Home | History | Annotate | Line # | Download | only in pci
if_bge.c revision 1.92
      1 /*	$NetBSD: if_bge.c,v 1.92 2005/08/22 18:18:25 gavan Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.92 2005/08/22 18:18:25 gavan Exp $");
     83 
     84 #include "bpfilter.h"
     85 #include "vlan.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/sockio.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/device.h>
     95 #include <sys/socket.h>
     96 #include <sys/sysctl.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 
    103 #ifdef INET
    104 #include <netinet/in.h>
    105 #include <netinet/in_systm.h>
    106 #include <netinet/in_var.h>
    107 #include <netinet/ip.h>
    108 #endif
    109 
    110 #if NBPFILTER > 0
    111 #include <net/bpf.h>
    112 #endif
    113 
    114 #include <dev/pci/pcireg.h>
    115 #include <dev/pci/pcivar.h>
    116 #include <dev/pci/pcidevs.h>
    117 
    118 #include <dev/mii/mii.h>
    119 #include <dev/mii/miivar.h>
    120 #include <dev/mii/miidevs.h>
    121 #include <dev/mii/brgphyreg.h>
    122 
    123 #include <dev/pci/if_bgereg.h>
    124 
    125 #include <uvm/uvm_extern.h>
    126 
    127 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    128 
    129 
    130 /*
    131  * Tunable thresholds for rx-side bge interrupt mitigation.
    132  */
    133 
    134 /*
    135  * The pairs of values below were obtained from empirical measurement
    136  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    137  * interrupt for every N packets received, where N is, approximately,
    138  * the second value (rx_max_bds) in each pair.  The values are chosen
    139  * such that moving from one pair to the succeeding pair was observed
    140  * to roughly halve interrupt rate under sustained input packet load.
    141  * The values were empirically chosen to avoid overflowing internal
    142  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
    143  * results in internal wrapping and higher interrupt rates.
    144  * The limit of 46 frames was chosen to match NFS workloads.
    145  *
    146  * These values also work well on bcm5701, bcm5704C, and (less
    147  * tested) bcm5703.  On other chipsets, (including the Altima chip
    148  * family), the larger values may overflow internal chip limits,
    149  * leading to increasing interrupt rates rather than lower interrupt
    150  * rates.
    151  *
    152  * Applications using heavy interrupt mitigation (interrupting every
    153  * 32 or 46 frames) in both directions may need to increase the TCP
    154  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    155  * full link bandwidth, due to ACKs and window updates lingering
    156  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    157  */
    158 struct bge_load_rx_thresh {
    159 	int rx_ticks;
    160 	int rx_max_bds; }
    161 bge_rx_threshes[] = {
    162 	{ 32,   2 },
    163 	{ 50,   4 },
    164 	{ 100,  8 },
    165 	{ 192, 16 },
    166 	{ 416, 32 },
    167 	{ 598, 46 }
    168 };
    169 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    170 
    171 /* XXX patchable; should be sysctl'able */
    172 static int	bge_auto_thresh = 1;
    173 static int	bge_rx_thresh_lvl;
    174 
    175 #ifdef __NetBSD__
    176 static int bge_rxthresh_nodenum;
    177 #endif /* __NetBSD__ */
    178 
    179 int bge_probe(struct device *, struct cfdata *, void *);
    180 void bge_attach(struct device *, struct device *, void *);
    181 void bge_powerhook(int, void *);
    182 void bge_release_resources(struct bge_softc *);
    183 void bge_txeof(struct bge_softc *);
    184 void bge_rxeof(struct bge_softc *);
    185 
    186 void bge_tick(void *);
    187 void bge_stats_update(struct bge_softc *);
    188 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
    189 static __inline int bge_cksum_pad(struct mbuf *pkt);
    190 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
    191 
    192 int bge_intr(void *);
    193 void bge_start(struct ifnet *);
    194 int bge_ioctl(struct ifnet *, u_long, caddr_t);
    195 int bge_init(struct ifnet *);
    196 void bge_stop(struct bge_softc *);
    197 void bge_watchdog(struct ifnet *);
    198 void bge_shutdown(void *);
    199 int bge_ifmedia_upd(struct ifnet *);
    200 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    201 
    202 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
    203 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
    204 
    205 void bge_setmulti(struct bge_softc *);
    206 
    207 void bge_handle_events(struct bge_softc *);
    208 int bge_alloc_jumbo_mem(struct bge_softc *);
    209 void bge_free_jumbo_mem(struct bge_softc *);
    210 void *bge_jalloc(struct bge_softc *);
    211 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
    212 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
    213 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    214 int bge_init_rx_ring_std(struct bge_softc *);
    215 void bge_free_rx_ring_std(struct bge_softc *);
    216 int bge_init_rx_ring_jumbo(struct bge_softc *);
    217 void bge_free_rx_ring_jumbo(struct bge_softc *);
    218 void bge_free_tx_ring(struct bge_softc *);
    219 int bge_init_tx_ring(struct bge_softc *);
    220 
    221 int bge_chipinit(struct bge_softc *);
    222 int bge_blockinit(struct bge_softc *);
    223 int bge_setpowerstate(struct bge_softc *, int);
    224 
    225 #ifdef notdef
    226 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
    227 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
    228 void bge_vpd_read(struct bge_softc *);
    229 #endif
    230 
    231 u_int32_t bge_readmem_ind(struct bge_softc *, int);
    232 void bge_writemem_ind(struct bge_softc *, int, int);
    233 #ifdef notdef
    234 u_int32_t bge_readreg_ind(struct bge_softc *, int);
    235 #endif
    236 void bge_writereg_ind(struct bge_softc *, int, int);
    237 
    238 int bge_miibus_readreg(struct device *, int, int);
    239 void bge_miibus_writereg(struct device *, int, int, int);
    240 void bge_miibus_statchg(struct device *);
    241 
    242 void bge_reset(struct bge_softc *);
    243 
    244 void	bge_set_thresh(struct ifnet *  /*ifp*/, int /*lvl*/);
    245 void	bge_update_all_threshes(int /*lvl*/);
    246 
    247 void bge_dump_status(struct bge_softc *);
    248 void bge_dump_rxbd(struct bge_rx_bd *);
    249 
    250 #define BGE_DEBUG
    251 #ifdef BGE_DEBUG
    252 #define DPRINTF(x)	if (bgedebug) printf x
    253 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
    254 int	bgedebug = 0;
    255 #else
    256 #define DPRINTF(x)
    257 #define DPRINTFN(n,x)
    258 #endif
    259 
    260 #ifdef BGE_EVENT_COUNTERS
    261 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    262 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    263 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    264 #else
    265 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    266 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    267 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    268 #endif
    269 
    270 /* Various chip quirks. */
    271 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
    272 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
    273 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
    274 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
    275 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
    276 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
    277 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
    278 #define	BGE_QUIRK_5705_CORE		0x00000080
    279 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
    280 
    281 /* following bugs are common to bcm5700 rev B, all flavours */
    282 #define BGE_QUIRK_5700_COMMON \
    283 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
    284 
    285 CFATTACH_DECL(bge, sizeof(struct bge_softc),
    286     bge_probe, bge_attach, NULL, NULL);
    287 
    288 u_int32_t
    289 bge_readmem_ind(sc, off)
    290 	struct bge_softc *sc;
    291 	int off;
    292 {
    293 	struct pci_attach_args	*pa = &(sc->bge_pa);
    294 	pcireg_t val;
    295 
    296 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    297 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
    298 	return val;
    299 }
    300 
    301 void
    302 bge_writemem_ind(sc, off, val)
    303 	struct bge_softc *sc;
    304 	int off, val;
    305 {
    306 	struct pci_attach_args	*pa = &(sc->bge_pa);
    307 
    308 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
    309 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
    310 }
    311 
    312 #ifdef notdef
    313 u_int32_t
    314 bge_readreg_ind(sc, off)
    315 	struct bge_softc *sc;
    316 	int off;
    317 {
    318 	struct pci_attach_args	*pa = &(sc->bge_pa);
    319 
    320 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    321 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
    322 }
    323 #endif
    324 
    325 void
    326 bge_writereg_ind(sc, off, val)
    327 	struct bge_softc *sc;
    328 	int off, val;
    329 {
    330 	struct pci_attach_args	*pa = &(sc->bge_pa);
    331 
    332 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
    333 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
    334 }
    335 
    336 #ifdef notdef
    337 u_int8_t
    338 bge_vpd_readbyte(sc, addr)
    339 	struct bge_softc *sc;
    340 	int addr;
    341 {
    342 	int i;
    343 	u_int32_t val;
    344 	struct pci_attach_args	*pa = &(sc->bge_pa);
    345 
    346 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
    347 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    348 		DELAY(10);
    349 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
    350 		    BGE_VPD_FLAG)
    351 			break;
    352 	}
    353 
    354 	if (i == BGE_TIMEOUT) {
    355 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
    356 		return(0);
    357 	}
    358 
    359 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
    360 
    361 	return((val >> ((addr % 4) * 8)) & 0xFF);
    362 }
    363 
    364 void
    365 bge_vpd_read_res(sc, res, addr)
    366 	struct bge_softc *sc;
    367 	struct vpd_res *res;
    368 	int addr;
    369 {
    370 	int i;
    371 	u_int8_t *ptr;
    372 
    373 	ptr = (u_int8_t *)res;
    374 	for (i = 0; i < sizeof(struct vpd_res); i++)
    375 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
    376 }
    377 
    378 void
    379 bge_vpd_read(sc)
    380 	struct bge_softc *sc;
    381 {
    382 	int pos = 0, i;
    383 	struct vpd_res res;
    384 
    385 	if (sc->bge_vpd_prodname != NULL)
    386 		free(sc->bge_vpd_prodname, M_DEVBUF);
    387 	if (sc->bge_vpd_readonly != NULL)
    388 		free(sc->bge_vpd_readonly, M_DEVBUF);
    389 	sc->bge_vpd_prodname = NULL;
    390 	sc->bge_vpd_readonly = NULL;
    391 
    392 	bge_vpd_read_res(sc, &res, pos);
    393 
    394 	if (res.vr_id != VPD_RES_ID) {
    395 		printf("%s: bad VPD resource id: expected %x got %x\n",
    396 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
    397 		return;
    398 	}
    399 
    400 	pos += sizeof(res);
    401 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
    402 	if (sc->bge_vpd_prodname == NULL)
    403 		panic("bge_vpd_read");
    404 	for (i = 0; i < res.vr_len; i++)
    405 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
    406 	sc->bge_vpd_prodname[i] = '\0';
    407 	pos += i;
    408 
    409 	bge_vpd_read_res(sc, &res, pos);
    410 
    411 	if (res.vr_id != VPD_RES_READ) {
    412 		printf("%s: bad VPD resource id: expected %x got %x\n",
    413 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
    414 		return;
    415 	}
    416 
    417 	pos += sizeof(res);
    418 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
    419 	if (sc->bge_vpd_readonly == NULL)
    420 		panic("bge_vpd_read");
    421 	for (i = 0; i < res.vr_len + 1; i++)
    422 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
    423 }
    424 #endif
    425 
    426 /*
    427  * Read a byte of data stored in the EEPROM at address 'addr.' The
    428  * BCM570x supports both the traditional bitbang interface and an
    429  * auto access interface for reading the EEPROM. We use the auto
    430  * access method.
    431  */
    432 u_int8_t
    433 bge_eeprom_getbyte(sc, addr, dest)
    434 	struct bge_softc *sc;
    435 	int addr;
    436 	u_int8_t *dest;
    437 {
    438 	int i;
    439 	u_int32_t byte = 0;
    440 
    441 	/*
    442 	 * Enable use of auto EEPROM access so we can avoid
    443 	 * having to use the bitbang method.
    444 	 */
    445 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
    446 
    447 	/* Reset the EEPROM, load the clock period. */
    448 	CSR_WRITE_4(sc, BGE_EE_ADDR,
    449 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
    450 	DELAY(20);
    451 
    452 	/* Issue the read EEPROM command. */
    453 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
    454 
    455 	/* Wait for completion */
    456 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
    457 		DELAY(10);
    458 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
    459 			break;
    460 	}
    461 
    462 	if (i == BGE_TIMEOUT) {
    463 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
    464 		return(0);
    465 	}
    466 
    467 	/* Get result. */
    468 	byte = CSR_READ_4(sc, BGE_EE_DATA);
    469 
    470 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
    471 
    472 	return(0);
    473 }
    474 
    475 /*
    476  * Read a sequence of bytes from the EEPROM.
    477  */
    478 int
    479 bge_read_eeprom(sc, dest, off, cnt)
    480 	struct bge_softc *sc;
    481 	caddr_t dest;
    482 	int off;
    483 	int cnt;
    484 {
    485 	int err = 0, i;
    486 	u_int8_t byte = 0;
    487 
    488 	for (i = 0; i < cnt; i++) {
    489 		err = bge_eeprom_getbyte(sc, off + i, &byte);
    490 		if (err)
    491 			break;
    492 		*(dest + i) = byte;
    493 	}
    494 
    495 	return(err ? 1 : 0);
    496 }
    497 
    498 int
    499 bge_miibus_readreg(dev, phy, reg)
    500 	struct device *dev;
    501 	int phy, reg;
    502 {
    503 	struct bge_softc *sc = (struct bge_softc *)dev;
    504 	u_int32_t val;
    505 	u_int32_t saved_autopoll;
    506 	int i;
    507 
    508 	/*
    509 	 * Several chips with builtin PHYs will incorrectly answer to
    510 	 * other PHY instances than the builtin PHY at id 1.
    511 	 */
    512 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
    513 		return(0);
    514 
    515 	/* Reading with autopolling on may trigger PCI errors */
    516 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    517 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    518 		CSR_WRITE_4(sc, BGE_MI_MODE,
    519 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
    520 		DELAY(40);
    521 	}
    522 
    523 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
    524 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
    525 
    526 	for (i = 0; i < BGE_TIMEOUT; i++) {
    527 		val = CSR_READ_4(sc, BGE_MI_COMM);
    528 		if (!(val & BGE_MICOMM_BUSY))
    529 			break;
    530 		delay(10);
    531 	}
    532 
    533 	if (i == BGE_TIMEOUT) {
    534 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    535 		val = 0;
    536 		goto done;
    537 	}
    538 
    539 	val = CSR_READ_4(sc, BGE_MI_COMM);
    540 
    541 done:
    542 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    543 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    544 		DELAY(40);
    545 	}
    546 
    547 	if (val & BGE_MICOMM_READFAIL)
    548 		return(0);
    549 
    550 	return(val & 0xFFFF);
    551 }
    552 
    553 void
    554 bge_miibus_writereg(dev, phy, reg, val)
    555 	struct device *dev;
    556 	int phy, reg, val;
    557 {
    558 	struct bge_softc *sc = (struct bge_softc *)dev;
    559 	u_int32_t saved_autopoll;
    560 	int i;
    561 
    562 	/* Touching the PHY while autopolling is on may trigger PCI errors */
    563 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
    564 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    565 		delay(40);
    566 		CSR_WRITE_4(sc, BGE_MI_MODE,
    567 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
    568 		delay(10); /* 40 usec is supposed to be adequate */
    569 	}
    570 
    571 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
    572 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
    573 
    574 	for (i = 0; i < BGE_TIMEOUT; i++) {
    575 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
    576 			break;
    577 		delay(10);
    578 	}
    579 
    580 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
    581 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
    582 		delay(40);
    583 	}
    584 
    585 	if (i == BGE_TIMEOUT) {
    586 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
    587 	}
    588 }
    589 
    590 void
    591 bge_miibus_statchg(dev)
    592 	struct device *dev;
    593 {
    594 	struct bge_softc *sc = (struct bge_softc *)dev;
    595 	struct mii_data *mii = &sc->bge_mii;
    596 
    597 	/*
    598 	 * Get flow control negotiation result.
    599 	 */
    600 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
    601 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
    602 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
    603 		mii->mii_media_active &= ~IFM_ETH_FMASK;
    604 	}
    605 
    606 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
    607 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
    608 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
    609 	} else {
    610 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
    611 	}
    612 
    613 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
    614 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    615 	} else {
    616 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
    617 	}
    618 
    619 	/*
    620 	 * 802.3x flow control
    621 	 */
    622 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
    623 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    624 	} else {
    625 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
    626 	}
    627 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
    628 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    629 	} else {
    630 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
    631 	}
    632 }
    633 
    634 /*
    635  * Update rx threshold levels to values in a particular slot
    636  * of the interrupt-mitigation table bge_rx_threshes.
    637  */
    638 void
    639 bge_set_thresh(struct ifnet *ifp, int lvl)
    640 {
    641 	struct bge_softc *sc = ifp->if_softc;
    642 	int s;
    643 
    644 	/* For now, just save the new Rx-intr thresholds and record
    645 	 * that a threshold update is pending.  Updating the hardware
    646 	 * registers here (even at splhigh()) is observed to
    647 	 * occasionaly cause glitches where Rx-interrupts are not
    648 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
    649 	 */
    650 	s = splnet();
    651 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
    652 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
    653 	sc->bge_pending_rxintr_change = 1;
    654 	splx(s);
    655 
    656 	 return;
    657 }
    658 
    659 
    660 /*
    661  * Update Rx thresholds of all bge devices
    662  */
    663 void
    664 bge_update_all_threshes(int lvl)
    665 {
    666 	struct ifnet *ifp;
    667 	const char * const namebuf = "bge";
    668 	int namelen;
    669 
    670 	if (lvl < 0)
    671 		lvl = 0;
    672 	else if( lvl >= NBGE_RX_THRESH)
    673 		lvl = NBGE_RX_THRESH - 1;
    674 
    675 	namelen = strlen(namebuf);
    676 	/*
    677 	 * Now search all the interfaces for this name/number
    678 	 */
    679 	IFNET_FOREACH(ifp) {
    680 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
    681 		      continue;
    682 		/* We got a match: update if doing auto-threshold-tuning */
    683 		if (bge_auto_thresh)
    684 			bge_set_thresh(ifp, lvl);
    685 	}
    686 }
    687 
    688 /*
    689  * Handle events that have triggered interrupts.
    690  */
    691 void
    692 bge_handle_events(sc)
    693 	struct bge_softc		*sc;
    694 {
    695 
    696 	return;
    697 }
    698 
    699 /*
    700  * Memory management for jumbo frames.
    701  */
    702 
    703 int
    704 bge_alloc_jumbo_mem(sc)
    705 	struct bge_softc		*sc;
    706 {
    707 	caddr_t			ptr, kva;
    708 	bus_dma_segment_t	seg;
    709 	int		i, rseg, state, error;
    710 	struct bge_jpool_entry   *entry;
    711 
    712 	state = error = 0;
    713 
    714 	/* Grab a big chunk o' storage. */
    715 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
    716 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    717 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
    718 		return ENOBUFS;
    719 	}
    720 
    721 	state = 1;
    722 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
    723 	    BUS_DMA_NOWAIT)) {
    724 		printf("%s: can't map DMA buffers (%d bytes)\n",
    725 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
    726 		error = ENOBUFS;
    727 		goto out;
    728 	}
    729 
    730 	state = 2;
    731 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
    732 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
    733 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
    734 		error = ENOBUFS;
    735 		goto out;
    736 	}
    737 
    738 	state = 3;
    739 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
    740 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
    741 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
    742 		error = ENOBUFS;
    743 		goto out;
    744 	}
    745 
    746 	state = 4;
    747 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
    748 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
    749 
    750 	SLIST_INIT(&sc->bge_jfree_listhead);
    751 	SLIST_INIT(&sc->bge_jinuse_listhead);
    752 
    753 	/*
    754 	 * Now divide it up into 9K pieces and save the addresses
    755 	 * in an array.
    756 	 */
    757 	ptr = sc->bge_cdata.bge_jumbo_buf;
    758 	for (i = 0; i < BGE_JSLOTS; i++) {
    759 		sc->bge_cdata.bge_jslots[i] = ptr;
    760 		ptr += BGE_JLEN;
    761 		entry = malloc(sizeof(struct bge_jpool_entry),
    762 		    M_DEVBUF, M_NOWAIT);
    763 		if (entry == NULL) {
    764 			printf("%s: no memory for jumbo buffer queue!\n",
    765 			    sc->bge_dev.dv_xname);
    766 			error = ENOBUFS;
    767 			goto out;
    768 		}
    769 		entry->slot = i;
    770 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
    771 				 entry, jpool_entries);
    772 	}
    773 out:
    774 	if (error != 0) {
    775 		switch (state) {
    776 		case 4:
    777 			bus_dmamap_unload(sc->bge_dmatag,
    778 			    sc->bge_cdata.bge_rx_jumbo_map);
    779 		case 3:
    780 			bus_dmamap_destroy(sc->bge_dmatag,
    781 			    sc->bge_cdata.bge_rx_jumbo_map);
    782 		case 2:
    783 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
    784 		case 1:
    785 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
    786 			break;
    787 		default:
    788 			break;
    789 		}
    790 	}
    791 
    792 	return error;
    793 }
    794 
    795 /*
    796  * Allocate a jumbo buffer.
    797  */
    798 void *
    799 bge_jalloc(sc)
    800 	struct bge_softc		*sc;
    801 {
    802 	struct bge_jpool_entry   *entry;
    803 
    804 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
    805 
    806 	if (entry == NULL) {
    807 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
    808 		return(NULL);
    809 	}
    810 
    811 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
    812 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
    813 	return(sc->bge_cdata.bge_jslots[entry->slot]);
    814 }
    815 
    816 /*
    817  * Release a jumbo buffer.
    818  */
    819 void
    820 bge_jfree(m, buf, size, arg)
    821 	struct mbuf	*m;
    822 	caddr_t		buf;
    823 	size_t		size;
    824 	void		*arg;
    825 {
    826 	struct bge_jpool_entry *entry;
    827 	struct bge_softc *sc;
    828 	int i, s;
    829 
    830 	/* Extract the softc struct pointer. */
    831 	sc = (struct bge_softc *)arg;
    832 
    833 	if (sc == NULL)
    834 		panic("bge_jfree: can't find softc pointer!");
    835 
    836 	/* calculate the slot this buffer belongs to */
    837 
    838 	i = ((caddr_t)buf
    839 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
    840 
    841 	if ((i < 0) || (i >= BGE_JSLOTS))
    842 		panic("bge_jfree: asked to free buffer that we don't manage!");
    843 
    844 	s = splvm();
    845 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
    846 	if (entry == NULL)
    847 		panic("bge_jfree: buffer not in use!");
    848 	entry->slot = i;
    849 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
    850 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
    851 
    852 	if (__predict_true(m != NULL))
    853   		pool_cache_put(&mbpool_cache, m);
    854 	splx(s);
    855 }
    856 
    857 
    858 /*
    859  * Intialize a standard receive ring descriptor.
    860  */
    861 int
    862 bge_newbuf_std(sc, i, m, dmamap)
    863 	struct bge_softc	*sc;
    864 	int			i;
    865 	struct mbuf		*m;
    866 	bus_dmamap_t dmamap;
    867 {
    868 	struct mbuf		*m_new = NULL;
    869 	struct bge_rx_bd	*r;
    870 	int			error;
    871 
    872 	if (dmamap == NULL) {
    873 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
    874 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
    875 		if (error != 0)
    876 			return error;
    877 	}
    878 
    879 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
    880 
    881 	if (m == NULL) {
    882 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    883 		if (m_new == NULL) {
    884 			return(ENOBUFS);
    885 		}
    886 
    887 		MCLGET(m_new, M_DONTWAIT);
    888 		if (!(m_new->m_flags & M_EXT)) {
    889 			m_freem(m_new);
    890 			return(ENOBUFS);
    891 		}
    892 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    893 		if (!sc->bge_rx_alignment_bug)
    894 		    m_adj(m_new, ETHER_ALIGN);
    895 
    896 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
    897 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
    898 			return(ENOBUFS);
    899 	} else {
    900 		m_new = m;
    901 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    902 		m_new->m_data = m_new->m_ext.ext_buf;
    903 		if (!sc->bge_rx_alignment_bug)
    904 		    m_adj(m_new, ETHER_ALIGN);
    905 	}
    906 
    907 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
    908 	r = &sc->bge_rdata->bge_rx_std_ring[i];
    909 	bge_set_hostaddr(&r->bge_addr,
    910 	    dmamap->dm_segs[0].ds_addr);
    911 	r->bge_flags = BGE_RXBDFLAG_END;
    912 	r->bge_len = m_new->m_len;
    913 	r->bge_idx = i;
    914 
    915 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    916 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
    917 		i * sizeof (struct bge_rx_bd),
    918 	    sizeof (struct bge_rx_bd),
    919 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    920 
    921 	return(0);
    922 }
    923 
    924 /*
    925  * Initialize a jumbo receive ring descriptor. This allocates
    926  * a jumbo buffer from the pool managed internally by the driver.
    927  */
    928 int
    929 bge_newbuf_jumbo(sc, i, m)
    930 	struct bge_softc *sc;
    931 	int i;
    932 	struct mbuf *m;
    933 {
    934 	struct mbuf *m_new = NULL;
    935 	struct bge_rx_bd *r;
    936 
    937 	if (m == NULL) {
    938 		caddr_t			buf = NULL;
    939 
    940 		/* Allocate the mbuf. */
    941 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    942 		if (m_new == NULL) {
    943 			return(ENOBUFS);
    944 		}
    945 
    946 		/* Allocate the jumbo buffer */
    947 		buf = bge_jalloc(sc);
    948 		if (buf == NULL) {
    949 			m_freem(m_new);
    950 			printf("%s: jumbo allocation failed "
    951 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
    952 			return(ENOBUFS);
    953 		}
    954 
    955 		/* Attach the buffer to the mbuf. */
    956 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
    957 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
    958 		    bge_jfree, sc);
    959 		m_new->m_flags |= M_EXT_RW;
    960 	} else {
    961 		m_new = m;
    962 		m_new->m_data = m_new->m_ext.ext_buf;
    963 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
    964 	}
    965 
    966 	if (!sc->bge_rx_alignment_bug)
    967 	    m_adj(m_new, ETHER_ALIGN);
    968 	/* Set up the descriptor. */
    969 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
    970 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
    971 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
    972 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
    973 	r->bge_len = m_new->m_len;
    974 	r->bge_idx = i;
    975 
    976 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
    977 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
    978 		i * sizeof (struct bge_rx_bd),
    979 	    sizeof (struct bge_rx_bd),
    980 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
    981 
    982 	return(0);
    983 }
    984 
    985 /*
    986  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
    987  * that's 1MB or memory, which is a lot. For now, we fill only the first
    988  * 256 ring entries and hope that our CPU is fast enough to keep up with
    989  * the NIC.
    990  */
    991 int
    992 bge_init_rx_ring_std(sc)
    993 	struct bge_softc *sc;
    994 {
    995 	int i;
    996 
    997 	if (sc->bge_flags & BGE_RXRING_VALID)
    998 		return 0;
    999 
   1000 	for (i = 0; i < BGE_SSLOTS; i++) {
   1001 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
   1002 			return(ENOBUFS);
   1003 	}
   1004 
   1005 	sc->bge_std = i - 1;
   1006 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1007 
   1008 	sc->bge_flags |= BGE_RXRING_VALID;
   1009 
   1010 	return(0);
   1011 }
   1012 
   1013 void
   1014 bge_free_rx_ring_std(sc)
   1015 	struct bge_softc *sc;
   1016 {
   1017 	int i;
   1018 
   1019 	if (!(sc->bge_flags & BGE_RXRING_VALID))
   1020 		return;
   1021 
   1022 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1023 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
   1024 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
   1025 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1026 			bus_dmamap_destroy(sc->bge_dmatag,
   1027 			    sc->bge_cdata.bge_rx_std_map[i]);
   1028 		}
   1029 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1030 		    sizeof(struct bge_rx_bd));
   1031 	}
   1032 
   1033 	sc->bge_flags &= ~BGE_RXRING_VALID;
   1034 }
   1035 
   1036 int
   1037 bge_init_rx_ring_jumbo(sc)
   1038 	struct bge_softc *sc;
   1039 {
   1040 	int i;
   1041 	volatile struct bge_rcb *rcb;
   1042 
   1043 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
   1044 		return 0;
   1045 
   1046 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1047 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1048 			return(ENOBUFS);
   1049 	};
   1050 
   1051 	sc->bge_jumbo = i - 1;
   1052 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
   1053 
   1054 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1055 	rcb->bge_maxlen_flags = 0;
   1056 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1057 
   1058 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1059 
   1060 	return(0);
   1061 }
   1062 
   1063 void
   1064 bge_free_rx_ring_jumbo(sc)
   1065 	struct bge_softc *sc;
   1066 {
   1067 	int i;
   1068 
   1069 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
   1070 		return;
   1071 
   1072 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1073 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
   1074 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1075 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1076 		}
   1077 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1078 		    sizeof(struct bge_rx_bd));
   1079 	}
   1080 
   1081 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
   1082 }
   1083 
   1084 void
   1085 bge_free_tx_ring(sc)
   1086 	struct bge_softc *sc;
   1087 {
   1088 	int i, freed;
   1089 	struct txdmamap_pool_entry *dma;
   1090 
   1091 	if (!(sc->bge_flags & BGE_TXRING_VALID))
   1092 		return;
   1093 
   1094 	freed = 0;
   1095 
   1096 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1097 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1098 			freed++;
   1099 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1100 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1101 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1102 					    link);
   1103 			sc->txdma[i] = 0;
   1104 		}
   1105 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1106 		    sizeof(struct bge_tx_bd));
   1107 	}
   1108 
   1109 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1110 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1111 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1112 		free(dma, M_DEVBUF);
   1113 	}
   1114 
   1115 	sc->bge_flags &= ~BGE_TXRING_VALID;
   1116 }
   1117 
   1118 int
   1119 bge_init_tx_ring(sc)
   1120 	struct bge_softc *sc;
   1121 {
   1122 	int i;
   1123 	bus_dmamap_t dmamap;
   1124 	struct txdmamap_pool_entry *dma;
   1125 
   1126 	if (sc->bge_flags & BGE_TXRING_VALID)
   1127 		return 0;
   1128 
   1129 	sc->bge_txcnt = 0;
   1130 	sc->bge_tx_saved_considx = 0;
   1131 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1132 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1133 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1134 
   1135 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1136 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   1137 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
   1138 
   1139 	SLIST_INIT(&sc->txdma_list);
   1140 	for (i = 0; i < BGE_RSLOTS; i++) {
   1141 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
   1142 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
   1143 		    &dmamap))
   1144 			return(ENOBUFS);
   1145 		if (dmamap == NULL)
   1146 			panic("dmamap NULL in bge_init_tx_ring");
   1147 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
   1148 		if (dma == NULL) {
   1149 			printf("%s: can't alloc txdmamap_pool_entry\n",
   1150 			    sc->bge_dev.dv_xname);
   1151 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1152 			return (ENOMEM);
   1153 		}
   1154 		dma->dmamap = dmamap;
   1155 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1156 	}
   1157 
   1158 	sc->bge_flags |= BGE_TXRING_VALID;
   1159 
   1160 	return(0);
   1161 }
   1162 
   1163 void
   1164 bge_setmulti(sc)
   1165 	struct bge_softc *sc;
   1166 {
   1167 	struct ethercom		*ac = &sc->ethercom;
   1168 	struct ifnet		*ifp = &ac->ec_if;
   1169 	struct ether_multi	*enm;
   1170 	struct ether_multistep  step;
   1171 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   1172 	u_int32_t		h;
   1173 	int			i;
   1174 
   1175 	if (ifp->if_flags & IFF_PROMISC)
   1176 		goto allmulti;
   1177 
   1178 	/* Now program new ones. */
   1179 	ETHER_FIRST_MULTI(step, ac, enm);
   1180 	while (enm != NULL) {
   1181 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1182 			/*
   1183 			 * We must listen to a range of multicast addresses.
   1184 			 * For now, just accept all multicasts, rather than
   1185 			 * trying to set only those filter bits needed to match
   1186 			 * the range.  (At this time, the only use of address
   1187 			 * ranges is for IP multicast routing, for which the
   1188 			 * range is big enough to require all bits set.)
   1189 			 */
   1190 			goto allmulti;
   1191 		}
   1192 
   1193 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1194 
   1195 		/* Just want the 7 least-significant bits. */
   1196 		h &= 0x7f;
   1197 
   1198 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   1199 		ETHER_NEXT_MULTI(step, enm);
   1200 	}
   1201 
   1202 	ifp->if_flags &= ~IFF_ALLMULTI;
   1203 	goto setit;
   1204 
   1205  allmulti:
   1206 	ifp->if_flags |= IFF_ALLMULTI;
   1207 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1208 
   1209  setit:
   1210 	for (i = 0; i < 4; i++)
   1211 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1212 }
   1213 
   1214 const int bge_swapbits[] = {
   1215 	0,
   1216 	BGE_MODECTL_BYTESWAP_DATA,
   1217 	BGE_MODECTL_WORDSWAP_DATA,
   1218 	BGE_MODECTL_BYTESWAP_NONFRAME,
   1219 	BGE_MODECTL_WORDSWAP_NONFRAME,
   1220 
   1221 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
   1222 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1223 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1224 
   1225 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
   1226 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
   1227 
   1228 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1229 
   1230 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1231 	    BGE_MODECTL_BYTESWAP_NONFRAME,
   1232 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1233 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1234 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1235 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1236 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
   1237 	    BGE_MODECTL_WORDSWAP_NONFRAME,
   1238 
   1239 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
   1240 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
   1241 };
   1242 
   1243 int bge_swapindex = 0;
   1244 
   1245 /*
   1246  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   1247  * self-test results.
   1248  */
   1249 int
   1250 bge_chipinit(sc)
   1251 	struct bge_softc *sc;
   1252 {
   1253 	u_int32_t		cachesize;
   1254 	int			i;
   1255 	u_int32_t		dma_rw_ctl;
   1256 	struct pci_attach_args	*pa = &(sc->bge_pa);
   1257 
   1258 
   1259 	/* Set endianness before we access any non-PCI registers. */
   1260 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   1261 	    BGE_INIT);
   1262 
   1263 	/* Set power state to D0. */
   1264 	bge_setpowerstate(sc, 0);
   1265 
   1266 	/*
   1267 	 * Check the 'ROM failed' bit on the RX CPU to see if
   1268 	 * self-tests passed.
   1269 	 */
   1270 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
   1271 		printf("%s: RX CPU self-diagnostics failed!\n",
   1272 		    sc->bge_dev.dv_xname);
   1273 		return(ENODEV);
   1274 	}
   1275 
   1276 	/* Clear the MAC control register */
   1277 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   1278 
   1279 	/*
   1280 	 * Clear the MAC statistics block in the NIC's
   1281 	 * internal memory.
   1282 	 */
   1283 	for (i = BGE_STATS_BLOCK;
   1284 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1285 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1286 
   1287 	for (i = BGE_STATUS_BLOCK;
   1288 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
   1289 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
   1290 
   1291 	/* Set up the PCI DMA control register. */
   1292 	if (sc->bge_pcie) {
   1293 		/* From FreeBSD */
   1294 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   1295 		    sc->bge_dev.dv_xname));
   1296 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1297 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1298 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1299 	} else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
   1300 	    BGE_PCISTATE_PCI_BUSMODE) {
   1301 		/* Conventional PCI bus */
   1302 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
   1303 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
   1304 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1305 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
   1306 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1307 			dma_rw_ctl |= 0x0F;
   1308 		}
   1309 	} else {
   1310 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
   1311 		/* PCI-X bus */
   1312 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1313 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1314 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
   1315 		    (0x0F);
   1316 		/*
   1317 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
   1318 		 * for hardware bugs, which means we should also clear
   1319 		 * the low-order MINDMA bits.  In addition, the 5704
   1320 		 * uses a different encoding of read/write watermarks.
   1321 		 */
   1322 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   1323 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
   1324 			  /* should be 0x1f0000 */
   1325 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
   1326 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
   1327 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1328 		}
   1329 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   1330 			dma_rw_ctl &=  0xfffffff0;
   1331 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
   1332 		}
   1333 	}
   1334 
   1335 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
   1336 
   1337 	/*
   1338 	 * Set up general mode register.
   1339 	 */
   1340 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
   1341 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
   1342 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
   1343 
   1344 	/* Get cache line size. */
   1345 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   1346 
   1347 	/*
   1348 	 * Avoid violating PCI spec on certain chip revs.
   1349 	 */
   1350 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
   1351 	    PCIM_CMD_MWIEN) {
   1352 		switch(cachesize) {
   1353 		case 1:
   1354 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1355 				   BGE_PCI_WRITE_BNDRY_16BYTES);
   1356 			break;
   1357 		case 2:
   1358 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1359 				   BGE_PCI_WRITE_BNDRY_32BYTES);
   1360 			break;
   1361 		case 4:
   1362 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1363 				   BGE_PCI_WRITE_BNDRY_64BYTES);
   1364 			break;
   1365 		case 8:
   1366 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1367 				   BGE_PCI_WRITE_BNDRY_128BYTES);
   1368 			break;
   1369 		case 16:
   1370 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1371 				   BGE_PCI_WRITE_BNDRY_256BYTES);
   1372 			break;
   1373 		case 32:
   1374 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1375 				   BGE_PCI_WRITE_BNDRY_512BYTES);
   1376 			break;
   1377 		case 64:
   1378 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
   1379 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
   1380 			break;
   1381 		default:
   1382 		/* Disable PCI memory write and invalidate. */
   1383 #if 0
   1384 			if (bootverbose)
   1385 				printf("%s: cache line size %d not "
   1386 				    "supported; disabling PCI MWI\n",
   1387 				    sc->bge_dev.dv_xname, cachesize);
   1388 #endif
   1389 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
   1390 			    PCIM_CMD_MWIEN);
   1391 			break;
   1392 		}
   1393 	}
   1394 
   1395 	/*
   1396 	 * Disable memory write invalidate.  Apparently it is not supported
   1397 	 * properly by these devices.
   1398 	 */
   1399 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
   1400 
   1401 
   1402 #ifdef __brokenalpha__
   1403 	/*
   1404 	 * Must insure that we do not cross an 8K (bytes) boundary
   1405 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   1406 	 * restriction on some ALPHA platforms with early revision
   1407 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   1408 	 */
   1409 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   1410 #endif
   1411 
   1412 	/* Set the timer prescaler (always 66MHz) */
   1413 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
   1414 
   1415 	return(0);
   1416 }
   1417 
   1418 int
   1419 bge_blockinit(sc)
   1420 	struct bge_softc *sc;
   1421 {
   1422 	volatile struct bge_rcb		*rcb;
   1423 	bus_size_t		rcb_addr;
   1424 	int			i;
   1425 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   1426 	bge_hostaddr		taddr;
   1427 
   1428 	/*
   1429 	 * Initialize the memory window pointer register so that
   1430 	 * we can access the first 32K of internal NIC RAM. This will
   1431 	 * allow us to set up the TX send ring RCBs and the RX return
   1432 	 * ring RCBs, plus other things which live in NIC memory.
   1433 	 */
   1434 
   1435 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
   1436 	    BGE_PCI_MEMWIN_BASEADDR, 0);
   1437 
   1438 	/* Configure mbuf memory pool */
   1439 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1440 		if (sc->bge_extram) {
   1441 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1442 			    BGE_EXT_SSRAM);
   1443 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1444 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1445 			else
   1446 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1447 		} else {
   1448 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
   1449 			    BGE_BUFFPOOL_1);
   1450 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
   1451 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   1452 			else
   1453 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   1454 		}
   1455 
   1456 		/* Configure DMA resource pool */
   1457 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   1458 		    BGE_DMA_DESCRIPTORS);
   1459 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   1460 	}
   1461 
   1462 	/* Configure mbuf pool watermarks */
   1463 #ifdef ORIG_WPAUL_VALUES
   1464 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
   1465 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
   1466 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
   1467 #else
   1468 	/* new broadcom docs strongly recommend these: */
   1469 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1470 		if (ifp->if_mtu > ETHER_MAX_LEN) {
   1471 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   1472 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   1473 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1474 		} else {
   1475 			/* Values from Linux driver... */
   1476 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
   1477 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
   1478 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
   1479 		}
   1480 	} else {
   1481 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   1482 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   1483 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   1484 	}
   1485 #endif
   1486 
   1487 	/* Configure DMA resource watermarks */
   1488 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   1489 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   1490 
   1491 	/* Enable buffer manager */
   1492 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1493 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
   1494 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
   1495 
   1496 		/* Poll for buffer manager start indication */
   1497 		for (i = 0; i < BGE_TIMEOUT; i++) {
   1498 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   1499 				break;
   1500 			DELAY(10);
   1501 		}
   1502 
   1503 		if (i == BGE_TIMEOUT) {
   1504 			printf("%s: buffer manager failed to start\n",
   1505 			    sc->bge_dev.dv_xname);
   1506 			return(ENXIO);
   1507 		}
   1508 	}
   1509 
   1510 	/* Enable flow-through queues */
   1511 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   1512 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   1513 
   1514 	/* Wait until queue initialization is complete */
   1515 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1516 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   1517 			break;
   1518 		DELAY(10);
   1519 	}
   1520 
   1521 	if (i == BGE_TIMEOUT) {
   1522 		printf("%s: flow-through queue init failed\n",
   1523 		    sc->bge_dev.dv_xname);
   1524 		return(ENXIO);
   1525 	}
   1526 
   1527 	/* Initialize the standard RX ring control block */
   1528 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   1529 	bge_set_hostaddr(&rcb->bge_hostaddr,
   1530 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   1531 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1532 		rcb->bge_maxlen_flags =
   1533 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   1534 	} else {
   1535 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   1536 	}
   1537 	if (sc->bge_extram)
   1538 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
   1539 	else
   1540 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   1541 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   1542 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   1543 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1544 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   1545 
   1546 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1547 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   1548 	} else {
   1549 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   1550 	}
   1551 
   1552 	/*
   1553 	 * Initialize the jumbo RX ring control block
   1554 	 * We set the 'ring disabled' bit in the flags
   1555 	 * field until we're actually ready to start
   1556 	 * using this ring (i.e. once we set the MTU
   1557 	 * high enough to require it).
   1558 	 */
   1559 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1560 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1561 		bge_set_hostaddr(&rcb->bge_hostaddr,
   1562 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   1563 		rcb->bge_maxlen_flags =
   1564 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
   1565 			BGE_RCB_FLAG_RING_DISABLED);
   1566 		if (sc->bge_extram)
   1567 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
   1568 		else
   1569 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   1570 
   1571 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   1572 		    rcb->bge_hostaddr.bge_addr_hi);
   1573 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   1574 		    rcb->bge_hostaddr.bge_addr_lo);
   1575 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   1576 		    rcb->bge_maxlen_flags);
   1577 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   1578 
   1579 		/* Set up dummy disabled mini ring RCB */
   1580 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   1581 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   1582 		    BGE_RCB_FLAG_RING_DISABLED);
   1583 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   1584 		    rcb->bge_maxlen_flags);
   1585 
   1586 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1587 		    offsetof(struct bge_ring_data, bge_info),
   1588 		    sizeof (struct bge_gib),
   1589 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1590 	}
   1591 
   1592 	/*
   1593 	 * Set the BD ring replentish thresholds. The recommended
   1594 	 * values are 1/8th the number of descriptors allocated to
   1595 	 * each ring.
   1596 	 */
   1597 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
   1598 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
   1599 
   1600 	/*
   1601 	 * Disable all unused send rings by setting the 'ring disabled'
   1602 	 * bit in the flags field of all the TX send ring control blocks.
   1603 	 * These are located in NIC memory.
   1604 	 */
   1605 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1606 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
   1607 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1608 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
   1609 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1610 		rcb_addr += sizeof(struct bge_rcb);
   1611 	}
   1612 
   1613 	/* Configure TX RCB 0 (we use only the first ring) */
   1614 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   1615 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   1616 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1617 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1618 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   1619 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   1620 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1621 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1622 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   1623 	}
   1624 
   1625 	/* Disable all unused RX return rings */
   1626 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1627 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
   1628 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   1629 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   1630 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1631 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   1632                                      BGE_RCB_FLAG_RING_DISABLED));
   1633 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   1634 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
   1635 		    (i * (sizeof(u_int64_t))), 0);
   1636 		rcb_addr += sizeof(struct bge_rcb);
   1637 	}
   1638 
   1639 	/* Initialize RX ring indexes */
   1640 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   1641 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   1642 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   1643 
   1644 	/*
   1645 	 * Set up RX return ring 0
   1646 	 * Note that the NIC address for RX return rings is 0x00000000.
   1647 	 * The return rings live entirely within the host, so the
   1648 	 * nicaddr field in the RCB isn't used.
   1649 	 */
   1650 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   1651 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   1652 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   1653 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   1654 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   1655 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   1656 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   1657 
   1658 	/* Set random backoff seed for TX */
   1659 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   1660 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
   1661 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
   1662 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
   1663 	    BGE_TX_BACKOFF_SEED_MASK);
   1664 
   1665 	/* Set inter-packet gap */
   1666 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
   1667 
   1668 	/*
   1669 	 * Specify which ring to use for packets that don't match
   1670 	 * any RX rules.
   1671 	 */
   1672 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   1673 
   1674 	/*
   1675 	 * Configure number of RX lists. One interrupt distribution
   1676 	 * list, sixteen active lists, one bad frames class.
   1677 	 */
   1678 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   1679 
   1680 	/* Inialize RX list placement stats mask. */
   1681 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   1682 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   1683 
   1684 	/* Disable host coalescing until we get it set up */
   1685 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   1686 
   1687 	/* Poll to make sure it's shut down. */
   1688 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1689 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   1690 			break;
   1691 		DELAY(10);
   1692 	}
   1693 
   1694 	if (i == BGE_TIMEOUT) {
   1695 		printf("%s: host coalescing engine failed to idle\n",
   1696 		    sc->bge_dev.dv_xname);
   1697 		return(ENXIO);
   1698 	}
   1699 
   1700 	/* Set up host coalescing defaults */
   1701 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
   1702 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
   1703 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
   1704 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
   1705 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1706 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   1707 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   1708 	}
   1709 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   1710 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   1711 
   1712 	/* Set up address of statistics block */
   1713 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1714 		bge_set_hostaddr(&taddr,
   1715 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   1716 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   1717 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   1718 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   1719 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   1720 	}
   1721 
   1722 	/* Set up address of status block */
   1723 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   1724 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   1725 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   1726 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   1727 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   1728 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   1729 
   1730 	/* Turn on host coalescing state machine */
   1731 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   1732 
   1733 	/* Turn on RX BD completion state machine and enable attentions */
   1734 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   1735 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
   1736 
   1737 	/* Turn on RX list placement state machine */
   1738 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   1739 
   1740 	/* Turn on RX list selector state machine. */
   1741 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1742 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   1743 	}
   1744 
   1745 	/* Turn on DMA, clear stats */
   1746 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
   1747 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
   1748 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
   1749 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
   1750 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
   1751 
   1752 	/* Set misc. local control, enable interrupts on attentions */
   1753 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
   1754 
   1755 #ifdef notdef
   1756 	/* Assert GPIO pins for PHY reset */
   1757 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
   1758 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
   1759 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
   1760 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
   1761 #endif
   1762 
   1763 #if defined(not_quite_yet)
   1764 	/* Linux driver enables enable gpio pin #1 on 5700s */
   1765 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
   1766 		sc->bge_local_ctrl_reg |=
   1767 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
   1768 	}
   1769 #endif
   1770 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   1771 
   1772 	/* Turn on DMA completion state machine */
   1773 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1774 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   1775 	}
   1776 
   1777 	/* Turn on write DMA state machine */
   1778 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
   1779 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
   1780 
   1781 	/* Turn on read DMA state machine */
   1782 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
   1783 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
   1784 
   1785 	/* Turn on RX data completion state machine */
   1786 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   1787 
   1788 	/* Turn on RX BD initiator state machine */
   1789 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   1790 
   1791 	/* Turn on RX data and RX BD initiator state machine */
   1792 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   1793 
   1794 	/* Turn on Mbuf cluster free state machine */
   1795 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   1796 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   1797 	}
   1798 
   1799 	/* Turn on send BD completion state machine */
   1800 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   1801 
   1802 	/* Turn on send data completion state machine */
   1803 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   1804 
   1805 	/* Turn on send data initiator state machine */
   1806 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   1807 
   1808 	/* Turn on send BD initiator state machine */
   1809 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   1810 
   1811 	/* Turn on send BD selector state machine */
   1812 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   1813 
   1814 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   1815 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   1816 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
   1817 
   1818 	/* ack/clear link change events */
   1819 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   1820 	    BGE_MACSTAT_CFG_CHANGED);
   1821 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   1822 
   1823 	/* Enable PHY auto polling (for MII/GMII only) */
   1824 	if (sc->bge_tbi) {
   1825 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   1826  	} else {
   1827 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
   1828 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
   1829 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   1830 			    BGE_EVTENB_MI_INTERRUPT);
   1831 	}
   1832 
   1833 	/* Enable link state change attentions. */
   1834 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   1835 
   1836 	return(0);
   1837 }
   1838 
   1839 static const struct bge_revision {
   1840 	uint32_t		br_chipid;
   1841 	uint32_t		br_quirks;
   1842 	const char		*br_name;
   1843 } bge_revisions[] = {
   1844 	{ BGE_CHIPID_BCM5700_A0,
   1845 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1846 	  "BCM5700 A0" },
   1847 
   1848 	{ BGE_CHIPID_BCM5700_A1,
   1849 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1850 	  "BCM5700 A1" },
   1851 
   1852 	{ BGE_CHIPID_BCM5700_B0,
   1853 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
   1854 	  "BCM5700 B0" },
   1855 
   1856 	{ BGE_CHIPID_BCM5700_B1,
   1857 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1858 	  "BCM5700 B1" },
   1859 
   1860 	{ BGE_CHIPID_BCM5700_B2,
   1861 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1862 	  "BCM5700 B2" },
   1863 
   1864 	/* This is treated like a BCM5700 Bx */
   1865 	{ BGE_CHIPID_BCM5700_ALTIMA,
   1866 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
   1867 	  "BCM5700 Altima" },
   1868 
   1869 	{ BGE_CHIPID_BCM5700_C0,
   1870 	  0,
   1871 	  "BCM5700 C0" },
   1872 
   1873 	{ BGE_CHIPID_BCM5701_A0,
   1874 	  0, /*XXX really, just not known */
   1875 	  "BCM5701 A0" },
   1876 
   1877 	{ BGE_CHIPID_BCM5701_B0,
   1878 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1879 	  "BCM5701 B0" },
   1880 
   1881 	{ BGE_CHIPID_BCM5701_B2,
   1882 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1883 	  "BCM5701 B2" },
   1884 
   1885 	{ BGE_CHIPID_BCM5701_B5,
   1886 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1887 	  "BCM5701 B5" },
   1888 
   1889 	{ BGE_CHIPID_BCM5703_A0,
   1890 	  0,
   1891 	  "BCM5703 A0" },
   1892 
   1893 	{ BGE_CHIPID_BCM5703_A1,
   1894 	  0,
   1895 	  "BCM5703 A1" },
   1896 
   1897 	{ BGE_CHIPID_BCM5703_A2,
   1898 	  BGE_QUIRK_ONLY_PHY_1,
   1899 	  "BCM5703 A2" },
   1900 
   1901 	{ BGE_CHIPID_BCM5703_A3,
   1902 	  BGE_QUIRK_ONLY_PHY_1,
   1903 	  "BCM5703 A3" },
   1904 
   1905 	{ BGE_CHIPID_BCM5704_A0,
   1906   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1907 	  "BCM5704 A0" },
   1908 
   1909 	{ BGE_CHIPID_BCM5704_A1,
   1910   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1911 	  "BCM5704 A1" },
   1912 
   1913 	{ BGE_CHIPID_BCM5704_A2,
   1914   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1915 	  "BCM5704 A2" },
   1916 
   1917 	{ BGE_CHIPID_BCM5704_A3,
   1918   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
   1919 	  "BCM5704 A3" },
   1920 
   1921 	{ BGE_CHIPID_BCM5705_A0,
   1922 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1923 	  "BCM5705 A0" },
   1924 
   1925 	{ BGE_CHIPID_BCM5705_A1,
   1926 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1927 	  "BCM5705 A1" },
   1928 
   1929 	{ BGE_CHIPID_BCM5705_A2,
   1930 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1931 	  "BCM5705 A2" },
   1932 
   1933 	{ BGE_CHIPID_BCM5705_A3,
   1934 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1935 	  "BCM5705 A3" },
   1936 
   1937 	{ BGE_CHIPID_BCM5750_A0,
   1938 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1939 	  "BCM5750 A1" },
   1940 
   1941 	{ BGE_CHIPID_BCM5750_A1,
   1942 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1943 	  "BCM5750 A1" },
   1944 
   1945 	{ BGE_CHIPID_BCM5751_A1,
   1946 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1947 	  "BCM5751 A1" },
   1948 
   1949 	{ 0, 0, NULL }
   1950 };
   1951 
   1952 /*
   1953  * Some defaults for major revisions, so that newer steppings
   1954  * that we don't know about have a shot at working.
   1955  */
   1956 static const struct bge_revision bge_majorrevs[] = {
   1957 	{ BGE_ASICREV_BCM5700,
   1958 	  BGE_QUIRK_LINK_STATE_BROKEN,
   1959 	  "unknown BCM5700" },
   1960 
   1961 	{ BGE_ASICREV_BCM5701,
   1962 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
   1963 	  "unknown BCM5701" },
   1964 
   1965 	{ BGE_ASICREV_BCM5703,
   1966 	  0,
   1967 	  "unknown BCM5703" },
   1968 
   1969 	{ BGE_ASICREV_BCM5704,
   1970 	  BGE_QUIRK_ONLY_PHY_1,
   1971 	  "unknown BCM5704" },
   1972 
   1973 	{ BGE_ASICREV_BCM5705,
   1974 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1975 	  "unknown BCM5705" },
   1976 
   1977 	{ BGE_ASICREV_BCM5750,
   1978 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
   1979 	  "unknown BCM5750" },
   1980 
   1981 	{ 0,
   1982 	  0,
   1983 	  NULL }
   1984 };
   1985 
   1986 
   1987 static const struct bge_revision *
   1988 bge_lookup_rev(uint32_t chipid)
   1989 {
   1990 	const struct bge_revision *br;
   1991 
   1992 	for (br = bge_revisions; br->br_name != NULL; br++) {
   1993 		if (br->br_chipid == chipid)
   1994 			return (br);
   1995 	}
   1996 
   1997 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   1998 		if (br->br_chipid == BGE_ASICREV(chipid))
   1999 			return (br);
   2000 	}
   2001 
   2002 	return (NULL);
   2003 }
   2004 
   2005 static const struct bge_product {
   2006 	pci_vendor_id_t		bp_vendor;
   2007 	pci_product_id_t	bp_product;
   2008 	const char		*bp_name;
   2009 } bge_products[] = {
   2010 	/*
   2011 	 * The BCM5700 documentation seems to indicate that the hardware
   2012 	 * still has the Alteon vendor ID burned into it, though it
   2013 	 * should always be overridden by the value in the EEPROM.  We'll
   2014 	 * check for it anyway.
   2015 	 */
   2016 	{ PCI_VENDOR_ALTEON,
   2017 	  PCI_PRODUCT_ALTEON_BCM5700,
   2018 	  "Broadcom BCM5700 Gigabit Ethernet",
   2019 	  },
   2020 	{ PCI_VENDOR_ALTEON,
   2021 	  PCI_PRODUCT_ALTEON_BCM5701,
   2022 	  "Broadcom BCM5701 Gigabit Ethernet",
   2023 	  },
   2024 
   2025 	{ PCI_VENDOR_ALTIMA,
   2026 	  PCI_PRODUCT_ALTIMA_AC1000,
   2027 	  "Altima AC1000 Gigabit Ethernet",
   2028 	  },
   2029 	{ PCI_VENDOR_ALTIMA,
   2030 	  PCI_PRODUCT_ALTIMA_AC1001,
   2031 	  "Altima AC1001 Gigabit Ethernet",
   2032 	   },
   2033 	{ PCI_VENDOR_ALTIMA,
   2034 	  PCI_PRODUCT_ALTIMA_AC9100,
   2035 	  "Altima AC9100 Gigabit Ethernet",
   2036 	  },
   2037 
   2038 	{ PCI_VENDOR_BROADCOM,
   2039 	  PCI_PRODUCT_BROADCOM_BCM5700,
   2040 	  "Broadcom BCM5700 Gigabit Ethernet",
   2041 	  },
   2042 	{ PCI_VENDOR_BROADCOM,
   2043 	  PCI_PRODUCT_BROADCOM_BCM5701,
   2044 	  "Broadcom BCM5701 Gigabit Ethernet",
   2045 	  },
   2046 	{ PCI_VENDOR_BROADCOM,
   2047 	  PCI_PRODUCT_BROADCOM_BCM5702,
   2048 	  "Broadcom BCM5702 Gigabit Ethernet",
   2049 	  },
   2050 	{ PCI_VENDOR_BROADCOM,
   2051 	  PCI_PRODUCT_BROADCOM_BCM5702X,
   2052 	  "Broadcom BCM5702X Gigabit Ethernet" },
   2053 
   2054 	{ PCI_VENDOR_BROADCOM,
   2055 	  PCI_PRODUCT_BROADCOM_BCM5703,
   2056 	  "Broadcom BCM5703 Gigabit Ethernet",
   2057 	  },
   2058 	{ PCI_VENDOR_BROADCOM,
   2059 	  PCI_PRODUCT_BROADCOM_BCM5703X,
   2060 	  "Broadcom BCM5703X Gigabit Ethernet",
   2061 	  },
   2062 	{ PCI_VENDOR_BROADCOM,
   2063 	  PCI_PRODUCT_BROADCOM_BCM5703A3,
   2064 	  "Broadcom BCM5703A3 Gigabit Ethernet",
   2065 	  },
   2066 
   2067    	{ PCI_VENDOR_BROADCOM,
   2068 	  PCI_PRODUCT_BROADCOM_BCM5704C,
   2069 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
   2070 	  },
   2071    	{ PCI_VENDOR_BROADCOM,
   2072 	  PCI_PRODUCT_BROADCOM_BCM5704S,
   2073 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
   2074 	  },
   2075 
   2076    	{ PCI_VENDOR_BROADCOM,
   2077 	  PCI_PRODUCT_BROADCOM_BCM5705,
   2078 	  "Broadcom BCM5705 Gigabit Ethernet",
   2079 	  },
   2080    	{ PCI_VENDOR_BROADCOM,
   2081 	  PCI_PRODUCT_BROADCOM_BCM5705K,
   2082 	  "Broadcom BCM5705K Gigabit Ethernet",
   2083 	  },
   2084    	{ PCI_VENDOR_BROADCOM,
   2085 	  PCI_PRODUCT_BROADCOM_BCM5705_ALT,
   2086 	  "Broadcom BCM5705 Gigabit Ethernet",
   2087 	  },
   2088    	{ PCI_VENDOR_BROADCOM,
   2089 	  PCI_PRODUCT_BROADCOM_BCM5705M,
   2090 	  "Broadcom BCM5705M Gigabit Ethernet",
   2091 	  },
   2092 
   2093 	{ PCI_VENDOR_BROADCOM,
   2094 	  PCI_PRODUCT_BROADCOM_BCM5721,
   2095 	  "Broadcom BCM5721 Gigabit Ethernet",
   2096 	  },
   2097 
   2098 	{ PCI_VENDOR_BROADCOM,
   2099 	  PCI_PRODUCT_BROADCOM_BCM5750,
   2100 	  "Broadcom BCM5750 Gigabit Ethernet",
   2101 	  },
   2102 
   2103 	{ PCI_VENDOR_BROADCOM,
   2104 	  PCI_PRODUCT_BROADCOM_BCM5750M,
   2105 	  "Broadcom BCM5750M Gigabit Ethernet",
   2106 	  },
   2107 
   2108 	{ PCI_VENDOR_BROADCOM,
   2109 	  PCI_PRODUCT_BROADCOM_BCM5751,
   2110 	  "Broadcom BCM5751 Gigabit Ethernet",
   2111 	  },
   2112 
   2113 	{ PCI_VENDOR_BROADCOM,
   2114 	  PCI_PRODUCT_BROADCOM_BCM5751M,
   2115 	  "Broadcom BCM5751M Gigabit Ethernet",
   2116 	  },
   2117 
   2118    	{ PCI_VENDOR_BROADCOM,
   2119 	  PCI_PRODUCT_BROADCOM_BCM5782,
   2120 	  "Broadcom BCM5782 Gigabit Ethernet",
   2121 	  },
   2122    	{ PCI_VENDOR_BROADCOM,
   2123 	  PCI_PRODUCT_BROADCOM_BCM5788,
   2124 	  "Broadcom BCM5788 Gigabit Ethernet",
   2125 	  },
   2126 
   2127    	{ PCI_VENDOR_BROADCOM,
   2128 	  PCI_PRODUCT_BROADCOM_BCM5901,
   2129 	  "Broadcom BCM5901 Fast Ethernet",
   2130 	  },
   2131    	{ PCI_VENDOR_BROADCOM,
   2132 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
   2133 	  "Broadcom BCM5901A2 Fast Ethernet",
   2134 	  },
   2135 
   2136 	{ PCI_VENDOR_SCHNEIDERKOCH,
   2137 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
   2138 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
   2139 	  },
   2140 
   2141 	{ PCI_VENDOR_3COM,
   2142 	  PCI_PRODUCT_3COM_3C996,
   2143 	  "3Com 3c996 Gigabit Ethernet",
   2144 	  },
   2145 
   2146 	{ 0,
   2147 	  0,
   2148 	  NULL },
   2149 };
   2150 
   2151 static const struct bge_product *
   2152 bge_lookup(const struct pci_attach_args *pa)
   2153 {
   2154 	const struct bge_product *bp;
   2155 
   2156 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   2157 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   2158 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   2159 			return (bp);
   2160 	}
   2161 
   2162 	return (NULL);
   2163 }
   2164 
   2165 int
   2166 bge_setpowerstate(sc, powerlevel)
   2167 	struct bge_softc *sc;
   2168 	int powerlevel;
   2169 {
   2170 #ifdef NOTYET
   2171 	u_int32_t pm_ctl = 0;
   2172 
   2173 	/* XXX FIXME: make sure indirect accesses enabled? */
   2174 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
   2175 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
   2176 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
   2177 
   2178 	/* clear the PME_assert bit and power state bits, enable PME */
   2179 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
   2180 	pm_ctl &= ~PCIM_PSTAT_DMASK;
   2181 	pm_ctl |= (1 << 8);
   2182 
   2183 	if (powerlevel == 0) {
   2184 		pm_ctl |= PCIM_PSTAT_D0;
   2185 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
   2186 		    pm_ctl, 2);
   2187 		DELAY(10000);
   2188 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
   2189 		DELAY(10000);
   2190 
   2191 #ifdef NOTYET
   2192 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
   2193 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
   2194 #endif
   2195 		DELAY(40); DELAY(40); DELAY(40);
   2196 		DELAY(10000);	/* above not quite adequate on 5700 */
   2197 		return 0;
   2198 	}
   2199 
   2200 
   2201 	/*
   2202 	 * Entering ACPI power states D1-D3 is achieved by wiggling
   2203 	 * GMII gpio pins. Example code assumes all hardware vendors
   2204 	 * followed Broadom's sample pcb layout. Until we verify that
   2205 	 * for all supported OEM cards, states D1-D3 are  unsupported.
   2206 	 */
   2207 	printf("%s: power state %d unimplemented; check GPIO pins\n",
   2208 	       sc->bge_dev.dv_xname, powerlevel);
   2209 #endif
   2210 	return EOPNOTSUPP;
   2211 }
   2212 
   2213 
   2214 /*
   2215  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   2216  * against our list and return its name if we find a match. Note
   2217  * that since the Broadcom controller contains VPD support, we
   2218  * can get the device name string from the controller itself instead
   2219  * of the compiled-in string. This is a little slow, but it guarantees
   2220  * we'll always announce the right product name.
   2221  */
   2222 int
   2223 bge_probe(parent, match, aux)
   2224 	struct device *parent;
   2225 	struct cfdata *match;
   2226 	void *aux;
   2227 {
   2228 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   2229 
   2230 	if (bge_lookup(pa) != NULL)
   2231 		return (1);
   2232 
   2233 	return (0);
   2234 }
   2235 
   2236 void
   2237 bge_attach(parent, self, aux)
   2238 	struct device *parent, *self;
   2239 	void *aux;
   2240 {
   2241 	struct bge_softc	*sc = (struct bge_softc *)self;
   2242 	struct pci_attach_args	*pa = aux;
   2243 	const struct bge_product *bp;
   2244 	const struct bge_revision *br;
   2245 	pci_chipset_tag_t	pc = pa->pa_pc;
   2246 	pci_intr_handle_t	ih;
   2247 	const char		*intrstr = NULL;
   2248 	bus_dma_segment_t	seg;
   2249 	int			rseg;
   2250 	u_int32_t		hwcfg = 0;
   2251 	u_int32_t		mac_addr = 0;
   2252 	u_int32_t		command;
   2253 	struct ifnet		*ifp;
   2254 	caddr_t			kva;
   2255 	u_char			eaddr[ETHER_ADDR_LEN];
   2256 	pcireg_t		memtype;
   2257 	bus_addr_t		memaddr;
   2258 	bus_size_t		memsize;
   2259 	u_int32_t		pm_ctl;
   2260 
   2261 	bp = bge_lookup(pa);
   2262 	KASSERT(bp != NULL);
   2263 
   2264 	sc->bge_pa = *pa;
   2265 
   2266 	aprint_naive(": Ethernet controller\n");
   2267 	aprint_normal(": %s\n", bp->bp_name);
   2268 
   2269 	/*
   2270 	 * Map control/status registers.
   2271 	 */
   2272 	DPRINTFN(5, ("Map control/status regs\n"));
   2273 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2274 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   2275 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
   2276 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
   2277 
   2278 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   2279 		aprint_error("%s: failed to enable memory mapping!\n",
   2280 		    sc->bge_dev.dv_xname);
   2281 		return;
   2282 	}
   2283 
   2284 	DPRINTFN(5, ("pci_mem_find\n"));
   2285 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
   2286  	switch (memtype) {
   2287 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   2288 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   2289 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   2290 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   2291 		    &memaddr, &memsize) == 0)
   2292 			break;
   2293 	default:
   2294 		aprint_error("%s: can't find mem space\n",
   2295 		    sc->bge_dev.dv_xname);
   2296 		return;
   2297 	}
   2298 
   2299 	DPRINTFN(5, ("pci_intr_map\n"));
   2300 	if (pci_intr_map(pa, &ih)) {
   2301 		aprint_error("%s: couldn't map interrupt\n",
   2302 		    sc->bge_dev.dv_xname);
   2303 		return;
   2304 	}
   2305 
   2306 	DPRINTFN(5, ("pci_intr_string\n"));
   2307 	intrstr = pci_intr_string(pc, ih);
   2308 
   2309 	DPRINTFN(5, ("pci_intr_establish\n"));
   2310 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
   2311 
   2312 	if (sc->bge_intrhand == NULL) {
   2313 		aprint_error("%s: couldn't establish interrupt",
   2314 		    sc->bge_dev.dv_xname);
   2315 		if (intrstr != NULL)
   2316 			aprint_normal(" at %s", intrstr);
   2317 		aprint_normal("\n");
   2318 		return;
   2319 	}
   2320 	aprint_normal("%s: interrupting at %s\n",
   2321 	    sc->bge_dev.dv_xname, intrstr);
   2322 
   2323 	/*
   2324 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   2325 	 * can clobber the chip's PCI config-space power control registers,
   2326 	 * leaving the card in D3 powersave state.
   2327 	 * We do not have memory-mapped registers in this state,
   2328 	 * so force device into D0 state before starting initialization.
   2329 	 */
   2330 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
   2331 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
   2332 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   2333 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   2334 	DELAY(1000);	/* 27 usec is allegedly sufficent */
   2335 
   2336 	/*
   2337 	 * Save ASIC rev.  Look up any quirks associated with this
   2338 	 * ASIC.
   2339 	 */
   2340 	sc->bge_chipid =
   2341 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
   2342 	    BGE_PCIMISCCTL_ASICREV;
   2343 
   2344 	/*
   2345 	 * Detect PCI-Express devices
   2346 	 * XXX: guessed from Linux/FreeBSD; no documentation
   2347 	 */
   2348 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 &&
   2349 	    pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
   2350 	    NULL, NULL) != 0)
   2351 		sc->bge_pcie = 1;
   2352 	else
   2353 		sc->bge_pcie = 0;
   2354 
   2355 	/* Try to reset the chip. */
   2356 	DPRINTFN(5, ("bge_reset\n"));
   2357 	bge_reset(sc);
   2358 
   2359 	if (bge_chipinit(sc)) {
   2360 		aprint_error("%s: chip initialization failed\n",
   2361 		    sc->bge_dev.dv_xname);
   2362 		bge_release_resources(sc);
   2363 		return;
   2364 	}
   2365 
   2366 	/*
   2367 	 * Get station address from the EEPROM.
   2368 	 */
   2369 	mac_addr = bge_readmem_ind(sc, 0x0c14);
   2370 	if ((mac_addr >> 16) == 0x484b) {
   2371 		eaddr[0] = (u_char)(mac_addr >> 8);
   2372 		eaddr[1] = (u_char)(mac_addr >> 0);
   2373 		mac_addr = bge_readmem_ind(sc, 0x0c18);
   2374 		eaddr[2] = (u_char)(mac_addr >> 24);
   2375 		eaddr[3] = (u_char)(mac_addr >> 16);
   2376 		eaddr[4] = (u_char)(mac_addr >> 8);
   2377 		eaddr[5] = (u_char)(mac_addr >> 0);
   2378 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
   2379 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
   2380 		aprint_error("%s: failed to read station address\n",
   2381 		    sc->bge_dev.dv_xname);
   2382 		bge_release_resources(sc);
   2383 		return;
   2384 	}
   2385 
   2386 	br = bge_lookup_rev(sc->bge_chipid);
   2387 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
   2388 
   2389 	if (br == NULL) {
   2390 		aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
   2391 		sc->bge_quirks = 0;
   2392 	} else {
   2393 		aprint_normal("ASIC %s (0x%04x)",
   2394 		    br->br_name, sc->bge_chipid >> 16);
   2395 		sc->bge_quirks |= br->br_quirks;
   2396 	}
   2397 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   2398 
   2399 	/* Allocate the general information block and ring buffers. */
   2400 	if (pci_dma64_available(pa))
   2401 		sc->bge_dmatag = pa->pa_dmat64;
   2402 	else
   2403 		sc->bge_dmatag = pa->pa_dmat;
   2404 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   2405 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   2406 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
   2407 		aprint_error("%s: can't alloc rx buffers\n",
   2408 		    sc->bge_dev.dv_xname);
   2409 		return;
   2410 	}
   2411 	DPRINTFN(5, ("bus_dmamem_map\n"));
   2412 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
   2413 			   sizeof(struct bge_ring_data), &kva,
   2414 			   BUS_DMA_NOWAIT)) {
   2415 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
   2416 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
   2417 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2418 		return;
   2419 	}
   2420 	DPRINTFN(5, ("bus_dmamem_create\n"));
   2421 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   2422 	    sizeof(struct bge_ring_data), 0,
   2423 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
   2424 		aprint_error("%s: can't create DMA map\n",
   2425 		    sc->bge_dev.dv_xname);
   2426 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2427 				 sizeof(struct bge_ring_data));
   2428 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2429 		return;
   2430 	}
   2431 	DPRINTFN(5, ("bus_dmamem_load\n"));
   2432 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   2433 			    sizeof(struct bge_ring_data), NULL,
   2434 			    BUS_DMA_NOWAIT)) {
   2435 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   2436 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   2437 				 sizeof(struct bge_ring_data));
   2438 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
   2439 		return;
   2440 	}
   2441 
   2442 	DPRINTFN(5, ("bzero\n"));
   2443 	sc->bge_rdata = (struct bge_ring_data *)kva;
   2444 
   2445 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   2446 
   2447 	/* Try to allocate memory for jumbo buffers. */
   2448 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2449 		if (bge_alloc_jumbo_mem(sc)) {
   2450 			aprint_error("%s: jumbo buffer allocation failed\n",
   2451 			    sc->bge_dev.dv_xname);
   2452 		} else
   2453 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   2454 	}
   2455 
   2456 	/* Set default tuneable values. */
   2457 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   2458 	sc->bge_rx_coal_ticks = 150;
   2459 	sc->bge_rx_max_coal_bds = 64;
   2460 #ifdef ORIG_WPAUL_VALUES
   2461 	sc->bge_tx_coal_ticks = 150;
   2462 	sc->bge_tx_max_coal_bds = 128;
   2463 #else
   2464 	sc->bge_tx_coal_ticks = 300;
   2465 	sc->bge_tx_max_coal_bds = 400;
   2466 #endif
   2467 
   2468 	/* Set up ifnet structure */
   2469 	ifp = &sc->ethercom.ec_if;
   2470 	ifp->if_softc = sc;
   2471 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2472 	ifp->if_ioctl = bge_ioctl;
   2473 	ifp->if_start = bge_start;
   2474 	ifp->if_init = bge_init;
   2475 	ifp->if_watchdog = bge_watchdog;
   2476 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   2477 	IFQ_SET_READY(&ifp->if_snd);
   2478 	DPRINTFN(5, ("bcopy\n"));
   2479 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
   2480 
   2481 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
   2482 		sc->ethercom.ec_if.if_capabilities |=
   2483 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
   2484 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   2485 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   2486 	sc->ethercom.ec_capabilities |=
   2487 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   2488 
   2489 	/*
   2490 	 * Do MII setup.
   2491 	 */
   2492 	DPRINTFN(5, ("mii setup\n"));
   2493 	sc->bge_mii.mii_ifp = ifp;
   2494 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
   2495 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
   2496 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
   2497 
   2498 	/*
   2499 	 * Figure out what sort of media we have by checking the
   2500 	 * hardware config word in the first 32k of NIC internal memory,
   2501 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
   2502 	 * cards, this value appears to be unset. If that's the
   2503 	 * case, we have to rely on identifying the NIC by its PCI
   2504 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
   2505 	 */
   2506 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
   2507 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
   2508 	} else {
   2509 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
   2510 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   2511 		hwcfg = be32toh(hwcfg);
   2512 	}
   2513 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
   2514 		sc->bge_tbi = 1;
   2515 
   2516 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
   2517 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
   2518 	    SK_SUBSYSID_9D41)
   2519 		sc->bge_tbi = 1;
   2520 
   2521 	if (sc->bge_tbi) {
   2522 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
   2523 		    bge_ifmedia_sts);
   2524 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
   2525 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
   2526 			    0, NULL);
   2527 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
   2528 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
   2529 	} else {
   2530 		/*
   2531 		 * Do transceiver setup.
   2532 		 */
   2533 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
   2534 			     bge_ifmedia_sts);
   2535 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
   2536 			   MII_PHY_ANY, MII_OFFSET_ANY,
   2537 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
   2538 
   2539 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
   2540 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
   2541 			ifmedia_add(&sc->bge_mii.mii_media,
   2542 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
   2543 			ifmedia_set(&sc->bge_mii.mii_media,
   2544 				    IFM_ETHER|IFM_MANUAL);
   2545 		} else
   2546 			ifmedia_set(&sc->bge_mii.mii_media,
   2547 				    IFM_ETHER|IFM_AUTO);
   2548 	}
   2549 
   2550 	/*
   2551 	 * When using the BCM5701 in PCI-X mode, data corruption has
   2552 	 * been observed in the first few bytes of some received packets.
   2553 	 * Aligning the packet buffer in memory eliminates the corruption.
   2554 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   2555 	 * which do not support unaligned accesses, we will realign the
   2556 	 * payloads by copying the received packets.
   2557 	 */
   2558 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
   2559 		/* If in PCI-X mode, work around the alignment bug. */
   2560 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
   2561                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
   2562                          BGE_PCISTATE_PCI_BUSSPEED)
   2563 		sc->bge_rx_alignment_bug = 1;
   2564         }
   2565 
   2566 	/*
   2567 	 * Call MI attach routine.
   2568 	 */
   2569 	DPRINTFN(5, ("if_attach\n"));
   2570 	if_attach(ifp);
   2571 	DPRINTFN(5, ("ether_ifattach\n"));
   2572 	ether_ifattach(ifp, eaddr);
   2573 #ifdef BGE_EVENT_COUNTERS
   2574 	/*
   2575 	 * Attach event counters.
   2576 	 */
   2577 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   2578 	    NULL, sc->bge_dev.dv_xname, "intr");
   2579 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   2580 	    NULL, sc->bge_dev.dv_xname, "tx_xoff");
   2581 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   2582 	    NULL, sc->bge_dev.dv_xname, "tx_xon");
   2583 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   2584 	    NULL, sc->bge_dev.dv_xname, "rx_xoff");
   2585 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   2586 	    NULL, sc->bge_dev.dv_xname, "rx_xon");
   2587 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   2588 	    NULL, sc->bge_dev.dv_xname, "rx_macctl");
   2589 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   2590 	    NULL, sc->bge_dev.dv_xname, "xoffentered");
   2591 #endif /* BGE_EVENT_COUNTERS */
   2592 	DPRINTFN(5, ("callout_init\n"));
   2593 	callout_init(&sc->bge_timeout);
   2594 
   2595 	sc->bge_powerhook = powerhook_establish(bge_powerhook, sc);
   2596 	if (sc->bge_powerhook == NULL)
   2597 		printf("%s: WARNING: unable to establish PCI power hook\n",
   2598 		    sc->bge_dev.dv_xname);
   2599 }
   2600 
   2601 void
   2602 bge_release_resources(sc)
   2603 	struct bge_softc *sc;
   2604 {
   2605 	if (sc->bge_vpd_prodname != NULL)
   2606 		free(sc->bge_vpd_prodname, M_DEVBUF);
   2607 
   2608 	if (sc->bge_vpd_readonly != NULL)
   2609 		free(sc->bge_vpd_readonly, M_DEVBUF);
   2610 }
   2611 
   2612 void
   2613 bge_reset(sc)
   2614 	struct bge_softc *sc;
   2615 {
   2616 	struct pci_attach_args *pa = &sc->bge_pa;
   2617 	u_int32_t cachesize, command, pcistate, new_pcistate;
   2618 	int i, val;
   2619 
   2620 	/* Save some important PCI state. */
   2621 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
   2622 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
   2623 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   2624 
   2625 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2626 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2627 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2628 
   2629 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
   2630 	/*
   2631 	 * XXX: from FreeBSD/Linux; no documentation
   2632 	 */
   2633 	if (sc->bge_pcie) {
   2634 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
   2635 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
   2636 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   2637 			/* No idea what that actually means */
   2638 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   2639 			val |= (1<<29);
   2640 		}
   2641 	}
   2642 
   2643 	/* Issue global reset */
   2644 	bge_writereg_ind(sc, BGE_MISC_CFG, val);
   2645 
   2646 	DELAY(1000);
   2647 
   2648 	/*
   2649 	 * XXX: from FreeBSD/Linux; no documentation
   2650 	 */
   2651 	if (sc->bge_pcie) {
   2652 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   2653 			pcireg_t reg;
   2654 
   2655 			DELAY(500000);
   2656 			/* XXX: Magic Numbers */
   2657 			reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
   2658 			pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
   2659 			    reg | (1 << 15));
   2660 		}
   2661 		/* XXX: Magic Numbers */
   2662 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN1, 0xf5000);
   2663 	}
   2664 
   2665 	/* Reset some of the PCI state that got zapped by reset */
   2666 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
   2667 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
   2668 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
   2669 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
   2670 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
   2671 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
   2672 
   2673 	/* Enable memory arbiter. */
   2674 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2675 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2676 	}
   2677 
   2678 	/*
   2679 	 * Prevent PXE restart: write a magic number to the
   2680 	 * general communications memory at 0xB50.
   2681 	 */
   2682 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
   2683 
   2684 	/*
   2685 	 * Poll the value location we just wrote until
   2686 	 * we see the 1's complement of the magic number.
   2687 	 * This indicates that the firmware initialization
   2688 	 * is complete.
   2689 	 */
   2690 	for (i = 0; i < 750; i++) {
   2691 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
   2692 		if (val == ~BGE_MAGIC_NUMBER)
   2693 			break;
   2694 		DELAY(1000);
   2695 	}
   2696 
   2697 	if (i == 750) {
   2698 		printf("%s: firmware handshake timed out, val = %x\n",
   2699 		    sc->bge_dev.dv_xname, val);
   2700 		return;
   2701 	}
   2702 
   2703 	/*
   2704 	 * XXX Wait for the value of the PCISTATE register to
   2705 	 * return to its original pre-reset state. This is a
   2706 	 * fairly good indicator of reset completion. If we don't
   2707 	 * wait for the reset to fully complete, trying to read
   2708 	 * from the device's non-PCI registers may yield garbage
   2709 	 * results.
   2710 	 */
   2711 	for (i = 0; i < BGE_TIMEOUT; i++) {
   2712 		new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
   2713 		    BGE_PCI_PCISTATE);
   2714 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
   2715 		    (pcistate & ~BGE_PCISTATE_RESERVED))
   2716 			break;
   2717 		DELAY(10);
   2718 	}
   2719 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
   2720 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
   2721 		printf("%s: pcistate failed to revert\n",
   2722 		    sc->bge_dev.dv_xname);
   2723 	}
   2724 
   2725 	/* XXX: from FreeBSD/Linux; no documentation */
   2726 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
   2727 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
   2728 
   2729 	/* Enable memory arbiter. */
   2730 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   2731 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   2732 	}
   2733 
   2734 	/* Fix up byte swapping */
   2735 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   2736 
   2737 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
   2738 
   2739 	DELAY(10000);
   2740 }
   2741 
   2742 /*
   2743  * Frame reception handling. This is called if there's a frame
   2744  * on the receive return list.
   2745  *
   2746  * Note: we have to be able to handle two possibilities here:
   2747  * 1) the frame is from the jumbo recieve ring
   2748  * 2) the frame is from the standard receive ring
   2749  */
   2750 
   2751 void
   2752 bge_rxeof(sc)
   2753 	struct bge_softc *sc;
   2754 {
   2755 	struct ifnet *ifp;
   2756 	int stdcnt = 0, jumbocnt = 0;
   2757 	bus_dmamap_t dmamap;
   2758 	bus_addr_t offset, toff;
   2759 	bus_size_t tlen;
   2760 	int tosync;
   2761 
   2762 	ifp = &sc->ethercom.ec_if;
   2763 
   2764 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2765 	    offsetof(struct bge_ring_data, bge_status_block),
   2766 	    sizeof (struct bge_status_block),
   2767 	    BUS_DMASYNC_POSTREAD);
   2768 
   2769 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   2770 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
   2771 	    sc->bge_rx_saved_considx;
   2772 
   2773 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
   2774 
   2775 	if (tosync < 0) {
   2776 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
   2777 		    sizeof (struct bge_rx_bd);
   2778 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2779 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   2780 		tosync = -tosync;
   2781 	}
   2782 
   2783 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2784 	    offset, tosync * sizeof (struct bge_rx_bd),
   2785 	    BUS_DMASYNC_POSTREAD);
   2786 
   2787 	while(sc->bge_rx_saved_considx !=
   2788 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
   2789 		struct bge_rx_bd	*cur_rx;
   2790 		u_int32_t		rxidx;
   2791 		struct mbuf		*m = NULL;
   2792 
   2793 		cur_rx = &sc->bge_rdata->
   2794 			bge_rx_return_ring[sc->bge_rx_saved_considx];
   2795 
   2796 		rxidx = cur_rx->bge_idx;
   2797 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
   2798 
   2799 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   2800 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   2801 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   2802 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   2803 			jumbocnt++;
   2804 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2805 				ifp->if_ierrors++;
   2806 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2807 				continue;
   2808 			}
   2809 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   2810 					     NULL)== ENOBUFS) {
   2811 				ifp->if_ierrors++;
   2812 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   2813 				continue;
   2814 			}
   2815 		} else {
   2816 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
   2817 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   2818 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   2819 			stdcnt++;
   2820 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   2821 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
   2822 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   2823 				ifp->if_ierrors++;
   2824 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2825 				continue;
   2826 			}
   2827 			if (bge_newbuf_std(sc, sc->bge_std,
   2828 			    NULL, dmamap) == ENOBUFS) {
   2829 				ifp->if_ierrors++;
   2830 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
   2831 				continue;
   2832 			}
   2833 		}
   2834 
   2835 		ifp->if_ipackets++;
   2836 #ifndef __NO_STRICT_ALIGNMENT
   2837                 /*
   2838                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   2839                  * the Rx buffer has the layer-2 header unaligned.
   2840                  * If our CPU requires alignment, re-align by copying.
   2841                  */
   2842 		if (sc->bge_rx_alignment_bug) {
   2843 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
   2844                                 cur_rx->bge_len);
   2845 			m->m_data += ETHER_ALIGN;
   2846 		}
   2847 #endif
   2848 
   2849 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   2850 		m->m_pkthdr.rcvif = ifp;
   2851 
   2852 #if NBPFILTER > 0
   2853 		/*
   2854 		 * Handle BPF listeners. Let the BPF user see the packet.
   2855 		 */
   2856 		if (ifp->if_bpf)
   2857 			bpf_mtap(ifp->if_bpf, m);
   2858 #endif
   2859 
   2860 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   2861 
   2862 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   2863 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   2864 		/*
   2865 		 * Rx transport checksum-offload may also
   2866 		 * have bugs with packets which, when transmitted,
   2867 		 * were `runts' requiring padding.
   2868 		 */
   2869 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   2870 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   2871 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   2872 			m->m_pkthdr.csum_data =
   2873 			    cur_rx->bge_tcp_udp_csum;
   2874 			m->m_pkthdr.csum_flags |=
   2875 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
   2876 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
   2877 		}
   2878 
   2879 		/*
   2880 		 * If we received a packet with a vlan tag, pass it
   2881 		 * to vlan_input() instead of ether_input().
   2882 		 */
   2883 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   2884 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
   2885 
   2886 		(*ifp->if_input)(ifp, m);
   2887 	}
   2888 
   2889 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   2890 	if (stdcnt)
   2891 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   2892 	if (jumbocnt)
   2893 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   2894 }
   2895 
   2896 void
   2897 bge_txeof(sc)
   2898 	struct bge_softc *sc;
   2899 {
   2900 	struct bge_tx_bd *cur_tx = NULL;
   2901 	struct ifnet *ifp;
   2902 	struct txdmamap_pool_entry *dma;
   2903 	bus_addr_t offset, toff;
   2904 	bus_size_t tlen;
   2905 	int tosync;
   2906 	struct mbuf *m;
   2907 
   2908 	ifp = &sc->ethercom.ec_if;
   2909 
   2910 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2911 	    offsetof(struct bge_ring_data, bge_status_block),
   2912 	    sizeof (struct bge_status_block),
   2913 	    BUS_DMASYNC_POSTREAD);
   2914 
   2915 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   2916 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
   2917 	    sc->bge_tx_saved_considx;
   2918 
   2919 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
   2920 
   2921 	if (tosync < 0) {
   2922 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   2923 		    sizeof (struct bge_tx_bd);
   2924 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2925 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2926 		tosync = -tosync;
   2927 	}
   2928 
   2929 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2930 	    offset, tosync * sizeof (struct bge_tx_bd),
   2931 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2932 
   2933 	/*
   2934 	 * Go through our tx ring and free mbufs for those
   2935 	 * frames that have been sent.
   2936 	 */
   2937 	while (sc->bge_tx_saved_considx !=
   2938 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
   2939 		u_int32_t		idx = 0;
   2940 
   2941 		idx = sc->bge_tx_saved_considx;
   2942 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   2943 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   2944 			ifp->if_opackets++;
   2945 		m = sc->bge_cdata.bge_tx_chain[idx];
   2946 		if (m != NULL) {
   2947 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   2948 			dma = sc->txdma[idx];
   2949 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
   2950 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   2951 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   2952 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   2953 			sc->txdma[idx] = NULL;
   2954 
   2955 			m_freem(m);
   2956 		}
   2957 		sc->bge_txcnt--;
   2958 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   2959 		ifp->if_timer = 0;
   2960 	}
   2961 
   2962 	if (cur_tx != NULL)
   2963 		ifp->if_flags &= ~IFF_OACTIVE;
   2964 }
   2965 
   2966 int
   2967 bge_intr(xsc)
   2968 	void *xsc;
   2969 {
   2970 	struct bge_softc *sc;
   2971 	struct ifnet *ifp;
   2972 
   2973 	sc = xsc;
   2974 	ifp = &sc->ethercom.ec_if;
   2975 
   2976 #ifdef notdef
   2977 	/* Avoid this for now -- checking this register is expensive. */
   2978 	/* Make sure this is really our interrupt. */
   2979 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
   2980 		return (0);
   2981 #endif
   2982 	/* Ack interrupt and stop others from occuring. */
   2983 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   2984 
   2985 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   2986 
   2987 	/*
   2988 	 * Process link state changes.
   2989 	 * Grrr. The link status word in the status block does
   2990 	 * not work correctly on the BCM5700 rev AX and BX chips,
   2991 	 * according to all avaibable information. Hence, we have
   2992 	 * to enable MII interrupts in order to properly obtain
   2993 	 * async link changes. Unfortunately, this also means that
   2994 	 * we have to read the MAC status register to detect link
   2995 	 * changes, thereby adding an additional register access to
   2996 	 * the interrupt handler.
   2997 	 */
   2998 
   2999 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
   3000 		u_int32_t		status;
   3001 
   3002 		status = CSR_READ_4(sc, BGE_MAC_STS);
   3003 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   3004 			sc->bge_link = 0;
   3005 			callout_stop(&sc->bge_timeout);
   3006 			bge_tick(sc);
   3007 			/* Clear the interrupt */
   3008 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3009 			    BGE_EVTENB_MI_INTERRUPT);
   3010 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
   3011 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
   3012 			    BRGPHY_INTRS);
   3013 		}
   3014 	} else {
   3015 		if (sc->bge_rdata->bge_status_block.bge_status &
   3016 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
   3017 			sc->bge_link = 0;
   3018 			callout_stop(&sc->bge_timeout);
   3019 			bge_tick(sc);
   3020 			/* Clear the interrupt */
   3021 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
   3022 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
   3023 			    BGE_MACSTAT_LINK_CHANGED);
   3024 		}
   3025 	}
   3026 
   3027 	if (ifp->if_flags & IFF_RUNNING) {
   3028 		/* Check RX return ring producer/consumer */
   3029 		bge_rxeof(sc);
   3030 
   3031 		/* Check TX ring producer/consumer */
   3032 		bge_txeof(sc);
   3033 	}
   3034 
   3035 	if (sc->bge_pending_rxintr_change) {
   3036 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   3037 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   3038 		uint32_t junk;
   3039 
   3040 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   3041 		DELAY(10);
   3042 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   3043 
   3044 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   3045 		DELAY(10);
   3046 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   3047 
   3048 		sc->bge_pending_rxintr_change = 0;
   3049 	}
   3050 	bge_handle_events(sc);
   3051 
   3052 	/* Re-enable interrupts. */
   3053 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3054 
   3055 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   3056 		bge_start(ifp);
   3057 
   3058 	return (1);
   3059 }
   3060 
   3061 void
   3062 bge_tick(xsc)
   3063 	void *xsc;
   3064 {
   3065 	struct bge_softc *sc = xsc;
   3066 	struct mii_data *mii = &sc->bge_mii;
   3067 	struct ifmedia *ifm = NULL;
   3068 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3069 	int s;
   3070 
   3071 	s = splnet();
   3072 
   3073 	bge_stats_update(sc);
   3074 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3075 	if (sc->bge_link) {
   3076 		splx(s);
   3077 		return;
   3078 	}
   3079 
   3080 	if (sc->bge_tbi) {
   3081 		ifm = &sc->bge_ifmedia;
   3082 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3083 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
   3084 			sc->bge_link++;
   3085 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   3086 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3087 				bge_start(ifp);
   3088 		}
   3089 		splx(s);
   3090 		return;
   3091 	}
   3092 
   3093 	mii_tick(mii);
   3094 
   3095 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
   3096 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   3097 		sc->bge_link++;
   3098 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3099 			bge_start(ifp);
   3100 	}
   3101 
   3102 	splx(s);
   3103 }
   3104 
   3105 void
   3106 bge_stats_update(sc)
   3107 	struct bge_softc *sc;
   3108 {
   3109 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3110 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   3111 	bus_size_t rstats = BGE_RX_STATS;
   3112 
   3113 #define READ_RSTAT(sc, stats, stat) \
   3114 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
   3115 
   3116 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
   3117 		ifp->if_collisions +=
   3118 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
   3119 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
   3120 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
   3121 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
   3122 
   3123 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
   3124 			      READ_RSTAT(sc, rstats, outXoffSent));
   3125 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
   3126 			      READ_RSTAT(sc, rstats, outXonSent));
   3127 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
   3128 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
   3129 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
   3130 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
   3131 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
   3132 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
   3133 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
   3134 			      READ_RSTAT(sc, rstats, xoffStateEntered));
   3135 		return;
   3136 	}
   3137 
   3138 #undef READ_RSTAT
   3139 #define READ_STAT(sc, stats, stat) \
   3140 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   3141 
   3142 	ifp->if_collisions +=
   3143 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   3144 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   3145 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   3146 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
   3147 	  ifp->if_collisions;
   3148 
   3149 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   3150 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   3151 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   3152 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   3153 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   3154 		      READ_STAT(sc, stats,
   3155 		      		xoffPauseFramesReceived.bge_addr_lo));
   3156 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   3157 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   3158 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   3159 		      READ_STAT(sc, stats,
   3160 		      		macControlFramesReceived.bge_addr_lo));
   3161 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   3162 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   3163 
   3164 #undef READ_STAT
   3165 
   3166 #ifdef notdef
   3167 	ifp->if_collisions +=
   3168 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
   3169 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
   3170 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
   3171 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
   3172 	   ifp->if_collisions;
   3173 #endif
   3174 }
   3175 
   3176 /*
   3177  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   3178  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   3179  * but when such padded frames employ the  bge IP/TCP checksum offload,
   3180  * the hardware checksum assist gives incorrect results (possibly
   3181  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   3182  * If we pad such runts with zeros, the onboard checksum comes out correct.
   3183  */
   3184 static __inline int
   3185 bge_cksum_pad(struct mbuf *pkt)
   3186 {
   3187 	struct mbuf *last = NULL;
   3188 	int padlen;
   3189 
   3190 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   3191 
   3192 	/* if there's only the packet-header and we can pad there, use it. */
   3193 	if (pkt->m_pkthdr.len == pkt->m_len &&
   3194 	    !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
   3195 		last = pkt;
   3196 	} else {
   3197 		/*
   3198 		 * Walk packet chain to find last mbuf. We will either
   3199 		 * pad there, or append a new mbuf and pad it
   3200 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   3201 		 */
   3202 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   3203 	      	       (void) 0; /* do nothing*/
   3204 		}
   3205 
   3206 		/* `last' now points to last in chain. */
   3207 		if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
   3208 			(void) 0; /* we can pad here, in-place. */
   3209 		} else {
   3210 			/* Allocate new empty mbuf, pad it. Compact later. */
   3211 			struct mbuf *n;
   3212 			MGET(n, M_DONTWAIT, MT_DATA);
   3213 			n->m_len = 0;
   3214 			last->m_next = n;
   3215 			last = n;
   3216 		}
   3217 	}
   3218 
   3219 #ifdef DEBUG
   3220 	  /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
   3221 	  KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
   3222 #endif
   3223 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   3224 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
   3225 	last->m_len += padlen;
   3226 	pkt->m_pkthdr.len += padlen;
   3227 	return 0;
   3228 }
   3229 
   3230 /*
   3231  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   3232  */
   3233 static __inline int
   3234 bge_compact_dma_runt(struct mbuf *pkt)
   3235 {
   3236 	struct mbuf	*m, *prev;
   3237 	int 		totlen, prevlen;
   3238 
   3239 	prev = NULL;
   3240 	totlen = 0;
   3241 	prevlen = -1;
   3242 
   3243 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
   3244 		int mlen = m->m_len;
   3245 		int shortfall = 8 - mlen ;
   3246 
   3247 		totlen += mlen;
   3248 		if (mlen == 0) {
   3249 			continue;
   3250 		}
   3251 		if (mlen >= 8)
   3252 			continue;
   3253 
   3254 		/* If we get here, mbuf data is too small for DMA engine.
   3255 		 * Try to fix by shuffling data to prev or next in chain.
   3256 		 * If that fails, do a compacting deep-copy of the whole chain.
   3257 		 */
   3258 
   3259 		/* Internal frag. If fits in prev, copy it there. */
   3260 		if (prev && !M_READONLY(prev) &&
   3261 		      M_TRAILINGSPACE(prev) >= m->m_len) {
   3262 		  	bcopy(m->m_data,
   3263 			      prev->m_data+prev->m_len,
   3264 			      mlen);
   3265 			prev->m_len += mlen;
   3266 			m->m_len = 0;
   3267 			/* XXX stitch chain */
   3268 			prev->m_next = m_free(m);
   3269 			m = prev;
   3270 			continue;
   3271 		}
   3272 		else if (m->m_next != NULL && !M_READONLY(m) &&
   3273 			     M_TRAILINGSPACE(m) >= shortfall &&
   3274 			     m->m_next->m_len >= (8 + shortfall)) {
   3275 		    /* m is writable and have enough data in next, pull up. */
   3276 
   3277 		  	bcopy(m->m_next->m_data,
   3278 			      m->m_data+m->m_len,
   3279 			      shortfall);
   3280 			m->m_len += shortfall;
   3281 			m->m_next->m_len -= shortfall;
   3282 			m->m_next->m_data += shortfall;
   3283 		}
   3284 		else if (m->m_next == NULL || 1) {
   3285 		  	/* Got a runt at the very end of the packet.
   3286 			 * borrow data from the tail of the preceding mbuf and
   3287 			 * update its length in-place. (The original data is still
   3288 			 * valid, so we can do this even if prev is not writable.)
   3289 			 */
   3290 
   3291 			/* if we'd make prev a runt, just move all of its data. */
   3292 #ifdef DEBUG
   3293 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   3294 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   3295 #endif
   3296 			if ((prev->m_len - shortfall) < 8)
   3297 				shortfall = prev->m_len;
   3298 
   3299 #ifdef notyet	/* just do the safe slow thing for now */
   3300 			if (!M_READONLY(m)) {
   3301 				if (M_LEADINGSPACE(m) < shorfall) {
   3302 					void *m_dat;
   3303 					m_dat = (m->m_flags & M_PKTHDR) ?
   3304 					  m->m_pktdat : m->dat;
   3305 					memmove(m_dat, mtod(m, void*), m->m_len);
   3306 					m->m_data = m_dat;
   3307 				    }
   3308 			} else
   3309 #endif	/* just do the safe slow thing */
   3310 			{
   3311 				struct mbuf * n = NULL;
   3312 				int newprevlen = prev->m_len - shortfall;
   3313 
   3314 				MGET(n, M_NOWAIT, MT_DATA);
   3315 				if (n == NULL)
   3316 				   return ENOBUFS;
   3317 				KASSERT(m->m_len + shortfall < MLEN
   3318 					/*,
   3319 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   3320 
   3321 				/* first copy the data we're stealing from prev */
   3322 				bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
   3323 
   3324 				/* update prev->m_len accordingly */
   3325 				prev->m_len -= shortfall;
   3326 
   3327 				/* copy data from runt m */
   3328 				bcopy(m->m_data, n->m_data + shortfall, m->m_len);
   3329 
   3330 				/* n holds what we stole from prev, plus m */
   3331 				n->m_len = shortfall + m->m_len;
   3332 
   3333 				/* stitch n into chain and free m */
   3334 				n->m_next = m->m_next;
   3335 				prev->m_next = n;
   3336 				/* KASSERT(m->m_next == NULL); */
   3337 				m->m_next = NULL;
   3338 				m_free(m);
   3339 				m = n;	/* for continuing loop */
   3340 			}
   3341 		}
   3342 		prevlen = m->m_len;
   3343 	}
   3344 	return 0;
   3345 }
   3346 
   3347 /*
   3348  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
   3349  * pointers to descriptors.
   3350  */
   3351 int
   3352 bge_encap(sc, m_head, txidx)
   3353 	struct bge_softc *sc;
   3354 	struct mbuf *m_head;
   3355 	u_int32_t *txidx;
   3356 {
   3357 	struct bge_tx_bd	*f = NULL;
   3358 	u_int32_t		frag, cur, cnt = 0;
   3359 	u_int16_t		csum_flags = 0;
   3360 	struct txdmamap_pool_entry *dma;
   3361 	bus_dmamap_t dmamap;
   3362 	int			i = 0;
   3363 	struct m_tag		*mtag;
   3364 
   3365 	cur = frag = *txidx;
   3366 
   3367 	if (m_head->m_pkthdr.csum_flags) {
   3368 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   3369 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   3370 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
   3371 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   3372 	}
   3373 
   3374 	/*
   3375 	 * If we were asked to do an outboard checksum, and the NIC
   3376 	 * has the bug where it sometimes adds in the Ethernet padding,
   3377 	 * explicitly pad with zeros so the cksum will be correct either way.
   3378 	 * (For now, do this for all chip versions, until newer
   3379 	 * are confirmed to not require the workaround.)
   3380 	 */
   3381 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   3382 #ifdef notyet
   3383 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   3384 #endif
   3385 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   3386 		goto check_dma_bug;
   3387 
   3388 	if (bge_cksum_pad(m_head) != 0)
   3389 	    return ENOBUFS;
   3390 
   3391 check_dma_bug:
   3392 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
   3393 		goto doit;
   3394 	/*
   3395 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   3396 	 * less than eight bytes.  If we encounter a teeny mbuf
   3397 	 * at the end of a chain, we can pad.  Otherwise, copy.
   3398 	 */
   3399 	if (bge_compact_dma_runt(m_head) != 0)
   3400 		return ENOBUFS;
   3401 
   3402 doit:
   3403 	dma = SLIST_FIRST(&sc->txdma_list);
   3404 	if (dma == NULL)
   3405 		return ENOBUFS;
   3406 	dmamap = dma->dmamap;
   3407 
   3408 	/*
   3409 	 * Start packing the mbufs in this chain into
   3410 	 * the fragment pointers. Stop when we run out
   3411 	 * of fragments or hit the end of the mbuf chain.
   3412 	 */
   3413 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
   3414 	    BUS_DMA_NOWAIT))
   3415 		return(ENOBUFS);
   3416 
   3417 	mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head);
   3418 
   3419 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   3420 		f = &sc->bge_rdata->bge_tx_ring[frag];
   3421 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   3422 			break;
   3423 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
   3424 		f->bge_len = dmamap->dm_segs[i].ds_len;
   3425 		f->bge_flags = csum_flags;
   3426 
   3427 		if (mtag != NULL) {
   3428 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   3429 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
   3430 		} else {
   3431 			f->bge_vlan_tag = 0;
   3432 		}
   3433 		/*
   3434 		 * Sanity check: avoid coming within 16 descriptors
   3435 		 * of the end of the ring.
   3436 		 */
   3437 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
   3438 			return(ENOBUFS);
   3439 		cur = frag;
   3440 		BGE_INC(frag, BGE_TX_RING_CNT);
   3441 		cnt++;
   3442 	}
   3443 
   3444 	if (i < dmamap->dm_nsegs)
   3445 		return ENOBUFS;
   3446 
   3447 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   3448 	    BUS_DMASYNC_PREWRITE);
   3449 
   3450 	if (frag == sc->bge_tx_saved_considx)
   3451 		return(ENOBUFS);
   3452 
   3453 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   3454 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   3455 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   3456 	sc->txdma[cur] = dma;
   3457 	sc->bge_txcnt += cnt;
   3458 
   3459 	*txidx = frag;
   3460 
   3461 	return(0);
   3462 }
   3463 
   3464 /*
   3465  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   3466  * to the mbuf data regions directly in the transmit descriptors.
   3467  */
   3468 void
   3469 bge_start(ifp)
   3470 	struct ifnet *ifp;
   3471 {
   3472 	struct bge_softc *sc;
   3473 	struct mbuf *m_head = NULL;
   3474 	u_int32_t prodidx = 0;
   3475 	int pkts = 0;
   3476 
   3477 	sc = ifp->if_softc;
   3478 
   3479 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
   3480 		return;
   3481 
   3482 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
   3483 
   3484 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   3485 		IFQ_POLL(&ifp->if_snd, m_head);
   3486 		if (m_head == NULL)
   3487 			break;
   3488 
   3489 #if 0
   3490 		/*
   3491 		 * XXX
   3492 		 * safety overkill.  If this is a fragmented packet chain
   3493 		 * with delayed TCP/UDP checksums, then only encapsulate
   3494 		 * it if we have enough descriptors to handle the entire
   3495 		 * chain at once.
   3496 		 * (paranoia -- may not actually be needed)
   3497 		 */
   3498 		if (m_head->m_flags & M_FIRSTFRAG &&
   3499 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   3500 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   3501 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   3502 				ifp->if_flags |= IFF_OACTIVE;
   3503 				break;
   3504 			}
   3505 		}
   3506 #endif
   3507 
   3508 		/*
   3509 		 * Pack the data into the transmit ring. If we
   3510 		 * don't have room, set the OACTIVE flag and wait
   3511 		 * for the NIC to drain the ring.
   3512 		 */
   3513 		if (bge_encap(sc, m_head, &prodidx)) {
   3514 			ifp->if_flags |= IFF_OACTIVE;
   3515 			break;
   3516 		}
   3517 
   3518 		/* now we are committed to transmit the packet */
   3519 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   3520 		pkts++;
   3521 
   3522 #if NBPFILTER > 0
   3523 		/*
   3524 		 * If there's a BPF listener, bounce a copy of this frame
   3525 		 * to him.
   3526 		 */
   3527 		if (ifp->if_bpf)
   3528 			bpf_mtap(ifp->if_bpf, m_head);
   3529 #endif
   3530 	}
   3531 	if (pkts == 0)
   3532 		return;
   3533 
   3534 	/* Transmit */
   3535 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3536 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
   3537 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   3538 
   3539 	/*
   3540 	 * Set a timeout in case the chip goes out to lunch.
   3541 	 */
   3542 	ifp->if_timer = 5;
   3543 }
   3544 
   3545 int
   3546 bge_init(ifp)
   3547 	struct ifnet *ifp;
   3548 {
   3549 	struct bge_softc *sc = ifp->if_softc;
   3550 	u_int16_t *m;
   3551 	int s, error;
   3552 
   3553 	s = splnet();
   3554 
   3555 	ifp = &sc->ethercom.ec_if;
   3556 
   3557 	/* Cancel pending I/O and flush buffers. */
   3558 	bge_stop(sc);
   3559 	bge_reset(sc);
   3560 	bge_chipinit(sc);
   3561 
   3562 	/*
   3563 	 * Init the various state machines, ring
   3564 	 * control blocks and firmware.
   3565 	 */
   3566 	error = bge_blockinit(sc);
   3567 	if (error != 0) {
   3568 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
   3569 		    error);
   3570 		splx(s);
   3571 		return error;
   3572 	}
   3573 
   3574 	ifp = &sc->ethercom.ec_if;
   3575 
   3576 	/* Specify MTU. */
   3577 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   3578 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
   3579 
   3580 	/* Load our MAC address. */
   3581 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
   3582 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   3583 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
   3584 
   3585 	/* Enable or disable promiscuous mode as needed. */
   3586 	if (ifp->if_flags & IFF_PROMISC) {
   3587 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3588 	} else {
   3589 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   3590 	}
   3591 
   3592 	/* Program multicast filter. */
   3593 	bge_setmulti(sc);
   3594 
   3595 	/* Init RX ring. */
   3596 	bge_init_rx_ring_std(sc);
   3597 
   3598 	/* Init jumbo RX ring. */
   3599 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   3600 		bge_init_rx_ring_jumbo(sc);
   3601 
   3602 	/* Init our RX return ring index */
   3603 	sc->bge_rx_saved_considx = 0;
   3604 
   3605 	/* Init TX ring. */
   3606 	bge_init_tx_ring(sc);
   3607 
   3608 	/* Turn on transmitter */
   3609 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   3610 
   3611 	/* Turn on receiver */
   3612 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3613 
   3614 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
   3615 
   3616 	/* Tell firmware we're alive. */
   3617 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3618 
   3619 	/* Enable host interrupts. */
   3620 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   3621 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3622 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
   3623 
   3624 	bge_ifmedia_upd(ifp);
   3625 
   3626 	ifp->if_flags |= IFF_RUNNING;
   3627 	ifp->if_flags &= ~IFF_OACTIVE;
   3628 
   3629 	splx(s);
   3630 
   3631 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
   3632 
   3633 	return 0;
   3634 }
   3635 
   3636 /*
   3637  * Set media options.
   3638  */
   3639 int
   3640 bge_ifmedia_upd(ifp)
   3641 	struct ifnet *ifp;
   3642 {
   3643 	struct bge_softc *sc = ifp->if_softc;
   3644 	struct mii_data *mii = &sc->bge_mii;
   3645 	struct ifmedia *ifm = &sc->bge_ifmedia;
   3646 
   3647 	/* If this is a 1000baseX NIC, enable the TBI port. */
   3648 	if (sc->bge_tbi) {
   3649 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   3650 			return(EINVAL);
   3651 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
   3652 		case IFM_AUTO:
   3653 			break;
   3654 		case IFM_1000_SX:
   3655 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
   3656 				BGE_CLRBIT(sc, BGE_MAC_MODE,
   3657 				    BGE_MACMODE_HALF_DUPLEX);
   3658 			} else {
   3659 				BGE_SETBIT(sc, BGE_MAC_MODE,
   3660 				    BGE_MACMODE_HALF_DUPLEX);
   3661 			}
   3662 			break;
   3663 		default:
   3664 			return(EINVAL);
   3665 		}
   3666 		/* XXX 802.3x flow control for 1000BASE-SX */
   3667 		return(0);
   3668 	}
   3669 
   3670 	sc->bge_link = 0;
   3671 	mii_mediachg(mii);
   3672 
   3673 	return(0);
   3674 }
   3675 
   3676 /*
   3677  * Report current media status.
   3678  */
   3679 void
   3680 bge_ifmedia_sts(ifp, ifmr)
   3681 	struct ifnet *ifp;
   3682 	struct ifmediareq *ifmr;
   3683 {
   3684 	struct bge_softc *sc = ifp->if_softc;
   3685 	struct mii_data *mii = &sc->bge_mii;
   3686 
   3687 	if (sc->bge_tbi) {
   3688 		ifmr->ifm_status = IFM_AVALID;
   3689 		ifmr->ifm_active = IFM_ETHER;
   3690 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   3691 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   3692 			ifmr->ifm_status |= IFM_ACTIVE;
   3693 		ifmr->ifm_active |= IFM_1000_SX;
   3694 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   3695 			ifmr->ifm_active |= IFM_HDX;
   3696 		else
   3697 			ifmr->ifm_active |= IFM_FDX;
   3698 		return;
   3699 	}
   3700 
   3701 	mii_pollstat(mii);
   3702 	ifmr->ifm_status = mii->mii_media_status;
   3703 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   3704 	    sc->bge_flowflags;
   3705 }
   3706 
   3707 int
   3708 bge_ioctl(ifp, command, data)
   3709 	struct ifnet *ifp;
   3710 	u_long command;
   3711 	caddr_t data;
   3712 {
   3713 	struct bge_softc *sc = ifp->if_softc;
   3714 	struct ifreq *ifr = (struct ifreq *) data;
   3715 	int s, error = 0;
   3716 	struct mii_data *mii;
   3717 
   3718 	s = splnet();
   3719 
   3720 	switch(command) {
   3721 	case SIOCSIFFLAGS:
   3722 		if (ifp->if_flags & IFF_UP) {
   3723 			/*
   3724 			 * If only the state of the PROMISC flag changed,
   3725 			 * then just use the 'set promisc mode' command
   3726 			 * instead of reinitializing the entire NIC. Doing
   3727 			 * a full re-init means reloading the firmware and
   3728 			 * waiting for it to start up, which may take a
   3729 			 * second or two.
   3730 			 */
   3731 			if (ifp->if_flags & IFF_RUNNING &&
   3732 			    ifp->if_flags & IFF_PROMISC &&
   3733 			    !(sc->bge_if_flags & IFF_PROMISC)) {
   3734 				BGE_SETBIT(sc, BGE_RX_MODE,
   3735 				    BGE_RXMODE_RX_PROMISC);
   3736 			} else if (ifp->if_flags & IFF_RUNNING &&
   3737 			    !(ifp->if_flags & IFF_PROMISC) &&
   3738 			    sc->bge_if_flags & IFF_PROMISC) {
   3739 				BGE_CLRBIT(sc, BGE_RX_MODE,
   3740 				    BGE_RXMODE_RX_PROMISC);
   3741 			} else
   3742 				bge_init(ifp);
   3743 		} else {
   3744 			if (ifp->if_flags & IFF_RUNNING) {
   3745 				bge_stop(sc);
   3746 			}
   3747 		}
   3748 		sc->bge_if_flags = ifp->if_flags;
   3749 		error = 0;
   3750 		break;
   3751 	case SIOCSIFMEDIA:
   3752 		/* XXX Flow control is not supported for 1000BASE-SX */
   3753 		if (sc->bge_tbi) {
   3754 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   3755 			sc->bge_flowflags = 0;
   3756 		}
   3757 
   3758 		/* Flow control requires full-duplex mode. */
   3759 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   3760 		    (ifr->ifr_media & IFM_FDX) == 0) {
   3761 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
   3762 		}
   3763 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   3764 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   3765 				/* We an do both TXPAUSE and RXPAUSE. */
   3766 				ifr->ifr_media |=
   3767 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   3768 			}
   3769 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   3770 		}
   3771 		/* FALLTHROUGH */
   3772 	case SIOCGIFMEDIA:
   3773 		if (sc->bge_tbi) {
   3774 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   3775 			    command);
   3776 		} else {
   3777 			mii = &sc->bge_mii;
   3778 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   3779 			    command);
   3780 		}
   3781 		break;
   3782 	default:
   3783 		error = ether_ioctl(ifp, command, data);
   3784 		if (error == ENETRESET) {
   3785 			if (ifp->if_flags & IFF_RUNNING)
   3786 				bge_setmulti(sc);
   3787 			error = 0;
   3788 		}
   3789 		break;
   3790 	}
   3791 
   3792 	splx(s);
   3793 
   3794 	return(error);
   3795 }
   3796 
   3797 void
   3798 bge_watchdog(ifp)
   3799 	struct ifnet *ifp;
   3800 {
   3801 	struct bge_softc *sc;
   3802 
   3803 	sc = ifp->if_softc;
   3804 
   3805 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
   3806 
   3807 	ifp->if_flags &= ~IFF_RUNNING;
   3808 	bge_init(ifp);
   3809 
   3810 	ifp->if_oerrors++;
   3811 }
   3812 
   3813 static void
   3814 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   3815 {
   3816 	int i;
   3817 
   3818 	BGE_CLRBIT(sc, reg, bit);
   3819 
   3820 	for (i = 0; i < BGE_TIMEOUT; i++) {
   3821 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   3822 			return;
   3823 		delay(100);
   3824 	}
   3825 
   3826 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
   3827 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
   3828 }
   3829 
   3830 /*
   3831  * Stop the adapter and free any mbufs allocated to the
   3832  * RX and TX lists.
   3833  */
   3834 void
   3835 bge_stop(sc)
   3836 	struct bge_softc *sc;
   3837 {
   3838 	struct ifnet *ifp = &sc->ethercom.ec_if;
   3839 
   3840 	callout_stop(&sc->bge_timeout);
   3841 
   3842 	/*
   3843 	 * Disable all of the receiver blocks
   3844 	 */
   3845 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   3846 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3847 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   3848 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3849 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   3850 	}
   3851 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   3852 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3853 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   3854 
   3855 	/*
   3856 	 * Disable all of the transmit blocks
   3857 	 */
   3858 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3859 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3860 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3861 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   3862 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   3863 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3864 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   3865 	}
   3866 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3867 
   3868 	/*
   3869 	 * Shut down all of the memory managers and related
   3870 	 * state machines.
   3871 	 */
   3872 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   3873 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   3874 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3875 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3876 	}
   3877 
   3878 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   3879 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   3880 
   3881 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
   3882 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   3883 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   3884 	}
   3885 
   3886 	/* Disable host interrupts. */
   3887 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   3888 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
   3889 
   3890 	/*
   3891 	 * Tell firmware we're shutting down.
   3892 	 */
   3893 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3894 
   3895 	/* Free the RX lists. */
   3896 	bge_free_rx_ring_std(sc);
   3897 
   3898 	/* Free jumbo RX list. */
   3899 	bge_free_rx_ring_jumbo(sc);
   3900 
   3901 	/* Free TX buffers. */
   3902 	bge_free_tx_ring(sc);
   3903 
   3904 	/*
   3905 	 * Isolate/power down the PHY.
   3906 	 */
   3907 	if (!sc->bge_tbi)
   3908 		mii_down(&sc->bge_mii);
   3909 
   3910 	sc->bge_link = 0;
   3911 
   3912 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   3913 
   3914 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3915 }
   3916 
   3917 /*
   3918  * Stop all chip I/O so that the kernel's probe routines don't
   3919  * get confused by errant DMAs when rebooting.
   3920  */
   3921 void
   3922 bge_shutdown(xsc)
   3923 	void *xsc;
   3924 {
   3925 	struct bge_softc *sc = (struct bge_softc *)xsc;
   3926 
   3927 	bge_stop(sc);
   3928 	bge_reset(sc);
   3929 }
   3930 
   3931 
   3932 static int
   3933 sysctl_bge_verify(SYSCTLFN_ARGS)
   3934 {
   3935 	int error, t;
   3936 	struct sysctlnode node;
   3937 
   3938 	node = *rnode;
   3939 	t = *(int*)rnode->sysctl_data;
   3940 	node.sysctl_data = &t;
   3941 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   3942 	if (error || newp == NULL)
   3943 		return (error);
   3944 
   3945 #if 0
   3946 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   3947 	    node.sysctl_num, rnode->sysctl_num));
   3948 #endif
   3949 
   3950 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   3951 		if (t < 0 || t >= NBGE_RX_THRESH)
   3952 			return (EINVAL);
   3953 		bge_update_all_threshes(t);
   3954 	} else
   3955 		return (EINVAL);
   3956 
   3957 	*(int*)rnode->sysctl_data = t;
   3958 
   3959 	return (0);
   3960 }
   3961 
   3962 /*
   3963  * Set up sysctl(3) MIB, hw.bge.*.
   3964  *
   3965  * TBD condition SYSCTL_PERMANENT on being an LKM or not
   3966  */
   3967 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
   3968 {
   3969 	int rc, bge_root_num;
   3970 	const struct sysctlnode *node;
   3971 
   3972 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   3973 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   3974 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   3975 		goto err;
   3976 	}
   3977 
   3978 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3979 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
   3980 	    SYSCTL_DESCR("BGE interface controls"),
   3981 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   3982 		goto err;
   3983 	}
   3984 
   3985 	bge_root_num = node->sysctl_num;
   3986 
   3987 	/* BGE Rx interrupt mitigation level */
   3988 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   3989 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   3990 	    CTLTYPE_INT, "rx_lvl",
   3991 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   3992 	    sysctl_bge_verify, 0,
   3993 	    &bge_rx_thresh_lvl,
   3994 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   3995 	    CTL_EOL)) != 0) {
   3996 		goto err;
   3997 	}
   3998 
   3999 	bge_rxthresh_nodenum = node->sysctl_num;
   4000 
   4001 	return;
   4002 
   4003 err:
   4004 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   4005 }
   4006 
   4007 void
   4008 bge_powerhook(int why, void *hdl)
   4009 {
   4010 	struct bge_softc *sc = (struct bge_softc *)hdl;
   4011 	struct ifnet *ifp = &sc->ethercom.ec_if;
   4012 	struct pci_attach_args *pa = &(sc->bge_pa);
   4013 	pci_chipset_tag_t pc = pa->pa_pc;
   4014 	pcitag_t tag = pa->pa_tag;
   4015 
   4016 	switch (why) {
   4017 	case PWR_SOFTSUSPEND:
   4018 	case PWR_SOFTSTANDBY:
   4019 		bge_shutdown(sc);
   4020 		break;
   4021 	case PWR_SOFTRESUME:
   4022 		if (ifp->if_flags & IFF_UP) {
   4023 			ifp->if_flags &= ~IFF_RUNNING;
   4024 			bge_init(ifp);
   4025 		}
   4026 		break;
   4027 	case PWR_SUSPEND:
   4028 	case PWR_STANDBY:
   4029 		pci_conf_capture(pc, tag, &sc->bge_pciconf);
   4030 		break;
   4031 	case PWR_RESUME:
   4032 		pci_conf_restore(pc, tag, &sc->bge_pciconf);
   4033 		break;
   4034 	}
   4035 
   4036 	return;
   4037 }
   4038