if_bge.c revision 1.9 1 /* $NetBSD: if_bge.c,v 1.9 2002/06/28 01:10:06 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Engineer, Wind River Systems
43 */
44
45 /*
46 * The Broadcom BCM5700 is based on technology originally developed by
47 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51 * frames, highly configurable RX filtering, and 16 RX and TX queues
52 * (which, along with RX filter rules, can be used for QOS applications).
53 * Other features, such as TCP segmentation, may be available as part
54 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55 * firmware images can be stored in hardware and need not be compiled
56 * into the driver.
57 *
58 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60 *
61 * The BCM5701 is a single-chip solution incorporating both the BCM5700
62 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5700
63 * does not support external SSRAM.
64 *
65 * Broadcom also produces a variation of the BCM5700 under the "Altima"
66 * brand name, which is functionally similar but lacks PCI-X support.
67 *
68 * Without external SSRAM, you can only have at most 4 TX rings,
69 * and the use of the mini RX ring is disabled. This seems to imply
70 * that these features are simply not available on the BCM5701. As a
71 * result, this driver does not implement any support for the mini RX
72 * ring.
73 */
74
75 #include "bpfilter.h"
76 #include "vlan.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/sockio.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/kernel.h>
85 #include <sys/device.h>
86 #include <sys/socket.h>
87
88 #include <net/if.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_ether.h>
92
93 #ifdef INET
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/in_var.h>
97 #include <netinet/ip.h>
98 #endif
99
100 #if NBPFILTER > 0
101 #include <net/bpf.h>
102 #endif
103
104 #include <dev/pci/pcireg.h>
105 #include <dev/pci/pcivar.h>
106 #include <dev/pci/pcidevs.h>
107
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110 #include <dev/mii/miidevs.h>
111 #include <dev/mii/brgphyreg.h>
112
113 #include <dev/pci/if_bgereg.h>
114
115 #include <uvm/uvm_extern.h>
116
117 /* #define BGE_CHECKSUM */
118
119 int bge_probe(struct device *, struct cfdata *, void *);
120 void bge_attach(struct device *, struct device *, void *);
121 void bge_release_resources(struct bge_softc *);
122 void bge_txeof(struct bge_softc *);
123 void bge_rxeof(struct bge_softc *);
124
125 void bge_tick(void *);
126 void bge_stats_update(struct bge_softc *);
127 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
128
129 int bge_intr(void *);
130 void bge_start(struct ifnet *);
131 int bge_ioctl(struct ifnet *, u_long, caddr_t);
132 int bge_init(struct ifnet *);
133 void bge_stop(struct bge_softc *);
134 void bge_watchdog(struct ifnet *);
135 void bge_shutdown(void *);
136 int bge_ifmedia_upd(struct ifnet *);
137 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
138
139 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
140 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
141
142 u_int32_t bge_crc(struct bge_softc *, caddr_t);
143 void bge_setmulti(struct bge_softc *);
144
145 void bge_handle_events(struct bge_softc *);
146 int bge_alloc_jumbo_mem(struct bge_softc *);
147 void bge_free_jumbo_mem(struct bge_softc *);
148 void *bge_jalloc(struct bge_softc *);
149 void bge_jfree(struct mbuf *, caddr_t, u_int, void *);
150 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
151 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
152 int bge_init_rx_ring_std(struct bge_softc *);
153 void bge_free_rx_ring_std(struct bge_softc *);
154 int bge_init_rx_ring_jumbo(struct bge_softc *);
155 void bge_free_rx_ring_jumbo(struct bge_softc *);
156 void bge_free_tx_ring(struct bge_softc *);
157 int bge_init_tx_ring(struct bge_softc *);
158
159 int bge_chipinit(struct bge_softc *);
160 int bge_blockinit(struct bge_softc *);
161
162 #ifdef notdef
163 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
164 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
165 void bge_vpd_read(struct bge_softc *);
166 #endif
167
168 u_int32_t bge_readmem_ind(struct bge_softc *, int);
169 void bge_writemem_ind(struct bge_softc *, int, int);
170 #ifdef notdef
171 u_int32_t bge_readreg_ind(struct bge_softc *, int);
172 #endif
173 void bge_writereg_ind(struct bge_softc *, int, int);
174
175 int bge_miibus_readreg(struct device *, int, int);
176 void bge_miibus_writereg(struct device *, int, int, int);
177 void bge_miibus_statchg(struct device *);
178
179 void bge_reset(struct bge_softc *);
180 void bge_phy_hack(struct bge_softc *);
181
182 void bge_dump_status(struct bge_softc *);
183 void bge_dump_rxbd(struct bge_rx_bd *);
184
185 #define BGE_DEBUG
186 #ifdef BGE_DEBUG
187 #define DPRINTF(x) if (bgedebug) printf x
188 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
189 int bgedebug = 0;
190 #else
191 #define DPRINTF(x)
192 #define DPRINTFN(n,x)
193 #endif
194
195 struct cfattach bge_ca = {
196 sizeof(struct bge_softc), bge_probe, bge_attach
197 };
198
199 u_int32_t
200 bge_readmem_ind(sc, off)
201 struct bge_softc *sc;
202 int off;
203 {
204 struct pci_attach_args *pa = &(sc->bge_pa);
205 pcireg_t val;
206
207 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
208 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
209 return val;
210 }
211
212 void
213 bge_writemem_ind(sc, off, val)
214 struct bge_softc *sc;
215 int off, val;
216 {
217 struct pci_attach_args *pa = &(sc->bge_pa);
218
219 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
220 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
221 }
222
223 #ifdef notdef
224 u_int32_t
225 bge_readreg_ind(sc, off)
226 struct bge_softc *sc;
227 int off;
228 {
229 struct pci_attach_args *pa = &(sc->bge_pa);
230
231 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
232 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
233 }
234 #endif
235
236 void
237 bge_writereg_ind(sc, off, val)
238 struct bge_softc *sc;
239 int off, val;
240 {
241 struct pci_attach_args *pa = &(sc->bge_pa);
242
243 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
244 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
245 }
246
247 #ifdef notdef
248 u_int8_t
249 bge_vpd_readbyte(sc, addr)
250 struct bge_softc *sc;
251 int addr;
252 {
253 int i;
254 u_int32_t val;
255 struct pci_attach_args *pa = &(sc->bge_pa);
256
257 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
258 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
259 DELAY(10);
260 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
261 BGE_VPD_FLAG)
262 break;
263 }
264
265 if (i == BGE_TIMEOUT) {
266 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
267 return(0);
268 }
269
270 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
271
272 return((val >> ((addr % 4) * 8)) & 0xFF);
273 }
274
275 void
276 bge_vpd_read_res(sc, res, addr)
277 struct bge_softc *sc;
278 struct vpd_res *res;
279 int addr;
280 {
281 int i;
282 u_int8_t *ptr;
283
284 ptr = (u_int8_t *)res;
285 for (i = 0; i < sizeof(struct vpd_res); i++)
286 ptr[i] = bge_vpd_readbyte(sc, i + addr);
287 }
288
289 void
290 bge_vpd_read(sc)
291 struct bge_softc *sc;
292 {
293 int pos = 0, i;
294 struct vpd_res res;
295
296 if (sc->bge_vpd_prodname != NULL)
297 free(sc->bge_vpd_prodname, M_DEVBUF);
298 if (sc->bge_vpd_readonly != NULL)
299 free(sc->bge_vpd_readonly, M_DEVBUF);
300 sc->bge_vpd_prodname = NULL;
301 sc->bge_vpd_readonly = NULL;
302
303 bge_vpd_read_res(sc, &res, pos);
304
305 if (res.vr_id != VPD_RES_ID) {
306 printf("%s: bad VPD resource id: expected %x got %x\n",
307 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
308 return;
309 }
310
311 pos += sizeof(res);
312 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
313 if (sc->bge_vpd_prodname == NULL)
314 panic("bge_vpd_read");
315 for (i = 0; i < res.vr_len; i++)
316 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
317 sc->bge_vpd_prodname[i] = '\0';
318 pos += i;
319
320 bge_vpd_read_res(sc, &res, pos);
321
322 if (res.vr_id != VPD_RES_READ) {
323 printf("%s: bad VPD resource id: expected %x got %x\n",
324 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
325 return;
326 }
327
328 pos += sizeof(res);
329 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
330 if (sc->bge_vpd_readonly == NULL)
331 panic("bge_vpd_read");
332 for (i = 0; i < res.vr_len + 1; i++)
333 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
334 }
335 #endif
336
337 /*
338 * Read a byte of data stored in the EEPROM at address 'addr.' The
339 * BCM570x supports both the traditional bitbang interface and an
340 * auto access interface for reading the EEPROM. We use the auto
341 * access method.
342 */
343 u_int8_t
344 bge_eeprom_getbyte(sc, addr, dest)
345 struct bge_softc *sc;
346 int addr;
347 u_int8_t *dest;
348 {
349 int i;
350 u_int32_t byte = 0;
351
352 /*
353 * Enable use of auto EEPROM access so we can avoid
354 * having to use the bitbang method.
355 */
356 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
357
358 /* Reset the EEPROM, load the clock period. */
359 CSR_WRITE_4(sc, BGE_EE_ADDR,
360 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
361 DELAY(20);
362
363 /* Issue the read EEPROM command. */
364 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
365
366 /* Wait for completion */
367 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
368 DELAY(10);
369 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
370 break;
371 }
372
373 if (i == BGE_TIMEOUT) {
374 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
375 return(0);
376 }
377
378 /* Get result. */
379 byte = CSR_READ_4(sc, BGE_EE_DATA);
380
381 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
382
383 return(0);
384 }
385
386 /*
387 * Read a sequence of bytes from the EEPROM.
388 */
389 int
390 bge_read_eeprom(sc, dest, off, cnt)
391 struct bge_softc *sc;
392 caddr_t dest;
393 int off;
394 int cnt;
395 {
396 int err = 0, i;
397 u_int8_t byte = 0;
398
399 for (i = 0; i < cnt; i++) {
400 err = bge_eeprom_getbyte(sc, off + i, &byte);
401 if (err)
402 break;
403 *(dest + i) = byte;
404 }
405
406 return(err ? 1 : 0);
407 }
408
409 int
410 bge_miibus_readreg(dev, phy, reg)
411 struct device *dev;
412 int phy, reg;
413 {
414 struct bge_softc *sc = (struct bge_softc *)dev;
415 struct ifnet *ifp;
416 u_int32_t val;
417 int i;
418
419 ifp = &sc->ethercom.ec_if;
420
421 if (sc->bge_asicrev == BGE_ASICREV_BCM5701_B5 && phy != 1)
422 return(0);
423
424 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
425 BGE_MIPHY(phy)|BGE_MIREG(reg));
426
427 for (i = 0; i < BGE_TIMEOUT; i++) {
428 val = CSR_READ_4(sc, BGE_MI_COMM);
429 if (!(val & BGE_MICOMM_BUSY))
430 break;
431 delay(10);
432 }
433
434 if (i == BGE_TIMEOUT) {
435 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
436 return(0);
437 }
438
439 val = CSR_READ_4(sc, BGE_MI_COMM);
440
441 if (val & BGE_MICOMM_READFAIL)
442 return(0);
443
444 return(val & 0xFFFF);
445 }
446
447 void
448 bge_miibus_writereg(dev, phy, reg, val)
449 struct device *dev;
450 int phy, reg, val;
451 {
452 struct bge_softc *sc = (struct bge_softc *)dev;
453 int i;
454
455 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
456 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
457
458 for (i = 0; i < BGE_TIMEOUT; i++) {
459 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
460 break;
461 delay(10);
462 }
463
464 if (i == BGE_TIMEOUT) {
465 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
466 }
467 }
468
469 void
470 bge_miibus_statchg(dev)
471 struct device *dev;
472 {
473 struct bge_softc *sc = (struct bge_softc *)dev;
474 struct mii_data *mii = &sc->bge_mii;
475
476 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
477 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
478 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
479 } else {
480 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
481 }
482
483 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
484 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
485 } else {
486 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
487 }
488
489 bge_phy_hack(sc);
490 }
491
492 /*
493 * Handle events that have triggered interrupts.
494 */
495 void
496 bge_handle_events(sc)
497 struct bge_softc *sc;
498 {
499
500 return;
501 }
502
503 /*
504 * Memory management for jumbo frames.
505 */
506
507 int
508 bge_alloc_jumbo_mem(sc)
509 struct bge_softc *sc;
510 {
511 caddr_t ptr, kva;
512 bus_dma_segment_t seg;
513 int i, rseg, state, error;
514 struct bge_jpool_entry *entry;
515
516 state = error = 0;
517
518 /* Grab a big chunk o' storage. */
519 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
520 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
521 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
522 return ENOBUFS;
523 }
524
525 state = 1;
526 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
527 BUS_DMA_NOWAIT)) {
528 printf("%s: can't map dma buffers (%d bytes)\n",
529 sc->bge_dev.dv_xname, (int)BGE_JMEM);
530 error = ENOBUFS;
531 goto out;
532 }
533
534 state = 2;
535 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
536 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
537 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
538 error = ENOBUFS;
539 goto out;
540 }
541
542 state = 3;
543 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
544 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
545 printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
546 error = ENOBUFS;
547 goto out;
548 }
549
550 state = 4;
551 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
552 DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
553
554 SLIST_INIT(&sc->bge_jfree_listhead);
555 SLIST_INIT(&sc->bge_jinuse_listhead);
556
557 /*
558 * Now divide it up into 9K pieces and save the addresses
559 * in an array.
560 */
561 ptr = sc->bge_cdata.bge_jumbo_buf;
562 for (i = 0; i < BGE_JSLOTS; i++) {
563 sc->bge_cdata.bge_jslots[i] = ptr;
564 ptr += BGE_JLEN;
565 entry = malloc(sizeof(struct bge_jpool_entry),
566 M_DEVBUF, M_NOWAIT);
567 if (entry == NULL) {
568 printf("%s: no memory for jumbo buffer queue!\n",
569 sc->bge_dev.dv_xname);
570 error = ENOBUFS;
571 goto out;
572 }
573 entry->slot = i;
574 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
575 entry, jpool_entries);
576 }
577 out:
578 if (error != 0) {
579 switch (state) {
580 case 4:
581 bus_dmamap_unload(sc->bge_dmatag,
582 sc->bge_cdata.bge_rx_jumbo_map);
583 case 3:
584 bus_dmamap_destroy(sc->bge_dmatag,
585 sc->bge_cdata.bge_rx_jumbo_map);
586 case 2:
587 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
588 case 1:
589 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
590 break;
591 default:
592 break;
593 }
594 }
595
596 return error;
597 }
598
599 /*
600 * Allocate a jumbo buffer.
601 */
602 void *
603 bge_jalloc(sc)
604 struct bge_softc *sc;
605 {
606 struct bge_jpool_entry *entry;
607
608 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
609
610 if (entry == NULL) {
611 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
612 return(NULL);
613 }
614
615 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
616 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
617 return(sc->bge_cdata.bge_jslots[entry->slot]);
618 }
619
620 /*
621 * Release a jumbo buffer.
622 */
623 void
624 bge_jfree(m, buf, size, arg)
625 struct mbuf *m;
626 caddr_t buf;
627 u_int size;
628 void *arg;
629 {
630 struct bge_jpool_entry *entry;
631 struct bge_softc *sc;
632 int i, s;
633
634 /* Extract the softc struct pointer. */
635 sc = (struct bge_softc *)arg;
636
637 if (sc == NULL)
638 panic("bge_jfree: can't find softc pointer!");
639
640 /* calculate the slot this buffer belongs to */
641
642 i = ((caddr_t)buf
643 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
644
645 if ((i < 0) || (i >= BGE_JSLOTS))
646 panic("bge_jfree: asked to free buffer that we don't manage!");
647
648 s = splvm();
649 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
650 if (entry == NULL)
651 panic("bge_jfree: buffer not in use!");
652 entry->slot = i;
653 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
654 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
655
656 if (__predict_true(m != NULL))
657 pool_cache_put(&mbpool_cache, m);
658 splx(s);
659 }
660
661
662 /*
663 * Intialize a standard receive ring descriptor.
664 */
665 int
666 bge_newbuf_std(sc, i, m, dmamap)
667 struct bge_softc *sc;
668 int i;
669 struct mbuf *m;
670 bus_dmamap_t dmamap;
671 {
672 struct mbuf *m_new = NULL;
673 struct bge_rx_bd *r;
674 int error;
675
676 if (dmamap == NULL) {
677 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
678 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
679 if (error != 0)
680 return error;
681 }
682
683 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
684
685 if (m == NULL) {
686 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
687 if (m_new == NULL) {
688 return(ENOBUFS);
689 }
690
691 MCLGET(m_new, M_DONTWAIT);
692 if (!(m_new->m_flags & M_EXT)) {
693 m_freem(m_new);
694 return(ENOBUFS);
695 }
696 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
697
698 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
699 BUS_DMA_READ|BUS_DMA_NOWAIT))
700 return(ENOBUFS);
701 } else {
702 m_new = m;
703 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
704 m_new->m_data = m_new->m_ext.ext_buf;
705 }
706
707 m_adj(m_new, ETHER_ALIGN);
708 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
709 r = &sc->bge_rdata->bge_rx_std_ring[i];
710 bge_set_hostaddr(&r->bge_addr,
711 dmamap->dm_segs[0].ds_addr + ETHER_ALIGN);
712 r->bge_flags = BGE_RXBDFLAG_END;
713 r->bge_len = m_new->m_len;
714 r->bge_idx = i;
715
716 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
717 offsetof(struct bge_ring_data, bge_rx_std_ring) +
718 i * sizeof (struct bge_rx_bd),
719 sizeof (struct bge_rx_bd),
720 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
721
722 return(0);
723 }
724
725 /*
726 * Initialize a jumbo receive ring descriptor. This allocates
727 * a jumbo buffer from the pool managed internally by the driver.
728 */
729 int
730 bge_newbuf_jumbo(sc, i, m)
731 struct bge_softc *sc;
732 int i;
733 struct mbuf *m;
734 {
735 struct mbuf *m_new = NULL;
736 struct bge_rx_bd *r;
737
738 if (m == NULL) {
739 caddr_t *buf = NULL;
740
741 /* Allocate the mbuf. */
742 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
743 if (m_new == NULL) {
744 return(ENOBUFS);
745 }
746
747 /* Allocate the jumbo buffer */
748 buf = bge_jalloc(sc);
749 if (buf == NULL) {
750 m_freem(m_new);
751 printf("%s: jumbo allocation failed "
752 "-- packet dropped!\n", sc->bge_dev.dv_xname);
753 return(ENOBUFS);
754 }
755
756 /* Attach the buffer to the mbuf. */
757 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
758 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
759 bge_jfree, sc);
760 } else {
761 m_new = m;
762 m_new->m_data = m_new->m_ext.ext_buf;
763 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
764 }
765
766 m_adj(m_new, ETHER_ALIGN);
767 /* Set up the descriptor. */
768 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
769 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
770 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
771 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
772 r->bge_len = m_new->m_len;
773 r->bge_idx = i;
774
775 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
776 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
777 i * sizeof (struct bge_rx_bd),
778 sizeof (struct bge_rx_bd),
779 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
780
781 return(0);
782 }
783
784 /*
785 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
786 * that's 1MB or memory, which is a lot. For now, we fill only the first
787 * 256 ring entries and hope that our CPU is fast enough to keep up with
788 * the NIC.
789 */
790 int
791 bge_init_rx_ring_std(sc)
792 struct bge_softc *sc;
793 {
794 int i;
795
796 if (sc->bge_flags & BGE_RXRING_VALID)
797 return 0;
798
799 for (i = 0; i < BGE_SSLOTS; i++) {
800 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
801 return(ENOBUFS);
802 }
803
804 sc->bge_std = i - 1;
805 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
806
807 sc->bge_flags |= BGE_RXRING_VALID;
808
809 return(0);
810 }
811
812 void
813 bge_free_rx_ring_std(sc)
814 struct bge_softc *sc;
815 {
816 int i;
817
818 if (!(sc->bge_flags & BGE_RXRING_VALID))
819 return;
820
821 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
822 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
823 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
824 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
825 bus_dmamap_destroy(sc->bge_dmatag,
826 sc->bge_cdata.bge_rx_std_map[i]);
827 }
828 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
829 sizeof(struct bge_rx_bd));
830 }
831
832 sc->bge_flags &= ~BGE_RXRING_VALID;
833 }
834
835 int
836 bge_init_rx_ring_jumbo(sc)
837 struct bge_softc *sc;
838 {
839 int i;
840 struct bge_rcb *rcb;
841 struct bge_rcb_opaque *rcbo;
842
843 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
844 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
845 return(ENOBUFS);
846 };
847
848 sc->bge_jumbo = i - 1;
849
850 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
851 rcbo = (struct bge_rcb_opaque *)rcb;
852 rcb->bge_flags = 0;
853 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
854
855 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
856
857 return(0);
858 }
859
860 void
861 bge_free_rx_ring_jumbo(sc)
862 struct bge_softc *sc;
863 {
864 int i;
865
866 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
867 return;
868
869 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
870 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
871 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
872 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
873 }
874 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
875 sizeof(struct bge_rx_bd));
876 }
877
878 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
879 }
880
881 void
882 bge_free_tx_ring(sc)
883 struct bge_softc *sc;
884 {
885 int i, freed;
886 struct txdmamap_pool_entry *dma;
887
888 if (!(sc->bge_flags & BGE_TXRING_VALID))
889 return;
890
891 freed = 0;
892
893 for (i = 0; i < BGE_TX_RING_CNT; i++) {
894 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
895 freed++;
896 m_freem(sc->bge_cdata.bge_tx_chain[i]);
897 sc->bge_cdata.bge_tx_chain[i] = NULL;
898 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
899 link);
900 sc->txdma[i] = 0;
901 }
902 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
903 sizeof(struct bge_tx_bd));
904 }
905
906 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
907 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
908 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
909 free(dma, M_DEVBUF);
910 }
911
912 sc->bge_flags &= ~BGE_TXRING_VALID;
913 }
914
915 int
916 bge_init_tx_ring(sc)
917 struct bge_softc *sc;
918 {
919 int i;
920 bus_dmamap_t dmamap;
921 struct txdmamap_pool_entry *dma;
922
923 if (sc->bge_flags & BGE_TXRING_VALID)
924 return 0;
925
926 sc->bge_txcnt = 0;
927 sc->bge_tx_saved_considx = 0;
928 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
929 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
930
931 SLIST_INIT(&sc->txdma_list);
932 for (i = 0; i < BGE_RSLOTS; i++) {
933 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
934 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
935 &dmamap))
936 return(ENOBUFS);
937 if (dmamap == NULL)
938 panic("dmamap NULL in bge_init_tx_ring");
939 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
940 if (dma == NULL) {
941 printf("%s: can't alloc txdmamap_pool_entry\n",
942 sc->bge_dev.dv_xname);
943 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
944 return (ENOMEM);
945 }
946 dma->dmamap = dmamap;
947 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
948 }
949
950 sc->bge_flags |= BGE_TXRING_VALID;
951
952 return(0);
953 }
954
955 #define BGE_POLY 0xEDB88320
956
957 u_int32_t
958 bge_crc(sc, addr)
959 struct bge_softc *sc;
960 caddr_t addr;
961 {
962 u_int32_t idx, bit, data, crc;
963
964 /* Compute CRC for the address value. */
965 crc = 0xFFFFFFFF; /* initial value */
966
967 for (idx = 0; idx < 6; idx++) {
968 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
969 crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
970 }
971
972 return(crc & 0x7F);
973 }
974
975 void
976 bge_setmulti(sc)
977 struct bge_softc *sc;
978 {
979 struct ethercom *ac = &sc->ethercom;
980 struct ifnet *ifp = &ac->ec_if;
981 struct ether_multi *enm;
982 struct ether_multistep step;
983 u_int32_t hashes[4] = { 0, 0, 0, 0 };
984 u_int32_t h;
985 int i;
986
987 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
988 for (i = 0; i < 4; i++)
989 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
990 return;
991 }
992
993 /* First, zot all the existing filters. */
994 for (i = 0; i < 4; i++)
995 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
996
997 /* Now program new ones. */
998 ETHER_FIRST_MULTI(step, ac, enm);
999 while (enm != NULL) {
1000 h = bge_crc(sc, LLADDR((struct sockaddr_dl *)enm->enm_addrlo));
1001 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1002 ETHER_NEXT_MULTI(step, enm);
1003 }
1004
1005 for (i = 0; i < 4; i++)
1006 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1007 }
1008
1009 int bge_swapbits[] = {
1010 0,
1011 BGE_MODECTL_BYTESWAP_DATA,
1012 BGE_MODECTL_WORDSWAP_DATA,
1013 BGE_MODECTL_BYTESWAP_NONFRAME,
1014 BGE_MODECTL_WORDSWAP_NONFRAME,
1015
1016 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1017 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1018 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1019
1020 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1021 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1022
1023 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1024
1025 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1026 BGE_MODECTL_BYTESWAP_NONFRAME,
1027 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1028 BGE_MODECTL_WORDSWAP_NONFRAME,
1029 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1030 BGE_MODECTL_WORDSWAP_NONFRAME,
1031 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1032 BGE_MODECTL_WORDSWAP_NONFRAME,
1033
1034 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1035 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1036 };
1037
1038 int bge_swapindex = 0;
1039
1040 /*
1041 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1042 * self-test results.
1043 */
1044 int
1045 bge_chipinit(sc)
1046 struct bge_softc *sc;
1047 {
1048 u_int32_t cachesize;
1049 int i;
1050 struct pci_attach_args *pa = &(sc->bge_pa);
1051
1052
1053 /* Set endianness before we access any non-PCI registers. */
1054 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1055 BGE_INIT);
1056
1057 /*
1058 * Check the 'ROM failed' bit on the RX CPU to see if
1059 * self-tests passed.
1060 */
1061 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1062 printf("%s: RX CPU self-diagnostics failed!\n",
1063 sc->bge_dev.dv_xname);
1064 return(ENODEV);
1065 }
1066
1067 /* Clear the MAC control register */
1068 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1069
1070 /*
1071 * Clear the MAC statistics block in the NIC's
1072 * internal memory.
1073 */
1074 for (i = BGE_STATS_BLOCK;
1075 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1076 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1077
1078 for (i = BGE_STATUS_BLOCK;
1079 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1080 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1081
1082 /* Set up the PCI DMA control register. */
1083 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1084 BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD|0x0F);
1085
1086 /*
1087 * Set up general mode register.
1088 */
1089 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1090 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1091 BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1092 BGE_MODECTL_RX_NO_PHDR_CSUM);
1093
1094 /* Get cache line size. */
1095 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1096
1097 /*
1098 * Avoid violating PCI spec on certain chip revs.
1099 */
1100 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1101 PCIM_CMD_MWIEN) {
1102 switch(cachesize) {
1103 case 1:
1104 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1105 BGE_PCI_WRITE_BNDRY_16BYTES);
1106 break;
1107 case 2:
1108 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1109 BGE_PCI_WRITE_BNDRY_32BYTES);
1110 break;
1111 case 4:
1112 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1113 BGE_PCI_WRITE_BNDRY_64BYTES);
1114 break;
1115 case 8:
1116 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1117 BGE_PCI_WRITE_BNDRY_128BYTES);
1118 break;
1119 case 16:
1120 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1121 BGE_PCI_WRITE_BNDRY_256BYTES);
1122 break;
1123 case 32:
1124 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1125 BGE_PCI_WRITE_BNDRY_512BYTES);
1126 break;
1127 case 64:
1128 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1129 BGE_PCI_WRITE_BNDRY_1024BYTES);
1130 break;
1131 default:
1132 /* Disable PCI memory write and invalidate. */
1133 #if 0
1134 if (bootverbose)
1135 printf("%s: cache line size %d not "
1136 "supported; disabling PCI MWI\n",
1137 sc->bge_dev.dv_xname, cachesize);
1138 #endif
1139 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1140 PCIM_CMD_MWIEN);
1141 break;
1142 }
1143 }
1144
1145 #ifdef __brokenalpha__
1146 /*
1147 * Must insure that we do not cross an 8K (bytes) boundary
1148 * for DMA reads. Our highest limit is 1K bytes. This is a
1149 * restriction on some ALPHA platforms with early revision
1150 * 21174 PCI chipsets, such as the AlphaPC 164lx
1151 */
1152 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1153 #endif
1154
1155 /* Set the timer prescaler (always 66Mhz) */
1156 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1157
1158 return(0);
1159 }
1160
1161 int
1162 bge_blockinit(sc)
1163 struct bge_softc *sc;
1164 {
1165 struct bge_rcb *rcb;
1166 struct bge_rcb_opaque *rcbo;
1167 bus_size_t rcb_addr;
1168 int i;
1169 struct ifnet *ifp = &sc->ethercom.ec_if;
1170 bge_hostaddr taddr;
1171
1172 /*
1173 * Initialize the memory window pointer register so that
1174 * we can access the first 32K of internal NIC RAM. This will
1175 * allow us to set up the TX send ring RCBs and the RX return
1176 * ring RCBs, plus other things which live in NIC memory.
1177 */
1178
1179 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1180 BGE_PCI_MEMWIN_BASEADDR, 0);
1181
1182 /* Configure mbuf memory pool */
1183 if (sc->bge_extram) {
1184 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1185 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1186 } else {
1187 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1188 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1189 }
1190
1191 /* Configure DMA resource pool */
1192 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1193 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1194
1195 /* Configure mbuf pool watermarks */
1196 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1197 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1198 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1199
1200 /* Configure DMA resource watermarks */
1201 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1202 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1203
1204 /* Enable buffer manager */
1205 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1206 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1207
1208 /* Poll for buffer manager start indication */
1209 for (i = 0; i < BGE_TIMEOUT; i++) {
1210 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1211 break;
1212 DELAY(10);
1213 }
1214
1215 if (i == BGE_TIMEOUT) {
1216 printf("%s: buffer manager failed to start\n",
1217 sc->bge_dev.dv_xname);
1218 return(ENXIO);
1219 }
1220
1221 /* Enable flow-through queues */
1222 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1223 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1224
1225 /* Wait until queue initialization is complete */
1226 for (i = 0; i < BGE_TIMEOUT; i++) {
1227 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1228 break;
1229 DELAY(10);
1230 }
1231
1232 if (i == BGE_TIMEOUT) {
1233 printf("%s: flow-through queue init failed\n",
1234 sc->bge_dev.dv_xname);
1235 return(ENXIO);
1236 }
1237
1238 /* Initialize the standard RX ring control block */
1239 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1240 bge_set_hostaddr(&rcb->bge_hostaddr,
1241 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1242 rcb->bge_max_len = BGE_MAX_FRAMELEN;
1243 if (sc->bge_extram)
1244 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1245 else
1246 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1247 rcb->bge_flags = 0;
1248 rcbo = (struct bge_rcb_opaque *)rcb;
1249 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1250 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1251 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1252 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1253
1254 /*
1255 * Initialize the jumbo RX ring control block
1256 * We set the 'ring disabled' bit in the flags
1257 * field until we're actually ready to start
1258 * using this ring (i.e. once we set the MTU
1259 * high enough to require it).
1260 */
1261 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1262 bge_set_hostaddr(&rcb->bge_hostaddr,
1263 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1264 rcb->bge_max_len = BGE_MAX_FRAMELEN;
1265 if (sc->bge_extram)
1266 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1267 else
1268 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1269 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1270
1271 rcbo = (struct bge_rcb_opaque *)rcb;
1272 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1273 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1274 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1275 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1276
1277 /* Set up dummy disabled mini ring RCB */
1278 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1279 rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1280 rcbo = (struct bge_rcb_opaque *)rcb;
1281 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1282
1283 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1284 offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1285 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1286
1287 /*
1288 * Set the BD ring replentish thresholds. The recommended
1289 * values are 1/8th the number of descriptors allocated to
1290 * each ring.
1291 */
1292 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1293 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1294
1295 /*
1296 * Disable all unused send rings by setting the 'ring disabled'
1297 * bit in the flags field of all the TX send ring control blocks.
1298 * These are located in NIC memory.
1299 */
1300 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1301 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1302 RCB_WRITE_2(sc, rcb_addr, bge_flags,
1303 BGE_RCB_FLAG_RING_DISABLED);
1304 RCB_WRITE_2(sc, rcb_addr, bge_max_len, 0);
1305 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1306 rcb_addr += sizeof(struct bge_rcb);
1307 }
1308
1309 /* Configure TX RCB 0 (we use only the first ring) */
1310 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1311 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1312 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1313 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1314 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1315 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1316 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_TX_RING_CNT);
1317 RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1318
1319 /* Disable all unused RX return rings */
1320 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1321 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1322 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1323 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1324 RCB_WRITE_2(sc, rcb_addr, bge_flags,
1325 BGE_RCB_FLAG_RING_DISABLED);
1326 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1327 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1328 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1329 (i * (sizeof(u_int64_t))), 0);
1330 rcb_addr += sizeof(struct bge_rcb);
1331 }
1332
1333 /* Initialize RX ring indexes */
1334 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1335 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1336 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1337
1338 /*
1339 * Set up RX return ring 0
1340 * Note that the NIC address for RX return rings is 0x00000000.
1341 * The return rings live entirely within the host, so the
1342 * nicaddr field in the RCB isn't used.
1343 */
1344 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1345 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1346 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1347 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1348 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1349 RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1350 RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1351
1352 /* Set random backoff seed for TX */
1353 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1354 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1355 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1356 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1357 BGE_TX_BACKOFF_SEED_MASK);
1358
1359 /* Set inter-packet gap */
1360 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1361
1362 /*
1363 * Specify which ring to use for packets that don't match
1364 * any RX rules.
1365 */
1366 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1367
1368 /*
1369 * Configure number of RX lists. One interrupt distribution
1370 * list, sixteen active lists, one bad frames class.
1371 */
1372 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1373
1374 /* Inialize RX list placement stats mask. */
1375 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1376 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1377
1378 /* Disable host coalescing until we get it set up */
1379 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1380
1381 /* Poll to make sure it's shut down. */
1382 for (i = 0; i < BGE_TIMEOUT; i++) {
1383 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1384 break;
1385 DELAY(10);
1386 }
1387
1388 if (i == BGE_TIMEOUT) {
1389 printf("%s: host coalescing engine failed to idle\n",
1390 sc->bge_dev.dv_xname);
1391 return(ENXIO);
1392 }
1393
1394 /* Set up host coalescing defaults */
1395 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1396 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1397 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1398 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1399 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1400 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1401 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1402 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1403 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1404
1405 /* Set up address of statistics block */
1406 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1407 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1408 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1409 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1410
1411 /* Set up address of status block */
1412 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1413 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1414 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1415 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1416 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1417 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1418
1419 /* Turn on host coalescing state machine */
1420 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1421
1422 /* Turn on RX BD completion state machine and enable attentions */
1423 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1424 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1425
1426 /* Turn on RX list placement state machine */
1427 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1428
1429 /* Turn on RX list selector state machine. */
1430 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1431
1432 /* Turn on DMA, clear stats */
1433 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1434 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1435 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1436 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1437 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1438
1439 /* Set misc. local control, enable interrupts on attentions */
1440 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1441
1442 #ifdef notdef
1443 /* Assert GPIO pins for PHY reset */
1444 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1445 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1446 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1447 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1448 #endif
1449
1450 /* Turn on DMA completion state machine */
1451 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1452
1453 /* Turn on write DMA state machine */
1454 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1455 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1456
1457 /* Turn on read DMA state machine */
1458 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1459 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1460
1461 /* Turn on RX data completion state machine */
1462 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1463
1464 /* Turn on RX BD initiator state machine */
1465 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1466
1467 /* Turn on RX data and RX BD initiator state machine */
1468 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1469
1470 /* Turn on Mbuf cluster free state machine */
1471 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1472
1473 /* Turn on send BD completion state machine */
1474 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1475
1476 /* Turn on send data completion state machine */
1477 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1478
1479 /* Turn on send data initiator state machine */
1480 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1481
1482 /* Turn on send BD initiator state machine */
1483 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1484
1485 /* Turn on send BD selector state machine */
1486 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1487
1488 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1489 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1490 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1491
1492 /* init LED register */
1493 CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1494
1495 /* ack/clear link change events */
1496 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1497 BGE_MACSTAT_CFG_CHANGED);
1498 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1499
1500 /* Enable PHY auto polling (for MII/GMII only) */
1501 if (sc->bge_tbi) {
1502 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1503 } else {
1504 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1505 if (BGE_IS_5700_Ax_Bx(sc->bge_asicrev))
1506 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1507 BGE_EVTENB_MI_INTERRUPT);
1508 }
1509
1510 /* Enable link state change attentions. */
1511 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1512
1513 return(0);
1514 }
1515
1516 static const struct bge_product {
1517 pci_vendor_id_t bp_vendor;
1518 pci_product_id_t bp_product;
1519 const char *bp_name;
1520 } bge_products[] = {
1521 /*
1522 * The BCM5700 documentation seems to indicate that the hardware
1523 * still has the Alteon vendor ID burned into it, though it
1524 * should always be overridden by the value in the EEPROM. We'll
1525 * check for it anyway.
1526 */
1527 { PCI_VENDOR_ALTEON,
1528 PCI_PRODUCT_ALTEON_BCM5700,
1529 "Broadcom BCM5700 Gigabit Ethernet" },
1530 { PCI_VENDOR_ALTEON,
1531 PCI_PRODUCT_ALTEON_BCM5701,
1532 "Broadcom BCM5701 Gigabit Ethernet" },
1533
1534 { PCI_VENDOR_ALTIMA,
1535 PCI_PRODUCT_ALTIMA_AC1000,
1536 "Altima AC1000 Gigabit Ethernet" },
1537 { PCI_VENDOR_ALTIMA,
1538 PCI_PRODUCT_ALTIMA_AC9100,
1539 "Altima AC9100 Gigabit Ethernet" },
1540
1541 { PCI_VENDOR_BROADCOM,
1542 PCI_PRODUCT_BROADCOM_BCM5700,
1543 "Broadcom BCM5700 Gigabit Ethernet" },
1544 { PCI_VENDOR_BROADCOM,
1545 PCI_PRODUCT_BROADCOM_BCM5701,
1546 "Broadcom BCM5700 Gigabit Ethernet" },
1547
1548 { PCI_VENDOR_SCHNEIDERKOCH,
1549 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1550 "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1551
1552 { PCI_VENDOR_3COM,
1553 PCI_PRODUCT_3COM_3C996,
1554 "3Com 3c996 Gigabit Ethernet" },
1555
1556 { 0,
1557 0,
1558 NULL },
1559 };
1560
1561 static const struct bge_product *
1562 bge_lookup(const struct pci_attach_args *pa)
1563 {
1564 const struct bge_product *bp;
1565
1566 for (bp = bge_products; bp->bp_name != NULL; bp++) {
1567 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1568 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1569 return (bp);
1570 }
1571
1572 return (NULL);
1573 }
1574
1575 /*
1576 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1577 * against our list and return its name if we find a match. Note
1578 * that since the Broadcom controller contains VPD support, we
1579 * can get the device name string from the controller itself instead
1580 * of the compiled-in string. This is a little slow, but it guarantees
1581 * we'll always announce the right product name.
1582 */
1583 int
1584 bge_probe(parent, match, aux)
1585 struct device *parent;
1586 struct cfdata *match;
1587 void *aux;
1588 {
1589 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1590
1591 if (bge_lookup(pa) != NULL)
1592 return (1);
1593
1594 return (0);
1595 }
1596
1597 void
1598 bge_attach(parent, self, aux)
1599 struct device *parent, *self;
1600 void *aux;
1601 {
1602 struct bge_softc *sc = (struct bge_softc *)self;
1603 struct pci_attach_args *pa = aux;
1604 const struct bge_product *bp;
1605 pci_chipset_tag_t pc = pa->pa_pc;
1606 pci_intr_handle_t ih;
1607 const char *intrstr = NULL;
1608 bus_dma_segment_t seg;
1609 int rseg;
1610 u_int32_t hwcfg = 0;
1611 u_int32_t command;
1612 struct ifnet *ifp;
1613 int unit;
1614 caddr_t kva;
1615 u_char eaddr[ETHER_ADDR_LEN];
1616 pcireg_t memtype;
1617 bus_addr_t memaddr;
1618 bus_size_t memsize;
1619
1620 bp = bge_lookup(pa);
1621 KASSERT(bp != NULL);
1622
1623 sc->bge_pa = *pa;
1624
1625 printf(": %s, rev. 0x%02x\n", bp->bp_name, PCI_REVISION(pa->pa_class));
1626
1627 /*
1628 * Map control/status registers.
1629 */
1630 DPRINTFN(5, ("Map control/status regs\n"));
1631 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1632 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1633 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1634 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1635
1636 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1637 printf("%s: failed to enable memory mapping!\n",
1638 sc->bge_dev.dv_xname);
1639 return;
1640 }
1641
1642 DPRINTFN(5, ("pci_mem_find\n"));
1643 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1644 switch (memtype) {
1645 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1646 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1647 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1648 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1649 &memaddr, &memsize) == 0)
1650 break;
1651 default:
1652 printf("%s: can't find mem space\n",
1653 sc->bge_dev.dv_xname);
1654 return;
1655 }
1656
1657 DPRINTFN(5, ("pci_intr_map\n"));
1658 if (pci_intr_map(pa, &ih)) {
1659 printf("%s: couldn't map interrupt\n",
1660 sc->bge_dev.dv_xname);
1661 return;
1662 }
1663
1664 DPRINTFN(5, ("pci_intr_string\n"));
1665 intrstr = pci_intr_string(pc, ih);
1666
1667 DPRINTFN(5, ("pci_intr_establish\n"));
1668 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1669
1670 if (sc->bge_intrhand == NULL) {
1671 printf("%s: couldn't establish interrupt",
1672 sc->bge_dev.dv_xname);
1673 if (intrstr != NULL)
1674 printf(" at %s", intrstr);
1675 printf("\n");
1676 return;
1677 }
1678 printf("%s: interrupting at %s\n", sc->bge_dev.dv_xname, intrstr);
1679
1680 /* Try to reset the chip. */
1681 DPRINTFN(5, ("bge_reset\n"));
1682 bge_reset(sc);
1683
1684 if (bge_chipinit(sc)) {
1685 printf("%s: chip initializatino failed\n",
1686 sc->bge_dev.dv_xname);
1687 bge_release_resources(sc);
1688 return;
1689 }
1690
1691 /*
1692 * Get station address from the EEPROM.
1693 */
1694 if (bge_read_eeprom(sc, (caddr_t)eaddr,
1695 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1696 printf("bge%d: failed to read station address\n", unit);
1697 bge_release_resources(sc);
1698 return;
1699 }
1700
1701 /*
1702 * A Broadcom chip was detected. Inform the world.
1703 */
1704 printf("%s: Ethernet address %s\n", sc->bge_dev.dv_xname,
1705 ether_sprintf(eaddr));
1706
1707 /* Allocate the general information block and ring buffers. */
1708 sc->bge_dmatag = pa->pa_dmat;
1709 DPRINTFN(5, ("bus_dmamem_alloc\n"));
1710 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
1711 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1712 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
1713 return;
1714 }
1715 DPRINTFN(5, ("bus_dmamem_map\n"));
1716 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
1717 sizeof(struct bge_ring_data), &kva,
1718 BUS_DMA_NOWAIT)) {
1719 printf("%s: can't map dma buffers (%d bytes)\n",
1720 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
1721 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1722 return;
1723 }
1724 DPRINTFN(5, ("bus_dmamem_create\n"));
1725 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
1726 sizeof(struct bge_ring_data), 0,
1727 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
1728 printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
1729 bus_dmamem_unmap(sc->bge_dmatag, kva,
1730 sizeof(struct bge_ring_data));
1731 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1732 return;
1733 }
1734 DPRINTFN(5, ("bus_dmamem_load\n"));
1735 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
1736 sizeof(struct bge_ring_data), NULL,
1737 BUS_DMA_NOWAIT)) {
1738 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
1739 bus_dmamem_unmap(sc->bge_dmatag, kva,
1740 sizeof(struct bge_ring_data));
1741 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1742 return;
1743 }
1744
1745 DPRINTFN(5, ("bzero\n"));
1746 sc->bge_rdata = (struct bge_ring_data *)kva;
1747
1748 memset(sc->bge_rdata, sizeof(struct bge_ring_data), 0);
1749
1750 /* Try to allocate memory for jumbo buffers. */
1751 if (bge_alloc_jumbo_mem(sc)) {
1752 printf("%s: jumbo buffer allocation failed\n",
1753 sc->bge_dev.dv_xname);
1754 } else
1755 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1756
1757 /* Set default tuneable values. */
1758 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1759 sc->bge_rx_coal_ticks = 150;
1760 sc->bge_tx_coal_ticks = 150;
1761 sc->bge_rx_max_coal_bds = 64;
1762 sc->bge_tx_max_coal_bds = 128;
1763
1764 /* Set up ifnet structure */
1765 ifp = &sc->ethercom.ec_if;
1766 ifp->if_softc = sc;
1767 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1768 ifp->if_ioctl = bge_ioctl;
1769 ifp->if_start = bge_start;
1770 ifp->if_init = bge_init;
1771 ifp->if_watchdog = bge_watchdog;
1772 IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1773 IFQ_SET_READY(&ifp->if_snd);
1774 DPRINTFN(5, ("bcopy\n"));
1775 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
1776
1777 sc->ethercom.ec_if.if_capabilities |=
1778 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
1779 sc->ethercom.ec_capabilities |=
1780 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
1781
1782 /*
1783 * Do MII setup.
1784 */
1785 DPRINTFN(5, ("mii setup\n"));
1786 sc->bge_mii.mii_ifp = ifp;
1787 sc->bge_mii.mii_readreg = bge_miibus_readreg;
1788 sc->bge_mii.mii_writereg = bge_miibus_writereg;
1789 sc->bge_mii.mii_statchg = bge_miibus_statchg;
1790
1791 /* Save ASIC rev. */
1792
1793 sc->bge_asicrev =
1794 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
1795 BGE_PCIMISCCTL_ASICREV;
1796
1797 /*
1798 * Figure out what sort of media we have by checking the
1799 * hardware config word in the EEPROM. Note: on some BCM5700
1800 * cards, this value appears to be unset. If that's the
1801 * case, we have to rely on identifying the NIC by its PCI
1802 * subsystem ID, as we do below for the SysKonnect SK-9D41.
1803 */
1804 bge_read_eeprom(sc, (caddr_t)&hwcfg,
1805 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1806 if ((be32toh(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1807 sc->bge_tbi = 1;
1808
1809 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1810 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
1811 SK_SUBSYSID_9D41)
1812 sc->bge_tbi = 1;
1813
1814 if (sc->bge_tbi) {
1815 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
1816 bge_ifmedia_sts);
1817 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1818 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
1819 0, NULL);
1820 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1821 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1822 } else {
1823 /*
1824 * Do transceiver setup.
1825 */
1826 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
1827 bge_ifmedia_sts);
1828 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
1829 MII_PHY_ANY, MII_OFFSET_ANY, 0);
1830
1831 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
1832 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
1833 ifmedia_add(&sc->bge_mii.mii_media,
1834 IFM_ETHER|IFM_MANUAL, 0, NULL);
1835 ifmedia_set(&sc->bge_mii.mii_media,
1836 IFM_ETHER|IFM_MANUAL);
1837 } else
1838 ifmedia_set(&sc->bge_mii.mii_media,
1839 IFM_ETHER|IFM_AUTO);
1840 }
1841
1842 /*
1843 * Call MI attach routine.
1844 */
1845 DPRINTFN(5, ("if_attach\n"));
1846 if_attach(ifp);
1847 DPRINTFN(5, ("ether_ifattach\n"));
1848 ether_ifattach(ifp, eaddr);
1849 DPRINTFN(5, ("callout_init\n"));
1850 callout_init(&sc->bge_timeout);
1851 }
1852
1853 void
1854 bge_release_resources(sc)
1855 struct bge_softc *sc;
1856 {
1857 if (sc->bge_vpd_prodname != NULL)
1858 free(sc->bge_vpd_prodname, M_DEVBUF);
1859
1860 if (sc->bge_vpd_readonly != NULL)
1861 free(sc->bge_vpd_readonly, M_DEVBUF);
1862 }
1863
1864 void
1865 bge_reset(sc)
1866 struct bge_softc *sc;
1867 {
1868 struct pci_attach_args *pa = &sc->bge_pa;
1869 u_int32_t cachesize, command, pcistate;
1870 int i, val = 0;
1871
1872 /* Save some important PCI state. */
1873 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1874 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
1875 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
1876
1877 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1878 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1879 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
1880
1881 /* Issue global reset */
1882 bge_writereg_ind(sc, BGE_MISC_CFG,
1883 BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1884
1885 DELAY(1000);
1886
1887 /* Reset some of the PCI state that got zapped by reset */
1888 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1889 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1890 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
1891 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
1892 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
1893 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1894
1895 /* Enable memory arbiter. */
1896 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1897
1898 /*
1899 * Prevent PXE restart: write a magic number to the
1900 * general communications memory at 0xB50.
1901 */
1902 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1903
1904 /*
1905 * Poll the value location we just wrote until
1906 * we see the 1's complement of the magic number.
1907 * This indicates that the firmware initialization
1908 * is complete.
1909 */
1910 for (i = 0; i < 750; i++) {
1911 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1912 if (val == ~BGE_MAGIC_NUMBER)
1913 break;
1914 DELAY(1000);
1915 }
1916
1917 if (i == 750) {
1918 printf("%s: firmware handshake timed out, val = %x\n",
1919 sc->bge_dev.dv_xname, val);
1920 return;
1921 }
1922
1923 /*
1924 * XXX Wait for the value of the PCISTATE register to
1925 * return to its original pre-reset state. This is a
1926 * fairly good indicator of reset completion. If we don't
1927 * wait for the reset to fully complete, trying to read
1928 * from the device's non-PCI registers may yield garbage
1929 * results.
1930 */
1931 for (i = 0; i < BGE_TIMEOUT; i++) {
1932 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
1933 pcistate)
1934 break;
1935 DELAY(10);
1936 }
1937
1938 /* Enable memory arbiter. */
1939 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1940
1941 /* Fix up byte swapping */
1942 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
1943
1944 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1945
1946 DELAY(10000);
1947 }
1948
1949 /*
1950 * Frame reception handling. This is called if there's a frame
1951 * on the receive return list.
1952 *
1953 * Note: we have to be able to handle two possibilities here:
1954 * 1) the frame is from the jumbo recieve ring
1955 * 2) the frame is from the standard receive ring
1956 */
1957
1958 void
1959 bge_rxeof(sc)
1960 struct bge_softc *sc;
1961 {
1962 struct ifnet *ifp;
1963 int stdcnt = 0, jumbocnt = 0;
1964 int have_tag = 0;
1965 u_int16_t vlan_tag = 0;
1966 bus_dmamap_t dmamap;
1967 bus_addr_t offset, toff;
1968 bus_size_t tlen;
1969 int tosync;
1970
1971 ifp = &sc->ethercom.ec_if;
1972
1973 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1974 offsetof(struct bge_ring_data, bge_status_block),
1975 sizeof (struct bge_status_block),
1976 BUS_DMASYNC_POSTREAD);
1977
1978 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
1979 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
1980 sc->bge_rx_saved_considx;
1981
1982 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
1983
1984 if (tosync < 0) {
1985 tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
1986 sizeof (struct bge_rx_bd);
1987 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1988 toff, tlen, BUS_DMASYNC_POSTREAD);
1989 tosync = -tosync;
1990 }
1991
1992 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1993 offset, tosync * sizeof (struct bge_rx_bd),
1994 BUS_DMASYNC_POSTREAD);
1995
1996 while(sc->bge_rx_saved_considx !=
1997 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1998 struct bge_rx_bd *cur_rx;
1999 u_int32_t rxidx;
2000 struct mbuf *m = NULL;
2001
2002 cur_rx = &sc->bge_rdata->
2003 bge_rx_return_ring[sc->bge_rx_saved_considx];
2004
2005 rxidx = cur_rx->bge_idx;
2006 BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2007
2008 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2009 have_tag = 1;
2010 vlan_tag = cur_rx->bge_vlan_tag;
2011 }
2012
2013 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2014 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2015 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2016 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2017 jumbocnt++;
2018 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2019 ifp->if_ierrors++;
2020 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2021 continue;
2022 }
2023 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2024 NULL)== ENOBUFS) {
2025 ifp->if_ierrors++;
2026 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2027 continue;
2028 }
2029 } else {
2030 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2031 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2032 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2033 stdcnt++;
2034 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2035 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2036 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2037 ifp->if_ierrors++;
2038 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2039 continue;
2040 }
2041 if (bge_newbuf_std(sc, sc->bge_std,
2042 NULL, dmamap) == ENOBUFS) {
2043 ifp->if_ierrors++;
2044 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2045 continue;
2046 }
2047 }
2048
2049 ifp->if_ipackets++;
2050 m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2051 m->m_pkthdr.rcvif = ifp;
2052
2053 #if NBPFILTER > 0
2054 /*
2055 * Handle BPF listeners. Let the BPF user see the packet.
2056 */
2057 if (ifp->if_bpf)
2058 bpf_mtap(ifp->if_bpf, m);
2059 #endif
2060
2061 if (sc->bge_asicrev != BGE_ASICREV_BCM5700_B0) {
2062 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2063 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2064 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2065 #if 0 /* XXX appears to be broken */
2066 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2067 m->m_pkthdr.csum_data =
2068 cur_rx->bge_tcp_udp_csum;
2069 m->m_pkthdr.csum_flags |=
2070 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2071 }
2072 #endif
2073 }
2074
2075 /*
2076 * If we received a packet with a vlan tag, pass it
2077 * to vlan_input() instead of ether_input().
2078 */
2079 if (have_tag) {
2080 struct mbuf *n;
2081
2082 n = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
2083 if (n != NULL) {
2084 *mtod(n, int *) = vlan_tag;
2085 n->m_len = sizeof(int);
2086 have_tag = vlan_tag = 0;
2087 } else {
2088 printf("%s: no mbuf for tag\n", ifp->if_xname);
2089 m_freem(m);
2090 have_tag = vlan_tag = 0;
2091 continue;
2092 }
2093 }
2094 (*ifp->if_input)(ifp, m);
2095 }
2096
2097 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2098 if (stdcnt)
2099 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2100 if (jumbocnt)
2101 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2102 }
2103
2104 void
2105 bge_txeof(sc)
2106 struct bge_softc *sc;
2107 {
2108 struct bge_tx_bd *cur_tx = NULL;
2109 struct ifnet *ifp;
2110 struct txdmamap_pool_entry *dma;
2111 bus_addr_t offset, toff;
2112 bus_size_t tlen;
2113 int tosync;
2114 struct mbuf *m;
2115
2116 ifp = &sc->ethercom.ec_if;
2117
2118 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2119 offsetof(struct bge_ring_data, bge_status_block),
2120 sizeof (struct bge_status_block),
2121 BUS_DMASYNC_POSTREAD);
2122
2123 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2124 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2125 sc->bge_tx_saved_considx;
2126
2127 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2128
2129 if (tosync < 0) {
2130 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2131 sizeof (struct bge_tx_bd);
2132 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2133 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2134 tosync = -tosync;
2135 }
2136
2137 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2138 offset, tosync * sizeof (struct bge_tx_bd),
2139 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2140
2141 /*
2142 * Go through our tx ring and free mbufs for those
2143 * frames that have been sent.
2144 */
2145 while (sc->bge_tx_saved_considx !=
2146 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2147 u_int32_t idx = 0;
2148
2149 idx = sc->bge_tx_saved_considx;
2150 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2151 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2152 ifp->if_opackets++;
2153 m = sc->bge_cdata.bge_tx_chain[idx];
2154 if (m != NULL) {
2155 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2156 dma = sc->txdma[idx];
2157 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2158 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2159 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2160 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2161 sc->txdma[idx] = NULL;
2162
2163 m_freem(m);
2164 }
2165 sc->bge_txcnt--;
2166 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2167 ifp->if_timer = 0;
2168 }
2169
2170 if (cur_tx != NULL)
2171 ifp->if_flags &= ~IFF_OACTIVE;
2172 }
2173
2174 int
2175 bge_intr(xsc)
2176 void *xsc;
2177 {
2178 struct bge_softc *sc;
2179 struct ifnet *ifp;
2180
2181 sc = xsc;
2182 ifp = &sc->ethercom.ec_if;
2183
2184 #ifdef notdef
2185 /* Avoid this for now -- checking this register is expensive. */
2186 /* Make sure this is really our interrupt. */
2187 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2188 return (0);
2189 #endif
2190 /* Ack interrupt and stop others from occuring. */
2191 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2192
2193 /*
2194 * Process link state changes.
2195 * Grrr. The link status word in the status block does
2196 * not work correctly on the BCM5700 rev AX and BX chips,
2197 * according to all avaibable information. Hence, we have
2198 * to enable MII interrupts in order to properly obtain
2199 * async link changes. Unfortunately, this also means that
2200 * we have to read the MAC status register to detect link
2201 * changes, thereby adding an additional register access to
2202 * the interrupt handler.
2203 */
2204
2205 if (BGE_IS_5700_Ax_Bx(sc->bge_asicrev)) {
2206 u_int32_t status;
2207
2208 status = CSR_READ_4(sc, BGE_MAC_STS);
2209 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2210 sc->bge_link = 0;
2211 callout_stop(&sc->bge_timeout);
2212 bge_tick(sc);
2213 /* Clear the interrupt */
2214 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2215 BGE_EVTENB_MI_INTERRUPT);
2216 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2217 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2218 BRGPHY_INTRS);
2219 }
2220 } else {
2221 if (sc->bge_rdata->bge_status_block.bge_status &
2222 BGE_STATFLAG_LINKSTATE_CHANGED) {
2223 sc->bge_link = 0;
2224 callout_stop(&sc->bge_timeout);
2225 bge_tick(sc);
2226 /* Clear the interrupt */
2227 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2228 BGE_MACSTAT_CFG_CHANGED);
2229 }
2230 }
2231
2232 if (ifp->if_flags & IFF_RUNNING) {
2233 /* Check RX return ring producer/consumer */
2234 bge_rxeof(sc);
2235
2236 /* Check TX ring producer/consumer */
2237 bge_txeof(sc);
2238 }
2239
2240 bge_handle_events(sc);
2241
2242 /* Re-enable interrupts. */
2243 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2244
2245 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2246 bge_start(ifp);
2247
2248 return (1);
2249 }
2250
2251 void
2252 bge_tick(xsc)
2253 void *xsc;
2254 {
2255 struct bge_softc *sc = xsc;
2256 struct mii_data *mii = &sc->bge_mii;
2257 struct ifmedia *ifm = NULL;
2258 struct ifnet *ifp = &sc->ethercom.ec_if;
2259 int s;
2260
2261 s = splnet();
2262
2263 bge_stats_update(sc);
2264 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2265 if (sc->bge_link) {
2266 splx(s);
2267 return;
2268 }
2269
2270 if (sc->bge_tbi) {
2271 ifm = &sc->bge_ifmedia;
2272 if (CSR_READ_4(sc, BGE_MAC_STS) &
2273 BGE_MACSTAT_TBI_PCS_SYNCHED) {
2274 sc->bge_link++;
2275 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2276 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2277 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2278 bge_start(ifp);
2279 }
2280 splx(s);
2281 return;
2282 }
2283
2284 mii_tick(mii);
2285
2286 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2287 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2288 sc->bge_link++;
2289 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2290 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2291 printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2292 if (!IFQ_IS_EMPTY(&ifp->if_snd))
2293 bge_start(ifp);
2294 }
2295
2296 splx(s);
2297 }
2298
2299 void
2300 bge_stats_update(sc)
2301 struct bge_softc *sc;
2302 {
2303 struct ifnet *ifp = &sc->ethercom.ec_if;
2304 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2305
2306 #define READ_STAT(sc, stats, stat) \
2307 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2308
2309 ifp->if_collisions +=
2310 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2311 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2312 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2313 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2314 ifp->if_collisions;
2315
2316 #undef READ_STAT
2317
2318 #ifdef notdef
2319 ifp->if_collisions +=
2320 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2321 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2322 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2323 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2324 ifp->if_collisions;
2325 #endif
2326 }
2327
2328 /*
2329 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2330 * pointers to descriptors.
2331 */
2332 int
2333 bge_encap(sc, m_head, txidx)
2334 struct bge_softc *sc;
2335 struct mbuf *m_head;
2336 u_int32_t *txidx;
2337 {
2338 struct bge_tx_bd *f = NULL;
2339 u_int32_t frag, cur, cnt = 0;
2340 u_int16_t csum_flags = 0;
2341 struct txdmamap_pool_entry *dma;
2342 bus_dmamap_t dmamap;
2343 int i = 0;
2344 struct mbuf *n;
2345
2346 cur = frag = *txidx;
2347
2348 if (m_head->m_pkthdr.csum_flags) {
2349 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2350 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2351 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2352 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2353 }
2354
2355 dma = SLIST_FIRST(&sc->txdma_list);
2356 if (dma == NULL)
2357 return ENOBUFS;
2358 dmamap = dma->dmamap;
2359
2360 /*
2361 * Start packing the mbufs in this chain into
2362 * the fragment pointers. Stop when we run out
2363 * of fragments or hit the end of the mbuf chain.
2364 */
2365 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2366 BUS_DMA_NOWAIT))
2367 return(ENOBUFS);
2368
2369 n = sc->ethercom.ec_nvlans ?
2370 m_aux_find(m_head, AF_LINK, ETHERTYPE_VLAN) : NULL;
2371
2372 for (i = 0; i < dmamap->dm_nsegs; i++) {
2373 f = &sc->bge_rdata->bge_tx_ring[frag];
2374 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2375 break;
2376 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2377 f->bge_len = dmamap->dm_segs[i].ds_len;
2378 f->bge_flags = csum_flags;
2379
2380 if (n != NULL) {
2381 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2382 f->bge_vlan_tag = *mtod(n, int *);
2383 } else {
2384 f->bge_vlan_tag = 0;
2385 }
2386 /*
2387 * Sanity check: avoid coming within 16 descriptors
2388 * of the end of the ring.
2389 */
2390 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2391 return(ENOBUFS);
2392 cur = frag;
2393 BGE_INC(frag, BGE_TX_RING_CNT);
2394 cnt++;
2395 }
2396
2397 if (i < dmamap->dm_nsegs)
2398 return ENOBUFS;
2399
2400 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2401 BUS_DMASYNC_PREWRITE);
2402
2403 if (frag == sc->bge_tx_saved_considx)
2404 return(ENOBUFS);
2405
2406 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2407 sc->bge_cdata.bge_tx_chain[cur] = m_head;
2408 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2409 sc->txdma[cur] = dma;
2410 sc->bge_txcnt += cnt;
2411
2412 *txidx = frag;
2413
2414 return(0);
2415 }
2416
2417 /*
2418 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2419 * to the mbuf data regions directly in the transmit descriptors.
2420 */
2421 void
2422 bge_start(ifp)
2423 struct ifnet *ifp;
2424 {
2425 struct bge_softc *sc;
2426 struct mbuf *m_head = NULL;
2427 u_int32_t prodidx = 0;
2428 int pkts = 0;
2429
2430 sc = ifp->if_softc;
2431
2432 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2433 return;
2434
2435 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2436
2437 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2438 IFQ_POLL(&ifp->if_snd, m_head);
2439 if (m_head == NULL)
2440 break;
2441
2442 #if 0
2443 /*
2444 * XXX
2445 * safety overkill. If this is a fragmented packet chain
2446 * with delayed TCP/UDP checksums, then only encapsulate
2447 * it if we have enough descriptors to handle the entire
2448 * chain at once.
2449 * (paranoia -- may not actually be needed)
2450 */
2451 if (m_head->m_flags & M_FIRSTFRAG &&
2452 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2453 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2454 m_head->m_pkthdr.csum_data + 16) {
2455 ifp->if_flags |= IFF_OACTIVE;
2456 break;
2457 }
2458 }
2459 #endif
2460
2461 /*
2462 * Pack the data into the transmit ring. If we
2463 * don't have room, set the OACTIVE flag and wait
2464 * for the NIC to drain the ring.
2465 */
2466 if (bge_encap(sc, m_head, &prodidx)) {
2467 ifp->if_flags |= IFF_OACTIVE;
2468 break;
2469 }
2470
2471 /* now we are committed to transmit the packet */
2472 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2473 pkts++;
2474
2475 #if NBPFILTER > 0
2476 /*
2477 * If there's a BPF listener, bounce a copy of this frame
2478 * to him.
2479 */
2480 if (ifp->if_bpf)
2481 bpf_mtap(ifp->if_bpf, m_head);
2482 #endif
2483 }
2484 if (pkts == 0)
2485 return;
2486
2487 /* Transmit */
2488 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2489
2490 /*
2491 * Set a timeout in case the chip goes out to lunch.
2492 */
2493 ifp->if_timer = 5;
2494 }
2495
2496 /*
2497 * If we have a BCM5400 or BCM5401 PHY, we need to properly
2498 * program its internal DSP. Failing to do this can result in
2499 * massive packet loss at 1Gb speeds.
2500 */
2501 void
2502 bge_phy_hack(sc)
2503 struct bge_softc *sc;
2504 {
2505 struct bge_bcom_hack bhack[] = {
2506 { BRGPHY_MII_AUXCTL, 0x4C20 },
2507 { BRGPHY_MII_DSP_ADDR_REG, 0x0012 },
2508 { BRGPHY_MII_DSP_RW_PORT, 0x1804 },
2509 { BRGPHY_MII_DSP_ADDR_REG, 0x0013 },
2510 { BRGPHY_MII_DSP_RW_PORT, 0x1204 },
2511 { BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2512 { BRGPHY_MII_DSP_RW_PORT, 0x0132 },
2513 { BRGPHY_MII_DSP_ADDR_REG, 0x8006 },
2514 { BRGPHY_MII_DSP_RW_PORT, 0x0232 },
2515 { BRGPHY_MII_DSP_ADDR_REG, 0x201F },
2516 { BRGPHY_MII_DSP_RW_PORT, 0x0A20 },
2517 { 0, 0 } };
2518 u_int16_t vid, did;
2519 int i;
2520
2521 vid = bge_miibus_readreg(&sc->bge_dev, 1, MII_PHYIDR1);
2522 did = bge_miibus_readreg(&sc->bge_dev, 1, MII_PHYIDR2);
2523
2524 if (MII_OUI(vid, did) == MII_OUI_BROADCOM &&
2525 (MII_MODEL(did) == MII_MODEL_BROADCOM_BCM5400 ||
2526 MII_MODEL(did) == MII_MODEL_BROADCOM_BCM5401)) {
2527 i = 0;
2528 while (bhack[i].reg) {
2529 bge_miibus_writereg(&sc->bge_dev, 1, bhack[i].reg,
2530 bhack[i].val);
2531 i++;
2532 }
2533 }
2534 }
2535
2536 int
2537 bge_init(ifp)
2538 struct ifnet *ifp;
2539 {
2540 struct bge_softc *sc = ifp->if_softc;
2541 u_int16_t *m;
2542 int s, error;
2543
2544 s = splnet();
2545
2546 ifp = &sc->ethercom.ec_if;
2547
2548 /* Cancel pending I/O and flush buffers. */
2549 bge_stop(sc);
2550 bge_reset(sc);
2551 bge_chipinit(sc);
2552
2553 /*
2554 * Init the various state machines, ring
2555 * control blocks and firmware.
2556 */
2557 error = bge_blockinit(sc);
2558 if (error != 0) {
2559 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2560 error);
2561 splx(s);
2562 return error;
2563 }
2564
2565 ifp = &sc->ethercom.ec_if;
2566
2567 /* Specify MTU. */
2568 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2569 ETHER_HDR_LEN + ETHER_CRC_LEN);
2570
2571 /* Load our MAC address. */
2572 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2573 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2574 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2575
2576 /* Enable or disable promiscuous mode as needed. */
2577 if (ifp->if_flags & IFF_PROMISC) {
2578 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2579 } else {
2580 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2581 }
2582
2583 /* Program multicast filter. */
2584 bge_setmulti(sc);
2585
2586 /* Init RX ring. */
2587 bge_init_rx_ring_std(sc);
2588
2589 /* Init jumbo RX ring. */
2590 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2591 bge_init_rx_ring_jumbo(sc);
2592
2593 /* Init our RX return ring index */
2594 sc->bge_rx_saved_considx = 0;
2595
2596 /* Init TX ring. */
2597 bge_init_tx_ring(sc);
2598
2599 /* Turn on transmitter */
2600 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2601
2602 /* Turn on receiver */
2603 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2604
2605 /* Tell firmware we're alive. */
2606 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2607
2608 /* Enable host interrupts. */
2609 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2610 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2611 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2612
2613 bge_ifmedia_upd(ifp);
2614
2615 ifp->if_flags |= IFF_RUNNING;
2616 ifp->if_flags &= ~IFF_OACTIVE;
2617
2618 splx(s);
2619
2620 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2621
2622 return 0;
2623 }
2624
2625 /*
2626 * Set media options.
2627 */
2628 int
2629 bge_ifmedia_upd(ifp)
2630 struct ifnet *ifp;
2631 {
2632 struct bge_softc *sc = ifp->if_softc;
2633 struct mii_data *mii = &sc->bge_mii;
2634 struct ifmedia *ifm = &sc->bge_ifmedia;
2635
2636 /* If this is a 1000baseX NIC, enable the TBI port. */
2637 if (sc->bge_tbi) {
2638 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2639 return(EINVAL);
2640 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2641 case IFM_AUTO:
2642 break;
2643 case IFM_1000_SX:
2644 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2645 BGE_CLRBIT(sc, BGE_MAC_MODE,
2646 BGE_MACMODE_HALF_DUPLEX);
2647 } else {
2648 BGE_SETBIT(sc, BGE_MAC_MODE,
2649 BGE_MACMODE_HALF_DUPLEX);
2650 }
2651 break;
2652 default:
2653 return(EINVAL);
2654 }
2655 return(0);
2656 }
2657
2658 sc->bge_link = 0;
2659 if (mii->mii_instance) {
2660 struct mii_softc *miisc;
2661 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2662 miisc = LIST_NEXT(miisc, mii_list))
2663 mii_phy_reset(miisc);
2664 }
2665 bge_phy_hack(sc);
2666 mii_mediachg(mii);
2667
2668 return(0);
2669 }
2670
2671 /*
2672 * Report current media status.
2673 */
2674 void
2675 bge_ifmedia_sts(ifp, ifmr)
2676 struct ifnet *ifp;
2677 struct ifmediareq *ifmr;
2678 {
2679 struct bge_softc *sc = ifp->if_softc;
2680 struct mii_data *mii = &sc->bge_mii;
2681
2682 if (sc->bge_tbi) {
2683 ifmr->ifm_status = IFM_AVALID;
2684 ifmr->ifm_active = IFM_ETHER;
2685 if (CSR_READ_4(sc, BGE_MAC_STS) &
2686 BGE_MACSTAT_TBI_PCS_SYNCHED)
2687 ifmr->ifm_status |= IFM_ACTIVE;
2688 ifmr->ifm_active |= IFM_1000_SX;
2689 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2690 ifmr->ifm_active |= IFM_HDX;
2691 else
2692 ifmr->ifm_active |= IFM_FDX;
2693 return;
2694 }
2695
2696 mii_pollstat(mii);
2697 ifmr->ifm_active = mii->mii_media_active;
2698 ifmr->ifm_status = mii->mii_media_status;
2699 }
2700
2701 int
2702 bge_ioctl(ifp, command, data)
2703 struct ifnet *ifp;
2704 u_long command;
2705 caddr_t data;
2706 {
2707 struct bge_softc *sc = ifp->if_softc;
2708 struct ifreq *ifr = (struct ifreq *) data;
2709 int s, error = 0;
2710 struct mii_data *mii;
2711
2712 s = splnet();
2713
2714 switch(command) {
2715 case SIOCSIFFLAGS:
2716 if (ifp->if_flags & IFF_UP) {
2717 /*
2718 * If only the state of the PROMISC flag changed,
2719 * then just use the 'set promisc mode' command
2720 * instead of reinitializing the entire NIC. Doing
2721 * a full re-init means reloading the firmware and
2722 * waiting for it to start up, which may take a
2723 * second or two.
2724 */
2725 if (ifp->if_flags & IFF_RUNNING &&
2726 ifp->if_flags & IFF_PROMISC &&
2727 !(sc->bge_if_flags & IFF_PROMISC)) {
2728 BGE_SETBIT(sc, BGE_RX_MODE,
2729 BGE_RXMODE_RX_PROMISC);
2730 } else if (ifp->if_flags & IFF_RUNNING &&
2731 !(ifp->if_flags & IFF_PROMISC) &&
2732 sc->bge_if_flags & IFF_PROMISC) {
2733 BGE_CLRBIT(sc, BGE_RX_MODE,
2734 BGE_RXMODE_RX_PROMISC);
2735 } else
2736 bge_init(ifp);
2737 } else {
2738 if (ifp->if_flags & IFF_RUNNING) {
2739 bge_stop(sc);
2740 }
2741 }
2742 sc->bge_if_flags = ifp->if_flags;
2743 error = 0;
2744 break;
2745 case SIOCSIFMEDIA:
2746 case SIOCGIFMEDIA:
2747 if (sc->bge_tbi) {
2748 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
2749 command);
2750 } else {
2751 mii = &sc->bge_mii;
2752 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2753 command);
2754 }
2755 error = 0;
2756 break;
2757 default:
2758 error = ether_ioctl(ifp, command, data);
2759 if (error == ENETRESET) {
2760 bge_setmulti(sc);
2761 error = 0;
2762 }
2763 break;
2764 }
2765
2766 splx(s);
2767
2768 return(error);
2769 }
2770
2771 void
2772 bge_watchdog(ifp)
2773 struct ifnet *ifp;
2774 {
2775 struct bge_softc *sc;
2776
2777 sc = ifp->if_softc;
2778
2779 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
2780
2781 ifp->if_flags &= ~IFF_RUNNING;
2782 bge_init(ifp);
2783
2784 ifp->if_oerrors++;
2785 }
2786
2787 /*
2788 * Stop the adapter and free any mbufs allocated to the
2789 * RX and TX lists.
2790 */
2791 void
2792 bge_stop(sc)
2793 struct bge_softc *sc;
2794 {
2795 struct ifnet *ifp = &sc->ethercom.ec_if;
2796
2797 callout_stop(&sc->bge_timeout);
2798
2799 /*
2800 * Disable all of the receiver blocks
2801 */
2802 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2803 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2804 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2805 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2806 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2807 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2808 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2809
2810 /*
2811 * Disable all of the transmit blocks
2812 */
2813 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2814 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2815 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2816 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2817 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2818 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2819 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2820
2821 /*
2822 * Shut down all of the memory managers and related
2823 * state machines.
2824 */
2825 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2826 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2827 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2828 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2829 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2830 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2831 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2832
2833 /* Disable host interrupts. */
2834 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2835 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2836
2837 /*
2838 * Tell firmware we're shutting down.
2839 */
2840 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2841
2842 /* Free the RX lists. */
2843 bge_free_rx_ring_std(sc);
2844
2845 /* Free jumbo RX list. */
2846 bge_free_rx_ring_jumbo(sc);
2847
2848 /* Free TX buffers. */
2849 bge_free_tx_ring(sc);
2850
2851 /*
2852 * Isolate/power down the PHY.
2853 */
2854 if (!sc->bge_tbi)
2855 mii_down(&sc->bge_mii);
2856
2857 sc->bge_link = 0;
2858
2859 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2860
2861 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2862 }
2863
2864 /*
2865 * Stop all chip I/O so that the kernel's probe routines don't
2866 * get confused by errant DMAs when rebooting.
2867 */
2868 void
2869 bge_shutdown(xsc)
2870 void *xsc;
2871 {
2872 struct bge_softc *sc = (struct bge_softc *)xsc;
2873
2874 bge_stop(sc);
2875 bge_reset(sc);
2876 }
2877