if_bge.c revision 1.92 1 /* $NetBSD: if_bge.c,v 1.92 2005/08/22 18:18:25 gavan Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.92 2005/08/22 18:18:25 gavan Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 #if NBPFILTER > 0
111 #include <net/bpf.h>
112 #endif
113
114 #include <dev/pci/pcireg.h>
115 #include <dev/pci/pcivar.h>
116 #include <dev/pci/pcidevs.h>
117
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 #include <dev/mii/miidevs.h>
121 #include <dev/mii/brgphyreg.h>
122
123 #include <dev/pci/if_bgereg.h>
124
125 #include <uvm/uvm_extern.h>
126
127 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
128
129
130 /*
131 * Tunable thresholds for rx-side bge interrupt mitigation.
132 */
133
134 /*
135 * The pairs of values below were obtained from empirical measurement
136 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
137 * interrupt for every N packets received, where N is, approximately,
138 * the second value (rx_max_bds) in each pair. The values are chosen
139 * such that moving from one pair to the succeeding pair was observed
140 * to roughly halve interrupt rate under sustained input packet load.
141 * The values were empirically chosen to avoid overflowing internal
142 * limits on the bcm5700: inreasing rx_ticks much beyond 600
143 * results in internal wrapping and higher interrupt rates.
144 * The limit of 46 frames was chosen to match NFS workloads.
145 *
146 * These values also work well on bcm5701, bcm5704C, and (less
147 * tested) bcm5703. On other chipsets, (including the Altima chip
148 * family), the larger values may overflow internal chip limits,
149 * leading to increasing interrupt rates rather than lower interrupt
150 * rates.
151 *
152 * Applications using heavy interrupt mitigation (interrupting every
153 * 32 or 46 frames) in both directions may need to increase the TCP
154 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
155 * full link bandwidth, due to ACKs and window updates lingering
156 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
157 */
158 struct bge_load_rx_thresh {
159 int rx_ticks;
160 int rx_max_bds; }
161 bge_rx_threshes[] = {
162 { 32, 2 },
163 { 50, 4 },
164 { 100, 8 },
165 { 192, 16 },
166 { 416, 32 },
167 { 598, 46 }
168 };
169 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
170
171 /* XXX patchable; should be sysctl'able */
172 static int bge_auto_thresh = 1;
173 static int bge_rx_thresh_lvl;
174
175 #ifdef __NetBSD__
176 static int bge_rxthresh_nodenum;
177 #endif /* __NetBSD__ */
178
179 int bge_probe(struct device *, struct cfdata *, void *);
180 void bge_attach(struct device *, struct device *, void *);
181 void bge_powerhook(int, void *);
182 void bge_release_resources(struct bge_softc *);
183 void bge_txeof(struct bge_softc *);
184 void bge_rxeof(struct bge_softc *);
185
186 void bge_tick(void *);
187 void bge_stats_update(struct bge_softc *);
188 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
189 static __inline int bge_cksum_pad(struct mbuf *pkt);
190 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
191
192 int bge_intr(void *);
193 void bge_start(struct ifnet *);
194 int bge_ioctl(struct ifnet *, u_long, caddr_t);
195 int bge_init(struct ifnet *);
196 void bge_stop(struct bge_softc *);
197 void bge_watchdog(struct ifnet *);
198 void bge_shutdown(void *);
199 int bge_ifmedia_upd(struct ifnet *);
200 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
201
202 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
203 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
204
205 void bge_setmulti(struct bge_softc *);
206
207 void bge_handle_events(struct bge_softc *);
208 int bge_alloc_jumbo_mem(struct bge_softc *);
209 void bge_free_jumbo_mem(struct bge_softc *);
210 void *bge_jalloc(struct bge_softc *);
211 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
212 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
213 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
214 int bge_init_rx_ring_std(struct bge_softc *);
215 void bge_free_rx_ring_std(struct bge_softc *);
216 int bge_init_rx_ring_jumbo(struct bge_softc *);
217 void bge_free_rx_ring_jumbo(struct bge_softc *);
218 void bge_free_tx_ring(struct bge_softc *);
219 int bge_init_tx_ring(struct bge_softc *);
220
221 int bge_chipinit(struct bge_softc *);
222 int bge_blockinit(struct bge_softc *);
223 int bge_setpowerstate(struct bge_softc *, int);
224
225 #ifdef notdef
226 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
227 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
228 void bge_vpd_read(struct bge_softc *);
229 #endif
230
231 u_int32_t bge_readmem_ind(struct bge_softc *, int);
232 void bge_writemem_ind(struct bge_softc *, int, int);
233 #ifdef notdef
234 u_int32_t bge_readreg_ind(struct bge_softc *, int);
235 #endif
236 void bge_writereg_ind(struct bge_softc *, int, int);
237
238 int bge_miibus_readreg(struct device *, int, int);
239 void bge_miibus_writereg(struct device *, int, int, int);
240 void bge_miibus_statchg(struct device *);
241
242 void bge_reset(struct bge_softc *);
243
244 void bge_set_thresh(struct ifnet * /*ifp*/, int /*lvl*/);
245 void bge_update_all_threshes(int /*lvl*/);
246
247 void bge_dump_status(struct bge_softc *);
248 void bge_dump_rxbd(struct bge_rx_bd *);
249
250 #define BGE_DEBUG
251 #ifdef BGE_DEBUG
252 #define DPRINTF(x) if (bgedebug) printf x
253 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
254 int bgedebug = 0;
255 #else
256 #define DPRINTF(x)
257 #define DPRINTFN(n,x)
258 #endif
259
260 #ifdef BGE_EVENT_COUNTERS
261 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
262 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
263 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
264 #else
265 #define BGE_EVCNT_INCR(ev) /* nothing */
266 #define BGE_EVCNT_ADD(ev, val) /* nothing */
267 #define BGE_EVCNT_UPD(ev, val) /* nothing */
268 #endif
269
270 /* Various chip quirks. */
271 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
272 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
273 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
274 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
275 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
276 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
277 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
278 #define BGE_QUIRK_5705_CORE 0x00000080
279 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
280
281 /* following bugs are common to bcm5700 rev B, all flavours */
282 #define BGE_QUIRK_5700_COMMON \
283 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
284
285 CFATTACH_DECL(bge, sizeof(struct bge_softc),
286 bge_probe, bge_attach, NULL, NULL);
287
288 u_int32_t
289 bge_readmem_ind(sc, off)
290 struct bge_softc *sc;
291 int off;
292 {
293 struct pci_attach_args *pa = &(sc->bge_pa);
294 pcireg_t val;
295
296 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
297 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
298 return val;
299 }
300
301 void
302 bge_writemem_ind(sc, off, val)
303 struct bge_softc *sc;
304 int off, val;
305 {
306 struct pci_attach_args *pa = &(sc->bge_pa);
307
308 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
309 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
310 }
311
312 #ifdef notdef
313 u_int32_t
314 bge_readreg_ind(sc, off)
315 struct bge_softc *sc;
316 int off;
317 {
318 struct pci_attach_args *pa = &(sc->bge_pa);
319
320 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
321 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
322 }
323 #endif
324
325 void
326 bge_writereg_ind(sc, off, val)
327 struct bge_softc *sc;
328 int off, val;
329 {
330 struct pci_attach_args *pa = &(sc->bge_pa);
331
332 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
333 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
334 }
335
336 #ifdef notdef
337 u_int8_t
338 bge_vpd_readbyte(sc, addr)
339 struct bge_softc *sc;
340 int addr;
341 {
342 int i;
343 u_int32_t val;
344 struct pci_attach_args *pa = &(sc->bge_pa);
345
346 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
347 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
348 DELAY(10);
349 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
350 BGE_VPD_FLAG)
351 break;
352 }
353
354 if (i == BGE_TIMEOUT) {
355 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
356 return(0);
357 }
358
359 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
360
361 return((val >> ((addr % 4) * 8)) & 0xFF);
362 }
363
364 void
365 bge_vpd_read_res(sc, res, addr)
366 struct bge_softc *sc;
367 struct vpd_res *res;
368 int addr;
369 {
370 int i;
371 u_int8_t *ptr;
372
373 ptr = (u_int8_t *)res;
374 for (i = 0; i < sizeof(struct vpd_res); i++)
375 ptr[i] = bge_vpd_readbyte(sc, i + addr);
376 }
377
378 void
379 bge_vpd_read(sc)
380 struct bge_softc *sc;
381 {
382 int pos = 0, i;
383 struct vpd_res res;
384
385 if (sc->bge_vpd_prodname != NULL)
386 free(sc->bge_vpd_prodname, M_DEVBUF);
387 if (sc->bge_vpd_readonly != NULL)
388 free(sc->bge_vpd_readonly, M_DEVBUF);
389 sc->bge_vpd_prodname = NULL;
390 sc->bge_vpd_readonly = NULL;
391
392 bge_vpd_read_res(sc, &res, pos);
393
394 if (res.vr_id != VPD_RES_ID) {
395 printf("%s: bad VPD resource id: expected %x got %x\n",
396 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
397 return;
398 }
399
400 pos += sizeof(res);
401 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
402 if (sc->bge_vpd_prodname == NULL)
403 panic("bge_vpd_read");
404 for (i = 0; i < res.vr_len; i++)
405 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
406 sc->bge_vpd_prodname[i] = '\0';
407 pos += i;
408
409 bge_vpd_read_res(sc, &res, pos);
410
411 if (res.vr_id != VPD_RES_READ) {
412 printf("%s: bad VPD resource id: expected %x got %x\n",
413 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
414 return;
415 }
416
417 pos += sizeof(res);
418 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
419 if (sc->bge_vpd_readonly == NULL)
420 panic("bge_vpd_read");
421 for (i = 0; i < res.vr_len + 1; i++)
422 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
423 }
424 #endif
425
426 /*
427 * Read a byte of data stored in the EEPROM at address 'addr.' The
428 * BCM570x supports both the traditional bitbang interface and an
429 * auto access interface for reading the EEPROM. We use the auto
430 * access method.
431 */
432 u_int8_t
433 bge_eeprom_getbyte(sc, addr, dest)
434 struct bge_softc *sc;
435 int addr;
436 u_int8_t *dest;
437 {
438 int i;
439 u_int32_t byte = 0;
440
441 /*
442 * Enable use of auto EEPROM access so we can avoid
443 * having to use the bitbang method.
444 */
445 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
446
447 /* Reset the EEPROM, load the clock period. */
448 CSR_WRITE_4(sc, BGE_EE_ADDR,
449 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
450 DELAY(20);
451
452 /* Issue the read EEPROM command. */
453 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
454
455 /* Wait for completion */
456 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
457 DELAY(10);
458 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
459 break;
460 }
461
462 if (i == BGE_TIMEOUT) {
463 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
464 return(0);
465 }
466
467 /* Get result. */
468 byte = CSR_READ_4(sc, BGE_EE_DATA);
469
470 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
471
472 return(0);
473 }
474
475 /*
476 * Read a sequence of bytes from the EEPROM.
477 */
478 int
479 bge_read_eeprom(sc, dest, off, cnt)
480 struct bge_softc *sc;
481 caddr_t dest;
482 int off;
483 int cnt;
484 {
485 int err = 0, i;
486 u_int8_t byte = 0;
487
488 for (i = 0; i < cnt; i++) {
489 err = bge_eeprom_getbyte(sc, off + i, &byte);
490 if (err)
491 break;
492 *(dest + i) = byte;
493 }
494
495 return(err ? 1 : 0);
496 }
497
498 int
499 bge_miibus_readreg(dev, phy, reg)
500 struct device *dev;
501 int phy, reg;
502 {
503 struct bge_softc *sc = (struct bge_softc *)dev;
504 u_int32_t val;
505 u_int32_t saved_autopoll;
506 int i;
507
508 /*
509 * Several chips with builtin PHYs will incorrectly answer to
510 * other PHY instances than the builtin PHY at id 1.
511 */
512 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
513 return(0);
514
515 /* Reading with autopolling on may trigger PCI errors */
516 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
517 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
518 CSR_WRITE_4(sc, BGE_MI_MODE,
519 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
520 DELAY(40);
521 }
522
523 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
524 BGE_MIPHY(phy)|BGE_MIREG(reg));
525
526 for (i = 0; i < BGE_TIMEOUT; i++) {
527 val = CSR_READ_4(sc, BGE_MI_COMM);
528 if (!(val & BGE_MICOMM_BUSY))
529 break;
530 delay(10);
531 }
532
533 if (i == BGE_TIMEOUT) {
534 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
535 val = 0;
536 goto done;
537 }
538
539 val = CSR_READ_4(sc, BGE_MI_COMM);
540
541 done:
542 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
543 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
544 DELAY(40);
545 }
546
547 if (val & BGE_MICOMM_READFAIL)
548 return(0);
549
550 return(val & 0xFFFF);
551 }
552
553 void
554 bge_miibus_writereg(dev, phy, reg, val)
555 struct device *dev;
556 int phy, reg, val;
557 {
558 struct bge_softc *sc = (struct bge_softc *)dev;
559 u_int32_t saved_autopoll;
560 int i;
561
562 /* Touching the PHY while autopolling is on may trigger PCI errors */
563 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
564 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
565 delay(40);
566 CSR_WRITE_4(sc, BGE_MI_MODE,
567 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
568 delay(10); /* 40 usec is supposed to be adequate */
569 }
570
571 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
572 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
573
574 for (i = 0; i < BGE_TIMEOUT; i++) {
575 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
576 break;
577 delay(10);
578 }
579
580 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
581 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
582 delay(40);
583 }
584
585 if (i == BGE_TIMEOUT) {
586 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
587 }
588 }
589
590 void
591 bge_miibus_statchg(dev)
592 struct device *dev;
593 {
594 struct bge_softc *sc = (struct bge_softc *)dev;
595 struct mii_data *mii = &sc->bge_mii;
596
597 /*
598 * Get flow control negotiation result.
599 */
600 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
601 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
602 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
603 mii->mii_media_active &= ~IFM_ETH_FMASK;
604 }
605
606 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
607 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
608 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
609 } else {
610 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
611 }
612
613 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
614 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
615 } else {
616 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
617 }
618
619 /*
620 * 802.3x flow control
621 */
622 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
623 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
624 } else {
625 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
626 }
627 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
628 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
629 } else {
630 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
631 }
632 }
633
634 /*
635 * Update rx threshold levels to values in a particular slot
636 * of the interrupt-mitigation table bge_rx_threshes.
637 */
638 void
639 bge_set_thresh(struct ifnet *ifp, int lvl)
640 {
641 struct bge_softc *sc = ifp->if_softc;
642 int s;
643
644 /* For now, just save the new Rx-intr thresholds and record
645 * that a threshold update is pending. Updating the hardware
646 * registers here (even at splhigh()) is observed to
647 * occasionaly cause glitches where Rx-interrupts are not
648 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
649 */
650 s = splnet();
651 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
652 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
653 sc->bge_pending_rxintr_change = 1;
654 splx(s);
655
656 return;
657 }
658
659
660 /*
661 * Update Rx thresholds of all bge devices
662 */
663 void
664 bge_update_all_threshes(int lvl)
665 {
666 struct ifnet *ifp;
667 const char * const namebuf = "bge";
668 int namelen;
669
670 if (lvl < 0)
671 lvl = 0;
672 else if( lvl >= NBGE_RX_THRESH)
673 lvl = NBGE_RX_THRESH - 1;
674
675 namelen = strlen(namebuf);
676 /*
677 * Now search all the interfaces for this name/number
678 */
679 IFNET_FOREACH(ifp) {
680 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
681 continue;
682 /* We got a match: update if doing auto-threshold-tuning */
683 if (bge_auto_thresh)
684 bge_set_thresh(ifp, lvl);
685 }
686 }
687
688 /*
689 * Handle events that have triggered interrupts.
690 */
691 void
692 bge_handle_events(sc)
693 struct bge_softc *sc;
694 {
695
696 return;
697 }
698
699 /*
700 * Memory management for jumbo frames.
701 */
702
703 int
704 bge_alloc_jumbo_mem(sc)
705 struct bge_softc *sc;
706 {
707 caddr_t ptr, kva;
708 bus_dma_segment_t seg;
709 int i, rseg, state, error;
710 struct bge_jpool_entry *entry;
711
712 state = error = 0;
713
714 /* Grab a big chunk o' storage. */
715 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
716 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
717 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
718 return ENOBUFS;
719 }
720
721 state = 1;
722 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
723 BUS_DMA_NOWAIT)) {
724 printf("%s: can't map DMA buffers (%d bytes)\n",
725 sc->bge_dev.dv_xname, (int)BGE_JMEM);
726 error = ENOBUFS;
727 goto out;
728 }
729
730 state = 2;
731 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
732 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
733 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
734 error = ENOBUFS;
735 goto out;
736 }
737
738 state = 3;
739 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
740 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
741 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
742 error = ENOBUFS;
743 goto out;
744 }
745
746 state = 4;
747 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
748 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
749
750 SLIST_INIT(&sc->bge_jfree_listhead);
751 SLIST_INIT(&sc->bge_jinuse_listhead);
752
753 /*
754 * Now divide it up into 9K pieces and save the addresses
755 * in an array.
756 */
757 ptr = sc->bge_cdata.bge_jumbo_buf;
758 for (i = 0; i < BGE_JSLOTS; i++) {
759 sc->bge_cdata.bge_jslots[i] = ptr;
760 ptr += BGE_JLEN;
761 entry = malloc(sizeof(struct bge_jpool_entry),
762 M_DEVBUF, M_NOWAIT);
763 if (entry == NULL) {
764 printf("%s: no memory for jumbo buffer queue!\n",
765 sc->bge_dev.dv_xname);
766 error = ENOBUFS;
767 goto out;
768 }
769 entry->slot = i;
770 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
771 entry, jpool_entries);
772 }
773 out:
774 if (error != 0) {
775 switch (state) {
776 case 4:
777 bus_dmamap_unload(sc->bge_dmatag,
778 sc->bge_cdata.bge_rx_jumbo_map);
779 case 3:
780 bus_dmamap_destroy(sc->bge_dmatag,
781 sc->bge_cdata.bge_rx_jumbo_map);
782 case 2:
783 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
784 case 1:
785 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
786 break;
787 default:
788 break;
789 }
790 }
791
792 return error;
793 }
794
795 /*
796 * Allocate a jumbo buffer.
797 */
798 void *
799 bge_jalloc(sc)
800 struct bge_softc *sc;
801 {
802 struct bge_jpool_entry *entry;
803
804 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
805
806 if (entry == NULL) {
807 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
808 return(NULL);
809 }
810
811 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
812 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
813 return(sc->bge_cdata.bge_jslots[entry->slot]);
814 }
815
816 /*
817 * Release a jumbo buffer.
818 */
819 void
820 bge_jfree(m, buf, size, arg)
821 struct mbuf *m;
822 caddr_t buf;
823 size_t size;
824 void *arg;
825 {
826 struct bge_jpool_entry *entry;
827 struct bge_softc *sc;
828 int i, s;
829
830 /* Extract the softc struct pointer. */
831 sc = (struct bge_softc *)arg;
832
833 if (sc == NULL)
834 panic("bge_jfree: can't find softc pointer!");
835
836 /* calculate the slot this buffer belongs to */
837
838 i = ((caddr_t)buf
839 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
840
841 if ((i < 0) || (i >= BGE_JSLOTS))
842 panic("bge_jfree: asked to free buffer that we don't manage!");
843
844 s = splvm();
845 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
846 if (entry == NULL)
847 panic("bge_jfree: buffer not in use!");
848 entry->slot = i;
849 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
850 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
851
852 if (__predict_true(m != NULL))
853 pool_cache_put(&mbpool_cache, m);
854 splx(s);
855 }
856
857
858 /*
859 * Intialize a standard receive ring descriptor.
860 */
861 int
862 bge_newbuf_std(sc, i, m, dmamap)
863 struct bge_softc *sc;
864 int i;
865 struct mbuf *m;
866 bus_dmamap_t dmamap;
867 {
868 struct mbuf *m_new = NULL;
869 struct bge_rx_bd *r;
870 int error;
871
872 if (dmamap == NULL) {
873 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
874 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
875 if (error != 0)
876 return error;
877 }
878
879 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
880
881 if (m == NULL) {
882 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
883 if (m_new == NULL) {
884 return(ENOBUFS);
885 }
886
887 MCLGET(m_new, M_DONTWAIT);
888 if (!(m_new->m_flags & M_EXT)) {
889 m_freem(m_new);
890 return(ENOBUFS);
891 }
892 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
893 if (!sc->bge_rx_alignment_bug)
894 m_adj(m_new, ETHER_ALIGN);
895
896 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
897 BUS_DMA_READ|BUS_DMA_NOWAIT))
898 return(ENOBUFS);
899 } else {
900 m_new = m;
901 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
902 m_new->m_data = m_new->m_ext.ext_buf;
903 if (!sc->bge_rx_alignment_bug)
904 m_adj(m_new, ETHER_ALIGN);
905 }
906
907 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
908 r = &sc->bge_rdata->bge_rx_std_ring[i];
909 bge_set_hostaddr(&r->bge_addr,
910 dmamap->dm_segs[0].ds_addr);
911 r->bge_flags = BGE_RXBDFLAG_END;
912 r->bge_len = m_new->m_len;
913 r->bge_idx = i;
914
915 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
916 offsetof(struct bge_ring_data, bge_rx_std_ring) +
917 i * sizeof (struct bge_rx_bd),
918 sizeof (struct bge_rx_bd),
919 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
920
921 return(0);
922 }
923
924 /*
925 * Initialize a jumbo receive ring descriptor. This allocates
926 * a jumbo buffer from the pool managed internally by the driver.
927 */
928 int
929 bge_newbuf_jumbo(sc, i, m)
930 struct bge_softc *sc;
931 int i;
932 struct mbuf *m;
933 {
934 struct mbuf *m_new = NULL;
935 struct bge_rx_bd *r;
936
937 if (m == NULL) {
938 caddr_t buf = NULL;
939
940 /* Allocate the mbuf. */
941 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
942 if (m_new == NULL) {
943 return(ENOBUFS);
944 }
945
946 /* Allocate the jumbo buffer */
947 buf = bge_jalloc(sc);
948 if (buf == NULL) {
949 m_freem(m_new);
950 printf("%s: jumbo allocation failed "
951 "-- packet dropped!\n", sc->bge_dev.dv_xname);
952 return(ENOBUFS);
953 }
954
955 /* Attach the buffer to the mbuf. */
956 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
957 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
958 bge_jfree, sc);
959 m_new->m_flags |= M_EXT_RW;
960 } else {
961 m_new = m;
962 m_new->m_data = m_new->m_ext.ext_buf;
963 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
964 }
965
966 if (!sc->bge_rx_alignment_bug)
967 m_adj(m_new, ETHER_ALIGN);
968 /* Set up the descriptor. */
969 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
970 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
971 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
972 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
973 r->bge_len = m_new->m_len;
974 r->bge_idx = i;
975
976 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
977 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
978 i * sizeof (struct bge_rx_bd),
979 sizeof (struct bge_rx_bd),
980 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
981
982 return(0);
983 }
984
985 /*
986 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
987 * that's 1MB or memory, which is a lot. For now, we fill only the first
988 * 256 ring entries and hope that our CPU is fast enough to keep up with
989 * the NIC.
990 */
991 int
992 bge_init_rx_ring_std(sc)
993 struct bge_softc *sc;
994 {
995 int i;
996
997 if (sc->bge_flags & BGE_RXRING_VALID)
998 return 0;
999
1000 for (i = 0; i < BGE_SSLOTS; i++) {
1001 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1002 return(ENOBUFS);
1003 }
1004
1005 sc->bge_std = i - 1;
1006 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1007
1008 sc->bge_flags |= BGE_RXRING_VALID;
1009
1010 return(0);
1011 }
1012
1013 void
1014 bge_free_rx_ring_std(sc)
1015 struct bge_softc *sc;
1016 {
1017 int i;
1018
1019 if (!(sc->bge_flags & BGE_RXRING_VALID))
1020 return;
1021
1022 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1023 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1024 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1025 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1026 bus_dmamap_destroy(sc->bge_dmatag,
1027 sc->bge_cdata.bge_rx_std_map[i]);
1028 }
1029 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1030 sizeof(struct bge_rx_bd));
1031 }
1032
1033 sc->bge_flags &= ~BGE_RXRING_VALID;
1034 }
1035
1036 int
1037 bge_init_rx_ring_jumbo(sc)
1038 struct bge_softc *sc;
1039 {
1040 int i;
1041 volatile struct bge_rcb *rcb;
1042
1043 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1044 return 0;
1045
1046 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1047 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1048 return(ENOBUFS);
1049 };
1050
1051 sc->bge_jumbo = i - 1;
1052 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1053
1054 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1055 rcb->bge_maxlen_flags = 0;
1056 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1057
1058 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1059
1060 return(0);
1061 }
1062
1063 void
1064 bge_free_rx_ring_jumbo(sc)
1065 struct bge_softc *sc;
1066 {
1067 int i;
1068
1069 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1070 return;
1071
1072 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1073 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1074 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1075 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1076 }
1077 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1078 sizeof(struct bge_rx_bd));
1079 }
1080
1081 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1082 }
1083
1084 void
1085 bge_free_tx_ring(sc)
1086 struct bge_softc *sc;
1087 {
1088 int i, freed;
1089 struct txdmamap_pool_entry *dma;
1090
1091 if (!(sc->bge_flags & BGE_TXRING_VALID))
1092 return;
1093
1094 freed = 0;
1095
1096 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1097 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1098 freed++;
1099 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1100 sc->bge_cdata.bge_tx_chain[i] = NULL;
1101 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1102 link);
1103 sc->txdma[i] = 0;
1104 }
1105 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1106 sizeof(struct bge_tx_bd));
1107 }
1108
1109 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1110 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1111 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1112 free(dma, M_DEVBUF);
1113 }
1114
1115 sc->bge_flags &= ~BGE_TXRING_VALID;
1116 }
1117
1118 int
1119 bge_init_tx_ring(sc)
1120 struct bge_softc *sc;
1121 {
1122 int i;
1123 bus_dmamap_t dmamap;
1124 struct txdmamap_pool_entry *dma;
1125
1126 if (sc->bge_flags & BGE_TXRING_VALID)
1127 return 0;
1128
1129 sc->bge_txcnt = 0;
1130 sc->bge_tx_saved_considx = 0;
1131 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1132 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1133 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1134
1135 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1136 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1137 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1138
1139 SLIST_INIT(&sc->txdma_list);
1140 for (i = 0; i < BGE_RSLOTS; i++) {
1141 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
1142 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1143 &dmamap))
1144 return(ENOBUFS);
1145 if (dmamap == NULL)
1146 panic("dmamap NULL in bge_init_tx_ring");
1147 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1148 if (dma == NULL) {
1149 printf("%s: can't alloc txdmamap_pool_entry\n",
1150 sc->bge_dev.dv_xname);
1151 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1152 return (ENOMEM);
1153 }
1154 dma->dmamap = dmamap;
1155 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1156 }
1157
1158 sc->bge_flags |= BGE_TXRING_VALID;
1159
1160 return(0);
1161 }
1162
1163 void
1164 bge_setmulti(sc)
1165 struct bge_softc *sc;
1166 {
1167 struct ethercom *ac = &sc->ethercom;
1168 struct ifnet *ifp = &ac->ec_if;
1169 struct ether_multi *enm;
1170 struct ether_multistep step;
1171 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1172 u_int32_t h;
1173 int i;
1174
1175 if (ifp->if_flags & IFF_PROMISC)
1176 goto allmulti;
1177
1178 /* Now program new ones. */
1179 ETHER_FIRST_MULTI(step, ac, enm);
1180 while (enm != NULL) {
1181 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1182 /*
1183 * We must listen to a range of multicast addresses.
1184 * For now, just accept all multicasts, rather than
1185 * trying to set only those filter bits needed to match
1186 * the range. (At this time, the only use of address
1187 * ranges is for IP multicast routing, for which the
1188 * range is big enough to require all bits set.)
1189 */
1190 goto allmulti;
1191 }
1192
1193 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1194
1195 /* Just want the 7 least-significant bits. */
1196 h &= 0x7f;
1197
1198 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1199 ETHER_NEXT_MULTI(step, enm);
1200 }
1201
1202 ifp->if_flags &= ~IFF_ALLMULTI;
1203 goto setit;
1204
1205 allmulti:
1206 ifp->if_flags |= IFF_ALLMULTI;
1207 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1208
1209 setit:
1210 for (i = 0; i < 4; i++)
1211 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1212 }
1213
1214 const int bge_swapbits[] = {
1215 0,
1216 BGE_MODECTL_BYTESWAP_DATA,
1217 BGE_MODECTL_WORDSWAP_DATA,
1218 BGE_MODECTL_BYTESWAP_NONFRAME,
1219 BGE_MODECTL_WORDSWAP_NONFRAME,
1220
1221 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1222 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1223 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1224
1225 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1226 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1227
1228 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1229
1230 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1231 BGE_MODECTL_BYTESWAP_NONFRAME,
1232 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1233 BGE_MODECTL_WORDSWAP_NONFRAME,
1234 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1235 BGE_MODECTL_WORDSWAP_NONFRAME,
1236 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1237 BGE_MODECTL_WORDSWAP_NONFRAME,
1238
1239 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1240 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1241 };
1242
1243 int bge_swapindex = 0;
1244
1245 /*
1246 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1247 * self-test results.
1248 */
1249 int
1250 bge_chipinit(sc)
1251 struct bge_softc *sc;
1252 {
1253 u_int32_t cachesize;
1254 int i;
1255 u_int32_t dma_rw_ctl;
1256 struct pci_attach_args *pa = &(sc->bge_pa);
1257
1258
1259 /* Set endianness before we access any non-PCI registers. */
1260 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1261 BGE_INIT);
1262
1263 /* Set power state to D0. */
1264 bge_setpowerstate(sc, 0);
1265
1266 /*
1267 * Check the 'ROM failed' bit on the RX CPU to see if
1268 * self-tests passed.
1269 */
1270 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1271 printf("%s: RX CPU self-diagnostics failed!\n",
1272 sc->bge_dev.dv_xname);
1273 return(ENODEV);
1274 }
1275
1276 /* Clear the MAC control register */
1277 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1278
1279 /*
1280 * Clear the MAC statistics block in the NIC's
1281 * internal memory.
1282 */
1283 for (i = BGE_STATS_BLOCK;
1284 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1285 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1286
1287 for (i = BGE_STATUS_BLOCK;
1288 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1289 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1290
1291 /* Set up the PCI DMA control register. */
1292 if (sc->bge_pcie) {
1293 /* From FreeBSD */
1294 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1295 sc->bge_dev.dv_xname));
1296 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1297 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1298 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1299 } else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1300 BGE_PCISTATE_PCI_BUSMODE) {
1301 /* Conventional PCI bus */
1302 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1303 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1304 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1305 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1306 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1307 dma_rw_ctl |= 0x0F;
1308 }
1309 } else {
1310 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1311 /* PCI-X bus */
1312 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1313 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1314 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1315 (0x0F);
1316 /*
1317 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1318 * for hardware bugs, which means we should also clear
1319 * the low-order MINDMA bits. In addition, the 5704
1320 * uses a different encoding of read/write watermarks.
1321 */
1322 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1323 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1324 /* should be 0x1f0000 */
1325 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1326 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1327 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1328 }
1329 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1330 dma_rw_ctl &= 0xfffffff0;
1331 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1332 }
1333 }
1334
1335 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1336
1337 /*
1338 * Set up general mode register.
1339 */
1340 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1341 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1342 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1343
1344 /* Get cache line size. */
1345 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1346
1347 /*
1348 * Avoid violating PCI spec on certain chip revs.
1349 */
1350 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1351 PCIM_CMD_MWIEN) {
1352 switch(cachesize) {
1353 case 1:
1354 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1355 BGE_PCI_WRITE_BNDRY_16BYTES);
1356 break;
1357 case 2:
1358 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1359 BGE_PCI_WRITE_BNDRY_32BYTES);
1360 break;
1361 case 4:
1362 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1363 BGE_PCI_WRITE_BNDRY_64BYTES);
1364 break;
1365 case 8:
1366 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1367 BGE_PCI_WRITE_BNDRY_128BYTES);
1368 break;
1369 case 16:
1370 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1371 BGE_PCI_WRITE_BNDRY_256BYTES);
1372 break;
1373 case 32:
1374 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1375 BGE_PCI_WRITE_BNDRY_512BYTES);
1376 break;
1377 case 64:
1378 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1379 BGE_PCI_WRITE_BNDRY_1024BYTES);
1380 break;
1381 default:
1382 /* Disable PCI memory write and invalidate. */
1383 #if 0
1384 if (bootverbose)
1385 printf("%s: cache line size %d not "
1386 "supported; disabling PCI MWI\n",
1387 sc->bge_dev.dv_xname, cachesize);
1388 #endif
1389 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1390 PCIM_CMD_MWIEN);
1391 break;
1392 }
1393 }
1394
1395 /*
1396 * Disable memory write invalidate. Apparently it is not supported
1397 * properly by these devices.
1398 */
1399 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1400
1401
1402 #ifdef __brokenalpha__
1403 /*
1404 * Must insure that we do not cross an 8K (bytes) boundary
1405 * for DMA reads. Our highest limit is 1K bytes. This is a
1406 * restriction on some ALPHA platforms with early revision
1407 * 21174 PCI chipsets, such as the AlphaPC 164lx
1408 */
1409 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1410 #endif
1411
1412 /* Set the timer prescaler (always 66MHz) */
1413 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1414
1415 return(0);
1416 }
1417
1418 int
1419 bge_blockinit(sc)
1420 struct bge_softc *sc;
1421 {
1422 volatile struct bge_rcb *rcb;
1423 bus_size_t rcb_addr;
1424 int i;
1425 struct ifnet *ifp = &sc->ethercom.ec_if;
1426 bge_hostaddr taddr;
1427
1428 /*
1429 * Initialize the memory window pointer register so that
1430 * we can access the first 32K of internal NIC RAM. This will
1431 * allow us to set up the TX send ring RCBs and the RX return
1432 * ring RCBs, plus other things which live in NIC memory.
1433 */
1434
1435 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1436 BGE_PCI_MEMWIN_BASEADDR, 0);
1437
1438 /* Configure mbuf memory pool */
1439 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1440 if (sc->bge_extram) {
1441 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1442 BGE_EXT_SSRAM);
1443 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1444 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1445 else
1446 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1447 } else {
1448 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1449 BGE_BUFFPOOL_1);
1450 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1451 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1452 else
1453 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1454 }
1455
1456 /* Configure DMA resource pool */
1457 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1458 BGE_DMA_DESCRIPTORS);
1459 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1460 }
1461
1462 /* Configure mbuf pool watermarks */
1463 #ifdef ORIG_WPAUL_VALUES
1464 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1465 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1466 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1467 #else
1468 /* new broadcom docs strongly recommend these: */
1469 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1470 if (ifp->if_mtu > ETHER_MAX_LEN) {
1471 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1472 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1473 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1474 } else {
1475 /* Values from Linux driver... */
1476 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1477 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1478 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1479 }
1480 } else {
1481 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1482 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1483 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1484 }
1485 #endif
1486
1487 /* Configure DMA resource watermarks */
1488 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1489 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1490
1491 /* Enable buffer manager */
1492 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1493 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1494 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1495
1496 /* Poll for buffer manager start indication */
1497 for (i = 0; i < BGE_TIMEOUT; i++) {
1498 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1499 break;
1500 DELAY(10);
1501 }
1502
1503 if (i == BGE_TIMEOUT) {
1504 printf("%s: buffer manager failed to start\n",
1505 sc->bge_dev.dv_xname);
1506 return(ENXIO);
1507 }
1508 }
1509
1510 /* Enable flow-through queues */
1511 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1512 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1513
1514 /* Wait until queue initialization is complete */
1515 for (i = 0; i < BGE_TIMEOUT; i++) {
1516 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1517 break;
1518 DELAY(10);
1519 }
1520
1521 if (i == BGE_TIMEOUT) {
1522 printf("%s: flow-through queue init failed\n",
1523 sc->bge_dev.dv_xname);
1524 return(ENXIO);
1525 }
1526
1527 /* Initialize the standard RX ring control block */
1528 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1529 bge_set_hostaddr(&rcb->bge_hostaddr,
1530 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1531 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1532 rcb->bge_maxlen_flags =
1533 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1534 } else {
1535 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1536 }
1537 if (sc->bge_extram)
1538 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1539 else
1540 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1541 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1542 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1543 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1544 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1545
1546 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1547 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1548 } else {
1549 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1550 }
1551
1552 /*
1553 * Initialize the jumbo RX ring control block
1554 * We set the 'ring disabled' bit in the flags
1555 * field until we're actually ready to start
1556 * using this ring (i.e. once we set the MTU
1557 * high enough to require it).
1558 */
1559 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1560 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1561 bge_set_hostaddr(&rcb->bge_hostaddr,
1562 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1563 rcb->bge_maxlen_flags =
1564 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1565 BGE_RCB_FLAG_RING_DISABLED);
1566 if (sc->bge_extram)
1567 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1568 else
1569 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1570
1571 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1572 rcb->bge_hostaddr.bge_addr_hi);
1573 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1574 rcb->bge_hostaddr.bge_addr_lo);
1575 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1576 rcb->bge_maxlen_flags);
1577 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1578
1579 /* Set up dummy disabled mini ring RCB */
1580 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1581 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1582 BGE_RCB_FLAG_RING_DISABLED);
1583 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1584 rcb->bge_maxlen_flags);
1585
1586 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1587 offsetof(struct bge_ring_data, bge_info),
1588 sizeof (struct bge_gib),
1589 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1590 }
1591
1592 /*
1593 * Set the BD ring replentish thresholds. The recommended
1594 * values are 1/8th the number of descriptors allocated to
1595 * each ring.
1596 */
1597 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1598 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1599
1600 /*
1601 * Disable all unused send rings by setting the 'ring disabled'
1602 * bit in the flags field of all the TX send ring control blocks.
1603 * These are located in NIC memory.
1604 */
1605 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1606 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1607 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1608 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1609 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1610 rcb_addr += sizeof(struct bge_rcb);
1611 }
1612
1613 /* Configure TX RCB 0 (we use only the first ring) */
1614 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1615 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1616 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1617 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1618 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1619 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1620 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1621 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1622 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1623 }
1624
1625 /* Disable all unused RX return rings */
1626 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1627 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1628 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1629 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1630 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1631 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1632 BGE_RCB_FLAG_RING_DISABLED));
1633 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1634 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1635 (i * (sizeof(u_int64_t))), 0);
1636 rcb_addr += sizeof(struct bge_rcb);
1637 }
1638
1639 /* Initialize RX ring indexes */
1640 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1641 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1642 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1643
1644 /*
1645 * Set up RX return ring 0
1646 * Note that the NIC address for RX return rings is 0x00000000.
1647 * The return rings live entirely within the host, so the
1648 * nicaddr field in the RCB isn't used.
1649 */
1650 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1651 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1652 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1653 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1654 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1655 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1656 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1657
1658 /* Set random backoff seed for TX */
1659 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1660 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1661 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1662 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1663 BGE_TX_BACKOFF_SEED_MASK);
1664
1665 /* Set inter-packet gap */
1666 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1667
1668 /*
1669 * Specify which ring to use for packets that don't match
1670 * any RX rules.
1671 */
1672 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1673
1674 /*
1675 * Configure number of RX lists. One interrupt distribution
1676 * list, sixteen active lists, one bad frames class.
1677 */
1678 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1679
1680 /* Inialize RX list placement stats mask. */
1681 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1682 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1683
1684 /* Disable host coalescing until we get it set up */
1685 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1686
1687 /* Poll to make sure it's shut down. */
1688 for (i = 0; i < BGE_TIMEOUT; i++) {
1689 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1690 break;
1691 DELAY(10);
1692 }
1693
1694 if (i == BGE_TIMEOUT) {
1695 printf("%s: host coalescing engine failed to idle\n",
1696 sc->bge_dev.dv_xname);
1697 return(ENXIO);
1698 }
1699
1700 /* Set up host coalescing defaults */
1701 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1702 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1703 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1704 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1705 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1706 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1707 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1708 }
1709 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1710 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1711
1712 /* Set up address of statistics block */
1713 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1714 bge_set_hostaddr(&taddr,
1715 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1716 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1717 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1718 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1719 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1720 }
1721
1722 /* Set up address of status block */
1723 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1724 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1725 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1726 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1727 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1728 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1729
1730 /* Turn on host coalescing state machine */
1731 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1732
1733 /* Turn on RX BD completion state machine and enable attentions */
1734 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1735 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1736
1737 /* Turn on RX list placement state machine */
1738 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1739
1740 /* Turn on RX list selector state machine. */
1741 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1742 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1743 }
1744
1745 /* Turn on DMA, clear stats */
1746 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1747 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1748 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1749 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1750 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1751
1752 /* Set misc. local control, enable interrupts on attentions */
1753 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1754
1755 #ifdef notdef
1756 /* Assert GPIO pins for PHY reset */
1757 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1758 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1759 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1760 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1761 #endif
1762
1763 #if defined(not_quite_yet)
1764 /* Linux driver enables enable gpio pin #1 on 5700s */
1765 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1766 sc->bge_local_ctrl_reg |=
1767 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1768 }
1769 #endif
1770 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1771
1772 /* Turn on DMA completion state machine */
1773 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1774 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1775 }
1776
1777 /* Turn on write DMA state machine */
1778 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1779 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1780
1781 /* Turn on read DMA state machine */
1782 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1783 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1784
1785 /* Turn on RX data completion state machine */
1786 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1787
1788 /* Turn on RX BD initiator state machine */
1789 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1790
1791 /* Turn on RX data and RX BD initiator state machine */
1792 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1793
1794 /* Turn on Mbuf cluster free state machine */
1795 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1796 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1797 }
1798
1799 /* Turn on send BD completion state machine */
1800 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1801
1802 /* Turn on send data completion state machine */
1803 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1804
1805 /* Turn on send data initiator state machine */
1806 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1807
1808 /* Turn on send BD initiator state machine */
1809 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1810
1811 /* Turn on send BD selector state machine */
1812 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1813
1814 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1815 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1816 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1817
1818 /* ack/clear link change events */
1819 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1820 BGE_MACSTAT_CFG_CHANGED);
1821 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1822
1823 /* Enable PHY auto polling (for MII/GMII only) */
1824 if (sc->bge_tbi) {
1825 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1826 } else {
1827 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1828 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1829 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1830 BGE_EVTENB_MI_INTERRUPT);
1831 }
1832
1833 /* Enable link state change attentions. */
1834 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1835
1836 return(0);
1837 }
1838
1839 static const struct bge_revision {
1840 uint32_t br_chipid;
1841 uint32_t br_quirks;
1842 const char *br_name;
1843 } bge_revisions[] = {
1844 { BGE_CHIPID_BCM5700_A0,
1845 BGE_QUIRK_LINK_STATE_BROKEN,
1846 "BCM5700 A0" },
1847
1848 { BGE_CHIPID_BCM5700_A1,
1849 BGE_QUIRK_LINK_STATE_BROKEN,
1850 "BCM5700 A1" },
1851
1852 { BGE_CHIPID_BCM5700_B0,
1853 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1854 "BCM5700 B0" },
1855
1856 { BGE_CHIPID_BCM5700_B1,
1857 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1858 "BCM5700 B1" },
1859
1860 { BGE_CHIPID_BCM5700_B2,
1861 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1862 "BCM5700 B2" },
1863
1864 /* This is treated like a BCM5700 Bx */
1865 { BGE_CHIPID_BCM5700_ALTIMA,
1866 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1867 "BCM5700 Altima" },
1868
1869 { BGE_CHIPID_BCM5700_C0,
1870 0,
1871 "BCM5700 C0" },
1872
1873 { BGE_CHIPID_BCM5701_A0,
1874 0, /*XXX really, just not known */
1875 "BCM5701 A0" },
1876
1877 { BGE_CHIPID_BCM5701_B0,
1878 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1879 "BCM5701 B0" },
1880
1881 { BGE_CHIPID_BCM5701_B2,
1882 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1883 "BCM5701 B2" },
1884
1885 { BGE_CHIPID_BCM5701_B5,
1886 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1887 "BCM5701 B5" },
1888
1889 { BGE_CHIPID_BCM5703_A0,
1890 0,
1891 "BCM5703 A0" },
1892
1893 { BGE_CHIPID_BCM5703_A1,
1894 0,
1895 "BCM5703 A1" },
1896
1897 { BGE_CHIPID_BCM5703_A2,
1898 BGE_QUIRK_ONLY_PHY_1,
1899 "BCM5703 A2" },
1900
1901 { BGE_CHIPID_BCM5703_A3,
1902 BGE_QUIRK_ONLY_PHY_1,
1903 "BCM5703 A3" },
1904
1905 { BGE_CHIPID_BCM5704_A0,
1906 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1907 "BCM5704 A0" },
1908
1909 { BGE_CHIPID_BCM5704_A1,
1910 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1911 "BCM5704 A1" },
1912
1913 { BGE_CHIPID_BCM5704_A2,
1914 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1915 "BCM5704 A2" },
1916
1917 { BGE_CHIPID_BCM5704_A3,
1918 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1919 "BCM5704 A3" },
1920
1921 { BGE_CHIPID_BCM5705_A0,
1922 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1923 "BCM5705 A0" },
1924
1925 { BGE_CHIPID_BCM5705_A1,
1926 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1927 "BCM5705 A1" },
1928
1929 { BGE_CHIPID_BCM5705_A2,
1930 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1931 "BCM5705 A2" },
1932
1933 { BGE_CHIPID_BCM5705_A3,
1934 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1935 "BCM5705 A3" },
1936
1937 { BGE_CHIPID_BCM5750_A0,
1938 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1939 "BCM5750 A1" },
1940
1941 { BGE_CHIPID_BCM5750_A1,
1942 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1943 "BCM5750 A1" },
1944
1945 { BGE_CHIPID_BCM5751_A1,
1946 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1947 "BCM5751 A1" },
1948
1949 { 0, 0, NULL }
1950 };
1951
1952 /*
1953 * Some defaults for major revisions, so that newer steppings
1954 * that we don't know about have a shot at working.
1955 */
1956 static const struct bge_revision bge_majorrevs[] = {
1957 { BGE_ASICREV_BCM5700,
1958 BGE_QUIRK_LINK_STATE_BROKEN,
1959 "unknown BCM5700" },
1960
1961 { BGE_ASICREV_BCM5701,
1962 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1963 "unknown BCM5701" },
1964
1965 { BGE_ASICREV_BCM5703,
1966 0,
1967 "unknown BCM5703" },
1968
1969 { BGE_ASICREV_BCM5704,
1970 BGE_QUIRK_ONLY_PHY_1,
1971 "unknown BCM5704" },
1972
1973 { BGE_ASICREV_BCM5705,
1974 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1975 "unknown BCM5705" },
1976
1977 { BGE_ASICREV_BCM5750,
1978 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1979 "unknown BCM5750" },
1980
1981 { 0,
1982 0,
1983 NULL }
1984 };
1985
1986
1987 static const struct bge_revision *
1988 bge_lookup_rev(uint32_t chipid)
1989 {
1990 const struct bge_revision *br;
1991
1992 for (br = bge_revisions; br->br_name != NULL; br++) {
1993 if (br->br_chipid == chipid)
1994 return (br);
1995 }
1996
1997 for (br = bge_majorrevs; br->br_name != NULL; br++) {
1998 if (br->br_chipid == BGE_ASICREV(chipid))
1999 return (br);
2000 }
2001
2002 return (NULL);
2003 }
2004
2005 static const struct bge_product {
2006 pci_vendor_id_t bp_vendor;
2007 pci_product_id_t bp_product;
2008 const char *bp_name;
2009 } bge_products[] = {
2010 /*
2011 * The BCM5700 documentation seems to indicate that the hardware
2012 * still has the Alteon vendor ID burned into it, though it
2013 * should always be overridden by the value in the EEPROM. We'll
2014 * check for it anyway.
2015 */
2016 { PCI_VENDOR_ALTEON,
2017 PCI_PRODUCT_ALTEON_BCM5700,
2018 "Broadcom BCM5700 Gigabit Ethernet",
2019 },
2020 { PCI_VENDOR_ALTEON,
2021 PCI_PRODUCT_ALTEON_BCM5701,
2022 "Broadcom BCM5701 Gigabit Ethernet",
2023 },
2024
2025 { PCI_VENDOR_ALTIMA,
2026 PCI_PRODUCT_ALTIMA_AC1000,
2027 "Altima AC1000 Gigabit Ethernet",
2028 },
2029 { PCI_VENDOR_ALTIMA,
2030 PCI_PRODUCT_ALTIMA_AC1001,
2031 "Altima AC1001 Gigabit Ethernet",
2032 },
2033 { PCI_VENDOR_ALTIMA,
2034 PCI_PRODUCT_ALTIMA_AC9100,
2035 "Altima AC9100 Gigabit Ethernet",
2036 },
2037
2038 { PCI_VENDOR_BROADCOM,
2039 PCI_PRODUCT_BROADCOM_BCM5700,
2040 "Broadcom BCM5700 Gigabit Ethernet",
2041 },
2042 { PCI_VENDOR_BROADCOM,
2043 PCI_PRODUCT_BROADCOM_BCM5701,
2044 "Broadcom BCM5701 Gigabit Ethernet",
2045 },
2046 { PCI_VENDOR_BROADCOM,
2047 PCI_PRODUCT_BROADCOM_BCM5702,
2048 "Broadcom BCM5702 Gigabit Ethernet",
2049 },
2050 { PCI_VENDOR_BROADCOM,
2051 PCI_PRODUCT_BROADCOM_BCM5702X,
2052 "Broadcom BCM5702X Gigabit Ethernet" },
2053
2054 { PCI_VENDOR_BROADCOM,
2055 PCI_PRODUCT_BROADCOM_BCM5703,
2056 "Broadcom BCM5703 Gigabit Ethernet",
2057 },
2058 { PCI_VENDOR_BROADCOM,
2059 PCI_PRODUCT_BROADCOM_BCM5703X,
2060 "Broadcom BCM5703X Gigabit Ethernet",
2061 },
2062 { PCI_VENDOR_BROADCOM,
2063 PCI_PRODUCT_BROADCOM_BCM5703A3,
2064 "Broadcom BCM5703A3 Gigabit Ethernet",
2065 },
2066
2067 { PCI_VENDOR_BROADCOM,
2068 PCI_PRODUCT_BROADCOM_BCM5704C,
2069 "Broadcom BCM5704C Dual Gigabit Ethernet",
2070 },
2071 { PCI_VENDOR_BROADCOM,
2072 PCI_PRODUCT_BROADCOM_BCM5704S,
2073 "Broadcom BCM5704S Dual Gigabit Ethernet",
2074 },
2075
2076 { PCI_VENDOR_BROADCOM,
2077 PCI_PRODUCT_BROADCOM_BCM5705,
2078 "Broadcom BCM5705 Gigabit Ethernet",
2079 },
2080 { PCI_VENDOR_BROADCOM,
2081 PCI_PRODUCT_BROADCOM_BCM5705K,
2082 "Broadcom BCM5705K Gigabit Ethernet",
2083 },
2084 { PCI_VENDOR_BROADCOM,
2085 PCI_PRODUCT_BROADCOM_BCM5705_ALT,
2086 "Broadcom BCM5705 Gigabit Ethernet",
2087 },
2088 { PCI_VENDOR_BROADCOM,
2089 PCI_PRODUCT_BROADCOM_BCM5705M,
2090 "Broadcom BCM5705M Gigabit Ethernet",
2091 },
2092
2093 { PCI_VENDOR_BROADCOM,
2094 PCI_PRODUCT_BROADCOM_BCM5721,
2095 "Broadcom BCM5721 Gigabit Ethernet",
2096 },
2097
2098 { PCI_VENDOR_BROADCOM,
2099 PCI_PRODUCT_BROADCOM_BCM5750,
2100 "Broadcom BCM5750 Gigabit Ethernet",
2101 },
2102
2103 { PCI_VENDOR_BROADCOM,
2104 PCI_PRODUCT_BROADCOM_BCM5750M,
2105 "Broadcom BCM5750M Gigabit Ethernet",
2106 },
2107
2108 { PCI_VENDOR_BROADCOM,
2109 PCI_PRODUCT_BROADCOM_BCM5751,
2110 "Broadcom BCM5751 Gigabit Ethernet",
2111 },
2112
2113 { PCI_VENDOR_BROADCOM,
2114 PCI_PRODUCT_BROADCOM_BCM5751M,
2115 "Broadcom BCM5751M Gigabit Ethernet",
2116 },
2117
2118 { PCI_VENDOR_BROADCOM,
2119 PCI_PRODUCT_BROADCOM_BCM5782,
2120 "Broadcom BCM5782 Gigabit Ethernet",
2121 },
2122 { PCI_VENDOR_BROADCOM,
2123 PCI_PRODUCT_BROADCOM_BCM5788,
2124 "Broadcom BCM5788 Gigabit Ethernet",
2125 },
2126
2127 { PCI_VENDOR_BROADCOM,
2128 PCI_PRODUCT_BROADCOM_BCM5901,
2129 "Broadcom BCM5901 Fast Ethernet",
2130 },
2131 { PCI_VENDOR_BROADCOM,
2132 PCI_PRODUCT_BROADCOM_BCM5901A2,
2133 "Broadcom BCM5901A2 Fast Ethernet",
2134 },
2135
2136 { PCI_VENDOR_SCHNEIDERKOCH,
2137 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2138 "SysKonnect SK-9Dx1 Gigabit Ethernet",
2139 },
2140
2141 { PCI_VENDOR_3COM,
2142 PCI_PRODUCT_3COM_3C996,
2143 "3Com 3c996 Gigabit Ethernet",
2144 },
2145
2146 { 0,
2147 0,
2148 NULL },
2149 };
2150
2151 static const struct bge_product *
2152 bge_lookup(const struct pci_attach_args *pa)
2153 {
2154 const struct bge_product *bp;
2155
2156 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2157 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2158 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2159 return (bp);
2160 }
2161
2162 return (NULL);
2163 }
2164
2165 int
2166 bge_setpowerstate(sc, powerlevel)
2167 struct bge_softc *sc;
2168 int powerlevel;
2169 {
2170 #ifdef NOTYET
2171 u_int32_t pm_ctl = 0;
2172
2173 /* XXX FIXME: make sure indirect accesses enabled? */
2174 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2175 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2176 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2177
2178 /* clear the PME_assert bit and power state bits, enable PME */
2179 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2180 pm_ctl &= ~PCIM_PSTAT_DMASK;
2181 pm_ctl |= (1 << 8);
2182
2183 if (powerlevel == 0) {
2184 pm_ctl |= PCIM_PSTAT_D0;
2185 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2186 pm_ctl, 2);
2187 DELAY(10000);
2188 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2189 DELAY(10000);
2190
2191 #ifdef NOTYET
2192 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2193 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2194 #endif
2195 DELAY(40); DELAY(40); DELAY(40);
2196 DELAY(10000); /* above not quite adequate on 5700 */
2197 return 0;
2198 }
2199
2200
2201 /*
2202 * Entering ACPI power states D1-D3 is achieved by wiggling
2203 * GMII gpio pins. Example code assumes all hardware vendors
2204 * followed Broadom's sample pcb layout. Until we verify that
2205 * for all supported OEM cards, states D1-D3 are unsupported.
2206 */
2207 printf("%s: power state %d unimplemented; check GPIO pins\n",
2208 sc->bge_dev.dv_xname, powerlevel);
2209 #endif
2210 return EOPNOTSUPP;
2211 }
2212
2213
2214 /*
2215 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2216 * against our list and return its name if we find a match. Note
2217 * that since the Broadcom controller contains VPD support, we
2218 * can get the device name string from the controller itself instead
2219 * of the compiled-in string. This is a little slow, but it guarantees
2220 * we'll always announce the right product name.
2221 */
2222 int
2223 bge_probe(parent, match, aux)
2224 struct device *parent;
2225 struct cfdata *match;
2226 void *aux;
2227 {
2228 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2229
2230 if (bge_lookup(pa) != NULL)
2231 return (1);
2232
2233 return (0);
2234 }
2235
2236 void
2237 bge_attach(parent, self, aux)
2238 struct device *parent, *self;
2239 void *aux;
2240 {
2241 struct bge_softc *sc = (struct bge_softc *)self;
2242 struct pci_attach_args *pa = aux;
2243 const struct bge_product *bp;
2244 const struct bge_revision *br;
2245 pci_chipset_tag_t pc = pa->pa_pc;
2246 pci_intr_handle_t ih;
2247 const char *intrstr = NULL;
2248 bus_dma_segment_t seg;
2249 int rseg;
2250 u_int32_t hwcfg = 0;
2251 u_int32_t mac_addr = 0;
2252 u_int32_t command;
2253 struct ifnet *ifp;
2254 caddr_t kva;
2255 u_char eaddr[ETHER_ADDR_LEN];
2256 pcireg_t memtype;
2257 bus_addr_t memaddr;
2258 bus_size_t memsize;
2259 u_int32_t pm_ctl;
2260
2261 bp = bge_lookup(pa);
2262 KASSERT(bp != NULL);
2263
2264 sc->bge_pa = *pa;
2265
2266 aprint_naive(": Ethernet controller\n");
2267 aprint_normal(": %s\n", bp->bp_name);
2268
2269 /*
2270 * Map control/status registers.
2271 */
2272 DPRINTFN(5, ("Map control/status regs\n"));
2273 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2274 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2275 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2276 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2277
2278 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2279 aprint_error("%s: failed to enable memory mapping!\n",
2280 sc->bge_dev.dv_xname);
2281 return;
2282 }
2283
2284 DPRINTFN(5, ("pci_mem_find\n"));
2285 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2286 switch (memtype) {
2287 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2288 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2289 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2290 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2291 &memaddr, &memsize) == 0)
2292 break;
2293 default:
2294 aprint_error("%s: can't find mem space\n",
2295 sc->bge_dev.dv_xname);
2296 return;
2297 }
2298
2299 DPRINTFN(5, ("pci_intr_map\n"));
2300 if (pci_intr_map(pa, &ih)) {
2301 aprint_error("%s: couldn't map interrupt\n",
2302 sc->bge_dev.dv_xname);
2303 return;
2304 }
2305
2306 DPRINTFN(5, ("pci_intr_string\n"));
2307 intrstr = pci_intr_string(pc, ih);
2308
2309 DPRINTFN(5, ("pci_intr_establish\n"));
2310 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2311
2312 if (sc->bge_intrhand == NULL) {
2313 aprint_error("%s: couldn't establish interrupt",
2314 sc->bge_dev.dv_xname);
2315 if (intrstr != NULL)
2316 aprint_normal(" at %s", intrstr);
2317 aprint_normal("\n");
2318 return;
2319 }
2320 aprint_normal("%s: interrupting at %s\n",
2321 sc->bge_dev.dv_xname, intrstr);
2322
2323 /*
2324 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2325 * can clobber the chip's PCI config-space power control registers,
2326 * leaving the card in D3 powersave state.
2327 * We do not have memory-mapped registers in this state,
2328 * so force device into D0 state before starting initialization.
2329 */
2330 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2331 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2332 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2333 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2334 DELAY(1000); /* 27 usec is allegedly sufficent */
2335
2336 /*
2337 * Save ASIC rev. Look up any quirks associated with this
2338 * ASIC.
2339 */
2340 sc->bge_chipid =
2341 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2342 BGE_PCIMISCCTL_ASICREV;
2343
2344 /*
2345 * Detect PCI-Express devices
2346 * XXX: guessed from Linux/FreeBSD; no documentation
2347 */
2348 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 &&
2349 pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
2350 NULL, NULL) != 0)
2351 sc->bge_pcie = 1;
2352 else
2353 sc->bge_pcie = 0;
2354
2355 /* Try to reset the chip. */
2356 DPRINTFN(5, ("bge_reset\n"));
2357 bge_reset(sc);
2358
2359 if (bge_chipinit(sc)) {
2360 aprint_error("%s: chip initialization failed\n",
2361 sc->bge_dev.dv_xname);
2362 bge_release_resources(sc);
2363 return;
2364 }
2365
2366 /*
2367 * Get station address from the EEPROM.
2368 */
2369 mac_addr = bge_readmem_ind(sc, 0x0c14);
2370 if ((mac_addr >> 16) == 0x484b) {
2371 eaddr[0] = (u_char)(mac_addr >> 8);
2372 eaddr[1] = (u_char)(mac_addr >> 0);
2373 mac_addr = bge_readmem_ind(sc, 0x0c18);
2374 eaddr[2] = (u_char)(mac_addr >> 24);
2375 eaddr[3] = (u_char)(mac_addr >> 16);
2376 eaddr[4] = (u_char)(mac_addr >> 8);
2377 eaddr[5] = (u_char)(mac_addr >> 0);
2378 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2379 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2380 aprint_error("%s: failed to read station address\n",
2381 sc->bge_dev.dv_xname);
2382 bge_release_resources(sc);
2383 return;
2384 }
2385
2386 br = bge_lookup_rev(sc->bge_chipid);
2387 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2388
2389 if (br == NULL) {
2390 aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
2391 sc->bge_quirks = 0;
2392 } else {
2393 aprint_normal("ASIC %s (0x%04x)",
2394 br->br_name, sc->bge_chipid >> 16);
2395 sc->bge_quirks |= br->br_quirks;
2396 }
2397 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2398
2399 /* Allocate the general information block and ring buffers. */
2400 if (pci_dma64_available(pa))
2401 sc->bge_dmatag = pa->pa_dmat64;
2402 else
2403 sc->bge_dmatag = pa->pa_dmat;
2404 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2405 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2406 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2407 aprint_error("%s: can't alloc rx buffers\n",
2408 sc->bge_dev.dv_xname);
2409 return;
2410 }
2411 DPRINTFN(5, ("bus_dmamem_map\n"));
2412 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2413 sizeof(struct bge_ring_data), &kva,
2414 BUS_DMA_NOWAIT)) {
2415 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2416 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2417 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2418 return;
2419 }
2420 DPRINTFN(5, ("bus_dmamem_create\n"));
2421 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2422 sizeof(struct bge_ring_data), 0,
2423 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2424 aprint_error("%s: can't create DMA map\n",
2425 sc->bge_dev.dv_xname);
2426 bus_dmamem_unmap(sc->bge_dmatag, kva,
2427 sizeof(struct bge_ring_data));
2428 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2429 return;
2430 }
2431 DPRINTFN(5, ("bus_dmamem_load\n"));
2432 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2433 sizeof(struct bge_ring_data), NULL,
2434 BUS_DMA_NOWAIT)) {
2435 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2436 bus_dmamem_unmap(sc->bge_dmatag, kva,
2437 sizeof(struct bge_ring_data));
2438 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2439 return;
2440 }
2441
2442 DPRINTFN(5, ("bzero\n"));
2443 sc->bge_rdata = (struct bge_ring_data *)kva;
2444
2445 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2446
2447 /* Try to allocate memory for jumbo buffers. */
2448 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2449 if (bge_alloc_jumbo_mem(sc)) {
2450 aprint_error("%s: jumbo buffer allocation failed\n",
2451 sc->bge_dev.dv_xname);
2452 } else
2453 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2454 }
2455
2456 /* Set default tuneable values. */
2457 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2458 sc->bge_rx_coal_ticks = 150;
2459 sc->bge_rx_max_coal_bds = 64;
2460 #ifdef ORIG_WPAUL_VALUES
2461 sc->bge_tx_coal_ticks = 150;
2462 sc->bge_tx_max_coal_bds = 128;
2463 #else
2464 sc->bge_tx_coal_ticks = 300;
2465 sc->bge_tx_max_coal_bds = 400;
2466 #endif
2467
2468 /* Set up ifnet structure */
2469 ifp = &sc->ethercom.ec_if;
2470 ifp->if_softc = sc;
2471 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2472 ifp->if_ioctl = bge_ioctl;
2473 ifp->if_start = bge_start;
2474 ifp->if_init = bge_init;
2475 ifp->if_watchdog = bge_watchdog;
2476 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2477 IFQ_SET_READY(&ifp->if_snd);
2478 DPRINTFN(5, ("bcopy\n"));
2479 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2480
2481 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2482 sc->ethercom.ec_if.if_capabilities |=
2483 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2484 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2485 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2486 sc->ethercom.ec_capabilities |=
2487 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2488
2489 /*
2490 * Do MII setup.
2491 */
2492 DPRINTFN(5, ("mii setup\n"));
2493 sc->bge_mii.mii_ifp = ifp;
2494 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2495 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2496 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2497
2498 /*
2499 * Figure out what sort of media we have by checking the
2500 * hardware config word in the first 32k of NIC internal memory,
2501 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2502 * cards, this value appears to be unset. If that's the
2503 * case, we have to rely on identifying the NIC by its PCI
2504 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2505 */
2506 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2507 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2508 } else {
2509 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2510 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2511 hwcfg = be32toh(hwcfg);
2512 }
2513 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2514 sc->bge_tbi = 1;
2515
2516 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2517 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2518 SK_SUBSYSID_9D41)
2519 sc->bge_tbi = 1;
2520
2521 if (sc->bge_tbi) {
2522 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2523 bge_ifmedia_sts);
2524 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2525 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2526 0, NULL);
2527 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2528 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2529 } else {
2530 /*
2531 * Do transceiver setup.
2532 */
2533 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2534 bge_ifmedia_sts);
2535 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2536 MII_PHY_ANY, MII_OFFSET_ANY,
2537 MIIF_FORCEANEG|MIIF_DOPAUSE);
2538
2539 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2540 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2541 ifmedia_add(&sc->bge_mii.mii_media,
2542 IFM_ETHER|IFM_MANUAL, 0, NULL);
2543 ifmedia_set(&sc->bge_mii.mii_media,
2544 IFM_ETHER|IFM_MANUAL);
2545 } else
2546 ifmedia_set(&sc->bge_mii.mii_media,
2547 IFM_ETHER|IFM_AUTO);
2548 }
2549
2550 /*
2551 * When using the BCM5701 in PCI-X mode, data corruption has
2552 * been observed in the first few bytes of some received packets.
2553 * Aligning the packet buffer in memory eliminates the corruption.
2554 * Unfortunately, this misaligns the packet payloads. On platforms
2555 * which do not support unaligned accesses, we will realign the
2556 * payloads by copying the received packets.
2557 */
2558 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2559 /* If in PCI-X mode, work around the alignment bug. */
2560 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2561 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2562 BGE_PCISTATE_PCI_BUSSPEED)
2563 sc->bge_rx_alignment_bug = 1;
2564 }
2565
2566 /*
2567 * Call MI attach routine.
2568 */
2569 DPRINTFN(5, ("if_attach\n"));
2570 if_attach(ifp);
2571 DPRINTFN(5, ("ether_ifattach\n"));
2572 ether_ifattach(ifp, eaddr);
2573 #ifdef BGE_EVENT_COUNTERS
2574 /*
2575 * Attach event counters.
2576 */
2577 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2578 NULL, sc->bge_dev.dv_xname, "intr");
2579 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2580 NULL, sc->bge_dev.dv_xname, "tx_xoff");
2581 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2582 NULL, sc->bge_dev.dv_xname, "tx_xon");
2583 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2584 NULL, sc->bge_dev.dv_xname, "rx_xoff");
2585 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2586 NULL, sc->bge_dev.dv_xname, "rx_xon");
2587 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2588 NULL, sc->bge_dev.dv_xname, "rx_macctl");
2589 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2590 NULL, sc->bge_dev.dv_xname, "xoffentered");
2591 #endif /* BGE_EVENT_COUNTERS */
2592 DPRINTFN(5, ("callout_init\n"));
2593 callout_init(&sc->bge_timeout);
2594
2595 sc->bge_powerhook = powerhook_establish(bge_powerhook, sc);
2596 if (sc->bge_powerhook == NULL)
2597 printf("%s: WARNING: unable to establish PCI power hook\n",
2598 sc->bge_dev.dv_xname);
2599 }
2600
2601 void
2602 bge_release_resources(sc)
2603 struct bge_softc *sc;
2604 {
2605 if (sc->bge_vpd_prodname != NULL)
2606 free(sc->bge_vpd_prodname, M_DEVBUF);
2607
2608 if (sc->bge_vpd_readonly != NULL)
2609 free(sc->bge_vpd_readonly, M_DEVBUF);
2610 }
2611
2612 void
2613 bge_reset(sc)
2614 struct bge_softc *sc;
2615 {
2616 struct pci_attach_args *pa = &sc->bge_pa;
2617 u_int32_t cachesize, command, pcistate, new_pcistate;
2618 int i, val;
2619
2620 /* Save some important PCI state. */
2621 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2622 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2623 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2624
2625 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2626 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2627 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2628
2629 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2630 /*
2631 * XXX: from FreeBSD/Linux; no documentation
2632 */
2633 if (sc->bge_pcie) {
2634 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2635 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2636 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2637 /* No idea what that actually means */
2638 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2639 val |= (1<<29);
2640 }
2641 }
2642
2643 /* Issue global reset */
2644 bge_writereg_ind(sc, BGE_MISC_CFG, val);
2645
2646 DELAY(1000);
2647
2648 /*
2649 * XXX: from FreeBSD/Linux; no documentation
2650 */
2651 if (sc->bge_pcie) {
2652 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2653 pcireg_t reg;
2654
2655 DELAY(500000);
2656 /* XXX: Magic Numbers */
2657 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
2658 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
2659 reg | (1 << 15));
2660 }
2661 /* XXX: Magic Numbers */
2662 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN1, 0xf5000);
2663 }
2664
2665 /* Reset some of the PCI state that got zapped by reset */
2666 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2667 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2668 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2669 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2670 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2671 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2672
2673 /* Enable memory arbiter. */
2674 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2675 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2676 }
2677
2678 /*
2679 * Prevent PXE restart: write a magic number to the
2680 * general communications memory at 0xB50.
2681 */
2682 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2683
2684 /*
2685 * Poll the value location we just wrote until
2686 * we see the 1's complement of the magic number.
2687 * This indicates that the firmware initialization
2688 * is complete.
2689 */
2690 for (i = 0; i < 750; i++) {
2691 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2692 if (val == ~BGE_MAGIC_NUMBER)
2693 break;
2694 DELAY(1000);
2695 }
2696
2697 if (i == 750) {
2698 printf("%s: firmware handshake timed out, val = %x\n",
2699 sc->bge_dev.dv_xname, val);
2700 return;
2701 }
2702
2703 /*
2704 * XXX Wait for the value of the PCISTATE register to
2705 * return to its original pre-reset state. This is a
2706 * fairly good indicator of reset completion. If we don't
2707 * wait for the reset to fully complete, trying to read
2708 * from the device's non-PCI registers may yield garbage
2709 * results.
2710 */
2711 for (i = 0; i < BGE_TIMEOUT; i++) {
2712 new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
2713 BGE_PCI_PCISTATE);
2714 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2715 (pcistate & ~BGE_PCISTATE_RESERVED))
2716 break;
2717 DELAY(10);
2718 }
2719 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2720 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2721 printf("%s: pcistate failed to revert\n",
2722 sc->bge_dev.dv_xname);
2723 }
2724
2725 /* XXX: from FreeBSD/Linux; no documentation */
2726 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2727 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2728
2729 /* Enable memory arbiter. */
2730 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2731 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2732 }
2733
2734 /* Fix up byte swapping */
2735 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2736
2737 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2738
2739 DELAY(10000);
2740 }
2741
2742 /*
2743 * Frame reception handling. This is called if there's a frame
2744 * on the receive return list.
2745 *
2746 * Note: we have to be able to handle two possibilities here:
2747 * 1) the frame is from the jumbo recieve ring
2748 * 2) the frame is from the standard receive ring
2749 */
2750
2751 void
2752 bge_rxeof(sc)
2753 struct bge_softc *sc;
2754 {
2755 struct ifnet *ifp;
2756 int stdcnt = 0, jumbocnt = 0;
2757 bus_dmamap_t dmamap;
2758 bus_addr_t offset, toff;
2759 bus_size_t tlen;
2760 int tosync;
2761
2762 ifp = &sc->ethercom.ec_if;
2763
2764 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2765 offsetof(struct bge_ring_data, bge_status_block),
2766 sizeof (struct bge_status_block),
2767 BUS_DMASYNC_POSTREAD);
2768
2769 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2770 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2771 sc->bge_rx_saved_considx;
2772
2773 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2774
2775 if (tosync < 0) {
2776 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2777 sizeof (struct bge_rx_bd);
2778 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2779 toff, tlen, BUS_DMASYNC_POSTREAD);
2780 tosync = -tosync;
2781 }
2782
2783 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2784 offset, tosync * sizeof (struct bge_rx_bd),
2785 BUS_DMASYNC_POSTREAD);
2786
2787 while(sc->bge_rx_saved_considx !=
2788 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2789 struct bge_rx_bd *cur_rx;
2790 u_int32_t rxidx;
2791 struct mbuf *m = NULL;
2792
2793 cur_rx = &sc->bge_rdata->
2794 bge_rx_return_ring[sc->bge_rx_saved_considx];
2795
2796 rxidx = cur_rx->bge_idx;
2797 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2798
2799 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2800 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2801 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2802 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2803 jumbocnt++;
2804 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2805 ifp->if_ierrors++;
2806 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2807 continue;
2808 }
2809 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2810 NULL)== ENOBUFS) {
2811 ifp->if_ierrors++;
2812 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2813 continue;
2814 }
2815 } else {
2816 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2817 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2818 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2819 stdcnt++;
2820 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2821 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2822 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2823 ifp->if_ierrors++;
2824 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2825 continue;
2826 }
2827 if (bge_newbuf_std(sc, sc->bge_std,
2828 NULL, dmamap) == ENOBUFS) {
2829 ifp->if_ierrors++;
2830 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2831 continue;
2832 }
2833 }
2834
2835 ifp->if_ipackets++;
2836 #ifndef __NO_STRICT_ALIGNMENT
2837 /*
2838 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2839 * the Rx buffer has the layer-2 header unaligned.
2840 * If our CPU requires alignment, re-align by copying.
2841 */
2842 if (sc->bge_rx_alignment_bug) {
2843 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2844 cur_rx->bge_len);
2845 m->m_data += ETHER_ALIGN;
2846 }
2847 #endif
2848
2849 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2850 m->m_pkthdr.rcvif = ifp;
2851
2852 #if NBPFILTER > 0
2853 /*
2854 * Handle BPF listeners. Let the BPF user see the packet.
2855 */
2856 if (ifp->if_bpf)
2857 bpf_mtap(ifp->if_bpf, m);
2858 #endif
2859
2860 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
2861
2862 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2863 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2864 /*
2865 * Rx transport checksum-offload may also
2866 * have bugs with packets which, when transmitted,
2867 * were `runts' requiring padding.
2868 */
2869 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2870 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2871 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2872 m->m_pkthdr.csum_data =
2873 cur_rx->bge_tcp_udp_csum;
2874 m->m_pkthdr.csum_flags |=
2875 (M_CSUM_TCPv4|M_CSUM_UDPv4|
2876 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2877 }
2878
2879 /*
2880 * If we received a packet with a vlan tag, pass it
2881 * to vlan_input() instead of ether_input().
2882 */
2883 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
2884 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
2885
2886 (*ifp->if_input)(ifp, m);
2887 }
2888
2889 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2890 if (stdcnt)
2891 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2892 if (jumbocnt)
2893 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2894 }
2895
2896 void
2897 bge_txeof(sc)
2898 struct bge_softc *sc;
2899 {
2900 struct bge_tx_bd *cur_tx = NULL;
2901 struct ifnet *ifp;
2902 struct txdmamap_pool_entry *dma;
2903 bus_addr_t offset, toff;
2904 bus_size_t tlen;
2905 int tosync;
2906 struct mbuf *m;
2907
2908 ifp = &sc->ethercom.ec_if;
2909
2910 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2911 offsetof(struct bge_ring_data, bge_status_block),
2912 sizeof (struct bge_status_block),
2913 BUS_DMASYNC_POSTREAD);
2914
2915 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2916 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2917 sc->bge_tx_saved_considx;
2918
2919 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2920
2921 if (tosync < 0) {
2922 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2923 sizeof (struct bge_tx_bd);
2924 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2925 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2926 tosync = -tosync;
2927 }
2928
2929 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2930 offset, tosync * sizeof (struct bge_tx_bd),
2931 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2932
2933 /*
2934 * Go through our tx ring and free mbufs for those
2935 * frames that have been sent.
2936 */
2937 while (sc->bge_tx_saved_considx !=
2938 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2939 u_int32_t idx = 0;
2940
2941 idx = sc->bge_tx_saved_considx;
2942 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2943 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2944 ifp->if_opackets++;
2945 m = sc->bge_cdata.bge_tx_chain[idx];
2946 if (m != NULL) {
2947 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2948 dma = sc->txdma[idx];
2949 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2950 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2951 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2952 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2953 sc->txdma[idx] = NULL;
2954
2955 m_freem(m);
2956 }
2957 sc->bge_txcnt--;
2958 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2959 ifp->if_timer = 0;
2960 }
2961
2962 if (cur_tx != NULL)
2963 ifp->if_flags &= ~IFF_OACTIVE;
2964 }
2965
2966 int
2967 bge_intr(xsc)
2968 void *xsc;
2969 {
2970 struct bge_softc *sc;
2971 struct ifnet *ifp;
2972
2973 sc = xsc;
2974 ifp = &sc->ethercom.ec_if;
2975
2976 #ifdef notdef
2977 /* Avoid this for now -- checking this register is expensive. */
2978 /* Make sure this is really our interrupt. */
2979 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2980 return (0);
2981 #endif
2982 /* Ack interrupt and stop others from occuring. */
2983 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2984
2985 BGE_EVCNT_INCR(sc->bge_ev_intr);
2986
2987 /*
2988 * Process link state changes.
2989 * Grrr. The link status word in the status block does
2990 * not work correctly on the BCM5700 rev AX and BX chips,
2991 * according to all avaibable information. Hence, we have
2992 * to enable MII interrupts in order to properly obtain
2993 * async link changes. Unfortunately, this also means that
2994 * we have to read the MAC status register to detect link
2995 * changes, thereby adding an additional register access to
2996 * the interrupt handler.
2997 */
2998
2999 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3000 u_int32_t status;
3001
3002 status = CSR_READ_4(sc, BGE_MAC_STS);
3003 if (status & BGE_MACSTAT_MI_INTERRUPT) {
3004 sc->bge_link = 0;
3005 callout_stop(&sc->bge_timeout);
3006 bge_tick(sc);
3007 /* Clear the interrupt */
3008 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3009 BGE_EVTENB_MI_INTERRUPT);
3010 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
3011 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
3012 BRGPHY_INTRS);
3013 }
3014 } else {
3015 if (sc->bge_rdata->bge_status_block.bge_status &
3016 BGE_STATFLAG_LINKSTATE_CHANGED) {
3017 sc->bge_link = 0;
3018 callout_stop(&sc->bge_timeout);
3019 bge_tick(sc);
3020 /* Clear the interrupt */
3021 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3022 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3023 BGE_MACSTAT_LINK_CHANGED);
3024 }
3025 }
3026
3027 if (ifp->if_flags & IFF_RUNNING) {
3028 /* Check RX return ring producer/consumer */
3029 bge_rxeof(sc);
3030
3031 /* Check TX ring producer/consumer */
3032 bge_txeof(sc);
3033 }
3034
3035 if (sc->bge_pending_rxintr_change) {
3036 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3037 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3038 uint32_t junk;
3039
3040 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3041 DELAY(10);
3042 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3043
3044 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3045 DELAY(10);
3046 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3047
3048 sc->bge_pending_rxintr_change = 0;
3049 }
3050 bge_handle_events(sc);
3051
3052 /* Re-enable interrupts. */
3053 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3054
3055 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3056 bge_start(ifp);
3057
3058 return (1);
3059 }
3060
3061 void
3062 bge_tick(xsc)
3063 void *xsc;
3064 {
3065 struct bge_softc *sc = xsc;
3066 struct mii_data *mii = &sc->bge_mii;
3067 struct ifmedia *ifm = NULL;
3068 struct ifnet *ifp = &sc->ethercom.ec_if;
3069 int s;
3070
3071 s = splnet();
3072
3073 bge_stats_update(sc);
3074 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3075 if (sc->bge_link) {
3076 splx(s);
3077 return;
3078 }
3079
3080 if (sc->bge_tbi) {
3081 ifm = &sc->bge_ifmedia;
3082 if (CSR_READ_4(sc, BGE_MAC_STS) &
3083 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3084 sc->bge_link++;
3085 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3086 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3087 bge_start(ifp);
3088 }
3089 splx(s);
3090 return;
3091 }
3092
3093 mii_tick(mii);
3094
3095 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
3096 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3097 sc->bge_link++;
3098 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3099 bge_start(ifp);
3100 }
3101
3102 splx(s);
3103 }
3104
3105 void
3106 bge_stats_update(sc)
3107 struct bge_softc *sc;
3108 {
3109 struct ifnet *ifp = &sc->ethercom.ec_if;
3110 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3111 bus_size_t rstats = BGE_RX_STATS;
3112
3113 #define READ_RSTAT(sc, stats, stat) \
3114 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3115
3116 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3117 ifp->if_collisions +=
3118 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3119 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3120 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3121 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3122
3123 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3124 READ_RSTAT(sc, rstats, outXoffSent));
3125 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3126 READ_RSTAT(sc, rstats, outXonSent));
3127 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3128 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3129 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3130 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3131 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3132 READ_RSTAT(sc, rstats, macControlFramesReceived));
3133 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3134 READ_RSTAT(sc, rstats, xoffStateEntered));
3135 return;
3136 }
3137
3138 #undef READ_RSTAT
3139 #define READ_STAT(sc, stats, stat) \
3140 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3141
3142 ifp->if_collisions +=
3143 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3144 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3145 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3146 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3147 ifp->if_collisions;
3148
3149 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3150 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3151 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3152 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3153 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3154 READ_STAT(sc, stats,
3155 xoffPauseFramesReceived.bge_addr_lo));
3156 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3157 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3158 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3159 READ_STAT(sc, stats,
3160 macControlFramesReceived.bge_addr_lo));
3161 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3162 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3163
3164 #undef READ_STAT
3165
3166 #ifdef notdef
3167 ifp->if_collisions +=
3168 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3169 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3170 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3171 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3172 ifp->if_collisions;
3173 #endif
3174 }
3175
3176 /*
3177 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3178 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3179 * but when such padded frames employ the bge IP/TCP checksum offload,
3180 * the hardware checksum assist gives incorrect results (possibly
3181 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3182 * If we pad such runts with zeros, the onboard checksum comes out correct.
3183 */
3184 static __inline int
3185 bge_cksum_pad(struct mbuf *pkt)
3186 {
3187 struct mbuf *last = NULL;
3188 int padlen;
3189
3190 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3191
3192 /* if there's only the packet-header and we can pad there, use it. */
3193 if (pkt->m_pkthdr.len == pkt->m_len &&
3194 !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
3195 last = pkt;
3196 } else {
3197 /*
3198 * Walk packet chain to find last mbuf. We will either
3199 * pad there, or append a new mbuf and pad it
3200 * (thus perhaps avoiding the bcm5700 dma-min bug).
3201 */
3202 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3203 (void) 0; /* do nothing*/
3204 }
3205
3206 /* `last' now points to last in chain. */
3207 if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
3208 (void) 0; /* we can pad here, in-place. */
3209 } else {
3210 /* Allocate new empty mbuf, pad it. Compact later. */
3211 struct mbuf *n;
3212 MGET(n, M_DONTWAIT, MT_DATA);
3213 n->m_len = 0;
3214 last->m_next = n;
3215 last = n;
3216 }
3217 }
3218
3219 #ifdef DEBUG
3220 /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
3221 KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
3222 #endif
3223 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3224 memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3225 last->m_len += padlen;
3226 pkt->m_pkthdr.len += padlen;
3227 return 0;
3228 }
3229
3230 /*
3231 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3232 */
3233 static __inline int
3234 bge_compact_dma_runt(struct mbuf *pkt)
3235 {
3236 struct mbuf *m, *prev;
3237 int totlen, prevlen;
3238
3239 prev = NULL;
3240 totlen = 0;
3241 prevlen = -1;
3242
3243 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3244 int mlen = m->m_len;
3245 int shortfall = 8 - mlen ;
3246
3247 totlen += mlen;
3248 if (mlen == 0) {
3249 continue;
3250 }
3251 if (mlen >= 8)
3252 continue;
3253
3254 /* If we get here, mbuf data is too small for DMA engine.
3255 * Try to fix by shuffling data to prev or next in chain.
3256 * If that fails, do a compacting deep-copy of the whole chain.
3257 */
3258
3259 /* Internal frag. If fits in prev, copy it there. */
3260 if (prev && !M_READONLY(prev) &&
3261 M_TRAILINGSPACE(prev) >= m->m_len) {
3262 bcopy(m->m_data,
3263 prev->m_data+prev->m_len,
3264 mlen);
3265 prev->m_len += mlen;
3266 m->m_len = 0;
3267 /* XXX stitch chain */
3268 prev->m_next = m_free(m);
3269 m = prev;
3270 continue;
3271 }
3272 else if (m->m_next != NULL && !M_READONLY(m) &&
3273 M_TRAILINGSPACE(m) >= shortfall &&
3274 m->m_next->m_len >= (8 + shortfall)) {
3275 /* m is writable and have enough data in next, pull up. */
3276
3277 bcopy(m->m_next->m_data,
3278 m->m_data+m->m_len,
3279 shortfall);
3280 m->m_len += shortfall;
3281 m->m_next->m_len -= shortfall;
3282 m->m_next->m_data += shortfall;
3283 }
3284 else if (m->m_next == NULL || 1) {
3285 /* Got a runt at the very end of the packet.
3286 * borrow data from the tail of the preceding mbuf and
3287 * update its length in-place. (The original data is still
3288 * valid, so we can do this even if prev is not writable.)
3289 */
3290
3291 /* if we'd make prev a runt, just move all of its data. */
3292 #ifdef DEBUG
3293 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3294 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3295 #endif
3296 if ((prev->m_len - shortfall) < 8)
3297 shortfall = prev->m_len;
3298
3299 #ifdef notyet /* just do the safe slow thing for now */
3300 if (!M_READONLY(m)) {
3301 if (M_LEADINGSPACE(m) < shorfall) {
3302 void *m_dat;
3303 m_dat = (m->m_flags & M_PKTHDR) ?
3304 m->m_pktdat : m->dat;
3305 memmove(m_dat, mtod(m, void*), m->m_len);
3306 m->m_data = m_dat;
3307 }
3308 } else
3309 #endif /* just do the safe slow thing */
3310 {
3311 struct mbuf * n = NULL;
3312 int newprevlen = prev->m_len - shortfall;
3313
3314 MGET(n, M_NOWAIT, MT_DATA);
3315 if (n == NULL)
3316 return ENOBUFS;
3317 KASSERT(m->m_len + shortfall < MLEN
3318 /*,
3319 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3320
3321 /* first copy the data we're stealing from prev */
3322 bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3323
3324 /* update prev->m_len accordingly */
3325 prev->m_len -= shortfall;
3326
3327 /* copy data from runt m */
3328 bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3329
3330 /* n holds what we stole from prev, plus m */
3331 n->m_len = shortfall + m->m_len;
3332
3333 /* stitch n into chain and free m */
3334 n->m_next = m->m_next;
3335 prev->m_next = n;
3336 /* KASSERT(m->m_next == NULL); */
3337 m->m_next = NULL;
3338 m_free(m);
3339 m = n; /* for continuing loop */
3340 }
3341 }
3342 prevlen = m->m_len;
3343 }
3344 return 0;
3345 }
3346
3347 /*
3348 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3349 * pointers to descriptors.
3350 */
3351 int
3352 bge_encap(sc, m_head, txidx)
3353 struct bge_softc *sc;
3354 struct mbuf *m_head;
3355 u_int32_t *txidx;
3356 {
3357 struct bge_tx_bd *f = NULL;
3358 u_int32_t frag, cur, cnt = 0;
3359 u_int16_t csum_flags = 0;
3360 struct txdmamap_pool_entry *dma;
3361 bus_dmamap_t dmamap;
3362 int i = 0;
3363 struct m_tag *mtag;
3364
3365 cur = frag = *txidx;
3366
3367 if (m_head->m_pkthdr.csum_flags) {
3368 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3369 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3370 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3371 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3372 }
3373
3374 /*
3375 * If we were asked to do an outboard checksum, and the NIC
3376 * has the bug where it sometimes adds in the Ethernet padding,
3377 * explicitly pad with zeros so the cksum will be correct either way.
3378 * (For now, do this for all chip versions, until newer
3379 * are confirmed to not require the workaround.)
3380 */
3381 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3382 #ifdef notyet
3383 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3384 #endif
3385 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3386 goto check_dma_bug;
3387
3388 if (bge_cksum_pad(m_head) != 0)
3389 return ENOBUFS;
3390
3391 check_dma_bug:
3392 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3393 goto doit;
3394 /*
3395 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3396 * less than eight bytes. If we encounter a teeny mbuf
3397 * at the end of a chain, we can pad. Otherwise, copy.
3398 */
3399 if (bge_compact_dma_runt(m_head) != 0)
3400 return ENOBUFS;
3401
3402 doit:
3403 dma = SLIST_FIRST(&sc->txdma_list);
3404 if (dma == NULL)
3405 return ENOBUFS;
3406 dmamap = dma->dmamap;
3407
3408 /*
3409 * Start packing the mbufs in this chain into
3410 * the fragment pointers. Stop when we run out
3411 * of fragments or hit the end of the mbuf chain.
3412 */
3413 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3414 BUS_DMA_NOWAIT))
3415 return(ENOBUFS);
3416
3417 mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head);
3418
3419 for (i = 0; i < dmamap->dm_nsegs; i++) {
3420 f = &sc->bge_rdata->bge_tx_ring[frag];
3421 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3422 break;
3423 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3424 f->bge_len = dmamap->dm_segs[i].ds_len;
3425 f->bge_flags = csum_flags;
3426
3427 if (mtag != NULL) {
3428 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3429 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3430 } else {
3431 f->bge_vlan_tag = 0;
3432 }
3433 /*
3434 * Sanity check: avoid coming within 16 descriptors
3435 * of the end of the ring.
3436 */
3437 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
3438 return(ENOBUFS);
3439 cur = frag;
3440 BGE_INC(frag, BGE_TX_RING_CNT);
3441 cnt++;
3442 }
3443
3444 if (i < dmamap->dm_nsegs)
3445 return ENOBUFS;
3446
3447 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3448 BUS_DMASYNC_PREWRITE);
3449
3450 if (frag == sc->bge_tx_saved_considx)
3451 return(ENOBUFS);
3452
3453 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3454 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3455 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3456 sc->txdma[cur] = dma;
3457 sc->bge_txcnt += cnt;
3458
3459 *txidx = frag;
3460
3461 return(0);
3462 }
3463
3464 /*
3465 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3466 * to the mbuf data regions directly in the transmit descriptors.
3467 */
3468 void
3469 bge_start(ifp)
3470 struct ifnet *ifp;
3471 {
3472 struct bge_softc *sc;
3473 struct mbuf *m_head = NULL;
3474 u_int32_t prodidx = 0;
3475 int pkts = 0;
3476
3477 sc = ifp->if_softc;
3478
3479 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3480 return;
3481
3482 prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
3483
3484 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3485 IFQ_POLL(&ifp->if_snd, m_head);
3486 if (m_head == NULL)
3487 break;
3488
3489 #if 0
3490 /*
3491 * XXX
3492 * safety overkill. If this is a fragmented packet chain
3493 * with delayed TCP/UDP checksums, then only encapsulate
3494 * it if we have enough descriptors to handle the entire
3495 * chain at once.
3496 * (paranoia -- may not actually be needed)
3497 */
3498 if (m_head->m_flags & M_FIRSTFRAG &&
3499 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3500 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3501 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3502 ifp->if_flags |= IFF_OACTIVE;
3503 break;
3504 }
3505 }
3506 #endif
3507
3508 /*
3509 * Pack the data into the transmit ring. If we
3510 * don't have room, set the OACTIVE flag and wait
3511 * for the NIC to drain the ring.
3512 */
3513 if (bge_encap(sc, m_head, &prodidx)) {
3514 ifp->if_flags |= IFF_OACTIVE;
3515 break;
3516 }
3517
3518 /* now we are committed to transmit the packet */
3519 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3520 pkts++;
3521
3522 #if NBPFILTER > 0
3523 /*
3524 * If there's a BPF listener, bounce a copy of this frame
3525 * to him.
3526 */
3527 if (ifp->if_bpf)
3528 bpf_mtap(ifp->if_bpf, m_head);
3529 #endif
3530 }
3531 if (pkts == 0)
3532 return;
3533
3534 /* Transmit */
3535 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3536 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3537 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3538
3539 /*
3540 * Set a timeout in case the chip goes out to lunch.
3541 */
3542 ifp->if_timer = 5;
3543 }
3544
3545 int
3546 bge_init(ifp)
3547 struct ifnet *ifp;
3548 {
3549 struct bge_softc *sc = ifp->if_softc;
3550 u_int16_t *m;
3551 int s, error;
3552
3553 s = splnet();
3554
3555 ifp = &sc->ethercom.ec_if;
3556
3557 /* Cancel pending I/O and flush buffers. */
3558 bge_stop(sc);
3559 bge_reset(sc);
3560 bge_chipinit(sc);
3561
3562 /*
3563 * Init the various state machines, ring
3564 * control blocks and firmware.
3565 */
3566 error = bge_blockinit(sc);
3567 if (error != 0) {
3568 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3569 error);
3570 splx(s);
3571 return error;
3572 }
3573
3574 ifp = &sc->ethercom.ec_if;
3575
3576 /* Specify MTU. */
3577 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3578 ETHER_HDR_LEN + ETHER_CRC_LEN);
3579
3580 /* Load our MAC address. */
3581 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3582 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3583 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3584
3585 /* Enable or disable promiscuous mode as needed. */
3586 if (ifp->if_flags & IFF_PROMISC) {
3587 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3588 } else {
3589 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3590 }
3591
3592 /* Program multicast filter. */
3593 bge_setmulti(sc);
3594
3595 /* Init RX ring. */
3596 bge_init_rx_ring_std(sc);
3597
3598 /* Init jumbo RX ring. */
3599 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3600 bge_init_rx_ring_jumbo(sc);
3601
3602 /* Init our RX return ring index */
3603 sc->bge_rx_saved_considx = 0;
3604
3605 /* Init TX ring. */
3606 bge_init_tx_ring(sc);
3607
3608 /* Turn on transmitter */
3609 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3610
3611 /* Turn on receiver */
3612 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3613
3614 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3615
3616 /* Tell firmware we're alive. */
3617 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3618
3619 /* Enable host interrupts. */
3620 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3621 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3622 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3623
3624 bge_ifmedia_upd(ifp);
3625
3626 ifp->if_flags |= IFF_RUNNING;
3627 ifp->if_flags &= ~IFF_OACTIVE;
3628
3629 splx(s);
3630
3631 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3632
3633 return 0;
3634 }
3635
3636 /*
3637 * Set media options.
3638 */
3639 int
3640 bge_ifmedia_upd(ifp)
3641 struct ifnet *ifp;
3642 {
3643 struct bge_softc *sc = ifp->if_softc;
3644 struct mii_data *mii = &sc->bge_mii;
3645 struct ifmedia *ifm = &sc->bge_ifmedia;
3646
3647 /* If this is a 1000baseX NIC, enable the TBI port. */
3648 if (sc->bge_tbi) {
3649 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3650 return(EINVAL);
3651 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3652 case IFM_AUTO:
3653 break;
3654 case IFM_1000_SX:
3655 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3656 BGE_CLRBIT(sc, BGE_MAC_MODE,
3657 BGE_MACMODE_HALF_DUPLEX);
3658 } else {
3659 BGE_SETBIT(sc, BGE_MAC_MODE,
3660 BGE_MACMODE_HALF_DUPLEX);
3661 }
3662 break;
3663 default:
3664 return(EINVAL);
3665 }
3666 /* XXX 802.3x flow control for 1000BASE-SX */
3667 return(0);
3668 }
3669
3670 sc->bge_link = 0;
3671 mii_mediachg(mii);
3672
3673 return(0);
3674 }
3675
3676 /*
3677 * Report current media status.
3678 */
3679 void
3680 bge_ifmedia_sts(ifp, ifmr)
3681 struct ifnet *ifp;
3682 struct ifmediareq *ifmr;
3683 {
3684 struct bge_softc *sc = ifp->if_softc;
3685 struct mii_data *mii = &sc->bge_mii;
3686
3687 if (sc->bge_tbi) {
3688 ifmr->ifm_status = IFM_AVALID;
3689 ifmr->ifm_active = IFM_ETHER;
3690 if (CSR_READ_4(sc, BGE_MAC_STS) &
3691 BGE_MACSTAT_TBI_PCS_SYNCHED)
3692 ifmr->ifm_status |= IFM_ACTIVE;
3693 ifmr->ifm_active |= IFM_1000_SX;
3694 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3695 ifmr->ifm_active |= IFM_HDX;
3696 else
3697 ifmr->ifm_active |= IFM_FDX;
3698 return;
3699 }
3700
3701 mii_pollstat(mii);
3702 ifmr->ifm_status = mii->mii_media_status;
3703 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
3704 sc->bge_flowflags;
3705 }
3706
3707 int
3708 bge_ioctl(ifp, command, data)
3709 struct ifnet *ifp;
3710 u_long command;
3711 caddr_t data;
3712 {
3713 struct bge_softc *sc = ifp->if_softc;
3714 struct ifreq *ifr = (struct ifreq *) data;
3715 int s, error = 0;
3716 struct mii_data *mii;
3717
3718 s = splnet();
3719
3720 switch(command) {
3721 case SIOCSIFFLAGS:
3722 if (ifp->if_flags & IFF_UP) {
3723 /*
3724 * If only the state of the PROMISC flag changed,
3725 * then just use the 'set promisc mode' command
3726 * instead of reinitializing the entire NIC. Doing
3727 * a full re-init means reloading the firmware and
3728 * waiting for it to start up, which may take a
3729 * second or two.
3730 */
3731 if (ifp->if_flags & IFF_RUNNING &&
3732 ifp->if_flags & IFF_PROMISC &&
3733 !(sc->bge_if_flags & IFF_PROMISC)) {
3734 BGE_SETBIT(sc, BGE_RX_MODE,
3735 BGE_RXMODE_RX_PROMISC);
3736 } else if (ifp->if_flags & IFF_RUNNING &&
3737 !(ifp->if_flags & IFF_PROMISC) &&
3738 sc->bge_if_flags & IFF_PROMISC) {
3739 BGE_CLRBIT(sc, BGE_RX_MODE,
3740 BGE_RXMODE_RX_PROMISC);
3741 } else
3742 bge_init(ifp);
3743 } else {
3744 if (ifp->if_flags & IFF_RUNNING) {
3745 bge_stop(sc);
3746 }
3747 }
3748 sc->bge_if_flags = ifp->if_flags;
3749 error = 0;
3750 break;
3751 case SIOCSIFMEDIA:
3752 /* XXX Flow control is not supported for 1000BASE-SX */
3753 if (sc->bge_tbi) {
3754 ifr->ifr_media &= ~IFM_ETH_FMASK;
3755 sc->bge_flowflags = 0;
3756 }
3757
3758 /* Flow control requires full-duplex mode. */
3759 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
3760 (ifr->ifr_media & IFM_FDX) == 0) {
3761 ifr->ifr_media &= ~IFM_ETH_FMASK;
3762 }
3763 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
3764 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
3765 /* We an do both TXPAUSE and RXPAUSE. */
3766 ifr->ifr_media |=
3767 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
3768 }
3769 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
3770 }
3771 /* FALLTHROUGH */
3772 case SIOCGIFMEDIA:
3773 if (sc->bge_tbi) {
3774 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3775 command);
3776 } else {
3777 mii = &sc->bge_mii;
3778 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3779 command);
3780 }
3781 break;
3782 default:
3783 error = ether_ioctl(ifp, command, data);
3784 if (error == ENETRESET) {
3785 if (ifp->if_flags & IFF_RUNNING)
3786 bge_setmulti(sc);
3787 error = 0;
3788 }
3789 break;
3790 }
3791
3792 splx(s);
3793
3794 return(error);
3795 }
3796
3797 void
3798 bge_watchdog(ifp)
3799 struct ifnet *ifp;
3800 {
3801 struct bge_softc *sc;
3802
3803 sc = ifp->if_softc;
3804
3805 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3806
3807 ifp->if_flags &= ~IFF_RUNNING;
3808 bge_init(ifp);
3809
3810 ifp->if_oerrors++;
3811 }
3812
3813 static void
3814 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3815 {
3816 int i;
3817
3818 BGE_CLRBIT(sc, reg, bit);
3819
3820 for (i = 0; i < BGE_TIMEOUT; i++) {
3821 if ((CSR_READ_4(sc, reg) & bit) == 0)
3822 return;
3823 delay(100);
3824 }
3825
3826 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3827 sc->bge_dev.dv_xname, (u_long) reg, bit);
3828 }
3829
3830 /*
3831 * Stop the adapter and free any mbufs allocated to the
3832 * RX and TX lists.
3833 */
3834 void
3835 bge_stop(sc)
3836 struct bge_softc *sc;
3837 {
3838 struct ifnet *ifp = &sc->ethercom.ec_if;
3839
3840 callout_stop(&sc->bge_timeout);
3841
3842 /*
3843 * Disable all of the receiver blocks
3844 */
3845 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3846 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3847 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3848 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3849 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3850 }
3851 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3852 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3853 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3854
3855 /*
3856 * Disable all of the transmit blocks
3857 */
3858 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3859 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3860 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3861 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3862 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3863 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3864 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3865 }
3866 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3867
3868 /*
3869 * Shut down all of the memory managers and related
3870 * state machines.
3871 */
3872 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3873 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3874 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3875 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3876 }
3877
3878 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3879 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3880
3881 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3882 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3883 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3884 }
3885
3886 /* Disable host interrupts. */
3887 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3888 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3889
3890 /*
3891 * Tell firmware we're shutting down.
3892 */
3893 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3894
3895 /* Free the RX lists. */
3896 bge_free_rx_ring_std(sc);
3897
3898 /* Free jumbo RX list. */
3899 bge_free_rx_ring_jumbo(sc);
3900
3901 /* Free TX buffers. */
3902 bge_free_tx_ring(sc);
3903
3904 /*
3905 * Isolate/power down the PHY.
3906 */
3907 if (!sc->bge_tbi)
3908 mii_down(&sc->bge_mii);
3909
3910 sc->bge_link = 0;
3911
3912 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3913
3914 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3915 }
3916
3917 /*
3918 * Stop all chip I/O so that the kernel's probe routines don't
3919 * get confused by errant DMAs when rebooting.
3920 */
3921 void
3922 bge_shutdown(xsc)
3923 void *xsc;
3924 {
3925 struct bge_softc *sc = (struct bge_softc *)xsc;
3926
3927 bge_stop(sc);
3928 bge_reset(sc);
3929 }
3930
3931
3932 static int
3933 sysctl_bge_verify(SYSCTLFN_ARGS)
3934 {
3935 int error, t;
3936 struct sysctlnode node;
3937
3938 node = *rnode;
3939 t = *(int*)rnode->sysctl_data;
3940 node.sysctl_data = &t;
3941 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3942 if (error || newp == NULL)
3943 return (error);
3944
3945 #if 0
3946 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
3947 node.sysctl_num, rnode->sysctl_num));
3948 #endif
3949
3950 if (node.sysctl_num == bge_rxthresh_nodenum) {
3951 if (t < 0 || t >= NBGE_RX_THRESH)
3952 return (EINVAL);
3953 bge_update_all_threshes(t);
3954 } else
3955 return (EINVAL);
3956
3957 *(int*)rnode->sysctl_data = t;
3958
3959 return (0);
3960 }
3961
3962 /*
3963 * Set up sysctl(3) MIB, hw.bge.*.
3964 *
3965 * TBD condition SYSCTL_PERMANENT on being an LKM or not
3966 */
3967 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
3968 {
3969 int rc, bge_root_num;
3970 const struct sysctlnode *node;
3971
3972 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3973 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3974 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3975 goto err;
3976 }
3977
3978 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3979 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
3980 SYSCTL_DESCR("BGE interface controls"),
3981 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3982 goto err;
3983 }
3984
3985 bge_root_num = node->sysctl_num;
3986
3987 /* BGE Rx interrupt mitigation level */
3988 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3989 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3990 CTLTYPE_INT, "rx_lvl",
3991 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
3992 sysctl_bge_verify, 0,
3993 &bge_rx_thresh_lvl,
3994 0, CTL_HW, bge_root_num, CTL_CREATE,
3995 CTL_EOL)) != 0) {
3996 goto err;
3997 }
3998
3999 bge_rxthresh_nodenum = node->sysctl_num;
4000
4001 return;
4002
4003 err:
4004 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4005 }
4006
4007 void
4008 bge_powerhook(int why, void *hdl)
4009 {
4010 struct bge_softc *sc = (struct bge_softc *)hdl;
4011 struct ifnet *ifp = &sc->ethercom.ec_if;
4012 struct pci_attach_args *pa = &(sc->bge_pa);
4013 pci_chipset_tag_t pc = pa->pa_pc;
4014 pcitag_t tag = pa->pa_tag;
4015
4016 switch (why) {
4017 case PWR_SOFTSUSPEND:
4018 case PWR_SOFTSTANDBY:
4019 bge_shutdown(sc);
4020 break;
4021 case PWR_SOFTRESUME:
4022 if (ifp->if_flags & IFF_UP) {
4023 ifp->if_flags &= ~IFF_RUNNING;
4024 bge_init(ifp);
4025 }
4026 break;
4027 case PWR_SUSPEND:
4028 case PWR_STANDBY:
4029 pci_conf_capture(pc, tag, &sc->bge_pciconf);
4030 break;
4031 case PWR_RESUME:
4032 pci_conf_restore(pc, tag, &sc->bge_pciconf);
4033 break;
4034 }
4035
4036 return;
4037 }
4038