if_bge.c revision 1.65 1 /* $NetBSD: if_bge.c,v 1.65 2004/03/27 04:25:12 atatat Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.65 2004/03/27 04:25:12 atatat Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 #if NBPFILTER > 0
111 #include <net/bpf.h>
112 #endif
113
114 #include <dev/pci/pcireg.h>
115 #include <dev/pci/pcivar.h>
116 #include <dev/pci/pcidevs.h>
117
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 #include <dev/mii/miidevs.h>
121 #include <dev/mii/brgphyreg.h>
122
123 #include <dev/pci/if_bgereg.h>
124
125 #include <uvm/uvm_extern.h>
126
127 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
128
129
130 /*
131 * Tunable thresholds for rx-side bge interrupt mitigation.
132 */
133
134 /*
135 * The pairs of values below were obtained from empirical measurement
136 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
137 * interrupt for every N packets received, where N is, approximately,
138 * the second value (rx_max_bds) in each pair. The values are chosen
139 * such that moving from one pair to the succeeding pair was observed
140 * to roughly halve interrupt rate under sustained input packet load.
141 * The values were empirically chosen to avoid overflowing internal
142 * limits on the bcm5700: inreasing rx_ticks much beyond 600
143 * results in internal wrapping and higher interrupt rates.
144 * The limit of 46 frames was chosen to match NFS workloads.
145 *
146 * These values also work well on bcm5701, bcm5704C, and (less
147 * tested) bcm5703. On other chipsets, (including the Altima chip
148 * family), the larger values may overflow internal chip limits,
149 * leading to increasing interrupt rates rather than lower interrupt
150 * rates.
151 *
152 * Applications using heavy interrupt mitigation (interrupting every
153 * 32 or 46 frames) in both directions may need to increase the TCP
154 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
155 * full link bandwidth, due to ACKs and window updates lingering
156 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
157 */
158 struct bge_load_rx_thresh {
159 int rx_ticks;
160 int rx_max_bds; }
161 bge_rx_threshes[] = {
162 { 32, 2 },
163 { 50, 4 },
164 { 100, 8 },
165 { 192, 16 },
166 { 416, 32 },
167 { 598, 46 }
168 };
169 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
170
171 /* XXX patchable; should be sysctl'able */
172 static int bge_auto_thresh = 1;
173 static int bge_rx_thresh_lvl;
174
175 #ifdef __NetBSD__
176 static int bge_rxthresh_nodenum;
177 #endif /* __NetBSD__ */
178
179 int bge_probe(struct device *, struct cfdata *, void *);
180 void bge_attach(struct device *, struct device *, void *);
181 void bge_release_resources(struct bge_softc *);
182 void bge_txeof(struct bge_softc *);
183 void bge_rxeof(struct bge_softc *);
184
185 void bge_tick(void *);
186 void bge_stats_update(struct bge_softc *);
187 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
188 static __inline int bge_cksum_pad(struct mbuf *pkt);
189 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
190
191 int bge_intr(void *);
192 void bge_start(struct ifnet *);
193 int bge_ioctl(struct ifnet *, u_long, caddr_t);
194 int bge_init(struct ifnet *);
195 void bge_stop(struct bge_softc *);
196 void bge_watchdog(struct ifnet *);
197 void bge_shutdown(void *);
198 int bge_ifmedia_upd(struct ifnet *);
199 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
200
201 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
202 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
203
204 void bge_setmulti(struct bge_softc *);
205
206 void bge_handle_events(struct bge_softc *);
207 int bge_alloc_jumbo_mem(struct bge_softc *);
208 void bge_free_jumbo_mem(struct bge_softc *);
209 void *bge_jalloc(struct bge_softc *);
210 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
211 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
212 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
213 int bge_init_rx_ring_std(struct bge_softc *);
214 void bge_free_rx_ring_std(struct bge_softc *);
215 int bge_init_rx_ring_jumbo(struct bge_softc *);
216 void bge_free_rx_ring_jumbo(struct bge_softc *);
217 void bge_free_tx_ring(struct bge_softc *);
218 int bge_init_tx_ring(struct bge_softc *);
219
220 int bge_chipinit(struct bge_softc *);
221 int bge_blockinit(struct bge_softc *);
222 int bge_setpowerstate(struct bge_softc *, int);
223
224 #ifdef notdef
225 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
226 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
227 void bge_vpd_read(struct bge_softc *);
228 #endif
229
230 u_int32_t bge_readmem_ind(struct bge_softc *, int);
231 void bge_writemem_ind(struct bge_softc *, int, int);
232 #ifdef notdef
233 u_int32_t bge_readreg_ind(struct bge_softc *, int);
234 #endif
235 void bge_writereg_ind(struct bge_softc *, int, int);
236
237 int bge_miibus_readreg(struct device *, int, int);
238 void bge_miibus_writereg(struct device *, int, int, int);
239 void bge_miibus_statchg(struct device *);
240
241 void bge_reset(struct bge_softc *);
242
243 void bge_set_thresh(struct ifnet * /*ifp*/, int /*lvl*/);
244 void bge_update_all_threshes(int /*lvl*/);
245
246 void bge_dump_status(struct bge_softc *);
247 void bge_dump_rxbd(struct bge_rx_bd *);
248
249 #define BGE_DEBUG
250 #ifdef BGE_DEBUG
251 #define DPRINTF(x) if (bgedebug) printf x
252 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
253 int bgedebug = 0;
254 #else
255 #define DPRINTF(x)
256 #define DPRINTFN(n,x)
257 #endif
258
259 /* Various chip quirks. */
260 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
261 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
262 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
263 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
264 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
265 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
266 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
267 #define BGE_QUIRK_5705_CORE 0x00000080
268 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
269
270 /* following bugs are common to bcm5700 rev B, all flavours */
271 #define BGE_QUIRK_5700_COMMON \
272 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
273
274 CFATTACH_DECL(bge, sizeof(struct bge_softc),
275 bge_probe, bge_attach, NULL, NULL);
276
277 u_int32_t
278 bge_readmem_ind(sc, off)
279 struct bge_softc *sc;
280 int off;
281 {
282 struct pci_attach_args *pa = &(sc->bge_pa);
283 pcireg_t val;
284
285 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
286 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
287 return val;
288 }
289
290 void
291 bge_writemem_ind(sc, off, val)
292 struct bge_softc *sc;
293 int off, val;
294 {
295 struct pci_attach_args *pa = &(sc->bge_pa);
296
297 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
298 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
299 }
300
301 #ifdef notdef
302 u_int32_t
303 bge_readreg_ind(sc, off)
304 struct bge_softc *sc;
305 int off;
306 {
307 struct pci_attach_args *pa = &(sc->bge_pa);
308
309 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
310 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
311 }
312 #endif
313
314 void
315 bge_writereg_ind(sc, off, val)
316 struct bge_softc *sc;
317 int off, val;
318 {
319 struct pci_attach_args *pa = &(sc->bge_pa);
320
321 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
322 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
323 }
324
325 #ifdef notdef
326 u_int8_t
327 bge_vpd_readbyte(sc, addr)
328 struct bge_softc *sc;
329 int addr;
330 {
331 int i;
332 u_int32_t val;
333 struct pci_attach_args *pa = &(sc->bge_pa);
334
335 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
336 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
337 DELAY(10);
338 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
339 BGE_VPD_FLAG)
340 break;
341 }
342
343 if (i == BGE_TIMEOUT) {
344 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
345 return(0);
346 }
347
348 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
349
350 return((val >> ((addr % 4) * 8)) & 0xFF);
351 }
352
353 void
354 bge_vpd_read_res(sc, res, addr)
355 struct bge_softc *sc;
356 struct vpd_res *res;
357 int addr;
358 {
359 int i;
360 u_int8_t *ptr;
361
362 ptr = (u_int8_t *)res;
363 for (i = 0; i < sizeof(struct vpd_res); i++)
364 ptr[i] = bge_vpd_readbyte(sc, i + addr);
365 }
366
367 void
368 bge_vpd_read(sc)
369 struct bge_softc *sc;
370 {
371 int pos = 0, i;
372 struct vpd_res res;
373
374 if (sc->bge_vpd_prodname != NULL)
375 free(sc->bge_vpd_prodname, M_DEVBUF);
376 if (sc->bge_vpd_readonly != NULL)
377 free(sc->bge_vpd_readonly, M_DEVBUF);
378 sc->bge_vpd_prodname = NULL;
379 sc->bge_vpd_readonly = NULL;
380
381 bge_vpd_read_res(sc, &res, pos);
382
383 if (res.vr_id != VPD_RES_ID) {
384 printf("%s: bad VPD resource id: expected %x got %x\n",
385 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
386 return;
387 }
388
389 pos += sizeof(res);
390 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
391 if (sc->bge_vpd_prodname == NULL)
392 panic("bge_vpd_read");
393 for (i = 0; i < res.vr_len; i++)
394 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
395 sc->bge_vpd_prodname[i] = '\0';
396 pos += i;
397
398 bge_vpd_read_res(sc, &res, pos);
399
400 if (res.vr_id != VPD_RES_READ) {
401 printf("%s: bad VPD resource id: expected %x got %x\n",
402 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
403 return;
404 }
405
406 pos += sizeof(res);
407 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
408 if (sc->bge_vpd_readonly == NULL)
409 panic("bge_vpd_read");
410 for (i = 0; i < res.vr_len + 1; i++)
411 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
412 }
413 #endif
414
415 /*
416 * Read a byte of data stored in the EEPROM at address 'addr.' The
417 * BCM570x supports both the traditional bitbang interface and an
418 * auto access interface for reading the EEPROM. We use the auto
419 * access method.
420 */
421 u_int8_t
422 bge_eeprom_getbyte(sc, addr, dest)
423 struct bge_softc *sc;
424 int addr;
425 u_int8_t *dest;
426 {
427 int i;
428 u_int32_t byte = 0;
429
430 /*
431 * Enable use of auto EEPROM access so we can avoid
432 * having to use the bitbang method.
433 */
434 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
435
436 /* Reset the EEPROM, load the clock period. */
437 CSR_WRITE_4(sc, BGE_EE_ADDR,
438 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
439 DELAY(20);
440
441 /* Issue the read EEPROM command. */
442 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
443
444 /* Wait for completion */
445 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
446 DELAY(10);
447 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
448 break;
449 }
450
451 if (i == BGE_TIMEOUT) {
452 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
453 return(0);
454 }
455
456 /* Get result. */
457 byte = CSR_READ_4(sc, BGE_EE_DATA);
458
459 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
460
461 return(0);
462 }
463
464 /*
465 * Read a sequence of bytes from the EEPROM.
466 */
467 int
468 bge_read_eeprom(sc, dest, off, cnt)
469 struct bge_softc *sc;
470 caddr_t dest;
471 int off;
472 int cnt;
473 {
474 int err = 0, i;
475 u_int8_t byte = 0;
476
477 for (i = 0; i < cnt; i++) {
478 err = bge_eeprom_getbyte(sc, off + i, &byte);
479 if (err)
480 break;
481 *(dest + i) = byte;
482 }
483
484 return(err ? 1 : 0);
485 }
486
487 int
488 bge_miibus_readreg(dev, phy, reg)
489 struct device *dev;
490 int phy, reg;
491 {
492 struct bge_softc *sc = (struct bge_softc *)dev;
493 u_int32_t val;
494 u_int32_t saved_autopoll;
495 int i;
496
497 /*
498 * Several chips with builtin PHYs will incorrectly answer to
499 * other PHY instances than the builtin PHY at id 1.
500 */
501 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
502 return(0);
503
504 /* Reading with autopolling on may trigger PCI errors */
505 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
506 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
507 CSR_WRITE_4(sc, BGE_MI_MODE,
508 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
509 DELAY(40);
510 }
511
512 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
513 BGE_MIPHY(phy)|BGE_MIREG(reg));
514
515 for (i = 0; i < BGE_TIMEOUT; i++) {
516 val = CSR_READ_4(sc, BGE_MI_COMM);
517 if (!(val & BGE_MICOMM_BUSY))
518 break;
519 delay(10);
520 }
521
522 if (i == BGE_TIMEOUT) {
523 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
524 val = 0;
525 goto done;
526 }
527
528 val = CSR_READ_4(sc, BGE_MI_COMM);
529
530 done:
531 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
532 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
533 DELAY(40);
534 }
535
536 if (val & BGE_MICOMM_READFAIL)
537 return(0);
538
539 return(val & 0xFFFF);
540 }
541
542 void
543 bge_miibus_writereg(dev, phy, reg, val)
544 struct device *dev;
545 int phy, reg, val;
546 {
547 struct bge_softc *sc = (struct bge_softc *)dev;
548 u_int32_t saved_autopoll;
549 int i;
550
551 /* Touching the PHY while autopolling is on may trigger PCI errors */
552 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
553 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
554 delay(40);
555 CSR_WRITE_4(sc, BGE_MI_MODE,
556 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
557 delay(10); /* 40 usec is supposed to be adequate */
558 }
559
560 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
561 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
562
563 for (i = 0; i < BGE_TIMEOUT; i++) {
564 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
565 break;
566 delay(10);
567 }
568
569 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
570 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
571 delay(40);
572 }
573
574 if (i == BGE_TIMEOUT) {
575 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
576 }
577 }
578
579 void
580 bge_miibus_statchg(dev)
581 struct device *dev;
582 {
583 struct bge_softc *sc = (struct bge_softc *)dev;
584 struct mii_data *mii = &sc->bge_mii;
585
586 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
587 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
588 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
589 } else {
590 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
591 }
592
593 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
594 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
595 } else {
596 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
597 }
598 }
599
600 /*
601 * Update rx threshold levels to values in a particular slot
602 * of the interrupt-mitigation table bge_rx_threshes.
603 */
604 void
605 bge_set_thresh(struct ifnet *ifp, int lvl)
606 {
607 struct bge_softc *sc = ifp->if_softc;
608 int s;
609
610 /* For now, just save the new Rx-intr thresholds and record
611 * that a threshold update is pending. Updating the hardware
612 * registers here (even at splhigh()) is observed to
613 * occasionaly cause glitches where Rx-interrupts are not
614 * honoured for up to 10 seconds. jonathan (at) netbsd.org, 2003-04-05
615 */
616 s = splnet();
617 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
618 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
619 sc->bge_pending_rxintr_change = 1;
620 splx(s);
621
622 return;
623 }
624
625
626 /*
627 * Update Rx thresholds of all bge devices
628 */
629 void
630 bge_update_all_threshes(int lvl)
631 {
632 struct ifnet *ifp;
633 const char * const namebuf = "bge";
634 int namelen;
635
636 if (lvl < 0)
637 lvl = 0;
638 else if( lvl >= NBGE_RX_THRESH)
639 lvl = NBGE_RX_THRESH - 1;
640
641 namelen = strlen(namebuf);
642 /*
643 * Now search all the interfaces for this name/number
644 */
645 TAILQ_FOREACH(ifp, &ifnet, if_list) {
646 if (strncmp(ifp->if_xname, namebuf, namelen) != 0 )
647 continue;
648 /* We got a match: update if doing auto-threshold-tuning */
649 if (bge_auto_thresh)
650 bge_set_thresh(ifp->if_softc, lvl);
651 }
652 }
653
654 /*
655 * Handle events that have triggered interrupts.
656 */
657 void
658 bge_handle_events(sc)
659 struct bge_softc *sc;
660 {
661
662 return;
663 }
664
665 /*
666 * Memory management for jumbo frames.
667 */
668
669 int
670 bge_alloc_jumbo_mem(sc)
671 struct bge_softc *sc;
672 {
673 caddr_t ptr, kva;
674 bus_dma_segment_t seg;
675 int i, rseg, state, error;
676 struct bge_jpool_entry *entry;
677
678 state = error = 0;
679
680 /* Grab a big chunk o' storage. */
681 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
682 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
683 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
684 return ENOBUFS;
685 }
686
687 state = 1;
688 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
689 BUS_DMA_NOWAIT)) {
690 printf("%s: can't map DMA buffers (%d bytes)\n",
691 sc->bge_dev.dv_xname, (int)BGE_JMEM);
692 error = ENOBUFS;
693 goto out;
694 }
695
696 state = 2;
697 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
698 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
699 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
700 error = ENOBUFS;
701 goto out;
702 }
703
704 state = 3;
705 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
706 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
707 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
708 error = ENOBUFS;
709 goto out;
710 }
711
712 state = 4;
713 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
714 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
715
716 SLIST_INIT(&sc->bge_jfree_listhead);
717 SLIST_INIT(&sc->bge_jinuse_listhead);
718
719 /*
720 * Now divide it up into 9K pieces and save the addresses
721 * in an array.
722 */
723 ptr = sc->bge_cdata.bge_jumbo_buf;
724 for (i = 0; i < BGE_JSLOTS; i++) {
725 sc->bge_cdata.bge_jslots[i] = ptr;
726 ptr += BGE_JLEN;
727 entry = malloc(sizeof(struct bge_jpool_entry),
728 M_DEVBUF, M_NOWAIT);
729 if (entry == NULL) {
730 printf("%s: no memory for jumbo buffer queue!\n",
731 sc->bge_dev.dv_xname);
732 error = ENOBUFS;
733 goto out;
734 }
735 entry->slot = i;
736 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
737 entry, jpool_entries);
738 }
739 out:
740 if (error != 0) {
741 switch (state) {
742 case 4:
743 bus_dmamap_unload(sc->bge_dmatag,
744 sc->bge_cdata.bge_rx_jumbo_map);
745 case 3:
746 bus_dmamap_destroy(sc->bge_dmatag,
747 sc->bge_cdata.bge_rx_jumbo_map);
748 case 2:
749 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
750 case 1:
751 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
752 break;
753 default:
754 break;
755 }
756 }
757
758 return error;
759 }
760
761 /*
762 * Allocate a jumbo buffer.
763 */
764 void *
765 bge_jalloc(sc)
766 struct bge_softc *sc;
767 {
768 struct bge_jpool_entry *entry;
769
770 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
771
772 if (entry == NULL) {
773 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
774 return(NULL);
775 }
776
777 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
778 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
779 return(sc->bge_cdata.bge_jslots[entry->slot]);
780 }
781
782 /*
783 * Release a jumbo buffer.
784 */
785 void
786 bge_jfree(m, buf, size, arg)
787 struct mbuf *m;
788 caddr_t buf;
789 size_t size;
790 void *arg;
791 {
792 struct bge_jpool_entry *entry;
793 struct bge_softc *sc;
794 int i, s;
795
796 /* Extract the softc struct pointer. */
797 sc = (struct bge_softc *)arg;
798
799 if (sc == NULL)
800 panic("bge_jfree: can't find softc pointer!");
801
802 /* calculate the slot this buffer belongs to */
803
804 i = ((caddr_t)buf
805 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
806
807 if ((i < 0) || (i >= BGE_JSLOTS))
808 panic("bge_jfree: asked to free buffer that we don't manage!");
809
810 s = splvm();
811 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
812 if (entry == NULL)
813 panic("bge_jfree: buffer not in use!");
814 entry->slot = i;
815 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
816 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
817
818 if (__predict_true(m != NULL))
819 pool_cache_put(&mbpool_cache, m);
820 splx(s);
821 }
822
823
824 /*
825 * Intialize a standard receive ring descriptor.
826 */
827 int
828 bge_newbuf_std(sc, i, m, dmamap)
829 struct bge_softc *sc;
830 int i;
831 struct mbuf *m;
832 bus_dmamap_t dmamap;
833 {
834 struct mbuf *m_new = NULL;
835 struct bge_rx_bd *r;
836 int error;
837
838 if (dmamap == NULL) {
839 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
840 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
841 if (error != 0)
842 return error;
843 }
844
845 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
846
847 if (m == NULL) {
848 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
849 if (m_new == NULL) {
850 return(ENOBUFS);
851 }
852
853 MCLGET(m_new, M_DONTWAIT);
854 if (!(m_new->m_flags & M_EXT)) {
855 m_freem(m_new);
856 return(ENOBUFS);
857 }
858 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
859 if (!sc->bge_rx_alignment_bug)
860 m_adj(m_new, ETHER_ALIGN);
861
862 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
863 BUS_DMA_READ|BUS_DMA_NOWAIT))
864 return(ENOBUFS);
865 } else {
866 m_new = m;
867 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
868 m_new->m_data = m_new->m_ext.ext_buf;
869 if (!sc->bge_rx_alignment_bug)
870 m_adj(m_new, ETHER_ALIGN);
871 }
872
873 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
874 r = &sc->bge_rdata->bge_rx_std_ring[i];
875 bge_set_hostaddr(&r->bge_addr,
876 dmamap->dm_segs[0].ds_addr);
877 r->bge_flags = BGE_RXBDFLAG_END;
878 r->bge_len = m_new->m_len;
879 r->bge_idx = i;
880
881 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
882 offsetof(struct bge_ring_data, bge_rx_std_ring) +
883 i * sizeof (struct bge_rx_bd),
884 sizeof (struct bge_rx_bd),
885 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
886
887 return(0);
888 }
889
890 /*
891 * Initialize a jumbo receive ring descriptor. This allocates
892 * a jumbo buffer from the pool managed internally by the driver.
893 */
894 int
895 bge_newbuf_jumbo(sc, i, m)
896 struct bge_softc *sc;
897 int i;
898 struct mbuf *m;
899 {
900 struct mbuf *m_new = NULL;
901 struct bge_rx_bd *r;
902
903 if (m == NULL) {
904 caddr_t *buf = NULL;
905
906 /* Allocate the mbuf. */
907 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
908 if (m_new == NULL) {
909 return(ENOBUFS);
910 }
911
912 /* Allocate the jumbo buffer */
913 buf = bge_jalloc(sc);
914 if (buf == NULL) {
915 m_freem(m_new);
916 printf("%s: jumbo allocation failed "
917 "-- packet dropped!\n", sc->bge_dev.dv_xname);
918 return(ENOBUFS);
919 }
920
921 /* Attach the buffer to the mbuf. */
922 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
923 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
924 bge_jfree, sc);
925 } else {
926 m_new = m;
927 m_new->m_data = m_new->m_ext.ext_buf;
928 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
929 }
930
931 if (!sc->bge_rx_alignment_bug)
932 m_adj(m_new, ETHER_ALIGN);
933 /* Set up the descriptor. */
934 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
935 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
936 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
937 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
938 r->bge_len = m_new->m_len;
939 r->bge_idx = i;
940
941 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
942 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
943 i * sizeof (struct bge_rx_bd),
944 sizeof (struct bge_rx_bd),
945 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
946
947 return(0);
948 }
949
950 /*
951 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
952 * that's 1MB or memory, which is a lot. For now, we fill only the first
953 * 256 ring entries and hope that our CPU is fast enough to keep up with
954 * the NIC.
955 */
956 int
957 bge_init_rx_ring_std(sc)
958 struct bge_softc *sc;
959 {
960 int i;
961
962 if (sc->bge_flags & BGE_RXRING_VALID)
963 return 0;
964
965 for (i = 0; i < BGE_SSLOTS; i++) {
966 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
967 return(ENOBUFS);
968 }
969
970 sc->bge_std = i - 1;
971 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
972
973 sc->bge_flags |= BGE_RXRING_VALID;
974
975 return(0);
976 }
977
978 void
979 bge_free_rx_ring_std(sc)
980 struct bge_softc *sc;
981 {
982 int i;
983
984 if (!(sc->bge_flags & BGE_RXRING_VALID))
985 return;
986
987 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
988 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
989 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
990 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
991 bus_dmamap_destroy(sc->bge_dmatag,
992 sc->bge_cdata.bge_rx_std_map[i]);
993 }
994 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
995 sizeof(struct bge_rx_bd));
996 }
997
998 sc->bge_flags &= ~BGE_RXRING_VALID;
999 }
1000
1001 int
1002 bge_init_rx_ring_jumbo(sc)
1003 struct bge_softc *sc;
1004 {
1005 int i;
1006 volatile struct bge_rcb *rcb;
1007
1008 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1009 return 0;
1010
1011 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1012 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1013 return(ENOBUFS);
1014 };
1015
1016 sc->bge_jumbo = i - 1;
1017 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1018
1019 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1020 rcb->bge_maxlen_flags = 0;
1021 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1022
1023 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1024
1025 return(0);
1026 }
1027
1028 void
1029 bge_free_rx_ring_jumbo(sc)
1030 struct bge_softc *sc;
1031 {
1032 int i;
1033
1034 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1035 return;
1036
1037 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1038 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1039 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1040 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1041 }
1042 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1043 sizeof(struct bge_rx_bd));
1044 }
1045
1046 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1047 }
1048
1049 void
1050 bge_free_tx_ring(sc)
1051 struct bge_softc *sc;
1052 {
1053 int i, freed;
1054 struct txdmamap_pool_entry *dma;
1055
1056 if (!(sc->bge_flags & BGE_TXRING_VALID))
1057 return;
1058
1059 freed = 0;
1060
1061 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1062 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1063 freed++;
1064 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1065 sc->bge_cdata.bge_tx_chain[i] = NULL;
1066 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1067 link);
1068 sc->txdma[i] = 0;
1069 }
1070 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1071 sizeof(struct bge_tx_bd));
1072 }
1073
1074 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1075 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1076 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1077 free(dma, M_DEVBUF);
1078 }
1079
1080 sc->bge_flags &= ~BGE_TXRING_VALID;
1081 }
1082
1083 int
1084 bge_init_tx_ring(sc)
1085 struct bge_softc *sc;
1086 {
1087 int i;
1088 bus_dmamap_t dmamap;
1089 struct txdmamap_pool_entry *dma;
1090
1091 if (sc->bge_flags & BGE_TXRING_VALID)
1092 return 0;
1093
1094 sc->bge_txcnt = 0;
1095 sc->bge_tx_saved_considx = 0;
1096 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1097 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1098 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1099
1100 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1101 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1102 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1103
1104 SLIST_INIT(&sc->txdma_list);
1105 for (i = 0; i < BGE_RSLOTS; i++) {
1106 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
1107 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1108 &dmamap))
1109 return(ENOBUFS);
1110 if (dmamap == NULL)
1111 panic("dmamap NULL in bge_init_tx_ring");
1112 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1113 if (dma == NULL) {
1114 printf("%s: can't alloc txdmamap_pool_entry\n",
1115 sc->bge_dev.dv_xname);
1116 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1117 return (ENOMEM);
1118 }
1119 dma->dmamap = dmamap;
1120 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1121 }
1122
1123 sc->bge_flags |= BGE_TXRING_VALID;
1124
1125 return(0);
1126 }
1127
1128 void
1129 bge_setmulti(sc)
1130 struct bge_softc *sc;
1131 {
1132 struct ethercom *ac = &sc->ethercom;
1133 struct ifnet *ifp = &ac->ec_if;
1134 struct ether_multi *enm;
1135 struct ether_multistep step;
1136 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1137 u_int32_t h;
1138 int i;
1139
1140 if (ifp->if_flags & IFF_PROMISC)
1141 goto allmulti;
1142
1143 /* Now program new ones. */
1144 ETHER_FIRST_MULTI(step, ac, enm);
1145 while (enm != NULL) {
1146 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1147 /*
1148 * We must listen to a range of multicast addresses.
1149 * For now, just accept all multicasts, rather than
1150 * trying to set only those filter bits needed to match
1151 * the range. (At this time, the only use of address
1152 * ranges is for IP multicast routing, for which the
1153 * range is big enough to require all bits set.)
1154 */
1155 goto allmulti;
1156 }
1157
1158 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1159
1160 /* Just want the 7 least-significant bits. */
1161 h &= 0x7f;
1162
1163 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1164 ETHER_NEXT_MULTI(step, enm);
1165 }
1166
1167 ifp->if_flags &= ~IFF_ALLMULTI;
1168 goto setit;
1169
1170 allmulti:
1171 ifp->if_flags |= IFF_ALLMULTI;
1172 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1173
1174 setit:
1175 for (i = 0; i < 4; i++)
1176 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1177 }
1178
1179 const int bge_swapbits[] = {
1180 0,
1181 BGE_MODECTL_BYTESWAP_DATA,
1182 BGE_MODECTL_WORDSWAP_DATA,
1183 BGE_MODECTL_BYTESWAP_NONFRAME,
1184 BGE_MODECTL_WORDSWAP_NONFRAME,
1185
1186 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1187 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1188 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1189
1190 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1191 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1192
1193 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1194
1195 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1196 BGE_MODECTL_BYTESWAP_NONFRAME,
1197 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1198 BGE_MODECTL_WORDSWAP_NONFRAME,
1199 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1200 BGE_MODECTL_WORDSWAP_NONFRAME,
1201 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1202 BGE_MODECTL_WORDSWAP_NONFRAME,
1203
1204 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1205 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1206 };
1207
1208 int bge_swapindex = 0;
1209
1210 /*
1211 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1212 * self-test results.
1213 */
1214 int
1215 bge_chipinit(sc)
1216 struct bge_softc *sc;
1217 {
1218 u_int32_t cachesize;
1219 int i;
1220 u_int32_t dma_rw_ctl;
1221 struct pci_attach_args *pa = &(sc->bge_pa);
1222
1223
1224 /* Set endianness before we access any non-PCI registers. */
1225 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1226 BGE_INIT);
1227
1228 /* Set power state to D0. */
1229 bge_setpowerstate(sc, 0);
1230
1231 /*
1232 * Check the 'ROM failed' bit on the RX CPU to see if
1233 * self-tests passed.
1234 */
1235 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1236 printf("%s: RX CPU self-diagnostics failed!\n",
1237 sc->bge_dev.dv_xname);
1238 return(ENODEV);
1239 }
1240
1241 /* Clear the MAC control register */
1242 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1243
1244 /*
1245 * Clear the MAC statistics block in the NIC's
1246 * internal memory.
1247 */
1248 for (i = BGE_STATS_BLOCK;
1249 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1250 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1251
1252 for (i = BGE_STATUS_BLOCK;
1253 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1254 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1255
1256 /* Set up the PCI DMA control register. */
1257 if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1258 BGE_PCISTATE_PCI_BUSMODE) {
1259 /* Conventional PCI bus */
1260 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1261 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1262 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1263 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1264 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1265 dma_rw_ctl |= 0x0F;
1266 }
1267 } else {
1268 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1269 /* PCI-X bus */
1270 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1271 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1272 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1273 (0x0F);
1274 /*
1275 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1276 * for hardware bugs, which means we should also clear
1277 * the low-order MINDMA bits. In addition, the 5704
1278 * uses a different encoding of read/write watermarks.
1279 */
1280 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1281 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1282 /* should be 0x1f0000 */
1283 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1284 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1285 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1286 }
1287 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1288 dma_rw_ctl &= 0xfffffff0;
1289 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1290 }
1291 }
1292
1293 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1294
1295 /*
1296 * Set up general mode register.
1297 */
1298 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1299 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1300 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1301
1302 /* Get cache line size. */
1303 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1304
1305 /*
1306 * Avoid violating PCI spec on certain chip revs.
1307 */
1308 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1309 PCIM_CMD_MWIEN) {
1310 switch(cachesize) {
1311 case 1:
1312 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1313 BGE_PCI_WRITE_BNDRY_16BYTES);
1314 break;
1315 case 2:
1316 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1317 BGE_PCI_WRITE_BNDRY_32BYTES);
1318 break;
1319 case 4:
1320 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1321 BGE_PCI_WRITE_BNDRY_64BYTES);
1322 break;
1323 case 8:
1324 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1325 BGE_PCI_WRITE_BNDRY_128BYTES);
1326 break;
1327 case 16:
1328 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1329 BGE_PCI_WRITE_BNDRY_256BYTES);
1330 break;
1331 case 32:
1332 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1333 BGE_PCI_WRITE_BNDRY_512BYTES);
1334 break;
1335 case 64:
1336 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1337 BGE_PCI_WRITE_BNDRY_1024BYTES);
1338 break;
1339 default:
1340 /* Disable PCI memory write and invalidate. */
1341 #if 0
1342 if (bootverbose)
1343 printf("%s: cache line size %d not "
1344 "supported; disabling PCI MWI\n",
1345 sc->bge_dev.dv_xname, cachesize);
1346 #endif
1347 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1348 PCIM_CMD_MWIEN);
1349 break;
1350 }
1351 }
1352
1353 /*
1354 * Disable memory write invalidate. Apparently it is not supported
1355 * properly by these devices.
1356 */
1357 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1358
1359
1360 #ifdef __brokenalpha__
1361 /*
1362 * Must insure that we do not cross an 8K (bytes) boundary
1363 * for DMA reads. Our highest limit is 1K bytes. This is a
1364 * restriction on some ALPHA platforms with early revision
1365 * 21174 PCI chipsets, such as the AlphaPC 164lx
1366 */
1367 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1368 #endif
1369
1370 /* Set the timer prescaler (always 66MHz) */
1371 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1372
1373 return(0);
1374 }
1375
1376 int
1377 bge_blockinit(sc)
1378 struct bge_softc *sc;
1379 {
1380 volatile struct bge_rcb *rcb;
1381 bus_size_t rcb_addr;
1382 int i;
1383 struct ifnet *ifp = &sc->ethercom.ec_if;
1384 bge_hostaddr taddr;
1385
1386 /*
1387 * Initialize the memory window pointer register so that
1388 * we can access the first 32K of internal NIC RAM. This will
1389 * allow us to set up the TX send ring RCBs and the RX return
1390 * ring RCBs, plus other things which live in NIC memory.
1391 */
1392
1393 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1394 BGE_PCI_MEMWIN_BASEADDR, 0);
1395
1396 /* Configure mbuf memory pool */
1397 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1398 if (sc->bge_extram) {
1399 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1400 BGE_EXT_SSRAM);
1401 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1402 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1403 else
1404 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1405 } else {
1406 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1407 BGE_BUFFPOOL_1);
1408 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1409 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1410 else
1411 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1412 }
1413
1414 /* Configure DMA resource pool */
1415 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1416 BGE_DMA_DESCRIPTORS);
1417 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1418 }
1419
1420 /* Configure mbuf pool watermarks */
1421 #ifdef ORIG_WPAUL_VALUES
1422 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1423 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1424 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1425 #else
1426 /* new broadcom docs strongly recommend these: */
1427 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1428 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1429 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1430 } else {
1431 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1432 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1433 }
1434 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1435 #endif
1436
1437 /* Configure DMA resource watermarks */
1438 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1439 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1440
1441 /* Enable buffer manager */
1442 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1443 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1444 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1445
1446 /* Poll for buffer manager start indication */
1447 for (i = 0; i < BGE_TIMEOUT; i++) {
1448 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1449 break;
1450 DELAY(10);
1451 }
1452
1453 if (i == BGE_TIMEOUT) {
1454 printf("%s: buffer manager failed to start\n",
1455 sc->bge_dev.dv_xname);
1456 return(ENXIO);
1457 }
1458 }
1459
1460 /* Enable flow-through queues */
1461 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1462 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1463
1464 /* Wait until queue initialization is complete */
1465 for (i = 0; i < BGE_TIMEOUT; i++) {
1466 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1467 break;
1468 DELAY(10);
1469 }
1470
1471 if (i == BGE_TIMEOUT) {
1472 printf("%s: flow-through queue init failed\n",
1473 sc->bge_dev.dv_xname);
1474 return(ENXIO);
1475 }
1476
1477 /* Initialize the standard RX ring control block */
1478 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1479 bge_set_hostaddr(&rcb->bge_hostaddr,
1480 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1481 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1482 rcb->bge_maxlen_flags =
1483 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1484 } else {
1485 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1486 }
1487 if (sc->bge_extram)
1488 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1489 else
1490 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1491 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1492 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1493 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1494 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1495
1496 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1497 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1498 } else {
1499 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1500 }
1501
1502 /*
1503 * Initialize the jumbo RX ring control block
1504 * We set the 'ring disabled' bit in the flags
1505 * field until we're actually ready to start
1506 * using this ring (i.e. once we set the MTU
1507 * high enough to require it).
1508 */
1509 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1510 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1511 bge_set_hostaddr(&rcb->bge_hostaddr,
1512 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1513 rcb->bge_maxlen_flags =
1514 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1515 BGE_RCB_FLAG_RING_DISABLED);
1516 if (sc->bge_extram)
1517 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1518 else
1519 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1520
1521 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1522 rcb->bge_hostaddr.bge_addr_hi);
1523 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1524 rcb->bge_hostaddr.bge_addr_lo);
1525 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1526 rcb->bge_maxlen_flags);
1527 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1528
1529 /* Set up dummy disabled mini ring RCB */
1530 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1531 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1532 BGE_RCB_FLAG_RING_DISABLED);
1533 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1534 rcb->bge_maxlen_flags);
1535
1536 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1537 offsetof(struct bge_ring_data, bge_info),
1538 sizeof (struct bge_gib),
1539 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1540 }
1541
1542 /*
1543 * Set the BD ring replentish thresholds. The recommended
1544 * values are 1/8th the number of descriptors allocated to
1545 * each ring.
1546 */
1547 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1548 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1549
1550 /*
1551 * Disable all unused send rings by setting the 'ring disabled'
1552 * bit in the flags field of all the TX send ring control blocks.
1553 * These are located in NIC memory.
1554 */
1555 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1556 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1557 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1558 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1559 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1560 rcb_addr += sizeof(struct bge_rcb);
1561 }
1562
1563 /* Configure TX RCB 0 (we use only the first ring) */
1564 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1565 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1566 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1567 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1568 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1569 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1570 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1571 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1572 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1573 }
1574
1575 /* Disable all unused RX return rings */
1576 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1577 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1578 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1579 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1580 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1581 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1582 BGE_RCB_FLAG_RING_DISABLED));
1583 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1584 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1585 (i * (sizeof(u_int64_t))), 0);
1586 rcb_addr += sizeof(struct bge_rcb);
1587 }
1588
1589 /* Initialize RX ring indexes */
1590 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1591 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1592 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1593
1594 /*
1595 * Set up RX return ring 0
1596 * Note that the NIC address for RX return rings is 0x00000000.
1597 * The return rings live entirely within the host, so the
1598 * nicaddr field in the RCB isn't used.
1599 */
1600 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1601 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1602 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1603 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1604 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1605 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1606 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1607
1608 /* Set random backoff seed for TX */
1609 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1610 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1611 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1612 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1613 BGE_TX_BACKOFF_SEED_MASK);
1614
1615 /* Set inter-packet gap */
1616 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1617
1618 /*
1619 * Specify which ring to use for packets that don't match
1620 * any RX rules.
1621 */
1622 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1623
1624 /*
1625 * Configure number of RX lists. One interrupt distribution
1626 * list, sixteen active lists, one bad frames class.
1627 */
1628 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1629
1630 /* Inialize RX list placement stats mask. */
1631 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1632 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1633
1634 /* Disable host coalescing until we get it set up */
1635 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1636
1637 /* Poll to make sure it's shut down. */
1638 for (i = 0; i < BGE_TIMEOUT; i++) {
1639 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1640 break;
1641 DELAY(10);
1642 }
1643
1644 if (i == BGE_TIMEOUT) {
1645 printf("%s: host coalescing engine failed to idle\n",
1646 sc->bge_dev.dv_xname);
1647 return(ENXIO);
1648 }
1649
1650 /* Set up host coalescing defaults */
1651 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1652 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1653 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1654 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1655 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1656 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1657 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1658 }
1659 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1660 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1661
1662 /* Set up address of statistics block */
1663 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1664 bge_set_hostaddr(&taddr,
1665 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1666 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1667 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1668 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1669 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1670 }
1671
1672 /* Set up address of status block */
1673 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1674 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1675 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1676 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1677 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1678 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1679
1680 /* Turn on host coalescing state machine */
1681 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1682
1683 /* Turn on RX BD completion state machine and enable attentions */
1684 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1685 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1686
1687 /* Turn on RX list placement state machine */
1688 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1689
1690 /* Turn on RX list selector state machine. */
1691 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1692 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1693 }
1694
1695 /* Turn on DMA, clear stats */
1696 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1697 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1698 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1699 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1700 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1701
1702 /* Set misc. local control, enable interrupts on attentions */
1703 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1704
1705 #ifdef notdef
1706 /* Assert GPIO pins for PHY reset */
1707 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1708 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1709 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1710 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1711 #endif
1712
1713 #if defined(not_quite_yet)
1714 /* Linux driver enables enable gpio pin #1 on 5700s */
1715 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1716 sc->bge_local_ctrl_reg |=
1717 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1718 }
1719 #endif
1720 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1721
1722 /* Turn on DMA completion state machine */
1723 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1724 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1725 }
1726
1727 /* Turn on write DMA state machine */
1728 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1729 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1730
1731 /* Turn on read DMA state machine */
1732 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1733 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1734
1735 /* Turn on RX data completion state machine */
1736 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1737
1738 /* Turn on RX BD initiator state machine */
1739 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1740
1741 /* Turn on RX data and RX BD initiator state machine */
1742 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1743
1744 /* Turn on Mbuf cluster free state machine */
1745 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1746 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1747 }
1748
1749 /* Turn on send BD completion state machine */
1750 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1751
1752 /* Turn on send data completion state machine */
1753 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1754
1755 /* Turn on send data initiator state machine */
1756 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1757
1758 /* Turn on send BD initiator state machine */
1759 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1760
1761 /* Turn on send BD selector state machine */
1762 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1763
1764 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1765 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1766 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1767
1768 /* ack/clear link change events */
1769 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1770 BGE_MACSTAT_CFG_CHANGED);
1771 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1772
1773 /* Enable PHY auto polling (for MII/GMII only) */
1774 if (sc->bge_tbi) {
1775 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1776 } else {
1777 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1778 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1779 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1780 BGE_EVTENB_MI_INTERRUPT);
1781 }
1782
1783 /* Enable link state change attentions. */
1784 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1785
1786 return(0);
1787 }
1788
1789 static const struct bge_revision {
1790 uint32_t br_chipid;
1791 uint32_t br_quirks;
1792 const char *br_name;
1793 } bge_revisions[] = {
1794 { BGE_CHIPID_BCM5700_A0,
1795 BGE_QUIRK_LINK_STATE_BROKEN,
1796 "BCM5700 A0" },
1797
1798 { BGE_CHIPID_BCM5700_A1,
1799 BGE_QUIRK_LINK_STATE_BROKEN,
1800 "BCM5700 A1" },
1801
1802 { BGE_CHIPID_BCM5700_B0,
1803 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1804 "BCM5700 B0" },
1805
1806 { BGE_CHIPID_BCM5700_B1,
1807 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1808 "BCM5700 B1" },
1809
1810 { BGE_CHIPID_BCM5700_B2,
1811 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1812 "BCM5700 B2" },
1813
1814 /* This is treated like a BCM5700 Bx */
1815 { BGE_CHIPID_BCM5700_ALTIMA,
1816 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1817 "BCM5700 Altima" },
1818
1819 { BGE_CHIPID_BCM5700_C0,
1820 0,
1821 "BCM5700 C0" },
1822
1823 { BGE_CHIPID_BCM5701_A0,
1824 0, /*XXX really, just not known */
1825 "BCM5701 A0" },
1826
1827 { BGE_CHIPID_BCM5701_B0,
1828 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1829 "BCM5701 B0" },
1830
1831 { BGE_CHIPID_BCM5701_B2,
1832 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1833 "BCM5701 B2" },
1834
1835 { BGE_CHIPID_BCM5701_B5,
1836 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1837 "BCM5701 B5" },
1838
1839 { BGE_CHIPID_BCM5703_A0,
1840 0,
1841 "BCM5703 A0" },
1842
1843 { BGE_CHIPID_BCM5703_A1,
1844 0,
1845 "BCM5703 A1" },
1846
1847 { BGE_CHIPID_BCM5703_A2,
1848 BGE_QUIRK_ONLY_PHY_1,
1849 "BCM5703 A2" },
1850
1851 { BGE_CHIPID_BCM5703_A3,
1852 BGE_QUIRK_ONLY_PHY_1,
1853 "BCM5703 A3" },
1854
1855 { BGE_CHIPID_BCM5704_A0,
1856 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1857 "BCM5704 A0" },
1858
1859 { BGE_CHIPID_BCM5704_A1,
1860 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1861 "BCM5704 A1" },
1862
1863 { BGE_CHIPID_BCM5704_A2,
1864 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1865 "BCM5704 A2" },
1866
1867 { BGE_CHIPID_BCM5704_A3,
1868 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1869 "BCM5704 A3" },
1870
1871 { BGE_CHIPID_BCM5705_A0,
1872 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1873 "BCM5705 A0" },
1874
1875 { BGE_CHIPID_BCM5705_A1,
1876 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1877 "BCM5705 A1" },
1878
1879 { BGE_CHIPID_BCM5705_A2,
1880 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1881 "BCM5705 A2" },
1882
1883 { BGE_CHIPID_BCM5705_A3,
1884 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1885 "BCM5705 A3" },
1886
1887 { 0, 0, NULL }
1888 };
1889
1890 /*
1891 * Some defaults for major revisions, so that newer steppings
1892 * that we don't know about have a shot at working.
1893 */
1894 static const struct bge_revision bge_majorrevs[] = {
1895 { BGE_ASICREV_BCM5700,
1896 BGE_QUIRK_LINK_STATE_BROKEN,
1897 "unknown BCM5700" },
1898
1899 { BGE_ASICREV_BCM5701,
1900 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1901 "unknown BCM5701" },
1902
1903 { BGE_ASICREV_BCM5703,
1904 0,
1905 "unknown BCM5703" },
1906
1907 { BGE_ASICREV_BCM5704,
1908 BGE_QUIRK_ONLY_PHY_1,
1909 "unknown BCM5704" },
1910
1911 { BGE_ASICREV_BCM5705,
1912 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1913 "unknown BCM5705" },
1914
1915 { 0,
1916 0,
1917 NULL }
1918 };
1919
1920
1921 static const struct bge_revision *
1922 bge_lookup_rev(uint32_t chipid)
1923 {
1924 const struct bge_revision *br;
1925
1926 for (br = bge_revisions; br->br_name != NULL; br++) {
1927 if (br->br_chipid == chipid)
1928 return (br);
1929 }
1930
1931 for (br = bge_majorrevs; br->br_name != NULL; br++) {
1932 if (br->br_chipid == BGE_ASICREV(chipid))
1933 return (br);
1934 }
1935
1936 return (NULL);
1937 }
1938
1939 static const struct bge_product {
1940 pci_vendor_id_t bp_vendor;
1941 pci_product_id_t bp_product;
1942 const char *bp_name;
1943 } bge_products[] = {
1944 /*
1945 * The BCM5700 documentation seems to indicate that the hardware
1946 * still has the Alteon vendor ID burned into it, though it
1947 * should always be overridden by the value in the EEPROM. We'll
1948 * check for it anyway.
1949 */
1950 { PCI_VENDOR_ALTEON,
1951 PCI_PRODUCT_ALTEON_BCM5700,
1952 "Broadcom BCM5700 Gigabit Ethernet",
1953 },
1954 { PCI_VENDOR_ALTEON,
1955 PCI_PRODUCT_ALTEON_BCM5701,
1956 "Broadcom BCM5701 Gigabit Ethernet",
1957 },
1958
1959 { PCI_VENDOR_ALTIMA,
1960 PCI_PRODUCT_ALTIMA_AC1000,
1961 "Altima AC1000 Gigabit Ethernet",
1962 },
1963 { PCI_VENDOR_ALTIMA,
1964 PCI_PRODUCT_ALTIMA_AC1001,
1965 "Altima AC1001 Gigabit Ethernet",
1966 },
1967 { PCI_VENDOR_ALTIMA,
1968 PCI_PRODUCT_ALTIMA_AC9100,
1969 "Altima AC9100 Gigabit Ethernet",
1970 },
1971
1972 { PCI_VENDOR_BROADCOM,
1973 PCI_PRODUCT_BROADCOM_BCM5700,
1974 "Broadcom BCM5700 Gigabit Ethernet",
1975 },
1976 { PCI_VENDOR_BROADCOM,
1977 PCI_PRODUCT_BROADCOM_BCM5701,
1978 "Broadcom BCM5701 Gigabit Ethernet",
1979 },
1980 { PCI_VENDOR_BROADCOM,
1981 PCI_PRODUCT_BROADCOM_BCM5702,
1982 "Broadcom BCM5702 Gigabit Ethernet",
1983 },
1984 { PCI_VENDOR_BROADCOM,
1985 PCI_PRODUCT_BROADCOM_BCM5702X,
1986 "Broadcom BCM5702X Gigabit Ethernet" },
1987
1988 { PCI_VENDOR_BROADCOM,
1989 PCI_PRODUCT_BROADCOM_BCM5703,
1990 "Broadcom BCM5703 Gigabit Ethernet",
1991 },
1992 { PCI_VENDOR_BROADCOM,
1993 PCI_PRODUCT_BROADCOM_BCM5703X,
1994 "Broadcom BCM5703X Gigabit Ethernet",
1995 },
1996 { PCI_VENDOR_BROADCOM,
1997 PCI_PRODUCT_BROADCOM_BCM5703A3,
1998 "Broadcom BCM5703A3 Gigabit Ethernet",
1999 },
2000
2001 { PCI_VENDOR_BROADCOM,
2002 PCI_PRODUCT_BROADCOM_BCM5704C,
2003 "Broadcom BCM5704C Dual Gigabit Ethernet",
2004 },
2005 { PCI_VENDOR_BROADCOM,
2006 PCI_PRODUCT_BROADCOM_BCM5704S,
2007 "Broadcom BCM5704S Dual Gigabit Ethernet",
2008 },
2009
2010 { PCI_VENDOR_BROADCOM,
2011 PCI_PRODUCT_BROADCOM_BCM5705,
2012 "Broadcom BCM5705 Gigabit Ethernet",
2013 },
2014 { PCI_VENDOR_BROADCOM,
2015 PCI_PRODUCT_BROADCOM_BCM5705_ALT,
2016 "Broadcom BCM5705 Gigabit Ethernet",
2017 },
2018 { PCI_VENDOR_BROADCOM,
2019 PCI_PRODUCT_BROADCOM_BCM5705M,
2020 "Broadcom BCM5705M Gigabit Ethernet",
2021 },
2022
2023 { PCI_VENDOR_BROADCOM,
2024 PCI_PRODUCT_BROADCOM_BCM5901,
2025 "Broadcom BCM5901 Fast Ethernet",
2026 },
2027 { PCI_VENDOR_BROADCOM,
2028 PCI_PRODUCT_BROADCOM_BCM5901A2,
2029 "Broadcom BCM5901A2 Fast Ethernet",
2030 },
2031
2032 { PCI_VENDOR_BROADCOM,
2033 PCI_PRODUCT_BROADCOM_BCM5782,
2034 "Broadcom BCM5782 Gigabit Ethernet",
2035 },
2036
2037 { PCI_VENDOR_SCHNEIDERKOCH,
2038 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2039 "SysKonnect SK-9Dx1 Gigabit Ethernet",
2040 },
2041
2042 { PCI_VENDOR_3COM,
2043 PCI_PRODUCT_3COM_3C996,
2044 "3Com 3c996 Gigabit Ethernet",
2045 },
2046
2047 { 0,
2048 0,
2049 NULL },
2050 };
2051
2052 static const struct bge_product *
2053 bge_lookup(const struct pci_attach_args *pa)
2054 {
2055 const struct bge_product *bp;
2056
2057 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2058 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2059 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2060 return (bp);
2061 }
2062
2063 return (NULL);
2064 }
2065
2066 int
2067 bge_setpowerstate(sc, powerlevel)
2068 struct bge_softc *sc;
2069 int powerlevel;
2070 {
2071 #ifdef NOTYET
2072 u_int32_t pm_ctl = 0;
2073
2074 /* XXX FIXME: make sure indirect accesses enabled? */
2075 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2076 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2077 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2078
2079 /* clear the PME_assert bit and power state bits, enable PME */
2080 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2081 pm_ctl &= ~PCIM_PSTAT_DMASK;
2082 pm_ctl |= (1 << 8);
2083
2084 if (powerlevel == 0) {
2085 pm_ctl |= PCIM_PSTAT_D0;
2086 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2087 pm_ctl, 2);
2088 DELAY(10000);
2089 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2090 DELAY(10000);
2091
2092 #ifdef NOTYET
2093 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2094 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2095 #endif
2096 DELAY(40); DELAY(40); DELAY(40);
2097 DELAY(10000); /* above not quite adequate on 5700 */
2098 return 0;
2099 }
2100
2101
2102 /*
2103 * Entering ACPI power states D1-D3 is achieved by wiggling
2104 * GMII gpio pins. Example code assumes all hardware vendors
2105 * followed Broadom's sample pcb layout. Until we verify that
2106 * for all supported OEM cards, states D1-D3 are unsupported.
2107 */
2108 printf("%s: power state %d unimplemented; check GPIO pins\n",
2109 sc->bge_dev.dv_xname, powerlevel);
2110 #endif
2111 return EOPNOTSUPP;
2112 }
2113
2114
2115 /*
2116 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2117 * against our list and return its name if we find a match. Note
2118 * that since the Broadcom controller contains VPD support, we
2119 * can get the device name string from the controller itself instead
2120 * of the compiled-in string. This is a little slow, but it guarantees
2121 * we'll always announce the right product name.
2122 */
2123 int
2124 bge_probe(parent, match, aux)
2125 struct device *parent;
2126 struct cfdata *match;
2127 void *aux;
2128 {
2129 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2130
2131 if (bge_lookup(pa) != NULL)
2132 return (1);
2133
2134 return (0);
2135 }
2136
2137 void
2138 bge_attach(parent, self, aux)
2139 struct device *parent, *self;
2140 void *aux;
2141 {
2142 struct bge_softc *sc = (struct bge_softc *)self;
2143 struct pci_attach_args *pa = aux;
2144 const struct bge_product *bp;
2145 const struct bge_revision *br;
2146 pci_chipset_tag_t pc = pa->pa_pc;
2147 pci_intr_handle_t ih;
2148 const char *intrstr = NULL;
2149 bus_dma_segment_t seg;
2150 int rseg;
2151 u_int32_t hwcfg = 0;
2152 u_int32_t mac_addr = 0;
2153 u_int32_t command;
2154 struct ifnet *ifp;
2155 caddr_t kva;
2156 u_char eaddr[ETHER_ADDR_LEN];
2157 pcireg_t memtype;
2158 bus_addr_t memaddr;
2159 bus_size_t memsize;
2160 u_int32_t pm_ctl;
2161
2162 bp = bge_lookup(pa);
2163 KASSERT(bp != NULL);
2164
2165 sc->bge_pa = *pa;
2166
2167 aprint_naive(": Ethernet controller\n");
2168 aprint_normal(": %s\n", bp->bp_name);
2169
2170 /*
2171 * Map control/status registers.
2172 */
2173 DPRINTFN(5, ("Map control/status regs\n"));
2174 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2175 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2176 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2177 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2178
2179 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2180 aprint_error("%s: failed to enable memory mapping!\n",
2181 sc->bge_dev.dv_xname);
2182 return;
2183 }
2184
2185 DPRINTFN(5, ("pci_mem_find\n"));
2186 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2187 switch (memtype) {
2188 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2189 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2190 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2191 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2192 &memaddr, &memsize) == 0)
2193 break;
2194 default:
2195 aprint_error("%s: can't find mem space\n",
2196 sc->bge_dev.dv_xname);
2197 return;
2198 }
2199
2200 DPRINTFN(5, ("pci_intr_map\n"));
2201 if (pci_intr_map(pa, &ih)) {
2202 aprint_error("%s: couldn't map interrupt\n",
2203 sc->bge_dev.dv_xname);
2204 return;
2205 }
2206
2207 DPRINTFN(5, ("pci_intr_string\n"));
2208 intrstr = pci_intr_string(pc, ih);
2209
2210 DPRINTFN(5, ("pci_intr_establish\n"));
2211 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2212
2213 if (sc->bge_intrhand == NULL) {
2214 aprint_error("%s: couldn't establish interrupt",
2215 sc->bge_dev.dv_xname);
2216 if (intrstr != NULL)
2217 aprint_normal(" at %s", intrstr);
2218 aprint_normal("\n");
2219 return;
2220 }
2221 aprint_normal("%s: interrupting at %s\n",
2222 sc->bge_dev.dv_xname, intrstr);
2223
2224 /*
2225 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2226 * can clobber the chip's PCI config-space power control registers,
2227 * leaving the card in D3 powersave state.
2228 * We do not have memory-mapped registers in this state,
2229 * so force device into D0 state before starting initialization.
2230 */
2231 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2232 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2233 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2234 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2235 DELAY(1000); /* 27 usec is allegedly sufficent */
2236
2237 /* Try to reset the chip. */
2238 DPRINTFN(5, ("bge_reset\n"));
2239 bge_reset(sc);
2240
2241 if (bge_chipinit(sc)) {
2242 aprint_error("%s: chip initialization failed\n",
2243 sc->bge_dev.dv_xname);
2244 bge_release_resources(sc);
2245 return;
2246 }
2247
2248 /*
2249 * Get station address from the EEPROM.
2250 */
2251 mac_addr = bge_readmem_ind(sc, 0x0c14);
2252 if ((mac_addr >> 16) == 0x484b) {
2253 eaddr[0] = (u_char)(mac_addr >> 8);
2254 eaddr[1] = (u_char)(mac_addr >> 0);
2255 mac_addr = bge_readmem_ind(sc, 0x0c18);
2256 eaddr[2] = (u_char)(mac_addr >> 24);
2257 eaddr[3] = (u_char)(mac_addr >> 16);
2258 eaddr[4] = (u_char)(mac_addr >> 8);
2259 eaddr[5] = (u_char)(mac_addr >> 0);
2260 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2261 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2262 aprint_error("%s: failed to read station address\n",
2263 sc->bge_dev.dv_xname);
2264 bge_release_resources(sc);
2265 return;
2266 }
2267
2268 /*
2269 * Save ASIC rev. Look up any quirks associated with this
2270 * ASIC.
2271 */
2272 sc->bge_chipid =
2273 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2274 BGE_PCIMISCCTL_ASICREV;
2275 br = bge_lookup_rev(sc->bge_chipid);
2276
2277 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2278
2279 if (br == NULL) {
2280 aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
2281 sc->bge_quirks = 0;
2282 } else {
2283 aprint_normal("ASIC %s (0x%04x)",
2284 br->br_name, sc->bge_chipid >> 16);
2285 sc->bge_quirks |= br->br_quirks;
2286 }
2287 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2288
2289 /* Allocate the general information block and ring buffers. */
2290 if (pci_dma64_available(pa))
2291 sc->bge_dmatag = pa->pa_dmat64;
2292 else
2293 sc->bge_dmatag = pa->pa_dmat;
2294 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2295 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2296 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2297 aprint_error("%s: can't alloc rx buffers\n",
2298 sc->bge_dev.dv_xname);
2299 return;
2300 }
2301 DPRINTFN(5, ("bus_dmamem_map\n"));
2302 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2303 sizeof(struct bge_ring_data), &kva,
2304 BUS_DMA_NOWAIT)) {
2305 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2306 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2307 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2308 return;
2309 }
2310 DPRINTFN(5, ("bus_dmamem_create\n"));
2311 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2312 sizeof(struct bge_ring_data), 0,
2313 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2314 aprint_error("%s: can't create DMA map\n",
2315 sc->bge_dev.dv_xname);
2316 bus_dmamem_unmap(sc->bge_dmatag, kva,
2317 sizeof(struct bge_ring_data));
2318 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2319 return;
2320 }
2321 DPRINTFN(5, ("bus_dmamem_load\n"));
2322 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2323 sizeof(struct bge_ring_data), NULL,
2324 BUS_DMA_NOWAIT)) {
2325 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2326 bus_dmamem_unmap(sc->bge_dmatag, kva,
2327 sizeof(struct bge_ring_data));
2328 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2329 return;
2330 }
2331
2332 DPRINTFN(5, ("bzero\n"));
2333 sc->bge_rdata = (struct bge_ring_data *)kva;
2334
2335 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2336
2337 /* Try to allocate memory for jumbo buffers. */
2338 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2339 if (bge_alloc_jumbo_mem(sc)) {
2340 aprint_error("%s: jumbo buffer allocation failed\n",
2341 sc->bge_dev.dv_xname);
2342 } else
2343 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2344 }
2345
2346 /* Set default tuneable values. */
2347 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2348 sc->bge_rx_coal_ticks = 150;
2349 sc->bge_rx_max_coal_bds = 64;
2350 #ifdef ORIG_WPAUL_VALUES
2351 sc->bge_tx_coal_ticks = 150;
2352 sc->bge_tx_max_coal_bds = 128;
2353 #else
2354 sc->bge_tx_coal_ticks = 300;
2355 sc->bge_tx_max_coal_bds = 400;
2356 #endif
2357
2358 /* Set up ifnet structure */
2359 ifp = &sc->ethercom.ec_if;
2360 ifp->if_softc = sc;
2361 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2362 ifp->if_ioctl = bge_ioctl;
2363 ifp->if_start = bge_start;
2364 ifp->if_init = bge_init;
2365 ifp->if_watchdog = bge_watchdog;
2366 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2367 IFQ_SET_READY(&ifp->if_snd);
2368 DPRINTFN(5, ("bcopy\n"));
2369 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2370
2371 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2372 sc->ethercom.ec_if.if_capabilities |=
2373 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2374 sc->ethercom.ec_capabilities |=
2375 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2376
2377 /*
2378 * Do MII setup.
2379 */
2380 DPRINTFN(5, ("mii setup\n"));
2381 sc->bge_mii.mii_ifp = ifp;
2382 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2383 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2384 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2385
2386 /*
2387 * Figure out what sort of media we have by checking the
2388 * hardware config word in the first 32k of NIC internal memory,
2389 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2390 * cards, this value appears to be unset. If that's the
2391 * case, we have to rely on identifying the NIC by its PCI
2392 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2393 */
2394 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2395 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2396 } else {
2397 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2398 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2399 hwcfg = be32toh(hwcfg);
2400 }
2401 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2402 sc->bge_tbi = 1;
2403
2404 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2405 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2406 SK_SUBSYSID_9D41)
2407 sc->bge_tbi = 1;
2408
2409 if (sc->bge_tbi) {
2410 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2411 bge_ifmedia_sts);
2412 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2413 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2414 0, NULL);
2415 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2416 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2417 } else {
2418 /*
2419 * Do transceiver setup.
2420 */
2421 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2422 bge_ifmedia_sts);
2423 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2424 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
2425
2426 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2427 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2428 ifmedia_add(&sc->bge_mii.mii_media,
2429 IFM_ETHER|IFM_MANUAL, 0, NULL);
2430 ifmedia_set(&sc->bge_mii.mii_media,
2431 IFM_ETHER|IFM_MANUAL);
2432 } else
2433 ifmedia_set(&sc->bge_mii.mii_media,
2434 IFM_ETHER|IFM_AUTO);
2435 }
2436
2437 /*
2438 * When using the BCM5701 in PCI-X mode, data corruption has
2439 * been observed in the first few bytes of some received packets.
2440 * Aligning the packet buffer in memory eliminates the corruption.
2441 * Unfortunately, this misaligns the packet payloads. On platforms
2442 * which do not support unaligned accesses, we will realign the
2443 * payloads by copying the received packets.
2444 */
2445 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2446 /* If in PCI-X mode, work around the alignment bug. */
2447 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2448 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2449 BGE_PCISTATE_PCI_BUSSPEED)
2450 sc->bge_rx_alignment_bug = 1;
2451 }
2452
2453 /*
2454 * Call MI attach routine.
2455 */
2456 DPRINTFN(5, ("if_attach\n"));
2457 if_attach(ifp);
2458 DPRINTFN(5, ("ether_ifattach\n"));
2459 ether_ifattach(ifp, eaddr);
2460 DPRINTFN(5, ("callout_init\n"));
2461 callout_init(&sc->bge_timeout);
2462 }
2463
2464 void
2465 bge_release_resources(sc)
2466 struct bge_softc *sc;
2467 {
2468 if (sc->bge_vpd_prodname != NULL)
2469 free(sc->bge_vpd_prodname, M_DEVBUF);
2470
2471 if (sc->bge_vpd_readonly != NULL)
2472 free(sc->bge_vpd_readonly, M_DEVBUF);
2473 }
2474
2475 void
2476 bge_reset(sc)
2477 struct bge_softc *sc;
2478 {
2479 struct pci_attach_args *pa = &sc->bge_pa;
2480 u_int32_t cachesize, command, pcistate, new_pcistate;
2481 int i, val = 0;
2482
2483 /* Save some important PCI state. */
2484 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2485 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2486 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2487
2488 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2489 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2490 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2491
2492 /* Issue global reset */
2493 bge_writereg_ind(sc, BGE_MISC_CFG,
2494 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2495
2496 DELAY(1000);
2497
2498 /* Reset some of the PCI state that got zapped by reset */
2499 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2500 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2501 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2502 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2503 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2504 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2505
2506 /* Enable memory arbiter. */
2507 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2508 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2509 }
2510
2511 /*
2512 * Prevent PXE restart: write a magic number to the
2513 * general communications memory at 0xB50.
2514 */
2515 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2516
2517 /*
2518 * Poll the value location we just wrote until
2519 * we see the 1's complement of the magic number.
2520 * This indicates that the firmware initialization
2521 * is complete.
2522 */
2523 for (i = 0; i < 750; i++) {
2524 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2525 if (val == ~BGE_MAGIC_NUMBER)
2526 break;
2527 DELAY(1000);
2528 }
2529
2530 if (i == 750) {
2531 printf("%s: firmware handshake timed out, val = %x\n",
2532 sc->bge_dev.dv_xname, val);
2533 return;
2534 }
2535
2536 /*
2537 * XXX Wait for the value of the PCISTATE register to
2538 * return to its original pre-reset state. This is a
2539 * fairly good indicator of reset completion. If we don't
2540 * wait for the reset to fully complete, trying to read
2541 * from the device's non-PCI registers may yield garbage
2542 * results.
2543 */
2544 for (i = 0; i < BGE_TIMEOUT; i++) {
2545 new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
2546 BGE_PCI_PCISTATE);
2547 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2548 (pcistate & ~BGE_PCISTATE_RESERVED))
2549 break;
2550 DELAY(10);
2551 }
2552 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2553 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2554 printf("%s: pcistate failed to revert\n",
2555 sc->bge_dev.dv_xname);
2556 }
2557
2558 /* Enable memory arbiter. */
2559 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2560 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2561 }
2562
2563 /* Fix up byte swapping */
2564 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2565
2566 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2567
2568 DELAY(10000);
2569 }
2570
2571 /*
2572 * Frame reception handling. This is called if there's a frame
2573 * on the receive return list.
2574 *
2575 * Note: we have to be able to handle two possibilities here:
2576 * 1) the frame is from the jumbo recieve ring
2577 * 2) the frame is from the standard receive ring
2578 */
2579
2580 void
2581 bge_rxeof(sc)
2582 struct bge_softc *sc;
2583 {
2584 struct ifnet *ifp;
2585 int stdcnt = 0, jumbocnt = 0;
2586 int have_tag = 0;
2587 u_int16_t vlan_tag = 0;
2588 bus_dmamap_t dmamap;
2589 bus_addr_t offset, toff;
2590 bus_size_t tlen;
2591 int tosync;
2592
2593 ifp = &sc->ethercom.ec_if;
2594
2595 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2596 offsetof(struct bge_ring_data, bge_status_block),
2597 sizeof (struct bge_status_block),
2598 BUS_DMASYNC_POSTREAD);
2599
2600 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2601 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2602 sc->bge_rx_saved_considx;
2603
2604 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2605
2606 if (tosync < 0) {
2607 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2608 sizeof (struct bge_rx_bd);
2609 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2610 toff, tlen, BUS_DMASYNC_POSTREAD);
2611 tosync = -tosync;
2612 }
2613
2614 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2615 offset, tosync * sizeof (struct bge_rx_bd),
2616 BUS_DMASYNC_POSTREAD);
2617
2618 while(sc->bge_rx_saved_considx !=
2619 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2620 struct bge_rx_bd *cur_rx;
2621 u_int32_t rxidx;
2622 struct mbuf *m = NULL;
2623
2624 cur_rx = &sc->bge_rdata->
2625 bge_rx_return_ring[sc->bge_rx_saved_considx];
2626
2627 rxidx = cur_rx->bge_idx;
2628 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2629
2630 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2631 have_tag = 1;
2632 vlan_tag = cur_rx->bge_vlan_tag;
2633 }
2634
2635 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2636 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2637 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2638 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2639 jumbocnt++;
2640 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2641 ifp->if_ierrors++;
2642 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2643 continue;
2644 }
2645 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2646 NULL)== ENOBUFS) {
2647 ifp->if_ierrors++;
2648 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2649 continue;
2650 }
2651 } else {
2652 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2653 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2654 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2655 stdcnt++;
2656 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2657 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2658 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2659 ifp->if_ierrors++;
2660 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2661 continue;
2662 }
2663 if (bge_newbuf_std(sc, sc->bge_std,
2664 NULL, dmamap) == ENOBUFS) {
2665 ifp->if_ierrors++;
2666 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2667 continue;
2668 }
2669 }
2670
2671 ifp->if_ipackets++;
2672 #ifndef __NO_STRICT_ALIGNMENT
2673 /*
2674 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2675 * the Rx buffer has the layer-2 header unaligned.
2676 * If our CPU requires alignment, re-align by copying.
2677 */
2678 if (sc->bge_rx_alignment_bug) {
2679 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2680 cur_rx->bge_len);
2681 m->m_data += ETHER_ALIGN;
2682 }
2683 #endif
2684
2685 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2686 m->m_pkthdr.rcvif = ifp;
2687
2688 #if NBPFILTER > 0
2689 /*
2690 * Handle BPF listeners. Let the BPF user see the packet.
2691 */
2692 if (ifp->if_bpf)
2693 bpf_mtap(ifp->if_bpf, m);
2694 #endif
2695
2696 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
2697
2698 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2699 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2700 /*
2701 * Rx transport checksum-offload may also
2702 * have bugs with packets which, when transmitted,
2703 * were `runts' requiring padding.
2704 */
2705 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2706 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2707 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2708 m->m_pkthdr.csum_data =
2709 cur_rx->bge_tcp_udp_csum;
2710 m->m_pkthdr.csum_flags |=
2711 (M_CSUM_TCPv4|M_CSUM_UDPv4|
2712 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2713 }
2714
2715 /*
2716 * If we received a packet with a vlan tag, pass it
2717 * to vlan_input() instead of ether_input().
2718 */
2719 if (have_tag) {
2720 struct m_tag *mtag;
2721
2722 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2723 M_NOWAIT);
2724 if (mtag != NULL) {
2725 *(u_int *)(mtag + 1) = vlan_tag;
2726 m_tag_prepend(m, mtag);
2727 have_tag = vlan_tag = 0;
2728 } else {
2729 printf("%s: no mbuf for tag\n", ifp->if_xname);
2730 m_freem(m);
2731 have_tag = vlan_tag = 0;
2732 continue;
2733 }
2734 }
2735 (*ifp->if_input)(ifp, m);
2736 }
2737
2738 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2739 if (stdcnt)
2740 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2741 if (jumbocnt)
2742 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2743 }
2744
2745 void
2746 bge_txeof(sc)
2747 struct bge_softc *sc;
2748 {
2749 struct bge_tx_bd *cur_tx = NULL;
2750 struct ifnet *ifp;
2751 struct txdmamap_pool_entry *dma;
2752 bus_addr_t offset, toff;
2753 bus_size_t tlen;
2754 int tosync;
2755 struct mbuf *m;
2756
2757 ifp = &sc->ethercom.ec_if;
2758
2759 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2760 offsetof(struct bge_ring_data, bge_status_block),
2761 sizeof (struct bge_status_block),
2762 BUS_DMASYNC_POSTREAD);
2763
2764 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2765 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2766 sc->bge_tx_saved_considx;
2767
2768 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2769
2770 if (tosync < 0) {
2771 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2772 sizeof (struct bge_tx_bd);
2773 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2774 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2775 tosync = -tosync;
2776 }
2777
2778 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2779 offset, tosync * sizeof (struct bge_tx_bd),
2780 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2781
2782 /*
2783 * Go through our tx ring and free mbufs for those
2784 * frames that have been sent.
2785 */
2786 while (sc->bge_tx_saved_considx !=
2787 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2788 u_int32_t idx = 0;
2789
2790 idx = sc->bge_tx_saved_considx;
2791 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2792 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2793 ifp->if_opackets++;
2794 m = sc->bge_cdata.bge_tx_chain[idx];
2795 if (m != NULL) {
2796 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2797 dma = sc->txdma[idx];
2798 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2799 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2800 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2801 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2802 sc->txdma[idx] = NULL;
2803
2804 m_freem(m);
2805 }
2806 sc->bge_txcnt--;
2807 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2808 ifp->if_timer = 0;
2809 }
2810
2811 if (cur_tx != NULL)
2812 ifp->if_flags &= ~IFF_OACTIVE;
2813 }
2814
2815 int
2816 bge_intr(xsc)
2817 void *xsc;
2818 {
2819 struct bge_softc *sc;
2820 struct ifnet *ifp;
2821
2822 sc = xsc;
2823 ifp = &sc->ethercom.ec_if;
2824
2825 #ifdef notdef
2826 /* Avoid this for now -- checking this register is expensive. */
2827 /* Make sure this is really our interrupt. */
2828 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2829 return (0);
2830 #endif
2831 /* Ack interrupt and stop others from occuring. */
2832 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2833
2834 /*
2835 * Process link state changes.
2836 * Grrr. The link status word in the status block does
2837 * not work correctly on the BCM5700 rev AX and BX chips,
2838 * according to all avaibable information. Hence, we have
2839 * to enable MII interrupts in order to properly obtain
2840 * async link changes. Unfortunately, this also means that
2841 * we have to read the MAC status register to detect link
2842 * changes, thereby adding an additional register access to
2843 * the interrupt handler.
2844 */
2845
2846 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2847 u_int32_t status;
2848
2849 status = CSR_READ_4(sc, BGE_MAC_STS);
2850 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2851 sc->bge_link = 0;
2852 callout_stop(&sc->bge_timeout);
2853 bge_tick(sc);
2854 /* Clear the interrupt */
2855 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2856 BGE_EVTENB_MI_INTERRUPT);
2857 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2858 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2859 BRGPHY_INTRS);
2860 }
2861 } else {
2862 if (sc->bge_rdata->bge_status_block.bge_status &
2863 BGE_STATFLAG_LINKSTATE_CHANGED) {
2864 sc->bge_link = 0;
2865 callout_stop(&sc->bge_timeout);
2866 bge_tick(sc);
2867 /* Clear the interrupt */
2868 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2869 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2870 BGE_MACSTAT_LINK_CHANGED);
2871 }
2872 }
2873
2874 if (ifp->if_flags & IFF_RUNNING) {
2875 /* Check RX return ring producer/consumer */
2876 bge_rxeof(sc);
2877
2878 /* Check TX ring producer/consumer */
2879 bge_txeof(sc);
2880 }
2881
2882 if (sc->bge_pending_rxintr_change) {
2883 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
2884 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
2885 uint32_t junk;
2886
2887 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
2888 DELAY(10);
2889 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
2890
2891 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
2892 DELAY(10);
2893 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
2894
2895 sc->bge_pending_rxintr_change = 0;
2896 }
2897 bge_handle_events(sc);
2898
2899 /* Re-enable interrupts. */
2900 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2901
2902 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2903 bge_start(ifp);
2904
2905 return (1);
2906 }
2907
2908 void
2909 bge_tick(xsc)
2910 void *xsc;
2911 {
2912 struct bge_softc *sc = xsc;
2913 struct mii_data *mii = &sc->bge_mii;
2914 struct ifmedia *ifm = NULL;
2915 struct ifnet *ifp = &sc->ethercom.ec_if;
2916 int s;
2917
2918 s = splnet();
2919
2920 bge_stats_update(sc);
2921 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2922 if (sc->bge_link) {
2923 splx(s);
2924 return;
2925 }
2926
2927 if (sc->bge_tbi) {
2928 ifm = &sc->bge_ifmedia;
2929 if (CSR_READ_4(sc, BGE_MAC_STS) &
2930 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2931 sc->bge_link++;
2932 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2933 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2934 bge_start(ifp);
2935 }
2936 splx(s);
2937 return;
2938 }
2939
2940 mii_tick(mii);
2941
2942 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2943 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2944 sc->bge_link++;
2945 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2946 bge_start(ifp);
2947 }
2948
2949 splx(s);
2950 }
2951
2952 void
2953 bge_stats_update(sc)
2954 struct bge_softc *sc;
2955 {
2956 struct ifnet *ifp = &sc->ethercom.ec_if;
2957 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2958 bus_size_t rstats = BGE_RX_STATS;
2959
2960 #define READ_RSTAT(sc, stats, stat) \
2961 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
2962
2963 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2964 ifp->if_collisions +=
2965 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
2966 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
2967 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
2968 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
2969 return;
2970 }
2971
2972 #undef READ_RSTAT
2973 #define READ_STAT(sc, stats, stat) \
2974 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2975
2976 ifp->if_collisions +=
2977 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2978 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2979 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2980 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2981 ifp->if_collisions;
2982
2983 #undef READ_STAT
2984
2985 #ifdef notdef
2986 ifp->if_collisions +=
2987 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2988 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2989 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2990 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2991 ifp->if_collisions;
2992 #endif
2993 }
2994
2995 /*
2996 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
2997 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
2998 * but when such padded frames employ the bge IP/TCP checksum offload,
2999 * the hardware checksum assist gives incorrect results (possibly
3000 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3001 * If we pad such runts with zeros, the onboard checksum comes out correct.
3002 */
3003 static __inline int
3004 bge_cksum_pad(struct mbuf *pkt)
3005 {
3006 struct mbuf *last = NULL;
3007 int padlen;
3008
3009 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3010
3011 /* if there's only the packet-header and we can pad there, use it. */
3012 if (pkt->m_pkthdr.len == pkt->m_len &&
3013 !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
3014 last = pkt;
3015 } else {
3016 /*
3017 * Walk packet chain to find last mbuf. We will either
3018 * pad there, or append a new mbuf and pad it
3019 * (thus perhaps avoiding the bcm5700 dma-min bug).
3020 */
3021 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3022 (void) 0; /* do nothing*/
3023 }
3024
3025 /* `last' now points to last in chain. */
3026 if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
3027 (void) 0; /* we can pad here, in-place. */
3028 } else {
3029 /* Allocate new empty mbuf, pad it. Compact later. */
3030 struct mbuf *n;
3031 MGET(n, M_DONTWAIT, MT_DATA);
3032 n->m_len = 0;
3033 last->m_next = n;
3034 last = n;
3035 }
3036 }
3037
3038 #ifdef DEBUG
3039 /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
3040 KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
3041 #endif
3042 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3043 memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3044 last->m_len += padlen;
3045 pkt->m_pkthdr.len += padlen;
3046 return 0;
3047 }
3048
3049 /*
3050 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3051 */
3052 static __inline int
3053 bge_compact_dma_runt(struct mbuf *pkt)
3054 {
3055 struct mbuf *m, *prev;
3056 int totlen, prevlen;
3057
3058 prev = NULL;
3059 totlen = 0;
3060 prevlen = -1;
3061
3062 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3063 int mlen = m->m_len;
3064 int shortfall = 8 - mlen ;
3065
3066 totlen += mlen;
3067 if (mlen == 0) {
3068 continue;
3069 }
3070 if (mlen >= 8)
3071 continue;
3072
3073 /* If we get here, mbuf data is too small for DMA engine.
3074 * Try to fix by shuffling data to prev or next in chain.
3075 * If that fails, do a compacting deep-copy of the whole chain.
3076 */
3077
3078 /* Internal frag. If fits in prev, copy it there. */
3079 if (prev && !M_READONLY(prev) &&
3080 M_TRAILINGSPACE(prev) >= m->m_len) {
3081 bcopy(m->m_data,
3082 prev->m_data+prev->m_len,
3083 mlen);
3084 prev->m_len += mlen;
3085 m->m_len = 0;
3086 /* XXX stitch chain */
3087 prev->m_next = m_free(m);
3088 m = prev;
3089 continue;
3090 }
3091 else if (m->m_next != NULL && !M_READONLY(m) &&
3092 M_TRAILINGSPACE(m) >= shortfall &&
3093 m->m_next->m_len >= (8 + shortfall)) {
3094 /* m is writable and have enough data in next, pull up. */
3095
3096 bcopy(m->m_next->m_data,
3097 m->m_data+m->m_len,
3098 shortfall);
3099 m->m_len += shortfall;
3100 m->m_next->m_len -= shortfall;
3101 m->m_next->m_data += shortfall;
3102 }
3103 else if (m->m_next == NULL || 1) {
3104 /* Got a runt at the very end of the packet.
3105 * borrow data from the tail of the preceding mbuf and
3106 * update its length in-place. (The original data is still
3107 * valid, so we can do this even if prev is not writable.)
3108 */
3109
3110 /* if we'd make prev a runt, just move all of its data. */
3111 #ifdef DEBUG
3112 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3113 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3114 #endif
3115 if ((prev->m_len - shortfall) < 8)
3116 shortfall = prev->m_len;
3117
3118 #ifdef notyet /* just do the safe slow thing for now */
3119 if (!M_READONLY(m)) {
3120 if (M_LEADINGSPACE(m) < shorfall) {
3121 void *m_dat;
3122 m_dat = (m->m_flags & M_PKTHDR) ?
3123 m->m_pktdat : m->dat;
3124 memmove(m_dat, mtod(m, void*), m->m_len);
3125 m->m_data = m_dat;
3126 }
3127 } else
3128 #endif /* just do the safe slow thing */
3129 {
3130 struct mbuf * n = NULL;
3131 int newprevlen = prev->m_len - shortfall;
3132
3133 MGET(n, M_NOWAIT, MT_DATA);
3134 if (n == NULL)
3135 return ENOBUFS;
3136 KASSERT(m->m_len + shortfall < MLEN
3137 /*,
3138 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3139
3140 /* first copy the data we're stealing from prev */
3141 bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3142
3143 /* update prev->m_len accordingly */
3144 prev->m_len -= shortfall;
3145
3146 /* copy data from runt m */
3147 bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3148
3149 /* n holds what we stole from prev, plus m */
3150 n->m_len = shortfall + m->m_len;
3151
3152 /* stitch n into chain and free m */
3153 n->m_next = m->m_next;
3154 prev->m_next = n;
3155 /* KASSERT(m->m_next == NULL); */
3156 m->m_next = NULL;
3157 m_free(m);
3158 m = n; /* for continuing loop */
3159 }
3160 }
3161 prevlen = m->m_len;
3162 }
3163 return 0;
3164 }
3165
3166 /*
3167 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3168 * pointers to descriptors.
3169 */
3170 int
3171 bge_encap(sc, m_head, txidx)
3172 struct bge_softc *sc;
3173 struct mbuf *m_head;
3174 u_int32_t *txidx;
3175 {
3176 struct bge_tx_bd *f = NULL;
3177 u_int32_t frag, cur, cnt = 0;
3178 u_int16_t csum_flags = 0;
3179 struct txdmamap_pool_entry *dma;
3180 bus_dmamap_t dmamap;
3181 int i = 0;
3182 struct m_tag *mtag;
3183
3184 cur = frag = *txidx;
3185
3186 if (m_head->m_pkthdr.csum_flags) {
3187 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3188 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3189 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3190 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3191 }
3192
3193 /*
3194 * If we were asked to do an outboard checksum, and the NIC
3195 * has the bug where it sometimes adds in the Ethernet padding,
3196 * explicitly pad with zeros so the cksum will be correct either way.
3197 * (For now, do this for all chip versions, until newer
3198 * are confirmed to not require the workaround.)
3199 */
3200 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3201 #ifdef notyet
3202 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3203 #endif
3204 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3205 goto check_dma_bug;
3206
3207 if (bge_cksum_pad(m_head) != 0)
3208 return ENOBUFS;
3209
3210 check_dma_bug:
3211 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3212 goto doit;
3213 /*
3214 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3215 * less than eight bytes. If we encounter a teeny mbuf
3216 * at the end of a chain, we can pad. Otherwise, copy.
3217 */
3218 if (bge_compact_dma_runt(m_head) != 0)
3219 return ENOBUFS;
3220
3221 doit:
3222 dma = SLIST_FIRST(&sc->txdma_list);
3223 if (dma == NULL)
3224 return ENOBUFS;
3225 dmamap = dma->dmamap;
3226
3227 /*
3228 * Start packing the mbufs in this chain into
3229 * the fragment pointers. Stop when we run out
3230 * of fragments or hit the end of the mbuf chain.
3231 */
3232 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3233 BUS_DMA_NOWAIT))
3234 return(ENOBUFS);
3235
3236 mtag = sc->ethercom.ec_nvlans ?
3237 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3238
3239 for (i = 0; i < dmamap->dm_nsegs; i++) {
3240 f = &sc->bge_rdata->bge_tx_ring[frag];
3241 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3242 break;
3243 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3244 f->bge_len = dmamap->dm_segs[i].ds_len;
3245 f->bge_flags = csum_flags;
3246
3247 if (mtag != NULL) {
3248 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3249 f->bge_vlan_tag = *(u_int *)(mtag + 1);
3250 } else {
3251 f->bge_vlan_tag = 0;
3252 }
3253 /*
3254 * Sanity check: avoid coming within 16 descriptors
3255 * of the end of the ring.
3256 */
3257 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
3258 return(ENOBUFS);
3259 cur = frag;
3260 BGE_INC(frag, BGE_TX_RING_CNT);
3261 cnt++;
3262 }
3263
3264 if (i < dmamap->dm_nsegs)
3265 return ENOBUFS;
3266
3267 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3268 BUS_DMASYNC_PREWRITE);
3269
3270 if (frag == sc->bge_tx_saved_considx)
3271 return(ENOBUFS);
3272
3273 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3274 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3275 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3276 sc->txdma[cur] = dma;
3277 sc->bge_txcnt += cnt;
3278
3279 *txidx = frag;
3280
3281 return(0);
3282 }
3283
3284 /*
3285 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3286 * to the mbuf data regions directly in the transmit descriptors.
3287 */
3288 void
3289 bge_start(ifp)
3290 struct ifnet *ifp;
3291 {
3292 struct bge_softc *sc;
3293 struct mbuf *m_head = NULL;
3294 u_int32_t prodidx = 0;
3295 int pkts = 0;
3296
3297 sc = ifp->if_softc;
3298
3299 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3300 return;
3301
3302 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
3303
3304 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3305 IFQ_POLL(&ifp->if_snd, m_head);
3306 if (m_head == NULL)
3307 break;
3308
3309 #if 0
3310 /*
3311 * XXX
3312 * safety overkill. If this is a fragmented packet chain
3313 * with delayed TCP/UDP checksums, then only encapsulate
3314 * it if we have enough descriptors to handle the entire
3315 * chain at once.
3316 * (paranoia -- may not actually be needed)
3317 */
3318 if (m_head->m_flags & M_FIRSTFRAG &&
3319 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3320 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3321 m_head->m_pkthdr.csum_data + 16) {
3322 ifp->if_flags |= IFF_OACTIVE;
3323 break;
3324 }
3325 }
3326 #endif
3327
3328 /*
3329 * Pack the data into the transmit ring. If we
3330 * don't have room, set the OACTIVE flag and wait
3331 * for the NIC to drain the ring.
3332 */
3333 if (bge_encap(sc, m_head, &prodidx)) {
3334 ifp->if_flags |= IFF_OACTIVE;
3335 break;
3336 }
3337
3338 /* now we are committed to transmit the packet */
3339 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3340 pkts++;
3341
3342 #if NBPFILTER > 0
3343 /*
3344 * If there's a BPF listener, bounce a copy of this frame
3345 * to him.
3346 */
3347 if (ifp->if_bpf)
3348 bpf_mtap(ifp->if_bpf, m_head);
3349 #endif
3350 }
3351 if (pkts == 0)
3352 return;
3353
3354 /* Transmit */
3355 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3356 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3357 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3358
3359 /*
3360 * Set a timeout in case the chip goes out to lunch.
3361 */
3362 ifp->if_timer = 5;
3363 }
3364
3365 int
3366 bge_init(ifp)
3367 struct ifnet *ifp;
3368 {
3369 struct bge_softc *sc = ifp->if_softc;
3370 u_int16_t *m;
3371 int s, error;
3372
3373 s = splnet();
3374
3375 ifp = &sc->ethercom.ec_if;
3376
3377 /* Cancel pending I/O and flush buffers. */
3378 bge_stop(sc);
3379 bge_reset(sc);
3380 bge_chipinit(sc);
3381
3382 /*
3383 * Init the various state machines, ring
3384 * control blocks and firmware.
3385 */
3386 error = bge_blockinit(sc);
3387 if (error != 0) {
3388 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3389 error);
3390 splx(s);
3391 return error;
3392 }
3393
3394 ifp = &sc->ethercom.ec_if;
3395
3396 /* Specify MTU. */
3397 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3398 ETHER_HDR_LEN + ETHER_CRC_LEN);
3399
3400 /* Load our MAC address. */
3401 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3402 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3403 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3404
3405 /* Enable or disable promiscuous mode as needed. */
3406 if (ifp->if_flags & IFF_PROMISC) {
3407 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3408 } else {
3409 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3410 }
3411
3412 /* Program multicast filter. */
3413 bge_setmulti(sc);
3414
3415 /* Init RX ring. */
3416 bge_init_rx_ring_std(sc);
3417
3418 /* Init jumbo RX ring. */
3419 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3420 bge_init_rx_ring_jumbo(sc);
3421
3422 /* Init our RX return ring index */
3423 sc->bge_rx_saved_considx = 0;
3424
3425 /* Init TX ring. */
3426 bge_init_tx_ring(sc);
3427
3428 /* Turn on transmitter */
3429 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3430
3431 /* Turn on receiver */
3432 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3433
3434 /* Tell firmware we're alive. */
3435 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3436
3437 /* Enable host interrupts. */
3438 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3439 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3440 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3441
3442 bge_ifmedia_upd(ifp);
3443
3444 ifp->if_flags |= IFF_RUNNING;
3445 ifp->if_flags &= ~IFF_OACTIVE;
3446
3447 splx(s);
3448
3449 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3450
3451 return 0;
3452 }
3453
3454 /*
3455 * Set media options.
3456 */
3457 int
3458 bge_ifmedia_upd(ifp)
3459 struct ifnet *ifp;
3460 {
3461 struct bge_softc *sc = ifp->if_softc;
3462 struct mii_data *mii = &sc->bge_mii;
3463 struct ifmedia *ifm = &sc->bge_ifmedia;
3464
3465 /* If this is a 1000baseX NIC, enable the TBI port. */
3466 if (sc->bge_tbi) {
3467 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3468 return(EINVAL);
3469 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3470 case IFM_AUTO:
3471 break;
3472 case IFM_1000_SX:
3473 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3474 BGE_CLRBIT(sc, BGE_MAC_MODE,
3475 BGE_MACMODE_HALF_DUPLEX);
3476 } else {
3477 BGE_SETBIT(sc, BGE_MAC_MODE,
3478 BGE_MACMODE_HALF_DUPLEX);
3479 }
3480 break;
3481 default:
3482 return(EINVAL);
3483 }
3484 return(0);
3485 }
3486
3487 sc->bge_link = 0;
3488 mii_mediachg(mii);
3489
3490 return(0);
3491 }
3492
3493 /*
3494 * Report current media status.
3495 */
3496 void
3497 bge_ifmedia_sts(ifp, ifmr)
3498 struct ifnet *ifp;
3499 struct ifmediareq *ifmr;
3500 {
3501 struct bge_softc *sc = ifp->if_softc;
3502 struct mii_data *mii = &sc->bge_mii;
3503
3504 if (sc->bge_tbi) {
3505 ifmr->ifm_status = IFM_AVALID;
3506 ifmr->ifm_active = IFM_ETHER;
3507 if (CSR_READ_4(sc, BGE_MAC_STS) &
3508 BGE_MACSTAT_TBI_PCS_SYNCHED)
3509 ifmr->ifm_status |= IFM_ACTIVE;
3510 ifmr->ifm_active |= IFM_1000_SX;
3511 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3512 ifmr->ifm_active |= IFM_HDX;
3513 else
3514 ifmr->ifm_active |= IFM_FDX;
3515 return;
3516 }
3517
3518 mii_pollstat(mii);
3519 ifmr->ifm_active = mii->mii_media_active;
3520 ifmr->ifm_status = mii->mii_media_status;
3521 }
3522
3523 int
3524 bge_ioctl(ifp, command, data)
3525 struct ifnet *ifp;
3526 u_long command;
3527 caddr_t data;
3528 {
3529 struct bge_softc *sc = ifp->if_softc;
3530 struct ifreq *ifr = (struct ifreq *) data;
3531 int s, error = 0;
3532 struct mii_data *mii;
3533
3534 s = splnet();
3535
3536 switch(command) {
3537 case SIOCSIFFLAGS:
3538 if (ifp->if_flags & IFF_UP) {
3539 /*
3540 * If only the state of the PROMISC flag changed,
3541 * then just use the 'set promisc mode' command
3542 * instead of reinitializing the entire NIC. Doing
3543 * a full re-init means reloading the firmware and
3544 * waiting for it to start up, which may take a
3545 * second or two.
3546 */
3547 if (ifp->if_flags & IFF_RUNNING &&
3548 ifp->if_flags & IFF_PROMISC &&
3549 !(sc->bge_if_flags & IFF_PROMISC)) {
3550 BGE_SETBIT(sc, BGE_RX_MODE,
3551 BGE_RXMODE_RX_PROMISC);
3552 } else if (ifp->if_flags & IFF_RUNNING &&
3553 !(ifp->if_flags & IFF_PROMISC) &&
3554 sc->bge_if_flags & IFF_PROMISC) {
3555 BGE_CLRBIT(sc, BGE_RX_MODE,
3556 BGE_RXMODE_RX_PROMISC);
3557 } else
3558 bge_init(ifp);
3559 } else {
3560 if (ifp->if_flags & IFF_RUNNING) {
3561 bge_stop(sc);
3562 }
3563 }
3564 sc->bge_if_flags = ifp->if_flags;
3565 error = 0;
3566 break;
3567 case SIOCSIFMEDIA:
3568 case SIOCGIFMEDIA:
3569 if (sc->bge_tbi) {
3570 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3571 command);
3572 } else {
3573 mii = &sc->bge_mii;
3574 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3575 command);
3576 }
3577 error = 0;
3578 break;
3579 default:
3580 error = ether_ioctl(ifp, command, data);
3581 if (error == ENETRESET) {
3582 bge_setmulti(sc);
3583 error = 0;
3584 }
3585 break;
3586 }
3587
3588 splx(s);
3589
3590 return(error);
3591 }
3592
3593 void
3594 bge_watchdog(ifp)
3595 struct ifnet *ifp;
3596 {
3597 struct bge_softc *sc;
3598
3599 sc = ifp->if_softc;
3600
3601 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3602
3603 ifp->if_flags &= ~IFF_RUNNING;
3604 bge_init(ifp);
3605
3606 ifp->if_oerrors++;
3607 }
3608
3609 static void
3610 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3611 {
3612 int i;
3613
3614 BGE_CLRBIT(sc, reg, bit);
3615
3616 for (i = 0; i < BGE_TIMEOUT; i++) {
3617 if ((CSR_READ_4(sc, reg) & bit) == 0)
3618 return;
3619 delay(100);
3620 }
3621
3622 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3623 sc->bge_dev.dv_xname, (u_long) reg, bit);
3624 }
3625
3626 /*
3627 * Stop the adapter and free any mbufs allocated to the
3628 * RX and TX lists.
3629 */
3630 void
3631 bge_stop(sc)
3632 struct bge_softc *sc;
3633 {
3634 struct ifnet *ifp = &sc->ethercom.ec_if;
3635
3636 callout_stop(&sc->bge_timeout);
3637
3638 /*
3639 * Disable all of the receiver blocks
3640 */
3641 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3642 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3643 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3644 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3645 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3646 }
3647 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3648 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3649 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3650
3651 /*
3652 * Disable all of the transmit blocks
3653 */
3654 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3655 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3656 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3657 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3658 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3659 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3660 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3661 }
3662 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3663
3664 /*
3665 * Shut down all of the memory managers and related
3666 * state machines.
3667 */
3668 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3669 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3670 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3671 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3672 }
3673
3674 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3675 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3676
3677 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3678 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3679 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3680 }
3681
3682 /* Disable host interrupts. */
3683 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3684 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3685
3686 /*
3687 * Tell firmware we're shutting down.
3688 */
3689 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3690
3691 /* Free the RX lists. */
3692 bge_free_rx_ring_std(sc);
3693
3694 /* Free jumbo RX list. */
3695 bge_free_rx_ring_jumbo(sc);
3696
3697 /* Free TX buffers. */
3698 bge_free_tx_ring(sc);
3699
3700 /*
3701 * Isolate/power down the PHY.
3702 */
3703 if (!sc->bge_tbi)
3704 mii_down(&sc->bge_mii);
3705
3706 sc->bge_link = 0;
3707
3708 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3709
3710 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3711 }
3712
3713 /*
3714 * Stop all chip I/O so that the kernel's probe routines don't
3715 * get confused by errant DMAs when rebooting.
3716 */
3717 void
3718 bge_shutdown(xsc)
3719 void *xsc;
3720 {
3721 struct bge_softc *sc = (struct bge_softc *)xsc;
3722
3723 bge_stop(sc);
3724 bge_reset(sc);
3725 }
3726
3727
3728 static int
3729 sysctl_bge_verify(SYSCTLFN_ARGS)
3730 {
3731 int error, t;
3732 struct sysctlnode node;
3733
3734 node = *rnode;
3735 t = *(int*)rnode->sysctl_data;
3736 node.sysctl_data = &t;
3737 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3738 if (error || newp == NULL)
3739 return (error);
3740
3741 #if 0
3742 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
3743 node.sysctl_num, rnode->sysctl_num));
3744 #endif
3745
3746 if (node.sysctl_num == bge_rxthresh_nodenum) {
3747 if (t < 0 || t >= NBGE_RX_THRESH)
3748 return (EINVAL);
3749 bge_update_all_threshes(t);
3750 } else
3751 return (EINVAL);
3752
3753 *(int*)rnode->sysctl_data = t;
3754
3755 return (0);
3756 }
3757
3758 /*
3759 * Set up sysctl(3) MIB, hw.bge.*.
3760 *
3761 * TBD condition SYSCTL_PERMANENT on being an LKM or not
3762 */
3763 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
3764 {
3765 int rc;
3766 struct sysctlnode *node;
3767
3768 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3769 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3770 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3771 goto err;
3772 }
3773
3774 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3775 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge", NULL,
3776 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3777 goto err;
3778 }
3779
3780 /* BGE Rx interrupt mitigation level */
3781 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3782 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3783 CTLTYPE_INT, "rx_lvl", NULL, sysctl_bge_verify, 0,
3784 &bge_rx_thresh_lvl,
3785 0, CTL_HW, node->sysctl_num, CTL_CREATE,
3786 CTL_EOL)) != 0) {
3787 goto err;
3788 }
3789
3790 bge_rxthresh_nodenum = node->sysctl_num;
3791
3792 return;
3793
3794 err:
3795 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3796 }
3797