if_bgevar.h revision 1.11 1 /* $NetBSD: if_bgevar.h,v 1.11 2013/03/07 08:46:54 msaitoh Exp $ */
2 /*
3 * Copyright (c) 2001 Wind River Systems
4 * Copyright (c) 1997, 1998, 1999, 2001
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $FreeBSD: if_bgereg.h,v 1.1.2.7 2002/11/02 18:17:55 mp Exp $
35 */
36
37 /*
38 * BCM570x memory map. The internal memory layout varies somewhat
39 * depending on whether or not we have external SSRAM attached.
40 * The BCM5700 can have up to 16MB of external memory. The BCM5701
41 * is apparently not designed to use external SSRAM. The mappings
42 * up to the first 4 send rings are the same for both internal and
43 * external memory configurations. Note that mini RX ring space is
44 * only available with external SSRAM configurations, which means
45 * the mini RX ring is not supported on the BCM5701.
46 *
47 * The NIC's memory can be accessed by the host in one of 3 ways:
48 *
49 * 1) Indirect register access. The MEMWIN_BASEADDR and MEMWIN_DATA
50 * registers in PCI config space can be used to read any 32-bit
51 * address within the NIC's memory.
52 *
53 * 2) Memory window access. The MEMWIN_BASEADDR register in PCI config
54 * space can be used in conjunction with the memory window in the
55 * device register space at offset 0x8000 to read any 32K chunk
56 * of NIC memory.
57 *
58 * 3) Flat mode. If the 'flat mode' bit in the PCI state register is
59 * set, the device I/O mapping consumes 32MB of host address space,
60 * allowing all of the registers and internal NIC memory to be
61 * accessed directly. NIC memory addresses are offset by 0x01000000.
62 * Flat mode consumes so much host address space that it is not
63 * recommended.
64 */
65
66 #ifndef _DEV_PCI_IF_BGEVAR_H_
67 #define _DEV_PCI_IF_BGEVAR_H_
68
69 #include <sys/bus.h>
70 #include <net/if_ether.h>
71 #include <dev/pci/pcivar.h>
72
73 #define BGE_HOSTADDR(x, y) \
74 do { \
75 (x).bge_addr_lo = ((uint64_t) (y) & 0xffffffff); \
76 if (sizeof (bus_addr_t) == 8) \
77 (x).bge_addr_hi = ((uint64_t) (y) >> 32); \
78 else \
79 (x).bge_addr_hi = 0; \
80 } while(0)
81
82 #define RCB_WRITE_4(sc, rcb, offset, val) \
83 bus_space_write_4(sc->bge_btag, sc->bge_bhandle, \
84 rcb + offsetof(struct bge_rcb, offset), val)
85
86 /*
87 * Other utility macros.
88 */
89 #define BGE_INC(x, y) (x) = (x + 1) % y
90
91 /*
92 * Register access macros. The Tigon always uses memory mapped register
93 * accesses and all registers must be accessed with 32 bit operations.
94 */
95
96 #define CSR_WRITE_4(sc, reg, val) \
97 bus_space_write_4(sc->bge_btag, sc->bge_bhandle, reg, val)
98
99 #define CSR_READ_4(sc, reg) \
100 bus_space_read_4(sc->bge_btag, sc->bge_bhandle, reg)
101
102 #define CSR_WRITE_4_FLUSH(sc, reg, val) \
103 do { \
104 CSR_WRITE_4(sc, reg, val); \
105 CSR_READ_4(sc, reg); \
106 } while(0)
107
108 #define BGE_SETBIT(sc, reg, x) \
109 CSR_WRITE_4(sc, reg, (CSR_READ_4(sc, reg) | (x)))
110 #define BGE_SETBIT_FLUSH(sc, reg, x) \
111 do { \
112 BGE_SETBIT(sc, reg, x); \
113 CSR_READ_4(sc, reg); \
114 } while(0)
115 #define BGE_CLRBIT(sc, reg, x) \
116 CSR_WRITE_4(sc, reg, (CSR_READ_4(sc, reg) & ~(x)))
117 #define BGE_CLRBIT_FLUSH(sc, reg, x) \
118 do { \
119 BGE_CLRBIT(sc, reg, x); \
120 CSR_READ_4(sc, reg); \
121 } while(0)
122
123 #define PCI_SETBIT(pc, tag, reg, x) \
124 pci_conf_write(pc, tag, reg, (pci_conf_read(pc, tag, reg) | (x)))
125 #define PCI_CLRBIT(pc, tag, reg, x) \
126 pci_conf_write(pc, tag, reg, (pci_conf_read(pc, tag, reg) & ~(x)))
127
128 /*
129 * Memory management stuff. Note: the SSLOTS, MSLOTS and JSLOTS
130 * values are tuneable. They control the actual amount of buffers
131 * allocated for the standard, mini and jumbo receive rings.
132 */
133
134 #define BGE_SSLOTS 256
135 #define BGE_MSLOTS 256
136 #define BGE_JSLOTS 384
137 #define BGE_RSLOTS 256
138
139 #define BGE_JRAWLEN (BGE_JUMBO_FRAMELEN + ETHER_ALIGN)
140 #define BGE_JLEN (BGE_JRAWLEN + (sizeof(uint64_t) - \
141 (BGE_JRAWLEN % sizeof(uint64_t))))
142 #define BGE_JPAGESZ PAGE_SIZE
143 #define BGE_RESID (BGE_JPAGESZ - (BGE_JLEN * BGE_JSLOTS) % BGE_JPAGESZ)
144 #define BGE_JMEM ((BGE_JLEN * BGE_JSLOTS) + BGE_RESID)
145
146 /*
147 * Ring structures. Most of these reside in host memory and we tell
148 * the NIC where they are via the ring control blocks. The exceptions
149 * are the tx and command rings, which live in NIC memory and which
150 * we access via the shared memory window.
151 */
152 struct bge_ring_data {
153 struct bge_rx_bd bge_rx_std_ring[BGE_STD_RX_RING_CNT];
154 struct bge_rx_bd bge_rx_jumbo_ring[BGE_JUMBO_RX_RING_CNT];
155 struct bge_rx_bd bge_rx_return_ring[BGE_RETURN_RING_CNT];
156 struct bge_tx_bd bge_tx_ring[BGE_TX_RING_CNT];
157 struct bge_status_block bge_status_block;
158 struct bge_tx_desc *bge_tx_ring_nic;/* pointer to shared mem */
159 struct bge_cmd_desc *bge_cmd_ring; /* pointer to shared mem */
160 struct bge_gib bge_info;
161 };
162
163 #define BGE_RING_DMA_ADDR(sc, offset) \
164 ((sc)->bge_ring_map->dm_segs[0].ds_addr + \
165 offsetof(struct bge_ring_data, offset))
166
167 /*
168 * Number of DMA segments in a TxCB. Note that this is carefully
169 * chosen to make the total struct size an even power of two. It's
170 * critical that no TxCB be split across a page boundary since
171 * no attempt is made to allocate physically contiguous memory.
172 *
173 */
174 #if 0 /* pre-TSO values */
175 #define BGE_TXDMA_MAX ETHER_MAX_LEN_JUMBO
176 #ifdef _LP64
177 #define BGE_NTXSEG 30
178 #else
179 #define BGE_NTXSEG 31
180 #endif
181 #else /* TSO values */
182 #define BGE_TXDMA_MAX (round_page(IP_MAXPACKET)) /* for TSO */
183 #ifdef _LP64
184 #define BGE_NTXSEG 120 /* XXX just a guess */
185 #else
186 #define BGE_NTXSEG 124 /* XXX just a guess */
187 #endif
188 #endif /* TSO values */
189
190
191 /*
192 * Mbuf pointers. We need these to keep track of the virtual addresses
193 * of our mbuf chains since we can only convert from physical to virtual,
194 * not the other way around.
195 */
196 struct bge_chain_data {
197 struct mbuf *bge_tx_chain[BGE_TX_RING_CNT];
198 struct mbuf *bge_rx_std_chain[BGE_STD_RX_RING_CNT];
199 struct mbuf *bge_rx_jumbo_chain[BGE_JUMBO_RX_RING_CNT];
200 struct mbuf *bge_rx_mini_chain[BGE_MINI_RX_RING_CNT];
201 bus_dmamap_t bge_rx_std_map[BGE_STD_RX_RING_CNT];
202 bus_dmamap_t bge_rx_jumbo_map;
203 /* Stick the jumbo mem management stuff here too. */
204 void * bge_jslots[BGE_JSLOTS];
205 void * bge_jumbo_buf;
206 };
207
208 #define BGE_JUMBO_DMA_ADDR(sc, m) \
209 ((sc)->bge_cdata.bge_rx_jumbo_map->dm_segs[0].ds_addr + \
210 (mtod((m), char *) - (char *)(sc)->bge_cdata.bge_jumbo_buf))
211
212 struct bge_type {
213 uint16_t bge_vid;
214 uint16_t bge_did;
215 char *bge_name;
216 };
217
218 #define BGE_TIMEOUT 100000
219 #define BGE_TXCONS_UNSET 0xFFFF /* impossible value */
220
221 struct bge_jpool_entry {
222 int slot;
223 SLIST_ENTRY(bge_jpool_entry) jpool_entries;
224 };
225
226 struct bge_bcom_hack {
227 int reg;
228 int val;
229 };
230
231 struct txdmamap_pool_entry {
232 bus_dmamap_t dmamap;
233 SLIST_ENTRY(txdmamap_pool_entry) link;
234 };
235
236 #define ASF_ENABLE 1
237 #define ASF_NEW_HANDSHAKE 2
238 #define ASF_STACKUP 4
239
240 struct bge_softc {
241 device_t bge_dev;
242 struct ethercom ethercom; /* interface info */
243 bus_space_handle_t bge_bhandle;
244 bus_space_tag_t bge_btag;
245 void *bge_intrhand;
246 pci_chipset_tag_t sc_pc;
247 pcitag_t sc_pcitag;
248
249 struct mii_data bge_mii;
250 struct ifmedia bge_ifmedia; /* media info */
251 uint32_t bge_return_ring_cnt;
252 uint32_t bge_tx_prodidx;
253 bus_dma_tag_t bge_dmatag;
254 uint32_t bge_pcixcap;
255 uint32_t bge_pciecap;
256 uint32_t bge_chipid;
257 uint32_t bge_local_ctrl_reg;
258 uint8_t bge_asf_mode;
259 uint8_t bge_asf_count;
260 struct bge_ring_data *bge_rdata; /* rings */
261 struct bge_chain_data bge_cdata; /* mbufs */
262 bus_dmamap_t bge_ring_map;
263 uint16_t bge_tx_saved_considx;
264 uint16_t bge_rx_saved_considx;
265 uint16_t bge_ev_saved_considx;
266 uint16_t bge_std; /* current std ring head */
267 uint16_t bge_jumbo; /* current jumo ring head */
268 SLIST_HEAD(__bge_jfreehead, bge_jpool_entry) bge_jfree_listhead;
269 SLIST_HEAD(__bge_jinusehead, bge_jpool_entry) bge_jinuse_listhead;
270 uint32_t bge_stat_ticks;
271 uint32_t bge_rx_coal_ticks;
272 uint32_t bge_tx_coal_ticks;
273 uint32_t bge_rx_max_coal_bds;
274 uint32_t bge_tx_max_coal_bds;
275 uint32_t bge_tx_buf_ratio;
276 uint32_t bge_sts;
277 #define BGE_STS_LINK 0x00000001 /* MAC link status */
278 #define BGE_STS_LINK_EVT 0x00000002 /* pending link event */
279 #define BGE_STS_AUTOPOLL 0x00000004 /* PHY auto-polling */
280 #define BGE_STS_BIT(sc, x) ((sc)->bge_sts & (x))
281 #define BGE_STS_SETBIT(sc, x) ((sc)->bge_sts |= (x))
282 #define BGE_STS_CLRBIT(sc, x) ((sc)->bge_sts &= ~(x))
283 int bge_if_flags;
284 uint32_t bge_flags;
285 int bge_flowflags;
286 #ifdef BGE_EVENT_COUNTERS
287 /*
288 * Event counters.
289 */
290 struct evcnt bge_ev_intr; /* interrupts */
291 struct evcnt bge_ev_tx_xoff; /* send PAUSE(len>0) packets */
292 struct evcnt bge_ev_tx_xon; /* send PAUSE(len=0) packets */
293 struct evcnt bge_ev_rx_xoff; /* receive PAUSE(len>0) packets */
294 struct evcnt bge_ev_rx_xon; /* receive PAUSE(len=0) packets */
295 struct evcnt bge_ev_rx_macctl; /* receive MAC control packets */
296 struct evcnt bge_ev_xoffentered;/* XOFF state entered */
297 #endif /* BGE_EVENT_COUNTERS */
298 int bge_txcnt;
299 struct callout bge_timeout;
300 char *bge_vpd_prodname;
301 char *bge_vpd_readonly;
302 int bge_pending_rxintr_change;
303 SLIST_HEAD(, txdmamap_pool_entry) txdma_list;
304 struct txdmamap_pool_entry *txdma[BGE_TX_RING_CNT];
305
306 struct sysctllog *bge_log;
307
308 krndsource_t rnd_source; /* random source */
309 };
310
311 #endif /* _DEV_PCI_IF_BGEVAR_H_ */
312