Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.16
      1  1.16    dyoung /*	$NetBSD: if_bnx.c,v 1.16 2007/12/31 22:52:14 dyoung Exp $	*/
      2   1.4    bouyer /*	$OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $	*/
      3   1.1    bouyer 
      4   1.1    bouyer /*-
      5   1.1    bouyer  * Copyright (c) 2006 Broadcom Corporation
      6   1.1    bouyer  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7   1.1    bouyer  *
      8   1.1    bouyer  * Redistribution and use in source and binary forms, with or without
      9   1.1    bouyer  * modification, are permitted provided that the following conditions
     10   1.1    bouyer  * are met:
     11   1.1    bouyer  *
     12   1.1    bouyer  * 1. Redistributions of source code must retain the above copyright
     13   1.1    bouyer  *    notice, this list of conditions and the following disclaimer.
     14   1.1    bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1    bouyer  *    notice, this list of conditions and the following disclaimer in the
     16   1.1    bouyer  *    documentation and/or other materials provided with the distribution.
     17   1.1    bouyer  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18   1.1    bouyer  *    may be used to endorse or promote products derived from this software
     19   1.1    bouyer  *    without specific prior written consent.
     20   1.1    bouyer  *
     21   1.1    bouyer  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22   1.1    bouyer  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23   1.1    bouyer  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24   1.1    bouyer  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25   1.1    bouyer  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26   1.1    bouyer  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27   1.1    bouyer  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28   1.1    bouyer  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29   1.1    bouyer  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30   1.1    bouyer  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31   1.1    bouyer  * THE POSSIBILITY OF SUCH DAMAGE.
     32   1.1    bouyer  */
     33   1.1    bouyer 
     34   1.1    bouyer #include <sys/cdefs.h>
     35   1.1    bouyer #if 0
     36   1.1    bouyer __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37   1.1    bouyer #endif
     38  1.16    dyoung __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.16 2007/12/31 22:52:14 dyoung Exp $");
     39   1.1    bouyer 
     40   1.1    bouyer /*
     41   1.1    bouyer  * The following controllers are supported by this driver:
     42   1.1    bouyer  *   BCM5706C A2, A3
     43   1.1    bouyer  *   BCM5708C B1
     44   1.1    bouyer  *
     45   1.1    bouyer  * The following controllers are not supported by this driver:
     46   1.1    bouyer  * (These are not "Production" versions of the controller.)
     47   1.1    bouyer  *
     48   1.1    bouyer  *   BCM5706C A0, A1
     49   1.1    bouyer  *   BCM5706S A0, A1, A2, A3
     50   1.1    bouyer  *   BCM5708C A0, B0
     51   1.1    bouyer  *   BCM5708S A0, B0, B1
     52   1.1    bouyer  */
     53   1.1    bouyer 
     54   1.1    bouyer #include <sys/callout.h>
     55   1.1    bouyer 
     56   1.1    bouyer #include <dev/pci/if_bnxreg.h>
     57   1.1    bouyer #include <dev/microcode/bnx/bnxfw.h>
     58   1.1    bouyer 
     59   1.1    bouyer /****************************************************************************/
     60   1.1    bouyer /* BNX Driver Version                                                       */
     61   1.1    bouyer /****************************************************************************/
     62   1.1    bouyer const char bnx_driver_version[] = "v0.9.6";
     63   1.1    bouyer 
     64   1.1    bouyer /****************************************************************************/
     65   1.1    bouyer /* BNX Debug Options                                                        */
     66   1.1    bouyer /****************************************************************************/
     67   1.1    bouyer #ifdef BNX_DEBUG
     68   1.1    bouyer 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     69   1.1    bouyer 
     70   1.1    bouyer 	/*          0 = Never              */
     71   1.1    bouyer 	/*          1 = 1 in 2,147,483,648 */
     72   1.1    bouyer 	/*        256 = 1 in     8,388,608 */
     73   1.1    bouyer 	/*       2048 = 1 in     1,048,576 */
     74   1.1    bouyer 	/*      65536 = 1 in        32,768 */
     75   1.1    bouyer 	/*    1048576 = 1 in         2,048 */
     76   1.1    bouyer 	/*  268435456 =	1 in             8 */
     77   1.1    bouyer 	/*  536870912 = 1 in             4 */
     78   1.1    bouyer 	/* 1073741824 = 1 in             2 */
     79   1.1    bouyer 
     80   1.1    bouyer 	/* Controls how often the l2_fhdr frame error check will fail. */
     81   1.1    bouyer 	int bnx_debug_l2fhdr_status_check = 0;
     82   1.1    bouyer 
     83   1.1    bouyer 	/* Controls how often the unexpected attention check will fail. */
     84   1.1    bouyer 	int bnx_debug_unexpected_attention = 0;
     85   1.1    bouyer 
     86   1.1    bouyer 	/* Controls how often to simulate an mbuf allocation failure. */
     87   1.1    bouyer 	int bnx_debug_mbuf_allocation_failure = 0;
     88   1.1    bouyer 
     89   1.1    bouyer 	/* Controls how often to simulate a DMA mapping failure. */
     90   1.1    bouyer 	int bnx_debug_dma_map_addr_failure = 0;
     91   1.1    bouyer 
     92   1.1    bouyer 	/* Controls how often to simulate a bootcode failure. */
     93   1.1    bouyer 	int bnx_debug_bootcode_running_failure = 0;
     94   1.1    bouyer #endif
     95   1.1    bouyer 
     96   1.1    bouyer /****************************************************************************/
     97   1.1    bouyer /* PCI Device ID Table                                                      */
     98   1.1    bouyer /*                                                                          */
     99   1.1    bouyer /* Used by bnx_probe() to identify the devices supported by this driver.    */
    100   1.1    bouyer /****************************************************************************/
    101   1.1    bouyer static const struct bnx_product {
    102   1.1    bouyer 	pci_vendor_id_t		bp_vendor;
    103   1.1    bouyer 	pci_product_id_t	bp_product;
    104   1.1    bouyer 	pci_vendor_id_t		bp_subvendor;
    105   1.1    bouyer 	pci_product_id_t	bp_subproduct;
    106   1.1    bouyer 	const char		*bp_name;
    107   1.1    bouyer } bnx_devices[] = {
    108   1.1    bouyer #ifdef PCI_SUBPRODUCT_HP_NC370T
    109   1.1    bouyer 	{
    110   1.1    bouyer 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    111   1.1    bouyer 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    112   1.1    bouyer 	  "HP NC370T Multifunction Gigabit Server Adapter"
    113   1.1    bouyer 	},
    114   1.1    bouyer #endif
    115   1.1    bouyer #ifdef PCI_SUBPRODUCT_HP_NC370i
    116   1.1    bouyer 	{
    117   1.1    bouyer 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    118   1.1    bouyer 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    119   1.1    bouyer 	  "HP NC370i Multifunction Gigabit Server Adapter"
    120   1.1    bouyer 	},
    121   1.1    bouyer #endif
    122   1.1    bouyer 	{
    123   1.1    bouyer 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    124   1.1    bouyer 	  0, 0,
    125   1.1    bouyer 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    126   1.1    bouyer 	},
    127   1.1    bouyer #ifdef PCI_SUBPRODUCT_HP_NC370F
    128   1.1    bouyer 	{
    129   1.1    bouyer 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    130   1.1    bouyer 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    131   1.1    bouyer 	  "HP NC370F Multifunction Gigabit Server Adapter"
    132   1.1    bouyer 	},
    133   1.1    bouyer #endif
    134   1.1    bouyer 	{
    135   1.1    bouyer 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    136   1.1    bouyer 	  0, 0,
    137   1.1    bouyer 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    138   1.1    bouyer 	},
    139   1.1    bouyer 	{
    140   1.1    bouyer 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    141   1.1    bouyer 	  0, 0,
    142   1.1    bouyer 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    143   1.1    bouyer 	},
    144   1.1    bouyer 	{
    145   1.1    bouyer 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    146   1.1    bouyer 	  0, 0,
    147   1.1    bouyer 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    148   1.1    bouyer 	},
    149   1.1    bouyer };
    150   1.1    bouyer 
    151   1.1    bouyer /****************************************************************************/
    152   1.1    bouyer /* Supported Flash NVRAM device data.                                       */
    153   1.1    bouyer /****************************************************************************/
    154   1.1    bouyer static struct flash_spec flash_table[] =
    155   1.1    bouyer {
    156   1.1    bouyer 	/* Slow EEPROM */
    157   1.1    bouyer 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    158   1.1    bouyer 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    159   1.1    bouyer 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    160   1.1    bouyer 	 "EEPROM - slow"},
    161   1.1    bouyer 	/* Expansion entry 0001 */
    162   1.1    bouyer 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    163   1.1    bouyer 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    164   1.1    bouyer 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    165   1.1    bouyer 	 "Entry 0001"},
    166   1.1    bouyer 	/* Saifun SA25F010 (non-buffered flash) */
    167   1.1    bouyer 	/* strap, cfg1, & write1 need updates */
    168   1.1    bouyer 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    169   1.1    bouyer 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    170   1.1    bouyer 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    171   1.1    bouyer 	 "Non-buffered flash (128kB)"},
    172   1.1    bouyer 	/* Saifun SA25F020 (non-buffered flash) */
    173   1.1    bouyer 	/* strap, cfg1, & write1 need updates */
    174   1.1    bouyer 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    175   1.1    bouyer 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    176   1.1    bouyer 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    177   1.1    bouyer 	 "Non-buffered flash (256kB)"},
    178   1.1    bouyer 	/* Expansion entry 0100 */
    179   1.1    bouyer 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    180   1.1    bouyer 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    181   1.1    bouyer 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    182   1.1    bouyer 	 "Entry 0100"},
    183   1.1    bouyer 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    184   1.1    bouyer 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    185   1.1    bouyer 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    186   1.1    bouyer 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    187   1.1    bouyer 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    188   1.1    bouyer 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    189   1.1    bouyer 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    190   1.1    bouyer 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    191   1.1    bouyer 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    192   1.1    bouyer 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    193   1.1    bouyer 	/* Saifun SA25F005 (non-buffered flash) */
    194   1.1    bouyer 	/* strap, cfg1, & write1 need updates */
    195   1.1    bouyer 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    196   1.1    bouyer 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    197   1.1    bouyer 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    198   1.1    bouyer 	 "Non-buffered flash (64kB)"},
    199   1.1    bouyer 	/* Fast EEPROM */
    200   1.1    bouyer 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    201   1.1    bouyer 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    202   1.1    bouyer 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    203   1.1    bouyer 	 "EEPROM - fast"},
    204   1.1    bouyer 	/* Expansion entry 1001 */
    205   1.1    bouyer 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    206   1.1    bouyer 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207   1.1    bouyer 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    208   1.1    bouyer 	 "Entry 1001"},
    209   1.1    bouyer 	/* Expansion entry 1010 */
    210   1.1    bouyer 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    211   1.1    bouyer 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212   1.1    bouyer 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213   1.1    bouyer 	 "Entry 1010"},
    214   1.1    bouyer 	/* ATMEL AT45DB011B (buffered flash) */
    215   1.1    bouyer 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    216   1.1    bouyer 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    217   1.1    bouyer 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    218   1.1    bouyer 	 "Buffered flash (128kB)"},
    219   1.1    bouyer 	/* Expansion entry 1100 */
    220   1.1    bouyer 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    221   1.1    bouyer 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    222   1.1    bouyer 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    223   1.1    bouyer 	 "Entry 1100"},
    224   1.1    bouyer 	/* Expansion entry 1101 */
    225   1.1    bouyer 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    226   1.1    bouyer 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227   1.1    bouyer 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    228   1.1    bouyer 	 "Entry 1101"},
    229   1.1    bouyer 	/* Ateml Expansion entry 1110 */
    230   1.1    bouyer 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    231   1.1    bouyer 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    232   1.1    bouyer 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    233   1.1    bouyer 	 "Entry 1110 (Atmel)"},
    234   1.1    bouyer 	/* ATMEL AT45DB021B (buffered flash) */
    235   1.1    bouyer 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    236   1.1    bouyer 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    237   1.1    bouyer 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    238   1.1    bouyer 	 "Buffered flash (256kB)"},
    239   1.1    bouyer };
    240   1.1    bouyer 
    241   1.1    bouyer /****************************************************************************/
    242   1.1    bouyer /* OpenBSD device entry points.                                             */
    243   1.1    bouyer /****************************************************************************/
    244   1.1    bouyer static int	bnx_probe(device_t, cfdata_t, void *);
    245  1.13    dyoung void	bnx_attach(device_t, device_t, void *);
    246  1.13    dyoung int	bnx_detach(device_t, int);
    247   1.1    bouyer 
    248   1.1    bouyer /****************************************************************************/
    249   1.1    bouyer /* BNX Debug Data Structure Dump Routines                                   */
    250   1.1    bouyer /****************************************************************************/
    251   1.1    bouyer #ifdef BNX_DEBUG
    252   1.1    bouyer void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    253   1.1    bouyer void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    254   1.1    bouyer void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    255   1.1    bouyer void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    256   1.1    bouyer void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    257   1.1    bouyer void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    258   1.1    bouyer void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    259   1.1    bouyer void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    260   1.1    bouyer void	bnx_dump_status_block(struct bnx_softc *);
    261   1.1    bouyer void	bnx_dump_stats_block(struct bnx_softc *);
    262   1.1    bouyer void	bnx_dump_driver_state(struct bnx_softc *);
    263   1.1    bouyer void	bnx_dump_hw_state(struct bnx_softc *);
    264   1.1    bouyer void	bnx_breakpoint(struct bnx_softc *);
    265   1.1    bouyer #endif
    266   1.1    bouyer 
    267   1.1    bouyer /****************************************************************************/
    268   1.1    bouyer /* BNX Register/Memory Access Routines                                      */
    269   1.1    bouyer /****************************************************************************/
    270   1.1    bouyer u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    271   1.1    bouyer void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    272   1.1    bouyer void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    273  1.13    dyoung int	bnx_miibus_read_reg(device_t, int, int);
    274  1.13    dyoung void	bnx_miibus_write_reg(device_t, int, int, int);
    275  1.13    dyoung void	bnx_miibus_statchg(device_t);
    276   1.1    bouyer 
    277   1.1    bouyer /****************************************************************************/
    278   1.1    bouyer /* BNX NVRAM Access Routines                                                */
    279   1.1    bouyer /****************************************************************************/
    280   1.1    bouyer int	bnx_acquire_nvram_lock(struct bnx_softc *);
    281   1.1    bouyer int	bnx_release_nvram_lock(struct bnx_softc *);
    282   1.1    bouyer void	bnx_enable_nvram_access(struct bnx_softc *);
    283   1.1    bouyer void	bnx_disable_nvram_access(struct bnx_softc *);
    284   1.1    bouyer int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    285   1.1    bouyer 	    u_int32_t);
    286   1.1    bouyer int	bnx_init_nvram(struct bnx_softc *);
    287   1.1    bouyer int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    288   1.1    bouyer int	bnx_nvram_test(struct bnx_softc *);
    289   1.1    bouyer #ifdef BNX_NVRAM_WRITE_SUPPORT
    290   1.1    bouyer int	bnx_enable_nvram_write(struct bnx_softc *);
    291   1.1    bouyer void	bnx_disable_nvram_write(struct bnx_softc *);
    292   1.1    bouyer int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    293   1.1    bouyer int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    294   1.1    bouyer 	    u_int32_t);
    295   1.1    bouyer int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    296   1.1    bouyer #endif
    297   1.1    bouyer 
    298   1.1    bouyer /****************************************************************************/
    299   1.1    bouyer /*                                                                          */
    300   1.1    bouyer /****************************************************************************/
    301   1.1    bouyer int	bnx_dma_alloc(struct bnx_softc *);
    302   1.1    bouyer void	bnx_dma_free(struct bnx_softc *);
    303   1.1    bouyer void	bnx_release_resources(struct bnx_softc *);
    304   1.1    bouyer 
    305   1.1    bouyer /****************************************************************************/
    306   1.1    bouyer /* BNX Firmware Synchronization and Load                                    */
    307   1.1    bouyer /****************************************************************************/
    308   1.1    bouyer int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    309   1.1    bouyer void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    310   1.1    bouyer 	    u_int32_t);
    311   1.1    bouyer void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    312   1.1    bouyer 	    struct fw_info *);
    313   1.1    bouyer void	bnx_init_cpus(struct bnx_softc *);
    314   1.1    bouyer 
    315  1.14    dyoung void	bnx_stop(struct ifnet *, int);
    316   1.1    bouyer int	bnx_reset(struct bnx_softc *, u_int32_t);
    317   1.1    bouyer int	bnx_chipinit(struct bnx_softc *);
    318   1.1    bouyer int	bnx_blockinit(struct bnx_softc *);
    319   1.1    bouyer int	bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    320   1.1    bouyer 	    u_int16_t *, u_int32_t *);
    321   1.1    bouyer 
    322   1.1    bouyer int	bnx_init_tx_chain(struct bnx_softc *);
    323   1.1    bouyer int	bnx_init_rx_chain(struct bnx_softc *);
    324   1.1    bouyer void	bnx_free_rx_chain(struct bnx_softc *);
    325   1.1    bouyer void	bnx_free_tx_chain(struct bnx_softc *);
    326   1.1    bouyer 
    327   1.4    bouyer int	bnx_tx_encap(struct bnx_softc *, struct mbuf **);
    328   1.1    bouyer void	bnx_start(struct ifnet *);
    329   1.3  christos int	bnx_ioctl(struct ifnet *, u_long, void *);
    330   1.1    bouyer void	bnx_watchdog(struct ifnet *);
    331   1.1    bouyer int	bnx_init(struct ifnet *);
    332   1.1    bouyer 
    333   1.1    bouyer void	bnx_init_context(struct bnx_softc *);
    334   1.1    bouyer void	bnx_get_mac_addr(struct bnx_softc *);
    335   1.1    bouyer void	bnx_set_mac_addr(struct bnx_softc *);
    336   1.1    bouyer void	bnx_phy_intr(struct bnx_softc *);
    337   1.1    bouyer void	bnx_rx_intr(struct bnx_softc *);
    338   1.1    bouyer void	bnx_tx_intr(struct bnx_softc *);
    339   1.1    bouyer void	bnx_disable_intr(struct bnx_softc *);
    340   1.1    bouyer void	bnx_enable_intr(struct bnx_softc *);
    341   1.1    bouyer 
    342   1.1    bouyer int	bnx_intr(void *);
    343   1.1    bouyer void	bnx_set_rx_mode(struct bnx_softc *);
    344   1.1    bouyer void	bnx_stats_update(struct bnx_softc *);
    345   1.1    bouyer void	bnx_tick(void *);
    346   1.1    bouyer 
    347   1.1    bouyer /****************************************************************************/
    348   1.1    bouyer /* OpenBSD device dispatch table.                                           */
    349   1.1    bouyer /****************************************************************************/
    350  1.13    dyoung CFATTACH_DECL_NEW(bnx, sizeof(struct bnx_softc),
    351  1.13    dyoung     bnx_probe, bnx_attach, bnx_detach, NULL);
    352   1.1    bouyer 
    353   1.1    bouyer /****************************************************************************/
    354   1.1    bouyer /* Device probe function.                                                   */
    355   1.1    bouyer /*                                                                          */
    356   1.1    bouyer /* Compares the device to the driver's list of supported devices and        */
    357   1.1    bouyer /* reports back to the OS whether this is the right driver for the device.  */
    358   1.1    bouyer /*                                                                          */
    359   1.1    bouyer /* Returns:                                                                 */
    360   1.1    bouyer /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    361   1.1    bouyer /****************************************************************************/
    362   1.1    bouyer static const struct bnx_product *
    363   1.1    bouyer bnx_lookup(const struct pci_attach_args *pa)
    364   1.1    bouyer {
    365   1.1    bouyer 	int i;
    366   1.1    bouyer 	pcireg_t subid;
    367   1.1    bouyer 
    368  1.13    dyoung 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    369   1.1    bouyer 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    370   1.1    bouyer 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    371   1.1    bouyer 			continue;
    372   1.1    bouyer 		if (!bnx_devices[i].bp_subvendor)
    373   1.1    bouyer 			return &bnx_devices[i];
    374   1.1    bouyer 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    375   1.1    bouyer 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    376   1.1    bouyer 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    377   1.1    bouyer 			return &bnx_devices[i];
    378   1.1    bouyer 	}
    379   1.1    bouyer 
    380   1.1    bouyer 	return NULL;
    381   1.1    bouyer }
    382   1.1    bouyer static int
    383   1.1    bouyer bnx_probe(device_t parent, cfdata_t match, void *aux)
    384   1.1    bouyer {
    385   1.1    bouyer 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    386   1.1    bouyer 
    387   1.1    bouyer 	if (bnx_lookup(pa) != NULL)
    388   1.1    bouyer 		return (1);
    389   1.1    bouyer 
    390   1.1    bouyer 	return (0);
    391   1.1    bouyer }
    392   1.1    bouyer 
    393   1.1    bouyer /****************************************************************************/
    394   1.1    bouyer /* Device attach function.                                                  */
    395   1.1    bouyer /*                                                                          */
    396   1.1    bouyer /* Allocates device resources, performs secondary chip identification,      */
    397   1.1    bouyer /* resets and initializes the hardware, and initializes driver instance     */
    398   1.1    bouyer /* variables.                                                               */
    399   1.1    bouyer /*                                                                          */
    400   1.1    bouyer /* Returns:                                                                 */
    401   1.1    bouyer /*   0 on success, positive value on failure.                               */
    402   1.1    bouyer /****************************************************************************/
    403   1.1    bouyer void
    404  1.13    dyoung bnx_attach(device_t parent, device_t self, void *aux)
    405   1.1    bouyer {
    406   1.1    bouyer 	const struct bnx_product *bp;
    407  1.13    dyoung 	struct bnx_softc	*sc = device_private(self);
    408   1.1    bouyer 	struct pci_attach_args	*pa = aux;
    409   1.1    bouyer 	pci_chipset_tag_t	pc = pa->pa_pc;
    410   1.1    bouyer 	pci_intr_handle_t	ih;
    411   1.1    bouyer 	const char 		*intrstr = NULL;
    412   1.1    bouyer 	u_int32_t		command;
    413   1.1    bouyer 	struct ifnet		*ifp;
    414   1.1    bouyer 	u_int32_t		val;
    415   1.1    bouyer 	pcireg_t		memtype;
    416   1.1    bouyer 
    417   1.1    bouyer 	bp = bnx_lookup(pa);
    418   1.1    bouyer 	if (bp == NULL)
    419   1.1    bouyer 		panic("unknown device");
    420   1.1    bouyer 
    421  1.13    dyoung 	sc->bnx_dev = self;
    422  1.13    dyoung 
    423   1.1    bouyer 	aprint_naive("\n");
    424  1.10    martti 	aprint_normal(": %s\n", bp->bp_name);
    425   1.1    bouyer 
    426   1.1    bouyer 	sc->bnx_pa = *pa;
    427   1.1    bouyer 
    428   1.1    bouyer 	/*
    429   1.1    bouyer 	 * Map control/status registers.
    430   1.1    bouyer 	*/
    431   1.1    bouyer 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    432   1.1    bouyer 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    433   1.1    bouyer 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    434   1.1    bouyer 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    435   1.1    bouyer 
    436   1.1    bouyer 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    437  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
    438  1.13    dyoung 		    "failed to enable memory mapping!\n");
    439   1.1    bouyer 		return;
    440   1.1    bouyer 	}
    441   1.1    bouyer 
    442   1.1    bouyer 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    443   1.1    bouyer 	switch (memtype) {
    444   1.1    bouyer 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    445   1.1    bouyer 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    446   1.1    bouyer 		if (pci_mapreg_map(pa, BNX_PCI_BAR0,
    447   1.1    bouyer 		    memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
    448   1.1    bouyer 		    NULL, &sc->bnx_size) == 0)
    449   1.1    bouyer 			break;
    450   1.1    bouyer 	default:
    451  1.13    dyoung 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    452   1.1    bouyer 		return;
    453   1.1    bouyer 	}
    454   1.1    bouyer 
    455   1.1    bouyer 	if (pci_intr_map(pa, &ih)) {
    456  1.13    dyoung 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    457   1.1    bouyer 		goto bnx_attach_fail;
    458   1.1    bouyer 	}
    459   1.1    bouyer 
    460   1.1    bouyer 	intrstr = pci_intr_string(pc, ih);
    461   1.1    bouyer 
    462   1.1    bouyer 	/*
    463   1.1    bouyer 	 * Configure byte swap and enable indirect register access.
    464   1.1    bouyer 	 * Rely on CPU to do target byte swapping on big endian systems.
    465   1.1    bouyer 	 * Access to registers outside of PCI configurtion space are not
    466   1.1    bouyer 	 * valid until this is done.
    467   1.1    bouyer 	 */
    468   1.1    bouyer 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    469   1.1    bouyer 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    470   1.1    bouyer 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    471   1.1    bouyer 
    472   1.1    bouyer 	/* Save ASIC revsion info. */
    473   1.1    bouyer 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    474   1.1    bouyer 
    475   1.1    bouyer 	/* Weed out any non-production controller revisions. */
    476   1.1    bouyer 	switch(BNX_CHIP_ID(sc)) {
    477   1.1    bouyer 	case BNX_CHIP_ID_5706_A0:
    478   1.1    bouyer 	case BNX_CHIP_ID_5706_A1:
    479   1.1    bouyer 	case BNX_CHIP_ID_5708_A0:
    480   1.1    bouyer 	case BNX_CHIP_ID_5708_B0:
    481  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
    482  1.13    dyoung 		    "unsupported controller revision (%c%d)!\n",
    483   1.1    bouyer 		    ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
    484   1.1    bouyer 		    PCI_REVISION(pa->pa_class) & 0x0f);
    485   1.1    bouyer 		goto bnx_attach_fail;
    486   1.1    bouyer 	}
    487   1.1    bouyer 
    488   1.1    bouyer 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    489  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
    490  1.13    dyoung 		    "SerDes controllers are not supported!\n");
    491   1.1    bouyer 		goto bnx_attach_fail;
    492   1.1    bouyer 	}
    493   1.1    bouyer 
    494   1.1    bouyer 	/*
    495   1.1    bouyer 	 * Find the base address for shared memory access.
    496   1.1    bouyer 	 * Newer versions of bootcode use a signature and offset
    497   1.1    bouyer 	 * while older versions use a fixed address.
    498   1.1    bouyer 	 */
    499   1.1    bouyer 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    500   1.1    bouyer 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    501   1.1    bouyer 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
    502   1.1    bouyer 	else
    503   1.1    bouyer 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    504   1.1    bouyer 
    505   1.1    bouyer 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    506   1.1    bouyer 
    507   1.1    bouyer 	/* Set initial device and PHY flags */
    508   1.1    bouyer 	sc->bnx_flags = 0;
    509   1.1    bouyer 	sc->bnx_phy_flags = 0;
    510   1.1    bouyer 
    511   1.1    bouyer 	/* Get PCI bus information (speed and type). */
    512   1.1    bouyer 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    513   1.1    bouyer 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    514   1.1    bouyer 		u_int32_t clkreg;
    515   1.1    bouyer 
    516   1.1    bouyer 		sc->bnx_flags |= BNX_PCIX_FLAG;
    517   1.1    bouyer 
    518   1.1    bouyer 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    519   1.1    bouyer 
    520   1.1    bouyer 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    521   1.1    bouyer 		switch (clkreg) {
    522   1.1    bouyer 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    523   1.1    bouyer 			sc->bus_speed_mhz = 133;
    524   1.1    bouyer 			break;
    525   1.1    bouyer 
    526   1.1    bouyer 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    527   1.1    bouyer 			sc->bus_speed_mhz = 100;
    528   1.1    bouyer 			break;
    529   1.1    bouyer 
    530   1.1    bouyer 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    531   1.1    bouyer 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    532   1.1    bouyer 			sc->bus_speed_mhz = 66;
    533   1.1    bouyer 			break;
    534   1.1    bouyer 
    535   1.1    bouyer 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    536   1.1    bouyer 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    537   1.1    bouyer 			sc->bus_speed_mhz = 50;
    538   1.1    bouyer 			break;
    539   1.1    bouyer 
    540   1.1    bouyer 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    541   1.1    bouyer 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    542   1.1    bouyer 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    543   1.1    bouyer 			sc->bus_speed_mhz = 33;
    544   1.1    bouyer 			break;
    545   1.1    bouyer 		}
    546   1.1    bouyer 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    547   1.1    bouyer 			sc->bus_speed_mhz = 66;
    548   1.1    bouyer 		else
    549   1.1    bouyer 			sc->bus_speed_mhz = 33;
    550   1.1    bouyer 
    551   1.1    bouyer 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    552   1.1    bouyer 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    553   1.1    bouyer 
    554   1.1    bouyer 	/* Reset the controller. */
    555   1.1    bouyer 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    556   1.1    bouyer 		goto bnx_attach_fail;
    557   1.1    bouyer 
    558   1.1    bouyer 	/* Initialize the controller. */
    559   1.1    bouyer 	if (bnx_chipinit(sc)) {
    560  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
    561  1.13    dyoung 		    "Controller initialization failed!\n");
    562   1.1    bouyer 		goto bnx_attach_fail;
    563   1.1    bouyer 	}
    564   1.1    bouyer 
    565   1.1    bouyer 	/* Perform NVRAM test. */
    566   1.1    bouyer 	if (bnx_nvram_test(sc)) {
    567  1.13    dyoung 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    568   1.1    bouyer 		goto bnx_attach_fail;
    569   1.1    bouyer 	}
    570   1.1    bouyer 
    571   1.1    bouyer 	/* Fetch the permanent Ethernet MAC address. */
    572   1.1    bouyer 	bnx_get_mac_addr(sc);
    573  1.13    dyoung 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    574   1.1    bouyer 	    ether_sprintf(sc->eaddr));
    575   1.1    bouyer 
    576   1.1    bouyer 	/*
    577   1.1    bouyer 	 * Trip points control how many BDs
    578   1.1    bouyer 	 * should be ready before generating an
    579   1.1    bouyer 	 * interrupt while ticks control how long
    580   1.1    bouyer 	 * a BD can sit in the chain before
    581   1.1    bouyer 	 * generating an interrupt.  Set the default
    582   1.1    bouyer 	 * values for the RX and TX rings.
    583   1.1    bouyer 	 */
    584   1.1    bouyer 
    585   1.1    bouyer #ifdef BNX_DEBUG
    586   1.1    bouyer 	/* Force more frequent interrupts. */
    587   1.1    bouyer 	sc->bnx_tx_quick_cons_trip_int = 1;
    588   1.1    bouyer 	sc->bnx_tx_quick_cons_trip     = 1;
    589   1.1    bouyer 	sc->bnx_tx_ticks_int           = 0;
    590   1.1    bouyer 	sc->bnx_tx_ticks               = 0;
    591   1.1    bouyer 
    592   1.1    bouyer 	sc->bnx_rx_quick_cons_trip_int = 1;
    593   1.1    bouyer 	sc->bnx_rx_quick_cons_trip     = 1;
    594   1.1    bouyer 	sc->bnx_rx_ticks_int           = 0;
    595   1.1    bouyer 	sc->bnx_rx_ticks               = 0;
    596   1.1    bouyer #else
    597   1.1    bouyer 	sc->bnx_tx_quick_cons_trip_int = 20;
    598   1.1    bouyer 	sc->bnx_tx_quick_cons_trip     = 20;
    599   1.1    bouyer 	sc->bnx_tx_ticks_int           = 80;
    600   1.1    bouyer 	sc->bnx_tx_ticks               = 80;
    601   1.1    bouyer 
    602   1.1    bouyer 	sc->bnx_rx_quick_cons_trip_int = 6;
    603   1.1    bouyer 	sc->bnx_rx_quick_cons_trip     = 6;
    604   1.1    bouyer 	sc->bnx_rx_ticks_int           = 18;
    605   1.1    bouyer 	sc->bnx_rx_ticks               = 18;
    606   1.1    bouyer #endif
    607   1.1    bouyer 
    608   1.1    bouyer 	/* Update statistics once every second. */
    609   1.1    bouyer 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    610   1.1    bouyer 
    611   1.1    bouyer 	/*
    612   1.1    bouyer 	 * The copper based NetXtreme II controllers
    613   1.1    bouyer 	 * use an integrated PHY at address 1 while
    614   1.1    bouyer 	 * the SerDes controllers use a PHY at
    615   1.1    bouyer 	 * address 2.
    616   1.1    bouyer 	 */
    617   1.1    bouyer 	sc->bnx_phy_addr = 1;
    618   1.1    bouyer 
    619   1.1    bouyer 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    620   1.1    bouyer 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
    621   1.1    bouyer 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
    622   1.1    bouyer 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) {
    623   1.1    bouyer 			sc->bnx_phy_addr = 2;
    624   1.1    bouyer 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    625   1.1    bouyer 					 BNX_SHARED_HW_CFG_CONFIG);
    626   1.1    bouyer 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
    627   1.1    bouyer 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
    628   1.1    bouyer 		}
    629   1.1    bouyer 	}
    630   1.1    bouyer 
    631   1.1    bouyer 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
    632  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
    633  1.13    dyoung 		    "SerDes is not supported by this driver!\n");
    634   1.1    bouyer 		goto bnx_attach_fail;
    635   1.1    bouyer 	}
    636   1.1    bouyer 
    637   1.1    bouyer 	/* Allocate DMA memory resources. */
    638   1.1    bouyer 	sc->bnx_dmatag = pa->pa_dmat;
    639   1.1    bouyer 	if (bnx_dma_alloc(sc)) {
    640  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
    641  1.13    dyoung 		    "DMA resource allocation failed!\n");
    642   1.1    bouyer 		goto bnx_attach_fail;
    643   1.1    bouyer 	}
    644   1.1    bouyer 
    645   1.1    bouyer 	/* Initialize the ifnet interface. */
    646  1.15    dyoung 	ifp = &sc->bnx_ec.ec_if;
    647   1.1    bouyer 	ifp->if_softc = sc;
    648   1.1    bouyer 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    649   1.1    bouyer 	ifp->if_ioctl = bnx_ioctl;
    650  1.14    dyoung 	ifp->if_stop = bnx_stop;
    651   1.1    bouyer 	ifp->if_start = bnx_start;
    652   1.1    bouyer 	ifp->if_init = bnx_init;
    653   1.1    bouyer 	ifp->if_timer = 0;
    654   1.1    bouyer 	ifp->if_watchdog = bnx_watchdog;
    655   1.1    bouyer         if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG)
    656   1.1    bouyer                 ifp->if_baudrate = IF_Gbps(2.5);
    657   1.1    bouyer         else
    658   1.1    bouyer                 ifp->if_baudrate = IF_Gbps(1);
    659   1.4    bouyer 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    660   1.1    bouyer 	IFQ_SET_READY(&ifp->if_snd);
    661  1.13    dyoung 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    662   1.1    bouyer 
    663  1.15    dyoung 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    664   1.1    bouyer 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    665   1.1    bouyer 
    666   1.1    bouyer 	ifp->if_capabilities |=
    667   1.1    bouyer 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    668   1.1    bouyer 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    669   1.1    bouyer 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    670   1.1    bouyer 
    671   1.1    bouyer 	/* Hookup IRQ last. */
    672   1.1    bouyer 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    673   1.1    bouyer 	if (sc->bnx_intrhand == NULL) {
    674  1.13    dyoung 		aprint_error_dev(self, "couldn't establish interrupt");
    675   1.1    bouyer 		if (intrstr != NULL)
    676   1.1    bouyer 			aprint_error(" at %s", intrstr);
    677   1.1    bouyer 		aprint_error("\n");
    678   1.1    bouyer 		goto bnx_attach_fail;
    679   1.1    bouyer 	}
    680   1.1    bouyer 
    681   1.1    bouyer 	sc->bnx_mii.mii_ifp = ifp;
    682   1.1    bouyer 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    683   1.1    bouyer 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    684   1.1    bouyer 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    685   1.1    bouyer 
    686  1.16    dyoung 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    687  1.16    dyoung 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    688  1.16    dyoung 	    ether_mediastatus);
    689  1.13    dyoung 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    690   1.1    bouyer 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    691   1.1    bouyer 
    692  1.14    dyoung 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    693  1.13    dyoung 		aprint_error_dev(self, "no PHY found!\n");
    694   1.1    bouyer 		ifmedia_add(&sc->bnx_mii.mii_media,
    695   1.1    bouyer 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    696   1.1    bouyer 		ifmedia_set(&sc->bnx_mii.mii_media,
    697   1.1    bouyer 		    IFM_ETHER|IFM_MANUAL);
    698   1.1    bouyer 	} else {
    699   1.1    bouyer 		ifmedia_set(&sc->bnx_mii.mii_media,
    700   1.1    bouyer 		    IFM_ETHER|IFM_AUTO);
    701   1.1    bouyer 	}
    702   1.1    bouyer 
    703   1.1    bouyer 	/* Attach to the Ethernet interface list. */
    704   1.1    bouyer 	if_attach(ifp);
    705   1.1    bouyer 	ether_ifattach(ifp,sc->eaddr);
    706   1.1    bouyer 
    707   1.7        ad 	callout_init(&sc->bnx_timeout, 0);
    708   1.1    bouyer 
    709  1.14    dyoung 	if (!pmf_device_register(self, NULL, NULL))
    710  1.13    dyoung 		aprint_error_dev(self, "couldn't establish power handler\n");
    711  1.13    dyoung 	else
    712  1.13    dyoung 		pmf_class_network_register(self, ifp);
    713  1.13    dyoung 
    714   1.1    bouyer 	/* Print some important debugging info. */
    715   1.1    bouyer 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    716   1.1    bouyer 
    717   1.1    bouyer 	goto bnx_attach_exit;
    718   1.1    bouyer 
    719   1.1    bouyer bnx_attach_fail:
    720   1.1    bouyer 	bnx_release_resources(sc);
    721   1.1    bouyer 
    722   1.1    bouyer bnx_attach_exit:
    723  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    724   1.1    bouyer }
    725   1.1    bouyer 
    726   1.1    bouyer /****************************************************************************/
    727   1.1    bouyer /* Device detach function.                                                  */
    728   1.1    bouyer /*                                                                          */
    729   1.1    bouyer /* Stops the controller, resets the controller, and releases resources.     */
    730   1.1    bouyer /*                                                                          */
    731   1.1    bouyer /* Returns:                                                                 */
    732   1.1    bouyer /*   0 on success, positive value on failure.                               */
    733   1.1    bouyer /****************************************************************************/
    734  1.13    dyoung int
    735  1.13    dyoung bnx_detach(device_t dev, int flags)
    736   1.1    bouyer {
    737  1.14    dyoung 	int s;
    738   1.1    bouyer 	struct bnx_softc *sc;
    739  1.13    dyoung 	struct ifnet *ifp;
    740   1.1    bouyer 
    741  1.13    dyoung 	sc = device_private(dev);
    742  1.15    dyoung 	ifp = &sc->bnx_ec.ec_if;
    743   1.1    bouyer 
    744  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    745   1.1    bouyer 
    746   1.1    bouyer 	/* Stop and reset the controller. */
    747  1.14    dyoung 	s = splnet();
    748  1.14    dyoung 	if (ifp->if_flags & IFF_RUNNING)
    749  1.14    dyoung 		bnx_stop(ifp, 1);
    750  1.14    dyoung 	splx(s);
    751   1.1    bouyer 
    752  1.13    dyoung 	pmf_device_deregister(dev);
    753   1.1    bouyer 	ether_ifdetach(ifp);
    754  1.13    dyoung 	if_detach(ifp);
    755  1.13    dyoung 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    756   1.1    bouyer 
    757   1.1    bouyer 	/* Release all remaining resources. */
    758   1.1    bouyer 	bnx_release_resources(sc);
    759   1.1    bouyer 
    760  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    761   1.1    bouyer 
    762   1.1    bouyer 	return(0);
    763   1.1    bouyer }
    764   1.1    bouyer 
    765   1.1    bouyer /****************************************************************************/
    766   1.1    bouyer /* Indirect register read.                                                  */
    767   1.1    bouyer /*                                                                          */
    768   1.1    bouyer /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    769   1.1    bouyer /* configuration space.  Using this mechanism avoids issues with posted     */
    770   1.1    bouyer /* reads but is much slower than memory-mapped I/O.                         */
    771   1.1    bouyer /*                                                                          */
    772   1.1    bouyer /* Returns:                                                                 */
    773   1.1    bouyer /*   The value of the register.                                             */
    774   1.1    bouyer /****************************************************************************/
    775   1.1    bouyer u_int32_t
    776   1.1    bouyer bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    777   1.1    bouyer {
    778   1.1    bouyer 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    779   1.1    bouyer 
    780   1.1    bouyer 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    781   1.1    bouyer 	    offset);
    782   1.1    bouyer #ifdef BNX_DEBUG
    783   1.1    bouyer 	{
    784   1.1    bouyer 		u_int32_t val;
    785   1.1    bouyer 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    786   1.1    bouyer 		    BNX_PCICFG_REG_WINDOW);
    787   1.1    bouyer 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    788  1.12     perry 		    "val = 0x%08X\n", __func__, offset, val);
    789   1.1    bouyer 		return (val);
    790   1.1    bouyer 	}
    791   1.1    bouyer #else
    792   1.1    bouyer 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    793   1.1    bouyer #endif
    794   1.1    bouyer }
    795   1.1    bouyer 
    796   1.1    bouyer /****************************************************************************/
    797   1.1    bouyer /* Indirect register write.                                                 */
    798   1.1    bouyer /*                                                                          */
    799   1.1    bouyer /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    800   1.1    bouyer /* configuration space.  Using this mechanism avoids issues with posted     */
    801   1.1    bouyer /* writes but is muchh slower than memory-mapped I/O.                       */
    802   1.1    bouyer /*                                                                          */
    803   1.1    bouyer /* Returns:                                                                 */
    804   1.1    bouyer /*   Nothing.                                                               */
    805   1.1    bouyer /****************************************************************************/
    806   1.1    bouyer void
    807   1.1    bouyer bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    808   1.1    bouyer {
    809   1.1    bouyer 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    810   1.1    bouyer 
    811   1.1    bouyer 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    812  1.12     perry 		__func__, offset, val);
    813   1.1    bouyer 
    814   1.1    bouyer 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    815   1.1    bouyer 	    offset);
    816   1.1    bouyer 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    817   1.1    bouyer }
    818   1.1    bouyer 
    819   1.1    bouyer /****************************************************************************/
    820   1.1    bouyer /* Context memory write.                                                    */
    821   1.1    bouyer /*                                                                          */
    822   1.1    bouyer /* The NetXtreme II controller uses context memory to track connection      */
    823   1.1    bouyer /* information for L2 and higher network protocols.                         */
    824   1.1    bouyer /*                                                                          */
    825   1.1    bouyer /* Returns:                                                                 */
    826   1.1    bouyer /*   Nothing.                                                               */
    827   1.1    bouyer /****************************************************************************/
    828   1.1    bouyer void
    829   1.1    bouyer bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
    830   1.1    bouyer     u_int32_t val)
    831   1.1    bouyer {
    832   1.1    bouyer 
    833   1.1    bouyer 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
    834  1.12     perry 		"val = 0x%08X\n", __func__, cid_addr, offset, val);
    835   1.1    bouyer 
    836   1.1    bouyer 	offset += cid_addr;
    837   1.1    bouyer 	REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    838   1.1    bouyer 	REG_WR(sc, BNX_CTX_DATA, val);
    839   1.1    bouyer }
    840   1.1    bouyer 
    841   1.1    bouyer /****************************************************************************/
    842   1.1    bouyer /* PHY register read.                                                       */
    843   1.1    bouyer /*                                                                          */
    844   1.1    bouyer /* Implements register reads on the MII bus.                                */
    845   1.1    bouyer /*                                                                          */
    846   1.1    bouyer /* Returns:                                                                 */
    847   1.1    bouyer /*   The value of the register.                                             */
    848   1.1    bouyer /****************************************************************************/
    849   1.1    bouyer int
    850  1.13    dyoung bnx_miibus_read_reg(device_t dev, int phy, int reg)
    851   1.1    bouyer {
    852  1.13    dyoung 	struct bnx_softc	*sc = device_private(dev);
    853   1.1    bouyer 	u_int32_t		val;
    854   1.1    bouyer 	int			i;
    855   1.1    bouyer 
    856   1.1    bouyer 	/* Make sure we are accessing the correct PHY address. */
    857   1.1    bouyer 	if (phy != sc->bnx_phy_addr) {
    858   1.1    bouyer 		DBPRINT(sc, BNX_VERBOSE,
    859   1.1    bouyer 		    "Invalid PHY address %d for PHY read!\n", phy);
    860   1.1    bouyer 		return(0);
    861   1.1    bouyer 	}
    862   1.1    bouyer 
    863   1.1    bouyer 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    864   1.1    bouyer 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    865   1.1    bouyer 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    866   1.1    bouyer 
    867   1.1    bouyer 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    868   1.1    bouyer 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    869   1.1    bouyer 
    870   1.1    bouyer 		DELAY(40);
    871   1.1    bouyer 	}
    872   1.1    bouyer 
    873   1.1    bouyer 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    874   1.1    bouyer 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    875   1.1    bouyer 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    876   1.1    bouyer 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    877   1.1    bouyer 
    878   1.1    bouyer 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    879   1.1    bouyer 		DELAY(10);
    880   1.1    bouyer 
    881   1.1    bouyer 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    882   1.1    bouyer 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    883   1.1    bouyer 			DELAY(5);
    884   1.1    bouyer 
    885   1.1    bouyer 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    886   1.1    bouyer 			val &= BNX_EMAC_MDIO_COMM_DATA;
    887   1.1    bouyer 
    888   1.1    bouyer 			break;
    889   1.1    bouyer 		}
    890   1.1    bouyer 	}
    891   1.1    bouyer 
    892   1.1    bouyer 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    893   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    894   1.1    bouyer 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    895   1.1    bouyer 		val = 0x0;
    896   1.1    bouyer 	} else
    897   1.1    bouyer 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    898   1.1    bouyer 
    899   1.1    bouyer 	DBPRINT(sc, BNX_EXCESSIVE,
    900  1.12     perry 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    901   1.1    bouyer 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    902   1.1    bouyer 
    903   1.1    bouyer 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    904   1.1    bouyer 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    905   1.1    bouyer 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    906   1.1    bouyer 
    907   1.1    bouyer 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    908   1.1    bouyer 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    909   1.1    bouyer 
    910   1.1    bouyer 		DELAY(40);
    911   1.1    bouyer 	}
    912   1.1    bouyer 
    913   1.1    bouyer 	return (val & 0xffff);
    914   1.1    bouyer }
    915   1.1    bouyer 
    916   1.1    bouyer /****************************************************************************/
    917   1.1    bouyer /* PHY register write.                                                      */
    918   1.1    bouyer /*                                                                          */
    919   1.1    bouyer /* Implements register writes on the MII bus.                               */
    920   1.1    bouyer /*                                                                          */
    921   1.1    bouyer /* Returns:                                                                 */
    922   1.1    bouyer /*   The value of the register.                                             */
    923   1.1    bouyer /****************************************************************************/
    924   1.1    bouyer void
    925  1.13    dyoung bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
    926   1.1    bouyer {
    927  1.13    dyoung 	struct bnx_softc	*sc = device_private(dev);
    928   1.1    bouyer 	u_int32_t		val1;
    929   1.1    bouyer 	int			i;
    930   1.1    bouyer 
    931   1.1    bouyer 	/* Make sure we are accessing the correct PHY address. */
    932   1.1    bouyer 	if (phy != sc->bnx_phy_addr) {
    933   1.1    bouyer 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
    934   1.1    bouyer 		    phy);
    935   1.1    bouyer 		return;
    936   1.1    bouyer 	}
    937   1.1    bouyer 
    938   1.1    bouyer 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
    939  1.12     perry 	    "val = 0x%04X\n", __func__,
    940   1.1    bouyer 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    941   1.1    bouyer 
    942   1.1    bouyer 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    943   1.1    bouyer 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    944   1.1    bouyer 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    945   1.1    bouyer 
    946   1.1    bouyer 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    947   1.1    bouyer 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    948   1.1    bouyer 
    949   1.1    bouyer 		DELAY(40);
    950   1.1    bouyer 	}
    951   1.1    bouyer 
    952   1.1    bouyer 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
    953   1.1    bouyer 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
    954   1.1    bouyer 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
    955   1.1    bouyer 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
    956   1.1    bouyer 
    957   1.1    bouyer 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    958   1.1    bouyer 		DELAY(10);
    959   1.1    bouyer 
    960   1.1    bouyer 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    961   1.1    bouyer 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    962   1.1    bouyer 			DELAY(5);
    963   1.1    bouyer 			break;
    964   1.1    bouyer 		}
    965   1.1    bouyer 	}
    966   1.1    bouyer 
    967   1.1    bouyer 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
    968   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
    969   1.1    bouyer 		    __LINE__);
    970   1.1    bouyer 	}
    971   1.1    bouyer 
    972   1.1    bouyer 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    973   1.1    bouyer 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    974   1.1    bouyer 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    975   1.1    bouyer 
    976   1.1    bouyer 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    977   1.1    bouyer 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    978   1.1    bouyer 
    979   1.1    bouyer 		DELAY(40);
    980   1.1    bouyer 	}
    981   1.1    bouyer }
    982   1.1    bouyer 
    983   1.1    bouyer /****************************************************************************/
    984   1.1    bouyer /* MII bus status change.                                                   */
    985   1.1    bouyer /*                                                                          */
    986   1.1    bouyer /* Called by the MII bus driver when the PHY establishes link to set the    */
    987   1.1    bouyer /* MAC interface registers.                                                 */
    988   1.1    bouyer /*                                                                          */
    989   1.1    bouyer /* Returns:                                                                 */
    990   1.1    bouyer /*   Nothing.                                                               */
    991   1.1    bouyer /****************************************************************************/
    992   1.1    bouyer void
    993  1.13    dyoung bnx_miibus_statchg(device_t dev)
    994   1.1    bouyer {
    995  1.13    dyoung 	struct bnx_softc	*sc = device_private(dev);
    996   1.1    bouyer 	struct mii_data		*mii = &sc->bnx_mii;
    997   1.1    bouyer 
    998   1.1    bouyer 	BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT);
    999   1.1    bouyer 
   1000   1.1    bouyer 	/* Set MII or GMII inerface based on the speed negotiated by the PHY. */
   1001   1.1    bouyer 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
   1002   1.1    bouyer 		DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n");
   1003   1.1    bouyer 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII);
   1004   1.1    bouyer 	} else {
   1005   1.1    bouyer 		DBPRINT(sc, BNX_INFO, "Setting MII interface.\n");
   1006   1.1    bouyer 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII);
   1007   1.1    bouyer 	}
   1008   1.1    bouyer 
   1009   1.1    bouyer 	/* Set half or full duplex based on the duplicity
   1010   1.1    bouyer 	 * negotiated by the PHY.
   1011   1.1    bouyer 	 */
   1012   1.1    bouyer 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
   1013   1.1    bouyer 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1014   1.1    bouyer 		BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
   1015   1.1    bouyer 	} else {
   1016   1.1    bouyer 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1017   1.1    bouyer 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
   1018   1.1    bouyer 	}
   1019   1.1    bouyer }
   1020   1.1    bouyer 
   1021   1.1    bouyer /****************************************************************************/
   1022   1.1    bouyer /* Acquire NVRAM lock.                                                      */
   1023   1.1    bouyer /*                                                                          */
   1024   1.1    bouyer /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1025   1.1    bouyer /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1026   1.1    bouyer /* for use by the driver.                                                   */
   1027   1.1    bouyer /*                                                                          */
   1028   1.1    bouyer /* Returns:                                                                 */
   1029   1.1    bouyer /*   0 on success, positive value on failure.                               */
   1030   1.1    bouyer /****************************************************************************/
   1031   1.1    bouyer int
   1032   1.1    bouyer bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1033   1.1    bouyer {
   1034   1.1    bouyer 	u_int32_t		val;
   1035   1.1    bouyer 	int			j;
   1036   1.1    bouyer 
   1037   1.1    bouyer 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1038   1.1    bouyer 
   1039   1.1    bouyer 	/* Request access to the flash interface. */
   1040   1.1    bouyer 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1041   1.1    bouyer 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1042   1.1    bouyer 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1043   1.1    bouyer 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1044   1.1    bouyer 			break;
   1045   1.1    bouyer 
   1046   1.1    bouyer 		DELAY(5);
   1047   1.1    bouyer 	}
   1048   1.1    bouyer 
   1049   1.1    bouyer 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1050   1.1    bouyer 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1051   1.1    bouyer 		return (EBUSY);
   1052   1.1    bouyer 	}
   1053   1.1    bouyer 
   1054   1.1    bouyer 	return (0);
   1055   1.1    bouyer }
   1056   1.1    bouyer 
   1057   1.1    bouyer /****************************************************************************/
   1058   1.1    bouyer /* Release NVRAM lock.                                                      */
   1059   1.1    bouyer /*                                                                          */
   1060   1.1    bouyer /* When the caller is finished accessing NVRAM the lock must be released.   */
   1061   1.1    bouyer /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1062   1.1    bouyer /* for use by the driver.                                                   */
   1063   1.1    bouyer /*                                                                          */
   1064   1.1    bouyer /* Returns:                                                                 */
   1065   1.1    bouyer /*   0 on success, positive value on failure.                               */
   1066   1.1    bouyer /****************************************************************************/
   1067   1.1    bouyer int
   1068   1.1    bouyer bnx_release_nvram_lock(struct bnx_softc *sc)
   1069   1.1    bouyer {
   1070   1.1    bouyer 	int			j;
   1071   1.1    bouyer 	u_int32_t		val;
   1072   1.1    bouyer 
   1073   1.1    bouyer 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1074   1.1    bouyer 
   1075   1.1    bouyer 	/* Relinquish nvram interface. */
   1076   1.1    bouyer 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1077   1.1    bouyer 
   1078   1.1    bouyer 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1079   1.1    bouyer 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1080   1.1    bouyer 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1081   1.1    bouyer 			break;
   1082   1.1    bouyer 
   1083   1.1    bouyer 		DELAY(5);
   1084   1.1    bouyer 	}
   1085   1.1    bouyer 
   1086   1.1    bouyer 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1087   1.1    bouyer 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1088   1.1    bouyer 		return (EBUSY);
   1089   1.1    bouyer 	}
   1090   1.1    bouyer 
   1091   1.1    bouyer 	return (0);
   1092   1.1    bouyer }
   1093   1.1    bouyer 
   1094   1.1    bouyer #ifdef BNX_NVRAM_WRITE_SUPPORT
   1095   1.1    bouyer /****************************************************************************/
   1096   1.1    bouyer /* Enable NVRAM write access.                                               */
   1097   1.1    bouyer /*                                                                          */
   1098   1.1    bouyer /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1099   1.1    bouyer /*                                                                          */
   1100   1.1    bouyer /* Returns:                                                                 */
   1101   1.1    bouyer /*   0 on success, positive value on failure.                               */
   1102   1.1    bouyer /****************************************************************************/
   1103   1.1    bouyer int
   1104   1.1    bouyer bnx_enable_nvram_write(struct bnx_softc *sc)
   1105   1.1    bouyer {
   1106   1.1    bouyer 	u_int32_t		val;
   1107   1.1    bouyer 
   1108   1.1    bouyer 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1109   1.1    bouyer 
   1110   1.1    bouyer 	val = REG_RD(sc, BNX_MISC_CFG);
   1111   1.1    bouyer 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1112   1.1    bouyer 
   1113   1.1    bouyer 	if (!sc->bnx_flash_info->buffered) {
   1114   1.1    bouyer 		int j;
   1115   1.1    bouyer 
   1116   1.1    bouyer 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1117   1.1    bouyer 		REG_WR(sc, BNX_NVM_COMMAND,
   1118   1.1    bouyer 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1119   1.1    bouyer 
   1120   1.1    bouyer 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1121   1.1    bouyer 			DELAY(5);
   1122   1.1    bouyer 
   1123   1.1    bouyer 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1124   1.1    bouyer 			if (val & BNX_NVM_COMMAND_DONE)
   1125   1.1    bouyer 				break;
   1126   1.1    bouyer 		}
   1127   1.1    bouyer 
   1128   1.1    bouyer 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1129   1.1    bouyer 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1130   1.1    bouyer 			return (EBUSY);
   1131   1.1    bouyer 		}
   1132   1.1    bouyer 	}
   1133   1.1    bouyer 
   1134   1.1    bouyer 	return (0);
   1135   1.1    bouyer }
   1136   1.1    bouyer 
   1137   1.1    bouyer /****************************************************************************/
   1138   1.1    bouyer /* Disable NVRAM write access.                                              */
   1139   1.1    bouyer /*                                                                          */
   1140   1.1    bouyer /* When the caller is finished writing to NVRAM write access must be        */
   1141   1.1    bouyer /* disabled.                                                                */
   1142   1.1    bouyer /*                                                                          */
   1143   1.1    bouyer /* Returns:                                                                 */
   1144   1.1    bouyer /*   Nothing.                                                               */
   1145   1.1    bouyer /****************************************************************************/
   1146   1.1    bouyer void
   1147   1.1    bouyer bnx_disable_nvram_write(struct bnx_softc *sc)
   1148   1.1    bouyer {
   1149   1.1    bouyer 	u_int32_t		val;
   1150   1.1    bouyer 
   1151   1.1    bouyer 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1152   1.1    bouyer 
   1153   1.1    bouyer 	val = REG_RD(sc, BNX_MISC_CFG);
   1154   1.1    bouyer 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1155   1.1    bouyer }
   1156   1.1    bouyer #endif
   1157   1.1    bouyer 
   1158   1.1    bouyer /****************************************************************************/
   1159   1.1    bouyer /* Enable NVRAM access.                                                     */
   1160   1.1    bouyer /*                                                                          */
   1161   1.1    bouyer /* Before accessing NVRAM for read or write operations the caller must      */
   1162   1.1    bouyer /* enabled NVRAM access.                                                    */
   1163   1.1    bouyer /*                                                                          */
   1164   1.1    bouyer /* Returns:                                                                 */
   1165   1.1    bouyer /*   Nothing.                                                               */
   1166   1.1    bouyer /****************************************************************************/
   1167   1.1    bouyer void
   1168   1.1    bouyer bnx_enable_nvram_access(struct bnx_softc *sc)
   1169   1.1    bouyer {
   1170   1.1    bouyer 	u_int32_t		val;
   1171   1.1    bouyer 
   1172   1.1    bouyer 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1173   1.1    bouyer 
   1174   1.1    bouyer 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1175   1.1    bouyer 	/* Enable both bits, even on read. */
   1176   1.1    bouyer 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1177   1.1    bouyer 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1178   1.1    bouyer }
   1179   1.1    bouyer 
   1180   1.1    bouyer /****************************************************************************/
   1181   1.1    bouyer /* Disable NVRAM access.                                                    */
   1182   1.1    bouyer /*                                                                          */
   1183   1.1    bouyer /* When the caller is finished accessing NVRAM access must be disabled.     */
   1184   1.1    bouyer /*                                                                          */
   1185   1.1    bouyer /* Returns:                                                                 */
   1186   1.1    bouyer /*   Nothing.                                                               */
   1187   1.1    bouyer /****************************************************************************/
   1188   1.1    bouyer void
   1189   1.1    bouyer bnx_disable_nvram_access(struct bnx_softc *sc)
   1190   1.1    bouyer {
   1191   1.1    bouyer 	u_int32_t		val;
   1192   1.1    bouyer 
   1193   1.1    bouyer 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1194   1.1    bouyer 
   1195   1.1    bouyer 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1196   1.1    bouyer 
   1197   1.1    bouyer 	/* Disable both bits, even after read. */
   1198   1.1    bouyer 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1199   1.1    bouyer 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1200   1.1    bouyer }
   1201   1.1    bouyer 
   1202   1.1    bouyer #ifdef BNX_NVRAM_WRITE_SUPPORT
   1203   1.1    bouyer /****************************************************************************/
   1204   1.1    bouyer /* Erase NVRAM page before writing.                                         */
   1205   1.1    bouyer /*                                                                          */
   1206   1.1    bouyer /* Non-buffered flash parts require that a page be erased before it is      */
   1207   1.1    bouyer /* written.                                                                 */
   1208   1.1    bouyer /*                                                                          */
   1209   1.1    bouyer /* Returns:                                                                 */
   1210   1.1    bouyer /*   0 on success, positive value on failure.                               */
   1211   1.1    bouyer /****************************************************************************/
   1212   1.1    bouyer int
   1213   1.1    bouyer bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1214   1.1    bouyer {
   1215   1.1    bouyer 	u_int32_t		cmd;
   1216   1.1    bouyer 	int			j;
   1217   1.1    bouyer 
   1218   1.1    bouyer 	/* Buffered flash doesn't require an erase. */
   1219   1.1    bouyer 	if (sc->bnx_flash_info->buffered)
   1220   1.1    bouyer 		return (0);
   1221   1.1    bouyer 
   1222   1.1    bouyer 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1223   1.1    bouyer 
   1224   1.1    bouyer 	/* Build an erase command. */
   1225   1.1    bouyer 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1226   1.1    bouyer 	    BNX_NVM_COMMAND_DOIT;
   1227   1.1    bouyer 
   1228   1.1    bouyer 	/*
   1229   1.1    bouyer 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1230   1.1    bouyer 	 * and issue the erase command.
   1231   1.1    bouyer 	 */
   1232   1.1    bouyer 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1233   1.1    bouyer 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1234   1.1    bouyer 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1235   1.1    bouyer 
   1236   1.1    bouyer 	/* Wait for completion. */
   1237   1.1    bouyer 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1238   1.1    bouyer 		u_int32_t val;
   1239   1.1    bouyer 
   1240   1.1    bouyer 		DELAY(5);
   1241   1.1    bouyer 
   1242   1.1    bouyer 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1243   1.1    bouyer 		if (val & BNX_NVM_COMMAND_DONE)
   1244   1.1    bouyer 			break;
   1245   1.1    bouyer 	}
   1246   1.1    bouyer 
   1247   1.1    bouyer 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1248   1.1    bouyer 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1249   1.1    bouyer 		return (EBUSY);
   1250   1.1    bouyer 	}
   1251   1.1    bouyer 
   1252   1.1    bouyer 	return (0);
   1253   1.1    bouyer }
   1254   1.1    bouyer #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1255   1.1    bouyer 
   1256   1.1    bouyer /****************************************************************************/
   1257   1.1    bouyer /* Read a dword (32 bits) from NVRAM.                                       */
   1258   1.1    bouyer /*                                                                          */
   1259   1.1    bouyer /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1260   1.1    bouyer /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1261   1.1    bouyer /*                                                                          */
   1262   1.1    bouyer /* Returns:                                                                 */
   1263   1.1    bouyer /*   0 on success and the 32 bit value read, positive value on failure.     */
   1264   1.1    bouyer /****************************************************************************/
   1265   1.1    bouyer int
   1266   1.1    bouyer bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1267   1.1    bouyer     u_int8_t *ret_val, u_int32_t cmd_flags)
   1268   1.1    bouyer {
   1269   1.1    bouyer 	u_int32_t		cmd;
   1270   1.1    bouyer 	int			i, rc = 0;
   1271   1.1    bouyer 
   1272   1.1    bouyer 	/* Build the command word. */
   1273   1.1    bouyer 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1274   1.1    bouyer 
   1275   1.1    bouyer 	/* Calculate the offset for buffered flash. */
   1276   1.1    bouyer 	if (sc->bnx_flash_info->buffered)
   1277   1.1    bouyer 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1278   1.1    bouyer 		    sc->bnx_flash_info->page_bits) +
   1279   1.1    bouyer 		    (offset % sc->bnx_flash_info->page_size);
   1280   1.1    bouyer 
   1281   1.1    bouyer 	/*
   1282   1.1    bouyer 	 * Clear the DONE bit separately, set the address to read,
   1283   1.1    bouyer 	 * and issue the read.
   1284   1.1    bouyer 	 */
   1285   1.1    bouyer 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1286   1.1    bouyer 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1287   1.1    bouyer 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1288   1.1    bouyer 
   1289   1.1    bouyer 	/* Wait for completion. */
   1290   1.1    bouyer 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1291   1.1    bouyer 		u_int32_t val;
   1292   1.1    bouyer 
   1293   1.1    bouyer 		DELAY(5);
   1294   1.1    bouyer 
   1295   1.1    bouyer 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1296   1.1    bouyer 		if (val & BNX_NVM_COMMAND_DONE) {
   1297   1.1    bouyer 			val = REG_RD(sc, BNX_NVM_READ);
   1298   1.1    bouyer 
   1299   1.1    bouyer 			val = bnx_be32toh(val);
   1300   1.1    bouyer 			memcpy(ret_val, &val, 4);
   1301   1.1    bouyer 			break;
   1302   1.1    bouyer 		}
   1303   1.1    bouyer 	}
   1304   1.1    bouyer 
   1305   1.1    bouyer 	/* Check for errors. */
   1306   1.1    bouyer 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1307   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1308   1.1    bouyer 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1309   1.1    bouyer 		rc = EBUSY;
   1310   1.1    bouyer 	}
   1311   1.1    bouyer 
   1312   1.1    bouyer 	return(rc);
   1313   1.1    bouyer }
   1314   1.1    bouyer 
   1315   1.1    bouyer #ifdef BNX_NVRAM_WRITE_SUPPORT
   1316   1.1    bouyer /****************************************************************************/
   1317   1.1    bouyer /* Write a dword (32 bits) to NVRAM.                                        */
   1318   1.1    bouyer /*                                                                          */
   1319   1.1    bouyer /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1320   1.1    bouyer /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1321   1.1    bouyer /* enabled NVRAM write access.                                              */
   1322   1.1    bouyer /*                                                                          */
   1323   1.1    bouyer /* Returns:                                                                 */
   1324   1.1    bouyer /*   0 on success, positive value on failure.                               */
   1325   1.1    bouyer /****************************************************************************/
   1326   1.1    bouyer int
   1327   1.1    bouyer bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1328   1.1    bouyer     u_int32_t cmd_flags)
   1329   1.1    bouyer {
   1330   1.1    bouyer 	u_int32_t		cmd, val32;
   1331   1.1    bouyer 	int			j;
   1332   1.1    bouyer 
   1333   1.1    bouyer 	/* Build the command word. */
   1334   1.1    bouyer 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1335   1.1    bouyer 
   1336   1.1    bouyer 	/* Calculate the offset for buffered flash. */
   1337   1.1    bouyer 	if (sc->bnx_flash_info->buffered)
   1338   1.1    bouyer 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1339   1.1    bouyer 		    sc->bnx_flash_info->page_bits) +
   1340   1.1    bouyer 		    (offset % sc->bnx_flash_info->page_size);
   1341   1.1    bouyer 
   1342   1.1    bouyer 	/*
   1343   1.1    bouyer 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1344   1.1    bouyer 	 * set the NVRAM address to write, and issue the write command
   1345   1.1    bouyer 	 */
   1346   1.1    bouyer 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1347   1.1    bouyer 	memcpy(&val32, val, 4);
   1348   1.1    bouyer 	val32 = htobe32(val32);
   1349   1.1    bouyer 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1350   1.1    bouyer 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1351   1.1    bouyer 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1352   1.1    bouyer 
   1353   1.1    bouyer 	/* Wait for completion. */
   1354   1.1    bouyer 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1355   1.1    bouyer 		DELAY(5);
   1356   1.1    bouyer 
   1357   1.1    bouyer 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1358   1.1    bouyer 			break;
   1359   1.1    bouyer 	}
   1360   1.1    bouyer 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1361   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1362   1.1    bouyer 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1363   1.1    bouyer 		return (EBUSY);
   1364   1.1    bouyer 	}
   1365   1.1    bouyer 
   1366   1.1    bouyer 	return (0);
   1367   1.1    bouyer }
   1368   1.1    bouyer #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1369   1.1    bouyer 
   1370   1.1    bouyer /****************************************************************************/
   1371   1.1    bouyer /* Initialize NVRAM access.                                                 */
   1372   1.1    bouyer /*                                                                          */
   1373   1.1    bouyer /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1374   1.1    bouyer /* access that device.                                                      */
   1375   1.1    bouyer /*                                                                          */
   1376   1.1    bouyer /* Returns:                                                                 */
   1377   1.1    bouyer /*   0 on success, positive value on failure.                               */
   1378   1.1    bouyer /****************************************************************************/
   1379   1.1    bouyer int
   1380   1.1    bouyer bnx_init_nvram(struct bnx_softc *sc)
   1381   1.1    bouyer {
   1382   1.1    bouyer 	u_int32_t		val;
   1383   1.1    bouyer 	int			j, entry_count, rc;
   1384   1.1    bouyer 	struct flash_spec	*flash;
   1385   1.1    bouyer 
   1386  1.12     perry 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1387   1.1    bouyer 
   1388   1.1    bouyer 	/* Determine the selected interface. */
   1389   1.1    bouyer 	val = REG_RD(sc, BNX_NVM_CFG1);
   1390   1.1    bouyer 
   1391   1.1    bouyer 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1392   1.1    bouyer 
   1393   1.1    bouyer 	rc = 0;
   1394   1.1    bouyer 
   1395   1.1    bouyer 	/*
   1396   1.1    bouyer 	 * Flash reconfiguration is required to support additional
   1397   1.1    bouyer 	 * NVRAM devices not directly supported in hardware.
   1398   1.1    bouyer 	 * Check if the flash interface was reconfigured
   1399   1.1    bouyer 	 * by the bootcode.
   1400   1.1    bouyer 	 */
   1401   1.1    bouyer 
   1402   1.1    bouyer 	if (val & 0x40000000) {
   1403   1.1    bouyer 		/* Flash interface reconfigured by bootcode. */
   1404   1.1    bouyer 
   1405   1.1    bouyer 		DBPRINT(sc,BNX_INFO_LOAD,
   1406   1.1    bouyer 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1407   1.1    bouyer 
   1408   1.1    bouyer 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1409   1.1    bouyer 		     j++, flash++) {
   1410   1.1    bouyer 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1411   1.1    bouyer 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1412   1.1    bouyer 				sc->bnx_flash_info = flash;
   1413   1.1    bouyer 				break;
   1414   1.1    bouyer 			}
   1415   1.1    bouyer 		}
   1416   1.1    bouyer 	} else {
   1417   1.1    bouyer 		/* Flash interface not yet reconfigured. */
   1418   1.1    bouyer 		u_int32_t mask;
   1419   1.1    bouyer 
   1420   1.1    bouyer 		DBPRINT(sc,BNX_INFO_LOAD,
   1421   1.1    bouyer 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1422   1.1    bouyer 
   1423   1.1    bouyer 		if (val & (1 << 23))
   1424   1.1    bouyer 			mask = FLASH_BACKUP_STRAP_MASK;
   1425   1.1    bouyer 		else
   1426   1.1    bouyer 			mask = FLASH_STRAP_MASK;
   1427   1.1    bouyer 
   1428   1.1    bouyer 		/* Look for the matching NVRAM device configuration data. */
   1429   1.1    bouyer 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1430   1.1    bouyer 		    j++, flash++) {
   1431   1.1    bouyer 			/* Check if the dev matches any of the known devices. */
   1432   1.1    bouyer 			if ((val & mask) == (flash->strapping & mask)) {
   1433   1.1    bouyer 				/* Found a device match. */
   1434   1.1    bouyer 				sc->bnx_flash_info = flash;
   1435   1.1    bouyer 
   1436   1.1    bouyer 				/* Request access to the flash interface. */
   1437   1.1    bouyer 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1438   1.1    bouyer 					return (rc);
   1439   1.1    bouyer 
   1440   1.1    bouyer 				/* Reconfigure the flash interface. */
   1441   1.1    bouyer 				bnx_enable_nvram_access(sc);
   1442   1.1    bouyer 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1443   1.1    bouyer 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1444   1.1    bouyer 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1445   1.1    bouyer 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1446   1.1    bouyer 				bnx_disable_nvram_access(sc);
   1447   1.1    bouyer 				bnx_release_nvram_lock(sc);
   1448   1.1    bouyer 
   1449   1.1    bouyer 				break;
   1450   1.1    bouyer 			}
   1451   1.1    bouyer 		}
   1452   1.1    bouyer 	}
   1453   1.1    bouyer 
   1454   1.1    bouyer 	/* Check if a matching device was found. */
   1455   1.1    bouyer 	if (j == entry_count) {
   1456   1.1    bouyer 		sc->bnx_flash_info = NULL;
   1457   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1458   1.1    bouyer 			__FILE__, __LINE__);
   1459   1.1    bouyer 		rc = ENODEV;
   1460   1.1    bouyer 	}
   1461   1.1    bouyer 
   1462   1.1    bouyer 	/* Write the flash config data to the shared memory interface. */
   1463   1.1    bouyer 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1464   1.1    bouyer 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1465   1.1    bouyer 	if (val)
   1466   1.1    bouyer 		sc->bnx_flash_size = val;
   1467   1.1    bouyer 	else
   1468   1.1    bouyer 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1469   1.1    bouyer 
   1470   1.1    bouyer 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1471   1.1    bouyer 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1472   1.1    bouyer 
   1473  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1474   1.1    bouyer 
   1475   1.1    bouyer 	return (rc);
   1476   1.1    bouyer }
   1477   1.1    bouyer 
   1478   1.1    bouyer /****************************************************************************/
   1479   1.1    bouyer /* Read an arbitrary range of data from NVRAM.                              */
   1480   1.1    bouyer /*                                                                          */
   1481   1.1    bouyer /* Prepares the NVRAM interface for access and reads the requested data     */
   1482   1.1    bouyer /* into the supplied buffer.                                                */
   1483   1.1    bouyer /*                                                                          */
   1484   1.1    bouyer /* Returns:                                                                 */
   1485   1.1    bouyer /*   0 on success and the data read, positive value on failure.             */
   1486   1.1    bouyer /****************************************************************************/
   1487   1.1    bouyer int
   1488   1.1    bouyer bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1489   1.1    bouyer     int buf_size)
   1490   1.1    bouyer {
   1491   1.1    bouyer 	int			rc = 0;
   1492   1.1    bouyer 	u_int32_t		cmd_flags, offset32, len32, extra;
   1493   1.1    bouyer 
   1494   1.1    bouyer 	if (buf_size == 0)
   1495   1.1    bouyer 		return (0);
   1496   1.1    bouyer 
   1497   1.1    bouyer 	/* Request access to the flash interface. */
   1498   1.1    bouyer 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1499   1.1    bouyer 		return (rc);
   1500   1.1    bouyer 
   1501   1.1    bouyer 	/* Enable access to flash interface */
   1502   1.1    bouyer 	bnx_enable_nvram_access(sc);
   1503   1.1    bouyer 
   1504   1.1    bouyer 	len32 = buf_size;
   1505   1.1    bouyer 	offset32 = offset;
   1506   1.1    bouyer 	extra = 0;
   1507   1.1    bouyer 
   1508   1.1    bouyer 	cmd_flags = 0;
   1509   1.1    bouyer 
   1510   1.1    bouyer 	if (offset32 & 3) {
   1511   1.1    bouyer 		u_int8_t buf[4];
   1512   1.1    bouyer 		u_int32_t pre_len;
   1513   1.1    bouyer 
   1514   1.1    bouyer 		offset32 &= ~3;
   1515   1.1    bouyer 		pre_len = 4 - (offset & 3);
   1516   1.1    bouyer 
   1517   1.1    bouyer 		if (pre_len >= len32) {
   1518   1.1    bouyer 			pre_len = len32;
   1519   1.1    bouyer 			cmd_flags =
   1520   1.1    bouyer 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1521   1.1    bouyer 		} else
   1522   1.1    bouyer 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1523   1.1    bouyer 
   1524   1.1    bouyer 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1525   1.1    bouyer 
   1526   1.1    bouyer 		if (rc)
   1527   1.1    bouyer 			return (rc);
   1528   1.1    bouyer 
   1529   1.1    bouyer 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1530   1.1    bouyer 
   1531   1.1    bouyer 		offset32 += 4;
   1532   1.1    bouyer 		ret_buf += pre_len;
   1533   1.1    bouyer 		len32 -= pre_len;
   1534   1.1    bouyer 	}
   1535   1.1    bouyer 
   1536   1.1    bouyer 	if (len32 & 3) {
   1537   1.1    bouyer 		extra = 4 - (len32 & 3);
   1538   1.1    bouyer 		len32 = (len32 + 4) & ~3;
   1539   1.1    bouyer 	}
   1540   1.1    bouyer 
   1541   1.1    bouyer 	if (len32 == 4) {
   1542   1.1    bouyer 		u_int8_t buf[4];
   1543   1.1    bouyer 
   1544   1.1    bouyer 		if (cmd_flags)
   1545   1.1    bouyer 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1546   1.1    bouyer 		else
   1547   1.1    bouyer 			cmd_flags =
   1548   1.1    bouyer 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1549   1.1    bouyer 
   1550   1.1    bouyer 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1551   1.1    bouyer 
   1552   1.1    bouyer 		memcpy(ret_buf, buf, 4 - extra);
   1553   1.1    bouyer 	} else if (len32 > 0) {
   1554   1.1    bouyer 		u_int8_t buf[4];
   1555   1.1    bouyer 
   1556   1.1    bouyer 		/* Read the first word. */
   1557   1.1    bouyer 		if (cmd_flags)
   1558   1.1    bouyer 			cmd_flags = 0;
   1559   1.1    bouyer 		else
   1560   1.1    bouyer 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1561   1.1    bouyer 
   1562   1.1    bouyer 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1563   1.1    bouyer 
   1564   1.1    bouyer 		/* Advance to the next dword. */
   1565   1.1    bouyer 		offset32 += 4;
   1566   1.1    bouyer 		ret_buf += 4;
   1567   1.1    bouyer 		len32 -= 4;
   1568   1.1    bouyer 
   1569   1.1    bouyer 		while (len32 > 4 && rc == 0) {
   1570   1.1    bouyer 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1571   1.1    bouyer 
   1572   1.1    bouyer 			/* Advance to the next dword. */
   1573   1.1    bouyer 			offset32 += 4;
   1574   1.1    bouyer 			ret_buf += 4;
   1575   1.1    bouyer 			len32 -= 4;
   1576   1.1    bouyer 		}
   1577   1.1    bouyer 
   1578   1.1    bouyer 		if (rc)
   1579   1.1    bouyer 			return (rc);
   1580   1.1    bouyer 
   1581   1.1    bouyer 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1582   1.1    bouyer 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1583   1.1    bouyer 
   1584   1.1    bouyer 		memcpy(ret_buf, buf, 4 - extra);
   1585   1.1    bouyer 	}
   1586   1.1    bouyer 
   1587   1.1    bouyer 	/* Disable access to flash interface and release the lock. */
   1588   1.1    bouyer 	bnx_disable_nvram_access(sc);
   1589   1.1    bouyer 	bnx_release_nvram_lock(sc);
   1590   1.1    bouyer 
   1591   1.1    bouyer 	return (rc);
   1592   1.1    bouyer }
   1593   1.1    bouyer 
   1594   1.1    bouyer #ifdef BNX_NVRAM_WRITE_SUPPORT
   1595   1.1    bouyer /****************************************************************************/
   1596   1.1    bouyer /* Write an arbitrary range of data from NVRAM.                             */
   1597   1.1    bouyer /*                                                                          */
   1598   1.1    bouyer /* Prepares the NVRAM interface for write access and writes the requested   */
   1599   1.1    bouyer /* data from the supplied buffer.  The caller is responsible for            */
   1600   1.1    bouyer /* calculating any appropriate CRCs.                                        */
   1601   1.1    bouyer /*                                                                          */
   1602   1.1    bouyer /* Returns:                                                                 */
   1603   1.1    bouyer /*   0 on success, positive value on failure.                               */
   1604   1.1    bouyer /****************************************************************************/
   1605   1.1    bouyer int
   1606   1.1    bouyer bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1607   1.1    bouyer     int buf_size)
   1608   1.1    bouyer {
   1609   1.1    bouyer 	u_int32_t		written, offset32, len32;
   1610   1.1    bouyer 	u_int8_t		*buf, start[4], end[4];
   1611   1.1    bouyer 	int			rc = 0;
   1612   1.1    bouyer 	int			align_start, align_end;
   1613   1.1    bouyer 
   1614   1.1    bouyer 	buf = data_buf;
   1615   1.1    bouyer 	offset32 = offset;
   1616   1.1    bouyer 	len32 = buf_size;
   1617   1.1    bouyer 	align_start = align_end = 0;
   1618   1.1    bouyer 
   1619   1.1    bouyer 	if ((align_start = (offset32 & 3))) {
   1620   1.1    bouyer 		offset32 &= ~3;
   1621   1.1    bouyer 		len32 += align_start;
   1622   1.1    bouyer 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1623   1.1    bouyer 			return (rc);
   1624   1.1    bouyer 	}
   1625   1.1    bouyer 
   1626   1.1    bouyer 	if (len32 & 3) {
   1627   1.1    bouyer 	       	if ((len32 > 4) || !align_start) {
   1628   1.1    bouyer 			align_end = 4 - (len32 & 3);
   1629   1.1    bouyer 			len32 += align_end;
   1630   1.1    bouyer 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1631   1.1    bouyer 			    end, 4))) {
   1632   1.1    bouyer 				return (rc);
   1633   1.1    bouyer 			}
   1634   1.1    bouyer 		}
   1635   1.1    bouyer 	}
   1636   1.1    bouyer 
   1637   1.1    bouyer 	if (align_start || align_end) {
   1638   1.1    bouyer 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1639   1.1    bouyer 		if (buf == 0)
   1640   1.1    bouyer 			return (ENOMEM);
   1641   1.1    bouyer 
   1642   1.1    bouyer 		if (align_start)
   1643   1.1    bouyer 			memcpy(buf, start, 4);
   1644   1.1    bouyer 
   1645   1.1    bouyer 		if (align_end)
   1646   1.1    bouyer 			memcpy(buf + len32 - 4, end, 4);
   1647   1.1    bouyer 
   1648   1.1    bouyer 		memcpy(buf + align_start, data_buf, buf_size);
   1649   1.1    bouyer 	}
   1650   1.1    bouyer 
   1651   1.1    bouyer 	written = 0;
   1652   1.1    bouyer 	while ((written < len32) && (rc == 0)) {
   1653   1.1    bouyer 		u_int32_t page_start, page_end, data_start, data_end;
   1654   1.1    bouyer 		u_int32_t addr, cmd_flags;
   1655   1.1    bouyer 		int i;
   1656   1.1    bouyer 		u_int8_t flash_buffer[264];
   1657   1.1    bouyer 
   1658   1.1    bouyer 	    /* Find the page_start addr */
   1659   1.1    bouyer 		page_start = offset32 + written;
   1660   1.1    bouyer 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1661   1.1    bouyer 		/* Find the page_end addr */
   1662   1.1    bouyer 		page_end = page_start + sc->bnx_flash_info->page_size;
   1663   1.1    bouyer 		/* Find the data_start addr */
   1664   1.1    bouyer 		data_start = (written == 0) ? offset32 : page_start;
   1665   1.1    bouyer 		/* Find the data_end addr */
   1666   1.1    bouyer 		data_end = (page_end > offset32 + len32) ?
   1667   1.1    bouyer 		    (offset32 + len32) : page_end;
   1668   1.1    bouyer 
   1669   1.1    bouyer 		/* Request access to the flash interface. */
   1670   1.1    bouyer 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1671   1.1    bouyer 			goto nvram_write_end;
   1672   1.1    bouyer 
   1673   1.1    bouyer 		/* Enable access to flash interface */
   1674   1.1    bouyer 		bnx_enable_nvram_access(sc);
   1675   1.1    bouyer 
   1676   1.1    bouyer 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1677   1.1    bouyer 		if (sc->bnx_flash_info->buffered == 0) {
   1678   1.1    bouyer 			int j;
   1679   1.1    bouyer 
   1680   1.1    bouyer 			/* Read the whole page into the buffer
   1681   1.1    bouyer 			 * (non-buffer flash only) */
   1682   1.1    bouyer 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1683   1.1    bouyer 				if (j == (sc->bnx_flash_info->page_size - 4))
   1684   1.1    bouyer 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1685   1.1    bouyer 
   1686   1.1    bouyer 				rc = bnx_nvram_read_dword(sc,
   1687   1.1    bouyer 					page_start + j,
   1688   1.1    bouyer 					&flash_buffer[j],
   1689   1.1    bouyer 					cmd_flags);
   1690   1.1    bouyer 
   1691   1.1    bouyer 				if (rc)
   1692   1.1    bouyer 					goto nvram_write_end;
   1693   1.1    bouyer 
   1694   1.1    bouyer 				cmd_flags = 0;
   1695   1.1    bouyer 			}
   1696   1.1    bouyer 		}
   1697   1.1    bouyer 
   1698   1.1    bouyer 		/* Enable writes to flash interface (unlock write-protect) */
   1699   1.1    bouyer 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1700   1.1    bouyer 			goto nvram_write_end;
   1701   1.1    bouyer 
   1702   1.1    bouyer 		/* Erase the page */
   1703   1.1    bouyer 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1704   1.1    bouyer 			goto nvram_write_end;
   1705   1.1    bouyer 
   1706   1.1    bouyer 		/* Re-enable the write again for the actual write */
   1707   1.1    bouyer 		bnx_enable_nvram_write(sc);
   1708   1.1    bouyer 
   1709   1.1    bouyer 		/* Loop to write back the buffer data from page_start to
   1710   1.1    bouyer 		 * data_start */
   1711   1.1    bouyer 		i = 0;
   1712   1.1    bouyer 		if (sc->bnx_flash_info->buffered == 0) {
   1713   1.1    bouyer 			for (addr = page_start; addr < data_start;
   1714   1.1    bouyer 				addr += 4, i += 4) {
   1715   1.1    bouyer 
   1716   1.1    bouyer 				rc = bnx_nvram_write_dword(sc, addr,
   1717   1.1    bouyer 				    &flash_buffer[i], cmd_flags);
   1718   1.1    bouyer 
   1719   1.1    bouyer 				if (rc != 0)
   1720   1.1    bouyer 					goto nvram_write_end;
   1721   1.1    bouyer 
   1722   1.1    bouyer 				cmd_flags = 0;
   1723   1.1    bouyer 			}
   1724   1.1    bouyer 		}
   1725   1.1    bouyer 
   1726   1.1    bouyer 		/* Loop to write the new data from data_start to data_end */
   1727   1.1    bouyer 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1728   1.1    bouyer 			if ((addr == page_end - 4) ||
   1729   1.1    bouyer 			    ((sc->bnx_flash_info->buffered) &&
   1730   1.1    bouyer 			    (addr == data_end - 4))) {
   1731   1.1    bouyer 
   1732   1.1    bouyer 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1733   1.1    bouyer 			}
   1734   1.1    bouyer 
   1735   1.1    bouyer 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1736   1.1    bouyer 
   1737   1.1    bouyer 			if (rc != 0)
   1738   1.1    bouyer 				goto nvram_write_end;
   1739   1.1    bouyer 
   1740   1.1    bouyer 			cmd_flags = 0;
   1741   1.1    bouyer 			buf += 4;
   1742   1.1    bouyer 		}
   1743   1.1    bouyer 
   1744   1.1    bouyer 		/* Loop to write back the buffer data from data_end
   1745   1.1    bouyer 		 * to page_end */
   1746   1.1    bouyer 		if (sc->bnx_flash_info->buffered == 0) {
   1747   1.1    bouyer 			for (addr = data_end; addr < page_end;
   1748   1.1    bouyer 			    addr += 4, i += 4) {
   1749   1.1    bouyer 
   1750   1.1    bouyer 				if (addr == page_end-4)
   1751   1.1    bouyer 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1752   1.1    bouyer 
   1753   1.1    bouyer 				rc = bnx_nvram_write_dword(sc, addr,
   1754   1.1    bouyer 				    &flash_buffer[i], cmd_flags);
   1755   1.1    bouyer 
   1756   1.1    bouyer 				if (rc != 0)
   1757   1.1    bouyer 					goto nvram_write_end;
   1758   1.1    bouyer 
   1759   1.1    bouyer 				cmd_flags = 0;
   1760   1.1    bouyer 			}
   1761   1.1    bouyer 		}
   1762   1.1    bouyer 
   1763   1.1    bouyer 		/* Disable writes to flash interface (lock write-protect) */
   1764   1.1    bouyer 		bnx_disable_nvram_write(sc);
   1765   1.1    bouyer 
   1766   1.1    bouyer 		/* Disable access to flash interface */
   1767   1.1    bouyer 		bnx_disable_nvram_access(sc);
   1768   1.1    bouyer 		bnx_release_nvram_lock(sc);
   1769   1.1    bouyer 
   1770   1.1    bouyer 		/* Increment written */
   1771   1.1    bouyer 		written += data_end - data_start;
   1772   1.1    bouyer 	}
   1773   1.1    bouyer 
   1774   1.1    bouyer nvram_write_end:
   1775   1.1    bouyer 	if (align_start || align_end)
   1776   1.1    bouyer 		free(buf, M_DEVBUF);
   1777   1.1    bouyer 
   1778   1.1    bouyer 	return (rc);
   1779   1.1    bouyer }
   1780   1.1    bouyer #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1781   1.1    bouyer 
   1782   1.1    bouyer /****************************************************************************/
   1783   1.1    bouyer /* Verifies that NVRAM is accessible and contains valid data.               */
   1784   1.1    bouyer /*                                                                          */
   1785   1.1    bouyer /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1786   1.1    bouyer /* correct.                                                                 */
   1787   1.1    bouyer /*                                                                          */
   1788   1.1    bouyer /* Returns:                                                                 */
   1789   1.1    bouyer /*   0 on success, positive value on failure.                               */
   1790   1.1    bouyer /****************************************************************************/
   1791   1.1    bouyer int
   1792   1.1    bouyer bnx_nvram_test(struct bnx_softc *sc)
   1793   1.1    bouyer {
   1794   1.1    bouyer 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1795   1.1    bouyer 	u_int8_t		*data = (u_int8_t *) buf;
   1796   1.1    bouyer 	int			rc = 0;
   1797   1.1    bouyer 	u_int32_t		magic, csum;
   1798   1.1    bouyer 
   1799   1.1    bouyer 	/*
   1800   1.1    bouyer 	 * Check that the device NVRAM is valid by reading
   1801   1.1    bouyer 	 * the magic value at offset 0.
   1802   1.1    bouyer 	 */
   1803   1.1    bouyer 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1804   1.1    bouyer 		goto bnx_nvram_test_done;
   1805   1.1    bouyer 
   1806   1.1    bouyer 	magic = bnx_be32toh(buf[0]);
   1807   1.1    bouyer 	if (magic != BNX_NVRAM_MAGIC) {
   1808   1.1    bouyer 		rc = ENODEV;
   1809   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1810   1.1    bouyer 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1811   1.1    bouyer 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1812   1.1    bouyer 		goto bnx_nvram_test_done;
   1813   1.1    bouyer 	}
   1814   1.1    bouyer 
   1815   1.1    bouyer 	/*
   1816   1.1    bouyer 	 * Verify that the device NVRAM includes valid
   1817   1.1    bouyer 	 * configuration data.
   1818   1.1    bouyer 	 */
   1819   1.1    bouyer 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1820   1.1    bouyer 		goto bnx_nvram_test_done;
   1821   1.1    bouyer 
   1822   1.1    bouyer 	csum = ether_crc32_le(data, 0x100);
   1823   1.1    bouyer 	if (csum != BNX_CRC32_RESIDUAL) {
   1824   1.1    bouyer 		rc = ENODEV;
   1825   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1826   1.1    bouyer 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1827   1.1    bouyer 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1828   1.1    bouyer 		goto bnx_nvram_test_done;
   1829   1.1    bouyer 	}
   1830   1.1    bouyer 
   1831   1.1    bouyer 	csum = ether_crc32_le(data + 0x100, 0x100);
   1832   1.1    bouyer 	if (csum != BNX_CRC32_RESIDUAL) {
   1833   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1834   1.1    bouyer 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1835   1.1    bouyer 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1836   1.1    bouyer 		rc = ENODEV;
   1837   1.1    bouyer 	}
   1838   1.1    bouyer 
   1839   1.1    bouyer bnx_nvram_test_done:
   1840   1.1    bouyer 	return (rc);
   1841   1.1    bouyer }
   1842   1.1    bouyer 
   1843   1.1    bouyer /****************************************************************************/
   1844   1.1    bouyer /* Free any DMA memory owned by the driver.                                 */
   1845   1.1    bouyer /*                                                                          */
   1846   1.1    bouyer /* Scans through each data structre that requires DMA memory and frees      */
   1847   1.1    bouyer /* the memory if allocated.                                                 */
   1848   1.1    bouyer /*                                                                          */
   1849   1.1    bouyer /* Returns:                                                                 */
   1850   1.1    bouyer /*   Nothing.                                                               */
   1851   1.1    bouyer /****************************************************************************/
   1852   1.1    bouyer void
   1853   1.1    bouyer bnx_dma_free(struct bnx_softc *sc)
   1854   1.1    bouyer {
   1855   1.1    bouyer 	int			i;
   1856   1.1    bouyer 
   1857  1.12     perry 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1858   1.1    bouyer 
   1859   1.1    bouyer 	/* Destroy the status block. */
   1860   1.1    bouyer 	if (sc->status_block != NULL && sc->status_map != NULL) {
   1861   1.1    bouyer 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   1862   1.3  christos 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   1863   1.1    bouyer 		    BNX_STATUS_BLK_SZ);
   1864   1.1    bouyer 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   1865   1.1    bouyer 		    sc->status_rseg);
   1866   1.1    bouyer 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   1867   1.1    bouyer 		sc->status_block = NULL;
   1868   1.1    bouyer 		sc->status_map = NULL;
   1869   1.1    bouyer 	}
   1870   1.1    bouyer 
   1871   1.1    bouyer 	/* Destroy the statistics block. */
   1872   1.1    bouyer 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   1873   1.1    bouyer 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   1874   1.3  christos 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   1875   1.1    bouyer 		    BNX_STATS_BLK_SZ);
   1876   1.1    bouyer 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   1877   1.1    bouyer 		    sc->stats_rseg);
   1878   1.1    bouyer 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   1879   1.1    bouyer 		sc->stats_block = NULL;
   1880   1.1    bouyer 		sc->stats_map = NULL;
   1881   1.1    bouyer 	}
   1882   1.1    bouyer 
   1883   1.1    bouyer 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   1884   1.1    bouyer 	for (i = 0; i < TX_PAGES; i++ ) {
   1885   1.1    bouyer 		if (sc->tx_bd_chain[i] != NULL &&
   1886   1.1    bouyer 		    sc->tx_bd_chain_map[i] != NULL) {
   1887   1.1    bouyer 			bus_dmamap_unload(sc->bnx_dmatag,
   1888   1.1    bouyer 			    sc->tx_bd_chain_map[i]);
   1889   1.1    bouyer 			bus_dmamem_unmap(sc->bnx_dmatag,
   1890   1.3  christos 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   1891   1.1    bouyer 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   1892   1.1    bouyer 			    sc->tx_bd_chain_rseg[i]);
   1893   1.1    bouyer 			bus_dmamap_destroy(sc->bnx_dmatag,
   1894   1.1    bouyer 			    sc->tx_bd_chain_map[i]);
   1895   1.1    bouyer 			sc->tx_bd_chain[i] = NULL;
   1896   1.1    bouyer 			sc->tx_bd_chain_map[i] = NULL;
   1897   1.1    bouyer 		}
   1898   1.1    bouyer 	}
   1899   1.1    bouyer 
   1900   1.1    bouyer 	/* Unload and destroy the TX mbuf maps. */
   1901   1.1    bouyer 	for (i = 0; i < TOTAL_TX_BD; i++) {
   1902   1.1    bouyer 		if (sc->tx_mbuf_map[i] != NULL) {
   1903   1.1    bouyer 			bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1904   1.1    bouyer 			bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1905   1.1    bouyer 		}
   1906   1.1    bouyer 	}
   1907   1.1    bouyer 
   1908   1.1    bouyer 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   1909   1.1    bouyer 	for (i = 0; i < RX_PAGES; i++ ) {
   1910   1.1    bouyer 		if (sc->rx_bd_chain[i] != NULL &&
   1911   1.1    bouyer 		    sc->rx_bd_chain_map[i] != NULL) {
   1912   1.1    bouyer 			bus_dmamap_unload(sc->bnx_dmatag,
   1913   1.1    bouyer 			    sc->rx_bd_chain_map[i]);
   1914   1.1    bouyer 			bus_dmamem_unmap(sc->bnx_dmatag,
   1915   1.3  christos 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   1916   1.1    bouyer 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   1917   1.1    bouyer 			    sc->rx_bd_chain_rseg[i]);
   1918   1.1    bouyer 
   1919   1.1    bouyer 			bus_dmamap_destroy(sc->bnx_dmatag,
   1920   1.1    bouyer 			    sc->rx_bd_chain_map[i]);
   1921   1.1    bouyer 			sc->rx_bd_chain[i] = NULL;
   1922   1.1    bouyer 			sc->rx_bd_chain_map[i] = NULL;
   1923   1.1    bouyer 		}
   1924   1.1    bouyer 	}
   1925   1.1    bouyer 
   1926   1.1    bouyer 	/* Unload and destroy the RX mbuf maps. */
   1927   1.1    bouyer 	for (i = 0; i < TOTAL_RX_BD; i++) {
   1928   1.1    bouyer 		if (sc->rx_mbuf_map[i] != NULL) {
   1929   1.1    bouyer 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1930   1.1    bouyer 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1931   1.1    bouyer 		}
   1932   1.1    bouyer 	}
   1933   1.1    bouyer 
   1934  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1935   1.1    bouyer }
   1936   1.1    bouyer 
   1937   1.1    bouyer /****************************************************************************/
   1938   1.1    bouyer /* Allocate any DMA memory needed by the driver.                            */
   1939   1.1    bouyer /*                                                                          */
   1940   1.1    bouyer /* Allocates DMA memory needed for the various global structures needed by  */
   1941   1.1    bouyer /* hardware.                                                                */
   1942   1.1    bouyer /*                                                                          */
   1943   1.1    bouyer /* Returns:                                                                 */
   1944   1.1    bouyer /*   0 for success, positive value for failure.                             */
   1945   1.1    bouyer /****************************************************************************/
   1946   1.1    bouyer int
   1947   1.1    bouyer bnx_dma_alloc(struct bnx_softc *sc)
   1948   1.1    bouyer {
   1949   1.1    bouyer 	int			i, rc = 0;
   1950   1.1    bouyer 
   1951  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1952   1.1    bouyer 
   1953   1.1    bouyer 	/*
   1954   1.1    bouyer 	 * Allocate DMA memory for the status block, map the memory into DMA
   1955   1.1    bouyer 	 * space, and fetch the physical address of the block.
   1956   1.1    bouyer 	 */
   1957   1.1    bouyer 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   1958   1.1    bouyer 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   1959  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
   1960  1.13    dyoung 		    "Could not create status block DMA map!\n");
   1961   1.1    bouyer 		rc = ENOMEM;
   1962   1.1    bouyer 		goto bnx_dma_alloc_exit;
   1963   1.1    bouyer 	}
   1964   1.1    bouyer 
   1965   1.1    bouyer 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   1966   1.1    bouyer 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   1967   1.1    bouyer 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   1968  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
   1969  1.13    dyoung 		    "Could not allocate status block DMA memory!\n");
   1970   1.1    bouyer 		rc = ENOMEM;
   1971   1.1    bouyer 		goto bnx_dma_alloc_exit;
   1972   1.1    bouyer 	}
   1973   1.1    bouyer 
   1974   1.1    bouyer 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   1975   1.3  christos 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   1976  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
   1977  1.13    dyoung 		    "Could not map status block DMA memory!\n");
   1978   1.1    bouyer 		rc = ENOMEM;
   1979   1.1    bouyer 		goto bnx_dma_alloc_exit;
   1980   1.1    bouyer 	}
   1981   1.1    bouyer 
   1982   1.1    bouyer 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   1983   1.1    bouyer 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   1984  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
   1985  1.13    dyoung 		    "Could not load status block DMA memory!\n");
   1986   1.1    bouyer 		rc = ENOMEM;
   1987   1.1    bouyer 		goto bnx_dma_alloc_exit;
   1988   1.1    bouyer 	}
   1989   1.1    bouyer 
   1990   1.1    bouyer 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   1991   1.1    bouyer 	bzero(sc->status_block, BNX_STATUS_BLK_SZ);
   1992   1.1    bouyer 
   1993   1.1    bouyer 	/* DRC - Fix for 64 bit addresses. */
   1994   1.1    bouyer 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   1995   1.1    bouyer 		(u_int32_t) sc->status_block_paddr);
   1996   1.1    bouyer 
   1997   1.1    bouyer 	/*
   1998   1.1    bouyer 	 * Allocate DMA memory for the statistics block, map the memory into
   1999   1.1    bouyer 	 * DMA space, and fetch the physical address of the block.
   2000   1.1    bouyer 	 */
   2001   1.1    bouyer 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2002   1.1    bouyer 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2003  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
   2004  1.13    dyoung 		    "Could not create stats block DMA map!\n");
   2005   1.1    bouyer 		rc = ENOMEM;
   2006   1.1    bouyer 		goto bnx_dma_alloc_exit;
   2007   1.1    bouyer 	}
   2008   1.1    bouyer 
   2009   1.1    bouyer 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2010   1.1    bouyer 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2011   1.1    bouyer 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2012  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
   2013  1.13    dyoung 		    "Could not allocate stats block DMA memory!\n");
   2014   1.1    bouyer 		rc = ENOMEM;
   2015   1.1    bouyer 		goto bnx_dma_alloc_exit;
   2016   1.1    bouyer 	}
   2017   1.1    bouyer 
   2018   1.1    bouyer 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2019   1.3  christos 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2020  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
   2021  1.13    dyoung 		    "Could not map stats block DMA memory!\n");
   2022   1.1    bouyer 		rc = ENOMEM;
   2023   1.1    bouyer 		goto bnx_dma_alloc_exit;
   2024   1.1    bouyer 	}
   2025   1.1    bouyer 
   2026   1.1    bouyer 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2027   1.1    bouyer 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2028  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
   2029  1.13    dyoung 		    "Could not load status block DMA memory!\n");
   2030   1.1    bouyer 		rc = ENOMEM;
   2031   1.1    bouyer 		goto bnx_dma_alloc_exit;
   2032   1.1    bouyer 	}
   2033   1.1    bouyer 
   2034   1.1    bouyer 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2035   1.1    bouyer 	bzero(sc->stats_block, BNX_STATS_BLK_SZ);
   2036   1.1    bouyer 
   2037   1.1    bouyer 	/* DRC - Fix for 64 bit address. */
   2038   1.1    bouyer 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2039   1.1    bouyer 	    (u_int32_t) sc->stats_block_paddr);
   2040   1.1    bouyer 
   2041   1.1    bouyer 	/*
   2042   1.1    bouyer 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2043   1.1    bouyer 	 * and fetch the physical address of the block.
   2044   1.1    bouyer 	 */
   2045   1.1    bouyer 	for (i = 0; i < TX_PAGES; i++) {
   2046   1.1    bouyer 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2047   1.1    bouyer 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2048   1.1    bouyer 		    &sc->tx_bd_chain_map[i])) {
   2049  1.13    dyoung 			aprint_error_dev(sc->bnx_dev,
   2050  1.13    dyoung 			    "Could not create Tx desc %d DMA map!\n", i);
   2051   1.1    bouyer 			rc = ENOMEM;
   2052   1.1    bouyer 			goto bnx_dma_alloc_exit;
   2053   1.1    bouyer 		}
   2054   1.1    bouyer 
   2055   1.1    bouyer 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2056   1.1    bouyer 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2057   1.1    bouyer 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2058  1.13    dyoung 			aprint_error_dev(sc->bnx_dev,
   2059  1.13    dyoung 			    "Could not allocate TX desc %d DMA memory!\n",
   2060  1.13    dyoung 			    i);
   2061   1.1    bouyer 			rc = ENOMEM;
   2062   1.1    bouyer 			goto bnx_dma_alloc_exit;
   2063   1.1    bouyer 		}
   2064   1.1    bouyer 
   2065   1.1    bouyer 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2066   1.1    bouyer 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2067   1.3  christos 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2068  1.13    dyoung 			aprint_error_dev(sc->bnx_dev,
   2069  1.13    dyoung 			    "Could not map TX desc %d DMA memory!\n", i);
   2070   1.1    bouyer 			rc = ENOMEM;
   2071   1.1    bouyer 			goto bnx_dma_alloc_exit;
   2072   1.1    bouyer 		}
   2073   1.1    bouyer 
   2074   1.1    bouyer 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2075   1.3  christos 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2076   1.1    bouyer 		    BUS_DMA_NOWAIT)) {
   2077  1.13    dyoung 			aprint_error_dev(sc->bnx_dev,
   2078  1.13    dyoung 			    "Could not load TX desc %d DMA memory!\n", i);
   2079   1.1    bouyer 			rc = ENOMEM;
   2080   1.1    bouyer 			goto bnx_dma_alloc_exit;
   2081   1.1    bouyer 		}
   2082   1.1    bouyer 
   2083   1.1    bouyer 		sc->tx_bd_chain_paddr[i] =
   2084   1.1    bouyer 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2085   1.1    bouyer 
   2086   1.1    bouyer 		/* DRC - Fix for 64 bit systems. */
   2087   1.1    bouyer 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2088   1.1    bouyer 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2089   1.1    bouyer 	}
   2090   1.1    bouyer 
   2091   1.1    bouyer 	/*
   2092   1.1    bouyer 	 * Create DMA maps for the TX buffer mbufs.
   2093   1.1    bouyer 	 */
   2094   1.1    bouyer 	for (i = 0; i < TOTAL_TX_BD; i++) {
   2095   1.1    bouyer 		if (bus_dmamap_create(sc->bnx_dmatag,
   2096   1.1    bouyer 		    MCLBYTES * BNX_MAX_SEGMENTS,
   2097   1.1    bouyer 		    USABLE_TX_BD - BNX_TX_SLACK_SPACE,
   2098   1.1    bouyer 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
   2099   1.1    bouyer 		    &sc->tx_mbuf_map[i])) {
   2100  1.13    dyoung 			aprint_error_dev(sc->bnx_dev,
   2101  1.13    dyoung 			    "Could not create Tx mbuf %d DMA map!\n", i);
   2102   1.1    bouyer 			rc = ENOMEM;
   2103   1.1    bouyer 			goto bnx_dma_alloc_exit;
   2104   1.1    bouyer 		}
   2105   1.1    bouyer 	}
   2106   1.1    bouyer 
   2107   1.1    bouyer 	/*
   2108   1.1    bouyer 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2109   1.1    bouyer 	 * and fetch the physical address of the block.
   2110   1.1    bouyer 	 */
   2111   1.1    bouyer 	for (i = 0; i < RX_PAGES; i++) {
   2112   1.1    bouyer 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2113   1.1    bouyer 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2114   1.1    bouyer 		    &sc->rx_bd_chain_map[i])) {
   2115  1.13    dyoung 			aprint_error_dev(sc->bnx_dev,
   2116  1.13    dyoung 			    "Could not create Rx desc %d DMA map!\n", i);
   2117   1.1    bouyer 			rc = ENOMEM;
   2118   1.1    bouyer 			goto bnx_dma_alloc_exit;
   2119   1.1    bouyer 		}
   2120   1.1    bouyer 
   2121   1.1    bouyer 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2122   1.1    bouyer 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2123   1.1    bouyer 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2124  1.13    dyoung 			aprint_error_dev(sc->bnx_dev,
   2125  1.13    dyoung 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2126   1.1    bouyer 			rc = ENOMEM;
   2127   1.1    bouyer 			goto bnx_dma_alloc_exit;
   2128   1.1    bouyer 		}
   2129   1.1    bouyer 
   2130   1.1    bouyer 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2131   1.1    bouyer 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2132   1.3  christos 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2133  1.13    dyoung 			aprint_error_dev(sc->bnx_dev,
   2134  1.13    dyoung 			    "Could not map Rx desc %d DMA memory!\n", i);
   2135   1.1    bouyer 			rc = ENOMEM;
   2136   1.1    bouyer 			goto bnx_dma_alloc_exit;
   2137   1.1    bouyer 		}
   2138   1.1    bouyer 
   2139   1.1    bouyer 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2140   1.3  christos 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2141   1.1    bouyer 		    BUS_DMA_NOWAIT)) {
   2142  1.13    dyoung 			aprint_error_dev(sc->bnx_dev,
   2143  1.13    dyoung 			    "Could not load Rx desc %d DMA memory!\n", i);
   2144   1.1    bouyer 			rc = ENOMEM;
   2145   1.1    bouyer 			goto bnx_dma_alloc_exit;
   2146   1.1    bouyer 		}
   2147   1.1    bouyer 
   2148   1.1    bouyer 		bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2149   1.1    bouyer 		sc->rx_bd_chain_paddr[i] =
   2150   1.1    bouyer 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2151   1.1    bouyer 
   2152   1.1    bouyer 		/* DRC - Fix for 64 bit systems. */
   2153   1.1    bouyer 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2154   1.1    bouyer 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2155   1.1    bouyer 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2156   1.1    bouyer 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2157   1.1    bouyer 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2158   1.1    bouyer 	}
   2159   1.1    bouyer 
   2160   1.1    bouyer 	/*
   2161   1.1    bouyer 	 * Create DMA maps for the Rx buffer mbufs.
   2162   1.1    bouyer 	 */
   2163   1.1    bouyer 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2164   1.1    bouyer 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
   2165   1.1    bouyer 		    BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
   2166   1.1    bouyer 		    &sc->rx_mbuf_map[i])) {
   2167  1.13    dyoung 			aprint_error_dev(sc->bnx_dev,
   2168  1.13    dyoung 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2169   1.1    bouyer 			rc = ENOMEM;
   2170   1.1    bouyer 			goto bnx_dma_alloc_exit;
   2171   1.1    bouyer 		}
   2172   1.1    bouyer 	}
   2173   1.1    bouyer 
   2174   1.1    bouyer  bnx_dma_alloc_exit:
   2175  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2176   1.1    bouyer 
   2177   1.1    bouyer 	return(rc);
   2178   1.1    bouyer }
   2179   1.1    bouyer 
   2180   1.1    bouyer /****************************************************************************/
   2181   1.1    bouyer /* Release all resources used by the driver.                                */
   2182   1.1    bouyer /*                                                                          */
   2183   1.1    bouyer /* Releases all resources acquired by the driver including interrupts,      */
   2184   1.1    bouyer /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2185   1.1    bouyer /*                                                                          */
   2186   1.1    bouyer /* Returns:                                                                 */
   2187   1.1    bouyer /*   Nothing.                                                               */
   2188   1.1    bouyer /****************************************************************************/
   2189   1.1    bouyer void
   2190   1.1    bouyer bnx_release_resources(struct bnx_softc *sc)
   2191   1.1    bouyer {
   2192  1.13    dyoung 	int i;
   2193   1.1    bouyer 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2194   1.1    bouyer 
   2195  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2196   1.1    bouyer 
   2197   1.1    bouyer 	bnx_dma_free(sc);
   2198   1.1    bouyer 
   2199   1.1    bouyer 	if (sc->bnx_intrhand != NULL)
   2200   1.1    bouyer 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2201   1.1    bouyer 
   2202   1.1    bouyer 	if (sc->bnx_size)
   2203   1.1    bouyer 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2204   1.1    bouyer 
   2205  1.13    dyoung 	for (i = 0; i < TOTAL_RX_BD; i++)
   2206  1.13    dyoung 		bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2207  1.13    dyoung 
   2208  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2209   1.1    bouyer }
   2210   1.1    bouyer 
   2211   1.1    bouyer /****************************************************************************/
   2212   1.1    bouyer /* Firmware synchronization.                                                */
   2213   1.1    bouyer /*                                                                          */
   2214   1.1    bouyer /* Before performing certain events such as a chip reset, synchronize with  */
   2215   1.1    bouyer /* the firmware first.                                                      */
   2216   1.1    bouyer /*                                                                          */
   2217   1.1    bouyer /* Returns:                                                                 */
   2218   1.1    bouyer /*   0 for success, positive value for failure.                             */
   2219   1.1    bouyer /****************************************************************************/
   2220   1.1    bouyer int
   2221   1.1    bouyer bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2222   1.1    bouyer {
   2223   1.1    bouyer 	int			i, rc = 0;
   2224   1.1    bouyer 	u_int32_t		val;
   2225   1.1    bouyer 
   2226   1.1    bouyer 	/* Don't waste any time if we've timed out before. */
   2227   1.1    bouyer 	if (sc->bnx_fw_timed_out) {
   2228   1.1    bouyer 		rc = EBUSY;
   2229   1.1    bouyer 		goto bnx_fw_sync_exit;
   2230   1.1    bouyer 	}
   2231   1.1    bouyer 
   2232   1.1    bouyer 	/* Increment the message sequence number. */
   2233   1.1    bouyer 	sc->bnx_fw_wr_seq++;
   2234   1.1    bouyer 	msg_data |= sc->bnx_fw_wr_seq;
   2235   1.1    bouyer 
   2236   1.1    bouyer  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2237   1.1    bouyer 	    msg_data);
   2238   1.1    bouyer 
   2239   1.1    bouyer 	/* Send the message to the bootcode driver mailbox. */
   2240   1.1    bouyer 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2241   1.1    bouyer 
   2242   1.1    bouyer 	/* Wait for the bootcode to acknowledge the message. */
   2243   1.1    bouyer 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2244   1.1    bouyer 		/* Check for a response in the bootcode firmware mailbox. */
   2245   1.1    bouyer 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2246   1.1    bouyer 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2247   1.1    bouyer 			break;
   2248   1.1    bouyer 		DELAY(1000);
   2249   1.1    bouyer 	}
   2250   1.1    bouyer 
   2251   1.1    bouyer 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2252   1.1    bouyer 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2253   1.1    bouyer 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2254   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2255   1.1    bouyer 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2256   1.1    bouyer 
   2257   1.1    bouyer 		msg_data &= ~BNX_DRV_MSG_CODE;
   2258   1.1    bouyer 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2259   1.1    bouyer 
   2260   1.1    bouyer 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2261   1.1    bouyer 
   2262   1.1    bouyer 		sc->bnx_fw_timed_out = 1;
   2263   1.1    bouyer 		rc = EBUSY;
   2264   1.1    bouyer 	}
   2265   1.1    bouyer 
   2266   1.1    bouyer bnx_fw_sync_exit:
   2267   1.1    bouyer 	return (rc);
   2268   1.1    bouyer }
   2269   1.1    bouyer 
   2270   1.1    bouyer /****************************************************************************/
   2271   1.1    bouyer /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2272   1.1    bouyer /*                                                                          */
   2273   1.1    bouyer /* Returns:                                                                 */
   2274   1.1    bouyer /*   Nothing.                                                               */
   2275   1.1    bouyer /****************************************************************************/
   2276   1.1    bouyer void
   2277   1.1    bouyer bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2278   1.1    bouyer     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2279   1.1    bouyer {
   2280   1.1    bouyer 	int			i;
   2281   1.1    bouyer 	u_int32_t		val;
   2282   1.1    bouyer 
   2283   1.1    bouyer 	for (i = 0; i < rv2p_code_len; i += 8) {
   2284   1.1    bouyer 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2285   1.1    bouyer 		rv2p_code++;
   2286   1.1    bouyer 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2287   1.1    bouyer 		rv2p_code++;
   2288   1.1    bouyer 
   2289   1.1    bouyer 		if (rv2p_proc == RV2P_PROC1) {
   2290   1.1    bouyer 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2291   1.1    bouyer 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2292   1.1    bouyer 		}
   2293   1.1    bouyer 		else {
   2294   1.1    bouyer 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2295   1.1    bouyer 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2296   1.1    bouyer 		}
   2297   1.1    bouyer 	}
   2298   1.1    bouyer 
   2299   1.1    bouyer 	/* Reset the processor, un-stall is done later. */
   2300   1.1    bouyer 	if (rv2p_proc == RV2P_PROC1)
   2301   1.1    bouyer 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2302   1.1    bouyer 	else
   2303   1.1    bouyer 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2304   1.1    bouyer }
   2305   1.1    bouyer 
   2306   1.1    bouyer /****************************************************************************/
   2307   1.1    bouyer /* Load RISC processor firmware.                                            */
   2308   1.1    bouyer /*                                                                          */
   2309   1.1    bouyer /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2310   1.1    bouyer /* associated with a particular processor.                                  */
   2311   1.1    bouyer /*                                                                          */
   2312   1.1    bouyer /* Returns:                                                                 */
   2313   1.1    bouyer /*   Nothing.                                                               */
   2314   1.1    bouyer /****************************************************************************/
   2315   1.1    bouyer void
   2316   1.1    bouyer bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2317   1.1    bouyer     struct fw_info *fw)
   2318   1.1    bouyer {
   2319   1.1    bouyer 	u_int32_t		offset;
   2320   1.1    bouyer 	u_int32_t		val;
   2321   1.1    bouyer 
   2322   1.1    bouyer 	/* Halt the CPU. */
   2323   1.1    bouyer 	val = REG_RD_IND(sc, cpu_reg->mode);
   2324   1.1    bouyer 	val |= cpu_reg->mode_value_halt;
   2325   1.1    bouyer 	REG_WR_IND(sc, cpu_reg->mode, val);
   2326   1.1    bouyer 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2327   1.1    bouyer 
   2328   1.1    bouyer 	/* Load the Text area. */
   2329   1.1    bouyer 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2330   1.1    bouyer 	if (fw->text) {
   2331   1.1    bouyer 		int j;
   2332   1.1    bouyer 
   2333   1.1    bouyer 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2334   1.1    bouyer 			REG_WR_IND(sc, offset, fw->text[j]);
   2335   1.1    bouyer 	}
   2336   1.1    bouyer 
   2337   1.1    bouyer 	/* Load the Data area. */
   2338   1.1    bouyer 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2339   1.1    bouyer 	if (fw->data) {
   2340   1.1    bouyer 		int j;
   2341   1.1    bouyer 
   2342   1.1    bouyer 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2343   1.1    bouyer 			REG_WR_IND(sc, offset, fw->data[j]);
   2344   1.1    bouyer 	}
   2345   1.1    bouyer 
   2346   1.1    bouyer 	/* Load the SBSS area. */
   2347   1.1    bouyer 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2348   1.1    bouyer 	if (fw->sbss) {
   2349   1.1    bouyer 		int j;
   2350   1.1    bouyer 
   2351   1.1    bouyer 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2352   1.1    bouyer 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2353   1.1    bouyer 	}
   2354   1.1    bouyer 
   2355   1.1    bouyer 	/* Load the BSS area. */
   2356   1.1    bouyer 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2357   1.1    bouyer 	if (fw->bss) {
   2358   1.1    bouyer 		int j;
   2359   1.1    bouyer 
   2360   1.1    bouyer 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2361   1.1    bouyer 			REG_WR_IND(sc, offset, fw->bss[j]);
   2362   1.1    bouyer 	}
   2363   1.1    bouyer 
   2364   1.1    bouyer 	/* Load the Read-Only area. */
   2365   1.1    bouyer 	offset = cpu_reg->spad_base +
   2366   1.1    bouyer 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2367   1.1    bouyer 	if (fw->rodata) {
   2368   1.1    bouyer 		int j;
   2369   1.1    bouyer 
   2370   1.1    bouyer 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2371   1.1    bouyer 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2372   1.1    bouyer 	}
   2373   1.1    bouyer 
   2374   1.1    bouyer 	/* Clear the pre-fetch instruction. */
   2375   1.1    bouyer 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2376   1.1    bouyer 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2377   1.1    bouyer 
   2378   1.1    bouyer 	/* Start the CPU. */
   2379   1.1    bouyer 	val = REG_RD_IND(sc, cpu_reg->mode);
   2380   1.1    bouyer 	val &= ~cpu_reg->mode_value_halt;
   2381   1.1    bouyer 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2382   1.1    bouyer 	REG_WR_IND(sc, cpu_reg->mode, val);
   2383   1.1    bouyer }
   2384   1.1    bouyer 
   2385   1.1    bouyer /****************************************************************************/
   2386   1.1    bouyer /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2387   1.1    bouyer /*                                                                          */
   2388   1.1    bouyer /* Loads the firmware for each CPU and starts the CPU.                      */
   2389   1.1    bouyer /*                                                                          */
   2390   1.1    bouyer /* Returns:                                                                 */
   2391   1.1    bouyer /*   Nothing.                                                               */
   2392   1.1    bouyer /****************************************************************************/
   2393   1.1    bouyer void
   2394   1.1    bouyer bnx_init_cpus(struct bnx_softc *sc)
   2395   1.1    bouyer {
   2396   1.1    bouyer 	struct cpu_reg cpu_reg;
   2397   1.1    bouyer 	struct fw_info fw;
   2398   1.1    bouyer 
   2399   1.1    bouyer 	/* Initialize the RV2P processor. */
   2400   1.1    bouyer 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2401   1.1    bouyer 	    RV2P_PROC1);
   2402   1.1    bouyer 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2403   1.1    bouyer 	    RV2P_PROC2);
   2404   1.1    bouyer 
   2405   1.1    bouyer 	/* Initialize the RX Processor. */
   2406   1.1    bouyer 	cpu_reg.mode = BNX_RXP_CPU_MODE;
   2407   1.1    bouyer 	cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2408   1.1    bouyer 	cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2409   1.1    bouyer 	cpu_reg.state = BNX_RXP_CPU_STATE;
   2410   1.1    bouyer 	cpu_reg.state_value_clear = 0xffffff;
   2411   1.1    bouyer 	cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2412   1.1    bouyer 	cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2413   1.1    bouyer 	cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2414   1.1    bouyer 	cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2415   1.1    bouyer 	cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2416   1.1    bouyer 	cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2417   1.1    bouyer 	cpu_reg.mips_view_base = 0x8000000;
   2418   1.1    bouyer 
   2419   1.1    bouyer 	fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2420   1.1    bouyer 	fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2421   1.1    bouyer 	fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2422   1.1    bouyer 	fw.start_addr = bnx_RXP_b06FwStartAddr;
   2423   1.1    bouyer 
   2424   1.1    bouyer 	fw.text_addr = bnx_RXP_b06FwTextAddr;
   2425   1.1    bouyer 	fw.text_len = bnx_RXP_b06FwTextLen;
   2426   1.1    bouyer 	fw.text_index = 0;
   2427   1.1    bouyer 	fw.text = bnx_RXP_b06FwText;
   2428   1.1    bouyer 
   2429   1.1    bouyer 	fw.data_addr = bnx_RXP_b06FwDataAddr;
   2430   1.1    bouyer 	fw.data_len = bnx_RXP_b06FwDataLen;
   2431   1.1    bouyer 	fw.data_index = 0;
   2432   1.1    bouyer 	fw.data = bnx_RXP_b06FwData;
   2433   1.1    bouyer 
   2434   1.1    bouyer 	fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2435   1.1    bouyer 	fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2436   1.1    bouyer 	fw.sbss_index = 0;
   2437   1.1    bouyer 	fw.sbss = bnx_RXP_b06FwSbss;
   2438   1.1    bouyer 
   2439   1.1    bouyer 	fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2440   1.1    bouyer 	fw.bss_len = bnx_RXP_b06FwBssLen;
   2441   1.1    bouyer 	fw.bss_index = 0;
   2442   1.1    bouyer 	fw.bss = bnx_RXP_b06FwBss;
   2443   1.1    bouyer 
   2444   1.1    bouyer 	fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2445   1.1    bouyer 	fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2446   1.1    bouyer 	fw.rodata_index = 0;
   2447   1.1    bouyer 	fw.rodata = bnx_RXP_b06FwRodata;
   2448   1.1    bouyer 
   2449   1.1    bouyer 	DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2450   1.1    bouyer 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2451   1.1    bouyer 
   2452   1.1    bouyer 	/* Initialize the TX Processor. */
   2453   1.1    bouyer 	cpu_reg.mode = BNX_TXP_CPU_MODE;
   2454   1.1    bouyer 	cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2455   1.1    bouyer 	cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2456   1.1    bouyer 	cpu_reg.state = BNX_TXP_CPU_STATE;
   2457   1.1    bouyer 	cpu_reg.state_value_clear = 0xffffff;
   2458   1.1    bouyer 	cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2459   1.1    bouyer 	cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2460   1.1    bouyer 	cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2461   1.1    bouyer 	cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2462   1.1    bouyer 	cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2463   1.1    bouyer 	cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2464   1.1    bouyer 	cpu_reg.mips_view_base = 0x8000000;
   2465   1.1    bouyer 
   2466   1.1    bouyer 	fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2467   1.1    bouyer 	fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2468   1.1    bouyer 	fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2469   1.1    bouyer 	fw.start_addr = bnx_TXP_b06FwStartAddr;
   2470   1.1    bouyer 
   2471   1.1    bouyer 	fw.text_addr = bnx_TXP_b06FwTextAddr;
   2472   1.1    bouyer 	fw.text_len = bnx_TXP_b06FwTextLen;
   2473   1.1    bouyer 	fw.text_index = 0;
   2474   1.1    bouyer 	fw.text = bnx_TXP_b06FwText;
   2475   1.1    bouyer 
   2476   1.1    bouyer 	fw.data_addr = bnx_TXP_b06FwDataAddr;
   2477   1.1    bouyer 	fw.data_len = bnx_TXP_b06FwDataLen;
   2478   1.1    bouyer 	fw.data_index = 0;
   2479   1.1    bouyer 	fw.data = bnx_TXP_b06FwData;
   2480   1.1    bouyer 
   2481   1.1    bouyer 	fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2482   1.1    bouyer 	fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2483   1.1    bouyer 	fw.sbss_index = 0;
   2484   1.1    bouyer 	fw.sbss = bnx_TXP_b06FwSbss;
   2485   1.1    bouyer 
   2486   1.1    bouyer 	fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2487   1.1    bouyer 	fw.bss_len = bnx_TXP_b06FwBssLen;
   2488   1.1    bouyer 	fw.bss_index = 0;
   2489   1.1    bouyer 	fw.bss = bnx_TXP_b06FwBss;
   2490   1.1    bouyer 
   2491   1.1    bouyer 	fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   2492   1.1    bouyer 	fw.rodata_len = bnx_TXP_b06FwRodataLen;
   2493   1.1    bouyer 	fw.rodata_index = 0;
   2494   1.1    bouyer 	fw.rodata = bnx_TXP_b06FwRodata;
   2495   1.1    bouyer 
   2496   1.1    bouyer 	DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2497   1.1    bouyer 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2498   1.1    bouyer 
   2499   1.1    bouyer 	/* Initialize the TX Patch-up Processor. */
   2500   1.1    bouyer 	cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2501   1.1    bouyer 	cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2502   1.1    bouyer 	cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2503   1.1    bouyer 	cpu_reg.state = BNX_TPAT_CPU_STATE;
   2504   1.1    bouyer 	cpu_reg.state_value_clear = 0xffffff;
   2505   1.1    bouyer 	cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2506   1.1    bouyer 	cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2507   1.1    bouyer 	cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2508   1.1    bouyer 	cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2509   1.1    bouyer 	cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2510   1.1    bouyer 	cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2511   1.1    bouyer 	cpu_reg.mips_view_base = 0x8000000;
   2512   1.1    bouyer 
   2513   1.1    bouyer 	fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   2514   1.1    bouyer 	fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   2515   1.1    bouyer 	fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   2516   1.1    bouyer 	fw.start_addr = bnx_TPAT_b06FwStartAddr;
   2517   1.1    bouyer 
   2518   1.1    bouyer 	fw.text_addr = bnx_TPAT_b06FwTextAddr;
   2519   1.1    bouyer 	fw.text_len = bnx_TPAT_b06FwTextLen;
   2520   1.1    bouyer 	fw.text_index = 0;
   2521   1.1    bouyer 	fw.text = bnx_TPAT_b06FwText;
   2522   1.1    bouyer 
   2523   1.1    bouyer 	fw.data_addr = bnx_TPAT_b06FwDataAddr;
   2524   1.1    bouyer 	fw.data_len = bnx_TPAT_b06FwDataLen;
   2525   1.1    bouyer 	fw.data_index = 0;
   2526   1.1    bouyer 	fw.data = bnx_TPAT_b06FwData;
   2527   1.1    bouyer 
   2528   1.1    bouyer 	fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   2529   1.1    bouyer 	fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   2530   1.1    bouyer 	fw.sbss_index = 0;
   2531   1.1    bouyer 	fw.sbss = bnx_TPAT_b06FwSbss;
   2532   1.1    bouyer 
   2533   1.1    bouyer 	fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   2534   1.1    bouyer 	fw.bss_len = bnx_TPAT_b06FwBssLen;
   2535   1.1    bouyer 	fw.bss_index = 0;
   2536   1.1    bouyer 	fw.bss = bnx_TPAT_b06FwBss;
   2537   1.1    bouyer 
   2538   1.1    bouyer 	fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   2539   1.1    bouyer 	fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   2540   1.1    bouyer 	fw.rodata_index = 0;
   2541   1.1    bouyer 	fw.rodata = bnx_TPAT_b06FwRodata;
   2542   1.1    bouyer 
   2543   1.1    bouyer 	DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2544   1.1    bouyer 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2545   1.1    bouyer 
   2546   1.1    bouyer 	/* Initialize the Completion Processor. */
   2547   1.1    bouyer 	cpu_reg.mode = BNX_COM_CPU_MODE;
   2548   1.1    bouyer 	cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2549   1.1    bouyer 	cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2550   1.1    bouyer 	cpu_reg.state = BNX_COM_CPU_STATE;
   2551   1.1    bouyer 	cpu_reg.state_value_clear = 0xffffff;
   2552   1.1    bouyer 	cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2553   1.1    bouyer 	cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2554   1.1    bouyer 	cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2555   1.1    bouyer 	cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2556   1.1    bouyer 	cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2557   1.1    bouyer 	cpu_reg.spad_base = BNX_COM_SCRATCH;
   2558   1.1    bouyer 	cpu_reg.mips_view_base = 0x8000000;
   2559   1.1    bouyer 
   2560   1.1    bouyer 	fw.ver_major = bnx_COM_b06FwReleaseMajor;
   2561   1.1    bouyer 	fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   2562   1.1    bouyer 	fw.ver_fix = bnx_COM_b06FwReleaseFix;
   2563   1.1    bouyer 	fw.start_addr = bnx_COM_b06FwStartAddr;
   2564   1.1    bouyer 
   2565   1.1    bouyer 	fw.text_addr = bnx_COM_b06FwTextAddr;
   2566   1.1    bouyer 	fw.text_len = bnx_COM_b06FwTextLen;
   2567   1.1    bouyer 	fw.text_index = 0;
   2568   1.1    bouyer 	fw.text = bnx_COM_b06FwText;
   2569   1.1    bouyer 
   2570   1.1    bouyer 	fw.data_addr = bnx_COM_b06FwDataAddr;
   2571   1.1    bouyer 	fw.data_len = bnx_COM_b06FwDataLen;
   2572   1.1    bouyer 	fw.data_index = 0;
   2573   1.1    bouyer 	fw.data = bnx_COM_b06FwData;
   2574   1.1    bouyer 
   2575   1.1    bouyer 	fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   2576   1.1    bouyer 	fw.sbss_len = bnx_COM_b06FwSbssLen;
   2577   1.1    bouyer 	fw.sbss_index = 0;
   2578   1.1    bouyer 	fw.sbss = bnx_COM_b06FwSbss;
   2579   1.1    bouyer 
   2580   1.1    bouyer 	fw.bss_addr = bnx_COM_b06FwBssAddr;
   2581   1.1    bouyer 	fw.bss_len = bnx_COM_b06FwBssLen;
   2582   1.1    bouyer 	fw.bss_index = 0;
   2583   1.1    bouyer 	fw.bss = bnx_COM_b06FwBss;
   2584   1.1    bouyer 
   2585   1.1    bouyer 	fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   2586   1.1    bouyer 	fw.rodata_len = bnx_COM_b06FwRodataLen;
   2587   1.1    bouyer 	fw.rodata_index = 0;
   2588   1.1    bouyer 	fw.rodata = bnx_COM_b06FwRodata;
   2589   1.1    bouyer 
   2590   1.1    bouyer 	DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2591   1.1    bouyer 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2592   1.1    bouyer }
   2593   1.1    bouyer 
   2594   1.1    bouyer /****************************************************************************/
   2595   1.1    bouyer /* Initialize context memory.                                               */
   2596   1.1    bouyer /*                                                                          */
   2597   1.1    bouyer /* Clears the memory associated with each Context ID (CID).                 */
   2598   1.1    bouyer /*                                                                          */
   2599   1.1    bouyer /* Returns:                                                                 */
   2600   1.1    bouyer /*   Nothing.                                                               */
   2601   1.1    bouyer /****************************************************************************/
   2602   1.1    bouyer void
   2603   1.1    bouyer bnx_init_context(struct bnx_softc *sc)
   2604   1.1    bouyer {
   2605   1.1    bouyer 	u_int32_t		vcid;
   2606   1.1    bouyer 
   2607   1.1    bouyer 	vcid = 96;
   2608   1.1    bouyer 	while (vcid) {
   2609   1.1    bouyer 		u_int32_t vcid_addr, pcid_addr, offset;
   2610   1.1    bouyer 
   2611   1.1    bouyer 		vcid--;
   2612   1.1    bouyer 
   2613   1.1    bouyer    		vcid_addr = GET_CID_ADDR(vcid);
   2614   1.1    bouyer 		pcid_addr = vcid_addr;
   2615   1.1    bouyer 
   2616   1.1    bouyer 		REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
   2617   1.1    bouyer 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2618   1.1    bouyer 
   2619   1.1    bouyer 		/* Zero out the context. */
   2620   1.1    bouyer 		for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
   2621   1.1    bouyer 			CTX_WR(sc, 0x00, offset, 0);
   2622   1.1    bouyer 
   2623   1.1    bouyer 		REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   2624   1.1    bouyer 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2625   1.1    bouyer 	}
   2626   1.1    bouyer }
   2627   1.1    bouyer 
   2628   1.1    bouyer /****************************************************************************/
   2629   1.1    bouyer /* Fetch the permanent MAC address of the controller.                       */
   2630   1.1    bouyer /*                                                                          */
   2631   1.1    bouyer /* Returns:                                                                 */
   2632   1.1    bouyer /*   Nothing.                                                               */
   2633   1.1    bouyer /****************************************************************************/
   2634   1.1    bouyer void
   2635   1.1    bouyer bnx_get_mac_addr(struct bnx_softc *sc)
   2636   1.1    bouyer {
   2637   1.1    bouyer 	u_int32_t		mac_lo = 0, mac_hi = 0;
   2638   1.1    bouyer 
   2639   1.1    bouyer 	/*
   2640   1.1    bouyer 	 * The NetXtreme II bootcode populates various NIC
   2641   1.1    bouyer 	 * power-on and runtime configuration items in a
   2642   1.1    bouyer 	 * shared memory area.  The factory configured MAC
   2643   1.1    bouyer 	 * address is available from both NVRAM and the
   2644   1.1    bouyer 	 * shared memory area so we'll read the value from
   2645   1.1    bouyer 	 * shared memory for speed.
   2646   1.1    bouyer 	 */
   2647   1.1    bouyer 
   2648   1.1    bouyer 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   2649   1.1    bouyer 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   2650   1.1    bouyer 
   2651   1.1    bouyer 	if ((mac_lo == 0) && (mac_hi == 0)) {
   2652   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   2653   1.1    bouyer 		    __FILE__, __LINE__);
   2654   1.1    bouyer 	} else {
   2655   1.1    bouyer 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   2656   1.1    bouyer 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   2657   1.1    bouyer 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   2658   1.1    bouyer 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   2659   1.1    bouyer 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   2660   1.1    bouyer 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   2661   1.1    bouyer 	}
   2662   1.1    bouyer 
   2663   1.1    bouyer 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   2664   1.1    bouyer 	    "%s\n", ether_sprintf(sc->eaddr));
   2665   1.1    bouyer }
   2666   1.1    bouyer 
   2667   1.1    bouyer /****************************************************************************/
   2668   1.1    bouyer /* Program the MAC address.                                                 */
   2669   1.1    bouyer /*                                                                          */
   2670   1.1    bouyer /* Returns:                                                                 */
   2671   1.1    bouyer /*   Nothing.                                                               */
   2672   1.1    bouyer /****************************************************************************/
   2673   1.1    bouyer void
   2674   1.1    bouyer bnx_set_mac_addr(struct bnx_softc *sc)
   2675   1.1    bouyer {
   2676   1.1    bouyer 	u_int32_t		val;
   2677  1.15    dyoung 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   2678   1.1    bouyer 
   2679   1.1    bouyer 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   2680   1.1    bouyer 	    "%s\n", ether_sprintf(sc->eaddr));
   2681   1.1    bouyer 
   2682   1.1    bouyer 	val = (mac_addr[0] << 8) | mac_addr[1];
   2683   1.1    bouyer 
   2684   1.1    bouyer 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   2685   1.1    bouyer 
   2686   1.1    bouyer 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   2687   1.1    bouyer 		(mac_addr[4] << 8) | mac_addr[5];
   2688   1.1    bouyer 
   2689   1.1    bouyer 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   2690   1.1    bouyer }
   2691   1.1    bouyer 
   2692   1.1    bouyer /****************************************************************************/
   2693   1.1    bouyer /* Stop the controller.                                                     */
   2694   1.1    bouyer /*                                                                          */
   2695   1.1    bouyer /* Returns:                                                                 */
   2696   1.1    bouyer /*   Nothing.                                                               */
   2697   1.1    bouyer /****************************************************************************/
   2698   1.1    bouyer void
   2699  1.14    dyoung bnx_stop(struct ifnet *ifp, int disable)
   2700   1.1    bouyer {
   2701  1.14    dyoung 	struct bnx_softc *sc = ifp->if_softc;
   2702   1.1    bouyer 
   2703  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2704   1.1    bouyer 
   2705  1.14    dyoung 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   2706  1.14    dyoung 		return;
   2707   1.1    bouyer 
   2708   1.1    bouyer 	callout_stop(&sc->bnx_timeout);
   2709   1.1    bouyer 
   2710  1.14    dyoung 	mii_down(&sc->bnx_mii);
   2711  1.14    dyoung 
   2712   1.1    bouyer 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2713   1.1    bouyer 
   2714   1.1    bouyer 	/* Disable the transmit/receive blocks. */
   2715   1.1    bouyer 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   2716   1.1    bouyer 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2717   1.1    bouyer 	DELAY(20);
   2718   1.1    bouyer 
   2719   1.1    bouyer 	bnx_disable_intr(sc);
   2720   1.1    bouyer 
   2721   1.1    bouyer 	/* Tell firmware that the driver is going away. */
   2722  1.14    dyoung 	if (disable)
   2723  1.14    dyoung 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   2724  1.14    dyoung 	else
   2725  1.14    dyoung 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   2726   1.1    bouyer 
   2727   1.1    bouyer 	/* Free the RX lists. */
   2728   1.1    bouyer 	bnx_free_rx_chain(sc);
   2729   1.1    bouyer 
   2730   1.1    bouyer 	/* Free TX buffers. */
   2731   1.1    bouyer 	bnx_free_tx_chain(sc);
   2732   1.1    bouyer 
   2733   1.1    bouyer 	ifp->if_timer = 0;
   2734   1.1    bouyer 
   2735  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2736   1.1    bouyer 
   2737   1.1    bouyer }
   2738   1.1    bouyer 
   2739   1.1    bouyer int
   2740   1.1    bouyer bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   2741   1.1    bouyer {
   2742   1.1    bouyer 	u_int32_t		val;
   2743   1.1    bouyer 	int			i, rc = 0;
   2744   1.1    bouyer 
   2745  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2746   1.1    bouyer 
   2747   1.1    bouyer 	/* Wait for pending PCI transactions to complete. */
   2748   1.1    bouyer 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   2749   1.1    bouyer 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   2750   1.1    bouyer 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   2751   1.1    bouyer 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   2752   1.1    bouyer 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   2753   1.1    bouyer 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2754   1.1    bouyer 	DELAY(5);
   2755   1.1    bouyer 
   2756   1.1    bouyer 	/* Assume bootcode is running. */
   2757   1.1    bouyer 	sc->bnx_fw_timed_out = 0;
   2758   1.1    bouyer 
   2759   1.1    bouyer 	/* Give the firmware a chance to prepare for the reset. */
   2760   1.1    bouyer 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   2761   1.1    bouyer 	if (rc)
   2762   1.1    bouyer 		goto bnx_reset_exit;
   2763   1.1    bouyer 
   2764   1.1    bouyer 	/* Set a firmware reminder that this is a soft reset. */
   2765   1.1    bouyer 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   2766   1.1    bouyer 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   2767   1.1    bouyer 
   2768   1.1    bouyer 	/* Dummy read to force the chip to complete all current transactions. */
   2769   1.1    bouyer 	val = REG_RD(sc, BNX_MISC_ID);
   2770   1.1    bouyer 
   2771   1.1    bouyer 	/* Chip reset. */
   2772   1.1    bouyer 	val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2773   1.1    bouyer 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   2774   1.1    bouyer 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   2775   1.1    bouyer 	REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   2776   1.1    bouyer 
   2777   1.1    bouyer 	/* Allow up to 30us for reset to complete. */
   2778   1.1    bouyer 	for (i = 0; i < 10; i++) {
   2779   1.1    bouyer 		val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   2780   1.1    bouyer 		if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2781   1.1    bouyer 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
   2782   1.1    bouyer 			break;
   2783   1.1    bouyer 
   2784   1.1    bouyer 		DELAY(10);
   2785   1.1    bouyer 	}
   2786   1.1    bouyer 
   2787   1.1    bouyer 	/* Check that reset completed successfully. */
   2788   1.1    bouyer 	if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2789   1.1    bouyer 	    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   2790   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
   2791   1.1    bouyer 		rc = EBUSY;
   2792   1.1    bouyer 		goto bnx_reset_exit;
   2793   1.1    bouyer 	}
   2794   1.1    bouyer 
   2795   1.1    bouyer 	/* Make sure byte swapping is properly configured. */
   2796   1.1    bouyer 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   2797   1.1    bouyer 	if (val != 0x01020304) {
   2798   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   2799   1.1    bouyer 		    __FILE__, __LINE__);
   2800   1.1    bouyer 		rc = ENODEV;
   2801   1.1    bouyer 		goto bnx_reset_exit;
   2802   1.1    bouyer 	}
   2803   1.1    bouyer 
   2804   1.1    bouyer 	/* Just completed a reset, assume that firmware is running again. */
   2805   1.1    bouyer 	sc->bnx_fw_timed_out = 0;
   2806   1.1    bouyer 
   2807   1.1    bouyer 	/* Wait for the firmware to finish its initialization. */
   2808   1.1    bouyer 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   2809   1.1    bouyer 	if (rc)
   2810   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   2811   1.1    bouyer 		    "initialization!\n", __FILE__, __LINE__);
   2812   1.1    bouyer 
   2813   1.1    bouyer bnx_reset_exit:
   2814  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2815   1.1    bouyer 
   2816   1.1    bouyer 	return (rc);
   2817   1.1    bouyer }
   2818   1.1    bouyer 
   2819   1.1    bouyer int
   2820   1.1    bouyer bnx_chipinit(struct bnx_softc *sc)
   2821   1.1    bouyer {
   2822   1.1    bouyer 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2823   1.1    bouyer 	u_int32_t		val;
   2824   1.1    bouyer 	int			rc = 0;
   2825   1.1    bouyer 
   2826  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2827   1.1    bouyer 
   2828   1.1    bouyer 	/* Make sure the interrupt is not active. */
   2829   1.1    bouyer 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   2830   1.1    bouyer 
   2831   1.1    bouyer 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   2832   1.1    bouyer 	/* channels and PCI clock compensation delay.                      */
   2833   1.1    bouyer 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   2834   1.1    bouyer 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   2835   1.1    bouyer #if BYTE_ORDER == BIG_ENDIAN
   2836   1.1    bouyer 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   2837   1.1    bouyer #endif
   2838   1.1    bouyer 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   2839   1.1    bouyer 	    DMA_READ_CHANS << 12 |
   2840   1.1    bouyer 	    DMA_WRITE_CHANS << 16;
   2841   1.1    bouyer 
   2842   1.1    bouyer 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   2843   1.1    bouyer 
   2844   1.1    bouyer 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   2845   1.1    bouyer 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   2846   1.1    bouyer 
   2847   1.1    bouyer 	/*
   2848   1.1    bouyer 	 * This setting resolves a problem observed on certain Intel PCI
   2849   1.1    bouyer 	 * chipsets that cannot handle multiple outstanding DMA operations.
   2850   1.1    bouyer 	 * See errata E9_5706A1_65.
   2851   1.1    bouyer 	 */
   2852   1.1    bouyer 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   2853   1.1    bouyer 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   2854   1.1    bouyer 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   2855   1.1    bouyer 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   2856   1.1    bouyer 
   2857   1.1    bouyer 	REG_WR(sc, BNX_DMA_CONFIG, val);
   2858   1.1    bouyer 
   2859   1.1    bouyer 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   2860   1.1    bouyer 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   2861   1.1    bouyer 		u_int16_t nval;
   2862   1.1    bouyer 
   2863   1.1    bouyer 		nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   2864   1.1    bouyer 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   2865   1.1    bouyer 		    nval & ~0x2);
   2866   1.1    bouyer 	}
   2867   1.1    bouyer 
   2868   1.1    bouyer 	/* Enable the RX_V2P and Context state machines before access. */
   2869   1.1    bouyer 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   2870   1.1    bouyer 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   2871   1.1    bouyer 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   2872   1.1    bouyer 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   2873   1.1    bouyer 
   2874   1.1    bouyer 	/* Initialize context mapping and zero out the quick contexts. */
   2875   1.1    bouyer 	bnx_init_context(sc);
   2876   1.1    bouyer 
   2877   1.1    bouyer 	/* Initialize the on-boards CPUs */
   2878   1.1    bouyer 	bnx_init_cpus(sc);
   2879   1.1    bouyer 
   2880   1.1    bouyer 	/* Prepare NVRAM for access. */
   2881   1.1    bouyer 	if (bnx_init_nvram(sc)) {
   2882   1.1    bouyer 		rc = ENODEV;
   2883   1.1    bouyer 		goto bnx_chipinit_exit;
   2884   1.1    bouyer 	}
   2885   1.1    bouyer 
   2886   1.1    bouyer 	/* Set the kernel bypass block size */
   2887   1.1    bouyer 	val = REG_RD(sc, BNX_MQ_CONFIG);
   2888   1.1    bouyer 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   2889   1.1    bouyer 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   2890   1.1    bouyer 	REG_WR(sc, BNX_MQ_CONFIG, val);
   2891   1.1    bouyer 
   2892   1.1    bouyer 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
   2893   1.1    bouyer 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   2894   1.1    bouyer 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   2895   1.1    bouyer 
   2896   1.1    bouyer 	val = (BCM_PAGE_BITS - 8) << 24;
   2897   1.1    bouyer 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   2898   1.1    bouyer 
   2899   1.1    bouyer 	/* Configure page size. */
   2900   1.1    bouyer 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   2901   1.1    bouyer 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   2902   1.1    bouyer 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   2903   1.1    bouyer 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   2904   1.1    bouyer 
   2905   1.1    bouyer bnx_chipinit_exit:
   2906  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2907   1.1    bouyer 
   2908   1.1    bouyer 	return(rc);
   2909   1.1    bouyer }
   2910   1.1    bouyer 
   2911   1.1    bouyer /****************************************************************************/
   2912   1.1    bouyer /* Initialize the controller in preparation to send/receive traffic.        */
   2913   1.1    bouyer /*                                                                          */
   2914   1.1    bouyer /* Returns:                                                                 */
   2915   1.1    bouyer /*   0 for success, positive value for failure.                             */
   2916   1.1    bouyer /****************************************************************************/
   2917   1.1    bouyer int
   2918   1.1    bouyer bnx_blockinit(struct bnx_softc *sc)
   2919   1.1    bouyer {
   2920   1.1    bouyer 	u_int32_t		reg, val;
   2921   1.1    bouyer 	int 			rc = 0;
   2922   1.1    bouyer 
   2923  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2924   1.1    bouyer 
   2925   1.1    bouyer 	/* Load the hardware default MAC address. */
   2926   1.1    bouyer 	bnx_set_mac_addr(sc);
   2927   1.1    bouyer 
   2928   1.1    bouyer 	/* Set the Ethernet backoff seed value */
   2929   1.1    bouyer 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   2930   1.1    bouyer 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   2931   1.1    bouyer 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   2932   1.1    bouyer 
   2933   1.1    bouyer 	sc->last_status_idx = 0;
   2934   1.1    bouyer 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   2935   1.1    bouyer 
   2936   1.1    bouyer 	/* Set up link change interrupt generation. */
   2937   1.1    bouyer 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   2938   1.1    bouyer 
   2939   1.1    bouyer 	/* Program the physical address of the status block. */
   2940   1.1    bouyer 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   2941   1.1    bouyer 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   2942   1.1    bouyer 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   2943   1.1    bouyer 
   2944   1.1    bouyer 	/* Program the physical address of the statistics block. */
   2945   1.1    bouyer 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   2946   1.1    bouyer 	    (u_int32_t)(sc->stats_block_paddr));
   2947   1.1    bouyer 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   2948   1.1    bouyer 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   2949   1.1    bouyer 
   2950   1.1    bouyer 	/* Program various host coalescing parameters. */
   2951   1.1    bouyer 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   2952   1.1    bouyer 	    << 16) | sc->bnx_tx_quick_cons_trip);
   2953   1.1    bouyer 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   2954   1.1    bouyer 	    << 16) | sc->bnx_rx_quick_cons_trip);
   2955   1.1    bouyer 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   2956   1.1    bouyer 	    sc->bnx_comp_prod_trip);
   2957   1.1    bouyer 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   2958   1.1    bouyer 	    sc->bnx_tx_ticks);
   2959   1.1    bouyer 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   2960   1.1    bouyer 	    sc->bnx_rx_ticks);
   2961   1.1    bouyer 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   2962   1.1    bouyer 	    sc->bnx_com_ticks);
   2963   1.1    bouyer 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   2964   1.1    bouyer 	    sc->bnx_cmd_ticks);
   2965   1.1    bouyer 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   2966   1.1    bouyer 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   2967   1.1    bouyer 	REG_WR(sc, BNX_HC_CONFIG,
   2968   1.1    bouyer 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   2969   1.1    bouyer 	    BNX_HC_CONFIG_COLLECT_STATS));
   2970   1.1    bouyer 
   2971   1.1    bouyer 	/* Clear the internal statistics counters. */
   2972   1.1    bouyer 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   2973   1.1    bouyer 
   2974   1.1    bouyer 	/* Verify that bootcode is running. */
   2975   1.1    bouyer 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   2976   1.1    bouyer 
   2977   1.1    bouyer 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   2978   1.1    bouyer 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   2979   1.1    bouyer 	    __FILE__, __LINE__); reg = 0);
   2980   1.1    bouyer 
   2981   1.1    bouyer 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   2982   1.1    bouyer 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   2983   1.1    bouyer 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   2984   1.1    bouyer 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   2985   1.1    bouyer 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   2986   1.1    bouyer 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   2987   1.1    bouyer 		rc = ENODEV;
   2988   1.1    bouyer 		goto bnx_blockinit_exit;
   2989   1.1    bouyer 	}
   2990   1.1    bouyer 
   2991   1.1    bouyer 	/* Check if any management firmware is running. */
   2992   1.1    bouyer 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   2993   1.1    bouyer 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   2994   1.1    bouyer 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   2995   1.1    bouyer 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   2996   1.1    bouyer 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   2997   1.1    bouyer 	}
   2998   1.1    bouyer 
   2999   1.1    bouyer 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3000   1.1    bouyer 	    BNX_DEV_INFO_BC_REV);
   3001   1.1    bouyer 
   3002   1.1    bouyer 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3003   1.1    bouyer 
   3004   1.1    bouyer 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3005   1.1    bouyer 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3006   1.1    bouyer 
   3007   1.1    bouyer 	/* Enable link state change interrupt generation. */
   3008   1.1    bouyer 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3009   1.1    bouyer 
   3010   1.1    bouyer 	/* Enable all remaining blocks in the MAC. */
   3011   1.1    bouyer 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3012   1.1    bouyer 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3013   1.1    bouyer 	DELAY(20);
   3014   1.1    bouyer 
   3015   1.1    bouyer bnx_blockinit_exit:
   3016  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3017   1.1    bouyer 
   3018   1.1    bouyer 	return (rc);
   3019   1.1    bouyer }
   3020   1.1    bouyer 
   3021   1.1    bouyer /****************************************************************************/
   3022   1.1    bouyer /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3023   1.1    bouyer /*                                                                          */
   3024   1.1    bouyer /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3025   1.1    bouyer /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3026   1.1    bouyer /* necessary.                                                               */
   3027   1.1    bouyer /*                                                                          */
   3028   1.1    bouyer /* Returns:                                                                 */
   3029   1.1    bouyer /*   0 for success, positive value for failure.                             */
   3030   1.1    bouyer /****************************************************************************/
   3031   1.1    bouyer int
   3032   1.1    bouyer bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
   3033   1.1    bouyer     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3034   1.1    bouyer {
   3035   1.1    bouyer 	bus_dmamap_t		map;
   3036   1.1    bouyer 	struct mbuf 		*m_new = NULL;
   3037   1.1    bouyer 	struct rx_bd		*rxbd;
   3038   1.1    bouyer 	int			i, rc = 0;
   3039   1.1    bouyer 	u_int32_t		addr;
   3040   1.1    bouyer #ifdef BNX_DEBUG
   3041   1.1    bouyer 	u_int16_t debug_chain_prod =	*chain_prod;
   3042   1.1    bouyer #endif
   3043   1.2    bouyer 	u_int16_t first_chain_prod;
   3044   1.5    bouyer 	u_int16_t min_free_bd;
   3045   1.1    bouyer 
   3046   1.1    bouyer 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3047  1.12     perry 	    __func__);
   3048   1.1    bouyer 
   3049   1.1    bouyer 	/* Make sure the inputs are valid. */
   3050   1.1    bouyer 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3051  1.13    dyoung 	    aprint_error_dev(sc->bnx_dev,
   3052  1.13    dyoung 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3053  1.13    dyoung 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3054   1.1    bouyer 
   3055   1.1    bouyer 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3056  1.12     perry 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3057   1.1    bouyer 	    *prod_bseq);
   3058   1.1    bouyer 
   3059   1.5    bouyer 	/* try to get in as many mbufs as possible */
   3060   1.5    bouyer 	if (sc->mbuf_alloc_size == MCLBYTES)
   3061   1.5    bouyer 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3062   1.5    bouyer 	else
   3063   1.5    bouyer 		min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3064   1.5    bouyer 	while (sc->free_rx_bd >= min_free_bd) {
   3065   1.5    bouyer 		if (m == NULL) {
   3066   1.5    bouyer 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3067   1.5    bouyer 			    BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
   3068   1.5    bouyer 
   3069   1.5    bouyer 				sc->mbuf_alloc_failed++;
   3070   1.5    bouyer 				rc = ENOBUFS;
   3071   1.5    bouyer 				goto bnx_get_buf_exit);
   3072   1.5    bouyer 
   3073   1.5    bouyer 			/* This is a new mbuf allocation. */
   3074   1.5    bouyer 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3075   1.5    bouyer 			if (m_new == NULL) {
   3076   1.5    bouyer 				DBPRINT(sc, BNX_WARN,
   3077   1.5    bouyer 				    "%s(%d): RX mbuf header allocation failed!\n",
   3078   1.5    bouyer 				    __FILE__, __LINE__);
   3079   1.5    bouyer 
   3080   1.5    bouyer 				DBRUNIF(1, sc->mbuf_alloc_failed++);
   3081   1.1    bouyer 
   3082   1.5    bouyer 				rc = ENOBUFS;
   3083   1.5    bouyer 				goto bnx_get_buf_exit;
   3084   1.5    bouyer 			}
   3085   1.1    bouyer 
   3086   1.5    bouyer 			DBRUNIF(1, sc->rx_mbuf_alloc++);
   3087   1.5    bouyer 			if (sc->mbuf_alloc_size == MCLBYTES)
   3088   1.5    bouyer 				MCLGET(m_new, M_DONTWAIT);
   3089   1.5    bouyer 			else
   3090   1.5    bouyer 				MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3091   1.5    bouyer 				    M_DONTWAIT);
   3092   1.5    bouyer 			if (!(m_new->m_flags & M_EXT)) {
   3093   1.5    bouyer 				DBPRINT(sc, BNX_WARN,
   3094   1.5    bouyer 				    "%s(%d): RX mbuf chain allocation failed!\n",
   3095   1.5    bouyer 				    __FILE__, __LINE__);
   3096   1.5    bouyer 
   3097   1.5    bouyer 				m_freem(m_new);
   3098   1.1    bouyer 
   3099   1.5    bouyer 				DBRUNIF(1, sc->rx_mbuf_alloc--);
   3100   1.5    bouyer 				DBRUNIF(1, sc->mbuf_alloc_failed++);
   3101   1.1    bouyer 
   3102   1.5    bouyer 				rc = ENOBUFS;
   3103   1.5    bouyer 				goto bnx_get_buf_exit;
   3104   1.5    bouyer 			}
   3105   1.5    bouyer 
   3106   1.5    bouyer 		} else {
   3107   1.5    bouyer 			m_new = m;
   3108   1.5    bouyer 			m = NULL;
   3109   1.5    bouyer 			m_new->m_data = m_new->m_ext.ext_buf;
   3110   1.1    bouyer 		}
   3111   1.5    bouyer 		m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3112   1.1    bouyer 
   3113   1.5    bouyer 		/* Map the mbuf cluster into device memory. */
   3114   1.5    bouyer 		map = sc->rx_mbuf_map[*chain_prod];
   3115   1.5    bouyer 		first_chain_prod = *chain_prod;
   3116   1.5    bouyer 		if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3117   1.5    bouyer 			BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3118   1.1    bouyer 			    __FILE__, __LINE__);
   3119   1.5    bouyer 
   3120   1.1    bouyer 			m_freem(m_new);
   3121   1.1    bouyer 
   3122   1.1    bouyer 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3123   1.1    bouyer 
   3124   1.1    bouyer 			rc = ENOBUFS;
   3125   1.1    bouyer 			goto bnx_get_buf_exit;
   3126   1.1    bouyer 		}
   3127   1.5    bouyer 		bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3128   1.5    bouyer 		    BUS_DMASYNC_PREREAD);
   3129   1.1    bouyer 
   3130   1.5    bouyer 		/* Watch for overflow. */
   3131   1.5    bouyer 		DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
   3132  1.13    dyoung 		    aprint_error_dev(sc->bnx_dev,
   3133  1.13    dyoung 		        "Too many free rx_bd (0x%04X > 0x%04X)!\n",
   3134  1.13    dyoung 			sc->free_rx_bd, (u_int16_t)USABLE_RX_BD));
   3135   1.1    bouyer 
   3136   1.5    bouyer 		DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3137   1.5    bouyer 		    sc->rx_low_watermark = sc->free_rx_bd);
   3138   1.1    bouyer 
   3139   1.5    bouyer 		/*
   3140   1.5    bouyer 		 * Setup the rx_bd for the first segment
   3141   1.5    bouyer 		 */
   3142   1.5    bouyer 		rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3143   1.1    bouyer 
   3144   1.5    bouyer 		addr = (u_int32_t)(map->dm_segs[0].ds_addr);
   3145   1.5    bouyer 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3146   1.5    bouyer 		addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3147   1.5    bouyer 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3148   1.5    bouyer 		rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
   3149   1.5    bouyer 		rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
   3150   1.5    bouyer 		*prod_bseq += map->dm_segs[0].ds_len;
   3151   1.5    bouyer 		bus_dmamap_sync(sc->bnx_dmatag,
   3152   1.5    bouyer 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3153   1.5    bouyer 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3154   1.5    bouyer 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3155   1.1    bouyer 
   3156   1.5    bouyer 		for (i = 1; i < map->dm_nsegs; i++) {
   3157   1.5    bouyer 			*prod = NEXT_RX_BD(*prod);
   3158   1.5    bouyer 			*chain_prod = RX_CHAIN_IDX(*prod);
   3159   1.5    bouyer 
   3160   1.5    bouyer 			rxbd =
   3161   1.5    bouyer 			    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3162   1.5    bouyer 
   3163   1.5    bouyer 			addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   3164   1.5    bouyer 			rxbd->rx_bd_haddr_lo = htole32(addr);
   3165   1.5    bouyer 			addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3166   1.5    bouyer 			rxbd->rx_bd_haddr_hi = htole32(addr);
   3167   1.5    bouyer 			rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
   3168   1.5    bouyer 			rxbd->rx_bd_flags = 0;
   3169   1.5    bouyer 			*prod_bseq += map->dm_segs[i].ds_len;
   3170   1.5    bouyer 			bus_dmamap_sync(sc->bnx_dmatag,
   3171   1.5    bouyer 			    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3172   1.5    bouyer 			    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3173   1.5    bouyer 			    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3174   1.5    bouyer 		}
   3175   1.1    bouyer 
   3176   1.5    bouyer 		rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
   3177   1.1    bouyer 		bus_dmamap_sync(sc->bnx_dmatag,
   3178   1.1    bouyer 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3179   1.1    bouyer 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3180   1.1    bouyer 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3181   1.1    bouyer 
   3182   1.5    bouyer 		/*
   3183   1.5    bouyer 		 * Save the mbuf, ajust the map pointer (swap map for first and
   3184   1.5    bouyer 		 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3185   1.5    bouyer 		 * and update counter.
   3186   1.5    bouyer 		 */
   3187   1.5    bouyer 		sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3188   1.5    bouyer 		sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3189   1.5    bouyer 		sc->rx_mbuf_map[*chain_prod] = map;
   3190   1.5    bouyer 		sc->free_rx_bd -= map->dm_nsegs;
   3191   1.1    bouyer 
   3192   1.5    bouyer 		DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3193   1.5    bouyer 		    map->dm_nsegs));
   3194   1.5    bouyer 		*prod = NEXT_RX_BD(*prod);
   3195   1.5    bouyer 		*chain_prod = RX_CHAIN_IDX(*prod);
   3196   1.5    bouyer 	}
   3197   1.1    bouyer 
   3198   1.5    bouyer bnx_get_buf_exit:
   3199   1.1    bouyer 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3200  1.12     perry 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3201   1.1    bouyer 	    *chain_prod, *prod_bseq);
   3202   1.1    bouyer 
   3203   1.1    bouyer 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3204  1.12     perry 	    __func__);
   3205   1.1    bouyer 
   3206   1.1    bouyer 	return(rc);
   3207   1.1    bouyer }
   3208   1.1    bouyer 
   3209   1.1    bouyer /****************************************************************************/
   3210   1.1    bouyer /* Allocate memory and initialize the TX data structures.                   */
   3211   1.1    bouyer /*                                                                          */
   3212   1.1    bouyer /* Returns:                                                                 */
   3213   1.1    bouyer /*   0 for success, positive value for failure.                             */
   3214   1.1    bouyer /****************************************************************************/
   3215   1.1    bouyer int
   3216   1.1    bouyer bnx_init_tx_chain(struct bnx_softc *sc)
   3217   1.1    bouyer {
   3218   1.1    bouyer 	struct tx_bd		*txbd;
   3219   1.1    bouyer 	u_int32_t		val, addr;
   3220   1.1    bouyer 	int			i, rc = 0;
   3221   1.1    bouyer 
   3222  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3223   1.1    bouyer 
   3224   1.1    bouyer 	/* Set the initial TX producer/consumer indices. */
   3225   1.1    bouyer 	sc->tx_prod = 0;
   3226   1.1    bouyer 	sc->tx_cons = 0;
   3227   1.1    bouyer 	sc->tx_prod_bseq = 0;
   3228   1.1    bouyer 	sc->used_tx_bd = 0;
   3229   1.1    bouyer 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3230   1.1    bouyer 
   3231   1.1    bouyer 	/*
   3232   1.1    bouyer 	 * The NetXtreme II supports a linked-list structure called
   3233   1.1    bouyer 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3234   1.1    bouyer 	 * consists of a series of 1 or more chain pages, each of which
   3235   1.1    bouyer 	 * consists of a fixed number of BD entries.
   3236   1.1    bouyer 	 * The last BD entry on each page is a pointer to the next page
   3237   1.1    bouyer 	 * in the chain, and the last pointer in the BD chain
   3238   1.1    bouyer 	 * points back to the beginning of the chain.
   3239   1.1    bouyer 	 */
   3240   1.1    bouyer 
   3241   1.1    bouyer 	/* Set the TX next pointer chain entries. */
   3242   1.1    bouyer 	for (i = 0; i < TX_PAGES; i++) {
   3243   1.1    bouyer 		int j;
   3244   1.1    bouyer 
   3245   1.1    bouyer 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3246   1.1    bouyer 
   3247   1.1    bouyer 		/* Check if we've reached the last page. */
   3248   1.1    bouyer 		if (i == (TX_PAGES - 1))
   3249   1.1    bouyer 			j = 0;
   3250   1.1    bouyer 		else
   3251   1.1    bouyer 			j = i + 1;
   3252   1.1    bouyer 
   3253   1.1    bouyer 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
   3254   1.1    bouyer 		txbd->tx_bd_haddr_lo = htole32(addr);
   3255   1.1    bouyer 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3256   1.1    bouyer 		txbd->tx_bd_haddr_hi = htole32(addr);
   3257   1.1    bouyer 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3258   1.1    bouyer 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3259   1.1    bouyer 	}
   3260   1.1    bouyer 
   3261   1.1    bouyer 	/*
   3262   1.1    bouyer 	 * Initialize the context ID for an L2 TX chain.
   3263   1.1    bouyer 	 */
   3264   1.1    bouyer 	val = BNX_L2CTX_TYPE_TYPE_L2;
   3265   1.1    bouyer 	val |= BNX_L2CTX_TYPE_SIZE_L2;
   3266   1.1    bouyer 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3267   1.1    bouyer 
   3268   1.1    bouyer 	val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3269   1.1    bouyer 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3270   1.1    bouyer 
   3271   1.1    bouyer 	/* Point the hardware to the first page in the chain. */
   3272   1.1    bouyer 	val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3273   1.1    bouyer 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3274   1.1    bouyer 	val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3275   1.1    bouyer 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3276   1.1    bouyer 
   3277   1.1    bouyer 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
   3278   1.1    bouyer 
   3279  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3280   1.1    bouyer 
   3281   1.1    bouyer 	return(rc);
   3282   1.1    bouyer }
   3283   1.1    bouyer 
   3284   1.1    bouyer /****************************************************************************/
   3285   1.1    bouyer /* Free memory and clear the TX data structures.                            */
   3286   1.1    bouyer /*                                                                          */
   3287   1.1    bouyer /* Returns:                                                                 */
   3288   1.1    bouyer /*   Nothing.                                                               */
   3289   1.1    bouyer /****************************************************************************/
   3290   1.1    bouyer void
   3291   1.1    bouyer bnx_free_tx_chain(struct bnx_softc *sc)
   3292   1.1    bouyer {
   3293   1.1    bouyer 	int			i;
   3294   1.1    bouyer 
   3295  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3296   1.1    bouyer 
   3297   1.1    bouyer 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   3298   1.1    bouyer 	for (i = 0; i < TOTAL_TX_BD; i++) {
   3299   1.1    bouyer 		if (sc->tx_mbuf_ptr[i] != NULL) {
   3300   1.1    bouyer 			if (sc->tx_mbuf_map != NULL)
   3301   1.1    bouyer 				bus_dmamap_sync(sc->bnx_dmatag,
   3302   1.1    bouyer 				    sc->tx_mbuf_map[i], 0,
   3303   1.1    bouyer 				    sc->tx_mbuf_map[i]->dm_mapsize,
   3304   1.1    bouyer 				    BUS_DMASYNC_POSTWRITE);
   3305   1.1    bouyer 			m_freem(sc->tx_mbuf_ptr[i]);
   3306   1.1    bouyer 			sc->tx_mbuf_ptr[i] = NULL;
   3307   1.1    bouyer 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3308   1.1    bouyer 		}
   3309   1.1    bouyer 	}
   3310   1.1    bouyer 
   3311   1.1    bouyer 	/* Clear each TX chain page. */
   3312   1.1    bouyer 	for (i = 0; i < TX_PAGES; i++) {
   3313   1.1    bouyer 		bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   3314   1.1    bouyer 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3315   1.1    bouyer 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3316   1.1    bouyer 	}
   3317   1.1    bouyer 
   3318   1.1    bouyer 	/* Check if we lost any mbufs in the process. */
   3319   1.1    bouyer 	DBRUNIF((sc->tx_mbuf_alloc),
   3320  1.13    dyoung 	    aprint_error_dev(sc->bnx_dev,
   3321  1.13    dyoung 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   3322  1.13    dyoung 		sc->tx_mbuf_alloc));
   3323   1.1    bouyer 
   3324  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3325   1.1    bouyer }
   3326   1.1    bouyer 
   3327   1.1    bouyer /****************************************************************************/
   3328   1.1    bouyer /* Allocate memory and initialize the RX data structures.                   */
   3329   1.1    bouyer /*                                                                          */
   3330   1.1    bouyer /* Returns:                                                                 */
   3331   1.1    bouyer /*   0 for success, positive value for failure.                             */
   3332   1.1    bouyer /****************************************************************************/
   3333   1.1    bouyer int
   3334   1.1    bouyer bnx_init_rx_chain(struct bnx_softc *sc)
   3335   1.1    bouyer {
   3336   1.1    bouyer 	struct rx_bd		*rxbd;
   3337   1.1    bouyer 	int			i, rc = 0;
   3338   1.1    bouyer 	u_int16_t		prod, chain_prod;
   3339   1.1    bouyer 	u_int32_t		prod_bseq, val, addr;
   3340   1.1    bouyer 
   3341  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3342   1.1    bouyer 
   3343   1.1    bouyer 	/* Initialize the RX producer and consumer indices. */
   3344   1.1    bouyer 	sc->rx_prod = 0;
   3345   1.1    bouyer 	sc->rx_cons = 0;
   3346   1.1    bouyer 	sc->rx_prod_bseq = 0;
   3347   1.1    bouyer 	sc->free_rx_bd = BNX_RX_SLACK_SPACE;
   3348   1.1    bouyer 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   3349   1.1    bouyer 
   3350   1.1    bouyer 	/* Initialize the RX next pointer chain entries. */
   3351   1.1    bouyer 	for (i = 0; i < RX_PAGES; i++) {
   3352   1.1    bouyer 		int j;
   3353   1.1    bouyer 
   3354   1.1    bouyer 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   3355   1.1    bouyer 
   3356   1.1    bouyer 		/* Check if we've reached the last page. */
   3357   1.1    bouyer 		if (i == (RX_PAGES - 1))
   3358   1.1    bouyer 			j = 0;
   3359   1.1    bouyer 		else
   3360   1.1    bouyer 			j = i + 1;
   3361   1.1    bouyer 
   3362   1.1    bouyer 		/* Setup the chain page pointers. */
   3363   1.1    bouyer 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   3364   1.1    bouyer 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3365   1.1    bouyer 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
   3366   1.1    bouyer 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3367   1.1    bouyer 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   3368   1.1    bouyer 		    0, BNX_RX_CHAIN_PAGE_SZ,
   3369   1.1    bouyer 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3370   1.1    bouyer 	}
   3371   1.1    bouyer 
   3372   1.1    bouyer 	/* Initialize the context ID for an L2 RX chain. */
   3373   1.1    bouyer 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
   3374   1.1    bouyer 	val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
   3375   1.1    bouyer 	val |= 0x02 << 8;
   3376   1.1    bouyer 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   3377   1.1    bouyer 
   3378   1.1    bouyer 	/* Point the hardware to the first page in the chain. */
   3379   1.1    bouyer 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   3380   1.1    bouyer 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   3381   1.1    bouyer 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   3382   1.1    bouyer 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   3383   1.1    bouyer 
   3384   1.1    bouyer 	/* Allocate mbuf clusters for the rx_bd chain. */
   3385   1.1    bouyer 	prod = prod_bseq = 0;
   3386   1.5    bouyer 	chain_prod = RX_CHAIN_IDX(prod);
   3387   1.5    bouyer 	if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
   3388   1.5    bouyer 		BNX_PRINTF(sc,
   3389   1.5    bouyer 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   3390   1.1    bouyer 	}
   3391   1.1    bouyer 
   3392   1.1    bouyer 	/* Save the RX chain producer index. */
   3393   1.1    bouyer 	sc->rx_prod = prod;
   3394   1.1    bouyer 	sc->rx_prod_bseq = prod_bseq;
   3395   1.1    bouyer 
   3396   1.1    bouyer 	for (i = 0; i < RX_PAGES; i++)
   3397   1.1    bouyer 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   3398   1.1    bouyer 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3399   1.1    bouyer 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3400   1.1    bouyer 
   3401   1.1    bouyer 	/* Tell the chip about the waiting rx_bd's. */
   3402   1.1    bouyer 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3403   1.1    bouyer 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3404   1.1    bouyer 
   3405   1.1    bouyer 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   3406   1.1    bouyer 
   3407  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3408   1.1    bouyer 
   3409   1.1    bouyer 	return(rc);
   3410   1.1    bouyer }
   3411   1.1    bouyer 
   3412   1.1    bouyer /****************************************************************************/
   3413   1.1    bouyer /* Free memory and clear the RX data structures.                            */
   3414   1.1    bouyer /*                                                                          */
   3415   1.1    bouyer /* Returns:                                                                 */
   3416   1.1    bouyer /*   Nothing.                                                               */
   3417   1.1    bouyer /****************************************************************************/
   3418   1.1    bouyer void
   3419   1.1    bouyer bnx_free_rx_chain(struct bnx_softc *sc)
   3420   1.1    bouyer {
   3421   1.1    bouyer 	int			i;
   3422   1.1    bouyer 
   3423  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3424   1.1    bouyer 
   3425   1.1    bouyer 	/* Free any mbufs still in the RX mbuf chain. */
   3426   1.1    bouyer 	for (i = 0; i < TOTAL_RX_BD; i++) {
   3427   1.1    bouyer 		if (sc->rx_mbuf_ptr[i] != NULL) {
   3428   1.1    bouyer 			if (sc->rx_mbuf_map[i] != NULL)
   3429   1.1    bouyer 				bus_dmamap_sync(sc->bnx_dmatag,
   3430   1.1    bouyer 				    sc->rx_mbuf_map[i],	0,
   3431   1.1    bouyer 				    sc->rx_mbuf_map[i]->dm_mapsize,
   3432   1.1    bouyer 				    BUS_DMASYNC_POSTREAD);
   3433   1.1    bouyer 			m_freem(sc->rx_mbuf_ptr[i]);
   3434   1.1    bouyer 			sc->rx_mbuf_ptr[i] = NULL;
   3435   1.1    bouyer 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3436   1.1    bouyer 		}
   3437   1.1    bouyer 	}
   3438   1.1    bouyer 
   3439   1.1    bouyer 	/* Clear each RX chain page. */
   3440   1.1    bouyer 	for (i = 0; i < RX_PAGES; i++)
   3441   1.1    bouyer 		bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   3442   1.1    bouyer 
   3443   1.1    bouyer 	/* Check if we lost any mbufs in the process. */
   3444   1.1    bouyer 	DBRUNIF((sc->rx_mbuf_alloc),
   3445  1.13    dyoung 	    aprint_error_dev(sc->bnx_dev,
   3446  1.13    dyoung 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   3447  1.13    dyoung 		sc->rx_mbuf_alloc));
   3448   1.1    bouyer 
   3449  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3450   1.1    bouyer }
   3451   1.1    bouyer 
   3452   1.1    bouyer /****************************************************************************/
   3453   1.1    bouyer /* Handles PHY generated interrupt events.                                  */
   3454   1.1    bouyer /*                                                                          */
   3455   1.1    bouyer /* Returns:                                                                 */
   3456   1.1    bouyer /*   Nothing.                                                               */
   3457   1.1    bouyer /****************************************************************************/
   3458   1.1    bouyer void
   3459   1.1    bouyer bnx_phy_intr(struct bnx_softc *sc)
   3460   1.1    bouyer {
   3461   1.1    bouyer 	u_int32_t		new_link_state, old_link_state;
   3462   1.1    bouyer 
   3463   1.1    bouyer 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3464   1.1    bouyer 	    BUS_DMASYNC_POSTREAD);
   3465   1.1    bouyer 	new_link_state = sc->status_block->status_attn_bits &
   3466   1.1    bouyer 	    STATUS_ATTN_BITS_LINK_STATE;
   3467   1.1    bouyer 	old_link_state = sc->status_block->status_attn_bits_ack &
   3468   1.1    bouyer 	    STATUS_ATTN_BITS_LINK_STATE;
   3469   1.1    bouyer 
   3470   1.1    bouyer 	/* Handle any changes if the link state has changed. */
   3471   1.1    bouyer 	if (new_link_state != old_link_state) {
   3472   1.1    bouyer 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   3473   1.1    bouyer 
   3474   1.1    bouyer 		callout_stop(&sc->bnx_timeout);
   3475   1.1    bouyer 		bnx_tick(sc);
   3476   1.1    bouyer 
   3477   1.1    bouyer 		/* Update the status_attn_bits_ack field in the status block. */
   3478   1.1    bouyer 		if (new_link_state) {
   3479   1.1    bouyer 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   3480   1.1    bouyer 			    STATUS_ATTN_BITS_LINK_STATE);
   3481   1.1    bouyer 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   3482   1.1    bouyer 		} else {
   3483   1.1    bouyer 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   3484   1.1    bouyer 			    STATUS_ATTN_BITS_LINK_STATE);
   3485   1.1    bouyer 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   3486   1.1    bouyer 		}
   3487   1.1    bouyer 	}
   3488   1.1    bouyer 
   3489   1.1    bouyer 	/* Acknowledge the link change interrupt. */
   3490   1.1    bouyer 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   3491   1.1    bouyer }
   3492   1.1    bouyer 
   3493   1.1    bouyer /****************************************************************************/
   3494   1.1    bouyer /* Handles received frame interrupt events.                                 */
   3495   1.1    bouyer /*                                                                          */
   3496   1.1    bouyer /* Returns:                                                                 */
   3497   1.1    bouyer /*   Nothing.                                                               */
   3498   1.1    bouyer /****************************************************************************/
   3499   1.1    bouyer void
   3500   1.1    bouyer bnx_rx_intr(struct bnx_softc *sc)
   3501   1.1    bouyer {
   3502   1.1    bouyer 	struct status_block	*sblk = sc->status_block;
   3503  1.15    dyoung 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   3504   1.1    bouyer 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   3505   1.1    bouyer 	u_int16_t		sw_prod, sw_chain_prod;
   3506   1.1    bouyer 	u_int32_t		sw_prod_bseq;
   3507   1.1    bouyer 	struct l2_fhdr		*l2fhdr;
   3508   1.1    bouyer 	int			i;
   3509   1.1    bouyer 
   3510   1.1    bouyer 	DBRUNIF(1, sc->rx_interrupts++);
   3511   1.1    bouyer 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3512   1.1    bouyer 	    BUS_DMASYNC_POSTREAD);
   3513   1.1    bouyer 
   3514   1.1    bouyer 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   3515   1.1    bouyer 	for (i = 0; i < RX_PAGES; i++)
   3516   1.1    bouyer 		bus_dmamap_sync(sc->bnx_dmatag,
   3517   1.1    bouyer 		    sc->rx_bd_chain_map[i], 0,
   3518   1.1    bouyer 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3519   1.1    bouyer 		    BUS_DMASYNC_POSTWRITE);
   3520   1.1    bouyer 
   3521   1.1    bouyer 	/* Get the hardware's view of the RX consumer index. */
   3522   1.1    bouyer 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   3523   1.1    bouyer 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   3524   1.1    bouyer 		hw_cons++;
   3525   1.1    bouyer 
   3526   1.1    bouyer 	/* Get working copies of the driver's view of the RX indices. */
   3527   1.1    bouyer 	sw_cons = sc->rx_cons;
   3528   1.1    bouyer 	sw_prod = sc->rx_prod;
   3529   1.1    bouyer 	sw_prod_bseq = sc->rx_prod_bseq;
   3530   1.1    bouyer 
   3531   1.1    bouyer 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   3532   1.1    bouyer 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   3533  1.12     perry 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   3534   1.1    bouyer 
   3535   1.1    bouyer 	/* Prevent speculative reads from getting ahead of the status block. */
   3536   1.1    bouyer 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3537   1.1    bouyer 	    BUS_SPACE_BARRIER_READ);
   3538   1.1    bouyer 
   3539   1.1    bouyer 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3540   1.1    bouyer 	    sc->rx_low_watermark = sc->free_rx_bd);
   3541   1.1    bouyer 
   3542   1.1    bouyer 	/*
   3543   1.1    bouyer 	 * Scan through the receive chain as long
   3544   1.1    bouyer 	 * as there is work to do.
   3545   1.1    bouyer 	 */
   3546   1.1    bouyer 	while (sw_cons != hw_cons) {
   3547   1.1    bouyer 		struct mbuf *m;
   3548   1.1    bouyer 		struct rx_bd *rxbd;
   3549   1.1    bouyer 		unsigned int len;
   3550   1.1    bouyer 		u_int32_t status;
   3551   1.1    bouyer 
   3552   1.1    bouyer 		/* Convert the producer/consumer indices to an actual
   3553   1.1    bouyer 		 * rx_bd index.
   3554   1.1    bouyer 		 */
   3555   1.1    bouyer 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   3556   1.1    bouyer 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   3557   1.1    bouyer 
   3558   1.1    bouyer 		/* Get the used rx_bd. */
   3559   1.1    bouyer 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   3560   1.1    bouyer 		sc->free_rx_bd++;
   3561   1.1    bouyer 
   3562  1.12     perry 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   3563   1.1    bouyer 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   3564   1.1    bouyer 
   3565   1.1    bouyer 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   3566   1.1    bouyer 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   3567   1.5    bouyer #ifdef DIAGNOSTIC
   3568   1.1    bouyer 			/* Validate that this is the last rx_bd. */
   3569   1.5    bouyer 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   3570   1.5    bouyer 			    printf("%s: Unexpected mbuf found in "
   3571  1.13    dyoung 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   3572   1.1    bouyer 			        sw_chain_cons);
   3573   1.5    bouyer 			}
   3574   1.5    bouyer #endif
   3575   1.1    bouyer 
   3576   1.1    bouyer 			/* DRC - ToDo: If the received packet is small, say less
   3577   1.1    bouyer 			 *             than 128 bytes, allocate a new mbuf here,
   3578   1.1    bouyer 			 *             copy the data to that mbuf, and recycle
   3579   1.1    bouyer 			 *             the mapped jumbo frame.
   3580   1.1    bouyer 			 */
   3581   1.1    bouyer 
   3582   1.1    bouyer 			/* Unmap the mbuf from DMA space. */
   3583   1.5    bouyer #ifdef DIAGNOSTIC
   3584   1.5    bouyer 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   3585   1.5    bouyer 				printf("invalid map sw_cons 0x%x "
   3586   1.5    bouyer 				"sw_prod 0x%x "
   3587   1.5    bouyer 				"sw_chain_cons 0x%x "
   3588   1.5    bouyer 				"sw_chain_prod 0x%x "
   3589   1.5    bouyer 				"hw_cons 0x%x "
   3590   1.6    bouyer 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   3591   1.6    bouyer 				"TOTAL_RX_BD 0x%x\n",
   3592   1.5    bouyer 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   3593   1.6    bouyer 				hw_cons,
   3594   1.6    bouyer 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   3595   1.5    bouyer 			}
   3596   1.5    bouyer #endif
   3597   1.1    bouyer 			bus_dmamap_sync(sc->bnx_dmatag,
   3598   1.1    bouyer 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   3599   1.1    bouyer 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   3600   1.1    bouyer 			    BUS_DMASYNC_POSTREAD);
   3601   1.1    bouyer 			bus_dmamap_unload(sc->bnx_dmatag,
   3602   1.1    bouyer 			    sc->rx_mbuf_map[sw_chain_cons]);
   3603   1.1    bouyer 
   3604   1.1    bouyer 			/* Remove the mbuf from the driver's chain. */
   3605   1.1    bouyer 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   3606   1.1    bouyer 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   3607   1.1    bouyer 
   3608   1.1    bouyer 			/*
   3609   1.1    bouyer 			 * Frames received on the NetXteme II are prepended
   3610   1.1    bouyer 			 * with the l2_fhdr structure which provides status
   3611   1.1    bouyer 			 * information about the received frame (including
   3612   1.1    bouyer 			 * VLAN tags and checksum info) and are also
   3613   1.1    bouyer 			 * automatically adjusted to align the IP header
   3614   1.1    bouyer 			 * (i.e. two null bytes are inserted before the
   3615   1.1    bouyer 			 * Ethernet header).
   3616   1.1    bouyer 			 */
   3617   1.1    bouyer 			l2fhdr = mtod(m, struct l2_fhdr *);
   3618   1.1    bouyer 
   3619   1.1    bouyer 			len    = l2fhdr->l2_fhdr_pkt_len;
   3620   1.1    bouyer 			status = l2fhdr->l2_fhdr_status;
   3621   1.1    bouyer 
   3622   1.1    bouyer 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   3623   1.1    bouyer 			    aprint_error("Simulating l2_fhdr status error.\n");
   3624   1.1    bouyer 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   3625   1.1    bouyer 
   3626   1.1    bouyer 			/* Watch for unusual sized frames. */
   3627   1.1    bouyer 			DBRUNIF(((len < BNX_MIN_MTU) ||
   3628   1.1    bouyer 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   3629  1.13    dyoung 			    aprint_error_dev(sc->bnx_dev,
   3630  1.13    dyoung 			        "Unusual frame size found. "
   3631  1.13    dyoung 				"Min(%d), Actual(%d), Max(%d)\n",
   3632  1.13    dyoung 				(int)BNX_MIN_MTU, len,
   3633  1.13    dyoung 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   3634   1.1    bouyer 
   3635   1.1    bouyer 			bnx_dump_mbuf(sc, m);
   3636   1.1    bouyer 			bnx_breakpoint(sc));
   3637   1.1    bouyer 
   3638   1.1    bouyer 			len -= ETHER_CRC_LEN;
   3639   1.1    bouyer 
   3640   1.1    bouyer 			/* Check the received frame for errors. */
   3641   1.1    bouyer 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   3642   1.1    bouyer 			    L2_FHDR_ERRORS_PHY_DECODE |
   3643   1.1    bouyer 			    L2_FHDR_ERRORS_ALIGNMENT |
   3644   1.1    bouyer 			    L2_FHDR_ERRORS_TOO_SHORT |
   3645   1.1    bouyer 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   3646   1.1    bouyer 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   3647   1.1    bouyer 			    len >
   3648   1.1    bouyer 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   3649   1.1    bouyer 				ifp->if_ierrors++;
   3650   1.1    bouyer 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   3651   1.1    bouyer 
   3652   1.1    bouyer 				/* Reuse the mbuf for a new frame. */
   3653   1.1    bouyer 				if (bnx_get_buf(sc, m, &sw_prod,
   3654   1.1    bouyer 				    &sw_chain_prod, &sw_prod_bseq)) {
   3655   1.1    bouyer 					DBRUNIF(1, bnx_breakpoint(sc));
   3656   1.1    bouyer 					panic("%s: Can't reuse RX mbuf!\n",
   3657  1.13    dyoung 					    device_xname(sc->bnx_dev));
   3658   1.1    bouyer 				}
   3659   1.5    bouyer 				continue;
   3660   1.1    bouyer 			}
   3661   1.1    bouyer 
   3662   1.1    bouyer 			/*
   3663   1.1    bouyer 			 * Get a new mbuf for the rx_bd.   If no new
   3664   1.1    bouyer 			 * mbufs are available then reuse the current mbuf,
   3665   1.1    bouyer 			 * log an ierror on the interface, and generate
   3666   1.1    bouyer 			 * an error in the system log.
   3667   1.1    bouyer 			 */
   3668   1.1    bouyer 			if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
   3669   1.1    bouyer 			    &sw_prod_bseq)) {
   3670   1.1    bouyer 				DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
   3671   1.1    bouyer 					"new mbuf, incoming frame dropped!\n"));
   3672   1.1    bouyer 
   3673   1.1    bouyer 				ifp->if_ierrors++;
   3674   1.1    bouyer 
   3675   1.1    bouyer 				/* Try and reuse the exisitng mbuf. */
   3676   1.1    bouyer 				if (bnx_get_buf(sc, m, &sw_prod,
   3677   1.1    bouyer 				    &sw_chain_prod, &sw_prod_bseq)) {
   3678   1.1    bouyer 					DBRUNIF(1, bnx_breakpoint(sc));
   3679   1.1    bouyer 					panic("%s: Double mbuf allocation "
   3680  1.13    dyoung 					    "failure!",
   3681  1.13    dyoung 					    device_xname(sc->bnx_dev));
   3682   1.1    bouyer 				}
   3683   1.5    bouyer 				continue;
   3684   1.1    bouyer 			}
   3685   1.1    bouyer 
   3686   1.1    bouyer 			/* Skip over the l2_fhdr when passing the data up
   3687   1.1    bouyer 			 * the stack.
   3688   1.1    bouyer 			 */
   3689   1.1    bouyer 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   3690   1.1    bouyer 
   3691   1.1    bouyer 			/* Adjust the pckt length to match the received data. */
   3692   1.1    bouyer 			m->m_pkthdr.len = m->m_len = len;
   3693   1.1    bouyer 
   3694   1.1    bouyer 			/* Send the packet to the appropriate interface. */
   3695   1.1    bouyer 			m->m_pkthdr.rcvif = ifp;
   3696   1.1    bouyer 
   3697   1.1    bouyer 			DBRUN(BNX_VERBOSE_RECV,
   3698   1.1    bouyer 			    struct ether_header *eh;
   3699   1.1    bouyer 			    eh = mtod(m, struct ether_header *);
   3700   1.1    bouyer 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   3701  1.12     perry 			    __func__, ether_sprintf(eh->ether_dhost),
   3702   1.1    bouyer 			    ether_sprintf(eh->ether_shost),
   3703   1.1    bouyer 			    htons(eh->ether_type)));
   3704   1.1    bouyer 
   3705   1.1    bouyer 			/* Validate the checksum. */
   3706   1.1    bouyer 
   3707   1.1    bouyer 			/* Check for an IP datagram. */
   3708   1.1    bouyer 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   3709   1.1    bouyer 				/* Check if the IP checksum is valid. */
   3710   1.1    bouyer 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   3711   1.1    bouyer 				    == 0)
   3712   1.1    bouyer 					m->m_pkthdr.csum_flags |=
   3713   1.1    bouyer 					    M_CSUM_IPv4;
   3714   1.1    bouyer #ifdef BNX_DEBUG
   3715   1.1    bouyer 				else
   3716   1.1    bouyer 					DBPRINT(sc, BNX_WARN_SEND,
   3717   1.1    bouyer 					    "%s(): Invalid IP checksum "
   3718   1.1    bouyer 					        "= 0x%04X!\n",
   3719  1.12     perry 						__func__,
   3720   1.1    bouyer 						l2fhdr->l2_fhdr_ip_xsum
   3721   1.1    bouyer 						);
   3722   1.1    bouyer #endif
   3723   1.1    bouyer 			}
   3724   1.1    bouyer 
   3725   1.1    bouyer 			/* Check for a valid TCP/UDP frame. */
   3726   1.1    bouyer 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   3727   1.1    bouyer 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   3728   1.1    bouyer 				/* Check for a good TCP/UDP checksum. */
   3729   1.1    bouyer 				if ((status &
   3730   1.1    bouyer 				    (L2_FHDR_ERRORS_TCP_XSUM |
   3731   1.1    bouyer 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   3732   1.1    bouyer 					m->m_pkthdr.csum_flags |=
   3733   1.1    bouyer 					    M_CSUM_TCPv4 |
   3734   1.1    bouyer 					    M_CSUM_UDPv4;
   3735   1.1    bouyer 				} else {
   3736   1.1    bouyer 					DBPRINT(sc, BNX_WARN_SEND,
   3737   1.1    bouyer 					    "%s(): Invalid TCP/UDP "
   3738   1.1    bouyer 					    "checksum = 0x%04X!\n",
   3739  1.12     perry 					    __func__,
   3740   1.1    bouyer 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   3741   1.1    bouyer 				}
   3742   1.1    bouyer 			}
   3743   1.1    bouyer 
   3744   1.1    bouyer 			/*
   3745   1.1    bouyer 			 * If we received a packet with a vlan tag,
   3746   1.1    bouyer 			 * attach that information to the packet.
   3747   1.1    bouyer 			 */
   3748   1.1    bouyer 			if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
   3749   1.1    bouyer #if 0
   3750   1.1    bouyer 				struct ether_vlan_header vh;
   3751   1.1    bouyer 
   3752   1.1    bouyer 				DBPRINT(sc, BNX_VERBOSE_SEND,
   3753   1.1    bouyer 				    "%s(): VLAN tag = 0x%04X\n",
   3754  1.12     perry 				    __func__,
   3755   1.1    bouyer 				    l2fhdr->l2_fhdr_vlan_tag);
   3756   1.1    bouyer 
   3757   1.1    bouyer 				if (m->m_pkthdr.len < ETHER_HDR_LEN) {
   3758   1.1    bouyer 					m_freem(m);
   3759   1.5    bouyer 					continue;
   3760   1.1    bouyer 				}
   3761   1.3  christos 				m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
   3762   1.1    bouyer 				vh.evl_proto = vh.evl_encap_proto;
   3763   1.4    bouyer 				vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
   3764   1.1    bouyer 				vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
   3765   1.1    bouyer 				m_adj(m, ETHER_HDR_LEN);
   3766   1.1    bouyer 				if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
   3767   1.5    bouyer 					continue;
   3768   1.1    bouyer 				m->m_pkthdr.len += sizeof(vh);
   3769   1.1    bouyer 				if (m->m_len < sizeof(vh) &&
   3770   1.1    bouyer 				    (m = m_pullup(m, sizeof(vh))) == NULL)
   3771   1.1    bouyer 					goto bnx_rx_int_next_rx;
   3772   1.1    bouyer 				m_copyback(m, 0, sizeof(vh), &vh);
   3773   1.1    bouyer #else
   3774   1.1    bouyer 				VLAN_INPUT_TAG(ifp, m,
   3775   1.8    bouyer 				    l2fhdr->l2_fhdr_vlan_tag,
   3776   1.5    bouyer 				    continue);
   3777   1.1    bouyer #endif
   3778   1.1    bouyer 			}
   3779   1.1    bouyer 
   3780   1.1    bouyer #if NBPFILTER > 0
   3781   1.1    bouyer 			/*
   3782   1.1    bouyer 			 * Handle BPF listeners. Let the BPF
   3783   1.1    bouyer 			 * user see the packet.
   3784   1.1    bouyer 			 */
   3785   1.1    bouyer 			if (ifp->if_bpf)
   3786   1.1    bouyer 				bpf_mtap(ifp->if_bpf, m);
   3787   1.1    bouyer #endif
   3788   1.1    bouyer 
   3789   1.1    bouyer 			/* Pass the mbuf off to the upper layers. */
   3790   1.1    bouyer 			ifp->if_ipackets++;
   3791   1.1    bouyer 			DBPRINT(sc, BNX_VERBOSE_RECV,
   3792  1.12     perry 			    "%s(): Passing received frame up.\n", __func__);
   3793   1.1    bouyer 			(*ifp->if_input)(ifp, m);
   3794   1.1    bouyer 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3795   1.1    bouyer 
   3796   1.1    bouyer 		}
   3797   1.1    bouyer 
   3798   1.1    bouyer 		sw_cons = NEXT_RX_BD(sw_cons);
   3799   1.1    bouyer 
   3800   1.1    bouyer 		/* Refresh hw_cons to see if there's new work */
   3801   1.1    bouyer 		if (sw_cons == hw_cons) {
   3802   1.1    bouyer 			hw_cons = sc->hw_rx_cons =
   3803   1.1    bouyer 			    sblk->status_rx_quick_consumer_index0;
   3804   1.1    bouyer 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   3805   1.1    bouyer 			    USABLE_RX_BD_PER_PAGE)
   3806   1.1    bouyer 				hw_cons++;
   3807   1.1    bouyer 		}
   3808   1.1    bouyer 
   3809   1.1    bouyer 		/* Prevent speculative reads from getting ahead of
   3810   1.1    bouyer 		 * the status block.
   3811   1.1    bouyer 		 */
   3812   1.1    bouyer 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3813   1.1    bouyer 		    BUS_SPACE_BARRIER_READ);
   3814   1.1    bouyer 	}
   3815   1.1    bouyer 
   3816   1.1    bouyer 	for (i = 0; i < RX_PAGES; i++)
   3817   1.1    bouyer 		bus_dmamap_sync(sc->bnx_dmatag,
   3818   1.1    bouyer 		    sc->rx_bd_chain_map[i], 0,
   3819   1.1    bouyer 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3820   1.1    bouyer 		    BUS_DMASYNC_PREWRITE);
   3821   1.1    bouyer 
   3822   1.1    bouyer 	sc->rx_cons = sw_cons;
   3823   1.1    bouyer 	sc->rx_prod = sw_prod;
   3824   1.1    bouyer 	sc->rx_prod_bseq = sw_prod_bseq;
   3825   1.1    bouyer 
   3826   1.1    bouyer 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3827   1.1    bouyer 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3828   1.1    bouyer 
   3829   1.1    bouyer 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   3830   1.1    bouyer 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   3831  1.12     perry 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   3832   1.1    bouyer }
   3833   1.1    bouyer 
   3834   1.1    bouyer /****************************************************************************/
   3835   1.1    bouyer /* Handles transmit completion interrupt events.                            */
   3836   1.1    bouyer /*                                                                          */
   3837   1.1    bouyer /* Returns:                                                                 */
   3838   1.1    bouyer /*   Nothing.                                                               */
   3839   1.1    bouyer /****************************************************************************/
   3840   1.1    bouyer void
   3841   1.1    bouyer bnx_tx_intr(struct bnx_softc *sc)
   3842   1.1    bouyer {
   3843   1.1    bouyer 	struct status_block	*sblk = sc->status_block;
   3844  1.15    dyoung 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   3845   1.1    bouyer 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   3846   1.1    bouyer 
   3847   1.1    bouyer 	DBRUNIF(1, sc->tx_interrupts++);
   3848   1.1    bouyer 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3849   1.1    bouyer 	    BUS_DMASYNC_POSTREAD);
   3850   1.1    bouyer 
   3851   1.1    bouyer 	/* Get the hardware's view of the TX consumer index. */
   3852   1.1    bouyer 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   3853   1.1    bouyer 
   3854   1.1    bouyer 	/* Skip to the next entry if this is a chain page pointer. */
   3855   1.1    bouyer 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   3856   1.1    bouyer 		hw_tx_cons++;
   3857   1.1    bouyer 
   3858   1.1    bouyer 	sw_tx_cons = sc->tx_cons;
   3859   1.1    bouyer 
   3860   1.1    bouyer 	/* Prevent speculative reads from getting ahead of the status block. */
   3861   1.1    bouyer 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3862   1.1    bouyer 	    BUS_SPACE_BARRIER_READ);
   3863   1.1    bouyer 
   3864   1.1    bouyer 	/* Cycle through any completed TX chain page entries. */
   3865   1.1    bouyer 	while (sw_tx_cons != hw_tx_cons) {
   3866   1.1    bouyer #ifdef BNX_DEBUG
   3867   1.1    bouyer 		struct tx_bd *txbd = NULL;
   3868   1.1    bouyer #endif
   3869   1.1    bouyer 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   3870   1.1    bouyer 
   3871   1.1    bouyer 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   3872   1.1    bouyer 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   3873  1.12     perry 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   3874   1.1    bouyer 
   3875   1.1    bouyer 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   3876  1.13    dyoung 		    aprint_error_dev(sc->bnx_dev,
   3877  1.13    dyoung 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   3878  1.13    dyoung 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   3879   1.1    bouyer 
   3880   1.1    bouyer 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   3881   1.1    bouyer 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   3882   1.1    bouyer 
   3883   1.1    bouyer 		DBRUNIF((txbd == NULL),
   3884  1.13    dyoung 		    aprint_error_dev(sc->bnx_dev,
   3885  1.13    dyoung 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   3886   1.1    bouyer 		    bnx_breakpoint(sc));
   3887   1.1    bouyer 
   3888  1.12     perry 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   3889   1.1    bouyer 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   3890   1.1    bouyer 
   3891   1.1    bouyer 		/*
   3892   1.1    bouyer 		 * Free the associated mbuf. Remember
   3893   1.1    bouyer 		 * that only the last tx_bd of a packet
   3894   1.1    bouyer 		 * has an mbuf pointer and DMA map.
   3895   1.1    bouyer 		 */
   3896   1.1    bouyer 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
   3897   1.1    bouyer 			/* Validate that this is the last tx_bd. */
   3898   1.1    bouyer 			DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
   3899   1.1    bouyer 			    TX_BD_FLAGS_END)),
   3900  1.13    dyoung 			    aprint_error_dev(sc->bnx_dev,
   3901  1.13    dyoung 			        "tx_bd END flag not set but txmbuf == NULL!\n");
   3902   1.1    bouyer 			    bnx_breakpoint(sc));
   3903   1.1    bouyer 
   3904   1.1    bouyer 			DBRUN(BNX_INFO_SEND,
   3905   1.1    bouyer 			    aprint_debug("%s: Unloading map/freeing mbuf "
   3906   1.1    bouyer 			    "from tx_bd[0x%04X]\n",
   3907  1.12     perry 			    __func__, sw_tx_chain_cons));
   3908   1.1    bouyer 
   3909   1.1    bouyer 			/* Unmap the mbuf. */
   3910   1.1    bouyer 			bus_dmamap_unload(sc->bnx_dmatag,
   3911   1.1    bouyer 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
   3912   1.1    bouyer 
   3913   1.1    bouyer 			/* Free the mbuf. */
   3914   1.1    bouyer 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
   3915   1.1    bouyer 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
   3916   1.1    bouyer 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3917   1.1    bouyer 
   3918   1.1    bouyer 			ifp->if_opackets++;
   3919   1.1    bouyer 		}
   3920   1.1    bouyer 
   3921   1.1    bouyer 		sc->used_tx_bd--;
   3922   1.1    bouyer 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   3923   1.1    bouyer 
   3924   1.1    bouyer 		/* Refresh hw_cons to see if there's new work. */
   3925   1.1    bouyer 		hw_tx_cons = sc->hw_tx_cons =
   3926   1.1    bouyer 		    sblk->status_tx_quick_consumer_index0;
   3927   1.1    bouyer 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   3928   1.1    bouyer 		    USABLE_TX_BD_PER_PAGE)
   3929   1.1    bouyer 			hw_tx_cons++;
   3930   1.1    bouyer 
   3931   1.1    bouyer 		/* Prevent speculative reads from getting ahead of
   3932   1.1    bouyer 		 * the status block.
   3933   1.1    bouyer 		 */
   3934   1.1    bouyer 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3935   1.1    bouyer 		    BUS_SPACE_BARRIER_READ);
   3936   1.1    bouyer 	}
   3937   1.1    bouyer 
   3938   1.1    bouyer 	/* Clear the TX timeout timer. */
   3939   1.1    bouyer 	ifp->if_timer = 0;
   3940   1.1    bouyer 
   3941   1.1    bouyer 	/* Clear the tx hardware queue full flag. */
   3942   1.1    bouyer 	if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
   3943   1.1    bouyer 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   3944  1.13    dyoung 		    aprint_debug_dev(sc->bnx_dev,
   3945  1.13    dyoung 		        "TX chain is open for business! Used tx_bd = %d\n",
   3946  1.13    dyoung 			sc->used_tx_bd));
   3947   1.1    bouyer 		ifp->if_flags &= ~IFF_OACTIVE;
   3948   1.1    bouyer 	}
   3949   1.1    bouyer 
   3950   1.1    bouyer 	sc->tx_cons = sw_tx_cons;
   3951   1.1    bouyer }
   3952   1.1    bouyer 
   3953   1.1    bouyer /****************************************************************************/
   3954   1.1    bouyer /* Disables interrupt generation.                                           */
   3955   1.1    bouyer /*                                                                          */
   3956   1.1    bouyer /* Returns:                                                                 */
   3957   1.1    bouyer /*   Nothing.                                                               */
   3958   1.1    bouyer /****************************************************************************/
   3959   1.1    bouyer void
   3960   1.1    bouyer bnx_disable_intr(struct bnx_softc *sc)
   3961   1.1    bouyer {
   3962   1.1    bouyer 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3963   1.1    bouyer 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   3964   1.1    bouyer }
   3965   1.1    bouyer 
   3966   1.1    bouyer /****************************************************************************/
   3967   1.1    bouyer /* Enables interrupt generation.                                            */
   3968   1.1    bouyer /*                                                                          */
   3969   1.1    bouyer /* Returns:                                                                 */
   3970   1.1    bouyer /*   Nothing.                                                               */
   3971   1.1    bouyer /****************************************************************************/
   3972   1.1    bouyer void
   3973   1.1    bouyer bnx_enable_intr(struct bnx_softc *sc)
   3974   1.1    bouyer {
   3975   1.1    bouyer 	u_int32_t		val;
   3976   1.1    bouyer 
   3977   1.1    bouyer 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   3978   1.1    bouyer 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   3979   1.1    bouyer 
   3980   1.1    bouyer 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   3981   1.1    bouyer 	    sc->last_status_idx);
   3982   1.1    bouyer 
   3983   1.1    bouyer 	val = REG_RD(sc, BNX_HC_COMMAND);
   3984   1.1    bouyer 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   3985   1.1    bouyer }
   3986   1.1    bouyer 
   3987   1.1    bouyer /****************************************************************************/
   3988   1.1    bouyer /* Handles controller initialization.                                       */
   3989   1.1    bouyer /*                                                                          */
   3990   1.1    bouyer /****************************************************************************/
   3991   1.1    bouyer int
   3992   1.1    bouyer bnx_init(struct ifnet *ifp)
   3993   1.1    bouyer {
   3994   1.1    bouyer 	struct bnx_softc	*sc = ifp->if_softc;
   3995   1.1    bouyer 	u_int32_t		ether_mtu;
   3996   1.1    bouyer 	int			s, error = 0;
   3997   1.1    bouyer 
   3998  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3999   1.1    bouyer 
   4000   1.1    bouyer 	s = splnet();
   4001   1.1    bouyer 
   4002  1.14    dyoung 	bnx_stop(ifp, 0);
   4003   1.1    bouyer 
   4004   1.1    bouyer 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4005   1.1    bouyer 		aprint_error("bnx: Controller reset failed!\n");
   4006   1.4    bouyer 		goto bnx_init_exit;
   4007   1.1    bouyer 	}
   4008   1.1    bouyer 
   4009   1.1    bouyer 	if ((error = bnx_chipinit(sc)) != 0) {
   4010   1.1    bouyer 		aprint_error("bnx: Controller initialization failed!\n");
   4011   1.4    bouyer 		goto bnx_init_exit;
   4012   1.1    bouyer 	}
   4013   1.1    bouyer 
   4014   1.1    bouyer 	if ((error = bnx_blockinit(sc)) != 0) {
   4015   1.1    bouyer 		aprint_error("bnx: Block initialization failed!\n");
   4016   1.4    bouyer 		goto bnx_init_exit;
   4017   1.1    bouyer 	}
   4018   1.1    bouyer 
   4019   1.1    bouyer 	/* Calculate and program the Ethernet MRU size. */
   4020   1.5    bouyer 	if (ifp->if_mtu <= ETHERMTU) {
   4021   1.5    bouyer 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4022   1.5    bouyer 		sc->mbuf_alloc_size = MCLBYTES;
   4023   1.5    bouyer 	} else {
   4024   1.5    bouyer 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4025   1.5    bouyer 		sc->mbuf_alloc_size = BNX_MAX_MRU;
   4026   1.5    bouyer 	}
   4027   1.5    bouyer 
   4028   1.1    bouyer 
   4029   1.1    bouyer 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4030  1.12     perry 	    __func__, ether_mtu);
   4031   1.1    bouyer 
   4032   1.1    bouyer 	/*
   4033   1.1    bouyer 	 * Program the MRU and enable Jumbo frame
   4034   1.1    bouyer 	 * support.
   4035   1.1    bouyer 	 */
   4036   1.1    bouyer 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4037   1.1    bouyer 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4038   1.1    bouyer 
   4039   1.1    bouyer 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4040   1.1    bouyer 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4041   1.1    bouyer 
   4042   1.1    bouyer 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4043  1.12     perry 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4044   1.1    bouyer 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4045   1.1    bouyer 
   4046   1.1    bouyer 	/* Program appropriate promiscuous/multicast filtering. */
   4047   1.1    bouyer 	bnx_set_rx_mode(sc);
   4048   1.1    bouyer 
   4049   1.1    bouyer 	/* Init RX buffer descriptor chain. */
   4050   1.1    bouyer 	bnx_init_rx_chain(sc);
   4051   1.1    bouyer 
   4052   1.1    bouyer 	/* Init TX buffer descriptor chain. */
   4053   1.1    bouyer 	bnx_init_tx_chain(sc);
   4054   1.1    bouyer 
   4055   1.1    bouyer 	/* Enable host interrupts. */
   4056   1.1    bouyer 	bnx_enable_intr(sc);
   4057   1.1    bouyer 
   4058  1.16    dyoung 	if ((error = ether_mediachange(ifp)) != 0)
   4059  1.14    dyoung 		goto bnx_init_exit;
   4060   1.1    bouyer 
   4061   1.1    bouyer 	ifp->if_flags |= IFF_RUNNING;
   4062   1.1    bouyer 	ifp->if_flags &= ~IFF_OACTIVE;
   4063   1.1    bouyer 
   4064   1.1    bouyer 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4065   1.1    bouyer 
   4066   1.4    bouyer bnx_init_exit:
   4067  1.12     perry 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4068   1.1    bouyer 
   4069   1.1    bouyer 	splx(s);
   4070   1.1    bouyer 
   4071   1.1    bouyer 	return(error);
   4072   1.1    bouyer }
   4073   1.1    bouyer 
   4074   1.1    bouyer /****************************************************************************/
   4075   1.1    bouyer /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4076   1.1    bouyer /* memory visible to the controller.                                        */
   4077   1.1    bouyer /*                                                                          */
   4078   1.1    bouyer /* Returns:                                                                 */
   4079   1.1    bouyer /*   0 for success, positive value for failure.                             */
   4080   1.1    bouyer /****************************************************************************/
   4081   1.1    bouyer int
   4082   1.4    bouyer bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
   4083   1.1    bouyer {
   4084   1.1    bouyer 	bus_dmamap_t		map;
   4085   1.4    bouyer 	struct tx_bd		*txbd = NULL;
   4086   1.4    bouyer 	struct mbuf		*m0;
   4087   1.4    bouyer 	u_int16_t		vlan_tag = 0, flags = 0;
   4088   1.4    bouyer 	u_int16_t		chain_prod, prod;
   4089   1.4    bouyer #ifdef BNX_DEBUG
   4090   1.4    bouyer 	u_int16_t		debug_prod;
   4091   1.4    bouyer #endif
   4092   1.4    bouyer 	u_int32_t		addr, prod_bseq;
   4093   1.4    bouyer 	int			i, error, rc = 0;
   4094   1.1    bouyer 	struct m_tag		*mtag;
   4095   1.1    bouyer 
   4096   1.4    bouyer 	m0 = *m_head;
   4097   1.4    bouyer 
   4098   1.1    bouyer 	/* Transfer any checksum offload flags to the bd. */
   4099   1.4    bouyer 	if (m0->m_pkthdr.csum_flags) {
   4100   1.4    bouyer 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4101   1.4    bouyer 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4102   1.4    bouyer 		if (m0->m_pkthdr.csum_flags &
   4103   1.1    bouyer 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4104   1.4    bouyer 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4105   1.1    bouyer 	}
   4106   1.1    bouyer 
   4107   1.1    bouyer 	/* Transfer any VLAN tags to the bd. */
   4108  1.15    dyoung 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m0);
   4109   1.4    bouyer 	if (mtag != NULL) {
   4110   1.4    bouyer 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4111   1.4    bouyer 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4112   1.4    bouyer 	}
   4113   1.1    bouyer 
   4114   1.1    bouyer 	/* Map the mbuf into DMAable memory. */
   4115   1.4    bouyer 	prod = sc->tx_prod;
   4116   1.4    bouyer 	chain_prod = TX_CHAIN_IDX(prod);
   4117   1.4    bouyer 	map = sc->tx_mbuf_map[chain_prod];
   4118   1.4    bouyer 
   4119   1.1    bouyer 	/* Map the mbuf into our DMA address space. */
   4120   1.4    bouyer 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
   4121   1.4    bouyer 	if (error != 0) {
   4122  1.13    dyoung 		aprint_error_dev(sc->bnx_dev,
   4123  1.13    dyoung 		    "Error mapping mbuf into TX chain!\n");
   4124   1.4    bouyer 		m_freem(m0);
   4125   1.4    bouyer 		*m_head = NULL;
   4126   1.4    bouyer 		return (error);
   4127   1.1    bouyer 	}
   4128   1.1    bouyer 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4129   1.1    bouyer 	    BUS_DMASYNC_PREWRITE);
   4130   1.4    bouyer         /*
   4131   1.4    bouyer          * The chip seems to require that at least 16 descriptors be kept
   4132   1.4    bouyer          * empty at all times.  Make sure we honor that.
   4133   1.4    bouyer          * XXX Would it be faster to assume worst case scenario for
   4134   1.4    bouyer          * map->dm_nsegs and do this calculation higher up?
   4135   1.4    bouyer          */
   4136   1.4    bouyer         if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
   4137   1.4    bouyer                 bus_dmamap_unload(sc->bnx_dmatag, map);
   4138   1.4    bouyer                 return (ENOBUFS);
   4139   1.4    bouyer         }
   4140   1.4    bouyer 
   4141   1.4    bouyer 	/* prod points to an empty tx_bd at this point. */
   4142   1.4    bouyer 	prod_bseq = sc->tx_prod_bseq;
   4143   1.4    bouyer #ifdef BNX_DEBUG
   4144   1.4    bouyer 	debug_prod = chain_prod;
   4145   1.4    bouyer #endif
   4146   1.4    bouyer 	DBPRINT(sc, BNX_INFO_SEND,
   4147   1.4    bouyer 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4148   1.4    bouyer 		"prod_bseq = 0x%08X\n",
   4149  1.12     perry 		__func__, *prod, chain_prod, prod_bseq);
   4150   1.1    bouyer 
   4151   1.1    bouyer 	/*
   4152   1.4    bouyer 	 * Cycle through each mbuf segment that makes up
   4153   1.4    bouyer 	 * the outgoing frame, gathering the mapping info
   4154   1.4    bouyer 	 * for that segment and creating a tx_bd for the
   4155   1.4    bouyer 	 * mbuf.
   4156   1.4    bouyer 	 */
   4157   1.4    bouyer 	for (i = 0; i < map->dm_nsegs ; i++) {
   4158   1.4    bouyer 		chain_prod = TX_CHAIN_IDX(prod);
   4159   1.4    bouyer 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4160   1.4    bouyer 
   4161   1.4    bouyer 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   4162   1.4    bouyer 		txbd->tx_bd_haddr_lo = htole32(addr);
   4163   1.4    bouyer 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4164   1.4    bouyer 		txbd->tx_bd_haddr_hi = htole32(addr);
   4165   1.4    bouyer 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
   4166   1.4    bouyer 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
   4167   1.4    bouyer 		txbd->tx_bd_flags = htole16(flags);
   4168   1.4    bouyer 		prod_bseq += map->dm_segs[i].ds_len;
   4169   1.4    bouyer 		if (i == 0)
   4170   1.4    bouyer 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
   4171   1.4    bouyer 		prod = NEXT_TX_BD(prod);
   4172   1.4    bouyer 	}
   4173   1.4    bouyer 	/* Set the END flag on the last TX buffer descriptor. */
   4174   1.4    bouyer 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
   4175   1.4    bouyer 
   4176   1.4    bouyer 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
   4177   1.4    bouyer 
   4178   1.4    bouyer 	DBPRINT(sc, BNX_INFO_SEND,
   4179   1.4    bouyer 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4180   1.4    bouyer 		"prod_bseq = 0x%08X\n",
   4181  1.12     perry 		__func__, prod, chain_prod, prod_bseq);
   4182   1.4    bouyer 
   4183   1.4    bouyer 	/*
   4184   1.4    bouyer 	 * Ensure that the mbuf pointer for this
   4185   1.4    bouyer 	 * transmission is placed at the array
   4186   1.4    bouyer 	 * index of the last descriptor in this
   4187   1.4    bouyer 	 * chain.  This is done because a single
   4188   1.4    bouyer 	 * map is used for all segments of the mbuf
   4189   1.4    bouyer 	 * and we don't want to unload the map before
   4190   1.4    bouyer 	 * all of the segments have been freed.
   4191   1.1    bouyer 	 */
   4192   1.4    bouyer 	sc->tx_mbuf_ptr[chain_prod] = m0;
   4193   1.4    bouyer 	sc->used_tx_bd += map->dm_nsegs;
   4194   1.1    bouyer 
   4195   1.1    bouyer 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4196   1.1    bouyer 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4197   1.1    bouyer 
   4198   1.1    bouyer 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4199   1.1    bouyer 
   4200   1.4    bouyer 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4201   1.1    bouyer 	    map_arg.maxsegs));
   4202   1.1    bouyer 
   4203   1.4    bouyer 	/* prod points to the next free tx_bd at this point. */
   4204   1.4    bouyer 	sc->tx_prod = prod;
   4205   1.4    bouyer 	sc->tx_prod_bseq = prod_bseq;
   4206   1.1    bouyer 
   4207   1.4    bouyer 	return (rc);
   4208   1.1    bouyer }
   4209   1.1    bouyer 
   4210   1.1    bouyer /****************************************************************************/
   4211   1.1    bouyer /* Main transmit routine.                                                   */
   4212   1.1    bouyer /*                                                                          */
   4213   1.1    bouyer /* Returns:                                                                 */
   4214   1.1    bouyer /*   Nothing.                                                               */
   4215   1.1    bouyer /****************************************************************************/
   4216   1.1    bouyer void
   4217   1.1    bouyer bnx_start(struct ifnet *ifp)
   4218   1.1    bouyer {
   4219   1.1    bouyer 	struct bnx_softc	*sc = ifp->if_softc;
   4220   1.1    bouyer 	struct mbuf		*m_head = NULL;
   4221   1.1    bouyer 	int			count = 0;
   4222   1.1    bouyer 	u_int16_t		tx_prod, tx_chain_prod;
   4223   1.1    bouyer 
   4224   1.1    bouyer 	/* If there's no link or the transmit queue is empty then just exit. */
   4225  1.16    dyoung 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   4226   1.1    bouyer 		DBPRINT(sc, BNX_INFO_SEND,
   4227  1.16    dyoung 		    "%s(): output active or device not running.\n", __func__);
   4228   1.4    bouyer 		goto bnx_start_exit;
   4229   1.1    bouyer 	}
   4230   1.1    bouyer 
   4231   1.1    bouyer 	/* prod points to the next free tx_bd. */
   4232   1.1    bouyer 	tx_prod = sc->tx_prod;
   4233   1.1    bouyer 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   4234   1.1    bouyer 
   4235   1.1    bouyer 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   4236   1.1    bouyer 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
   4237  1.12     perry 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   4238   1.1    bouyer 
   4239   1.4    bouyer 	/*
   4240   1.4    bouyer 	 * Keep adding entries while there is space in the ring.  We keep
   4241   1.4    bouyer 	 * BNX_TX_SLACK_SPACE entries unused at all times.
   4242   1.4    bouyer 	 */
   4243   1.4    bouyer 	while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
   4244   1.1    bouyer 		/* Check for any frames to send. */
   4245   1.1    bouyer 		IFQ_POLL(&ifp->if_snd, m_head);
   4246   1.1    bouyer 		if (m_head == NULL)
   4247   1.1    bouyer 			break;
   4248   1.1    bouyer 
   4249   1.1    bouyer 		/*
   4250   1.1    bouyer 		 * Pack the data into the transmit ring. If we
   4251   1.4    bouyer 		 * don't have room, set the OACTIVE flag to wait
   4252   1.4    bouyer 		 * for the NIC to drain the chain.
   4253   1.1    bouyer 		 */
   4254   1.4    bouyer 		if (bnx_tx_encap(sc, &m_head)) {
   4255   1.1    bouyer 			ifp->if_flags |= IFF_OACTIVE;
   4256   1.1    bouyer 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   4257   1.1    bouyer 			    "business! Total tx_bd used = %d\n",
   4258   1.1    bouyer 			    sc->used_tx_bd);
   4259   1.1    bouyer 			break;
   4260   1.1    bouyer 		}
   4261   1.1    bouyer 
   4262   1.1    bouyer 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4263   1.1    bouyer 		count++;
   4264   1.1    bouyer 
   4265   1.1    bouyer #if NBPFILTER > 0
   4266   1.1    bouyer 		/* Send a copy of the frame to any BPF listeners. */
   4267   1.1    bouyer 		if (ifp->if_bpf)
   4268   1.1    bouyer 			bpf_mtap(ifp->if_bpf, m_head);
   4269   1.1    bouyer #endif
   4270   1.1    bouyer 	}
   4271   1.1    bouyer 
   4272   1.1    bouyer 	if (count == 0) {
   4273   1.1    bouyer 		/* no packets were dequeued */
   4274   1.1    bouyer 		DBPRINT(sc, BNX_VERBOSE_SEND,
   4275  1.12     perry 		    "%s(): No packets were dequeued\n", __func__);
   4276   1.4    bouyer 		goto bnx_start_exit;
   4277   1.1    bouyer 	}
   4278   1.1    bouyer 
   4279   1.1    bouyer 	/* Update the driver's counters. */
   4280   1.4    bouyer 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   4281   1.1    bouyer 
   4282   1.1    bouyer 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   4283  1.12     perry 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
   4284   1.4    bouyer 	    tx_chain_prod, sc->tx_prod_bseq);
   4285   1.1    bouyer 
   4286   1.1    bouyer 	/* Start the transmit. */
   4287   1.1    bouyer 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   4288   1.1    bouyer 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   4289   1.1    bouyer 
   4290   1.1    bouyer 	/* Set the tx timeout. */
   4291   1.1    bouyer 	ifp->if_timer = BNX_TX_TIMEOUT;
   4292   1.1    bouyer 
   4293   1.4    bouyer bnx_start_exit:
   4294   1.1    bouyer 	return;
   4295   1.1    bouyer }
   4296   1.1    bouyer 
   4297   1.1    bouyer /****************************************************************************/
   4298   1.1    bouyer /* Handles any IOCTL calls from the operating system.                       */
   4299   1.1    bouyer /*                                                                          */
   4300   1.1    bouyer /* Returns:                                                                 */
   4301   1.1    bouyer /*   0 for success, positive value for failure.                             */
   4302   1.1    bouyer /****************************************************************************/
   4303   1.1    bouyer int
   4304   1.3  christos bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   4305   1.1    bouyer {
   4306   1.1    bouyer 	struct bnx_softc	*sc = ifp->if_softc;
   4307   1.1    bouyer 	struct ifreq		*ifr = (struct ifreq *) data;
   4308   1.1    bouyer 	struct mii_data		*mii;
   4309   1.1    bouyer 	int			s, error = 0;
   4310   1.1    bouyer 
   4311   1.1    bouyer 	s = splnet();
   4312   1.1    bouyer 
   4313   1.1    bouyer 	switch (command) {
   4314   1.1    bouyer 	case SIOCSIFFLAGS:
   4315   1.1    bouyer 		if (ifp->if_flags & IFF_UP) {
   4316   1.1    bouyer 			if ((ifp->if_flags & IFF_RUNNING) &&
   4317   1.1    bouyer 			    ((ifp->if_flags ^ sc->bnx_if_flags) &
   4318   1.1    bouyer 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
   4319   1.1    bouyer 				bnx_set_rx_mode(sc);
   4320   1.1    bouyer 			} else if (!(ifp->if_flags & IFF_RUNNING))
   4321   1.1    bouyer 				bnx_init(ifp);
   4322   1.1    bouyer 
   4323   1.4    bouyer 		} else if (ifp->if_flags & IFF_RUNNING)
   4324  1.14    dyoung 			bnx_stop(ifp, 1);
   4325   1.1    bouyer 
   4326   1.1    bouyer 		sc->bnx_if_flags = ifp->if_flags;
   4327   1.1    bouyer 		break;
   4328   1.1    bouyer 
   4329   1.1    bouyer 	case SIOCSIFMEDIA:
   4330   1.1    bouyer 	case SIOCGIFMEDIA:
   4331   1.1    bouyer 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   4332   1.1    bouyer 		    sc->bnx_phy_flags);
   4333   1.1    bouyer 
   4334   1.1    bouyer 		if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
   4335   1.1    bouyer 			error = ifmedia_ioctl(ifp, ifr,
   4336   1.1    bouyer 			    &sc->bnx_ifmedia, command);
   4337   1.1    bouyer 		else {
   4338   1.1    bouyer 			mii = &sc->bnx_mii;
   4339   1.1    bouyer 			error = ifmedia_ioctl(ifp, ifr,
   4340   1.1    bouyer 			    &mii->mii_media, command);
   4341   1.1    bouyer 		}
   4342   1.1    bouyer 		break;
   4343   1.1    bouyer 
   4344   1.1    bouyer 	default:
   4345   1.1    bouyer 		error = ether_ioctl(ifp, command, data);
   4346  1.11    dyoung 		if (error != ENETRESET)
   4347  1.11    dyoung 			break;
   4348  1.11    dyoung 		error = 0;
   4349  1.11    dyoung 		if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
   4350  1.11    dyoung 			/* reload packet filter if running */
   4351   1.1    bouyer 			if (ifp->if_flags & IFF_RUNNING)
   4352  1.11    dyoung 				bnx_set_rx_mode(sc);
   4353   1.1    bouyer 		}
   4354   1.1    bouyer 		break;
   4355   1.1    bouyer 	}
   4356   1.1    bouyer 
   4357   1.1    bouyer 	splx(s);
   4358   1.1    bouyer 
   4359   1.1    bouyer 	return (error);
   4360   1.1    bouyer }
   4361   1.1    bouyer 
   4362   1.1    bouyer /****************************************************************************/
   4363   1.1    bouyer /* Transmit timeout handler.                                                */
   4364   1.1    bouyer /*                                                                          */
   4365   1.1    bouyer /* Returns:                                                                 */
   4366   1.1    bouyer /*   Nothing.                                                               */
   4367   1.1    bouyer /****************************************************************************/
   4368   1.1    bouyer void
   4369   1.1    bouyer bnx_watchdog(struct ifnet *ifp)
   4370   1.1    bouyer {
   4371   1.1    bouyer 	struct bnx_softc	*sc = ifp->if_softc;
   4372   1.1    bouyer 
   4373   1.1    bouyer 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   4374   1.1    bouyer 	    bnx_dump_status_block(sc));
   4375   1.1    bouyer 
   4376  1.13    dyoung 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   4377   1.1    bouyer 
   4378   1.1    bouyer 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   4379   1.1    bouyer 
   4380   1.1    bouyer 	bnx_init(ifp);
   4381   1.1    bouyer 
   4382   1.1    bouyer 	ifp->if_oerrors++;
   4383   1.1    bouyer }
   4384   1.1    bouyer 
   4385   1.1    bouyer /*
   4386   1.1    bouyer  * Interrupt handler.
   4387   1.1    bouyer  */
   4388   1.1    bouyer /****************************************************************************/
   4389   1.1    bouyer /* Main interrupt entry point.  Verifies that the controller generated the  */
   4390   1.1    bouyer /* interrupt and then calls a separate routine for handle the various       */
   4391   1.1    bouyer /* interrupt causes (PHY, TX, RX).                                          */
   4392   1.1    bouyer /*                                                                          */
   4393   1.1    bouyer /* Returns:                                                                 */
   4394   1.1    bouyer /*   0 for success, positive value for failure.                             */
   4395   1.1    bouyer /****************************************************************************/
   4396   1.1    bouyer int
   4397   1.1    bouyer bnx_intr(void *xsc)
   4398   1.1    bouyer {
   4399   1.1    bouyer 	struct bnx_softc	*sc;
   4400   1.1    bouyer 	struct ifnet		*ifp;
   4401   1.1    bouyer 	u_int32_t		status_attn_bits;
   4402  1.14    dyoung 	const struct status_block *sblk;
   4403   1.1    bouyer 
   4404   1.1    bouyer 	sc = xsc;
   4405  1.13    dyoung 	if (!device_is_active(sc->bnx_dev))
   4406  1.13    dyoung 		return 0;
   4407  1.13    dyoung 
   4408  1.15    dyoung 	ifp = &sc->bnx_ec.ec_if;
   4409   1.1    bouyer 
   4410   1.1    bouyer 	DBRUNIF(1, sc->interrupts_generated++);
   4411   1.1    bouyer 
   4412   1.1    bouyer 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4413   1.1    bouyer 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4414   1.1    bouyer 
   4415   1.1    bouyer 	/*
   4416   1.1    bouyer 	 * If the hardware status block index
   4417   1.1    bouyer 	 * matches the last value read by the
   4418   1.1    bouyer 	 * driver and we haven't asserted our
   4419   1.1    bouyer 	 * interrupt then there's nothing to do.
   4420   1.1    bouyer 	 */
   4421   1.1    bouyer 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   4422   1.1    bouyer 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   4423   1.1    bouyer 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   4424   1.1    bouyer 		return (0);
   4425   1.1    bouyer 
   4426   1.1    bouyer 	/* Ack the interrupt and stop others from occuring. */
   4427   1.1    bouyer 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4428   1.1    bouyer 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   4429   1.1    bouyer 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4430   1.1    bouyer 
   4431   1.1    bouyer 	/* Keep processing data as long as there is work to do. */
   4432   1.1    bouyer 	for (;;) {
   4433  1.14    dyoung 		sblk = sc->status_block;
   4434  1.14    dyoung 		status_attn_bits = sblk->status_attn_bits;
   4435   1.1    bouyer 
   4436   1.1    bouyer 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   4437   1.1    bouyer 		    aprint_debug("Simulating unexpected status attention bit set.");
   4438   1.1    bouyer 		    status_attn_bits = status_attn_bits |
   4439   1.1    bouyer 		    STATUS_ATTN_BITS_PARITY_ERROR);
   4440   1.1    bouyer 
   4441   1.1    bouyer 		/* Was it a link change interrupt? */
   4442   1.1    bouyer 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   4443  1.14    dyoung 		    (sblk->status_attn_bits_ack &
   4444   1.1    bouyer 		    STATUS_ATTN_BITS_LINK_STATE))
   4445   1.1    bouyer 			bnx_phy_intr(sc);
   4446   1.1    bouyer 
   4447   1.1    bouyer 		/* If any other attention is asserted then the chip is toast. */
   4448   1.1    bouyer 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   4449  1.14    dyoung 		    (sblk->status_attn_bits_ack &
   4450   1.1    bouyer 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   4451   1.1    bouyer 			DBRUN(1, sc->unexpected_attentions++);
   4452   1.1    bouyer 
   4453  1.13    dyoung 			aprint_error_dev(sc->bnx_dev,
   4454  1.13    dyoung 			    "Fatal attention detected: 0x%08X\n",
   4455  1.14    dyoung 			    sblk->status_attn_bits);
   4456   1.1    bouyer 
   4457   1.1    bouyer 			DBRUN(BNX_FATAL,
   4458   1.1    bouyer 			    if (bnx_debug_unexpected_attention == 0)
   4459   1.1    bouyer 			    bnx_breakpoint(sc));
   4460   1.1    bouyer 
   4461   1.1    bouyer 			bnx_init(ifp);
   4462   1.1    bouyer 			return (1);
   4463   1.1    bouyer 		}
   4464   1.1    bouyer 
   4465   1.1    bouyer 		/* Check for any completed RX frames. */
   4466  1.14    dyoung 		if (sblk->status_rx_quick_consumer_index0 !=
   4467   1.1    bouyer 		    sc->hw_rx_cons)
   4468   1.1    bouyer 			bnx_rx_intr(sc);
   4469   1.1    bouyer 
   4470   1.1    bouyer 		/* Check for any completed TX frames. */
   4471  1.14    dyoung 		if (sblk->status_tx_quick_consumer_index0 !=
   4472   1.1    bouyer 		    sc->hw_tx_cons)
   4473   1.1    bouyer 			bnx_tx_intr(sc);
   4474   1.1    bouyer 
   4475   1.1    bouyer 		/* Save the status block index value for use during the
   4476   1.1    bouyer 		 * next interrupt.
   4477   1.1    bouyer 		 */
   4478  1.14    dyoung 		sc->last_status_idx = sblk->status_idx;
   4479   1.1    bouyer 
   4480   1.1    bouyer 		/* Prevent speculative reads from getting ahead of the
   4481   1.1    bouyer 		 * status block.
   4482   1.1    bouyer 		 */
   4483   1.1    bouyer 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4484   1.1    bouyer 		    BUS_SPACE_BARRIER_READ);
   4485   1.1    bouyer 
   4486   1.1    bouyer 		/* If there's no work left then exit the isr. */
   4487  1.14    dyoung 		if ((sblk->status_rx_quick_consumer_index0 ==
   4488   1.1    bouyer 		    sc->hw_rx_cons) &&
   4489  1.14    dyoung 		    (sblk->status_tx_quick_consumer_index0 ==
   4490   1.1    bouyer 		    sc->hw_tx_cons))
   4491   1.1    bouyer 			break;
   4492   1.1    bouyer 	}
   4493   1.1    bouyer 
   4494   1.1    bouyer 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4495   1.1    bouyer 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   4496   1.1    bouyer 
   4497   1.1    bouyer 	/* Re-enable interrupts. */
   4498   1.1    bouyer 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4499   1.1    bouyer 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   4500   1.4    bouyer 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4501   1.1    bouyer 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4502   1.1    bouyer 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   4503   1.1    bouyer 
   4504   1.1    bouyer 	/* Handle any frames that arrived while handling the interrupt. */
   4505  1.16    dyoung 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4506   1.1    bouyer 		bnx_start(ifp);
   4507   1.1    bouyer 
   4508   1.1    bouyer 	return (1);
   4509   1.1    bouyer }
   4510   1.1    bouyer 
   4511   1.1    bouyer /****************************************************************************/
   4512   1.1    bouyer /* Programs the various packet receive modes (broadcast and multicast).     */
   4513   1.1    bouyer /*                                                                          */
   4514   1.1    bouyer /* Returns:                                                                 */
   4515   1.1    bouyer /*   Nothing.                                                               */
   4516   1.1    bouyer /****************************************************************************/
   4517   1.1    bouyer void
   4518   1.1    bouyer bnx_set_rx_mode(struct bnx_softc *sc)
   4519   1.1    bouyer {
   4520  1.15    dyoung 	struct ethercom		*ec = &sc->bnx_ec;
   4521   1.1    bouyer 	struct ifnet		*ifp = &ec->ec_if;
   4522   1.1    bouyer 	struct ether_multi	*enm;
   4523   1.1    bouyer 	struct ether_multistep	step;
   4524   1.4    bouyer 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   4525   1.1    bouyer 	u_int32_t		rx_mode, sort_mode;
   4526   1.1    bouyer 	int			h, i;
   4527   1.1    bouyer 
   4528   1.1    bouyer 	/* Initialize receive mode default settings. */
   4529   1.1    bouyer 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   4530   1.1    bouyer 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   4531   1.1    bouyer 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   4532   1.1    bouyer 
   4533   1.1    bouyer 	/*
   4534   1.1    bouyer 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   4535   1.1    bouyer 	 * be enbled.
   4536   1.1    bouyer 	 */
   4537   1.1    bouyer 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   4538   1.1    bouyer 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   4539   1.1    bouyer 
   4540   1.1    bouyer 	/*
   4541   1.1    bouyer 	 * Check for promiscuous, all multicast, or selected
   4542   1.1    bouyer 	 * multicast address filtering.
   4543   1.1    bouyer 	 */
   4544   1.1    bouyer 	if (ifp->if_flags & IFF_PROMISC) {
   4545   1.1    bouyer 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   4546   1.1    bouyer 
   4547   1.1    bouyer 		/* Enable promiscuous mode. */
   4548   1.1    bouyer 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   4549   1.1    bouyer 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   4550   1.1    bouyer 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   4551   1.1    bouyer allmulti:
   4552   1.1    bouyer 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   4553   1.1    bouyer 
   4554   1.1    bouyer 		/* Enable all multicast addresses. */
   4555   1.1    bouyer 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4556   1.1    bouyer 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4557   1.1    bouyer 			    0xffffffff);
   4558   1.1    bouyer 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   4559   1.1    bouyer 	} else {
   4560   1.1    bouyer 		/* Accept one or more multicast(s). */
   4561   1.1    bouyer 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   4562   1.1    bouyer 
   4563   1.1    bouyer 		ETHER_FIRST_MULTI(step, ec, enm);
   4564   1.1    bouyer 		while (enm != NULL) {
   4565   1.1    bouyer 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
   4566   1.1    bouyer 			    ETHER_ADDR_LEN)) {
   4567   1.1    bouyer 				ifp->if_flags |= IFF_ALLMULTI;
   4568   1.1    bouyer 				goto allmulti;
   4569   1.1    bouyer 			}
   4570   1.1    bouyer 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   4571   1.4    bouyer 			    0xFF;
   4572   1.4    bouyer 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   4573   1.1    bouyer 			ETHER_NEXT_MULTI(step, enm);
   4574   1.1    bouyer 		}
   4575   1.1    bouyer 
   4576   1.4    bouyer 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4577   1.1    bouyer 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4578   1.1    bouyer 			    hashes[i]);
   4579   1.1    bouyer 
   4580   1.1    bouyer 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   4581   1.1    bouyer 	}
   4582   1.1    bouyer 
   4583   1.1    bouyer 	/* Only make changes if the recive mode has actually changed. */
   4584   1.1    bouyer 	if (rx_mode != sc->rx_mode) {
   4585   1.1    bouyer 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   4586   1.1    bouyer 		    rx_mode);
   4587   1.1    bouyer 
   4588   1.1    bouyer 		sc->rx_mode = rx_mode;
   4589   1.1    bouyer 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   4590   1.1    bouyer 	}
   4591   1.1    bouyer 
   4592   1.1    bouyer 	/* Disable and clear the exisitng sort before enabling a new sort. */
   4593   1.1    bouyer 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   4594   1.1    bouyer 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   4595   1.1    bouyer 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   4596   1.1    bouyer }
   4597   1.1    bouyer 
   4598   1.1    bouyer /****************************************************************************/
   4599   1.1    bouyer /* Called periodically to updates statistics from the controllers           */
   4600   1.1    bouyer /* statistics block.                                                        */
   4601   1.1    bouyer /*                                                                          */
   4602   1.1    bouyer /* Returns:                                                                 */
   4603   1.1    bouyer /*   Nothing.                                                               */
   4604   1.1    bouyer /****************************************************************************/
   4605   1.1    bouyer void
   4606   1.1    bouyer bnx_stats_update(struct bnx_softc *sc)
   4607   1.1    bouyer {
   4608  1.15    dyoung 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4609   1.1    bouyer 	struct statistics_block	*stats;
   4610   1.1    bouyer 
   4611  1.12     perry 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   4612   1.1    bouyer 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4613   1.1    bouyer 	    BUS_DMASYNC_POSTREAD);
   4614   1.1    bouyer 
   4615   1.1    bouyer 	stats = (struct statistics_block *)sc->stats_block;
   4616   1.1    bouyer 
   4617   1.1    bouyer 	/*
   4618   1.1    bouyer 	 * Update the interface statistics from the
   4619   1.1    bouyer 	 * hardware statistics.
   4620   1.1    bouyer 	 */
   4621   1.1    bouyer 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   4622   1.1    bouyer 
   4623   1.1    bouyer 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   4624   1.1    bouyer 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   4625   1.1    bouyer 	    (u_long)stats->stat_IfInMBUFDiscards +
   4626   1.1    bouyer 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   4627   1.1    bouyer 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   4628   1.1    bouyer 
   4629   1.1    bouyer 	ifp->if_oerrors = (u_long)
   4630   1.1    bouyer 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   4631   1.1    bouyer 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   4632   1.1    bouyer 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   4633   1.1    bouyer 
   4634   1.1    bouyer 	/*
   4635   1.1    bouyer 	 * Certain controllers don't report
   4636   1.1    bouyer 	 * carrier sense errors correctly.
   4637   1.1    bouyer 	 * See errata E11_5708CA0_1165.
   4638   1.1    bouyer 	 */
   4639   1.1    bouyer 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   4640   1.1    bouyer 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   4641   1.1    bouyer 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   4642   1.1    bouyer 
   4643   1.1    bouyer 	/*
   4644   1.1    bouyer 	 * Update the sysctl statistics from the
   4645   1.1    bouyer 	 * hardware statistics.
   4646   1.1    bouyer 	 */
   4647   1.1    bouyer 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   4648   1.1    bouyer 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   4649   1.1    bouyer 
   4650   1.1    bouyer 	sc->stat_IfHCInBadOctets =
   4651   1.1    bouyer 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   4652   1.1    bouyer 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   4653   1.1    bouyer 
   4654   1.1    bouyer 	sc->stat_IfHCOutOctets =
   4655   1.1    bouyer 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   4656   1.1    bouyer 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   4657   1.1    bouyer 
   4658   1.1    bouyer 	sc->stat_IfHCOutBadOctets =
   4659   1.1    bouyer 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   4660   1.1    bouyer 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   4661   1.1    bouyer 
   4662   1.1    bouyer 	sc->stat_IfHCInUcastPkts =
   4663   1.1    bouyer 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   4664   1.1    bouyer 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   4665   1.1    bouyer 
   4666   1.1    bouyer 	sc->stat_IfHCInMulticastPkts =
   4667   1.1    bouyer 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   4668   1.1    bouyer 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   4669   1.1    bouyer 
   4670   1.1    bouyer 	sc->stat_IfHCInBroadcastPkts =
   4671   1.1    bouyer 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   4672   1.1    bouyer 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   4673   1.1    bouyer 
   4674   1.1    bouyer 	sc->stat_IfHCOutUcastPkts =
   4675   1.1    bouyer 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   4676   1.1    bouyer 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   4677   1.1    bouyer 
   4678   1.1    bouyer 	sc->stat_IfHCOutMulticastPkts =
   4679   1.1    bouyer 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   4680   1.1    bouyer 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   4681   1.1    bouyer 
   4682   1.1    bouyer 	sc->stat_IfHCOutBroadcastPkts =
   4683   1.1    bouyer 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   4684   1.1    bouyer 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   4685   1.1    bouyer 
   4686   1.1    bouyer 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   4687   1.1    bouyer 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   4688   1.1    bouyer 
   4689   1.1    bouyer 	sc->stat_Dot3StatsCarrierSenseErrors =
   4690   1.1    bouyer 	    stats->stat_Dot3StatsCarrierSenseErrors;
   4691   1.1    bouyer 
   4692   1.1    bouyer 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   4693   1.1    bouyer 
   4694   1.1    bouyer 	sc->stat_Dot3StatsAlignmentErrors =
   4695   1.1    bouyer 	    stats->stat_Dot3StatsAlignmentErrors;
   4696   1.1    bouyer 
   4697   1.1    bouyer 	sc->stat_Dot3StatsSingleCollisionFrames =
   4698   1.1    bouyer 	    stats->stat_Dot3StatsSingleCollisionFrames;
   4699   1.1    bouyer 
   4700   1.1    bouyer 	sc->stat_Dot3StatsMultipleCollisionFrames =
   4701   1.1    bouyer 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   4702   1.1    bouyer 
   4703   1.1    bouyer 	sc->stat_Dot3StatsDeferredTransmissions =
   4704   1.1    bouyer 	    stats->stat_Dot3StatsDeferredTransmissions;
   4705   1.1    bouyer 
   4706   1.1    bouyer 	sc->stat_Dot3StatsExcessiveCollisions =
   4707   1.1    bouyer 	    stats->stat_Dot3StatsExcessiveCollisions;
   4708   1.1    bouyer 
   4709   1.1    bouyer 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   4710   1.1    bouyer 
   4711   1.1    bouyer 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   4712   1.1    bouyer 
   4713   1.1    bouyer 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   4714   1.1    bouyer 
   4715   1.1    bouyer 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   4716   1.1    bouyer 
   4717   1.1    bouyer 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   4718   1.1    bouyer 
   4719   1.1    bouyer 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   4720   1.1    bouyer 
   4721   1.1    bouyer 	sc->stat_EtherStatsPktsRx64Octets =
   4722   1.1    bouyer 	    stats->stat_EtherStatsPktsRx64Octets;
   4723   1.1    bouyer 
   4724   1.1    bouyer 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   4725   1.1    bouyer 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   4726   1.1    bouyer 
   4727   1.1    bouyer 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   4728   1.1    bouyer 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   4729   1.1    bouyer 
   4730   1.1    bouyer 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   4731   1.1    bouyer 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   4732   1.1    bouyer 
   4733   1.1    bouyer 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   4734   1.1    bouyer 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   4735   1.1    bouyer 
   4736   1.1    bouyer 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   4737   1.1    bouyer 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   4738   1.1    bouyer 
   4739   1.1    bouyer 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   4740   1.1    bouyer 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   4741   1.1    bouyer 
   4742   1.1    bouyer 	sc->stat_EtherStatsPktsTx64Octets =
   4743   1.1    bouyer 	    stats->stat_EtherStatsPktsTx64Octets;
   4744   1.1    bouyer 
   4745   1.1    bouyer 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   4746   1.1    bouyer 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   4747   1.1    bouyer 
   4748   1.1    bouyer 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   4749   1.1    bouyer 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   4750   1.1    bouyer 
   4751   1.1    bouyer 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   4752   1.1    bouyer 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   4753   1.1    bouyer 
   4754   1.1    bouyer 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   4755   1.1    bouyer 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   4756   1.1    bouyer 
   4757   1.1    bouyer 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   4758   1.1    bouyer 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   4759   1.1    bouyer 
   4760   1.1    bouyer 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   4761   1.1    bouyer 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   4762   1.1    bouyer 
   4763   1.1    bouyer 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   4764   1.1    bouyer 
   4765   1.1    bouyer 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   4766   1.1    bouyer 
   4767   1.1    bouyer 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   4768   1.1    bouyer 
   4769   1.1    bouyer 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   4770   1.1    bouyer 
   4771   1.1    bouyer 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   4772   1.1    bouyer 
   4773   1.1    bouyer 	sc->stat_MacControlFramesReceived =
   4774   1.1    bouyer 	    stats->stat_MacControlFramesReceived;
   4775   1.1    bouyer 
   4776   1.1    bouyer 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   4777   1.1    bouyer 
   4778   1.1    bouyer 	sc->stat_IfInFramesL2FilterDiscards =
   4779   1.1    bouyer 	    stats->stat_IfInFramesL2FilterDiscards;
   4780   1.1    bouyer 
   4781   1.1    bouyer 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   4782   1.1    bouyer 
   4783   1.1    bouyer 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   4784   1.1    bouyer 
   4785   1.1    bouyer 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   4786   1.1    bouyer 
   4787   1.1    bouyer 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   4788   1.1    bouyer 
   4789   1.1    bouyer 	sc->stat_CatchupInRuleCheckerDiscards =
   4790   1.1    bouyer 	    stats->stat_CatchupInRuleCheckerDiscards;
   4791   1.1    bouyer 
   4792   1.1    bouyer 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   4793   1.1    bouyer 
   4794   1.1    bouyer 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   4795   1.1    bouyer 
   4796   1.1    bouyer 	sc->stat_CatchupInRuleCheckerP4Hit =
   4797   1.1    bouyer 	    stats->stat_CatchupInRuleCheckerP4Hit;
   4798   1.1    bouyer 
   4799  1.12     perry 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   4800   1.1    bouyer }
   4801   1.1    bouyer 
   4802   1.1    bouyer void
   4803   1.1    bouyer bnx_tick(void *xsc)
   4804   1.1    bouyer {
   4805   1.1    bouyer 	struct bnx_softc	*sc = xsc;
   4806  1.14    dyoung 	struct mii_data		*mii;
   4807   1.1    bouyer 	u_int32_t		msg;
   4808   1.5    bouyer 	u_int16_t		prod, chain_prod;
   4809   1.5    bouyer 	u_int32_t		prod_bseq;
   4810   1.4    bouyer 	int s = splnet();
   4811   1.1    bouyer 
   4812   1.1    bouyer 	/* Tell the firmware that the driver is still running. */
   4813   1.1    bouyer #ifdef BNX_DEBUG
   4814   1.1    bouyer 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   4815   1.1    bouyer #else
   4816   1.1    bouyer 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   4817   1.1    bouyer #endif
   4818   1.1    bouyer 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   4819   1.1    bouyer 
   4820   1.1    bouyer 	/* Update the statistics from the hardware statistics block. */
   4821   1.1    bouyer 	bnx_stats_update(sc);
   4822   1.1    bouyer 
   4823   1.1    bouyer 	/* Schedule the next tick. */
   4824   1.1    bouyer 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4825   1.1    bouyer 
   4826   1.1    bouyer 	/* DRC - ToDo: Add SerDes support and check SerDes link here. */
   4827   1.1    bouyer 
   4828   1.1    bouyer 	mii = &sc->bnx_mii;
   4829   1.1    bouyer 	mii_tick(mii);
   4830   1.1    bouyer 
   4831   1.5    bouyer 	/* try to get more RX buffers, just in case */
   4832   1.5    bouyer 	prod = sc->rx_prod;
   4833   1.5    bouyer 	prod_bseq = sc->rx_prod_bseq;
   4834   1.5    bouyer 	chain_prod = RX_CHAIN_IDX(prod);
   4835   1.5    bouyer 	bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq);
   4836   1.5    bouyer 	sc->rx_prod = prod;
   4837   1.5    bouyer 	sc->rx_prod_bseq = prod_bseq;
   4838   1.4    bouyer 	splx(s);
   4839   1.1    bouyer 	return;
   4840   1.1    bouyer }
   4841   1.1    bouyer 
   4842   1.1    bouyer /****************************************************************************/
   4843   1.1    bouyer /* BNX Debug Routines                                                       */
   4844   1.1    bouyer /****************************************************************************/
   4845   1.1    bouyer #ifdef BNX_DEBUG
   4846   1.1    bouyer 
   4847   1.1    bouyer /****************************************************************************/
   4848   1.1    bouyer /* Prints out information about an mbuf.                                    */
   4849   1.1    bouyer /*                                                                          */
   4850   1.1    bouyer /* Returns:                                                                 */
   4851   1.1    bouyer /*   Nothing.                                                               */
   4852   1.1    bouyer /****************************************************************************/
   4853   1.1    bouyer void
   4854   1.1    bouyer bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   4855   1.1    bouyer {
   4856   1.1    bouyer 	struct mbuf		*mp = m;
   4857   1.1    bouyer 
   4858   1.1    bouyer 	if (m == NULL) {
   4859   1.1    bouyer 		/* Index out of range. */
   4860   1.1    bouyer 		aprint_error("mbuf ptr is null!\n");
   4861   1.1    bouyer 		return;
   4862   1.1    bouyer 	}
   4863   1.1    bouyer 
   4864   1.1    bouyer 	while (mp) {
   4865   1.1    bouyer 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   4866   1.1    bouyer 		    mp, mp->m_len);
   4867   1.1    bouyer 
   4868   1.1    bouyer 		if (mp->m_flags & M_EXT)
   4869   1.1    bouyer 			aprint_debug("M_EXT ");
   4870   1.1    bouyer 		if (mp->m_flags & M_PKTHDR)
   4871   1.1    bouyer 			aprint_debug("M_PKTHDR ");
   4872   1.1    bouyer 		aprint_debug("\n");
   4873   1.1    bouyer 
   4874   1.1    bouyer 		if (mp->m_flags & M_EXT)
   4875   1.1    bouyer 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   4876   1.1    bouyer 			    mp, mp->m_ext.ext_size);
   4877   1.1    bouyer 
   4878   1.1    bouyer 		mp = mp->m_next;
   4879   1.1    bouyer 	}
   4880   1.1    bouyer }
   4881   1.1    bouyer 
   4882   1.1    bouyer /****************************************************************************/
   4883   1.1    bouyer /* Prints out the mbufs in the TX mbuf chain.                               */
   4884   1.1    bouyer /*                                                                          */
   4885   1.1    bouyer /* Returns:                                                                 */
   4886   1.1    bouyer /*   Nothing.                                                               */
   4887   1.1    bouyer /****************************************************************************/
   4888   1.1    bouyer void
   4889   1.1    bouyer bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4890   1.1    bouyer {
   4891   1.1    bouyer 	struct mbuf		*m;
   4892   1.1    bouyer 	int			i;
   4893   1.1    bouyer 
   4894   1.1    bouyer 	BNX_PRINTF(sc,
   4895   1.1    bouyer 	    "----------------------------"
   4896   1.1    bouyer 	    "  tx mbuf data  "
   4897   1.1    bouyer 	    "----------------------------\n");
   4898   1.1    bouyer 
   4899   1.1    bouyer 	for (i = 0; i < count; i++) {
   4900   1.1    bouyer 	 	m = sc->tx_mbuf_ptr[chain_prod];
   4901   1.1    bouyer 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   4902   1.1    bouyer 		bnx_dump_mbuf(sc, m);
   4903   1.1    bouyer 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   4904   1.1    bouyer 	}
   4905   1.1    bouyer 
   4906   1.1    bouyer 	BNX_PRINTF(sc,
   4907   1.1    bouyer 	    "--------------------------------------------"
   4908   1.1    bouyer 	    "----------------------------\n");
   4909   1.1    bouyer }
   4910   1.1    bouyer 
   4911   1.1    bouyer /*
   4912   1.1    bouyer  * This routine prints the RX mbuf chain.
   4913   1.1    bouyer  */
   4914   1.1    bouyer void
   4915   1.1    bouyer bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4916   1.1    bouyer {
   4917   1.1    bouyer 	struct mbuf		*m;
   4918   1.1    bouyer 	int			i;
   4919   1.1    bouyer 
   4920   1.1    bouyer 	BNX_PRINTF(sc,
   4921   1.1    bouyer 	    "----------------------------"
   4922   1.1    bouyer 	    "  rx mbuf data  "
   4923   1.1    bouyer 	    "----------------------------\n");
   4924   1.1    bouyer 
   4925   1.1    bouyer 	for (i = 0; i < count; i++) {
   4926   1.1    bouyer 	 	m = sc->rx_mbuf_ptr[chain_prod];
   4927   1.1    bouyer 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   4928   1.1    bouyer 		bnx_dump_mbuf(sc, m);
   4929   1.1    bouyer 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   4930   1.1    bouyer 	}
   4931   1.1    bouyer 
   4932   1.1    bouyer 
   4933   1.1    bouyer 	BNX_PRINTF(sc,
   4934   1.1    bouyer 	    "--------------------------------------------"
   4935   1.1    bouyer 	    "----------------------------\n");
   4936   1.1    bouyer }
   4937   1.1    bouyer 
   4938   1.1    bouyer void
   4939   1.1    bouyer bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   4940   1.1    bouyer {
   4941   1.1    bouyer 	if (idx > MAX_TX_BD)
   4942   1.1    bouyer 		/* Index out of range. */
   4943   1.1    bouyer 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   4944   1.1    bouyer 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4945   1.1    bouyer 		/* TX Chain page pointer. */
   4946   1.1    bouyer 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   4947   1.1    bouyer 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   4948   1.1    bouyer 		    txbd->tx_bd_haddr_lo);
   4949   1.1    bouyer 	else
   4950   1.1    bouyer 		/* Normal tx_bd entry. */
   4951   1.1    bouyer 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   4952   1.4    bouyer 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   4953   1.1    bouyer 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   4954   1.4    bouyer 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   4955   1.4    bouyer 		    txbd->tx_bd_flags);
   4956   1.1    bouyer }
   4957   1.1    bouyer 
   4958   1.1    bouyer void
   4959   1.1    bouyer bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   4960   1.1    bouyer {
   4961   1.1    bouyer 	if (idx > MAX_RX_BD)
   4962   1.1    bouyer 		/* Index out of range. */
   4963   1.1    bouyer 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   4964   1.1    bouyer 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4965   1.1    bouyer 		/* TX Chain page pointer. */
   4966   1.1    bouyer 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   4967   1.1    bouyer 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   4968   1.1    bouyer 		    rxbd->rx_bd_haddr_lo);
   4969   1.1    bouyer 	else
   4970   1.1    bouyer 		/* Normal tx_bd entry. */
   4971   1.1    bouyer 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   4972   1.1    bouyer 		    "0x%08X, flags = 0x%08X\n", idx,
   4973   1.1    bouyer 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   4974   1.1    bouyer 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   4975   1.1    bouyer }
   4976   1.1    bouyer 
   4977   1.1    bouyer void
   4978   1.1    bouyer bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   4979   1.1    bouyer {
   4980   1.1    bouyer 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   4981   1.1    bouyer 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   4982   1.1    bouyer 	    "tcp_udp_xsum = 0x%04X\n", idx,
   4983   1.1    bouyer 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   4984   1.1    bouyer 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   4985   1.1    bouyer 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4986   1.1    bouyer }
   4987   1.1    bouyer 
   4988   1.1    bouyer /*
   4989   1.1    bouyer  * This routine prints the TX chain.
   4990   1.1    bouyer  */
   4991   1.1    bouyer void
   4992   1.1    bouyer bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   4993   1.1    bouyer {
   4994   1.1    bouyer 	struct tx_bd		*txbd;
   4995   1.1    bouyer 	int			i;
   4996   1.1    bouyer 
   4997   1.1    bouyer 	/* First some info about the tx_bd chain structure. */
   4998   1.1    bouyer 	BNX_PRINTF(sc,
   4999   1.1    bouyer 	    "----------------------------"
   5000   1.1    bouyer 	    "  tx_bd  chain  "
   5001   1.1    bouyer 	    "----------------------------\n");
   5002   1.1    bouyer 
   5003   1.1    bouyer 	BNX_PRINTF(sc,
   5004   1.1    bouyer 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5005   1.1    bouyer 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5006   1.1    bouyer 
   5007   1.1    bouyer 	BNX_PRINTF(sc,
   5008   1.1    bouyer 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5009   1.1    bouyer 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5010   1.1    bouyer 
   5011   1.1    bouyer 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
   5012   1.1    bouyer 
   5013   1.1    bouyer 	BNX_PRINTF(sc, ""
   5014   1.1    bouyer 	    "-----------------------------"
   5015   1.1    bouyer 	    "   tx_bd data   "
   5016   1.1    bouyer 	    "-----------------------------\n");
   5017   1.1    bouyer 
   5018   1.1    bouyer 	/* Now print out the tx_bd's themselves. */
   5019   1.1    bouyer 	for (i = 0; i < count; i++) {
   5020   1.1    bouyer 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5021   1.1    bouyer 		bnx_dump_txbd(sc, tx_prod, txbd);
   5022   1.1    bouyer 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5023   1.1    bouyer 	}
   5024   1.1    bouyer 
   5025   1.1    bouyer 	BNX_PRINTF(sc,
   5026   1.1    bouyer 	    "-----------------------------"
   5027   1.1    bouyer 	    "--------------"
   5028   1.1    bouyer 	    "-----------------------------\n");
   5029   1.1    bouyer }
   5030   1.1    bouyer 
   5031   1.1    bouyer /*
   5032   1.1    bouyer  * This routine prints the RX chain.
   5033   1.1    bouyer  */
   5034   1.1    bouyer void
   5035   1.1    bouyer bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5036   1.1    bouyer {
   5037   1.1    bouyer 	struct rx_bd		*rxbd;
   5038   1.1    bouyer 	int			i;
   5039   1.1    bouyer 
   5040   1.1    bouyer 	/* First some info about the tx_bd chain structure. */
   5041   1.1    bouyer 	BNX_PRINTF(sc,
   5042   1.1    bouyer 	    "----------------------------"
   5043   1.1    bouyer 	    "  rx_bd  chain  "
   5044   1.1    bouyer 	    "----------------------------\n");
   5045   1.1    bouyer 
   5046   1.1    bouyer 	BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
   5047   1.1    bouyer 
   5048   1.1    bouyer 	BNX_PRINTF(sc,
   5049   1.1    bouyer 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5050   1.1    bouyer 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5051   1.1    bouyer 
   5052   1.1    bouyer 	BNX_PRINTF(sc,
   5053   1.1    bouyer 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5054   1.1    bouyer 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5055   1.1    bouyer 
   5056   1.1    bouyer 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
   5057   1.1    bouyer 
   5058   1.1    bouyer 	BNX_PRINTF(sc,
   5059   1.1    bouyer 	    "----------------------------"
   5060   1.1    bouyer 	    "   rx_bd data   "
   5061   1.1    bouyer 	    "----------------------------\n");
   5062   1.1    bouyer 
   5063   1.1    bouyer 	/* Now print out the rx_bd's themselves. */
   5064   1.1    bouyer 	for (i = 0; i < count; i++) {
   5065   1.1    bouyer 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5066   1.1    bouyer 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5067   1.1    bouyer 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5068   1.1    bouyer 	}
   5069   1.1    bouyer 
   5070   1.1    bouyer 	BNX_PRINTF(sc,
   5071   1.1    bouyer 	    "----------------------------"
   5072   1.1    bouyer 	    "--------------"
   5073   1.1    bouyer 	    "----------------------------\n");
   5074   1.1    bouyer }
   5075   1.1    bouyer 
   5076   1.1    bouyer /*
   5077   1.1    bouyer  * This routine prints the status block.
   5078   1.1    bouyer  */
   5079   1.1    bouyer void
   5080   1.1    bouyer bnx_dump_status_block(struct bnx_softc *sc)
   5081   1.1    bouyer {
   5082   1.1    bouyer 	struct status_block	*sblk;
   5083   1.1    bouyer 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5084   1.1    bouyer 	    BUS_DMASYNC_POSTREAD);
   5085   1.1    bouyer 
   5086   1.1    bouyer 	sblk = sc->status_block;
   5087   1.1    bouyer 
   5088   1.1    bouyer    	BNX_PRINTF(sc, "----------------------------- Status Block "
   5089   1.1    bouyer 	    "-----------------------------\n");
   5090   1.1    bouyer 
   5091   1.1    bouyer 	BNX_PRINTF(sc,
   5092   1.1    bouyer 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5093   1.1    bouyer 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5094   1.1    bouyer 	    sblk->status_idx);
   5095   1.1    bouyer 
   5096   1.1    bouyer 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5097   1.1    bouyer 	    sblk->status_rx_quick_consumer_index0,
   5098   1.1    bouyer 	    sblk->status_tx_quick_consumer_index0);
   5099   1.1    bouyer 
   5100   1.1    bouyer 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5101   1.1    bouyer 
   5102   1.1    bouyer 	/* Theses indices are not used for normal L2 drivers. */
   5103   1.1    bouyer 	if (sblk->status_rx_quick_consumer_index1 ||
   5104   1.1    bouyer 		sblk->status_tx_quick_consumer_index1)
   5105   1.1    bouyer 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5106   1.1    bouyer 		    sblk->status_rx_quick_consumer_index1,
   5107   1.1    bouyer 		    sblk->status_tx_quick_consumer_index1);
   5108   1.1    bouyer 
   5109   1.1    bouyer 	if (sblk->status_rx_quick_consumer_index2 ||
   5110   1.1    bouyer 		sblk->status_tx_quick_consumer_index2)
   5111   1.1    bouyer 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5112   1.1    bouyer 		    sblk->status_rx_quick_consumer_index2,
   5113   1.1    bouyer 		    sblk->status_tx_quick_consumer_index2);
   5114   1.1    bouyer 
   5115   1.1    bouyer 	if (sblk->status_rx_quick_consumer_index3 ||
   5116   1.1    bouyer 		sblk->status_tx_quick_consumer_index3)
   5117   1.1    bouyer 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5118   1.1    bouyer 		    sblk->status_rx_quick_consumer_index3,
   5119   1.1    bouyer 		    sblk->status_tx_quick_consumer_index3);
   5120   1.1    bouyer 
   5121   1.1    bouyer 	if (sblk->status_rx_quick_consumer_index4 ||
   5122   1.1    bouyer 		sblk->status_rx_quick_consumer_index5)
   5123   1.1    bouyer 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5124   1.1    bouyer 		    sblk->status_rx_quick_consumer_index4,
   5125   1.1    bouyer 		    sblk->status_rx_quick_consumer_index5);
   5126   1.1    bouyer 
   5127   1.1    bouyer 	if (sblk->status_rx_quick_consumer_index6 ||
   5128   1.1    bouyer 		sblk->status_rx_quick_consumer_index7)
   5129   1.1    bouyer 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5130   1.1    bouyer 		    sblk->status_rx_quick_consumer_index6,
   5131   1.1    bouyer 		    sblk->status_rx_quick_consumer_index7);
   5132   1.1    bouyer 
   5133   1.1    bouyer 	if (sblk->status_rx_quick_consumer_index8 ||
   5134   1.1    bouyer 		sblk->status_rx_quick_consumer_index9)
   5135   1.1    bouyer 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5136   1.1    bouyer 		    sblk->status_rx_quick_consumer_index8,
   5137   1.1    bouyer 		    sblk->status_rx_quick_consumer_index9);
   5138   1.1    bouyer 
   5139   1.1    bouyer 	if (sblk->status_rx_quick_consumer_index10 ||
   5140   1.1    bouyer 		sblk->status_rx_quick_consumer_index11)
   5141   1.1    bouyer 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5142   1.1    bouyer 		    sblk->status_rx_quick_consumer_index10,
   5143   1.1    bouyer 		    sblk->status_rx_quick_consumer_index11);
   5144   1.1    bouyer 
   5145   1.1    bouyer 	if (sblk->status_rx_quick_consumer_index12 ||
   5146   1.1    bouyer 		sblk->status_rx_quick_consumer_index13)
   5147   1.1    bouyer 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5148   1.1    bouyer 		    sblk->status_rx_quick_consumer_index12,
   5149   1.1    bouyer 		    sblk->status_rx_quick_consumer_index13);
   5150   1.1    bouyer 
   5151   1.1    bouyer 	if (sblk->status_rx_quick_consumer_index14 ||
   5152   1.1    bouyer 		sblk->status_rx_quick_consumer_index15)
   5153   1.1    bouyer 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5154   1.1    bouyer 		    sblk->status_rx_quick_consumer_index14,
   5155   1.1    bouyer 		    sblk->status_rx_quick_consumer_index15);
   5156   1.1    bouyer 
   5157   1.1    bouyer 	if (sblk->status_completion_producer_index ||
   5158   1.1    bouyer 		sblk->status_cmd_consumer_index)
   5159   1.1    bouyer 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5160   1.1    bouyer 		    sblk->status_completion_producer_index,
   5161   1.1    bouyer 		    sblk->status_cmd_consumer_index);
   5162   1.1    bouyer 
   5163   1.1    bouyer 	BNX_PRINTF(sc, "-------------------------------------------"
   5164   1.1    bouyer 	    "-----------------------------\n");
   5165   1.1    bouyer }
   5166   1.1    bouyer 
   5167   1.1    bouyer /*
   5168   1.1    bouyer  * This routine prints the statistics block.
   5169   1.1    bouyer  */
   5170   1.1    bouyer void
   5171   1.1    bouyer bnx_dump_stats_block(struct bnx_softc *sc)
   5172   1.1    bouyer {
   5173   1.1    bouyer 	struct statistics_block	*sblk;
   5174   1.1    bouyer 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5175   1.1    bouyer 	    BUS_DMASYNC_POSTREAD);
   5176   1.1    bouyer 
   5177   1.1    bouyer 	sblk = sc->stats_block;
   5178   1.1    bouyer 
   5179   1.1    bouyer 	BNX_PRINTF(sc, ""
   5180   1.1    bouyer 	    "-----------------------------"
   5181   1.1    bouyer 	    " Stats  Block "
   5182   1.1    bouyer 	    "-----------------------------\n");
   5183   1.1    bouyer 
   5184   1.1    bouyer 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5185   1.1    bouyer 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5186   1.1    bouyer 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5187   1.1    bouyer 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5188   1.1    bouyer 
   5189   1.1    bouyer 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5190   1.1    bouyer 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5191   1.1    bouyer 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5192   1.1    bouyer 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5193   1.1    bouyer 
   5194   1.1    bouyer 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5195   1.1    bouyer 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5196   1.1    bouyer 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5197   1.1    bouyer 	    sblk->stat_IfHCInMulticastPkts_hi,
   5198   1.1    bouyer 	    sblk->stat_IfHCInMulticastPkts_lo);
   5199   1.1    bouyer 
   5200   1.1    bouyer 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5201   1.1    bouyer 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5202   1.1    bouyer 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5203   1.1    bouyer 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5204   1.1    bouyer 	    sblk->stat_IfHCOutUcastPkts_hi,
   5205   1.1    bouyer 	    sblk->stat_IfHCOutUcastPkts_lo);
   5206   1.1    bouyer 
   5207   1.1    bouyer 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5208   1.1    bouyer 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5209   1.1    bouyer 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5210   1.1    bouyer 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5211   1.1    bouyer 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5212   1.1    bouyer 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5213   1.1    bouyer 
   5214   1.1    bouyer 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5215   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : "
   5216   1.1    bouyer 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5217   1.1    bouyer 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5218   1.1    bouyer 
   5219   1.1    bouyer 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5220   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5221   1.1    bouyer 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5222   1.1    bouyer 
   5223   1.1    bouyer 	if (sblk->stat_Dot3StatsFCSErrors)
   5224   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5225   1.1    bouyer 		    sblk->stat_Dot3StatsFCSErrors);
   5226   1.1    bouyer 
   5227   1.1    bouyer 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5228   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5229   1.1    bouyer 		    sblk->stat_Dot3StatsAlignmentErrors);
   5230   1.1    bouyer 
   5231   1.1    bouyer 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5232   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5233   1.1    bouyer 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5234   1.1    bouyer 
   5235   1.1    bouyer 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   5236   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   5237   1.1    bouyer 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   5238   1.1    bouyer 
   5239   1.1    bouyer 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   5240   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   5241   1.1    bouyer 		    sblk->stat_Dot3StatsDeferredTransmissions);
   5242   1.1    bouyer 
   5243   1.1    bouyer 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   5244   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   5245   1.1    bouyer 		    sblk->stat_Dot3StatsExcessiveCollisions);
   5246   1.1    bouyer 
   5247   1.1    bouyer 	if (sblk->stat_Dot3StatsLateCollisions)
   5248   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   5249   1.1    bouyer 		    sblk->stat_Dot3StatsLateCollisions);
   5250   1.1    bouyer 
   5251   1.1    bouyer 	if (sblk->stat_EtherStatsCollisions)
   5252   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   5253   1.1    bouyer 		    sblk->stat_EtherStatsCollisions);
   5254   1.1    bouyer 
   5255   1.1    bouyer 	if (sblk->stat_EtherStatsFragments)
   5256   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   5257   1.1    bouyer 		    sblk->stat_EtherStatsFragments);
   5258   1.1    bouyer 
   5259   1.1    bouyer 	if (sblk->stat_EtherStatsJabbers)
   5260   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   5261   1.1    bouyer 		    sblk->stat_EtherStatsJabbers);
   5262   1.1    bouyer 
   5263   1.1    bouyer 	if (sblk->stat_EtherStatsUndersizePkts)
   5264   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   5265   1.1    bouyer 		    sblk->stat_EtherStatsUndersizePkts);
   5266   1.1    bouyer 
   5267   1.1    bouyer 	if (sblk->stat_EtherStatsOverrsizePkts)
   5268   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   5269   1.1    bouyer 		    sblk->stat_EtherStatsOverrsizePkts);
   5270   1.1    bouyer 
   5271   1.1    bouyer 	if (sblk->stat_EtherStatsPktsRx64Octets)
   5272   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   5273   1.1    bouyer 		    sblk->stat_EtherStatsPktsRx64Octets);
   5274   1.1    bouyer 
   5275   1.1    bouyer 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   5276   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   5277   1.1    bouyer 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   5278   1.1    bouyer 
   5279   1.1    bouyer 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   5280   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : "
   5281   1.1    bouyer 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   5282   1.1    bouyer 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   5283   1.1    bouyer 
   5284   1.1    bouyer 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   5285   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : "
   5286   1.1    bouyer 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   5287   1.1    bouyer 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   5288   1.1    bouyer 
   5289   1.1    bouyer 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   5290   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : "
   5291   1.1    bouyer 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   5292   1.1    bouyer 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   5293   1.1    bouyer 
   5294   1.1    bouyer 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   5295   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : "
   5296   1.1    bouyer 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   5297   1.1    bouyer 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   5298   1.1    bouyer 
   5299   1.1    bouyer 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   5300   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : "
   5301   1.1    bouyer 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   5302   1.1    bouyer 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   5303   1.1    bouyer 
   5304   1.1    bouyer 	if (sblk->stat_EtherStatsPktsTx64Octets)
   5305   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   5306   1.1    bouyer 		    sblk->stat_EtherStatsPktsTx64Octets);
   5307   1.1    bouyer 
   5308   1.1    bouyer 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   5309   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   5310   1.1    bouyer 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   5311   1.1    bouyer 
   5312   1.1    bouyer 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   5313   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : "
   5314   1.1    bouyer 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   5315   1.1    bouyer 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   5316   1.1    bouyer 
   5317   1.1    bouyer 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   5318   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : "
   5319   1.1    bouyer 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   5320   1.1    bouyer 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   5321   1.1    bouyer 
   5322   1.1    bouyer 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   5323   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : "
   5324   1.1    bouyer 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   5325   1.1    bouyer 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   5326   1.1    bouyer 
   5327   1.1    bouyer 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   5328   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : "
   5329   1.1    bouyer 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   5330   1.1    bouyer 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   5331   1.1    bouyer 
   5332   1.1    bouyer 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   5333   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : "
   5334   1.1    bouyer 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   5335   1.1    bouyer 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   5336   1.1    bouyer 
   5337   1.1    bouyer 	if (sblk->stat_XonPauseFramesReceived)
   5338   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   5339   1.1    bouyer 		    sblk->stat_XonPauseFramesReceived);
   5340   1.1    bouyer 
   5341   1.1    bouyer 	if (sblk->stat_XoffPauseFramesReceived)
   5342   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   5343   1.1    bouyer 		    sblk->stat_XoffPauseFramesReceived);
   5344   1.1    bouyer 
   5345   1.1    bouyer 	if (sblk->stat_OutXonSent)
   5346   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   5347   1.1    bouyer 		    sblk->stat_OutXonSent);
   5348   1.1    bouyer 
   5349   1.1    bouyer 	if (sblk->stat_OutXoffSent)
   5350   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   5351   1.1    bouyer 		    sblk->stat_OutXoffSent);
   5352   1.1    bouyer 
   5353   1.1    bouyer 	if (sblk->stat_FlowControlDone)
   5354   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   5355   1.1    bouyer 		    sblk->stat_FlowControlDone);
   5356   1.1    bouyer 
   5357   1.1    bouyer 	if (sblk->stat_MacControlFramesReceived)
   5358   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   5359   1.1    bouyer 		    sblk->stat_MacControlFramesReceived);
   5360   1.1    bouyer 
   5361   1.1    bouyer 	if (sblk->stat_XoffStateEntered)
   5362   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   5363   1.1    bouyer 		    sblk->stat_XoffStateEntered);
   5364   1.1    bouyer 
   5365   1.1    bouyer 	if (sblk->stat_IfInFramesL2FilterDiscards)
   5366   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   5367   1.1    bouyer 		    sblk->stat_IfInFramesL2FilterDiscards);
   5368   1.1    bouyer 
   5369   1.1    bouyer 	if (sblk->stat_IfInRuleCheckerDiscards)
   5370   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   5371   1.1    bouyer 		    sblk->stat_IfInRuleCheckerDiscards);
   5372   1.1    bouyer 
   5373   1.1    bouyer 	if (sblk->stat_IfInFTQDiscards)
   5374   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   5375   1.1    bouyer 		    sblk->stat_IfInFTQDiscards);
   5376   1.1    bouyer 
   5377   1.1    bouyer 	if (sblk->stat_IfInMBUFDiscards)
   5378   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   5379   1.1    bouyer 		    sblk->stat_IfInMBUFDiscards);
   5380   1.1    bouyer 
   5381   1.1    bouyer 	if (sblk->stat_IfInRuleCheckerP4Hit)
   5382   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   5383   1.1    bouyer 		    sblk->stat_IfInRuleCheckerP4Hit);
   5384   1.1    bouyer 
   5385   1.1    bouyer 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   5386   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   5387   1.1    bouyer 		    sblk->stat_CatchupInRuleCheckerDiscards);
   5388   1.1    bouyer 
   5389   1.1    bouyer 	if (sblk->stat_CatchupInFTQDiscards)
   5390   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   5391   1.1    bouyer 		    sblk->stat_CatchupInFTQDiscards);
   5392   1.1    bouyer 
   5393   1.1    bouyer 	if (sblk->stat_CatchupInMBUFDiscards)
   5394   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   5395   1.1    bouyer 		    sblk->stat_CatchupInMBUFDiscards);
   5396   1.1    bouyer 
   5397   1.1    bouyer 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   5398   1.1    bouyer 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   5399   1.1    bouyer 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   5400   1.1    bouyer 
   5401   1.1    bouyer 	BNX_PRINTF(sc,
   5402   1.1    bouyer 	    "-----------------------------"
   5403   1.1    bouyer 	    "--------------"
   5404   1.1    bouyer 	    "-----------------------------\n");
   5405   1.1    bouyer }
   5406   1.1    bouyer 
   5407   1.1    bouyer void
   5408   1.1    bouyer bnx_dump_driver_state(struct bnx_softc *sc)
   5409   1.1    bouyer {
   5410   1.1    bouyer 	BNX_PRINTF(sc,
   5411   1.1    bouyer 	    "-----------------------------"
   5412   1.1    bouyer 	    " Driver State "
   5413   1.1    bouyer 	    "-----------------------------\n");
   5414   1.1    bouyer 
   5415   1.1    bouyer 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   5416   1.1    bouyer 	    "address\n", sc);
   5417   1.1    bouyer 
   5418   1.1    bouyer 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   5419   1.1    bouyer 	    sc->status_block);
   5420   1.1    bouyer 
   5421   1.1    bouyer 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   5422   1.1    bouyer 	    "address\n", sc->stats_block);
   5423   1.1    bouyer 
   5424   1.1    bouyer 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   5425   1.1    bouyer 	    "adddress\n", sc->tx_bd_chain);
   5426   1.1    bouyer 
   5427   1.1    bouyer 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   5428   1.1    bouyer 	    sc->rx_bd_chain);
   5429   1.1    bouyer 
   5430   1.1    bouyer 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   5431   1.1    bouyer 	    sc->tx_mbuf_ptr);
   5432   1.1    bouyer 
   5433   1.1    bouyer 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   5434   1.1    bouyer 	    sc->rx_mbuf_ptr);
   5435   1.1    bouyer 
   5436   1.1    bouyer 	BNX_PRINTF(sc,
   5437   1.1    bouyer 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   5438   1.1    bouyer 	    sc->interrupts_generated);
   5439   1.1    bouyer 
   5440   1.1    bouyer 	BNX_PRINTF(sc,
   5441   1.1    bouyer 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   5442   1.1    bouyer 	    sc->rx_interrupts);
   5443   1.1    bouyer 
   5444   1.1    bouyer 	BNX_PRINTF(sc,
   5445   1.1    bouyer 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   5446   1.1    bouyer 	    sc->tx_interrupts);
   5447   1.1    bouyer 
   5448   1.1    bouyer 	BNX_PRINTF(sc,
   5449   1.1    bouyer 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   5450   1.1    bouyer 	    sc->last_status_idx);
   5451   1.1    bouyer 
   5452   1.1    bouyer 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   5453   1.1    bouyer 	    sc->tx_prod);
   5454   1.1    bouyer 
   5455   1.1    bouyer 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   5456   1.1    bouyer 	    sc->tx_cons);
   5457   1.1    bouyer 
   5458   1.1    bouyer 	BNX_PRINTF(sc,
   5459   1.1    bouyer 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   5460   1.1    bouyer 	    sc->tx_prod_bseq);
   5461   1.1    bouyer 
   5462   1.1    bouyer 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   5463   1.1    bouyer 	    sc->rx_prod);
   5464   1.1    bouyer 
   5465   1.1    bouyer 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   5466   1.1    bouyer 	    sc->rx_cons);
   5467   1.1    bouyer 
   5468   1.1    bouyer 	BNX_PRINTF(sc,
   5469   1.1    bouyer 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   5470   1.1    bouyer 	    sc->rx_prod_bseq);
   5471   1.1    bouyer 
   5472   1.1    bouyer 	BNX_PRINTF(sc,
   5473   1.1    bouyer 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5474   1.1    bouyer 	    sc->rx_mbuf_alloc);
   5475   1.1    bouyer 
   5476   1.1    bouyer 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   5477   1.1    bouyer 	    sc->free_rx_bd);
   5478   1.1    bouyer 
   5479   1.1    bouyer 	BNX_PRINTF(sc,
   5480   1.1    bouyer 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   5481   1.1    bouyer 	    sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
   5482   1.1    bouyer 
   5483   1.1    bouyer 	BNX_PRINTF(sc,
   5484   1.1    bouyer 	    "         0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
   5485   1.1    bouyer 	    sc->tx_mbuf_alloc);
   5486   1.1    bouyer 
   5487   1.1    bouyer 	BNX_PRINTF(sc,
   5488   1.1    bouyer 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5489   1.1    bouyer 	    sc->rx_mbuf_alloc);
   5490   1.1    bouyer 
   5491   1.1    bouyer 	BNX_PRINTF(sc, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   5492   1.1    bouyer 	    sc->used_tx_bd);
   5493   1.1    bouyer 
   5494   1.1    bouyer 	BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   5495   1.1    bouyer 	    sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
   5496   1.1    bouyer 
   5497   1.1    bouyer 	BNX_PRINTF(sc,
   5498   1.1    bouyer 	    "         0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
   5499   1.1    bouyer 	    sc->mbuf_alloc_failed);
   5500   1.1    bouyer 
   5501   1.1    bouyer 	BNX_PRINTF(sc, "-------------------------------------------"
   5502   1.1    bouyer 	    "-----------------------------\n");
   5503   1.1    bouyer }
   5504   1.1    bouyer 
   5505   1.1    bouyer void
   5506   1.1    bouyer bnx_dump_hw_state(struct bnx_softc *sc)
   5507   1.1    bouyer {
   5508   1.1    bouyer 	u_int32_t		val1;
   5509   1.1    bouyer 	int			i;
   5510   1.1    bouyer 
   5511   1.1    bouyer 	BNX_PRINTF(sc,
   5512   1.1    bouyer 	    "----------------------------"
   5513   1.1    bouyer 	    " Hardware State "
   5514   1.1    bouyer 	    "----------------------------\n");
   5515   1.1    bouyer 
   5516   1.1    bouyer 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   5517   1.1    bouyer 
   5518   1.1    bouyer 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   5519   1.1    bouyer 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   5520   1.1    bouyer 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   5521   1.1    bouyer 
   5522   1.1    bouyer 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   5523   1.1    bouyer 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   5524   1.1    bouyer 
   5525   1.1    bouyer 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   5526   1.1    bouyer 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   5527   1.1    bouyer 
   5528   1.1    bouyer 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   5529   1.1    bouyer 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   5530   1.1    bouyer 	    BNX_EMAC_STATUS);
   5531   1.1    bouyer 
   5532   1.1    bouyer 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   5533   1.1    bouyer 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   5534   1.1    bouyer 
   5535   1.1    bouyer 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   5536   1.1    bouyer 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   5537   1.1    bouyer 	    BNX_TBDR_STATUS);
   5538   1.1    bouyer 
   5539   1.1    bouyer 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   5540   1.1    bouyer 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   5541   1.1    bouyer 	    BNX_TDMA_STATUS);
   5542   1.1    bouyer 
   5543   1.1    bouyer 	val1 = REG_RD(sc, BNX_HC_STATUS);
   5544   1.1    bouyer 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   5545   1.1    bouyer 
   5546   1.1    bouyer 	BNX_PRINTF(sc,
   5547   1.1    bouyer 	    "----------------------------"
   5548   1.1    bouyer 	    "----------------"
   5549   1.1    bouyer 	    "----------------------------\n");
   5550   1.1    bouyer 
   5551   1.1    bouyer 	BNX_PRINTF(sc,
   5552   1.1    bouyer 	    "----------------------------"
   5553   1.1    bouyer 	    " Register  Dump "
   5554   1.1    bouyer 	    "----------------------------\n");
   5555   1.1    bouyer 
   5556   1.1    bouyer 	for (i = 0x400; i < 0x8000; i += 0x10)
   5557   1.1    bouyer 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   5558   1.1    bouyer 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   5559   1.1    bouyer 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   5560   1.1    bouyer 
   5561   1.1    bouyer 	BNX_PRINTF(sc,
   5562   1.1    bouyer 	    "----------------------------"
   5563   1.1    bouyer 	    "----------------"
   5564   1.1    bouyer 	    "----------------------------\n");
   5565   1.1    bouyer }
   5566   1.1    bouyer 
   5567   1.1    bouyer void
   5568   1.1    bouyer bnx_breakpoint(struct bnx_softc *sc)
   5569   1.1    bouyer {
   5570   1.1    bouyer 	/* Unreachable code to shut the compiler up about unused functions. */
   5571   1.1    bouyer 	if (0) {
   5572   1.1    bouyer    		bnx_dump_txbd(sc, 0, NULL);
   5573   1.1    bouyer 		bnx_dump_rxbd(sc, 0, NULL);
   5574   1.1    bouyer 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   5575   1.1    bouyer 		bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
   5576   1.1    bouyer 		bnx_dump_l2fhdr(sc, 0, NULL);
   5577   1.1    bouyer 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   5578   1.1    bouyer 		bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
   5579   1.1    bouyer 		bnx_dump_status_block(sc);
   5580   1.1    bouyer 		bnx_dump_stats_block(sc);
   5581   1.1    bouyer 		bnx_dump_driver_state(sc);
   5582   1.1    bouyer 		bnx_dump_hw_state(sc);
   5583   1.1    bouyer 	}
   5584   1.1    bouyer 
   5585   1.1    bouyer 	bnx_dump_driver_state(sc);
   5586   1.1    bouyer 	/* Print the important status block fields. */
   5587   1.1    bouyer 	bnx_dump_status_block(sc);
   5588   1.1    bouyer 
   5589   1.1    bouyer #if 0
   5590   1.1    bouyer 	/* Call the debugger. */
   5591   1.1    bouyer 	breakpoint();
   5592   1.1    bouyer #endif
   5593   1.1    bouyer 
   5594   1.1    bouyer 	return;
   5595   1.1    bouyer }
   5596   1.1    bouyer #endif
   5597