if_bge.c revision 1.91 1 /* $NetBSD: if_bge.c,v 1.91 2005/08/21 21:32:26 gavan Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.91 2005/08/21 21:32:26 gavan Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 #if NBPFILTER > 0
111 #include <net/bpf.h>
112 #endif
113
114 #include <dev/pci/pcireg.h>
115 #include <dev/pci/pcivar.h>
116 #include <dev/pci/pcidevs.h>
117
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 #include <dev/mii/miidevs.h>
121 #include <dev/mii/brgphyreg.h>
122
123 #include <dev/pci/if_bgereg.h>
124
125 #include <uvm/uvm_extern.h>
126
127 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
128
129
130 /*
131 * Tunable thresholds for rx-side bge interrupt mitigation.
132 */
133
134 /*
135 * The pairs of values below were obtained from empirical measurement
136 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
137 * interrupt for every N packets received, where N is, approximately,
138 * the second value (rx_max_bds) in each pair. The values are chosen
139 * such that moving from one pair to the succeeding pair was observed
140 * to roughly halve interrupt rate under sustained input packet load.
141 * The values were empirically chosen to avoid overflowing internal
142 * limits on the bcm5700: inreasing rx_ticks much beyond 600
143 * results in internal wrapping and higher interrupt rates.
144 * The limit of 46 frames was chosen to match NFS workloads.
145 *
146 * These values also work well on bcm5701, bcm5704C, and (less
147 * tested) bcm5703. On other chipsets, (including the Altima chip
148 * family), the larger values may overflow internal chip limits,
149 * leading to increasing interrupt rates rather than lower interrupt
150 * rates.
151 *
152 * Applications using heavy interrupt mitigation (interrupting every
153 * 32 or 46 frames) in both directions may need to increase the TCP
154 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
155 * full link bandwidth, due to ACKs and window updates lingering
156 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
157 */
158 struct bge_load_rx_thresh {
159 int rx_ticks;
160 int rx_max_bds; }
161 bge_rx_threshes[] = {
162 { 32, 2 },
163 { 50, 4 },
164 { 100, 8 },
165 { 192, 16 },
166 { 416, 32 },
167 { 598, 46 }
168 };
169 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
170
171 /* XXX patchable; should be sysctl'able */
172 static int bge_auto_thresh = 1;
173 static int bge_rx_thresh_lvl;
174
175 #ifdef __NetBSD__
176 static int bge_rxthresh_nodenum;
177 #endif /* __NetBSD__ */
178
179 int bge_probe(struct device *, struct cfdata *, void *);
180 void bge_attach(struct device *, struct device *, void *);
181 void bge_powerhook(int, void *);
182 void bge_release_resources(struct bge_softc *);
183 void bge_txeof(struct bge_softc *);
184 void bge_rxeof(struct bge_softc *);
185
186 void bge_tick(void *);
187 void bge_stats_update(struct bge_softc *);
188 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
189 static __inline int bge_cksum_pad(struct mbuf *pkt);
190 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
191
192 int bge_intr(void *);
193 void bge_start(struct ifnet *);
194 int bge_ioctl(struct ifnet *, u_long, caddr_t);
195 int bge_init(struct ifnet *);
196 void bge_stop(struct bge_softc *);
197 void bge_watchdog(struct ifnet *);
198 void bge_shutdown(void *);
199 int bge_ifmedia_upd(struct ifnet *);
200 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
201
202 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
203 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
204
205 void bge_setmulti(struct bge_softc *);
206
207 void bge_handle_events(struct bge_softc *);
208 int bge_alloc_jumbo_mem(struct bge_softc *);
209 void bge_free_jumbo_mem(struct bge_softc *);
210 void *bge_jalloc(struct bge_softc *);
211 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
212 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
213 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
214 int bge_init_rx_ring_std(struct bge_softc *);
215 void bge_free_rx_ring_std(struct bge_softc *);
216 int bge_init_rx_ring_jumbo(struct bge_softc *);
217 void bge_free_rx_ring_jumbo(struct bge_softc *);
218 void bge_free_tx_ring(struct bge_softc *);
219 int bge_init_tx_ring(struct bge_softc *);
220
221 int bge_chipinit(struct bge_softc *);
222 int bge_blockinit(struct bge_softc *);
223 int bge_setpowerstate(struct bge_softc *, int);
224
225 #ifdef notdef
226 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
227 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
228 void bge_vpd_read(struct bge_softc *);
229 #endif
230
231 u_int32_t bge_readmem_ind(struct bge_softc *, int);
232 void bge_writemem_ind(struct bge_softc *, int, int);
233 #ifdef notdef
234 u_int32_t bge_readreg_ind(struct bge_softc *, int);
235 #endif
236 void bge_writereg_ind(struct bge_softc *, int, int);
237
238 int bge_miibus_readreg(struct device *, int, int);
239 void bge_miibus_writereg(struct device *, int, int, int);
240 void bge_miibus_statchg(struct device *);
241
242 void bge_reset(struct bge_softc *);
243
244 void bge_set_thresh(struct ifnet * /*ifp*/, int /*lvl*/);
245 void bge_update_all_threshes(int /*lvl*/);
246
247 void bge_dump_status(struct bge_softc *);
248 void bge_dump_rxbd(struct bge_rx_bd *);
249
250 #define BGE_DEBUG
251 #ifdef BGE_DEBUG
252 #define DPRINTF(x) if (bgedebug) printf x
253 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
254 int bgedebug = 0;
255 #else
256 #define DPRINTF(x)
257 #define DPRINTFN(n,x)
258 #endif
259
260 #ifdef BGE_EVENT_COUNTERS
261 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
262 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
263 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
264 #else
265 #define BGE_EVCNT_INCR(ev) /* nothing */
266 #define BGE_EVCNT_ADD(ev, val) /* nothing */
267 #define BGE_EVCNT_UPD(ev, val) /* nothing */
268 #endif
269
270 /* Various chip quirks. */
271 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
272 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
273 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
274 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
275 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
276 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
277 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
278 #define BGE_QUIRK_5705_CORE 0x00000080
279 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
280
281 /* following bugs are common to bcm5700 rev B, all flavours */
282 #define BGE_QUIRK_5700_COMMON \
283 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
284
285 CFATTACH_DECL(bge, sizeof(struct bge_softc),
286 bge_probe, bge_attach, NULL, NULL);
287
288 u_int32_t
289 bge_readmem_ind(sc, off)
290 struct bge_softc *sc;
291 int off;
292 {
293 struct pci_attach_args *pa = &(sc->bge_pa);
294 pcireg_t val;
295
296 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
297 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
298 return val;
299 }
300
301 void
302 bge_writemem_ind(sc, off, val)
303 struct bge_softc *sc;
304 int off, val;
305 {
306 struct pci_attach_args *pa = &(sc->bge_pa);
307
308 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
309 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
310 }
311
312 #ifdef notdef
313 u_int32_t
314 bge_readreg_ind(sc, off)
315 struct bge_softc *sc;
316 int off;
317 {
318 struct pci_attach_args *pa = &(sc->bge_pa);
319
320 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
321 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
322 }
323 #endif
324
325 void
326 bge_writereg_ind(sc, off, val)
327 struct bge_softc *sc;
328 int off, val;
329 {
330 struct pci_attach_args *pa = &(sc->bge_pa);
331
332 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
333 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
334 }
335
336 #ifdef notdef
337 u_int8_t
338 bge_vpd_readbyte(sc, addr)
339 struct bge_softc *sc;
340 int addr;
341 {
342 int i;
343 u_int32_t val;
344 struct pci_attach_args *pa = &(sc->bge_pa);
345
346 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
347 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
348 DELAY(10);
349 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
350 BGE_VPD_FLAG)
351 break;
352 }
353
354 if (i == BGE_TIMEOUT) {
355 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
356 return(0);
357 }
358
359 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
360
361 return((val >> ((addr % 4) * 8)) & 0xFF);
362 }
363
364 void
365 bge_vpd_read_res(sc, res, addr)
366 struct bge_softc *sc;
367 struct vpd_res *res;
368 int addr;
369 {
370 int i;
371 u_int8_t *ptr;
372
373 ptr = (u_int8_t *)res;
374 for (i = 0; i < sizeof(struct vpd_res); i++)
375 ptr[i] = bge_vpd_readbyte(sc, i + addr);
376 }
377
378 void
379 bge_vpd_read(sc)
380 struct bge_softc *sc;
381 {
382 int pos = 0, i;
383 struct vpd_res res;
384
385 if (sc->bge_vpd_prodname != NULL)
386 free(sc->bge_vpd_prodname, M_DEVBUF);
387 if (sc->bge_vpd_readonly != NULL)
388 free(sc->bge_vpd_readonly, M_DEVBUF);
389 sc->bge_vpd_prodname = NULL;
390 sc->bge_vpd_readonly = NULL;
391
392 bge_vpd_read_res(sc, &res, pos);
393
394 if (res.vr_id != VPD_RES_ID) {
395 printf("%s: bad VPD resource id: expected %x got %x\n",
396 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
397 return;
398 }
399
400 pos += sizeof(res);
401 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
402 if (sc->bge_vpd_prodname == NULL)
403 panic("bge_vpd_read");
404 for (i = 0; i < res.vr_len; i++)
405 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
406 sc->bge_vpd_prodname[i] = '\0';
407 pos += i;
408
409 bge_vpd_read_res(sc, &res, pos);
410
411 if (res.vr_id != VPD_RES_READ) {
412 printf("%s: bad VPD resource id: expected %x got %x\n",
413 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
414 return;
415 }
416
417 pos += sizeof(res);
418 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
419 if (sc->bge_vpd_readonly == NULL)
420 panic("bge_vpd_read");
421 for (i = 0; i < res.vr_len + 1; i++)
422 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
423 }
424 #endif
425
426 /*
427 * Read a byte of data stored in the EEPROM at address 'addr.' The
428 * BCM570x supports both the traditional bitbang interface and an
429 * auto access interface for reading the EEPROM. We use the auto
430 * access method.
431 */
432 u_int8_t
433 bge_eeprom_getbyte(sc, addr, dest)
434 struct bge_softc *sc;
435 int addr;
436 u_int8_t *dest;
437 {
438 int i;
439 u_int32_t byte = 0;
440
441 /*
442 * Enable use of auto EEPROM access so we can avoid
443 * having to use the bitbang method.
444 */
445 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
446
447 /* Reset the EEPROM, load the clock period. */
448 CSR_WRITE_4(sc, BGE_EE_ADDR,
449 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
450 DELAY(20);
451
452 /* Issue the read EEPROM command. */
453 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
454
455 /* Wait for completion */
456 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
457 DELAY(10);
458 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
459 break;
460 }
461
462 if (i == BGE_TIMEOUT) {
463 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
464 return(0);
465 }
466
467 /* Get result. */
468 byte = CSR_READ_4(sc, BGE_EE_DATA);
469
470 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
471
472 return(0);
473 }
474
475 /*
476 * Read a sequence of bytes from the EEPROM.
477 */
478 int
479 bge_read_eeprom(sc, dest, off, cnt)
480 struct bge_softc *sc;
481 caddr_t dest;
482 int off;
483 int cnt;
484 {
485 int err = 0, i;
486 u_int8_t byte = 0;
487
488 for (i = 0; i < cnt; i++) {
489 err = bge_eeprom_getbyte(sc, off + i, &byte);
490 if (err)
491 break;
492 *(dest + i) = byte;
493 }
494
495 return(err ? 1 : 0);
496 }
497
498 int
499 bge_miibus_readreg(dev, phy, reg)
500 struct device *dev;
501 int phy, reg;
502 {
503 struct bge_softc *sc = (struct bge_softc *)dev;
504 u_int32_t val;
505 u_int32_t saved_autopoll;
506 int i;
507
508 /*
509 * Several chips with builtin PHYs will incorrectly answer to
510 * other PHY instances than the builtin PHY at id 1.
511 */
512 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
513 return(0);
514
515 /* Reading with autopolling on may trigger PCI errors */
516 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
517 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
518 CSR_WRITE_4(sc, BGE_MI_MODE,
519 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
520 DELAY(40);
521 }
522
523 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
524 BGE_MIPHY(phy)|BGE_MIREG(reg));
525
526 for (i = 0; i < BGE_TIMEOUT; i++) {
527 val = CSR_READ_4(sc, BGE_MI_COMM);
528 if (!(val & BGE_MICOMM_BUSY))
529 break;
530 delay(10);
531 }
532
533 if (i == BGE_TIMEOUT) {
534 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
535 val = 0;
536 goto done;
537 }
538
539 val = CSR_READ_4(sc, BGE_MI_COMM);
540
541 done:
542 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
543 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
544 DELAY(40);
545 }
546
547 if (val & BGE_MICOMM_READFAIL)
548 return(0);
549
550 return(val & 0xFFFF);
551 }
552
553 void
554 bge_miibus_writereg(dev, phy, reg, val)
555 struct device *dev;
556 int phy, reg, val;
557 {
558 struct bge_softc *sc = (struct bge_softc *)dev;
559 u_int32_t saved_autopoll;
560 int i;
561
562 /* Touching the PHY while autopolling is on may trigger PCI errors */
563 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
564 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
565 delay(40);
566 CSR_WRITE_4(sc, BGE_MI_MODE,
567 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
568 delay(10); /* 40 usec is supposed to be adequate */
569 }
570
571 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
572 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
573
574 for (i = 0; i < BGE_TIMEOUT; i++) {
575 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
576 break;
577 delay(10);
578 }
579
580 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
581 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
582 delay(40);
583 }
584
585 if (i == BGE_TIMEOUT) {
586 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
587 }
588 }
589
590 void
591 bge_miibus_statchg(dev)
592 struct device *dev;
593 {
594 struct bge_softc *sc = (struct bge_softc *)dev;
595 struct mii_data *mii = &sc->bge_mii;
596
597 /*
598 * Get flow control negotiation result.
599 */
600 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
601 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
602 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
603 mii->mii_media_active &= ~IFM_ETH_FMASK;
604 }
605
606 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
607 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
608 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
609 } else {
610 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
611 }
612
613 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
614 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
615 } else {
616 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
617 }
618
619 /*
620 * 802.3x flow control
621 */
622 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
623 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
624 } else {
625 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
626 }
627 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
628 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
629 } else {
630 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
631 }
632 }
633
634 /*
635 * Update rx threshold levels to values in a particular slot
636 * of the interrupt-mitigation table bge_rx_threshes.
637 */
638 void
639 bge_set_thresh(struct ifnet *ifp, int lvl)
640 {
641 struct bge_softc *sc = ifp->if_softc;
642 int s;
643
644 /* For now, just save the new Rx-intr thresholds and record
645 * that a threshold update is pending. Updating the hardware
646 * registers here (even at splhigh()) is observed to
647 * occasionaly cause glitches where Rx-interrupts are not
648 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
649 */
650 s = splnet();
651 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
652 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
653 sc->bge_pending_rxintr_change = 1;
654 splx(s);
655
656 return;
657 }
658
659
660 /*
661 * Update Rx thresholds of all bge devices
662 */
663 void
664 bge_update_all_threshes(int lvl)
665 {
666 struct ifnet *ifp;
667 const char * const namebuf = "bge";
668 int namelen;
669
670 if (lvl < 0)
671 lvl = 0;
672 else if( lvl >= NBGE_RX_THRESH)
673 lvl = NBGE_RX_THRESH - 1;
674
675 namelen = strlen(namebuf);
676 /*
677 * Now search all the interfaces for this name/number
678 */
679 IFNET_FOREACH(ifp) {
680 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
681 continue;
682 /* We got a match: update if doing auto-threshold-tuning */
683 if (bge_auto_thresh)
684 bge_set_thresh(ifp, lvl);
685 }
686 }
687
688 /*
689 * Handle events that have triggered interrupts.
690 */
691 void
692 bge_handle_events(sc)
693 struct bge_softc *sc;
694 {
695
696 return;
697 }
698
699 /*
700 * Memory management for jumbo frames.
701 */
702
703 int
704 bge_alloc_jumbo_mem(sc)
705 struct bge_softc *sc;
706 {
707 caddr_t ptr, kva;
708 bus_dma_segment_t seg;
709 int i, rseg, state, error;
710 struct bge_jpool_entry *entry;
711
712 state = error = 0;
713
714 /* Grab a big chunk o' storage. */
715 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
716 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
717 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
718 return ENOBUFS;
719 }
720
721 state = 1;
722 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
723 BUS_DMA_NOWAIT)) {
724 printf("%s: can't map DMA buffers (%d bytes)\n",
725 sc->bge_dev.dv_xname, (int)BGE_JMEM);
726 error = ENOBUFS;
727 goto out;
728 }
729
730 state = 2;
731 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
732 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
733 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
734 error = ENOBUFS;
735 goto out;
736 }
737
738 state = 3;
739 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
740 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
741 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
742 error = ENOBUFS;
743 goto out;
744 }
745
746 state = 4;
747 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
748 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
749
750 SLIST_INIT(&sc->bge_jfree_listhead);
751 SLIST_INIT(&sc->bge_jinuse_listhead);
752
753 /*
754 * Now divide it up into 9K pieces and save the addresses
755 * in an array.
756 */
757 ptr = sc->bge_cdata.bge_jumbo_buf;
758 for (i = 0; i < BGE_JSLOTS; i++) {
759 sc->bge_cdata.bge_jslots[i] = ptr;
760 ptr += BGE_JLEN;
761 entry = malloc(sizeof(struct bge_jpool_entry),
762 M_DEVBUF, M_NOWAIT);
763 if (entry == NULL) {
764 printf("%s: no memory for jumbo buffer queue!\n",
765 sc->bge_dev.dv_xname);
766 error = ENOBUFS;
767 goto out;
768 }
769 entry->slot = i;
770 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
771 entry, jpool_entries);
772 }
773 out:
774 if (error != 0) {
775 switch (state) {
776 case 4:
777 bus_dmamap_unload(sc->bge_dmatag,
778 sc->bge_cdata.bge_rx_jumbo_map);
779 case 3:
780 bus_dmamap_destroy(sc->bge_dmatag,
781 sc->bge_cdata.bge_rx_jumbo_map);
782 case 2:
783 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
784 case 1:
785 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
786 break;
787 default:
788 break;
789 }
790 }
791
792 return error;
793 }
794
795 /*
796 * Allocate a jumbo buffer.
797 */
798 void *
799 bge_jalloc(sc)
800 struct bge_softc *sc;
801 {
802 struct bge_jpool_entry *entry;
803
804 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
805
806 if (entry == NULL) {
807 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
808 return(NULL);
809 }
810
811 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
812 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
813 return(sc->bge_cdata.bge_jslots[entry->slot]);
814 }
815
816 /*
817 * Release a jumbo buffer.
818 */
819 void
820 bge_jfree(m, buf, size, arg)
821 struct mbuf *m;
822 caddr_t buf;
823 size_t size;
824 void *arg;
825 {
826 struct bge_jpool_entry *entry;
827 struct bge_softc *sc;
828 int i, s;
829
830 /* Extract the softc struct pointer. */
831 sc = (struct bge_softc *)arg;
832
833 if (sc == NULL)
834 panic("bge_jfree: can't find softc pointer!");
835
836 /* calculate the slot this buffer belongs to */
837
838 i = ((caddr_t)buf
839 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
840
841 if ((i < 0) || (i >= BGE_JSLOTS))
842 panic("bge_jfree: asked to free buffer that we don't manage!");
843
844 s = splvm();
845 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
846 if (entry == NULL)
847 panic("bge_jfree: buffer not in use!");
848 entry->slot = i;
849 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
850 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
851
852 if (__predict_true(m != NULL))
853 pool_cache_put(&mbpool_cache, m);
854 splx(s);
855 }
856
857
858 /*
859 * Intialize a standard receive ring descriptor.
860 */
861 int
862 bge_newbuf_std(sc, i, m, dmamap)
863 struct bge_softc *sc;
864 int i;
865 struct mbuf *m;
866 bus_dmamap_t dmamap;
867 {
868 struct mbuf *m_new = NULL;
869 struct bge_rx_bd *r;
870 int error;
871
872 if (dmamap == NULL) {
873 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
874 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
875 if (error != 0)
876 return error;
877 }
878
879 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
880
881 if (m == NULL) {
882 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
883 if (m_new == NULL) {
884 return(ENOBUFS);
885 }
886
887 MCLGET(m_new, M_DONTWAIT);
888 if (!(m_new->m_flags & M_EXT)) {
889 m_freem(m_new);
890 return(ENOBUFS);
891 }
892 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
893 if (!sc->bge_rx_alignment_bug)
894 m_adj(m_new, ETHER_ALIGN);
895
896 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
897 BUS_DMA_READ|BUS_DMA_NOWAIT))
898 return(ENOBUFS);
899 } else {
900 m_new = m;
901 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
902 m_new->m_data = m_new->m_ext.ext_buf;
903 if (!sc->bge_rx_alignment_bug)
904 m_adj(m_new, ETHER_ALIGN);
905 }
906
907 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
908 r = &sc->bge_rdata->bge_rx_std_ring[i];
909 bge_set_hostaddr(&r->bge_addr,
910 dmamap->dm_segs[0].ds_addr);
911 r->bge_flags = BGE_RXBDFLAG_END;
912 r->bge_len = m_new->m_len;
913 r->bge_idx = i;
914
915 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
916 offsetof(struct bge_ring_data, bge_rx_std_ring) +
917 i * sizeof (struct bge_rx_bd),
918 sizeof (struct bge_rx_bd),
919 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
920
921 return(0);
922 }
923
924 /*
925 * Initialize a jumbo receive ring descriptor. This allocates
926 * a jumbo buffer from the pool managed internally by the driver.
927 */
928 int
929 bge_newbuf_jumbo(sc, i, m)
930 struct bge_softc *sc;
931 int i;
932 struct mbuf *m;
933 {
934 struct mbuf *m_new = NULL;
935 struct bge_rx_bd *r;
936
937 if (m == NULL) {
938 caddr_t buf = NULL;
939
940 /* Allocate the mbuf. */
941 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
942 if (m_new == NULL) {
943 return(ENOBUFS);
944 }
945
946 /* Allocate the jumbo buffer */
947 buf = bge_jalloc(sc);
948 if (buf == NULL) {
949 m_freem(m_new);
950 printf("%s: jumbo allocation failed "
951 "-- packet dropped!\n", sc->bge_dev.dv_xname);
952 return(ENOBUFS);
953 }
954
955 /* Attach the buffer to the mbuf. */
956 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
957 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
958 bge_jfree, sc);
959 m_new->m_flags |= M_EXT_RW;
960 } else {
961 m_new = m;
962 m_new->m_data = m_new->m_ext.ext_buf;
963 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
964 }
965
966 if (!sc->bge_rx_alignment_bug)
967 m_adj(m_new, ETHER_ALIGN);
968 /* Set up the descriptor. */
969 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
970 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
971 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
972 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
973 r->bge_len = m_new->m_len;
974 r->bge_idx = i;
975
976 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
977 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
978 i * sizeof (struct bge_rx_bd),
979 sizeof (struct bge_rx_bd),
980 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
981
982 return(0);
983 }
984
985 /*
986 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
987 * that's 1MB or memory, which is a lot. For now, we fill only the first
988 * 256 ring entries and hope that our CPU is fast enough to keep up with
989 * the NIC.
990 */
991 int
992 bge_init_rx_ring_std(sc)
993 struct bge_softc *sc;
994 {
995 int i;
996
997 if (sc->bge_flags & BGE_RXRING_VALID)
998 return 0;
999
1000 for (i = 0; i < BGE_SSLOTS; i++) {
1001 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1002 return(ENOBUFS);
1003 }
1004
1005 sc->bge_std = i - 1;
1006 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1007
1008 sc->bge_flags |= BGE_RXRING_VALID;
1009
1010 return(0);
1011 }
1012
1013 void
1014 bge_free_rx_ring_std(sc)
1015 struct bge_softc *sc;
1016 {
1017 int i;
1018
1019 if (!(sc->bge_flags & BGE_RXRING_VALID))
1020 return;
1021
1022 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1023 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1024 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1025 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1026 bus_dmamap_destroy(sc->bge_dmatag,
1027 sc->bge_cdata.bge_rx_std_map[i]);
1028 }
1029 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1030 sizeof(struct bge_rx_bd));
1031 }
1032
1033 sc->bge_flags &= ~BGE_RXRING_VALID;
1034 }
1035
1036 int
1037 bge_init_rx_ring_jumbo(sc)
1038 struct bge_softc *sc;
1039 {
1040 int i;
1041 volatile struct bge_rcb *rcb;
1042
1043 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1044 return 0;
1045
1046 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1047 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1048 return(ENOBUFS);
1049 };
1050
1051 sc->bge_jumbo = i - 1;
1052 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1053
1054 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1055 rcb->bge_maxlen_flags = 0;
1056 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1057
1058 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1059
1060 return(0);
1061 }
1062
1063 void
1064 bge_free_rx_ring_jumbo(sc)
1065 struct bge_softc *sc;
1066 {
1067 int i;
1068
1069 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1070 return;
1071
1072 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1073 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1074 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1075 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1076 }
1077 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1078 sizeof(struct bge_rx_bd));
1079 }
1080
1081 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1082 }
1083
1084 void
1085 bge_free_tx_ring(sc)
1086 struct bge_softc *sc;
1087 {
1088 int i, freed;
1089 struct txdmamap_pool_entry *dma;
1090
1091 if (!(sc->bge_flags & BGE_TXRING_VALID))
1092 return;
1093
1094 freed = 0;
1095
1096 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1097 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1098 freed++;
1099 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1100 sc->bge_cdata.bge_tx_chain[i] = NULL;
1101 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1102 link);
1103 sc->txdma[i] = 0;
1104 }
1105 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1106 sizeof(struct bge_tx_bd));
1107 }
1108
1109 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1110 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1111 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1112 free(dma, M_DEVBUF);
1113 }
1114
1115 sc->bge_flags &= ~BGE_TXRING_VALID;
1116 }
1117
1118 int
1119 bge_init_tx_ring(sc)
1120 struct bge_softc *sc;
1121 {
1122 int i;
1123 bus_dmamap_t dmamap;
1124 struct txdmamap_pool_entry *dma;
1125
1126 if (sc->bge_flags & BGE_TXRING_VALID)
1127 return 0;
1128
1129 sc->bge_txcnt = 0;
1130 sc->bge_tx_saved_considx = 0;
1131 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1132 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1133 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1134
1135 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1136 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1137 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1138
1139 SLIST_INIT(&sc->txdma_list);
1140 for (i = 0; i < BGE_RSLOTS; i++) {
1141 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
1142 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1143 &dmamap))
1144 return(ENOBUFS);
1145 if (dmamap == NULL)
1146 panic("dmamap NULL in bge_init_tx_ring");
1147 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1148 if (dma == NULL) {
1149 printf("%s: can't alloc txdmamap_pool_entry\n",
1150 sc->bge_dev.dv_xname);
1151 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1152 return (ENOMEM);
1153 }
1154 dma->dmamap = dmamap;
1155 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1156 }
1157
1158 sc->bge_flags |= BGE_TXRING_VALID;
1159
1160 return(0);
1161 }
1162
1163 void
1164 bge_setmulti(sc)
1165 struct bge_softc *sc;
1166 {
1167 struct ethercom *ac = &sc->ethercom;
1168 struct ifnet *ifp = &ac->ec_if;
1169 struct ether_multi *enm;
1170 struct ether_multistep step;
1171 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1172 u_int32_t h;
1173 int i;
1174
1175 if (ifp->if_flags & IFF_PROMISC)
1176 goto allmulti;
1177
1178 /* Now program new ones. */
1179 ETHER_FIRST_MULTI(step, ac, enm);
1180 while (enm != NULL) {
1181 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1182 /*
1183 * We must listen to a range of multicast addresses.
1184 * For now, just accept all multicasts, rather than
1185 * trying to set only those filter bits needed to match
1186 * the range. (At this time, the only use of address
1187 * ranges is for IP multicast routing, for which the
1188 * range is big enough to require all bits set.)
1189 */
1190 goto allmulti;
1191 }
1192
1193 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1194
1195 /* Just want the 7 least-significant bits. */
1196 h &= 0x7f;
1197
1198 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1199 ETHER_NEXT_MULTI(step, enm);
1200 }
1201
1202 ifp->if_flags &= ~IFF_ALLMULTI;
1203 goto setit;
1204
1205 allmulti:
1206 ifp->if_flags |= IFF_ALLMULTI;
1207 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1208
1209 setit:
1210 for (i = 0; i < 4; i++)
1211 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1212 }
1213
1214 const int bge_swapbits[] = {
1215 0,
1216 BGE_MODECTL_BYTESWAP_DATA,
1217 BGE_MODECTL_WORDSWAP_DATA,
1218 BGE_MODECTL_BYTESWAP_NONFRAME,
1219 BGE_MODECTL_WORDSWAP_NONFRAME,
1220
1221 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1222 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1223 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1224
1225 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1226 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1227
1228 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1229
1230 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1231 BGE_MODECTL_BYTESWAP_NONFRAME,
1232 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1233 BGE_MODECTL_WORDSWAP_NONFRAME,
1234 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1235 BGE_MODECTL_WORDSWAP_NONFRAME,
1236 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1237 BGE_MODECTL_WORDSWAP_NONFRAME,
1238
1239 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1240 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1241 };
1242
1243 int bge_swapindex = 0;
1244
1245 /*
1246 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1247 * self-test results.
1248 */
1249 int
1250 bge_chipinit(sc)
1251 struct bge_softc *sc;
1252 {
1253 u_int32_t cachesize;
1254 int i;
1255 u_int32_t dma_rw_ctl;
1256 struct pci_attach_args *pa = &(sc->bge_pa);
1257
1258
1259 /* Set endianness before we access any non-PCI registers. */
1260 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1261 BGE_INIT);
1262
1263 /* Set power state to D0. */
1264 bge_setpowerstate(sc, 0);
1265
1266 /*
1267 * Check the 'ROM failed' bit on the RX CPU to see if
1268 * self-tests passed.
1269 */
1270 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1271 printf("%s: RX CPU self-diagnostics failed!\n",
1272 sc->bge_dev.dv_xname);
1273 return(ENODEV);
1274 }
1275
1276 /* Clear the MAC control register */
1277 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1278
1279 /*
1280 * Clear the MAC statistics block in the NIC's
1281 * internal memory.
1282 */
1283 for (i = BGE_STATS_BLOCK;
1284 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1285 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1286
1287 for (i = BGE_STATUS_BLOCK;
1288 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1289 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1290
1291 /* Set up the PCI DMA control register. */
1292 if (sc->bge_pcie) {
1293 /* From FreeBSD */
1294 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1295 sc->bge_dev.dv_xname));
1296 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1297 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1298 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1299 } else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1300 BGE_PCISTATE_PCI_BUSMODE) {
1301 /* Conventional PCI bus */
1302 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1303 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1304 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1305 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1306 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1307 dma_rw_ctl |= 0x0F;
1308 }
1309 } else {
1310 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1311 /* PCI-X bus */
1312 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1313 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1314 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1315 (0x0F);
1316 /*
1317 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1318 * for hardware bugs, which means we should also clear
1319 * the low-order MINDMA bits. In addition, the 5704
1320 * uses a different encoding of read/write watermarks.
1321 */
1322 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1323 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1324 /* should be 0x1f0000 */
1325 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1326 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1327 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1328 }
1329 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1330 dma_rw_ctl &= 0xfffffff0;
1331 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1332 }
1333 }
1334
1335 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1336
1337 /*
1338 * Set up general mode register.
1339 */
1340 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1341 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1342 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1343
1344 /* Get cache line size. */
1345 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1346
1347 /*
1348 * Avoid violating PCI spec on certain chip revs.
1349 */
1350 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1351 PCIM_CMD_MWIEN) {
1352 switch(cachesize) {
1353 case 1:
1354 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1355 BGE_PCI_WRITE_BNDRY_16BYTES);
1356 break;
1357 case 2:
1358 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1359 BGE_PCI_WRITE_BNDRY_32BYTES);
1360 break;
1361 case 4:
1362 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1363 BGE_PCI_WRITE_BNDRY_64BYTES);
1364 break;
1365 case 8:
1366 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1367 BGE_PCI_WRITE_BNDRY_128BYTES);
1368 break;
1369 case 16:
1370 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1371 BGE_PCI_WRITE_BNDRY_256BYTES);
1372 break;
1373 case 32:
1374 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1375 BGE_PCI_WRITE_BNDRY_512BYTES);
1376 break;
1377 case 64:
1378 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1379 BGE_PCI_WRITE_BNDRY_1024BYTES);
1380 break;
1381 default:
1382 /* Disable PCI memory write and invalidate. */
1383 #if 0
1384 if (bootverbose)
1385 printf("%s: cache line size %d not "
1386 "supported; disabling PCI MWI\n",
1387 sc->bge_dev.dv_xname, cachesize);
1388 #endif
1389 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1390 PCIM_CMD_MWIEN);
1391 break;
1392 }
1393 }
1394
1395 /*
1396 * Disable memory write invalidate. Apparently it is not supported
1397 * properly by these devices.
1398 */
1399 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1400
1401
1402 #ifdef __brokenalpha__
1403 /*
1404 * Must insure that we do not cross an 8K (bytes) boundary
1405 * for DMA reads. Our highest limit is 1K bytes. This is a
1406 * restriction on some ALPHA platforms with early revision
1407 * 21174 PCI chipsets, such as the AlphaPC 164lx
1408 */
1409 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1410 #endif
1411
1412 /* Set the timer prescaler (always 66MHz) */
1413 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1414
1415 return(0);
1416 }
1417
1418 int
1419 bge_blockinit(sc)
1420 struct bge_softc *sc;
1421 {
1422 volatile struct bge_rcb *rcb;
1423 bus_size_t rcb_addr;
1424 int i;
1425 struct ifnet *ifp = &sc->ethercom.ec_if;
1426 bge_hostaddr taddr;
1427
1428 /*
1429 * Initialize the memory window pointer register so that
1430 * we can access the first 32K of internal NIC RAM. This will
1431 * allow us to set up the TX send ring RCBs and the RX return
1432 * ring RCBs, plus other things which live in NIC memory.
1433 */
1434
1435 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1436 BGE_PCI_MEMWIN_BASEADDR, 0);
1437
1438 /* Configure mbuf memory pool */
1439 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1440 if (sc->bge_extram) {
1441 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1442 BGE_EXT_SSRAM);
1443 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1444 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1445 else
1446 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1447 } else {
1448 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1449 BGE_BUFFPOOL_1);
1450 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1451 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1452 else
1453 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1454 }
1455
1456 /* Configure DMA resource pool */
1457 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1458 BGE_DMA_DESCRIPTORS);
1459 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1460 }
1461
1462 /* Configure mbuf pool watermarks */
1463 #ifdef ORIG_WPAUL_VALUES
1464 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1465 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1466 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1467 #else
1468 /* new broadcom docs strongly recommend these: */
1469 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1470 if (ifp->if_mtu > ETHER_MAX_LEN) {
1471 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1472 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1473 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1474 } else {
1475 /* Values from Linux driver... */
1476 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1477 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1478 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1479 }
1480 } else {
1481 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1482 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1483 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1484 }
1485 #endif
1486
1487 /* Configure DMA resource watermarks */
1488 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1489 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1490
1491 /* Enable buffer manager */
1492 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1493 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1494 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1495
1496 /* Poll for buffer manager start indication */
1497 for (i = 0; i < BGE_TIMEOUT; i++) {
1498 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1499 break;
1500 DELAY(10);
1501 }
1502
1503 if (i == BGE_TIMEOUT) {
1504 printf("%s: buffer manager failed to start\n",
1505 sc->bge_dev.dv_xname);
1506 return(ENXIO);
1507 }
1508 }
1509
1510 /* Enable flow-through queues */
1511 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1512 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1513
1514 /* Wait until queue initialization is complete */
1515 for (i = 0; i < BGE_TIMEOUT; i++) {
1516 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1517 break;
1518 DELAY(10);
1519 }
1520
1521 if (i == BGE_TIMEOUT) {
1522 printf("%s: flow-through queue init failed\n",
1523 sc->bge_dev.dv_xname);
1524 return(ENXIO);
1525 }
1526
1527 /* Initialize the standard RX ring control block */
1528 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1529 bge_set_hostaddr(&rcb->bge_hostaddr,
1530 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1531 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1532 rcb->bge_maxlen_flags =
1533 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1534 } else {
1535 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1536 }
1537 if (sc->bge_extram)
1538 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1539 else
1540 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1541 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1542 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1543 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1544 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1545
1546 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1547 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1548 } else {
1549 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1550 }
1551
1552 /*
1553 * Initialize the jumbo RX ring control block
1554 * We set the 'ring disabled' bit in the flags
1555 * field until we're actually ready to start
1556 * using this ring (i.e. once we set the MTU
1557 * high enough to require it).
1558 */
1559 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1560 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1561 bge_set_hostaddr(&rcb->bge_hostaddr,
1562 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1563 rcb->bge_maxlen_flags =
1564 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1565 BGE_RCB_FLAG_RING_DISABLED);
1566 if (sc->bge_extram)
1567 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1568 else
1569 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1570
1571 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1572 rcb->bge_hostaddr.bge_addr_hi);
1573 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1574 rcb->bge_hostaddr.bge_addr_lo);
1575 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1576 rcb->bge_maxlen_flags);
1577 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1578
1579 /* Set up dummy disabled mini ring RCB */
1580 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1581 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1582 BGE_RCB_FLAG_RING_DISABLED);
1583 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1584 rcb->bge_maxlen_flags);
1585
1586 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1587 offsetof(struct bge_ring_data, bge_info),
1588 sizeof (struct bge_gib),
1589 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1590 }
1591
1592 /*
1593 * Set the BD ring replentish thresholds. The recommended
1594 * values are 1/8th the number of descriptors allocated to
1595 * each ring.
1596 */
1597 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1598 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1599
1600 /*
1601 * Disable all unused send rings by setting the 'ring disabled'
1602 * bit in the flags field of all the TX send ring control blocks.
1603 * These are located in NIC memory.
1604 */
1605 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1606 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1607 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1608 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1609 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1610 rcb_addr += sizeof(struct bge_rcb);
1611 }
1612
1613 /* Configure TX RCB 0 (we use only the first ring) */
1614 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1615 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1616 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1617 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1618 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1619 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1620 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1621 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1622 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1623 }
1624
1625 /* Disable all unused RX return rings */
1626 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1627 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1628 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1629 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1630 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1631 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1632 BGE_RCB_FLAG_RING_DISABLED));
1633 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1634 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1635 (i * (sizeof(u_int64_t))), 0);
1636 rcb_addr += sizeof(struct bge_rcb);
1637 }
1638
1639 /* Initialize RX ring indexes */
1640 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1641 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1642 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1643
1644 /*
1645 * Set up RX return ring 0
1646 * Note that the NIC address for RX return rings is 0x00000000.
1647 * The return rings live entirely within the host, so the
1648 * nicaddr field in the RCB isn't used.
1649 */
1650 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1651 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1652 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1653 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1654 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1655 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1656 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1657
1658 /* Set random backoff seed for TX */
1659 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1660 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1661 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1662 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1663 BGE_TX_BACKOFF_SEED_MASK);
1664
1665 /* Set inter-packet gap */
1666 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1667
1668 /*
1669 * Specify which ring to use for packets that don't match
1670 * any RX rules.
1671 */
1672 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1673
1674 /*
1675 * Configure number of RX lists. One interrupt distribution
1676 * list, sixteen active lists, one bad frames class.
1677 */
1678 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1679
1680 /* Inialize RX list placement stats mask. */
1681 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1682 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1683
1684 /* Disable host coalescing until we get it set up */
1685 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1686
1687 /* Poll to make sure it's shut down. */
1688 for (i = 0; i < BGE_TIMEOUT; i++) {
1689 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1690 break;
1691 DELAY(10);
1692 }
1693
1694 if (i == BGE_TIMEOUT) {
1695 printf("%s: host coalescing engine failed to idle\n",
1696 sc->bge_dev.dv_xname);
1697 return(ENXIO);
1698 }
1699
1700 /* Set up host coalescing defaults */
1701 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1702 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1703 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1704 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1705 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1706 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1707 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1708 }
1709 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1710 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1711
1712 /* Set up address of statistics block */
1713 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1714 bge_set_hostaddr(&taddr,
1715 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1716 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1717 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1718 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1719 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1720 }
1721
1722 /* Set up address of status block */
1723 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1724 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1725 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1726 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1727 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1728 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1729
1730 /* Turn on host coalescing state machine */
1731 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1732
1733 /* Turn on RX BD completion state machine and enable attentions */
1734 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1735 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1736
1737 /* Turn on RX list placement state machine */
1738 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1739
1740 /* Turn on RX list selector state machine. */
1741 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1742 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1743 }
1744
1745 /* Turn on DMA, clear stats */
1746 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1747 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1748 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1749 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1750 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1751
1752 /* Set misc. local control, enable interrupts on attentions */
1753 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1754
1755 #ifdef notdef
1756 /* Assert GPIO pins for PHY reset */
1757 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1758 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1759 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1760 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1761 #endif
1762
1763 #if defined(not_quite_yet)
1764 /* Linux driver enables enable gpio pin #1 on 5700s */
1765 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1766 sc->bge_local_ctrl_reg |=
1767 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1768 }
1769 #endif
1770 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1771
1772 /* Turn on DMA completion state machine */
1773 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1774 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1775 }
1776
1777 /* Turn on write DMA state machine */
1778 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1779 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1780
1781 /* Turn on read DMA state machine */
1782 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1783 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1784
1785 /* Turn on RX data completion state machine */
1786 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1787
1788 /* Turn on RX BD initiator state machine */
1789 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1790
1791 /* Turn on RX data and RX BD initiator state machine */
1792 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1793
1794 /* Turn on Mbuf cluster free state machine */
1795 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1796 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1797 }
1798
1799 /* Turn on send BD completion state machine */
1800 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1801
1802 /* Turn on send data completion state machine */
1803 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1804
1805 /* Turn on send data initiator state machine */
1806 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1807
1808 /* Turn on send BD initiator state machine */
1809 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1810
1811 /* Turn on send BD selector state machine */
1812 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1813
1814 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1815 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1816 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1817
1818 /* ack/clear link change events */
1819 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1820 BGE_MACSTAT_CFG_CHANGED);
1821 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1822
1823 /* Enable PHY auto polling (for MII/GMII only) */
1824 if (sc->bge_tbi) {
1825 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1826 } else {
1827 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1828 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1829 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1830 BGE_EVTENB_MI_INTERRUPT);
1831 }
1832
1833 /* Enable link state change attentions. */
1834 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1835
1836 return(0);
1837 }
1838
1839 static const struct bge_revision {
1840 uint32_t br_chipid;
1841 uint32_t br_quirks;
1842 const char *br_name;
1843 } bge_revisions[] = {
1844 { BGE_CHIPID_BCM5700_A0,
1845 BGE_QUIRK_LINK_STATE_BROKEN,
1846 "BCM5700 A0" },
1847
1848 { BGE_CHIPID_BCM5700_A1,
1849 BGE_QUIRK_LINK_STATE_BROKEN,
1850 "BCM5700 A1" },
1851
1852 { BGE_CHIPID_BCM5700_B0,
1853 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1854 "BCM5700 B0" },
1855
1856 { BGE_CHIPID_BCM5700_B1,
1857 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1858 "BCM5700 B1" },
1859
1860 { BGE_CHIPID_BCM5700_B2,
1861 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1862 "BCM5700 B2" },
1863
1864 /* This is treated like a BCM5700 Bx */
1865 { BGE_CHIPID_BCM5700_ALTIMA,
1866 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1867 "BCM5700 Altima" },
1868
1869 { BGE_CHIPID_BCM5700_C0,
1870 0,
1871 "BCM5700 C0" },
1872
1873 { BGE_CHIPID_BCM5701_A0,
1874 0, /*XXX really, just not known */
1875 "BCM5701 A0" },
1876
1877 { BGE_CHIPID_BCM5701_B0,
1878 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1879 "BCM5701 B0" },
1880
1881 { BGE_CHIPID_BCM5701_B2,
1882 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1883 "BCM5701 B2" },
1884
1885 { BGE_CHIPID_BCM5701_B5,
1886 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1887 "BCM5701 B5" },
1888
1889 { BGE_CHIPID_BCM5703_A0,
1890 0,
1891 "BCM5703 A0" },
1892
1893 { BGE_CHIPID_BCM5703_A1,
1894 0,
1895 "BCM5703 A1" },
1896
1897 { BGE_CHIPID_BCM5703_A2,
1898 BGE_QUIRK_ONLY_PHY_1,
1899 "BCM5703 A2" },
1900
1901 { BGE_CHIPID_BCM5703_A3,
1902 BGE_QUIRK_ONLY_PHY_1,
1903 "BCM5703 A3" },
1904
1905 { BGE_CHIPID_BCM5704_A0,
1906 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1907 "BCM5704 A0" },
1908
1909 { BGE_CHIPID_BCM5704_A1,
1910 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1911 "BCM5704 A1" },
1912
1913 { BGE_CHIPID_BCM5704_A2,
1914 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1915 "BCM5704 A2" },
1916
1917 { BGE_CHIPID_BCM5704_A3,
1918 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1919 "BCM5704 A3" },
1920
1921 { BGE_CHIPID_BCM5705_A0,
1922 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1923 "BCM5705 A0" },
1924
1925 { BGE_CHIPID_BCM5705_A1,
1926 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1927 "BCM5705 A1" },
1928
1929 { BGE_CHIPID_BCM5705_A2,
1930 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1931 "BCM5705 A2" },
1932
1933 { BGE_CHIPID_BCM5705_A3,
1934 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1935 "BCM5705 A3" },
1936
1937 { BGE_CHIPID_BCM5750_A0,
1938 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1939 "BCM5750 A1" },
1940
1941 { BGE_CHIPID_BCM5750_A1,
1942 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1943 "BCM5750 A1" },
1944
1945 { 0, 0, NULL }
1946 };
1947
1948 /*
1949 * Some defaults for major revisions, so that newer steppings
1950 * that we don't know about have a shot at working.
1951 */
1952 static const struct bge_revision bge_majorrevs[] = {
1953 { BGE_ASICREV_BCM5700,
1954 BGE_QUIRK_LINK_STATE_BROKEN,
1955 "unknown BCM5700" },
1956
1957 { BGE_ASICREV_BCM5701,
1958 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1959 "unknown BCM5701" },
1960
1961 { BGE_ASICREV_BCM5703,
1962 0,
1963 "unknown BCM5703" },
1964
1965 { BGE_ASICREV_BCM5704,
1966 BGE_QUIRK_ONLY_PHY_1,
1967 "unknown BCM5704" },
1968
1969 { BGE_ASICREV_BCM5705,
1970 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1971 "unknown BCM5705" },
1972
1973 { BGE_ASICREV_BCM5750,
1974 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1975 "unknown BCM5750" },
1976
1977 { 0,
1978 0,
1979 NULL }
1980 };
1981
1982
1983 static const struct bge_revision *
1984 bge_lookup_rev(uint32_t chipid)
1985 {
1986 const struct bge_revision *br;
1987
1988 for (br = bge_revisions; br->br_name != NULL; br++) {
1989 if (br->br_chipid == chipid)
1990 return (br);
1991 }
1992
1993 for (br = bge_majorrevs; br->br_name != NULL; br++) {
1994 if (br->br_chipid == BGE_ASICREV(chipid))
1995 return (br);
1996 }
1997
1998 return (NULL);
1999 }
2000
2001 static const struct bge_product {
2002 pci_vendor_id_t bp_vendor;
2003 pci_product_id_t bp_product;
2004 const char *bp_name;
2005 } bge_products[] = {
2006 /*
2007 * The BCM5700 documentation seems to indicate that the hardware
2008 * still has the Alteon vendor ID burned into it, though it
2009 * should always be overridden by the value in the EEPROM. We'll
2010 * check for it anyway.
2011 */
2012 { PCI_VENDOR_ALTEON,
2013 PCI_PRODUCT_ALTEON_BCM5700,
2014 "Broadcom BCM5700 Gigabit Ethernet",
2015 },
2016 { PCI_VENDOR_ALTEON,
2017 PCI_PRODUCT_ALTEON_BCM5701,
2018 "Broadcom BCM5701 Gigabit Ethernet",
2019 },
2020
2021 { PCI_VENDOR_ALTIMA,
2022 PCI_PRODUCT_ALTIMA_AC1000,
2023 "Altima AC1000 Gigabit Ethernet",
2024 },
2025 { PCI_VENDOR_ALTIMA,
2026 PCI_PRODUCT_ALTIMA_AC1001,
2027 "Altima AC1001 Gigabit Ethernet",
2028 },
2029 { PCI_VENDOR_ALTIMA,
2030 PCI_PRODUCT_ALTIMA_AC9100,
2031 "Altima AC9100 Gigabit Ethernet",
2032 },
2033
2034 { PCI_VENDOR_BROADCOM,
2035 PCI_PRODUCT_BROADCOM_BCM5700,
2036 "Broadcom BCM5700 Gigabit Ethernet",
2037 },
2038 { PCI_VENDOR_BROADCOM,
2039 PCI_PRODUCT_BROADCOM_BCM5701,
2040 "Broadcom BCM5701 Gigabit Ethernet",
2041 },
2042 { PCI_VENDOR_BROADCOM,
2043 PCI_PRODUCT_BROADCOM_BCM5702,
2044 "Broadcom BCM5702 Gigabit Ethernet",
2045 },
2046 { PCI_VENDOR_BROADCOM,
2047 PCI_PRODUCT_BROADCOM_BCM5702X,
2048 "Broadcom BCM5702X Gigabit Ethernet" },
2049
2050 { PCI_VENDOR_BROADCOM,
2051 PCI_PRODUCT_BROADCOM_BCM5703,
2052 "Broadcom BCM5703 Gigabit Ethernet",
2053 },
2054 { PCI_VENDOR_BROADCOM,
2055 PCI_PRODUCT_BROADCOM_BCM5703X,
2056 "Broadcom BCM5703X Gigabit Ethernet",
2057 },
2058 { PCI_VENDOR_BROADCOM,
2059 PCI_PRODUCT_BROADCOM_BCM5703A3,
2060 "Broadcom BCM5703A3 Gigabit Ethernet",
2061 },
2062
2063 { PCI_VENDOR_BROADCOM,
2064 PCI_PRODUCT_BROADCOM_BCM5704C,
2065 "Broadcom BCM5704C Dual Gigabit Ethernet",
2066 },
2067 { PCI_VENDOR_BROADCOM,
2068 PCI_PRODUCT_BROADCOM_BCM5704S,
2069 "Broadcom BCM5704S Dual Gigabit Ethernet",
2070 },
2071
2072 { PCI_VENDOR_BROADCOM,
2073 PCI_PRODUCT_BROADCOM_BCM5705,
2074 "Broadcom BCM5705 Gigabit Ethernet",
2075 },
2076 { PCI_VENDOR_BROADCOM,
2077 PCI_PRODUCT_BROADCOM_BCM5705K,
2078 "Broadcom BCM5705K Gigabit Ethernet",
2079 },
2080 { PCI_VENDOR_BROADCOM,
2081 PCI_PRODUCT_BROADCOM_BCM5705_ALT,
2082 "Broadcom BCM5705 Gigabit Ethernet",
2083 },
2084 { PCI_VENDOR_BROADCOM,
2085 PCI_PRODUCT_BROADCOM_BCM5705M,
2086 "Broadcom BCM5705M Gigabit Ethernet",
2087 },
2088
2089 { PCI_VENDOR_BROADCOM,
2090 PCI_PRODUCT_BROADCOM_BCM5721,
2091 "Broadcom BCM5721 Gigabit Ethernet",
2092 },
2093
2094 { PCI_VENDOR_BROADCOM,
2095 PCI_PRODUCT_BROADCOM_BCM5750,
2096 "Broadcom BCM5750 Gigabit Ethernet",
2097 },
2098
2099 { PCI_VENDOR_BROADCOM,
2100 PCI_PRODUCT_BROADCOM_BCM5750M,
2101 "Broadcom BCM5750M Gigabit Ethernet",
2102 },
2103
2104 { PCI_VENDOR_BROADCOM,
2105 PCI_PRODUCT_BROADCOM_BCM5751,
2106 "Broadcom BCM5751 Gigabit Ethernet",
2107 },
2108
2109 { PCI_VENDOR_BROADCOM,
2110 PCI_PRODUCT_BROADCOM_BCM5751M,
2111 "Broadcom BCM5751M Gigabit Ethernet",
2112 },
2113
2114 { PCI_VENDOR_BROADCOM,
2115 PCI_PRODUCT_BROADCOM_BCM5782,
2116 "Broadcom BCM5782 Gigabit Ethernet",
2117 },
2118 { PCI_VENDOR_BROADCOM,
2119 PCI_PRODUCT_BROADCOM_BCM5788,
2120 "Broadcom BCM5788 Gigabit Ethernet",
2121 },
2122
2123 { PCI_VENDOR_BROADCOM,
2124 PCI_PRODUCT_BROADCOM_BCM5901,
2125 "Broadcom BCM5901 Fast Ethernet",
2126 },
2127 { PCI_VENDOR_BROADCOM,
2128 PCI_PRODUCT_BROADCOM_BCM5901A2,
2129 "Broadcom BCM5901A2 Fast Ethernet",
2130 },
2131
2132 { PCI_VENDOR_SCHNEIDERKOCH,
2133 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2134 "SysKonnect SK-9Dx1 Gigabit Ethernet",
2135 },
2136
2137 { PCI_VENDOR_3COM,
2138 PCI_PRODUCT_3COM_3C996,
2139 "3Com 3c996 Gigabit Ethernet",
2140 },
2141
2142 { 0,
2143 0,
2144 NULL },
2145 };
2146
2147 static const struct bge_product *
2148 bge_lookup(const struct pci_attach_args *pa)
2149 {
2150 const struct bge_product *bp;
2151
2152 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2153 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2154 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2155 return (bp);
2156 }
2157
2158 return (NULL);
2159 }
2160
2161 int
2162 bge_setpowerstate(sc, powerlevel)
2163 struct bge_softc *sc;
2164 int powerlevel;
2165 {
2166 #ifdef NOTYET
2167 u_int32_t pm_ctl = 0;
2168
2169 /* XXX FIXME: make sure indirect accesses enabled? */
2170 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2171 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2172 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2173
2174 /* clear the PME_assert bit and power state bits, enable PME */
2175 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2176 pm_ctl &= ~PCIM_PSTAT_DMASK;
2177 pm_ctl |= (1 << 8);
2178
2179 if (powerlevel == 0) {
2180 pm_ctl |= PCIM_PSTAT_D0;
2181 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2182 pm_ctl, 2);
2183 DELAY(10000);
2184 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2185 DELAY(10000);
2186
2187 #ifdef NOTYET
2188 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2189 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2190 #endif
2191 DELAY(40); DELAY(40); DELAY(40);
2192 DELAY(10000); /* above not quite adequate on 5700 */
2193 return 0;
2194 }
2195
2196
2197 /*
2198 * Entering ACPI power states D1-D3 is achieved by wiggling
2199 * GMII gpio pins. Example code assumes all hardware vendors
2200 * followed Broadom's sample pcb layout. Until we verify that
2201 * for all supported OEM cards, states D1-D3 are unsupported.
2202 */
2203 printf("%s: power state %d unimplemented; check GPIO pins\n",
2204 sc->bge_dev.dv_xname, powerlevel);
2205 #endif
2206 return EOPNOTSUPP;
2207 }
2208
2209
2210 /*
2211 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2212 * against our list and return its name if we find a match. Note
2213 * that since the Broadcom controller contains VPD support, we
2214 * can get the device name string from the controller itself instead
2215 * of the compiled-in string. This is a little slow, but it guarantees
2216 * we'll always announce the right product name.
2217 */
2218 int
2219 bge_probe(parent, match, aux)
2220 struct device *parent;
2221 struct cfdata *match;
2222 void *aux;
2223 {
2224 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2225
2226 if (bge_lookup(pa) != NULL)
2227 return (1);
2228
2229 return (0);
2230 }
2231
2232 void
2233 bge_attach(parent, self, aux)
2234 struct device *parent, *self;
2235 void *aux;
2236 {
2237 struct bge_softc *sc = (struct bge_softc *)self;
2238 struct pci_attach_args *pa = aux;
2239 const struct bge_product *bp;
2240 const struct bge_revision *br;
2241 pci_chipset_tag_t pc = pa->pa_pc;
2242 pci_intr_handle_t ih;
2243 const char *intrstr = NULL;
2244 bus_dma_segment_t seg;
2245 int rseg;
2246 u_int32_t hwcfg = 0;
2247 u_int32_t mac_addr = 0;
2248 u_int32_t command;
2249 struct ifnet *ifp;
2250 caddr_t kva;
2251 u_char eaddr[ETHER_ADDR_LEN];
2252 pcireg_t memtype;
2253 bus_addr_t memaddr;
2254 bus_size_t memsize;
2255 u_int32_t pm_ctl;
2256
2257 bp = bge_lookup(pa);
2258 KASSERT(bp != NULL);
2259
2260 sc->bge_pa = *pa;
2261
2262 aprint_naive(": Ethernet controller\n");
2263 aprint_normal(": %s\n", bp->bp_name);
2264
2265 /*
2266 * Map control/status registers.
2267 */
2268 DPRINTFN(5, ("Map control/status regs\n"));
2269 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2270 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2271 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2272 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2273
2274 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2275 aprint_error("%s: failed to enable memory mapping!\n",
2276 sc->bge_dev.dv_xname);
2277 return;
2278 }
2279
2280 DPRINTFN(5, ("pci_mem_find\n"));
2281 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2282 switch (memtype) {
2283 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2284 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2285 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2286 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2287 &memaddr, &memsize) == 0)
2288 break;
2289 default:
2290 aprint_error("%s: can't find mem space\n",
2291 sc->bge_dev.dv_xname);
2292 return;
2293 }
2294
2295 DPRINTFN(5, ("pci_intr_map\n"));
2296 if (pci_intr_map(pa, &ih)) {
2297 aprint_error("%s: couldn't map interrupt\n",
2298 sc->bge_dev.dv_xname);
2299 return;
2300 }
2301
2302 DPRINTFN(5, ("pci_intr_string\n"));
2303 intrstr = pci_intr_string(pc, ih);
2304
2305 DPRINTFN(5, ("pci_intr_establish\n"));
2306 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2307
2308 if (sc->bge_intrhand == NULL) {
2309 aprint_error("%s: couldn't establish interrupt",
2310 sc->bge_dev.dv_xname);
2311 if (intrstr != NULL)
2312 aprint_normal(" at %s", intrstr);
2313 aprint_normal("\n");
2314 return;
2315 }
2316 aprint_normal("%s: interrupting at %s\n",
2317 sc->bge_dev.dv_xname, intrstr);
2318
2319 /*
2320 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2321 * can clobber the chip's PCI config-space power control registers,
2322 * leaving the card in D3 powersave state.
2323 * We do not have memory-mapped registers in this state,
2324 * so force device into D0 state before starting initialization.
2325 */
2326 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2327 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2328 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2329 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2330 DELAY(1000); /* 27 usec is allegedly sufficent */
2331
2332 /*
2333 * Save ASIC rev. Look up any quirks associated with this
2334 * ASIC.
2335 */
2336 sc->bge_chipid =
2337 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2338 BGE_PCIMISCCTL_ASICREV;
2339
2340 /*
2341 * Detect PCI-Express devices
2342 * XXX: guessed from Linux/FreeBSD; no documentation
2343 */
2344 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 &&
2345 pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
2346 NULL, NULL) != 0)
2347 sc->bge_pcie = 1;
2348 else
2349 sc->bge_pcie = 0;
2350
2351 /* Try to reset the chip. */
2352 DPRINTFN(5, ("bge_reset\n"));
2353 bge_reset(sc);
2354
2355 if (bge_chipinit(sc)) {
2356 aprint_error("%s: chip initialization failed\n",
2357 sc->bge_dev.dv_xname);
2358 bge_release_resources(sc);
2359 return;
2360 }
2361
2362 /*
2363 * Get station address from the EEPROM.
2364 */
2365 mac_addr = bge_readmem_ind(sc, 0x0c14);
2366 if ((mac_addr >> 16) == 0x484b) {
2367 eaddr[0] = (u_char)(mac_addr >> 8);
2368 eaddr[1] = (u_char)(mac_addr >> 0);
2369 mac_addr = bge_readmem_ind(sc, 0x0c18);
2370 eaddr[2] = (u_char)(mac_addr >> 24);
2371 eaddr[3] = (u_char)(mac_addr >> 16);
2372 eaddr[4] = (u_char)(mac_addr >> 8);
2373 eaddr[5] = (u_char)(mac_addr >> 0);
2374 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2375 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2376 aprint_error("%s: failed to read station address\n",
2377 sc->bge_dev.dv_xname);
2378 bge_release_resources(sc);
2379 return;
2380 }
2381
2382 br = bge_lookup_rev(sc->bge_chipid);
2383 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2384
2385 if (br == NULL) {
2386 aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
2387 sc->bge_quirks = 0;
2388 } else {
2389 aprint_normal("ASIC %s (0x%04x)",
2390 br->br_name, sc->bge_chipid >> 16);
2391 sc->bge_quirks |= br->br_quirks;
2392 }
2393 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2394
2395 /* Allocate the general information block and ring buffers. */
2396 if (pci_dma64_available(pa))
2397 sc->bge_dmatag = pa->pa_dmat64;
2398 else
2399 sc->bge_dmatag = pa->pa_dmat;
2400 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2401 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2402 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2403 aprint_error("%s: can't alloc rx buffers\n",
2404 sc->bge_dev.dv_xname);
2405 return;
2406 }
2407 DPRINTFN(5, ("bus_dmamem_map\n"));
2408 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2409 sizeof(struct bge_ring_data), &kva,
2410 BUS_DMA_NOWAIT)) {
2411 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2412 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2413 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2414 return;
2415 }
2416 DPRINTFN(5, ("bus_dmamem_create\n"));
2417 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2418 sizeof(struct bge_ring_data), 0,
2419 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2420 aprint_error("%s: can't create DMA map\n",
2421 sc->bge_dev.dv_xname);
2422 bus_dmamem_unmap(sc->bge_dmatag, kva,
2423 sizeof(struct bge_ring_data));
2424 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2425 return;
2426 }
2427 DPRINTFN(5, ("bus_dmamem_load\n"));
2428 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2429 sizeof(struct bge_ring_data), NULL,
2430 BUS_DMA_NOWAIT)) {
2431 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2432 bus_dmamem_unmap(sc->bge_dmatag, kva,
2433 sizeof(struct bge_ring_data));
2434 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2435 return;
2436 }
2437
2438 DPRINTFN(5, ("bzero\n"));
2439 sc->bge_rdata = (struct bge_ring_data *)kva;
2440
2441 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2442
2443 /* Try to allocate memory for jumbo buffers. */
2444 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2445 if (bge_alloc_jumbo_mem(sc)) {
2446 aprint_error("%s: jumbo buffer allocation failed\n",
2447 sc->bge_dev.dv_xname);
2448 } else
2449 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2450 }
2451
2452 /* Set default tuneable values. */
2453 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2454 sc->bge_rx_coal_ticks = 150;
2455 sc->bge_rx_max_coal_bds = 64;
2456 #ifdef ORIG_WPAUL_VALUES
2457 sc->bge_tx_coal_ticks = 150;
2458 sc->bge_tx_max_coal_bds = 128;
2459 #else
2460 sc->bge_tx_coal_ticks = 300;
2461 sc->bge_tx_max_coal_bds = 400;
2462 #endif
2463
2464 /* Set up ifnet structure */
2465 ifp = &sc->ethercom.ec_if;
2466 ifp->if_softc = sc;
2467 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2468 ifp->if_ioctl = bge_ioctl;
2469 ifp->if_start = bge_start;
2470 ifp->if_init = bge_init;
2471 ifp->if_watchdog = bge_watchdog;
2472 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2473 IFQ_SET_READY(&ifp->if_snd);
2474 DPRINTFN(5, ("bcopy\n"));
2475 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2476
2477 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2478 sc->ethercom.ec_if.if_capabilities |=
2479 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2480 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2481 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2482 sc->ethercom.ec_capabilities |=
2483 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2484
2485 /*
2486 * Do MII setup.
2487 */
2488 DPRINTFN(5, ("mii setup\n"));
2489 sc->bge_mii.mii_ifp = ifp;
2490 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2491 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2492 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2493
2494 /*
2495 * Figure out what sort of media we have by checking the
2496 * hardware config word in the first 32k of NIC internal memory,
2497 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2498 * cards, this value appears to be unset. If that's the
2499 * case, we have to rely on identifying the NIC by its PCI
2500 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2501 */
2502 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2503 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2504 } else {
2505 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2506 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2507 hwcfg = be32toh(hwcfg);
2508 }
2509 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2510 sc->bge_tbi = 1;
2511
2512 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2513 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2514 SK_SUBSYSID_9D41)
2515 sc->bge_tbi = 1;
2516
2517 if (sc->bge_tbi) {
2518 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2519 bge_ifmedia_sts);
2520 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2521 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2522 0, NULL);
2523 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2524 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2525 } else {
2526 /*
2527 * Do transceiver setup.
2528 */
2529 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2530 bge_ifmedia_sts);
2531 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2532 MII_PHY_ANY, MII_OFFSET_ANY,
2533 MIIF_FORCEANEG|MIIF_DOPAUSE);
2534
2535 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2536 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2537 ifmedia_add(&sc->bge_mii.mii_media,
2538 IFM_ETHER|IFM_MANUAL, 0, NULL);
2539 ifmedia_set(&sc->bge_mii.mii_media,
2540 IFM_ETHER|IFM_MANUAL);
2541 } else
2542 ifmedia_set(&sc->bge_mii.mii_media,
2543 IFM_ETHER|IFM_AUTO);
2544 }
2545
2546 /*
2547 * When using the BCM5701 in PCI-X mode, data corruption has
2548 * been observed in the first few bytes of some received packets.
2549 * Aligning the packet buffer in memory eliminates the corruption.
2550 * Unfortunately, this misaligns the packet payloads. On platforms
2551 * which do not support unaligned accesses, we will realign the
2552 * payloads by copying the received packets.
2553 */
2554 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2555 /* If in PCI-X mode, work around the alignment bug. */
2556 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2557 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2558 BGE_PCISTATE_PCI_BUSSPEED)
2559 sc->bge_rx_alignment_bug = 1;
2560 }
2561
2562 /*
2563 * Call MI attach routine.
2564 */
2565 DPRINTFN(5, ("if_attach\n"));
2566 if_attach(ifp);
2567 DPRINTFN(5, ("ether_ifattach\n"));
2568 ether_ifattach(ifp, eaddr);
2569 #ifdef BGE_EVENT_COUNTERS
2570 /*
2571 * Attach event counters.
2572 */
2573 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2574 NULL, sc->bge_dev.dv_xname, "intr");
2575 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2576 NULL, sc->bge_dev.dv_xname, "tx_xoff");
2577 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2578 NULL, sc->bge_dev.dv_xname, "tx_xon");
2579 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2580 NULL, sc->bge_dev.dv_xname, "rx_xoff");
2581 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2582 NULL, sc->bge_dev.dv_xname, "rx_xon");
2583 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2584 NULL, sc->bge_dev.dv_xname, "rx_macctl");
2585 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2586 NULL, sc->bge_dev.dv_xname, "xoffentered");
2587 #endif /* BGE_EVENT_COUNTERS */
2588 DPRINTFN(5, ("callout_init\n"));
2589 callout_init(&sc->bge_timeout);
2590
2591 sc->bge_powerhook = powerhook_establish(bge_powerhook, sc);
2592 if (sc->bge_powerhook == NULL)
2593 printf("%s: WARNING: unable to establish PCI power hook\n",
2594 sc->bge_dev.dv_xname);
2595 }
2596
2597 void
2598 bge_release_resources(sc)
2599 struct bge_softc *sc;
2600 {
2601 if (sc->bge_vpd_prodname != NULL)
2602 free(sc->bge_vpd_prodname, M_DEVBUF);
2603
2604 if (sc->bge_vpd_readonly != NULL)
2605 free(sc->bge_vpd_readonly, M_DEVBUF);
2606 }
2607
2608 void
2609 bge_reset(sc)
2610 struct bge_softc *sc;
2611 {
2612 struct pci_attach_args *pa = &sc->bge_pa;
2613 u_int32_t cachesize, command, pcistate, new_pcistate;
2614 int i, val;
2615
2616 /* Save some important PCI state. */
2617 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2618 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2619 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2620
2621 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2622 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2623 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2624
2625 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2626 /*
2627 * XXX: from FreeBSD/Linux; no documentation
2628 */
2629 if (sc->bge_pcie) {
2630 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2631 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2632 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2633 /* No idea what that actually means */
2634 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2635 val |= (1<<29);
2636 }
2637 }
2638
2639 /* Issue global reset */
2640 bge_writereg_ind(sc, BGE_MISC_CFG, val);
2641
2642 DELAY(1000);
2643
2644 /*
2645 * XXX: from FreeBSD/Linux; no documentation
2646 */
2647 if (sc->bge_pcie) {
2648 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2649 pcireg_t reg;
2650
2651 DELAY(500000);
2652 /* XXX: Magic Numbers */
2653 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
2654 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
2655 reg | (1 << 15));
2656 }
2657 /* XXX: Magic Numbers */
2658 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN1, 0xf5000);
2659 }
2660
2661 /* Reset some of the PCI state that got zapped by reset */
2662 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2663 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2664 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2665 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2666 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2667 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2668
2669 /* Enable memory arbiter. */
2670 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2671 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2672 }
2673
2674 /*
2675 * Prevent PXE restart: write a magic number to the
2676 * general communications memory at 0xB50.
2677 */
2678 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2679
2680 /*
2681 * Poll the value location we just wrote until
2682 * we see the 1's complement of the magic number.
2683 * This indicates that the firmware initialization
2684 * is complete.
2685 */
2686 for (i = 0; i < 750; i++) {
2687 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2688 if (val == ~BGE_MAGIC_NUMBER)
2689 break;
2690 DELAY(1000);
2691 }
2692
2693 if (i == 750) {
2694 printf("%s: firmware handshake timed out, val = %x\n",
2695 sc->bge_dev.dv_xname, val);
2696 return;
2697 }
2698
2699 /*
2700 * XXX Wait for the value of the PCISTATE register to
2701 * return to its original pre-reset state. This is a
2702 * fairly good indicator of reset completion. If we don't
2703 * wait for the reset to fully complete, trying to read
2704 * from the device's non-PCI registers may yield garbage
2705 * results.
2706 */
2707 for (i = 0; i < BGE_TIMEOUT; i++) {
2708 new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
2709 BGE_PCI_PCISTATE);
2710 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2711 (pcistate & ~BGE_PCISTATE_RESERVED))
2712 break;
2713 DELAY(10);
2714 }
2715 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2716 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2717 printf("%s: pcistate failed to revert\n",
2718 sc->bge_dev.dv_xname);
2719 }
2720
2721 /* XXX: from FreeBSD/Linux; no documentation */
2722 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2723 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2724
2725 /* Enable memory arbiter. */
2726 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2727 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2728 }
2729
2730 /* Fix up byte swapping */
2731 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2732
2733 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2734
2735 DELAY(10000);
2736 }
2737
2738 /*
2739 * Frame reception handling. This is called if there's a frame
2740 * on the receive return list.
2741 *
2742 * Note: we have to be able to handle two possibilities here:
2743 * 1) the frame is from the jumbo recieve ring
2744 * 2) the frame is from the standard receive ring
2745 */
2746
2747 void
2748 bge_rxeof(sc)
2749 struct bge_softc *sc;
2750 {
2751 struct ifnet *ifp;
2752 int stdcnt = 0, jumbocnt = 0;
2753 bus_dmamap_t dmamap;
2754 bus_addr_t offset, toff;
2755 bus_size_t tlen;
2756 int tosync;
2757
2758 ifp = &sc->ethercom.ec_if;
2759
2760 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2761 offsetof(struct bge_ring_data, bge_status_block),
2762 sizeof (struct bge_status_block),
2763 BUS_DMASYNC_POSTREAD);
2764
2765 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2766 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2767 sc->bge_rx_saved_considx;
2768
2769 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2770
2771 if (tosync < 0) {
2772 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2773 sizeof (struct bge_rx_bd);
2774 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2775 toff, tlen, BUS_DMASYNC_POSTREAD);
2776 tosync = -tosync;
2777 }
2778
2779 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2780 offset, tosync * sizeof (struct bge_rx_bd),
2781 BUS_DMASYNC_POSTREAD);
2782
2783 while(sc->bge_rx_saved_considx !=
2784 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2785 struct bge_rx_bd *cur_rx;
2786 u_int32_t rxidx;
2787 struct mbuf *m = NULL;
2788
2789 cur_rx = &sc->bge_rdata->
2790 bge_rx_return_ring[sc->bge_rx_saved_considx];
2791
2792 rxidx = cur_rx->bge_idx;
2793 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2794
2795 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2796 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2797 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2798 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2799 jumbocnt++;
2800 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2801 ifp->if_ierrors++;
2802 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2803 continue;
2804 }
2805 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2806 NULL)== ENOBUFS) {
2807 ifp->if_ierrors++;
2808 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2809 continue;
2810 }
2811 } else {
2812 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2813 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2814 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2815 stdcnt++;
2816 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2817 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2818 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2819 ifp->if_ierrors++;
2820 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2821 continue;
2822 }
2823 if (bge_newbuf_std(sc, sc->bge_std,
2824 NULL, dmamap) == ENOBUFS) {
2825 ifp->if_ierrors++;
2826 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2827 continue;
2828 }
2829 }
2830
2831 ifp->if_ipackets++;
2832 #ifndef __NO_STRICT_ALIGNMENT
2833 /*
2834 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2835 * the Rx buffer has the layer-2 header unaligned.
2836 * If our CPU requires alignment, re-align by copying.
2837 */
2838 if (sc->bge_rx_alignment_bug) {
2839 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2840 cur_rx->bge_len);
2841 m->m_data += ETHER_ALIGN;
2842 }
2843 #endif
2844
2845 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2846 m->m_pkthdr.rcvif = ifp;
2847
2848 #if NBPFILTER > 0
2849 /*
2850 * Handle BPF listeners. Let the BPF user see the packet.
2851 */
2852 if (ifp->if_bpf)
2853 bpf_mtap(ifp->if_bpf, m);
2854 #endif
2855
2856 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
2857
2858 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2859 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2860 /*
2861 * Rx transport checksum-offload may also
2862 * have bugs with packets which, when transmitted,
2863 * were `runts' requiring padding.
2864 */
2865 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2866 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2867 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2868 m->m_pkthdr.csum_data =
2869 cur_rx->bge_tcp_udp_csum;
2870 m->m_pkthdr.csum_flags |=
2871 (M_CSUM_TCPv4|M_CSUM_UDPv4|
2872 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2873 }
2874
2875 /*
2876 * If we received a packet with a vlan tag, pass it
2877 * to vlan_input() instead of ether_input().
2878 */
2879 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
2880 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
2881
2882 (*ifp->if_input)(ifp, m);
2883 }
2884
2885 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2886 if (stdcnt)
2887 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2888 if (jumbocnt)
2889 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2890 }
2891
2892 void
2893 bge_txeof(sc)
2894 struct bge_softc *sc;
2895 {
2896 struct bge_tx_bd *cur_tx = NULL;
2897 struct ifnet *ifp;
2898 struct txdmamap_pool_entry *dma;
2899 bus_addr_t offset, toff;
2900 bus_size_t tlen;
2901 int tosync;
2902 struct mbuf *m;
2903
2904 ifp = &sc->ethercom.ec_if;
2905
2906 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2907 offsetof(struct bge_ring_data, bge_status_block),
2908 sizeof (struct bge_status_block),
2909 BUS_DMASYNC_POSTREAD);
2910
2911 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2912 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2913 sc->bge_tx_saved_considx;
2914
2915 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2916
2917 if (tosync < 0) {
2918 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2919 sizeof (struct bge_tx_bd);
2920 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2921 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2922 tosync = -tosync;
2923 }
2924
2925 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2926 offset, tosync * sizeof (struct bge_tx_bd),
2927 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2928
2929 /*
2930 * Go through our tx ring and free mbufs for those
2931 * frames that have been sent.
2932 */
2933 while (sc->bge_tx_saved_considx !=
2934 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2935 u_int32_t idx = 0;
2936
2937 idx = sc->bge_tx_saved_considx;
2938 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2939 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2940 ifp->if_opackets++;
2941 m = sc->bge_cdata.bge_tx_chain[idx];
2942 if (m != NULL) {
2943 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2944 dma = sc->txdma[idx];
2945 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2946 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2947 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2948 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2949 sc->txdma[idx] = NULL;
2950
2951 m_freem(m);
2952 }
2953 sc->bge_txcnt--;
2954 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2955 ifp->if_timer = 0;
2956 }
2957
2958 if (cur_tx != NULL)
2959 ifp->if_flags &= ~IFF_OACTIVE;
2960 }
2961
2962 int
2963 bge_intr(xsc)
2964 void *xsc;
2965 {
2966 struct bge_softc *sc;
2967 struct ifnet *ifp;
2968
2969 sc = xsc;
2970 ifp = &sc->ethercom.ec_if;
2971
2972 #ifdef notdef
2973 /* Avoid this for now -- checking this register is expensive. */
2974 /* Make sure this is really our interrupt. */
2975 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2976 return (0);
2977 #endif
2978 /* Ack interrupt and stop others from occuring. */
2979 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2980
2981 BGE_EVCNT_INCR(sc->bge_ev_intr);
2982
2983 /*
2984 * Process link state changes.
2985 * Grrr. The link status word in the status block does
2986 * not work correctly on the BCM5700 rev AX and BX chips,
2987 * according to all avaibable information. Hence, we have
2988 * to enable MII interrupts in order to properly obtain
2989 * async link changes. Unfortunately, this also means that
2990 * we have to read the MAC status register to detect link
2991 * changes, thereby adding an additional register access to
2992 * the interrupt handler.
2993 */
2994
2995 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2996 u_int32_t status;
2997
2998 status = CSR_READ_4(sc, BGE_MAC_STS);
2999 if (status & BGE_MACSTAT_MI_INTERRUPT) {
3000 sc->bge_link = 0;
3001 callout_stop(&sc->bge_timeout);
3002 bge_tick(sc);
3003 /* Clear the interrupt */
3004 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3005 BGE_EVTENB_MI_INTERRUPT);
3006 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
3007 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
3008 BRGPHY_INTRS);
3009 }
3010 } else {
3011 if (sc->bge_rdata->bge_status_block.bge_status &
3012 BGE_STATFLAG_LINKSTATE_CHANGED) {
3013 sc->bge_link = 0;
3014 callout_stop(&sc->bge_timeout);
3015 bge_tick(sc);
3016 /* Clear the interrupt */
3017 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3018 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3019 BGE_MACSTAT_LINK_CHANGED);
3020 }
3021 }
3022
3023 if (ifp->if_flags & IFF_RUNNING) {
3024 /* Check RX return ring producer/consumer */
3025 bge_rxeof(sc);
3026
3027 /* Check TX ring producer/consumer */
3028 bge_txeof(sc);
3029 }
3030
3031 if (sc->bge_pending_rxintr_change) {
3032 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3033 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3034 uint32_t junk;
3035
3036 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3037 DELAY(10);
3038 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3039
3040 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3041 DELAY(10);
3042 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3043
3044 sc->bge_pending_rxintr_change = 0;
3045 }
3046 bge_handle_events(sc);
3047
3048 /* Re-enable interrupts. */
3049 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3050
3051 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3052 bge_start(ifp);
3053
3054 return (1);
3055 }
3056
3057 void
3058 bge_tick(xsc)
3059 void *xsc;
3060 {
3061 struct bge_softc *sc = xsc;
3062 struct mii_data *mii = &sc->bge_mii;
3063 struct ifmedia *ifm = NULL;
3064 struct ifnet *ifp = &sc->ethercom.ec_if;
3065 int s;
3066
3067 s = splnet();
3068
3069 bge_stats_update(sc);
3070 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3071 if (sc->bge_link) {
3072 splx(s);
3073 return;
3074 }
3075
3076 if (sc->bge_tbi) {
3077 ifm = &sc->bge_ifmedia;
3078 if (CSR_READ_4(sc, BGE_MAC_STS) &
3079 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3080 sc->bge_link++;
3081 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3082 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3083 bge_start(ifp);
3084 }
3085 splx(s);
3086 return;
3087 }
3088
3089 mii_tick(mii);
3090
3091 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
3092 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3093 sc->bge_link++;
3094 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3095 bge_start(ifp);
3096 }
3097
3098 splx(s);
3099 }
3100
3101 void
3102 bge_stats_update(sc)
3103 struct bge_softc *sc;
3104 {
3105 struct ifnet *ifp = &sc->ethercom.ec_if;
3106 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3107 bus_size_t rstats = BGE_RX_STATS;
3108
3109 #define READ_RSTAT(sc, stats, stat) \
3110 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3111
3112 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3113 ifp->if_collisions +=
3114 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3115 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3116 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3117 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3118
3119 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3120 READ_RSTAT(sc, rstats, outXoffSent));
3121 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3122 READ_RSTAT(sc, rstats, outXonSent));
3123 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3124 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3125 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3126 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3127 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3128 READ_RSTAT(sc, rstats, macControlFramesReceived));
3129 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3130 READ_RSTAT(sc, rstats, xoffStateEntered));
3131 return;
3132 }
3133
3134 #undef READ_RSTAT
3135 #define READ_STAT(sc, stats, stat) \
3136 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3137
3138 ifp->if_collisions +=
3139 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3140 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3141 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3142 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3143 ifp->if_collisions;
3144
3145 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3146 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3147 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3148 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3149 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3150 READ_STAT(sc, stats,
3151 xoffPauseFramesReceived.bge_addr_lo));
3152 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3153 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3154 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3155 READ_STAT(sc, stats,
3156 macControlFramesReceived.bge_addr_lo));
3157 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3158 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3159
3160 #undef READ_STAT
3161
3162 #ifdef notdef
3163 ifp->if_collisions +=
3164 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3165 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3166 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3167 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3168 ifp->if_collisions;
3169 #endif
3170 }
3171
3172 /*
3173 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3174 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3175 * but when such padded frames employ the bge IP/TCP checksum offload,
3176 * the hardware checksum assist gives incorrect results (possibly
3177 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3178 * If we pad such runts with zeros, the onboard checksum comes out correct.
3179 */
3180 static __inline int
3181 bge_cksum_pad(struct mbuf *pkt)
3182 {
3183 struct mbuf *last = NULL;
3184 int padlen;
3185
3186 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3187
3188 /* if there's only the packet-header and we can pad there, use it. */
3189 if (pkt->m_pkthdr.len == pkt->m_len &&
3190 !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
3191 last = pkt;
3192 } else {
3193 /*
3194 * Walk packet chain to find last mbuf. We will either
3195 * pad there, or append a new mbuf and pad it
3196 * (thus perhaps avoiding the bcm5700 dma-min bug).
3197 */
3198 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3199 (void) 0; /* do nothing*/
3200 }
3201
3202 /* `last' now points to last in chain. */
3203 if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
3204 (void) 0; /* we can pad here, in-place. */
3205 } else {
3206 /* Allocate new empty mbuf, pad it. Compact later. */
3207 struct mbuf *n;
3208 MGET(n, M_DONTWAIT, MT_DATA);
3209 n->m_len = 0;
3210 last->m_next = n;
3211 last = n;
3212 }
3213 }
3214
3215 #ifdef DEBUG
3216 /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
3217 KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
3218 #endif
3219 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3220 memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3221 last->m_len += padlen;
3222 pkt->m_pkthdr.len += padlen;
3223 return 0;
3224 }
3225
3226 /*
3227 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3228 */
3229 static __inline int
3230 bge_compact_dma_runt(struct mbuf *pkt)
3231 {
3232 struct mbuf *m, *prev;
3233 int totlen, prevlen;
3234
3235 prev = NULL;
3236 totlen = 0;
3237 prevlen = -1;
3238
3239 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3240 int mlen = m->m_len;
3241 int shortfall = 8 - mlen ;
3242
3243 totlen += mlen;
3244 if (mlen == 0) {
3245 continue;
3246 }
3247 if (mlen >= 8)
3248 continue;
3249
3250 /* If we get here, mbuf data is too small for DMA engine.
3251 * Try to fix by shuffling data to prev or next in chain.
3252 * If that fails, do a compacting deep-copy of the whole chain.
3253 */
3254
3255 /* Internal frag. If fits in prev, copy it there. */
3256 if (prev && !M_READONLY(prev) &&
3257 M_TRAILINGSPACE(prev) >= m->m_len) {
3258 bcopy(m->m_data,
3259 prev->m_data+prev->m_len,
3260 mlen);
3261 prev->m_len += mlen;
3262 m->m_len = 0;
3263 /* XXX stitch chain */
3264 prev->m_next = m_free(m);
3265 m = prev;
3266 continue;
3267 }
3268 else if (m->m_next != NULL && !M_READONLY(m) &&
3269 M_TRAILINGSPACE(m) >= shortfall &&
3270 m->m_next->m_len >= (8 + shortfall)) {
3271 /* m is writable and have enough data in next, pull up. */
3272
3273 bcopy(m->m_next->m_data,
3274 m->m_data+m->m_len,
3275 shortfall);
3276 m->m_len += shortfall;
3277 m->m_next->m_len -= shortfall;
3278 m->m_next->m_data += shortfall;
3279 }
3280 else if (m->m_next == NULL || 1) {
3281 /* Got a runt at the very end of the packet.
3282 * borrow data from the tail of the preceding mbuf and
3283 * update its length in-place. (The original data is still
3284 * valid, so we can do this even if prev is not writable.)
3285 */
3286
3287 /* if we'd make prev a runt, just move all of its data. */
3288 #ifdef DEBUG
3289 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3290 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3291 #endif
3292 if ((prev->m_len - shortfall) < 8)
3293 shortfall = prev->m_len;
3294
3295 #ifdef notyet /* just do the safe slow thing for now */
3296 if (!M_READONLY(m)) {
3297 if (M_LEADINGSPACE(m) < shorfall) {
3298 void *m_dat;
3299 m_dat = (m->m_flags & M_PKTHDR) ?
3300 m->m_pktdat : m->dat;
3301 memmove(m_dat, mtod(m, void*), m->m_len);
3302 m->m_data = m_dat;
3303 }
3304 } else
3305 #endif /* just do the safe slow thing */
3306 {
3307 struct mbuf * n = NULL;
3308 int newprevlen = prev->m_len - shortfall;
3309
3310 MGET(n, M_NOWAIT, MT_DATA);
3311 if (n == NULL)
3312 return ENOBUFS;
3313 KASSERT(m->m_len + shortfall < MLEN
3314 /*,
3315 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3316
3317 /* first copy the data we're stealing from prev */
3318 bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3319
3320 /* update prev->m_len accordingly */
3321 prev->m_len -= shortfall;
3322
3323 /* copy data from runt m */
3324 bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3325
3326 /* n holds what we stole from prev, plus m */
3327 n->m_len = shortfall + m->m_len;
3328
3329 /* stitch n into chain and free m */
3330 n->m_next = m->m_next;
3331 prev->m_next = n;
3332 /* KASSERT(m->m_next == NULL); */
3333 m->m_next = NULL;
3334 m_free(m);
3335 m = n; /* for continuing loop */
3336 }
3337 }
3338 prevlen = m->m_len;
3339 }
3340 return 0;
3341 }
3342
3343 /*
3344 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3345 * pointers to descriptors.
3346 */
3347 int
3348 bge_encap(sc, m_head, txidx)
3349 struct bge_softc *sc;
3350 struct mbuf *m_head;
3351 u_int32_t *txidx;
3352 {
3353 struct bge_tx_bd *f = NULL;
3354 u_int32_t frag, cur, cnt = 0;
3355 u_int16_t csum_flags = 0;
3356 struct txdmamap_pool_entry *dma;
3357 bus_dmamap_t dmamap;
3358 int i = 0;
3359 struct m_tag *mtag;
3360
3361 cur = frag = *txidx;
3362
3363 if (m_head->m_pkthdr.csum_flags) {
3364 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3365 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3366 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3367 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3368 }
3369
3370 /*
3371 * If we were asked to do an outboard checksum, and the NIC
3372 * has the bug where it sometimes adds in the Ethernet padding,
3373 * explicitly pad with zeros so the cksum will be correct either way.
3374 * (For now, do this for all chip versions, until newer
3375 * are confirmed to not require the workaround.)
3376 */
3377 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3378 #ifdef notyet
3379 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3380 #endif
3381 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3382 goto check_dma_bug;
3383
3384 if (bge_cksum_pad(m_head) != 0)
3385 return ENOBUFS;
3386
3387 check_dma_bug:
3388 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3389 goto doit;
3390 /*
3391 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3392 * less than eight bytes. If we encounter a teeny mbuf
3393 * at the end of a chain, we can pad. Otherwise, copy.
3394 */
3395 if (bge_compact_dma_runt(m_head) != 0)
3396 return ENOBUFS;
3397
3398 doit:
3399 dma = SLIST_FIRST(&sc->txdma_list);
3400 if (dma == NULL)
3401 return ENOBUFS;
3402 dmamap = dma->dmamap;
3403
3404 /*
3405 * Start packing the mbufs in this chain into
3406 * the fragment pointers. Stop when we run out
3407 * of fragments or hit the end of the mbuf chain.
3408 */
3409 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3410 BUS_DMA_NOWAIT))
3411 return(ENOBUFS);
3412
3413 mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head);
3414
3415 for (i = 0; i < dmamap->dm_nsegs; i++) {
3416 f = &sc->bge_rdata->bge_tx_ring[frag];
3417 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3418 break;
3419 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3420 f->bge_len = dmamap->dm_segs[i].ds_len;
3421 f->bge_flags = csum_flags;
3422
3423 if (mtag != NULL) {
3424 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3425 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3426 } else {
3427 f->bge_vlan_tag = 0;
3428 }
3429 /*
3430 * Sanity check: avoid coming within 16 descriptors
3431 * of the end of the ring.
3432 */
3433 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
3434 return(ENOBUFS);
3435 cur = frag;
3436 BGE_INC(frag, BGE_TX_RING_CNT);
3437 cnt++;
3438 }
3439
3440 if (i < dmamap->dm_nsegs)
3441 return ENOBUFS;
3442
3443 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3444 BUS_DMASYNC_PREWRITE);
3445
3446 if (frag == sc->bge_tx_saved_considx)
3447 return(ENOBUFS);
3448
3449 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3450 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3451 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3452 sc->txdma[cur] = dma;
3453 sc->bge_txcnt += cnt;
3454
3455 *txidx = frag;
3456
3457 return(0);
3458 }
3459
3460 /*
3461 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3462 * to the mbuf data regions directly in the transmit descriptors.
3463 */
3464 void
3465 bge_start(ifp)
3466 struct ifnet *ifp;
3467 {
3468 struct bge_softc *sc;
3469 struct mbuf *m_head = NULL;
3470 u_int32_t prodidx = 0;
3471 int pkts = 0;
3472
3473 sc = ifp->if_softc;
3474
3475 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3476 return;
3477
3478 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
3479
3480 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3481 IFQ_POLL(&ifp->if_snd, m_head);
3482 if (m_head == NULL)
3483 break;
3484
3485 #if 0
3486 /*
3487 * XXX
3488 * safety overkill. If this is a fragmented packet chain
3489 * with delayed TCP/UDP checksums, then only encapsulate
3490 * it if we have enough descriptors to handle the entire
3491 * chain at once.
3492 * (paranoia -- may not actually be needed)
3493 */
3494 if (m_head->m_flags & M_FIRSTFRAG &&
3495 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3496 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3497 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3498 ifp->if_flags |= IFF_OACTIVE;
3499 break;
3500 }
3501 }
3502 #endif
3503
3504 /*
3505 * Pack the data into the transmit ring. If we
3506 * don't have room, set the OACTIVE flag and wait
3507 * for the NIC to drain the ring.
3508 */
3509 if (bge_encap(sc, m_head, &prodidx)) {
3510 ifp->if_flags |= IFF_OACTIVE;
3511 break;
3512 }
3513
3514 /* now we are committed to transmit the packet */
3515 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3516 pkts++;
3517
3518 #if NBPFILTER > 0
3519 /*
3520 * If there's a BPF listener, bounce a copy of this frame
3521 * to him.
3522 */
3523 if (ifp->if_bpf)
3524 bpf_mtap(ifp->if_bpf, m_head);
3525 #endif
3526 }
3527 if (pkts == 0)
3528 return;
3529
3530 /* Transmit */
3531 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3532 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3533 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3534
3535 /*
3536 * Set a timeout in case the chip goes out to lunch.
3537 */
3538 ifp->if_timer = 5;
3539 }
3540
3541 int
3542 bge_init(ifp)
3543 struct ifnet *ifp;
3544 {
3545 struct bge_softc *sc = ifp->if_softc;
3546 u_int16_t *m;
3547 int s, error;
3548
3549 s = splnet();
3550
3551 ifp = &sc->ethercom.ec_if;
3552
3553 /* Cancel pending I/O and flush buffers. */
3554 bge_stop(sc);
3555 bge_reset(sc);
3556 bge_chipinit(sc);
3557
3558 /*
3559 * Init the various state machines, ring
3560 * control blocks and firmware.
3561 */
3562 error = bge_blockinit(sc);
3563 if (error != 0) {
3564 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3565 error);
3566 splx(s);
3567 return error;
3568 }
3569
3570 ifp = &sc->ethercom.ec_if;
3571
3572 /* Specify MTU. */
3573 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3574 ETHER_HDR_LEN + ETHER_CRC_LEN);
3575
3576 /* Load our MAC address. */
3577 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3578 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3579 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3580
3581 /* Enable or disable promiscuous mode as needed. */
3582 if (ifp->if_flags & IFF_PROMISC) {
3583 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3584 } else {
3585 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3586 }
3587
3588 /* Program multicast filter. */
3589 bge_setmulti(sc);
3590
3591 /* Init RX ring. */
3592 bge_init_rx_ring_std(sc);
3593
3594 /* Init jumbo RX ring. */
3595 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3596 bge_init_rx_ring_jumbo(sc);
3597
3598 /* Init our RX return ring index */
3599 sc->bge_rx_saved_considx = 0;
3600
3601 /* Init TX ring. */
3602 bge_init_tx_ring(sc);
3603
3604 /* Turn on transmitter */
3605 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3606
3607 /* Turn on receiver */
3608 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3609
3610 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3611
3612 /* Tell firmware we're alive. */
3613 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3614
3615 /* Enable host interrupts. */
3616 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3617 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3618 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3619
3620 bge_ifmedia_upd(ifp);
3621
3622 ifp->if_flags |= IFF_RUNNING;
3623 ifp->if_flags &= ~IFF_OACTIVE;
3624
3625 splx(s);
3626
3627 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3628
3629 return 0;
3630 }
3631
3632 /*
3633 * Set media options.
3634 */
3635 int
3636 bge_ifmedia_upd(ifp)
3637 struct ifnet *ifp;
3638 {
3639 struct bge_softc *sc = ifp->if_softc;
3640 struct mii_data *mii = &sc->bge_mii;
3641 struct ifmedia *ifm = &sc->bge_ifmedia;
3642
3643 /* If this is a 1000baseX NIC, enable the TBI port. */
3644 if (sc->bge_tbi) {
3645 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3646 return(EINVAL);
3647 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3648 case IFM_AUTO:
3649 break;
3650 case IFM_1000_SX:
3651 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3652 BGE_CLRBIT(sc, BGE_MAC_MODE,
3653 BGE_MACMODE_HALF_DUPLEX);
3654 } else {
3655 BGE_SETBIT(sc, BGE_MAC_MODE,
3656 BGE_MACMODE_HALF_DUPLEX);
3657 }
3658 break;
3659 default:
3660 return(EINVAL);
3661 }
3662 /* XXX 802.3x flow control for 1000BASE-SX */
3663 return(0);
3664 }
3665
3666 sc->bge_link = 0;
3667 mii_mediachg(mii);
3668
3669 return(0);
3670 }
3671
3672 /*
3673 * Report current media status.
3674 */
3675 void
3676 bge_ifmedia_sts(ifp, ifmr)
3677 struct ifnet *ifp;
3678 struct ifmediareq *ifmr;
3679 {
3680 struct bge_softc *sc = ifp->if_softc;
3681 struct mii_data *mii = &sc->bge_mii;
3682
3683 if (sc->bge_tbi) {
3684 ifmr->ifm_status = IFM_AVALID;
3685 ifmr->ifm_active = IFM_ETHER;
3686 if (CSR_READ_4(sc, BGE_MAC_STS) &
3687 BGE_MACSTAT_TBI_PCS_SYNCHED)
3688 ifmr->ifm_status |= IFM_ACTIVE;
3689 ifmr->ifm_active |= IFM_1000_SX;
3690 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3691 ifmr->ifm_active |= IFM_HDX;
3692 else
3693 ifmr->ifm_active |= IFM_FDX;
3694 return;
3695 }
3696
3697 mii_pollstat(mii);
3698 ifmr->ifm_status = mii->mii_media_status;
3699 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
3700 sc->bge_flowflags;
3701 }
3702
3703 int
3704 bge_ioctl(ifp, command, data)
3705 struct ifnet *ifp;
3706 u_long command;
3707 caddr_t data;
3708 {
3709 struct bge_softc *sc = ifp->if_softc;
3710 struct ifreq *ifr = (struct ifreq *) data;
3711 int s, error = 0;
3712 struct mii_data *mii;
3713
3714 s = splnet();
3715
3716 switch(command) {
3717 case SIOCSIFFLAGS:
3718 if (ifp->if_flags & IFF_UP) {
3719 /*
3720 * If only the state of the PROMISC flag changed,
3721 * then just use the 'set promisc mode' command
3722 * instead of reinitializing the entire NIC. Doing
3723 * a full re-init means reloading the firmware and
3724 * waiting for it to start up, which may take a
3725 * second or two.
3726 */
3727 if (ifp->if_flags & IFF_RUNNING &&
3728 ifp->if_flags & IFF_PROMISC &&
3729 !(sc->bge_if_flags & IFF_PROMISC)) {
3730 BGE_SETBIT(sc, BGE_RX_MODE,
3731 BGE_RXMODE_RX_PROMISC);
3732 } else if (ifp->if_flags & IFF_RUNNING &&
3733 !(ifp->if_flags & IFF_PROMISC) &&
3734 sc->bge_if_flags & IFF_PROMISC) {
3735 BGE_CLRBIT(sc, BGE_RX_MODE,
3736 BGE_RXMODE_RX_PROMISC);
3737 } else
3738 bge_init(ifp);
3739 } else {
3740 if (ifp->if_flags & IFF_RUNNING) {
3741 bge_stop(sc);
3742 }
3743 }
3744 sc->bge_if_flags = ifp->if_flags;
3745 error = 0;
3746 break;
3747 case SIOCSIFMEDIA:
3748 /* XXX Flow control is not supported for 1000BASE-SX */
3749 if (sc->bge_tbi) {
3750 ifr->ifr_media &= ~IFM_ETH_FMASK;
3751 sc->bge_flowflags = 0;
3752 }
3753
3754 /* Flow control requires full-duplex mode. */
3755 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
3756 (ifr->ifr_media & IFM_FDX) == 0) {
3757 ifr->ifr_media &= ~IFM_ETH_FMASK;
3758 }
3759 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
3760 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
3761 /* We an do both TXPAUSE and RXPAUSE. */
3762 ifr->ifr_media |=
3763 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
3764 }
3765 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
3766 }
3767 /* FALLTHROUGH */
3768 case SIOCGIFMEDIA:
3769 if (sc->bge_tbi) {
3770 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3771 command);
3772 } else {
3773 mii = &sc->bge_mii;
3774 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3775 command);
3776 }
3777 break;
3778 default:
3779 error = ether_ioctl(ifp, command, data);
3780 if (error == ENETRESET) {
3781 if (ifp->if_flags & IFF_RUNNING)
3782 bge_setmulti(sc);
3783 error = 0;
3784 }
3785 break;
3786 }
3787
3788 splx(s);
3789
3790 return(error);
3791 }
3792
3793 void
3794 bge_watchdog(ifp)
3795 struct ifnet *ifp;
3796 {
3797 struct bge_softc *sc;
3798
3799 sc = ifp->if_softc;
3800
3801 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3802
3803 ifp->if_flags &= ~IFF_RUNNING;
3804 bge_init(ifp);
3805
3806 ifp->if_oerrors++;
3807 }
3808
3809 static void
3810 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3811 {
3812 int i;
3813
3814 BGE_CLRBIT(sc, reg, bit);
3815
3816 for (i = 0; i < BGE_TIMEOUT; i++) {
3817 if ((CSR_READ_4(sc, reg) & bit) == 0)
3818 return;
3819 delay(100);
3820 }
3821
3822 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3823 sc->bge_dev.dv_xname, (u_long) reg, bit);
3824 }
3825
3826 /*
3827 * Stop the adapter and free any mbufs allocated to the
3828 * RX and TX lists.
3829 */
3830 void
3831 bge_stop(sc)
3832 struct bge_softc *sc;
3833 {
3834 struct ifnet *ifp = &sc->ethercom.ec_if;
3835
3836 callout_stop(&sc->bge_timeout);
3837
3838 /*
3839 * Disable all of the receiver blocks
3840 */
3841 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3842 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3843 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3844 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3845 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3846 }
3847 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3848 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3849 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3850
3851 /*
3852 * Disable all of the transmit blocks
3853 */
3854 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3855 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3856 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3857 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3858 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3859 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3860 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3861 }
3862 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3863
3864 /*
3865 * Shut down all of the memory managers and related
3866 * state machines.
3867 */
3868 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3869 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3870 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3871 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3872 }
3873
3874 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3875 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3876
3877 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3878 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3879 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3880 }
3881
3882 /* Disable host interrupts. */
3883 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3884 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3885
3886 /*
3887 * Tell firmware we're shutting down.
3888 */
3889 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3890
3891 /* Free the RX lists. */
3892 bge_free_rx_ring_std(sc);
3893
3894 /* Free jumbo RX list. */
3895 bge_free_rx_ring_jumbo(sc);
3896
3897 /* Free TX buffers. */
3898 bge_free_tx_ring(sc);
3899
3900 /*
3901 * Isolate/power down the PHY.
3902 */
3903 if (!sc->bge_tbi)
3904 mii_down(&sc->bge_mii);
3905
3906 sc->bge_link = 0;
3907
3908 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3909
3910 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3911 }
3912
3913 /*
3914 * Stop all chip I/O so that the kernel's probe routines don't
3915 * get confused by errant DMAs when rebooting.
3916 */
3917 void
3918 bge_shutdown(xsc)
3919 void *xsc;
3920 {
3921 struct bge_softc *sc = (struct bge_softc *)xsc;
3922
3923 bge_stop(sc);
3924 bge_reset(sc);
3925 }
3926
3927
3928 static int
3929 sysctl_bge_verify(SYSCTLFN_ARGS)
3930 {
3931 int error, t;
3932 struct sysctlnode node;
3933
3934 node = *rnode;
3935 t = *(int*)rnode->sysctl_data;
3936 node.sysctl_data = &t;
3937 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3938 if (error || newp == NULL)
3939 return (error);
3940
3941 #if 0
3942 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
3943 node.sysctl_num, rnode->sysctl_num));
3944 #endif
3945
3946 if (node.sysctl_num == bge_rxthresh_nodenum) {
3947 if (t < 0 || t >= NBGE_RX_THRESH)
3948 return (EINVAL);
3949 bge_update_all_threshes(t);
3950 } else
3951 return (EINVAL);
3952
3953 *(int*)rnode->sysctl_data = t;
3954
3955 return (0);
3956 }
3957
3958 /*
3959 * Set up sysctl(3) MIB, hw.bge.*.
3960 *
3961 * TBD condition SYSCTL_PERMANENT on being an LKM or not
3962 */
3963 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
3964 {
3965 int rc, bge_root_num;
3966 const struct sysctlnode *node;
3967
3968 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3969 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3970 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3971 goto err;
3972 }
3973
3974 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3975 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
3976 SYSCTL_DESCR("BGE interface controls"),
3977 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3978 goto err;
3979 }
3980
3981 bge_root_num = node->sysctl_num;
3982
3983 /* BGE Rx interrupt mitigation level */
3984 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3985 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3986 CTLTYPE_INT, "rx_lvl",
3987 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
3988 sysctl_bge_verify, 0,
3989 &bge_rx_thresh_lvl,
3990 0, CTL_HW, bge_root_num, CTL_CREATE,
3991 CTL_EOL)) != 0) {
3992 goto err;
3993 }
3994
3995 bge_rxthresh_nodenum = node->sysctl_num;
3996
3997 return;
3998
3999 err:
4000 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4001 }
4002
4003 void
4004 bge_powerhook(int why, void *hdl)
4005 {
4006 struct bge_softc *sc = (struct bge_softc *)hdl;
4007 struct ifnet *ifp = &sc->ethercom.ec_if;
4008 struct pci_attach_args *pa = &(sc->bge_pa);
4009 pci_chipset_tag_t pc = pa->pa_pc;
4010 pcitag_t tag = pa->pa_tag;
4011
4012 switch (why) {
4013 case PWR_SOFTSUSPEND:
4014 case PWR_SOFTSTANDBY:
4015 bge_shutdown(sc);
4016 break;
4017 case PWR_SOFTRESUME:
4018 if (ifp->if_flags & IFF_UP) {
4019 ifp->if_flags &= ~IFF_RUNNING;
4020 bge_init(ifp);
4021 }
4022 break;
4023 case PWR_SUSPEND:
4024 case PWR_STANDBY:
4025 pci_conf_capture(pc, tag, &sc->bge_pciconf);
4026 break;
4027 case PWR_RESUME:
4028 pci_conf_restore(pc, tag, &sc->bge_pciconf);
4029 break;
4030 }
4031
4032 return;
4033 }
4034