void bge_writereg_ind(struct bge_softc *, int, int);
    237 
    238 int bge_miibus_readreg(struct device *, int, int);
    239 void bge_miibus_writereg(struct device *, int, int, int);
    240 void bge_miibus_statchg(struct device *);
    241 
    242 void bge_reset(struct bge_softc *);
    243 
    244 void	bge_set_thresh(struct ifnet *  /*ifp*/, int /*lvl*/);
    245 void	bge_update_all_threshes(int /*lvl*/);
    246 
    247 void bge_dump_status(struct bge_softc *);
    248 void bge_dump_rxbd(struct bge_rx_bd *);
    249 
    250 #define BGE_DEBUG
    251 #ifdef BGE_DEBUG
    252 #define DPRINTF(x)	if (bgedebug) printf x
    253 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    254 int	bgedebug = 0;
    255 #else
    256 #define DPRINTF(x)
    257 #define DPRINTFN(n,x)
    258 #endif
    259 
    260 /* Various chip quirks. */
    261 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    262 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    263 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    264 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    265 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    266 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    267 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    268 #define	BGE_QUIRK_5705_CORE		0x00000080
    269 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    270 
    271 /* following bugs are common to bcm5700 rev B, all flavours */
    272 #define BGE_QUIRK_5700_COMMON \
    273 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    274 
    275 CFATTACH_DECL(bge, sizeof(struct bge_softc),
    276     bge_probe, bge_attach, NULL, NULL);
    277 
    278 u_int32_t
    279 bge_readmem_ind(sc, off)
    280 	struct bge_softc *sc;
    281 	int off;
    282 {
    283 	struct pci_attach_args	*pa = &(sc->bge_pa);
    284 	pcireg_t val;
    285 
    286 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    287 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    288 	return val;
    289 }
    290 
    291 void
    292 bge_writemem_ind(sc, off, val)
    293 	struct bge_softc *sc;
    294 	int off, val;
    295 {
    296 	struct pci_attach_args	*pa = &(sc->bge_pa);
    297 
    298 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    299 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    300 }
    301 
    302 #ifdef notdef
    303 u_int32_t
    304 bge_readreg_ind(sc, off)
    305 	struct bge_softc *sc;
    306 	int off;
    307 {
    308 	struct pci_attach_args	*pa = &(sc->bge_pa);
    309 
    310 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    311 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    312 }
    313 #endif
    314 
    315 void
    316 bge_writereg_ind(sc, off, val)
    317 	struct bge_softc *sc;
    318 	int off, val;
    319 {
    320 	struct pci_attach_args	*pa = &(sc->bge_pa);
    321 
    322 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    323 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    324 }
    325 
    326 #ifdef notdef
    327 u_int8_t
    328 bge_vpd_readbyte(sc, addr)
    329 	struct bge_softc *sc;
    330 	int addr;
    331 {
    332 	int i;
    333 	u_int32_t val;
    334 	struct pci_attach_args	*pa = &(sc->bge_pa);
    335 
    336 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    337 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    338 		DELAY(10);
    339 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    340 		    BGE_VPD_FLAG)
    341 			break;
    342 	}
    343 
    344 	if (i == BGE_TIMEOUT) {
    345 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    346 		return(0);
    347 	}
    348 
    349 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    350 
    351 	return((val >> ((addr % 4) * 8)) & 0xFF);
    352 }
    353 
    354 void
    355 bge_vpd_read_res(sc, res, addr)
    356 	struct bge_softc *sc;
    357 	struct vpd_res *res;
    358 	int addr;
    359 {
    360 	int i;
    361 	u_int8_t *ptr;
    362 
    363 	ptr = (u_int8_t *)res;
    364 	for (i = 0; i < sizeof(struct vpd_res); i++)
    365 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    366 }
    367 
    368 void
    369 bge_vpd_read(sc)
    370 	struct bge_softc *sc;
    371 {
    372 	int pos = 0, i;
    373 	struct vpd_res res;
    374 
    375 	if (sc->bge_vpd_prodname != NULL)
    376 		free(sc->bge_vpd_prodname, M_DEVBUF);
    377 	if (sc->bge_vpd_readonly != NULL)
    378 		free(sc->bge_vpd_readonly, M_DEVBUF);
    379 	sc->bge_vpd_prodname = NULL;
    380 	sc->bge_vpd_readonly = NULL;
    381 
    382 	bge_vpd_read_res(sc, &res, pos);
    383 
    384 	if (res.vr_id != VPD_RES_ID) {
    385 		printf("%s: bad VPD resource id: expected %x got %x\n",
    386 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    387 		return;
    388 	}
    389 
    390 	pos += sizeof(res);
    391 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    392 	if (sc->bge_vpd_prodname == NULL)
    393 		panic("bge_vpd_read");
    394 	for (i = 0; i < res.vr_len; i++)
    395 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    396 	sc->bge_vpd_prodname[i] = '\0';
    397 	pos += i;
    398 
    399 	bge_vpd_read_res(sc, &res, pos);
    400 
    401 	if (res.vr_id != VPD_RES_READ) {
    402 		printf("%s: bad VPD resource id: expected %x got %x\n",
    403 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    404 		return;
    405 	}
    406 
    407 	pos += sizeof(res);
    408 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    409 	if (sc->bge_vpd_readonly == NULL)
    410 		panic("bge_vpd_read");
    411 	for (i = 0; i < res.vr_len + 1; i++)
    412 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    413 }
    414 #endif
    415 
    416 /*
    417  * Read a byte of data stored in the EEPROM at address 'addr.' The
    418  * BCM570x supports both the traditional bitbang interface and an
    419  * auto access interface for reading the EEPROM. We use the auto
    420  * access method.
    421  */
    422 u_int8_t
    423 bge_eeprom_getbyte(sc, addr, dest)
    424 	struct bge_softc *sc;
    425 	int addr;
    426 	u_int8_t *dest;
    427 {
    428 	int i;
    429 	u_int32_t byte = 0;
    430 
    431 	/*
    432 	 * Enable use of auto EEPROM access so we can avoid
    433 	 * having to use the bitbang method.
    434 	 */
    435 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    436 
    437 	/* Reset the EEPROM, load the clock period. */
    438 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    439 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    440 	DELAY(20);
    441 
    442 	/* Issue the read EEPROM command. */
    443 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    444 
    445 	/* Wait for completion */
    446 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    447 		DELAY(10);
    448 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    449 			break;
    450 	}
    451 
    452 	if (i == BGE_TIMEOUT) {
    453 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    454 		return(0);
    455 	}
    456 
    457 	/* Get result. */
    458 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    459 
    460 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    461 
    462 	return(0);
    463 }
    464 
    465 /*
    466  * Read a sequence of bytes from the EEPROM.
    467  */
    468 int
    469 bge_read_eeprom(sc, dest, off, cnt)
    470 	struct bge_softc *sc;
    471 	caddr_t dest;
    472 	int off;
    473 	int cnt;
    474 {
    475 	int err = 0, i;
    476 	u_int8_t byte = 0;
    477 
    478 	for (i = 0; i < cnt; i++) {
    479 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    480 		if (err)
    481 			break;
    482 		*(dest + i) = byte;
    483 	}
    484 
    485 	return(err ? 1 : 0);
    486 }
    487 
    488 int
    489 bge_miibus_readreg(dev, phy, reg)
    490 	struct device *dev;
    491 	int phy, reg;
    492 {
    493 	struct bge_softc *sc = (struct bge_softc *)dev;
    494 	u_int32_t val;
    495 	u_int32_t saved_autopoll;
    496 	int i;
    497 
    498 	/*
    499 	 * Several chips with builtin PHYs will incorrectly answer to
    500 	 * other PHY instances than the builtin PHY at id 1.
    501 	 */
    502 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    503 		return(0);
    504 
    505 	/* Reading with autopolling on may trigger PCI errors */
    506 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    507 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    508 		CSR_WRITE_4(sc, BGE_MI_MODE,
    509 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    510 		DELAY(40);
    511 	}
    512 
    513 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    514 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    515 
    516 	for (i = 0; i < BGE_TIMEOUT; i++) {
    517 		val = CSR_READ_4(sc, BGE_MI_COMM);
    518 		if (!(val & BGE_MICOMM_BUSY))
    519 			break;
    520 		delay(10);
    521 	}
    522 
    523 	if (i == BGE_TIMEOUT) {
    524 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    525 		val = 0;
    526 		goto done;
    527 	}
    528 
    529 	val = CSR_READ_4(sc, BGE_MI_COMM);
    530 
    531 done:
    532 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    533 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    534 		DELAY(40);
    535 	}
    536 
    537 	if (val & BGE_MICOMM_READFAIL)
    538 		return(0);
    539 
    540 	return(val & 0xFFFF);
    541 }
    542 
    543 void
    544 bge_miibus_writereg(dev, phy, reg, val)
    545 	struct device *dev;
    546 	int phy, reg, val;
    547 {
    548 	struct bge_softc *sc = (struct bge_softc *)dev;
    549 	u_int32_t saved_autopoll;
    550 	int i;
    551 
    552 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    553 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    554 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    555 		delay(40);
    556 		CSR_WRITE_4(sc, BGE_MI_MODE,
    557 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    558 		delay(10); /* 40 usec is supposed to be adequate */
    559 	}
    560 
    561 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    562 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    563 
    564 	for (i = 0; i < BGE_TIMEOUT; i++) {
    565 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    566 			break;
    567 		delay(10);
    568 	}
    569 
    570 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    571 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    572 		delay(40);
    573 	}
    574 
    575 	if (i == BGE_TIMEOUT) {
    576 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    577 	}
    578 }
    579 
    580 void
    581 bge_miibus_statchg(dev)
    582 	struct device *dev;
    583 {
    584 	struct bge_softc *sc = (struct bge_softc *)dev;
    585 	struct mii_data *mii = &sc->bge_mii;
    586 
    587 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    588 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    589 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    590 	} else {
    591 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    592 	}
    593 
    594 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    595 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    596 	} else {
    597 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    598 	}
    599 }
    600 
    601 /*
    602  * Update rx threshold levels to values in a particular slot
    603  * of the interrupt-mitigation table bge_rx_threshes.
    604  */
    605 void
    606 bge_set_thresh(struct ifnet *ifp, int lvl)
    607 {
    608 	struct bge_softc *sc = ifp->if_softc;
    609 	int s;
    610 
    611 	/* For now, just save the new Rx-intr thresholds and record
    612 	 * that a threshold update is pending.  Updating the hardware
    613 	 * registers here (even at splhigh()) is observed to
    614 	 * occasionaly cause glitches where Rx-interrupts are not
    615 	 * honoured for up to 10 seconds. jonathan (at) netbsd.org, 2003-04-05
    616 	 */
    617 	s = splnet();
    618 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    619 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    620 	sc->bge_pending_rxintr_change = 1;
    621 	splx(s);
    622 
    623 	 return;
    624 }
    625 
    626 
    627 /*
    628  * Update Rx thresholds of all bge devices
    629  */
    630 void
    631 bge_update_all_threshes(int lvl)
    632 {
    633 	struct ifnet *ifp;
    634 	const char * const namebuf = "bge";
    635 	int namelen;
    636 
    637 	if (lvl < 0)
    638 		lvl = 0;
    639 	else if( lvl >= NBGE_RX_THRESH)
    640 		lvl = NBGE_RX_THRESH - 1;
    641 
    642 	namelen = strlen(namebuf);
    643 	/*
    644 	 * Now search all the interfaces for this name/number
    645 	 */
    646 	TAILQ_FOREACH(ifp, &ifnet, if_list) {
    647 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0 )
    648 		      continue;
    649 		/* We got a match: update if doing auto-threshold-tuning */
    650 		if (bge_auto_thresh)
    651 			bge_set_thresh(ifp->if_softc, lvl);
    652 	}
    653 }
    654 
    655 /*
    656  * Handle events that have triggered interrupts.
    657  */
    658 void
    659 bge_handle_events(sc)
    660 	struct bge_softc		*sc;
    661 {
    662 
    663 	return;
    664 }
    665 
    666 /*
    667  * Memory management for jumbo frames.
    668  */
    669 
    670 int
    671 bge_alloc_jumbo_mem(sc)
    672 	struct bge_softc		*sc;
    673 {
    674 	caddr_t			ptr, kva;
    675 	bus_dma_segment_t	seg;
    676 	int		i, rseg, state, error;
    677 	struct bge_jpool_entry   *entry;
    678 
    679 	state = error = 0;
    680 
    681 	/* Grab a big chunk o' storage. */
    682 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    683 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    684 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    685 		return ENOBUFS;
    686 	}
    687 
    688 	state = 1;
    689 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    690 	    BUS_DMA_NOWAIT)) {
    691 		printf("%s: can't map DMA buffers (%d bytes)\n",
    692 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    693 		error = ENOBUFS;
    694 		goto out;
    695 	}
    696 
    697 	state = 2;
    698 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    699 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    700 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
    701 		error = ENOBUFS;
    702 		goto out;
    703 	}
    704 
    705 	state = 3;
    706 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    707 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    708 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
    709 		error = ENOBUFS;
    710 		goto out;
    711 	}
    712 
    713 	state = 4;
    714 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    715 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
    716 
    717 	SLIST_INIT(&sc->bge_jfree_listhead);
    718 	SLIST_INIT(&sc->bge_jinuse_listhead);
    719 
    720 	/*
    721 	 * Now divide it up into 9K pieces and save the addresses
    722 	 * in an array.
    723 	 */
    724 	ptr = sc->bge_cdata.bge_jumbo_buf;
    725 	for (i = 0; i < BGE_JSLOTS; i++) {
    726 		sc->bge_cdata.bge_jslots[i] = ptr;
    727 		ptr += BGE_JLEN;
    728 		entry = malloc(sizeof(struct bge_jpool_entry),
    729 		    M_DEVBUF, M_NOWAIT);
    730 		if (entry == NULL) {
    731 			printf("%s: no memory for jumbo buffer queue!\n",
    732 			    sc->bge_dev.dv_xname);
    733 			error = ENOBUFS;
    734 			goto out;
    735 		}
    736 		entry->slot = i;
    737 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    738 				 entry, jpool_entries);
    739 	}
    740 out:
    741 	if (error != 0) {
    742 		switch (state) {
    743 		case 4:
    744 			bus_dmamap_unload(sc->bge_dmatag,
    745 			    sc->bge_cdata.bge_rx_jumbo_map);
    746 		case 3:
    747 			bus_dmamap_destroy(sc->bge_dmatag,
    748 			    sc->bge_cdata.bge_rx_jumbo_map);
    749 		case 2:
    750 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    751 		case 1:
    752 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    753 			break;
    754 		default:
    755 			break;
    756 		}
    757 	}
    758 
    759 	return error;
    760 }
    761 
    762 /*
    763  * Allocate a jumbo buffer.
    764  */
    765 void *
    766 bge_jalloc(sc)
    767 	struct bge_softc		*sc;
    768 {
    769 	struct bge_jpool_entry   *entry;
    770 
    771 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    772 
    773 	if (entry == NULL) {
    774 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    775 		return(NULL);
    776 	}
    777 
    778 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    779 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    780 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    781 }
    782 
    783 /*
    784  * Release a jumbo buffer.
    785  */
    786 void
    787 bge_jfree(m, buf, size, arg)
    788 	struct mbuf	*m;
    789 	caddr_t		buf;
    790 	size_t		size;
    791 	void		*arg;
    792 {
    793 	struct bge_jpool_entry *entry;
    794 	struct bge_softc *sc;
    795 	int i, s;
    796 
    797 	/* Extract the softc struct pointer. */
    798 	sc = (struct bge_softc *)arg;
    799 
    800 	if (sc == NULL)
    801 		panic("bge_jfree: can't find softc pointer!");
    802 
    803 	/* calculate the slot this buffer belongs to */
    804 
    805 	i = ((caddr_t)buf
    806 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    807 
    808 	if ((i < 0) || (i >= BGE_JSLOTS))
    809 		panic("bge_jfree: asked to free buffer that we don't manage!");
    810 
    811 	s = splvm();
    812 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    813 	if (entry == NULL)
    814 		panic("bge_jfree: buffer not in use!");
    815 	entry->slot = i;
    816 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    817 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    818 
    819 	if (__predict_true(m != NULL))
    820   		pool_cache_put(&mbpool_cache, m);
    821 	splx(s);
    822 }
    823 
    824 
    825 /*
    826  * Intialize a standard receive ring descriptor.
    827  */
    828 int
    829 bge_newbuf_std(sc, i, m, dmamap)
    830 	struct bge_softc	*sc;
    831 	int			i;
    832 	struct mbuf		*m;
    833 	bus_dmamap_t dmamap;
    834 {
    835 	struct mbuf		*m_new = NULL;
    836 	struct bge_rx_bd	*r;
    837 	int			error;
    838 
    839 	if (dmamap == NULL) {
    840 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    841 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    842 		if (error != 0)
    843 			return error;
    844 	}
    845 
    846 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    847 
    848 	if (m == NULL) {
    849 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    850 		if (m_new == NULL) {
    851 			return(ENOBUFS);
    852 		}
    853 
    854 		MCLGET(m_new, M_DONTWAIT);
    855 		if (!(m_new->m_flags & M_EXT)) {
    856 			m_freem(m_new);
    857 			return(ENOBUFS);
    858 		}
    859 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    860 		if (!sc->bge_rx_alignment_bug)
    861 		    m_adj(m_new, ETHER_ALIGN);
    862 
    863 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    864 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    865 			return(ENOBUFS);
    866 	} else {
    867 		m_new = m;
    868 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    869 		m_new->m_data = m_new->m_ext.ext_buf;
    870 		if (!sc->bge_rx_alignment_bug)
    871 		    m_adj(m_new, ETHER_ALIGN);
    872 	}
    873 
    874 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    875 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    876 	bge_set_hostaddr(&r->bge_addr,
    877 	    dmamap->dm_segs[0].ds_addr);
    878 	r->bge_flags = BGE_RXBDFLAG_END;
    879 	r->bge_len = m_new->m_len;
    880 	r->bge_idx = i;
    881 
    882 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    883 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    884 		i * sizeof (struct bge_rx_bd),
    885 	    sizeof (struct bge_rx_bd),
    886 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    887 
    888 	return(0);
    889 }
    890 
    891 /*
    892  * Initialize a jumbo receive ring descriptor. This allocates
    893  * a jumbo buffer from the pool managed internally by the driver.
    894  */
    895 int
    896 bge_newbuf_jumbo(sc, i, m)
    897 	struct bge_softc *sc;
    898 	int i;
    899 	struct mbuf *m;
    900 {
    901 	struct mbuf *m_new = NULL;
    902 	struct bge_rx_bd *r;
    903 
    904 	if (m == NULL) {
    905 		caddr_t			*buf = NULL;
    906 
    907 		/* Allocate the mbuf. */
    908 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    909 		if (m_new == NULL) {
    910 			return(ENOBUFS);
    911 		}
    912 
    913 		/* Allocate the jumbo buffer */
    914 		buf = bge_jalloc(sc);
    915 		if (buf == NULL) {
    916 			m_freem(m_new);
    917 			printf("%s: jumbo allocation failed "
    918 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    919 			return(ENOBUFS);
    920 		}
    921 
    922 		/* Attach the buffer to the mbuf. */
    923 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    924 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    925 		    bge_jfree, sc);
    926 	} else {
    927 		m_new = m;
    928 		m_new->m_data = m_new->m_ext.ext_buf;
    929 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    930 	}
    931 
    932 	if (!sc->bge_rx_alignment_bug)
    933 	    m_adj(m_new, ETHER_ALIGN);
    934 	/* Set up the descriptor. */
    935 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    936 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    937 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    938 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    939 	r->bge_len = m_new->m_len;
    940 	r->bge_idx = i;
    941 
    942 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    943 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    944 		i * sizeof (struct bge_rx_bd),
    945 	    sizeof (struct bge_rx_bd),
    946 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    947 
    948 	return(0);
    949 }
    950 
    951 /*
    952  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    953  * that's 1MB or memory, which is a lot. For now, we fill only the first
    954  * 256 ring entries and hope that our CPU is fast enough to keep up with
    955  * the NIC.
    956  */
    957 int
    958 bge_init_rx_ring_std(sc)
    959 	struct bge_softc *sc;
    960 {
    961 	int i;
    962 
    963 	if (sc->bge_flags & BGE_RXRING_VALID)
    964 		return 0;
    965 
    966 	for (i = 0; i < BGE_SSLOTS; i++) {
    967 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
    968 			return(ENOBUFS);
    969 	}
    970 
    971 	sc->bge_std = i - 1;
    972 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
    973 
    974 	sc->bge_flags |= BGE_RXRING_VALID;
    975 
    976 	return(0);
    977 }
    978 
    979 void
    980 bge_free_rx_ring_std(sc)
    981 	struct bge_softc *sc;
    982 {
    983 	int i;
    984 
    985 	if (!(sc->bge_flags & BGE_RXRING_VALID))
    986 		return;
    987 
    988 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
    989 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
    990 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
    991 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
    992 			bus_dmamap_destroy(sc->bge_dmatag,
    993 			    sc->bge_cdata.bge_rx_std_map[i]);
    994 		}
    995 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
    996 		    sizeof(struct bge_rx_bd));
    997 	}
    998 
    999 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1000 }
   1001 
   1002 int
   1003 bge_init_rx_ring_jumbo(sc)
   1004 	struct bge_softc *sc;
   1005 {
   1006 	int i;
   1007 	volatile struct bge_rcb *rcb;
   1008 
   1009 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1010 		return 0;
   1011 
   1012 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1013 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1014 			return(ENOBUFS);
   1015 	};
   1016 
   1017 	sc->bge_jumbo = i - 1;
   1018 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1019 
   1020 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1021 	rcb->bge_maxlen_flags = 0;
   1022 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1023 
   1024 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1025 
   1026 	return(0);
   1027 }
   1028 
   1029 void
   1030 bge_free_rx_ring_jumbo(sc)
   1031 	struct bge_softc *sc;
   1032 {
   1033 	int i;
   1034 
   1035 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1036 		return;
   1037 
   1038 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1039 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1040 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1041 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1042 		}
   1043 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1044 		    sizeof(struct bge_rx_bd));
   1045 	}
   1046 
   1047 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1048 }
   1049 
   1050 void
   1051 bge_free_tx_ring(sc)
   1052 	struct bge_softc *sc;
   1053 {
   1054 	int i, freed;
   1055 	struct txdmamap_pool_entry *dma;
   1056 
   1057 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1058 		return;
   1059 
   1060 	freed = 0;
   1061 
   1062 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1063 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1064 			freed++;
   1065 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1066 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1067 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1068 					    link);
   1069 			sc->txdma[i] = 0;
   1070 		}
   1071 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1072 		    sizeof(struct bge_tx_bd));
   1073 	}
   1074 
   1075 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1076 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1077 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1078 		free(dma, M_DEVBUF);
   1079 	}
   1080 
   1081 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1082 }
   1083 
   1084 int
   1085 bge_init_tx_ring(sc)
   1086 	struct bge_softc *sc;
   1087 {
   1088 	int i;
   1089 	bus_dmamap_t dmamap;
   1090 	struct txdmamap_pool_entry *dma;
   1091 
   1092 	if (sc->bge_flags & BGE_TXRING_VALID)
   1093 		return 0;
   1094 
   1095 	sc->bge_txcnt = 0;
   1096 	sc->bge_tx_saved_considx = 0;
   1097 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1098 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1099 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1100 
   1101 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1102 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1103 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1104 
   1105 	SLIST_INIT(&sc->txdma_list);
   1106 	for (i = 0; i < BGE_RSLOTS; i++) {
   1107 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
   1108 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1109 		    &dmamap))
   1110 			return(ENOBUFS);
   1111 		if (dmamap == NULL)
   1112 			panic("dmamap NULL in bge_init_tx_ring");
   1113 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1114 		if (dma == NULL) {
   1115 			printf("%s: can't alloc txdmamap_pool_entry\n",
   1116 			    sc->bge_dev.dv_xname);
   1117 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1118 			return (ENOMEM);
   1119 		}
   1120 		dma->dmamap = dmamap;
   1121 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1122 	}
   1123 
   1124 	sc->bge_flags |= BGE_TXRING_VALID;
   1125 
   1126 	return(0);
   1127 }
   1128 
   1129 void
   1130 bge_setmulti(sc)
   1131 	struct bge_softc *sc;
   1132 {
   1133 	struct ethercom		*ac = &sc->ethercom;
   1134 	struct ifnet		*ifp = &ac->ec_if;
   1135 	struct ether_multi	*enm;
   1136 	struct ether_multistep  step;
   1137 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1138 	u_int32_t		h;
   1139 	int			i;
   1140 
   1141 	if (ifp->if_flags & IFF_PROMISC)
   1142 		goto allmulti;
   1143 
   1144 	/* Now program new ones. */
   1145 	ETHER_FIRST_MULTI(step, ac, enm);
   1146 	while (enm != NULL) {
   1147 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1148 			/*
   1149 			 * We must listen to a range of multicast addresses.
   1150 			 * For now, just accept all multicasts, rather than
   1151 			 * trying to set only those filter bits needed to match
   1152 			 * the range.  (At this time, the only use of address
   1153 			 * ranges is for IP multicast routing, for which the
   1154 			 * range is big enough to require all bits set.)
   1155 			 */
   1156 			goto allmulti;
   1157 		}
   1158 
   1159 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1160 
   1161 		/* Just want the 7 least-significant bits. */
   1162 		h &= 0x7f;
   1163 
   1164 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1165 		ETHER_NEXT_MULTI(step, enm);
   1166 	}
   1167 
   1168 	ifp->if_flags &= ~IFF_ALLMULTI;
   1169 	goto setit;
   1170 
   1171  allmulti:
   1172 	ifp->if_flags |= IFF_ALLMULTI;
   1173 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1174 
   1175  setit:
   1176 	for (i = 0; i < 4; i++)
   1177 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1178 }
   1179 
   1180 const int bge_swapbits[] = {
   1181 	0,
   1182 	BGE_MODECTL_BYTESWAP_DATA,
   1183 	BGE_MODECTL_WORDSWAP_DATA,
   1184 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1185 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1186 
   1187 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1188 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1189 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1190 
   1191 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1192 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1193 
   1194 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1195 
   1196 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1197 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1198 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1199 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1200 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1201 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1202 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1203 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1204 
   1205 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1206 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1207 };
   1208 
   1209 int bge_swapindex = 0;
   1210 
   1211 /*
   1212  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1213  * self-test results.
   1214  */
   1215 int
   1216 bge_chipinit(sc)
   1217 	struct bge_softc *sc;
   1218 {
   1219 	u_int32_t		cachesize;
   1220 	int			i;
   1221 	u_int32_t		dma_rw_ctl;
   1222 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1223 
   1224 
   1225 	/* Set endianness before we access any non-PCI registers. */
   1226 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1227 	    BGE_INIT);
   1228 
   1229 	/* Set power state to D0. */
   1230 	bge_setpowerstate(sc, 0);
   1231 
   1232 	/*
   1233 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1234 	 * self-tests passed.
   1235 	 */
   1236 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1237 		printf("%s: RX CPU self-diagnostics failed!\n",
   1238 		    sc->bge_dev.dv_xname);
   1239 		return(ENODEV);
   1240 	}
   1241 
   1242 	/* Clear the MAC control register */
   1243 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1244 
   1245 	/*
   1246 	 * Clear the MAC statistics block in the NIC's
   1247 	 * internal memory.
   1248 	 */
   1249 	for (i = BGE_STATS_BLOCK;
   1250 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1251 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1252 
   1253 	for (i = BGE_STATUS_BLOCK;
   1254 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1255 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1256 
   1257 	/* Set up the PCI DMA control register. */
   1258 	if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
   1259 	    BGE_PCISTATE_PCI_BUSMODE) {
   1260 		/* Conventional PCI bus */
   1261 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
   1262 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1263 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1264 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1265 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1266 			dma_rw_ctl |= 0x0F;
   1267 		}
   1268 	} else {
   1269 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
   1270 		/* PCI-X bus */
   1271 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1272 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1273 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1274 		    (0x0F);
   1275 		/*
   1276 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1277 		 * for hardware bugs, which means we should also clear
   1278 		 * the low-order MINDMA bits.  In addition, the 5704
   1279 		 * uses a different encoding of read/write watermarks.
   1280 		 */
   1281 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1282 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1283 			  /* should be 0x1f0000 */
   1284 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1285 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1286 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1287 		}
   1288 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1289 			dma_rw_ctl &=  0xfffffff0;
   1290 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1291 		}
   1292 	}
   1293 
   1294 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1295 
   1296 	/*
   1297 	 * Set up general mode register.
   1298 	 */
   1299 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1300 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1301 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1302 
   1303 	/* Get cache line size. */
   1304 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1305 
   1306 	/*
   1307 	 * Avoid violating PCI spec on certain chip revs.
   1308 	 */
   1309 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1310 	    PCIM_CMD_MWIEN) {
   1311 		switch(cachesize) {
   1312 		case 1:
   1313 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1314 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1315 			break;
   1316 		case 2:
   1317 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1318 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1319 			break;
   1320 		case 4:
   1321 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1322 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1323 			break;
   1324 		case 8:
   1325 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1326 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1327 			break;
   1328 		case 16:
   1329 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1330 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1331 			break;
   1332 		case 32:
   1333 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1334 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1335 			break;
   1336 		case 64:
   1337 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1338 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1339 			break;
   1340 		default:
   1341 		/* Disable PCI memory write and invalidate. */
   1342 #if 0
   1343 			if (bootverbose)
   1344 				printf("%s: cache line size %d not "
   1345 				    "supported; disabling PCI MWI\n",
   1346 				    sc->bge_dev.dv_xname, cachesize);
   1347 #endif
   1348 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1349 			    PCIM_CMD_MWIEN);
   1350 			break;
   1351 		}
   1352 	}
   1353 
   1354 	/*
   1355 	 * Disable memory write invalidate.  Apparently it is not supported
   1356 	 * properly by these devices.
   1357 	 */
   1358 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1359 
   1360 
   1361 #ifdef __brokenalpha__
   1362 	/*
   1363 	 * Must insure that we do not cross an 8K (bytes) boundary
   1364 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1365 	 * restriction on some ALPHA platforms with early revision
   1366 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1367 	 */
   1368 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1369 #endif
   1370 
   1371 	/* Set the timer prescaler (always 66MHz) */
   1372 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1373 
   1374 	return(0);
   1375 }
   1376 
   1377 int
   1378 bge_blockinit(sc)
   1379 	struct bge_softc *sc;
   1380 {
   1381 	volatile struct bge_rcb		*rcb;
   1382 	bus_size_t		rcb_addr;
   1383 	int			i;
   1384 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1385 	bge_hostaddr		taddr;
   1386 
   1387 	/*
   1388 	 * Initialize the memory window pointer register so that
   1389 	 * we can access the first 32K of internal NIC RAM. This will
   1390 	 * allow us to set up the TX send ring RCBs and the RX return
   1391 	 * ring RCBs, plus other things which live in NIC memory.
   1392 	 */
   1393 
   1394 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1395 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1396 
   1397 	/* Configure mbuf memory pool */
   1398 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1399 		if (sc->bge_extram) {
   1400 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1401 			    BGE_EXT_SSRAM);
   1402 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1403 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1404 			else
   1405 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1406 		} else {
   1407 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1408 			    BGE_BUFFPOOL_1);
   1409 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1410 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1411 			else
   1412 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1413 		}
   1414 
   1415 		/* Configure DMA resource pool */
   1416 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1417 		    BGE_DMA_DESCRIPTORS);
   1418 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1419 	}
   1420 
   1421 	/* Configure mbuf pool watermarks */
   1422 #ifdef ORIG_WPAUL_VALUES
   1423 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1424 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1425 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1426 #else
   1427 	/* new broadcom docs strongly recommend these: */
   1428 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1429 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1430 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1431 	} else {
   1432 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1433 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1434 	}
   1435 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1436 #endif
   1437 
   1438 	/* Configure DMA resource watermarks */
   1439 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1440 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1441 
   1442 	/* Enable buffer manager */
   1443 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1444 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1445 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1446 
   1447 		/* Poll for buffer manager start indication */
   1448 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1449 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1450 				break;
   1451 			DELAY(10);
   1452 		}
   1453 
   1454 		if (i == BGE_TIMEOUT) {
   1455 			printf("%s: buffer manager failed to start\n",
   1456 			    sc->bge_dev.dv_xname);
   1457 			return(ENXIO);
   1458 		}
   1459 	}
   1460 
   1461 	/* Enable flow-through queues */
   1462 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1463 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1464 
   1465 	/* Wait until queue initialization is complete */
   1466 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1467 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1468 			break;
   1469 		DELAY(10);
   1470 	}
   1471 
   1472 	if (i == BGE_TIMEOUT) {
   1473 		printf("%s: flow-through queue init failed\n",
   1474 		    sc->bge_dev.dv_xname);
   1475 		return(ENXIO);
   1476 	}
   1477 
   1478 	/* Initialize the standard RX ring control block */
   1479 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1480 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1481 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1482 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1483 		rcb->bge_maxlen_flags =
   1484 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1485 	} else {
   1486 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1487 	}
   1488 	if (sc->bge_extram)
   1489 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1490 	else
   1491 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1492 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1493 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1494 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1495 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1496 
   1497 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1498 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1499 	} else {
   1500 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1501 	}
   1502 
   1503 	/*
   1504 	 * Initialize the jumbo RX ring control block
   1505 	 * We set the 'ring disabled' bit in the flags
   1506 	 * field until we're actually ready to start
   1507 	 * using this ring (i.e. once we set the MTU
   1508 	 * high enough to require it).
   1509 	 */
   1510 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1511 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1512 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1513 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1514 		rcb->bge_maxlen_flags =
   1515 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1516 			BGE_RCB_FLAG_RING_DISABLED);
   1517 		if (sc->bge_extram)
   1518 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1519 		else
   1520 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1521 
   1522 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1523 		    rcb->bge_hostaddr.bge_addr_hi);
   1524 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1525 		    rcb->bge_hostaddr.bge_addr_lo);
   1526 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1527 		    rcb->bge_maxlen_flags);
   1528 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1529 
   1530 		/* Set up dummy disabled mini ring RCB */
   1531 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1532 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1533 		    BGE_RCB_FLAG_RING_DISABLED);
   1534 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1535 		    rcb->bge_maxlen_flags);
   1536 
   1537 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1538 		    offsetof(struct bge_ring_data, bge_info),
   1539 		    sizeof (struct bge_gib),
   1540 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1541 	}
   1542 
   1543 	/*
   1544 	 * Set the BD ring replentish thresholds. The recommended
   1545 	 * values are 1/8th the number of descriptors allocated to
   1546 	 * each ring.
   1547 	 */
   1548 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1549 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1550 
   1551 	/*
   1552 	 * Disable all unused send rings by setting the 'ring disabled'
   1553 	 * bit in the flags field of all the TX send ring control blocks.
   1554 	 * These are located in NIC memory.
   1555 	 */
   1556 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1557 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1558 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1559 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1560 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1561 		rcb_addr += sizeof(struct bge_rcb);
   1562 	}
   1563 
   1564 	/* Configure TX RCB 0 (we use only the first ring) */
   1565 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1566 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1567 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1568 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1569 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1570 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1571 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1572 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1573 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1574 	}
   1575 
   1576 	/* Disable all unused RX return rings */
   1577 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1578 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1579 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1580 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1581 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1582 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1583                                      BGE_RCB_FLAG_RING_DISABLED));
   1584 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1585 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1586 		    (i * (sizeof(u_int64_t))), 0);
   1587 		rcb_addr += sizeof(struct bge_rcb);
   1588 	}
   1589 
   1590 	/* Initialize RX ring indexes */
   1591 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1592 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1593 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1594 
   1595 	/*
   1596 	 * Set up RX return ring 0
   1597 	 * Note that the NIC address for RX return rings is 0x00000000.
   1598 	 * The return rings live entirely within the host, so the
   1599 	 * nicaddr field in the RCB isn't used.
   1600 	 */
   1601 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1602 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1603 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1604 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1605 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1606 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1607 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1608 
   1609 	/* Set random backoff seed for TX */
   1610 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1611 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1612 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1613 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1614 	    BGE_TX_BACKOFF_SEED_MASK);
   1615 
   1616 	/* Set inter-packet gap */
   1617 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1618 
   1619 	/*
   1620 	 * Specify which ring to use for packets that don't match
   1621 	 * any RX rules.
   1622 	 */
   1623 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1624 
   1625 	/*
   1626 	 * Configure number of RX lists. One interrupt distribution
   1627 	 * list, sixteen active lists, one bad frames class.
   1628 	 */
   1629 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1630 
   1631 	/* Inialize RX list placement stats mask. */
   1632 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1633 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1634 
   1635 	/* Disable host coalescing until we get it set up */
   1636 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1637 
   1638 	/* Poll to make sure it's shut down. */
   1639 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1640 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1641 			break;
   1642 		DELAY(10);
   1643 	}
   1644 
   1645 	if (i == BGE_TIMEOUT) {
   1646 		printf("%s: host coalescing engine failed to idle\n",
   1647 		    sc->bge_dev.dv_xname);
   1648 		return(ENXIO);
   1649 	}
   1650 
   1651 	/* Set up host coalescing defaults */
   1652 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1653 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1654 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1655 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1656 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1657 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1658 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1659 	}
   1660 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1661 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1662 
   1663 	/* Set up address of statistics block */
   1664 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1665 		bge_set_hostaddr(&taddr,
   1666 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1667 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1668 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1669 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1670 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1671 	}
   1672 
   1673 	/* Set up address of status block */
   1674 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1675 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1676 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1677 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1678 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1679 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1680 
   1681 	/* Turn on host coalescing state machine */
   1682 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1683 
   1684 	/* Turn on RX BD completion state machine and enable attentions */
   1685 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1686 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1687 
   1688 	/* Turn on RX list placement state machine */
   1689 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1690 
   1691 	/* Turn on RX list selector state machine. */
   1692 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1693 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1694 	}
   1695 
   1696 	/* Turn on DMA, clear stats */
   1697 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1698 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1699 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1700 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1701 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1702 
   1703 	/* Set misc. local control, enable interrupts on attentions */
   1704 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1705 
   1706 #ifdef notdef
   1707 	/* Assert GPIO pins for PHY reset */
   1708 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1709 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1710 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1711 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1712 #endif
   1713 
   1714 #if defined(not_quite_yet)
   1715 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1716 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1717 		sc->bge_local_ctrl_reg |=
   1718 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1719 	}
   1720 #endif
   1721 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1722 
   1723 	/* Turn on DMA completion state machine */
   1724 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1725 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1726 	}
   1727 
   1728 	/* Turn on write DMA state machine */
   1729 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1730 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1731 
   1732 	/* Turn on read DMA state machine */
   1733 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
   1734 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
   1735 
   1736 	/* Turn on RX data completion state machine */
   1737 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1738 
   1739 	/* Turn on RX BD initiator state machine */
   1740 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1741 
   1742 	/* Turn on RX data and RX BD initiator state machine */
   1743 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1744 
   1745 	/* Turn on Mbuf cluster free state machine */
   1746 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1747 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1748 	}
   1749 
   1750 	/* Turn on send BD completion state machine */
   1751 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1752 
   1753 	/* Turn on send data completion state machine */
   1754 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1755 
   1756 	/* Turn on send data initiator state machine */
   1757 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1758 
   1759 	/* Turn on send BD initiator state machine */
   1760 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1761 
   1762 	/* Turn on send BD selector state machine */
   1763 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1764 
   1765 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1766 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1767 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1768 
   1769 	/* ack/clear link change events */
   1770 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1771 	    BGE_MACSTAT_CFG_CHANGED);
   1772 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1773 
   1774 	/* Enable PHY auto polling (for MII/GMII only) */
   1775 	if (sc->bge_tbi) {
   1776 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1777  	} else {
   1778 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1779 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1780 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1781 			    BGE_EVTENB_MI_INTERRUPT);
   1782 	}
   1783 
   1784 	/* Enable link state change attentions. */
   1785 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1786 
   1787 	return(0);
   1788 }
   1789 
   1790 static const struct bge_revision {
   1791 	uint32_t		br_chipid;
   1792 	uint32_t		br_quirks;
   1793 	const char		*br_name;
   1794 } bge_revisions[] = {
   1795 	{ BGE_CHIPID_BCM5700_A0,
   1796 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1797 	  "BCM5700 A0" },
   1798 
   1799 	{ BGE_CHIPID_BCM5700_A1,
   1800 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1801 	  "BCM5700 A1" },
   1802 
   1803 	{ BGE_CHIPID_BCM5700_B0,
   1804 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1805 	  "BCM5700 B0" },
   1806 
   1807 	{ BGE_CHIPID_BCM5700_B1,
   1808 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1809 	  "BCM5700 B1" },
   1810 
   1811 	{ BGE_CHIPID_BCM5700_B2,
   1812 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1813 	  "BCM5700 B2" },
   1814 
   1815 	/* This is treated like a BCM5700 Bx */
   1816 	{ BGE_CHIPID_BCM5700_ALTIMA,
   1817 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1818 	  "BCM5700 Altima" },
   1819 
   1820 	{ BGE_CHIPID_BCM5700_C0,
   1821 	  0,
   1822 	  "BCM5700 C0" },
   1823 
   1824 	{ BGE_CHIPID_BCM5701_A0,
   1825 	  0, /*XXX really, just not known */
   1826 	  "BCM5701 A0" },
   1827 
   1828 	{ BGE_CHIPID_BCM5701_B0,
   1829 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1830 	  "BCM5701 B0" },
   1831 
   1832 	{ BGE_CHIPID_BCM5701_B2,
   1833 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1834 	  "BCM5701 B2" },
   1835 
   1836 	{ BGE_CHIPID_BCM5701_B5,
   1837 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1838 	  "BCM5701 B5" },
   1839 
   1840 	{ BGE_CHIPID_BCM5703_A0,
   1841 	  0,
   1842 	  "BCM5703 A0" },
   1843 
   1844 	{ BGE_CHIPID_BCM5703_A1,
   1845 	  0,
   1846 	  "BCM5703 A1" },
   1847 
   1848 	{ BGE_CHIPID_BCM5703_A2,
   1849 	  BGE_QUIRK_ONLY_PHY_1,
   1850 	  "BCM5703 A2" },
   1851 
   1852 	{ BGE_CHIPID_BCM5703_A3,
   1853 	  BGE_QUIRK_ONLY_PHY_1,
   1854 	  "BCM5703 A3" },
   1855 
   1856 	{ BGE_CHIPID_BCM5704_A0,
   1857   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1858 	  "BCM5704 A0" },
   1859 
   1860 	{ BGE_CHIPID_BCM5704_A1,
   1861   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1862 	  "BCM5704 A1" },
   1863 
   1864 	{ BGE_CHIPID_BCM5704_A2,
   1865   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1866 	  "BCM5704 A2" },
   1867 
   1868 	{ BGE_CHIPID_BCM5704_A3,
   1869   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1870 	  "BCM5704 A3" },
   1871 
   1872 	{ BGE_CHIPID_BCM5705_A0,
   1873 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1874 	  "BCM5705 A0" },
   1875 
   1876 	{ BGE_CHIPID_BCM5705_A1,
   1877 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1878 	  "BCM5705 A1" },
   1879 
   1880 	{ BGE_CHIPID_BCM5705_A2,
   1881 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1882 	  "BCM5705 A2" },
   1883 
   1884 	{ BGE_CHIPID_BCM5705_A3,
   1885 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1886 	  "BCM5705 A3" },
   1887 
   1888 	{ 0, 0, NULL }
   1889 };
   1890 
   1891 /*
   1892  * Some defaults for major revisions, so that newer steppings
   1893  * that we don't know about have a shot at working.
   1894  */
   1895 static const struct bge_revision bge_majorrevs[] = {
   1896 	{ BGE_ASICREV_BCM5700,
   1897 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1898 	  "unknown BCM5700" },
   1899 
   1900 	{ BGE_ASICREV_BCM5701,
   1901 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1902 	  "unknown BCM5701" },
   1903 
   1904 	{ BGE_ASICREV_BCM5703,
   1905 	  0,
   1906 	  "unknown BCM5703" },
   1907 
   1908 	{ BGE_ASICREV_BCM5704,
   1909 	  BGE_QUIRK_ONLY_PHY_1,
   1910 	  "unknown BCM5704" },
   1911 
   1912 	{ BGE_ASICREV_BCM5705,
   1913 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1914 	  "unknown BCM5705" },
   1915 
   1916 	{ 0,
   1917 	  0,
   1918 	  NULL }
   1919 };
   1920 
   1921 
   1922 static const struct bge_revision *
   1923 bge_lookup_rev(uint32_t chipid)
   1924 {
   1925 	const struct bge_revision *br;
   1926 
   1927 	for (br = bge_revisions; br->br_name != NULL; br++) {
   1928 		if (br->br_chipid == chipid)
   1929 			return (br);
   1930 	}
   1931 
   1932 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   1933 		if (br->br_chipid == BGE_ASICREV(chipid))
   1934 			return (br);
   1935 	}
   1936 
   1937 	return (NULL);
   1938 }
   1939 
   1940 static const struct bge_product {
   1941 	pci_vendor_id_t		bp_vendor;
   1942 	pci_product_id_t	bp_product;
   1943 	const char		*bp_name;
   1944 } bge_products[] = {
   1945 	/*
   1946 	 * The BCM5700 documentation seems to indicate that the hardware
   1947 	 * still has the Alteon vendor ID burned into it, though it
   1948 	 * should always be overridden by the value in the EEPROM.  We'll
   1949 	 * check for it anyway.
   1950 	 */
   1951 	{ PCI_VENDOR_ALTEON,
   1952 	  PCI_PRODUCT_ALTEON_BCM5700,
   1953 	  "Broadcom BCM5700 Gigabit Ethernet",
   1954 	  },
   1955 	{ PCI_VENDOR_ALTEON,
   1956 	  PCI_PRODUCT_ALTEON_BCM5701,
   1957 	  "Broadcom BCM5701 Gigabit Ethernet",
   1958 	  },
   1959 
   1960 	{ PCI_VENDOR_ALTIMA,
   1961 	  PCI_PRODUCT_ALTIMA_AC1000,
   1962 	  "Altima AC1000 Gigabit Ethernet",
   1963 	  },
   1964 	{ PCI_VENDOR_ALTIMA,
   1965 	  PCI_PRODUCT_ALTIMA_AC1001,
   1966 	  "Altima AC1001 Gigabit Ethernet",
   1967 	   },
   1968 	{ PCI_VENDOR_ALTIMA,
   1969 	  PCI_PRODUCT_ALTIMA_AC9100,
   1970 	  "Altima AC9100 Gigabit Ethernet",
   1971 	  },
   1972 
   1973 	{ PCI_VENDOR_BROADCOM,
   1974 	  PCI_PRODUCT_BROADCOM_BCM5700,
   1975 	  "Broadcom BCM5700 Gigabit Ethernet",
   1976 	  },
   1977 	{ PCI_VENDOR_BROADCOM,
   1978 	  PCI_PRODUCT_BROADCOM_BCM5701,
   1979 	  "Broadcom BCM5701 Gigabit Ethernet",
   1980 	  },
   1981 	{ PCI_VENDOR_BROADCOM,
   1982 	  PCI_PRODUCT_BROADCOM_BCM5702,
   1983 	  "Broadcom BCM5702 Gigabit Ethernet",
   1984 	  },
   1985 	{ PCI_VENDOR_BROADCOM,
   1986 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   1987 	  "Broadcom BCM5702X Gigabit Ethernet" },
   1988 
   1989 	{ PCI_VENDOR_BROADCOM,
   1990 	  PCI_PRODUCT_BROADCOM_BCM5703,
   1991 	  "Broadcom BCM5703 Gigabit Ethernet",
   1992 	  },
   1993 	{ PCI_VENDOR_BROADCOM,
   1994 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   1995 	  "Broadcom BCM5703X Gigabit Ethernet",
   1996 	  },
   1997 	{ PCI_VENDOR_BROADCOM,
   1998 	  PCI_PRODUCT_BROADCOM_BCM5703A3,
   1999 	  "Broadcom BCM5703A3 Gigabit Ethernet",
   2000 	  },
   2001 
   2002    	{ PCI_VENDOR_BROADCOM,
   2003 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   2004 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   2005 	  },
   2006    	{ PCI_VENDOR_BROADCOM,
   2007 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   2008 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   2009 	  },
   2010 
   2011    	{ PCI_VENDOR_BROADCOM,
   2012 	  PCI_PRODUCT_BROADCOM_BCM5705,
   2013 	  "Broadcom BCM5705 Gigabit Ethernet",
   2014 	  },
   2015    	{ PCI_VENDOR_BROADCOM,
   2016 	  PCI_PRODUCT_BROADCOM_BCM5705_ALT,
   2017 	  "Broadcom BCM5705 Gigabit Ethernet",
   2018 	  },
   2019    	{ PCI_VENDOR_BROADCOM,
   2020 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   2021 	  "Broadcom BCM5705M Gigabit Ethernet",
   2022 	  },
   2023 
   2024    	{ PCI_VENDOR_BROADCOM,
   2025 	  PCI_PRODUCT_BROADCOM_BCM5901,
   2026 	  "Broadcom BCM5901 Fast Ethernet",
   2027 	  },
   2028    	{ PCI_VENDOR_BROADCOM,
   2029 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   2030 	  "Broadcom BCM5901A2 Fast Ethernet",
   2031 	  },
   2032 
   2033    	{ PCI_VENDOR_BROADCOM,
   2034 	  PCI_PRODUCT_BROADCOM_BCM5782,
   2035 	  "Broadcom BCM5782 Gigabit Ethernet",
   2036 	  },
   2037 
   2038 	{ PCI_VENDOR_SCHNEIDERKOCH,
   2039 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   2040 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   2041 	  },
   2042 
   2043 	{ PCI_VENDOR_3COM,
   2044 	  PCI_PRODUCT_3COM_3C996,
   2045 	  "3Com 3c996 Gigabit Ethernet",
   2046 	  },
   2047 
   2048 	{ 0,
   2049 	  0,
   2050 	  NULL },
   2051 };
   2052 
   2053 static const struct bge_product *
   2054 bge_lookup(const struct pci_attach_args *pa)
   2055 {
   2056 	const struct bge_product *bp;
   2057 
   2058 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2059 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2060 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2061 			return (bp);
   2062 	}
   2063 
   2064 	return (NULL);
   2065 }
   2066 
   2067 int
   2068 bge_setpowerstate(sc, powerlevel)
   2069 	struct bge_softc *sc;
   2070 	int powerlevel;
   2071 {
   2072 #ifdef NOTYET
   2073 	u_int32_t pm_ctl = 0;
   2074 
   2075 	/* XXX FIXME: make sure indirect accesses enabled? */
   2076 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2077 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2078 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2079 
   2080 	/* clear the PME_assert bit and power state bits, enable PME */
   2081 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2082 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2083 	pm_ctl |= (1 << 8);
   2084 
   2085 	if (powerlevel == 0) {
   2086 		pm_ctl |= PCIM_PSTAT_D0;
   2087 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2088 		    pm_ctl, 2);
   2089 		DELAY(10000);
   2090 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2091 		DELAY(10000);
   2092 
   2093 #ifdef NOTYET
   2094 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2095 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2096 #endif
   2097 		DELAY(40); DELAY(40); DELAY(40);
   2098 		DELAY(10000);	/* above not quite adequate on 5700 */
   2099 		return 0;
   2100 	}
   2101 
   2102 
   2103 	/*
   2104 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2105 	 * GMII gpio pins. Example code assumes all hardware vendors
   2106 	 * followed Broadom's sample pcb layout. Until we verify that
   2107 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2108 	 */
   2109 	printf("%s: power state %d unimplemented; check GPIO pins\n",
   2110 	       sc->bge_dev.dv_xname, powerlevel);
   2111 #endif
   2112 	return EOPNOTSUPP;
   2113 }
   2114 
   2115 
   2116 /*
   2117  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2118  * against our list and return its name if we find a match. Note
   2119  * that since the Broadcom controller contains VPD support, we
   2120  * can get the device name string from the controller itself instead
   2121  * of the compiled-in string. This is a little slow, but it guarantees
   2122  * we'll always announce the right product name.
   2123  */
   2124 int
   2125 bge_probe(parent, match, aux)
   2126 	struct device *parent;
   2127 	struct cfdata *match;
   2128 	void *aux;
   2129 {
   2130 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2131 
   2132 	if (bge_lookup(pa) != NULL)
   2133 		return (1);
   2134 
   2135 	return (0);
   2136 }
   2137 
   2138 void
   2139 bge_attach(parent, self, aux)
   2140 	struct device *parent, *self;
   2141 	void *aux;
   2142 {
   2143 	struct bge_softc	*sc = (struct bge_softc *)self;
   2144 	struct pci_attach_args	*pa = aux;
   2145 	const struct bge_product *bp;
   2146 	const struct bge_revision *br;
   2147 	pci_chipset_tag_t	pc = pa->pa_pc;
   2148 	pci_intr_handle_t	ih;
   2149 	const char		*intrstr = NULL;
   2150 	bus_dma_segment_t	seg;
   2151 	int			rseg;
   2152 	u_int32_t		hwcfg = 0;
   2153 	u_int32_t		mac_addr = 0;
   2154 	u_int32_t		command;
   2155 	struct ifnet		*ifp;
   2156 	caddr_t			kva;
   2157 	u_char			eaddr[ETHER_ADDR_LEN];
   2158 	pcireg_t		memtype;
   2159 	bus_addr_t		memaddr;
   2160 	bus_size_t		memsize;
   2161 	u_int32_t		pm_ctl;
   2162 
   2163 	bp = bge_lookup(pa);
   2164 	KASSERT(bp != NULL);
   2165 
   2166 	sc->bge_pa = *pa;
   2167 
   2168 	aprint_naive(": Ethernet controller\n");
   2169 	aprint_normal(": %s\n", bp->bp_name);
   2170 
   2171 	/*
   2172 	 * Map control/status registers.
   2173 	 */
   2174 	DPRINTFN(5, ("Map control/status regs\n"));
   2175 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2176 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2177 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   2178 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2179 
   2180 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2181 		aprint_error("%s: failed to enable memory mapping!\n",
   2182 		    sc->bge_dev.dv_xname);
   2183 		return;
   2184 	}
   2185 
   2186 	DPRINTFN(5, ("pci_mem_find\n"));
   2187 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   2188  	switch (memtype) {
   2189 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2190 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2191 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2192 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2193 		    &memaddr, &memsize) == 0)
   2194 			break;
   2195 	default:
   2196 		aprint_error("%s: can't find mem space\n",
   2197 		    sc->bge_dev.dv_xname);
   2198 		return;
   2199 	}
   2200 
   2201 	DPRINTFN(5, ("pci_intr_map\n"));
   2202 	if (pci_intr_map(pa, &ih)) {
   2203 		aprint_error("%s: couldn't map interrupt\n",
   2204 		    sc->bge_dev.dv_xname);
   2205 		return;
   2206 	}
   2207 
   2208 	DPRINTFN(5, ("pci_intr_string\n"));
   2209 	intrstr = pci_intr_string(pc, ih);
   2210 
   2211 	DPRINTFN(5, ("pci_intr_establish\n"));
   2212 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2213 
   2214 	if (sc->bge_intrhand == NULL) {
   2215 		aprint_error("%s: couldn't establish interrupt",
   2216 		    sc->bge_dev.dv_xname);
   2217 		if (intrstr != NULL)
   2218 			aprint_normal(" at %s", intrstr);
   2219 		aprint_normal("\n");
   2220 		return;
   2221 	}
   2222 	aprint_normal("%s: interrupting at %s\n",
   2223 	    sc->bge_dev.dv_xname, intrstr);
   2224 
   2225 	/*
   2226 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2227 	 * can clobber the chip's PCI config-space power control registers,
   2228 	 * leaving the card in D3 powersave state.
   2229 	 * We do not have memory-mapped registers in this state,
   2230 	 * so force device into D0 state before starting initialization.
   2231 	 */
   2232 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
   2233 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2234 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2235 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2236 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2237 
   2238 	/* Try to reset the chip. */
   2239 	DPRINTFN(5, ("bge_reset\n"));
   2240 	bge_reset(sc);
   2241 
   2242 	if (bge_chipinit(sc)) {
   2243 		aprint_error("%s: chip initialization failed\n",
   2244 		    sc->bge_dev.dv_xname);
   2245 		bge_release_resources(sc);
   2246 		return;
   2247 	}
   2248 
   2249 	/*
   2250 	 * Get station address from the EEPROM.
   2251 	 */
   2252 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   2253 	if ((mac_addr >> 16) == 0x484b) {
   2254 		eaddr[0] = (u_char)(mac_addr >> 8);
   2255 		eaddr[1] = (u_char)(mac_addr >> 0);
   2256 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   2257 		eaddr[2] = (u_char)(mac_addr >> 24);
   2258 		eaddr[3] = (u_char)(mac_addr >> 16);
   2259 		eaddr[4] = (u_char)(mac_addr >> 8);
   2260 		eaddr[5] = (u_char)(mac_addr >> 0);
   2261 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
   2262 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   2263 		aprint_error("%s: failed to read station address\n",
   2264 		    sc->bge_dev.dv_xname);
   2265 		bge_release_resources(sc);
   2266 		return;
   2267 	}
   2268 
   2269 	/*
   2270 	 * Save ASIC rev.  Look up any quirks associated with this
   2271 	 * ASIC.
   2272 	 */
   2273 	sc->bge_chipid =
   2274 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   2275 	    BGE_PCIMISCCTL_ASICREV;
   2276 	br = bge_lookup_rev(sc->bge_chipid);
   2277 
   2278 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
   2279 
   2280 	if (br == NULL) {
   2281 		aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
   2282 		sc->bge_quirks = 0;
   2283 	} else {
   2284 		aprint_normal("ASIC %s (0x%04x)",
   2285 		    br->br_name, sc->bge_chipid >> 16);
   2286 		sc->bge_quirks |= br->br_quirks;
   2287 	}
   2288 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2289 
   2290 	/* Allocate the general information block and ring buffers. */
   2291 	if (pci_dma64_available(pa))
   2292 		sc->bge_dmatag = pa->pa_dmat64;
   2293 	else
   2294 		sc->bge_dmatag = pa->pa_dmat;
   2295 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2296 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2297 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2298 		aprint_error("%s: can't alloc rx buffers\n",
   2299 		    sc->bge_dev.dv_xname);
   2300 		return;
   2301 	}
   2302 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2303 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2304 			   sizeof(struct bge_ring_data), &kva,
   2305 			   BUS_DMA_NOWAIT)) {
   2306 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
   2307 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   2308 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2309 		return;
   2310 	}
   2311 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2312 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2313 	    sizeof(struct bge_ring_data), 0,
   2314 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2315 		aprint_error("%s: can't create DMA map\n",
   2316 		    sc->bge_dev.dv_xname);
   2317 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2318 				 sizeof(struct bge_ring_data));
   2319 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2320 		return;
   2321 	}
   2322 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2323 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2324 			    sizeof(struct bge_ring_data), NULL,
   2325 			    BUS_DMA_NOWAIT)) {
   2326 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2327 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2328 				 sizeof(struct bge_ring_data));
   2329 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2330 		return;
   2331 	}
   2332 
   2333 	DPRINTFN(5, ("bzero\n"));
   2334 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2335 
   2336 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2337 
   2338 	/* Try to allocate memory for jumbo buffers. */
   2339 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2340 		if (bge_alloc_jumbo_mem(sc)) {
   2341 			aprint_error("%s: jumbo buffer allocation failed\n",
   2342 			    sc->bge_dev.dv_xname);
   2343 		} else
   2344 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2345 	}
   2346 
   2347 	/* Set default tuneable values. */
   2348 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2349 	sc->bge_rx_coal_ticks = 150;
   2350 	sc->bge_rx_max_coal_bds = 64;
   2351 #ifdef ORIG_WPAUL_VALUES
   2352 	sc->bge_tx_coal_ticks = 150;
   2353 	sc->bge_tx_max_coal_bds = 128;
   2354 #else
   2355 	sc->bge_tx_coal_ticks = 300;
   2356 	sc->bge_tx_max_coal_bds = 400;
   2357 #endif
   2358 
   2359 	/* Set up ifnet structure */
   2360 	ifp = &sc->ethercom.ec_if;
   2361 	ifp->if_softc = sc;
   2362 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2363 	ifp->if_ioctl = bge_ioctl;
   2364 	ifp->if_start = bge_start;
   2365 	ifp->if_init = bge_init;
   2366 	ifp->if_watchdog = bge_watchdog;
   2367 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2368 	IFQ_SET_READY(&ifp->if_snd);
   2369 	DPRINTFN(5, ("bcopy\n"));
   2370 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   2371 
   2372 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2373 		sc->ethercom.ec_if.if_capabilities |=
   2374 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
   2375 	sc->ethercom.ec_capabilities |=
   2376 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2377 
   2378 	/*
   2379 	 * Do MII setup.
   2380 	 */
   2381 	DPRINTFN(5, ("mii setup\n"));
   2382 	sc->bge_mii.mii_ifp = ifp;
   2383 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2384 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2385 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2386 
   2387 	/*
   2388 	 * Figure out what sort of media we have by checking the
   2389 	 * hardware config word in the first 32k of NIC internal memory,
   2390 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2391 	 * cards, this value appears to be unset. If that's the
   2392 	 * case, we have to rely on identifying the NIC by its PCI
   2393 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2394 	 */
   2395 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2396 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2397 	} else {
   2398 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
   2399 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2400 		hwcfg = be32toh(hwcfg);
   2401 	}
   2402 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2403 		sc->bge_tbi = 1;
   2404 
   2405 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2406 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   2407 	    SK_SUBSYSID_9D41)
   2408 		sc->bge_tbi = 1;
   2409 
   2410 	if (sc->bge_tbi) {
   2411 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2412 		    bge_ifmedia_sts);
   2413 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2414 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2415 			    0, NULL);
   2416 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2417 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2418 	} else {
   2419 		/*
   2420 		 * Do transceiver setup.
   2421 		 */
   2422 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2423 			     bge_ifmedia_sts);
   2424 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2425 			   MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
   2426 
   2427 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   2428 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   2429 			ifmedia_add(&sc->bge_mii.mii_media,
   2430 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2431 			ifmedia_set(&sc->bge_mii.mii_media,
   2432 				    IFM_ETHER|IFM_MANUAL);
   2433 		} else
   2434 			ifmedia_set(&sc->bge_mii.mii_media,
   2435 				    IFM_ETHER|IFM_AUTO);
   2436 	}
   2437 
   2438 	/*
   2439 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2440 	 * been observed in the first few bytes of some received packets.
   2441 	 * Aligning the packet buffer in memory eliminates the corruption.
   2442 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2443 	 * which do not support unaligned accesses, we will realign the
   2444 	 * payloads by copying the received packets.
   2445 	 */
   2446 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2447 		/* If in PCI-X mode, work around the alignment bug. */
   2448 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
   2449                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2450                          BGE_PCISTATE_PCI_BUSSPEED)
   2451 		sc->bge_rx_alignment_bug = 1;
   2452         }
   2453 
   2454 	/*
   2455 	 * Call MI attach routine.
   2456 	 */
   2457 	DPRINTFN(5, ("if_attach\n"));
   2458 	if_attach(ifp);
   2459 	DPRINTFN(5, ("ether_ifattach\n"));
   2460 	ether_ifattach(ifp, eaddr);
   2461 	DPRINTFN(5, ("callout_init\n"));
   2462 	callout_init(&sc->bge_timeout);
   2463 }
   2464 
   2465 void
   2466 bge_release_resources(sc)
   2467 	struct bge_softc *sc;
   2468 {
   2469 	if (sc->bge_vpd_prodname != NULL)
   2470 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2471 
   2472 	if (sc->bge_vpd_readonly != NULL)
   2473 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2474 }
   2475 
   2476 void
   2477 bge_reset(sc)
   2478 	struct bge_softc *sc;
   2479 {
   2480 	struct pci_attach_args *pa = &sc->bge_pa;
   2481 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2482 	int i, val = 0;
   2483 
   2484 	/* Save some important PCI state. */
   2485 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   2486 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   2487 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   2488 
   2489 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2490 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2491 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2492 
   2493 	/* Issue global reset */
   2494 	bge_writereg_ind(sc, BGE_MISC_CFG,
   2495 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
   2496 
   2497 	DELAY(1000);
   2498 
   2499 	/* Reset some of the PCI state that got zapped by reset */
   2500 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2501 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2502 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2503 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   2504 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   2505 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2506 
   2507 	/* Enable memory arbiter. */
   2508 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2509 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2510 	}
   2511 
   2512 	/*
   2513 	 * Prevent PXE restart: write a magic number to the
   2514 	 * general communications memory at 0xB50.
   2515 	 */
   2516 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2517 
   2518 	/*
   2519 	 * Poll the value location we just wrote until
   2520 	 * we see the 1's complement of the magic number.
   2521 	 * This indicates that the firmware initialization
   2522 	 * is complete.
   2523 	 */
   2524 	for (i = 0; i < 750; i++) {
   2525 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2526 		if (val == ~BGE_MAGIC_NUMBER)
   2527 			break;
   2528 		DELAY(1000);
   2529 	}
   2530 
   2531 	if (i == 750) {
   2532 		printf("%s: firmware handshake timed out, val = %x\n",
   2533 		    sc->bge_dev.dv_xname, val);
   2534 		return;
   2535 	}
   2536 
   2537 	/*
   2538 	 * XXX Wait for the value of the PCISTATE register to
   2539 	 * return to its original pre-reset state. This is a
   2540 	 * fairly good indicator of reset completion. If we don't
   2541 	 * wait for the reset to fully complete, trying to read
   2542 	 * from the device's non-PCI registers may yield garbage
   2543 	 * results.
   2544 	 */
   2545 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2546 		new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
   2547 		    BGE_PCI_PCISTATE);
   2548 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   2549 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   2550 			break;
   2551 		DELAY(10);
   2552 	}
   2553 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   2554 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   2555 		printf("%s: pcistate failed to revert\n",
   2556 		    sc->bge_dev.dv_xname);
   2557 	}
   2558 
   2559 	/* Enable memory arbiter. */
   2560 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2561 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2562 	}
   2563 
   2564 	/* Fix up byte swapping */
   2565 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2566 
   2567 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2568 
   2569 	DELAY(10000);
   2570 }
   2571 
   2572 /*
   2573  * Frame reception handling. This is called if there's a frame
   2574  * on the receive return list.
   2575  *
   2576  * Note: we have to be able to handle two possibilities here:
   2577  * 1) the frame is from the jumbo recieve ring
   2578  * 2) the frame is from the standard receive ring
   2579  */
   2580 
   2581 void
   2582 bge_rxeof(sc)
   2583 	struct bge_softc *sc;
   2584 {
   2585 	struct ifnet *ifp;
   2586 	int stdcnt = 0, jumbocnt = 0;
   2587 	int have_tag = 0;
   2588 	u_int16_t vlan_tag = 0;
   2589 	bus_dmamap_t dmamap;
   2590 	bus_addr_t offset, toff;
   2591 	bus_size_t tlen;
   2592 	int tosync;
   2593 
   2594 	ifp = &sc->ethercom.ec_if;
   2595 
   2596 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2597 	    offsetof(struct bge_ring_data, bge_status_block),
   2598 	    sizeof (struct bge_status_block),
   2599 	    BUS_DMASYNC_POSTREAD);
   2600 
   2601 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2602 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2603 	    sc->bge_rx_saved_considx;
   2604 
   2605 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2606 
   2607 	if (tosync < 0) {
   2608 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2609 		    sizeof (struct bge_rx_bd);
   2610 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2611 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2612 		tosync = -tosync;
   2613 	}
   2614 
   2615 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2616 	    offset, tosync * sizeof (struct bge_rx_bd),
   2617 	    BUS_DMASYNC_POSTREAD);
   2618 
   2619 	while(sc->bge_rx_saved_considx !=
   2620 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2621 		struct bge_rx_bd	*cur_rx;
   2622 		u_int32_t		rxidx;
   2623 		struct mbuf		*m = NULL;
   2624 
   2625 		cur_rx = &sc->bge_rdata->
   2626 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2627 
   2628 		rxidx = cur_rx->bge_idx;
   2629 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   2630 
   2631 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
   2632 			have_tag = 1;
   2633 			vlan_tag = cur_rx->bge_vlan_tag;
   2634 		}
   2635 
   2636 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2637 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2638 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2639 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2640 			jumbocnt++;
   2641 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2642 				ifp->if_ierrors++;
   2643 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2644 				continue;
   2645 			}
   2646 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2647 					     NULL)== ENOBUFS) {
   2648 				ifp->if_ierrors++;
   2649 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2650 				continue;
   2651 			}
   2652 		} else {
   2653 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2654 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2655 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2656 			stdcnt++;
   2657 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2658 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2659 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2660 				ifp->if_ierrors++;
   2661 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2662 				continue;
   2663 			}
   2664 			if (bge_newbuf_std(sc, sc->bge_std,
   2665 			    NULL, dmamap) == ENOBUFS) {
   2666 				ifp->if_ierrors++;
   2667 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2668 				continue;
   2669 			}
   2670 		}
   2671 
   2672 		ifp->if_ipackets++;
   2673 #ifndef __NO_STRICT_ALIGNMENT
   2674                 /*
   2675                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2676                  * the Rx buffer has the layer-2 header unaligned.
   2677                  * If our CPU requires alignment, re-align by copying.
   2678                  */
   2679 		if (sc->bge_rx_alignment_bug) {
   2680 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
   2681                                 cur_rx->bge_len);
   2682 			m->m_data += ETHER_ALIGN;
   2683 		}
   2684 #endif
   2685 
   2686 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   2687 		m->m_pkthdr.rcvif = ifp;
   2688 
   2689 #if NBPFILTER > 0
   2690 		/*
   2691 		 * Handle BPF listeners. Let the BPF user see the packet.
   2692 		 */
   2693 		if (ifp->if_bpf)
   2694 			bpf_mtap(ifp->if_bpf, m);
   2695 #endif
   2696 
   2697 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   2698 
   2699 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2700 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2701 		/*
   2702 		 * Rx transport checksum-offload may also
   2703 		 * have bugs with packets which, when transmitted,
   2704 		 * were `runts' requiring padding.
   2705 		 */
   2706 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   2707 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   2708 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   2709 			m->m_pkthdr.csum_data =
   2710 			    cur_rx->bge_tcp_udp_csum;
   2711 			m->m_pkthdr.csum_flags |=
   2712 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   2713 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   2714 		}
   2715 
   2716 		/*
   2717 		 * If we received a packet with a vlan tag, pass it
   2718 		 * to vlan_input() instead of ether_input().
   2719 		 */
   2720 		if (have_tag) {
   2721 			struct m_tag *mtag;
   2722 
   2723 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   2724 			    M_NOWAIT);
   2725 			if (mtag != NULL) {
   2726 				*(u_int *)(mtag + 1) = vlan_tag;
   2727 				m_tag_prepend(m, mtag);
   2728 				have_tag = vlan_tag = 0;
   2729 			} else {
   2730 				printf("%s: no mbuf for tag\n", ifp->if_xname);
   2731 				m_freem(m);
   2732 				have_tag = vlan_tag = 0;
   2733 				continue;
   2734 			}
   2735 		}
   2736 		(*ifp->if_input)(ifp, m);
   2737 	}
   2738 
   2739 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   2740 	if (stdcnt)
   2741 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   2742 	if (jumbocnt)
   2743 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   2744 }
   2745 
   2746 void
   2747 bge_txeof(sc)
   2748 	struct bge_softc *sc;
   2749 {
   2750 	struct bge_tx_bd *cur_tx = NULL;
   2751 	struct ifnet *ifp;
   2752 	struct txdmamap_pool_entry *dma;
   2753 	bus_addr_t offset, toff;
   2754 	bus_size_t tlen;
   2755 	int tosync;
   2756 	struct mbuf *m;
   2757 
   2758 	ifp = &sc->ethercom.ec_if;
   2759 
   2760 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2761 	    offsetof(struct bge_ring_data, bge_status_block),
   2762 	    sizeof (struct bge_status_block),
   2763 	    BUS_DMASYNC_POSTREAD);
   2764 
   2765 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   2766 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   2767 	    sc->bge_tx_saved_considx;
   2768 
   2769 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   2770 
   2771 	if (tosync < 0) {
   2772 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   2773 		    sizeof (struct bge_tx_bd);
   2774 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2775 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2776 		tosync = -tosync;
   2777 	}
   2778 
   2779 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2780 	    offset, tosync * sizeof (struct bge_tx_bd),
   2781 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2782 
   2783 	/*
   2784 	 * Go through our tx ring and free mbufs for those
   2785 	 * frames that have been sent.
   2786 	 */
   2787 	while (sc->bge_tx_saved_considx !=
   2788 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   2789 		u_int32_t		idx = 0;
   2790 
   2791 		idx = sc->bge_tx_saved_considx;
   2792 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   2793 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   2794 			ifp->if_opackets++;
   2795 		m = sc->bge_cdata.bge_tx_chain[idx];
   2796 		if (m != NULL) {
   2797 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   2798 			dma = sc->txdma[idx];
   2799 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   2800 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2801 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   2802 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2803 			sc->txdma[idx] = NULL;
   2804 
   2805 			m_freem(m);
   2806 		}
   2807 		sc->bge_txcnt--;
   2808 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   2809 		ifp->if_timer = 0;
   2810 	}
   2811 
   2812 	if (cur_tx != NULL)
   2813 		ifp->if_flags &= ~IFF_OACTIVE;
   2814 }
   2815 
   2816 int
   2817 bge_intr(xsc)
   2818 	void *xsc;
   2819 {
   2820 	struct bge_softc *sc;
   2821 	struct ifnet *ifp;
   2822 
   2823 	sc = xsc;
   2824 	ifp = &sc->ethercom.ec_if;
   2825 
   2826 #ifdef notdef
   2827 	/* Avoid this for now -- checking this register is expensive. */
   2828 	/* Make sure this is really our interrupt. */
   2829 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   2830 		return (0);
   2831 #endif
   2832 	/* Ack interrupt and stop others from occuring. */
   2833 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   2834 
   2835 	/*
   2836 	 * Process link state changes.
   2837 	 * Grrr. The link status word in the status block does
   2838 	 * not work correctly on the BCM5700 rev AX and BX chips,
   2839 	 * according to all avaibable information. Hence, we have
   2840 	 * to enable MII interrupts in order to properly obtain
   2841 	 * async link changes. Unfortunately, this also means that
   2842 	 * we have to read the MAC status register to detect link
   2843 	 * changes, thereby adding an additional register access to
   2844 	 * the interrupt handler.
   2845 	 */
   2846 
   2847 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   2848 		u_int32_t		status;
   2849 
   2850 		status = CSR_READ_4(sc, BGE_MAC_STS);
   2851 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   2852 			sc->bge_link = 0;
   2853 			callout_stop(&sc->bge_timeout);
   2854 			bge_tick(sc);
   2855 			/* Clear the interrupt */
   2856 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   2857 			    BGE_EVTENB_MI_INTERRUPT);
   2858 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   2859 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   2860 			    BRGPHY_INTRS);
   2861 		}
   2862 	} else {
   2863 		if (sc->bge_rdata->bge_status_block.bge_status &
   2864 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   2865 			sc->bge_link = 0;
   2866 			callout_stop(&sc->bge_timeout);
   2867 			bge_tick(sc);
   2868 			/* Clear the interrupt */
   2869 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   2870 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   2871 			    BGE_MACSTAT_LINK_CHANGED);
   2872 		}
   2873 	}
   2874 
   2875 	if (ifp->if_flags & IFF_RUNNING) {
   2876 		/* Check RX return ring producer/consumer */
   2877 		bge_rxeof(sc);
   2878 
   2879 		/* Check TX ring producer/consumer */
   2880 		bge_txeof(sc);
   2881 	}
   2882 
   2883 	if (sc->bge_pending_rxintr_change) {
   2884 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   2885 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   2886 		uint32_t junk;
   2887 
   2888 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   2889 		DELAY(10);
   2890 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   2891 
   2892 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   2893 		DELAY(10);
   2894 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   2895 
   2896 		sc->bge_pending_rxintr_change = 0;
   2897 	}
   2898 	bge_handle_events(sc);
   2899 
   2900 	/* Re-enable interrupts. */
   2901 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   2902 
   2903 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   2904 		bge_start(ifp);
   2905 
   2906 	return (1);
   2907 }
   2908 
   2909 void
   2910 bge_tick(xsc)
   2911 	void *xsc;
   2912 {
   2913 	struct bge_softc *sc = xsc;
   2914 	struct mii_data *mii = &sc->bge_mii;
   2915 	struct ifmedia *ifm = NULL;
   2916 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2917 	int s;
   2918 
   2919 	s = splnet();
   2920 
   2921 	bge_stats_update(sc);
   2922 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   2923 	if (sc->bge_link) {
   2924 		splx(s);
   2925 		return;
   2926 	}
   2927 
   2928 	if (sc->bge_tbi) {
   2929 		ifm = &sc->bge_ifmedia;
   2930 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   2931 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   2932 			sc->bge_link++;
   2933 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   2934 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2935 				bge_start(ifp);
   2936 		}
   2937 		splx(s);
   2938 		return;
   2939 	}
   2940 
   2941 	mii_tick(mii);
   2942 
   2943 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   2944 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   2945 		sc->bge_link++;
   2946 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   2947 			bge_start(ifp);
   2948 	}
   2949 
   2950 	splx(s);
   2951 }
   2952 
   2953 void
   2954 bge_stats_update(sc)
   2955 	struct bge_softc *sc;
   2956 {
   2957 	struct ifnet *ifp = &sc->ethercom.ec_if;
   2958 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   2959 	bus_size_t rstats = BGE_RX_STATS;
   2960 
   2961 #define READ_RSTAT(sc, stats, stat) \
   2962 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   2963 
   2964 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   2965 		ifp->if_collisions +=
   2966 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   2967 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   2968 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   2969 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   2970 		return;
   2971 	}
   2972 
   2973 #undef READ_RSTAT
   2974 #define READ_STAT(sc, stats, stat) \
   2975 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   2976 
   2977 	ifp->if_collisions +=
   2978 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   2979 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   2980 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   2981 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   2982 	  ifp->if_collisions;
   2983 
   2984 #undef READ_STAT
   2985 
   2986 #ifdef notdef
   2987 	ifp->if_collisions +=
   2988 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   2989 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   2990 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   2991 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   2992 	   ifp->if_collisions;
   2993 #endif
   2994 }
   2995 
   2996 /*
   2997  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   2998  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   2999  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3000  * the hardware checksum assist gives incorrect results (possibly
   3001  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3002  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3003  */
   3004 static __inline int
   3005 bge_cksum_pad(struct mbuf *pkt)
   3006 {
   3007 	struct mbuf *last = NULL;
   3008 	int padlen;
   3009 
   3010 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3011 
   3012 	/* if there's only the packet-header and we can pad there, use it. */
   3013 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3014 	    !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
   3015 		last = pkt;
   3016 	} else {
   3017 		/*
   3018 		 * Walk packet chain to find last mbuf. We will either
   3019 		 * pad there, or append a new mbuf and pad it
   3020 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3021 		 */
   3022 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3023 	      	       (void) 0; /* do nothing*/
   3024 		}
   3025 
   3026 		/* `last' now points to last in chain. */
   3027 		if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
   3028 			(void) 0; /* we can pad here, in-place. */
   3029 		} else {
   3030 			/* Allocate new empty mbuf, pad it. Compact later. */
   3031 			struct mbuf *n;
   3032 			MGET(n, M_DONTWAIT, MT_DATA);
   3033 			n->m_len = 0;
   3034 			last->m_next = n;
   3035 			last = n;
   3036 		}
   3037 	}
   3038 
   3039 #ifdef DEBUG
   3040 	  /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
   3041 	  KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
   3042 #endif
   3043 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3044 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
   3045 	last->m_len += padlen;
   3046 	pkt->m_pkthdr.len += padlen;
   3047 	return 0;
   3048 }
   3049 
   3050 /*
   3051  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3052  */
   3053 static __inline int
   3054 bge_compact_dma_runt(struct mbuf *pkt)
   3055 {
   3056 	struct mbuf	*m, *prev;
   3057 	int 		totlen, prevlen;
   3058 
   3059 	prev = NULL;
   3060 	totlen = 0;
   3061 	prevlen = -1;
   3062 
   3063 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3064 		int mlen = m->m_len;
   3065 		int shortfall = 8 - mlen ;
   3066 
   3067 		totlen += mlen;
   3068 		if (mlen == 0) {
   3069 			continue;
   3070 		}
   3071 		if (mlen >= 8)
   3072 			continue;
   3073 
   3074 		/* If we get here, mbuf data is too small for DMA engine.
   3075 		 * Try to fix by shuffling data to prev or next in chain.
   3076 		 * If that fails, do a compacting deep-copy of the whole chain.
   3077 		 */
   3078 
   3079 		/* Internal frag. If fits in prev, copy it there. */
   3080 		if (prev && !M_READONLY(prev) &&
   3081 		      M_TRAILINGSPACE(prev) >= m->m_len) {
   3082 		  	bcopy(m->m_data,
   3083 			      prev->m_data+prev->m_len,
   3084 			      mlen);
   3085 			prev->m_len += mlen;
   3086 			m->m_len = 0;
   3087 			/* XXX stitch chain */
   3088 			prev->m_next = m_free(m);
   3089 			m = prev;
   3090 			continue;
   3091 		}
   3092 		else if (m->m_next != NULL && !M_READONLY(m) &&
   3093 			     M_TRAILINGSPACE(m) >= shortfall &&
   3094 			     m->m_next->m_len >= (8 + shortfall)) {
   3095 		    /* m is writable and have enough data in next, pull up. */
   3096 
   3097 		  	bcopy(m->m_next->m_data,
   3098 			      m->m_data+m->m_len,
   3099 			      shortfall);
   3100 			m->m_len += shortfall;
   3101 			m->m_next->m_len -= shortfall;
   3102 			m->m_next->m_data += shortfall;
   3103 		}
   3104 		else if (m->m_next == NULL || 1) {
   3105 		  	/* Got a runt at the very end of the packet.
   3106 			 * borrow data from the tail of the preceding mbuf and
   3107 			 * update its length in-place. (The original data is still
   3108 			 * valid, so we can do this even if prev is not writable.)
   3109 			 */
   3110 
   3111 			/* if we'd make prev a runt, just move all of its data. */
   3112 #ifdef DEBUG
   3113 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3114 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3115 #endif
   3116 			if ((prev->m_len - shortfall) < 8)
   3117 				shortfall = prev->m_len;
   3118 
   3119 #ifdef notyet	/* just do the safe slow thing for now */
   3120 			if (!M_READONLY(m)) {
   3121 				if (M_LEADINGSPACE(m) < shorfall) {
   3122 					void *m_dat;
   3123 					m_dat = (m->m_flags & M_PKTHDR) ?
   3124 					  m->m_pktdat : m->dat;
   3125 					memmove(m_dat, mtod(m, void*), m->m_len);
   3126 					m->m_data = m_dat;
   3127 				    }
   3128 			} else
   3129 #endif	/* just do the safe slow thing */
   3130 			{
   3131 				struct mbuf * n = NULL;
   3132 				int newprevlen = prev->m_len - shortfall;
   3133 
   3134 				MGET(n, M_NOWAIT, MT_DATA);
   3135 				if (n == NULL)
   3136 				   return ENOBUFS;
   3137 				KASSERT(m->m_len + shortfall < MLEN
   3138 					/*,
   3139 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3140 
   3141 				/* first copy the data we're stealing from prev */
   3142 				bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
   3143 
   3144 				/* update prev->m_len accordingly */
   3145 				prev->m_len -= shortfall;
   3146 
   3147 				/* copy data from runt m */
   3148 				bcopy(m->m_data, n->m_data + shortfall, m->m_len);
   3149 
   3150 				/* n holds what we stole from prev, plus m */
   3151 				n->m_len = shortfall + m->m_len;
   3152 
   3153 				/* stitch n into chain and free m */
   3154 				n->m_next = m->m_next;
   3155 				prev->m_next = n;
   3156 				/* KASSERT(m->m_next == NULL); */
   3157 				m->m_next = NULL;
   3158 				m_free(m);
   3159 				m = n;	/* for continuing loop */
   3160 			}
   3161 		}
   3162 		prevlen = m->m_len;
   3163 	}
   3164 	return 0;
   3165 }
   3166 
   3167 /*
   3168  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3169  * pointers to descriptors.
   3170  */
   3171 int
   3172 bge_encap(sc, m_head, txidx)
   3173 	struct bge_softc *sc;
   3174 	struct mbuf *m_head;
   3175 	u_int32_t *txidx;
   3176 {
   3177 	struct bge_tx_bd	*f = NULL;
   3178 	u_int32_t		frag, cur, cnt = 0;
   3179 	u_int16_t		csum_flags = 0;
   3180 	struct txdmamap_pool_entry *dma;
   3181 	bus_dmamap_t dmamap;
   3182 	int			i = 0;
   3183 	struct m_tag		*mtag;
   3184 
   3185 	cur = frag = *txidx;
   3186 
   3187 	if (m_head->m_pkthdr.csum_flags) {
   3188 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3189 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3190 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3191 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3192 	}
   3193 
   3194 	/*
   3195 	 * If we were asked to do an outboard checksum, and the NIC
   3196 	 * has the bug where it sometimes adds in the Ethernet padding,
   3197 	 * explicitly pad with zeros so the cksum will be correct either way.
   3198 	 * (For now, do this for all chip versions, until newer
   3199 	 * are confirmed to not require the workaround.)
   3200 	 */
   3201 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3202 #ifdef notyet
   3203 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3204 #endif
   3205 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3206 		goto check_dma_bug;
   3207 
   3208 	if (bge_cksum_pad(m_head) != 0)
   3209 	    return ENOBUFS;
   3210 
   3211 check_dma_bug:
   3212 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3213 		goto doit;
   3214 	/*
   3215 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3216 	 * less than eight bytes.  If we encounter a teeny mbuf
   3217 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3218 	 */
   3219 	if (bge_compact_dma_runt(m_head) != 0)
   3220 		return ENOBUFS;
   3221 
   3222 doit:
   3223 	dma = SLIST_FIRST(&sc->txdma_list);
   3224 	if (dma == NULL)
   3225 		return ENOBUFS;
   3226 	dmamap = dma->dmamap;
   3227 
   3228 	/*
   3229 	 * Start packing the mbufs in this chain into
   3230 	 * the fragment pointers. Stop when we run out
   3231 	 * of fragments or hit the end of the mbuf chain.
   3232 	 */
   3233 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3234 	    BUS_DMA_NOWAIT))
   3235 		return(ENOBUFS);
   3236 
   3237 	mtag = sc->ethercom.ec_nvlans ?
   3238 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
   3239 
   3240 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3241 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3242 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3243 			break;
   3244 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3245 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3246 		f->bge_flags = csum_flags;
   3247 
   3248 		if (mtag != NULL) {
   3249 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3250 			f->bge_vlan_tag = *(u_int *)(mtag + 1);
   3251 		} else {
   3252 			f->bge_vlan_tag = 0;
   3253 		}
   3254 		/*
   3255 		 * Sanity check: avoid coming within 16 descriptors
   3256 		 * of the end of the ring.
   3257 		 */
   3258 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
   3259 			return(ENOBUFS);
   3260 		cur = frag;
   3261 		BGE_INC(frag, BGE_TX_RING_CNT);
   3262 		cnt++;
   3263 	}
   3264 
   3265 	if (i < dmamap->dm_nsegs)
   3266 		return ENOBUFS;
   3267 
   3268 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3269 	    BUS_DMASYNC_PREWRITE);
   3270 
   3271 	if (frag == sc->bge_tx_saved_considx)
   3272 		return(ENOBUFS);
   3273 
   3274 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3275 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3276 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3277 	sc->txdma[cur] = dma;
   3278 	sc->bge_txcnt += cnt;
   3279 
   3280 	*txidx = frag;
   3281 
   3282 	return(0);
   3283 }
   3284 
   3285 /*
   3286  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3287  * to the mbuf data regions directly in the transmit descriptors.
   3288  */
   3289 void
   3290 bge_start(ifp)
   3291 	struct ifnet *ifp;
   3292 {
   3293 	struct bge_softc *sc;
   3294 	struct mbuf *m_head = NULL;
   3295 	u_int32_t prodidx = 0;
   3296 	int pkts = 0;
   3297 
   3298 	sc = ifp->if_softc;
   3299 
   3300 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   3301 		return;
   3302 
   3303 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
   3304 
   3305 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3306 		IFQ_POLL(&ifp->if_snd, m_head);
   3307 		if (m_head == NULL)
   3308 			break;
   3309 
   3310 #if 0
   3311 		/*
   3312 		 * XXX
   3313 		 * safety overkill.  If this is a fragmented packet chain
   3314 		 * with delayed TCP/UDP checksums, then only encapsulate
   3315 		 * it if we have enough descriptors to handle the entire
   3316 		 * chain at once.
   3317 		 * (paranoia -- may not actually be needed)
   3318 		 */
   3319 		if (m_head->m_flags & M_FIRSTFRAG &&
   3320 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3321 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3322 			    m_head->m_pkthdr.csum_data + 16) {
   3323 				ifp->if_flags |= IFF_OACTIVE;
   3324 				break;
   3325 			}
   3326 		}
   3327 #endif
   3328 
   3329 		/*
   3330 		 * Pack the data into the transmit ring. If we
   3331 		 * don't have room, set the OACTIVE flag and wait
   3332 		 * for the NIC to drain the ring.
   3333 		 */
   3334 		if (bge_encap(sc, m_head, &prodidx)) {
   3335 			ifp->if_flags |= IFF_OACTIVE;
   3336 			break;
   3337 		}
   3338 
   3339 		/* now we are committed to transmit the packet */
   3340 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3341 		pkts++;
   3342 
   3343 #if NBPFILTER > 0
   3344 		/*
   3345 		 * If there's a BPF listener, bounce a copy of this frame
   3346 		 * to him.
   3347 		 */
   3348 		if (ifp->if_bpf)
   3349 			bpf_mtap(ifp->if_bpf, m_head);
   3350 #endif
   3351 	}
   3352 	if (pkts == 0)
   3353 		return;
   3354 
   3355 	/* Transmit */
   3356 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3357 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   3358 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3359 
   3360 	/*
   3361 	 * Set a timeout in case the chip goes out to lunch.
   3362 	 */
   3363 	ifp->if_timer = 5;
   3364 }
   3365 
   3366 int
   3367 bge_init(ifp)
   3368 	struct ifnet *ifp;
   3369 {
   3370 	struct bge_softc *sc = ifp->if_softc;
   3371 	u_int16_t *m;
   3372 	int s, error;
   3373 
   3374 	s = splnet();
   3375 
   3376 	ifp = &sc->ethercom.ec_if;
   3377 
   3378 	/* Cancel pending I/O and flush buffers. */
   3379 	bge_stop(sc);
   3380 	bge_reset(sc);
   3381 	bge_chipinit(sc);
   3382 
   3383 	/*
   3384 	 * Init the various state machines, ring
   3385 	 * control blocks and firmware.
   3386 	 */
   3387 	error = bge_blockinit(sc);
   3388 	if (error != 0) {
   3389 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   3390 		    error);
   3391 		splx(s);
   3392 		return error;
   3393 	}
   3394 
   3395 	ifp = &sc->ethercom.ec_if;
   3396 
   3397 	/* Specify MTU. */
   3398 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3399 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
   3400 
   3401 	/* Load our MAC address. */
   3402 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   3403 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3404 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3405 
   3406 	/* Enable or disable promiscuous mode as needed. */
   3407 	if (ifp->if_flags & IFF_PROMISC) {
   3408 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3409 	} else {
   3410 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3411 	}
   3412 
   3413 	/* Program multicast filter. */
   3414 	bge_setmulti(sc);
   3415 
   3416 	/* Init RX ring. */
   3417 	bge_init_rx_ring_std(sc);
   3418 
   3419 	/* Init jumbo RX ring. */
   3420 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3421 		bge_init_rx_ring_jumbo(sc);
   3422 
   3423 	/* Init our RX return ring index */
   3424 	sc->bge_rx_saved_considx = 0;
   3425 
   3426 	/* Init TX ring. */
   3427 	bge_init_tx_ring(sc);
   3428 
   3429 	/* Turn on transmitter */
   3430 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3431 
   3432 	/* Turn on receiver */
   3433 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3434 
   3435 	/* Tell firmware we're alive. */
   3436 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3437 
   3438 	/* Enable host interrupts. */
   3439 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   3440 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3441 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3442 
   3443 	bge_ifmedia_upd(ifp);
   3444 
   3445 	ifp->if_flags |= IFF_RUNNING;
   3446 	ifp->if_flags &= ~IFF_OACTIVE;
   3447 
   3448 	splx(s);
   3449 
   3450 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3451 
   3452 	return 0;
   3453 }
   3454 
   3455 /*
   3456  * Set media options.
   3457  */
   3458 int
   3459 bge_ifmedia_upd(ifp)
   3460 	struct ifnet *ifp;
   3461 {
   3462 	struct bge_softc *sc = ifp->if_softc;
   3463 	struct mii_data *mii = &sc->bge_mii;
   3464 	struct ifmedia *ifm = &sc->bge_ifmedia;
   3465 
   3466 	/* If this is a 1000baseX NIC, enable the TBI port. */
   3467 	if (sc->bge_tbi) {
   3468 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   3469 			return(EINVAL);
   3470 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   3471 		case IFM_AUTO:
   3472 			break;
   3473 		case IFM_1000_SX:
   3474 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   3475 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3476 				    BGE_MACMODE_HALF_DUPLEX);
   3477 			} else {
   3478 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3479 				    BGE_MACMODE_HALF_DUPLEX);
   3480 			}
   3481 			break;
   3482 		default:
   3483 			return(EINVAL);
   3484 		}
   3485 		return(0);
   3486 	}
   3487 
   3488 	sc->bge_link = 0;
   3489 	mii_mediachg(mii);
   3490 
   3491 	return(0);
   3492 }
   3493 
   3494 /*
   3495  * Report current media status.
   3496  */
   3497 void
   3498 bge_ifmedia_sts(ifp, ifmr)
   3499 	struct ifnet *ifp;
   3500 	struct ifmediareq *ifmr;
   3501 {
   3502 	struct bge_softc *sc = ifp->if_softc;
   3503 	struct mii_data *mii = &sc->bge_mii;
   3504 
   3505 	if (sc->bge_tbi) {
   3506 		ifmr->ifm_status = IFM_AVALID;
   3507 		ifmr->ifm_active = IFM_ETHER;
   3508 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3509 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   3510 			ifmr->ifm_status |= IFM_ACTIVE;
   3511 		ifmr->ifm_active |= IFM_1000_SX;
   3512 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   3513 			ifmr->ifm_active |= IFM_HDX;
   3514 		else
   3515 			ifmr->ifm_active |= IFM_FDX;
   3516 		return;
   3517 	}
   3518 
   3519 	mii_pollstat(mii);
   3520 	ifmr->ifm_active = mii->mii_media_active;
   3521 	ifmr->ifm_status = mii->mii_media_status;
   3522 }
   3523 
   3524 int
   3525 bge_ioctl(ifp, command, data)
   3526 	struct ifnet *ifp;
   3527 	u_long command;
   3528 	caddr_t data;
   3529 {
   3530 	struct bge_softc *sc = ifp->if_softc;
   3531 	struct ifreq *ifr = (struct ifreq *) data;
   3532 	int s, error = 0;
   3533 	struct mii_data *mii;
   3534 
   3535 	s = splnet();
   3536 
   3537 	switch(command) {
   3538 	case SIOCSIFFLAGS:
   3539 		if (ifp->if_flags & IFF_UP) {
   3540 			/*
   3541 			 * If only the state of the PROMISC flag changed,
   3542 			 * then just use the 'set promisc mode' command
   3543 			 * instead of reinitializing the entire NIC. Doing
   3544 			 * a full re-init means reloading the firmware and
   3545 			 * waiting for it to start up, which may take a
   3546 			 * second or two.
   3547 			 */
   3548 			if (ifp->if_flags & IFF_RUNNING &&
   3549 			    ifp->if_flags & IFF_PROMISC &&
   3550 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   3551 				BGE_SETBIT(sc, BGE_RX_MODE,
   3552 				    BGE_RXMODE_RX_PROMISC);
   3553 			} else if (ifp->if_flags & IFF_RUNNING &&
   3554 			    !(ifp->if_flags & IFF_PROMISC) &&
   3555 			    sc->bge_if_flags & IFF_PROMISC) {
   3556 				BGE_CLRBIT(sc, BGE_RX_MODE,
   3557 				    BGE_RXMODE_RX_PROMISC);
   3558 			} else
   3559 				bge_init(ifp);
   3560 		} else {
   3561 			if (ifp->if_flags & IFF_RUNNING) {
   3562 				bge_stop(sc);
   3563 			}
   3564 		}
   3565 		sc->bge_if_flags = ifp->if_flags;
   3566 		error = 0;
   3567 		break;
   3568 	case SIOCSIFMEDIA:
   3569 	case SIOCGIFMEDIA:
   3570 		if (sc->bge_tbi) {
   3571 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   3572 			    command);
   3573 		} else {
   3574 			mii = &sc->bge_mii;
   3575 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   3576 			    command);
   3577 		}
   3578 		error = 0;
   3579 		break;
   3580 	default:
   3581 		error = ether_ioctl(ifp, command, data);
   3582 		if (error == ENETRESET) {
   3583 			bge_setmulti(sc);
   3584 			error = 0;
   3585 		}
   3586 		break;
   3587 	}
   3588 
   3589 	splx(s);
   3590 
   3591 	return(error);
   3592 }
   3593 
   3594 void
   3595 bge_watchdog(ifp)
   3596 	struct ifnet *ifp;
   3597 {
   3598 	struct bge_softc *sc;
   3599 
   3600 	sc = ifp->if_softc;
   3601 
   3602 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   3603 
   3604 	ifp->if_flags &= ~IFF_RUNNING;
   3605 	bge_init(ifp);
   3606 
   3607 	ifp->if_oerrors++;
   3608 }
   3609 
   3610 static void
   3611 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   3612 {
   3613 	int i;
   3614 
   3615 	BGE_CLRBIT(sc, reg, bit);
   3616 
   3617 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3618 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   3619 			return;
   3620 		delay(100);
   3621 	}
   3622 
   3623 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
   3624 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
   3625 }
   3626 
   3627 /*
   3628  * Stop the adapter and free any mbufs allocated to the
   3629  * RX and TX lists.
   3630  */
   3631 void
   3632 bge_stop(sc)
   3633 	struct bge_softc *sc;
   3634 {
   3635 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3636 
   3637 	callout_stop(&sc->bge_timeout);
   3638 
   3639 	/*
   3640 	 * Disable all of the receiver blocks
   3641 	 */
   3642 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3643 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3644 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   3645 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3646 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   3647 	}
   3648 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   3649 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3650 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   3651 
   3652 	/*
   3653 	 * Disable all of the transmit blocks
   3654 	 */
   3655 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3656 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3657 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3658 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   3659 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   3660 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3661 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   3662 	}
   3663 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3664 
   3665 	/*
   3666 	 * Shut down all of the memory managers and related
   3667 	 * state machines.
   3668 	 */
   3669 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   3670 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   3671 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3672 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3673 	}
   3674 
   3675 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   3676 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   3677 
   3678 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3679 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   3680 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   3681 	}
   3682 
   3683 	/* Disable host interrupts. */
   3684 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3685 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3686 
   3687 	/*
   3688 	 * Tell firmware we're shutting down.
   3689 	 */
   3690 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3691 
   3692 	/* Free the RX lists. */
   3693 	bge_free_rx_ring_std(sc);
   3694 
   3695 	/* Free jumbo RX list. */
   3696 	bge_free_rx_ring_jumbo(sc);
   3697 
   3698 	/* Free TX buffers. */
   3699 	bge_free_tx_ring(sc);
   3700 
   3701 	/*
   3702 	 * Isolate/power down the PHY.
   3703 	 */
   3704 	if (!sc->bge_tbi)
   3705 		mii_down(&sc->bge_mii);
   3706 
   3707 	sc->bge_link = 0;
   3708 
   3709 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   3710 
   3711 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3712 }
   3713 
   3714 /*
   3715  * Stop all chip I/O so that the kernel's probe routines don't
   3716  * get confused by errant DMAs when rebooting.
   3717  */
   3718 void
   3719 bge_shutdown(xsc)
   3720 	void *xsc;
   3721 {
   3722 	struct bge_softc *sc = (struct bge_softc *)xsc;
   3723 
   3724 	bge_stop(sc);
   3725 	bge_reset(sc);
   3726 }
   3727 
   3728 
   3729 static int
   3730 sysctl_bge_verify(SYSCTLFN_ARGS)
   3731 {
   3732 	int error, t;
   3733 	struct sysctlnode node;
   3734 
   3735 	node = *rnode;
   3736 	t = *(int*)rnode->sysctl_data;
   3737 	node.sysctl_data = &t;
   3738 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3739 	if (error || newp == NULL)
   3740 		return (error);
   3741 
   3742 #if 0
   3743 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   3744 	    node.sysctl_num, rnode->sysctl_num));
   3745 #endif
   3746 
   3747 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   3748 		if (t < 0 || t >= NBGE_RX_THRESH)
   3749 			return (EINVAL);
   3750 		bge_update_all_threshes(t);
   3751 	} else
   3752 		return (EINVAL);
   3753 
   3754 	*(int*)rnode->sysctl_data = t;
   3755 
   3756 	return (0);
   3757 }
   3758 
   3759 /*
   3760  * Setup sysctl(3) MIB, hw.bge.*.
   3761  *
   3762  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   3763  */
   3764 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   3765 {
   3766 	int rc;
   3767 	struct sysctlnode *node;
   3768 
   3769 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3770 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   3771 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3772 		goto err;
   3773 	}
   3774 
   3775 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3776 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge", NULL,
   3777 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3778 		goto err;
   3779 	}
   3780 
   3781 	bge_node_root = node;
   3782 
   3783 	/* BGE Rx interrupt mitigation level */
   3784 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3785 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   3786 	    CTLTYPE_INT, "rx_lvl", NULL, sysctl_bge_verify, 0,
   3787 	    &bge_rx_thresh_lvl,
   3788 	    0, CTL_HW, bge_node_root->sysctl_num, CTL_CREATE,
   3789 	    CTL_EOL)) != 0) {
   3790 		goto err;
   3791 	}
   3792 
   3793 	bge_rxthresh_nodenum = node->sysctl_num;
   3794 	node = NULL;
   3795 
   3796 	return;
   3797 
   3798 err:
   3799 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   3800 }
   3801