if_bnx.c revision 1.27 1 1.27 cegger /* $NetBSD: if_bnx.c,v 1.27 2009/05/05 10:21:22 cegger Exp $ */
2 1.4 bouyer /* $OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $ */
3 1.1 bouyer
4 1.1 bouyer /*-
5 1.1 bouyer * Copyright (c) 2006 Broadcom Corporation
6 1.1 bouyer * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 1.1 bouyer *
8 1.1 bouyer * Redistribution and use in source and binary forms, with or without
9 1.1 bouyer * modification, are permitted provided that the following conditions
10 1.1 bouyer * are met:
11 1.1 bouyer *
12 1.1 bouyer * 1. Redistributions of source code must retain the above copyright
13 1.1 bouyer * notice, this list of conditions and the following disclaimer.
14 1.1 bouyer * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 bouyer * notice, this list of conditions and the following disclaimer in the
16 1.1 bouyer * documentation and/or other materials provided with the distribution.
17 1.1 bouyer * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 1.1 bouyer * may be used to endorse or promote products derived from this software
19 1.1 bouyer * without specific prior written consent.
20 1.1 bouyer *
21 1.1 bouyer * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 1.1 bouyer * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 bouyer * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 bouyer * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 1.1 bouyer * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.1 bouyer * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.1 bouyer * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.1 bouyer * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.1 bouyer * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.1 bouyer * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 1.1 bouyer * THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 bouyer */
33 1.1 bouyer
34 1.1 bouyer #include <sys/cdefs.h>
35 1.1 bouyer #if 0
36 1.1 bouyer __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 1.1 bouyer #endif
38 1.27 cegger __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.27 2009/05/05 10:21:22 cegger Exp $");
39 1.1 bouyer
40 1.1 bouyer /*
41 1.1 bouyer * The following controllers are supported by this driver:
42 1.1 bouyer * BCM5706C A2, A3
43 1.20 mhitch * BCM5708C B1, B2
44 1.1 bouyer *
45 1.1 bouyer * The following controllers are not supported by this driver:
46 1.1 bouyer * (These are not "Production" versions of the controller.)
47 1.1 bouyer *
48 1.1 bouyer * BCM5706C A0, A1
49 1.1 bouyer * BCM5706S A0, A1, A2, A3
50 1.1 bouyer * BCM5708C A0, B0
51 1.1 bouyer * BCM5708S A0, B0, B1
52 1.1 bouyer */
53 1.1 bouyer
54 1.1 bouyer #include <sys/callout.h>
55 1.1 bouyer
56 1.1 bouyer #include <dev/pci/if_bnxreg.h>
57 1.1 bouyer #include <dev/microcode/bnx/bnxfw.h>
58 1.1 bouyer
59 1.1 bouyer /****************************************************************************/
60 1.1 bouyer /* BNX Driver Version */
61 1.1 bouyer /****************************************************************************/
62 1.1 bouyer const char bnx_driver_version[] = "v0.9.6";
63 1.1 bouyer
64 1.1 bouyer /****************************************************************************/
65 1.1 bouyer /* BNX Debug Options */
66 1.1 bouyer /****************************************************************************/
67 1.1 bouyer #ifdef BNX_DEBUG
68 1.1 bouyer u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
69 1.1 bouyer
70 1.1 bouyer /* 0 = Never */
71 1.1 bouyer /* 1 = 1 in 2,147,483,648 */
72 1.1 bouyer /* 256 = 1 in 8,388,608 */
73 1.1 bouyer /* 2048 = 1 in 1,048,576 */
74 1.1 bouyer /* 65536 = 1 in 32,768 */
75 1.1 bouyer /* 1048576 = 1 in 2,048 */
76 1.1 bouyer /* 268435456 = 1 in 8 */
77 1.1 bouyer /* 536870912 = 1 in 4 */
78 1.1 bouyer /* 1073741824 = 1 in 2 */
79 1.1 bouyer
80 1.1 bouyer /* Controls how often the l2_fhdr frame error check will fail. */
81 1.1 bouyer int bnx_debug_l2fhdr_status_check = 0;
82 1.1 bouyer
83 1.1 bouyer /* Controls how often the unexpected attention check will fail. */
84 1.1 bouyer int bnx_debug_unexpected_attention = 0;
85 1.1 bouyer
86 1.1 bouyer /* Controls how often to simulate an mbuf allocation failure. */
87 1.1 bouyer int bnx_debug_mbuf_allocation_failure = 0;
88 1.1 bouyer
89 1.1 bouyer /* Controls how often to simulate a DMA mapping failure. */
90 1.1 bouyer int bnx_debug_dma_map_addr_failure = 0;
91 1.1 bouyer
92 1.1 bouyer /* Controls how often to simulate a bootcode failure. */
93 1.1 bouyer int bnx_debug_bootcode_running_failure = 0;
94 1.1 bouyer #endif
95 1.1 bouyer
96 1.1 bouyer /****************************************************************************/
97 1.1 bouyer /* PCI Device ID Table */
98 1.1 bouyer /* */
99 1.1 bouyer /* Used by bnx_probe() to identify the devices supported by this driver. */
100 1.1 bouyer /****************************************************************************/
101 1.1 bouyer static const struct bnx_product {
102 1.1 bouyer pci_vendor_id_t bp_vendor;
103 1.1 bouyer pci_product_id_t bp_product;
104 1.1 bouyer pci_vendor_id_t bp_subvendor;
105 1.1 bouyer pci_product_id_t bp_subproduct;
106 1.1 bouyer const char *bp_name;
107 1.1 bouyer } bnx_devices[] = {
108 1.1 bouyer #ifdef PCI_SUBPRODUCT_HP_NC370T
109 1.1 bouyer {
110 1.1 bouyer PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
111 1.1 bouyer PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
112 1.1 bouyer "HP NC370T Multifunction Gigabit Server Adapter"
113 1.1 bouyer },
114 1.1 bouyer #endif
115 1.1 bouyer #ifdef PCI_SUBPRODUCT_HP_NC370i
116 1.1 bouyer {
117 1.1 bouyer PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
118 1.1 bouyer PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
119 1.1 bouyer "HP NC370i Multifunction Gigabit Server Adapter"
120 1.1 bouyer },
121 1.1 bouyer #endif
122 1.1 bouyer {
123 1.1 bouyer PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
124 1.1 bouyer 0, 0,
125 1.1 bouyer "Broadcom NetXtreme II BCM5706 1000Base-T"
126 1.1 bouyer },
127 1.1 bouyer #ifdef PCI_SUBPRODUCT_HP_NC370F
128 1.1 bouyer {
129 1.1 bouyer PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
130 1.1 bouyer PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
131 1.1 bouyer "HP NC370F Multifunction Gigabit Server Adapter"
132 1.1 bouyer },
133 1.1 bouyer #endif
134 1.1 bouyer {
135 1.1 bouyer PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
136 1.1 bouyer 0, 0,
137 1.1 bouyer "Broadcom NetXtreme II BCM5706 1000Base-SX"
138 1.1 bouyer },
139 1.1 bouyer {
140 1.1 bouyer PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
141 1.1 bouyer 0, 0,
142 1.1 bouyer "Broadcom NetXtreme II BCM5708 1000Base-T"
143 1.1 bouyer },
144 1.1 bouyer {
145 1.1 bouyer PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
146 1.1 bouyer 0, 0,
147 1.1 bouyer "Broadcom NetXtreme II BCM5708 1000Base-SX"
148 1.1 bouyer },
149 1.27 cegger {
150 1.27 cegger PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
151 1.27 cegger 0, 0,
152 1.27 cegger "Broadcom NetXtreme II BCM5709 1000Base-SX"
153 1.27 cegger },
154 1.1 bouyer };
155 1.1 bouyer
156 1.1 bouyer /****************************************************************************/
157 1.1 bouyer /* Supported Flash NVRAM device data. */
158 1.1 bouyer /****************************************************************************/
159 1.1 bouyer static struct flash_spec flash_table[] =
160 1.1 bouyer {
161 1.1 bouyer /* Slow EEPROM */
162 1.1 bouyer {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
163 1.1 bouyer 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
164 1.1 bouyer SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
165 1.1 bouyer "EEPROM - slow"},
166 1.1 bouyer /* Expansion entry 0001 */
167 1.1 bouyer {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
168 1.1 bouyer 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
169 1.1 bouyer SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
170 1.1 bouyer "Entry 0001"},
171 1.1 bouyer /* Saifun SA25F010 (non-buffered flash) */
172 1.1 bouyer /* strap, cfg1, & write1 need updates */
173 1.1 bouyer {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
174 1.1 bouyer 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
175 1.1 bouyer SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
176 1.1 bouyer "Non-buffered flash (128kB)"},
177 1.1 bouyer /* Saifun SA25F020 (non-buffered flash) */
178 1.1 bouyer /* strap, cfg1, & write1 need updates */
179 1.1 bouyer {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
180 1.1 bouyer 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
181 1.1 bouyer SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
182 1.1 bouyer "Non-buffered flash (256kB)"},
183 1.1 bouyer /* Expansion entry 0100 */
184 1.1 bouyer {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
185 1.1 bouyer 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
186 1.1 bouyer SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
187 1.1 bouyer "Entry 0100"},
188 1.1 bouyer /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
189 1.1 bouyer {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
190 1.1 bouyer 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
191 1.1 bouyer ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
192 1.1 bouyer "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
193 1.1 bouyer /* Entry 0110: ST M45PE20 (non-buffered flash)*/
194 1.1 bouyer {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
195 1.1 bouyer 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
196 1.1 bouyer ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
197 1.1 bouyer "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
198 1.1 bouyer /* Saifun SA25F005 (non-buffered flash) */
199 1.1 bouyer /* strap, cfg1, & write1 need updates */
200 1.1 bouyer {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
201 1.1 bouyer 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 1.1 bouyer SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
203 1.1 bouyer "Non-buffered flash (64kB)"},
204 1.1 bouyer /* Fast EEPROM */
205 1.1 bouyer {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
206 1.1 bouyer 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
207 1.1 bouyer SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
208 1.1 bouyer "EEPROM - fast"},
209 1.1 bouyer /* Expansion entry 1001 */
210 1.1 bouyer {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
211 1.1 bouyer 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 1.1 bouyer SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 1.1 bouyer "Entry 1001"},
214 1.1 bouyer /* Expansion entry 1010 */
215 1.1 bouyer {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
216 1.1 bouyer 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
217 1.1 bouyer SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
218 1.1 bouyer "Entry 1010"},
219 1.1 bouyer /* ATMEL AT45DB011B (buffered flash) */
220 1.1 bouyer {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
221 1.1 bouyer 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
222 1.1 bouyer BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
223 1.1 bouyer "Buffered flash (128kB)"},
224 1.1 bouyer /* Expansion entry 1100 */
225 1.1 bouyer {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
226 1.1 bouyer 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 1.1 bouyer SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
228 1.1 bouyer "Entry 1100"},
229 1.1 bouyer /* Expansion entry 1101 */
230 1.1 bouyer {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
231 1.1 bouyer 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
232 1.1 bouyer SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
233 1.1 bouyer "Entry 1101"},
234 1.1 bouyer /* Ateml Expansion entry 1110 */
235 1.1 bouyer {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
236 1.1 bouyer 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
237 1.1 bouyer BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
238 1.1 bouyer "Entry 1110 (Atmel)"},
239 1.1 bouyer /* ATMEL AT45DB021B (buffered flash) */
240 1.1 bouyer {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
241 1.1 bouyer 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
242 1.1 bouyer BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
243 1.1 bouyer "Buffered flash (256kB)"},
244 1.1 bouyer };
245 1.1 bouyer
246 1.1 bouyer /****************************************************************************/
247 1.1 bouyer /* OpenBSD device entry points. */
248 1.1 bouyer /****************************************************************************/
249 1.1 bouyer static int bnx_probe(device_t, cfdata_t, void *);
250 1.13 dyoung void bnx_attach(device_t, device_t, void *);
251 1.13 dyoung int bnx_detach(device_t, int);
252 1.1 bouyer
253 1.1 bouyer /****************************************************************************/
254 1.1 bouyer /* BNX Debug Data Structure Dump Routines */
255 1.1 bouyer /****************************************************************************/
256 1.1 bouyer #ifdef BNX_DEBUG
257 1.1 bouyer void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
258 1.1 bouyer void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
259 1.1 bouyer void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
260 1.1 bouyer void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
261 1.1 bouyer void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
262 1.1 bouyer void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
263 1.1 bouyer void bnx_dump_tx_chain(struct bnx_softc *, int, int);
264 1.1 bouyer void bnx_dump_rx_chain(struct bnx_softc *, int, int);
265 1.1 bouyer void bnx_dump_status_block(struct bnx_softc *);
266 1.1 bouyer void bnx_dump_stats_block(struct bnx_softc *);
267 1.1 bouyer void bnx_dump_driver_state(struct bnx_softc *);
268 1.1 bouyer void bnx_dump_hw_state(struct bnx_softc *);
269 1.1 bouyer void bnx_breakpoint(struct bnx_softc *);
270 1.1 bouyer #endif
271 1.1 bouyer
272 1.1 bouyer /****************************************************************************/
273 1.1 bouyer /* BNX Register/Memory Access Routines */
274 1.1 bouyer /****************************************************************************/
275 1.1 bouyer u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
276 1.1 bouyer void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
277 1.1 bouyer void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
278 1.13 dyoung int bnx_miibus_read_reg(device_t, int, int);
279 1.13 dyoung void bnx_miibus_write_reg(device_t, int, int, int);
280 1.13 dyoung void bnx_miibus_statchg(device_t);
281 1.1 bouyer
282 1.1 bouyer /****************************************************************************/
283 1.1 bouyer /* BNX NVRAM Access Routines */
284 1.1 bouyer /****************************************************************************/
285 1.1 bouyer int bnx_acquire_nvram_lock(struct bnx_softc *);
286 1.1 bouyer int bnx_release_nvram_lock(struct bnx_softc *);
287 1.1 bouyer void bnx_enable_nvram_access(struct bnx_softc *);
288 1.1 bouyer void bnx_disable_nvram_access(struct bnx_softc *);
289 1.1 bouyer int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
290 1.1 bouyer u_int32_t);
291 1.1 bouyer int bnx_init_nvram(struct bnx_softc *);
292 1.1 bouyer int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
293 1.1 bouyer int bnx_nvram_test(struct bnx_softc *);
294 1.1 bouyer #ifdef BNX_NVRAM_WRITE_SUPPORT
295 1.1 bouyer int bnx_enable_nvram_write(struct bnx_softc *);
296 1.1 bouyer void bnx_disable_nvram_write(struct bnx_softc *);
297 1.1 bouyer int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
298 1.1 bouyer int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
299 1.1 bouyer u_int32_t);
300 1.1 bouyer int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
301 1.1 bouyer #endif
302 1.1 bouyer
303 1.1 bouyer /****************************************************************************/
304 1.1 bouyer /* */
305 1.1 bouyer /****************************************************************************/
306 1.1 bouyer int bnx_dma_alloc(struct bnx_softc *);
307 1.1 bouyer void bnx_dma_free(struct bnx_softc *);
308 1.1 bouyer void bnx_release_resources(struct bnx_softc *);
309 1.1 bouyer
310 1.1 bouyer /****************************************************************************/
311 1.1 bouyer /* BNX Firmware Synchronization and Load */
312 1.1 bouyer /****************************************************************************/
313 1.1 bouyer int bnx_fw_sync(struct bnx_softc *, u_int32_t);
314 1.1 bouyer void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
315 1.1 bouyer u_int32_t);
316 1.1 bouyer void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
317 1.1 bouyer struct fw_info *);
318 1.1 bouyer void bnx_init_cpus(struct bnx_softc *);
319 1.1 bouyer
320 1.14 dyoung void bnx_stop(struct ifnet *, int);
321 1.1 bouyer int bnx_reset(struct bnx_softc *, u_int32_t);
322 1.1 bouyer int bnx_chipinit(struct bnx_softc *);
323 1.1 bouyer int bnx_blockinit(struct bnx_softc *);
324 1.21 dyoung static int bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
325 1.1 bouyer u_int16_t *, u_int32_t *);
326 1.21 dyoung int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
327 1.1 bouyer
328 1.1 bouyer int bnx_init_tx_chain(struct bnx_softc *);
329 1.1 bouyer int bnx_init_rx_chain(struct bnx_softc *);
330 1.1 bouyer void bnx_free_rx_chain(struct bnx_softc *);
331 1.1 bouyer void bnx_free_tx_chain(struct bnx_softc *);
332 1.1 bouyer
333 1.4 bouyer int bnx_tx_encap(struct bnx_softc *, struct mbuf **);
334 1.1 bouyer void bnx_start(struct ifnet *);
335 1.3 christos int bnx_ioctl(struct ifnet *, u_long, void *);
336 1.1 bouyer void bnx_watchdog(struct ifnet *);
337 1.1 bouyer int bnx_init(struct ifnet *);
338 1.1 bouyer
339 1.1 bouyer void bnx_init_context(struct bnx_softc *);
340 1.1 bouyer void bnx_get_mac_addr(struct bnx_softc *);
341 1.1 bouyer void bnx_set_mac_addr(struct bnx_softc *);
342 1.1 bouyer void bnx_phy_intr(struct bnx_softc *);
343 1.1 bouyer void bnx_rx_intr(struct bnx_softc *);
344 1.1 bouyer void bnx_tx_intr(struct bnx_softc *);
345 1.1 bouyer void bnx_disable_intr(struct bnx_softc *);
346 1.1 bouyer void bnx_enable_intr(struct bnx_softc *);
347 1.1 bouyer
348 1.1 bouyer int bnx_intr(void *);
349 1.1 bouyer void bnx_set_rx_mode(struct bnx_softc *);
350 1.1 bouyer void bnx_stats_update(struct bnx_softc *);
351 1.1 bouyer void bnx_tick(void *);
352 1.1 bouyer
353 1.1 bouyer /****************************************************************************/
354 1.1 bouyer /* OpenBSD device dispatch table. */
355 1.1 bouyer /****************************************************************************/
356 1.24 dyoung CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
357 1.24 dyoung bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
358 1.1 bouyer
359 1.1 bouyer /****************************************************************************/
360 1.1 bouyer /* Device probe function. */
361 1.1 bouyer /* */
362 1.1 bouyer /* Compares the device to the driver's list of supported devices and */
363 1.1 bouyer /* reports back to the OS whether this is the right driver for the device. */
364 1.1 bouyer /* */
365 1.1 bouyer /* Returns: */
366 1.1 bouyer /* BUS_PROBE_DEFAULT on success, positive value on failure. */
367 1.1 bouyer /****************************************************************************/
368 1.1 bouyer static const struct bnx_product *
369 1.1 bouyer bnx_lookup(const struct pci_attach_args *pa)
370 1.1 bouyer {
371 1.1 bouyer int i;
372 1.1 bouyer pcireg_t subid;
373 1.1 bouyer
374 1.13 dyoung for (i = 0; i < __arraycount(bnx_devices); i++) {
375 1.1 bouyer if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
376 1.1 bouyer PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
377 1.1 bouyer continue;
378 1.1 bouyer if (!bnx_devices[i].bp_subvendor)
379 1.1 bouyer return &bnx_devices[i];
380 1.1 bouyer subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
381 1.1 bouyer if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
382 1.1 bouyer PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
383 1.1 bouyer return &bnx_devices[i];
384 1.1 bouyer }
385 1.1 bouyer
386 1.1 bouyer return NULL;
387 1.1 bouyer }
388 1.1 bouyer static int
389 1.1 bouyer bnx_probe(device_t parent, cfdata_t match, void *aux)
390 1.1 bouyer {
391 1.1 bouyer struct pci_attach_args *pa = (struct pci_attach_args *)aux;
392 1.1 bouyer
393 1.1 bouyer if (bnx_lookup(pa) != NULL)
394 1.1 bouyer return (1);
395 1.1 bouyer
396 1.1 bouyer return (0);
397 1.1 bouyer }
398 1.1 bouyer
399 1.1 bouyer /****************************************************************************/
400 1.1 bouyer /* Device attach function. */
401 1.1 bouyer /* */
402 1.1 bouyer /* Allocates device resources, performs secondary chip identification, */
403 1.1 bouyer /* resets and initializes the hardware, and initializes driver instance */
404 1.1 bouyer /* variables. */
405 1.1 bouyer /* */
406 1.1 bouyer /* Returns: */
407 1.1 bouyer /* 0 on success, positive value on failure. */
408 1.1 bouyer /****************************************************************************/
409 1.1 bouyer void
410 1.13 dyoung bnx_attach(device_t parent, device_t self, void *aux)
411 1.1 bouyer {
412 1.1 bouyer const struct bnx_product *bp;
413 1.13 dyoung struct bnx_softc *sc = device_private(self);
414 1.1 bouyer struct pci_attach_args *pa = aux;
415 1.1 bouyer pci_chipset_tag_t pc = pa->pa_pc;
416 1.1 bouyer pci_intr_handle_t ih;
417 1.1 bouyer const char *intrstr = NULL;
418 1.1 bouyer u_int32_t command;
419 1.1 bouyer struct ifnet *ifp;
420 1.1 bouyer u_int32_t val;
421 1.20 mhitch int mii_flags = MIIF_FORCEANEG;
422 1.1 bouyer pcireg_t memtype;
423 1.1 bouyer
424 1.1 bouyer bp = bnx_lookup(pa);
425 1.1 bouyer if (bp == NULL)
426 1.1 bouyer panic("unknown device");
427 1.1 bouyer
428 1.13 dyoung sc->bnx_dev = self;
429 1.13 dyoung
430 1.1 bouyer aprint_naive("\n");
431 1.10 martti aprint_normal(": %s\n", bp->bp_name);
432 1.1 bouyer
433 1.1 bouyer sc->bnx_pa = *pa;
434 1.1 bouyer
435 1.1 bouyer /*
436 1.1 bouyer * Map control/status registers.
437 1.1 bouyer */
438 1.1 bouyer command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
439 1.1 bouyer command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
440 1.1 bouyer pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
441 1.1 bouyer command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
442 1.1 bouyer
443 1.1 bouyer if (!(command & PCI_COMMAND_MEM_ENABLE)) {
444 1.13 dyoung aprint_error_dev(sc->bnx_dev,
445 1.13 dyoung "failed to enable memory mapping!\n");
446 1.1 bouyer return;
447 1.1 bouyer }
448 1.1 bouyer
449 1.1 bouyer memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
450 1.1 bouyer switch (memtype) {
451 1.1 bouyer case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
452 1.1 bouyer case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
453 1.1 bouyer if (pci_mapreg_map(pa, BNX_PCI_BAR0,
454 1.1 bouyer memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
455 1.1 bouyer NULL, &sc->bnx_size) == 0)
456 1.1 bouyer break;
457 1.1 bouyer default:
458 1.13 dyoung aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
459 1.1 bouyer return;
460 1.1 bouyer }
461 1.1 bouyer
462 1.1 bouyer if (pci_intr_map(pa, &ih)) {
463 1.13 dyoung aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
464 1.1 bouyer goto bnx_attach_fail;
465 1.1 bouyer }
466 1.1 bouyer
467 1.1 bouyer intrstr = pci_intr_string(pc, ih);
468 1.1 bouyer
469 1.1 bouyer /*
470 1.1 bouyer * Configure byte swap and enable indirect register access.
471 1.1 bouyer * Rely on CPU to do target byte swapping on big endian systems.
472 1.1 bouyer * Access to registers outside of PCI configurtion space are not
473 1.1 bouyer * valid until this is done.
474 1.1 bouyer */
475 1.1 bouyer pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
476 1.1 bouyer BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
477 1.1 bouyer BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
478 1.1 bouyer
479 1.1 bouyer /* Save ASIC revsion info. */
480 1.1 bouyer sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
481 1.1 bouyer
482 1.1 bouyer /* Weed out any non-production controller revisions. */
483 1.1 bouyer switch(BNX_CHIP_ID(sc)) {
484 1.1 bouyer case BNX_CHIP_ID_5706_A0:
485 1.1 bouyer case BNX_CHIP_ID_5706_A1:
486 1.1 bouyer case BNX_CHIP_ID_5708_A0:
487 1.1 bouyer case BNX_CHIP_ID_5708_B0:
488 1.13 dyoung aprint_error_dev(sc->bnx_dev,
489 1.13 dyoung "unsupported controller revision (%c%d)!\n",
490 1.1 bouyer ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
491 1.1 bouyer PCI_REVISION(pa->pa_class) & 0x0f);
492 1.1 bouyer goto bnx_attach_fail;
493 1.1 bouyer }
494 1.1 bouyer
495 1.1 bouyer /*
496 1.1 bouyer * Find the base address for shared memory access.
497 1.1 bouyer * Newer versions of bootcode use a signature and offset
498 1.1 bouyer * while older versions use a fixed address.
499 1.1 bouyer */
500 1.1 bouyer val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
501 1.1 bouyer if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
502 1.1 bouyer sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
503 1.1 bouyer else
504 1.1 bouyer sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
505 1.1 bouyer
506 1.1 bouyer DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
507 1.1 bouyer
508 1.1 bouyer /* Set initial device and PHY flags */
509 1.1 bouyer sc->bnx_flags = 0;
510 1.1 bouyer sc->bnx_phy_flags = 0;
511 1.1 bouyer
512 1.1 bouyer /* Get PCI bus information (speed and type). */
513 1.1 bouyer val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
514 1.1 bouyer if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
515 1.1 bouyer u_int32_t clkreg;
516 1.1 bouyer
517 1.1 bouyer sc->bnx_flags |= BNX_PCIX_FLAG;
518 1.1 bouyer
519 1.1 bouyer clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
520 1.1 bouyer
521 1.1 bouyer clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
522 1.1 bouyer switch (clkreg) {
523 1.1 bouyer case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
524 1.1 bouyer sc->bus_speed_mhz = 133;
525 1.1 bouyer break;
526 1.1 bouyer
527 1.1 bouyer case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
528 1.1 bouyer sc->bus_speed_mhz = 100;
529 1.1 bouyer break;
530 1.1 bouyer
531 1.1 bouyer case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
532 1.1 bouyer case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
533 1.1 bouyer sc->bus_speed_mhz = 66;
534 1.1 bouyer break;
535 1.1 bouyer
536 1.1 bouyer case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
537 1.1 bouyer case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
538 1.1 bouyer sc->bus_speed_mhz = 50;
539 1.1 bouyer break;
540 1.1 bouyer
541 1.1 bouyer case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
542 1.1 bouyer case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
543 1.1 bouyer case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
544 1.1 bouyer sc->bus_speed_mhz = 33;
545 1.1 bouyer break;
546 1.1 bouyer }
547 1.1 bouyer } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
548 1.1 bouyer sc->bus_speed_mhz = 66;
549 1.1 bouyer else
550 1.1 bouyer sc->bus_speed_mhz = 33;
551 1.1 bouyer
552 1.1 bouyer if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
553 1.1 bouyer sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
554 1.1 bouyer
555 1.1 bouyer /* Reset the controller. */
556 1.1 bouyer if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
557 1.1 bouyer goto bnx_attach_fail;
558 1.1 bouyer
559 1.1 bouyer /* Initialize the controller. */
560 1.1 bouyer if (bnx_chipinit(sc)) {
561 1.13 dyoung aprint_error_dev(sc->bnx_dev,
562 1.13 dyoung "Controller initialization failed!\n");
563 1.1 bouyer goto bnx_attach_fail;
564 1.1 bouyer }
565 1.1 bouyer
566 1.1 bouyer /* Perform NVRAM test. */
567 1.1 bouyer if (bnx_nvram_test(sc)) {
568 1.13 dyoung aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
569 1.1 bouyer goto bnx_attach_fail;
570 1.1 bouyer }
571 1.1 bouyer
572 1.1 bouyer /* Fetch the permanent Ethernet MAC address. */
573 1.1 bouyer bnx_get_mac_addr(sc);
574 1.13 dyoung aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
575 1.1 bouyer ether_sprintf(sc->eaddr));
576 1.1 bouyer
577 1.1 bouyer /*
578 1.1 bouyer * Trip points control how many BDs
579 1.1 bouyer * should be ready before generating an
580 1.1 bouyer * interrupt while ticks control how long
581 1.1 bouyer * a BD can sit in the chain before
582 1.1 bouyer * generating an interrupt. Set the default
583 1.1 bouyer * values for the RX and TX rings.
584 1.1 bouyer */
585 1.1 bouyer
586 1.1 bouyer #ifdef BNX_DEBUG
587 1.1 bouyer /* Force more frequent interrupts. */
588 1.1 bouyer sc->bnx_tx_quick_cons_trip_int = 1;
589 1.1 bouyer sc->bnx_tx_quick_cons_trip = 1;
590 1.1 bouyer sc->bnx_tx_ticks_int = 0;
591 1.1 bouyer sc->bnx_tx_ticks = 0;
592 1.1 bouyer
593 1.1 bouyer sc->bnx_rx_quick_cons_trip_int = 1;
594 1.1 bouyer sc->bnx_rx_quick_cons_trip = 1;
595 1.1 bouyer sc->bnx_rx_ticks_int = 0;
596 1.1 bouyer sc->bnx_rx_ticks = 0;
597 1.1 bouyer #else
598 1.1 bouyer sc->bnx_tx_quick_cons_trip_int = 20;
599 1.1 bouyer sc->bnx_tx_quick_cons_trip = 20;
600 1.1 bouyer sc->bnx_tx_ticks_int = 80;
601 1.1 bouyer sc->bnx_tx_ticks = 80;
602 1.1 bouyer
603 1.1 bouyer sc->bnx_rx_quick_cons_trip_int = 6;
604 1.1 bouyer sc->bnx_rx_quick_cons_trip = 6;
605 1.1 bouyer sc->bnx_rx_ticks_int = 18;
606 1.1 bouyer sc->bnx_rx_ticks = 18;
607 1.1 bouyer #endif
608 1.1 bouyer
609 1.1 bouyer /* Update statistics once every second. */
610 1.1 bouyer sc->bnx_stats_ticks = 1000000 & 0xffff00;
611 1.1 bouyer
612 1.1 bouyer /*
613 1.1 bouyer * The copper based NetXtreme II controllers
614 1.20 mhitch * that support 2.5Gb operation (currently
615 1.20 mhitch * 5708S) use a PHY at address 2, otherwise
616 1.20 mhitch * the PHY is present at address 1.
617 1.1 bouyer */
618 1.1 bouyer sc->bnx_phy_addr = 1;
619 1.1 bouyer
620 1.1 bouyer if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
621 1.1 bouyer sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
622 1.1 bouyer sc->bnx_flags |= BNX_NO_WOL_FLAG;
623 1.20 mhitch if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
624 1.1 bouyer sc->bnx_phy_addr = 2;
625 1.1 bouyer val = REG_RD_IND(sc, sc->bnx_shmem_base +
626 1.1 bouyer BNX_SHARED_HW_CFG_CONFIG);
627 1.1 bouyer if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
628 1.1 bouyer sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
629 1.1 bouyer }
630 1.1 bouyer }
631 1.1 bouyer
632 1.1 bouyer /* Allocate DMA memory resources. */
633 1.1 bouyer sc->bnx_dmatag = pa->pa_dmat;
634 1.1 bouyer if (bnx_dma_alloc(sc)) {
635 1.13 dyoung aprint_error_dev(sc->bnx_dev,
636 1.13 dyoung "DMA resource allocation failed!\n");
637 1.1 bouyer goto bnx_attach_fail;
638 1.1 bouyer }
639 1.1 bouyer
640 1.1 bouyer /* Initialize the ifnet interface. */
641 1.15 dyoung ifp = &sc->bnx_ec.ec_if;
642 1.1 bouyer ifp->if_softc = sc;
643 1.1 bouyer ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
644 1.1 bouyer ifp->if_ioctl = bnx_ioctl;
645 1.14 dyoung ifp->if_stop = bnx_stop;
646 1.1 bouyer ifp->if_start = bnx_start;
647 1.1 bouyer ifp->if_init = bnx_init;
648 1.1 bouyer ifp->if_timer = 0;
649 1.1 bouyer ifp->if_watchdog = bnx_watchdog;
650 1.4 bouyer IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
651 1.1 bouyer IFQ_SET_READY(&ifp->if_snd);
652 1.13 dyoung memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
653 1.1 bouyer
654 1.15 dyoung sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
655 1.1 bouyer ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
656 1.1 bouyer
657 1.1 bouyer ifp->if_capabilities |=
658 1.1 bouyer IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
659 1.1 bouyer IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
660 1.1 bouyer IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
661 1.1 bouyer
662 1.1 bouyer /* Hookup IRQ last. */
663 1.1 bouyer sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
664 1.1 bouyer if (sc->bnx_intrhand == NULL) {
665 1.13 dyoung aprint_error_dev(self, "couldn't establish interrupt");
666 1.1 bouyer if (intrstr != NULL)
667 1.1 bouyer aprint_error(" at %s", intrstr);
668 1.1 bouyer aprint_error("\n");
669 1.1 bouyer goto bnx_attach_fail;
670 1.1 bouyer }
671 1.1 bouyer
672 1.1 bouyer sc->bnx_mii.mii_ifp = ifp;
673 1.1 bouyer sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
674 1.1 bouyer sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
675 1.1 bouyer sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
676 1.1 bouyer
677 1.16 dyoung sc->bnx_ec.ec_mii = &sc->bnx_mii;
678 1.16 dyoung ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
679 1.16 dyoung ether_mediastatus);
680 1.20 mhitch if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
681 1.20 mhitch mii_flags |= MIIF_HAVEFIBER;
682 1.13 dyoung mii_attach(self, &sc->bnx_mii, 0xffffffff,
683 1.20 mhitch MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
684 1.1 bouyer
685 1.14 dyoung if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
686 1.13 dyoung aprint_error_dev(self, "no PHY found!\n");
687 1.1 bouyer ifmedia_add(&sc->bnx_mii.mii_media,
688 1.1 bouyer IFM_ETHER|IFM_MANUAL, 0, NULL);
689 1.1 bouyer ifmedia_set(&sc->bnx_mii.mii_media,
690 1.1 bouyer IFM_ETHER|IFM_MANUAL);
691 1.1 bouyer } else {
692 1.1 bouyer ifmedia_set(&sc->bnx_mii.mii_media,
693 1.1 bouyer IFM_ETHER|IFM_AUTO);
694 1.1 bouyer }
695 1.1 bouyer
696 1.1 bouyer /* Attach to the Ethernet interface list. */
697 1.1 bouyer if_attach(ifp);
698 1.1 bouyer ether_ifattach(ifp,sc->eaddr);
699 1.1 bouyer
700 1.7 ad callout_init(&sc->bnx_timeout, 0);
701 1.1 bouyer
702 1.14 dyoung if (!pmf_device_register(self, NULL, NULL))
703 1.13 dyoung aprint_error_dev(self, "couldn't establish power handler\n");
704 1.13 dyoung else
705 1.13 dyoung pmf_class_network_register(self, ifp);
706 1.13 dyoung
707 1.1 bouyer /* Print some important debugging info. */
708 1.1 bouyer DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
709 1.1 bouyer
710 1.1 bouyer goto bnx_attach_exit;
711 1.1 bouyer
712 1.1 bouyer bnx_attach_fail:
713 1.1 bouyer bnx_release_resources(sc);
714 1.1 bouyer
715 1.1 bouyer bnx_attach_exit:
716 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
717 1.1 bouyer }
718 1.1 bouyer
719 1.1 bouyer /****************************************************************************/
720 1.1 bouyer /* Device detach function. */
721 1.1 bouyer /* */
722 1.1 bouyer /* Stops the controller, resets the controller, and releases resources. */
723 1.1 bouyer /* */
724 1.1 bouyer /* Returns: */
725 1.1 bouyer /* 0 on success, positive value on failure. */
726 1.1 bouyer /****************************************************************************/
727 1.13 dyoung int
728 1.13 dyoung bnx_detach(device_t dev, int flags)
729 1.1 bouyer {
730 1.14 dyoung int s;
731 1.1 bouyer struct bnx_softc *sc;
732 1.13 dyoung struct ifnet *ifp;
733 1.1 bouyer
734 1.13 dyoung sc = device_private(dev);
735 1.15 dyoung ifp = &sc->bnx_ec.ec_if;
736 1.1 bouyer
737 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
738 1.1 bouyer
739 1.1 bouyer /* Stop and reset the controller. */
740 1.14 dyoung s = splnet();
741 1.14 dyoung if (ifp->if_flags & IFF_RUNNING)
742 1.14 dyoung bnx_stop(ifp, 1);
743 1.14 dyoung splx(s);
744 1.1 bouyer
745 1.13 dyoung pmf_device_deregister(dev);
746 1.25 dyoung callout_destroy(&sc->bnx_timeout);
747 1.1 bouyer ether_ifdetach(ifp);
748 1.13 dyoung if_detach(ifp);
749 1.13 dyoung mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
750 1.1 bouyer
751 1.1 bouyer /* Release all remaining resources. */
752 1.1 bouyer bnx_release_resources(sc);
753 1.1 bouyer
754 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
755 1.1 bouyer
756 1.1 bouyer return(0);
757 1.1 bouyer }
758 1.1 bouyer
759 1.1 bouyer /****************************************************************************/
760 1.1 bouyer /* Indirect register read. */
761 1.1 bouyer /* */
762 1.1 bouyer /* Reads NetXtreme II registers using an index/data register pair in PCI */
763 1.1 bouyer /* configuration space. Using this mechanism avoids issues with posted */
764 1.1 bouyer /* reads but is much slower than memory-mapped I/O. */
765 1.1 bouyer /* */
766 1.1 bouyer /* Returns: */
767 1.1 bouyer /* The value of the register. */
768 1.1 bouyer /****************************************************************************/
769 1.1 bouyer u_int32_t
770 1.1 bouyer bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
771 1.1 bouyer {
772 1.1 bouyer struct pci_attach_args *pa = &(sc->bnx_pa);
773 1.1 bouyer
774 1.1 bouyer pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
775 1.1 bouyer offset);
776 1.1 bouyer #ifdef BNX_DEBUG
777 1.1 bouyer {
778 1.1 bouyer u_int32_t val;
779 1.1 bouyer val = pci_conf_read(pa->pa_pc, pa->pa_tag,
780 1.1 bouyer BNX_PCICFG_REG_WINDOW);
781 1.1 bouyer DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
782 1.12 perry "val = 0x%08X\n", __func__, offset, val);
783 1.1 bouyer return (val);
784 1.1 bouyer }
785 1.1 bouyer #else
786 1.1 bouyer return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
787 1.1 bouyer #endif
788 1.1 bouyer }
789 1.1 bouyer
790 1.1 bouyer /****************************************************************************/
791 1.1 bouyer /* Indirect register write. */
792 1.1 bouyer /* */
793 1.1 bouyer /* Writes NetXtreme II registers using an index/data register pair in PCI */
794 1.1 bouyer /* configuration space. Using this mechanism avoids issues with posted */
795 1.1 bouyer /* writes but is muchh slower than memory-mapped I/O. */
796 1.1 bouyer /* */
797 1.1 bouyer /* Returns: */
798 1.1 bouyer /* Nothing. */
799 1.1 bouyer /****************************************************************************/
800 1.1 bouyer void
801 1.1 bouyer bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
802 1.1 bouyer {
803 1.1 bouyer struct pci_attach_args *pa = &(sc->bnx_pa);
804 1.1 bouyer
805 1.1 bouyer DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
806 1.12 perry __func__, offset, val);
807 1.1 bouyer
808 1.1 bouyer pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
809 1.1 bouyer offset);
810 1.1 bouyer pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
811 1.1 bouyer }
812 1.1 bouyer
813 1.1 bouyer /****************************************************************************/
814 1.1 bouyer /* Context memory write. */
815 1.1 bouyer /* */
816 1.1 bouyer /* The NetXtreme II controller uses context memory to track connection */
817 1.1 bouyer /* information for L2 and higher network protocols. */
818 1.1 bouyer /* */
819 1.1 bouyer /* Returns: */
820 1.1 bouyer /* Nothing. */
821 1.1 bouyer /****************************************************************************/
822 1.1 bouyer void
823 1.1 bouyer bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
824 1.1 bouyer u_int32_t val)
825 1.1 bouyer {
826 1.1 bouyer
827 1.1 bouyer DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
828 1.12 perry "val = 0x%08X\n", __func__, cid_addr, offset, val);
829 1.1 bouyer
830 1.1 bouyer offset += cid_addr;
831 1.1 bouyer REG_WR(sc, BNX_CTX_DATA_ADR, offset);
832 1.1 bouyer REG_WR(sc, BNX_CTX_DATA, val);
833 1.1 bouyer }
834 1.1 bouyer
835 1.1 bouyer /****************************************************************************/
836 1.1 bouyer /* PHY register read. */
837 1.1 bouyer /* */
838 1.1 bouyer /* Implements register reads on the MII bus. */
839 1.1 bouyer /* */
840 1.1 bouyer /* Returns: */
841 1.1 bouyer /* The value of the register. */
842 1.1 bouyer /****************************************************************************/
843 1.1 bouyer int
844 1.13 dyoung bnx_miibus_read_reg(device_t dev, int phy, int reg)
845 1.1 bouyer {
846 1.13 dyoung struct bnx_softc *sc = device_private(dev);
847 1.1 bouyer u_int32_t val;
848 1.1 bouyer int i;
849 1.1 bouyer
850 1.1 bouyer /* Make sure we are accessing the correct PHY address. */
851 1.1 bouyer if (phy != sc->bnx_phy_addr) {
852 1.1 bouyer DBPRINT(sc, BNX_VERBOSE,
853 1.1 bouyer "Invalid PHY address %d for PHY read!\n", phy);
854 1.1 bouyer return(0);
855 1.1 bouyer }
856 1.1 bouyer
857 1.1 bouyer if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
858 1.1 bouyer val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
859 1.1 bouyer val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
860 1.1 bouyer
861 1.1 bouyer REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
862 1.1 bouyer REG_RD(sc, BNX_EMAC_MDIO_MODE);
863 1.1 bouyer
864 1.1 bouyer DELAY(40);
865 1.1 bouyer }
866 1.1 bouyer
867 1.1 bouyer val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
868 1.1 bouyer BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
869 1.1 bouyer BNX_EMAC_MDIO_COMM_START_BUSY;
870 1.1 bouyer REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
871 1.1 bouyer
872 1.1 bouyer for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
873 1.1 bouyer DELAY(10);
874 1.1 bouyer
875 1.1 bouyer val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
876 1.1 bouyer if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
877 1.1 bouyer DELAY(5);
878 1.1 bouyer
879 1.1 bouyer val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
880 1.1 bouyer val &= BNX_EMAC_MDIO_COMM_DATA;
881 1.1 bouyer
882 1.1 bouyer break;
883 1.1 bouyer }
884 1.1 bouyer }
885 1.1 bouyer
886 1.1 bouyer if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
887 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
888 1.1 bouyer "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
889 1.1 bouyer val = 0x0;
890 1.1 bouyer } else
891 1.1 bouyer val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
892 1.1 bouyer
893 1.1 bouyer DBPRINT(sc, BNX_EXCESSIVE,
894 1.12 perry "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
895 1.1 bouyer (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
896 1.1 bouyer
897 1.1 bouyer if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
898 1.1 bouyer val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
899 1.1 bouyer val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
900 1.1 bouyer
901 1.1 bouyer REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
902 1.1 bouyer REG_RD(sc, BNX_EMAC_MDIO_MODE);
903 1.1 bouyer
904 1.1 bouyer DELAY(40);
905 1.1 bouyer }
906 1.1 bouyer
907 1.1 bouyer return (val & 0xffff);
908 1.1 bouyer }
909 1.1 bouyer
910 1.1 bouyer /****************************************************************************/
911 1.1 bouyer /* PHY register write. */
912 1.1 bouyer /* */
913 1.1 bouyer /* Implements register writes on the MII bus. */
914 1.1 bouyer /* */
915 1.1 bouyer /* Returns: */
916 1.1 bouyer /* The value of the register. */
917 1.1 bouyer /****************************************************************************/
918 1.1 bouyer void
919 1.13 dyoung bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
920 1.1 bouyer {
921 1.13 dyoung struct bnx_softc *sc = device_private(dev);
922 1.1 bouyer u_int32_t val1;
923 1.1 bouyer int i;
924 1.1 bouyer
925 1.1 bouyer /* Make sure we are accessing the correct PHY address. */
926 1.1 bouyer if (phy != sc->bnx_phy_addr) {
927 1.1 bouyer DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
928 1.1 bouyer phy);
929 1.1 bouyer return;
930 1.1 bouyer }
931 1.1 bouyer
932 1.1 bouyer DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
933 1.12 perry "val = 0x%04X\n", __func__,
934 1.1 bouyer phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
935 1.1 bouyer
936 1.1 bouyer if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
937 1.1 bouyer val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
938 1.1 bouyer val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
939 1.1 bouyer
940 1.1 bouyer REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
941 1.1 bouyer REG_RD(sc, BNX_EMAC_MDIO_MODE);
942 1.1 bouyer
943 1.1 bouyer DELAY(40);
944 1.1 bouyer }
945 1.1 bouyer
946 1.1 bouyer val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
947 1.1 bouyer BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
948 1.1 bouyer BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
949 1.1 bouyer REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
950 1.1 bouyer
951 1.1 bouyer for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
952 1.1 bouyer DELAY(10);
953 1.1 bouyer
954 1.1 bouyer val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
955 1.1 bouyer if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
956 1.1 bouyer DELAY(5);
957 1.1 bouyer break;
958 1.1 bouyer }
959 1.1 bouyer }
960 1.1 bouyer
961 1.1 bouyer if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
962 1.1 bouyer BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
963 1.1 bouyer __LINE__);
964 1.1 bouyer }
965 1.1 bouyer
966 1.1 bouyer if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
967 1.1 bouyer val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
968 1.1 bouyer val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
969 1.1 bouyer
970 1.1 bouyer REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
971 1.1 bouyer REG_RD(sc, BNX_EMAC_MDIO_MODE);
972 1.1 bouyer
973 1.1 bouyer DELAY(40);
974 1.1 bouyer }
975 1.1 bouyer }
976 1.1 bouyer
977 1.1 bouyer /****************************************************************************/
978 1.1 bouyer /* MII bus status change. */
979 1.1 bouyer /* */
980 1.1 bouyer /* Called by the MII bus driver when the PHY establishes link to set the */
981 1.1 bouyer /* MAC interface registers. */
982 1.1 bouyer /* */
983 1.1 bouyer /* Returns: */
984 1.1 bouyer /* Nothing. */
985 1.1 bouyer /****************************************************************************/
986 1.1 bouyer void
987 1.13 dyoung bnx_miibus_statchg(device_t dev)
988 1.1 bouyer {
989 1.13 dyoung struct bnx_softc *sc = device_private(dev);
990 1.1 bouyer struct mii_data *mii = &sc->bnx_mii;
991 1.20 mhitch int val;
992 1.1 bouyer
993 1.20 mhitch val = REG_RD(sc, BNX_EMAC_MODE);
994 1.20 mhitch val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
995 1.20 mhitch BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
996 1.20 mhitch BNX_EMAC_MODE_25G);
997 1.1 bouyer
998 1.20 mhitch /* Set MII or GMII interface based on the speed
999 1.20 mhitch * negotiated by the PHY.
1000 1.20 mhitch */
1001 1.20 mhitch switch (IFM_SUBTYPE(mii->mii_media_active)) {
1002 1.20 mhitch case IFM_10_T:
1003 1.20 mhitch if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1004 1.20 mhitch DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1005 1.20 mhitch val |= BNX_EMAC_MODE_PORT_MII_10;
1006 1.20 mhitch break;
1007 1.20 mhitch }
1008 1.20 mhitch /* FALLTHROUGH */
1009 1.20 mhitch case IFM_100_TX:
1010 1.20 mhitch DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1011 1.20 mhitch val |= BNX_EMAC_MODE_PORT_MII;
1012 1.20 mhitch break;
1013 1.20 mhitch case IFM_2500_SX:
1014 1.20 mhitch DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1015 1.20 mhitch val |= BNX_EMAC_MODE_25G;
1016 1.20 mhitch /* FALLTHROUGH */
1017 1.20 mhitch case IFM_1000_T:
1018 1.20 mhitch case IFM_1000_SX:
1019 1.20 mhitch DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1020 1.20 mhitch val |= BNX_EMAC_MODE_PORT_GMII;
1021 1.20 mhitch break;
1022 1.20 mhitch default:
1023 1.20 mhitch val |= BNX_EMAC_MODE_PORT_GMII;
1024 1.20 mhitch break;
1025 1.1 bouyer }
1026 1.1 bouyer
1027 1.1 bouyer /* Set half or full duplex based on the duplicity
1028 1.1 bouyer * negotiated by the PHY.
1029 1.1 bouyer */
1030 1.20 mhitch if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1031 1.20 mhitch DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1032 1.20 mhitch val |= BNX_EMAC_MODE_HALF_DUPLEX;
1033 1.20 mhitch } else {
1034 1.1 bouyer DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1035 1.1 bouyer }
1036 1.20 mhitch
1037 1.20 mhitch REG_WR(sc, BNX_EMAC_MODE, val);
1038 1.1 bouyer }
1039 1.1 bouyer
1040 1.1 bouyer /****************************************************************************/
1041 1.1 bouyer /* Acquire NVRAM lock. */
1042 1.1 bouyer /* */
1043 1.1 bouyer /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1044 1.1 bouyer /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1045 1.1 bouyer /* for use by the driver. */
1046 1.1 bouyer /* */
1047 1.1 bouyer /* Returns: */
1048 1.1 bouyer /* 0 on success, positive value on failure. */
1049 1.1 bouyer /****************************************************************************/
1050 1.1 bouyer int
1051 1.1 bouyer bnx_acquire_nvram_lock(struct bnx_softc *sc)
1052 1.1 bouyer {
1053 1.1 bouyer u_int32_t val;
1054 1.1 bouyer int j;
1055 1.1 bouyer
1056 1.1 bouyer DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1057 1.1 bouyer
1058 1.1 bouyer /* Request access to the flash interface. */
1059 1.1 bouyer REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1060 1.1 bouyer for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1061 1.1 bouyer val = REG_RD(sc, BNX_NVM_SW_ARB);
1062 1.1 bouyer if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1063 1.1 bouyer break;
1064 1.1 bouyer
1065 1.1 bouyer DELAY(5);
1066 1.1 bouyer }
1067 1.1 bouyer
1068 1.1 bouyer if (j >= NVRAM_TIMEOUT_COUNT) {
1069 1.1 bouyer DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1070 1.1 bouyer return (EBUSY);
1071 1.1 bouyer }
1072 1.1 bouyer
1073 1.1 bouyer return (0);
1074 1.1 bouyer }
1075 1.1 bouyer
1076 1.1 bouyer /****************************************************************************/
1077 1.1 bouyer /* Release NVRAM lock. */
1078 1.1 bouyer /* */
1079 1.1 bouyer /* When the caller is finished accessing NVRAM the lock must be released. */
1080 1.1 bouyer /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1081 1.1 bouyer /* for use by the driver. */
1082 1.1 bouyer /* */
1083 1.1 bouyer /* Returns: */
1084 1.1 bouyer /* 0 on success, positive value on failure. */
1085 1.1 bouyer /****************************************************************************/
1086 1.1 bouyer int
1087 1.1 bouyer bnx_release_nvram_lock(struct bnx_softc *sc)
1088 1.1 bouyer {
1089 1.1 bouyer int j;
1090 1.1 bouyer u_int32_t val;
1091 1.1 bouyer
1092 1.1 bouyer DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1093 1.1 bouyer
1094 1.1 bouyer /* Relinquish nvram interface. */
1095 1.1 bouyer REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1096 1.1 bouyer
1097 1.1 bouyer for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1098 1.1 bouyer val = REG_RD(sc, BNX_NVM_SW_ARB);
1099 1.1 bouyer if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1100 1.1 bouyer break;
1101 1.1 bouyer
1102 1.1 bouyer DELAY(5);
1103 1.1 bouyer }
1104 1.1 bouyer
1105 1.1 bouyer if (j >= NVRAM_TIMEOUT_COUNT) {
1106 1.1 bouyer DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1107 1.1 bouyer return (EBUSY);
1108 1.1 bouyer }
1109 1.1 bouyer
1110 1.1 bouyer return (0);
1111 1.1 bouyer }
1112 1.1 bouyer
1113 1.1 bouyer #ifdef BNX_NVRAM_WRITE_SUPPORT
1114 1.1 bouyer /****************************************************************************/
1115 1.1 bouyer /* Enable NVRAM write access. */
1116 1.1 bouyer /* */
1117 1.1 bouyer /* Before writing to NVRAM the caller must enable NVRAM writes. */
1118 1.1 bouyer /* */
1119 1.1 bouyer /* Returns: */
1120 1.1 bouyer /* 0 on success, positive value on failure. */
1121 1.1 bouyer /****************************************************************************/
1122 1.1 bouyer int
1123 1.1 bouyer bnx_enable_nvram_write(struct bnx_softc *sc)
1124 1.1 bouyer {
1125 1.1 bouyer u_int32_t val;
1126 1.1 bouyer
1127 1.1 bouyer DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1128 1.1 bouyer
1129 1.1 bouyer val = REG_RD(sc, BNX_MISC_CFG);
1130 1.1 bouyer REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1131 1.1 bouyer
1132 1.1 bouyer if (!sc->bnx_flash_info->buffered) {
1133 1.1 bouyer int j;
1134 1.1 bouyer
1135 1.1 bouyer REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1136 1.1 bouyer REG_WR(sc, BNX_NVM_COMMAND,
1137 1.1 bouyer BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1138 1.1 bouyer
1139 1.1 bouyer for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1140 1.1 bouyer DELAY(5);
1141 1.1 bouyer
1142 1.1 bouyer val = REG_RD(sc, BNX_NVM_COMMAND);
1143 1.1 bouyer if (val & BNX_NVM_COMMAND_DONE)
1144 1.1 bouyer break;
1145 1.1 bouyer }
1146 1.1 bouyer
1147 1.1 bouyer if (j >= NVRAM_TIMEOUT_COUNT) {
1148 1.1 bouyer DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1149 1.1 bouyer return (EBUSY);
1150 1.1 bouyer }
1151 1.1 bouyer }
1152 1.1 bouyer
1153 1.1 bouyer return (0);
1154 1.1 bouyer }
1155 1.1 bouyer
1156 1.1 bouyer /****************************************************************************/
1157 1.1 bouyer /* Disable NVRAM write access. */
1158 1.1 bouyer /* */
1159 1.1 bouyer /* When the caller is finished writing to NVRAM write access must be */
1160 1.1 bouyer /* disabled. */
1161 1.1 bouyer /* */
1162 1.1 bouyer /* Returns: */
1163 1.1 bouyer /* Nothing. */
1164 1.1 bouyer /****************************************************************************/
1165 1.1 bouyer void
1166 1.1 bouyer bnx_disable_nvram_write(struct bnx_softc *sc)
1167 1.1 bouyer {
1168 1.1 bouyer u_int32_t val;
1169 1.1 bouyer
1170 1.1 bouyer DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1171 1.1 bouyer
1172 1.1 bouyer val = REG_RD(sc, BNX_MISC_CFG);
1173 1.1 bouyer REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1174 1.1 bouyer }
1175 1.1 bouyer #endif
1176 1.1 bouyer
1177 1.1 bouyer /****************************************************************************/
1178 1.1 bouyer /* Enable NVRAM access. */
1179 1.1 bouyer /* */
1180 1.1 bouyer /* Before accessing NVRAM for read or write operations the caller must */
1181 1.1 bouyer /* enabled NVRAM access. */
1182 1.1 bouyer /* */
1183 1.1 bouyer /* Returns: */
1184 1.1 bouyer /* Nothing. */
1185 1.1 bouyer /****************************************************************************/
1186 1.1 bouyer void
1187 1.1 bouyer bnx_enable_nvram_access(struct bnx_softc *sc)
1188 1.1 bouyer {
1189 1.1 bouyer u_int32_t val;
1190 1.1 bouyer
1191 1.1 bouyer DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1192 1.1 bouyer
1193 1.1 bouyer val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1194 1.1 bouyer /* Enable both bits, even on read. */
1195 1.1 bouyer REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1196 1.1 bouyer val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1197 1.1 bouyer }
1198 1.1 bouyer
1199 1.1 bouyer /****************************************************************************/
1200 1.1 bouyer /* Disable NVRAM access. */
1201 1.1 bouyer /* */
1202 1.1 bouyer /* When the caller is finished accessing NVRAM access must be disabled. */
1203 1.1 bouyer /* */
1204 1.1 bouyer /* Returns: */
1205 1.1 bouyer /* Nothing. */
1206 1.1 bouyer /****************************************************************************/
1207 1.1 bouyer void
1208 1.1 bouyer bnx_disable_nvram_access(struct bnx_softc *sc)
1209 1.1 bouyer {
1210 1.1 bouyer u_int32_t val;
1211 1.1 bouyer
1212 1.1 bouyer DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1213 1.1 bouyer
1214 1.1 bouyer val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1215 1.1 bouyer
1216 1.1 bouyer /* Disable both bits, even after read. */
1217 1.1 bouyer REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1218 1.1 bouyer val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1219 1.1 bouyer }
1220 1.1 bouyer
1221 1.1 bouyer #ifdef BNX_NVRAM_WRITE_SUPPORT
1222 1.1 bouyer /****************************************************************************/
1223 1.1 bouyer /* Erase NVRAM page before writing. */
1224 1.1 bouyer /* */
1225 1.1 bouyer /* Non-buffered flash parts require that a page be erased before it is */
1226 1.1 bouyer /* written. */
1227 1.1 bouyer /* */
1228 1.1 bouyer /* Returns: */
1229 1.1 bouyer /* 0 on success, positive value on failure. */
1230 1.1 bouyer /****************************************************************************/
1231 1.1 bouyer int
1232 1.1 bouyer bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1233 1.1 bouyer {
1234 1.1 bouyer u_int32_t cmd;
1235 1.1 bouyer int j;
1236 1.1 bouyer
1237 1.1 bouyer /* Buffered flash doesn't require an erase. */
1238 1.1 bouyer if (sc->bnx_flash_info->buffered)
1239 1.1 bouyer return (0);
1240 1.1 bouyer
1241 1.1 bouyer DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1242 1.1 bouyer
1243 1.1 bouyer /* Build an erase command. */
1244 1.1 bouyer cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1245 1.1 bouyer BNX_NVM_COMMAND_DOIT;
1246 1.1 bouyer
1247 1.1 bouyer /*
1248 1.1 bouyer * Clear the DONE bit separately, set the NVRAM adress to erase,
1249 1.1 bouyer * and issue the erase command.
1250 1.1 bouyer */
1251 1.1 bouyer REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1252 1.1 bouyer REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1253 1.1 bouyer REG_WR(sc, BNX_NVM_COMMAND, cmd);
1254 1.1 bouyer
1255 1.1 bouyer /* Wait for completion. */
1256 1.1 bouyer for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1257 1.1 bouyer u_int32_t val;
1258 1.1 bouyer
1259 1.1 bouyer DELAY(5);
1260 1.1 bouyer
1261 1.1 bouyer val = REG_RD(sc, BNX_NVM_COMMAND);
1262 1.1 bouyer if (val & BNX_NVM_COMMAND_DONE)
1263 1.1 bouyer break;
1264 1.1 bouyer }
1265 1.1 bouyer
1266 1.1 bouyer if (j >= NVRAM_TIMEOUT_COUNT) {
1267 1.1 bouyer DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1268 1.1 bouyer return (EBUSY);
1269 1.1 bouyer }
1270 1.1 bouyer
1271 1.1 bouyer return (0);
1272 1.1 bouyer }
1273 1.1 bouyer #endif /* BNX_NVRAM_WRITE_SUPPORT */
1274 1.1 bouyer
1275 1.1 bouyer /****************************************************************************/
1276 1.1 bouyer /* Read a dword (32 bits) from NVRAM. */
1277 1.1 bouyer /* */
1278 1.1 bouyer /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1279 1.1 bouyer /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1280 1.1 bouyer /* */
1281 1.1 bouyer /* Returns: */
1282 1.1 bouyer /* 0 on success and the 32 bit value read, positive value on failure. */
1283 1.1 bouyer /****************************************************************************/
1284 1.1 bouyer int
1285 1.1 bouyer bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1286 1.1 bouyer u_int8_t *ret_val, u_int32_t cmd_flags)
1287 1.1 bouyer {
1288 1.1 bouyer u_int32_t cmd;
1289 1.1 bouyer int i, rc = 0;
1290 1.1 bouyer
1291 1.1 bouyer /* Build the command word. */
1292 1.1 bouyer cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1293 1.1 bouyer
1294 1.1 bouyer /* Calculate the offset for buffered flash. */
1295 1.1 bouyer if (sc->bnx_flash_info->buffered)
1296 1.1 bouyer offset = ((offset / sc->bnx_flash_info->page_size) <<
1297 1.1 bouyer sc->bnx_flash_info->page_bits) +
1298 1.1 bouyer (offset % sc->bnx_flash_info->page_size);
1299 1.1 bouyer
1300 1.1 bouyer /*
1301 1.1 bouyer * Clear the DONE bit separately, set the address to read,
1302 1.1 bouyer * and issue the read.
1303 1.1 bouyer */
1304 1.1 bouyer REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1305 1.1 bouyer REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1306 1.1 bouyer REG_WR(sc, BNX_NVM_COMMAND, cmd);
1307 1.1 bouyer
1308 1.1 bouyer /* Wait for completion. */
1309 1.1 bouyer for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1310 1.1 bouyer u_int32_t val;
1311 1.1 bouyer
1312 1.1 bouyer DELAY(5);
1313 1.1 bouyer
1314 1.1 bouyer val = REG_RD(sc, BNX_NVM_COMMAND);
1315 1.1 bouyer if (val & BNX_NVM_COMMAND_DONE) {
1316 1.1 bouyer val = REG_RD(sc, BNX_NVM_READ);
1317 1.1 bouyer
1318 1.1 bouyer val = bnx_be32toh(val);
1319 1.1 bouyer memcpy(ret_val, &val, 4);
1320 1.1 bouyer break;
1321 1.1 bouyer }
1322 1.1 bouyer }
1323 1.1 bouyer
1324 1.1 bouyer /* Check for errors. */
1325 1.1 bouyer if (i >= NVRAM_TIMEOUT_COUNT) {
1326 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1327 1.1 bouyer "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1328 1.1 bouyer rc = EBUSY;
1329 1.1 bouyer }
1330 1.1 bouyer
1331 1.1 bouyer return(rc);
1332 1.1 bouyer }
1333 1.1 bouyer
1334 1.1 bouyer #ifdef BNX_NVRAM_WRITE_SUPPORT
1335 1.1 bouyer /****************************************************************************/
1336 1.1 bouyer /* Write a dword (32 bits) to NVRAM. */
1337 1.1 bouyer /* */
1338 1.1 bouyer /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1339 1.1 bouyer /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1340 1.1 bouyer /* enabled NVRAM write access. */
1341 1.1 bouyer /* */
1342 1.1 bouyer /* Returns: */
1343 1.1 bouyer /* 0 on success, positive value on failure. */
1344 1.1 bouyer /****************************************************************************/
1345 1.1 bouyer int
1346 1.1 bouyer bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1347 1.1 bouyer u_int32_t cmd_flags)
1348 1.1 bouyer {
1349 1.1 bouyer u_int32_t cmd, val32;
1350 1.1 bouyer int j;
1351 1.1 bouyer
1352 1.1 bouyer /* Build the command word. */
1353 1.1 bouyer cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1354 1.1 bouyer
1355 1.1 bouyer /* Calculate the offset for buffered flash. */
1356 1.1 bouyer if (sc->bnx_flash_info->buffered)
1357 1.1 bouyer offset = ((offset / sc->bnx_flash_info->page_size) <<
1358 1.1 bouyer sc->bnx_flash_info->page_bits) +
1359 1.1 bouyer (offset % sc->bnx_flash_info->page_size);
1360 1.1 bouyer
1361 1.1 bouyer /*
1362 1.1 bouyer * Clear the DONE bit separately, convert NVRAM data to big-endian,
1363 1.1 bouyer * set the NVRAM address to write, and issue the write command
1364 1.1 bouyer */
1365 1.1 bouyer REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1366 1.1 bouyer memcpy(&val32, val, 4);
1367 1.1 bouyer val32 = htobe32(val32);
1368 1.1 bouyer REG_WR(sc, BNX_NVM_WRITE, val32);
1369 1.1 bouyer REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1370 1.1 bouyer REG_WR(sc, BNX_NVM_COMMAND, cmd);
1371 1.1 bouyer
1372 1.1 bouyer /* Wait for completion. */
1373 1.1 bouyer for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1374 1.1 bouyer DELAY(5);
1375 1.1 bouyer
1376 1.1 bouyer if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1377 1.1 bouyer break;
1378 1.1 bouyer }
1379 1.1 bouyer if (j >= NVRAM_TIMEOUT_COUNT) {
1380 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1381 1.1 bouyer "offset 0x%08X\n", __FILE__, __LINE__, offset);
1382 1.1 bouyer return (EBUSY);
1383 1.1 bouyer }
1384 1.1 bouyer
1385 1.1 bouyer return (0);
1386 1.1 bouyer }
1387 1.1 bouyer #endif /* BNX_NVRAM_WRITE_SUPPORT */
1388 1.1 bouyer
1389 1.1 bouyer /****************************************************************************/
1390 1.1 bouyer /* Initialize NVRAM access. */
1391 1.1 bouyer /* */
1392 1.1 bouyer /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1393 1.1 bouyer /* access that device. */
1394 1.1 bouyer /* */
1395 1.1 bouyer /* Returns: */
1396 1.1 bouyer /* 0 on success, positive value on failure. */
1397 1.1 bouyer /****************************************************************************/
1398 1.1 bouyer int
1399 1.1 bouyer bnx_init_nvram(struct bnx_softc *sc)
1400 1.1 bouyer {
1401 1.1 bouyer u_int32_t val;
1402 1.1 bouyer int j, entry_count, rc;
1403 1.1 bouyer struct flash_spec *flash;
1404 1.1 bouyer
1405 1.12 perry DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1406 1.1 bouyer
1407 1.1 bouyer /* Determine the selected interface. */
1408 1.1 bouyer val = REG_RD(sc, BNX_NVM_CFG1);
1409 1.1 bouyer
1410 1.1 bouyer entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1411 1.1 bouyer
1412 1.1 bouyer rc = 0;
1413 1.1 bouyer
1414 1.1 bouyer /*
1415 1.1 bouyer * Flash reconfiguration is required to support additional
1416 1.1 bouyer * NVRAM devices not directly supported in hardware.
1417 1.1 bouyer * Check if the flash interface was reconfigured
1418 1.1 bouyer * by the bootcode.
1419 1.1 bouyer */
1420 1.1 bouyer
1421 1.1 bouyer if (val & 0x40000000) {
1422 1.1 bouyer /* Flash interface reconfigured by bootcode. */
1423 1.1 bouyer
1424 1.1 bouyer DBPRINT(sc,BNX_INFO_LOAD,
1425 1.1 bouyer "bnx_init_nvram(): Flash WAS reconfigured.\n");
1426 1.1 bouyer
1427 1.1 bouyer for (j = 0, flash = &flash_table[0]; j < entry_count;
1428 1.1 bouyer j++, flash++) {
1429 1.1 bouyer if ((val & FLASH_BACKUP_STRAP_MASK) ==
1430 1.1 bouyer (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1431 1.1 bouyer sc->bnx_flash_info = flash;
1432 1.1 bouyer break;
1433 1.1 bouyer }
1434 1.1 bouyer }
1435 1.1 bouyer } else {
1436 1.1 bouyer /* Flash interface not yet reconfigured. */
1437 1.1 bouyer u_int32_t mask;
1438 1.1 bouyer
1439 1.1 bouyer DBPRINT(sc,BNX_INFO_LOAD,
1440 1.1 bouyer "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1441 1.1 bouyer
1442 1.1 bouyer if (val & (1 << 23))
1443 1.1 bouyer mask = FLASH_BACKUP_STRAP_MASK;
1444 1.1 bouyer else
1445 1.1 bouyer mask = FLASH_STRAP_MASK;
1446 1.1 bouyer
1447 1.1 bouyer /* Look for the matching NVRAM device configuration data. */
1448 1.1 bouyer for (j = 0, flash = &flash_table[0]; j < entry_count;
1449 1.1 bouyer j++, flash++) {
1450 1.1 bouyer /* Check if the dev matches any of the known devices. */
1451 1.1 bouyer if ((val & mask) == (flash->strapping & mask)) {
1452 1.1 bouyer /* Found a device match. */
1453 1.1 bouyer sc->bnx_flash_info = flash;
1454 1.1 bouyer
1455 1.1 bouyer /* Request access to the flash interface. */
1456 1.1 bouyer if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1457 1.1 bouyer return (rc);
1458 1.1 bouyer
1459 1.1 bouyer /* Reconfigure the flash interface. */
1460 1.1 bouyer bnx_enable_nvram_access(sc);
1461 1.1 bouyer REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1462 1.1 bouyer REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1463 1.1 bouyer REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1464 1.1 bouyer REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1465 1.1 bouyer bnx_disable_nvram_access(sc);
1466 1.1 bouyer bnx_release_nvram_lock(sc);
1467 1.1 bouyer
1468 1.1 bouyer break;
1469 1.1 bouyer }
1470 1.1 bouyer }
1471 1.1 bouyer }
1472 1.1 bouyer
1473 1.1 bouyer /* Check if a matching device was found. */
1474 1.1 bouyer if (j == entry_count) {
1475 1.1 bouyer sc->bnx_flash_info = NULL;
1476 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1477 1.1 bouyer __FILE__, __LINE__);
1478 1.1 bouyer rc = ENODEV;
1479 1.1 bouyer }
1480 1.1 bouyer
1481 1.1 bouyer /* Write the flash config data to the shared memory interface. */
1482 1.1 bouyer val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1483 1.1 bouyer val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1484 1.1 bouyer if (val)
1485 1.1 bouyer sc->bnx_flash_size = val;
1486 1.1 bouyer else
1487 1.1 bouyer sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1488 1.1 bouyer
1489 1.1 bouyer DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1490 1.1 bouyer "0x%08X\n", sc->bnx_flash_info->total_size);
1491 1.1 bouyer
1492 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1493 1.1 bouyer
1494 1.1 bouyer return (rc);
1495 1.1 bouyer }
1496 1.1 bouyer
1497 1.1 bouyer /****************************************************************************/
1498 1.1 bouyer /* Read an arbitrary range of data from NVRAM. */
1499 1.1 bouyer /* */
1500 1.1 bouyer /* Prepares the NVRAM interface for access and reads the requested data */
1501 1.1 bouyer /* into the supplied buffer. */
1502 1.1 bouyer /* */
1503 1.1 bouyer /* Returns: */
1504 1.1 bouyer /* 0 on success and the data read, positive value on failure. */
1505 1.1 bouyer /****************************************************************************/
1506 1.1 bouyer int
1507 1.1 bouyer bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1508 1.1 bouyer int buf_size)
1509 1.1 bouyer {
1510 1.1 bouyer int rc = 0;
1511 1.1 bouyer u_int32_t cmd_flags, offset32, len32, extra;
1512 1.1 bouyer
1513 1.1 bouyer if (buf_size == 0)
1514 1.1 bouyer return (0);
1515 1.1 bouyer
1516 1.1 bouyer /* Request access to the flash interface. */
1517 1.1 bouyer if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1518 1.1 bouyer return (rc);
1519 1.1 bouyer
1520 1.1 bouyer /* Enable access to flash interface */
1521 1.1 bouyer bnx_enable_nvram_access(sc);
1522 1.1 bouyer
1523 1.1 bouyer len32 = buf_size;
1524 1.1 bouyer offset32 = offset;
1525 1.1 bouyer extra = 0;
1526 1.1 bouyer
1527 1.1 bouyer cmd_flags = 0;
1528 1.1 bouyer
1529 1.1 bouyer if (offset32 & 3) {
1530 1.1 bouyer u_int8_t buf[4];
1531 1.1 bouyer u_int32_t pre_len;
1532 1.1 bouyer
1533 1.1 bouyer offset32 &= ~3;
1534 1.1 bouyer pre_len = 4 - (offset & 3);
1535 1.1 bouyer
1536 1.1 bouyer if (pre_len >= len32) {
1537 1.1 bouyer pre_len = len32;
1538 1.1 bouyer cmd_flags =
1539 1.1 bouyer BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1540 1.1 bouyer } else
1541 1.1 bouyer cmd_flags = BNX_NVM_COMMAND_FIRST;
1542 1.1 bouyer
1543 1.1 bouyer rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1544 1.1 bouyer
1545 1.1 bouyer if (rc)
1546 1.1 bouyer return (rc);
1547 1.1 bouyer
1548 1.1 bouyer memcpy(ret_buf, buf + (offset & 3), pre_len);
1549 1.1 bouyer
1550 1.1 bouyer offset32 += 4;
1551 1.1 bouyer ret_buf += pre_len;
1552 1.1 bouyer len32 -= pre_len;
1553 1.1 bouyer }
1554 1.1 bouyer
1555 1.1 bouyer if (len32 & 3) {
1556 1.1 bouyer extra = 4 - (len32 & 3);
1557 1.1 bouyer len32 = (len32 + 4) & ~3;
1558 1.1 bouyer }
1559 1.1 bouyer
1560 1.1 bouyer if (len32 == 4) {
1561 1.1 bouyer u_int8_t buf[4];
1562 1.1 bouyer
1563 1.1 bouyer if (cmd_flags)
1564 1.1 bouyer cmd_flags = BNX_NVM_COMMAND_LAST;
1565 1.1 bouyer else
1566 1.1 bouyer cmd_flags =
1567 1.1 bouyer BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1568 1.1 bouyer
1569 1.1 bouyer rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1570 1.1 bouyer
1571 1.1 bouyer memcpy(ret_buf, buf, 4 - extra);
1572 1.1 bouyer } else if (len32 > 0) {
1573 1.1 bouyer u_int8_t buf[4];
1574 1.1 bouyer
1575 1.1 bouyer /* Read the first word. */
1576 1.1 bouyer if (cmd_flags)
1577 1.1 bouyer cmd_flags = 0;
1578 1.1 bouyer else
1579 1.1 bouyer cmd_flags = BNX_NVM_COMMAND_FIRST;
1580 1.1 bouyer
1581 1.1 bouyer rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1582 1.1 bouyer
1583 1.1 bouyer /* Advance to the next dword. */
1584 1.1 bouyer offset32 += 4;
1585 1.1 bouyer ret_buf += 4;
1586 1.1 bouyer len32 -= 4;
1587 1.1 bouyer
1588 1.1 bouyer while (len32 > 4 && rc == 0) {
1589 1.1 bouyer rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1590 1.1 bouyer
1591 1.1 bouyer /* Advance to the next dword. */
1592 1.1 bouyer offset32 += 4;
1593 1.1 bouyer ret_buf += 4;
1594 1.1 bouyer len32 -= 4;
1595 1.1 bouyer }
1596 1.1 bouyer
1597 1.1 bouyer if (rc)
1598 1.1 bouyer return (rc);
1599 1.1 bouyer
1600 1.1 bouyer cmd_flags = BNX_NVM_COMMAND_LAST;
1601 1.1 bouyer rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1602 1.1 bouyer
1603 1.1 bouyer memcpy(ret_buf, buf, 4 - extra);
1604 1.1 bouyer }
1605 1.1 bouyer
1606 1.1 bouyer /* Disable access to flash interface and release the lock. */
1607 1.1 bouyer bnx_disable_nvram_access(sc);
1608 1.1 bouyer bnx_release_nvram_lock(sc);
1609 1.1 bouyer
1610 1.1 bouyer return (rc);
1611 1.1 bouyer }
1612 1.1 bouyer
1613 1.1 bouyer #ifdef BNX_NVRAM_WRITE_SUPPORT
1614 1.1 bouyer /****************************************************************************/
1615 1.1 bouyer /* Write an arbitrary range of data from NVRAM. */
1616 1.1 bouyer /* */
1617 1.1 bouyer /* Prepares the NVRAM interface for write access and writes the requested */
1618 1.1 bouyer /* data from the supplied buffer. The caller is responsible for */
1619 1.1 bouyer /* calculating any appropriate CRCs. */
1620 1.1 bouyer /* */
1621 1.1 bouyer /* Returns: */
1622 1.1 bouyer /* 0 on success, positive value on failure. */
1623 1.1 bouyer /****************************************************************************/
1624 1.1 bouyer int
1625 1.1 bouyer bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1626 1.1 bouyer int buf_size)
1627 1.1 bouyer {
1628 1.1 bouyer u_int32_t written, offset32, len32;
1629 1.1 bouyer u_int8_t *buf, start[4], end[4];
1630 1.1 bouyer int rc = 0;
1631 1.1 bouyer int align_start, align_end;
1632 1.1 bouyer
1633 1.1 bouyer buf = data_buf;
1634 1.1 bouyer offset32 = offset;
1635 1.1 bouyer len32 = buf_size;
1636 1.1 bouyer align_start = align_end = 0;
1637 1.1 bouyer
1638 1.1 bouyer if ((align_start = (offset32 & 3))) {
1639 1.1 bouyer offset32 &= ~3;
1640 1.1 bouyer len32 += align_start;
1641 1.1 bouyer if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1642 1.1 bouyer return (rc);
1643 1.1 bouyer }
1644 1.1 bouyer
1645 1.1 bouyer if (len32 & 3) {
1646 1.1 bouyer if ((len32 > 4) || !align_start) {
1647 1.1 bouyer align_end = 4 - (len32 & 3);
1648 1.1 bouyer len32 += align_end;
1649 1.1 bouyer if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1650 1.1 bouyer end, 4))) {
1651 1.1 bouyer return (rc);
1652 1.1 bouyer }
1653 1.1 bouyer }
1654 1.1 bouyer }
1655 1.1 bouyer
1656 1.1 bouyer if (align_start || align_end) {
1657 1.1 bouyer buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1658 1.1 bouyer if (buf == 0)
1659 1.1 bouyer return (ENOMEM);
1660 1.1 bouyer
1661 1.1 bouyer if (align_start)
1662 1.1 bouyer memcpy(buf, start, 4);
1663 1.1 bouyer
1664 1.1 bouyer if (align_end)
1665 1.1 bouyer memcpy(buf + len32 - 4, end, 4);
1666 1.1 bouyer
1667 1.1 bouyer memcpy(buf + align_start, data_buf, buf_size);
1668 1.1 bouyer }
1669 1.1 bouyer
1670 1.1 bouyer written = 0;
1671 1.1 bouyer while ((written < len32) && (rc == 0)) {
1672 1.1 bouyer u_int32_t page_start, page_end, data_start, data_end;
1673 1.1 bouyer u_int32_t addr, cmd_flags;
1674 1.1 bouyer int i;
1675 1.1 bouyer u_int8_t flash_buffer[264];
1676 1.1 bouyer
1677 1.1 bouyer /* Find the page_start addr */
1678 1.1 bouyer page_start = offset32 + written;
1679 1.1 bouyer page_start -= (page_start % sc->bnx_flash_info->page_size);
1680 1.1 bouyer /* Find the page_end addr */
1681 1.1 bouyer page_end = page_start + sc->bnx_flash_info->page_size;
1682 1.1 bouyer /* Find the data_start addr */
1683 1.1 bouyer data_start = (written == 0) ? offset32 : page_start;
1684 1.1 bouyer /* Find the data_end addr */
1685 1.1 bouyer data_end = (page_end > offset32 + len32) ?
1686 1.1 bouyer (offset32 + len32) : page_end;
1687 1.1 bouyer
1688 1.1 bouyer /* Request access to the flash interface. */
1689 1.1 bouyer if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1690 1.1 bouyer goto nvram_write_end;
1691 1.1 bouyer
1692 1.1 bouyer /* Enable access to flash interface */
1693 1.1 bouyer bnx_enable_nvram_access(sc);
1694 1.1 bouyer
1695 1.1 bouyer cmd_flags = BNX_NVM_COMMAND_FIRST;
1696 1.1 bouyer if (sc->bnx_flash_info->buffered == 0) {
1697 1.1 bouyer int j;
1698 1.1 bouyer
1699 1.1 bouyer /* Read the whole page into the buffer
1700 1.1 bouyer * (non-buffer flash only) */
1701 1.1 bouyer for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1702 1.1 bouyer if (j == (sc->bnx_flash_info->page_size - 4))
1703 1.1 bouyer cmd_flags |= BNX_NVM_COMMAND_LAST;
1704 1.1 bouyer
1705 1.1 bouyer rc = bnx_nvram_read_dword(sc,
1706 1.1 bouyer page_start + j,
1707 1.1 bouyer &flash_buffer[j],
1708 1.1 bouyer cmd_flags);
1709 1.1 bouyer
1710 1.1 bouyer if (rc)
1711 1.1 bouyer goto nvram_write_end;
1712 1.1 bouyer
1713 1.1 bouyer cmd_flags = 0;
1714 1.1 bouyer }
1715 1.1 bouyer }
1716 1.1 bouyer
1717 1.1 bouyer /* Enable writes to flash interface (unlock write-protect) */
1718 1.1 bouyer if ((rc = bnx_enable_nvram_write(sc)) != 0)
1719 1.1 bouyer goto nvram_write_end;
1720 1.1 bouyer
1721 1.1 bouyer /* Erase the page */
1722 1.1 bouyer if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1723 1.1 bouyer goto nvram_write_end;
1724 1.1 bouyer
1725 1.1 bouyer /* Re-enable the write again for the actual write */
1726 1.1 bouyer bnx_enable_nvram_write(sc);
1727 1.1 bouyer
1728 1.1 bouyer /* Loop to write back the buffer data from page_start to
1729 1.1 bouyer * data_start */
1730 1.1 bouyer i = 0;
1731 1.1 bouyer if (sc->bnx_flash_info->buffered == 0) {
1732 1.1 bouyer for (addr = page_start; addr < data_start;
1733 1.1 bouyer addr += 4, i += 4) {
1734 1.1 bouyer
1735 1.1 bouyer rc = bnx_nvram_write_dword(sc, addr,
1736 1.1 bouyer &flash_buffer[i], cmd_flags);
1737 1.1 bouyer
1738 1.1 bouyer if (rc != 0)
1739 1.1 bouyer goto nvram_write_end;
1740 1.1 bouyer
1741 1.1 bouyer cmd_flags = 0;
1742 1.1 bouyer }
1743 1.1 bouyer }
1744 1.1 bouyer
1745 1.1 bouyer /* Loop to write the new data from data_start to data_end */
1746 1.1 bouyer for (addr = data_start; addr < data_end; addr += 4, i++) {
1747 1.1 bouyer if ((addr == page_end - 4) ||
1748 1.1 bouyer ((sc->bnx_flash_info->buffered) &&
1749 1.1 bouyer (addr == data_end - 4))) {
1750 1.1 bouyer
1751 1.1 bouyer cmd_flags |= BNX_NVM_COMMAND_LAST;
1752 1.1 bouyer }
1753 1.1 bouyer
1754 1.1 bouyer rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1755 1.1 bouyer
1756 1.1 bouyer if (rc != 0)
1757 1.1 bouyer goto nvram_write_end;
1758 1.1 bouyer
1759 1.1 bouyer cmd_flags = 0;
1760 1.1 bouyer buf += 4;
1761 1.1 bouyer }
1762 1.1 bouyer
1763 1.1 bouyer /* Loop to write back the buffer data from data_end
1764 1.1 bouyer * to page_end */
1765 1.1 bouyer if (sc->bnx_flash_info->buffered == 0) {
1766 1.1 bouyer for (addr = data_end; addr < page_end;
1767 1.1 bouyer addr += 4, i += 4) {
1768 1.1 bouyer
1769 1.1 bouyer if (addr == page_end-4)
1770 1.1 bouyer cmd_flags = BNX_NVM_COMMAND_LAST;
1771 1.1 bouyer
1772 1.1 bouyer rc = bnx_nvram_write_dword(sc, addr,
1773 1.1 bouyer &flash_buffer[i], cmd_flags);
1774 1.1 bouyer
1775 1.1 bouyer if (rc != 0)
1776 1.1 bouyer goto nvram_write_end;
1777 1.1 bouyer
1778 1.1 bouyer cmd_flags = 0;
1779 1.1 bouyer }
1780 1.1 bouyer }
1781 1.1 bouyer
1782 1.1 bouyer /* Disable writes to flash interface (lock write-protect) */
1783 1.1 bouyer bnx_disable_nvram_write(sc);
1784 1.1 bouyer
1785 1.1 bouyer /* Disable access to flash interface */
1786 1.1 bouyer bnx_disable_nvram_access(sc);
1787 1.1 bouyer bnx_release_nvram_lock(sc);
1788 1.1 bouyer
1789 1.1 bouyer /* Increment written */
1790 1.1 bouyer written += data_end - data_start;
1791 1.1 bouyer }
1792 1.1 bouyer
1793 1.1 bouyer nvram_write_end:
1794 1.1 bouyer if (align_start || align_end)
1795 1.1 bouyer free(buf, M_DEVBUF);
1796 1.1 bouyer
1797 1.1 bouyer return (rc);
1798 1.1 bouyer }
1799 1.1 bouyer #endif /* BNX_NVRAM_WRITE_SUPPORT */
1800 1.1 bouyer
1801 1.1 bouyer /****************************************************************************/
1802 1.1 bouyer /* Verifies that NVRAM is accessible and contains valid data. */
1803 1.1 bouyer /* */
1804 1.1 bouyer /* Reads the configuration data from NVRAM and verifies that the CRC is */
1805 1.1 bouyer /* correct. */
1806 1.1 bouyer /* */
1807 1.1 bouyer /* Returns: */
1808 1.1 bouyer /* 0 on success, positive value on failure. */
1809 1.1 bouyer /****************************************************************************/
1810 1.1 bouyer int
1811 1.1 bouyer bnx_nvram_test(struct bnx_softc *sc)
1812 1.1 bouyer {
1813 1.1 bouyer u_int32_t buf[BNX_NVRAM_SIZE / 4];
1814 1.1 bouyer u_int8_t *data = (u_int8_t *) buf;
1815 1.1 bouyer int rc = 0;
1816 1.1 bouyer u_int32_t magic, csum;
1817 1.1 bouyer
1818 1.1 bouyer /*
1819 1.1 bouyer * Check that the device NVRAM is valid by reading
1820 1.1 bouyer * the magic value at offset 0.
1821 1.1 bouyer */
1822 1.1 bouyer if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1823 1.1 bouyer goto bnx_nvram_test_done;
1824 1.1 bouyer
1825 1.1 bouyer magic = bnx_be32toh(buf[0]);
1826 1.1 bouyer if (magic != BNX_NVRAM_MAGIC) {
1827 1.1 bouyer rc = ENODEV;
1828 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1829 1.1 bouyer "Expected: 0x%08X, Found: 0x%08X\n",
1830 1.1 bouyer __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1831 1.1 bouyer goto bnx_nvram_test_done;
1832 1.1 bouyer }
1833 1.1 bouyer
1834 1.1 bouyer /*
1835 1.1 bouyer * Verify that the device NVRAM includes valid
1836 1.1 bouyer * configuration data.
1837 1.1 bouyer */
1838 1.1 bouyer if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1839 1.1 bouyer goto bnx_nvram_test_done;
1840 1.1 bouyer
1841 1.1 bouyer csum = ether_crc32_le(data, 0x100);
1842 1.1 bouyer if (csum != BNX_CRC32_RESIDUAL) {
1843 1.1 bouyer rc = ENODEV;
1844 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1845 1.1 bouyer "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1846 1.1 bouyer __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1847 1.1 bouyer goto bnx_nvram_test_done;
1848 1.1 bouyer }
1849 1.1 bouyer
1850 1.1 bouyer csum = ether_crc32_le(data + 0x100, 0x100);
1851 1.1 bouyer if (csum != BNX_CRC32_RESIDUAL) {
1852 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1853 1.1 bouyer "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1854 1.1 bouyer __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1855 1.1 bouyer rc = ENODEV;
1856 1.1 bouyer }
1857 1.1 bouyer
1858 1.1 bouyer bnx_nvram_test_done:
1859 1.1 bouyer return (rc);
1860 1.1 bouyer }
1861 1.1 bouyer
1862 1.1 bouyer /****************************************************************************/
1863 1.1 bouyer /* Free any DMA memory owned by the driver. */
1864 1.1 bouyer /* */
1865 1.1 bouyer /* Scans through each data structre that requires DMA memory and frees */
1866 1.1 bouyer /* the memory if allocated. */
1867 1.1 bouyer /* */
1868 1.1 bouyer /* Returns: */
1869 1.1 bouyer /* Nothing. */
1870 1.1 bouyer /****************************************************************************/
1871 1.1 bouyer void
1872 1.1 bouyer bnx_dma_free(struct bnx_softc *sc)
1873 1.1 bouyer {
1874 1.1 bouyer int i;
1875 1.1 bouyer
1876 1.12 perry DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1877 1.1 bouyer
1878 1.1 bouyer /* Destroy the status block. */
1879 1.1 bouyer if (sc->status_block != NULL && sc->status_map != NULL) {
1880 1.1 bouyer bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
1881 1.3 christos bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
1882 1.1 bouyer BNX_STATUS_BLK_SZ);
1883 1.1 bouyer bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
1884 1.1 bouyer sc->status_rseg);
1885 1.1 bouyer bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
1886 1.1 bouyer sc->status_block = NULL;
1887 1.1 bouyer sc->status_map = NULL;
1888 1.1 bouyer }
1889 1.1 bouyer
1890 1.1 bouyer /* Destroy the statistics block. */
1891 1.1 bouyer if (sc->stats_block != NULL && sc->stats_map != NULL) {
1892 1.1 bouyer bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
1893 1.3 christos bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
1894 1.1 bouyer BNX_STATS_BLK_SZ);
1895 1.1 bouyer bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
1896 1.1 bouyer sc->stats_rseg);
1897 1.1 bouyer bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
1898 1.1 bouyer sc->stats_block = NULL;
1899 1.1 bouyer sc->stats_map = NULL;
1900 1.1 bouyer }
1901 1.1 bouyer
1902 1.1 bouyer /* Free, unmap and destroy all TX buffer descriptor chain pages. */
1903 1.1 bouyer for (i = 0; i < TX_PAGES; i++ ) {
1904 1.1 bouyer if (sc->tx_bd_chain[i] != NULL &&
1905 1.1 bouyer sc->tx_bd_chain_map[i] != NULL) {
1906 1.1 bouyer bus_dmamap_unload(sc->bnx_dmatag,
1907 1.1 bouyer sc->tx_bd_chain_map[i]);
1908 1.1 bouyer bus_dmamem_unmap(sc->bnx_dmatag,
1909 1.3 christos (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
1910 1.1 bouyer bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
1911 1.1 bouyer sc->tx_bd_chain_rseg[i]);
1912 1.1 bouyer bus_dmamap_destroy(sc->bnx_dmatag,
1913 1.1 bouyer sc->tx_bd_chain_map[i]);
1914 1.1 bouyer sc->tx_bd_chain[i] = NULL;
1915 1.1 bouyer sc->tx_bd_chain_map[i] = NULL;
1916 1.1 bouyer }
1917 1.1 bouyer }
1918 1.1 bouyer
1919 1.1 bouyer /* Unload and destroy the TX mbuf maps. */
1920 1.1 bouyer for (i = 0; i < TOTAL_TX_BD; i++) {
1921 1.1 bouyer if (sc->tx_mbuf_map[i] != NULL) {
1922 1.1 bouyer bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1923 1.1 bouyer bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1924 1.1 bouyer }
1925 1.1 bouyer }
1926 1.1 bouyer
1927 1.1 bouyer /* Free, unmap and destroy all RX buffer descriptor chain pages. */
1928 1.1 bouyer for (i = 0; i < RX_PAGES; i++ ) {
1929 1.1 bouyer if (sc->rx_bd_chain[i] != NULL &&
1930 1.1 bouyer sc->rx_bd_chain_map[i] != NULL) {
1931 1.1 bouyer bus_dmamap_unload(sc->bnx_dmatag,
1932 1.1 bouyer sc->rx_bd_chain_map[i]);
1933 1.1 bouyer bus_dmamem_unmap(sc->bnx_dmatag,
1934 1.3 christos (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
1935 1.1 bouyer bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
1936 1.1 bouyer sc->rx_bd_chain_rseg[i]);
1937 1.1 bouyer
1938 1.1 bouyer bus_dmamap_destroy(sc->bnx_dmatag,
1939 1.1 bouyer sc->rx_bd_chain_map[i]);
1940 1.1 bouyer sc->rx_bd_chain[i] = NULL;
1941 1.1 bouyer sc->rx_bd_chain_map[i] = NULL;
1942 1.1 bouyer }
1943 1.1 bouyer }
1944 1.1 bouyer
1945 1.1 bouyer /* Unload and destroy the RX mbuf maps. */
1946 1.1 bouyer for (i = 0; i < TOTAL_RX_BD; i++) {
1947 1.1 bouyer if (sc->rx_mbuf_map[i] != NULL) {
1948 1.1 bouyer bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1949 1.1 bouyer bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1950 1.1 bouyer }
1951 1.1 bouyer }
1952 1.1 bouyer
1953 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1954 1.1 bouyer }
1955 1.1 bouyer
1956 1.1 bouyer /****************************************************************************/
1957 1.1 bouyer /* Allocate any DMA memory needed by the driver. */
1958 1.1 bouyer /* */
1959 1.1 bouyer /* Allocates DMA memory needed for the various global structures needed by */
1960 1.1 bouyer /* hardware. */
1961 1.1 bouyer /* */
1962 1.1 bouyer /* Returns: */
1963 1.1 bouyer /* 0 for success, positive value for failure. */
1964 1.1 bouyer /****************************************************************************/
1965 1.1 bouyer int
1966 1.1 bouyer bnx_dma_alloc(struct bnx_softc *sc)
1967 1.1 bouyer {
1968 1.1 bouyer int i, rc = 0;
1969 1.1 bouyer
1970 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1971 1.1 bouyer
1972 1.1 bouyer /*
1973 1.1 bouyer * Allocate DMA memory for the status block, map the memory into DMA
1974 1.1 bouyer * space, and fetch the physical address of the block.
1975 1.1 bouyer */
1976 1.1 bouyer if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
1977 1.1 bouyer BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
1978 1.13 dyoung aprint_error_dev(sc->bnx_dev,
1979 1.13 dyoung "Could not create status block DMA map!\n");
1980 1.1 bouyer rc = ENOMEM;
1981 1.1 bouyer goto bnx_dma_alloc_exit;
1982 1.1 bouyer }
1983 1.1 bouyer
1984 1.1 bouyer if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
1985 1.1 bouyer BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
1986 1.1 bouyer &sc->status_rseg, BUS_DMA_NOWAIT)) {
1987 1.13 dyoung aprint_error_dev(sc->bnx_dev,
1988 1.13 dyoung "Could not allocate status block DMA memory!\n");
1989 1.1 bouyer rc = ENOMEM;
1990 1.1 bouyer goto bnx_dma_alloc_exit;
1991 1.1 bouyer }
1992 1.1 bouyer
1993 1.1 bouyer if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
1994 1.3 christos BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
1995 1.13 dyoung aprint_error_dev(sc->bnx_dev,
1996 1.13 dyoung "Could not map status block DMA memory!\n");
1997 1.1 bouyer rc = ENOMEM;
1998 1.1 bouyer goto bnx_dma_alloc_exit;
1999 1.1 bouyer }
2000 1.1 bouyer
2001 1.1 bouyer if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2002 1.1 bouyer sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2003 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2004 1.13 dyoung "Could not load status block DMA memory!\n");
2005 1.1 bouyer rc = ENOMEM;
2006 1.1 bouyer goto bnx_dma_alloc_exit;
2007 1.1 bouyer }
2008 1.1 bouyer
2009 1.1 bouyer sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2010 1.23 cegger memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2011 1.1 bouyer
2012 1.1 bouyer /* DRC - Fix for 64 bit addresses. */
2013 1.1 bouyer DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2014 1.1 bouyer (u_int32_t) sc->status_block_paddr);
2015 1.1 bouyer
2016 1.1 bouyer /*
2017 1.1 bouyer * Allocate DMA memory for the statistics block, map the memory into
2018 1.1 bouyer * DMA space, and fetch the physical address of the block.
2019 1.1 bouyer */
2020 1.1 bouyer if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2021 1.1 bouyer BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2022 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2023 1.13 dyoung "Could not create stats block DMA map!\n");
2024 1.1 bouyer rc = ENOMEM;
2025 1.1 bouyer goto bnx_dma_alloc_exit;
2026 1.1 bouyer }
2027 1.1 bouyer
2028 1.1 bouyer if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2029 1.1 bouyer BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2030 1.1 bouyer &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2031 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2032 1.13 dyoung "Could not allocate stats block DMA memory!\n");
2033 1.1 bouyer rc = ENOMEM;
2034 1.1 bouyer goto bnx_dma_alloc_exit;
2035 1.1 bouyer }
2036 1.1 bouyer
2037 1.1 bouyer if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2038 1.3 christos BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2039 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2040 1.13 dyoung "Could not map stats block DMA memory!\n");
2041 1.1 bouyer rc = ENOMEM;
2042 1.1 bouyer goto bnx_dma_alloc_exit;
2043 1.1 bouyer }
2044 1.1 bouyer
2045 1.1 bouyer if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2046 1.1 bouyer sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2047 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2048 1.13 dyoung "Could not load status block DMA memory!\n");
2049 1.1 bouyer rc = ENOMEM;
2050 1.1 bouyer goto bnx_dma_alloc_exit;
2051 1.1 bouyer }
2052 1.1 bouyer
2053 1.1 bouyer sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2054 1.23 cegger memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2055 1.1 bouyer
2056 1.1 bouyer /* DRC - Fix for 64 bit address. */
2057 1.1 bouyer DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2058 1.1 bouyer (u_int32_t) sc->stats_block_paddr);
2059 1.1 bouyer
2060 1.1 bouyer /*
2061 1.1 bouyer * Allocate DMA memory for the TX buffer descriptor chain,
2062 1.1 bouyer * and fetch the physical address of the block.
2063 1.1 bouyer */
2064 1.1 bouyer for (i = 0; i < TX_PAGES; i++) {
2065 1.1 bouyer if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2066 1.1 bouyer BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2067 1.1 bouyer &sc->tx_bd_chain_map[i])) {
2068 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2069 1.13 dyoung "Could not create Tx desc %d DMA map!\n", i);
2070 1.1 bouyer rc = ENOMEM;
2071 1.1 bouyer goto bnx_dma_alloc_exit;
2072 1.1 bouyer }
2073 1.1 bouyer
2074 1.1 bouyer if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2075 1.1 bouyer BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2076 1.1 bouyer &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2077 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2078 1.13 dyoung "Could not allocate TX desc %d DMA memory!\n",
2079 1.13 dyoung i);
2080 1.1 bouyer rc = ENOMEM;
2081 1.1 bouyer goto bnx_dma_alloc_exit;
2082 1.1 bouyer }
2083 1.1 bouyer
2084 1.1 bouyer if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2085 1.1 bouyer sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2086 1.3 christos (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2087 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2088 1.13 dyoung "Could not map TX desc %d DMA memory!\n", i);
2089 1.1 bouyer rc = ENOMEM;
2090 1.1 bouyer goto bnx_dma_alloc_exit;
2091 1.1 bouyer }
2092 1.1 bouyer
2093 1.1 bouyer if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2094 1.3 christos (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2095 1.1 bouyer BUS_DMA_NOWAIT)) {
2096 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2097 1.13 dyoung "Could not load TX desc %d DMA memory!\n", i);
2098 1.1 bouyer rc = ENOMEM;
2099 1.1 bouyer goto bnx_dma_alloc_exit;
2100 1.1 bouyer }
2101 1.1 bouyer
2102 1.1 bouyer sc->tx_bd_chain_paddr[i] =
2103 1.1 bouyer sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2104 1.1 bouyer
2105 1.1 bouyer /* DRC - Fix for 64 bit systems. */
2106 1.1 bouyer DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2107 1.1 bouyer i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2108 1.1 bouyer }
2109 1.1 bouyer
2110 1.1 bouyer /*
2111 1.1 bouyer * Create DMA maps for the TX buffer mbufs.
2112 1.1 bouyer */
2113 1.1 bouyer for (i = 0; i < TOTAL_TX_BD; i++) {
2114 1.1 bouyer if (bus_dmamap_create(sc->bnx_dmatag,
2115 1.1 bouyer MCLBYTES * BNX_MAX_SEGMENTS,
2116 1.1 bouyer USABLE_TX_BD - BNX_TX_SLACK_SPACE,
2117 1.1 bouyer MCLBYTES, 0, BUS_DMA_NOWAIT,
2118 1.1 bouyer &sc->tx_mbuf_map[i])) {
2119 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2120 1.13 dyoung "Could not create Tx mbuf %d DMA map!\n", i);
2121 1.1 bouyer rc = ENOMEM;
2122 1.1 bouyer goto bnx_dma_alloc_exit;
2123 1.1 bouyer }
2124 1.1 bouyer }
2125 1.1 bouyer
2126 1.1 bouyer /*
2127 1.1 bouyer * Allocate DMA memory for the Rx buffer descriptor chain,
2128 1.1 bouyer * and fetch the physical address of the block.
2129 1.1 bouyer */
2130 1.1 bouyer for (i = 0; i < RX_PAGES; i++) {
2131 1.1 bouyer if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2132 1.1 bouyer BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2133 1.1 bouyer &sc->rx_bd_chain_map[i])) {
2134 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2135 1.13 dyoung "Could not create Rx desc %d DMA map!\n", i);
2136 1.1 bouyer rc = ENOMEM;
2137 1.1 bouyer goto bnx_dma_alloc_exit;
2138 1.1 bouyer }
2139 1.1 bouyer
2140 1.1 bouyer if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2141 1.1 bouyer BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2142 1.1 bouyer &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2143 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2144 1.13 dyoung "Could not allocate Rx desc %d DMA memory!\n", i);
2145 1.1 bouyer rc = ENOMEM;
2146 1.1 bouyer goto bnx_dma_alloc_exit;
2147 1.1 bouyer }
2148 1.1 bouyer
2149 1.1 bouyer if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2150 1.1 bouyer sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2151 1.3 christos (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2152 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2153 1.13 dyoung "Could not map Rx desc %d DMA memory!\n", i);
2154 1.1 bouyer rc = ENOMEM;
2155 1.1 bouyer goto bnx_dma_alloc_exit;
2156 1.1 bouyer }
2157 1.1 bouyer
2158 1.1 bouyer if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2159 1.3 christos (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2160 1.1 bouyer BUS_DMA_NOWAIT)) {
2161 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2162 1.13 dyoung "Could not load Rx desc %d DMA memory!\n", i);
2163 1.1 bouyer rc = ENOMEM;
2164 1.1 bouyer goto bnx_dma_alloc_exit;
2165 1.1 bouyer }
2166 1.1 bouyer
2167 1.23 cegger memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2168 1.1 bouyer sc->rx_bd_chain_paddr[i] =
2169 1.1 bouyer sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2170 1.1 bouyer
2171 1.1 bouyer /* DRC - Fix for 64 bit systems. */
2172 1.1 bouyer DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2173 1.1 bouyer i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2174 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2175 1.1 bouyer 0, BNX_RX_CHAIN_PAGE_SZ,
2176 1.1 bouyer BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2177 1.1 bouyer }
2178 1.1 bouyer
2179 1.1 bouyer /*
2180 1.1 bouyer * Create DMA maps for the Rx buffer mbufs.
2181 1.1 bouyer */
2182 1.1 bouyer for (i = 0; i < TOTAL_RX_BD; i++) {
2183 1.1 bouyer if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
2184 1.1 bouyer BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
2185 1.1 bouyer &sc->rx_mbuf_map[i])) {
2186 1.13 dyoung aprint_error_dev(sc->bnx_dev,
2187 1.13 dyoung "Could not create Rx mbuf %d DMA map!\n", i);
2188 1.1 bouyer rc = ENOMEM;
2189 1.1 bouyer goto bnx_dma_alloc_exit;
2190 1.1 bouyer }
2191 1.1 bouyer }
2192 1.1 bouyer
2193 1.1 bouyer bnx_dma_alloc_exit:
2194 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2195 1.1 bouyer
2196 1.1 bouyer return(rc);
2197 1.1 bouyer }
2198 1.1 bouyer
2199 1.1 bouyer /****************************************************************************/
2200 1.1 bouyer /* Release all resources used by the driver. */
2201 1.1 bouyer /* */
2202 1.1 bouyer /* Releases all resources acquired by the driver including interrupts, */
2203 1.1 bouyer /* interrupt handler, interfaces, mutexes, and DMA memory. */
2204 1.1 bouyer /* */
2205 1.1 bouyer /* Returns: */
2206 1.1 bouyer /* Nothing. */
2207 1.1 bouyer /****************************************************************************/
2208 1.1 bouyer void
2209 1.1 bouyer bnx_release_resources(struct bnx_softc *sc)
2210 1.1 bouyer {
2211 1.1 bouyer struct pci_attach_args *pa = &(sc->bnx_pa);
2212 1.1 bouyer
2213 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2214 1.1 bouyer
2215 1.1 bouyer bnx_dma_free(sc);
2216 1.1 bouyer
2217 1.1 bouyer if (sc->bnx_intrhand != NULL)
2218 1.1 bouyer pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2219 1.1 bouyer
2220 1.1 bouyer if (sc->bnx_size)
2221 1.1 bouyer bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2222 1.1 bouyer
2223 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2224 1.1 bouyer }
2225 1.1 bouyer
2226 1.1 bouyer /****************************************************************************/
2227 1.1 bouyer /* Firmware synchronization. */
2228 1.1 bouyer /* */
2229 1.1 bouyer /* Before performing certain events such as a chip reset, synchronize with */
2230 1.1 bouyer /* the firmware first. */
2231 1.1 bouyer /* */
2232 1.1 bouyer /* Returns: */
2233 1.1 bouyer /* 0 for success, positive value for failure. */
2234 1.1 bouyer /****************************************************************************/
2235 1.1 bouyer int
2236 1.1 bouyer bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2237 1.1 bouyer {
2238 1.1 bouyer int i, rc = 0;
2239 1.1 bouyer u_int32_t val;
2240 1.1 bouyer
2241 1.1 bouyer /* Don't waste any time if we've timed out before. */
2242 1.1 bouyer if (sc->bnx_fw_timed_out) {
2243 1.1 bouyer rc = EBUSY;
2244 1.1 bouyer goto bnx_fw_sync_exit;
2245 1.1 bouyer }
2246 1.1 bouyer
2247 1.1 bouyer /* Increment the message sequence number. */
2248 1.1 bouyer sc->bnx_fw_wr_seq++;
2249 1.1 bouyer msg_data |= sc->bnx_fw_wr_seq;
2250 1.1 bouyer
2251 1.1 bouyer DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2252 1.1 bouyer msg_data);
2253 1.1 bouyer
2254 1.1 bouyer /* Send the message to the bootcode driver mailbox. */
2255 1.1 bouyer REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2256 1.1 bouyer
2257 1.1 bouyer /* Wait for the bootcode to acknowledge the message. */
2258 1.1 bouyer for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2259 1.1 bouyer /* Check for a response in the bootcode firmware mailbox. */
2260 1.1 bouyer val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2261 1.1 bouyer if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2262 1.1 bouyer break;
2263 1.1 bouyer DELAY(1000);
2264 1.1 bouyer }
2265 1.1 bouyer
2266 1.1 bouyer /* If we've timed out, tell the bootcode that we've stopped waiting. */
2267 1.1 bouyer if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2268 1.1 bouyer ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2269 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2270 1.1 bouyer "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2271 1.1 bouyer
2272 1.1 bouyer msg_data &= ~BNX_DRV_MSG_CODE;
2273 1.1 bouyer msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2274 1.1 bouyer
2275 1.1 bouyer REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2276 1.1 bouyer
2277 1.1 bouyer sc->bnx_fw_timed_out = 1;
2278 1.1 bouyer rc = EBUSY;
2279 1.1 bouyer }
2280 1.1 bouyer
2281 1.1 bouyer bnx_fw_sync_exit:
2282 1.1 bouyer return (rc);
2283 1.1 bouyer }
2284 1.1 bouyer
2285 1.1 bouyer /****************************************************************************/
2286 1.1 bouyer /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2287 1.1 bouyer /* */
2288 1.1 bouyer /* Returns: */
2289 1.1 bouyer /* Nothing. */
2290 1.1 bouyer /****************************************************************************/
2291 1.1 bouyer void
2292 1.1 bouyer bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2293 1.1 bouyer u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2294 1.1 bouyer {
2295 1.1 bouyer int i;
2296 1.1 bouyer u_int32_t val;
2297 1.1 bouyer
2298 1.1 bouyer for (i = 0; i < rv2p_code_len; i += 8) {
2299 1.1 bouyer REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2300 1.1 bouyer rv2p_code++;
2301 1.1 bouyer REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2302 1.1 bouyer rv2p_code++;
2303 1.1 bouyer
2304 1.1 bouyer if (rv2p_proc == RV2P_PROC1) {
2305 1.1 bouyer val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2306 1.1 bouyer REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2307 1.1 bouyer }
2308 1.1 bouyer else {
2309 1.1 bouyer val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2310 1.1 bouyer REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2311 1.1 bouyer }
2312 1.1 bouyer }
2313 1.1 bouyer
2314 1.1 bouyer /* Reset the processor, un-stall is done later. */
2315 1.1 bouyer if (rv2p_proc == RV2P_PROC1)
2316 1.1 bouyer REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2317 1.1 bouyer else
2318 1.1 bouyer REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2319 1.1 bouyer }
2320 1.1 bouyer
2321 1.1 bouyer /****************************************************************************/
2322 1.1 bouyer /* Load RISC processor firmware. */
2323 1.1 bouyer /* */
2324 1.1 bouyer /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2325 1.1 bouyer /* associated with a particular processor. */
2326 1.1 bouyer /* */
2327 1.1 bouyer /* Returns: */
2328 1.1 bouyer /* Nothing. */
2329 1.1 bouyer /****************************************************************************/
2330 1.1 bouyer void
2331 1.1 bouyer bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2332 1.1 bouyer struct fw_info *fw)
2333 1.1 bouyer {
2334 1.1 bouyer u_int32_t offset;
2335 1.1 bouyer u_int32_t val;
2336 1.1 bouyer
2337 1.1 bouyer /* Halt the CPU. */
2338 1.1 bouyer val = REG_RD_IND(sc, cpu_reg->mode);
2339 1.1 bouyer val |= cpu_reg->mode_value_halt;
2340 1.1 bouyer REG_WR_IND(sc, cpu_reg->mode, val);
2341 1.1 bouyer REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2342 1.1 bouyer
2343 1.1 bouyer /* Load the Text area. */
2344 1.1 bouyer offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2345 1.1 bouyer if (fw->text) {
2346 1.1 bouyer int j;
2347 1.1 bouyer
2348 1.1 bouyer for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2349 1.1 bouyer REG_WR_IND(sc, offset, fw->text[j]);
2350 1.1 bouyer }
2351 1.1 bouyer
2352 1.1 bouyer /* Load the Data area. */
2353 1.1 bouyer offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2354 1.1 bouyer if (fw->data) {
2355 1.1 bouyer int j;
2356 1.1 bouyer
2357 1.1 bouyer for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2358 1.1 bouyer REG_WR_IND(sc, offset, fw->data[j]);
2359 1.1 bouyer }
2360 1.1 bouyer
2361 1.1 bouyer /* Load the SBSS area. */
2362 1.1 bouyer offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2363 1.1 bouyer if (fw->sbss) {
2364 1.1 bouyer int j;
2365 1.1 bouyer
2366 1.1 bouyer for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2367 1.1 bouyer REG_WR_IND(sc, offset, fw->sbss[j]);
2368 1.1 bouyer }
2369 1.1 bouyer
2370 1.1 bouyer /* Load the BSS area. */
2371 1.1 bouyer offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2372 1.1 bouyer if (fw->bss) {
2373 1.1 bouyer int j;
2374 1.1 bouyer
2375 1.1 bouyer for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2376 1.1 bouyer REG_WR_IND(sc, offset, fw->bss[j]);
2377 1.1 bouyer }
2378 1.1 bouyer
2379 1.1 bouyer /* Load the Read-Only area. */
2380 1.1 bouyer offset = cpu_reg->spad_base +
2381 1.1 bouyer (fw->rodata_addr - cpu_reg->mips_view_base);
2382 1.1 bouyer if (fw->rodata) {
2383 1.1 bouyer int j;
2384 1.1 bouyer
2385 1.1 bouyer for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2386 1.1 bouyer REG_WR_IND(sc, offset, fw->rodata[j]);
2387 1.1 bouyer }
2388 1.1 bouyer
2389 1.1 bouyer /* Clear the pre-fetch instruction. */
2390 1.1 bouyer REG_WR_IND(sc, cpu_reg->inst, 0);
2391 1.1 bouyer REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2392 1.1 bouyer
2393 1.1 bouyer /* Start the CPU. */
2394 1.1 bouyer val = REG_RD_IND(sc, cpu_reg->mode);
2395 1.1 bouyer val &= ~cpu_reg->mode_value_halt;
2396 1.1 bouyer REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2397 1.1 bouyer REG_WR_IND(sc, cpu_reg->mode, val);
2398 1.1 bouyer }
2399 1.1 bouyer
2400 1.1 bouyer /****************************************************************************/
2401 1.1 bouyer /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2402 1.1 bouyer /* */
2403 1.1 bouyer /* Loads the firmware for each CPU and starts the CPU. */
2404 1.1 bouyer /* */
2405 1.1 bouyer /* Returns: */
2406 1.1 bouyer /* Nothing. */
2407 1.1 bouyer /****************************************************************************/
2408 1.1 bouyer void
2409 1.1 bouyer bnx_init_cpus(struct bnx_softc *sc)
2410 1.1 bouyer {
2411 1.1 bouyer struct cpu_reg cpu_reg;
2412 1.1 bouyer struct fw_info fw;
2413 1.1 bouyer
2414 1.1 bouyer /* Initialize the RV2P processor. */
2415 1.1 bouyer bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2416 1.1 bouyer RV2P_PROC1);
2417 1.1 bouyer bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2418 1.1 bouyer RV2P_PROC2);
2419 1.1 bouyer
2420 1.1 bouyer /* Initialize the RX Processor. */
2421 1.1 bouyer cpu_reg.mode = BNX_RXP_CPU_MODE;
2422 1.1 bouyer cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2423 1.1 bouyer cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2424 1.1 bouyer cpu_reg.state = BNX_RXP_CPU_STATE;
2425 1.1 bouyer cpu_reg.state_value_clear = 0xffffff;
2426 1.1 bouyer cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2427 1.1 bouyer cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2428 1.1 bouyer cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2429 1.1 bouyer cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2430 1.1 bouyer cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2431 1.1 bouyer cpu_reg.spad_base = BNX_RXP_SCRATCH;
2432 1.1 bouyer cpu_reg.mips_view_base = 0x8000000;
2433 1.1 bouyer
2434 1.1 bouyer fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2435 1.1 bouyer fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2436 1.1 bouyer fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2437 1.1 bouyer fw.start_addr = bnx_RXP_b06FwStartAddr;
2438 1.1 bouyer
2439 1.1 bouyer fw.text_addr = bnx_RXP_b06FwTextAddr;
2440 1.1 bouyer fw.text_len = bnx_RXP_b06FwTextLen;
2441 1.1 bouyer fw.text_index = 0;
2442 1.1 bouyer fw.text = bnx_RXP_b06FwText;
2443 1.1 bouyer
2444 1.1 bouyer fw.data_addr = bnx_RXP_b06FwDataAddr;
2445 1.1 bouyer fw.data_len = bnx_RXP_b06FwDataLen;
2446 1.1 bouyer fw.data_index = 0;
2447 1.1 bouyer fw.data = bnx_RXP_b06FwData;
2448 1.1 bouyer
2449 1.1 bouyer fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2450 1.1 bouyer fw.sbss_len = bnx_RXP_b06FwSbssLen;
2451 1.1 bouyer fw.sbss_index = 0;
2452 1.1 bouyer fw.sbss = bnx_RXP_b06FwSbss;
2453 1.1 bouyer
2454 1.1 bouyer fw.bss_addr = bnx_RXP_b06FwBssAddr;
2455 1.1 bouyer fw.bss_len = bnx_RXP_b06FwBssLen;
2456 1.1 bouyer fw.bss_index = 0;
2457 1.1 bouyer fw.bss = bnx_RXP_b06FwBss;
2458 1.1 bouyer
2459 1.1 bouyer fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2460 1.1 bouyer fw.rodata_len = bnx_RXP_b06FwRodataLen;
2461 1.1 bouyer fw.rodata_index = 0;
2462 1.1 bouyer fw.rodata = bnx_RXP_b06FwRodata;
2463 1.1 bouyer
2464 1.1 bouyer DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2465 1.1 bouyer bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2466 1.1 bouyer
2467 1.1 bouyer /* Initialize the TX Processor. */
2468 1.1 bouyer cpu_reg.mode = BNX_TXP_CPU_MODE;
2469 1.1 bouyer cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2470 1.1 bouyer cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2471 1.1 bouyer cpu_reg.state = BNX_TXP_CPU_STATE;
2472 1.1 bouyer cpu_reg.state_value_clear = 0xffffff;
2473 1.1 bouyer cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2474 1.1 bouyer cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2475 1.1 bouyer cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2476 1.1 bouyer cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2477 1.1 bouyer cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2478 1.1 bouyer cpu_reg.spad_base = BNX_TXP_SCRATCH;
2479 1.1 bouyer cpu_reg.mips_view_base = 0x8000000;
2480 1.1 bouyer
2481 1.1 bouyer fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2482 1.1 bouyer fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2483 1.1 bouyer fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2484 1.1 bouyer fw.start_addr = bnx_TXP_b06FwStartAddr;
2485 1.1 bouyer
2486 1.1 bouyer fw.text_addr = bnx_TXP_b06FwTextAddr;
2487 1.1 bouyer fw.text_len = bnx_TXP_b06FwTextLen;
2488 1.1 bouyer fw.text_index = 0;
2489 1.1 bouyer fw.text = bnx_TXP_b06FwText;
2490 1.1 bouyer
2491 1.1 bouyer fw.data_addr = bnx_TXP_b06FwDataAddr;
2492 1.1 bouyer fw.data_len = bnx_TXP_b06FwDataLen;
2493 1.1 bouyer fw.data_index = 0;
2494 1.1 bouyer fw.data = bnx_TXP_b06FwData;
2495 1.1 bouyer
2496 1.1 bouyer fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2497 1.1 bouyer fw.sbss_len = bnx_TXP_b06FwSbssLen;
2498 1.1 bouyer fw.sbss_index = 0;
2499 1.1 bouyer fw.sbss = bnx_TXP_b06FwSbss;
2500 1.1 bouyer
2501 1.1 bouyer fw.bss_addr = bnx_TXP_b06FwBssAddr;
2502 1.1 bouyer fw.bss_len = bnx_TXP_b06FwBssLen;
2503 1.1 bouyer fw.bss_index = 0;
2504 1.1 bouyer fw.bss = bnx_TXP_b06FwBss;
2505 1.1 bouyer
2506 1.1 bouyer fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2507 1.1 bouyer fw.rodata_len = bnx_TXP_b06FwRodataLen;
2508 1.1 bouyer fw.rodata_index = 0;
2509 1.1 bouyer fw.rodata = bnx_TXP_b06FwRodata;
2510 1.1 bouyer
2511 1.1 bouyer DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2512 1.1 bouyer bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2513 1.1 bouyer
2514 1.1 bouyer /* Initialize the TX Patch-up Processor. */
2515 1.1 bouyer cpu_reg.mode = BNX_TPAT_CPU_MODE;
2516 1.1 bouyer cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2517 1.1 bouyer cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2518 1.1 bouyer cpu_reg.state = BNX_TPAT_CPU_STATE;
2519 1.1 bouyer cpu_reg.state_value_clear = 0xffffff;
2520 1.1 bouyer cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2521 1.1 bouyer cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2522 1.1 bouyer cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2523 1.1 bouyer cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2524 1.1 bouyer cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2525 1.1 bouyer cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2526 1.1 bouyer cpu_reg.mips_view_base = 0x8000000;
2527 1.1 bouyer
2528 1.1 bouyer fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2529 1.1 bouyer fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2530 1.1 bouyer fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2531 1.1 bouyer fw.start_addr = bnx_TPAT_b06FwStartAddr;
2532 1.1 bouyer
2533 1.1 bouyer fw.text_addr = bnx_TPAT_b06FwTextAddr;
2534 1.1 bouyer fw.text_len = bnx_TPAT_b06FwTextLen;
2535 1.1 bouyer fw.text_index = 0;
2536 1.1 bouyer fw.text = bnx_TPAT_b06FwText;
2537 1.1 bouyer
2538 1.1 bouyer fw.data_addr = bnx_TPAT_b06FwDataAddr;
2539 1.1 bouyer fw.data_len = bnx_TPAT_b06FwDataLen;
2540 1.1 bouyer fw.data_index = 0;
2541 1.1 bouyer fw.data = bnx_TPAT_b06FwData;
2542 1.1 bouyer
2543 1.1 bouyer fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2544 1.1 bouyer fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2545 1.1 bouyer fw.sbss_index = 0;
2546 1.1 bouyer fw.sbss = bnx_TPAT_b06FwSbss;
2547 1.1 bouyer
2548 1.1 bouyer fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2549 1.1 bouyer fw.bss_len = bnx_TPAT_b06FwBssLen;
2550 1.1 bouyer fw.bss_index = 0;
2551 1.1 bouyer fw.bss = bnx_TPAT_b06FwBss;
2552 1.1 bouyer
2553 1.1 bouyer fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2554 1.1 bouyer fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2555 1.1 bouyer fw.rodata_index = 0;
2556 1.1 bouyer fw.rodata = bnx_TPAT_b06FwRodata;
2557 1.1 bouyer
2558 1.1 bouyer DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2559 1.1 bouyer bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2560 1.1 bouyer
2561 1.1 bouyer /* Initialize the Completion Processor. */
2562 1.1 bouyer cpu_reg.mode = BNX_COM_CPU_MODE;
2563 1.1 bouyer cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2564 1.1 bouyer cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2565 1.1 bouyer cpu_reg.state = BNX_COM_CPU_STATE;
2566 1.1 bouyer cpu_reg.state_value_clear = 0xffffff;
2567 1.1 bouyer cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2568 1.1 bouyer cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2569 1.1 bouyer cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2570 1.1 bouyer cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2571 1.1 bouyer cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2572 1.1 bouyer cpu_reg.spad_base = BNX_COM_SCRATCH;
2573 1.1 bouyer cpu_reg.mips_view_base = 0x8000000;
2574 1.1 bouyer
2575 1.1 bouyer fw.ver_major = bnx_COM_b06FwReleaseMajor;
2576 1.1 bouyer fw.ver_minor = bnx_COM_b06FwReleaseMinor;
2577 1.1 bouyer fw.ver_fix = bnx_COM_b06FwReleaseFix;
2578 1.1 bouyer fw.start_addr = bnx_COM_b06FwStartAddr;
2579 1.1 bouyer
2580 1.1 bouyer fw.text_addr = bnx_COM_b06FwTextAddr;
2581 1.1 bouyer fw.text_len = bnx_COM_b06FwTextLen;
2582 1.1 bouyer fw.text_index = 0;
2583 1.1 bouyer fw.text = bnx_COM_b06FwText;
2584 1.1 bouyer
2585 1.1 bouyer fw.data_addr = bnx_COM_b06FwDataAddr;
2586 1.1 bouyer fw.data_len = bnx_COM_b06FwDataLen;
2587 1.1 bouyer fw.data_index = 0;
2588 1.1 bouyer fw.data = bnx_COM_b06FwData;
2589 1.1 bouyer
2590 1.1 bouyer fw.sbss_addr = bnx_COM_b06FwSbssAddr;
2591 1.1 bouyer fw.sbss_len = bnx_COM_b06FwSbssLen;
2592 1.1 bouyer fw.sbss_index = 0;
2593 1.1 bouyer fw.sbss = bnx_COM_b06FwSbss;
2594 1.1 bouyer
2595 1.1 bouyer fw.bss_addr = bnx_COM_b06FwBssAddr;
2596 1.1 bouyer fw.bss_len = bnx_COM_b06FwBssLen;
2597 1.1 bouyer fw.bss_index = 0;
2598 1.1 bouyer fw.bss = bnx_COM_b06FwBss;
2599 1.1 bouyer
2600 1.1 bouyer fw.rodata_addr = bnx_COM_b06FwRodataAddr;
2601 1.1 bouyer fw.rodata_len = bnx_COM_b06FwRodataLen;
2602 1.1 bouyer fw.rodata_index = 0;
2603 1.1 bouyer fw.rodata = bnx_COM_b06FwRodata;
2604 1.1 bouyer
2605 1.1 bouyer DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2606 1.1 bouyer bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2607 1.1 bouyer }
2608 1.1 bouyer
2609 1.1 bouyer /****************************************************************************/
2610 1.1 bouyer /* Initialize context memory. */
2611 1.1 bouyer /* */
2612 1.1 bouyer /* Clears the memory associated with each Context ID (CID). */
2613 1.1 bouyer /* */
2614 1.1 bouyer /* Returns: */
2615 1.1 bouyer /* Nothing. */
2616 1.1 bouyer /****************************************************************************/
2617 1.1 bouyer void
2618 1.1 bouyer bnx_init_context(struct bnx_softc *sc)
2619 1.1 bouyer {
2620 1.1 bouyer u_int32_t vcid;
2621 1.1 bouyer
2622 1.1 bouyer vcid = 96;
2623 1.1 bouyer while (vcid) {
2624 1.1 bouyer u_int32_t vcid_addr, pcid_addr, offset;
2625 1.1 bouyer
2626 1.1 bouyer vcid--;
2627 1.1 bouyer
2628 1.1 bouyer vcid_addr = GET_CID_ADDR(vcid);
2629 1.1 bouyer pcid_addr = vcid_addr;
2630 1.1 bouyer
2631 1.1 bouyer REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
2632 1.1 bouyer REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2633 1.1 bouyer
2634 1.1 bouyer /* Zero out the context. */
2635 1.1 bouyer for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2636 1.1 bouyer CTX_WR(sc, 0x00, offset, 0);
2637 1.1 bouyer
2638 1.1 bouyer REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
2639 1.1 bouyer REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2640 1.1 bouyer }
2641 1.1 bouyer }
2642 1.1 bouyer
2643 1.1 bouyer /****************************************************************************/
2644 1.1 bouyer /* Fetch the permanent MAC address of the controller. */
2645 1.1 bouyer /* */
2646 1.1 bouyer /* Returns: */
2647 1.1 bouyer /* Nothing. */
2648 1.1 bouyer /****************************************************************************/
2649 1.1 bouyer void
2650 1.1 bouyer bnx_get_mac_addr(struct bnx_softc *sc)
2651 1.1 bouyer {
2652 1.1 bouyer u_int32_t mac_lo = 0, mac_hi = 0;
2653 1.1 bouyer
2654 1.1 bouyer /*
2655 1.1 bouyer * The NetXtreme II bootcode populates various NIC
2656 1.1 bouyer * power-on and runtime configuration items in a
2657 1.1 bouyer * shared memory area. The factory configured MAC
2658 1.1 bouyer * address is available from both NVRAM and the
2659 1.1 bouyer * shared memory area so we'll read the value from
2660 1.1 bouyer * shared memory for speed.
2661 1.1 bouyer */
2662 1.1 bouyer
2663 1.1 bouyer mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
2664 1.1 bouyer mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
2665 1.1 bouyer
2666 1.1 bouyer if ((mac_lo == 0) && (mac_hi == 0)) {
2667 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
2668 1.1 bouyer __FILE__, __LINE__);
2669 1.1 bouyer } else {
2670 1.1 bouyer sc->eaddr[0] = (u_char)(mac_hi >> 8);
2671 1.1 bouyer sc->eaddr[1] = (u_char)(mac_hi >> 0);
2672 1.1 bouyer sc->eaddr[2] = (u_char)(mac_lo >> 24);
2673 1.1 bouyer sc->eaddr[3] = (u_char)(mac_lo >> 16);
2674 1.1 bouyer sc->eaddr[4] = (u_char)(mac_lo >> 8);
2675 1.1 bouyer sc->eaddr[5] = (u_char)(mac_lo >> 0);
2676 1.1 bouyer }
2677 1.1 bouyer
2678 1.1 bouyer DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
2679 1.1 bouyer "%s\n", ether_sprintf(sc->eaddr));
2680 1.1 bouyer }
2681 1.1 bouyer
2682 1.1 bouyer /****************************************************************************/
2683 1.1 bouyer /* Program the MAC address. */
2684 1.1 bouyer /* */
2685 1.1 bouyer /* Returns: */
2686 1.1 bouyer /* Nothing. */
2687 1.1 bouyer /****************************************************************************/
2688 1.1 bouyer void
2689 1.1 bouyer bnx_set_mac_addr(struct bnx_softc *sc)
2690 1.1 bouyer {
2691 1.1 bouyer u_int32_t val;
2692 1.15 dyoung const u_int8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
2693 1.1 bouyer
2694 1.1 bouyer DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
2695 1.1 bouyer "%s\n", ether_sprintf(sc->eaddr));
2696 1.1 bouyer
2697 1.1 bouyer val = (mac_addr[0] << 8) | mac_addr[1];
2698 1.1 bouyer
2699 1.1 bouyer REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
2700 1.1 bouyer
2701 1.1 bouyer val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2702 1.1 bouyer (mac_addr[4] << 8) | mac_addr[5];
2703 1.1 bouyer
2704 1.1 bouyer REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
2705 1.1 bouyer }
2706 1.1 bouyer
2707 1.1 bouyer /****************************************************************************/
2708 1.1 bouyer /* Stop the controller. */
2709 1.1 bouyer /* */
2710 1.1 bouyer /* Returns: */
2711 1.1 bouyer /* Nothing. */
2712 1.1 bouyer /****************************************************************************/
2713 1.1 bouyer void
2714 1.14 dyoung bnx_stop(struct ifnet *ifp, int disable)
2715 1.1 bouyer {
2716 1.14 dyoung struct bnx_softc *sc = ifp->if_softc;
2717 1.1 bouyer
2718 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2719 1.1 bouyer
2720 1.14 dyoung if ((ifp->if_flags & IFF_RUNNING) == 0)
2721 1.14 dyoung return;
2722 1.1 bouyer
2723 1.1 bouyer callout_stop(&sc->bnx_timeout);
2724 1.1 bouyer
2725 1.14 dyoung mii_down(&sc->bnx_mii);
2726 1.14 dyoung
2727 1.1 bouyer ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2728 1.1 bouyer
2729 1.1 bouyer /* Disable the transmit/receive blocks. */
2730 1.1 bouyer REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
2731 1.1 bouyer REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2732 1.1 bouyer DELAY(20);
2733 1.1 bouyer
2734 1.1 bouyer bnx_disable_intr(sc);
2735 1.1 bouyer
2736 1.1 bouyer /* Tell firmware that the driver is going away. */
2737 1.14 dyoung if (disable)
2738 1.14 dyoung bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
2739 1.14 dyoung else
2740 1.14 dyoung bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
2741 1.1 bouyer
2742 1.1 bouyer /* Free the RX lists. */
2743 1.1 bouyer bnx_free_rx_chain(sc);
2744 1.1 bouyer
2745 1.1 bouyer /* Free TX buffers. */
2746 1.1 bouyer bnx_free_tx_chain(sc);
2747 1.1 bouyer
2748 1.1 bouyer ifp->if_timer = 0;
2749 1.1 bouyer
2750 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2751 1.1 bouyer
2752 1.1 bouyer }
2753 1.1 bouyer
2754 1.1 bouyer int
2755 1.1 bouyer bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
2756 1.1 bouyer {
2757 1.1 bouyer u_int32_t val;
2758 1.1 bouyer int i, rc = 0;
2759 1.1 bouyer
2760 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2761 1.1 bouyer
2762 1.1 bouyer /* Wait for pending PCI transactions to complete. */
2763 1.1 bouyer REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
2764 1.1 bouyer BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
2765 1.1 bouyer BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
2766 1.1 bouyer BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
2767 1.1 bouyer BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
2768 1.1 bouyer val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2769 1.1 bouyer DELAY(5);
2770 1.1 bouyer
2771 1.1 bouyer /* Assume bootcode is running. */
2772 1.1 bouyer sc->bnx_fw_timed_out = 0;
2773 1.1 bouyer
2774 1.1 bouyer /* Give the firmware a chance to prepare for the reset. */
2775 1.1 bouyer rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
2776 1.1 bouyer if (rc)
2777 1.1 bouyer goto bnx_reset_exit;
2778 1.1 bouyer
2779 1.1 bouyer /* Set a firmware reminder that this is a soft reset. */
2780 1.1 bouyer REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
2781 1.1 bouyer BNX_DRV_RESET_SIGNATURE_MAGIC);
2782 1.1 bouyer
2783 1.1 bouyer /* Dummy read to force the chip to complete all current transactions. */
2784 1.1 bouyer val = REG_RD(sc, BNX_MISC_ID);
2785 1.1 bouyer
2786 1.1 bouyer /* Chip reset. */
2787 1.1 bouyer val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2788 1.1 bouyer BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
2789 1.1 bouyer BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
2790 1.1 bouyer REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
2791 1.1 bouyer
2792 1.1 bouyer /* Allow up to 30us for reset to complete. */
2793 1.1 bouyer for (i = 0; i < 10; i++) {
2794 1.1 bouyer val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
2795 1.1 bouyer if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2796 1.1 bouyer BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
2797 1.1 bouyer break;
2798 1.1 bouyer
2799 1.1 bouyer DELAY(10);
2800 1.1 bouyer }
2801 1.1 bouyer
2802 1.1 bouyer /* Check that reset completed successfully. */
2803 1.1 bouyer if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2804 1.1 bouyer BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
2805 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
2806 1.1 bouyer rc = EBUSY;
2807 1.1 bouyer goto bnx_reset_exit;
2808 1.1 bouyer }
2809 1.1 bouyer
2810 1.1 bouyer /* Make sure byte swapping is properly configured. */
2811 1.1 bouyer val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
2812 1.1 bouyer if (val != 0x01020304) {
2813 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
2814 1.1 bouyer __FILE__, __LINE__);
2815 1.1 bouyer rc = ENODEV;
2816 1.1 bouyer goto bnx_reset_exit;
2817 1.1 bouyer }
2818 1.1 bouyer
2819 1.1 bouyer /* Just completed a reset, assume that firmware is running again. */
2820 1.1 bouyer sc->bnx_fw_timed_out = 0;
2821 1.1 bouyer
2822 1.1 bouyer /* Wait for the firmware to finish its initialization. */
2823 1.1 bouyer rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
2824 1.1 bouyer if (rc)
2825 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
2826 1.1 bouyer "initialization!\n", __FILE__, __LINE__);
2827 1.1 bouyer
2828 1.1 bouyer bnx_reset_exit:
2829 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2830 1.1 bouyer
2831 1.1 bouyer return (rc);
2832 1.1 bouyer }
2833 1.1 bouyer
2834 1.1 bouyer int
2835 1.1 bouyer bnx_chipinit(struct bnx_softc *sc)
2836 1.1 bouyer {
2837 1.1 bouyer struct pci_attach_args *pa = &(sc->bnx_pa);
2838 1.1 bouyer u_int32_t val;
2839 1.1 bouyer int rc = 0;
2840 1.1 bouyer
2841 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2842 1.1 bouyer
2843 1.1 bouyer /* Make sure the interrupt is not active. */
2844 1.1 bouyer REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
2845 1.1 bouyer
2846 1.1 bouyer /* Initialize DMA byte/word swapping, configure the number of DMA */
2847 1.1 bouyer /* channels and PCI clock compensation delay. */
2848 1.1 bouyer val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
2849 1.1 bouyer BNX_DMA_CONFIG_DATA_WORD_SWAP |
2850 1.1 bouyer #if BYTE_ORDER == BIG_ENDIAN
2851 1.1 bouyer BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
2852 1.1 bouyer #endif
2853 1.1 bouyer BNX_DMA_CONFIG_CNTL_WORD_SWAP |
2854 1.1 bouyer DMA_READ_CHANS << 12 |
2855 1.1 bouyer DMA_WRITE_CHANS << 16;
2856 1.1 bouyer
2857 1.1 bouyer val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
2858 1.1 bouyer
2859 1.1 bouyer if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
2860 1.1 bouyer val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
2861 1.1 bouyer
2862 1.1 bouyer /*
2863 1.1 bouyer * This setting resolves a problem observed on certain Intel PCI
2864 1.1 bouyer * chipsets that cannot handle multiple outstanding DMA operations.
2865 1.1 bouyer * See errata E9_5706A1_65.
2866 1.1 bouyer */
2867 1.1 bouyer if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
2868 1.1 bouyer (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
2869 1.1 bouyer !(sc->bnx_flags & BNX_PCIX_FLAG))
2870 1.1 bouyer val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
2871 1.1 bouyer
2872 1.1 bouyer REG_WR(sc, BNX_DMA_CONFIG, val);
2873 1.1 bouyer
2874 1.1 bouyer /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
2875 1.1 bouyer if (sc->bnx_flags & BNX_PCIX_FLAG) {
2876 1.1 bouyer u_int16_t nval;
2877 1.1 bouyer
2878 1.1 bouyer nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
2879 1.1 bouyer pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
2880 1.17 joerg nval & ~0x20000);
2881 1.1 bouyer }
2882 1.1 bouyer
2883 1.1 bouyer /* Enable the RX_V2P and Context state machines before access. */
2884 1.1 bouyer REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
2885 1.1 bouyer BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
2886 1.1 bouyer BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
2887 1.1 bouyer BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
2888 1.1 bouyer
2889 1.1 bouyer /* Initialize context mapping and zero out the quick contexts. */
2890 1.1 bouyer bnx_init_context(sc);
2891 1.1 bouyer
2892 1.1 bouyer /* Initialize the on-boards CPUs */
2893 1.1 bouyer bnx_init_cpus(sc);
2894 1.1 bouyer
2895 1.1 bouyer /* Prepare NVRAM for access. */
2896 1.1 bouyer if (bnx_init_nvram(sc)) {
2897 1.1 bouyer rc = ENODEV;
2898 1.1 bouyer goto bnx_chipinit_exit;
2899 1.1 bouyer }
2900 1.1 bouyer
2901 1.1 bouyer /* Set the kernel bypass block size */
2902 1.1 bouyer val = REG_RD(sc, BNX_MQ_CONFIG);
2903 1.1 bouyer val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
2904 1.1 bouyer val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
2905 1.1 bouyer REG_WR(sc, BNX_MQ_CONFIG, val);
2906 1.1 bouyer
2907 1.1 bouyer val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
2908 1.1 bouyer REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
2909 1.1 bouyer REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
2910 1.1 bouyer
2911 1.1 bouyer val = (BCM_PAGE_BITS - 8) << 24;
2912 1.1 bouyer REG_WR(sc, BNX_RV2P_CONFIG, val);
2913 1.1 bouyer
2914 1.1 bouyer /* Configure page size. */
2915 1.1 bouyer val = REG_RD(sc, BNX_TBDR_CONFIG);
2916 1.1 bouyer val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
2917 1.1 bouyer val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
2918 1.1 bouyer REG_WR(sc, BNX_TBDR_CONFIG, val);
2919 1.1 bouyer
2920 1.1 bouyer bnx_chipinit_exit:
2921 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2922 1.1 bouyer
2923 1.1 bouyer return(rc);
2924 1.1 bouyer }
2925 1.1 bouyer
2926 1.1 bouyer /****************************************************************************/
2927 1.1 bouyer /* Initialize the controller in preparation to send/receive traffic. */
2928 1.1 bouyer /* */
2929 1.1 bouyer /* Returns: */
2930 1.1 bouyer /* 0 for success, positive value for failure. */
2931 1.1 bouyer /****************************************************************************/
2932 1.1 bouyer int
2933 1.1 bouyer bnx_blockinit(struct bnx_softc *sc)
2934 1.1 bouyer {
2935 1.1 bouyer u_int32_t reg, val;
2936 1.1 bouyer int rc = 0;
2937 1.1 bouyer
2938 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2939 1.1 bouyer
2940 1.1 bouyer /* Load the hardware default MAC address. */
2941 1.1 bouyer bnx_set_mac_addr(sc);
2942 1.1 bouyer
2943 1.1 bouyer /* Set the Ethernet backoff seed value */
2944 1.1 bouyer val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
2945 1.1 bouyer (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
2946 1.1 bouyer REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
2947 1.1 bouyer
2948 1.1 bouyer sc->last_status_idx = 0;
2949 1.1 bouyer sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
2950 1.1 bouyer
2951 1.1 bouyer /* Set up link change interrupt generation. */
2952 1.1 bouyer REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
2953 1.1 bouyer
2954 1.1 bouyer /* Program the physical address of the status block. */
2955 1.1 bouyer REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
2956 1.1 bouyer REG_WR(sc, BNX_HC_STATUS_ADDR_H,
2957 1.1 bouyer (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
2958 1.1 bouyer
2959 1.1 bouyer /* Program the physical address of the statistics block. */
2960 1.1 bouyer REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
2961 1.1 bouyer (u_int32_t)(sc->stats_block_paddr));
2962 1.1 bouyer REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
2963 1.1 bouyer (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
2964 1.1 bouyer
2965 1.1 bouyer /* Program various host coalescing parameters. */
2966 1.1 bouyer REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
2967 1.1 bouyer << 16) | sc->bnx_tx_quick_cons_trip);
2968 1.1 bouyer REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
2969 1.1 bouyer << 16) | sc->bnx_rx_quick_cons_trip);
2970 1.1 bouyer REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
2971 1.1 bouyer sc->bnx_comp_prod_trip);
2972 1.1 bouyer REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
2973 1.1 bouyer sc->bnx_tx_ticks);
2974 1.1 bouyer REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
2975 1.1 bouyer sc->bnx_rx_ticks);
2976 1.1 bouyer REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
2977 1.1 bouyer sc->bnx_com_ticks);
2978 1.1 bouyer REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
2979 1.1 bouyer sc->bnx_cmd_ticks);
2980 1.1 bouyer REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
2981 1.1 bouyer REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
2982 1.1 bouyer REG_WR(sc, BNX_HC_CONFIG,
2983 1.1 bouyer (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
2984 1.1 bouyer BNX_HC_CONFIG_COLLECT_STATS));
2985 1.1 bouyer
2986 1.1 bouyer /* Clear the internal statistics counters. */
2987 1.1 bouyer REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
2988 1.1 bouyer
2989 1.1 bouyer /* Verify that bootcode is running. */
2990 1.1 bouyer reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
2991 1.1 bouyer
2992 1.1 bouyer DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
2993 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
2994 1.1 bouyer __FILE__, __LINE__); reg = 0);
2995 1.1 bouyer
2996 1.1 bouyer if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
2997 1.1 bouyer BNX_DEV_INFO_SIGNATURE_MAGIC) {
2998 1.1 bouyer BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
2999 1.1 bouyer "Expected: 08%08X\n", __FILE__, __LINE__,
3000 1.1 bouyer (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3001 1.1 bouyer BNX_DEV_INFO_SIGNATURE_MAGIC);
3002 1.1 bouyer rc = ENODEV;
3003 1.1 bouyer goto bnx_blockinit_exit;
3004 1.1 bouyer }
3005 1.1 bouyer
3006 1.1 bouyer /* Check if any management firmware is running. */
3007 1.1 bouyer reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3008 1.1 bouyer if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3009 1.1 bouyer BNX_PORT_FEATURE_IMD_ENABLED)) {
3010 1.1 bouyer DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3011 1.1 bouyer sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3012 1.1 bouyer }
3013 1.1 bouyer
3014 1.1 bouyer sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3015 1.1 bouyer BNX_DEV_INFO_BC_REV);
3016 1.1 bouyer
3017 1.1 bouyer DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3018 1.1 bouyer
3019 1.1 bouyer /* Allow bootcode to apply any additional fixes before enabling MAC. */
3020 1.1 bouyer rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3021 1.1 bouyer
3022 1.1 bouyer /* Enable link state change interrupt generation. */
3023 1.1 bouyer REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3024 1.1 bouyer
3025 1.1 bouyer /* Enable all remaining blocks in the MAC. */
3026 1.1 bouyer REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3027 1.1 bouyer REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3028 1.1 bouyer DELAY(20);
3029 1.1 bouyer
3030 1.1 bouyer bnx_blockinit_exit:
3031 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3032 1.1 bouyer
3033 1.1 bouyer return (rc);
3034 1.1 bouyer }
3035 1.1 bouyer
3036 1.21 dyoung static int
3037 1.21 dyoung bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3038 1.21 dyoung u_int16_t *chain_prod, u_int32_t *prod_bseq)
3039 1.21 dyoung {
3040 1.21 dyoung bus_dmamap_t map;
3041 1.21 dyoung struct rx_bd *rxbd;
3042 1.21 dyoung u_int32_t addr;
3043 1.21 dyoung int i;
3044 1.21 dyoung #ifdef BNX_DEBUG
3045 1.21 dyoung u_int16_t debug_chain_prod = *chain_prod;
3046 1.21 dyoung #endif
3047 1.21 dyoung u_int16_t first_chain_prod;
3048 1.21 dyoung
3049 1.21 dyoung m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3050 1.21 dyoung
3051 1.21 dyoung /* Map the mbuf cluster into device memory. */
3052 1.21 dyoung map = sc->rx_mbuf_map[*chain_prod];
3053 1.21 dyoung first_chain_prod = *chain_prod;
3054 1.21 dyoung if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3055 1.21 dyoung BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3056 1.21 dyoung __FILE__, __LINE__);
3057 1.21 dyoung
3058 1.21 dyoung m_freem(m_new);
3059 1.21 dyoung
3060 1.21 dyoung DBRUNIF(1, sc->rx_mbuf_alloc--);
3061 1.21 dyoung
3062 1.21 dyoung return ENOBUFS;
3063 1.21 dyoung }
3064 1.21 dyoung bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3065 1.21 dyoung BUS_DMASYNC_PREREAD);
3066 1.21 dyoung
3067 1.21 dyoung /* Watch for overflow. */
3068 1.21 dyoung DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
3069 1.21 dyoung aprint_error_dev(sc->bnx_dev,
3070 1.21 dyoung "Too many free rx_bd (0x%04X > 0x%04X)!\n",
3071 1.21 dyoung sc->free_rx_bd, (u_int16_t)USABLE_RX_BD));
3072 1.21 dyoung
3073 1.21 dyoung DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3074 1.21 dyoung sc->rx_low_watermark = sc->free_rx_bd);
3075 1.21 dyoung
3076 1.21 dyoung /*
3077 1.21 dyoung * Setup the rx_bd for the first segment
3078 1.21 dyoung */
3079 1.21 dyoung rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3080 1.21 dyoung
3081 1.21 dyoung addr = (u_int32_t)(map->dm_segs[0].ds_addr);
3082 1.21 dyoung rxbd->rx_bd_haddr_lo = htole32(addr);
3083 1.21 dyoung addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3084 1.21 dyoung rxbd->rx_bd_haddr_hi = htole32(addr);
3085 1.21 dyoung rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
3086 1.21 dyoung rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3087 1.21 dyoung *prod_bseq += map->dm_segs[0].ds_len;
3088 1.21 dyoung bus_dmamap_sync(sc->bnx_dmatag,
3089 1.21 dyoung sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3090 1.21 dyoung sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3091 1.21 dyoung BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3092 1.21 dyoung
3093 1.21 dyoung for (i = 1; i < map->dm_nsegs; i++) {
3094 1.21 dyoung *prod = NEXT_RX_BD(*prod);
3095 1.21 dyoung *chain_prod = RX_CHAIN_IDX(*prod);
3096 1.21 dyoung
3097 1.21 dyoung rxbd =
3098 1.21 dyoung &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3099 1.21 dyoung
3100 1.21 dyoung addr = (u_int32_t)(map->dm_segs[i].ds_addr);
3101 1.21 dyoung rxbd->rx_bd_haddr_lo = htole32(addr);
3102 1.21 dyoung addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3103 1.21 dyoung rxbd->rx_bd_haddr_hi = htole32(addr);
3104 1.21 dyoung rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
3105 1.21 dyoung rxbd->rx_bd_flags = 0;
3106 1.21 dyoung *prod_bseq += map->dm_segs[i].ds_len;
3107 1.21 dyoung bus_dmamap_sync(sc->bnx_dmatag,
3108 1.21 dyoung sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3109 1.21 dyoung sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3110 1.21 dyoung sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3111 1.21 dyoung }
3112 1.21 dyoung
3113 1.21 dyoung rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3114 1.21 dyoung bus_dmamap_sync(sc->bnx_dmatag,
3115 1.21 dyoung sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3116 1.21 dyoung sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3117 1.21 dyoung sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3118 1.21 dyoung
3119 1.21 dyoung /*
3120 1.21 dyoung * Save the mbuf, ajust the map pointer (swap map for first and
3121 1.21 dyoung * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3122 1.21 dyoung * and update counter.
3123 1.21 dyoung */
3124 1.21 dyoung sc->rx_mbuf_ptr[*chain_prod] = m_new;
3125 1.21 dyoung sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3126 1.21 dyoung sc->rx_mbuf_map[*chain_prod] = map;
3127 1.21 dyoung sc->free_rx_bd -= map->dm_nsegs;
3128 1.21 dyoung
3129 1.21 dyoung DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3130 1.21 dyoung map->dm_nsegs));
3131 1.21 dyoung *prod = NEXT_RX_BD(*prod);
3132 1.21 dyoung *chain_prod = RX_CHAIN_IDX(*prod);
3133 1.21 dyoung
3134 1.21 dyoung return 0;
3135 1.21 dyoung }
3136 1.21 dyoung
3137 1.1 bouyer /****************************************************************************/
3138 1.1 bouyer /* Encapsulate an mbuf cluster into the rx_bd chain. */
3139 1.1 bouyer /* */
3140 1.1 bouyer /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3141 1.1 bouyer /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3142 1.1 bouyer /* necessary. */
3143 1.1 bouyer /* */
3144 1.1 bouyer /* Returns: */
3145 1.1 bouyer /* 0 for success, positive value for failure. */
3146 1.1 bouyer /****************************************************************************/
3147 1.1 bouyer int
3148 1.21 dyoung bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3149 1.1 bouyer u_int16_t *chain_prod, u_int32_t *prod_bseq)
3150 1.1 bouyer {
3151 1.1 bouyer struct mbuf *m_new = NULL;
3152 1.21 dyoung int rc = 0;
3153 1.5 bouyer u_int16_t min_free_bd;
3154 1.1 bouyer
3155 1.1 bouyer DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3156 1.12 perry __func__);
3157 1.1 bouyer
3158 1.1 bouyer /* Make sure the inputs are valid. */
3159 1.1 bouyer DBRUNIF((*chain_prod > MAX_RX_BD),
3160 1.13 dyoung aprint_error_dev(sc->bnx_dev,
3161 1.13 dyoung "RX producer out of range: 0x%04X > 0x%04X\n",
3162 1.13 dyoung *chain_prod, (u_int16_t)MAX_RX_BD));
3163 1.1 bouyer
3164 1.1 bouyer DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3165 1.12 perry "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3166 1.1 bouyer *prod_bseq);
3167 1.1 bouyer
3168 1.5 bouyer /* try to get in as many mbufs as possible */
3169 1.5 bouyer if (sc->mbuf_alloc_size == MCLBYTES)
3170 1.5 bouyer min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3171 1.5 bouyer else
3172 1.5 bouyer min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3173 1.5 bouyer while (sc->free_rx_bd >= min_free_bd) {
3174 1.21 dyoung DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3175 1.21 dyoung BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
3176 1.5 bouyer
3177 1.21 dyoung sc->mbuf_alloc_failed++;
3178 1.21 dyoung rc = ENOBUFS;
3179 1.21 dyoung goto bnx_get_buf_exit);
3180 1.1 bouyer
3181 1.21 dyoung /* This is a new mbuf allocation. */
3182 1.21 dyoung MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3183 1.21 dyoung if (m_new == NULL) {
3184 1.21 dyoung DBPRINT(sc, BNX_WARN,
3185 1.21 dyoung "%s(%d): RX mbuf header allocation failed!\n",
3186 1.21 dyoung __FILE__, __LINE__);
3187 1.1 bouyer
3188 1.21 dyoung DBRUNIF(1, sc->mbuf_alloc_failed++);
3189 1.1 bouyer
3190 1.21 dyoung rc = ENOBUFS;
3191 1.21 dyoung goto bnx_get_buf_exit;
3192 1.21 dyoung }
3193 1.1 bouyer
3194 1.21 dyoung DBRUNIF(1, sc->rx_mbuf_alloc++);
3195 1.21 dyoung if (sc->mbuf_alloc_size == MCLBYTES)
3196 1.21 dyoung MCLGET(m_new, M_DONTWAIT);
3197 1.21 dyoung else
3198 1.21 dyoung MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3199 1.21 dyoung M_DONTWAIT);
3200 1.21 dyoung if (!(m_new->m_flags & M_EXT)) {
3201 1.21 dyoung DBPRINT(sc, BNX_WARN,
3202 1.21 dyoung "%s(%d): RX mbuf chain allocation failed!\n",
3203 1.1 bouyer __FILE__, __LINE__);
3204 1.21 dyoung
3205 1.1 bouyer m_freem(m_new);
3206 1.1 bouyer
3207 1.1 bouyer DBRUNIF(1, sc->rx_mbuf_alloc--);
3208 1.21 dyoung DBRUNIF(1, sc->mbuf_alloc_failed++);
3209 1.1 bouyer
3210 1.1 bouyer rc = ENOBUFS;
3211 1.1 bouyer goto bnx_get_buf_exit;
3212 1.1 bouyer }
3213 1.21 dyoung
3214 1.21 dyoung rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3215 1.21 dyoung if (rc != 0)
3216 1.21 dyoung goto bnx_get_buf_exit;
3217 1.5 bouyer }
3218 1.1 bouyer
3219 1.5 bouyer bnx_get_buf_exit:
3220 1.1 bouyer DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3221 1.12 perry "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3222 1.1 bouyer *chain_prod, *prod_bseq);
3223 1.1 bouyer
3224 1.1 bouyer DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3225 1.12 perry __func__);
3226 1.1 bouyer
3227 1.1 bouyer return(rc);
3228 1.1 bouyer }
3229 1.1 bouyer
3230 1.1 bouyer /****************************************************************************/
3231 1.1 bouyer /* Allocate memory and initialize the TX data structures. */
3232 1.1 bouyer /* */
3233 1.1 bouyer /* Returns: */
3234 1.1 bouyer /* 0 for success, positive value for failure. */
3235 1.1 bouyer /****************************************************************************/
3236 1.1 bouyer int
3237 1.1 bouyer bnx_init_tx_chain(struct bnx_softc *sc)
3238 1.1 bouyer {
3239 1.1 bouyer struct tx_bd *txbd;
3240 1.1 bouyer u_int32_t val, addr;
3241 1.1 bouyer int i, rc = 0;
3242 1.1 bouyer
3243 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3244 1.1 bouyer
3245 1.1 bouyer /* Set the initial TX producer/consumer indices. */
3246 1.1 bouyer sc->tx_prod = 0;
3247 1.1 bouyer sc->tx_cons = 0;
3248 1.1 bouyer sc->tx_prod_bseq = 0;
3249 1.1 bouyer sc->used_tx_bd = 0;
3250 1.1 bouyer DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3251 1.1 bouyer
3252 1.1 bouyer /*
3253 1.1 bouyer * The NetXtreme II supports a linked-list structure called
3254 1.1 bouyer * a Buffer Descriptor Chain (or BD chain). A BD chain
3255 1.1 bouyer * consists of a series of 1 or more chain pages, each of which
3256 1.1 bouyer * consists of a fixed number of BD entries.
3257 1.1 bouyer * The last BD entry on each page is a pointer to the next page
3258 1.1 bouyer * in the chain, and the last pointer in the BD chain
3259 1.1 bouyer * points back to the beginning of the chain.
3260 1.1 bouyer */
3261 1.1 bouyer
3262 1.1 bouyer /* Set the TX next pointer chain entries. */
3263 1.1 bouyer for (i = 0; i < TX_PAGES; i++) {
3264 1.1 bouyer int j;
3265 1.1 bouyer
3266 1.1 bouyer txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3267 1.1 bouyer
3268 1.1 bouyer /* Check if we've reached the last page. */
3269 1.1 bouyer if (i == (TX_PAGES - 1))
3270 1.1 bouyer j = 0;
3271 1.1 bouyer else
3272 1.1 bouyer j = i + 1;
3273 1.1 bouyer
3274 1.1 bouyer addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
3275 1.1 bouyer txbd->tx_bd_haddr_lo = htole32(addr);
3276 1.1 bouyer addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3277 1.1 bouyer txbd->tx_bd_haddr_hi = htole32(addr);
3278 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3279 1.1 bouyer BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3280 1.1 bouyer }
3281 1.1 bouyer
3282 1.1 bouyer /*
3283 1.1 bouyer * Initialize the context ID for an L2 TX chain.
3284 1.1 bouyer */
3285 1.1 bouyer val = BNX_L2CTX_TYPE_TYPE_L2;
3286 1.1 bouyer val |= BNX_L2CTX_TYPE_SIZE_L2;
3287 1.1 bouyer CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3288 1.1 bouyer
3289 1.1 bouyer val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3290 1.1 bouyer CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3291 1.1 bouyer
3292 1.1 bouyer /* Point the hardware to the first page in the chain. */
3293 1.1 bouyer val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3294 1.1 bouyer CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3295 1.1 bouyer val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3296 1.1 bouyer CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3297 1.1 bouyer
3298 1.1 bouyer DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
3299 1.1 bouyer
3300 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3301 1.1 bouyer
3302 1.1 bouyer return(rc);
3303 1.1 bouyer }
3304 1.1 bouyer
3305 1.1 bouyer /****************************************************************************/
3306 1.1 bouyer /* Free memory and clear the TX data structures. */
3307 1.1 bouyer /* */
3308 1.1 bouyer /* Returns: */
3309 1.1 bouyer /* Nothing. */
3310 1.1 bouyer /****************************************************************************/
3311 1.1 bouyer void
3312 1.1 bouyer bnx_free_tx_chain(struct bnx_softc *sc)
3313 1.1 bouyer {
3314 1.1 bouyer int i;
3315 1.1 bouyer
3316 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3317 1.1 bouyer
3318 1.1 bouyer /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3319 1.1 bouyer for (i = 0; i < TOTAL_TX_BD; i++) {
3320 1.1 bouyer if (sc->tx_mbuf_ptr[i] != NULL) {
3321 1.1 bouyer if (sc->tx_mbuf_map != NULL)
3322 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag,
3323 1.1 bouyer sc->tx_mbuf_map[i], 0,
3324 1.1 bouyer sc->tx_mbuf_map[i]->dm_mapsize,
3325 1.1 bouyer BUS_DMASYNC_POSTWRITE);
3326 1.1 bouyer m_freem(sc->tx_mbuf_ptr[i]);
3327 1.1 bouyer sc->tx_mbuf_ptr[i] = NULL;
3328 1.1 bouyer DBRUNIF(1, sc->tx_mbuf_alloc--);
3329 1.1 bouyer }
3330 1.1 bouyer }
3331 1.1 bouyer
3332 1.1 bouyer /* Clear each TX chain page. */
3333 1.1 bouyer for (i = 0; i < TX_PAGES; i++) {
3334 1.23 cegger memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
3335 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3336 1.1 bouyer BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3337 1.1 bouyer }
3338 1.1 bouyer
3339 1.1 bouyer /* Check if we lost any mbufs in the process. */
3340 1.1 bouyer DBRUNIF((sc->tx_mbuf_alloc),
3341 1.13 dyoung aprint_error_dev(sc->bnx_dev,
3342 1.13 dyoung "Memory leak! Lost %d mbufs from tx chain!\n",
3343 1.13 dyoung sc->tx_mbuf_alloc));
3344 1.1 bouyer
3345 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3346 1.1 bouyer }
3347 1.1 bouyer
3348 1.1 bouyer /****************************************************************************/
3349 1.1 bouyer /* Allocate memory and initialize the RX data structures. */
3350 1.1 bouyer /* */
3351 1.1 bouyer /* Returns: */
3352 1.1 bouyer /* 0 for success, positive value for failure. */
3353 1.1 bouyer /****************************************************************************/
3354 1.1 bouyer int
3355 1.1 bouyer bnx_init_rx_chain(struct bnx_softc *sc)
3356 1.1 bouyer {
3357 1.1 bouyer struct rx_bd *rxbd;
3358 1.1 bouyer int i, rc = 0;
3359 1.1 bouyer u_int16_t prod, chain_prod;
3360 1.1 bouyer u_int32_t prod_bseq, val, addr;
3361 1.1 bouyer
3362 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3363 1.1 bouyer
3364 1.1 bouyer /* Initialize the RX producer and consumer indices. */
3365 1.1 bouyer sc->rx_prod = 0;
3366 1.1 bouyer sc->rx_cons = 0;
3367 1.1 bouyer sc->rx_prod_bseq = 0;
3368 1.1 bouyer sc->free_rx_bd = BNX_RX_SLACK_SPACE;
3369 1.1 bouyer DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
3370 1.1 bouyer
3371 1.1 bouyer /* Initialize the RX next pointer chain entries. */
3372 1.1 bouyer for (i = 0; i < RX_PAGES; i++) {
3373 1.1 bouyer int j;
3374 1.1 bouyer
3375 1.1 bouyer rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
3376 1.1 bouyer
3377 1.1 bouyer /* Check if we've reached the last page. */
3378 1.1 bouyer if (i == (RX_PAGES - 1))
3379 1.1 bouyer j = 0;
3380 1.1 bouyer else
3381 1.1 bouyer j = i + 1;
3382 1.1 bouyer
3383 1.1 bouyer /* Setup the chain page pointers. */
3384 1.1 bouyer addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
3385 1.1 bouyer rxbd->rx_bd_haddr_hi = htole32(addr);
3386 1.1 bouyer addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
3387 1.1 bouyer rxbd->rx_bd_haddr_lo = htole32(addr);
3388 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
3389 1.1 bouyer 0, BNX_RX_CHAIN_PAGE_SZ,
3390 1.1 bouyer BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3391 1.1 bouyer }
3392 1.1 bouyer
3393 1.1 bouyer /* Initialize the context ID for an L2 RX chain. */
3394 1.1 bouyer val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
3395 1.1 bouyer val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
3396 1.1 bouyer val |= 0x02 << 8;
3397 1.1 bouyer CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
3398 1.1 bouyer
3399 1.1 bouyer /* Point the hardware to the first page in the chain. */
3400 1.1 bouyer val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
3401 1.1 bouyer CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
3402 1.1 bouyer val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
3403 1.1 bouyer CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
3404 1.1 bouyer
3405 1.1 bouyer /* Allocate mbuf clusters for the rx_bd chain. */
3406 1.1 bouyer prod = prod_bseq = 0;
3407 1.5 bouyer chain_prod = RX_CHAIN_IDX(prod);
3408 1.21 dyoung if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
3409 1.5 bouyer BNX_PRINTF(sc,
3410 1.5 bouyer "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
3411 1.1 bouyer }
3412 1.1 bouyer
3413 1.1 bouyer /* Save the RX chain producer index. */
3414 1.1 bouyer sc->rx_prod = prod;
3415 1.1 bouyer sc->rx_prod_bseq = prod_bseq;
3416 1.1 bouyer
3417 1.1 bouyer for (i = 0; i < RX_PAGES; i++)
3418 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
3419 1.1 bouyer sc->rx_bd_chain_map[i]->dm_mapsize,
3420 1.1 bouyer BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3421 1.1 bouyer
3422 1.1 bouyer /* Tell the chip about the waiting rx_bd's. */
3423 1.1 bouyer REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3424 1.1 bouyer REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3425 1.1 bouyer
3426 1.1 bouyer DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
3427 1.1 bouyer
3428 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3429 1.1 bouyer
3430 1.1 bouyer return(rc);
3431 1.1 bouyer }
3432 1.1 bouyer
3433 1.1 bouyer /****************************************************************************/
3434 1.1 bouyer /* Free memory and clear the RX data structures. */
3435 1.1 bouyer /* */
3436 1.1 bouyer /* Returns: */
3437 1.1 bouyer /* Nothing. */
3438 1.1 bouyer /****************************************************************************/
3439 1.1 bouyer void
3440 1.1 bouyer bnx_free_rx_chain(struct bnx_softc *sc)
3441 1.1 bouyer {
3442 1.1 bouyer int i;
3443 1.1 bouyer
3444 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3445 1.1 bouyer
3446 1.1 bouyer /* Free any mbufs still in the RX mbuf chain. */
3447 1.1 bouyer for (i = 0; i < TOTAL_RX_BD; i++) {
3448 1.1 bouyer if (sc->rx_mbuf_ptr[i] != NULL) {
3449 1.1 bouyer if (sc->rx_mbuf_map[i] != NULL)
3450 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag,
3451 1.1 bouyer sc->rx_mbuf_map[i], 0,
3452 1.1 bouyer sc->rx_mbuf_map[i]->dm_mapsize,
3453 1.1 bouyer BUS_DMASYNC_POSTREAD);
3454 1.1 bouyer m_freem(sc->rx_mbuf_ptr[i]);
3455 1.1 bouyer sc->rx_mbuf_ptr[i] = NULL;
3456 1.1 bouyer DBRUNIF(1, sc->rx_mbuf_alloc--);
3457 1.1 bouyer }
3458 1.1 bouyer }
3459 1.1 bouyer
3460 1.1 bouyer /* Clear each RX chain page. */
3461 1.1 bouyer for (i = 0; i < RX_PAGES; i++)
3462 1.23 cegger memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
3463 1.1 bouyer
3464 1.1 bouyer /* Check if we lost any mbufs in the process. */
3465 1.1 bouyer DBRUNIF((sc->rx_mbuf_alloc),
3466 1.13 dyoung aprint_error_dev(sc->bnx_dev,
3467 1.13 dyoung "Memory leak! Lost %d mbufs from rx chain!\n",
3468 1.13 dyoung sc->rx_mbuf_alloc));
3469 1.1 bouyer
3470 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3471 1.1 bouyer }
3472 1.1 bouyer
3473 1.1 bouyer /****************************************************************************/
3474 1.1 bouyer /* Handles PHY generated interrupt events. */
3475 1.1 bouyer /* */
3476 1.1 bouyer /* Returns: */
3477 1.1 bouyer /* Nothing. */
3478 1.1 bouyer /****************************************************************************/
3479 1.1 bouyer void
3480 1.1 bouyer bnx_phy_intr(struct bnx_softc *sc)
3481 1.1 bouyer {
3482 1.1 bouyer u_int32_t new_link_state, old_link_state;
3483 1.1 bouyer
3484 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3485 1.1 bouyer BUS_DMASYNC_POSTREAD);
3486 1.1 bouyer new_link_state = sc->status_block->status_attn_bits &
3487 1.1 bouyer STATUS_ATTN_BITS_LINK_STATE;
3488 1.1 bouyer old_link_state = sc->status_block->status_attn_bits_ack &
3489 1.1 bouyer STATUS_ATTN_BITS_LINK_STATE;
3490 1.1 bouyer
3491 1.1 bouyer /* Handle any changes if the link state has changed. */
3492 1.1 bouyer if (new_link_state != old_link_state) {
3493 1.1 bouyer DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
3494 1.1 bouyer
3495 1.1 bouyer callout_stop(&sc->bnx_timeout);
3496 1.1 bouyer bnx_tick(sc);
3497 1.1 bouyer
3498 1.1 bouyer /* Update the status_attn_bits_ack field in the status block. */
3499 1.1 bouyer if (new_link_state) {
3500 1.1 bouyer REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
3501 1.1 bouyer STATUS_ATTN_BITS_LINK_STATE);
3502 1.1 bouyer DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
3503 1.1 bouyer } else {
3504 1.1 bouyer REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
3505 1.1 bouyer STATUS_ATTN_BITS_LINK_STATE);
3506 1.1 bouyer DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
3507 1.1 bouyer }
3508 1.1 bouyer }
3509 1.1 bouyer
3510 1.1 bouyer /* Acknowledge the link change interrupt. */
3511 1.1 bouyer REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
3512 1.1 bouyer }
3513 1.1 bouyer
3514 1.1 bouyer /****************************************************************************/
3515 1.1 bouyer /* Handles received frame interrupt events. */
3516 1.1 bouyer /* */
3517 1.1 bouyer /* Returns: */
3518 1.1 bouyer /* Nothing. */
3519 1.1 bouyer /****************************************************************************/
3520 1.1 bouyer void
3521 1.1 bouyer bnx_rx_intr(struct bnx_softc *sc)
3522 1.1 bouyer {
3523 1.1 bouyer struct status_block *sblk = sc->status_block;
3524 1.15 dyoung struct ifnet *ifp = &sc->bnx_ec.ec_if;
3525 1.1 bouyer u_int16_t hw_cons, sw_cons, sw_chain_cons;
3526 1.1 bouyer u_int16_t sw_prod, sw_chain_prod;
3527 1.1 bouyer u_int32_t sw_prod_bseq;
3528 1.1 bouyer struct l2_fhdr *l2fhdr;
3529 1.1 bouyer int i;
3530 1.1 bouyer
3531 1.1 bouyer DBRUNIF(1, sc->rx_interrupts++);
3532 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3533 1.1 bouyer BUS_DMASYNC_POSTREAD);
3534 1.1 bouyer
3535 1.1 bouyer /* Prepare the RX chain pages to be accessed by the host CPU. */
3536 1.1 bouyer for (i = 0; i < RX_PAGES; i++)
3537 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag,
3538 1.1 bouyer sc->rx_bd_chain_map[i], 0,
3539 1.1 bouyer sc->rx_bd_chain_map[i]->dm_mapsize,
3540 1.1 bouyer BUS_DMASYNC_POSTWRITE);
3541 1.1 bouyer
3542 1.1 bouyer /* Get the hardware's view of the RX consumer index. */
3543 1.1 bouyer hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
3544 1.1 bouyer if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
3545 1.1 bouyer hw_cons++;
3546 1.1 bouyer
3547 1.1 bouyer /* Get working copies of the driver's view of the RX indices. */
3548 1.1 bouyer sw_cons = sc->rx_cons;
3549 1.1 bouyer sw_prod = sc->rx_prod;
3550 1.1 bouyer sw_prod_bseq = sc->rx_prod_bseq;
3551 1.1 bouyer
3552 1.1 bouyer DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
3553 1.1 bouyer "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
3554 1.12 perry __func__, sw_prod, sw_cons, sw_prod_bseq);
3555 1.1 bouyer
3556 1.1 bouyer /* Prevent speculative reads from getting ahead of the status block. */
3557 1.1 bouyer bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3558 1.1 bouyer BUS_SPACE_BARRIER_READ);
3559 1.1 bouyer
3560 1.1 bouyer DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3561 1.1 bouyer sc->rx_low_watermark = sc->free_rx_bd);
3562 1.1 bouyer
3563 1.1 bouyer /*
3564 1.1 bouyer * Scan through the receive chain as long
3565 1.1 bouyer * as there is work to do.
3566 1.1 bouyer */
3567 1.1 bouyer while (sw_cons != hw_cons) {
3568 1.1 bouyer struct mbuf *m;
3569 1.1 bouyer struct rx_bd *rxbd;
3570 1.1 bouyer unsigned int len;
3571 1.1 bouyer u_int32_t status;
3572 1.1 bouyer
3573 1.1 bouyer /* Convert the producer/consumer indices to an actual
3574 1.1 bouyer * rx_bd index.
3575 1.1 bouyer */
3576 1.1 bouyer sw_chain_cons = RX_CHAIN_IDX(sw_cons);
3577 1.1 bouyer sw_chain_prod = RX_CHAIN_IDX(sw_prod);
3578 1.1 bouyer
3579 1.1 bouyer /* Get the used rx_bd. */
3580 1.1 bouyer rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
3581 1.1 bouyer sc->free_rx_bd++;
3582 1.1 bouyer
3583 1.12 perry DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
3584 1.1 bouyer bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
3585 1.1 bouyer
3586 1.1 bouyer /* The mbuf is stored with the last rx_bd entry of a packet. */
3587 1.1 bouyer if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
3588 1.5 bouyer #ifdef DIAGNOSTIC
3589 1.1 bouyer /* Validate that this is the last rx_bd. */
3590 1.5 bouyer if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
3591 1.5 bouyer printf("%s: Unexpected mbuf found in "
3592 1.13 dyoung "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
3593 1.1 bouyer sw_chain_cons);
3594 1.5 bouyer }
3595 1.5 bouyer #endif
3596 1.1 bouyer
3597 1.1 bouyer /* DRC - ToDo: If the received packet is small, say less
3598 1.1 bouyer * than 128 bytes, allocate a new mbuf here,
3599 1.1 bouyer * copy the data to that mbuf, and recycle
3600 1.1 bouyer * the mapped jumbo frame.
3601 1.1 bouyer */
3602 1.1 bouyer
3603 1.1 bouyer /* Unmap the mbuf from DMA space. */
3604 1.5 bouyer #ifdef DIAGNOSTIC
3605 1.5 bouyer if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
3606 1.5 bouyer printf("invalid map sw_cons 0x%x "
3607 1.5 bouyer "sw_prod 0x%x "
3608 1.5 bouyer "sw_chain_cons 0x%x "
3609 1.5 bouyer "sw_chain_prod 0x%x "
3610 1.5 bouyer "hw_cons 0x%x "
3611 1.6 bouyer "TOTAL_RX_BD_PER_PAGE 0x%x "
3612 1.6 bouyer "TOTAL_RX_BD 0x%x\n",
3613 1.5 bouyer sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
3614 1.6 bouyer hw_cons,
3615 1.6 bouyer (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
3616 1.5 bouyer }
3617 1.5 bouyer #endif
3618 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag,
3619 1.1 bouyer sc->rx_mbuf_map[sw_chain_cons], 0,
3620 1.1 bouyer sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
3621 1.1 bouyer BUS_DMASYNC_POSTREAD);
3622 1.1 bouyer bus_dmamap_unload(sc->bnx_dmatag,
3623 1.1 bouyer sc->rx_mbuf_map[sw_chain_cons]);
3624 1.1 bouyer
3625 1.1 bouyer /* Remove the mbuf from the driver's chain. */
3626 1.1 bouyer m = sc->rx_mbuf_ptr[sw_chain_cons];
3627 1.1 bouyer sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
3628 1.1 bouyer
3629 1.1 bouyer /*
3630 1.1 bouyer * Frames received on the NetXteme II are prepended
3631 1.1 bouyer * with the l2_fhdr structure which provides status
3632 1.1 bouyer * information about the received frame (including
3633 1.1 bouyer * VLAN tags and checksum info) and are also
3634 1.1 bouyer * automatically adjusted to align the IP header
3635 1.1 bouyer * (i.e. two null bytes are inserted before the
3636 1.1 bouyer * Ethernet header).
3637 1.1 bouyer */
3638 1.1 bouyer l2fhdr = mtod(m, struct l2_fhdr *);
3639 1.1 bouyer
3640 1.1 bouyer len = l2fhdr->l2_fhdr_pkt_len;
3641 1.1 bouyer status = l2fhdr->l2_fhdr_status;
3642 1.1 bouyer
3643 1.1 bouyer DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
3644 1.1 bouyer aprint_error("Simulating l2_fhdr status error.\n");
3645 1.1 bouyer status = status | L2_FHDR_ERRORS_PHY_DECODE);
3646 1.1 bouyer
3647 1.1 bouyer /* Watch for unusual sized frames. */
3648 1.1 bouyer DBRUNIF(((len < BNX_MIN_MTU) ||
3649 1.1 bouyer (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
3650 1.13 dyoung aprint_error_dev(sc->bnx_dev,
3651 1.13 dyoung "Unusual frame size found. "
3652 1.13 dyoung "Min(%d), Actual(%d), Max(%d)\n",
3653 1.13 dyoung (int)BNX_MIN_MTU, len,
3654 1.13 dyoung (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
3655 1.1 bouyer
3656 1.1 bouyer bnx_dump_mbuf(sc, m);
3657 1.1 bouyer bnx_breakpoint(sc));
3658 1.1 bouyer
3659 1.1 bouyer len -= ETHER_CRC_LEN;
3660 1.1 bouyer
3661 1.1 bouyer /* Check the received frame for errors. */
3662 1.1 bouyer if ((status & (L2_FHDR_ERRORS_BAD_CRC |
3663 1.1 bouyer L2_FHDR_ERRORS_PHY_DECODE |
3664 1.1 bouyer L2_FHDR_ERRORS_ALIGNMENT |
3665 1.1 bouyer L2_FHDR_ERRORS_TOO_SHORT |
3666 1.1 bouyer L2_FHDR_ERRORS_GIANT_FRAME)) ||
3667 1.1 bouyer len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
3668 1.1 bouyer len >
3669 1.1 bouyer (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
3670 1.1 bouyer ifp->if_ierrors++;
3671 1.1 bouyer DBRUNIF(1, sc->l2fhdr_status_errors++);
3672 1.1 bouyer
3673 1.1 bouyer /* Reuse the mbuf for a new frame. */
3674 1.21 dyoung if (bnx_add_buf(sc, m, &sw_prod,
3675 1.1 bouyer &sw_chain_prod, &sw_prod_bseq)) {
3676 1.1 bouyer DBRUNIF(1, bnx_breakpoint(sc));
3677 1.1 bouyer panic("%s: Can't reuse RX mbuf!\n",
3678 1.13 dyoung device_xname(sc->bnx_dev));
3679 1.1 bouyer }
3680 1.5 bouyer continue;
3681 1.1 bouyer }
3682 1.1 bouyer
3683 1.1 bouyer /*
3684 1.1 bouyer * Get a new mbuf for the rx_bd. If no new
3685 1.1 bouyer * mbufs are available then reuse the current mbuf,
3686 1.1 bouyer * log an ierror on the interface, and generate
3687 1.1 bouyer * an error in the system log.
3688 1.1 bouyer */
3689 1.21 dyoung if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
3690 1.1 bouyer &sw_prod_bseq)) {
3691 1.1 bouyer DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
3692 1.1 bouyer "new mbuf, incoming frame dropped!\n"));
3693 1.1 bouyer
3694 1.1 bouyer ifp->if_ierrors++;
3695 1.1 bouyer
3696 1.1 bouyer /* Try and reuse the exisitng mbuf. */
3697 1.21 dyoung if (bnx_add_buf(sc, m, &sw_prod,
3698 1.1 bouyer &sw_chain_prod, &sw_prod_bseq)) {
3699 1.1 bouyer DBRUNIF(1, bnx_breakpoint(sc));
3700 1.1 bouyer panic("%s: Double mbuf allocation "
3701 1.13 dyoung "failure!",
3702 1.13 dyoung device_xname(sc->bnx_dev));
3703 1.1 bouyer }
3704 1.5 bouyer continue;
3705 1.1 bouyer }
3706 1.1 bouyer
3707 1.1 bouyer /* Skip over the l2_fhdr when passing the data up
3708 1.1 bouyer * the stack.
3709 1.1 bouyer */
3710 1.1 bouyer m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
3711 1.1 bouyer
3712 1.1 bouyer /* Adjust the pckt length to match the received data. */
3713 1.1 bouyer m->m_pkthdr.len = m->m_len = len;
3714 1.1 bouyer
3715 1.1 bouyer /* Send the packet to the appropriate interface. */
3716 1.1 bouyer m->m_pkthdr.rcvif = ifp;
3717 1.1 bouyer
3718 1.1 bouyer DBRUN(BNX_VERBOSE_RECV,
3719 1.1 bouyer struct ether_header *eh;
3720 1.1 bouyer eh = mtod(m, struct ether_header *);
3721 1.1 bouyer aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
3722 1.12 perry __func__, ether_sprintf(eh->ether_dhost),
3723 1.1 bouyer ether_sprintf(eh->ether_shost),
3724 1.1 bouyer htons(eh->ether_type)));
3725 1.1 bouyer
3726 1.1 bouyer /* Validate the checksum. */
3727 1.1 bouyer
3728 1.1 bouyer /* Check for an IP datagram. */
3729 1.1 bouyer if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
3730 1.1 bouyer /* Check if the IP checksum is valid. */
3731 1.1 bouyer if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
3732 1.1 bouyer == 0)
3733 1.1 bouyer m->m_pkthdr.csum_flags |=
3734 1.1 bouyer M_CSUM_IPv4;
3735 1.1 bouyer #ifdef BNX_DEBUG
3736 1.1 bouyer else
3737 1.1 bouyer DBPRINT(sc, BNX_WARN_SEND,
3738 1.1 bouyer "%s(): Invalid IP checksum "
3739 1.1 bouyer "= 0x%04X!\n",
3740 1.12 perry __func__,
3741 1.1 bouyer l2fhdr->l2_fhdr_ip_xsum
3742 1.1 bouyer );
3743 1.1 bouyer #endif
3744 1.1 bouyer }
3745 1.1 bouyer
3746 1.1 bouyer /* Check for a valid TCP/UDP frame. */
3747 1.1 bouyer if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3748 1.1 bouyer L2_FHDR_STATUS_UDP_DATAGRAM)) {
3749 1.1 bouyer /* Check for a good TCP/UDP checksum. */
3750 1.1 bouyer if ((status &
3751 1.1 bouyer (L2_FHDR_ERRORS_TCP_XSUM |
3752 1.1 bouyer L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
3753 1.1 bouyer m->m_pkthdr.csum_flags |=
3754 1.1 bouyer M_CSUM_TCPv4 |
3755 1.1 bouyer M_CSUM_UDPv4;
3756 1.1 bouyer } else {
3757 1.1 bouyer DBPRINT(sc, BNX_WARN_SEND,
3758 1.1 bouyer "%s(): Invalid TCP/UDP "
3759 1.1 bouyer "checksum = 0x%04X!\n",
3760 1.12 perry __func__,
3761 1.1 bouyer l2fhdr->l2_fhdr_tcp_udp_xsum);
3762 1.1 bouyer }
3763 1.1 bouyer }
3764 1.1 bouyer
3765 1.1 bouyer /*
3766 1.1 bouyer * If we received a packet with a vlan tag,
3767 1.1 bouyer * attach that information to the packet.
3768 1.1 bouyer */
3769 1.1 bouyer if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
3770 1.1 bouyer #if 0
3771 1.1 bouyer struct ether_vlan_header vh;
3772 1.1 bouyer
3773 1.1 bouyer DBPRINT(sc, BNX_VERBOSE_SEND,
3774 1.1 bouyer "%s(): VLAN tag = 0x%04X\n",
3775 1.12 perry __func__,
3776 1.1 bouyer l2fhdr->l2_fhdr_vlan_tag);
3777 1.1 bouyer
3778 1.1 bouyer if (m->m_pkthdr.len < ETHER_HDR_LEN) {
3779 1.1 bouyer m_freem(m);
3780 1.5 bouyer continue;
3781 1.1 bouyer }
3782 1.3 christos m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
3783 1.1 bouyer vh.evl_proto = vh.evl_encap_proto;
3784 1.4 bouyer vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
3785 1.1 bouyer vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
3786 1.1 bouyer m_adj(m, ETHER_HDR_LEN);
3787 1.1 bouyer if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
3788 1.5 bouyer continue;
3789 1.1 bouyer m->m_pkthdr.len += sizeof(vh);
3790 1.1 bouyer if (m->m_len < sizeof(vh) &&
3791 1.1 bouyer (m = m_pullup(m, sizeof(vh))) == NULL)
3792 1.1 bouyer goto bnx_rx_int_next_rx;
3793 1.1 bouyer m_copyback(m, 0, sizeof(vh), &vh);
3794 1.1 bouyer #else
3795 1.1 bouyer VLAN_INPUT_TAG(ifp, m,
3796 1.8 bouyer l2fhdr->l2_fhdr_vlan_tag,
3797 1.5 bouyer continue);
3798 1.1 bouyer #endif
3799 1.1 bouyer }
3800 1.1 bouyer
3801 1.1 bouyer #if NBPFILTER > 0
3802 1.1 bouyer /*
3803 1.1 bouyer * Handle BPF listeners. Let the BPF
3804 1.1 bouyer * user see the packet.
3805 1.1 bouyer */
3806 1.1 bouyer if (ifp->if_bpf)
3807 1.1 bouyer bpf_mtap(ifp->if_bpf, m);
3808 1.1 bouyer #endif
3809 1.1 bouyer
3810 1.1 bouyer /* Pass the mbuf off to the upper layers. */
3811 1.1 bouyer ifp->if_ipackets++;
3812 1.1 bouyer DBPRINT(sc, BNX_VERBOSE_RECV,
3813 1.12 perry "%s(): Passing received frame up.\n", __func__);
3814 1.1 bouyer (*ifp->if_input)(ifp, m);
3815 1.1 bouyer DBRUNIF(1, sc->rx_mbuf_alloc--);
3816 1.1 bouyer
3817 1.1 bouyer }
3818 1.1 bouyer
3819 1.1 bouyer sw_cons = NEXT_RX_BD(sw_cons);
3820 1.1 bouyer
3821 1.1 bouyer /* Refresh hw_cons to see if there's new work */
3822 1.1 bouyer if (sw_cons == hw_cons) {
3823 1.1 bouyer hw_cons = sc->hw_rx_cons =
3824 1.1 bouyer sblk->status_rx_quick_consumer_index0;
3825 1.1 bouyer if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
3826 1.1 bouyer USABLE_RX_BD_PER_PAGE)
3827 1.1 bouyer hw_cons++;
3828 1.1 bouyer }
3829 1.1 bouyer
3830 1.1 bouyer /* Prevent speculative reads from getting ahead of
3831 1.1 bouyer * the status block.
3832 1.1 bouyer */
3833 1.1 bouyer bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3834 1.1 bouyer BUS_SPACE_BARRIER_READ);
3835 1.1 bouyer }
3836 1.1 bouyer
3837 1.1 bouyer for (i = 0; i < RX_PAGES; i++)
3838 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag,
3839 1.1 bouyer sc->rx_bd_chain_map[i], 0,
3840 1.1 bouyer sc->rx_bd_chain_map[i]->dm_mapsize,
3841 1.1 bouyer BUS_DMASYNC_PREWRITE);
3842 1.1 bouyer
3843 1.1 bouyer sc->rx_cons = sw_cons;
3844 1.1 bouyer sc->rx_prod = sw_prod;
3845 1.1 bouyer sc->rx_prod_bseq = sw_prod_bseq;
3846 1.1 bouyer
3847 1.1 bouyer REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3848 1.1 bouyer REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3849 1.1 bouyer
3850 1.1 bouyer DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
3851 1.1 bouyer "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
3852 1.12 perry __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
3853 1.1 bouyer }
3854 1.1 bouyer
3855 1.1 bouyer /****************************************************************************/
3856 1.1 bouyer /* Handles transmit completion interrupt events. */
3857 1.1 bouyer /* */
3858 1.1 bouyer /* Returns: */
3859 1.1 bouyer /* Nothing. */
3860 1.1 bouyer /****************************************************************************/
3861 1.1 bouyer void
3862 1.1 bouyer bnx_tx_intr(struct bnx_softc *sc)
3863 1.1 bouyer {
3864 1.1 bouyer struct status_block *sblk = sc->status_block;
3865 1.15 dyoung struct ifnet *ifp = &sc->bnx_ec.ec_if;
3866 1.1 bouyer u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
3867 1.1 bouyer
3868 1.1 bouyer DBRUNIF(1, sc->tx_interrupts++);
3869 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3870 1.1 bouyer BUS_DMASYNC_POSTREAD);
3871 1.1 bouyer
3872 1.1 bouyer /* Get the hardware's view of the TX consumer index. */
3873 1.1 bouyer hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
3874 1.1 bouyer
3875 1.1 bouyer /* Skip to the next entry if this is a chain page pointer. */
3876 1.1 bouyer if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
3877 1.1 bouyer hw_tx_cons++;
3878 1.1 bouyer
3879 1.1 bouyer sw_tx_cons = sc->tx_cons;
3880 1.1 bouyer
3881 1.1 bouyer /* Prevent speculative reads from getting ahead of the status block. */
3882 1.1 bouyer bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3883 1.1 bouyer BUS_SPACE_BARRIER_READ);
3884 1.1 bouyer
3885 1.1 bouyer /* Cycle through any completed TX chain page entries. */
3886 1.1 bouyer while (sw_tx_cons != hw_tx_cons) {
3887 1.1 bouyer #ifdef BNX_DEBUG
3888 1.1 bouyer struct tx_bd *txbd = NULL;
3889 1.1 bouyer #endif
3890 1.1 bouyer sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
3891 1.1 bouyer
3892 1.1 bouyer DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
3893 1.1 bouyer "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
3894 1.12 perry __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
3895 1.1 bouyer
3896 1.1 bouyer DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
3897 1.13 dyoung aprint_error_dev(sc->bnx_dev,
3898 1.13 dyoung "TX chain consumer out of range! 0x%04X > 0x%04X\n",
3899 1.13 dyoung sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
3900 1.1 bouyer
3901 1.1 bouyer DBRUNIF(1, txbd = &sc->tx_bd_chain
3902 1.1 bouyer [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
3903 1.1 bouyer
3904 1.1 bouyer DBRUNIF((txbd == NULL),
3905 1.13 dyoung aprint_error_dev(sc->bnx_dev,
3906 1.13 dyoung "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
3907 1.1 bouyer bnx_breakpoint(sc));
3908 1.1 bouyer
3909 1.12 perry DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
3910 1.1 bouyer bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
3911 1.1 bouyer
3912 1.1 bouyer /*
3913 1.1 bouyer * Free the associated mbuf. Remember
3914 1.1 bouyer * that only the last tx_bd of a packet
3915 1.1 bouyer * has an mbuf pointer and DMA map.
3916 1.1 bouyer */
3917 1.1 bouyer if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
3918 1.1 bouyer /* Validate that this is the last tx_bd. */
3919 1.1 bouyer DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
3920 1.1 bouyer TX_BD_FLAGS_END)),
3921 1.13 dyoung aprint_error_dev(sc->bnx_dev,
3922 1.13 dyoung "tx_bd END flag not set but txmbuf == NULL!\n");
3923 1.1 bouyer bnx_breakpoint(sc));
3924 1.1 bouyer
3925 1.1 bouyer DBRUN(BNX_INFO_SEND,
3926 1.1 bouyer aprint_debug("%s: Unloading map/freeing mbuf "
3927 1.1 bouyer "from tx_bd[0x%04X]\n",
3928 1.12 perry __func__, sw_tx_chain_cons));
3929 1.1 bouyer
3930 1.1 bouyer /* Unmap the mbuf. */
3931 1.1 bouyer bus_dmamap_unload(sc->bnx_dmatag,
3932 1.1 bouyer sc->tx_mbuf_map[sw_tx_chain_cons]);
3933 1.1 bouyer
3934 1.1 bouyer /* Free the mbuf. */
3935 1.1 bouyer m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
3936 1.1 bouyer sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
3937 1.1 bouyer DBRUNIF(1, sc->tx_mbuf_alloc--);
3938 1.1 bouyer
3939 1.1 bouyer ifp->if_opackets++;
3940 1.1 bouyer }
3941 1.1 bouyer
3942 1.1 bouyer sc->used_tx_bd--;
3943 1.1 bouyer sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
3944 1.1 bouyer
3945 1.1 bouyer /* Refresh hw_cons to see if there's new work. */
3946 1.1 bouyer hw_tx_cons = sc->hw_tx_cons =
3947 1.1 bouyer sblk->status_tx_quick_consumer_index0;
3948 1.1 bouyer if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
3949 1.1 bouyer USABLE_TX_BD_PER_PAGE)
3950 1.1 bouyer hw_tx_cons++;
3951 1.1 bouyer
3952 1.1 bouyer /* Prevent speculative reads from getting ahead of
3953 1.1 bouyer * the status block.
3954 1.1 bouyer */
3955 1.1 bouyer bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3956 1.1 bouyer BUS_SPACE_BARRIER_READ);
3957 1.1 bouyer }
3958 1.1 bouyer
3959 1.1 bouyer /* Clear the TX timeout timer. */
3960 1.1 bouyer ifp->if_timer = 0;
3961 1.1 bouyer
3962 1.1 bouyer /* Clear the tx hardware queue full flag. */
3963 1.1 bouyer if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
3964 1.1 bouyer DBRUNIF((ifp->if_flags & IFF_OACTIVE),
3965 1.13 dyoung aprint_debug_dev(sc->bnx_dev,
3966 1.13 dyoung "TX chain is open for business! Used tx_bd = %d\n",
3967 1.13 dyoung sc->used_tx_bd));
3968 1.1 bouyer ifp->if_flags &= ~IFF_OACTIVE;
3969 1.1 bouyer }
3970 1.1 bouyer
3971 1.1 bouyer sc->tx_cons = sw_tx_cons;
3972 1.1 bouyer }
3973 1.1 bouyer
3974 1.1 bouyer /****************************************************************************/
3975 1.1 bouyer /* Disables interrupt generation. */
3976 1.1 bouyer /* */
3977 1.1 bouyer /* Returns: */
3978 1.1 bouyer /* Nothing. */
3979 1.1 bouyer /****************************************************************************/
3980 1.1 bouyer void
3981 1.1 bouyer bnx_disable_intr(struct bnx_softc *sc)
3982 1.1 bouyer {
3983 1.1 bouyer REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3984 1.1 bouyer REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
3985 1.1 bouyer }
3986 1.1 bouyer
3987 1.1 bouyer /****************************************************************************/
3988 1.1 bouyer /* Enables interrupt generation. */
3989 1.1 bouyer /* */
3990 1.1 bouyer /* Returns: */
3991 1.1 bouyer /* Nothing. */
3992 1.1 bouyer /****************************************************************************/
3993 1.1 bouyer void
3994 1.1 bouyer bnx_enable_intr(struct bnx_softc *sc)
3995 1.1 bouyer {
3996 1.1 bouyer u_int32_t val;
3997 1.1 bouyer
3998 1.1 bouyer REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
3999 1.1 bouyer BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4000 1.1 bouyer
4001 1.1 bouyer REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4002 1.1 bouyer sc->last_status_idx);
4003 1.1 bouyer
4004 1.1 bouyer val = REG_RD(sc, BNX_HC_COMMAND);
4005 1.1 bouyer REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4006 1.1 bouyer }
4007 1.1 bouyer
4008 1.1 bouyer /****************************************************************************/
4009 1.1 bouyer /* Handles controller initialization. */
4010 1.1 bouyer /* */
4011 1.1 bouyer /****************************************************************************/
4012 1.1 bouyer int
4013 1.1 bouyer bnx_init(struct ifnet *ifp)
4014 1.1 bouyer {
4015 1.1 bouyer struct bnx_softc *sc = ifp->if_softc;
4016 1.1 bouyer u_int32_t ether_mtu;
4017 1.1 bouyer int s, error = 0;
4018 1.1 bouyer
4019 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4020 1.1 bouyer
4021 1.1 bouyer s = splnet();
4022 1.1 bouyer
4023 1.14 dyoung bnx_stop(ifp, 0);
4024 1.1 bouyer
4025 1.1 bouyer if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4026 1.1 bouyer aprint_error("bnx: Controller reset failed!\n");
4027 1.4 bouyer goto bnx_init_exit;
4028 1.1 bouyer }
4029 1.1 bouyer
4030 1.1 bouyer if ((error = bnx_chipinit(sc)) != 0) {
4031 1.1 bouyer aprint_error("bnx: Controller initialization failed!\n");
4032 1.4 bouyer goto bnx_init_exit;
4033 1.1 bouyer }
4034 1.1 bouyer
4035 1.1 bouyer if ((error = bnx_blockinit(sc)) != 0) {
4036 1.1 bouyer aprint_error("bnx: Block initialization failed!\n");
4037 1.4 bouyer goto bnx_init_exit;
4038 1.1 bouyer }
4039 1.1 bouyer
4040 1.1 bouyer /* Calculate and program the Ethernet MRU size. */
4041 1.5 bouyer if (ifp->if_mtu <= ETHERMTU) {
4042 1.5 bouyer ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4043 1.5 bouyer sc->mbuf_alloc_size = MCLBYTES;
4044 1.5 bouyer } else {
4045 1.5 bouyer ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4046 1.5 bouyer sc->mbuf_alloc_size = BNX_MAX_MRU;
4047 1.5 bouyer }
4048 1.5 bouyer
4049 1.1 bouyer
4050 1.1 bouyer DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4051 1.12 perry __func__, ether_mtu);
4052 1.1 bouyer
4053 1.1 bouyer /*
4054 1.1 bouyer * Program the MRU and enable Jumbo frame
4055 1.1 bouyer * support.
4056 1.1 bouyer */
4057 1.1 bouyer REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4058 1.1 bouyer BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4059 1.1 bouyer
4060 1.1 bouyer /* Calculate the RX Ethernet frame size for rx_bd's. */
4061 1.1 bouyer sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4062 1.1 bouyer
4063 1.1 bouyer DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4064 1.12 perry "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4065 1.1 bouyer sc->mbuf_alloc_size, sc->max_frame_size);
4066 1.1 bouyer
4067 1.1 bouyer /* Program appropriate promiscuous/multicast filtering. */
4068 1.1 bouyer bnx_set_rx_mode(sc);
4069 1.1 bouyer
4070 1.1 bouyer /* Init RX buffer descriptor chain. */
4071 1.1 bouyer bnx_init_rx_chain(sc);
4072 1.1 bouyer
4073 1.1 bouyer /* Init TX buffer descriptor chain. */
4074 1.1 bouyer bnx_init_tx_chain(sc);
4075 1.1 bouyer
4076 1.1 bouyer /* Enable host interrupts. */
4077 1.1 bouyer bnx_enable_intr(sc);
4078 1.1 bouyer
4079 1.16 dyoung if ((error = ether_mediachange(ifp)) != 0)
4080 1.14 dyoung goto bnx_init_exit;
4081 1.1 bouyer
4082 1.1 bouyer ifp->if_flags |= IFF_RUNNING;
4083 1.1 bouyer ifp->if_flags &= ~IFF_OACTIVE;
4084 1.1 bouyer
4085 1.1 bouyer callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4086 1.1 bouyer
4087 1.4 bouyer bnx_init_exit:
4088 1.12 perry DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4089 1.1 bouyer
4090 1.1 bouyer splx(s);
4091 1.1 bouyer
4092 1.1 bouyer return(error);
4093 1.1 bouyer }
4094 1.1 bouyer
4095 1.1 bouyer /****************************************************************************/
4096 1.1 bouyer /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4097 1.1 bouyer /* memory visible to the controller. */
4098 1.1 bouyer /* */
4099 1.1 bouyer /* Returns: */
4100 1.1 bouyer /* 0 for success, positive value for failure. */
4101 1.1 bouyer /****************************************************************************/
4102 1.1 bouyer int
4103 1.4 bouyer bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
4104 1.1 bouyer {
4105 1.1 bouyer bus_dmamap_t map;
4106 1.4 bouyer struct tx_bd *txbd = NULL;
4107 1.4 bouyer struct mbuf *m0;
4108 1.4 bouyer u_int16_t vlan_tag = 0, flags = 0;
4109 1.4 bouyer u_int16_t chain_prod, prod;
4110 1.4 bouyer #ifdef BNX_DEBUG
4111 1.4 bouyer u_int16_t debug_prod;
4112 1.4 bouyer #endif
4113 1.4 bouyer u_int32_t addr, prod_bseq;
4114 1.4 bouyer int i, error, rc = 0;
4115 1.1 bouyer struct m_tag *mtag;
4116 1.1 bouyer
4117 1.4 bouyer m0 = *m_head;
4118 1.4 bouyer
4119 1.1 bouyer /* Transfer any checksum offload flags to the bd. */
4120 1.4 bouyer if (m0->m_pkthdr.csum_flags) {
4121 1.4 bouyer if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
4122 1.4 bouyer flags |= TX_BD_FLAGS_IP_CKSUM;
4123 1.4 bouyer if (m0->m_pkthdr.csum_flags &
4124 1.1 bouyer (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4125 1.4 bouyer flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4126 1.1 bouyer }
4127 1.1 bouyer
4128 1.1 bouyer /* Transfer any VLAN tags to the bd. */
4129 1.15 dyoung mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m0);
4130 1.4 bouyer if (mtag != NULL) {
4131 1.4 bouyer flags |= TX_BD_FLAGS_VLAN_TAG;
4132 1.4 bouyer vlan_tag = VLAN_TAG_VALUE(mtag);
4133 1.4 bouyer }
4134 1.1 bouyer
4135 1.1 bouyer /* Map the mbuf into DMAable memory. */
4136 1.4 bouyer prod = sc->tx_prod;
4137 1.4 bouyer chain_prod = TX_CHAIN_IDX(prod);
4138 1.4 bouyer map = sc->tx_mbuf_map[chain_prod];
4139 1.4 bouyer
4140 1.1 bouyer /* Map the mbuf into our DMA address space. */
4141 1.4 bouyer error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
4142 1.4 bouyer if (error != 0) {
4143 1.13 dyoung aprint_error_dev(sc->bnx_dev,
4144 1.13 dyoung "Error mapping mbuf into TX chain!\n");
4145 1.4 bouyer m_freem(m0);
4146 1.4 bouyer *m_head = NULL;
4147 1.4 bouyer return (error);
4148 1.1 bouyer }
4149 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4150 1.1 bouyer BUS_DMASYNC_PREWRITE);
4151 1.4 bouyer /*
4152 1.4 bouyer * The chip seems to require that at least 16 descriptors be kept
4153 1.4 bouyer * empty at all times. Make sure we honor that.
4154 1.4 bouyer * XXX Would it be faster to assume worst case scenario for
4155 1.4 bouyer * map->dm_nsegs and do this calculation higher up?
4156 1.4 bouyer */
4157 1.4 bouyer if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
4158 1.4 bouyer bus_dmamap_unload(sc->bnx_dmatag, map);
4159 1.4 bouyer return (ENOBUFS);
4160 1.4 bouyer }
4161 1.4 bouyer
4162 1.4 bouyer /* prod points to an empty tx_bd at this point. */
4163 1.4 bouyer prod_bseq = sc->tx_prod_bseq;
4164 1.4 bouyer #ifdef BNX_DEBUG
4165 1.4 bouyer debug_prod = chain_prod;
4166 1.4 bouyer #endif
4167 1.4 bouyer DBPRINT(sc, BNX_INFO_SEND,
4168 1.4 bouyer "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4169 1.4 bouyer "prod_bseq = 0x%08X\n",
4170 1.12 perry __func__, *prod, chain_prod, prod_bseq);
4171 1.1 bouyer
4172 1.1 bouyer /*
4173 1.4 bouyer * Cycle through each mbuf segment that makes up
4174 1.4 bouyer * the outgoing frame, gathering the mapping info
4175 1.4 bouyer * for that segment and creating a tx_bd for the
4176 1.4 bouyer * mbuf.
4177 1.4 bouyer */
4178 1.4 bouyer for (i = 0; i < map->dm_nsegs ; i++) {
4179 1.4 bouyer chain_prod = TX_CHAIN_IDX(prod);
4180 1.4 bouyer txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4181 1.4 bouyer
4182 1.4 bouyer addr = (u_int32_t)(map->dm_segs[i].ds_addr);
4183 1.4 bouyer txbd->tx_bd_haddr_lo = htole32(addr);
4184 1.4 bouyer addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4185 1.4 bouyer txbd->tx_bd_haddr_hi = htole32(addr);
4186 1.4 bouyer txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
4187 1.4 bouyer txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4188 1.4 bouyer txbd->tx_bd_flags = htole16(flags);
4189 1.4 bouyer prod_bseq += map->dm_segs[i].ds_len;
4190 1.4 bouyer if (i == 0)
4191 1.4 bouyer txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4192 1.4 bouyer prod = NEXT_TX_BD(prod);
4193 1.4 bouyer }
4194 1.4 bouyer /* Set the END flag on the last TX buffer descriptor. */
4195 1.4 bouyer txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4196 1.4 bouyer
4197 1.4 bouyer DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
4198 1.4 bouyer
4199 1.4 bouyer DBPRINT(sc, BNX_INFO_SEND,
4200 1.4 bouyer "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4201 1.4 bouyer "prod_bseq = 0x%08X\n",
4202 1.12 perry __func__, prod, chain_prod, prod_bseq);
4203 1.4 bouyer
4204 1.4 bouyer /*
4205 1.4 bouyer * Ensure that the mbuf pointer for this
4206 1.4 bouyer * transmission is placed at the array
4207 1.4 bouyer * index of the last descriptor in this
4208 1.4 bouyer * chain. This is done because a single
4209 1.4 bouyer * map is used for all segments of the mbuf
4210 1.4 bouyer * and we don't want to unload the map before
4211 1.4 bouyer * all of the segments have been freed.
4212 1.1 bouyer */
4213 1.4 bouyer sc->tx_mbuf_ptr[chain_prod] = m0;
4214 1.4 bouyer sc->used_tx_bd += map->dm_nsegs;
4215 1.1 bouyer
4216 1.1 bouyer DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4217 1.1 bouyer sc->tx_hi_watermark = sc->used_tx_bd);
4218 1.1 bouyer
4219 1.1 bouyer DBRUNIF(1, sc->tx_mbuf_alloc++);
4220 1.1 bouyer
4221 1.4 bouyer DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4222 1.1 bouyer map_arg.maxsegs));
4223 1.1 bouyer
4224 1.4 bouyer /* prod points to the next free tx_bd at this point. */
4225 1.4 bouyer sc->tx_prod = prod;
4226 1.4 bouyer sc->tx_prod_bseq = prod_bseq;
4227 1.1 bouyer
4228 1.4 bouyer return (rc);
4229 1.1 bouyer }
4230 1.1 bouyer
4231 1.1 bouyer /****************************************************************************/
4232 1.1 bouyer /* Main transmit routine. */
4233 1.1 bouyer /* */
4234 1.1 bouyer /* Returns: */
4235 1.1 bouyer /* Nothing. */
4236 1.1 bouyer /****************************************************************************/
4237 1.1 bouyer void
4238 1.1 bouyer bnx_start(struct ifnet *ifp)
4239 1.1 bouyer {
4240 1.1 bouyer struct bnx_softc *sc = ifp->if_softc;
4241 1.1 bouyer struct mbuf *m_head = NULL;
4242 1.1 bouyer int count = 0;
4243 1.1 bouyer u_int16_t tx_prod, tx_chain_prod;
4244 1.1 bouyer
4245 1.1 bouyer /* If there's no link or the transmit queue is empty then just exit. */
4246 1.16 dyoung if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
4247 1.1 bouyer DBPRINT(sc, BNX_INFO_SEND,
4248 1.16 dyoung "%s(): output active or device not running.\n", __func__);
4249 1.4 bouyer goto bnx_start_exit;
4250 1.1 bouyer }
4251 1.1 bouyer
4252 1.1 bouyer /* prod points to the next free tx_bd. */
4253 1.1 bouyer tx_prod = sc->tx_prod;
4254 1.1 bouyer tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4255 1.1 bouyer
4256 1.1 bouyer DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4257 1.1 bouyer "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
4258 1.12 perry __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
4259 1.1 bouyer
4260 1.4 bouyer /*
4261 1.4 bouyer * Keep adding entries while there is space in the ring. We keep
4262 1.4 bouyer * BNX_TX_SLACK_SPACE entries unused at all times.
4263 1.4 bouyer */
4264 1.4 bouyer while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
4265 1.1 bouyer /* Check for any frames to send. */
4266 1.1 bouyer IFQ_POLL(&ifp->if_snd, m_head);
4267 1.1 bouyer if (m_head == NULL)
4268 1.1 bouyer break;
4269 1.1 bouyer
4270 1.1 bouyer /*
4271 1.1 bouyer * Pack the data into the transmit ring. If we
4272 1.4 bouyer * don't have room, set the OACTIVE flag to wait
4273 1.4 bouyer * for the NIC to drain the chain.
4274 1.1 bouyer */
4275 1.4 bouyer if (bnx_tx_encap(sc, &m_head)) {
4276 1.1 bouyer ifp->if_flags |= IFF_OACTIVE;
4277 1.1 bouyer DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4278 1.1 bouyer "business! Total tx_bd used = %d\n",
4279 1.1 bouyer sc->used_tx_bd);
4280 1.1 bouyer break;
4281 1.1 bouyer }
4282 1.1 bouyer
4283 1.1 bouyer IFQ_DEQUEUE(&ifp->if_snd, m_head);
4284 1.1 bouyer count++;
4285 1.1 bouyer
4286 1.1 bouyer #if NBPFILTER > 0
4287 1.1 bouyer /* Send a copy of the frame to any BPF listeners. */
4288 1.1 bouyer if (ifp->if_bpf)
4289 1.1 bouyer bpf_mtap(ifp->if_bpf, m_head);
4290 1.1 bouyer #endif
4291 1.1 bouyer }
4292 1.1 bouyer
4293 1.1 bouyer if (count == 0) {
4294 1.1 bouyer /* no packets were dequeued */
4295 1.1 bouyer DBPRINT(sc, BNX_VERBOSE_SEND,
4296 1.12 perry "%s(): No packets were dequeued\n", __func__);
4297 1.4 bouyer goto bnx_start_exit;
4298 1.1 bouyer }
4299 1.1 bouyer
4300 1.1 bouyer /* Update the driver's counters. */
4301 1.4 bouyer tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4302 1.1 bouyer
4303 1.1 bouyer DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4304 1.12 perry "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
4305 1.4 bouyer tx_chain_prod, sc->tx_prod_bseq);
4306 1.1 bouyer
4307 1.1 bouyer /* Start the transmit. */
4308 1.1 bouyer REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4309 1.1 bouyer REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4310 1.1 bouyer
4311 1.1 bouyer /* Set the tx timeout. */
4312 1.1 bouyer ifp->if_timer = BNX_TX_TIMEOUT;
4313 1.1 bouyer
4314 1.4 bouyer bnx_start_exit:
4315 1.1 bouyer return;
4316 1.1 bouyer }
4317 1.1 bouyer
4318 1.1 bouyer /****************************************************************************/
4319 1.1 bouyer /* Handles any IOCTL calls from the operating system. */
4320 1.1 bouyer /* */
4321 1.1 bouyer /* Returns: */
4322 1.1 bouyer /* 0 for success, positive value for failure. */
4323 1.1 bouyer /****************************************************************************/
4324 1.1 bouyer int
4325 1.3 christos bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
4326 1.1 bouyer {
4327 1.1 bouyer struct bnx_softc *sc = ifp->if_softc;
4328 1.1 bouyer struct ifreq *ifr = (struct ifreq *) data;
4329 1.20 mhitch struct mii_data *mii = &sc->bnx_mii;
4330 1.1 bouyer int s, error = 0;
4331 1.1 bouyer
4332 1.1 bouyer s = splnet();
4333 1.1 bouyer
4334 1.1 bouyer switch (command) {
4335 1.1 bouyer case SIOCSIFFLAGS:
4336 1.24 dyoung if ((error = ifioctl_common(ifp, command, data)) != 0)
4337 1.24 dyoung break;
4338 1.24 dyoung /* XXX set an ifflags callback and let ether_ioctl
4339 1.24 dyoung * handle all of this.
4340 1.24 dyoung */
4341 1.24 dyoung switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4342 1.24 dyoung case IFF_UP|IFF_RUNNING:
4343 1.24 dyoung if (((ifp->if_flags ^ sc->bnx_if_flags) &
4344 1.24 dyoung (IFF_ALLMULTI | IFF_PROMISC)) != 0)
4345 1.1 bouyer bnx_set_rx_mode(sc);
4346 1.24 dyoung break;
4347 1.24 dyoung case IFF_UP:
4348 1.24 dyoung bnx_init(ifp);
4349 1.24 dyoung break;
4350 1.24 dyoung case IFF_RUNNING:
4351 1.14 dyoung bnx_stop(ifp, 1);
4352 1.24 dyoung break;
4353 1.24 dyoung case 0:
4354 1.24 dyoung break;
4355 1.24 dyoung }
4356 1.1 bouyer
4357 1.1 bouyer sc->bnx_if_flags = ifp->if_flags;
4358 1.1 bouyer break;
4359 1.1 bouyer
4360 1.1 bouyer case SIOCSIFMEDIA:
4361 1.1 bouyer case SIOCGIFMEDIA:
4362 1.1 bouyer DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
4363 1.1 bouyer sc->bnx_phy_flags);
4364 1.1 bouyer
4365 1.20 mhitch error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
4366 1.1 bouyer break;
4367 1.1 bouyer
4368 1.1 bouyer default:
4369 1.18 dyoung if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4370 1.11 dyoung break;
4371 1.18 dyoung
4372 1.11 dyoung error = 0;
4373 1.18 dyoung
4374 1.18 dyoung if (command != SIOCADDMULTI && command && SIOCDELMULTI)
4375 1.18 dyoung ;
4376 1.18 dyoung else if (ifp->if_flags & IFF_RUNNING) {
4377 1.11 dyoung /* reload packet filter if running */
4378 1.18 dyoung bnx_set_rx_mode(sc);
4379 1.1 bouyer }
4380 1.1 bouyer break;
4381 1.1 bouyer }
4382 1.1 bouyer
4383 1.1 bouyer splx(s);
4384 1.1 bouyer
4385 1.1 bouyer return (error);
4386 1.1 bouyer }
4387 1.1 bouyer
4388 1.1 bouyer /****************************************************************************/
4389 1.1 bouyer /* Transmit timeout handler. */
4390 1.1 bouyer /* */
4391 1.1 bouyer /* Returns: */
4392 1.1 bouyer /* Nothing. */
4393 1.1 bouyer /****************************************************************************/
4394 1.1 bouyer void
4395 1.1 bouyer bnx_watchdog(struct ifnet *ifp)
4396 1.1 bouyer {
4397 1.1 bouyer struct bnx_softc *sc = ifp->if_softc;
4398 1.1 bouyer
4399 1.1 bouyer DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
4400 1.1 bouyer bnx_dump_status_block(sc));
4401 1.1 bouyer
4402 1.13 dyoung aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
4403 1.1 bouyer
4404 1.1 bouyer /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
4405 1.1 bouyer
4406 1.1 bouyer bnx_init(ifp);
4407 1.1 bouyer
4408 1.1 bouyer ifp->if_oerrors++;
4409 1.1 bouyer }
4410 1.1 bouyer
4411 1.1 bouyer /*
4412 1.1 bouyer * Interrupt handler.
4413 1.1 bouyer */
4414 1.1 bouyer /****************************************************************************/
4415 1.1 bouyer /* Main interrupt entry point. Verifies that the controller generated the */
4416 1.1 bouyer /* interrupt and then calls a separate routine for handle the various */
4417 1.1 bouyer /* interrupt causes (PHY, TX, RX). */
4418 1.1 bouyer /* */
4419 1.1 bouyer /* Returns: */
4420 1.1 bouyer /* 0 for success, positive value for failure. */
4421 1.1 bouyer /****************************************************************************/
4422 1.1 bouyer int
4423 1.1 bouyer bnx_intr(void *xsc)
4424 1.1 bouyer {
4425 1.1 bouyer struct bnx_softc *sc;
4426 1.1 bouyer struct ifnet *ifp;
4427 1.1 bouyer u_int32_t status_attn_bits;
4428 1.14 dyoung const struct status_block *sblk;
4429 1.1 bouyer
4430 1.1 bouyer sc = xsc;
4431 1.13 dyoung if (!device_is_active(sc->bnx_dev))
4432 1.13 dyoung return 0;
4433 1.13 dyoung
4434 1.15 dyoung ifp = &sc->bnx_ec.ec_if;
4435 1.1 bouyer
4436 1.1 bouyer DBRUNIF(1, sc->interrupts_generated++);
4437 1.1 bouyer
4438 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4439 1.1 bouyer sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4440 1.1 bouyer
4441 1.1 bouyer /*
4442 1.1 bouyer * If the hardware status block index
4443 1.1 bouyer * matches the last value read by the
4444 1.1 bouyer * driver and we haven't asserted our
4445 1.1 bouyer * interrupt then there's nothing to do.
4446 1.1 bouyer */
4447 1.1 bouyer if ((sc->status_block->status_idx == sc->last_status_idx) &&
4448 1.1 bouyer (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
4449 1.1 bouyer BNX_PCICFG_MISC_STATUS_INTA_VALUE))
4450 1.1 bouyer return (0);
4451 1.1 bouyer
4452 1.1 bouyer /* Ack the interrupt and stop others from occuring. */
4453 1.1 bouyer REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4454 1.1 bouyer BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
4455 1.1 bouyer BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4456 1.1 bouyer
4457 1.1 bouyer /* Keep processing data as long as there is work to do. */
4458 1.1 bouyer for (;;) {
4459 1.14 dyoung sblk = sc->status_block;
4460 1.14 dyoung status_attn_bits = sblk->status_attn_bits;
4461 1.1 bouyer
4462 1.1 bouyer DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
4463 1.1 bouyer aprint_debug("Simulating unexpected status attention bit set.");
4464 1.1 bouyer status_attn_bits = status_attn_bits |
4465 1.1 bouyer STATUS_ATTN_BITS_PARITY_ERROR);
4466 1.1 bouyer
4467 1.1 bouyer /* Was it a link change interrupt? */
4468 1.1 bouyer if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
4469 1.14 dyoung (sblk->status_attn_bits_ack &
4470 1.1 bouyer STATUS_ATTN_BITS_LINK_STATE))
4471 1.1 bouyer bnx_phy_intr(sc);
4472 1.1 bouyer
4473 1.1 bouyer /* If any other attention is asserted then the chip is toast. */
4474 1.1 bouyer if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
4475 1.14 dyoung (sblk->status_attn_bits_ack &
4476 1.1 bouyer ~STATUS_ATTN_BITS_LINK_STATE))) {
4477 1.1 bouyer DBRUN(1, sc->unexpected_attentions++);
4478 1.1 bouyer
4479 1.13 dyoung aprint_error_dev(sc->bnx_dev,
4480 1.13 dyoung "Fatal attention detected: 0x%08X\n",
4481 1.14 dyoung sblk->status_attn_bits);
4482 1.1 bouyer
4483 1.1 bouyer DBRUN(BNX_FATAL,
4484 1.1 bouyer if (bnx_debug_unexpected_attention == 0)
4485 1.1 bouyer bnx_breakpoint(sc));
4486 1.1 bouyer
4487 1.1 bouyer bnx_init(ifp);
4488 1.1 bouyer return (1);
4489 1.1 bouyer }
4490 1.1 bouyer
4491 1.1 bouyer /* Check for any completed RX frames. */
4492 1.14 dyoung if (sblk->status_rx_quick_consumer_index0 !=
4493 1.1 bouyer sc->hw_rx_cons)
4494 1.1 bouyer bnx_rx_intr(sc);
4495 1.1 bouyer
4496 1.1 bouyer /* Check for any completed TX frames. */
4497 1.14 dyoung if (sblk->status_tx_quick_consumer_index0 !=
4498 1.1 bouyer sc->hw_tx_cons)
4499 1.1 bouyer bnx_tx_intr(sc);
4500 1.1 bouyer
4501 1.1 bouyer /* Save the status block index value for use during the
4502 1.1 bouyer * next interrupt.
4503 1.1 bouyer */
4504 1.14 dyoung sc->last_status_idx = sblk->status_idx;
4505 1.1 bouyer
4506 1.1 bouyer /* Prevent speculative reads from getting ahead of the
4507 1.1 bouyer * status block.
4508 1.1 bouyer */
4509 1.1 bouyer bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4510 1.1 bouyer BUS_SPACE_BARRIER_READ);
4511 1.1 bouyer
4512 1.1 bouyer /* If there's no work left then exit the isr. */
4513 1.14 dyoung if ((sblk->status_rx_quick_consumer_index0 ==
4514 1.1 bouyer sc->hw_rx_cons) &&
4515 1.14 dyoung (sblk->status_tx_quick_consumer_index0 ==
4516 1.1 bouyer sc->hw_tx_cons))
4517 1.1 bouyer break;
4518 1.1 bouyer }
4519 1.1 bouyer
4520 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4521 1.1 bouyer sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
4522 1.1 bouyer
4523 1.1 bouyer /* Re-enable interrupts. */
4524 1.1 bouyer REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4525 1.1 bouyer BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
4526 1.4 bouyer BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4527 1.1 bouyer REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4528 1.1 bouyer BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4529 1.1 bouyer
4530 1.1 bouyer /* Handle any frames that arrived while handling the interrupt. */
4531 1.16 dyoung if (!IFQ_IS_EMPTY(&ifp->if_snd))
4532 1.1 bouyer bnx_start(ifp);
4533 1.1 bouyer
4534 1.1 bouyer return (1);
4535 1.1 bouyer }
4536 1.1 bouyer
4537 1.1 bouyer /****************************************************************************/
4538 1.1 bouyer /* Programs the various packet receive modes (broadcast and multicast). */
4539 1.1 bouyer /* */
4540 1.1 bouyer /* Returns: */
4541 1.1 bouyer /* Nothing. */
4542 1.1 bouyer /****************************************************************************/
4543 1.1 bouyer void
4544 1.1 bouyer bnx_set_rx_mode(struct bnx_softc *sc)
4545 1.1 bouyer {
4546 1.15 dyoung struct ethercom *ec = &sc->bnx_ec;
4547 1.1 bouyer struct ifnet *ifp = &ec->ec_if;
4548 1.1 bouyer struct ether_multi *enm;
4549 1.1 bouyer struct ether_multistep step;
4550 1.4 bouyer u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
4551 1.1 bouyer u_int32_t rx_mode, sort_mode;
4552 1.1 bouyer int h, i;
4553 1.1 bouyer
4554 1.1 bouyer /* Initialize receive mode default settings. */
4555 1.1 bouyer rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
4556 1.1 bouyer BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
4557 1.1 bouyer sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
4558 1.1 bouyer
4559 1.1 bouyer /*
4560 1.1 bouyer * ASF/IPMI/UMP firmware requires that VLAN tag stripping
4561 1.1 bouyer * be enbled.
4562 1.1 bouyer */
4563 1.1 bouyer if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
4564 1.1 bouyer rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
4565 1.1 bouyer
4566 1.1 bouyer /*
4567 1.1 bouyer * Check for promiscuous, all multicast, or selected
4568 1.1 bouyer * multicast address filtering.
4569 1.1 bouyer */
4570 1.1 bouyer if (ifp->if_flags & IFF_PROMISC) {
4571 1.1 bouyer DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
4572 1.1 bouyer
4573 1.1 bouyer /* Enable promiscuous mode. */
4574 1.1 bouyer rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
4575 1.1 bouyer sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
4576 1.1 bouyer } else if (ifp->if_flags & IFF_ALLMULTI) {
4577 1.1 bouyer allmulti:
4578 1.1 bouyer DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
4579 1.1 bouyer
4580 1.1 bouyer /* Enable all multicast addresses. */
4581 1.1 bouyer for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4582 1.1 bouyer REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4583 1.1 bouyer 0xffffffff);
4584 1.1 bouyer sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
4585 1.1 bouyer } else {
4586 1.1 bouyer /* Accept one or more multicast(s). */
4587 1.1 bouyer DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
4588 1.1 bouyer
4589 1.1 bouyer ETHER_FIRST_MULTI(step, ec, enm);
4590 1.1 bouyer while (enm != NULL) {
4591 1.22 cegger if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
4592 1.1 bouyer ETHER_ADDR_LEN)) {
4593 1.1 bouyer ifp->if_flags |= IFF_ALLMULTI;
4594 1.1 bouyer goto allmulti;
4595 1.1 bouyer }
4596 1.1 bouyer h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
4597 1.4 bouyer 0xFF;
4598 1.4 bouyer hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
4599 1.1 bouyer ETHER_NEXT_MULTI(step, enm);
4600 1.1 bouyer }
4601 1.1 bouyer
4602 1.4 bouyer for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4603 1.1 bouyer REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4604 1.1 bouyer hashes[i]);
4605 1.1 bouyer
4606 1.1 bouyer sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
4607 1.1 bouyer }
4608 1.1 bouyer
4609 1.1 bouyer /* Only make changes if the recive mode has actually changed. */
4610 1.1 bouyer if (rx_mode != sc->rx_mode) {
4611 1.1 bouyer DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
4612 1.1 bouyer rx_mode);
4613 1.1 bouyer
4614 1.1 bouyer sc->rx_mode = rx_mode;
4615 1.1 bouyer REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
4616 1.1 bouyer }
4617 1.1 bouyer
4618 1.1 bouyer /* Disable and clear the exisitng sort before enabling a new sort. */
4619 1.1 bouyer REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
4620 1.1 bouyer REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
4621 1.1 bouyer REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
4622 1.1 bouyer }
4623 1.1 bouyer
4624 1.1 bouyer /****************************************************************************/
4625 1.1 bouyer /* Called periodically to updates statistics from the controllers */
4626 1.1 bouyer /* statistics block. */
4627 1.1 bouyer /* */
4628 1.1 bouyer /* Returns: */
4629 1.1 bouyer /* Nothing. */
4630 1.1 bouyer /****************************************************************************/
4631 1.1 bouyer void
4632 1.1 bouyer bnx_stats_update(struct bnx_softc *sc)
4633 1.1 bouyer {
4634 1.15 dyoung struct ifnet *ifp = &sc->bnx_ec.ec_if;
4635 1.1 bouyer struct statistics_block *stats;
4636 1.1 bouyer
4637 1.12 perry DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
4638 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4639 1.1 bouyer BUS_DMASYNC_POSTREAD);
4640 1.1 bouyer
4641 1.1 bouyer stats = (struct statistics_block *)sc->stats_block;
4642 1.1 bouyer
4643 1.1 bouyer /*
4644 1.1 bouyer * Update the interface statistics from the
4645 1.1 bouyer * hardware statistics.
4646 1.1 bouyer */
4647 1.1 bouyer ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
4648 1.1 bouyer
4649 1.1 bouyer ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
4650 1.1 bouyer (u_long)stats->stat_EtherStatsOverrsizePkts +
4651 1.1 bouyer (u_long)stats->stat_IfInMBUFDiscards +
4652 1.1 bouyer (u_long)stats->stat_Dot3StatsAlignmentErrors +
4653 1.1 bouyer (u_long)stats->stat_Dot3StatsFCSErrors;
4654 1.1 bouyer
4655 1.1 bouyer ifp->if_oerrors = (u_long)
4656 1.1 bouyer stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
4657 1.1 bouyer (u_long)stats->stat_Dot3StatsExcessiveCollisions +
4658 1.1 bouyer (u_long)stats->stat_Dot3StatsLateCollisions;
4659 1.1 bouyer
4660 1.1 bouyer /*
4661 1.1 bouyer * Certain controllers don't report
4662 1.1 bouyer * carrier sense errors correctly.
4663 1.1 bouyer * See errata E11_5708CA0_1165.
4664 1.1 bouyer */
4665 1.1 bouyer if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
4666 1.1 bouyer !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
4667 1.1 bouyer ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
4668 1.1 bouyer
4669 1.1 bouyer /*
4670 1.1 bouyer * Update the sysctl statistics from the
4671 1.1 bouyer * hardware statistics.
4672 1.1 bouyer */
4673 1.1 bouyer sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
4674 1.1 bouyer (u_int64_t) stats->stat_IfHCInOctets_lo;
4675 1.1 bouyer
4676 1.1 bouyer sc->stat_IfHCInBadOctets =
4677 1.1 bouyer ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
4678 1.1 bouyer (u_int64_t) stats->stat_IfHCInBadOctets_lo;
4679 1.1 bouyer
4680 1.1 bouyer sc->stat_IfHCOutOctets =
4681 1.1 bouyer ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
4682 1.1 bouyer (u_int64_t) stats->stat_IfHCOutOctets_lo;
4683 1.1 bouyer
4684 1.1 bouyer sc->stat_IfHCOutBadOctets =
4685 1.1 bouyer ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
4686 1.1 bouyer (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
4687 1.1 bouyer
4688 1.1 bouyer sc->stat_IfHCInUcastPkts =
4689 1.1 bouyer ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
4690 1.1 bouyer (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
4691 1.1 bouyer
4692 1.1 bouyer sc->stat_IfHCInMulticastPkts =
4693 1.1 bouyer ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
4694 1.1 bouyer (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
4695 1.1 bouyer
4696 1.1 bouyer sc->stat_IfHCInBroadcastPkts =
4697 1.1 bouyer ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
4698 1.1 bouyer (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
4699 1.1 bouyer
4700 1.1 bouyer sc->stat_IfHCOutUcastPkts =
4701 1.1 bouyer ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
4702 1.1 bouyer (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
4703 1.1 bouyer
4704 1.1 bouyer sc->stat_IfHCOutMulticastPkts =
4705 1.1 bouyer ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
4706 1.1 bouyer (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
4707 1.1 bouyer
4708 1.1 bouyer sc->stat_IfHCOutBroadcastPkts =
4709 1.1 bouyer ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
4710 1.1 bouyer (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
4711 1.1 bouyer
4712 1.1 bouyer sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
4713 1.1 bouyer stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
4714 1.1 bouyer
4715 1.1 bouyer sc->stat_Dot3StatsCarrierSenseErrors =
4716 1.1 bouyer stats->stat_Dot3StatsCarrierSenseErrors;
4717 1.1 bouyer
4718 1.1 bouyer sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
4719 1.1 bouyer
4720 1.1 bouyer sc->stat_Dot3StatsAlignmentErrors =
4721 1.1 bouyer stats->stat_Dot3StatsAlignmentErrors;
4722 1.1 bouyer
4723 1.1 bouyer sc->stat_Dot3StatsSingleCollisionFrames =
4724 1.1 bouyer stats->stat_Dot3StatsSingleCollisionFrames;
4725 1.1 bouyer
4726 1.1 bouyer sc->stat_Dot3StatsMultipleCollisionFrames =
4727 1.1 bouyer stats->stat_Dot3StatsMultipleCollisionFrames;
4728 1.1 bouyer
4729 1.1 bouyer sc->stat_Dot3StatsDeferredTransmissions =
4730 1.1 bouyer stats->stat_Dot3StatsDeferredTransmissions;
4731 1.1 bouyer
4732 1.1 bouyer sc->stat_Dot3StatsExcessiveCollisions =
4733 1.1 bouyer stats->stat_Dot3StatsExcessiveCollisions;
4734 1.1 bouyer
4735 1.1 bouyer sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
4736 1.1 bouyer
4737 1.1 bouyer sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
4738 1.1 bouyer
4739 1.1 bouyer sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
4740 1.1 bouyer
4741 1.1 bouyer sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
4742 1.1 bouyer
4743 1.1 bouyer sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
4744 1.1 bouyer
4745 1.1 bouyer sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
4746 1.1 bouyer
4747 1.1 bouyer sc->stat_EtherStatsPktsRx64Octets =
4748 1.1 bouyer stats->stat_EtherStatsPktsRx64Octets;
4749 1.1 bouyer
4750 1.1 bouyer sc->stat_EtherStatsPktsRx65Octetsto127Octets =
4751 1.1 bouyer stats->stat_EtherStatsPktsRx65Octetsto127Octets;
4752 1.1 bouyer
4753 1.1 bouyer sc->stat_EtherStatsPktsRx128Octetsto255Octets =
4754 1.1 bouyer stats->stat_EtherStatsPktsRx128Octetsto255Octets;
4755 1.1 bouyer
4756 1.1 bouyer sc->stat_EtherStatsPktsRx256Octetsto511Octets =
4757 1.1 bouyer stats->stat_EtherStatsPktsRx256Octetsto511Octets;
4758 1.1 bouyer
4759 1.1 bouyer sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
4760 1.1 bouyer stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
4761 1.1 bouyer
4762 1.1 bouyer sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
4763 1.1 bouyer stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
4764 1.1 bouyer
4765 1.1 bouyer sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
4766 1.1 bouyer stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
4767 1.1 bouyer
4768 1.1 bouyer sc->stat_EtherStatsPktsTx64Octets =
4769 1.1 bouyer stats->stat_EtherStatsPktsTx64Octets;
4770 1.1 bouyer
4771 1.1 bouyer sc->stat_EtherStatsPktsTx65Octetsto127Octets =
4772 1.1 bouyer stats->stat_EtherStatsPktsTx65Octetsto127Octets;
4773 1.1 bouyer
4774 1.1 bouyer sc->stat_EtherStatsPktsTx128Octetsto255Octets =
4775 1.1 bouyer stats->stat_EtherStatsPktsTx128Octetsto255Octets;
4776 1.1 bouyer
4777 1.1 bouyer sc->stat_EtherStatsPktsTx256Octetsto511Octets =
4778 1.1 bouyer stats->stat_EtherStatsPktsTx256Octetsto511Octets;
4779 1.1 bouyer
4780 1.1 bouyer sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
4781 1.1 bouyer stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
4782 1.1 bouyer
4783 1.1 bouyer sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
4784 1.1 bouyer stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
4785 1.1 bouyer
4786 1.1 bouyer sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
4787 1.1 bouyer stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
4788 1.1 bouyer
4789 1.1 bouyer sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
4790 1.1 bouyer
4791 1.1 bouyer sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
4792 1.1 bouyer
4793 1.1 bouyer sc->stat_OutXonSent = stats->stat_OutXonSent;
4794 1.1 bouyer
4795 1.1 bouyer sc->stat_OutXoffSent = stats->stat_OutXoffSent;
4796 1.1 bouyer
4797 1.1 bouyer sc->stat_FlowControlDone = stats->stat_FlowControlDone;
4798 1.1 bouyer
4799 1.1 bouyer sc->stat_MacControlFramesReceived =
4800 1.1 bouyer stats->stat_MacControlFramesReceived;
4801 1.1 bouyer
4802 1.1 bouyer sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
4803 1.1 bouyer
4804 1.1 bouyer sc->stat_IfInFramesL2FilterDiscards =
4805 1.1 bouyer stats->stat_IfInFramesL2FilterDiscards;
4806 1.1 bouyer
4807 1.1 bouyer sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
4808 1.1 bouyer
4809 1.1 bouyer sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
4810 1.1 bouyer
4811 1.1 bouyer sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
4812 1.1 bouyer
4813 1.1 bouyer sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
4814 1.1 bouyer
4815 1.1 bouyer sc->stat_CatchupInRuleCheckerDiscards =
4816 1.1 bouyer stats->stat_CatchupInRuleCheckerDiscards;
4817 1.1 bouyer
4818 1.1 bouyer sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
4819 1.1 bouyer
4820 1.1 bouyer sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
4821 1.1 bouyer
4822 1.1 bouyer sc->stat_CatchupInRuleCheckerP4Hit =
4823 1.1 bouyer stats->stat_CatchupInRuleCheckerP4Hit;
4824 1.1 bouyer
4825 1.12 perry DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
4826 1.1 bouyer }
4827 1.1 bouyer
4828 1.1 bouyer void
4829 1.1 bouyer bnx_tick(void *xsc)
4830 1.1 bouyer {
4831 1.1 bouyer struct bnx_softc *sc = xsc;
4832 1.14 dyoung struct mii_data *mii;
4833 1.1 bouyer u_int32_t msg;
4834 1.5 bouyer u_int16_t prod, chain_prod;
4835 1.5 bouyer u_int32_t prod_bseq;
4836 1.4 bouyer int s = splnet();
4837 1.1 bouyer
4838 1.1 bouyer /* Tell the firmware that the driver is still running. */
4839 1.1 bouyer #ifdef BNX_DEBUG
4840 1.1 bouyer msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
4841 1.1 bouyer #else
4842 1.1 bouyer msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
4843 1.1 bouyer #endif
4844 1.1 bouyer REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
4845 1.1 bouyer
4846 1.1 bouyer /* Update the statistics from the hardware statistics block. */
4847 1.1 bouyer bnx_stats_update(sc);
4848 1.1 bouyer
4849 1.1 bouyer /* Schedule the next tick. */
4850 1.1 bouyer callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4851 1.1 bouyer
4852 1.1 bouyer mii = &sc->bnx_mii;
4853 1.1 bouyer mii_tick(mii);
4854 1.1 bouyer
4855 1.5 bouyer /* try to get more RX buffers, just in case */
4856 1.5 bouyer prod = sc->rx_prod;
4857 1.5 bouyer prod_bseq = sc->rx_prod_bseq;
4858 1.5 bouyer chain_prod = RX_CHAIN_IDX(prod);
4859 1.21 dyoung bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
4860 1.5 bouyer sc->rx_prod = prod;
4861 1.5 bouyer sc->rx_prod_bseq = prod_bseq;
4862 1.4 bouyer splx(s);
4863 1.1 bouyer return;
4864 1.1 bouyer }
4865 1.1 bouyer
4866 1.1 bouyer /****************************************************************************/
4867 1.1 bouyer /* BNX Debug Routines */
4868 1.1 bouyer /****************************************************************************/
4869 1.1 bouyer #ifdef BNX_DEBUG
4870 1.1 bouyer
4871 1.1 bouyer /****************************************************************************/
4872 1.1 bouyer /* Prints out information about an mbuf. */
4873 1.1 bouyer /* */
4874 1.1 bouyer /* Returns: */
4875 1.1 bouyer /* Nothing. */
4876 1.1 bouyer /****************************************************************************/
4877 1.1 bouyer void
4878 1.1 bouyer bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
4879 1.1 bouyer {
4880 1.1 bouyer struct mbuf *mp = m;
4881 1.1 bouyer
4882 1.1 bouyer if (m == NULL) {
4883 1.1 bouyer /* Index out of range. */
4884 1.1 bouyer aprint_error("mbuf ptr is null!\n");
4885 1.1 bouyer return;
4886 1.1 bouyer }
4887 1.1 bouyer
4888 1.1 bouyer while (mp) {
4889 1.1 bouyer aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
4890 1.1 bouyer mp, mp->m_len);
4891 1.1 bouyer
4892 1.1 bouyer if (mp->m_flags & M_EXT)
4893 1.1 bouyer aprint_debug("M_EXT ");
4894 1.1 bouyer if (mp->m_flags & M_PKTHDR)
4895 1.1 bouyer aprint_debug("M_PKTHDR ");
4896 1.1 bouyer aprint_debug("\n");
4897 1.1 bouyer
4898 1.1 bouyer if (mp->m_flags & M_EXT)
4899 1.1 bouyer aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
4900 1.1 bouyer mp, mp->m_ext.ext_size);
4901 1.1 bouyer
4902 1.1 bouyer mp = mp->m_next;
4903 1.1 bouyer }
4904 1.1 bouyer }
4905 1.1 bouyer
4906 1.1 bouyer /****************************************************************************/
4907 1.1 bouyer /* Prints out the mbufs in the TX mbuf chain. */
4908 1.1 bouyer /* */
4909 1.1 bouyer /* Returns: */
4910 1.1 bouyer /* Nothing. */
4911 1.1 bouyer /****************************************************************************/
4912 1.1 bouyer void
4913 1.1 bouyer bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4914 1.1 bouyer {
4915 1.1 bouyer struct mbuf *m;
4916 1.1 bouyer int i;
4917 1.1 bouyer
4918 1.1 bouyer BNX_PRINTF(sc,
4919 1.1 bouyer "----------------------------"
4920 1.1 bouyer " tx mbuf data "
4921 1.1 bouyer "----------------------------\n");
4922 1.1 bouyer
4923 1.1 bouyer for (i = 0; i < count; i++) {
4924 1.1 bouyer m = sc->tx_mbuf_ptr[chain_prod];
4925 1.1 bouyer BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
4926 1.1 bouyer bnx_dump_mbuf(sc, m);
4927 1.1 bouyer chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
4928 1.1 bouyer }
4929 1.1 bouyer
4930 1.1 bouyer BNX_PRINTF(sc,
4931 1.1 bouyer "--------------------------------------------"
4932 1.1 bouyer "----------------------------\n");
4933 1.1 bouyer }
4934 1.1 bouyer
4935 1.1 bouyer /*
4936 1.1 bouyer * This routine prints the RX mbuf chain.
4937 1.1 bouyer */
4938 1.1 bouyer void
4939 1.1 bouyer bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4940 1.1 bouyer {
4941 1.1 bouyer struct mbuf *m;
4942 1.1 bouyer int i;
4943 1.1 bouyer
4944 1.1 bouyer BNX_PRINTF(sc,
4945 1.1 bouyer "----------------------------"
4946 1.1 bouyer " rx mbuf data "
4947 1.1 bouyer "----------------------------\n");
4948 1.1 bouyer
4949 1.1 bouyer for (i = 0; i < count; i++) {
4950 1.1 bouyer m = sc->rx_mbuf_ptr[chain_prod];
4951 1.1 bouyer BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
4952 1.1 bouyer bnx_dump_mbuf(sc, m);
4953 1.1 bouyer chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
4954 1.1 bouyer }
4955 1.1 bouyer
4956 1.1 bouyer
4957 1.1 bouyer BNX_PRINTF(sc,
4958 1.1 bouyer "--------------------------------------------"
4959 1.1 bouyer "----------------------------\n");
4960 1.1 bouyer }
4961 1.1 bouyer
4962 1.1 bouyer void
4963 1.1 bouyer bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
4964 1.1 bouyer {
4965 1.1 bouyer if (idx > MAX_TX_BD)
4966 1.1 bouyer /* Index out of range. */
4967 1.1 bouyer BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
4968 1.1 bouyer else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4969 1.1 bouyer /* TX Chain page pointer. */
4970 1.1 bouyer BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
4971 1.1 bouyer "page pointer\n", idx, txbd->tx_bd_haddr_hi,
4972 1.1 bouyer txbd->tx_bd_haddr_lo);
4973 1.1 bouyer else
4974 1.1 bouyer /* Normal tx_bd entry. */
4975 1.1 bouyer BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
4976 1.4 bouyer "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
4977 1.1 bouyer txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
4978 1.4 bouyer txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
4979 1.4 bouyer txbd->tx_bd_flags);
4980 1.1 bouyer }
4981 1.1 bouyer
4982 1.1 bouyer void
4983 1.1 bouyer bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
4984 1.1 bouyer {
4985 1.1 bouyer if (idx > MAX_RX_BD)
4986 1.1 bouyer /* Index out of range. */
4987 1.1 bouyer BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
4988 1.1 bouyer else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4989 1.1 bouyer /* TX Chain page pointer. */
4990 1.1 bouyer BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
4991 1.1 bouyer "pointer\n", idx, rxbd->rx_bd_haddr_hi,
4992 1.1 bouyer rxbd->rx_bd_haddr_lo);
4993 1.1 bouyer else
4994 1.1 bouyer /* Normal tx_bd entry. */
4995 1.1 bouyer BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
4996 1.1 bouyer "0x%08X, flags = 0x%08X\n", idx,
4997 1.1 bouyer rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
4998 1.1 bouyer rxbd->rx_bd_len, rxbd->rx_bd_flags);
4999 1.1 bouyer }
5000 1.1 bouyer
5001 1.1 bouyer void
5002 1.1 bouyer bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5003 1.1 bouyer {
5004 1.1 bouyer BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5005 1.1 bouyer "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5006 1.1 bouyer "tcp_udp_xsum = 0x%04X\n", idx,
5007 1.1 bouyer l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5008 1.1 bouyer l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5009 1.1 bouyer l2fhdr->l2_fhdr_tcp_udp_xsum);
5010 1.1 bouyer }
5011 1.1 bouyer
5012 1.1 bouyer /*
5013 1.1 bouyer * This routine prints the TX chain.
5014 1.1 bouyer */
5015 1.1 bouyer void
5016 1.1 bouyer bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5017 1.1 bouyer {
5018 1.1 bouyer struct tx_bd *txbd;
5019 1.1 bouyer int i;
5020 1.1 bouyer
5021 1.1 bouyer /* First some info about the tx_bd chain structure. */
5022 1.1 bouyer BNX_PRINTF(sc,
5023 1.1 bouyer "----------------------------"
5024 1.1 bouyer " tx_bd chain "
5025 1.1 bouyer "----------------------------\n");
5026 1.1 bouyer
5027 1.1 bouyer BNX_PRINTF(sc,
5028 1.1 bouyer "page size = 0x%08X, tx chain pages = 0x%08X\n",
5029 1.1 bouyer (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5030 1.1 bouyer
5031 1.1 bouyer BNX_PRINTF(sc,
5032 1.1 bouyer "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5033 1.1 bouyer (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5034 1.1 bouyer
5035 1.1 bouyer BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
5036 1.1 bouyer
5037 1.1 bouyer BNX_PRINTF(sc, ""
5038 1.1 bouyer "-----------------------------"
5039 1.1 bouyer " tx_bd data "
5040 1.1 bouyer "-----------------------------\n");
5041 1.1 bouyer
5042 1.1 bouyer /* Now print out the tx_bd's themselves. */
5043 1.1 bouyer for (i = 0; i < count; i++) {
5044 1.1 bouyer txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5045 1.1 bouyer bnx_dump_txbd(sc, tx_prod, txbd);
5046 1.1 bouyer tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5047 1.1 bouyer }
5048 1.1 bouyer
5049 1.1 bouyer BNX_PRINTF(sc,
5050 1.1 bouyer "-----------------------------"
5051 1.1 bouyer "--------------"
5052 1.1 bouyer "-----------------------------\n");
5053 1.1 bouyer }
5054 1.1 bouyer
5055 1.1 bouyer /*
5056 1.1 bouyer * This routine prints the RX chain.
5057 1.1 bouyer */
5058 1.1 bouyer void
5059 1.1 bouyer bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5060 1.1 bouyer {
5061 1.1 bouyer struct rx_bd *rxbd;
5062 1.1 bouyer int i;
5063 1.1 bouyer
5064 1.1 bouyer /* First some info about the tx_bd chain structure. */
5065 1.1 bouyer BNX_PRINTF(sc,
5066 1.1 bouyer "----------------------------"
5067 1.1 bouyer " rx_bd chain "
5068 1.1 bouyer "----------------------------\n");
5069 1.1 bouyer
5070 1.1 bouyer BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
5071 1.1 bouyer
5072 1.1 bouyer BNX_PRINTF(sc,
5073 1.1 bouyer "page size = 0x%08X, rx chain pages = 0x%08X\n",
5074 1.1 bouyer (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5075 1.1 bouyer
5076 1.1 bouyer BNX_PRINTF(sc,
5077 1.1 bouyer "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5078 1.1 bouyer (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5079 1.1 bouyer
5080 1.1 bouyer BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
5081 1.1 bouyer
5082 1.1 bouyer BNX_PRINTF(sc,
5083 1.1 bouyer "----------------------------"
5084 1.1 bouyer " rx_bd data "
5085 1.1 bouyer "----------------------------\n");
5086 1.1 bouyer
5087 1.1 bouyer /* Now print out the rx_bd's themselves. */
5088 1.1 bouyer for (i = 0; i < count; i++) {
5089 1.1 bouyer rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5090 1.1 bouyer bnx_dump_rxbd(sc, rx_prod, rxbd);
5091 1.1 bouyer rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5092 1.1 bouyer }
5093 1.1 bouyer
5094 1.1 bouyer BNX_PRINTF(sc,
5095 1.1 bouyer "----------------------------"
5096 1.1 bouyer "--------------"
5097 1.1 bouyer "----------------------------\n");
5098 1.1 bouyer }
5099 1.1 bouyer
5100 1.1 bouyer /*
5101 1.1 bouyer * This routine prints the status block.
5102 1.1 bouyer */
5103 1.1 bouyer void
5104 1.1 bouyer bnx_dump_status_block(struct bnx_softc *sc)
5105 1.1 bouyer {
5106 1.1 bouyer struct status_block *sblk;
5107 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5108 1.1 bouyer BUS_DMASYNC_POSTREAD);
5109 1.1 bouyer
5110 1.1 bouyer sblk = sc->status_block;
5111 1.1 bouyer
5112 1.1 bouyer BNX_PRINTF(sc, "----------------------------- Status Block "
5113 1.1 bouyer "-----------------------------\n");
5114 1.1 bouyer
5115 1.1 bouyer BNX_PRINTF(sc,
5116 1.1 bouyer "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5117 1.1 bouyer sblk->status_attn_bits, sblk->status_attn_bits_ack,
5118 1.1 bouyer sblk->status_idx);
5119 1.1 bouyer
5120 1.1 bouyer BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5121 1.1 bouyer sblk->status_rx_quick_consumer_index0,
5122 1.1 bouyer sblk->status_tx_quick_consumer_index0);
5123 1.1 bouyer
5124 1.1 bouyer BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5125 1.1 bouyer
5126 1.1 bouyer /* Theses indices are not used for normal L2 drivers. */
5127 1.1 bouyer if (sblk->status_rx_quick_consumer_index1 ||
5128 1.1 bouyer sblk->status_tx_quick_consumer_index1)
5129 1.1 bouyer BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5130 1.1 bouyer sblk->status_rx_quick_consumer_index1,
5131 1.1 bouyer sblk->status_tx_quick_consumer_index1);
5132 1.1 bouyer
5133 1.1 bouyer if (sblk->status_rx_quick_consumer_index2 ||
5134 1.1 bouyer sblk->status_tx_quick_consumer_index2)
5135 1.1 bouyer BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5136 1.1 bouyer sblk->status_rx_quick_consumer_index2,
5137 1.1 bouyer sblk->status_tx_quick_consumer_index2);
5138 1.1 bouyer
5139 1.1 bouyer if (sblk->status_rx_quick_consumer_index3 ||
5140 1.1 bouyer sblk->status_tx_quick_consumer_index3)
5141 1.1 bouyer BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5142 1.1 bouyer sblk->status_rx_quick_consumer_index3,
5143 1.1 bouyer sblk->status_tx_quick_consumer_index3);
5144 1.1 bouyer
5145 1.1 bouyer if (sblk->status_rx_quick_consumer_index4 ||
5146 1.1 bouyer sblk->status_rx_quick_consumer_index5)
5147 1.1 bouyer BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5148 1.1 bouyer sblk->status_rx_quick_consumer_index4,
5149 1.1 bouyer sblk->status_rx_quick_consumer_index5);
5150 1.1 bouyer
5151 1.1 bouyer if (sblk->status_rx_quick_consumer_index6 ||
5152 1.1 bouyer sblk->status_rx_quick_consumer_index7)
5153 1.1 bouyer BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5154 1.1 bouyer sblk->status_rx_quick_consumer_index6,
5155 1.1 bouyer sblk->status_rx_quick_consumer_index7);
5156 1.1 bouyer
5157 1.1 bouyer if (sblk->status_rx_quick_consumer_index8 ||
5158 1.1 bouyer sblk->status_rx_quick_consumer_index9)
5159 1.1 bouyer BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5160 1.1 bouyer sblk->status_rx_quick_consumer_index8,
5161 1.1 bouyer sblk->status_rx_quick_consumer_index9);
5162 1.1 bouyer
5163 1.1 bouyer if (sblk->status_rx_quick_consumer_index10 ||
5164 1.1 bouyer sblk->status_rx_quick_consumer_index11)
5165 1.1 bouyer BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5166 1.1 bouyer sblk->status_rx_quick_consumer_index10,
5167 1.1 bouyer sblk->status_rx_quick_consumer_index11);
5168 1.1 bouyer
5169 1.1 bouyer if (sblk->status_rx_quick_consumer_index12 ||
5170 1.1 bouyer sblk->status_rx_quick_consumer_index13)
5171 1.1 bouyer BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5172 1.1 bouyer sblk->status_rx_quick_consumer_index12,
5173 1.1 bouyer sblk->status_rx_quick_consumer_index13);
5174 1.1 bouyer
5175 1.1 bouyer if (sblk->status_rx_quick_consumer_index14 ||
5176 1.1 bouyer sblk->status_rx_quick_consumer_index15)
5177 1.1 bouyer BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5178 1.1 bouyer sblk->status_rx_quick_consumer_index14,
5179 1.1 bouyer sblk->status_rx_quick_consumer_index15);
5180 1.1 bouyer
5181 1.1 bouyer if (sblk->status_completion_producer_index ||
5182 1.1 bouyer sblk->status_cmd_consumer_index)
5183 1.1 bouyer BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5184 1.1 bouyer sblk->status_completion_producer_index,
5185 1.1 bouyer sblk->status_cmd_consumer_index);
5186 1.1 bouyer
5187 1.1 bouyer BNX_PRINTF(sc, "-------------------------------------------"
5188 1.1 bouyer "-----------------------------\n");
5189 1.1 bouyer }
5190 1.1 bouyer
5191 1.1 bouyer /*
5192 1.1 bouyer * This routine prints the statistics block.
5193 1.1 bouyer */
5194 1.1 bouyer void
5195 1.1 bouyer bnx_dump_stats_block(struct bnx_softc *sc)
5196 1.1 bouyer {
5197 1.1 bouyer struct statistics_block *sblk;
5198 1.1 bouyer bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5199 1.1 bouyer BUS_DMASYNC_POSTREAD);
5200 1.1 bouyer
5201 1.1 bouyer sblk = sc->stats_block;
5202 1.1 bouyer
5203 1.1 bouyer BNX_PRINTF(sc, ""
5204 1.1 bouyer "-----------------------------"
5205 1.1 bouyer " Stats Block "
5206 1.1 bouyer "-----------------------------\n");
5207 1.1 bouyer
5208 1.1 bouyer BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5209 1.1 bouyer "IfHcInBadOctets = 0x%08X:%08X\n",
5210 1.1 bouyer sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5211 1.1 bouyer sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5212 1.1 bouyer
5213 1.1 bouyer BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5214 1.1 bouyer "IfHcOutBadOctets = 0x%08X:%08X\n",
5215 1.1 bouyer sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5216 1.1 bouyer sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5217 1.1 bouyer
5218 1.1 bouyer BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5219 1.1 bouyer "IfHcInMulticastPkts = 0x%08X:%08X\n",
5220 1.1 bouyer sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5221 1.1 bouyer sblk->stat_IfHCInMulticastPkts_hi,
5222 1.1 bouyer sblk->stat_IfHCInMulticastPkts_lo);
5223 1.1 bouyer
5224 1.1 bouyer BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5225 1.1 bouyer "IfHcOutUcastPkts = 0x%08X:%08X\n",
5226 1.1 bouyer sblk->stat_IfHCInBroadcastPkts_hi,
5227 1.1 bouyer sblk->stat_IfHCInBroadcastPkts_lo,
5228 1.1 bouyer sblk->stat_IfHCOutUcastPkts_hi,
5229 1.1 bouyer sblk->stat_IfHCOutUcastPkts_lo);
5230 1.1 bouyer
5231 1.1 bouyer BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5232 1.1 bouyer "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5233 1.1 bouyer sblk->stat_IfHCOutMulticastPkts_hi,
5234 1.1 bouyer sblk->stat_IfHCOutMulticastPkts_lo,
5235 1.1 bouyer sblk->stat_IfHCOutBroadcastPkts_hi,
5236 1.1 bouyer sblk->stat_IfHCOutBroadcastPkts_lo);
5237 1.1 bouyer
5238 1.1 bouyer if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5239 1.1 bouyer BNX_PRINTF(sc, "0x%08X : "
5240 1.1 bouyer "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5241 1.1 bouyer sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5242 1.1 bouyer
5243 1.1 bouyer if (sblk->stat_Dot3StatsCarrierSenseErrors)
5244 1.1 bouyer BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5245 1.1 bouyer sblk->stat_Dot3StatsCarrierSenseErrors);
5246 1.1 bouyer
5247 1.1 bouyer if (sblk->stat_Dot3StatsFCSErrors)
5248 1.1 bouyer BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5249 1.1 bouyer sblk->stat_Dot3StatsFCSErrors);
5250 1.1 bouyer
5251 1.1 bouyer if (sblk->stat_Dot3StatsAlignmentErrors)
5252 1.1 bouyer BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5253 1.1 bouyer sblk->stat_Dot3StatsAlignmentErrors);
5254 1.1 bouyer
5255 1.1 bouyer if (sblk->stat_Dot3StatsSingleCollisionFrames)
5256 1.1 bouyer BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5257 1.1 bouyer sblk->stat_Dot3StatsSingleCollisionFrames);
5258 1.1 bouyer
5259 1.1 bouyer if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5260 1.1 bouyer BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5261 1.1 bouyer sblk->stat_Dot3StatsMultipleCollisionFrames);
5262 1.1 bouyer
5263 1.1 bouyer if (sblk->stat_Dot3StatsDeferredTransmissions)
5264 1.1 bouyer BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5265 1.1 bouyer sblk->stat_Dot3StatsDeferredTransmissions);
5266 1.1 bouyer
5267 1.1 bouyer if (sblk->stat_Dot3StatsExcessiveCollisions)
5268 1.1 bouyer BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5269 1.1 bouyer sblk->stat_Dot3StatsExcessiveCollisions);
5270 1.1 bouyer
5271 1.1 bouyer if (sblk->stat_Dot3StatsLateCollisions)
5272 1.1 bouyer BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5273 1.1 bouyer sblk->stat_Dot3StatsLateCollisions);
5274 1.1 bouyer
5275 1.1 bouyer if (sblk->stat_EtherStatsCollisions)
5276 1.1 bouyer BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5277 1.1 bouyer sblk->stat_EtherStatsCollisions);
5278 1.1 bouyer
5279 1.1 bouyer if (sblk->stat_EtherStatsFragments)
5280 1.1 bouyer BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5281 1.1 bouyer sblk->stat_EtherStatsFragments);
5282 1.1 bouyer
5283 1.1 bouyer if (sblk->stat_EtherStatsJabbers)
5284 1.1 bouyer BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5285 1.1 bouyer sblk->stat_EtherStatsJabbers);
5286 1.1 bouyer
5287 1.1 bouyer if (sblk->stat_EtherStatsUndersizePkts)
5288 1.1 bouyer BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5289 1.1 bouyer sblk->stat_EtherStatsUndersizePkts);
5290 1.1 bouyer
5291 1.1 bouyer if (sblk->stat_EtherStatsOverrsizePkts)
5292 1.1 bouyer BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5293 1.1 bouyer sblk->stat_EtherStatsOverrsizePkts);
5294 1.1 bouyer
5295 1.1 bouyer if (sblk->stat_EtherStatsPktsRx64Octets)
5296 1.1 bouyer BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5297 1.1 bouyer sblk->stat_EtherStatsPktsRx64Octets);
5298 1.1 bouyer
5299 1.1 bouyer if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5300 1.1 bouyer BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5301 1.1 bouyer sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5302 1.1 bouyer
5303 1.1 bouyer if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5304 1.1 bouyer BNX_PRINTF(sc, "0x%08X : "
5305 1.1 bouyer "EtherStatsPktsRx128Octetsto255Octets\n",
5306 1.1 bouyer sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5307 1.1 bouyer
5308 1.1 bouyer if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5309 1.1 bouyer BNX_PRINTF(sc, "0x%08X : "
5310 1.1 bouyer "EtherStatsPktsRx256Octetsto511Octets\n",
5311 1.1 bouyer sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5312 1.1 bouyer
5313 1.1 bouyer if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5314 1.1 bouyer BNX_PRINTF(sc, "0x%08X : "
5315 1.1 bouyer "EtherStatsPktsRx512Octetsto1023Octets\n",
5316 1.1 bouyer sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5317 1.1 bouyer
5318 1.1 bouyer if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5319 1.1 bouyer BNX_PRINTF(sc, "0x%08X : "
5320 1.1 bouyer "EtherStatsPktsRx1024Octetsto1522Octets\n",
5321 1.1 bouyer sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5322 1.1 bouyer
5323 1.1 bouyer if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5324 1.1 bouyer BNX_PRINTF(sc, "0x%08X : "
5325 1.1 bouyer "EtherStatsPktsRx1523Octetsto9022Octets\n",
5326 1.1 bouyer sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5327 1.1 bouyer
5328 1.1 bouyer if (sblk->stat_EtherStatsPktsTx64Octets)
5329 1.1 bouyer BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5330 1.1 bouyer sblk->stat_EtherStatsPktsTx64Octets);
5331 1.1 bouyer
5332 1.1 bouyer if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
5333 1.1 bouyer BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
5334 1.1 bouyer sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
5335 1.1 bouyer
5336 1.1 bouyer if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
5337 1.1 bouyer BNX_PRINTF(sc, "0x%08X : "
5338 1.1 bouyer "EtherStatsPktsTx128Octetsto255Octets\n",
5339 1.1 bouyer sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
5340 1.1 bouyer
5341 1.1 bouyer if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
5342 1.1 bouyer BNX_PRINTF(sc, "0x%08X : "
5343 1.1 bouyer "EtherStatsPktsTx256Octetsto511Octets\n",
5344 1.1 bouyer sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
5345 1.1 bouyer
5346 1.1 bouyer if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
5347 1.1 bouyer BNX_PRINTF(sc, "0x%08X : "
5348 1.1 bouyer "EtherStatsPktsTx512Octetsto1023Octets\n",
5349 1.1 bouyer sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
5350 1.1 bouyer
5351 1.1 bouyer if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
5352 1.1 bouyer BNX_PRINTF(sc, "0x%08X : "
5353 1.1 bouyer "EtherStatsPktsTx1024Octetsto1522Octets\n",
5354 1.1 bouyer sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
5355 1.1 bouyer
5356 1.1 bouyer if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
5357 1.1 bouyer BNX_PRINTF(sc, "0x%08X : "
5358 1.1 bouyer "EtherStatsPktsTx1523Octetsto9022Octets\n",
5359 1.1 bouyer sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
5360 1.1 bouyer
5361 1.1 bouyer if (sblk->stat_XonPauseFramesReceived)
5362 1.1 bouyer BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
5363 1.1 bouyer sblk->stat_XonPauseFramesReceived);
5364 1.1 bouyer
5365 1.1 bouyer if (sblk->stat_XoffPauseFramesReceived)
5366 1.1 bouyer BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
5367 1.1 bouyer sblk->stat_XoffPauseFramesReceived);
5368 1.1 bouyer
5369 1.1 bouyer if (sblk->stat_OutXonSent)
5370 1.1 bouyer BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
5371 1.1 bouyer sblk->stat_OutXonSent);
5372 1.1 bouyer
5373 1.1 bouyer if (sblk->stat_OutXoffSent)
5374 1.1 bouyer BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
5375 1.1 bouyer sblk->stat_OutXoffSent);
5376 1.1 bouyer
5377 1.1 bouyer if (sblk->stat_FlowControlDone)
5378 1.1 bouyer BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
5379 1.1 bouyer sblk->stat_FlowControlDone);
5380 1.1 bouyer
5381 1.1 bouyer if (sblk->stat_MacControlFramesReceived)
5382 1.1 bouyer BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
5383 1.1 bouyer sblk->stat_MacControlFramesReceived);
5384 1.1 bouyer
5385 1.1 bouyer if (sblk->stat_XoffStateEntered)
5386 1.1 bouyer BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
5387 1.1 bouyer sblk->stat_XoffStateEntered);
5388 1.1 bouyer
5389 1.1 bouyer if (sblk->stat_IfInFramesL2FilterDiscards)
5390 1.1 bouyer BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
5391 1.1 bouyer sblk->stat_IfInFramesL2FilterDiscards);
5392 1.1 bouyer
5393 1.1 bouyer if (sblk->stat_IfInRuleCheckerDiscards)
5394 1.1 bouyer BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
5395 1.1 bouyer sblk->stat_IfInRuleCheckerDiscards);
5396 1.1 bouyer
5397 1.1 bouyer if (sblk->stat_IfInFTQDiscards)
5398 1.1 bouyer BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
5399 1.1 bouyer sblk->stat_IfInFTQDiscards);
5400 1.1 bouyer
5401 1.1 bouyer if (sblk->stat_IfInMBUFDiscards)
5402 1.1 bouyer BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
5403 1.1 bouyer sblk->stat_IfInMBUFDiscards);
5404 1.1 bouyer
5405 1.1 bouyer if (sblk->stat_IfInRuleCheckerP4Hit)
5406 1.1 bouyer BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
5407 1.1 bouyer sblk->stat_IfInRuleCheckerP4Hit);
5408 1.1 bouyer
5409 1.1 bouyer if (sblk->stat_CatchupInRuleCheckerDiscards)
5410 1.1 bouyer BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
5411 1.1 bouyer sblk->stat_CatchupInRuleCheckerDiscards);
5412 1.1 bouyer
5413 1.1 bouyer if (sblk->stat_CatchupInFTQDiscards)
5414 1.1 bouyer BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
5415 1.1 bouyer sblk->stat_CatchupInFTQDiscards);
5416 1.1 bouyer
5417 1.1 bouyer if (sblk->stat_CatchupInMBUFDiscards)
5418 1.1 bouyer BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
5419 1.1 bouyer sblk->stat_CatchupInMBUFDiscards);
5420 1.1 bouyer
5421 1.1 bouyer if (sblk->stat_CatchupInRuleCheckerP4Hit)
5422 1.1 bouyer BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
5423 1.1 bouyer sblk->stat_CatchupInRuleCheckerP4Hit);
5424 1.1 bouyer
5425 1.1 bouyer BNX_PRINTF(sc,
5426 1.1 bouyer "-----------------------------"
5427 1.1 bouyer "--------------"
5428 1.1 bouyer "-----------------------------\n");
5429 1.1 bouyer }
5430 1.1 bouyer
5431 1.1 bouyer void
5432 1.1 bouyer bnx_dump_driver_state(struct bnx_softc *sc)
5433 1.1 bouyer {
5434 1.1 bouyer BNX_PRINTF(sc,
5435 1.1 bouyer "-----------------------------"
5436 1.1 bouyer " Driver State "
5437 1.1 bouyer "-----------------------------\n");
5438 1.1 bouyer
5439 1.1 bouyer BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
5440 1.1 bouyer "address\n", sc);
5441 1.1 bouyer
5442 1.1 bouyer BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
5443 1.1 bouyer sc->status_block);
5444 1.1 bouyer
5445 1.1 bouyer BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
5446 1.1 bouyer "address\n", sc->stats_block);
5447 1.1 bouyer
5448 1.1 bouyer BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
5449 1.1 bouyer "adddress\n", sc->tx_bd_chain);
5450 1.1 bouyer
5451 1.1 bouyer BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
5452 1.1 bouyer sc->rx_bd_chain);
5453 1.1 bouyer
5454 1.1 bouyer BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
5455 1.1 bouyer sc->tx_mbuf_ptr);
5456 1.1 bouyer
5457 1.1 bouyer BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
5458 1.1 bouyer sc->rx_mbuf_ptr);
5459 1.1 bouyer
5460 1.1 bouyer BNX_PRINTF(sc,
5461 1.1 bouyer " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
5462 1.1 bouyer sc->interrupts_generated);
5463 1.1 bouyer
5464 1.1 bouyer BNX_PRINTF(sc,
5465 1.1 bouyer " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
5466 1.1 bouyer sc->rx_interrupts);
5467 1.1 bouyer
5468 1.1 bouyer BNX_PRINTF(sc,
5469 1.1 bouyer " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
5470 1.1 bouyer sc->tx_interrupts);
5471 1.1 bouyer
5472 1.1 bouyer BNX_PRINTF(sc,
5473 1.1 bouyer " 0x%08X - (sc->last_status_idx) status block index\n",
5474 1.1 bouyer sc->last_status_idx);
5475 1.1 bouyer
5476 1.1 bouyer BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
5477 1.1 bouyer sc->tx_prod);
5478 1.1 bouyer
5479 1.1 bouyer BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
5480 1.1 bouyer sc->tx_cons);
5481 1.1 bouyer
5482 1.1 bouyer BNX_PRINTF(sc,
5483 1.1 bouyer " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
5484 1.1 bouyer sc->tx_prod_bseq);
5485 1.1 bouyer
5486 1.1 bouyer BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
5487 1.1 bouyer sc->rx_prod);
5488 1.1 bouyer
5489 1.1 bouyer BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
5490 1.1 bouyer sc->rx_cons);
5491 1.1 bouyer
5492 1.1 bouyer BNX_PRINTF(sc,
5493 1.1 bouyer " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
5494 1.1 bouyer sc->rx_prod_bseq);
5495 1.1 bouyer
5496 1.1 bouyer BNX_PRINTF(sc,
5497 1.1 bouyer " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5498 1.1 bouyer sc->rx_mbuf_alloc);
5499 1.1 bouyer
5500 1.1 bouyer BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
5501 1.1 bouyer sc->free_rx_bd);
5502 1.1 bouyer
5503 1.1 bouyer BNX_PRINTF(sc,
5504 1.1 bouyer "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
5505 1.1 bouyer sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
5506 1.1 bouyer
5507 1.1 bouyer BNX_PRINTF(sc,
5508 1.1 bouyer " 0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
5509 1.1 bouyer sc->tx_mbuf_alloc);
5510 1.1 bouyer
5511 1.1 bouyer BNX_PRINTF(sc,
5512 1.1 bouyer " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5513 1.1 bouyer sc->rx_mbuf_alloc);
5514 1.1 bouyer
5515 1.1 bouyer BNX_PRINTF(sc, " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
5516 1.1 bouyer sc->used_tx_bd);
5517 1.1 bouyer
5518 1.1 bouyer BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
5519 1.1 bouyer sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
5520 1.1 bouyer
5521 1.1 bouyer BNX_PRINTF(sc,
5522 1.1 bouyer " 0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
5523 1.1 bouyer sc->mbuf_alloc_failed);
5524 1.1 bouyer
5525 1.1 bouyer BNX_PRINTF(sc, "-------------------------------------------"
5526 1.1 bouyer "-----------------------------\n");
5527 1.1 bouyer }
5528 1.1 bouyer
5529 1.1 bouyer void
5530 1.1 bouyer bnx_dump_hw_state(struct bnx_softc *sc)
5531 1.1 bouyer {
5532 1.1 bouyer u_int32_t val1;
5533 1.1 bouyer int i;
5534 1.1 bouyer
5535 1.1 bouyer BNX_PRINTF(sc,
5536 1.1 bouyer "----------------------------"
5537 1.1 bouyer " Hardware State "
5538 1.1 bouyer "----------------------------\n");
5539 1.1 bouyer
5540 1.1 bouyer BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
5541 1.1 bouyer
5542 1.1 bouyer val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
5543 1.1 bouyer BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
5544 1.1 bouyer val1, BNX_MISC_ENABLE_STATUS_BITS);
5545 1.1 bouyer
5546 1.1 bouyer val1 = REG_RD(sc, BNX_DMA_STATUS);
5547 1.1 bouyer BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
5548 1.1 bouyer
5549 1.1 bouyer val1 = REG_RD(sc, BNX_CTX_STATUS);
5550 1.1 bouyer BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
5551 1.1 bouyer
5552 1.1 bouyer val1 = REG_RD(sc, BNX_EMAC_STATUS);
5553 1.1 bouyer BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
5554 1.1 bouyer BNX_EMAC_STATUS);
5555 1.1 bouyer
5556 1.1 bouyer val1 = REG_RD(sc, BNX_RPM_STATUS);
5557 1.1 bouyer BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
5558 1.1 bouyer
5559 1.1 bouyer val1 = REG_RD(sc, BNX_TBDR_STATUS);
5560 1.1 bouyer BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
5561 1.1 bouyer BNX_TBDR_STATUS);
5562 1.1 bouyer
5563 1.1 bouyer val1 = REG_RD(sc, BNX_TDMA_STATUS);
5564 1.1 bouyer BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
5565 1.1 bouyer BNX_TDMA_STATUS);
5566 1.1 bouyer
5567 1.1 bouyer val1 = REG_RD(sc, BNX_HC_STATUS);
5568 1.1 bouyer BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
5569 1.1 bouyer
5570 1.1 bouyer BNX_PRINTF(sc,
5571 1.1 bouyer "----------------------------"
5572 1.1 bouyer "----------------"
5573 1.1 bouyer "----------------------------\n");
5574 1.1 bouyer
5575 1.1 bouyer BNX_PRINTF(sc,
5576 1.1 bouyer "----------------------------"
5577 1.1 bouyer " Register Dump "
5578 1.1 bouyer "----------------------------\n");
5579 1.1 bouyer
5580 1.1 bouyer for (i = 0x400; i < 0x8000; i += 0x10)
5581 1.1 bouyer BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
5582 1.1 bouyer i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
5583 1.1 bouyer REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
5584 1.1 bouyer
5585 1.1 bouyer BNX_PRINTF(sc,
5586 1.1 bouyer "----------------------------"
5587 1.1 bouyer "----------------"
5588 1.1 bouyer "----------------------------\n");
5589 1.1 bouyer }
5590 1.1 bouyer
5591 1.1 bouyer void
5592 1.1 bouyer bnx_breakpoint(struct bnx_softc *sc)
5593 1.1 bouyer {
5594 1.1 bouyer /* Unreachable code to shut the compiler up about unused functions. */
5595 1.1 bouyer if (0) {
5596 1.1 bouyer bnx_dump_txbd(sc, 0, NULL);
5597 1.1 bouyer bnx_dump_rxbd(sc, 0, NULL);
5598 1.1 bouyer bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
5599 1.1 bouyer bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
5600 1.1 bouyer bnx_dump_l2fhdr(sc, 0, NULL);
5601 1.1 bouyer bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
5602 1.1 bouyer bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
5603 1.1 bouyer bnx_dump_status_block(sc);
5604 1.1 bouyer bnx_dump_stats_block(sc);
5605 1.1 bouyer bnx_dump_driver_state(sc);
5606 1.1 bouyer bnx_dump_hw_state(sc);
5607 1.1 bouyer }
5608 1.1 bouyer
5609 1.1 bouyer bnx_dump_driver_state(sc);
5610 1.1 bouyer /* Print the important status block fields. */
5611 1.1 bouyer bnx_dump_status_block(sc);
5612 1.1 bouyer
5613 1.1 bouyer #if 0
5614 1.1 bouyer /* Call the debugger. */
5615 1.1 bouyer breakpoint();
5616 1.1 bouyer #endif
5617 1.1 bouyer
5618 1.1 bouyer return;
5619 1.1 bouyer }
5620 1.1 bouyer #endif
5621