if_bge.c revision 1.94 1 /* $NetBSD: if_bge.c,v 1.94 2005/11/15 06:05:44 jonathan Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wind River Systems
5 * Copyright (c) 1997, 1998, 1999, 2001
6 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36 */
37
38 /*
39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40 *
41 * NetBSD version by:
42 *
43 * Frank van der Linden <fvdl (at) wasabisystems.com>
44 * Jason Thorpe <thorpej (at) wasabisystems.com>
45 * Jonathan Stone <jonathan (at) dsg.stanford.edu>
46 *
47 * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
48 * Senior Engineer, Wind River Systems
49 */
50
51 /*
52 * The Broadcom BCM5700 is based on technology originally developed by
53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57 * frames, highly configurable RX filtering, and 16 RX and TX queues
58 * (which, along with RX filter rules, can be used for QOS applications).
59 * Other features, such as TCP segmentation, may be available as part
60 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61 * firmware images can be stored in hardware and need not be compiled
62 * into the driver.
63 *
64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66 *
67 * The BCM5701 is a single-chip solution incorporating both the BCM5700
68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69 * does not support external SSRAM.
70 *
71 * Broadcom also produces a variation of the BCM5700 under the "Altima"
72 * brand name, which is functionally similar but lacks PCI-X support.
73 *
74 * Without external SSRAM, you can only have at most 4 TX rings,
75 * and the use of the mini RX ring is disabled. This seems to imply
76 * that these features are simply not available on the BCM5701. As a
77 * result, this driver does not implement any support for the mini RX
78 * ring.
79 */
80
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.94 2005/11/15 06:05:44 jonathan Exp $");
83
84 #include "bpfilter.h"
85 #include "vlan.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109
110 #if NBPFILTER > 0
111 #include <net/bpf.h>
112 #endif
113
114 #include <dev/pci/pcireg.h>
115 #include <dev/pci/pcivar.h>
116 #include <dev/pci/pcidevs.h>
117
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 #include <dev/mii/miidevs.h>
121 #include <dev/mii/brgphyreg.h>
122
123 #include <dev/pci/if_bgereg.h>
124
125 #include <uvm/uvm_extern.h>
126
127 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
128
129
130 /*
131 * Tunable thresholds for rx-side bge interrupt mitigation.
132 */
133
134 /*
135 * The pairs of values below were obtained from empirical measurement
136 * on bcm5700 rev B2; they ar designed to give roughly 1 receive
137 * interrupt for every N packets received, where N is, approximately,
138 * the second value (rx_max_bds) in each pair. The values are chosen
139 * such that moving from one pair to the succeeding pair was observed
140 * to roughly halve interrupt rate under sustained input packet load.
141 * The values were empirically chosen to avoid overflowing internal
142 * limits on the bcm5700: inreasing rx_ticks much beyond 600
143 * results in internal wrapping and higher interrupt rates.
144 * The limit of 46 frames was chosen to match NFS workloads.
145 *
146 * These values also work well on bcm5701, bcm5704C, and (less
147 * tested) bcm5703. On other chipsets, (including the Altima chip
148 * family), the larger values may overflow internal chip limits,
149 * leading to increasing interrupt rates rather than lower interrupt
150 * rates.
151 *
152 * Applications using heavy interrupt mitigation (interrupting every
153 * 32 or 46 frames) in both directions may need to increase the TCP
154 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
155 * full link bandwidth, due to ACKs and window updates lingering
156 * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
157 */
158 struct bge_load_rx_thresh {
159 int rx_ticks;
160 int rx_max_bds; }
161 bge_rx_threshes[] = {
162 { 32, 2 },
163 { 50, 4 },
164 { 100, 8 },
165 { 192, 16 },
166 { 416, 32 },
167 { 598, 46 }
168 };
169 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
170
171 /* XXX patchable; should be sysctl'able */
172 static int bge_auto_thresh = 1;
173 static int bge_rx_thresh_lvl;
174
175 #ifdef __NetBSD__
176 static int bge_rxthresh_nodenum;
177 #endif /* __NetBSD__ */
178
179 int bge_probe(struct device *, struct cfdata *, void *);
180 void bge_attach(struct device *, struct device *, void *);
181 void bge_powerhook(int, void *);
182 void bge_release_resources(struct bge_softc *);
183 void bge_txeof(struct bge_softc *);
184 void bge_rxeof(struct bge_softc *);
185
186 void bge_tick(void *);
187 void bge_stats_update(struct bge_softc *);
188 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
189 static __inline int bge_cksum_pad(struct mbuf *pkt);
190 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
191
192 int bge_intr(void *);
193 void bge_start(struct ifnet *);
194 int bge_ioctl(struct ifnet *, u_long, caddr_t);
195 int bge_init(struct ifnet *);
196 void bge_stop(struct bge_softc *);
197 void bge_watchdog(struct ifnet *);
198 void bge_shutdown(void *);
199 int bge_ifmedia_upd(struct ifnet *);
200 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
201
202 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
203 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
204
205 void bge_setmulti(struct bge_softc *);
206
207 void bge_handle_events(struct bge_softc *);
208 int bge_alloc_jumbo_mem(struct bge_softc *);
209 void bge_free_jumbo_mem(struct bge_softc *);
210 void *bge_jalloc(struct bge_softc *);
211 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
212 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
213 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
214 int bge_init_rx_ring_std(struct bge_softc *);
215 void bge_free_rx_ring_std(struct bge_softc *);
216 int bge_init_rx_ring_jumbo(struct bge_softc *);
217 void bge_free_rx_ring_jumbo(struct bge_softc *);
218 void bge_free_tx_ring(struct bge_softc *);
219 int bge_init_tx_ring(struct bge_softc *);
220
221 int bge_chipinit(struct bge_softc *);
222 int bge_blockinit(struct bge_softc *);
223 int bge_setpowerstate(struct bge_softc *, int);
224
225 #ifdef notdef
226 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
227 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
228 void bge_vpd_read(struct bge_softc *);
229 #endif
230
231 u_int32_t bge_readmem_ind(struct bge_softc *, int);
232 void bge_writemem_ind(struct bge_softc *, int, int);
233 #ifdef notdef
234 u_int32_t bge_readreg_ind(struct bge_softc *, int);
235 #endif
236 void bge_writereg_ind(struct bge_softc *, int, int);
237
238 int bge_miibus_readreg(struct device *, int, int);
239 void bge_miibus_writereg(struct device *, int, int, int);
240 void bge_miibus_statchg(struct device *);
241
242 void bge_reset(struct bge_softc *);
243
244 void bge_set_thresh(struct ifnet * /*ifp*/, int /*lvl*/);
245 void bge_update_all_threshes(int /*lvl*/);
246
247 void bge_dump_status(struct bge_softc *);
248 void bge_dump_rxbd(struct bge_rx_bd *);
249
250 #define BGE_DEBUG
251 #ifdef BGE_DEBUG
252 #define DPRINTF(x) if (bgedebug) printf x
253 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
254 int bgedebug = 0;
255 #else
256 #define DPRINTF(x)
257 #define DPRINTFN(n,x)
258 #endif
259
260 #ifdef BGE_EVENT_COUNTERS
261 #define BGE_EVCNT_INCR(ev) (ev).ev_count++
262 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
263 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
264 #else
265 #define BGE_EVCNT_INCR(ev) /* nothing */
266 #define BGE_EVCNT_ADD(ev, val) /* nothing */
267 #define BGE_EVCNT_UPD(ev, val) /* nothing */
268 #endif
269
270 /* Various chip quirks. */
271 #define BGE_QUIRK_LINK_STATE_BROKEN 0x00000001
272 #define BGE_QUIRK_CSUM_BROKEN 0x00000002
273 #define BGE_QUIRK_ONLY_PHY_1 0x00000004
274 #define BGE_QUIRK_5700_SMALLDMA 0x00000008
275 #define BGE_QUIRK_5700_PCIX_REG_BUG 0x00000010
276 #define BGE_QUIRK_PRODUCER_BUG 0x00000020
277 #define BGE_QUIRK_PCIX_DMA_ALIGN_BUG 0x00000040
278 #define BGE_QUIRK_5705_CORE 0x00000080
279 #define BGE_QUIRK_FEWER_MBUFS 0x00000100
280
281 /* following bugs are common to bcm5700 rev B, all flavours */
282 #define BGE_QUIRK_5700_COMMON \
283 (BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
284
285 CFATTACH_DECL(bge, sizeof(struct bge_softc),
286 bge_probe, bge_attach, NULL, NULL);
287
288 u_int32_t
289 bge_readmem_ind(sc, off)
290 struct bge_softc *sc;
291 int off;
292 {
293 struct pci_attach_args *pa = &(sc->bge_pa);
294 pcireg_t val;
295
296 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
297 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
298 return val;
299 }
300
301 void
302 bge_writemem_ind(sc, off, val)
303 struct bge_softc *sc;
304 int off, val;
305 {
306 struct pci_attach_args *pa = &(sc->bge_pa);
307
308 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
309 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
310 }
311
312 #ifdef notdef
313 u_int32_t
314 bge_readreg_ind(sc, off)
315 struct bge_softc *sc;
316 int off;
317 {
318 struct pci_attach_args *pa = &(sc->bge_pa);
319
320 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
321 return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
322 }
323 #endif
324
325 void
326 bge_writereg_ind(sc, off, val)
327 struct bge_softc *sc;
328 int off, val;
329 {
330 struct pci_attach_args *pa = &(sc->bge_pa);
331
332 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
333 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
334 }
335
336 #ifdef notdef
337 u_int8_t
338 bge_vpd_readbyte(sc, addr)
339 struct bge_softc *sc;
340 int addr;
341 {
342 int i;
343 u_int32_t val;
344 struct pci_attach_args *pa = &(sc->bge_pa);
345
346 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
347 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
348 DELAY(10);
349 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
350 BGE_VPD_FLAG)
351 break;
352 }
353
354 if (i == BGE_TIMEOUT) {
355 printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
356 return(0);
357 }
358
359 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
360
361 return((val >> ((addr % 4) * 8)) & 0xFF);
362 }
363
364 void
365 bge_vpd_read_res(sc, res, addr)
366 struct bge_softc *sc;
367 struct vpd_res *res;
368 int addr;
369 {
370 int i;
371 u_int8_t *ptr;
372
373 ptr = (u_int8_t *)res;
374 for (i = 0; i < sizeof(struct vpd_res); i++)
375 ptr[i] = bge_vpd_readbyte(sc, i + addr);
376 }
377
378 void
379 bge_vpd_read(sc)
380 struct bge_softc *sc;
381 {
382 int pos = 0, i;
383 struct vpd_res res;
384
385 if (sc->bge_vpd_prodname != NULL)
386 free(sc->bge_vpd_prodname, M_DEVBUF);
387 if (sc->bge_vpd_readonly != NULL)
388 free(sc->bge_vpd_readonly, M_DEVBUF);
389 sc->bge_vpd_prodname = NULL;
390 sc->bge_vpd_readonly = NULL;
391
392 bge_vpd_read_res(sc, &res, pos);
393
394 if (res.vr_id != VPD_RES_ID) {
395 printf("%s: bad VPD resource id: expected %x got %x\n",
396 sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
397 return;
398 }
399
400 pos += sizeof(res);
401 sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
402 if (sc->bge_vpd_prodname == NULL)
403 panic("bge_vpd_read");
404 for (i = 0; i < res.vr_len; i++)
405 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
406 sc->bge_vpd_prodname[i] = '\0';
407 pos += i;
408
409 bge_vpd_read_res(sc, &res, pos);
410
411 if (res.vr_id != VPD_RES_READ) {
412 printf("%s: bad VPD resource id: expected %x got %x\n",
413 sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
414 return;
415 }
416
417 pos += sizeof(res);
418 sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
419 if (sc->bge_vpd_readonly == NULL)
420 panic("bge_vpd_read");
421 for (i = 0; i < res.vr_len + 1; i++)
422 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
423 }
424 #endif
425
426 /*
427 * Read a byte of data stored in the EEPROM at address 'addr.' The
428 * BCM570x supports both the traditional bitbang interface and an
429 * auto access interface for reading the EEPROM. We use the auto
430 * access method.
431 */
432 u_int8_t
433 bge_eeprom_getbyte(sc, addr, dest)
434 struct bge_softc *sc;
435 int addr;
436 u_int8_t *dest;
437 {
438 int i;
439 u_int32_t byte = 0;
440
441 /*
442 * Enable use of auto EEPROM access so we can avoid
443 * having to use the bitbang method.
444 */
445 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
446
447 /* Reset the EEPROM, load the clock period. */
448 CSR_WRITE_4(sc, BGE_EE_ADDR,
449 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
450 DELAY(20);
451
452 /* Issue the read EEPROM command. */
453 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
454
455 /* Wait for completion */
456 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
457 DELAY(10);
458 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
459 break;
460 }
461
462 if (i == BGE_TIMEOUT) {
463 printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
464 return(0);
465 }
466
467 /* Get result. */
468 byte = CSR_READ_4(sc, BGE_EE_DATA);
469
470 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
471
472 return(0);
473 }
474
475 /*
476 * Read a sequence of bytes from the EEPROM.
477 */
478 int
479 bge_read_eeprom(sc, dest, off, cnt)
480 struct bge_softc *sc;
481 caddr_t dest;
482 int off;
483 int cnt;
484 {
485 int err = 0, i;
486 u_int8_t byte = 0;
487
488 for (i = 0; i < cnt; i++) {
489 err = bge_eeprom_getbyte(sc, off + i, &byte);
490 if (err)
491 break;
492 *(dest + i) = byte;
493 }
494
495 return(err ? 1 : 0);
496 }
497
498 int
499 bge_miibus_readreg(dev, phy, reg)
500 struct device *dev;
501 int phy, reg;
502 {
503 struct bge_softc *sc = (struct bge_softc *)dev;
504 u_int32_t val;
505 u_int32_t saved_autopoll;
506 int i;
507
508 /*
509 * Several chips with builtin PHYs will incorrectly answer to
510 * other PHY instances than the builtin PHY at id 1.
511 */
512 if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
513 return(0);
514
515 /* Reading with autopolling on may trigger PCI errors */
516 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
517 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
518 CSR_WRITE_4(sc, BGE_MI_MODE,
519 saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
520 DELAY(40);
521 }
522
523 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
524 BGE_MIPHY(phy)|BGE_MIREG(reg));
525
526 for (i = 0; i < BGE_TIMEOUT; i++) {
527 val = CSR_READ_4(sc, BGE_MI_COMM);
528 if (!(val & BGE_MICOMM_BUSY))
529 break;
530 delay(10);
531 }
532
533 if (i == BGE_TIMEOUT) {
534 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
535 val = 0;
536 goto done;
537 }
538
539 val = CSR_READ_4(sc, BGE_MI_COMM);
540
541 done:
542 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
543 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
544 DELAY(40);
545 }
546
547 if (val & BGE_MICOMM_READFAIL)
548 return(0);
549
550 return(val & 0xFFFF);
551 }
552
553 void
554 bge_miibus_writereg(dev, phy, reg, val)
555 struct device *dev;
556 int phy, reg, val;
557 {
558 struct bge_softc *sc = (struct bge_softc *)dev;
559 u_int32_t saved_autopoll;
560 int i;
561
562 /* Touching the PHY while autopolling is on may trigger PCI errors */
563 saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
564 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
565 delay(40);
566 CSR_WRITE_4(sc, BGE_MI_MODE,
567 saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
568 delay(10); /* 40 usec is supposed to be adequate */
569 }
570
571 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
572 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
573
574 for (i = 0; i < BGE_TIMEOUT; i++) {
575 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
576 break;
577 delay(10);
578 }
579
580 if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
581 CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
582 delay(40);
583 }
584
585 if (i == BGE_TIMEOUT) {
586 printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
587 }
588 }
589
590 void
591 bge_miibus_statchg(dev)
592 struct device *dev;
593 {
594 struct bge_softc *sc = (struct bge_softc *)dev;
595 struct mii_data *mii = &sc->bge_mii;
596
597 /*
598 * Get flow control negotiation result.
599 */
600 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
601 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
602 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
603 mii->mii_media_active &= ~IFM_ETH_FMASK;
604 }
605
606 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
607 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
608 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
609 } else {
610 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
611 }
612
613 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
614 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
615 } else {
616 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
617 }
618
619 /*
620 * 802.3x flow control
621 */
622 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
623 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
624 } else {
625 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
626 }
627 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
628 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
629 } else {
630 BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
631 }
632 }
633
634 /*
635 * Update rx threshold levels to values in a particular slot
636 * of the interrupt-mitigation table bge_rx_threshes.
637 */
638 void
639 bge_set_thresh(struct ifnet *ifp, int lvl)
640 {
641 struct bge_softc *sc = ifp->if_softc;
642 int s;
643
644 /* For now, just save the new Rx-intr thresholds and record
645 * that a threshold update is pending. Updating the hardware
646 * registers here (even at splhigh()) is observed to
647 * occasionaly cause glitches where Rx-interrupts are not
648 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
649 */
650 s = splnet();
651 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
652 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
653 sc->bge_pending_rxintr_change = 1;
654 splx(s);
655
656 return;
657 }
658
659
660 /*
661 * Update Rx thresholds of all bge devices
662 */
663 void
664 bge_update_all_threshes(int lvl)
665 {
666 struct ifnet *ifp;
667 const char * const namebuf = "bge";
668 int namelen;
669
670 if (lvl < 0)
671 lvl = 0;
672 else if( lvl >= NBGE_RX_THRESH)
673 lvl = NBGE_RX_THRESH - 1;
674
675 namelen = strlen(namebuf);
676 /*
677 * Now search all the interfaces for this name/number
678 */
679 IFNET_FOREACH(ifp) {
680 if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
681 continue;
682 /* We got a match: update if doing auto-threshold-tuning */
683 if (bge_auto_thresh)
684 bge_set_thresh(ifp, lvl);
685 }
686 }
687
688 /*
689 * Handle events that have triggered interrupts.
690 */
691 void
692 bge_handle_events(sc)
693 struct bge_softc *sc;
694 {
695
696 return;
697 }
698
699 /*
700 * Memory management for jumbo frames.
701 */
702
703 int
704 bge_alloc_jumbo_mem(sc)
705 struct bge_softc *sc;
706 {
707 caddr_t ptr, kva;
708 bus_dma_segment_t seg;
709 int i, rseg, state, error;
710 struct bge_jpool_entry *entry;
711
712 state = error = 0;
713
714 /* Grab a big chunk o' storage. */
715 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
716 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
717 printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
718 return ENOBUFS;
719 }
720
721 state = 1;
722 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
723 BUS_DMA_NOWAIT)) {
724 printf("%s: can't map DMA buffers (%d bytes)\n",
725 sc->bge_dev.dv_xname, (int)BGE_JMEM);
726 error = ENOBUFS;
727 goto out;
728 }
729
730 state = 2;
731 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
732 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
733 printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
734 error = ENOBUFS;
735 goto out;
736 }
737
738 state = 3;
739 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
740 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
741 printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
742 error = ENOBUFS;
743 goto out;
744 }
745
746 state = 4;
747 sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
748 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
749
750 SLIST_INIT(&sc->bge_jfree_listhead);
751 SLIST_INIT(&sc->bge_jinuse_listhead);
752
753 /*
754 * Now divide it up into 9K pieces and save the addresses
755 * in an array.
756 */
757 ptr = sc->bge_cdata.bge_jumbo_buf;
758 for (i = 0; i < BGE_JSLOTS; i++) {
759 sc->bge_cdata.bge_jslots[i] = ptr;
760 ptr += BGE_JLEN;
761 entry = malloc(sizeof(struct bge_jpool_entry),
762 M_DEVBUF, M_NOWAIT);
763 if (entry == NULL) {
764 printf("%s: no memory for jumbo buffer queue!\n",
765 sc->bge_dev.dv_xname);
766 error = ENOBUFS;
767 goto out;
768 }
769 entry->slot = i;
770 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
771 entry, jpool_entries);
772 }
773 out:
774 if (error != 0) {
775 switch (state) {
776 case 4:
777 bus_dmamap_unload(sc->bge_dmatag,
778 sc->bge_cdata.bge_rx_jumbo_map);
779 case 3:
780 bus_dmamap_destroy(sc->bge_dmatag,
781 sc->bge_cdata.bge_rx_jumbo_map);
782 case 2:
783 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
784 case 1:
785 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
786 break;
787 default:
788 break;
789 }
790 }
791
792 return error;
793 }
794
795 /*
796 * Allocate a jumbo buffer.
797 */
798 void *
799 bge_jalloc(sc)
800 struct bge_softc *sc;
801 {
802 struct bge_jpool_entry *entry;
803
804 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
805
806 if (entry == NULL) {
807 printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
808 return(NULL);
809 }
810
811 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
812 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
813 return(sc->bge_cdata.bge_jslots[entry->slot]);
814 }
815
816 /*
817 * Release a jumbo buffer.
818 */
819 void
820 bge_jfree(m, buf, size, arg)
821 struct mbuf *m;
822 caddr_t buf;
823 size_t size;
824 void *arg;
825 {
826 struct bge_jpool_entry *entry;
827 struct bge_softc *sc;
828 int i, s;
829
830 /* Extract the softc struct pointer. */
831 sc = (struct bge_softc *)arg;
832
833 if (sc == NULL)
834 panic("bge_jfree: can't find softc pointer!");
835
836 /* calculate the slot this buffer belongs to */
837
838 i = ((caddr_t)buf
839 - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
840
841 if ((i < 0) || (i >= BGE_JSLOTS))
842 panic("bge_jfree: asked to free buffer that we don't manage!");
843
844 s = splvm();
845 entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
846 if (entry == NULL)
847 panic("bge_jfree: buffer not in use!");
848 entry->slot = i;
849 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
850 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
851
852 if (__predict_true(m != NULL))
853 pool_cache_put(&mbpool_cache, m);
854 splx(s);
855 }
856
857
858 /*
859 * Intialize a standard receive ring descriptor.
860 */
861 int
862 bge_newbuf_std(sc, i, m, dmamap)
863 struct bge_softc *sc;
864 int i;
865 struct mbuf *m;
866 bus_dmamap_t dmamap;
867 {
868 struct mbuf *m_new = NULL;
869 struct bge_rx_bd *r;
870 int error;
871
872 if (dmamap == NULL) {
873 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
874 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
875 if (error != 0)
876 return error;
877 }
878
879 sc->bge_cdata.bge_rx_std_map[i] = dmamap;
880
881 if (m == NULL) {
882 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
883 if (m_new == NULL) {
884 return(ENOBUFS);
885 }
886
887 MCLGET(m_new, M_DONTWAIT);
888 if (!(m_new->m_flags & M_EXT)) {
889 m_freem(m_new);
890 return(ENOBUFS);
891 }
892 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
893 if (!sc->bge_rx_alignment_bug)
894 m_adj(m_new, ETHER_ALIGN);
895
896 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
897 BUS_DMA_READ|BUS_DMA_NOWAIT))
898 return(ENOBUFS);
899 } else {
900 m_new = m;
901 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
902 m_new->m_data = m_new->m_ext.ext_buf;
903 if (!sc->bge_rx_alignment_bug)
904 m_adj(m_new, ETHER_ALIGN);
905 }
906
907 sc->bge_cdata.bge_rx_std_chain[i] = m_new;
908 r = &sc->bge_rdata->bge_rx_std_ring[i];
909 bge_set_hostaddr(&r->bge_addr,
910 dmamap->dm_segs[0].ds_addr);
911 r->bge_flags = BGE_RXBDFLAG_END;
912 r->bge_len = m_new->m_len;
913 r->bge_idx = i;
914
915 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
916 offsetof(struct bge_ring_data, bge_rx_std_ring) +
917 i * sizeof (struct bge_rx_bd),
918 sizeof (struct bge_rx_bd),
919 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
920
921 return(0);
922 }
923
924 /*
925 * Initialize a jumbo receive ring descriptor. This allocates
926 * a jumbo buffer from the pool managed internally by the driver.
927 */
928 int
929 bge_newbuf_jumbo(sc, i, m)
930 struct bge_softc *sc;
931 int i;
932 struct mbuf *m;
933 {
934 struct mbuf *m_new = NULL;
935 struct bge_rx_bd *r;
936
937 if (m == NULL) {
938 caddr_t buf = NULL;
939
940 /* Allocate the mbuf. */
941 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
942 if (m_new == NULL) {
943 return(ENOBUFS);
944 }
945
946 /* Allocate the jumbo buffer */
947 buf = bge_jalloc(sc);
948 if (buf == NULL) {
949 m_freem(m_new);
950 printf("%s: jumbo allocation failed "
951 "-- packet dropped!\n", sc->bge_dev.dv_xname);
952 return(ENOBUFS);
953 }
954
955 /* Attach the buffer to the mbuf. */
956 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
957 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
958 bge_jfree, sc);
959 m_new->m_flags |= M_EXT_RW;
960 } else {
961 m_new = m;
962 m_new->m_data = m_new->m_ext.ext_buf;
963 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
964 }
965
966 if (!sc->bge_rx_alignment_bug)
967 m_adj(m_new, ETHER_ALIGN);
968 /* Set up the descriptor. */
969 r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
970 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
971 bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
972 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
973 r->bge_len = m_new->m_len;
974 r->bge_idx = i;
975
976 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
977 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
978 i * sizeof (struct bge_rx_bd),
979 sizeof (struct bge_rx_bd),
980 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
981
982 return(0);
983 }
984
985 /*
986 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
987 * that's 1MB or memory, which is a lot. For now, we fill only the first
988 * 256 ring entries and hope that our CPU is fast enough to keep up with
989 * the NIC.
990 */
991 int
992 bge_init_rx_ring_std(sc)
993 struct bge_softc *sc;
994 {
995 int i;
996
997 if (sc->bge_flags & BGE_RXRING_VALID)
998 return 0;
999
1000 for (i = 0; i < BGE_SSLOTS; i++) {
1001 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1002 return(ENOBUFS);
1003 }
1004
1005 sc->bge_std = i - 1;
1006 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1007
1008 sc->bge_flags |= BGE_RXRING_VALID;
1009
1010 return(0);
1011 }
1012
1013 void
1014 bge_free_rx_ring_std(sc)
1015 struct bge_softc *sc;
1016 {
1017 int i;
1018
1019 if (!(sc->bge_flags & BGE_RXRING_VALID))
1020 return;
1021
1022 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1023 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1024 m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1025 sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1026 bus_dmamap_destroy(sc->bge_dmatag,
1027 sc->bge_cdata.bge_rx_std_map[i]);
1028 }
1029 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1030 sizeof(struct bge_rx_bd));
1031 }
1032
1033 sc->bge_flags &= ~BGE_RXRING_VALID;
1034 }
1035
1036 int
1037 bge_init_rx_ring_jumbo(sc)
1038 struct bge_softc *sc;
1039 {
1040 int i;
1041 volatile struct bge_rcb *rcb;
1042
1043 if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1044 return 0;
1045
1046 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1047 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1048 return(ENOBUFS);
1049 };
1050
1051 sc->bge_jumbo = i - 1;
1052 sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1053
1054 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1055 rcb->bge_maxlen_flags = 0;
1056 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1057
1058 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1059
1060 return(0);
1061 }
1062
1063 void
1064 bge_free_rx_ring_jumbo(sc)
1065 struct bge_softc *sc;
1066 {
1067 int i;
1068
1069 if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1070 return;
1071
1072 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1073 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1074 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1075 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1076 }
1077 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1078 sizeof(struct bge_rx_bd));
1079 }
1080
1081 sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1082 }
1083
1084 void
1085 bge_free_tx_ring(sc)
1086 struct bge_softc *sc;
1087 {
1088 int i, freed;
1089 struct txdmamap_pool_entry *dma;
1090
1091 if (!(sc->bge_flags & BGE_TXRING_VALID))
1092 return;
1093
1094 freed = 0;
1095
1096 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1097 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1098 freed++;
1099 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1100 sc->bge_cdata.bge_tx_chain[i] = NULL;
1101 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1102 link);
1103 sc->txdma[i] = 0;
1104 }
1105 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1106 sizeof(struct bge_tx_bd));
1107 }
1108
1109 while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1110 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1111 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1112 free(dma, M_DEVBUF);
1113 }
1114
1115 sc->bge_flags &= ~BGE_TXRING_VALID;
1116 }
1117
1118 int
1119 bge_init_tx_ring(sc)
1120 struct bge_softc *sc;
1121 {
1122 int i;
1123 bus_dmamap_t dmamap;
1124 struct txdmamap_pool_entry *dma;
1125
1126 if (sc->bge_flags & BGE_TXRING_VALID)
1127 return 0;
1128
1129 sc->bge_txcnt = 0;
1130 sc->bge_tx_saved_considx = 0;
1131
1132 /* Initialize transmit producer index for host-memory send ring. */
1133 sc->bge_tx_prodidx = 0;
1134 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1135 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1136 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1137
1138 /* NIC-memory send ring not used; initialize to zero. */
1139 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1140 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
1141 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1142
1143 SLIST_INIT(&sc->txdma_list);
1144 for (i = 0; i < BGE_RSLOTS; i++) {
1145 if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
1146 BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1147 &dmamap))
1148 return(ENOBUFS);
1149 if (dmamap == NULL)
1150 panic("dmamap NULL in bge_init_tx_ring");
1151 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1152 if (dma == NULL) {
1153 printf("%s: can't alloc txdmamap_pool_entry\n",
1154 sc->bge_dev.dv_xname);
1155 bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1156 return (ENOMEM);
1157 }
1158 dma->dmamap = dmamap;
1159 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1160 }
1161
1162 sc->bge_flags |= BGE_TXRING_VALID;
1163
1164 return(0);
1165 }
1166
1167 void
1168 bge_setmulti(sc)
1169 struct bge_softc *sc;
1170 {
1171 struct ethercom *ac = &sc->ethercom;
1172 struct ifnet *ifp = &ac->ec_if;
1173 struct ether_multi *enm;
1174 struct ether_multistep step;
1175 u_int32_t hashes[4] = { 0, 0, 0, 0 };
1176 u_int32_t h;
1177 int i;
1178
1179 if (ifp->if_flags & IFF_PROMISC)
1180 goto allmulti;
1181
1182 /* Now program new ones. */
1183 ETHER_FIRST_MULTI(step, ac, enm);
1184 while (enm != NULL) {
1185 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1186 /*
1187 * We must listen to a range of multicast addresses.
1188 * For now, just accept all multicasts, rather than
1189 * trying to set only those filter bits needed to match
1190 * the range. (At this time, the only use of address
1191 * ranges is for IP multicast routing, for which the
1192 * range is big enough to require all bits set.)
1193 */
1194 goto allmulti;
1195 }
1196
1197 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1198
1199 /* Just want the 7 least-significant bits. */
1200 h &= 0x7f;
1201
1202 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1203 ETHER_NEXT_MULTI(step, enm);
1204 }
1205
1206 ifp->if_flags &= ~IFF_ALLMULTI;
1207 goto setit;
1208
1209 allmulti:
1210 ifp->if_flags |= IFF_ALLMULTI;
1211 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1212
1213 setit:
1214 for (i = 0; i < 4; i++)
1215 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1216 }
1217
1218 const int bge_swapbits[] = {
1219 0,
1220 BGE_MODECTL_BYTESWAP_DATA,
1221 BGE_MODECTL_WORDSWAP_DATA,
1222 BGE_MODECTL_BYTESWAP_NONFRAME,
1223 BGE_MODECTL_WORDSWAP_NONFRAME,
1224
1225 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1226 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1227 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1228
1229 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1230 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1231
1232 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1233
1234 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1235 BGE_MODECTL_BYTESWAP_NONFRAME,
1236 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1237 BGE_MODECTL_WORDSWAP_NONFRAME,
1238 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1239 BGE_MODECTL_WORDSWAP_NONFRAME,
1240 BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1241 BGE_MODECTL_WORDSWAP_NONFRAME,
1242
1243 BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1244 BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1245 };
1246
1247 int bge_swapindex = 0;
1248
1249 /*
1250 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1251 * self-test results.
1252 */
1253 int
1254 bge_chipinit(sc)
1255 struct bge_softc *sc;
1256 {
1257 u_int32_t cachesize;
1258 int i;
1259 u_int32_t dma_rw_ctl;
1260 struct pci_attach_args *pa = &(sc->bge_pa);
1261
1262
1263 /* Set endianness before we access any non-PCI registers. */
1264 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1265 BGE_INIT);
1266
1267 /* Set power state to D0. */
1268 bge_setpowerstate(sc, 0);
1269
1270 /*
1271 * Check the 'ROM failed' bit on the RX CPU to see if
1272 * self-tests passed.
1273 */
1274 if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1275 printf("%s: RX CPU self-diagnostics failed!\n",
1276 sc->bge_dev.dv_xname);
1277 return(ENODEV);
1278 }
1279
1280 /* Clear the MAC control register */
1281 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1282
1283 /*
1284 * Clear the MAC statistics block in the NIC's
1285 * internal memory.
1286 */
1287 for (i = BGE_STATS_BLOCK;
1288 i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1289 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1290
1291 for (i = BGE_STATUS_BLOCK;
1292 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1293 BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1294
1295 /* Set up the PCI DMA control register. */
1296 if (sc->bge_pcie) {
1297 /* From FreeBSD */
1298 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1299 sc->bge_dev.dv_xname));
1300 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1301 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1302 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1303 } else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1304 BGE_PCISTATE_PCI_BUSMODE) {
1305 /* Conventional PCI bus */
1306 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1307 dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1308 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1309 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1310 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1311 dma_rw_ctl |= 0x0F;
1312 }
1313 } else {
1314 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1315 /* PCI-X bus */
1316 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1317 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1318 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1319 (0x0F);
1320 /*
1321 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1322 * for hardware bugs, which means we should also clear
1323 * the low-order MINDMA bits. In addition, the 5704
1324 * uses a different encoding of read/write watermarks.
1325 */
1326 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1327 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1328 /* should be 0x1f0000 */
1329 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1330 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1331 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1332 }
1333 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1334 dma_rw_ctl &= 0xfffffff0;
1335 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1336 }
1337 }
1338
1339 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1340
1341 /*
1342 * Set up general mode register.
1343 */
1344 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1345 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1346 BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1347
1348 /* Get cache line size. */
1349 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1350
1351 /*
1352 * Avoid violating PCI spec on certain chip revs.
1353 */
1354 if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1355 PCIM_CMD_MWIEN) {
1356 switch(cachesize) {
1357 case 1:
1358 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1359 BGE_PCI_WRITE_BNDRY_16BYTES);
1360 break;
1361 case 2:
1362 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1363 BGE_PCI_WRITE_BNDRY_32BYTES);
1364 break;
1365 case 4:
1366 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1367 BGE_PCI_WRITE_BNDRY_64BYTES);
1368 break;
1369 case 8:
1370 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1371 BGE_PCI_WRITE_BNDRY_128BYTES);
1372 break;
1373 case 16:
1374 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1375 BGE_PCI_WRITE_BNDRY_256BYTES);
1376 break;
1377 case 32:
1378 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1379 BGE_PCI_WRITE_BNDRY_512BYTES);
1380 break;
1381 case 64:
1382 PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1383 BGE_PCI_WRITE_BNDRY_1024BYTES);
1384 break;
1385 default:
1386 /* Disable PCI memory write and invalidate. */
1387 #if 0
1388 if (bootverbose)
1389 printf("%s: cache line size %d not "
1390 "supported; disabling PCI MWI\n",
1391 sc->bge_dev.dv_xname, cachesize);
1392 #endif
1393 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1394 PCIM_CMD_MWIEN);
1395 break;
1396 }
1397 }
1398
1399 /*
1400 * Disable memory write invalidate. Apparently it is not supported
1401 * properly by these devices.
1402 */
1403 PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1404
1405
1406 #ifdef __brokenalpha__
1407 /*
1408 * Must insure that we do not cross an 8K (bytes) boundary
1409 * for DMA reads. Our highest limit is 1K bytes. This is a
1410 * restriction on some ALPHA platforms with early revision
1411 * 21174 PCI chipsets, such as the AlphaPC 164lx
1412 */
1413 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1414 #endif
1415
1416 /* Set the timer prescaler (always 66MHz) */
1417 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1418
1419 return(0);
1420 }
1421
1422 int
1423 bge_blockinit(sc)
1424 struct bge_softc *sc;
1425 {
1426 volatile struct bge_rcb *rcb;
1427 bus_size_t rcb_addr;
1428 int i;
1429 struct ifnet *ifp = &sc->ethercom.ec_if;
1430 bge_hostaddr taddr;
1431
1432 /*
1433 * Initialize the memory window pointer register so that
1434 * we can access the first 32K of internal NIC RAM. This will
1435 * allow us to set up the TX send ring RCBs and the RX return
1436 * ring RCBs, plus other things which live in NIC memory.
1437 */
1438
1439 pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1440 BGE_PCI_MEMWIN_BASEADDR, 0);
1441
1442 /* Configure mbuf memory pool */
1443 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1444 if (sc->bge_extram) {
1445 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1446 BGE_EXT_SSRAM);
1447 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1448 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1449 else
1450 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1451 } else {
1452 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1453 BGE_BUFFPOOL_1);
1454 if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1455 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1456 else
1457 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1458 }
1459
1460 /* Configure DMA resource pool */
1461 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1462 BGE_DMA_DESCRIPTORS);
1463 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1464 }
1465
1466 /* Configure mbuf pool watermarks */
1467 #ifdef ORIG_WPAUL_VALUES
1468 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1469 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1470 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1471 #else
1472 /* new broadcom docs strongly recommend these: */
1473 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1474 if (ifp->if_mtu > ETHER_MAX_LEN) {
1475 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1476 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1477 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1478 } else {
1479 /* Values from Linux driver... */
1480 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1481 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1482 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1483 }
1484 } else {
1485 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1486 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1487 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1488 }
1489 #endif
1490
1491 /* Configure DMA resource watermarks */
1492 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1493 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1494
1495 /* Enable buffer manager */
1496 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1497 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1498 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1499
1500 /* Poll for buffer manager start indication */
1501 for (i = 0; i < BGE_TIMEOUT; i++) {
1502 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1503 break;
1504 DELAY(10);
1505 }
1506
1507 if (i == BGE_TIMEOUT) {
1508 printf("%s: buffer manager failed to start\n",
1509 sc->bge_dev.dv_xname);
1510 return(ENXIO);
1511 }
1512 }
1513
1514 /* Enable flow-through queues */
1515 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1516 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1517
1518 /* Wait until queue initialization is complete */
1519 for (i = 0; i < BGE_TIMEOUT; i++) {
1520 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1521 break;
1522 DELAY(10);
1523 }
1524
1525 if (i == BGE_TIMEOUT) {
1526 printf("%s: flow-through queue init failed\n",
1527 sc->bge_dev.dv_xname);
1528 return(ENXIO);
1529 }
1530
1531 /* Initialize the standard RX ring control block */
1532 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1533 bge_set_hostaddr(&rcb->bge_hostaddr,
1534 BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1535 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1536 rcb->bge_maxlen_flags =
1537 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1538 } else {
1539 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1540 }
1541 if (sc->bge_extram)
1542 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1543 else
1544 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1545 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1546 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1547 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1548 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1549
1550 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1551 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1552 } else {
1553 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1554 }
1555
1556 /*
1557 * Initialize the jumbo RX ring control block
1558 * We set the 'ring disabled' bit in the flags
1559 * field until we're actually ready to start
1560 * using this ring (i.e. once we set the MTU
1561 * high enough to require it).
1562 */
1563 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1564 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1565 bge_set_hostaddr(&rcb->bge_hostaddr,
1566 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1567 rcb->bge_maxlen_flags =
1568 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1569 BGE_RCB_FLAG_RING_DISABLED);
1570 if (sc->bge_extram)
1571 rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1572 else
1573 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1574
1575 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1576 rcb->bge_hostaddr.bge_addr_hi);
1577 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1578 rcb->bge_hostaddr.bge_addr_lo);
1579 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1580 rcb->bge_maxlen_flags);
1581 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1582
1583 /* Set up dummy disabled mini ring RCB */
1584 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1585 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1586 BGE_RCB_FLAG_RING_DISABLED);
1587 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1588 rcb->bge_maxlen_flags);
1589
1590 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1591 offsetof(struct bge_ring_data, bge_info),
1592 sizeof (struct bge_gib),
1593 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1594 }
1595
1596 /*
1597 * Set the BD ring replentish thresholds. The recommended
1598 * values are 1/8th the number of descriptors allocated to
1599 * each ring.
1600 */
1601 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1602 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1603
1604 /*
1605 * Disable all unused send rings by setting the 'ring disabled'
1606 * bit in the flags field of all the TX send ring control blocks.
1607 * These are located in NIC memory.
1608 */
1609 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1610 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1611 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1612 BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1613 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1614 rcb_addr += sizeof(struct bge_rcb);
1615 }
1616
1617 /* Configure TX RCB 0 (we use only the first ring) */
1618 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1619 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1620 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1621 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1622 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1623 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1624 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1625 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1626 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1627 }
1628
1629 /* Disable all unused RX return rings */
1630 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1631 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1632 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1633 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1634 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1635 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1636 BGE_RCB_FLAG_RING_DISABLED));
1637 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1638 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1639 (i * (sizeof(u_int64_t))), 0);
1640 rcb_addr += sizeof(struct bge_rcb);
1641 }
1642
1643 /* Initialize RX ring indexes */
1644 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1645 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1646 CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1647
1648 /*
1649 * Set up RX return ring 0
1650 * Note that the NIC address for RX return rings is 0x00000000.
1651 * The return rings live entirely within the host, so the
1652 * nicaddr field in the RCB isn't used.
1653 */
1654 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1655 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1656 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1657 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1658 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1659 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1660 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1661
1662 /* Set random backoff seed for TX */
1663 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1664 LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1665 LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1666 LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1667 BGE_TX_BACKOFF_SEED_MASK);
1668
1669 /* Set inter-packet gap */
1670 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1671
1672 /*
1673 * Specify which ring to use for packets that don't match
1674 * any RX rules.
1675 */
1676 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1677
1678 /*
1679 * Configure number of RX lists. One interrupt distribution
1680 * list, sixteen active lists, one bad frames class.
1681 */
1682 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1683
1684 /* Inialize RX list placement stats mask. */
1685 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1686 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1687
1688 /* Disable host coalescing until we get it set up */
1689 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1690
1691 /* Poll to make sure it's shut down. */
1692 for (i = 0; i < BGE_TIMEOUT; i++) {
1693 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1694 break;
1695 DELAY(10);
1696 }
1697
1698 if (i == BGE_TIMEOUT) {
1699 printf("%s: host coalescing engine failed to idle\n",
1700 sc->bge_dev.dv_xname);
1701 return(ENXIO);
1702 }
1703
1704 /* Set up host coalescing defaults */
1705 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1706 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1707 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1708 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1709 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1710 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1711 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1712 }
1713 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1714 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1715
1716 /* Set up address of statistics block */
1717 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1718 bge_set_hostaddr(&taddr,
1719 BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1720 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1721 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1722 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1723 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1724 }
1725
1726 /* Set up address of status block */
1727 bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1728 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1729 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1730 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1731 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1732 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1733
1734 /* Turn on host coalescing state machine */
1735 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1736
1737 /* Turn on RX BD completion state machine and enable attentions */
1738 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1739 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1740
1741 /* Turn on RX list placement state machine */
1742 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1743
1744 /* Turn on RX list selector state machine. */
1745 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1746 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1747 }
1748
1749 /* Turn on DMA, clear stats */
1750 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1751 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1752 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1753 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1754 (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1755
1756 /* Set misc. local control, enable interrupts on attentions */
1757 sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1758
1759 #ifdef notdef
1760 /* Assert GPIO pins for PHY reset */
1761 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1762 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1763 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1764 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1765 #endif
1766
1767 #if defined(not_quite_yet)
1768 /* Linux driver enables enable gpio pin #1 on 5700s */
1769 if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1770 sc->bge_local_ctrl_reg |=
1771 (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1772 }
1773 #endif
1774 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1775
1776 /* Turn on DMA completion state machine */
1777 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1778 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1779 }
1780
1781 /* Turn on write DMA state machine */
1782 CSR_WRITE_4(sc, BGE_WDMA_MODE,
1783 BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1784
1785 /* Turn on read DMA state machine */
1786 CSR_WRITE_4(sc, BGE_RDMA_MODE,
1787 BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1788
1789 /* Turn on RX data completion state machine */
1790 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1791
1792 /* Turn on RX BD initiator state machine */
1793 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1794
1795 /* Turn on RX data and RX BD initiator state machine */
1796 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1797
1798 /* Turn on Mbuf cluster free state machine */
1799 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1800 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1801 }
1802
1803 /* Turn on send BD completion state machine */
1804 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1805
1806 /* Turn on send data completion state machine */
1807 CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1808
1809 /* Turn on send data initiator state machine */
1810 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1811
1812 /* Turn on send BD initiator state machine */
1813 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1814
1815 /* Turn on send BD selector state machine */
1816 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1817
1818 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1819 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1820 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1821
1822 /* ack/clear link change events */
1823 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1824 BGE_MACSTAT_CFG_CHANGED);
1825 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1826
1827 /* Enable PHY auto polling (for MII/GMII only) */
1828 if (sc->bge_tbi) {
1829 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1830 } else {
1831 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1832 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1833 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1834 BGE_EVTENB_MI_INTERRUPT);
1835 }
1836
1837 /* Enable link state change attentions. */
1838 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1839
1840 return(0);
1841 }
1842
1843 static const struct bge_revision {
1844 uint32_t br_chipid;
1845 uint32_t br_quirks;
1846 const char *br_name;
1847 } bge_revisions[] = {
1848 { BGE_CHIPID_BCM5700_A0,
1849 BGE_QUIRK_LINK_STATE_BROKEN,
1850 "BCM5700 A0" },
1851
1852 { BGE_CHIPID_BCM5700_A1,
1853 BGE_QUIRK_LINK_STATE_BROKEN,
1854 "BCM5700 A1" },
1855
1856 { BGE_CHIPID_BCM5700_B0,
1857 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1858 "BCM5700 B0" },
1859
1860 { BGE_CHIPID_BCM5700_B1,
1861 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1862 "BCM5700 B1" },
1863
1864 { BGE_CHIPID_BCM5700_B2,
1865 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1866 "BCM5700 B2" },
1867
1868 /* This is treated like a BCM5700 Bx */
1869 { BGE_CHIPID_BCM5700_ALTIMA,
1870 BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1871 "BCM5700 Altima" },
1872
1873 { BGE_CHIPID_BCM5700_C0,
1874 0,
1875 "BCM5700 C0" },
1876
1877 { BGE_CHIPID_BCM5701_A0,
1878 0, /*XXX really, just not known */
1879 "BCM5701 A0" },
1880
1881 { BGE_CHIPID_BCM5701_B0,
1882 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1883 "BCM5701 B0" },
1884
1885 { BGE_CHIPID_BCM5701_B2,
1886 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1887 "BCM5701 B2" },
1888
1889 { BGE_CHIPID_BCM5701_B5,
1890 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1891 "BCM5701 B5" },
1892
1893 { BGE_CHIPID_BCM5703_A0,
1894 0,
1895 "BCM5703 A0" },
1896
1897 { BGE_CHIPID_BCM5703_A1,
1898 0,
1899 "BCM5703 A1" },
1900
1901 { BGE_CHIPID_BCM5703_A2,
1902 BGE_QUIRK_ONLY_PHY_1,
1903 "BCM5703 A2" },
1904
1905 { BGE_CHIPID_BCM5703_A3,
1906 BGE_QUIRK_ONLY_PHY_1,
1907 "BCM5703 A3" },
1908
1909 { BGE_CHIPID_BCM5704_A0,
1910 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1911 "BCM5704 A0" },
1912
1913 { BGE_CHIPID_BCM5704_A1,
1914 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1915 "BCM5704 A1" },
1916
1917 { BGE_CHIPID_BCM5704_A2,
1918 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1919 "BCM5704 A2" },
1920
1921 { BGE_CHIPID_BCM5704_A3,
1922 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1923 "BCM5704 A3" },
1924
1925 { BGE_CHIPID_BCM5705_A0,
1926 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1927 "BCM5705 A0" },
1928
1929 { BGE_CHIPID_BCM5705_A1,
1930 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1931 "BCM5705 A1" },
1932
1933 { BGE_CHIPID_BCM5705_A2,
1934 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1935 "BCM5705 A2" },
1936
1937 { BGE_CHIPID_BCM5705_A3,
1938 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1939 "BCM5705 A3" },
1940
1941 { BGE_CHIPID_BCM5750_A0,
1942 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1943 "BCM5750 A1" },
1944
1945 { BGE_CHIPID_BCM5750_A1,
1946 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1947 "BCM5750 A1" },
1948
1949 { BGE_CHIPID_BCM5751_A1,
1950 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1951 "BCM5751 A1" },
1952
1953 { 0, 0, NULL }
1954 };
1955
1956 /*
1957 * Some defaults for major revisions, so that newer steppings
1958 * that we don't know about have a shot at working.
1959 */
1960 static const struct bge_revision bge_majorrevs[] = {
1961 { BGE_ASICREV_BCM5700,
1962 BGE_QUIRK_LINK_STATE_BROKEN,
1963 "unknown BCM5700" },
1964
1965 { BGE_ASICREV_BCM5701,
1966 BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1967 "unknown BCM5701" },
1968
1969 { BGE_ASICREV_BCM5703,
1970 0,
1971 "unknown BCM5703" },
1972
1973 { BGE_ASICREV_BCM5704,
1974 BGE_QUIRK_ONLY_PHY_1,
1975 "unknown BCM5704" },
1976
1977 { BGE_ASICREV_BCM5705,
1978 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1979 "unknown BCM5705" },
1980
1981 { BGE_ASICREV_BCM5750,
1982 BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1983 "unknown BCM5750" },
1984
1985 { 0,
1986 0,
1987 NULL }
1988 };
1989
1990
1991 static const struct bge_revision *
1992 bge_lookup_rev(uint32_t chipid)
1993 {
1994 const struct bge_revision *br;
1995
1996 for (br = bge_revisions; br->br_name != NULL; br++) {
1997 if (br->br_chipid == chipid)
1998 return (br);
1999 }
2000
2001 for (br = bge_majorrevs; br->br_name != NULL; br++) {
2002 if (br->br_chipid == BGE_ASICREV(chipid))
2003 return (br);
2004 }
2005
2006 return (NULL);
2007 }
2008
2009 static const struct bge_product {
2010 pci_vendor_id_t bp_vendor;
2011 pci_product_id_t bp_product;
2012 const char *bp_name;
2013 } bge_products[] = {
2014 /*
2015 * The BCM5700 documentation seems to indicate that the hardware
2016 * still has the Alteon vendor ID burned into it, though it
2017 * should always be overridden by the value in the EEPROM. We'll
2018 * check for it anyway.
2019 */
2020 { PCI_VENDOR_ALTEON,
2021 PCI_PRODUCT_ALTEON_BCM5700,
2022 "Broadcom BCM5700 Gigabit Ethernet",
2023 },
2024 { PCI_VENDOR_ALTEON,
2025 PCI_PRODUCT_ALTEON_BCM5701,
2026 "Broadcom BCM5701 Gigabit Ethernet",
2027 },
2028
2029 { PCI_VENDOR_ALTIMA,
2030 PCI_PRODUCT_ALTIMA_AC1000,
2031 "Altima AC1000 Gigabit Ethernet",
2032 },
2033 { PCI_VENDOR_ALTIMA,
2034 PCI_PRODUCT_ALTIMA_AC1001,
2035 "Altima AC1001 Gigabit Ethernet",
2036 },
2037 { PCI_VENDOR_ALTIMA,
2038 PCI_PRODUCT_ALTIMA_AC9100,
2039 "Altima AC9100 Gigabit Ethernet",
2040 },
2041
2042 { PCI_VENDOR_BROADCOM,
2043 PCI_PRODUCT_BROADCOM_BCM5700,
2044 "Broadcom BCM5700 Gigabit Ethernet",
2045 },
2046 { PCI_VENDOR_BROADCOM,
2047 PCI_PRODUCT_BROADCOM_BCM5701,
2048 "Broadcom BCM5701 Gigabit Ethernet",
2049 },
2050 { PCI_VENDOR_BROADCOM,
2051 PCI_PRODUCT_BROADCOM_BCM5702,
2052 "Broadcom BCM5702 Gigabit Ethernet",
2053 },
2054 { PCI_VENDOR_BROADCOM,
2055 PCI_PRODUCT_BROADCOM_BCM5702X,
2056 "Broadcom BCM5702X Gigabit Ethernet" },
2057
2058 { PCI_VENDOR_BROADCOM,
2059 PCI_PRODUCT_BROADCOM_BCM5703,
2060 "Broadcom BCM5703 Gigabit Ethernet",
2061 },
2062 { PCI_VENDOR_BROADCOM,
2063 PCI_PRODUCT_BROADCOM_BCM5703X,
2064 "Broadcom BCM5703X Gigabit Ethernet",
2065 },
2066 { PCI_VENDOR_BROADCOM,
2067 PCI_PRODUCT_BROADCOM_BCM5703A3,
2068 "Broadcom BCM5703A3 Gigabit Ethernet",
2069 },
2070
2071 { PCI_VENDOR_BROADCOM,
2072 PCI_PRODUCT_BROADCOM_BCM5704C,
2073 "Broadcom BCM5704C Dual Gigabit Ethernet",
2074 },
2075 { PCI_VENDOR_BROADCOM,
2076 PCI_PRODUCT_BROADCOM_BCM5704S,
2077 "Broadcom BCM5704S Dual Gigabit Ethernet",
2078 },
2079
2080 { PCI_VENDOR_BROADCOM,
2081 PCI_PRODUCT_BROADCOM_BCM5705,
2082 "Broadcom BCM5705 Gigabit Ethernet",
2083 },
2084 { PCI_VENDOR_BROADCOM,
2085 PCI_PRODUCT_BROADCOM_BCM5705K,
2086 "Broadcom BCM5705K Gigabit Ethernet",
2087 },
2088 { PCI_VENDOR_BROADCOM,
2089 PCI_PRODUCT_BROADCOM_BCM5705_ALT,
2090 "Broadcom BCM5705 Gigabit Ethernet",
2091 },
2092 { PCI_VENDOR_BROADCOM,
2093 PCI_PRODUCT_BROADCOM_BCM5705M,
2094 "Broadcom BCM5705M Gigabit Ethernet",
2095 },
2096
2097 { PCI_VENDOR_BROADCOM,
2098 PCI_PRODUCT_BROADCOM_BCM5721,
2099 "Broadcom BCM5721 Gigabit Ethernet",
2100 },
2101
2102 { PCI_VENDOR_BROADCOM,
2103 PCI_PRODUCT_BROADCOM_BCM5750,
2104 "Broadcom BCM5750 Gigabit Ethernet",
2105 },
2106
2107 { PCI_VENDOR_BROADCOM,
2108 PCI_PRODUCT_BROADCOM_BCM5750M,
2109 "Broadcom BCM5750M Gigabit Ethernet",
2110 },
2111
2112 { PCI_VENDOR_BROADCOM,
2113 PCI_PRODUCT_BROADCOM_BCM5751,
2114 "Broadcom BCM5751 Gigabit Ethernet",
2115 },
2116
2117 { PCI_VENDOR_BROADCOM,
2118 PCI_PRODUCT_BROADCOM_BCM5751M,
2119 "Broadcom BCM5751M Gigabit Ethernet",
2120 },
2121
2122 { PCI_VENDOR_BROADCOM,
2123 PCI_PRODUCT_BROADCOM_BCM5782,
2124 "Broadcom BCM5782 Gigabit Ethernet",
2125 },
2126 { PCI_VENDOR_BROADCOM,
2127 PCI_PRODUCT_BROADCOM_BCM5788,
2128 "Broadcom BCM5788 Gigabit Ethernet",
2129 },
2130
2131 { PCI_VENDOR_BROADCOM,
2132 PCI_PRODUCT_BROADCOM_BCM5901,
2133 "Broadcom BCM5901 Fast Ethernet",
2134 },
2135 { PCI_VENDOR_BROADCOM,
2136 PCI_PRODUCT_BROADCOM_BCM5901A2,
2137 "Broadcom BCM5901A2 Fast Ethernet",
2138 },
2139
2140 { PCI_VENDOR_SCHNEIDERKOCH,
2141 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2142 "SysKonnect SK-9Dx1 Gigabit Ethernet",
2143 },
2144
2145 { PCI_VENDOR_3COM,
2146 PCI_PRODUCT_3COM_3C996,
2147 "3Com 3c996 Gigabit Ethernet",
2148 },
2149
2150 { 0,
2151 0,
2152 NULL },
2153 };
2154
2155 static const struct bge_product *
2156 bge_lookup(const struct pci_attach_args *pa)
2157 {
2158 const struct bge_product *bp;
2159
2160 for (bp = bge_products; bp->bp_name != NULL; bp++) {
2161 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2162 PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2163 return (bp);
2164 }
2165
2166 return (NULL);
2167 }
2168
2169 int
2170 bge_setpowerstate(sc, powerlevel)
2171 struct bge_softc *sc;
2172 int powerlevel;
2173 {
2174 #ifdef NOTYET
2175 u_int32_t pm_ctl = 0;
2176
2177 /* XXX FIXME: make sure indirect accesses enabled? */
2178 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2179 pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2180 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2181
2182 /* clear the PME_assert bit and power state bits, enable PME */
2183 pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2184 pm_ctl &= ~PCIM_PSTAT_DMASK;
2185 pm_ctl |= (1 << 8);
2186
2187 if (powerlevel == 0) {
2188 pm_ctl |= PCIM_PSTAT_D0;
2189 pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2190 pm_ctl, 2);
2191 DELAY(10000);
2192 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2193 DELAY(10000);
2194
2195 #ifdef NOTYET
2196 /* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2197 bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2198 #endif
2199 DELAY(40); DELAY(40); DELAY(40);
2200 DELAY(10000); /* above not quite adequate on 5700 */
2201 return 0;
2202 }
2203
2204
2205 /*
2206 * Entering ACPI power states D1-D3 is achieved by wiggling
2207 * GMII gpio pins. Example code assumes all hardware vendors
2208 * followed Broadom's sample pcb layout. Until we verify that
2209 * for all supported OEM cards, states D1-D3 are unsupported.
2210 */
2211 printf("%s: power state %d unimplemented; check GPIO pins\n",
2212 sc->bge_dev.dv_xname, powerlevel);
2213 #endif
2214 return EOPNOTSUPP;
2215 }
2216
2217
2218 /*
2219 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2220 * against our list and return its name if we find a match. Note
2221 * that since the Broadcom controller contains VPD support, we
2222 * can get the device name string from the controller itself instead
2223 * of the compiled-in string. This is a little slow, but it guarantees
2224 * we'll always announce the right product name.
2225 */
2226 int
2227 bge_probe(parent, match, aux)
2228 struct device *parent;
2229 struct cfdata *match;
2230 void *aux;
2231 {
2232 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2233
2234 if (bge_lookup(pa) != NULL)
2235 return (1);
2236
2237 return (0);
2238 }
2239
2240 void
2241 bge_attach(parent, self, aux)
2242 struct device *parent, *self;
2243 void *aux;
2244 {
2245 struct bge_softc *sc = (struct bge_softc *)self;
2246 struct pci_attach_args *pa = aux;
2247 const struct bge_product *bp;
2248 const struct bge_revision *br;
2249 pci_chipset_tag_t pc = pa->pa_pc;
2250 pci_intr_handle_t ih;
2251 const char *intrstr = NULL;
2252 bus_dma_segment_t seg;
2253 int rseg;
2254 u_int32_t hwcfg = 0;
2255 u_int32_t mac_addr = 0;
2256 u_int32_t command;
2257 struct ifnet *ifp;
2258 caddr_t kva;
2259 u_char eaddr[ETHER_ADDR_LEN];
2260 pcireg_t memtype;
2261 bus_addr_t memaddr;
2262 bus_size_t memsize;
2263 u_int32_t pm_ctl;
2264
2265 bp = bge_lookup(pa);
2266 KASSERT(bp != NULL);
2267
2268 sc->bge_pa = *pa;
2269
2270 aprint_naive(": Ethernet controller\n");
2271 aprint_normal(": %s\n", bp->bp_name);
2272
2273 /*
2274 * Map control/status registers.
2275 */
2276 DPRINTFN(5, ("Map control/status regs\n"));
2277 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2278 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2279 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2280 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2281
2282 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2283 aprint_error("%s: failed to enable memory mapping!\n",
2284 sc->bge_dev.dv_xname);
2285 return;
2286 }
2287
2288 DPRINTFN(5, ("pci_mem_find\n"));
2289 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2290 switch (memtype) {
2291 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2292 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2293 if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2294 memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2295 &memaddr, &memsize) == 0)
2296 break;
2297 default:
2298 aprint_error("%s: can't find mem space\n",
2299 sc->bge_dev.dv_xname);
2300 return;
2301 }
2302
2303 DPRINTFN(5, ("pci_intr_map\n"));
2304 if (pci_intr_map(pa, &ih)) {
2305 aprint_error("%s: couldn't map interrupt\n",
2306 sc->bge_dev.dv_xname);
2307 return;
2308 }
2309
2310 DPRINTFN(5, ("pci_intr_string\n"));
2311 intrstr = pci_intr_string(pc, ih);
2312
2313 DPRINTFN(5, ("pci_intr_establish\n"));
2314 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2315
2316 if (sc->bge_intrhand == NULL) {
2317 aprint_error("%s: couldn't establish interrupt",
2318 sc->bge_dev.dv_xname);
2319 if (intrstr != NULL)
2320 aprint_normal(" at %s", intrstr);
2321 aprint_normal("\n");
2322 return;
2323 }
2324 aprint_normal("%s: interrupting at %s\n",
2325 sc->bge_dev.dv_xname, intrstr);
2326
2327 /*
2328 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2329 * can clobber the chip's PCI config-space power control registers,
2330 * leaving the card in D3 powersave state.
2331 * We do not have memory-mapped registers in this state,
2332 * so force device into D0 state before starting initialization.
2333 */
2334 pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2335 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2336 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2337 pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2338 DELAY(1000); /* 27 usec is allegedly sufficent */
2339
2340 /*
2341 * Save ASIC rev. Look up any quirks associated with this
2342 * ASIC.
2343 */
2344 sc->bge_chipid =
2345 pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2346 BGE_PCIMISCCTL_ASICREV;
2347
2348 /*
2349 * Detect PCI-Express devices
2350 * XXX: guessed from Linux/FreeBSD; no documentation
2351 */
2352 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 &&
2353 pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
2354 NULL, NULL) != 0)
2355 sc->bge_pcie = 1;
2356 else
2357 sc->bge_pcie = 0;
2358
2359 /* Try to reset the chip. */
2360 DPRINTFN(5, ("bge_reset\n"));
2361 bge_reset(sc);
2362
2363 if (bge_chipinit(sc)) {
2364 aprint_error("%s: chip initialization failed\n",
2365 sc->bge_dev.dv_xname);
2366 bge_release_resources(sc);
2367 return;
2368 }
2369
2370 /*
2371 * Get station address from the EEPROM.
2372 */
2373 mac_addr = bge_readmem_ind(sc, 0x0c14);
2374 if ((mac_addr >> 16) == 0x484b) {
2375 eaddr[0] = (u_char)(mac_addr >> 8);
2376 eaddr[1] = (u_char)(mac_addr >> 0);
2377 mac_addr = bge_readmem_ind(sc, 0x0c18);
2378 eaddr[2] = (u_char)(mac_addr >> 24);
2379 eaddr[3] = (u_char)(mac_addr >> 16);
2380 eaddr[4] = (u_char)(mac_addr >> 8);
2381 eaddr[5] = (u_char)(mac_addr >> 0);
2382 } else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2383 BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2384 aprint_error("%s: failed to read station address\n",
2385 sc->bge_dev.dv_xname);
2386 bge_release_resources(sc);
2387 return;
2388 }
2389
2390 br = bge_lookup_rev(sc->bge_chipid);
2391 aprint_normal("%s: ", sc->bge_dev.dv_xname);
2392
2393 if (br == NULL) {
2394 aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
2395 sc->bge_quirks = 0;
2396 } else {
2397 aprint_normal("ASIC %s (0x%04x)",
2398 br->br_name, sc->bge_chipid >> 16);
2399 sc->bge_quirks |= br->br_quirks;
2400 }
2401 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2402
2403 /* Allocate the general information block and ring buffers. */
2404 if (pci_dma64_available(pa))
2405 sc->bge_dmatag = pa->pa_dmat64;
2406 else
2407 sc->bge_dmatag = pa->pa_dmat;
2408 DPRINTFN(5, ("bus_dmamem_alloc\n"));
2409 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2410 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2411 aprint_error("%s: can't alloc rx buffers\n",
2412 sc->bge_dev.dv_xname);
2413 return;
2414 }
2415 DPRINTFN(5, ("bus_dmamem_map\n"));
2416 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2417 sizeof(struct bge_ring_data), &kva,
2418 BUS_DMA_NOWAIT)) {
2419 aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2420 sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2421 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2422 return;
2423 }
2424 DPRINTFN(5, ("bus_dmamem_create\n"));
2425 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2426 sizeof(struct bge_ring_data), 0,
2427 BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2428 aprint_error("%s: can't create DMA map\n",
2429 sc->bge_dev.dv_xname);
2430 bus_dmamem_unmap(sc->bge_dmatag, kva,
2431 sizeof(struct bge_ring_data));
2432 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2433 return;
2434 }
2435 DPRINTFN(5, ("bus_dmamem_load\n"));
2436 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2437 sizeof(struct bge_ring_data), NULL,
2438 BUS_DMA_NOWAIT)) {
2439 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2440 bus_dmamem_unmap(sc->bge_dmatag, kva,
2441 sizeof(struct bge_ring_data));
2442 bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2443 return;
2444 }
2445
2446 DPRINTFN(5, ("bzero\n"));
2447 sc->bge_rdata = (struct bge_ring_data *)kva;
2448
2449 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2450
2451 /* Try to allocate memory for jumbo buffers. */
2452 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2453 if (bge_alloc_jumbo_mem(sc)) {
2454 aprint_error("%s: jumbo buffer allocation failed\n",
2455 sc->bge_dev.dv_xname);
2456 } else
2457 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2458 }
2459
2460 /* Set default tuneable values. */
2461 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2462 sc->bge_rx_coal_ticks = 150;
2463 sc->bge_rx_max_coal_bds = 64;
2464 #ifdef ORIG_WPAUL_VALUES
2465 sc->bge_tx_coal_ticks = 150;
2466 sc->bge_tx_max_coal_bds = 128;
2467 #else
2468 sc->bge_tx_coal_ticks = 300;
2469 sc->bge_tx_max_coal_bds = 400;
2470 #endif
2471
2472 /* Set up ifnet structure */
2473 ifp = &sc->ethercom.ec_if;
2474 ifp->if_softc = sc;
2475 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2476 ifp->if_ioctl = bge_ioctl;
2477 ifp->if_start = bge_start;
2478 ifp->if_init = bge_init;
2479 ifp->if_watchdog = bge_watchdog;
2480 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2481 IFQ_SET_READY(&ifp->if_snd);
2482 DPRINTFN(5, ("bcopy\n"));
2483 strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2484
2485 if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2486 sc->ethercom.ec_if.if_capabilities |=
2487 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2488 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2489 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2490 sc->ethercom.ec_capabilities |=
2491 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2492
2493 /*
2494 * Do MII setup.
2495 */
2496 DPRINTFN(5, ("mii setup\n"));
2497 sc->bge_mii.mii_ifp = ifp;
2498 sc->bge_mii.mii_readreg = bge_miibus_readreg;
2499 sc->bge_mii.mii_writereg = bge_miibus_writereg;
2500 sc->bge_mii.mii_statchg = bge_miibus_statchg;
2501
2502 /*
2503 * Figure out what sort of media we have by checking the
2504 * hardware config word in the first 32k of NIC internal memory,
2505 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2506 * cards, this value appears to be unset. If that's the
2507 * case, we have to rely on identifying the NIC by its PCI
2508 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2509 */
2510 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2511 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2512 } else {
2513 bge_read_eeprom(sc, (caddr_t)&hwcfg,
2514 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2515 hwcfg = be32toh(hwcfg);
2516 }
2517 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2518 sc->bge_tbi = 1;
2519
2520 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2521 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2522 SK_SUBSYSID_9D41)
2523 sc->bge_tbi = 1;
2524
2525 if (sc->bge_tbi) {
2526 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2527 bge_ifmedia_sts);
2528 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2529 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2530 0, NULL);
2531 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2532 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2533 } else {
2534 /*
2535 * Do transceiver setup.
2536 */
2537 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2538 bge_ifmedia_sts);
2539 mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2540 MII_PHY_ANY, MII_OFFSET_ANY,
2541 MIIF_FORCEANEG|MIIF_DOPAUSE);
2542
2543 if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2544 printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2545 ifmedia_add(&sc->bge_mii.mii_media,
2546 IFM_ETHER|IFM_MANUAL, 0, NULL);
2547 ifmedia_set(&sc->bge_mii.mii_media,
2548 IFM_ETHER|IFM_MANUAL);
2549 } else
2550 ifmedia_set(&sc->bge_mii.mii_media,
2551 IFM_ETHER|IFM_AUTO);
2552 }
2553
2554 /*
2555 * When using the BCM5701 in PCI-X mode, data corruption has
2556 * been observed in the first few bytes of some received packets.
2557 * Aligning the packet buffer in memory eliminates the corruption.
2558 * Unfortunately, this misaligns the packet payloads. On platforms
2559 * which do not support unaligned accesses, we will realign the
2560 * payloads by copying the received packets.
2561 */
2562 if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2563 /* If in PCI-X mode, work around the alignment bug. */
2564 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2565 (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2566 BGE_PCISTATE_PCI_BUSSPEED)
2567 sc->bge_rx_alignment_bug = 1;
2568 }
2569
2570 /*
2571 * Call MI attach routine.
2572 */
2573 DPRINTFN(5, ("if_attach\n"));
2574 if_attach(ifp);
2575 DPRINTFN(5, ("ether_ifattach\n"));
2576 ether_ifattach(ifp, eaddr);
2577 #ifdef BGE_EVENT_COUNTERS
2578 /*
2579 * Attach event counters.
2580 */
2581 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2582 NULL, sc->bge_dev.dv_xname, "intr");
2583 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2584 NULL, sc->bge_dev.dv_xname, "tx_xoff");
2585 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2586 NULL, sc->bge_dev.dv_xname, "tx_xon");
2587 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2588 NULL, sc->bge_dev.dv_xname, "rx_xoff");
2589 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2590 NULL, sc->bge_dev.dv_xname, "rx_xon");
2591 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2592 NULL, sc->bge_dev.dv_xname, "rx_macctl");
2593 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2594 NULL, sc->bge_dev.dv_xname, "xoffentered");
2595 #endif /* BGE_EVENT_COUNTERS */
2596 DPRINTFN(5, ("callout_init\n"));
2597 callout_init(&sc->bge_timeout);
2598
2599 sc->bge_powerhook = powerhook_establish(bge_powerhook, sc);
2600 if (sc->bge_powerhook == NULL)
2601 printf("%s: WARNING: unable to establish PCI power hook\n",
2602 sc->bge_dev.dv_xname);
2603 }
2604
2605 void
2606 bge_release_resources(sc)
2607 struct bge_softc *sc;
2608 {
2609 if (sc->bge_vpd_prodname != NULL)
2610 free(sc->bge_vpd_prodname, M_DEVBUF);
2611
2612 if (sc->bge_vpd_readonly != NULL)
2613 free(sc->bge_vpd_readonly, M_DEVBUF);
2614 }
2615
2616 void
2617 bge_reset(sc)
2618 struct bge_softc *sc;
2619 {
2620 struct pci_attach_args *pa = &sc->bge_pa;
2621 u_int32_t cachesize, command, pcistate, new_pcistate;
2622 int i, val;
2623
2624 /* Save some important PCI state. */
2625 cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2626 command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2627 pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2628
2629 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2630 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2631 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2632
2633 val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2634 /*
2635 * XXX: from FreeBSD/Linux; no documentation
2636 */
2637 if (sc->bge_pcie) {
2638 if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2639 CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2640 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2641 /* No idea what that actually means */
2642 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2643 val |= (1<<29);
2644 }
2645 }
2646
2647 /* Issue global reset */
2648 bge_writereg_ind(sc, BGE_MISC_CFG, val);
2649
2650 DELAY(1000);
2651
2652 /*
2653 * XXX: from FreeBSD/Linux; no documentation
2654 */
2655 if (sc->bge_pcie) {
2656 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2657 pcireg_t reg;
2658
2659 DELAY(500000);
2660 /* XXX: Magic Numbers */
2661 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
2662 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
2663 reg | (1 << 15));
2664 }
2665 /* XXX: Magic Numbers */
2666 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN1, 0xf5000);
2667 }
2668
2669 /* Reset some of the PCI state that got zapped by reset */
2670 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2671 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2672 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2673 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2674 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2675 bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2676
2677 /* Enable memory arbiter. */
2678 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2679 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2680 }
2681
2682 /*
2683 * Prevent PXE restart: write a magic number to the
2684 * general communications memory at 0xB50.
2685 */
2686 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2687
2688 /*
2689 * Poll the value location we just wrote until
2690 * we see the 1's complement of the magic number.
2691 * This indicates that the firmware initialization
2692 * is complete.
2693 */
2694 for (i = 0; i < 750; i++) {
2695 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2696 if (val == ~BGE_MAGIC_NUMBER)
2697 break;
2698 DELAY(1000);
2699 }
2700
2701 if (i == 750) {
2702 printf("%s: firmware handshake timed out, val = %x\n",
2703 sc->bge_dev.dv_xname, val);
2704 return;
2705 }
2706
2707 /*
2708 * XXX Wait for the value of the PCISTATE register to
2709 * return to its original pre-reset state. This is a
2710 * fairly good indicator of reset completion. If we don't
2711 * wait for the reset to fully complete, trying to read
2712 * from the device's non-PCI registers may yield garbage
2713 * results.
2714 */
2715 for (i = 0; i < BGE_TIMEOUT; i++) {
2716 new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
2717 BGE_PCI_PCISTATE);
2718 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2719 (pcistate & ~BGE_PCISTATE_RESERVED))
2720 break;
2721 DELAY(10);
2722 }
2723 if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2724 (pcistate & ~BGE_PCISTATE_RESERVED)) {
2725 printf("%s: pcistate failed to revert\n",
2726 sc->bge_dev.dv_xname);
2727 }
2728
2729 /* XXX: from FreeBSD/Linux; no documentation */
2730 if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2731 CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2732
2733 /* Enable memory arbiter. */
2734 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2735 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2736 }
2737
2738 /* Fix up byte swapping */
2739 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2740
2741 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2742
2743 DELAY(10000);
2744 }
2745
2746 /*
2747 * Frame reception handling. This is called if there's a frame
2748 * on the receive return list.
2749 *
2750 * Note: we have to be able to handle two possibilities here:
2751 * 1) the frame is from the jumbo recieve ring
2752 * 2) the frame is from the standard receive ring
2753 */
2754
2755 void
2756 bge_rxeof(sc)
2757 struct bge_softc *sc;
2758 {
2759 struct ifnet *ifp;
2760 int stdcnt = 0, jumbocnt = 0;
2761 bus_dmamap_t dmamap;
2762 bus_addr_t offset, toff;
2763 bus_size_t tlen;
2764 int tosync;
2765
2766 ifp = &sc->ethercom.ec_if;
2767
2768 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2769 offsetof(struct bge_ring_data, bge_status_block),
2770 sizeof (struct bge_status_block),
2771 BUS_DMASYNC_POSTREAD);
2772
2773 offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2774 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2775 sc->bge_rx_saved_considx;
2776
2777 toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2778
2779 if (tosync < 0) {
2780 tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2781 sizeof (struct bge_rx_bd);
2782 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2783 toff, tlen, BUS_DMASYNC_POSTREAD);
2784 tosync = -tosync;
2785 }
2786
2787 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2788 offset, tosync * sizeof (struct bge_rx_bd),
2789 BUS_DMASYNC_POSTREAD);
2790
2791 while(sc->bge_rx_saved_considx !=
2792 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2793 struct bge_rx_bd *cur_rx;
2794 u_int32_t rxidx;
2795 struct mbuf *m = NULL;
2796
2797 cur_rx = &sc->bge_rdata->
2798 bge_rx_return_ring[sc->bge_rx_saved_considx];
2799
2800 rxidx = cur_rx->bge_idx;
2801 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2802
2803 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2804 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2805 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2806 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2807 jumbocnt++;
2808 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2809 ifp->if_ierrors++;
2810 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2811 continue;
2812 }
2813 if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2814 NULL)== ENOBUFS) {
2815 ifp->if_ierrors++;
2816 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2817 continue;
2818 }
2819 } else {
2820 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2821 m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2822 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2823 stdcnt++;
2824 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2825 sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2826 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2827 ifp->if_ierrors++;
2828 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2829 continue;
2830 }
2831 if (bge_newbuf_std(sc, sc->bge_std,
2832 NULL, dmamap) == ENOBUFS) {
2833 ifp->if_ierrors++;
2834 bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2835 continue;
2836 }
2837 }
2838
2839 ifp->if_ipackets++;
2840 #ifndef __NO_STRICT_ALIGNMENT
2841 /*
2842 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2843 * the Rx buffer has the layer-2 header unaligned.
2844 * If our CPU requires alignment, re-align by copying.
2845 */
2846 if (sc->bge_rx_alignment_bug) {
2847 memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2848 cur_rx->bge_len);
2849 m->m_data += ETHER_ALIGN;
2850 }
2851 #endif
2852
2853 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2854 m->m_pkthdr.rcvif = ifp;
2855
2856 #if NBPFILTER > 0
2857 /*
2858 * Handle BPF listeners. Let the BPF user see the packet.
2859 */
2860 if (ifp->if_bpf)
2861 bpf_mtap(ifp->if_bpf, m);
2862 #endif
2863
2864 m->m_pkthdr.csum_flags = M_CSUM_IPv4;
2865
2866 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2867 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2868 /*
2869 * Rx transport checksum-offload may also
2870 * have bugs with packets which, when transmitted,
2871 * were `runts' requiring padding.
2872 */
2873 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2874 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2875 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2876 m->m_pkthdr.csum_data =
2877 cur_rx->bge_tcp_udp_csum;
2878 m->m_pkthdr.csum_flags |=
2879 (M_CSUM_TCPv4|M_CSUM_UDPv4|
2880 M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2881 }
2882
2883 /*
2884 * If we received a packet with a vlan tag, pass it
2885 * to vlan_input() instead of ether_input().
2886 */
2887 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
2888 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
2889
2890 (*ifp->if_input)(ifp, m);
2891 }
2892
2893 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2894 if (stdcnt)
2895 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2896 if (jumbocnt)
2897 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2898 }
2899
2900 void
2901 bge_txeof(sc)
2902 struct bge_softc *sc;
2903 {
2904 struct bge_tx_bd *cur_tx = NULL;
2905 struct ifnet *ifp;
2906 struct txdmamap_pool_entry *dma;
2907 bus_addr_t offset, toff;
2908 bus_size_t tlen;
2909 int tosync;
2910 struct mbuf *m;
2911
2912 ifp = &sc->ethercom.ec_if;
2913
2914 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2915 offsetof(struct bge_ring_data, bge_status_block),
2916 sizeof (struct bge_status_block),
2917 BUS_DMASYNC_POSTREAD);
2918
2919 offset = offsetof(struct bge_ring_data, bge_tx_ring);
2920 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2921 sc->bge_tx_saved_considx;
2922
2923 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2924
2925 if (tosync < 0) {
2926 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2927 sizeof (struct bge_tx_bd);
2928 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2929 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2930 tosync = -tosync;
2931 }
2932
2933 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2934 offset, tosync * sizeof (struct bge_tx_bd),
2935 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2936
2937 /*
2938 * Go through our tx ring and free mbufs for those
2939 * frames that have been sent.
2940 */
2941 while (sc->bge_tx_saved_considx !=
2942 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2943 u_int32_t idx = 0;
2944
2945 idx = sc->bge_tx_saved_considx;
2946 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2947 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2948 ifp->if_opackets++;
2949 m = sc->bge_cdata.bge_tx_chain[idx];
2950 if (m != NULL) {
2951 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2952 dma = sc->txdma[idx];
2953 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2954 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2955 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2956 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2957 sc->txdma[idx] = NULL;
2958
2959 m_freem(m);
2960 }
2961 sc->bge_txcnt--;
2962 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2963 ifp->if_timer = 0;
2964 }
2965
2966 if (cur_tx != NULL)
2967 ifp->if_flags &= ~IFF_OACTIVE;
2968 }
2969
2970 int
2971 bge_intr(xsc)
2972 void *xsc;
2973 {
2974 struct bge_softc *sc;
2975 struct ifnet *ifp;
2976
2977 sc = xsc;
2978 ifp = &sc->ethercom.ec_if;
2979
2980 #ifdef notdef
2981 /* Avoid this for now -- checking this register is expensive. */
2982 /* Make sure this is really our interrupt. */
2983 if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2984 return (0);
2985 #endif
2986 /* Ack interrupt and stop others from occuring. */
2987 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2988
2989 BGE_EVCNT_INCR(sc->bge_ev_intr);
2990
2991 /*
2992 * Process link state changes.
2993 * Grrr. The link status word in the status block does
2994 * not work correctly on the BCM5700 rev AX and BX chips,
2995 * according to all avaibable information. Hence, we have
2996 * to enable MII interrupts in order to properly obtain
2997 * async link changes. Unfortunately, this also means that
2998 * we have to read the MAC status register to detect link
2999 * changes, thereby adding an additional register access to
3000 * the interrupt handler.
3001 */
3002
3003 if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3004 u_int32_t status;
3005
3006 status = CSR_READ_4(sc, BGE_MAC_STS);
3007 if (status & BGE_MACSTAT_MI_INTERRUPT) {
3008 sc->bge_link = 0;
3009 callout_stop(&sc->bge_timeout);
3010 bge_tick(sc);
3011 /* Clear the interrupt */
3012 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3013 BGE_EVTENB_MI_INTERRUPT);
3014 bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
3015 bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
3016 BRGPHY_INTRS);
3017 }
3018 } else {
3019 if (sc->bge_rdata->bge_status_block.bge_status &
3020 BGE_STATFLAG_LINKSTATE_CHANGED) {
3021 sc->bge_link = 0;
3022 callout_stop(&sc->bge_timeout);
3023 bge_tick(sc);
3024 /* Clear the interrupt */
3025 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3026 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3027 BGE_MACSTAT_LINK_CHANGED);
3028 }
3029 }
3030
3031 if (ifp->if_flags & IFF_RUNNING) {
3032 /* Check RX return ring producer/consumer */
3033 bge_rxeof(sc);
3034
3035 /* Check TX ring producer/consumer */
3036 bge_txeof(sc);
3037 }
3038
3039 if (sc->bge_pending_rxintr_change) {
3040 uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3041 uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3042 uint32_t junk;
3043
3044 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3045 DELAY(10);
3046 junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3047
3048 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3049 DELAY(10);
3050 junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3051
3052 sc->bge_pending_rxintr_change = 0;
3053 }
3054 bge_handle_events(sc);
3055
3056 /* Re-enable interrupts. */
3057 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3058
3059 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3060 bge_start(ifp);
3061
3062 return (1);
3063 }
3064
3065 void
3066 bge_tick(xsc)
3067 void *xsc;
3068 {
3069 struct bge_softc *sc = xsc;
3070 struct mii_data *mii = &sc->bge_mii;
3071 struct ifmedia *ifm = NULL;
3072 struct ifnet *ifp = &sc->ethercom.ec_if;
3073 int s;
3074
3075 s = splnet();
3076
3077 bge_stats_update(sc);
3078 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3079 if (sc->bge_link) {
3080 splx(s);
3081 return;
3082 }
3083
3084 if (sc->bge_tbi) {
3085 ifm = &sc->bge_ifmedia;
3086 if (CSR_READ_4(sc, BGE_MAC_STS) &
3087 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3088 sc->bge_link++;
3089 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3090 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3091 bge_start(ifp);
3092 }
3093 splx(s);
3094 return;
3095 }
3096
3097 mii_tick(mii);
3098
3099 if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
3100 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3101 sc->bge_link++;
3102 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3103 bge_start(ifp);
3104 }
3105
3106 splx(s);
3107 }
3108
3109 void
3110 bge_stats_update(sc)
3111 struct bge_softc *sc;
3112 {
3113 struct ifnet *ifp = &sc->ethercom.ec_if;
3114 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3115 bus_size_t rstats = BGE_RX_STATS;
3116
3117 #define READ_RSTAT(sc, stats, stat) \
3118 CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3119
3120 if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3121 ifp->if_collisions +=
3122 READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3123 READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3124 READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3125 READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3126
3127 BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3128 READ_RSTAT(sc, rstats, outXoffSent));
3129 BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3130 READ_RSTAT(sc, rstats, outXonSent));
3131 BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3132 READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3133 BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3134 READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3135 BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3136 READ_RSTAT(sc, rstats, macControlFramesReceived));
3137 BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3138 READ_RSTAT(sc, rstats, xoffStateEntered));
3139 return;
3140 }
3141
3142 #undef READ_RSTAT
3143 #define READ_STAT(sc, stats, stat) \
3144 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3145
3146 ifp->if_collisions +=
3147 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3148 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3149 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3150 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3151 ifp->if_collisions;
3152
3153 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3154 READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3155 BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3156 READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3157 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3158 READ_STAT(sc, stats,
3159 xoffPauseFramesReceived.bge_addr_lo));
3160 BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3161 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3162 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3163 READ_STAT(sc, stats,
3164 macControlFramesReceived.bge_addr_lo));
3165 BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3166 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3167
3168 #undef READ_STAT
3169
3170 #ifdef notdef
3171 ifp->if_collisions +=
3172 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3173 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3174 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3175 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3176 ifp->if_collisions;
3177 #endif
3178 }
3179
3180 /*
3181 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3182 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3183 * but when such padded frames employ the bge IP/TCP checksum offload,
3184 * the hardware checksum assist gives incorrect results (possibly
3185 * from incorporating its own padding into the UDP/TCP checksum; who knows).
3186 * If we pad such runts with zeros, the onboard checksum comes out correct.
3187 */
3188 static __inline int
3189 bge_cksum_pad(struct mbuf *pkt)
3190 {
3191 struct mbuf *last = NULL;
3192 int padlen;
3193
3194 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3195
3196 /* if there's only the packet-header and we can pad there, use it. */
3197 if (pkt->m_pkthdr.len == pkt->m_len &&
3198 !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
3199 last = pkt;
3200 } else {
3201 /*
3202 * Walk packet chain to find last mbuf. We will either
3203 * pad there, or append a new mbuf and pad it
3204 * (thus perhaps avoiding the bcm5700 dma-min bug).
3205 */
3206 for (last = pkt; last->m_next != NULL; last = last->m_next) {
3207 (void) 0; /* do nothing*/
3208 }
3209
3210 /* `last' now points to last in chain. */
3211 if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
3212 (void) 0; /* we can pad here, in-place. */
3213 } else {
3214 /* Allocate new empty mbuf, pad it. Compact later. */
3215 struct mbuf *n;
3216 MGET(n, M_DONTWAIT, MT_DATA);
3217 n->m_len = 0;
3218 last->m_next = n;
3219 last = n;
3220 }
3221 }
3222
3223 #ifdef DEBUG
3224 /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
3225 KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
3226 #endif
3227 /* Now zero the pad area, to avoid the bge cksum-assist bug */
3228 memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3229 last->m_len += padlen;
3230 pkt->m_pkthdr.len += padlen;
3231 return 0;
3232 }
3233
3234 /*
3235 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3236 */
3237 static __inline int
3238 bge_compact_dma_runt(struct mbuf *pkt)
3239 {
3240 struct mbuf *m, *prev;
3241 int totlen, prevlen;
3242
3243 prev = NULL;
3244 totlen = 0;
3245 prevlen = -1;
3246
3247 for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3248 int mlen = m->m_len;
3249 int shortfall = 8 - mlen ;
3250
3251 totlen += mlen;
3252 if (mlen == 0) {
3253 continue;
3254 }
3255 if (mlen >= 8)
3256 continue;
3257
3258 /* If we get here, mbuf data is too small for DMA engine.
3259 * Try to fix by shuffling data to prev or next in chain.
3260 * If that fails, do a compacting deep-copy of the whole chain.
3261 */
3262
3263 /* Internal frag. If fits in prev, copy it there. */
3264 if (prev && !M_READONLY(prev) &&
3265 M_TRAILINGSPACE(prev) >= m->m_len) {
3266 bcopy(m->m_data,
3267 prev->m_data+prev->m_len,
3268 mlen);
3269 prev->m_len += mlen;
3270 m->m_len = 0;
3271 /* XXX stitch chain */
3272 prev->m_next = m_free(m);
3273 m = prev;
3274 continue;
3275 }
3276 else if (m->m_next != NULL && !M_READONLY(m) &&
3277 M_TRAILINGSPACE(m) >= shortfall &&
3278 m->m_next->m_len >= (8 + shortfall)) {
3279 /* m is writable and have enough data in next, pull up. */
3280
3281 bcopy(m->m_next->m_data,
3282 m->m_data+m->m_len,
3283 shortfall);
3284 m->m_len += shortfall;
3285 m->m_next->m_len -= shortfall;
3286 m->m_next->m_data += shortfall;
3287 }
3288 else if (m->m_next == NULL || 1) {
3289 /* Got a runt at the very end of the packet.
3290 * borrow data from the tail of the preceding mbuf and
3291 * update its length in-place. (The original data is still
3292 * valid, so we can do this even if prev is not writable.)
3293 */
3294
3295 /* if we'd make prev a runt, just move all of its data. */
3296 #ifdef DEBUG
3297 KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3298 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3299 #endif
3300 if ((prev->m_len - shortfall) < 8)
3301 shortfall = prev->m_len;
3302
3303 #ifdef notyet /* just do the safe slow thing for now */
3304 if (!M_READONLY(m)) {
3305 if (M_LEADINGSPACE(m) < shorfall) {
3306 void *m_dat;
3307 m_dat = (m->m_flags & M_PKTHDR) ?
3308 m->m_pktdat : m->dat;
3309 memmove(m_dat, mtod(m, void*), m->m_len);
3310 m->m_data = m_dat;
3311 }
3312 } else
3313 #endif /* just do the safe slow thing */
3314 {
3315 struct mbuf * n = NULL;
3316 int newprevlen = prev->m_len - shortfall;
3317
3318 MGET(n, M_NOWAIT, MT_DATA);
3319 if (n == NULL)
3320 return ENOBUFS;
3321 KASSERT(m->m_len + shortfall < MLEN
3322 /*,
3323 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3324
3325 /* first copy the data we're stealing from prev */
3326 bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3327
3328 /* update prev->m_len accordingly */
3329 prev->m_len -= shortfall;
3330
3331 /* copy data from runt m */
3332 bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3333
3334 /* n holds what we stole from prev, plus m */
3335 n->m_len = shortfall + m->m_len;
3336
3337 /* stitch n into chain and free m */
3338 n->m_next = m->m_next;
3339 prev->m_next = n;
3340 /* KASSERT(m->m_next == NULL); */
3341 m->m_next = NULL;
3342 m_free(m);
3343 m = n; /* for continuing loop */
3344 }
3345 }
3346 prevlen = m->m_len;
3347 }
3348 return 0;
3349 }
3350
3351 /*
3352 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
3353 * pointers to descriptors.
3354 */
3355 int
3356 bge_encap(sc, m_head, txidx)
3357 struct bge_softc *sc;
3358 struct mbuf *m_head;
3359 u_int32_t *txidx;
3360 {
3361 struct bge_tx_bd *f = NULL;
3362 u_int32_t frag, cur, cnt = 0;
3363 u_int16_t csum_flags = 0;
3364 struct txdmamap_pool_entry *dma;
3365 bus_dmamap_t dmamap;
3366 int i = 0;
3367 struct m_tag *mtag;
3368
3369 cur = frag = *txidx;
3370
3371 if (m_head->m_pkthdr.csum_flags) {
3372 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3373 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3374 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3375 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3376 }
3377
3378 /*
3379 * If we were asked to do an outboard checksum, and the NIC
3380 * has the bug where it sometimes adds in the Ethernet padding,
3381 * explicitly pad with zeros so the cksum will be correct either way.
3382 * (For now, do this for all chip versions, until newer
3383 * are confirmed to not require the workaround.)
3384 */
3385 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3386 #ifdef notyet
3387 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3388 #endif
3389 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3390 goto check_dma_bug;
3391
3392 if (bge_cksum_pad(m_head) != 0)
3393 return ENOBUFS;
3394
3395 check_dma_bug:
3396 if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3397 goto doit;
3398 /*
3399 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3400 * less than eight bytes. If we encounter a teeny mbuf
3401 * at the end of a chain, we can pad. Otherwise, copy.
3402 */
3403 if (bge_compact_dma_runt(m_head) != 0)
3404 return ENOBUFS;
3405
3406 doit:
3407 dma = SLIST_FIRST(&sc->txdma_list);
3408 if (dma == NULL)
3409 return ENOBUFS;
3410 dmamap = dma->dmamap;
3411
3412 /*
3413 * Start packing the mbufs in this chain into
3414 * the fragment pointers. Stop when we run out
3415 * of fragments or hit the end of the mbuf chain.
3416 */
3417 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3418 BUS_DMA_NOWAIT))
3419 return(ENOBUFS);
3420
3421 mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head);
3422
3423 for (i = 0; i < dmamap->dm_nsegs; i++) {
3424 f = &sc->bge_rdata->bge_tx_ring[frag];
3425 if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3426 break;
3427 bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3428 f->bge_len = dmamap->dm_segs[i].ds_len;
3429 f->bge_flags = csum_flags;
3430
3431 if (mtag != NULL) {
3432 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3433 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3434 } else {
3435 f->bge_vlan_tag = 0;
3436 }
3437 /*
3438 * Sanity check: avoid coming within 16 descriptors
3439 * of the end of the ring.
3440 */
3441 if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
3442 return(ENOBUFS);
3443 cur = frag;
3444 BGE_INC(frag, BGE_TX_RING_CNT);
3445 cnt++;
3446 }
3447
3448 if (i < dmamap->dm_nsegs)
3449 return ENOBUFS;
3450
3451 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3452 BUS_DMASYNC_PREWRITE);
3453
3454 if (frag == sc->bge_tx_saved_considx)
3455 return(ENOBUFS);
3456
3457 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3458 sc->bge_cdata.bge_tx_chain[cur] = m_head;
3459 SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3460 sc->txdma[cur] = dma;
3461 sc->bge_txcnt += cnt;
3462
3463 *txidx = frag;
3464
3465 return(0);
3466 }
3467
3468 /*
3469 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3470 * to the mbuf data regions directly in the transmit descriptors.
3471 */
3472 void
3473 bge_start(ifp)
3474 struct ifnet *ifp;
3475 {
3476 struct bge_softc *sc;
3477 struct mbuf *m_head = NULL;
3478 u_int32_t prodidx;
3479 int pkts = 0;
3480
3481 sc = ifp->if_softc;
3482
3483 if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3484 return;
3485
3486 prodidx = sc->bge_tx_prodidx;
3487
3488 while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3489 IFQ_POLL(&ifp->if_snd, m_head);
3490 if (m_head == NULL)
3491 break;
3492
3493 #if 0
3494 /*
3495 * XXX
3496 * safety overkill. If this is a fragmented packet chain
3497 * with delayed TCP/UDP checksums, then only encapsulate
3498 * it if we have enough descriptors to handle the entire
3499 * chain at once.
3500 * (paranoia -- may not actually be needed)
3501 */
3502 if (m_head->m_flags & M_FIRSTFRAG &&
3503 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3504 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3505 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3506 ifp->if_flags |= IFF_OACTIVE;
3507 break;
3508 }
3509 }
3510 #endif
3511
3512 /*
3513 * Pack the data into the transmit ring. If we
3514 * don't have room, set the OACTIVE flag and wait
3515 * for the NIC to drain the ring.
3516 */
3517 if (bge_encap(sc, m_head, &prodidx)) {
3518 ifp->if_flags |= IFF_OACTIVE;
3519 break;
3520 }
3521
3522 /* now we are committed to transmit the packet */
3523 IFQ_DEQUEUE(&ifp->if_snd, m_head);
3524 pkts++;
3525
3526 #if NBPFILTER > 0
3527 /*
3528 * If there's a BPF listener, bounce a copy of this frame
3529 * to him.
3530 */
3531 if (ifp->if_bpf)
3532 bpf_mtap(ifp->if_bpf, m_head);
3533 #endif
3534 }
3535 if (pkts == 0)
3536 return;
3537
3538 /* Transmit */
3539 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3540 if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG) /* 5700 b2 errata */
3541 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3542
3543 sc->bge_tx_prodidx = prodidx;
3544
3545 /*
3546 * Set a timeout in case the chip goes out to lunch.
3547 */
3548 ifp->if_timer = 5;
3549 }
3550
3551 int
3552 bge_init(ifp)
3553 struct ifnet *ifp;
3554 {
3555 struct bge_softc *sc = ifp->if_softc;
3556 u_int16_t *m;
3557 int s, error;
3558
3559 s = splnet();
3560
3561 ifp = &sc->ethercom.ec_if;
3562
3563 /* Cancel pending I/O and flush buffers. */
3564 bge_stop(sc);
3565 bge_reset(sc);
3566 bge_chipinit(sc);
3567
3568 /*
3569 * Init the various state machines, ring
3570 * control blocks and firmware.
3571 */
3572 error = bge_blockinit(sc);
3573 if (error != 0) {
3574 printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3575 error);
3576 splx(s);
3577 return error;
3578 }
3579
3580 ifp = &sc->ethercom.ec_if;
3581
3582 /* Specify MTU. */
3583 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3584 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3585
3586 /* Load our MAC address. */
3587 m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3588 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3589 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3590
3591 /* Enable or disable promiscuous mode as needed. */
3592 if (ifp->if_flags & IFF_PROMISC) {
3593 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3594 } else {
3595 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3596 }
3597
3598 /* Program multicast filter. */
3599 bge_setmulti(sc);
3600
3601 /* Init RX ring. */
3602 bge_init_rx_ring_std(sc);
3603
3604 /* Init jumbo RX ring. */
3605 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3606 bge_init_rx_ring_jumbo(sc);
3607
3608 /* Init our RX return ring index */
3609 sc->bge_rx_saved_considx = 0;
3610
3611 /* Init TX ring. */
3612 bge_init_tx_ring(sc);
3613
3614 /* Turn on transmitter */
3615 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3616
3617 /* Turn on receiver */
3618 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3619
3620 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3621
3622 /* Tell firmware we're alive. */
3623 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3624
3625 /* Enable host interrupts. */
3626 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3627 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3628 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3629
3630 bge_ifmedia_upd(ifp);
3631
3632 ifp->if_flags |= IFF_RUNNING;
3633 ifp->if_flags &= ~IFF_OACTIVE;
3634
3635 splx(s);
3636
3637 callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3638
3639 return 0;
3640 }
3641
3642 /*
3643 * Set media options.
3644 */
3645 int
3646 bge_ifmedia_upd(ifp)
3647 struct ifnet *ifp;
3648 {
3649 struct bge_softc *sc = ifp->if_softc;
3650 struct mii_data *mii = &sc->bge_mii;
3651 struct ifmedia *ifm = &sc->bge_ifmedia;
3652
3653 /* If this is a 1000baseX NIC, enable the TBI port. */
3654 if (sc->bge_tbi) {
3655 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3656 return(EINVAL);
3657 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3658 case IFM_AUTO:
3659 break;
3660 case IFM_1000_SX:
3661 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3662 BGE_CLRBIT(sc, BGE_MAC_MODE,
3663 BGE_MACMODE_HALF_DUPLEX);
3664 } else {
3665 BGE_SETBIT(sc, BGE_MAC_MODE,
3666 BGE_MACMODE_HALF_DUPLEX);
3667 }
3668 break;
3669 default:
3670 return(EINVAL);
3671 }
3672 /* XXX 802.3x flow control for 1000BASE-SX */
3673 return(0);
3674 }
3675
3676 sc->bge_link = 0;
3677 mii_mediachg(mii);
3678
3679 return(0);
3680 }
3681
3682 /*
3683 * Report current media status.
3684 */
3685 void
3686 bge_ifmedia_sts(ifp, ifmr)
3687 struct ifnet *ifp;
3688 struct ifmediareq *ifmr;
3689 {
3690 struct bge_softc *sc = ifp->if_softc;
3691 struct mii_data *mii = &sc->bge_mii;
3692
3693 if (sc->bge_tbi) {
3694 ifmr->ifm_status = IFM_AVALID;
3695 ifmr->ifm_active = IFM_ETHER;
3696 if (CSR_READ_4(sc, BGE_MAC_STS) &
3697 BGE_MACSTAT_TBI_PCS_SYNCHED)
3698 ifmr->ifm_status |= IFM_ACTIVE;
3699 ifmr->ifm_active |= IFM_1000_SX;
3700 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3701 ifmr->ifm_active |= IFM_HDX;
3702 else
3703 ifmr->ifm_active |= IFM_FDX;
3704 return;
3705 }
3706
3707 mii_pollstat(mii);
3708 ifmr->ifm_status = mii->mii_media_status;
3709 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
3710 sc->bge_flowflags;
3711 }
3712
3713 int
3714 bge_ioctl(ifp, command, data)
3715 struct ifnet *ifp;
3716 u_long command;
3717 caddr_t data;
3718 {
3719 struct bge_softc *sc = ifp->if_softc;
3720 struct ifreq *ifr = (struct ifreq *) data;
3721 int s, error = 0;
3722 struct mii_data *mii;
3723
3724 s = splnet();
3725
3726 switch(command) {
3727 case SIOCSIFFLAGS:
3728 if (ifp->if_flags & IFF_UP) {
3729 /*
3730 * If only the state of the PROMISC flag changed,
3731 * then just use the 'set promisc mode' command
3732 * instead of reinitializing the entire NIC. Doing
3733 * a full re-init means reloading the firmware and
3734 * waiting for it to start up, which may take a
3735 * second or two.
3736 */
3737 if (ifp->if_flags & IFF_RUNNING &&
3738 ifp->if_flags & IFF_PROMISC &&
3739 !(sc->bge_if_flags & IFF_PROMISC)) {
3740 BGE_SETBIT(sc, BGE_RX_MODE,
3741 BGE_RXMODE_RX_PROMISC);
3742 } else if (ifp->if_flags & IFF_RUNNING &&
3743 !(ifp->if_flags & IFF_PROMISC) &&
3744 sc->bge_if_flags & IFF_PROMISC) {
3745 BGE_CLRBIT(sc, BGE_RX_MODE,
3746 BGE_RXMODE_RX_PROMISC);
3747 } else
3748 bge_init(ifp);
3749 } else {
3750 if (ifp->if_flags & IFF_RUNNING) {
3751 bge_stop(sc);
3752 }
3753 }
3754 sc->bge_if_flags = ifp->if_flags;
3755 error = 0;
3756 break;
3757 case SIOCSIFMEDIA:
3758 /* XXX Flow control is not supported for 1000BASE-SX */
3759 if (sc->bge_tbi) {
3760 ifr->ifr_media &= ~IFM_ETH_FMASK;
3761 sc->bge_flowflags = 0;
3762 }
3763
3764 /* Flow control requires full-duplex mode. */
3765 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
3766 (ifr->ifr_media & IFM_FDX) == 0) {
3767 ifr->ifr_media &= ~IFM_ETH_FMASK;
3768 }
3769 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
3770 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
3771 /* We an do both TXPAUSE and RXPAUSE. */
3772 ifr->ifr_media |=
3773 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
3774 }
3775 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
3776 }
3777 /* FALLTHROUGH */
3778 case SIOCGIFMEDIA:
3779 if (sc->bge_tbi) {
3780 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3781 command);
3782 } else {
3783 mii = &sc->bge_mii;
3784 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3785 command);
3786 }
3787 break;
3788 default:
3789 error = ether_ioctl(ifp, command, data);
3790 if (error == ENETRESET) {
3791 if (ifp->if_flags & IFF_RUNNING)
3792 bge_setmulti(sc);
3793 error = 0;
3794 }
3795 break;
3796 }
3797
3798 splx(s);
3799
3800 return(error);
3801 }
3802
3803 void
3804 bge_watchdog(ifp)
3805 struct ifnet *ifp;
3806 {
3807 struct bge_softc *sc;
3808
3809 sc = ifp->if_softc;
3810
3811 printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3812
3813 ifp->if_flags &= ~IFF_RUNNING;
3814 bge_init(ifp);
3815
3816 ifp->if_oerrors++;
3817 }
3818
3819 static void
3820 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3821 {
3822 int i;
3823
3824 BGE_CLRBIT(sc, reg, bit);
3825
3826 for (i = 0; i < BGE_TIMEOUT; i++) {
3827 if ((CSR_READ_4(sc, reg) & bit) == 0)
3828 return;
3829 delay(100);
3830 }
3831
3832 printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3833 sc->bge_dev.dv_xname, (u_long) reg, bit);
3834 }
3835
3836 /*
3837 * Stop the adapter and free any mbufs allocated to the
3838 * RX and TX lists.
3839 */
3840 void
3841 bge_stop(sc)
3842 struct bge_softc *sc;
3843 {
3844 struct ifnet *ifp = &sc->ethercom.ec_if;
3845
3846 callout_stop(&sc->bge_timeout);
3847
3848 /*
3849 * Disable all of the receiver blocks
3850 */
3851 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3852 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3853 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3854 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3855 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3856 }
3857 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3858 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3859 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3860
3861 /*
3862 * Disable all of the transmit blocks
3863 */
3864 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3865 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3866 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3867 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3868 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3869 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3870 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3871 }
3872 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3873
3874 /*
3875 * Shut down all of the memory managers and related
3876 * state machines.
3877 */
3878 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3879 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3880 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3881 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3882 }
3883
3884 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3885 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3886
3887 if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3888 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3889 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3890 }
3891
3892 /* Disable host interrupts. */
3893 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3894 CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3895
3896 /*
3897 * Tell firmware we're shutting down.
3898 */
3899 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3900
3901 /* Free the RX lists. */
3902 bge_free_rx_ring_std(sc);
3903
3904 /* Free jumbo RX list. */
3905 bge_free_rx_ring_jumbo(sc);
3906
3907 /* Free TX buffers. */
3908 bge_free_tx_ring(sc);
3909
3910 /*
3911 * Isolate/power down the PHY.
3912 */
3913 if (!sc->bge_tbi)
3914 mii_down(&sc->bge_mii);
3915
3916 sc->bge_link = 0;
3917
3918 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3919
3920 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3921 }
3922
3923 /*
3924 * Stop all chip I/O so that the kernel's probe routines don't
3925 * get confused by errant DMAs when rebooting.
3926 */
3927 void
3928 bge_shutdown(xsc)
3929 void *xsc;
3930 {
3931 struct bge_softc *sc = (struct bge_softc *)xsc;
3932
3933 bge_stop(sc);
3934 bge_reset(sc);
3935 }
3936
3937
3938 static int
3939 sysctl_bge_verify(SYSCTLFN_ARGS)
3940 {
3941 int error, t;
3942 struct sysctlnode node;
3943
3944 node = *rnode;
3945 t = *(int*)rnode->sysctl_data;
3946 node.sysctl_data = &t;
3947 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3948 if (error || newp == NULL)
3949 return (error);
3950
3951 #if 0
3952 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
3953 node.sysctl_num, rnode->sysctl_num));
3954 #endif
3955
3956 if (node.sysctl_num == bge_rxthresh_nodenum) {
3957 if (t < 0 || t >= NBGE_RX_THRESH)
3958 return (EINVAL);
3959 bge_update_all_threshes(t);
3960 } else
3961 return (EINVAL);
3962
3963 *(int*)rnode->sysctl_data = t;
3964
3965 return (0);
3966 }
3967
3968 /*
3969 * Set up sysctl(3) MIB, hw.bge.*.
3970 *
3971 * TBD condition SYSCTL_PERMANENT on being an LKM or not
3972 */
3973 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
3974 {
3975 int rc, bge_root_num;
3976 const struct sysctlnode *node;
3977
3978 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3979 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3980 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3981 goto err;
3982 }
3983
3984 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3985 CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
3986 SYSCTL_DESCR("BGE interface controls"),
3987 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3988 goto err;
3989 }
3990
3991 bge_root_num = node->sysctl_num;
3992
3993 /* BGE Rx interrupt mitigation level */
3994 if ((rc = sysctl_createv(clog, 0, NULL, &node,
3995 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3996 CTLTYPE_INT, "rx_lvl",
3997 SYSCTL_DESCR("BGE receive interrupt mitigation level"),
3998 sysctl_bge_verify, 0,
3999 &bge_rx_thresh_lvl,
4000 0, CTL_HW, bge_root_num, CTL_CREATE,
4001 CTL_EOL)) != 0) {
4002 goto err;
4003 }
4004
4005 bge_rxthresh_nodenum = node->sysctl_num;
4006
4007 return;
4008
4009 err:
4010 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4011 }
4012
4013 void
4014 bge_powerhook(int why, void *hdl)
4015 {
4016 struct bge_softc *sc = (struct bge_softc *)hdl;
4017 struct ifnet *ifp = &sc->ethercom.ec_if;
4018 struct pci_attach_args *pa = &(sc->bge_pa);
4019 pci_chipset_tag_t pc = pa->pa_pc;
4020 pcitag_t tag = pa->pa_tag;
4021
4022 switch (why) {
4023 case PWR_SOFTSUSPEND:
4024 case PWR_SOFTSTANDBY:
4025 bge_shutdown(sc);
4026 break;
4027 case PWR_SOFTRESUME:
4028 if (ifp->if_flags & IFF_UP) {
4029 ifp->if_flags &= ~IFF_RUNNING;
4030 bge_init(ifp);
4031 }
4032 break;
4033 case PWR_SUSPEND:
4034 case PWR_STANDBY:
4035 pci_conf_capture(pc, tag, &sc->bge_pciconf);
4036 break;
4037 case PWR_RESUME:
4038 pci_conf_restore(pc, tag, &sc->bge_pciconf);
4039 break;
4040 }
4041
4042 return;
4043 }
4044