if_bnx.c revision 1.1.8.2 1 /* $NetBSD: if_bnx.c,v 1.1.8.2 2006/12/30 20:48:44 yamt Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.21 2006/08/21 03:32:11 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.1.8.2 2006/12/30 20:48:44 yamt Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5708C B1
44 *
45 * The following controllers are not supported by this driver:
46 * (These are not "Production" versions of the controller.)
47 *
48 * BCM5706C A0, A1
49 * BCM5706S A0, A1, A2, A3
50 * BCM5708C A0, B0
51 * BCM5708S A0, B0, B1
52 */
53
54 #include <sys/callout.h>
55
56 #include <dev/pci/if_bnxreg.h>
57 #include <dev/microcode/bnx/bnxfw.h>
58
59 /****************************************************************************/
60 /* BNX Driver Version */
61 /****************************************************************************/
62 const char bnx_driver_version[] = "v0.9.6";
63
64 /****************************************************************************/
65 /* BNX Debug Options */
66 /****************************************************************************/
67 #ifdef BNX_DEBUG
68 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
69
70 /* 0 = Never */
71 /* 1 = 1 in 2,147,483,648 */
72 /* 256 = 1 in 8,388,608 */
73 /* 2048 = 1 in 1,048,576 */
74 /* 65536 = 1 in 32,768 */
75 /* 1048576 = 1 in 2,048 */
76 /* 268435456 = 1 in 8 */
77 /* 536870912 = 1 in 4 */
78 /* 1073741824 = 1 in 2 */
79
80 /* Controls how often the l2_fhdr frame error check will fail. */
81 int bnx_debug_l2fhdr_status_check = 0;
82
83 /* Controls how often the unexpected attention check will fail. */
84 int bnx_debug_unexpected_attention = 0;
85
86 /* Controls how often to simulate an mbuf allocation failure. */
87 int bnx_debug_mbuf_allocation_failure = 0;
88
89 /* Controls how often to simulate a DMA mapping failure. */
90 int bnx_debug_dma_map_addr_failure = 0;
91
92 /* Controls how often to simulate a bootcode failure. */
93 int bnx_debug_bootcode_running_failure = 0;
94 #endif
95
96 /****************************************************************************/
97 /* PCI Device ID Table */
98 /* */
99 /* Used by bnx_probe() to identify the devices supported by this driver. */
100 /****************************************************************************/
101 static const struct bnx_product {
102 pci_vendor_id_t bp_vendor;
103 pci_product_id_t bp_product;
104 pci_vendor_id_t bp_subvendor;
105 pci_product_id_t bp_subproduct;
106 const char *bp_name;
107 } bnx_devices[] = {
108 #ifdef PCI_SUBPRODUCT_HP_NC370T
109 {
110 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
111 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
112 "HP NC370T Multifunction Gigabit Server Adapter"
113 },
114 #endif
115 #ifdef PCI_SUBPRODUCT_HP_NC370i
116 {
117 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
118 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
119 "HP NC370i Multifunction Gigabit Server Adapter"
120 },
121 #endif
122 {
123 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
124 0, 0,
125 "Broadcom NetXtreme II BCM5706 1000Base-T"
126 },
127 #ifdef PCI_SUBPRODUCT_HP_NC370F
128 {
129 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
130 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
131 "HP NC370F Multifunction Gigabit Server Adapter"
132 },
133 #endif
134 {
135 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
136 0, 0,
137 "Broadcom NetXtreme II BCM5706 1000Base-SX"
138 },
139 {
140 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
141 0, 0,
142 "Broadcom NetXtreme II BCM5708 1000Base-T"
143 },
144 {
145 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
146 0, 0,
147 "Broadcom NetXtreme II BCM5708 1000Base-SX"
148 },
149 };
150
151 /****************************************************************************/
152 /* Supported Flash NVRAM device data. */
153 /****************************************************************************/
154 static struct flash_spec flash_table[] =
155 {
156 /* Slow EEPROM */
157 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
158 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
159 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
160 "EEPROM - slow"},
161 /* Expansion entry 0001 */
162 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
163 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
164 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
165 "Entry 0001"},
166 /* Saifun SA25F010 (non-buffered flash) */
167 /* strap, cfg1, & write1 need updates */
168 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
169 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
170 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
171 "Non-buffered flash (128kB)"},
172 /* Saifun SA25F020 (non-buffered flash) */
173 /* strap, cfg1, & write1 need updates */
174 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
175 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
177 "Non-buffered flash (256kB)"},
178 /* Expansion entry 0100 */
179 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
180 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
181 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
182 "Entry 0100"},
183 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
184 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
185 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
187 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
188 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
189 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
190 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
191 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
192 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
193 /* Saifun SA25F005 (non-buffered flash) */
194 /* strap, cfg1, & write1 need updates */
195 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
196 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
197 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
198 "Non-buffered flash (64kB)"},
199 /* Fast EEPROM */
200 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
201 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
202 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
203 "EEPROM - fast"},
204 /* Expansion entry 1001 */
205 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
206 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
208 "Entry 1001"},
209 /* Expansion entry 1010 */
210 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
211 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 "Entry 1010"},
214 /* ATMEL AT45DB011B (buffered flash) */
215 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
216 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
217 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
218 "Buffered flash (128kB)"},
219 /* Expansion entry 1100 */
220 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
221 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 "Entry 1100"},
224 /* Expansion entry 1101 */
225 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
226 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
228 "Entry 1101"},
229 /* Ateml Expansion entry 1110 */
230 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
231 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
233 "Entry 1110 (Atmel)"},
234 /* ATMEL AT45DB021B (buffered flash) */
235 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
236 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
237 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
238 "Buffered flash (256kB)"},
239 };
240
241 /****************************************************************************/
242 /* OpenBSD device entry points. */
243 /****************************************************************************/
244 static int bnx_probe(device_t, cfdata_t, void *);
245 void bnx_attach(struct device *, struct device *, void *);
246 #if 0
247 void bnx_detach(void *);
248 #endif
249 void bnx_shutdown(void *);
250
251 /****************************************************************************/
252 /* BNX Debug Data Structure Dump Routines */
253 /****************************************************************************/
254 #ifdef BNX_DEBUG
255 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
256 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
257 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
258 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
259 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
260 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
261 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
262 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
263 void bnx_dump_status_block(struct bnx_softc *);
264 void bnx_dump_stats_block(struct bnx_softc *);
265 void bnx_dump_driver_state(struct bnx_softc *);
266 void bnx_dump_hw_state(struct bnx_softc *);
267 void bnx_breakpoint(struct bnx_softc *);
268 #endif
269
270 /****************************************************************************/
271 /* BNX Register/Memory Access Routines */
272 /****************************************************************************/
273 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
274 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
275 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
276 int bnx_miibus_read_reg(struct device *, int, int);
277 void bnx_miibus_write_reg(struct device *, int, int, int);
278 void bnx_miibus_statchg(struct device *);
279
280 /****************************************************************************/
281 /* BNX NVRAM Access Routines */
282 /****************************************************************************/
283 int bnx_acquire_nvram_lock(struct bnx_softc *);
284 int bnx_release_nvram_lock(struct bnx_softc *);
285 void bnx_enable_nvram_access(struct bnx_softc *);
286 void bnx_disable_nvram_access(struct bnx_softc *);
287 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
288 u_int32_t);
289 int bnx_init_nvram(struct bnx_softc *);
290 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
291 int bnx_nvram_test(struct bnx_softc *);
292 #ifdef BNX_NVRAM_WRITE_SUPPORT
293 int bnx_enable_nvram_write(struct bnx_softc *);
294 void bnx_disable_nvram_write(struct bnx_softc *);
295 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
296 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
297 u_int32_t);
298 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
299 #endif
300
301 /****************************************************************************/
302 /* */
303 /****************************************************************************/
304 int bnx_dma_alloc(struct bnx_softc *);
305 void bnx_dma_free(struct bnx_softc *);
306 void bnx_release_resources(struct bnx_softc *);
307 void bnx_dma_map_tx_desc(void *, bus_dmamap_t);
308
309 /****************************************************************************/
310 /* BNX Firmware Synchronization and Load */
311 /****************************************************************************/
312 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
313 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
314 u_int32_t);
315 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
316 struct fw_info *);
317 void bnx_init_cpus(struct bnx_softc *);
318
319 void bnx_stop(struct bnx_softc *);
320 int bnx_reset(struct bnx_softc *, u_int32_t);
321 int bnx_chipinit(struct bnx_softc *);
322 int bnx_blockinit(struct bnx_softc *);
323 int bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
324 u_int16_t *, u_int32_t *);
325
326 int bnx_init_tx_chain(struct bnx_softc *);
327 int bnx_init_rx_chain(struct bnx_softc *);
328 void bnx_free_rx_chain(struct bnx_softc *);
329 void bnx_free_tx_chain(struct bnx_softc *);
330
331 int bnx_tx_encap(struct bnx_softc *, struct mbuf *, u_int16_t *,
332 u_int16_t *, u_int32_t *);
333 void bnx_start(struct ifnet *);
334 int bnx_ioctl(struct ifnet *, u_long, caddr_t);
335 void bnx_watchdog(struct ifnet *);
336 int bnx_ifmedia_upd(struct ifnet *);
337 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
338 int bnx_init(struct ifnet *);
339
340 void bnx_init_context(struct bnx_softc *);
341 void bnx_get_mac_addr(struct bnx_softc *);
342 void bnx_set_mac_addr(struct bnx_softc *);
343 void bnx_phy_intr(struct bnx_softc *);
344 void bnx_rx_intr(struct bnx_softc *);
345 void bnx_tx_intr(struct bnx_softc *);
346 void bnx_disable_intr(struct bnx_softc *);
347 void bnx_enable_intr(struct bnx_softc *);
348
349 int bnx_intr(void *);
350 void bnx_set_rx_mode(struct bnx_softc *);
351 void bnx_stats_update(struct bnx_softc *);
352 void bnx_tick(void *);
353
354 /****************************************************************************/
355 /* OpenBSD device dispatch table. */
356 /****************************************************************************/
357 CFATTACH_DECL(bnx, sizeof(struct bnx_softc),
358 bnx_probe, bnx_attach, NULL, NULL);
359
360 /****************************************************************************/
361 /* Device probe function. */
362 /* */
363 /* Compares the device to the driver's list of supported devices and */
364 /* reports back to the OS whether this is the right driver for the device. */
365 /* */
366 /* Returns: */
367 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
368 /****************************************************************************/
369 static const struct bnx_product *
370 bnx_lookup(const struct pci_attach_args *pa)
371 {
372 int i;
373 pcireg_t subid;
374
375 for (i = 0; i < sizeof(bnx_devices)/sizeof(struct bnx_product); i++) {
376 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
377 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
378 continue;
379 if (!bnx_devices[i].bp_subvendor)
380 return &bnx_devices[i];
381 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
382 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
383 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
384 return &bnx_devices[i];
385 }
386
387 return NULL;
388 }
389 static int
390 bnx_probe(device_t parent, cfdata_t match, void *aux)
391 {
392 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
393
394 if (bnx_lookup(pa) != NULL)
395 return (1);
396
397 return (0);
398 }
399
400 /****************************************************************************/
401 /* Device attach function. */
402 /* */
403 /* Allocates device resources, performs secondary chip identification, */
404 /* resets and initializes the hardware, and initializes driver instance */
405 /* variables. */
406 /* */
407 /* Returns: */
408 /* 0 on success, positive value on failure. */
409 /****************************************************************************/
410 void
411 bnx_attach(struct device *parent, struct device *self, void *aux)
412 {
413 const struct bnx_product *bp;
414 struct bnx_softc *sc = (struct bnx_softc *)self;
415 struct pci_attach_args *pa = aux;
416 pci_chipset_tag_t pc = pa->pa_pc;
417 pci_intr_handle_t ih;
418 const char *intrstr = NULL;
419 u_int32_t command;
420 struct ifnet *ifp;
421 u_int32_t val;
422 pcireg_t memtype;
423
424 bp = bnx_lookup(pa);
425 if (bp == NULL)
426 panic("unknown device");
427
428 aprint_naive("\n");
429 aprint_normal(": %s", bp->bp_name);
430
431 sc->bnx_pa = *pa;
432
433 /*
434 * Map control/status registers.
435 */
436 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
437 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
438 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
439 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
440
441 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
442 aprint_error("%s: failed to enable memory mapping!\n",
443 sc->bnx_dev.dv_xname);
444 return;
445 }
446
447 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
448 switch (memtype) {
449 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
450 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
451 if (pci_mapreg_map(pa, BNX_PCI_BAR0,
452 memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
453 NULL, &sc->bnx_size) == 0)
454 break;
455 default:
456 aprint_error("%s: can't find mem space\n",
457 sc->bnx_dev.dv_xname);
458 return;
459 }
460
461 if (pci_intr_map(pa, &ih)) {
462 aprint_error("%s: couldn't map interrupt\n",
463 sc->bnx_dev.dv_xname);
464 goto bnx_attach_fail;
465 }
466
467 intrstr = pci_intr_string(pc, ih);
468
469 /*
470 * Configure byte swap and enable indirect register access.
471 * Rely on CPU to do target byte swapping on big endian systems.
472 * Access to registers outside of PCI configurtion space are not
473 * valid until this is done.
474 */
475 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
476 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
477 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
478
479 /* Save ASIC revsion info. */
480 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
481
482 /* Weed out any non-production controller revisions. */
483 switch(BNX_CHIP_ID(sc)) {
484 case BNX_CHIP_ID_5706_A0:
485 case BNX_CHIP_ID_5706_A1:
486 case BNX_CHIP_ID_5708_A0:
487 case BNX_CHIP_ID_5708_B0:
488 aprint_error("%s: unsupported controller revision (%c%d)!\n",
489 sc->bnx_dev.dv_xname,
490 ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
491 PCI_REVISION(pa->pa_class) & 0x0f);
492 goto bnx_attach_fail;
493 }
494
495 if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
496 aprint_error("%s: SerDes controllers are not supported!\n",
497 sc->bnx_dev.dv_xname);
498 goto bnx_attach_fail;
499 }
500
501 /*
502 * Find the base address for shared memory access.
503 * Newer versions of bootcode use a signature and offset
504 * while older versions use a fixed address.
505 */
506 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
507 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
508 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
509 else
510 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
511
512 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
513
514 /* Set initial device and PHY flags */
515 sc->bnx_flags = 0;
516 sc->bnx_phy_flags = 0;
517
518 /* Get PCI bus information (speed and type). */
519 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
520 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
521 u_int32_t clkreg;
522
523 sc->bnx_flags |= BNX_PCIX_FLAG;
524
525 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
526
527 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
528 switch (clkreg) {
529 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
530 sc->bus_speed_mhz = 133;
531 break;
532
533 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
534 sc->bus_speed_mhz = 100;
535 break;
536
537 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
538 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
539 sc->bus_speed_mhz = 66;
540 break;
541
542 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
543 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
544 sc->bus_speed_mhz = 50;
545 break;
546
547 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
548 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
549 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
550 sc->bus_speed_mhz = 33;
551 break;
552 }
553 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
554 sc->bus_speed_mhz = 66;
555 else
556 sc->bus_speed_mhz = 33;
557
558 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
559 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
560
561 /* Reset the controller. */
562 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
563 goto bnx_attach_fail;
564
565 /* Initialize the controller. */
566 if (bnx_chipinit(sc)) {
567 aprint_error("%s: Controller initialization failed!\n",
568 sc->bnx_dev.dv_xname);
569 goto bnx_attach_fail;
570 }
571
572 /* Perform NVRAM test. */
573 if (bnx_nvram_test(sc)) {
574 aprint_error("%s: NVRAM test failed!\n", sc->bnx_dev.dv_xname);
575 goto bnx_attach_fail;
576 }
577
578 /* Fetch the permanent Ethernet MAC address. */
579 bnx_get_mac_addr(sc);
580 aprint_normal("%s: Ethernet address %s\n", sc->bnx_dev.dv_xname,
581 ether_sprintf(sc->eaddr));
582
583 /*
584 * Trip points control how many BDs
585 * should be ready before generating an
586 * interrupt while ticks control how long
587 * a BD can sit in the chain before
588 * generating an interrupt. Set the default
589 * values for the RX and TX rings.
590 */
591
592 #ifdef BNX_DEBUG
593 /* Force more frequent interrupts. */
594 sc->bnx_tx_quick_cons_trip_int = 1;
595 sc->bnx_tx_quick_cons_trip = 1;
596 sc->bnx_tx_ticks_int = 0;
597 sc->bnx_tx_ticks = 0;
598
599 sc->bnx_rx_quick_cons_trip_int = 1;
600 sc->bnx_rx_quick_cons_trip = 1;
601 sc->bnx_rx_ticks_int = 0;
602 sc->bnx_rx_ticks = 0;
603 #else
604 sc->bnx_tx_quick_cons_trip_int = 20;
605 sc->bnx_tx_quick_cons_trip = 20;
606 sc->bnx_tx_ticks_int = 80;
607 sc->bnx_tx_ticks = 80;
608
609 sc->bnx_rx_quick_cons_trip_int = 6;
610 sc->bnx_rx_quick_cons_trip = 6;
611 sc->bnx_rx_ticks_int = 18;
612 sc->bnx_rx_ticks = 18;
613 #endif
614
615 /* Update statistics once every second. */
616 sc->bnx_stats_ticks = 1000000 & 0xffff00;
617
618 /*
619 * The copper based NetXtreme II controllers
620 * use an integrated PHY at address 1 while
621 * the SerDes controllers use a PHY at
622 * address 2.
623 */
624 sc->bnx_phy_addr = 1;
625
626 if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
627 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
628 sc->bnx_flags |= BNX_NO_WOL_FLAG;
629 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) {
630 sc->bnx_phy_addr = 2;
631 val = REG_RD_IND(sc, sc->bnx_shmem_base +
632 BNX_SHARED_HW_CFG_CONFIG);
633 if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
634 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
635 }
636 }
637
638 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
639 aprint_error("%s: SerDes is not supported by this driver!\n",
640 sc->bnx_dev.dv_xname);
641 goto bnx_attach_fail;
642 }
643
644 /* Allocate DMA memory resources. */
645 sc->bnx_dmatag = pa->pa_dmat;
646 if (bnx_dma_alloc(sc)) {
647 aprint_error("%s: DMA resource allocation failed!\n",
648 sc->bnx_dev.dv_xname);
649 goto bnx_attach_fail;
650 }
651
652 /* Initialize the ifnet interface. */
653 ifp = &sc->ethercom.ec_if;
654 ifp->if_softc = sc;
655 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
656 ifp->if_ioctl = bnx_ioctl;
657 ifp->if_start = bnx_start;
658 ifp->if_init = bnx_init;
659 ifp->if_timer = 0;
660 ifp->if_watchdog = bnx_watchdog;
661 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG)
662 ifp->if_baudrate = IF_Gbps(2.5);
663 else
664 ifp->if_baudrate = IF_Gbps(1);
665 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD);
666 IFQ_SET_READY(&ifp->if_snd);
667 bcopy(sc->bnx_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
668
669 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU |
670 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
671
672 ifp->if_capabilities |=
673 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
674 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
675 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
676
677 sc->mbuf_alloc_size = BNX_MAX_MRU;
678
679 /* Hookup IRQ last. */
680 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
681 if (sc->bnx_intrhand == NULL) {
682 aprint_error("%s: couldn't establish interrupt",
683 sc->bnx_dev.dv_xname);
684 if (intrstr != NULL)
685 aprint_error(" at %s", intrstr);
686 aprint_error("\n");
687 goto bnx_attach_fail;
688 }
689
690 sc->bnx_mii.mii_ifp = ifp;
691 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
692 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
693 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
694
695 /* Look for our PHY. */
696 ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
697 bnx_ifmedia_sts);
698 mii_attach(&sc->bnx_dev, &sc->bnx_mii, 0xffffffff,
699 MII_PHY_ANY, MII_OFFSET_ANY, 0);
700
701 if (LIST_FIRST(&sc->bnx_mii.mii_phys) == NULL) {
702 aprint_error("%s: no PHY found!\n", sc->bnx_dev.dv_xname);
703 ifmedia_add(&sc->bnx_mii.mii_media,
704 IFM_ETHER|IFM_MANUAL, 0, NULL);
705 ifmedia_set(&sc->bnx_mii.mii_media,
706 IFM_ETHER|IFM_MANUAL);
707 } else {
708 ifmedia_set(&sc->bnx_mii.mii_media,
709 IFM_ETHER|IFM_AUTO);
710 }
711
712 /* Attach to the Ethernet interface list. */
713 if_attach(ifp);
714 ether_ifattach(ifp,sc->eaddr);
715
716 callout_init(&sc->bnx_timeout);
717
718 /* Print some important debugging info. */
719 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
720
721 goto bnx_attach_exit;
722
723 bnx_attach_fail:
724 bnx_release_resources(sc);
725
726 bnx_attach_exit:
727 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
728 }
729
730 /****************************************************************************/
731 /* Device detach function. */
732 /* */
733 /* Stops the controller, resets the controller, and releases resources. */
734 /* */
735 /* Returns: */
736 /* 0 on success, positive value on failure. */
737 /****************************************************************************/
738 #if 0
739 void
740 bnx_detach(void *xsc)
741 {
742 struct bnx_softc *sc;
743 struct ifnet *ifp = &sc->arpcom.ac_if;
744
745 sc = device_get_softc(dev);
746
747 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
748
749 /* Stop and reset the controller. */
750 bnx_stop(sc);
751 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
752
753 ether_ifdetach(ifp);
754
755 /* If we have a child device on the MII bus remove it too. */
756 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
757 ifmedia_removeall(&sc->bnx_ifmedia);
758 } else {
759 bus_generic_detach(dev);
760 device_delete_child(dev, sc->bnx_mii);
761 }
762
763 /* Release all remaining resources. */
764 bnx_release_resources(sc);
765
766 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
767
768 return(0);
769 }
770 #endif
771
772 /****************************************************************************/
773 /* Device shutdown function. */
774 /* */
775 /* Stops and resets the controller. */
776 /* */
777 /* Returns: */
778 /* Nothing */
779 /****************************************************************************/
780 void
781 bnx_shutdown(void *xsc)
782 {
783 struct bnx_softc *sc = (struct bnx_softc *)xsc;
784
785 bnx_stop(sc);
786 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
787 }
788
789 /****************************************************************************/
790 /* Indirect register read. */
791 /* */
792 /* Reads NetXtreme II registers using an index/data register pair in PCI */
793 /* configuration space. Using this mechanism avoids issues with posted */
794 /* reads but is much slower than memory-mapped I/O. */
795 /* */
796 /* Returns: */
797 /* The value of the register. */
798 /****************************************************************************/
799 u_int32_t
800 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
801 {
802 struct pci_attach_args *pa = &(sc->bnx_pa);
803
804 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
805 offset);
806 #ifdef BNX_DEBUG
807 {
808 u_int32_t val;
809 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
810 BNX_PCICFG_REG_WINDOW);
811 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
812 "val = 0x%08X\n", __FUNCTION__, offset, val);
813 return (val);
814 }
815 #else
816 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
817 #endif
818 }
819
820 /****************************************************************************/
821 /* Indirect register write. */
822 /* */
823 /* Writes NetXtreme II registers using an index/data register pair in PCI */
824 /* configuration space. Using this mechanism avoids issues with posted */
825 /* writes but is muchh slower than memory-mapped I/O. */
826 /* */
827 /* Returns: */
828 /* Nothing. */
829 /****************************************************************************/
830 void
831 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
832 {
833 struct pci_attach_args *pa = &(sc->bnx_pa);
834
835 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
836 __FUNCTION__, offset, val);
837
838 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
839 offset);
840 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
841 }
842
843 /****************************************************************************/
844 /* Context memory write. */
845 /* */
846 /* The NetXtreme II controller uses context memory to track connection */
847 /* information for L2 and higher network protocols. */
848 /* */
849 /* Returns: */
850 /* Nothing. */
851 /****************************************************************************/
852 void
853 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
854 u_int32_t val)
855 {
856
857 DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
858 "val = 0x%08X\n", __FUNCTION__, cid_addr, offset, val);
859
860 offset += cid_addr;
861 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
862 REG_WR(sc, BNX_CTX_DATA, val);
863 }
864
865 /****************************************************************************/
866 /* PHY register read. */
867 /* */
868 /* Implements register reads on the MII bus. */
869 /* */
870 /* Returns: */
871 /* The value of the register. */
872 /****************************************************************************/
873 int
874 bnx_miibus_read_reg(struct device *dev, int phy, int reg)
875 {
876 struct bnx_softc *sc = (struct bnx_softc *)dev;
877 u_int32_t val;
878 int i;
879
880 /* Make sure we are accessing the correct PHY address. */
881 if (phy != sc->bnx_phy_addr) {
882 DBPRINT(sc, BNX_VERBOSE,
883 "Invalid PHY address %d for PHY read!\n", phy);
884 return(0);
885 }
886
887 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
888 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
889 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
890
891 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
892 REG_RD(sc, BNX_EMAC_MDIO_MODE);
893
894 DELAY(40);
895 }
896
897 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
898 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
899 BNX_EMAC_MDIO_COMM_START_BUSY;
900 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
901
902 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
903 DELAY(10);
904
905 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
906 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
907 DELAY(5);
908
909 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
910 val &= BNX_EMAC_MDIO_COMM_DATA;
911
912 break;
913 }
914 }
915
916 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
917 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
918 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
919 val = 0x0;
920 } else
921 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
922
923 DBPRINT(sc, BNX_EXCESSIVE,
924 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __FUNCTION__, phy,
925 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
926
927 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
928 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
929 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
930
931 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
932 REG_RD(sc, BNX_EMAC_MDIO_MODE);
933
934 DELAY(40);
935 }
936
937 return (val & 0xffff);
938 }
939
940 /****************************************************************************/
941 /* PHY register write. */
942 /* */
943 /* Implements register writes on the MII bus. */
944 /* */
945 /* Returns: */
946 /* The value of the register. */
947 /****************************************************************************/
948 void
949 bnx_miibus_write_reg(struct device *dev, int phy, int reg, int val)
950 {
951 struct bnx_softc *sc = (struct bnx_softc *)dev;
952 u_int32_t val1;
953 int i;
954
955 /* Make sure we are accessing the correct PHY address. */
956 if (phy != sc->bnx_phy_addr) {
957 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
958 phy);
959 return;
960 }
961
962 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
963 "val = 0x%04X\n", __FUNCTION__,
964 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
965
966 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
967 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
968 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
969
970 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
971 REG_RD(sc, BNX_EMAC_MDIO_MODE);
972
973 DELAY(40);
974 }
975
976 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
977 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
978 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
979 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
980
981 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
982 DELAY(10);
983
984 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
985 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
986 DELAY(5);
987 break;
988 }
989 }
990
991 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
992 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
993 __LINE__);
994 }
995
996 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
997 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
998 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
999
1000 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1001 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1002
1003 DELAY(40);
1004 }
1005 }
1006
1007 /****************************************************************************/
1008 /* MII bus status change. */
1009 /* */
1010 /* Called by the MII bus driver when the PHY establishes link to set the */
1011 /* MAC interface registers. */
1012 /* */
1013 /* Returns: */
1014 /* Nothing. */
1015 /****************************************************************************/
1016 void
1017 bnx_miibus_statchg(struct device *dev)
1018 {
1019 struct bnx_softc *sc = (struct bnx_softc *)dev;
1020 struct mii_data *mii = &sc->bnx_mii;
1021
1022 BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT);
1023
1024 /* Set MII or GMII inerface based on the speed negotiated by the PHY. */
1025 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
1026 DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n");
1027 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII);
1028 } else {
1029 DBPRINT(sc, BNX_INFO, "Setting MII interface.\n");
1030 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII);
1031 }
1032
1033 /* Set half or full duplex based on the duplicity
1034 * negotiated by the PHY.
1035 */
1036 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1037 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1038 BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1039 } else {
1040 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1041 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1042 }
1043 }
1044
1045 /****************************************************************************/
1046 /* Acquire NVRAM lock. */
1047 /* */
1048 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1049 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1050 /* for use by the driver. */
1051 /* */
1052 /* Returns: */
1053 /* 0 on success, positive value on failure. */
1054 /****************************************************************************/
1055 int
1056 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1057 {
1058 u_int32_t val;
1059 int j;
1060
1061 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1062
1063 /* Request access to the flash interface. */
1064 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1065 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1066 val = REG_RD(sc, BNX_NVM_SW_ARB);
1067 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1068 break;
1069
1070 DELAY(5);
1071 }
1072
1073 if (j >= NVRAM_TIMEOUT_COUNT) {
1074 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1075 return (EBUSY);
1076 }
1077
1078 return (0);
1079 }
1080
1081 /****************************************************************************/
1082 /* Release NVRAM lock. */
1083 /* */
1084 /* When the caller is finished accessing NVRAM the lock must be released. */
1085 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1086 /* for use by the driver. */
1087 /* */
1088 /* Returns: */
1089 /* 0 on success, positive value on failure. */
1090 /****************************************************************************/
1091 int
1092 bnx_release_nvram_lock(struct bnx_softc *sc)
1093 {
1094 int j;
1095 u_int32_t val;
1096
1097 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1098
1099 /* Relinquish nvram interface. */
1100 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1101
1102 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1103 val = REG_RD(sc, BNX_NVM_SW_ARB);
1104 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1105 break;
1106
1107 DELAY(5);
1108 }
1109
1110 if (j >= NVRAM_TIMEOUT_COUNT) {
1111 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1112 return (EBUSY);
1113 }
1114
1115 return (0);
1116 }
1117
1118 #ifdef BNX_NVRAM_WRITE_SUPPORT
1119 /****************************************************************************/
1120 /* Enable NVRAM write access. */
1121 /* */
1122 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1123 /* */
1124 /* Returns: */
1125 /* 0 on success, positive value on failure. */
1126 /****************************************************************************/
1127 int
1128 bnx_enable_nvram_write(struct bnx_softc *sc)
1129 {
1130 u_int32_t val;
1131
1132 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1133
1134 val = REG_RD(sc, BNX_MISC_CFG);
1135 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1136
1137 if (!sc->bnx_flash_info->buffered) {
1138 int j;
1139
1140 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1141 REG_WR(sc, BNX_NVM_COMMAND,
1142 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1143
1144 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1145 DELAY(5);
1146
1147 val = REG_RD(sc, BNX_NVM_COMMAND);
1148 if (val & BNX_NVM_COMMAND_DONE)
1149 break;
1150 }
1151
1152 if (j >= NVRAM_TIMEOUT_COUNT) {
1153 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1154 return (EBUSY);
1155 }
1156 }
1157
1158 return (0);
1159 }
1160
1161 /****************************************************************************/
1162 /* Disable NVRAM write access. */
1163 /* */
1164 /* When the caller is finished writing to NVRAM write access must be */
1165 /* disabled. */
1166 /* */
1167 /* Returns: */
1168 /* Nothing. */
1169 /****************************************************************************/
1170 void
1171 bnx_disable_nvram_write(struct bnx_softc *sc)
1172 {
1173 u_int32_t val;
1174
1175 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1176
1177 val = REG_RD(sc, BNX_MISC_CFG);
1178 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1179 }
1180 #endif
1181
1182 /****************************************************************************/
1183 /* Enable NVRAM access. */
1184 /* */
1185 /* Before accessing NVRAM for read or write operations the caller must */
1186 /* enabled NVRAM access. */
1187 /* */
1188 /* Returns: */
1189 /* Nothing. */
1190 /****************************************************************************/
1191 void
1192 bnx_enable_nvram_access(struct bnx_softc *sc)
1193 {
1194 u_int32_t val;
1195
1196 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1197
1198 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1199 /* Enable both bits, even on read. */
1200 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1201 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1202 }
1203
1204 /****************************************************************************/
1205 /* Disable NVRAM access. */
1206 /* */
1207 /* When the caller is finished accessing NVRAM access must be disabled. */
1208 /* */
1209 /* Returns: */
1210 /* Nothing. */
1211 /****************************************************************************/
1212 void
1213 bnx_disable_nvram_access(struct bnx_softc *sc)
1214 {
1215 u_int32_t val;
1216
1217 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1218
1219 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1220
1221 /* Disable both bits, even after read. */
1222 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1223 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1224 }
1225
1226 #ifdef BNX_NVRAM_WRITE_SUPPORT
1227 /****************************************************************************/
1228 /* Erase NVRAM page before writing. */
1229 /* */
1230 /* Non-buffered flash parts require that a page be erased before it is */
1231 /* written. */
1232 /* */
1233 /* Returns: */
1234 /* 0 on success, positive value on failure. */
1235 /****************************************************************************/
1236 int
1237 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1238 {
1239 u_int32_t cmd;
1240 int j;
1241
1242 /* Buffered flash doesn't require an erase. */
1243 if (sc->bnx_flash_info->buffered)
1244 return (0);
1245
1246 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1247
1248 /* Build an erase command. */
1249 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1250 BNX_NVM_COMMAND_DOIT;
1251
1252 /*
1253 * Clear the DONE bit separately, set the NVRAM adress to erase,
1254 * and issue the erase command.
1255 */
1256 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1257 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1258 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1259
1260 /* Wait for completion. */
1261 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1262 u_int32_t val;
1263
1264 DELAY(5);
1265
1266 val = REG_RD(sc, BNX_NVM_COMMAND);
1267 if (val & BNX_NVM_COMMAND_DONE)
1268 break;
1269 }
1270
1271 if (j >= NVRAM_TIMEOUT_COUNT) {
1272 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1273 return (EBUSY);
1274 }
1275
1276 return (0);
1277 }
1278 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1279
1280 /****************************************************************************/
1281 /* Read a dword (32 bits) from NVRAM. */
1282 /* */
1283 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1284 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1285 /* */
1286 /* Returns: */
1287 /* 0 on success and the 32 bit value read, positive value on failure. */
1288 /****************************************************************************/
1289 int
1290 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1291 u_int8_t *ret_val, u_int32_t cmd_flags)
1292 {
1293 u_int32_t cmd;
1294 int i, rc = 0;
1295
1296 /* Build the command word. */
1297 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1298
1299 /* Calculate the offset for buffered flash. */
1300 if (sc->bnx_flash_info->buffered)
1301 offset = ((offset / sc->bnx_flash_info->page_size) <<
1302 sc->bnx_flash_info->page_bits) +
1303 (offset % sc->bnx_flash_info->page_size);
1304
1305 /*
1306 * Clear the DONE bit separately, set the address to read,
1307 * and issue the read.
1308 */
1309 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1310 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1311 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1312
1313 /* Wait for completion. */
1314 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1315 u_int32_t val;
1316
1317 DELAY(5);
1318
1319 val = REG_RD(sc, BNX_NVM_COMMAND);
1320 if (val & BNX_NVM_COMMAND_DONE) {
1321 val = REG_RD(sc, BNX_NVM_READ);
1322
1323 val = bnx_be32toh(val);
1324 memcpy(ret_val, &val, 4);
1325 break;
1326 }
1327 }
1328
1329 /* Check for errors. */
1330 if (i >= NVRAM_TIMEOUT_COUNT) {
1331 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1332 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1333 rc = EBUSY;
1334 }
1335
1336 return(rc);
1337 }
1338
1339 #ifdef BNX_NVRAM_WRITE_SUPPORT
1340 /****************************************************************************/
1341 /* Write a dword (32 bits) to NVRAM. */
1342 /* */
1343 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1344 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1345 /* enabled NVRAM write access. */
1346 /* */
1347 /* Returns: */
1348 /* 0 on success, positive value on failure. */
1349 /****************************************************************************/
1350 int
1351 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1352 u_int32_t cmd_flags)
1353 {
1354 u_int32_t cmd, val32;
1355 int j;
1356
1357 /* Build the command word. */
1358 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1359
1360 /* Calculate the offset for buffered flash. */
1361 if (sc->bnx_flash_info->buffered)
1362 offset = ((offset / sc->bnx_flash_info->page_size) <<
1363 sc->bnx_flash_info->page_bits) +
1364 (offset % sc->bnx_flash_info->page_size);
1365
1366 /*
1367 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1368 * set the NVRAM address to write, and issue the write command
1369 */
1370 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1371 memcpy(&val32, val, 4);
1372 val32 = htobe32(val32);
1373 REG_WR(sc, BNX_NVM_WRITE, val32);
1374 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1375 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1376
1377 /* Wait for completion. */
1378 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1379 DELAY(5);
1380
1381 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1382 break;
1383 }
1384 if (j >= NVRAM_TIMEOUT_COUNT) {
1385 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1386 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1387 return (EBUSY);
1388 }
1389
1390 return (0);
1391 }
1392 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1393
1394 /****************************************************************************/
1395 /* Initialize NVRAM access. */
1396 /* */
1397 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1398 /* access that device. */
1399 /* */
1400 /* Returns: */
1401 /* 0 on success, positive value on failure. */
1402 /****************************************************************************/
1403 int
1404 bnx_init_nvram(struct bnx_softc *sc)
1405 {
1406 u_int32_t val;
1407 int j, entry_count, rc;
1408 struct flash_spec *flash;
1409
1410 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
1411
1412 /* Determine the selected interface. */
1413 val = REG_RD(sc, BNX_NVM_CFG1);
1414
1415 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1416
1417 rc = 0;
1418
1419 /*
1420 * Flash reconfiguration is required to support additional
1421 * NVRAM devices not directly supported in hardware.
1422 * Check if the flash interface was reconfigured
1423 * by the bootcode.
1424 */
1425
1426 if (val & 0x40000000) {
1427 /* Flash interface reconfigured by bootcode. */
1428
1429 DBPRINT(sc,BNX_INFO_LOAD,
1430 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1431
1432 for (j = 0, flash = &flash_table[0]; j < entry_count;
1433 j++, flash++) {
1434 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1435 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1436 sc->bnx_flash_info = flash;
1437 break;
1438 }
1439 }
1440 } else {
1441 /* Flash interface not yet reconfigured. */
1442 u_int32_t mask;
1443
1444 DBPRINT(sc,BNX_INFO_LOAD,
1445 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1446
1447 if (val & (1 << 23))
1448 mask = FLASH_BACKUP_STRAP_MASK;
1449 else
1450 mask = FLASH_STRAP_MASK;
1451
1452 /* Look for the matching NVRAM device configuration data. */
1453 for (j = 0, flash = &flash_table[0]; j < entry_count;
1454 j++, flash++) {
1455 /* Check if the dev matches any of the known devices. */
1456 if ((val & mask) == (flash->strapping & mask)) {
1457 /* Found a device match. */
1458 sc->bnx_flash_info = flash;
1459
1460 /* Request access to the flash interface. */
1461 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1462 return (rc);
1463
1464 /* Reconfigure the flash interface. */
1465 bnx_enable_nvram_access(sc);
1466 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1467 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1468 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1469 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1470 bnx_disable_nvram_access(sc);
1471 bnx_release_nvram_lock(sc);
1472
1473 break;
1474 }
1475 }
1476 }
1477
1478 /* Check if a matching device was found. */
1479 if (j == entry_count) {
1480 sc->bnx_flash_info = NULL;
1481 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1482 __FILE__, __LINE__);
1483 rc = ENODEV;
1484 }
1485
1486 /* Write the flash config data to the shared memory interface. */
1487 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1488 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1489 if (val)
1490 sc->bnx_flash_size = val;
1491 else
1492 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1493
1494 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1495 "0x%08X\n", sc->bnx_flash_info->total_size);
1496
1497 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
1498
1499 return (rc);
1500 }
1501
1502 /****************************************************************************/
1503 /* Read an arbitrary range of data from NVRAM. */
1504 /* */
1505 /* Prepares the NVRAM interface for access and reads the requested data */
1506 /* into the supplied buffer. */
1507 /* */
1508 /* Returns: */
1509 /* 0 on success and the data read, positive value on failure. */
1510 /****************************************************************************/
1511 int
1512 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1513 int buf_size)
1514 {
1515 int rc = 0;
1516 u_int32_t cmd_flags, offset32, len32, extra;
1517
1518 if (buf_size == 0)
1519 return (0);
1520
1521 /* Request access to the flash interface. */
1522 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1523 return (rc);
1524
1525 /* Enable access to flash interface */
1526 bnx_enable_nvram_access(sc);
1527
1528 len32 = buf_size;
1529 offset32 = offset;
1530 extra = 0;
1531
1532 cmd_flags = 0;
1533
1534 if (offset32 & 3) {
1535 u_int8_t buf[4];
1536 u_int32_t pre_len;
1537
1538 offset32 &= ~3;
1539 pre_len = 4 - (offset & 3);
1540
1541 if (pre_len >= len32) {
1542 pre_len = len32;
1543 cmd_flags =
1544 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1545 } else
1546 cmd_flags = BNX_NVM_COMMAND_FIRST;
1547
1548 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1549
1550 if (rc)
1551 return (rc);
1552
1553 memcpy(ret_buf, buf + (offset & 3), pre_len);
1554
1555 offset32 += 4;
1556 ret_buf += pre_len;
1557 len32 -= pre_len;
1558 }
1559
1560 if (len32 & 3) {
1561 extra = 4 - (len32 & 3);
1562 len32 = (len32 + 4) & ~3;
1563 }
1564
1565 if (len32 == 4) {
1566 u_int8_t buf[4];
1567
1568 if (cmd_flags)
1569 cmd_flags = BNX_NVM_COMMAND_LAST;
1570 else
1571 cmd_flags =
1572 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1573
1574 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1575
1576 memcpy(ret_buf, buf, 4 - extra);
1577 } else if (len32 > 0) {
1578 u_int8_t buf[4];
1579
1580 /* Read the first word. */
1581 if (cmd_flags)
1582 cmd_flags = 0;
1583 else
1584 cmd_flags = BNX_NVM_COMMAND_FIRST;
1585
1586 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1587
1588 /* Advance to the next dword. */
1589 offset32 += 4;
1590 ret_buf += 4;
1591 len32 -= 4;
1592
1593 while (len32 > 4 && rc == 0) {
1594 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1595
1596 /* Advance to the next dword. */
1597 offset32 += 4;
1598 ret_buf += 4;
1599 len32 -= 4;
1600 }
1601
1602 if (rc)
1603 return (rc);
1604
1605 cmd_flags = BNX_NVM_COMMAND_LAST;
1606 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1607
1608 memcpy(ret_buf, buf, 4 - extra);
1609 }
1610
1611 /* Disable access to flash interface and release the lock. */
1612 bnx_disable_nvram_access(sc);
1613 bnx_release_nvram_lock(sc);
1614
1615 return (rc);
1616 }
1617
1618 #ifdef BNX_NVRAM_WRITE_SUPPORT
1619 /****************************************************************************/
1620 /* Write an arbitrary range of data from NVRAM. */
1621 /* */
1622 /* Prepares the NVRAM interface for write access and writes the requested */
1623 /* data from the supplied buffer. The caller is responsible for */
1624 /* calculating any appropriate CRCs. */
1625 /* */
1626 /* Returns: */
1627 /* 0 on success, positive value on failure. */
1628 /****************************************************************************/
1629 int
1630 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1631 int buf_size)
1632 {
1633 u_int32_t written, offset32, len32;
1634 u_int8_t *buf, start[4], end[4];
1635 int rc = 0;
1636 int align_start, align_end;
1637
1638 buf = data_buf;
1639 offset32 = offset;
1640 len32 = buf_size;
1641 align_start = align_end = 0;
1642
1643 if ((align_start = (offset32 & 3))) {
1644 offset32 &= ~3;
1645 len32 += align_start;
1646 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1647 return (rc);
1648 }
1649
1650 if (len32 & 3) {
1651 if ((len32 > 4) || !align_start) {
1652 align_end = 4 - (len32 & 3);
1653 len32 += align_end;
1654 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1655 end, 4))) {
1656 return (rc);
1657 }
1658 }
1659 }
1660
1661 if (align_start || align_end) {
1662 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1663 if (buf == 0)
1664 return (ENOMEM);
1665
1666 if (align_start)
1667 memcpy(buf, start, 4);
1668
1669 if (align_end)
1670 memcpy(buf + len32 - 4, end, 4);
1671
1672 memcpy(buf + align_start, data_buf, buf_size);
1673 }
1674
1675 written = 0;
1676 while ((written < len32) && (rc == 0)) {
1677 u_int32_t page_start, page_end, data_start, data_end;
1678 u_int32_t addr, cmd_flags;
1679 int i;
1680 u_int8_t flash_buffer[264];
1681
1682 /* Find the page_start addr */
1683 page_start = offset32 + written;
1684 page_start -= (page_start % sc->bnx_flash_info->page_size);
1685 /* Find the page_end addr */
1686 page_end = page_start + sc->bnx_flash_info->page_size;
1687 /* Find the data_start addr */
1688 data_start = (written == 0) ? offset32 : page_start;
1689 /* Find the data_end addr */
1690 data_end = (page_end > offset32 + len32) ?
1691 (offset32 + len32) : page_end;
1692
1693 /* Request access to the flash interface. */
1694 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1695 goto nvram_write_end;
1696
1697 /* Enable access to flash interface */
1698 bnx_enable_nvram_access(sc);
1699
1700 cmd_flags = BNX_NVM_COMMAND_FIRST;
1701 if (sc->bnx_flash_info->buffered == 0) {
1702 int j;
1703
1704 /* Read the whole page into the buffer
1705 * (non-buffer flash only) */
1706 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1707 if (j == (sc->bnx_flash_info->page_size - 4))
1708 cmd_flags |= BNX_NVM_COMMAND_LAST;
1709
1710 rc = bnx_nvram_read_dword(sc,
1711 page_start + j,
1712 &flash_buffer[j],
1713 cmd_flags);
1714
1715 if (rc)
1716 goto nvram_write_end;
1717
1718 cmd_flags = 0;
1719 }
1720 }
1721
1722 /* Enable writes to flash interface (unlock write-protect) */
1723 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1724 goto nvram_write_end;
1725
1726 /* Erase the page */
1727 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1728 goto nvram_write_end;
1729
1730 /* Re-enable the write again for the actual write */
1731 bnx_enable_nvram_write(sc);
1732
1733 /* Loop to write back the buffer data from page_start to
1734 * data_start */
1735 i = 0;
1736 if (sc->bnx_flash_info->buffered == 0) {
1737 for (addr = page_start; addr < data_start;
1738 addr += 4, i += 4) {
1739
1740 rc = bnx_nvram_write_dword(sc, addr,
1741 &flash_buffer[i], cmd_flags);
1742
1743 if (rc != 0)
1744 goto nvram_write_end;
1745
1746 cmd_flags = 0;
1747 }
1748 }
1749
1750 /* Loop to write the new data from data_start to data_end */
1751 for (addr = data_start; addr < data_end; addr += 4, i++) {
1752 if ((addr == page_end - 4) ||
1753 ((sc->bnx_flash_info->buffered) &&
1754 (addr == data_end - 4))) {
1755
1756 cmd_flags |= BNX_NVM_COMMAND_LAST;
1757 }
1758
1759 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1760
1761 if (rc != 0)
1762 goto nvram_write_end;
1763
1764 cmd_flags = 0;
1765 buf += 4;
1766 }
1767
1768 /* Loop to write back the buffer data from data_end
1769 * to page_end */
1770 if (sc->bnx_flash_info->buffered == 0) {
1771 for (addr = data_end; addr < page_end;
1772 addr += 4, i += 4) {
1773
1774 if (addr == page_end-4)
1775 cmd_flags = BNX_NVM_COMMAND_LAST;
1776
1777 rc = bnx_nvram_write_dword(sc, addr,
1778 &flash_buffer[i], cmd_flags);
1779
1780 if (rc != 0)
1781 goto nvram_write_end;
1782
1783 cmd_flags = 0;
1784 }
1785 }
1786
1787 /* Disable writes to flash interface (lock write-protect) */
1788 bnx_disable_nvram_write(sc);
1789
1790 /* Disable access to flash interface */
1791 bnx_disable_nvram_access(sc);
1792 bnx_release_nvram_lock(sc);
1793
1794 /* Increment written */
1795 written += data_end - data_start;
1796 }
1797
1798 nvram_write_end:
1799 if (align_start || align_end)
1800 free(buf, M_DEVBUF);
1801
1802 return (rc);
1803 }
1804 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1805
1806 /****************************************************************************/
1807 /* Verifies that NVRAM is accessible and contains valid data. */
1808 /* */
1809 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1810 /* correct. */
1811 /* */
1812 /* Returns: */
1813 /* 0 on success, positive value on failure. */
1814 /****************************************************************************/
1815 int
1816 bnx_nvram_test(struct bnx_softc *sc)
1817 {
1818 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1819 u_int8_t *data = (u_int8_t *) buf;
1820 int rc = 0;
1821 u_int32_t magic, csum;
1822
1823 /*
1824 * Check that the device NVRAM is valid by reading
1825 * the magic value at offset 0.
1826 */
1827 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1828 goto bnx_nvram_test_done;
1829
1830 magic = bnx_be32toh(buf[0]);
1831 if (magic != BNX_NVRAM_MAGIC) {
1832 rc = ENODEV;
1833 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1834 "Expected: 0x%08X, Found: 0x%08X\n",
1835 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1836 goto bnx_nvram_test_done;
1837 }
1838
1839 /*
1840 * Verify that the device NVRAM includes valid
1841 * configuration data.
1842 */
1843 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1844 goto bnx_nvram_test_done;
1845
1846 csum = ether_crc32_le(data, 0x100);
1847 if (csum != BNX_CRC32_RESIDUAL) {
1848 rc = ENODEV;
1849 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1850 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1851 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1852 goto bnx_nvram_test_done;
1853 }
1854
1855 csum = ether_crc32_le(data + 0x100, 0x100);
1856 if (csum != BNX_CRC32_RESIDUAL) {
1857 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1858 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1859 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1860 rc = ENODEV;
1861 }
1862
1863 bnx_nvram_test_done:
1864 return (rc);
1865 }
1866
1867 /****************************************************************************/
1868 /* Free any DMA memory owned by the driver. */
1869 /* */
1870 /* Scans through each data structre that requires DMA memory and frees */
1871 /* the memory if allocated. */
1872 /* */
1873 /* Returns: */
1874 /* Nothing. */
1875 /****************************************************************************/
1876 void
1877 bnx_dma_free(struct bnx_softc *sc)
1878 {
1879 int i;
1880
1881 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
1882
1883 /* Destroy the status block. */
1884 if (sc->status_block != NULL && sc->status_map != NULL) {
1885 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
1886 bus_dmamem_unmap(sc->bnx_dmatag, (caddr_t)sc->status_block,
1887 BNX_STATUS_BLK_SZ);
1888 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
1889 sc->status_rseg);
1890 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
1891 sc->status_block = NULL;
1892 sc->status_map = NULL;
1893 }
1894
1895 /* Destroy the statistics block. */
1896 if (sc->stats_block != NULL && sc->stats_map != NULL) {
1897 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
1898 bus_dmamem_unmap(sc->bnx_dmatag, (caddr_t)sc->stats_block,
1899 BNX_STATS_BLK_SZ);
1900 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
1901 sc->stats_rseg);
1902 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
1903 sc->stats_block = NULL;
1904 sc->stats_map = NULL;
1905 }
1906
1907 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
1908 for (i = 0; i < TX_PAGES; i++ ) {
1909 if (sc->tx_bd_chain[i] != NULL &&
1910 sc->tx_bd_chain_map[i] != NULL) {
1911 bus_dmamap_unload(sc->bnx_dmatag,
1912 sc->tx_bd_chain_map[i]);
1913 bus_dmamem_unmap(sc->bnx_dmatag,
1914 (caddr_t)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
1915 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
1916 sc->tx_bd_chain_rseg[i]);
1917 bus_dmamap_destroy(sc->bnx_dmatag,
1918 sc->tx_bd_chain_map[i]);
1919 sc->tx_bd_chain[i] = NULL;
1920 sc->tx_bd_chain_map[i] = NULL;
1921 }
1922 }
1923
1924 /* Unload and destroy the TX mbuf maps. */
1925 for (i = 0; i < TOTAL_TX_BD; i++) {
1926 if (sc->tx_mbuf_map[i] != NULL) {
1927 bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1928 bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1929 }
1930 }
1931
1932 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
1933 for (i = 0; i < RX_PAGES; i++ ) {
1934 if (sc->rx_bd_chain[i] != NULL &&
1935 sc->rx_bd_chain_map[i] != NULL) {
1936 bus_dmamap_unload(sc->bnx_dmatag,
1937 sc->rx_bd_chain_map[i]);
1938 bus_dmamem_unmap(sc->bnx_dmatag,
1939 (caddr_t)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
1940 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
1941 sc->rx_bd_chain_rseg[i]);
1942
1943 bus_dmamap_destroy(sc->bnx_dmatag,
1944 sc->rx_bd_chain_map[i]);
1945 sc->rx_bd_chain[i] = NULL;
1946 sc->rx_bd_chain_map[i] = NULL;
1947 }
1948 }
1949
1950 /* Unload and destroy the RX mbuf maps. */
1951 for (i = 0; i < TOTAL_RX_BD; i++) {
1952 if (sc->rx_mbuf_map[i] != NULL) {
1953 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1954 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1955 }
1956 }
1957
1958 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
1959 }
1960
1961 /****************************************************************************/
1962 /* Map TX buffers into TX buffer descriptors. */
1963 /* */
1964 /* Given a series of DMA memory containting an outgoing frame, map the */
1965 /* segments into the tx_bd structure used by the hardware. */
1966 /* */
1967 /* Returns: */
1968 /* Nothing. */
1969 /****************************************************************************/
1970 void
1971 bnx_dma_map_tx_desc(void *arg, bus_dmamap_t map)
1972 {
1973 struct bnx_dmamap_arg *map_arg;
1974 struct bnx_softc *sc;
1975 struct tx_bd *txbd = NULL;
1976 int i = 0, nseg;
1977 u_int16_t prod, chain_prod;
1978 u_int32_t prod_bseq, addr;
1979 #ifdef BNX_DEBUG
1980 u_int16_t debug_prod;
1981 #endif
1982
1983 map_arg = arg;
1984 sc = map_arg->sc;
1985 nseg = map->dm_nsegs;
1986
1987 /* Signal error to caller if there's too many segments */
1988 if (nseg > map_arg->maxsegs) {
1989 DBPRINT(sc, BNX_WARN, "%s(): Mapped TX descriptors: max segs "
1990 "= %d, " "actual segs = %d\n",
1991 __FUNCTION__, map_arg->maxsegs, nseg);
1992
1993 map_arg->maxsegs = 0;
1994 return;
1995 }
1996
1997 /* prod points to an empty tx_bd at this point. */
1998 prod = map_arg->prod;
1999 chain_prod = map_arg->chain_prod;
2000 prod_bseq = map_arg->prod_bseq;
2001
2002 #ifdef BNX_DEBUG
2003 debug_prod = chain_prod;
2004 #endif
2005
2006 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: prod = 0x%04X, chain_prod "
2007 "= %04X, " "prod_bseq = 0x%08X\n",
2008 __FUNCTION__, prod, chain_prod, prod_bseq);
2009
2010 /*
2011 * Cycle through each mbuf segment that makes up
2012 * the outgoing frame, gathering the mapping info
2013 * for that segment and creating a tx_bd for the
2014 * mbuf.
2015 */
2016
2017 txbd = &map_arg->tx_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
2018
2019 /* Setup the first tx_bd for the first segment. */
2020 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
2021 txbd->tx_bd_haddr_lo = htole32(addr);
2022 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
2023 txbd->tx_bd_haddr_hi = htole32(addr);
2024 txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
2025 txbd->tx_bd_vlan_tag_flags = htole16(map_arg->tx_flags |
2026 TX_BD_FLAGS_START);
2027 prod_bseq += map->dm_segs[i].ds_len;
2028
2029 bus_dmamap_sync(sc->bnx_dmatag,
2030 sc->tx_bd_chain_map[TX_PAGE(chain_prod)],
2031 sizeof(struct tx_bd) * TX_IDX(chain_prod),
2032 sizeof(struct tx_bd), BUS_DMASYNC_PREWRITE);
2033
2034 /* Setup any remaing segments. */
2035 for (i = 1; i < nseg; i++) {
2036 prod = NEXT_TX_BD(prod);
2037 chain_prod = TX_CHAIN_IDX(prod);
2038
2039 txbd =
2040 &map_arg->tx_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
2041
2042 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
2043 txbd->tx_bd_haddr_lo = htole32(addr);
2044 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
2045 txbd->tx_bd_haddr_hi = htole32(addr);
2046 txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
2047 txbd->tx_bd_vlan_tag_flags = htole16(map_arg->tx_flags);
2048
2049 prod_bseq += map->dm_segs[i].ds_len;
2050 bus_dmamap_sync(sc->bnx_dmatag,
2051 sc->tx_bd_chain_map[TX_PAGE(chain_prod)],
2052 sizeof(struct tx_bd) * TX_IDX(chain_prod),
2053 sizeof(struct tx_bd), BUS_DMASYNC_PREWRITE);
2054 }
2055
2056 /* Set the END flag on the last TX buffer descriptor. */
2057 txbd->tx_bd_vlan_tag_flags |= htole16(TX_BD_FLAGS_END);
2058 bus_dmamap_sync(sc->bnx_dmatag,
2059 sc->tx_bd_chain_map[TX_PAGE(chain_prod)],
2060 sizeof(struct tx_bd) * TX_IDX(chain_prod),
2061 sizeof(struct tx_bd), BUS_DMASYNC_PREWRITE);
2062
2063 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
2064
2065 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: prod = 0x%04X, chain_prod "
2066 "= %04X, " "prod_bseq = 0x%08X\n",
2067 __FUNCTION__, prod, chain_prod, prod_bseq);
2068
2069 /* prod points to the last tx_bd at this point. */
2070 map_arg->maxsegs = nseg;
2071 map_arg->prod = prod;
2072 map_arg->chain_prod = chain_prod;
2073 map_arg->prod_bseq = prod_bseq;
2074 }
2075
2076 /****************************************************************************/
2077 /* Allocate any DMA memory needed by the driver. */
2078 /* */
2079 /* Allocates DMA memory needed for the various global structures needed by */
2080 /* hardware. */
2081 /* */
2082 /* Returns: */
2083 /* 0 for success, positive value for failure. */
2084 /****************************************************************************/
2085 int
2086 bnx_dma_alloc(struct bnx_softc *sc)
2087 {
2088 int i, rc = 0;
2089
2090 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2091
2092 /*
2093 * Allocate DMA memory for the status block, map the memory into DMA
2094 * space, and fetch the physical address of the block.
2095 */
2096 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2097 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2098 aprint_error("%s: Could not create status block DMA map!\n",
2099 sc->bnx_dev.dv_xname);
2100 rc = ENOMEM;
2101 goto bnx_dma_alloc_exit;
2102 }
2103
2104 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2105 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2106 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2107 aprint_error(
2108 "%s: Could not allocate status block DMA memory!\n",
2109 sc->bnx_dev.dv_xname);
2110 rc = ENOMEM;
2111 goto bnx_dma_alloc_exit;
2112 }
2113
2114 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2115 BNX_STATUS_BLK_SZ, (caddr_t *)&sc->status_block, BUS_DMA_NOWAIT)) {
2116 aprint_error("%s: Could not map status block DMA memory!\n",
2117 sc->bnx_dev.dv_xname);
2118 rc = ENOMEM;
2119 goto bnx_dma_alloc_exit;
2120 }
2121
2122 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2123 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2124 aprint_error("%s: Could not load status block DMA memory!\n",
2125 sc->bnx_dev.dv_xname);
2126 rc = ENOMEM;
2127 goto bnx_dma_alloc_exit;
2128 }
2129
2130 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2131 bzero(sc->status_block, BNX_STATUS_BLK_SZ);
2132
2133 /* DRC - Fix for 64 bit addresses. */
2134 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2135 (u_int32_t) sc->status_block_paddr);
2136
2137 /*
2138 * Allocate DMA memory for the statistics block, map the memory into
2139 * DMA space, and fetch the physical address of the block.
2140 */
2141 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2142 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2143 aprint_error("%s: Could not create stats block DMA map!\n",
2144 sc->bnx_dev.dv_xname);
2145 rc = ENOMEM;
2146 goto bnx_dma_alloc_exit;
2147 }
2148
2149 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2150 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2151 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2152 aprint_error("%s: Could not allocate stats block DMA memory!\n",
2153 sc->bnx_dev.dv_xname);
2154 rc = ENOMEM;
2155 goto bnx_dma_alloc_exit;
2156 }
2157
2158 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2159 BNX_STATS_BLK_SZ, (caddr_t *)&sc->stats_block, BUS_DMA_NOWAIT)) {
2160 aprint_error("%s: Could not map stats block DMA memory!\n",
2161 sc->bnx_dev.dv_xname);
2162 rc = ENOMEM;
2163 goto bnx_dma_alloc_exit;
2164 }
2165
2166 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2167 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2168 aprint_error("%s: Could not load status block DMA memory!\n",
2169 sc->bnx_dev.dv_xname);
2170 rc = ENOMEM;
2171 goto bnx_dma_alloc_exit;
2172 }
2173
2174 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2175 bzero(sc->stats_block, BNX_STATS_BLK_SZ);
2176
2177 /* DRC - Fix for 64 bit address. */
2178 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2179 (u_int32_t) sc->stats_block_paddr);
2180
2181 /*
2182 * Allocate DMA memory for the TX buffer descriptor chain,
2183 * and fetch the physical address of the block.
2184 */
2185 for (i = 0; i < TX_PAGES; i++) {
2186 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2187 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2188 &sc->tx_bd_chain_map[i])) {
2189 aprint_error(
2190 "%s: Could not create Tx desc %d DMA map!\n",
2191 sc->bnx_dev.dv_xname, i);
2192 rc = ENOMEM;
2193 goto bnx_dma_alloc_exit;
2194 }
2195
2196 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2197 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2198 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2199 aprint_error(
2200 "%s: Could not allocate TX desc %d DMA memory!\n",
2201 sc->bnx_dev.dv_xname, i);
2202 rc = ENOMEM;
2203 goto bnx_dma_alloc_exit;
2204 }
2205
2206 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2207 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2208 (caddr_t *)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2209 aprint_error(
2210 "%s: Could not map TX desc %d DMA memory!\n",
2211 sc->bnx_dev.dv_xname, i);
2212 rc = ENOMEM;
2213 goto bnx_dma_alloc_exit;
2214 }
2215
2216 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2217 (caddr_t)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2218 BUS_DMA_NOWAIT)) {
2219 aprint_error(
2220 "%s: Could not load TX desc %d DMA memory!\n",
2221 sc->bnx_dev.dv_xname, i);
2222 rc = ENOMEM;
2223 goto bnx_dma_alloc_exit;
2224 }
2225
2226 sc->tx_bd_chain_paddr[i] =
2227 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2228
2229 /* DRC - Fix for 64 bit systems. */
2230 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2231 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2232 }
2233
2234 /*
2235 * Create DMA maps for the TX buffer mbufs.
2236 */
2237 for (i = 0; i < TOTAL_TX_BD; i++) {
2238 if (bus_dmamap_create(sc->bnx_dmatag,
2239 MCLBYTES * BNX_MAX_SEGMENTS,
2240 USABLE_TX_BD - BNX_TX_SLACK_SPACE,
2241 MCLBYTES, 0, BUS_DMA_NOWAIT,
2242 &sc->tx_mbuf_map[i])) {
2243 aprint_error(
2244 "%s: Could not create Tx mbuf %d DMA map!\n",
2245 sc->bnx_dev.dv_xname, i);
2246 rc = ENOMEM;
2247 goto bnx_dma_alloc_exit;
2248 }
2249 }
2250
2251 /*
2252 * Allocate DMA memory for the Rx buffer descriptor chain,
2253 * and fetch the physical address of the block.
2254 */
2255 for (i = 0; i < RX_PAGES; i++) {
2256 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2257 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2258 &sc->rx_bd_chain_map[i])) {
2259 aprint_error(
2260 "%s: Could not create Rx desc %d DMA map!\n",
2261 sc->bnx_dev.dv_xname, i);
2262 rc = ENOMEM;
2263 goto bnx_dma_alloc_exit;
2264 }
2265
2266 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2267 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2268 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2269 aprint_error(
2270 "%s: Could not allocate Rx desc %d DMA memory!\n",
2271 sc->bnx_dev.dv_xname, i);
2272 rc = ENOMEM;
2273 goto bnx_dma_alloc_exit;
2274 }
2275
2276 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2277 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2278 (caddr_t *)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2279 aprint_error(
2280 "%s: Could not map Rx desc %d DMA memory!\n",
2281 sc->bnx_dev.dv_xname, i);
2282 rc = ENOMEM;
2283 goto bnx_dma_alloc_exit;
2284 }
2285
2286 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2287 (caddr_t)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2288 BUS_DMA_NOWAIT)) {
2289 aprint_error(
2290 "%s: Could not load Rx desc %d DMA memory!\n",
2291 sc->bnx_dev.dv_xname, i);
2292 rc = ENOMEM;
2293 goto bnx_dma_alloc_exit;
2294 }
2295
2296 bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2297 sc->rx_bd_chain_paddr[i] =
2298 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2299
2300 /* DRC - Fix for 64 bit systems. */
2301 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2302 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2303 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2304 0, BNX_RX_CHAIN_PAGE_SZ,
2305 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2306 }
2307
2308 /*
2309 * Create DMA maps for the Rx buffer mbufs.
2310 */
2311 for (i = 0; i < TOTAL_RX_BD; i++) {
2312 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
2313 BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
2314 &sc->rx_mbuf_map[i])) {
2315 aprint_error(
2316 "%s: Could not create Rx mbuf %d DMA map!\n",
2317 sc->bnx_dev.dv_xname, i);
2318 rc = ENOMEM;
2319 goto bnx_dma_alloc_exit;
2320 }
2321 }
2322
2323 bnx_dma_alloc_exit:
2324 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2325
2326 return(rc);
2327 }
2328
2329 /****************************************************************************/
2330 /* Release all resources used by the driver. */
2331 /* */
2332 /* Releases all resources acquired by the driver including interrupts, */
2333 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2334 /* */
2335 /* Returns: */
2336 /* Nothing. */
2337 /****************************************************************************/
2338 void
2339 bnx_release_resources(struct bnx_softc *sc)
2340 {
2341 struct pci_attach_args *pa = &(sc->bnx_pa);
2342
2343 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2344
2345 bnx_dma_free(sc);
2346
2347 if (sc->bnx_intrhand != NULL)
2348 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2349
2350 if (sc->bnx_size)
2351 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2352
2353 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2354 }
2355
2356 /****************************************************************************/
2357 /* Firmware synchronization. */
2358 /* */
2359 /* Before performing certain events such as a chip reset, synchronize with */
2360 /* the firmware first. */
2361 /* */
2362 /* Returns: */
2363 /* 0 for success, positive value for failure. */
2364 /****************************************************************************/
2365 int
2366 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2367 {
2368 int i, rc = 0;
2369 u_int32_t val;
2370
2371 /* Don't waste any time if we've timed out before. */
2372 if (sc->bnx_fw_timed_out) {
2373 rc = EBUSY;
2374 goto bnx_fw_sync_exit;
2375 }
2376
2377 /* Increment the message sequence number. */
2378 sc->bnx_fw_wr_seq++;
2379 msg_data |= sc->bnx_fw_wr_seq;
2380
2381 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2382 msg_data);
2383
2384 /* Send the message to the bootcode driver mailbox. */
2385 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2386
2387 /* Wait for the bootcode to acknowledge the message. */
2388 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2389 /* Check for a response in the bootcode firmware mailbox. */
2390 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2391 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2392 break;
2393 DELAY(1000);
2394 }
2395
2396 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2397 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2398 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2399 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2400 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2401
2402 msg_data &= ~BNX_DRV_MSG_CODE;
2403 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2404
2405 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2406
2407 sc->bnx_fw_timed_out = 1;
2408 rc = EBUSY;
2409 }
2410
2411 bnx_fw_sync_exit:
2412 return (rc);
2413 }
2414
2415 /****************************************************************************/
2416 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2417 /* */
2418 /* Returns: */
2419 /* Nothing. */
2420 /****************************************************************************/
2421 void
2422 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2423 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2424 {
2425 int i;
2426 u_int32_t val;
2427
2428 for (i = 0; i < rv2p_code_len; i += 8) {
2429 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2430 rv2p_code++;
2431 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2432 rv2p_code++;
2433
2434 if (rv2p_proc == RV2P_PROC1) {
2435 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2436 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2437 }
2438 else {
2439 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2440 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2441 }
2442 }
2443
2444 /* Reset the processor, un-stall is done later. */
2445 if (rv2p_proc == RV2P_PROC1)
2446 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2447 else
2448 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2449 }
2450
2451 /****************************************************************************/
2452 /* Load RISC processor firmware. */
2453 /* */
2454 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2455 /* associated with a particular processor. */
2456 /* */
2457 /* Returns: */
2458 /* Nothing. */
2459 /****************************************************************************/
2460 void
2461 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2462 struct fw_info *fw)
2463 {
2464 u_int32_t offset;
2465 u_int32_t val;
2466
2467 /* Halt the CPU. */
2468 val = REG_RD_IND(sc, cpu_reg->mode);
2469 val |= cpu_reg->mode_value_halt;
2470 REG_WR_IND(sc, cpu_reg->mode, val);
2471 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2472
2473 /* Load the Text area. */
2474 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2475 if (fw->text) {
2476 int j;
2477
2478 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2479 REG_WR_IND(sc, offset, fw->text[j]);
2480 }
2481
2482 /* Load the Data area. */
2483 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2484 if (fw->data) {
2485 int j;
2486
2487 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2488 REG_WR_IND(sc, offset, fw->data[j]);
2489 }
2490
2491 /* Load the SBSS area. */
2492 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2493 if (fw->sbss) {
2494 int j;
2495
2496 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2497 REG_WR_IND(sc, offset, fw->sbss[j]);
2498 }
2499
2500 /* Load the BSS area. */
2501 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2502 if (fw->bss) {
2503 int j;
2504
2505 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2506 REG_WR_IND(sc, offset, fw->bss[j]);
2507 }
2508
2509 /* Load the Read-Only area. */
2510 offset = cpu_reg->spad_base +
2511 (fw->rodata_addr - cpu_reg->mips_view_base);
2512 if (fw->rodata) {
2513 int j;
2514
2515 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2516 REG_WR_IND(sc, offset, fw->rodata[j]);
2517 }
2518
2519 /* Clear the pre-fetch instruction. */
2520 REG_WR_IND(sc, cpu_reg->inst, 0);
2521 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2522
2523 /* Start the CPU. */
2524 val = REG_RD_IND(sc, cpu_reg->mode);
2525 val &= ~cpu_reg->mode_value_halt;
2526 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2527 REG_WR_IND(sc, cpu_reg->mode, val);
2528 }
2529
2530 /****************************************************************************/
2531 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2532 /* */
2533 /* Loads the firmware for each CPU and starts the CPU. */
2534 /* */
2535 /* Returns: */
2536 /* Nothing. */
2537 /****************************************************************************/
2538 void
2539 bnx_init_cpus(struct bnx_softc *sc)
2540 {
2541 struct cpu_reg cpu_reg;
2542 struct fw_info fw;
2543
2544 /* Initialize the RV2P processor. */
2545 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2546 RV2P_PROC1);
2547 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2548 RV2P_PROC2);
2549
2550 /* Initialize the RX Processor. */
2551 cpu_reg.mode = BNX_RXP_CPU_MODE;
2552 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2553 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2554 cpu_reg.state = BNX_RXP_CPU_STATE;
2555 cpu_reg.state_value_clear = 0xffffff;
2556 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2557 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2558 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2559 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2560 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2561 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2562 cpu_reg.mips_view_base = 0x8000000;
2563
2564 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2565 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2566 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2567 fw.start_addr = bnx_RXP_b06FwStartAddr;
2568
2569 fw.text_addr = bnx_RXP_b06FwTextAddr;
2570 fw.text_len = bnx_RXP_b06FwTextLen;
2571 fw.text_index = 0;
2572 fw.text = bnx_RXP_b06FwText;
2573
2574 fw.data_addr = bnx_RXP_b06FwDataAddr;
2575 fw.data_len = bnx_RXP_b06FwDataLen;
2576 fw.data_index = 0;
2577 fw.data = bnx_RXP_b06FwData;
2578
2579 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2580 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2581 fw.sbss_index = 0;
2582 fw.sbss = bnx_RXP_b06FwSbss;
2583
2584 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2585 fw.bss_len = bnx_RXP_b06FwBssLen;
2586 fw.bss_index = 0;
2587 fw.bss = bnx_RXP_b06FwBss;
2588
2589 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2590 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2591 fw.rodata_index = 0;
2592 fw.rodata = bnx_RXP_b06FwRodata;
2593
2594 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2595 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2596
2597 /* Initialize the TX Processor. */
2598 cpu_reg.mode = BNX_TXP_CPU_MODE;
2599 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2600 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2601 cpu_reg.state = BNX_TXP_CPU_STATE;
2602 cpu_reg.state_value_clear = 0xffffff;
2603 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2604 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2605 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2606 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2607 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2608 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2609 cpu_reg.mips_view_base = 0x8000000;
2610
2611 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2612 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2613 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2614 fw.start_addr = bnx_TXP_b06FwStartAddr;
2615
2616 fw.text_addr = bnx_TXP_b06FwTextAddr;
2617 fw.text_len = bnx_TXP_b06FwTextLen;
2618 fw.text_index = 0;
2619 fw.text = bnx_TXP_b06FwText;
2620
2621 fw.data_addr = bnx_TXP_b06FwDataAddr;
2622 fw.data_len = bnx_TXP_b06FwDataLen;
2623 fw.data_index = 0;
2624 fw.data = bnx_TXP_b06FwData;
2625
2626 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2627 fw.sbss_len = bnx_TXP_b06FwSbssLen;
2628 fw.sbss_index = 0;
2629 fw.sbss = bnx_TXP_b06FwSbss;
2630
2631 fw.bss_addr = bnx_TXP_b06FwBssAddr;
2632 fw.bss_len = bnx_TXP_b06FwBssLen;
2633 fw.bss_index = 0;
2634 fw.bss = bnx_TXP_b06FwBss;
2635
2636 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2637 fw.rodata_len = bnx_TXP_b06FwRodataLen;
2638 fw.rodata_index = 0;
2639 fw.rodata = bnx_TXP_b06FwRodata;
2640
2641 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2642 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2643
2644 /* Initialize the TX Patch-up Processor. */
2645 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2646 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2647 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2648 cpu_reg.state = BNX_TPAT_CPU_STATE;
2649 cpu_reg.state_value_clear = 0xffffff;
2650 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2651 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2652 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2653 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2654 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2655 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2656 cpu_reg.mips_view_base = 0x8000000;
2657
2658 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2659 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2660 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2661 fw.start_addr = bnx_TPAT_b06FwStartAddr;
2662
2663 fw.text_addr = bnx_TPAT_b06FwTextAddr;
2664 fw.text_len = bnx_TPAT_b06FwTextLen;
2665 fw.text_index = 0;
2666 fw.text = bnx_TPAT_b06FwText;
2667
2668 fw.data_addr = bnx_TPAT_b06FwDataAddr;
2669 fw.data_len = bnx_TPAT_b06FwDataLen;
2670 fw.data_index = 0;
2671 fw.data = bnx_TPAT_b06FwData;
2672
2673 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2674 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2675 fw.sbss_index = 0;
2676 fw.sbss = bnx_TPAT_b06FwSbss;
2677
2678 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2679 fw.bss_len = bnx_TPAT_b06FwBssLen;
2680 fw.bss_index = 0;
2681 fw.bss = bnx_TPAT_b06FwBss;
2682
2683 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2684 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2685 fw.rodata_index = 0;
2686 fw.rodata = bnx_TPAT_b06FwRodata;
2687
2688 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2689 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2690
2691 /* Initialize the Completion Processor. */
2692 cpu_reg.mode = BNX_COM_CPU_MODE;
2693 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2694 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2695 cpu_reg.state = BNX_COM_CPU_STATE;
2696 cpu_reg.state_value_clear = 0xffffff;
2697 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2698 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2699 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2700 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2701 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2702 cpu_reg.spad_base = BNX_COM_SCRATCH;
2703 cpu_reg.mips_view_base = 0x8000000;
2704
2705 fw.ver_major = bnx_COM_b06FwReleaseMajor;
2706 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
2707 fw.ver_fix = bnx_COM_b06FwReleaseFix;
2708 fw.start_addr = bnx_COM_b06FwStartAddr;
2709
2710 fw.text_addr = bnx_COM_b06FwTextAddr;
2711 fw.text_len = bnx_COM_b06FwTextLen;
2712 fw.text_index = 0;
2713 fw.text = bnx_COM_b06FwText;
2714
2715 fw.data_addr = bnx_COM_b06FwDataAddr;
2716 fw.data_len = bnx_COM_b06FwDataLen;
2717 fw.data_index = 0;
2718 fw.data = bnx_COM_b06FwData;
2719
2720 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
2721 fw.sbss_len = bnx_COM_b06FwSbssLen;
2722 fw.sbss_index = 0;
2723 fw.sbss = bnx_COM_b06FwSbss;
2724
2725 fw.bss_addr = bnx_COM_b06FwBssAddr;
2726 fw.bss_len = bnx_COM_b06FwBssLen;
2727 fw.bss_index = 0;
2728 fw.bss = bnx_COM_b06FwBss;
2729
2730 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
2731 fw.rodata_len = bnx_COM_b06FwRodataLen;
2732 fw.rodata_index = 0;
2733 fw.rodata = bnx_COM_b06FwRodata;
2734
2735 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2736 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2737 }
2738
2739 /****************************************************************************/
2740 /* Initialize context memory. */
2741 /* */
2742 /* Clears the memory associated with each Context ID (CID). */
2743 /* */
2744 /* Returns: */
2745 /* Nothing. */
2746 /****************************************************************************/
2747 void
2748 bnx_init_context(struct bnx_softc *sc)
2749 {
2750 u_int32_t vcid;
2751
2752 vcid = 96;
2753 while (vcid) {
2754 u_int32_t vcid_addr, pcid_addr, offset;
2755
2756 vcid--;
2757
2758 vcid_addr = GET_CID_ADDR(vcid);
2759 pcid_addr = vcid_addr;
2760
2761 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
2762 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2763
2764 /* Zero out the context. */
2765 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2766 CTX_WR(sc, 0x00, offset, 0);
2767
2768 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
2769 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2770 }
2771 }
2772
2773 /****************************************************************************/
2774 /* Fetch the permanent MAC address of the controller. */
2775 /* */
2776 /* Returns: */
2777 /* Nothing. */
2778 /****************************************************************************/
2779 void
2780 bnx_get_mac_addr(struct bnx_softc *sc)
2781 {
2782 u_int32_t mac_lo = 0, mac_hi = 0;
2783
2784 /*
2785 * The NetXtreme II bootcode populates various NIC
2786 * power-on and runtime configuration items in a
2787 * shared memory area. The factory configured MAC
2788 * address is available from both NVRAM and the
2789 * shared memory area so we'll read the value from
2790 * shared memory for speed.
2791 */
2792
2793 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
2794 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
2795
2796 if ((mac_lo == 0) && (mac_hi == 0)) {
2797 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
2798 __FILE__, __LINE__);
2799 } else {
2800 sc->eaddr[0] = (u_char)(mac_hi >> 8);
2801 sc->eaddr[1] = (u_char)(mac_hi >> 0);
2802 sc->eaddr[2] = (u_char)(mac_lo >> 24);
2803 sc->eaddr[3] = (u_char)(mac_lo >> 16);
2804 sc->eaddr[4] = (u_char)(mac_lo >> 8);
2805 sc->eaddr[5] = (u_char)(mac_lo >> 0);
2806 }
2807
2808 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
2809 "%s\n", ether_sprintf(sc->eaddr));
2810 }
2811
2812 /****************************************************************************/
2813 /* Program the MAC address. */
2814 /* */
2815 /* Returns: */
2816 /* Nothing. */
2817 /****************************************************************************/
2818 void
2819 bnx_set_mac_addr(struct bnx_softc *sc)
2820 {
2821 u_int32_t val;
2822 u_int8_t *mac_addr = LLADDR(sc->ethercom.ec_if.if_sadl);
2823
2824 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
2825 "%s\n", ether_sprintf(sc->eaddr));
2826
2827 val = (mac_addr[0] << 8) | mac_addr[1];
2828
2829 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
2830
2831 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2832 (mac_addr[4] << 8) | mac_addr[5];
2833
2834 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
2835 }
2836
2837 /****************************************************************************/
2838 /* Stop the controller. */
2839 /* */
2840 /* Returns: */
2841 /* Nothing. */
2842 /****************************************************************************/
2843 void
2844 bnx_stop(struct bnx_softc *sc)
2845 {
2846 struct ifnet *ifp = &sc->ethercom.ec_if;
2847 struct ifmedia_entry *ifm;
2848 struct mii_data *mii = NULL;
2849 int mtmp, itmp;
2850
2851 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2852
2853 mii = &sc->bnx_mii;
2854
2855 callout_stop(&sc->bnx_timeout);
2856
2857 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2858
2859 /* Disable the transmit/receive blocks. */
2860 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
2861 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2862 DELAY(20);
2863
2864 bnx_disable_intr(sc);
2865
2866 /* Tell firmware that the driver is going away. */
2867 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
2868
2869 /* Free the RX lists. */
2870 bnx_free_rx_chain(sc);
2871
2872 /* Free TX buffers. */
2873 bnx_free_tx_chain(sc);
2874
2875 /*
2876 * Isolate/power down the PHY, but leave the media selection
2877 * unchanged so that things will be put back to normal when
2878 * we bring the interface back up.
2879 */
2880
2881 itmp = ifp->if_flags;
2882 ifp->if_flags |= IFF_UP;
2883 /*
2884 * If we are called from bnx_detach(), mii is already NULL.
2885 */
2886 if (mii != NULL) {
2887 ifm = mii->mii_media.ifm_cur;
2888 mtmp = ifm->ifm_media;
2889 ifm->ifm_media = IFM_ETHER|IFM_NONE;
2890 mii_mediachg(mii);
2891 ifm->ifm_media = mtmp;
2892 }
2893
2894 ifp->if_flags = itmp;
2895 ifp->if_timer = 0;
2896
2897 sc->bnx_link = 0;
2898
2899 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2900
2901 }
2902
2903 int
2904 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
2905 {
2906 u_int32_t val;
2907 int i, rc = 0;
2908
2909 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2910
2911 /* Wait for pending PCI transactions to complete. */
2912 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
2913 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
2914 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
2915 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
2916 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
2917 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2918 DELAY(5);
2919
2920 /* Assume bootcode is running. */
2921 sc->bnx_fw_timed_out = 0;
2922
2923 /* Give the firmware a chance to prepare for the reset. */
2924 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
2925 if (rc)
2926 goto bnx_reset_exit;
2927
2928 /* Set a firmware reminder that this is a soft reset. */
2929 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
2930 BNX_DRV_RESET_SIGNATURE_MAGIC);
2931
2932 /* Dummy read to force the chip to complete all current transactions. */
2933 val = REG_RD(sc, BNX_MISC_ID);
2934
2935 /* Chip reset. */
2936 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2937 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
2938 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
2939 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
2940
2941 /* Allow up to 30us for reset to complete. */
2942 for (i = 0; i < 10; i++) {
2943 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
2944 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2945 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
2946 break;
2947
2948 DELAY(10);
2949 }
2950
2951 /* Check that reset completed successfully. */
2952 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2953 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
2954 BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
2955 rc = EBUSY;
2956 goto bnx_reset_exit;
2957 }
2958
2959 /* Make sure byte swapping is properly configured. */
2960 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
2961 if (val != 0x01020304) {
2962 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
2963 __FILE__, __LINE__);
2964 rc = ENODEV;
2965 goto bnx_reset_exit;
2966 }
2967
2968 /* Just completed a reset, assume that firmware is running again. */
2969 sc->bnx_fw_timed_out = 0;
2970
2971 /* Wait for the firmware to finish its initialization. */
2972 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
2973 if (rc)
2974 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
2975 "initialization!\n", __FILE__, __LINE__);
2976
2977 bnx_reset_exit:
2978 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2979
2980 return (rc);
2981 }
2982
2983 int
2984 bnx_chipinit(struct bnx_softc *sc)
2985 {
2986 struct pci_attach_args *pa = &(sc->bnx_pa);
2987 u_int32_t val;
2988 int rc = 0;
2989
2990 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2991
2992 /* Make sure the interrupt is not active. */
2993 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
2994
2995 /* Initialize DMA byte/word swapping, configure the number of DMA */
2996 /* channels and PCI clock compensation delay. */
2997 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
2998 BNX_DMA_CONFIG_DATA_WORD_SWAP |
2999 #if BYTE_ORDER == BIG_ENDIAN
3000 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3001 #endif
3002 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3003 DMA_READ_CHANS << 12 |
3004 DMA_WRITE_CHANS << 16;
3005
3006 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3007
3008 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3009 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3010
3011 /*
3012 * This setting resolves a problem observed on certain Intel PCI
3013 * chipsets that cannot handle multiple outstanding DMA operations.
3014 * See errata E9_5706A1_65.
3015 */
3016 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3017 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3018 !(sc->bnx_flags & BNX_PCIX_FLAG))
3019 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3020
3021 REG_WR(sc, BNX_DMA_CONFIG, val);
3022
3023 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3024 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3025 u_int16_t nval;
3026
3027 nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3028 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3029 nval & ~0x2);
3030 }
3031
3032 /* Enable the RX_V2P and Context state machines before access. */
3033 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3034 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3035 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3036 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3037
3038 /* Initialize context mapping and zero out the quick contexts. */
3039 bnx_init_context(sc);
3040
3041 /* Initialize the on-boards CPUs */
3042 bnx_init_cpus(sc);
3043
3044 /* Prepare NVRAM for access. */
3045 if (bnx_init_nvram(sc)) {
3046 rc = ENODEV;
3047 goto bnx_chipinit_exit;
3048 }
3049
3050 /* Set the kernel bypass block size */
3051 val = REG_RD(sc, BNX_MQ_CONFIG);
3052 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3053 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3054 REG_WR(sc, BNX_MQ_CONFIG, val);
3055
3056 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3057 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3058 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3059
3060 val = (BCM_PAGE_BITS - 8) << 24;
3061 REG_WR(sc, BNX_RV2P_CONFIG, val);
3062
3063 /* Configure page size. */
3064 val = REG_RD(sc, BNX_TBDR_CONFIG);
3065 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3066 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3067 REG_WR(sc, BNX_TBDR_CONFIG, val);
3068
3069 bnx_chipinit_exit:
3070 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3071
3072 return(rc);
3073 }
3074
3075 /****************************************************************************/
3076 /* Initialize the controller in preparation to send/receive traffic. */
3077 /* */
3078 /* Returns: */
3079 /* 0 for success, positive value for failure. */
3080 /****************************************************************************/
3081 int
3082 bnx_blockinit(struct bnx_softc *sc)
3083 {
3084 u_int32_t reg, val;
3085 int rc = 0;
3086
3087 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3088
3089 /* Load the hardware default MAC address. */
3090 bnx_set_mac_addr(sc);
3091
3092 /* Set the Ethernet backoff seed value */
3093 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3094 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3095 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3096
3097 sc->last_status_idx = 0;
3098 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3099
3100 /* Set up link change interrupt generation. */
3101 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3102
3103 /* Program the physical address of the status block. */
3104 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3105 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3106 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3107
3108 /* Program the physical address of the statistics block. */
3109 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3110 (u_int32_t)(sc->stats_block_paddr));
3111 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3112 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3113
3114 /* Program various host coalescing parameters. */
3115 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3116 << 16) | sc->bnx_tx_quick_cons_trip);
3117 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3118 << 16) | sc->bnx_rx_quick_cons_trip);
3119 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3120 sc->bnx_comp_prod_trip);
3121 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3122 sc->bnx_tx_ticks);
3123 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3124 sc->bnx_rx_ticks);
3125 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3126 sc->bnx_com_ticks);
3127 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3128 sc->bnx_cmd_ticks);
3129 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3130 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3131 REG_WR(sc, BNX_HC_CONFIG,
3132 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3133 BNX_HC_CONFIG_COLLECT_STATS));
3134
3135 /* Clear the internal statistics counters. */
3136 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3137
3138 /* Verify that bootcode is running. */
3139 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3140
3141 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3142 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3143 __FILE__, __LINE__); reg = 0);
3144
3145 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3146 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3147 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3148 "Expected: 08%08X\n", __FILE__, __LINE__,
3149 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3150 BNX_DEV_INFO_SIGNATURE_MAGIC);
3151 rc = ENODEV;
3152 goto bnx_blockinit_exit;
3153 }
3154
3155 /* Check if any management firmware is running. */
3156 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3157 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3158 BNX_PORT_FEATURE_IMD_ENABLED)) {
3159 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3160 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3161 }
3162
3163 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3164 BNX_DEV_INFO_BC_REV);
3165
3166 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3167
3168 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3169 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3170
3171 /* Enable link state change interrupt generation. */
3172 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3173
3174 /* Enable all remaining blocks in the MAC. */
3175 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3176 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3177 DELAY(20);
3178
3179 bnx_blockinit_exit:
3180 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3181
3182 return (rc);
3183 }
3184
3185 /****************************************************************************/
3186 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3187 /* */
3188 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3189 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3190 /* necessary. */
3191 /* */
3192 /* Returns: */
3193 /* 0 for success, positive value for failure. */
3194 /****************************************************************************/
3195 int
3196 bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
3197 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3198 {
3199 bus_dmamap_t map;
3200 struct mbuf *m_new = NULL;
3201 struct rx_bd *rxbd;
3202 int i, rc = 0;
3203 u_int32_t addr;
3204 #ifdef BNX_DEBUG
3205 u_int16_t debug_chain_prod = *chain_prod;
3206 #endif
3207
3208 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3209 __FUNCTION__);
3210
3211 /* Make sure the inputs are valid. */
3212 DBRUNIF((*chain_prod > MAX_RX_BD),
3213 aprint_error("%s: RX producer out of range: 0x%04X > 0x%04X\n",
3214 sc->bnx_dev.dv_xname, *chain_prod, (u_int16_t) MAX_RX_BD));
3215
3216 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3217 "0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod,
3218 *prod_bseq);
3219
3220 if (m == NULL) {
3221 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3222 BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
3223
3224 sc->mbuf_alloc_failed++;
3225 rc = ENOBUFS;
3226 goto bnx_get_buf_exit);
3227
3228 /* This is a new mbuf allocation. */
3229 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3230 if (m_new == NULL) {
3231 DBPRINT(sc, BNX_WARN,
3232 "%s(%d): RX mbuf header allocation failed!\n",
3233 __FILE__, __LINE__);
3234
3235 DBRUNIF(1, sc->mbuf_alloc_failed++);
3236
3237 rc = ENOBUFS;
3238 goto bnx_get_buf_exit;
3239 }
3240
3241 DBRUNIF(1, sc->rx_mbuf_alloc++);
3242 MEXTMALLOC(m_new, sc->mbuf_alloc_size, M_DONTWAIT);
3243 if (!(m_new->m_flags & M_EXT)) {
3244 DBPRINT(sc, BNX_WARN,
3245 "%s(%d): RX mbuf chain allocation failed!\n",
3246 __FILE__, __LINE__);
3247
3248 m_freem(m_new);
3249
3250 DBRUNIF(1, sc->rx_mbuf_alloc--);
3251 DBRUNIF(1, sc->mbuf_alloc_failed++);
3252
3253 rc = ENOBUFS;
3254 goto bnx_get_buf_exit;
3255 }
3256
3257 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3258 } else {
3259 m_new = m;
3260 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3261 m_new->m_data = m_new->m_ext.ext_buf;
3262 }
3263
3264 /* Map the mbuf cluster into device memory. */
3265 map = sc->rx_mbuf_map[*chain_prod];
3266 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3267 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3268 __FILE__, __LINE__);
3269
3270 m_freem(m_new);
3271
3272 DBRUNIF(1, sc->rx_mbuf_alloc--);
3273
3274 rc = ENOBUFS;
3275 goto bnx_get_buf_exit;
3276 }
3277 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3278 BUS_DMASYNC_PREREAD);
3279
3280 /* Watch for overflow. */
3281 DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
3282 aprint_error("%s: Too many free rx_bd (0x%04X > 0x%04X)!\n",
3283 sc->bnx_dev.dv_xname,
3284 sc->free_rx_bd, (u_int16_t) USABLE_RX_BD));
3285
3286 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3287 sc->rx_low_watermark = sc->free_rx_bd);
3288
3289 /* Setup the rx_bd for the first segment. */
3290 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3291
3292 addr = (u_int32_t)(map->dm_segs[0].ds_addr);
3293 rxbd->rx_bd_haddr_lo = htole32(addr);
3294 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3295 rxbd->rx_bd_haddr_hi = htole32(addr);
3296 rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
3297 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3298 *prod_bseq += map->dm_segs[0].ds_len;
3299 bus_dmamap_sync(sc->bnx_dmatag,
3300 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3301 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3302 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3303
3304 for (i = 1; i < map->dm_nsegs; i++) {
3305 *prod = NEXT_RX_BD(*prod);
3306 *chain_prod = RX_CHAIN_IDX(*prod);
3307
3308 rxbd =
3309 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3310
3311 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
3312 rxbd->rx_bd_haddr_lo = htole32(addr);
3313 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3314 rxbd->rx_bd_haddr_hi = htole32(addr);
3315 rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
3316 rxbd->rx_bd_flags = 0;
3317 *prod_bseq += map->dm_segs[i].ds_len;
3318 bus_dmamap_sync(sc->bnx_dmatag,
3319 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3320 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3321 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3322 }
3323
3324 rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3325 bus_dmamap_sync(sc->bnx_dmatag,
3326 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3327 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3328 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3329
3330 /* Save the mbuf and update our counter. */
3331 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3332 sc->free_rx_bd -= map->dm_nsegs;
3333
3334 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3335 map->dm_nsegs));
3336
3337 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3338 "= 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod,
3339 *chain_prod, *prod_bseq);
3340
3341 bnx_get_buf_exit:
3342 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3343 __FUNCTION__);
3344
3345 return(rc);
3346 }
3347
3348 /****************************************************************************/
3349 /* Allocate memory and initialize the TX data structures. */
3350 /* */
3351 /* Returns: */
3352 /* 0 for success, positive value for failure. */
3353 /****************************************************************************/
3354 int
3355 bnx_init_tx_chain(struct bnx_softc *sc)
3356 {
3357 struct tx_bd *txbd;
3358 u_int32_t val, addr;
3359 int i, rc = 0;
3360
3361 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3362
3363 /* Set the initial TX producer/consumer indices. */
3364 sc->tx_prod = 0;
3365 sc->tx_cons = 0;
3366 sc->tx_prod_bseq = 0;
3367 sc->used_tx_bd = 0;
3368 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3369
3370 /*
3371 * The NetXtreme II supports a linked-list structure called
3372 * a Buffer Descriptor Chain (or BD chain). A BD chain
3373 * consists of a series of 1 or more chain pages, each of which
3374 * consists of a fixed number of BD entries.
3375 * The last BD entry on each page is a pointer to the next page
3376 * in the chain, and the last pointer in the BD chain
3377 * points back to the beginning of the chain.
3378 */
3379
3380 /* Set the TX next pointer chain entries. */
3381 for (i = 0; i < TX_PAGES; i++) {
3382 int j;
3383
3384 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3385
3386 /* Check if we've reached the last page. */
3387 if (i == (TX_PAGES - 1))
3388 j = 0;
3389 else
3390 j = i + 1;
3391
3392 addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
3393 txbd->tx_bd_haddr_lo = htole32(addr);
3394 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3395 txbd->tx_bd_haddr_hi = htole32(addr);
3396 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3397 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3398 }
3399
3400 /*
3401 * Initialize the context ID for an L2 TX chain.
3402 */
3403 val = BNX_L2CTX_TYPE_TYPE_L2;
3404 val |= BNX_L2CTX_TYPE_SIZE_L2;
3405 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3406
3407 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3408 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3409
3410 /* Point the hardware to the first page in the chain. */
3411 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3412 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3413 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3414 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3415
3416 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
3417
3418 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3419
3420 return(rc);
3421 }
3422
3423 /****************************************************************************/
3424 /* Free memory and clear the TX data structures. */
3425 /* */
3426 /* Returns: */
3427 /* Nothing. */
3428 /****************************************************************************/
3429 void
3430 bnx_free_tx_chain(struct bnx_softc *sc)
3431 {
3432 int i;
3433
3434 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3435
3436 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3437 for (i = 0; i < TOTAL_TX_BD; i++) {
3438 if (sc->tx_mbuf_ptr[i] != NULL) {
3439 if (sc->tx_mbuf_map != NULL)
3440 bus_dmamap_sync(sc->bnx_dmatag,
3441 sc->tx_mbuf_map[i], 0,
3442 sc->tx_mbuf_map[i]->dm_mapsize,
3443 BUS_DMASYNC_POSTWRITE);
3444 m_freem(sc->tx_mbuf_ptr[i]);
3445 sc->tx_mbuf_ptr[i] = NULL;
3446 DBRUNIF(1, sc->tx_mbuf_alloc--);
3447 }
3448 }
3449
3450 /* Clear each TX chain page. */
3451 for (i = 0; i < TX_PAGES; i++) {
3452 bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
3453 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3454 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3455 }
3456
3457 /* Check if we lost any mbufs in the process. */
3458 DBRUNIF((sc->tx_mbuf_alloc),
3459 aprint_error("%s: Memory leak! Lost %d mbufs from tx chain!\n",
3460 sc->bnx_dev.dv_xname, sc->tx_mbuf_alloc));
3461
3462 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3463 }
3464
3465 /****************************************************************************/
3466 /* Allocate memory and initialize the RX data structures. */
3467 /* */
3468 /* Returns: */
3469 /* 0 for success, positive value for failure. */
3470 /****************************************************************************/
3471 int
3472 bnx_init_rx_chain(struct bnx_softc *sc)
3473 {
3474 struct rx_bd *rxbd;
3475 int i, rc = 0;
3476 u_int16_t prod, chain_prod;
3477 u_int32_t prod_bseq, val, addr;
3478
3479 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3480
3481 /* Initialize the RX producer and consumer indices. */
3482 sc->rx_prod = 0;
3483 sc->rx_cons = 0;
3484 sc->rx_prod_bseq = 0;
3485 sc->free_rx_bd = BNX_RX_SLACK_SPACE;
3486 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
3487
3488 /* Initialize the RX next pointer chain entries. */
3489 for (i = 0; i < RX_PAGES; i++) {
3490 int j;
3491
3492 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
3493
3494 /* Check if we've reached the last page. */
3495 if (i == (RX_PAGES - 1))
3496 j = 0;
3497 else
3498 j = i + 1;
3499
3500 /* Setup the chain page pointers. */
3501 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
3502 rxbd->rx_bd_haddr_hi = htole32(addr);
3503 addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
3504 rxbd->rx_bd_haddr_lo = htole32(addr);
3505 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
3506 0, BNX_RX_CHAIN_PAGE_SZ,
3507 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3508 }
3509
3510 /* Initialize the context ID for an L2 RX chain. */
3511 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
3512 val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
3513 val |= 0x02 << 8;
3514 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
3515
3516 /* Point the hardware to the first page in the chain. */
3517 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
3518 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
3519 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
3520 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
3521
3522 /* Allocate mbuf clusters for the rx_bd chain. */
3523 prod = prod_bseq = 0;
3524 while (prod < BNX_RX_SLACK_SPACE) {
3525 chain_prod = RX_CHAIN_IDX(prod);
3526 if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
3527 BNX_PRINTF(sc,
3528 "Error filling RX chain: rx_bd[0x%04X]!\n",
3529 chain_prod);
3530 rc = ENOBUFS;
3531 break;
3532 }
3533 prod = NEXT_RX_BD(prod);
3534 }
3535
3536 /* Save the RX chain producer index. */
3537 sc->rx_prod = prod;
3538 sc->rx_prod_bseq = prod_bseq;
3539
3540 for (i = 0; i < RX_PAGES; i++)
3541 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
3542 sc->rx_bd_chain_map[i]->dm_mapsize,
3543 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3544
3545 /* Tell the chip about the waiting rx_bd's. */
3546 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3547 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3548
3549 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
3550
3551 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3552
3553 return(rc);
3554 }
3555
3556 /****************************************************************************/
3557 /* Free memory and clear the RX data structures. */
3558 /* */
3559 /* Returns: */
3560 /* Nothing. */
3561 /****************************************************************************/
3562 void
3563 bnx_free_rx_chain(struct bnx_softc *sc)
3564 {
3565 int i;
3566
3567 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3568
3569 /* Free any mbufs still in the RX mbuf chain. */
3570 for (i = 0; i < TOTAL_RX_BD; i++) {
3571 if (sc->rx_mbuf_ptr[i] != NULL) {
3572 if (sc->rx_mbuf_map[i] != NULL)
3573 bus_dmamap_sync(sc->bnx_dmatag,
3574 sc->rx_mbuf_map[i], 0,
3575 sc->rx_mbuf_map[i]->dm_mapsize,
3576 BUS_DMASYNC_POSTREAD);
3577 m_freem(sc->rx_mbuf_ptr[i]);
3578 sc->rx_mbuf_ptr[i] = NULL;
3579 DBRUNIF(1, sc->rx_mbuf_alloc--);
3580 }
3581 }
3582
3583 /* Clear each RX chain page. */
3584 for (i = 0; i < RX_PAGES; i++)
3585 bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
3586
3587 /* Check if we lost any mbufs in the process. */
3588 DBRUNIF((sc->rx_mbuf_alloc),
3589 aprint_error("%s: Memory leak! Lost %d mbufs from rx chain!\n",
3590 sc->bnx_dev.dv_xname, sc->rx_mbuf_alloc));
3591
3592 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3593 }
3594
3595 /****************************************************************************/
3596 /* Set media options. */
3597 /* */
3598 /* Returns: */
3599 /* 0 for success, positive value for failure. */
3600 /****************************************************************************/
3601 int
3602 bnx_ifmedia_upd(struct ifnet *ifp)
3603 {
3604 struct bnx_softc *sc;
3605 struct mii_data *mii;
3606 struct ifmedia *ifm;
3607 int rc = 0;
3608
3609 sc = ifp->if_softc;
3610 ifm = &sc->bnx_ifmedia;
3611
3612 /* DRC - ToDo: Add SerDes support. */
3613
3614 mii = &sc->bnx_mii;
3615 sc->bnx_link = 0;
3616 if (mii->mii_instance) {
3617 struct mii_softc *miisc;
3618 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
3619 miisc = LIST_NEXT(miisc, mii_list))
3620 mii_phy_reset(miisc);
3621 }
3622 mii_mediachg(mii);
3623
3624 return(rc);
3625 }
3626
3627 /****************************************************************************/
3628 /* Reports current media status. */
3629 /* */
3630 /* Returns: */
3631 /* Nothing. */
3632 /****************************************************************************/
3633 void
3634 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3635 {
3636 struct bnx_softc *sc;
3637 struct mii_data *mii;
3638 int s;
3639
3640 sc = ifp->if_softc;
3641
3642 s = splnet();
3643
3644 mii = &sc->bnx_mii;
3645
3646 /* DRC - ToDo: Add SerDes support. */
3647
3648 mii_pollstat(mii);
3649 ifmr->ifm_active = mii->mii_media_active;
3650 ifmr->ifm_status = mii->mii_media_status;
3651
3652 splx(s);
3653 }
3654
3655 /****************************************************************************/
3656 /* Handles PHY generated interrupt events. */
3657 /* */
3658 /* Returns: */
3659 /* Nothing. */
3660 /****************************************************************************/
3661 void
3662 bnx_phy_intr(struct bnx_softc *sc)
3663 {
3664 u_int32_t new_link_state, old_link_state;
3665
3666 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3667 BUS_DMASYNC_POSTREAD);
3668 new_link_state = sc->status_block->status_attn_bits &
3669 STATUS_ATTN_BITS_LINK_STATE;
3670 old_link_state = sc->status_block->status_attn_bits_ack &
3671 STATUS_ATTN_BITS_LINK_STATE;
3672
3673 /* Handle any changes if the link state has changed. */
3674 if (new_link_state != old_link_state) {
3675 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
3676
3677 sc->bnx_link = 0;
3678 callout_stop(&sc->bnx_timeout);
3679 bnx_tick(sc);
3680
3681 /* Update the status_attn_bits_ack field in the status block. */
3682 if (new_link_state) {
3683 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
3684 STATUS_ATTN_BITS_LINK_STATE);
3685 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
3686 } else {
3687 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
3688 STATUS_ATTN_BITS_LINK_STATE);
3689 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
3690 }
3691 }
3692
3693 /* Acknowledge the link change interrupt. */
3694 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
3695 }
3696
3697 /****************************************************************************/
3698 /* Handles received frame interrupt events. */
3699 /* */
3700 /* Returns: */
3701 /* Nothing. */
3702 /****************************************************************************/
3703 void
3704 bnx_rx_intr(struct bnx_softc *sc)
3705 {
3706 struct status_block *sblk = sc->status_block;
3707 struct ifnet *ifp = &sc->ethercom.ec_if;
3708 u_int16_t hw_cons, sw_cons, sw_chain_cons;
3709 u_int16_t sw_prod, sw_chain_prod;
3710 u_int32_t sw_prod_bseq;
3711 struct l2_fhdr *l2fhdr;
3712 int i;
3713
3714 DBRUNIF(1, sc->rx_interrupts++);
3715 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3716 BUS_DMASYNC_POSTREAD);
3717
3718 /* Prepare the RX chain pages to be accessed by the host CPU. */
3719 for (i = 0; i < RX_PAGES; i++)
3720 bus_dmamap_sync(sc->bnx_dmatag,
3721 sc->rx_bd_chain_map[i], 0,
3722 sc->rx_bd_chain_map[i]->dm_mapsize,
3723 BUS_DMASYNC_POSTWRITE);
3724
3725 /* Get the hardware's view of the RX consumer index. */
3726 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
3727 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
3728 hw_cons++;
3729
3730 /* Get working copies of the driver's view of the RX indices. */
3731 sw_cons = sc->rx_cons;
3732 sw_prod = sc->rx_prod;
3733 sw_prod_bseq = sc->rx_prod_bseq;
3734
3735 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
3736 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
3737 __FUNCTION__, sw_prod, sw_cons, sw_prod_bseq);
3738
3739 /* Prevent speculative reads from getting ahead of the status block. */
3740 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3741 BUS_SPACE_BARRIER_READ);
3742
3743 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3744 sc->rx_low_watermark = sc->free_rx_bd);
3745
3746 /*
3747 * Scan through the receive chain as long
3748 * as there is work to do.
3749 */
3750 while (sw_cons != hw_cons) {
3751 struct mbuf *m;
3752 struct rx_bd *rxbd;
3753 unsigned int len;
3754 u_int32_t status;
3755
3756 /* Convert the producer/consumer indices to an actual
3757 * rx_bd index.
3758 */
3759 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
3760 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
3761
3762 /* Get the used rx_bd. */
3763 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
3764 sc->free_rx_bd++;
3765
3766 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __FUNCTION__);
3767 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
3768
3769 /* The mbuf is stored with the last rx_bd entry of a packet. */
3770 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
3771 /* Validate that this is the last rx_bd. */
3772 DBRUNIF((!(rxbd->rx_bd_flags & RX_BD_FLAGS_END)),
3773 aprint_error("%s: Unexpected mbuf found in "
3774 "rx_bd[0x%04X]!\n", sc->bnx_dev.dv_xname,
3775 sw_chain_cons);
3776 bnx_breakpoint(sc));
3777
3778 /* DRC - ToDo: If the received packet is small, say less
3779 * than 128 bytes, allocate a new mbuf here,
3780 * copy the data to that mbuf, and recycle
3781 * the mapped jumbo frame.
3782 */
3783
3784 /* Unmap the mbuf from DMA space. */
3785 bus_dmamap_sync(sc->bnx_dmatag,
3786 sc->rx_mbuf_map[sw_chain_cons], 0,
3787 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
3788 BUS_DMASYNC_POSTREAD);
3789 bus_dmamap_unload(sc->bnx_dmatag,
3790 sc->rx_mbuf_map[sw_chain_cons]);
3791
3792 /* Remove the mbuf from the driver's chain. */
3793 m = sc->rx_mbuf_ptr[sw_chain_cons];
3794 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
3795
3796 /*
3797 * Frames received on the NetXteme II are prepended
3798 * with the l2_fhdr structure which provides status
3799 * information about the received frame (including
3800 * VLAN tags and checksum info) and are also
3801 * automatically adjusted to align the IP header
3802 * (i.e. two null bytes are inserted before the
3803 * Ethernet header).
3804 */
3805 l2fhdr = mtod(m, struct l2_fhdr *);
3806
3807 len = l2fhdr->l2_fhdr_pkt_len;
3808 status = l2fhdr->l2_fhdr_status;
3809
3810 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
3811 aprint_error("Simulating l2_fhdr status error.\n");
3812 status = status | L2_FHDR_ERRORS_PHY_DECODE);
3813
3814 /* Watch for unusual sized frames. */
3815 DBRUNIF(((len < BNX_MIN_MTU) ||
3816 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
3817 aprint_error("%s: Unusual frame size found. "
3818 "Min(%d), Actual(%d), Max(%d)\n",
3819 sc->bnx_dev.dv_xname, (int)BNX_MIN_MTU, len,
3820 (int) BNX_MAX_JUMBO_ETHER_MTU_VLAN);
3821
3822 bnx_dump_mbuf(sc, m);
3823 bnx_breakpoint(sc));
3824
3825 len -= ETHER_CRC_LEN;
3826
3827 /* Check the received frame for errors. */
3828 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
3829 L2_FHDR_ERRORS_PHY_DECODE |
3830 L2_FHDR_ERRORS_ALIGNMENT |
3831 L2_FHDR_ERRORS_TOO_SHORT |
3832 L2_FHDR_ERRORS_GIANT_FRAME)) ||
3833 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
3834 len >
3835 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
3836 ifp->if_ierrors++;
3837 DBRUNIF(1, sc->l2fhdr_status_errors++);
3838
3839 /* Reuse the mbuf for a new frame. */
3840 if (bnx_get_buf(sc, m, &sw_prod,
3841 &sw_chain_prod, &sw_prod_bseq)) {
3842 DBRUNIF(1, bnx_breakpoint(sc));
3843 panic("%s: Can't reuse RX mbuf!\n",
3844 sc->bnx_dev.dv_xname);
3845 }
3846 goto bnx_rx_int_next_rx;
3847 }
3848
3849 /*
3850 * Get a new mbuf for the rx_bd. If no new
3851 * mbufs are available then reuse the current mbuf,
3852 * log an ierror on the interface, and generate
3853 * an error in the system log.
3854 */
3855 if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
3856 &sw_prod_bseq)) {
3857 DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
3858 "new mbuf, incoming frame dropped!\n"));
3859
3860 ifp->if_ierrors++;
3861
3862 /* Try and reuse the exisitng mbuf. */
3863 if (bnx_get_buf(sc, m, &sw_prod,
3864 &sw_chain_prod, &sw_prod_bseq)) {
3865 DBRUNIF(1, bnx_breakpoint(sc));
3866 panic("%s: Double mbuf allocation "
3867 "failure!", sc->bnx_dev.dv_xname);
3868 }
3869 goto bnx_rx_int_next_rx;
3870 }
3871
3872 /* Skip over the l2_fhdr when passing the data up
3873 * the stack.
3874 */
3875 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
3876
3877 /* Adjust the pckt length to match the received data. */
3878 m->m_pkthdr.len = m->m_len = len;
3879
3880 /* Send the packet to the appropriate interface. */
3881 m->m_pkthdr.rcvif = ifp;
3882
3883 DBRUN(BNX_VERBOSE_RECV,
3884 struct ether_header *eh;
3885 eh = mtod(m, struct ether_header *);
3886 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
3887 __FUNCTION__, ether_sprintf(eh->ether_dhost),
3888 ether_sprintf(eh->ether_shost),
3889 htons(eh->ether_type)));
3890
3891 /* Validate the checksum. */
3892
3893 /* Check for an IP datagram. */
3894 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
3895 /* Check if the IP checksum is valid. */
3896 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
3897 == 0)
3898 m->m_pkthdr.csum_flags |=
3899 M_CSUM_IPv4;
3900 #ifdef BNX_DEBUG
3901 else
3902 DBPRINT(sc, BNX_WARN_SEND,
3903 "%s(): Invalid IP checksum "
3904 "= 0x%04X!\n",
3905 __FUNCTION__,
3906 l2fhdr->l2_fhdr_ip_xsum
3907 );
3908 #endif
3909 }
3910
3911 /* Check for a valid TCP/UDP frame. */
3912 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3913 L2_FHDR_STATUS_UDP_DATAGRAM)) {
3914 /* Check for a good TCP/UDP checksum. */
3915 if ((status &
3916 (L2_FHDR_ERRORS_TCP_XSUM |
3917 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
3918 m->m_pkthdr.csum_flags |=
3919 M_CSUM_TCPv4 |
3920 M_CSUM_UDPv4;
3921 } else {
3922 DBPRINT(sc, BNX_WARN_SEND,
3923 "%s(): Invalid TCP/UDP "
3924 "checksum = 0x%04X!\n",
3925 __FUNCTION__,
3926 l2fhdr->l2_fhdr_tcp_udp_xsum);
3927 }
3928 }
3929
3930 /*
3931 * If we received a packet with a vlan tag,
3932 * attach that information to the packet.
3933 */
3934 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
3935 #if 0
3936 struct ether_vlan_header vh;
3937
3938 DBPRINT(sc, BNX_VERBOSE_SEND,
3939 "%s(): VLAN tag = 0x%04X\n",
3940 __FUNCTION__,
3941 l2fhdr->l2_fhdr_vlan_tag);
3942
3943 if (m->m_pkthdr.len < ETHER_HDR_LEN) {
3944 m_freem(m);
3945 goto bnx_rx_int_next_rx;
3946 }
3947 m_copydata(m, 0, ETHER_HDR_LEN, (caddr_t)&vh);
3948 vh.evl_proto = vh.evl_encap_proto;
3949 vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag >> 16;
3950 vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
3951 m_adj(m, ETHER_HDR_LEN);
3952 if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
3953 goto bnx_rx_int_next_rx;
3954 m->m_pkthdr.len += sizeof(vh);
3955 if (m->m_len < sizeof(vh) &&
3956 (m = m_pullup(m, sizeof(vh))) == NULL)
3957 goto bnx_rx_int_next_rx;
3958 m_copyback(m, 0, sizeof(vh), &vh);
3959 #else
3960 VLAN_INPUT_TAG(ifp, m,
3961 l2fhdr->l2_fhdr_vlan_tag >> 16,
3962 goto bnx_rx_int_next_rx);
3963 #endif
3964 }
3965
3966 #if NBPFILTER > 0
3967 /*
3968 * Handle BPF listeners. Let the BPF
3969 * user see the packet.
3970 */
3971 if (ifp->if_bpf)
3972 bpf_mtap(ifp->if_bpf, m);
3973 #endif
3974
3975 /* Pass the mbuf off to the upper layers. */
3976 ifp->if_ipackets++;
3977 DBPRINT(sc, BNX_VERBOSE_RECV,
3978 "%s(): Passing received frame up.\n", __FUNCTION__);
3979 //ether_input_mbuf(ifp, m);
3980 (*ifp->if_input)(ifp, m);
3981 DBRUNIF(1, sc->rx_mbuf_alloc--);
3982
3983 bnx_rx_int_next_rx:
3984 sw_prod = NEXT_RX_BD(sw_prod);
3985 }
3986
3987 sw_cons = NEXT_RX_BD(sw_cons);
3988
3989 /* Refresh hw_cons to see if there's new work */
3990 if (sw_cons == hw_cons) {
3991 hw_cons = sc->hw_rx_cons =
3992 sblk->status_rx_quick_consumer_index0;
3993 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
3994 USABLE_RX_BD_PER_PAGE)
3995 hw_cons++;
3996 }
3997
3998 /* Prevent speculative reads from getting ahead of
3999 * the status block.
4000 */
4001 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4002 BUS_SPACE_BARRIER_READ);
4003 }
4004
4005 for (i = 0; i < RX_PAGES; i++)
4006 bus_dmamap_sync(sc->bnx_dmatag,
4007 sc->rx_bd_chain_map[i], 0,
4008 sc->rx_bd_chain_map[i]->dm_mapsize,
4009 BUS_DMASYNC_PREWRITE);
4010
4011 sc->rx_cons = sw_cons;
4012 sc->rx_prod = sw_prod;
4013 sc->rx_prod_bseq = sw_prod_bseq;
4014
4015 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4016 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4017
4018 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4019 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4020 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4021 }
4022
4023 /****************************************************************************/
4024 /* Handles transmit completion interrupt events. */
4025 /* */
4026 /* Returns: */
4027 /* Nothing. */
4028 /****************************************************************************/
4029 void
4030 bnx_tx_intr(struct bnx_softc *sc)
4031 {
4032 struct status_block *sblk = sc->status_block;
4033 struct ifnet *ifp = &sc->ethercom.ec_if;
4034 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4035
4036 DBRUNIF(1, sc->tx_interrupts++);
4037 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4038 BUS_DMASYNC_POSTREAD);
4039
4040 /* Get the hardware's view of the TX consumer index. */
4041 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4042
4043 /* Skip to the next entry if this is a chain page pointer. */
4044 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4045 hw_tx_cons++;
4046
4047 sw_tx_cons = sc->tx_cons;
4048
4049 /* Prevent speculative reads from getting ahead of the status block. */
4050 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4051 BUS_SPACE_BARRIER_READ);
4052
4053 /* Cycle through any completed TX chain page entries. */
4054 while (sw_tx_cons != hw_tx_cons) {
4055 #ifdef BNX_DEBUG
4056 struct tx_bd *txbd = NULL;
4057 #endif
4058 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4059
4060 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4061 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4062 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4063
4064 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4065 aprint_error("%s: TX chain consumer out of range! "
4066 " 0x%04X > 0x%04X\n", sc->bnx_dev.dv_xname,
4067 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4068
4069 DBRUNIF(1, txbd = &sc->tx_bd_chain
4070 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4071
4072 DBRUNIF((txbd == NULL),
4073 aprint_error("%s: Unexpected NULL tx_bd[0x%04X]!\n",
4074 sc->bnx_dev.dv_xname, sw_tx_chain_cons);
4075 bnx_breakpoint(sc));
4076
4077 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __FUNCTION__);
4078 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4079
4080 /*
4081 * Free the associated mbuf. Remember
4082 * that only the last tx_bd of a packet
4083 * has an mbuf pointer and DMA map.
4084 */
4085 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
4086 /* Validate that this is the last tx_bd. */
4087 DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
4088 TX_BD_FLAGS_END)),
4089 aprint_error("%s: tx_bd END flag not set but "
4090 "txmbuf == NULL!\n", sc->bnx_dev.dv_xname);
4091 bnx_breakpoint(sc));
4092
4093 DBRUN(BNX_INFO_SEND,
4094 aprint_debug("%s: Unloading map/freeing mbuf "
4095 "from tx_bd[0x%04X]\n",
4096 __FUNCTION__, sw_tx_chain_cons));
4097
4098 /* Unmap the mbuf. */
4099 bus_dmamap_unload(sc->bnx_dmatag,
4100 sc->tx_mbuf_map[sw_tx_chain_cons]);
4101
4102 /* Free the mbuf. */
4103 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
4104 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
4105 DBRUNIF(1, sc->tx_mbuf_alloc--);
4106
4107 ifp->if_opackets++;
4108 }
4109
4110 sc->used_tx_bd--;
4111 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4112
4113 /* Refresh hw_cons to see if there's new work. */
4114 hw_tx_cons = sc->hw_tx_cons =
4115 sblk->status_tx_quick_consumer_index0;
4116 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4117 USABLE_TX_BD_PER_PAGE)
4118 hw_tx_cons++;
4119
4120 /* Prevent speculative reads from getting ahead of
4121 * the status block.
4122 */
4123 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4124 BUS_SPACE_BARRIER_READ);
4125 }
4126
4127 /* Clear the TX timeout timer. */
4128 ifp->if_timer = 0;
4129
4130 /* Clear the tx hardware queue full flag. */
4131 if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
4132 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4133 aprint_debug("%s: TX chain is open for business! Used "
4134 "tx_bd = %d\n", sc->bnx_dev.dv_xname,
4135 sc->used_tx_bd));
4136 ifp->if_flags &= ~IFF_OACTIVE;
4137 }
4138
4139 sc->tx_cons = sw_tx_cons;
4140 }
4141
4142 /****************************************************************************/
4143 /* Disables interrupt generation. */
4144 /* */
4145 /* Returns: */
4146 /* Nothing. */
4147 /****************************************************************************/
4148 void
4149 bnx_disable_intr(struct bnx_softc *sc)
4150 {
4151 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4152 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4153 }
4154
4155 /****************************************************************************/
4156 /* Enables interrupt generation. */
4157 /* */
4158 /* Returns: */
4159 /* Nothing. */
4160 /****************************************************************************/
4161 void
4162 bnx_enable_intr(struct bnx_softc *sc)
4163 {
4164 u_int32_t val;
4165
4166 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4167 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4168
4169 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4170 sc->last_status_idx);
4171
4172 val = REG_RD(sc, BNX_HC_COMMAND);
4173 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4174 }
4175
4176 /****************************************************************************/
4177 /* Handles controller initialization. */
4178 /* */
4179 /****************************************************************************/
4180 int
4181 bnx_init(struct ifnet *ifp)
4182 {
4183 struct bnx_softc *sc = ifp->if_softc;
4184 u_int32_t ether_mtu;
4185 int s, error = 0;
4186
4187 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
4188
4189 s = splnet();
4190
4191 bnx_stop(sc);
4192
4193 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4194 aprint_error("bnx: Controller reset failed!\n");
4195 goto bnx_init_locked_exit;
4196 }
4197
4198 if ((error = bnx_chipinit(sc)) != 0) {
4199 aprint_error("bnx: Controller initialization failed!\n");
4200 goto bnx_init_locked_exit;
4201 }
4202
4203 if ((error = bnx_blockinit(sc)) != 0) {
4204 aprint_error("bnx: Block initialization failed!\n");
4205 goto bnx_init_locked_exit;
4206 }
4207
4208 /* Calculate and program the Ethernet MRU size. */
4209 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4210
4211 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4212 __FUNCTION__, ether_mtu);
4213
4214 /*
4215 * Program the MRU and enable Jumbo frame
4216 * support.
4217 */
4218 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4219 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4220
4221 /* Calculate the RX Ethernet frame size for rx_bd's. */
4222 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4223
4224 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4225 "max_frame_size = %d\n", __FUNCTION__, (int)MCLBYTES,
4226 sc->mbuf_alloc_size, sc->max_frame_size);
4227
4228 /* Program appropriate promiscuous/multicast filtering. */
4229 bnx_set_rx_mode(sc);
4230
4231 /* Init RX buffer descriptor chain. */
4232 bnx_init_rx_chain(sc);
4233
4234 /* Init TX buffer descriptor chain. */
4235 bnx_init_tx_chain(sc);
4236
4237 /* Enable host interrupts. */
4238 bnx_enable_intr(sc);
4239
4240 bnx_ifmedia_upd(ifp);
4241
4242 ifp->if_flags |= IFF_RUNNING;
4243 ifp->if_flags &= ~IFF_OACTIVE;
4244
4245 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4246
4247 bnx_init_locked_exit:
4248 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
4249
4250 splx(s);
4251
4252 return(error);
4253 }
4254
4255 /****************************************************************************/
4256 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4257 /* memory visible to the controller. */
4258 /* */
4259 /* Returns: */
4260 /* 0 for success, positive value for failure. */
4261 /****************************************************************************/
4262 int
4263 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m_head, u_int16_t *prod,
4264 u_int16_t *chain_prod, u_int32_t *prod_bseq)
4265 {
4266 u_int32_t vlan_tag_flags = 0;
4267 struct bnx_dmamap_arg map_arg;
4268 bus_dmamap_t map;
4269 int i, rc = 0;
4270 struct m_tag *mtag;
4271
4272 /* Transfer any checksum offload flags to the bd. */
4273 if (m_head->m_pkthdr.csum_flags) {
4274 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4275 vlan_tag_flags |= TX_BD_FLAGS_IP_CKSUM;
4276 if (m_head->m_pkthdr.csum_flags &
4277 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4278 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4279 }
4280
4281 /* Transfer any VLAN tags to the bd. */
4282 mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head);
4283 if (mtag != NULL)
4284 vlan_tag_flags |= (TX_BD_FLAGS_VLAN_TAG |
4285 VLAN_TAG_VALUE(mtag));
4286
4287 /* Map the mbuf into DMAable memory. */
4288 map = sc->tx_mbuf_map[*chain_prod];
4289 map_arg.sc = sc;
4290 map_arg.prod = *prod;
4291 map_arg.chain_prod = *chain_prod;
4292 map_arg.prod_bseq = *prod_bseq;
4293 map_arg.tx_flags = vlan_tag_flags;
4294 map_arg.maxsegs = USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE;
4295
4296 #if 0
4297 KASSERT(map_arg.maxsegs > 0, ("Invalid TX maxsegs value!"));
4298 #endif
4299
4300 for (i = 0; i < TX_PAGES; i++)
4301 map_arg.tx_chain[i] = sc->tx_bd_chain[i];
4302
4303 /* Map the mbuf into our DMA address space. */
4304 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_head,
4305 BUS_DMA_NOWAIT)) {
4306 aprint_error("%s: Error mapping mbuf into TX chain!\n",
4307 sc->bnx_dev.dv_xname);
4308 rc = ENOBUFS;
4309 goto bnx_tx_encap_exit;
4310 }
4311 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4312 BUS_DMASYNC_PREWRITE);
4313 bnx_dma_map_tx_desc(&map_arg, map);
4314
4315 /*
4316 * Ensure that the map for this transmission
4317 * is placed at the array index of the last
4318 * descriptor in this chain. This is done
4319 * because a single map is used for all
4320 * segments of the mbuf and we don't want to
4321 * delete the map before all of the segments
4322 * have been freed.
4323 */
4324 sc->tx_mbuf_map[*chain_prod] = sc->tx_mbuf_map[map_arg.chain_prod];
4325 sc->tx_mbuf_map[map_arg.chain_prod] = map;
4326 sc->tx_mbuf_ptr[map_arg.chain_prod] = m_head;
4327 sc->used_tx_bd += map_arg.maxsegs;
4328
4329 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4330 sc->tx_hi_watermark = sc->used_tx_bd);
4331
4332 DBRUNIF(1, sc->tx_mbuf_alloc++);
4333
4334 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, *chain_prod,
4335 map_arg.maxsegs));
4336
4337 /* prod still points the last used tx_bd at this point. */
4338 *prod = map_arg.prod;
4339 *chain_prod = map_arg.chain_prod;
4340 *prod_bseq = map_arg.prod_bseq;
4341
4342 bnx_tx_encap_exit:
4343
4344 return(rc);
4345 }
4346
4347 /****************************************************************************/
4348 /* Main transmit routine. */
4349 /* */
4350 /* Returns: */
4351 /* Nothing. */
4352 /****************************************************************************/
4353 void
4354 bnx_start(struct ifnet *ifp)
4355 {
4356 struct bnx_softc *sc = ifp->if_softc;
4357 struct mbuf *m_head = NULL;
4358 int count = 0;
4359 u_int16_t tx_prod, tx_chain_prod;
4360 u_int32_t tx_prod_bseq;
4361
4362 /* If there's no link or the transmit queue is empty then just exit. */
4363 if (!sc->bnx_link || IFQ_IS_EMPTY(&ifp->if_snd)) {
4364 DBPRINT(sc, BNX_INFO_SEND,
4365 "%s(): No link or transmit queue empty.\n", __FUNCTION__);
4366 goto bnx_start_locked_exit;
4367 }
4368
4369 /* prod points to the next free tx_bd. */
4370 tx_prod = sc->tx_prod;
4371 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4372 tx_prod_bseq = sc->tx_prod_bseq;
4373
4374 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4375 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
4376 __FUNCTION__, tx_prod, tx_chain_prod, tx_prod_bseq);
4377
4378 /* Keep adding entries while there is space in the ring. */
4379 while (sc->tx_mbuf_ptr[tx_chain_prod] == NULL) {
4380 /* Check for any frames to send. */
4381 IFQ_POLL(&ifp->if_snd, m_head);
4382 if (m_head == NULL)
4383 break;
4384
4385 /*
4386 * Pack the data into the transmit ring. If we
4387 * don't have room, place the mbuf back at the
4388 * head of the queue and set the OACTIVE flag
4389 * to wait for the NIC to drain the chain.
4390 */
4391 if (bnx_tx_encap(sc, m_head, &tx_prod, &tx_chain_prod,
4392 &tx_prod_bseq)) {
4393 ifp->if_flags |= IFF_OACTIVE;
4394 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4395 "business! Total tx_bd used = %d\n",
4396 sc->used_tx_bd);
4397 break;
4398 }
4399
4400 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4401 count++;
4402
4403 #if NBPFILTER > 0
4404 /* Send a copy of the frame to any BPF listeners. */
4405 if (ifp->if_bpf)
4406 bpf_mtap(ifp->if_bpf, m_head);
4407 #endif
4408 tx_prod = NEXT_TX_BD(tx_prod);
4409 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4410 }
4411
4412 if (count == 0) {
4413 /* no packets were dequeued */
4414 DBPRINT(sc, BNX_VERBOSE_SEND,
4415 "%s(): No packets were dequeued\n", __FUNCTION__);
4416 goto bnx_start_locked_exit;
4417 }
4418
4419 /* Update the driver's counters. */
4420 sc->tx_prod = tx_prod;
4421 sc->tx_prod_bseq = tx_prod_bseq;
4422
4423 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4424 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __FUNCTION__, tx_prod,
4425 tx_chain_prod, tx_prod_bseq);
4426
4427 /* Start the transmit. */
4428 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4429 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4430
4431 /* Set the tx timeout. */
4432 ifp->if_timer = BNX_TX_TIMEOUT;
4433
4434 bnx_start_locked_exit:
4435 return;
4436 }
4437
4438 /****************************************************************************/
4439 /* Handles any IOCTL calls from the operating system. */
4440 /* */
4441 /* Returns: */
4442 /* 0 for success, positive value for failure. */
4443 /****************************************************************************/
4444 int
4445 bnx_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
4446 {
4447 struct bnx_softc *sc = ifp->if_softc;
4448 struct ifreq *ifr = (struct ifreq *) data;
4449 struct mii_data *mii;
4450 int s, error = 0;
4451
4452 s = splnet();
4453
4454 switch (command) {
4455 case SIOCSIFFLAGS:
4456 if (ifp->if_flags & IFF_UP) {
4457 if ((ifp->if_flags & IFF_RUNNING) &&
4458 ((ifp->if_flags ^ sc->bnx_if_flags) &
4459 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
4460 bnx_set_rx_mode(sc);
4461 } else if (!(ifp->if_flags & IFF_RUNNING))
4462 bnx_init(ifp);
4463
4464 } else if (ifp->if_flags & IFF_RUNNING)
4465 bnx_stop(sc);
4466
4467 sc->bnx_if_flags = ifp->if_flags;
4468 break;
4469
4470 case SIOCSIFMEDIA:
4471 case SIOCGIFMEDIA:
4472 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
4473 sc->bnx_phy_flags);
4474
4475 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
4476 error = ifmedia_ioctl(ifp, ifr,
4477 &sc->bnx_ifmedia, command);
4478 else {
4479 mii = &sc->bnx_mii;
4480 error = ifmedia_ioctl(ifp, ifr,
4481 &mii->mii_media, command);
4482 }
4483 break;
4484
4485 default:
4486 error = ether_ioctl(ifp, command, data);
4487 if (error == ENETRESET) {
4488 #if 0
4489 if (ifp->if_flags & IFF_RUNNING)
4490 /*bnx_setmulti(sc)*/;
4491 #endif
4492 error = 0;
4493 }
4494 break;
4495 }
4496
4497 splx(s);
4498
4499 return (error);
4500 }
4501
4502 /****************************************************************************/
4503 /* Transmit timeout handler. */
4504 /* */
4505 /* Returns: */
4506 /* Nothing. */
4507 /****************************************************************************/
4508 void
4509 bnx_watchdog(struct ifnet *ifp)
4510 {
4511 struct bnx_softc *sc = ifp->if_softc;
4512
4513 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
4514 bnx_dump_status_block(sc));
4515
4516 aprint_error("%s: Watchdog timeout -- resetting!\n",
4517 sc->bnx_dev.dv_xname);
4518
4519 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
4520
4521 bnx_init(ifp);
4522
4523 ifp->if_oerrors++;
4524 }
4525
4526 /*
4527 * Interrupt handler.
4528 */
4529 /****************************************************************************/
4530 /* Main interrupt entry point. Verifies that the controller generated the */
4531 /* interrupt and then calls a separate routine for handle the various */
4532 /* interrupt causes (PHY, TX, RX). */
4533 /* */
4534 /* Returns: */
4535 /* 0 for success, positive value for failure. */
4536 /****************************************************************************/
4537 int
4538 bnx_intr(void *xsc)
4539 {
4540 struct bnx_softc *sc;
4541 struct ifnet *ifp;
4542 u_int32_t status_attn_bits;
4543
4544 sc = xsc;
4545 ifp = &sc->ethercom.ec_if;
4546
4547 DBRUNIF(1, sc->interrupts_generated++);
4548
4549 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4550 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4551
4552 /*
4553 * If the hardware status block index
4554 * matches the last value read by the
4555 * driver and we haven't asserted our
4556 * interrupt then there's nothing to do.
4557 */
4558 if ((sc->status_block->status_idx == sc->last_status_idx) &&
4559 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
4560 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
4561 return (0);
4562
4563 /* Ack the interrupt and stop others from occuring. */
4564 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4565 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
4566 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4567
4568 /* Keep processing data as long as there is work to do. */
4569 for (;;) {
4570 status_attn_bits = sc->status_block->status_attn_bits;
4571
4572 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
4573 aprint_debug("Simulating unexpected status attention bit set.");
4574 status_attn_bits = status_attn_bits |
4575 STATUS_ATTN_BITS_PARITY_ERROR);
4576
4577 /* Was it a link change interrupt? */
4578 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
4579 (sc->status_block->status_attn_bits_ack &
4580 STATUS_ATTN_BITS_LINK_STATE))
4581 bnx_phy_intr(sc);
4582
4583 /* If any other attention is asserted then the chip is toast. */
4584 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
4585 (sc->status_block->status_attn_bits_ack &
4586 ~STATUS_ATTN_BITS_LINK_STATE))) {
4587 DBRUN(1, sc->unexpected_attentions++);
4588
4589 aprint_error("%s: Fatal attention detected: 0x%08X\n",
4590 sc->bnx_dev.dv_xname,
4591 sc->status_block->status_attn_bits);
4592
4593 DBRUN(BNX_FATAL,
4594 if (bnx_debug_unexpected_attention == 0)
4595 bnx_breakpoint(sc));
4596
4597 bnx_init(ifp);
4598 return (1);
4599 }
4600
4601 /* Check for any completed RX frames. */
4602 if (sc->status_block->status_rx_quick_consumer_index0 !=
4603 sc->hw_rx_cons)
4604 bnx_rx_intr(sc);
4605
4606 /* Check for any completed TX frames. */
4607 if (sc->status_block->status_tx_quick_consumer_index0 !=
4608 sc->hw_tx_cons)
4609 bnx_tx_intr(sc);
4610
4611 /* Save the status block index value for use during the
4612 * next interrupt.
4613 */
4614 sc->last_status_idx = sc->status_block->status_idx;
4615
4616 /* Prevent speculative reads from getting ahead of the
4617 * status block.
4618 */
4619 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4620 BUS_SPACE_BARRIER_READ);
4621
4622 /* If there's no work left then exit the isr. */
4623 if ((sc->status_block->status_rx_quick_consumer_index0 ==
4624 sc->hw_rx_cons) &&
4625 (sc->status_block->status_tx_quick_consumer_index0 ==
4626 sc->hw_tx_cons))
4627 break;
4628 }
4629
4630 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4631 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
4632
4633 /* Re-enable interrupts. */
4634 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4635 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
4636 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4637 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4638 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4639
4640 /* Handle any frames that arrived while handling the interrupt. */
4641 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4642 bnx_start(ifp);
4643
4644 return (1);
4645 }
4646
4647 /****************************************************************************/
4648 /* Programs the various packet receive modes (broadcast and multicast). */
4649 /* */
4650 /* Returns: */
4651 /* Nothing. */
4652 /****************************************************************************/
4653 void
4654 bnx_set_rx_mode(struct bnx_softc *sc)
4655 {
4656 struct ethercom *ec = &sc->ethercom;
4657 struct ifnet *ifp = &ec->ec_if;
4658 struct ether_multi *enm;
4659 struct ether_multistep step;
4660 u_int32_t hashes[4] = { 0, 0, 0, 0 };
4661 u_int32_t rx_mode, sort_mode;
4662 int h, i;
4663
4664 /* Initialize receive mode default settings. */
4665 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
4666 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
4667 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
4668
4669 /*
4670 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
4671 * be enbled.
4672 */
4673 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
4674 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
4675
4676 /*
4677 * Check for promiscuous, all multicast, or selected
4678 * multicast address filtering.
4679 */
4680 if (ifp->if_flags & IFF_PROMISC) {
4681 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
4682
4683 /* Enable promiscuous mode. */
4684 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
4685 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
4686 } else if (ifp->if_flags & IFF_ALLMULTI) {
4687 allmulti:
4688 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
4689
4690 /* Enable all multicast addresses. */
4691 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4692 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4693 0xffffffff);
4694 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
4695 } else {
4696 /* Accept one or more multicast(s). */
4697 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
4698
4699 ETHER_FIRST_MULTI(step, ec, enm);
4700 while (enm != NULL) {
4701 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
4702 ETHER_ADDR_LEN)) {
4703 ifp->if_flags |= IFF_ALLMULTI;
4704 goto allmulti;
4705 }
4706 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
4707 0x7F;
4708 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
4709 ETHER_NEXT_MULTI(step, enm);
4710 }
4711
4712 for (i = 0; i < 4; i++)
4713 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4714 hashes[i]);
4715
4716 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
4717 }
4718
4719 /* Only make changes if the recive mode has actually changed. */
4720 if (rx_mode != sc->rx_mode) {
4721 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
4722 rx_mode);
4723
4724 sc->rx_mode = rx_mode;
4725 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
4726 }
4727
4728 /* Disable and clear the exisitng sort before enabling a new sort. */
4729 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
4730 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
4731 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
4732 }
4733
4734 /****************************************************************************/
4735 /* Called periodically to updates statistics from the controllers */
4736 /* statistics block. */
4737 /* */
4738 /* Returns: */
4739 /* Nothing. */
4740 /****************************************************************************/
4741 void
4742 bnx_stats_update(struct bnx_softc *sc)
4743 {
4744 struct ifnet *ifp = &sc->ethercom.ec_if;
4745 struct statistics_block *stats;
4746
4747 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __FUNCTION__);
4748 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4749 BUS_DMASYNC_POSTREAD);
4750
4751 stats = (struct statistics_block *)sc->stats_block;
4752
4753 /*
4754 * Update the interface statistics from the
4755 * hardware statistics.
4756 */
4757 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
4758
4759 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
4760 (u_long)stats->stat_EtherStatsOverrsizePkts +
4761 (u_long)stats->stat_IfInMBUFDiscards +
4762 (u_long)stats->stat_Dot3StatsAlignmentErrors +
4763 (u_long)stats->stat_Dot3StatsFCSErrors;
4764
4765 ifp->if_oerrors = (u_long)
4766 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
4767 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
4768 (u_long)stats->stat_Dot3StatsLateCollisions;
4769
4770 /*
4771 * Certain controllers don't report
4772 * carrier sense errors correctly.
4773 * See errata E11_5708CA0_1165.
4774 */
4775 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
4776 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
4777 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
4778
4779 /*
4780 * Update the sysctl statistics from the
4781 * hardware statistics.
4782 */
4783 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
4784 (u_int64_t) stats->stat_IfHCInOctets_lo;
4785
4786 sc->stat_IfHCInBadOctets =
4787 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
4788 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
4789
4790 sc->stat_IfHCOutOctets =
4791 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
4792 (u_int64_t) stats->stat_IfHCOutOctets_lo;
4793
4794 sc->stat_IfHCOutBadOctets =
4795 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
4796 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
4797
4798 sc->stat_IfHCInUcastPkts =
4799 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
4800 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
4801
4802 sc->stat_IfHCInMulticastPkts =
4803 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
4804 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
4805
4806 sc->stat_IfHCInBroadcastPkts =
4807 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
4808 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
4809
4810 sc->stat_IfHCOutUcastPkts =
4811 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
4812 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
4813
4814 sc->stat_IfHCOutMulticastPkts =
4815 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
4816 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
4817
4818 sc->stat_IfHCOutBroadcastPkts =
4819 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
4820 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
4821
4822 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
4823 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
4824
4825 sc->stat_Dot3StatsCarrierSenseErrors =
4826 stats->stat_Dot3StatsCarrierSenseErrors;
4827
4828 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
4829
4830 sc->stat_Dot3StatsAlignmentErrors =
4831 stats->stat_Dot3StatsAlignmentErrors;
4832
4833 sc->stat_Dot3StatsSingleCollisionFrames =
4834 stats->stat_Dot3StatsSingleCollisionFrames;
4835
4836 sc->stat_Dot3StatsMultipleCollisionFrames =
4837 stats->stat_Dot3StatsMultipleCollisionFrames;
4838
4839 sc->stat_Dot3StatsDeferredTransmissions =
4840 stats->stat_Dot3StatsDeferredTransmissions;
4841
4842 sc->stat_Dot3StatsExcessiveCollisions =
4843 stats->stat_Dot3StatsExcessiveCollisions;
4844
4845 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
4846
4847 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
4848
4849 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
4850
4851 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
4852
4853 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
4854
4855 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
4856
4857 sc->stat_EtherStatsPktsRx64Octets =
4858 stats->stat_EtherStatsPktsRx64Octets;
4859
4860 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
4861 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
4862
4863 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
4864 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
4865
4866 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
4867 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
4868
4869 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
4870 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
4871
4872 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
4873 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
4874
4875 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
4876 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
4877
4878 sc->stat_EtherStatsPktsTx64Octets =
4879 stats->stat_EtherStatsPktsTx64Octets;
4880
4881 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
4882 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
4883
4884 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
4885 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
4886
4887 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
4888 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
4889
4890 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
4891 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
4892
4893 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
4894 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
4895
4896 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
4897 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
4898
4899 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
4900
4901 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
4902
4903 sc->stat_OutXonSent = stats->stat_OutXonSent;
4904
4905 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
4906
4907 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
4908
4909 sc->stat_MacControlFramesReceived =
4910 stats->stat_MacControlFramesReceived;
4911
4912 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
4913
4914 sc->stat_IfInFramesL2FilterDiscards =
4915 stats->stat_IfInFramesL2FilterDiscards;
4916
4917 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
4918
4919 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
4920
4921 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
4922
4923 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
4924
4925 sc->stat_CatchupInRuleCheckerDiscards =
4926 stats->stat_CatchupInRuleCheckerDiscards;
4927
4928 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
4929
4930 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
4931
4932 sc->stat_CatchupInRuleCheckerP4Hit =
4933 stats->stat_CatchupInRuleCheckerP4Hit;
4934
4935 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __FUNCTION__);
4936 }
4937
4938 void
4939 bnx_tick(void *xsc)
4940 {
4941 struct bnx_softc *sc = xsc;
4942 struct ifnet *ifp = &sc->ethercom.ec_if;
4943 struct mii_data *mii = NULL;
4944 u_int32_t msg;
4945
4946 /* Tell the firmware that the driver is still running. */
4947 #ifdef BNX_DEBUG
4948 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
4949 #else
4950 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
4951 #endif
4952 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
4953
4954 /* Update the statistics from the hardware statistics block. */
4955 bnx_stats_update(sc);
4956
4957 /* Schedule the next tick. */
4958 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4959
4960 /* If link is up already up then we're done. */
4961 if (sc->bnx_link)
4962 goto bnx_tick_locked_exit;
4963
4964 /* DRC - ToDo: Add SerDes support and check SerDes link here. */
4965
4966 mii = &sc->bnx_mii;
4967 mii_tick(mii);
4968
4969 /* Check if the link has come up. */
4970 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
4971 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4972 sc->bnx_link++;
4973 /* Now that link is up, handle any outstanding TX traffic. */
4974 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4975 bnx_start(ifp);
4976 }
4977
4978 bnx_tick_locked_exit:
4979 return;
4980 }
4981
4982 /****************************************************************************/
4983 /* BNX Debug Routines */
4984 /****************************************************************************/
4985 #ifdef BNX_DEBUG
4986
4987 /****************************************************************************/
4988 /* Prints out information about an mbuf. */
4989 /* */
4990 /* Returns: */
4991 /* Nothing. */
4992 /****************************************************************************/
4993 void
4994 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
4995 {
4996 struct mbuf *mp = m;
4997
4998 if (m == NULL) {
4999 /* Index out of range. */
5000 aprint_error("mbuf ptr is null!\n");
5001 return;
5002 }
5003
5004 while (mp) {
5005 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5006 mp, mp->m_len);
5007
5008 if (mp->m_flags & M_EXT)
5009 aprint_debug("M_EXT ");
5010 if (mp->m_flags & M_PKTHDR)
5011 aprint_debug("M_PKTHDR ");
5012 aprint_debug("\n");
5013
5014 if (mp->m_flags & M_EXT)
5015 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5016 mp, mp->m_ext.ext_size);
5017
5018 mp = mp->m_next;
5019 }
5020 }
5021
5022 /****************************************************************************/
5023 /* Prints out the mbufs in the TX mbuf chain. */
5024 /* */
5025 /* Returns: */
5026 /* Nothing. */
5027 /****************************************************************************/
5028 void
5029 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5030 {
5031 struct mbuf *m;
5032 int i;
5033
5034 BNX_PRINTF(sc,
5035 "----------------------------"
5036 " tx mbuf data "
5037 "----------------------------\n");
5038
5039 for (i = 0; i < count; i++) {
5040 m = sc->tx_mbuf_ptr[chain_prod];
5041 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5042 bnx_dump_mbuf(sc, m);
5043 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5044 }
5045
5046 BNX_PRINTF(sc,
5047 "--------------------------------------------"
5048 "----------------------------\n");
5049 }
5050
5051 /*
5052 * This routine prints the RX mbuf chain.
5053 */
5054 void
5055 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5056 {
5057 struct mbuf *m;
5058 int i;
5059
5060 BNX_PRINTF(sc,
5061 "----------------------------"
5062 " rx mbuf data "
5063 "----------------------------\n");
5064
5065 for (i = 0; i < count; i++) {
5066 m = sc->rx_mbuf_ptr[chain_prod];
5067 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5068 bnx_dump_mbuf(sc, m);
5069 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5070 }
5071
5072
5073 BNX_PRINTF(sc,
5074 "--------------------------------------------"
5075 "----------------------------\n");
5076 }
5077
5078 void
5079 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5080 {
5081 if (idx > MAX_TX_BD)
5082 /* Index out of range. */
5083 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5084 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5085 /* TX Chain page pointer. */
5086 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5087 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5088 txbd->tx_bd_haddr_lo);
5089 else
5090 /* Normal tx_bd entry. */
5091 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5092 "0x%08X, flags = 0x%08X\n", idx,
5093 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5094 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag_flags);
5095 }
5096
5097 void
5098 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5099 {
5100 if (idx > MAX_RX_BD)
5101 /* Index out of range. */
5102 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5103 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5104 /* TX Chain page pointer. */
5105 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5106 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5107 rxbd->rx_bd_haddr_lo);
5108 else
5109 /* Normal tx_bd entry. */
5110 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5111 "0x%08X, flags = 0x%08X\n", idx,
5112 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5113 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5114 }
5115
5116 void
5117 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5118 {
5119 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5120 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5121 "tcp_udp_xsum = 0x%04X\n", idx,
5122 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5123 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5124 l2fhdr->l2_fhdr_tcp_udp_xsum);
5125 }
5126
5127 /*
5128 * This routine prints the TX chain.
5129 */
5130 void
5131 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5132 {
5133 struct tx_bd *txbd;
5134 int i;
5135
5136 /* First some info about the tx_bd chain structure. */
5137 BNX_PRINTF(sc,
5138 "----------------------------"
5139 " tx_bd chain "
5140 "----------------------------\n");
5141
5142 BNX_PRINTF(sc,
5143 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5144 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5145
5146 BNX_PRINTF(sc,
5147 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5148 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5149
5150 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
5151
5152 BNX_PRINTF(sc, ""
5153 "-----------------------------"
5154 " tx_bd data "
5155 "-----------------------------\n");
5156
5157 /* Now print out the tx_bd's themselves. */
5158 for (i = 0; i < count; i++) {
5159 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5160 bnx_dump_txbd(sc, tx_prod, txbd);
5161 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5162 }
5163
5164 BNX_PRINTF(sc,
5165 "-----------------------------"
5166 "--------------"
5167 "-----------------------------\n");
5168 }
5169
5170 /*
5171 * This routine prints the RX chain.
5172 */
5173 void
5174 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5175 {
5176 struct rx_bd *rxbd;
5177 int i;
5178
5179 /* First some info about the tx_bd chain structure. */
5180 BNX_PRINTF(sc,
5181 "----------------------------"
5182 " rx_bd chain "
5183 "----------------------------\n");
5184
5185 BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
5186
5187 BNX_PRINTF(sc,
5188 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5189 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5190
5191 BNX_PRINTF(sc,
5192 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5193 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5194
5195 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
5196
5197 BNX_PRINTF(sc,
5198 "----------------------------"
5199 " rx_bd data "
5200 "----------------------------\n");
5201
5202 /* Now print out the rx_bd's themselves. */
5203 for (i = 0; i < count; i++) {
5204 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5205 bnx_dump_rxbd(sc, rx_prod, rxbd);
5206 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5207 }
5208
5209 BNX_PRINTF(sc,
5210 "----------------------------"
5211 "--------------"
5212 "----------------------------\n");
5213 }
5214
5215 /*
5216 * This routine prints the status block.
5217 */
5218 void
5219 bnx_dump_status_block(struct bnx_softc *sc)
5220 {
5221 struct status_block *sblk;
5222 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5223 BUS_DMASYNC_POSTREAD);
5224
5225 sblk = sc->status_block;
5226
5227 BNX_PRINTF(sc, "----------------------------- Status Block "
5228 "-----------------------------\n");
5229
5230 BNX_PRINTF(sc,
5231 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5232 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5233 sblk->status_idx);
5234
5235 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5236 sblk->status_rx_quick_consumer_index0,
5237 sblk->status_tx_quick_consumer_index0);
5238
5239 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5240
5241 /* Theses indices are not used for normal L2 drivers. */
5242 if (sblk->status_rx_quick_consumer_index1 ||
5243 sblk->status_tx_quick_consumer_index1)
5244 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5245 sblk->status_rx_quick_consumer_index1,
5246 sblk->status_tx_quick_consumer_index1);
5247
5248 if (sblk->status_rx_quick_consumer_index2 ||
5249 sblk->status_tx_quick_consumer_index2)
5250 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5251 sblk->status_rx_quick_consumer_index2,
5252 sblk->status_tx_quick_consumer_index2);
5253
5254 if (sblk->status_rx_quick_consumer_index3 ||
5255 sblk->status_tx_quick_consumer_index3)
5256 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5257 sblk->status_rx_quick_consumer_index3,
5258 sblk->status_tx_quick_consumer_index3);
5259
5260 if (sblk->status_rx_quick_consumer_index4 ||
5261 sblk->status_rx_quick_consumer_index5)
5262 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5263 sblk->status_rx_quick_consumer_index4,
5264 sblk->status_rx_quick_consumer_index5);
5265
5266 if (sblk->status_rx_quick_consumer_index6 ||
5267 sblk->status_rx_quick_consumer_index7)
5268 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5269 sblk->status_rx_quick_consumer_index6,
5270 sblk->status_rx_quick_consumer_index7);
5271
5272 if (sblk->status_rx_quick_consumer_index8 ||
5273 sblk->status_rx_quick_consumer_index9)
5274 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5275 sblk->status_rx_quick_consumer_index8,
5276 sblk->status_rx_quick_consumer_index9);
5277
5278 if (sblk->status_rx_quick_consumer_index10 ||
5279 sblk->status_rx_quick_consumer_index11)
5280 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5281 sblk->status_rx_quick_consumer_index10,
5282 sblk->status_rx_quick_consumer_index11);
5283
5284 if (sblk->status_rx_quick_consumer_index12 ||
5285 sblk->status_rx_quick_consumer_index13)
5286 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5287 sblk->status_rx_quick_consumer_index12,
5288 sblk->status_rx_quick_consumer_index13);
5289
5290 if (sblk->status_rx_quick_consumer_index14 ||
5291 sblk->status_rx_quick_consumer_index15)
5292 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5293 sblk->status_rx_quick_consumer_index14,
5294 sblk->status_rx_quick_consumer_index15);
5295
5296 if (sblk->status_completion_producer_index ||
5297 sblk->status_cmd_consumer_index)
5298 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5299 sblk->status_completion_producer_index,
5300 sblk->status_cmd_consumer_index);
5301
5302 BNX_PRINTF(sc, "-------------------------------------------"
5303 "-----------------------------\n");
5304 }
5305
5306 /*
5307 * This routine prints the statistics block.
5308 */
5309 void
5310 bnx_dump_stats_block(struct bnx_softc *sc)
5311 {
5312 struct statistics_block *sblk;
5313 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5314 BUS_DMASYNC_POSTREAD);
5315
5316 sblk = sc->stats_block;
5317
5318 BNX_PRINTF(sc, ""
5319 "-----------------------------"
5320 " Stats Block "
5321 "-----------------------------\n");
5322
5323 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5324 "IfHcInBadOctets = 0x%08X:%08X\n",
5325 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5326 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5327
5328 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5329 "IfHcOutBadOctets = 0x%08X:%08X\n",
5330 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5331 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5332
5333 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5334 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5335 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5336 sblk->stat_IfHCInMulticastPkts_hi,
5337 sblk->stat_IfHCInMulticastPkts_lo);
5338
5339 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5340 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5341 sblk->stat_IfHCInBroadcastPkts_hi,
5342 sblk->stat_IfHCInBroadcastPkts_lo,
5343 sblk->stat_IfHCOutUcastPkts_hi,
5344 sblk->stat_IfHCOutUcastPkts_lo);
5345
5346 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5347 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5348 sblk->stat_IfHCOutMulticastPkts_hi,
5349 sblk->stat_IfHCOutMulticastPkts_lo,
5350 sblk->stat_IfHCOutBroadcastPkts_hi,
5351 sblk->stat_IfHCOutBroadcastPkts_lo);
5352
5353 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5354 BNX_PRINTF(sc, "0x%08X : "
5355 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5356 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5357
5358 if (sblk->stat_Dot3StatsCarrierSenseErrors)
5359 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5360 sblk->stat_Dot3StatsCarrierSenseErrors);
5361
5362 if (sblk->stat_Dot3StatsFCSErrors)
5363 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5364 sblk->stat_Dot3StatsFCSErrors);
5365
5366 if (sblk->stat_Dot3StatsAlignmentErrors)
5367 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5368 sblk->stat_Dot3StatsAlignmentErrors);
5369
5370 if (sblk->stat_Dot3StatsSingleCollisionFrames)
5371 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5372 sblk->stat_Dot3StatsSingleCollisionFrames);
5373
5374 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5375 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5376 sblk->stat_Dot3StatsMultipleCollisionFrames);
5377
5378 if (sblk->stat_Dot3StatsDeferredTransmissions)
5379 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5380 sblk->stat_Dot3StatsDeferredTransmissions);
5381
5382 if (sblk->stat_Dot3StatsExcessiveCollisions)
5383 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5384 sblk->stat_Dot3StatsExcessiveCollisions);
5385
5386 if (sblk->stat_Dot3StatsLateCollisions)
5387 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5388 sblk->stat_Dot3StatsLateCollisions);
5389
5390 if (sblk->stat_EtherStatsCollisions)
5391 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5392 sblk->stat_EtherStatsCollisions);
5393
5394 if (sblk->stat_EtherStatsFragments)
5395 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5396 sblk->stat_EtherStatsFragments);
5397
5398 if (sblk->stat_EtherStatsJabbers)
5399 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5400 sblk->stat_EtherStatsJabbers);
5401
5402 if (sblk->stat_EtherStatsUndersizePkts)
5403 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5404 sblk->stat_EtherStatsUndersizePkts);
5405
5406 if (sblk->stat_EtherStatsOverrsizePkts)
5407 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5408 sblk->stat_EtherStatsOverrsizePkts);
5409
5410 if (sblk->stat_EtherStatsPktsRx64Octets)
5411 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5412 sblk->stat_EtherStatsPktsRx64Octets);
5413
5414 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5415 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5416 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5417
5418 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5419 BNX_PRINTF(sc, "0x%08X : "
5420 "EtherStatsPktsRx128Octetsto255Octets\n",
5421 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5422
5423 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5424 BNX_PRINTF(sc, "0x%08X : "
5425 "EtherStatsPktsRx256Octetsto511Octets\n",
5426 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5427
5428 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5429 BNX_PRINTF(sc, "0x%08X : "
5430 "EtherStatsPktsRx512Octetsto1023Octets\n",
5431 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5432
5433 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5434 BNX_PRINTF(sc, "0x%08X : "
5435 "EtherStatsPktsRx1024Octetsto1522Octets\n",
5436 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5437
5438 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5439 BNX_PRINTF(sc, "0x%08X : "
5440 "EtherStatsPktsRx1523Octetsto9022Octets\n",
5441 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5442
5443 if (sblk->stat_EtherStatsPktsTx64Octets)
5444 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5445 sblk->stat_EtherStatsPktsTx64Octets);
5446
5447 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
5448 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
5449 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
5450
5451 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
5452 BNX_PRINTF(sc, "0x%08X : "
5453 "EtherStatsPktsTx128Octetsto255Octets\n",
5454 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
5455
5456 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
5457 BNX_PRINTF(sc, "0x%08X : "
5458 "EtherStatsPktsTx256Octetsto511Octets\n",
5459 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
5460
5461 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
5462 BNX_PRINTF(sc, "0x%08X : "
5463 "EtherStatsPktsTx512Octetsto1023Octets\n",
5464 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
5465
5466 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
5467 BNX_PRINTF(sc, "0x%08X : "
5468 "EtherStatsPktsTx1024Octetsto1522Octets\n",
5469 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
5470
5471 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
5472 BNX_PRINTF(sc, "0x%08X : "
5473 "EtherStatsPktsTx1523Octetsto9022Octets\n",
5474 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
5475
5476 if (sblk->stat_XonPauseFramesReceived)
5477 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
5478 sblk->stat_XonPauseFramesReceived);
5479
5480 if (sblk->stat_XoffPauseFramesReceived)
5481 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
5482 sblk->stat_XoffPauseFramesReceived);
5483
5484 if (sblk->stat_OutXonSent)
5485 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
5486 sblk->stat_OutXonSent);
5487
5488 if (sblk->stat_OutXoffSent)
5489 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
5490 sblk->stat_OutXoffSent);
5491
5492 if (sblk->stat_FlowControlDone)
5493 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
5494 sblk->stat_FlowControlDone);
5495
5496 if (sblk->stat_MacControlFramesReceived)
5497 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
5498 sblk->stat_MacControlFramesReceived);
5499
5500 if (sblk->stat_XoffStateEntered)
5501 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
5502 sblk->stat_XoffStateEntered);
5503
5504 if (sblk->stat_IfInFramesL2FilterDiscards)
5505 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
5506 sblk->stat_IfInFramesL2FilterDiscards);
5507
5508 if (sblk->stat_IfInRuleCheckerDiscards)
5509 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
5510 sblk->stat_IfInRuleCheckerDiscards);
5511
5512 if (sblk->stat_IfInFTQDiscards)
5513 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
5514 sblk->stat_IfInFTQDiscards);
5515
5516 if (sblk->stat_IfInMBUFDiscards)
5517 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
5518 sblk->stat_IfInMBUFDiscards);
5519
5520 if (sblk->stat_IfInRuleCheckerP4Hit)
5521 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
5522 sblk->stat_IfInRuleCheckerP4Hit);
5523
5524 if (sblk->stat_CatchupInRuleCheckerDiscards)
5525 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
5526 sblk->stat_CatchupInRuleCheckerDiscards);
5527
5528 if (sblk->stat_CatchupInFTQDiscards)
5529 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
5530 sblk->stat_CatchupInFTQDiscards);
5531
5532 if (sblk->stat_CatchupInMBUFDiscards)
5533 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
5534 sblk->stat_CatchupInMBUFDiscards);
5535
5536 if (sblk->stat_CatchupInRuleCheckerP4Hit)
5537 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
5538 sblk->stat_CatchupInRuleCheckerP4Hit);
5539
5540 BNX_PRINTF(sc,
5541 "-----------------------------"
5542 "--------------"
5543 "-----------------------------\n");
5544 }
5545
5546 void
5547 bnx_dump_driver_state(struct bnx_softc *sc)
5548 {
5549 BNX_PRINTF(sc,
5550 "-----------------------------"
5551 " Driver State "
5552 "-----------------------------\n");
5553
5554 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
5555 "address\n", sc);
5556
5557 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
5558 sc->status_block);
5559
5560 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
5561 "address\n", sc->stats_block);
5562
5563 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
5564 "adddress\n", sc->tx_bd_chain);
5565
5566 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
5567 sc->rx_bd_chain);
5568
5569 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
5570 sc->tx_mbuf_ptr);
5571
5572 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
5573 sc->rx_mbuf_ptr);
5574
5575 BNX_PRINTF(sc,
5576 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
5577 sc->interrupts_generated);
5578
5579 BNX_PRINTF(sc,
5580 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
5581 sc->rx_interrupts);
5582
5583 BNX_PRINTF(sc,
5584 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
5585 sc->tx_interrupts);
5586
5587 BNX_PRINTF(sc,
5588 " 0x%08X - (sc->last_status_idx) status block index\n",
5589 sc->last_status_idx);
5590
5591 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
5592 sc->tx_prod);
5593
5594 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
5595 sc->tx_cons);
5596
5597 BNX_PRINTF(sc,
5598 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
5599 sc->tx_prod_bseq);
5600
5601 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
5602 sc->rx_prod);
5603
5604 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
5605 sc->rx_cons);
5606
5607 BNX_PRINTF(sc,
5608 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
5609 sc->rx_prod_bseq);
5610
5611 BNX_PRINTF(sc,
5612 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5613 sc->rx_mbuf_alloc);
5614
5615 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
5616 sc->free_rx_bd);
5617
5618 BNX_PRINTF(sc,
5619 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
5620 sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
5621
5622 BNX_PRINTF(sc,
5623 " 0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
5624 sc->tx_mbuf_alloc);
5625
5626 BNX_PRINTF(sc,
5627 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5628 sc->rx_mbuf_alloc);
5629
5630 BNX_PRINTF(sc, " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
5631 sc->used_tx_bd);
5632
5633 BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
5634 sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
5635
5636 BNX_PRINTF(sc,
5637 " 0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
5638 sc->mbuf_alloc_failed);
5639
5640 BNX_PRINTF(sc, "-------------------------------------------"
5641 "-----------------------------\n");
5642 }
5643
5644 void
5645 bnx_dump_hw_state(struct bnx_softc *sc)
5646 {
5647 u_int32_t val1;
5648 int i;
5649
5650 BNX_PRINTF(sc,
5651 "----------------------------"
5652 " Hardware State "
5653 "----------------------------\n");
5654
5655 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
5656
5657 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
5658 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
5659 val1, BNX_MISC_ENABLE_STATUS_BITS);
5660
5661 val1 = REG_RD(sc, BNX_DMA_STATUS);
5662 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
5663
5664 val1 = REG_RD(sc, BNX_CTX_STATUS);
5665 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
5666
5667 val1 = REG_RD(sc, BNX_EMAC_STATUS);
5668 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
5669 BNX_EMAC_STATUS);
5670
5671 val1 = REG_RD(sc, BNX_RPM_STATUS);
5672 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
5673
5674 val1 = REG_RD(sc, BNX_TBDR_STATUS);
5675 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
5676 BNX_TBDR_STATUS);
5677
5678 val1 = REG_RD(sc, BNX_TDMA_STATUS);
5679 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
5680 BNX_TDMA_STATUS);
5681
5682 val1 = REG_RD(sc, BNX_HC_STATUS);
5683 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
5684
5685 BNX_PRINTF(sc,
5686 "----------------------------"
5687 "----------------"
5688 "----------------------------\n");
5689
5690 BNX_PRINTF(sc,
5691 "----------------------------"
5692 " Register Dump "
5693 "----------------------------\n");
5694
5695 for (i = 0x400; i < 0x8000; i += 0x10)
5696 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
5697 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
5698 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
5699
5700 BNX_PRINTF(sc,
5701 "----------------------------"
5702 "----------------"
5703 "----------------------------\n");
5704 }
5705
5706 void
5707 bnx_breakpoint(struct bnx_softc *sc)
5708 {
5709 /* Unreachable code to shut the compiler up about unused functions. */
5710 if (0) {
5711 bnx_dump_txbd(sc, 0, NULL);
5712 bnx_dump_rxbd(sc, 0, NULL);
5713 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
5714 bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
5715 bnx_dump_l2fhdr(sc, 0, NULL);
5716 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
5717 bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
5718 bnx_dump_status_block(sc);
5719 bnx_dump_stats_block(sc);
5720 bnx_dump_driver_state(sc);
5721 bnx_dump_hw_state(sc);
5722 }
5723
5724 bnx_dump_driver_state(sc);
5725 /* Print the important status block fields. */
5726 bnx_dump_status_block(sc);
5727
5728 #if 0
5729 /* Call the debugger. */
5730 breakpoint();
5731 #endif
5732
5733 return;
5734 }
5735 #endif
5736