if_bnx.c revision 1.100 1 /* $NetBSD: if_bnx.c,v 1.100 2020/07/16 14:44:43 jdolecek Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.100 2020/07/16 14:44:43 jdolecek Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187
188 /* Slow EEPROM */
189 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
190 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
191 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
192 "EEPROM - slow"},
193 /* Expansion entry 0001 */
194 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
195 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
196 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
197 "Entry 0001"},
198 /* Saifun SA25F010 (non-buffered flash) */
199 /* strap, cfg1, & write1 need updates */
200 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
203 "Non-buffered flash (128kB)"},
204 /* Saifun SA25F020 (non-buffered flash) */
205 /* strap, cfg1, & write1 need updates */
206 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
209 "Non-buffered flash (256kB)"},
210 /* Expansion entry 0100 */
211 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
212 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
213 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
214 "Entry 0100"},
215 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
216 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
218 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
219 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
220 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
221 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
223 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
224 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
225 /* Saifun SA25F005 (non-buffered flash) */
226 /* strap, cfg1, & write1 need updates */
227 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
228 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
230 "Non-buffered flash (64kB)"},
231 /* Fast EEPROM */
232 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
233 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
234 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
235 "EEPROM - fast"},
236 /* Expansion entry 1001 */
237 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
238 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
239 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
240 "Entry 1001"},
241 /* Expansion entry 1010 */
242 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
243 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
244 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
245 "Entry 1010"},
246 /* ATMEL AT45DB011B (buffered flash) */
247 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
248 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
249 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
250 "Buffered flash (128kB)"},
251 /* Expansion entry 1100 */
252 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
253 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
255 "Entry 1100"},
256 /* Expansion entry 1101 */
257 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
258 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
259 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
260 "Entry 1101"},
261 /* Ateml Expansion entry 1110 */
262 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
263 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
264 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
265 "Entry 1110 (Atmel)"},
266 /* ATMEL AT45DB021B (buffered flash) */
267 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
268 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
269 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
270 "Buffered flash (256kB)"},
271 };
272
273 /*
274 * The BCM5709 controllers transparently handle the
275 * differences between Atmel 264 byte pages and all
276 * flash devices which use 256 byte pages, so no
277 * logical-to-physical mapping is required in the
278 * driver.
279 */
280 static struct flash_spec flash_5709 = {
281 .flags = BNX_NV_BUFFERED,
282 .page_bits = BCM5709_FLASH_PAGE_BITS,
283 .page_size = BCM5709_FLASH_PAGE_SIZE,
284 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
285 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
286 .name = "5709 buffered flash (256kB)",
287 };
288
289 /****************************************************************************/
290 /* OpenBSD device entry points. */
291 /****************************************************************************/
292 static int bnx_probe(device_t, cfdata_t, void *);
293 void bnx_attach(device_t, device_t, void *);
294 int bnx_detach(device_t, int);
295
296 /****************************************************************************/
297 /* BNX Debug Data Structure Dump Routines */
298 /****************************************************************************/
299 #ifdef BNX_DEBUG
300 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
301 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
303 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
304 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
305 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
306 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
308 void bnx_dump_status_block(struct bnx_softc *);
309 void bnx_dump_stats_block(struct bnx_softc *);
310 void bnx_dump_driver_state(struct bnx_softc *);
311 void bnx_dump_hw_state(struct bnx_softc *);
312 void bnx_breakpoint(struct bnx_softc *);
313 #endif
314
315 /****************************************************************************/
316 /* BNX Register/Memory Access Routines */
317 /****************************************************************************/
318 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
319 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
320 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
321 int bnx_miibus_read_reg(device_t, int, int, uint16_t *);
322 int bnx_miibus_write_reg(device_t, int, int, uint16_t);
323 void bnx_miibus_statchg(struct ifnet *);
324
325 /****************************************************************************/
326 /* BNX NVRAM Access Routines */
327 /****************************************************************************/
328 int bnx_acquire_nvram_lock(struct bnx_softc *);
329 int bnx_release_nvram_lock(struct bnx_softc *);
330 void bnx_enable_nvram_access(struct bnx_softc *);
331 void bnx_disable_nvram_access(struct bnx_softc *);
332 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
333 uint32_t);
334 int bnx_init_nvram(struct bnx_softc *);
335 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
336 int bnx_nvram_test(struct bnx_softc *);
337 #ifdef BNX_NVRAM_WRITE_SUPPORT
338 int bnx_enable_nvram_write(struct bnx_softc *);
339 void bnx_disable_nvram_write(struct bnx_softc *);
340 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
341 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
342 uint32_t);
343 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
344 #endif
345
346 /****************************************************************************/
347 /* */
348 /****************************************************************************/
349 void bnx_get_media(struct bnx_softc *);
350 void bnx_init_media(struct bnx_softc *);
351 int bnx_dma_alloc(struct bnx_softc *);
352 void bnx_dma_free(struct bnx_softc *);
353 void bnx_release_resources(struct bnx_softc *);
354
355 /****************************************************************************/
356 /* BNX Firmware Synchronization and Load */
357 /****************************************************************************/
358 int bnx_fw_sync(struct bnx_softc *, uint32_t);
359 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 static void bnx_print_adapter_info(struct bnx_softc *);
365 static void bnx_probe_pci_caps(struct bnx_softc *);
366 void bnx_stop(struct ifnet *, int);
367 int bnx_reset(struct bnx_softc *, uint32_t);
368 int bnx_chipinit(struct bnx_softc *);
369 int bnx_blockinit(struct bnx_softc *);
370 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
371 uint16_t *, uint32_t *);
372 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
373
374 int bnx_init_tx_chain(struct bnx_softc *);
375 void bnx_init_tx_context(struct bnx_softc *);
376 int bnx_init_rx_chain(struct bnx_softc *);
377 void bnx_init_rx_context(struct bnx_softc *);
378 void bnx_free_rx_chain(struct bnx_softc *);
379 void bnx_free_tx_chain(struct bnx_softc *);
380
381 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
382 void bnx_start(struct ifnet *);
383 int bnx_ioctl(struct ifnet *, u_long, void *);
384 void bnx_watchdog(struct ifnet *);
385 int bnx_ifmedia_upd(struct ifnet *);
386 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
387 int bnx_init(struct ifnet *);
388 static void bnx_mgmt_init(struct bnx_softc *);
389
390 void bnx_init_context(struct bnx_softc *);
391 void bnx_get_mac_addr(struct bnx_softc *);
392 void bnx_set_mac_addr(struct bnx_softc *);
393 void bnx_phy_intr(struct bnx_softc *);
394 void bnx_rx_intr(struct bnx_softc *);
395 void bnx_tx_intr(struct bnx_softc *);
396 void bnx_disable_intr(struct bnx_softc *);
397 void bnx_enable_intr(struct bnx_softc *);
398
399 int bnx_intr(void *);
400 void bnx_iff(struct bnx_softc *);
401 void bnx_stats_update(struct bnx_softc *);
402 void bnx_tick(void *);
403
404 struct pool *bnx_tx_pool = NULL;
405 void bnx_alloc_pkts(struct work *, void *);
406
407 /****************************************************************************/
408 /* OpenBSD device dispatch table. */
409 /****************************************************************************/
410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
411 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
412
413 /****************************************************************************/
414 /* Device probe function. */
415 /* */
416 /* Compares the device to the driver's list of supported devices and */
417 /* reports back to the OS whether this is the right driver for the device. */
418 /* */
419 /* Returns: */
420 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
421 /****************************************************************************/
422 static const struct bnx_product *
423 bnx_lookup(const struct pci_attach_args *pa)
424 {
425 int i;
426 pcireg_t subid;
427
428 for (i = 0; i < __arraycount(bnx_devices); i++) {
429 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
430 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
431 continue;
432 if (!bnx_devices[i].bp_subvendor)
433 return &bnx_devices[i];
434 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
435 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
436 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
437 return &bnx_devices[i];
438 }
439
440 return NULL;
441 }
442 static int
443 bnx_probe(device_t parent, cfdata_t match, void *aux)
444 {
445 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
446
447 if (bnx_lookup(pa) != NULL)
448 return 1;
449
450 return 0;
451 }
452
453 /****************************************************************************/
454 /* PCI Capabilities Probe Function. */
455 /* */
456 /* Walks the PCI capabiites list for the device to find what features are */
457 /* supported. */
458 /* */
459 /* Returns: */
460 /* None. */
461 /****************************************************************************/
462 static void
463 bnx_print_adapter_info(struct bnx_softc *sc)
464 {
465 device_t dev = sc->bnx_dev;
466 int i = 0;
467
468 aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
469 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
470 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
471 ? "Serdes " : "", sc->bnx_chipid);
472
473 /* Bus info. */
474 if (sc->bnx_flags & BNX_PCIE_FLAG) {
475 aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
476 switch (sc->link_speed) {
477 case 1: aprint_normal("2.5GT/s\n"); break;
478 case 2: aprint_normal("5GT/s\n"); break;
479 default: aprint_normal("Unknown link speed\n");
480 }
481 } else {
482 aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
483 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
484 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
485 sc->bus_speed_mhz);
486 }
487
488 /* Firmware version and device features. */
489 aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
490 sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
491
492 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
493 if (i > 0) aprint_normal("|");
494 aprint_normal("2.5G"); i++;
495 }
496
497 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
498 if (i > 0) aprint_normal("|");
499 aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
500 } else {
501 aprint_normal(")\n");
502 }
503
504 aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
505 sc->bnx_rx_quick_cons_trip_int,
506 sc->bnx_rx_quick_cons_trip,
507 sc->bnx_rx_ticks_int,
508 sc->bnx_rx_ticks,
509 sc->bnx_tx_quick_cons_trip_int,
510 sc->bnx_tx_quick_cons_trip,
511 sc->bnx_tx_ticks_int,
512 sc->bnx_tx_ticks);
513 }
514
515
516 /****************************************************************************/
517 /* PCI Capabilities Probe Function. */
518 /* */
519 /* Walks the PCI capabiites list for the device to find what features are */
520 /* supported. */
521 /* */
522 /* Returns: */
523 /* None. */
524 /****************************************************************************/
525 static void
526 bnx_probe_pci_caps(struct bnx_softc *sc)
527 {
528 struct pci_attach_args *pa = &(sc->bnx_pa);
529 pcireg_t reg;
530
531 /* Check if PCI-X capability is enabled. */
532 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
533 NULL) != 0) {
534 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
535 }
536
537 /* Check if PCIe capability is enabled. */
538 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
539 NULL) != 0) {
540 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
541 reg + PCIE_LCSR);
542 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
543 "0x%08X\n", link_status);
544 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
545 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
546 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
547 sc->bnx_flags |= BNX_PCIE_FLAG;
548 }
549
550 /* Check if MSI capability is enabled. */
551 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
552 NULL) != 0)
553 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
554
555 /* Check if MSI-X capability is enabled. */
556 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
557 NULL) != 0)
558 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
559 }
560
561
562 /****************************************************************************/
563 /* Device attach function. */
564 /* */
565 /* Allocates device resources, performs secondary chip identification, */
566 /* resets and initializes the hardware, and initializes driver instance */
567 /* variables. */
568 /* */
569 /* Returns: */
570 /* 0 on success, positive value on failure. */
571 /****************************************************************************/
572 void
573 bnx_attach(device_t parent, device_t self, void *aux)
574 {
575 const struct bnx_product *bp;
576 struct bnx_softc *sc = device_private(self);
577 prop_dictionary_t dict;
578 struct pci_attach_args *pa = aux;
579 pci_chipset_tag_t pc = pa->pa_pc;
580 const char *intrstr = NULL;
581 uint32_t command;
582 struct ifnet *ifp;
583 struct mii_data * const mii = &sc->bnx_mii;
584 uint32_t val;
585 int mii_flags = MIIF_FORCEANEG;
586 pcireg_t memtype;
587 char intrbuf[PCI_INTRSTR_LEN];
588 int i, j;
589
590 if (bnx_tx_pool == NULL) {
591 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_WAITOK);
592 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
593 0, 0, 0, "bnxpkts", NULL, IPL_NET);
594 }
595
596 bp = bnx_lookup(pa);
597 if (bp == NULL)
598 panic("unknown device");
599
600 sc->bnx_dev = self;
601
602 aprint_naive("\n");
603 aprint_normal(": %s\n", bp->bp_name);
604
605 sc->bnx_pa = *pa;
606
607 /*
608 * Map control/status registers.
609 */
610 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
611 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
612 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
613 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
614
615 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
616 aprint_error_dev(sc->bnx_dev,
617 "failed to enable memory mapping!\n");
618 return;
619 }
620
621 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
622 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
623 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
624 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
625 return;
626 }
627
628 /* XXX using MSI-X causes TX timeouts, needs to be debugged */
629 int counts[PCI_INTR_TYPE_SIZE] = {
630 [PCI_INTR_TYPE_INTX] = 1,
631 [PCI_INTR_TYPE_MSI] = 0,
632 [PCI_INTR_TYPE_MSIX] = 0,
633 };
634
635 if (pci_intr_alloc(pa, &sc->bnx_ih, counts, PCI_INTR_TYPE_INTX)) {
636 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
637 goto bnx_attach_fail;
638 }
639 intrstr = pci_intr_string(pc, sc->bnx_ih[0], intrbuf, sizeof(intrbuf));
640
641 /*
642 * Configure byte swap and enable indirect register access.
643 * Rely on CPU to do target byte swapping on big endian systems.
644 * Access to registers outside of PCI configurtion space are not
645 * valid until this is done.
646 */
647 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
648 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
649 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
650
651 /* Save ASIC revision info. */
652 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
653
654 /*
655 * Find the base address for shared memory access.
656 * Newer versions of bootcode use a signature and offset
657 * while older versions use a fixed address.
658 */
659 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
660 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
661 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
662 (sc->bnx_pa.pa_function << 2));
663 else
664 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
665
666 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
667
668 /* Set initial device and PHY flags */
669 sc->bnx_flags = 0;
670 sc->bnx_phy_flags = 0;
671
672 /* Fetch the bootcode revision. */
673 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
674 for (i = 0, j = 0; i < 3; i++) {
675 uint8_t num;
676 int k, skip0;
677
678 num = (uint8_t)(val >> (24 - (i * 8)));
679 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
680 if (num >= k || !skip0 || k == 1) {
681 sc->bnx_bc_ver[j++] = (num / k) + '0';
682 skip0 = 0;
683 }
684 }
685 if (i != 2)
686 sc->bnx_bc_ver[j++] = '.';
687 }
688
689 /* Check if any management firmware is enabled. */
690 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
691 if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
692 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
693 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
694
695 /* Allow time for firmware to enter the running state. */
696 for (i = 0; i < 30; i++) {
697 val = REG_RD_IND(sc, sc->bnx_shmem_base +
698 BNX_BC_STATE_CONDITION);
699 if (val & BNX_CONDITION_MFW_RUN_MASK)
700 break;
701 DELAY(10000);
702 }
703
704 /* Check if management firmware is running. */
705 val = REG_RD_IND(sc, sc->bnx_shmem_base +
706 BNX_BC_STATE_CONDITION);
707 val &= BNX_CONDITION_MFW_RUN_MASK;
708 if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
709 (val != BNX_CONDITION_MFW_RUN_NONE)) {
710 uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
711 BNX_MFW_VER_PTR);
712
713 /* Read the management firmware version string. */
714 for (j = 0; j < 3; j++) {
715 val = bnx_reg_rd_ind(sc, addr + j * 4);
716 val = bswap32(val);
717 memcpy(&sc->bnx_mfw_ver[i], &val, 4);
718 i += 4;
719 }
720 } else {
721 /* May cause firmware synchronization timeouts. */
722 BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
723 "but not running!\n", __FILE__, __LINE__);
724 strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
725
726 /* ToDo: Any action the driver should take? */
727 }
728 }
729
730 bnx_probe_pci_caps(sc);
731
732 /* Get PCI bus information (speed and type). */
733 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
734 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
735 uint32_t clkreg;
736
737 sc->bnx_flags |= BNX_PCIX_FLAG;
738
739 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
740
741 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
742 switch (clkreg) {
743 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
744 sc->bus_speed_mhz = 133;
745 break;
746
747 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
748 sc->bus_speed_mhz = 100;
749 break;
750
751 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
752 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
753 sc->bus_speed_mhz = 66;
754 break;
755
756 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
757 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
758 sc->bus_speed_mhz = 50;
759 break;
760
761 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
762 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
763 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
764 sc->bus_speed_mhz = 33;
765 break;
766 }
767 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
768 sc->bus_speed_mhz = 66;
769 else
770 sc->bus_speed_mhz = 33;
771
772 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
773 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
774
775 /* Reset the controller. */
776 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
777 goto bnx_attach_fail;
778
779 /* Initialize the controller. */
780 if (bnx_chipinit(sc)) {
781 aprint_error_dev(sc->bnx_dev,
782 "Controller initialization failed!\n");
783 goto bnx_attach_fail;
784 }
785
786 /* Perform NVRAM test. */
787 if (bnx_nvram_test(sc)) {
788 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
789 goto bnx_attach_fail;
790 }
791
792 /* Fetch the permanent Ethernet MAC address. */
793 bnx_get_mac_addr(sc);
794 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
795 ether_sprintf(sc->eaddr));
796
797 /*
798 * Trip points control how many BDs
799 * should be ready before generating an
800 * interrupt while ticks control how long
801 * a BD can sit in the chain before
802 * generating an interrupt. Set the default
803 * values for the RX and TX rings.
804 */
805
806 #ifdef BNX_DEBUG
807 /* Force more frequent interrupts. */
808 sc->bnx_tx_quick_cons_trip_int = 1;
809 sc->bnx_tx_quick_cons_trip = 1;
810 sc->bnx_tx_ticks_int = 0;
811 sc->bnx_tx_ticks = 0;
812
813 sc->bnx_rx_quick_cons_trip_int = 1;
814 sc->bnx_rx_quick_cons_trip = 1;
815 sc->bnx_rx_ticks_int = 0;
816 sc->bnx_rx_ticks = 0;
817 #else
818 sc->bnx_tx_quick_cons_trip_int = 20;
819 sc->bnx_tx_quick_cons_trip = 20;
820 sc->bnx_tx_ticks_int = 80;
821 sc->bnx_tx_ticks = 80;
822
823 sc->bnx_rx_quick_cons_trip_int = 6;
824 sc->bnx_rx_quick_cons_trip = 6;
825 sc->bnx_rx_ticks_int = 18;
826 sc->bnx_rx_ticks = 18;
827 #endif
828
829 /* Update statistics once every second. */
830 sc->bnx_stats_ticks = 1000000 & 0xffff00;
831
832 /* Find the media type for the adapter. */
833 bnx_get_media(sc);
834
835 /*
836 * Store config data needed by the PHY driver for
837 * backplane applications
838 */
839 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
840 BNX_SHARED_HW_CFG_CONFIG);
841 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
842 BNX_PORT_HW_CFG_CONFIG);
843
844 /* Allocate DMA memory resources. */
845 sc->bnx_dmatag = pa->pa_dmat;
846 if (bnx_dma_alloc(sc)) {
847 aprint_error_dev(sc->bnx_dev,
848 "DMA resource allocation failed!\n");
849 goto bnx_attach_fail;
850 }
851
852 /* Initialize the ifnet interface. */
853 ifp = &sc->bnx_ec.ec_if;
854 ifp->if_softc = sc;
855 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
856 ifp->if_ioctl = bnx_ioctl;
857 ifp->if_stop = bnx_stop;
858 ifp->if_start = bnx_start;
859 ifp->if_init = bnx_init;
860 ifp->if_watchdog = bnx_watchdog;
861 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
862 IFQ_SET_READY(&ifp->if_snd);
863 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
864
865 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
866 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
867 sc->bnx_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
868
869 ifp->if_capabilities |=
870 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
871 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
872 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
873
874 /* create workqueue to handle packet allocations */
875 if (workqueue_create(&sc->bnx_wq, device_xname(self),
876 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
877 aprint_error_dev(self, "failed to create workqueue\n");
878 goto bnx_attach_fail;
879 }
880
881 mii->mii_ifp = ifp;
882 mii->mii_readreg = bnx_miibus_read_reg;
883 mii->mii_writereg = bnx_miibus_write_reg;
884 mii->mii_statchg = bnx_miibus_statchg;
885
886 /* Handle any special PHY initialization for SerDes PHYs. */
887 bnx_init_media(sc);
888
889 sc->bnx_ec.ec_mii = mii;
890 ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
891
892 /* set phyflags and chipid before mii_attach() */
893 dict = device_properties(self);
894 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
895 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
896 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
897 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
898
899 /* Print some useful adapter info */
900 bnx_print_adapter_info(sc);
901
902 mii_flags |= MIIF_DOPAUSE;
903 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
904 mii_flags |= MIIF_HAVEFIBER;
905 mii_attach(self, mii, 0xffffffff,
906 sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
907
908 if (LIST_EMPTY(&mii->mii_phys)) {
909 aprint_error_dev(self, "no PHY found!\n");
910 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
911 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
912 } else
913 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
914
915 /* Attach to the Ethernet interface list. */
916 if_attach(ifp);
917 if_deferred_start_init(ifp, NULL);
918 ether_ifattach(ifp, sc->eaddr);
919
920 callout_init(&sc->bnx_timeout, 0);
921 callout_setfunc(&sc->bnx_timeout, bnx_tick, sc);
922
923 /* Hookup IRQ last. */
924 sc->bnx_intrhand = pci_intr_establish_xname(pc, sc->bnx_ih[0], IPL_NET,
925 bnx_intr, sc, device_xname(self));
926 if (sc->bnx_intrhand == NULL) {
927 aprint_error_dev(self, "couldn't establish interrupt");
928 if (intrstr != NULL)
929 aprint_error(" at %s", intrstr);
930 aprint_error("\n");
931 goto bnx_attach_fail;
932 }
933 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
934
935 if (pmf_device_register(self, NULL, NULL))
936 pmf_class_network_register(self, ifp);
937 else
938 aprint_error_dev(self, "couldn't establish power handler\n");
939
940 /* Print some important debugging info. */
941 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
942
943 /* Get the firmware running so ASF still works. */
944 bnx_mgmt_init(sc);
945
946 goto bnx_attach_exit;
947
948 bnx_attach_fail:
949 bnx_release_resources(sc);
950
951 bnx_attach_exit:
952 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
953 }
954
955 /****************************************************************************/
956 /* Device detach function. */
957 /* */
958 /* Stops the controller, resets the controller, and releases resources. */
959 /* */
960 /* Returns: */
961 /* 0 on success, positive value on failure. */
962 /****************************************************************************/
963 int
964 bnx_detach(device_t dev, int flags)
965 {
966 int s;
967 struct bnx_softc *sc;
968 struct ifnet *ifp;
969
970 sc = device_private(dev);
971 ifp = &sc->bnx_ec.ec_if;
972
973 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
974
975 /* Stop and reset the controller. */
976 s = splnet();
977 bnx_stop(ifp, 1);
978 splx(s);
979
980 pmf_device_deregister(dev);
981 callout_destroy(&sc->bnx_timeout);
982 ether_ifdetach(ifp);
983 workqueue_destroy(sc->bnx_wq);
984
985 if_detach(ifp);
986 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
987
988 /* Delete all remaining media. */
989 ifmedia_fini(&sc->bnx_mii.mii_media);
990
991 /* Release all remaining resources. */
992 bnx_release_resources(sc);
993
994 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
995
996 return 0;
997 }
998
999 /****************************************************************************/
1000 /* Indirect register read. */
1001 /* */
1002 /* Reads NetXtreme II registers using an index/data register pair in PCI */
1003 /* configuration space. Using this mechanism avoids issues with posted */
1004 /* reads but is much slower than memory-mapped I/O. */
1005 /* */
1006 /* Returns: */
1007 /* The value of the register. */
1008 /****************************************************************************/
1009 uint32_t
1010 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
1011 {
1012 struct pci_attach_args *pa = &(sc->bnx_pa);
1013
1014 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1015 offset);
1016 #ifdef BNX_DEBUG
1017 {
1018 uint32_t val;
1019 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
1020 BNX_PCICFG_REG_WINDOW);
1021 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
1022 "val = 0x%08X\n", __func__, offset, val);
1023 return val;
1024 }
1025 #else
1026 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
1027 #endif
1028 }
1029
1030 /****************************************************************************/
1031 /* Indirect register write. */
1032 /* */
1033 /* Writes NetXtreme II registers using an index/data register pair in PCI */
1034 /* configuration space. Using this mechanism avoids issues with posted */
1035 /* writes but is muchh slower than memory-mapped I/O. */
1036 /* */
1037 /* Returns: */
1038 /* Nothing. */
1039 /****************************************************************************/
1040 void
1041 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
1042 {
1043 struct pci_attach_args *pa = &(sc->bnx_pa);
1044
1045 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1046 __func__, offset, val);
1047
1048 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1049 offset);
1050 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
1051 }
1052
1053 /****************************************************************************/
1054 /* Context memory write. */
1055 /* */
1056 /* The NetXtreme II controller uses context memory to track connection */
1057 /* information for L2 and higher network protocols. */
1058 /* */
1059 /* Returns: */
1060 /* Nothing. */
1061 /****************************************************************************/
1062 void
1063 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1064 uint32_t ctx_val)
1065 {
1066 uint32_t idx, offset = ctx_offset + cid_addr;
1067 uint32_t val, retry_cnt = 5;
1068
1069 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1070 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
1071 REG_WR(sc, BNX_CTX_CTX_CTRL,
1072 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
1073
1074 for (idx = 0; idx < retry_cnt; idx++) {
1075 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1076 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1077 break;
1078 DELAY(5);
1079 }
1080
1081 #if 0
1082 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1083 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1084 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1085 __FILE__, __LINE__, cid_addr, ctx_offset);
1086 #endif
1087
1088 } else {
1089 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1090 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1091 }
1092 }
1093
1094 /****************************************************************************/
1095 /* PHY register read. */
1096 /* */
1097 /* Implements register reads on the MII bus. */
1098 /* */
1099 /* Returns: */
1100 /* The value of the register. */
1101 /****************************************************************************/
1102 int
1103 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
1104 {
1105 struct bnx_softc *sc = device_private(dev);
1106 uint32_t data;
1107 int i, rv = 0;
1108
1109 /*
1110 * The BCM5709S PHY is an IEEE Clause 45 PHY
1111 * with special mappings to work with IEEE
1112 * Clause 22 register accesses.
1113 */
1114 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1115 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1116 reg += 0x10;
1117 }
1118
1119 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1120 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1121 data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1122
1123 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1124 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1125
1126 DELAY(40);
1127 }
1128
1129 data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1130 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1131 BNX_EMAC_MDIO_COMM_START_BUSY;
1132 REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
1133
1134 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1135 DELAY(10);
1136
1137 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1138 if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1139 DELAY(5);
1140
1141 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1142 data &= BNX_EMAC_MDIO_COMM_DATA;
1143
1144 break;
1145 }
1146 }
1147
1148 if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
1149 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1150 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1151 rv = ETIMEDOUT;
1152 } else {
1153 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1154 *val = data & 0xffff;
1155
1156 DBPRINT(sc, BNX_EXCESSIVE,
1157 "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
1158 phy, (uint16_t) reg & 0xffff, *val);
1159 }
1160
1161 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1162 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1163 data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1164
1165 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1166 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1167
1168 DELAY(40);
1169 }
1170
1171 return rv;
1172 }
1173
1174 /****************************************************************************/
1175 /* PHY register write. */
1176 /* */
1177 /* Implements register writes on the MII bus. */
1178 /* */
1179 /* Returns: */
1180 /* The value of the register. */
1181 /****************************************************************************/
1182 int
1183 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
1184 {
1185 struct bnx_softc *sc = device_private(dev);
1186 uint32_t val1;
1187 int i, rv = 0;
1188
1189 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1190 "val = 0x%04hX\n", __func__,
1191 phy, (uint16_t) reg & 0xffff, val);
1192
1193 /*
1194 * The BCM5709S PHY is an IEEE Clause 45 PHY
1195 * with special mappings to work with IEEE
1196 * Clause 22 register accesses.
1197 */
1198 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1199 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1200 reg += 0x10;
1201 }
1202
1203 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1204 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1205 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1206
1207 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1208 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1209
1210 DELAY(40);
1211 }
1212
1213 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1214 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1215 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1216 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1217
1218 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1219 DELAY(10);
1220
1221 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1222 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1223 DELAY(5);
1224 break;
1225 }
1226 }
1227
1228 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1229 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1230 __LINE__);
1231 rv = ETIMEDOUT;
1232 }
1233
1234 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1235 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1236 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1237
1238 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1239 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1240
1241 DELAY(40);
1242 }
1243
1244 return rv;
1245 }
1246
1247 /****************************************************************************/
1248 /* MII bus status change. */
1249 /* */
1250 /* Called by the MII bus driver when the PHY establishes link to set the */
1251 /* MAC interface registers. */
1252 /* */
1253 /* Returns: */
1254 /* Nothing. */
1255 /****************************************************************************/
1256 void
1257 bnx_miibus_statchg(struct ifnet *ifp)
1258 {
1259 struct bnx_softc *sc = ifp->if_softc;
1260 struct mii_data *mii = &sc->bnx_mii;
1261 uint32_t rx_mode = sc->rx_mode;
1262 int val;
1263
1264 val = REG_RD(sc, BNX_EMAC_MODE);
1265 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1266 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1267 BNX_EMAC_MODE_25G);
1268
1269 /*
1270 * Get flow control negotiation result.
1271 */
1272 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1273 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
1274 sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1275 mii->mii_media_active &= ~IFM_ETH_FMASK;
1276 }
1277
1278 /* Set MII or GMII interface based on the speed
1279 * negotiated by the PHY.
1280 */
1281 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1282 case IFM_10_T:
1283 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1284 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1285 val |= BNX_EMAC_MODE_PORT_MII_10;
1286 break;
1287 }
1288 /* FALLTHROUGH */
1289 case IFM_100_TX:
1290 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1291 val |= BNX_EMAC_MODE_PORT_MII;
1292 break;
1293 case IFM_2500_SX:
1294 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1295 val |= BNX_EMAC_MODE_25G;
1296 /* FALLTHROUGH */
1297 case IFM_1000_T:
1298 case IFM_1000_SX:
1299 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1300 val |= BNX_EMAC_MODE_PORT_GMII;
1301 break;
1302 default:
1303 val |= BNX_EMAC_MODE_PORT_GMII;
1304 break;
1305 }
1306
1307 /* Set half or full duplex based on the duplicity
1308 * negotiated by the PHY.
1309 */
1310 if ((mii->mii_media_active & IFM_HDX) != 0) {
1311 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1312 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1313 } else
1314 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1315
1316 REG_WR(sc, BNX_EMAC_MODE, val);
1317
1318 /*
1319 * 802.3x flow control
1320 */
1321 if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
1322 DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
1323 rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
1324 } else {
1325 DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
1326 rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
1327 }
1328
1329 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
1330 DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
1331 BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1332 } else {
1333 DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
1334 BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1335 }
1336
1337 /* Only make changes if the receive mode has actually changed. */
1338 if (rx_mode != sc->rx_mode) {
1339 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
1340 rx_mode);
1341
1342 sc->rx_mode = rx_mode;
1343 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
1344
1345 bnx_init_rx_context(sc);
1346 }
1347 }
1348
1349 /****************************************************************************/
1350 /* Acquire NVRAM lock. */
1351 /* */
1352 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1353 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1354 /* for use by the driver. */
1355 /* */
1356 /* Returns: */
1357 /* 0 on success, positive value on failure. */
1358 /****************************************************************************/
1359 int
1360 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1361 {
1362 uint32_t val;
1363 int j;
1364
1365 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1366
1367 /* Request access to the flash interface. */
1368 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1369 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1370 val = REG_RD(sc, BNX_NVM_SW_ARB);
1371 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1372 break;
1373
1374 DELAY(5);
1375 }
1376
1377 if (j >= NVRAM_TIMEOUT_COUNT) {
1378 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1379 return EBUSY;
1380 }
1381
1382 return 0;
1383 }
1384
1385 /****************************************************************************/
1386 /* Release NVRAM lock. */
1387 /* */
1388 /* When the caller is finished accessing NVRAM the lock must be released. */
1389 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1390 /* for use by the driver. */
1391 /* */
1392 /* Returns: */
1393 /* 0 on success, positive value on failure. */
1394 /****************************************************************************/
1395 int
1396 bnx_release_nvram_lock(struct bnx_softc *sc)
1397 {
1398 int j;
1399 uint32_t val;
1400
1401 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1402
1403 /* Relinquish nvram interface. */
1404 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1405
1406 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1407 val = REG_RD(sc, BNX_NVM_SW_ARB);
1408 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1409 break;
1410
1411 DELAY(5);
1412 }
1413
1414 if (j >= NVRAM_TIMEOUT_COUNT) {
1415 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1416 return EBUSY;
1417 }
1418
1419 return 0;
1420 }
1421
1422 #ifdef BNX_NVRAM_WRITE_SUPPORT
1423 /****************************************************************************/
1424 /* Enable NVRAM write access. */
1425 /* */
1426 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1427 /* */
1428 /* Returns: */
1429 /* 0 on success, positive value on failure. */
1430 /****************************************************************************/
1431 int
1432 bnx_enable_nvram_write(struct bnx_softc *sc)
1433 {
1434 uint32_t val;
1435
1436 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1437
1438 val = REG_RD(sc, BNX_MISC_CFG);
1439 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1440
1441 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1442 int j;
1443
1444 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1445 REG_WR(sc, BNX_NVM_COMMAND,
1446 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1447
1448 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1449 DELAY(5);
1450
1451 val = REG_RD(sc, BNX_NVM_COMMAND);
1452 if (val & BNX_NVM_COMMAND_DONE)
1453 break;
1454 }
1455
1456 if (j >= NVRAM_TIMEOUT_COUNT) {
1457 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1458 return EBUSY;
1459 }
1460 }
1461
1462 return 0;
1463 }
1464
1465 /****************************************************************************/
1466 /* Disable NVRAM write access. */
1467 /* */
1468 /* When the caller is finished writing to NVRAM write access must be */
1469 /* disabled. */
1470 /* */
1471 /* Returns: */
1472 /* Nothing. */
1473 /****************************************************************************/
1474 void
1475 bnx_disable_nvram_write(struct bnx_softc *sc)
1476 {
1477 uint32_t val;
1478
1479 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1480
1481 val = REG_RD(sc, BNX_MISC_CFG);
1482 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1483 }
1484 #endif
1485
1486 /****************************************************************************/
1487 /* Enable NVRAM access. */
1488 /* */
1489 /* Before accessing NVRAM for read or write operations the caller must */
1490 /* enabled NVRAM access. */
1491 /* */
1492 /* Returns: */
1493 /* Nothing. */
1494 /****************************************************************************/
1495 void
1496 bnx_enable_nvram_access(struct bnx_softc *sc)
1497 {
1498 uint32_t val;
1499
1500 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1501
1502 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1503 /* Enable both bits, even on read. */
1504 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1505 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1506 }
1507
1508 /****************************************************************************/
1509 /* Disable NVRAM access. */
1510 /* */
1511 /* When the caller is finished accessing NVRAM access must be disabled. */
1512 /* */
1513 /* Returns: */
1514 /* Nothing. */
1515 /****************************************************************************/
1516 void
1517 bnx_disable_nvram_access(struct bnx_softc *sc)
1518 {
1519 uint32_t val;
1520
1521 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1522
1523 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1524
1525 /* Disable both bits, even after read. */
1526 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1527 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1528 }
1529
1530 #ifdef BNX_NVRAM_WRITE_SUPPORT
1531 /****************************************************************************/
1532 /* Erase NVRAM page before writing. */
1533 /* */
1534 /* Non-buffered flash parts require that a page be erased before it is */
1535 /* written. */
1536 /* */
1537 /* Returns: */
1538 /* 0 on success, positive value on failure. */
1539 /****************************************************************************/
1540 int
1541 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1542 {
1543 uint32_t cmd;
1544 int j;
1545
1546 /* Buffered flash doesn't require an erase. */
1547 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1548 return 0;
1549
1550 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1551
1552 /* Build an erase command. */
1553 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1554 BNX_NVM_COMMAND_DOIT;
1555
1556 /*
1557 * Clear the DONE bit separately, set the NVRAM address to erase,
1558 * and issue the erase command.
1559 */
1560 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1561 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1562 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1563
1564 /* Wait for completion. */
1565 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1566 uint32_t val;
1567
1568 DELAY(5);
1569
1570 val = REG_RD(sc, BNX_NVM_COMMAND);
1571 if (val & BNX_NVM_COMMAND_DONE)
1572 break;
1573 }
1574
1575 if (j >= NVRAM_TIMEOUT_COUNT) {
1576 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1577 return EBUSY;
1578 }
1579
1580 return 0;
1581 }
1582 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1583
1584 /****************************************************************************/
1585 /* Read a dword (32 bits) from NVRAM. */
1586 /* */
1587 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1588 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1589 /* */
1590 /* Returns: */
1591 /* 0 on success and the 32 bit value read, positive value on failure. */
1592 /****************************************************************************/
1593 int
1594 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1595 uint8_t *ret_val, uint32_t cmd_flags)
1596 {
1597 uint32_t cmd;
1598 int i, rc = 0;
1599
1600 /* Build the command word. */
1601 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1602
1603 /* Calculate the offset for buffered flash if translation is used. */
1604 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1605 offset = ((offset / sc->bnx_flash_info->page_size) <<
1606 sc->bnx_flash_info->page_bits) +
1607 (offset % sc->bnx_flash_info->page_size);
1608 }
1609
1610 /*
1611 * Clear the DONE bit separately, set the address to read,
1612 * and issue the read.
1613 */
1614 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1615 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1616 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1617
1618 /* Wait for completion. */
1619 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1620 uint32_t val;
1621
1622 DELAY(5);
1623
1624 val = REG_RD(sc, BNX_NVM_COMMAND);
1625 if (val & BNX_NVM_COMMAND_DONE) {
1626 val = REG_RD(sc, BNX_NVM_READ);
1627
1628 val = be32toh(val);
1629 memcpy(ret_val, &val, 4);
1630 break;
1631 }
1632 }
1633
1634 /* Check for errors. */
1635 if (i >= NVRAM_TIMEOUT_COUNT) {
1636 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1637 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1638 rc = EBUSY;
1639 }
1640
1641 return rc;
1642 }
1643
1644 #ifdef BNX_NVRAM_WRITE_SUPPORT
1645 /****************************************************************************/
1646 /* Write a dword (32 bits) to NVRAM. */
1647 /* */
1648 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1649 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1650 /* enabled NVRAM write access. */
1651 /* */
1652 /* Returns: */
1653 /* 0 on success, positive value on failure. */
1654 /****************************************************************************/
1655 int
1656 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1657 uint32_t cmd_flags)
1658 {
1659 uint32_t cmd, val32;
1660 int j;
1661
1662 /* Build the command word. */
1663 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1664
1665 /* Calculate the offset for buffered flash if translation is used. */
1666 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1667 offset = ((offset / sc->bnx_flash_info->page_size) <<
1668 sc->bnx_flash_info->page_bits) +
1669 (offset % sc->bnx_flash_info->page_size);
1670 }
1671
1672 /*
1673 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1674 * set the NVRAM address to write, and issue the write command
1675 */
1676 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1677 memcpy(&val32, val, 4);
1678 val32 = htobe32(val32);
1679 REG_WR(sc, BNX_NVM_WRITE, val32);
1680 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1681 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1682
1683 /* Wait for completion. */
1684 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1685 DELAY(5);
1686
1687 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1688 break;
1689 }
1690 if (j >= NVRAM_TIMEOUT_COUNT) {
1691 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1692 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1693 return EBUSY;
1694 }
1695
1696 return 0;
1697 }
1698 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1699
1700 /****************************************************************************/
1701 /* Initialize NVRAM access. */
1702 /* */
1703 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1704 /* access that device. */
1705 /* */
1706 /* Returns: */
1707 /* 0 on success, positive value on failure. */
1708 /****************************************************************************/
1709 int
1710 bnx_init_nvram(struct bnx_softc *sc)
1711 {
1712 uint32_t val;
1713 int j, entry_count, rc = 0;
1714 struct flash_spec *flash;
1715
1716 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1717
1718 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1719 sc->bnx_flash_info = &flash_5709;
1720 goto bnx_init_nvram_get_flash_size;
1721 }
1722
1723 /* Determine the selected interface. */
1724 val = REG_RD(sc, BNX_NVM_CFG1);
1725
1726 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1727
1728 /*
1729 * Flash reconfiguration is required to support additional
1730 * NVRAM devices not directly supported in hardware.
1731 * Check if the flash interface was reconfigured
1732 * by the bootcode.
1733 */
1734
1735 if (val & 0x40000000) {
1736 /* Flash interface reconfigured by bootcode. */
1737
1738 DBPRINT(sc, BNX_INFO_LOAD,
1739 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1740
1741 for (j = 0, flash = &flash_table[0]; j < entry_count;
1742 j++, flash++) {
1743 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1744 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1745 sc->bnx_flash_info = flash;
1746 break;
1747 }
1748 }
1749 } else {
1750 /* Flash interface not yet reconfigured. */
1751 uint32_t mask;
1752
1753 DBPRINT(sc, BNX_INFO_LOAD,
1754 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1755
1756 if (val & (1 << 23))
1757 mask = FLASH_BACKUP_STRAP_MASK;
1758 else
1759 mask = FLASH_STRAP_MASK;
1760
1761 /* Look for the matching NVRAM device configuration data. */
1762 for (j = 0, flash = &flash_table[0]; j < entry_count;
1763 j++, flash++) {
1764 /* Check if the dev matches any of the known devices. */
1765 if ((val & mask) == (flash->strapping & mask)) {
1766 /* Found a device match. */
1767 sc->bnx_flash_info = flash;
1768
1769 /* Request access to the flash interface. */
1770 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1771 return rc;
1772
1773 /* Reconfigure the flash interface. */
1774 bnx_enable_nvram_access(sc);
1775 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1776 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1777 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1778 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1779 bnx_disable_nvram_access(sc);
1780 bnx_release_nvram_lock(sc);
1781
1782 break;
1783 }
1784 }
1785 }
1786
1787 /* Check if a matching device was found. */
1788 if (j == entry_count) {
1789 sc->bnx_flash_info = NULL;
1790 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1791 __FILE__, __LINE__);
1792 rc = ENODEV;
1793 }
1794
1795 bnx_init_nvram_get_flash_size:
1796 /* Write the flash config data to the shared memory interface. */
1797 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1798 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1799 if (val)
1800 sc->bnx_flash_size = val;
1801 else
1802 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1803
1804 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1805 "0x%08X\n", sc->bnx_flash_info->total_size);
1806
1807 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1808
1809 return rc;
1810 }
1811
1812 /****************************************************************************/
1813 /* Read an arbitrary range of data from NVRAM. */
1814 /* */
1815 /* Prepares the NVRAM interface for access and reads the requested data */
1816 /* into the supplied buffer. */
1817 /* */
1818 /* Returns: */
1819 /* 0 on success and the data read, positive value on failure. */
1820 /****************************************************************************/
1821 int
1822 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1823 int buf_size)
1824 {
1825 int rc = 0;
1826 uint32_t cmd_flags, offset32, len32, extra;
1827
1828 if (buf_size == 0)
1829 return 0;
1830
1831 /* Request access to the flash interface. */
1832 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1833 return rc;
1834
1835 /* Enable access to flash interface */
1836 bnx_enable_nvram_access(sc);
1837
1838 len32 = buf_size;
1839 offset32 = offset;
1840 extra = 0;
1841
1842 cmd_flags = 0;
1843
1844 if (offset32 & 3) {
1845 uint8_t buf[4];
1846 uint32_t pre_len;
1847
1848 offset32 &= ~3;
1849 pre_len = 4 - (offset & 3);
1850
1851 if (pre_len >= len32) {
1852 pre_len = len32;
1853 cmd_flags =
1854 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1855 } else
1856 cmd_flags = BNX_NVM_COMMAND_FIRST;
1857
1858 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1859
1860 if (rc)
1861 return rc;
1862
1863 memcpy(ret_buf, buf + (offset & 3), pre_len);
1864
1865 offset32 += 4;
1866 ret_buf += pre_len;
1867 len32 -= pre_len;
1868 }
1869
1870 if (len32 & 3) {
1871 extra = 4 - (len32 & 3);
1872 len32 = (len32 + 4) & ~3;
1873 }
1874
1875 if (len32 == 4) {
1876 uint8_t buf[4];
1877
1878 if (cmd_flags)
1879 cmd_flags = BNX_NVM_COMMAND_LAST;
1880 else
1881 cmd_flags =
1882 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1883
1884 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1885
1886 memcpy(ret_buf, buf, 4 - extra);
1887 } else if (len32 > 0) {
1888 uint8_t buf[4];
1889
1890 /* Read the first word. */
1891 if (cmd_flags)
1892 cmd_flags = 0;
1893 else
1894 cmd_flags = BNX_NVM_COMMAND_FIRST;
1895
1896 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1897
1898 /* Advance to the next dword. */
1899 offset32 += 4;
1900 ret_buf += 4;
1901 len32 -= 4;
1902
1903 while (len32 > 4 && rc == 0) {
1904 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1905
1906 /* Advance to the next dword. */
1907 offset32 += 4;
1908 ret_buf += 4;
1909 len32 -= 4;
1910 }
1911
1912 if (rc)
1913 return rc;
1914
1915 cmd_flags = BNX_NVM_COMMAND_LAST;
1916 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1917
1918 memcpy(ret_buf, buf, 4 - extra);
1919 }
1920
1921 /* Disable access to flash interface and release the lock. */
1922 bnx_disable_nvram_access(sc);
1923 bnx_release_nvram_lock(sc);
1924
1925 return rc;
1926 }
1927
1928 #ifdef BNX_NVRAM_WRITE_SUPPORT
1929 /****************************************************************************/
1930 /* Write an arbitrary range of data from NVRAM. */
1931 /* */
1932 /* Prepares the NVRAM interface for write access and writes the requested */
1933 /* data from the supplied buffer. The caller is responsible for */
1934 /* calculating any appropriate CRCs. */
1935 /* */
1936 /* Returns: */
1937 /* 0 on success, positive value on failure. */
1938 /****************************************************************************/
1939 int
1940 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1941 int buf_size)
1942 {
1943 uint32_t written, offset32, len32;
1944 uint8_t *buf, start[4], end[4];
1945 int rc = 0;
1946 int align_start, align_end;
1947
1948 buf = data_buf;
1949 offset32 = offset;
1950 len32 = buf_size;
1951 align_start = align_end = 0;
1952
1953 if ((align_start = (offset32 & 3))) {
1954 offset32 &= ~3;
1955 len32 += align_start;
1956 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1957 return rc;
1958 }
1959
1960 if (len32 & 3) {
1961 if ((len32 > 4) || !align_start) {
1962 align_end = 4 - (len32 & 3);
1963 len32 += align_end;
1964 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1965 end, 4)))
1966 return rc;
1967 }
1968 }
1969
1970 if (align_start || align_end) {
1971 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1972 if (buf == NULL)
1973 return ENOMEM;
1974
1975 if (align_start)
1976 memcpy(buf, start, 4);
1977
1978 if (align_end)
1979 memcpy(buf + len32 - 4, end, 4);
1980
1981 memcpy(buf + align_start, data_buf, buf_size);
1982 }
1983
1984 written = 0;
1985 while ((written < len32) && (rc == 0)) {
1986 uint32_t page_start, page_end, data_start, data_end;
1987 uint32_t addr, cmd_flags;
1988 int i;
1989 uint8_t flash_buffer[264];
1990
1991 /* Find the page_start addr */
1992 page_start = offset32 + written;
1993 page_start -= (page_start % sc->bnx_flash_info->page_size);
1994 /* Find the page_end addr */
1995 page_end = page_start + sc->bnx_flash_info->page_size;
1996 /* Find the data_start addr */
1997 data_start = (written == 0) ? offset32 : page_start;
1998 /* Find the data_end addr */
1999 data_end = (page_end > offset32 + len32) ?
2000 (offset32 + len32) : page_end;
2001
2002 /* Request access to the flash interface. */
2003 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
2004 goto nvram_write_end;
2005
2006 /* Enable access to flash interface */
2007 bnx_enable_nvram_access(sc);
2008
2009 cmd_flags = BNX_NVM_COMMAND_FIRST;
2010 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2011 int j;
2012
2013 /* Read the whole page into the buffer
2014 * (non-buffer flash only) */
2015 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
2016 if (j == (sc->bnx_flash_info->page_size - 4))
2017 cmd_flags |= BNX_NVM_COMMAND_LAST;
2018
2019 rc = bnx_nvram_read_dword(sc,
2020 page_start + j,
2021 &flash_buffer[j],
2022 cmd_flags);
2023
2024 if (rc)
2025 goto nvram_write_end;
2026
2027 cmd_flags = 0;
2028 }
2029 }
2030
2031 /* Enable writes to flash interface (unlock write-protect) */
2032 if ((rc = bnx_enable_nvram_write(sc)) != 0)
2033 goto nvram_write_end;
2034
2035 /* Erase the page */
2036 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
2037 goto nvram_write_end;
2038
2039 /* Re-enable the write again for the actual write */
2040 bnx_enable_nvram_write(sc);
2041
2042 /* Loop to write back the buffer data from page_start to
2043 * data_start */
2044 i = 0;
2045 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2046 for (addr = page_start; addr < data_start;
2047 addr += 4, i += 4) {
2048
2049 rc = bnx_nvram_write_dword(sc, addr,
2050 &flash_buffer[i], cmd_flags);
2051
2052 if (rc != 0)
2053 goto nvram_write_end;
2054
2055 cmd_flags = 0;
2056 }
2057 }
2058
2059 /* Loop to write the new data from data_start to data_end */
2060 for (addr = data_start; addr < data_end; addr += 4, i++) {
2061 if ((addr == page_end - 4) ||
2062 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
2063 && (addr == data_end - 4))) {
2064
2065 cmd_flags |= BNX_NVM_COMMAND_LAST;
2066 }
2067
2068 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
2069
2070 if (rc != 0)
2071 goto nvram_write_end;
2072
2073 cmd_flags = 0;
2074 buf += 4;
2075 }
2076
2077 /* Loop to write back the buffer data from data_end
2078 * to page_end */
2079 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2080 for (addr = data_end; addr < page_end;
2081 addr += 4, i += 4) {
2082
2083 if (addr == page_end-4)
2084 cmd_flags = BNX_NVM_COMMAND_LAST;
2085
2086 rc = bnx_nvram_write_dword(sc, addr,
2087 &flash_buffer[i], cmd_flags);
2088
2089 if (rc != 0)
2090 goto nvram_write_end;
2091
2092 cmd_flags = 0;
2093 }
2094 }
2095
2096 /* Disable writes to flash interface (lock write-protect) */
2097 bnx_disable_nvram_write(sc);
2098
2099 /* Disable access to flash interface */
2100 bnx_disable_nvram_access(sc);
2101 bnx_release_nvram_lock(sc);
2102
2103 /* Increment written */
2104 written += data_end - data_start;
2105 }
2106
2107 nvram_write_end:
2108 if (align_start || align_end)
2109 free(buf, M_DEVBUF);
2110
2111 return rc;
2112 }
2113 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2114
2115 /****************************************************************************/
2116 /* Verifies that NVRAM is accessible and contains valid data. */
2117 /* */
2118 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2119 /* correct. */
2120 /* */
2121 /* Returns: */
2122 /* 0 on success, positive value on failure. */
2123 /****************************************************************************/
2124 int
2125 bnx_nvram_test(struct bnx_softc *sc)
2126 {
2127 uint32_t buf[BNX_NVRAM_SIZE / 4];
2128 uint8_t *data = (uint8_t *) buf;
2129 int rc = 0;
2130 uint32_t magic, csum;
2131
2132 /*
2133 * Check that the device NVRAM is valid by reading
2134 * the magic value at offset 0.
2135 */
2136 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2137 goto bnx_nvram_test_done;
2138
2139 magic = be32toh(buf[0]);
2140 if (magic != BNX_NVRAM_MAGIC) {
2141 rc = ENODEV;
2142 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2143 "Expected: 0x%08X, Found: 0x%08X\n",
2144 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2145 goto bnx_nvram_test_done;
2146 }
2147
2148 /*
2149 * Verify that the device NVRAM includes valid
2150 * configuration data.
2151 */
2152 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2153 goto bnx_nvram_test_done;
2154
2155 csum = ether_crc32_le(data, 0x100);
2156 if (csum != BNX_CRC32_RESIDUAL) {
2157 rc = ENODEV;
2158 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2159 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2160 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2161 goto bnx_nvram_test_done;
2162 }
2163
2164 csum = ether_crc32_le(data + 0x100, 0x100);
2165 if (csum != BNX_CRC32_RESIDUAL) {
2166 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2167 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2168 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2169 rc = ENODEV;
2170 }
2171
2172 bnx_nvram_test_done:
2173 return rc;
2174 }
2175
2176 /****************************************************************************/
2177 /* Identifies the current media type of the controller and sets the PHY */
2178 /* address. */
2179 /* */
2180 /* Returns: */
2181 /* Nothing. */
2182 /****************************************************************************/
2183 void
2184 bnx_get_media(struct bnx_softc *sc)
2185 {
2186 sc->bnx_phy_addr = 1;
2187
2188 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2189 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2190 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2191 uint32_t strap;
2192
2193 /*
2194 * The BCM5709S is software configurable
2195 * for Copper or SerDes operation.
2196 */
2197 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2198 DBPRINT(sc, BNX_INFO_LOAD,
2199 "5709 bonded for copper.\n");
2200 goto bnx_get_media_exit;
2201 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2202 DBPRINT(sc, BNX_INFO_LOAD,
2203 "5709 bonded for dual media.\n");
2204 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2205 goto bnx_get_media_exit;
2206 }
2207
2208 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2209 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2210 else {
2211 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2212 >> 8;
2213 }
2214
2215 if (sc->bnx_pa.pa_function == 0) {
2216 switch (strap) {
2217 case 0x4:
2218 case 0x5:
2219 case 0x6:
2220 DBPRINT(sc, BNX_INFO_LOAD,
2221 "BCM5709 s/w configured for SerDes.\n");
2222 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2223 break;
2224 default:
2225 DBPRINT(sc, BNX_INFO_LOAD,
2226 "BCM5709 s/w configured for Copper.\n");
2227 }
2228 } else {
2229 switch (strap) {
2230 case 0x1:
2231 case 0x2:
2232 case 0x4:
2233 DBPRINT(sc, BNX_INFO_LOAD,
2234 "BCM5709 s/w configured for SerDes.\n");
2235 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2236 break;
2237 default:
2238 DBPRINT(sc, BNX_INFO_LOAD,
2239 "BCM5709 s/w configured for Copper.\n");
2240 }
2241 }
2242
2243 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2244 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2245
2246 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2247 uint32_t val;
2248
2249 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2250
2251 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2252 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2253
2254 /*
2255 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2256 * separate PHY for SerDes.
2257 */
2258 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2259 sc->bnx_phy_addr = 2;
2260 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2261 BNX_SHARED_HW_CFG_CONFIG);
2262 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2263 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2264 DBPRINT(sc, BNX_INFO_LOAD,
2265 "Found 2.5Gb capable adapter\n");
2266 }
2267 }
2268 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2269 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2270 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2271
2272 bnx_get_media_exit:
2273 DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
2274 "Using PHY address %d.\n", sc->bnx_phy_addr);
2275 }
2276
2277 /****************************************************************************/
2278 /* Performs PHY initialization required before MII drivers access the */
2279 /* device. */
2280 /* */
2281 /* Returns: */
2282 /* Nothing. */
2283 /****************************************************************************/
2284 void
2285 bnx_init_media(struct bnx_softc *sc)
2286 {
2287 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2288 /*
2289 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2290 * IEEE Clause 22 method. Otherwise we have no way to attach
2291 * the PHY to the mii(4) layer. PHY specific configuration
2292 * is done by the mii(4) layer.
2293 */
2294
2295 /* Select auto-negotiation MMD of the PHY. */
2296 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2297 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2298
2299 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2300 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2301
2302 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2303 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2304 }
2305 }
2306
2307 /****************************************************************************/
2308 /* Free any DMA memory owned by the driver. */
2309 /* */
2310 /* Scans through each data structre that requires DMA memory and frees */
2311 /* the memory if allocated. */
2312 /* */
2313 /* Returns: */
2314 /* Nothing. */
2315 /****************************************************************************/
2316 void
2317 bnx_dma_free(struct bnx_softc *sc)
2318 {
2319 int i;
2320
2321 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2322
2323 /* Destroy the status block. */
2324 if (sc->status_block != NULL && sc->status_map != NULL) {
2325 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2326 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2327 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2328 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2329 BNX_STATUS_BLK_SZ);
2330 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2331 sc->status_rseg);
2332 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2333 sc->status_block = NULL;
2334 sc->status_map = NULL;
2335 }
2336
2337 /* Destroy the statistics block. */
2338 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2339 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2340 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2341 BNX_STATS_BLK_SZ);
2342 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2343 sc->stats_rseg);
2344 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2345 sc->stats_block = NULL;
2346 sc->stats_map = NULL;
2347 }
2348
2349 /* Free, unmap and destroy all context memory pages. */
2350 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2351 for (i = 0; i < sc->ctx_pages; i++) {
2352 if (sc->ctx_block[i] != NULL) {
2353 bus_dmamap_unload(sc->bnx_dmatag,
2354 sc->ctx_map[i]);
2355 bus_dmamem_unmap(sc->bnx_dmatag,
2356 (void *)sc->ctx_block[i],
2357 BCM_PAGE_SIZE);
2358 bus_dmamem_free(sc->bnx_dmatag,
2359 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2360 bus_dmamap_destroy(sc->bnx_dmatag,
2361 sc->ctx_map[i]);
2362 sc->ctx_block[i] = NULL;
2363 }
2364 }
2365 }
2366
2367 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2368 for (i = 0; i < TX_PAGES; i++ ) {
2369 if (sc->tx_bd_chain[i] != NULL &&
2370 sc->tx_bd_chain_map[i] != NULL) {
2371 bus_dmamap_unload(sc->bnx_dmatag,
2372 sc->tx_bd_chain_map[i]);
2373 bus_dmamem_unmap(sc->bnx_dmatag,
2374 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2375 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2376 sc->tx_bd_chain_rseg[i]);
2377 bus_dmamap_destroy(sc->bnx_dmatag,
2378 sc->tx_bd_chain_map[i]);
2379 sc->tx_bd_chain[i] = NULL;
2380 sc->tx_bd_chain_map[i] = NULL;
2381 }
2382 }
2383
2384 /* Destroy the TX dmamaps. */
2385 struct bnx_pkt *pkt;
2386 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
2387 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
2388 sc->tx_pkt_count--;
2389
2390 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
2391 pool_put(bnx_tx_pool, pkt);
2392 }
2393
2394 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2395 for (i = 0; i < RX_PAGES; i++ ) {
2396 if (sc->rx_bd_chain[i] != NULL &&
2397 sc->rx_bd_chain_map[i] != NULL) {
2398 bus_dmamap_unload(sc->bnx_dmatag,
2399 sc->rx_bd_chain_map[i]);
2400 bus_dmamem_unmap(sc->bnx_dmatag,
2401 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2402 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2403 sc->rx_bd_chain_rseg[i]);
2404
2405 bus_dmamap_destroy(sc->bnx_dmatag,
2406 sc->rx_bd_chain_map[i]);
2407 sc->rx_bd_chain[i] = NULL;
2408 sc->rx_bd_chain_map[i] = NULL;
2409 }
2410 }
2411
2412 /* Unload and destroy the RX mbuf maps. */
2413 for (i = 0; i < TOTAL_RX_BD; i++) {
2414 if (sc->rx_mbuf_map[i] != NULL) {
2415 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2416 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2417 }
2418 }
2419
2420 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2421 }
2422
2423 /****************************************************************************/
2424 /* Allocate any DMA memory needed by the driver. */
2425 /* */
2426 /* Allocates DMA memory needed for the various global structures needed by */
2427 /* hardware. */
2428 /* */
2429 /* Returns: */
2430 /* 0 for success, positive value for failure. */
2431 /****************************************************************************/
2432 int
2433 bnx_dma_alloc(struct bnx_softc *sc)
2434 {
2435 int i, rc = 0;
2436
2437 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2438
2439 /*
2440 * Allocate DMA memory for the status block, map the memory into DMA
2441 * space, and fetch the physical address of the block.
2442 */
2443 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2444 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2445 aprint_error_dev(sc->bnx_dev,
2446 "Could not create status block DMA map!\n");
2447 rc = ENOMEM;
2448 goto bnx_dma_alloc_exit;
2449 }
2450
2451 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2452 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2453 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2454 aprint_error_dev(sc->bnx_dev,
2455 "Could not allocate status block DMA memory!\n");
2456 rc = ENOMEM;
2457 goto bnx_dma_alloc_exit;
2458 }
2459
2460 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2461 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2462 aprint_error_dev(sc->bnx_dev,
2463 "Could not map status block DMA memory!\n");
2464 rc = ENOMEM;
2465 goto bnx_dma_alloc_exit;
2466 }
2467
2468 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2469 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2470 aprint_error_dev(sc->bnx_dev,
2471 "Could not load status block DMA memory!\n");
2472 rc = ENOMEM;
2473 goto bnx_dma_alloc_exit;
2474 }
2475
2476 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2477 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2478
2479 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2480 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2481
2482 /* DRC - Fix for 64 bit addresses. */
2483 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2484 (uint32_t) sc->status_block_paddr);
2485
2486 /* BCM5709 uses host memory as cache for context memory. */
2487 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2488 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2489 if (sc->ctx_pages == 0)
2490 sc->ctx_pages = 1;
2491 if (sc->ctx_pages > 4) /* XXX */
2492 sc->ctx_pages = 4;
2493
2494 DBRUNIF((sc->ctx_pages > 512),
2495 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2496 __FILE__, __LINE__, sc->ctx_pages));
2497
2498
2499 for (i = 0; i < sc->ctx_pages; i++) {
2500 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2501 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2502 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2503 &sc->ctx_map[i]) != 0) {
2504 rc = ENOMEM;
2505 goto bnx_dma_alloc_exit;
2506 }
2507
2508 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2509 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2510 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2511 rc = ENOMEM;
2512 goto bnx_dma_alloc_exit;
2513 }
2514
2515 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2516 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2517 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2518 rc = ENOMEM;
2519 goto bnx_dma_alloc_exit;
2520 }
2521
2522 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2523 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2524 BUS_DMA_NOWAIT) != 0) {
2525 rc = ENOMEM;
2526 goto bnx_dma_alloc_exit;
2527 }
2528
2529 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2530 }
2531 }
2532
2533 /*
2534 * Allocate DMA memory for the statistics block, map the memory into
2535 * DMA space, and fetch the physical address of the block.
2536 */
2537 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2538 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2539 aprint_error_dev(sc->bnx_dev,
2540 "Could not create stats block DMA map!\n");
2541 rc = ENOMEM;
2542 goto bnx_dma_alloc_exit;
2543 }
2544
2545 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2546 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2547 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2548 aprint_error_dev(sc->bnx_dev,
2549 "Could not allocate stats block DMA memory!\n");
2550 rc = ENOMEM;
2551 goto bnx_dma_alloc_exit;
2552 }
2553
2554 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2555 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2556 aprint_error_dev(sc->bnx_dev,
2557 "Could not map stats block DMA memory!\n");
2558 rc = ENOMEM;
2559 goto bnx_dma_alloc_exit;
2560 }
2561
2562 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2563 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2564 aprint_error_dev(sc->bnx_dev,
2565 "Could not load status block DMA memory!\n");
2566 rc = ENOMEM;
2567 goto bnx_dma_alloc_exit;
2568 }
2569
2570 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2571 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2572
2573 /* DRC - Fix for 64 bit address. */
2574 DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
2575 (uint32_t) sc->stats_block_paddr);
2576
2577 /*
2578 * Allocate DMA memory for the TX buffer descriptor chain,
2579 * and fetch the physical address of the block.
2580 */
2581 for (i = 0; i < TX_PAGES; i++) {
2582 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2583 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2584 &sc->tx_bd_chain_map[i])) {
2585 aprint_error_dev(sc->bnx_dev,
2586 "Could not create Tx desc %d DMA map!\n", i);
2587 rc = ENOMEM;
2588 goto bnx_dma_alloc_exit;
2589 }
2590
2591 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2592 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2593 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2594 aprint_error_dev(sc->bnx_dev,
2595 "Could not allocate TX desc %d DMA memory!\n",
2596 i);
2597 rc = ENOMEM;
2598 goto bnx_dma_alloc_exit;
2599 }
2600
2601 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2602 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2603 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2604 aprint_error_dev(sc->bnx_dev,
2605 "Could not map TX desc %d DMA memory!\n", i);
2606 rc = ENOMEM;
2607 goto bnx_dma_alloc_exit;
2608 }
2609
2610 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2611 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2612 BUS_DMA_NOWAIT)) {
2613 aprint_error_dev(sc->bnx_dev,
2614 "Could not load TX desc %d DMA memory!\n", i);
2615 rc = ENOMEM;
2616 goto bnx_dma_alloc_exit;
2617 }
2618
2619 sc->tx_bd_chain_paddr[i] =
2620 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2621
2622 /* DRC - Fix for 64 bit systems. */
2623 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2624 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2625 }
2626
2627 /*
2628 * Create lists to hold TX mbufs.
2629 */
2630 TAILQ_INIT(&sc->tx_free_pkts);
2631 TAILQ_INIT(&sc->tx_used_pkts);
2632 sc->tx_pkt_count = 0;
2633 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2634
2635 /*
2636 * Allocate DMA memory for the Rx buffer descriptor chain,
2637 * and fetch the physical address of the block.
2638 */
2639 for (i = 0; i < RX_PAGES; i++) {
2640 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2641 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2642 &sc->rx_bd_chain_map[i])) {
2643 aprint_error_dev(sc->bnx_dev,
2644 "Could not create Rx desc %d DMA map!\n", i);
2645 rc = ENOMEM;
2646 goto bnx_dma_alloc_exit;
2647 }
2648
2649 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2650 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2651 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2652 aprint_error_dev(sc->bnx_dev,
2653 "Could not allocate Rx desc %d DMA memory!\n", i);
2654 rc = ENOMEM;
2655 goto bnx_dma_alloc_exit;
2656 }
2657
2658 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2659 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2660 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2661 aprint_error_dev(sc->bnx_dev,
2662 "Could not map Rx desc %d DMA memory!\n", i);
2663 rc = ENOMEM;
2664 goto bnx_dma_alloc_exit;
2665 }
2666
2667 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2668 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2669 BUS_DMA_NOWAIT)) {
2670 aprint_error_dev(sc->bnx_dev,
2671 "Could not load Rx desc %d DMA memory!\n", i);
2672 rc = ENOMEM;
2673 goto bnx_dma_alloc_exit;
2674 }
2675
2676 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2677 sc->rx_bd_chain_paddr[i] =
2678 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2679
2680 /* DRC - Fix for 64 bit systems. */
2681 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2682 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2683 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2684 0, BNX_RX_CHAIN_PAGE_SZ,
2685 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2686 }
2687
2688 /*
2689 * Create DMA maps for the Rx buffer mbufs.
2690 */
2691 for (i = 0; i < TOTAL_RX_BD; i++) {
2692 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2693 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2694 &sc->rx_mbuf_map[i])) {
2695 aprint_error_dev(sc->bnx_dev,
2696 "Could not create Rx mbuf %d DMA map!\n", i);
2697 rc = ENOMEM;
2698 goto bnx_dma_alloc_exit;
2699 }
2700 }
2701
2702 bnx_dma_alloc_exit:
2703 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2704
2705 return rc;
2706 }
2707
2708 /****************************************************************************/
2709 /* Release all resources used by the driver. */
2710 /* */
2711 /* Releases all resources acquired by the driver including interrupts, */
2712 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2713 /* */
2714 /* Returns: */
2715 /* Nothing. */
2716 /****************************************************************************/
2717 void
2718 bnx_release_resources(struct bnx_softc *sc)
2719 {
2720 struct pci_attach_args *pa = &(sc->bnx_pa);
2721
2722 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2723
2724 bnx_dma_free(sc);
2725
2726 if (sc->bnx_intrhand != NULL)
2727 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2728
2729 if (sc->bnx_ih != NULL)
2730 pci_intr_release(pa->pa_pc, sc->bnx_ih, 1);
2731
2732 if (sc->bnx_size)
2733 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2734
2735 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2736 }
2737
2738 /****************************************************************************/
2739 /* Firmware synchronization. */
2740 /* */
2741 /* Before performing certain events such as a chip reset, synchronize with */
2742 /* the firmware first. */
2743 /* */
2744 /* Returns: */
2745 /* 0 for success, positive value for failure. */
2746 /****************************************************************************/
2747 int
2748 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2749 {
2750 int i, rc = 0;
2751 uint32_t val;
2752
2753 /* Don't waste any time if we've timed out before. */
2754 if (sc->bnx_fw_timed_out) {
2755 rc = EBUSY;
2756 goto bnx_fw_sync_exit;
2757 }
2758
2759 /* Increment the message sequence number. */
2760 sc->bnx_fw_wr_seq++;
2761 msg_data |= sc->bnx_fw_wr_seq;
2762
2763 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2764 msg_data);
2765
2766 /* Send the message to the bootcode driver mailbox. */
2767 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2768
2769 /* Wait for the bootcode to acknowledge the message. */
2770 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2771 /* Check for a response in the bootcode firmware mailbox. */
2772 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2773 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2774 break;
2775 DELAY(1000);
2776 }
2777
2778 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2779 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2780 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2781 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2782 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2783
2784 msg_data &= ~BNX_DRV_MSG_CODE;
2785 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2786
2787 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2788
2789 sc->bnx_fw_timed_out = 1;
2790 rc = EBUSY;
2791 }
2792
2793 bnx_fw_sync_exit:
2794 return rc;
2795 }
2796
2797 /****************************************************************************/
2798 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2799 /* */
2800 /* Returns: */
2801 /* Nothing. */
2802 /****************************************************************************/
2803 void
2804 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2805 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2806 {
2807 int i;
2808 uint32_t val;
2809
2810 /* Set the page size used by RV2P. */
2811 if (rv2p_proc == RV2P_PROC2) {
2812 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2813 USABLE_RX_BD_PER_PAGE);
2814 }
2815
2816 for (i = 0; i < rv2p_code_len; i += 8) {
2817 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2818 rv2p_code++;
2819 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2820 rv2p_code++;
2821
2822 if (rv2p_proc == RV2P_PROC1) {
2823 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2824 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2825 } else {
2826 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2827 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2828 }
2829 }
2830
2831 /* Reset the processor, un-stall is done later. */
2832 if (rv2p_proc == RV2P_PROC1)
2833 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2834 else
2835 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2836 }
2837
2838 /****************************************************************************/
2839 /* Load RISC processor firmware. */
2840 /* */
2841 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2842 /* associated with a particular processor. */
2843 /* */
2844 /* Returns: */
2845 /* Nothing. */
2846 /****************************************************************************/
2847 void
2848 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2849 struct fw_info *fw)
2850 {
2851 uint32_t offset;
2852 uint32_t val;
2853
2854 /* Halt the CPU. */
2855 val = REG_RD_IND(sc, cpu_reg->mode);
2856 val |= cpu_reg->mode_value_halt;
2857 REG_WR_IND(sc, cpu_reg->mode, val);
2858 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2859
2860 /* Load the Text area. */
2861 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2862 if (fw->text) {
2863 int j;
2864
2865 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2866 REG_WR_IND(sc, offset, fw->text[j]);
2867 }
2868
2869 /* Load the Data area. */
2870 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2871 if (fw->data) {
2872 int j;
2873
2874 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2875 REG_WR_IND(sc, offset, fw->data[j]);
2876 }
2877
2878 /* Load the SBSS area. */
2879 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2880 if (fw->sbss) {
2881 int j;
2882
2883 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2884 REG_WR_IND(sc, offset, fw->sbss[j]);
2885 }
2886
2887 /* Load the BSS area. */
2888 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2889 if (fw->bss) {
2890 int j;
2891
2892 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2893 REG_WR_IND(sc, offset, fw->bss[j]);
2894 }
2895
2896 /* Load the Read-Only area. */
2897 offset = cpu_reg->spad_base +
2898 (fw->rodata_addr - cpu_reg->mips_view_base);
2899 if (fw->rodata) {
2900 int j;
2901
2902 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2903 REG_WR_IND(sc, offset, fw->rodata[j]);
2904 }
2905
2906 /* Clear the pre-fetch instruction. */
2907 REG_WR_IND(sc, cpu_reg->inst, 0);
2908 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2909
2910 /* Start the CPU. */
2911 val = REG_RD_IND(sc, cpu_reg->mode);
2912 val &= ~cpu_reg->mode_value_halt;
2913 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2914 REG_WR_IND(sc, cpu_reg->mode, val);
2915 }
2916
2917 /****************************************************************************/
2918 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2919 /* */
2920 /* Loads the firmware for each CPU and starts the CPU. */
2921 /* */
2922 /* Returns: */
2923 /* Nothing. */
2924 /****************************************************************************/
2925 void
2926 bnx_init_cpus(struct bnx_softc *sc)
2927 {
2928 struct cpu_reg cpu_reg;
2929 struct fw_info fw;
2930
2931 switch (BNX_CHIP_NUM(sc)) {
2932 case BNX_CHIP_NUM_5709:
2933 /* Initialize the RV2P processor. */
2934 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2935 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2936 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2937 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2938 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2939 } else {
2940 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2941 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2942 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2943 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2944 }
2945
2946 /* Initialize the RX Processor. */
2947 cpu_reg.mode = BNX_RXP_CPU_MODE;
2948 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2949 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2950 cpu_reg.state = BNX_RXP_CPU_STATE;
2951 cpu_reg.state_value_clear = 0xffffff;
2952 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2953 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2954 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2955 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2956 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2957 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2958 cpu_reg.mips_view_base = 0x8000000;
2959
2960 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2961 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2962 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2963 fw.start_addr = bnx_RXP_b09FwStartAddr;
2964
2965 fw.text_addr = bnx_RXP_b09FwTextAddr;
2966 fw.text_len = bnx_RXP_b09FwTextLen;
2967 fw.text_index = 0;
2968 fw.text = bnx_RXP_b09FwText;
2969
2970 fw.data_addr = bnx_RXP_b09FwDataAddr;
2971 fw.data_len = bnx_RXP_b09FwDataLen;
2972 fw.data_index = 0;
2973 fw.data = bnx_RXP_b09FwData;
2974
2975 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2976 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2977 fw.sbss_index = 0;
2978 fw.sbss = bnx_RXP_b09FwSbss;
2979
2980 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2981 fw.bss_len = bnx_RXP_b09FwBssLen;
2982 fw.bss_index = 0;
2983 fw.bss = bnx_RXP_b09FwBss;
2984
2985 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2986 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2987 fw.rodata_index = 0;
2988 fw.rodata = bnx_RXP_b09FwRodata;
2989
2990 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2991 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2992
2993 /* Initialize the TX Processor. */
2994 cpu_reg.mode = BNX_TXP_CPU_MODE;
2995 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2996 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2997 cpu_reg.state = BNX_TXP_CPU_STATE;
2998 cpu_reg.state_value_clear = 0xffffff;
2999 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3000 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3001 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3002 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3003 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3004 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3005 cpu_reg.mips_view_base = 0x8000000;
3006
3007 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
3008 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
3009 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
3010 fw.start_addr = bnx_TXP_b09FwStartAddr;
3011
3012 fw.text_addr = bnx_TXP_b09FwTextAddr;
3013 fw.text_len = bnx_TXP_b09FwTextLen;
3014 fw.text_index = 0;
3015 fw.text = bnx_TXP_b09FwText;
3016
3017 fw.data_addr = bnx_TXP_b09FwDataAddr;
3018 fw.data_len = bnx_TXP_b09FwDataLen;
3019 fw.data_index = 0;
3020 fw.data = bnx_TXP_b09FwData;
3021
3022 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
3023 fw.sbss_len = bnx_TXP_b09FwSbssLen;
3024 fw.sbss_index = 0;
3025 fw.sbss = bnx_TXP_b09FwSbss;
3026
3027 fw.bss_addr = bnx_TXP_b09FwBssAddr;
3028 fw.bss_len = bnx_TXP_b09FwBssLen;
3029 fw.bss_index = 0;
3030 fw.bss = bnx_TXP_b09FwBss;
3031
3032 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
3033 fw.rodata_len = bnx_TXP_b09FwRodataLen;
3034 fw.rodata_index = 0;
3035 fw.rodata = bnx_TXP_b09FwRodata;
3036
3037 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3038 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3039
3040 /* Initialize the TX Patch-up Processor. */
3041 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3042 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3043 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3044 cpu_reg.state = BNX_TPAT_CPU_STATE;
3045 cpu_reg.state_value_clear = 0xffffff;
3046 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3047 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3048 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3049 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3050 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3051 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3052 cpu_reg.mips_view_base = 0x8000000;
3053
3054 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
3055 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
3056 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
3057 fw.start_addr = bnx_TPAT_b09FwStartAddr;
3058
3059 fw.text_addr = bnx_TPAT_b09FwTextAddr;
3060 fw.text_len = bnx_TPAT_b09FwTextLen;
3061 fw.text_index = 0;
3062 fw.text = bnx_TPAT_b09FwText;
3063
3064 fw.data_addr = bnx_TPAT_b09FwDataAddr;
3065 fw.data_len = bnx_TPAT_b09FwDataLen;
3066 fw.data_index = 0;
3067 fw.data = bnx_TPAT_b09FwData;
3068
3069 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
3070 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
3071 fw.sbss_index = 0;
3072 fw.sbss = bnx_TPAT_b09FwSbss;
3073
3074 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
3075 fw.bss_len = bnx_TPAT_b09FwBssLen;
3076 fw.bss_index = 0;
3077 fw.bss = bnx_TPAT_b09FwBss;
3078
3079 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
3080 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
3081 fw.rodata_index = 0;
3082 fw.rodata = bnx_TPAT_b09FwRodata;
3083
3084 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3085 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3086
3087 /* Initialize the Completion Processor. */
3088 cpu_reg.mode = BNX_COM_CPU_MODE;
3089 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3090 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3091 cpu_reg.state = BNX_COM_CPU_STATE;
3092 cpu_reg.state_value_clear = 0xffffff;
3093 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3094 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3095 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3096 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3097 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3098 cpu_reg.spad_base = BNX_COM_SCRATCH;
3099 cpu_reg.mips_view_base = 0x8000000;
3100
3101 fw.ver_major = bnx_COM_b09FwReleaseMajor;
3102 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
3103 fw.ver_fix = bnx_COM_b09FwReleaseFix;
3104 fw.start_addr = bnx_COM_b09FwStartAddr;
3105
3106 fw.text_addr = bnx_COM_b09FwTextAddr;
3107 fw.text_len = bnx_COM_b09FwTextLen;
3108 fw.text_index = 0;
3109 fw.text = bnx_COM_b09FwText;
3110
3111 fw.data_addr = bnx_COM_b09FwDataAddr;
3112 fw.data_len = bnx_COM_b09FwDataLen;
3113 fw.data_index = 0;
3114 fw.data = bnx_COM_b09FwData;
3115
3116 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
3117 fw.sbss_len = bnx_COM_b09FwSbssLen;
3118 fw.sbss_index = 0;
3119 fw.sbss = bnx_COM_b09FwSbss;
3120
3121 fw.bss_addr = bnx_COM_b09FwBssAddr;
3122 fw.bss_len = bnx_COM_b09FwBssLen;
3123 fw.bss_index = 0;
3124 fw.bss = bnx_COM_b09FwBss;
3125
3126 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3127 fw.rodata_len = bnx_COM_b09FwRodataLen;
3128 fw.rodata_index = 0;
3129 fw.rodata = bnx_COM_b09FwRodata;
3130 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3131 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3132 break;
3133 default:
3134 /* Initialize the RV2P processor. */
3135 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3136 RV2P_PROC1);
3137 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3138 RV2P_PROC2);
3139
3140 /* Initialize the RX Processor. */
3141 cpu_reg.mode = BNX_RXP_CPU_MODE;
3142 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3143 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3144 cpu_reg.state = BNX_RXP_CPU_STATE;
3145 cpu_reg.state_value_clear = 0xffffff;
3146 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3147 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3148 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3149 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3150 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3151 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3152 cpu_reg.mips_view_base = 0x8000000;
3153
3154 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3155 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3156 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3157 fw.start_addr = bnx_RXP_b06FwStartAddr;
3158
3159 fw.text_addr = bnx_RXP_b06FwTextAddr;
3160 fw.text_len = bnx_RXP_b06FwTextLen;
3161 fw.text_index = 0;
3162 fw.text = bnx_RXP_b06FwText;
3163
3164 fw.data_addr = bnx_RXP_b06FwDataAddr;
3165 fw.data_len = bnx_RXP_b06FwDataLen;
3166 fw.data_index = 0;
3167 fw.data = bnx_RXP_b06FwData;
3168
3169 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3170 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3171 fw.sbss_index = 0;
3172 fw.sbss = bnx_RXP_b06FwSbss;
3173
3174 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3175 fw.bss_len = bnx_RXP_b06FwBssLen;
3176 fw.bss_index = 0;
3177 fw.bss = bnx_RXP_b06FwBss;
3178
3179 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3180 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3181 fw.rodata_index = 0;
3182 fw.rodata = bnx_RXP_b06FwRodata;
3183
3184 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3185 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3186
3187 /* Initialize the TX Processor. */
3188 cpu_reg.mode = BNX_TXP_CPU_MODE;
3189 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3190 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3191 cpu_reg.state = BNX_TXP_CPU_STATE;
3192 cpu_reg.state_value_clear = 0xffffff;
3193 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3194 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3195 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3196 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3197 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3198 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3199 cpu_reg.mips_view_base = 0x8000000;
3200
3201 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3202 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3203 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3204 fw.start_addr = bnx_TXP_b06FwStartAddr;
3205
3206 fw.text_addr = bnx_TXP_b06FwTextAddr;
3207 fw.text_len = bnx_TXP_b06FwTextLen;
3208 fw.text_index = 0;
3209 fw.text = bnx_TXP_b06FwText;
3210
3211 fw.data_addr = bnx_TXP_b06FwDataAddr;
3212 fw.data_len = bnx_TXP_b06FwDataLen;
3213 fw.data_index = 0;
3214 fw.data = bnx_TXP_b06FwData;
3215
3216 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3217 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3218 fw.sbss_index = 0;
3219 fw.sbss = bnx_TXP_b06FwSbss;
3220
3221 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3222 fw.bss_len = bnx_TXP_b06FwBssLen;
3223 fw.bss_index = 0;
3224 fw.bss = bnx_TXP_b06FwBss;
3225
3226 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3227 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3228 fw.rodata_index = 0;
3229 fw.rodata = bnx_TXP_b06FwRodata;
3230
3231 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3232 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3233
3234 /* Initialize the TX Patch-up Processor. */
3235 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3236 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3237 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3238 cpu_reg.state = BNX_TPAT_CPU_STATE;
3239 cpu_reg.state_value_clear = 0xffffff;
3240 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3241 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3242 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3243 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3244 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3245 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3246 cpu_reg.mips_view_base = 0x8000000;
3247
3248 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3249 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3250 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3251 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3252
3253 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3254 fw.text_len = bnx_TPAT_b06FwTextLen;
3255 fw.text_index = 0;
3256 fw.text = bnx_TPAT_b06FwText;
3257
3258 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3259 fw.data_len = bnx_TPAT_b06FwDataLen;
3260 fw.data_index = 0;
3261 fw.data = bnx_TPAT_b06FwData;
3262
3263 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3264 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3265 fw.sbss_index = 0;
3266 fw.sbss = bnx_TPAT_b06FwSbss;
3267
3268 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3269 fw.bss_len = bnx_TPAT_b06FwBssLen;
3270 fw.bss_index = 0;
3271 fw.bss = bnx_TPAT_b06FwBss;
3272
3273 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3274 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3275 fw.rodata_index = 0;
3276 fw.rodata = bnx_TPAT_b06FwRodata;
3277
3278 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3279 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3280
3281 /* Initialize the Completion Processor. */
3282 cpu_reg.mode = BNX_COM_CPU_MODE;
3283 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3284 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3285 cpu_reg.state = BNX_COM_CPU_STATE;
3286 cpu_reg.state_value_clear = 0xffffff;
3287 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3288 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3289 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3290 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3291 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3292 cpu_reg.spad_base = BNX_COM_SCRATCH;
3293 cpu_reg.mips_view_base = 0x8000000;
3294
3295 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3296 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3297 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3298 fw.start_addr = bnx_COM_b06FwStartAddr;
3299
3300 fw.text_addr = bnx_COM_b06FwTextAddr;
3301 fw.text_len = bnx_COM_b06FwTextLen;
3302 fw.text_index = 0;
3303 fw.text = bnx_COM_b06FwText;
3304
3305 fw.data_addr = bnx_COM_b06FwDataAddr;
3306 fw.data_len = bnx_COM_b06FwDataLen;
3307 fw.data_index = 0;
3308 fw.data = bnx_COM_b06FwData;
3309
3310 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3311 fw.sbss_len = bnx_COM_b06FwSbssLen;
3312 fw.sbss_index = 0;
3313 fw.sbss = bnx_COM_b06FwSbss;
3314
3315 fw.bss_addr = bnx_COM_b06FwBssAddr;
3316 fw.bss_len = bnx_COM_b06FwBssLen;
3317 fw.bss_index = 0;
3318 fw.bss = bnx_COM_b06FwBss;
3319
3320 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3321 fw.rodata_len = bnx_COM_b06FwRodataLen;
3322 fw.rodata_index = 0;
3323 fw.rodata = bnx_COM_b06FwRodata;
3324 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3325 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3326 break;
3327 }
3328 }
3329
3330 /****************************************************************************/
3331 /* Initialize context memory. */
3332 /* */
3333 /* Clears the memory associated with each Context ID (CID). */
3334 /* */
3335 /* Returns: */
3336 /* Nothing. */
3337 /****************************************************************************/
3338 void
3339 bnx_init_context(struct bnx_softc *sc)
3340 {
3341 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3342 /* DRC: Replace this constant value with a #define. */
3343 int i, retry_cnt = 10;
3344 uint32_t val;
3345
3346 /*
3347 * BCM5709 context memory may be cached
3348 * in host memory so prepare the host memory
3349 * for access.
3350 */
3351 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3352 | (1 << 12);
3353 val |= (BCM_PAGE_BITS - 8) << 16;
3354 REG_WR(sc, BNX_CTX_COMMAND, val);
3355
3356 /* Wait for mem init command to complete. */
3357 for (i = 0; i < retry_cnt; i++) {
3358 val = REG_RD(sc, BNX_CTX_COMMAND);
3359 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3360 break;
3361 DELAY(2);
3362 }
3363
3364 /* ToDo: Consider returning an error here. */
3365
3366 for (i = 0; i < sc->ctx_pages; i++) {
3367 int j;
3368
3369 /* Set the physaddr of the context memory cache. */
3370 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3371 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3372 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3373 val = (uint32_t)
3374 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3375 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3376 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3377 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3378
3379 /* Verify that the context memory write was successful. */
3380 for (j = 0; j < retry_cnt; j++) {
3381 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3382 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3383 break;
3384 DELAY(5);
3385 }
3386
3387 /* ToDo: Consider returning an error here. */
3388 }
3389 } else {
3390 uint32_t vcid_addr, offset;
3391
3392 /*
3393 * For the 5706/5708, context memory is local to the
3394 * controller, so initialize the controller context memory.
3395 */
3396
3397 vcid_addr = GET_CID_ADDR(96);
3398 while (vcid_addr) {
3399
3400 vcid_addr -= BNX_PHY_CTX_SIZE;
3401
3402 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3403 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3404
3405 for (offset = 0; offset < BNX_PHY_CTX_SIZE;
3406 offset += 4)
3407 CTX_WR(sc, 0x00, offset, 0);
3408
3409 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3410 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3411 }
3412 }
3413 }
3414
3415 /****************************************************************************/
3416 /* Fetch the permanent MAC address of the controller. */
3417 /* */
3418 /* Returns: */
3419 /* Nothing. */
3420 /****************************************************************************/
3421 void
3422 bnx_get_mac_addr(struct bnx_softc *sc)
3423 {
3424 uint32_t mac_lo = 0, mac_hi = 0;
3425
3426 /*
3427 * The NetXtreme II bootcode populates various NIC
3428 * power-on and runtime configuration items in a
3429 * shared memory area. The factory configured MAC
3430 * address is available from both NVRAM and the
3431 * shared memory area so we'll read the value from
3432 * shared memory for speed.
3433 */
3434
3435 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3436 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3437
3438 if ((mac_lo == 0) && (mac_hi == 0)) {
3439 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3440 __FILE__, __LINE__);
3441 } else {
3442 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3443 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3444 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3445 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3446 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3447 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3448 }
3449
3450 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3451 "%s\n", ether_sprintf(sc->eaddr));
3452 }
3453
3454 /****************************************************************************/
3455 /* Program the MAC address. */
3456 /* */
3457 /* Returns: */
3458 /* Nothing. */
3459 /****************************************************************************/
3460 void
3461 bnx_set_mac_addr(struct bnx_softc *sc)
3462 {
3463 uint32_t val;
3464 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3465
3466 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3467 "%s\n", ether_sprintf(sc->eaddr));
3468
3469 val = (mac_addr[0] << 8) | mac_addr[1];
3470
3471 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3472
3473 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3474 (mac_addr[4] << 8) | mac_addr[5];
3475
3476 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3477 }
3478
3479 /****************************************************************************/
3480 /* Stop the controller. */
3481 /* */
3482 /* Returns: */
3483 /* Nothing. */
3484 /****************************************************************************/
3485 void
3486 bnx_stop(struct ifnet *ifp, int disable)
3487 {
3488 struct bnx_softc *sc = ifp->if_softc;
3489
3490 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3491
3492 if (disable) {
3493 sc->bnx_detaching = 1;
3494 callout_halt(&sc->bnx_timeout, NULL);
3495 } else
3496 callout_stop(&sc->bnx_timeout);
3497
3498 mii_down(&sc->bnx_mii);
3499
3500 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3501
3502 /* Disable the transmit/receive blocks. */
3503 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3504 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3505 DELAY(20);
3506
3507 bnx_disable_intr(sc);
3508
3509 /* Tell firmware that the driver is going away. */
3510 if (disable)
3511 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3512 else
3513 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3514
3515 /* Free RX buffers. */
3516 bnx_free_rx_chain(sc);
3517
3518 /* Free TX buffers. */
3519 bnx_free_tx_chain(sc);
3520
3521 ifp->if_timer = 0;
3522
3523 sc->bnx_link = 0;
3524
3525 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3526
3527 bnx_mgmt_init(sc);
3528 }
3529
3530 int
3531 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3532 {
3533 struct pci_attach_args *pa = &(sc->bnx_pa);
3534 uint32_t val;
3535 int i, rc = 0;
3536
3537 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3538
3539 /* Wait for pending PCI transactions to complete. */
3540 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
3541 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
3542 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3543 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3544 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3545 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3546 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3547 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3548 DELAY(5);
3549 } else {
3550 /* Disable DMA */
3551 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3552 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3553 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3554 REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
3555
3556 for (i = 0; i < 100; i++) {
3557 delay(1 * 1000);
3558 val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
3559 if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
3560 break;
3561 }
3562 }
3563
3564 /* Assume bootcode is running. */
3565 sc->bnx_fw_timed_out = 0;
3566
3567 /* Give the firmware a chance to prepare for the reset. */
3568 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3569 if (rc)
3570 goto bnx_reset_exit;
3571
3572 /* Set a firmware reminder that this is a soft reset. */
3573 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3574 BNX_DRV_RESET_SIGNATURE_MAGIC);
3575
3576 /* Dummy read to force the chip to complete all current transactions. */
3577 val = REG_RD(sc, BNX_MISC_ID);
3578
3579 /* Chip reset. */
3580 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3581 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3582 REG_RD(sc, BNX_MISC_COMMAND);
3583 DELAY(5);
3584
3585 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3586 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3587
3588 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3589 val);
3590 } else {
3591 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3592 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3593 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3594 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3595
3596 /* Allow up to 30us for reset to complete. */
3597 for (i = 0; i < 10; i++) {
3598 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3599 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3600 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3601 break;
3602 }
3603 DELAY(10);
3604 }
3605
3606 /* Check that reset completed successfully. */
3607 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3608 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3609 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3610 __FILE__, __LINE__);
3611 rc = EBUSY;
3612 goto bnx_reset_exit;
3613 }
3614 }
3615
3616 /* Make sure byte swapping is properly configured. */
3617 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3618 if (val != 0x01020304) {
3619 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3620 __FILE__, __LINE__);
3621 rc = ENODEV;
3622 goto bnx_reset_exit;
3623 }
3624
3625 /* Just completed a reset, assume that firmware is running again. */
3626 sc->bnx_fw_timed_out = 0;
3627
3628 /* Wait for the firmware to finish its initialization. */
3629 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3630 if (rc)
3631 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3632 "initialization!\n", __FILE__, __LINE__);
3633
3634 bnx_reset_exit:
3635 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3636
3637 return rc;
3638 }
3639
3640 int
3641 bnx_chipinit(struct bnx_softc *sc)
3642 {
3643 struct pci_attach_args *pa = &(sc->bnx_pa);
3644 uint32_t val;
3645 int rc = 0;
3646
3647 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3648
3649 /* Make sure the interrupt is not active. */
3650 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3651
3652 /* Initialize DMA byte/word swapping, configure the number of DMA */
3653 /* channels and PCI clock compensation delay. */
3654 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3655 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3656 #if BYTE_ORDER == BIG_ENDIAN
3657 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3658 #endif
3659 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3660 DMA_READ_CHANS << 12 |
3661 DMA_WRITE_CHANS << 16;
3662
3663 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3664
3665 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3666 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3667
3668 /*
3669 * This setting resolves a problem observed on certain Intel PCI
3670 * chipsets that cannot handle multiple outstanding DMA operations.
3671 * See errata E9_5706A1_65.
3672 */
3673 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3674 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3675 !(sc->bnx_flags & BNX_PCIX_FLAG))
3676 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3677
3678 REG_WR(sc, BNX_DMA_CONFIG, val);
3679
3680 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3681 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3682 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3683 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3684 val & ~0x20000);
3685 }
3686
3687 /* Enable the RX_V2P and Context state machines before access. */
3688 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3689 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3690 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3691 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3692
3693 /* Initialize context mapping and zero out the quick contexts. */
3694 bnx_init_context(sc);
3695
3696 /* Initialize the on-boards CPUs */
3697 bnx_init_cpus(sc);
3698
3699 /* Enable management frames (NC-SI) to flow to the MCP. */
3700 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3701 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
3702 BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3703 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3704 }
3705
3706 /* Prepare NVRAM for access. */
3707 if (bnx_init_nvram(sc)) {
3708 rc = ENODEV;
3709 goto bnx_chipinit_exit;
3710 }
3711
3712 /* Set the kernel bypass block size */
3713 val = REG_RD(sc, BNX_MQ_CONFIG);
3714 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3715 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3716
3717 /* Enable bins used on the 5709. */
3718 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3719 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3720 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3721 val |= BNX_MQ_CONFIG_HALT_DIS;
3722 }
3723
3724 REG_WR(sc, BNX_MQ_CONFIG, val);
3725
3726 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3727 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3728 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3729
3730 val = (BCM_PAGE_BITS - 8) << 24;
3731 REG_WR(sc, BNX_RV2P_CONFIG, val);
3732
3733 /* Configure page size. */
3734 val = REG_RD(sc, BNX_TBDR_CONFIG);
3735 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3736 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3737 REG_WR(sc, BNX_TBDR_CONFIG, val);
3738
3739 #if 0
3740 /* Set the perfect match control register to default. */
3741 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3742 #endif
3743
3744 bnx_chipinit_exit:
3745 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3746
3747 return rc;
3748 }
3749
3750 /****************************************************************************/
3751 /* Initialize the controller in preparation to send/receive traffic. */
3752 /* */
3753 /* Returns: */
3754 /* 0 for success, positive value for failure. */
3755 /****************************************************************************/
3756 int
3757 bnx_blockinit(struct bnx_softc *sc)
3758 {
3759 uint32_t reg, val;
3760 int rc = 0;
3761
3762 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3763
3764 /* Load the hardware default MAC address. */
3765 bnx_set_mac_addr(sc);
3766
3767 /* Set the Ethernet backoff seed value */
3768 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3769 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3770 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3771
3772 sc->last_status_idx = 0;
3773 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3774
3775 /* Set up link change interrupt generation. */
3776 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3777 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3778
3779 /* Program the physical address of the status block. */
3780 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3781 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3782 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3783
3784 /* Program the physical address of the statistics block. */
3785 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3786 (uint32_t)(sc->stats_block_paddr));
3787 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3788 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3789
3790 /* Program various host coalescing parameters. */
3791 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3792 << 16) | sc->bnx_tx_quick_cons_trip);
3793 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3794 << 16) | sc->bnx_rx_quick_cons_trip);
3795 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3796 sc->bnx_comp_prod_trip);
3797 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3798 sc->bnx_tx_ticks);
3799 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3800 sc->bnx_rx_ticks);
3801 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3802 sc->bnx_com_ticks);
3803 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3804 sc->bnx_cmd_ticks);
3805 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3806 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3807 REG_WR(sc, BNX_HC_CONFIG,
3808 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3809 BNX_HC_CONFIG_COLLECT_STATS));
3810
3811 /* Clear the internal statistics counters. */
3812 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3813
3814 /* Verify that bootcode is running. */
3815 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3816
3817 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3818 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3819 __FILE__, __LINE__); reg = 0);
3820
3821 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3822 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3823 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3824 "Expected: 08%08X\n", __FILE__, __LINE__,
3825 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3826 BNX_DEV_INFO_SIGNATURE_MAGIC);
3827 rc = ENODEV;
3828 goto bnx_blockinit_exit;
3829 }
3830
3831 /* Enable DMA */
3832 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3833 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3834 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3835 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3836 }
3837
3838 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3839 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3840
3841 /* Disable management frames (NC-SI) from flowing to the MCP. */
3842 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3843 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
3844 ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3845 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3846 }
3847
3848 /* Enable all remaining blocks in the MAC. */
3849 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3850 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3851 BNX_MISC_ENABLE_DEFAULT_XI);
3852 } else
3853 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3854
3855 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3856 DELAY(20);
3857
3858 bnx_blockinit_exit:
3859 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3860
3861 return rc;
3862 }
3863
3864 static int
3865 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3866 uint16_t *chain_prod, uint32_t *prod_bseq)
3867 {
3868 bus_dmamap_t map;
3869 struct rx_bd *rxbd;
3870 uint32_t addr;
3871 int i;
3872 #ifdef BNX_DEBUG
3873 uint16_t debug_chain_prod = *chain_prod;
3874 #endif
3875 uint16_t first_chain_prod;
3876
3877 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3878
3879 /* Map the mbuf cluster into device memory. */
3880 map = sc->rx_mbuf_map[*chain_prod];
3881 first_chain_prod = *chain_prod;
3882 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3883 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3884 __FILE__, __LINE__);
3885
3886 m_freem(m_new);
3887
3888 DBRUNIF(1, sc->rx_mbuf_alloc--);
3889
3890 return ENOBUFS;
3891 }
3892 /* Make sure there is room in the receive chain. */
3893 if (map->dm_nsegs > sc->free_rx_bd) {
3894 bus_dmamap_unload(sc->bnx_dmatag, map);
3895 m_freem(m_new);
3896 return EFBIG;
3897 }
3898 #ifdef BNX_DEBUG
3899 /* Track the distribution of buffer segments. */
3900 sc->rx_mbuf_segs[map->dm_nsegs]++;
3901 #endif
3902
3903 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3904 BUS_DMASYNC_PREREAD);
3905
3906 /* Update some debug statistics counters */
3907 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3908 sc->rx_low_watermark = sc->free_rx_bd);
3909 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3910
3911 /*
3912 * Setup the rx_bd for the first segment
3913 */
3914 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3915
3916 addr = (uint32_t)map->dm_segs[0].ds_addr;
3917 rxbd->rx_bd_haddr_lo = addr;
3918 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3919 rxbd->rx_bd_haddr_hi = addr;
3920 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3921 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3922 *prod_bseq += map->dm_segs[0].ds_len;
3923 bus_dmamap_sync(sc->bnx_dmatag,
3924 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3925 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3926 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3927
3928 for (i = 1; i < map->dm_nsegs; i++) {
3929 *prod = NEXT_RX_BD(*prod);
3930 *chain_prod = RX_CHAIN_IDX(*prod);
3931
3932 rxbd =
3933 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3934
3935 addr = (uint32_t)map->dm_segs[i].ds_addr;
3936 rxbd->rx_bd_haddr_lo = addr;
3937 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3938 rxbd->rx_bd_haddr_hi = addr;
3939 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3940 rxbd->rx_bd_flags = 0;
3941 *prod_bseq += map->dm_segs[i].ds_len;
3942 bus_dmamap_sync(sc->bnx_dmatag,
3943 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3944 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3945 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3946 }
3947
3948 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3949 bus_dmamap_sync(sc->bnx_dmatag,
3950 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3951 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3952 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3953
3954 /*
3955 * Save the mbuf, adjust the map pointer (swap map for first and
3956 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3957 * and update our counter.
3958 */
3959 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3960 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3961 sc->rx_mbuf_map[*chain_prod] = map;
3962 sc->free_rx_bd -= map->dm_nsegs;
3963
3964 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3965 map->dm_nsegs));
3966 *prod = NEXT_RX_BD(*prod);
3967 *chain_prod = RX_CHAIN_IDX(*prod);
3968
3969 return 0;
3970 }
3971
3972 /****************************************************************************/
3973 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3974 /* */
3975 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3976 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3977 /* necessary. */
3978 /* */
3979 /* Returns: */
3980 /* 0 for success, positive value for failure. */
3981 /****************************************************************************/
3982 int
3983 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3984 uint16_t *chain_prod, uint32_t *prod_bseq)
3985 {
3986 struct mbuf *m_new = NULL;
3987 int rc = 0;
3988 uint16_t min_free_bd;
3989
3990 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3991 __func__);
3992
3993 /* Make sure the inputs are valid. */
3994 DBRUNIF((*chain_prod > MAX_RX_BD),
3995 aprint_error_dev(sc->bnx_dev,
3996 "RX producer out of range: 0x%04X > 0x%04X\n",
3997 *chain_prod, (uint16_t)MAX_RX_BD));
3998
3999 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
4000 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
4001 *prod_bseq);
4002
4003 /* try to get in as many mbufs as possible */
4004 if (sc->mbuf_alloc_size == MCLBYTES)
4005 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
4006 else
4007 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
4008 while (sc->free_rx_bd >= min_free_bd) {
4009 /* Simulate an mbuf allocation failure. */
4010 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
4011 aprint_error_dev(sc->bnx_dev,
4012 "Simulating mbuf allocation failure.\n");
4013 sc->mbuf_sim_alloc_failed++;
4014 rc = ENOBUFS;
4015 goto bnx_get_buf_exit);
4016
4017 /* This is a new mbuf allocation. */
4018 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
4019 if (m_new == NULL) {
4020 DBPRINT(sc, BNX_WARN,
4021 "%s(%d): RX mbuf header allocation failed!\n",
4022 __FILE__, __LINE__);
4023
4024 sc->mbuf_alloc_failed++;
4025
4026 rc = ENOBUFS;
4027 goto bnx_get_buf_exit;
4028 }
4029
4030 DBRUNIF(1, sc->rx_mbuf_alloc++);
4031
4032 /* Simulate an mbuf cluster allocation failure. */
4033 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
4034 m_freem(m_new);
4035 sc->rx_mbuf_alloc--;
4036 sc->mbuf_alloc_failed++;
4037 sc->mbuf_sim_alloc_failed++;
4038 rc = ENOBUFS;
4039 goto bnx_get_buf_exit);
4040
4041 if (sc->mbuf_alloc_size == MCLBYTES)
4042 MCLGET(m_new, M_DONTWAIT);
4043 else
4044 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
4045 M_DONTWAIT);
4046 if (!(m_new->m_flags & M_EXT)) {
4047 DBPRINT(sc, BNX_WARN,
4048 "%s(%d): RX mbuf chain allocation failed!\n",
4049 __FILE__, __LINE__);
4050
4051 m_freem(m_new);
4052
4053 DBRUNIF(1, sc->rx_mbuf_alloc--);
4054 sc->mbuf_alloc_failed++;
4055
4056 rc = ENOBUFS;
4057 goto bnx_get_buf_exit;
4058 }
4059
4060 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
4061 if (rc != 0)
4062 goto bnx_get_buf_exit;
4063 }
4064
4065 bnx_get_buf_exit:
4066 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
4067 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
4068 *chain_prod, *prod_bseq);
4069
4070 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
4071 __func__);
4072
4073 return rc;
4074 }
4075
4076 void
4077 bnx_alloc_pkts(struct work * unused, void * arg)
4078 {
4079 struct bnx_softc *sc = arg;
4080 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4081 struct bnx_pkt *pkt;
4082 int i, s;
4083
4084 for (i = 0; i < 4; i++) { /* magic! */
4085 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
4086 if (pkt == NULL)
4087 break;
4088
4089 if (bus_dmamap_create(sc->bnx_dmatag,
4090 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
4091 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
4092 &pkt->pkt_dmamap) != 0)
4093 goto put;
4094
4095 if (!ISSET(ifp->if_flags, IFF_UP))
4096 goto stopping;
4097
4098 mutex_enter(&sc->tx_pkt_mtx);
4099 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4100 sc->tx_pkt_count++;
4101 mutex_exit(&sc->tx_pkt_mtx);
4102 }
4103
4104 mutex_enter(&sc->tx_pkt_mtx);
4105 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4106 mutex_exit(&sc->tx_pkt_mtx);
4107
4108 /* fire-up TX now that allocations have been done */
4109 s = splnet();
4110 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4111 bnx_start(ifp);
4112 splx(s);
4113
4114 return;
4115
4116 stopping:
4117 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4118 put:
4119 pool_put(bnx_tx_pool, pkt);
4120 return;
4121 }
4122
4123 /****************************************************************************/
4124 /* Initialize the TX context memory. */
4125 /* */
4126 /* Returns: */
4127 /* Nothing */
4128 /****************************************************************************/
4129 void
4130 bnx_init_tx_context(struct bnx_softc *sc)
4131 {
4132 uint32_t val;
4133
4134 /* Initialize the context ID for an L2 TX chain. */
4135 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4136 /* Set the CID type to support an L2 connection. */
4137 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4138 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4139 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4140 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4141
4142 /* Point the hardware to the first page in the chain. */
4143 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4144 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4145 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4146 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4147 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4148 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4149 } else {
4150 /* Set the CID type to support an L2 connection. */
4151 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4152 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4153 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4154 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4155
4156 /* Point the hardware to the first page in the chain. */
4157 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4158 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4159 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4160 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4161 }
4162 }
4163
4164
4165 /****************************************************************************/
4166 /* Allocate memory and initialize the TX data structures. */
4167 /* */
4168 /* Returns: */
4169 /* 0 for success, positive value for failure. */
4170 /****************************************************************************/
4171 int
4172 bnx_init_tx_chain(struct bnx_softc *sc)
4173 {
4174 struct tx_bd *txbd;
4175 uint32_t addr;
4176 int i, rc = 0;
4177
4178 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4179
4180 /* Set the initial TX producer/consumer indices. */
4181 sc->tx_prod = 0;
4182 sc->tx_cons = 0;
4183 sc->tx_prod_bseq = 0;
4184 sc->used_tx_bd = 0;
4185 sc->max_tx_bd = USABLE_TX_BD;
4186 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4187 DBRUNIF(1, sc->tx_full_count = 0);
4188
4189 /*
4190 * The NetXtreme II supports a linked-list structure called
4191 * a Buffer Descriptor Chain (or BD chain). A BD chain
4192 * consists of a series of 1 or more chain pages, each of which
4193 * consists of a fixed number of BD entries.
4194 * The last BD entry on each page is a pointer to the next page
4195 * in the chain, and the last pointer in the BD chain
4196 * points back to the beginning of the chain.
4197 */
4198
4199 /* Set the TX next pointer chain entries. */
4200 for (i = 0; i < TX_PAGES; i++) {
4201 int j;
4202
4203 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4204
4205 /* Check if we've reached the last page. */
4206 if (i == (TX_PAGES - 1))
4207 j = 0;
4208 else
4209 j = i + 1;
4210
4211 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4212 txbd->tx_bd_haddr_lo = addr;
4213 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4214 txbd->tx_bd_haddr_hi = addr;
4215 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4216 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4217 }
4218
4219 /*
4220 * Initialize the context ID for an L2 TX chain.
4221 */
4222 bnx_init_tx_context(sc);
4223
4224 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4225
4226 return rc;
4227 }
4228
4229 /****************************************************************************/
4230 /* Free memory and clear the TX data structures. */
4231 /* */
4232 /* Returns: */
4233 /* Nothing. */
4234 /****************************************************************************/
4235 void
4236 bnx_free_tx_chain(struct bnx_softc *sc)
4237 {
4238 struct bnx_pkt *pkt;
4239 int i;
4240
4241 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4242
4243 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4244 mutex_enter(&sc->tx_pkt_mtx);
4245 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4246 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4247 mutex_exit(&sc->tx_pkt_mtx);
4248
4249 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4250 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4251 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4252
4253 m_freem(pkt->pkt_mbuf);
4254 DBRUNIF(1, sc->tx_mbuf_alloc--);
4255
4256 mutex_enter(&sc->tx_pkt_mtx);
4257 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4258 }
4259 mutex_exit(&sc->tx_pkt_mtx);
4260
4261 /* Clear each TX chain page. */
4262 for (i = 0; i < TX_PAGES; i++) {
4263 memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4264 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4265 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4266 }
4267
4268 sc->used_tx_bd = 0;
4269
4270 /* Check if we lost any mbufs in the process. */
4271 DBRUNIF((sc->tx_mbuf_alloc),
4272 aprint_error_dev(sc->bnx_dev,
4273 "Memory leak! Lost %d mbufs from tx chain!\n",
4274 sc->tx_mbuf_alloc));
4275
4276 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4277 }
4278
4279 /****************************************************************************/
4280 /* Initialize the RX context memory. */
4281 /* */
4282 /* Returns: */
4283 /* Nothing */
4284 /****************************************************************************/
4285 void
4286 bnx_init_rx_context(struct bnx_softc *sc)
4287 {
4288 uint32_t val;
4289
4290 /* Initialize the context ID for an L2 RX chain. */
4291 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4292 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4293
4294 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
4295 val |= 0x000000ff;
4296
4297 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4298
4299 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4300 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4301 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4302 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4303 }
4304
4305 /* Point the hardware to the first page in the chain. */
4306 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4307 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4308 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4309 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4310 }
4311
4312 /****************************************************************************/
4313 /* Allocate memory and initialize the RX data structures. */
4314 /* */
4315 /* Returns: */
4316 /* 0 for success, positive value for failure. */
4317 /****************************************************************************/
4318 int
4319 bnx_init_rx_chain(struct bnx_softc *sc)
4320 {
4321 struct rx_bd *rxbd;
4322 int i, rc = 0;
4323 uint16_t prod, chain_prod;
4324 uint32_t prod_bseq, addr;
4325
4326 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4327
4328 /* Initialize the RX producer and consumer indices. */
4329 sc->rx_prod = 0;
4330 sc->rx_cons = 0;
4331 sc->rx_prod_bseq = 0;
4332 sc->free_rx_bd = USABLE_RX_BD;
4333 sc->max_rx_bd = USABLE_RX_BD;
4334 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4335 DBRUNIF(1, sc->rx_empty_count = 0);
4336
4337 /* Initialize the RX next pointer chain entries. */
4338 for (i = 0; i < RX_PAGES; i++) {
4339 int j;
4340
4341 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4342
4343 /* Check if we've reached the last page. */
4344 if (i == (RX_PAGES - 1))
4345 j = 0;
4346 else
4347 j = i + 1;
4348
4349 /* Setup the chain page pointers. */
4350 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4351 rxbd->rx_bd_haddr_hi = addr;
4352 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4353 rxbd->rx_bd_haddr_lo = addr;
4354 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4355 0, BNX_RX_CHAIN_PAGE_SZ,
4356 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4357 }
4358
4359 /* Allocate mbuf clusters for the rx_bd chain. */
4360 prod = prod_bseq = 0;
4361 chain_prod = RX_CHAIN_IDX(prod);
4362 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4363 BNX_PRINTF(sc,
4364 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4365 }
4366
4367 /* Save the RX chain producer index. */
4368 sc->rx_prod = prod;
4369 sc->rx_prod_bseq = prod_bseq;
4370
4371 for (i = 0; i < RX_PAGES; i++)
4372 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4373 sc->rx_bd_chain_map[i]->dm_mapsize,
4374 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4375
4376 /* Tell the chip about the waiting rx_bd's. */
4377 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4378 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4379
4380 bnx_init_rx_context(sc);
4381
4382 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4383
4384 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4385
4386 return rc;
4387 }
4388
4389 /****************************************************************************/
4390 /* Free memory and clear the RX data structures. */
4391 /* */
4392 /* Returns: */
4393 /* Nothing. */
4394 /****************************************************************************/
4395 void
4396 bnx_free_rx_chain(struct bnx_softc *sc)
4397 {
4398 int i;
4399
4400 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4401
4402 /* Free any mbufs still in the RX mbuf chain. */
4403 for (i = 0; i < TOTAL_RX_BD; i++) {
4404 if (sc->rx_mbuf_ptr[i] != NULL) {
4405 if (sc->rx_mbuf_map[i] != NULL) {
4406 bus_dmamap_sync(sc->bnx_dmatag,
4407 sc->rx_mbuf_map[i], 0,
4408 sc->rx_mbuf_map[i]->dm_mapsize,
4409 BUS_DMASYNC_POSTREAD);
4410 bus_dmamap_unload(sc->bnx_dmatag,
4411 sc->rx_mbuf_map[i]);
4412 }
4413 m_freem(sc->rx_mbuf_ptr[i]);
4414 sc->rx_mbuf_ptr[i] = NULL;
4415 DBRUNIF(1, sc->rx_mbuf_alloc--);
4416 }
4417 }
4418
4419 /* Clear each RX chain page. */
4420 for (i = 0; i < RX_PAGES; i++)
4421 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4422
4423 sc->free_rx_bd = sc->max_rx_bd;
4424
4425 /* Check if we lost any mbufs in the process. */
4426 DBRUNIF((sc->rx_mbuf_alloc),
4427 aprint_error_dev(sc->bnx_dev,
4428 "Memory leak! Lost %d mbufs from rx chain!\n",
4429 sc->rx_mbuf_alloc));
4430
4431 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4432 }
4433
4434 /****************************************************************************/
4435 /* Set media options. */
4436 /* */
4437 /* Returns: */
4438 /* 0 for success, positive value for failure. */
4439 /****************************************************************************/
4440 int
4441 bnx_ifmedia_upd(struct ifnet *ifp)
4442 {
4443 struct bnx_softc *sc;
4444 struct mii_data *mii;
4445 int rc = 0;
4446
4447 sc = ifp->if_softc;
4448
4449 mii = &sc->bnx_mii;
4450 sc->bnx_link = 0;
4451 if (mii->mii_instance) {
4452 struct mii_softc *miisc;
4453 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4454 mii_phy_reset(miisc);
4455 }
4456 mii_mediachg(mii);
4457
4458 return rc;
4459 }
4460
4461 /****************************************************************************/
4462 /* Reports current media status. */
4463 /* */
4464 /* Returns: */
4465 /* Nothing. */
4466 /****************************************************************************/
4467 void
4468 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4469 {
4470 struct bnx_softc *sc;
4471 struct mii_data *mii;
4472 int s;
4473
4474 sc = ifp->if_softc;
4475
4476 s = splnet();
4477
4478 mii = &sc->bnx_mii;
4479
4480 mii_pollstat(mii);
4481 ifmr->ifm_status = mii->mii_media_status;
4482 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4483 sc->bnx_flowflags;
4484
4485 splx(s);
4486 }
4487
4488 /****************************************************************************/
4489 /* Handles PHY generated interrupt events. */
4490 /* */
4491 /* Returns: */
4492 /* Nothing. */
4493 /****************************************************************************/
4494 void
4495 bnx_phy_intr(struct bnx_softc *sc)
4496 {
4497 uint32_t new_link_state, old_link_state;
4498
4499 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4500 BUS_DMASYNC_POSTREAD);
4501 new_link_state = sc->status_block->status_attn_bits &
4502 STATUS_ATTN_BITS_LINK_STATE;
4503 old_link_state = sc->status_block->status_attn_bits_ack &
4504 STATUS_ATTN_BITS_LINK_STATE;
4505
4506 /* Handle any changes if the link state has changed. */
4507 if (new_link_state != old_link_state) {
4508 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4509
4510 sc->bnx_link = 0;
4511 callout_stop(&sc->bnx_timeout);
4512 bnx_tick(sc);
4513
4514 /* Update the status_attn_bits_ack field in the status block. */
4515 if (new_link_state) {
4516 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4517 STATUS_ATTN_BITS_LINK_STATE);
4518 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4519 } else {
4520 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4521 STATUS_ATTN_BITS_LINK_STATE);
4522 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4523 }
4524 }
4525
4526 /* Acknowledge the link change interrupt. */
4527 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4528 }
4529
4530 /****************************************************************************/
4531 /* Handles received frame interrupt events. */
4532 /* */
4533 /* Returns: */
4534 /* Nothing. */
4535 /****************************************************************************/
4536 void
4537 bnx_rx_intr(struct bnx_softc *sc)
4538 {
4539 struct status_block *sblk = sc->status_block;
4540 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4541 uint16_t hw_cons, sw_cons, sw_chain_cons;
4542 uint16_t sw_prod, sw_chain_prod;
4543 uint32_t sw_prod_bseq;
4544 struct l2_fhdr *l2fhdr;
4545 int i;
4546
4547 DBRUNIF(1, sc->rx_interrupts++);
4548 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4549 BUS_DMASYNC_POSTREAD);
4550
4551 /* Prepare the RX chain pages to be accessed by the host CPU. */
4552 for (i = 0; i < RX_PAGES; i++)
4553 bus_dmamap_sync(sc->bnx_dmatag,
4554 sc->rx_bd_chain_map[i], 0,
4555 sc->rx_bd_chain_map[i]->dm_mapsize,
4556 BUS_DMASYNC_POSTWRITE);
4557
4558 /* Get the hardware's view of the RX consumer index. */
4559 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4560 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4561 hw_cons++;
4562
4563 /* Get working copies of the driver's view of the RX indices. */
4564 sw_cons = sc->rx_cons;
4565 sw_prod = sc->rx_prod;
4566 sw_prod_bseq = sc->rx_prod_bseq;
4567
4568 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4569 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4570 __func__, sw_prod, sw_cons, sw_prod_bseq);
4571
4572 /* Prevent speculative reads from getting ahead of the status block. */
4573 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4574 BUS_SPACE_BARRIER_READ);
4575
4576 /* Update some debug statistics counters */
4577 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4578 sc->rx_low_watermark = sc->free_rx_bd);
4579 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4580
4581 /*
4582 * Scan through the receive chain as long
4583 * as there is work to do.
4584 */
4585 while (sw_cons != hw_cons) {
4586 struct mbuf *m;
4587 struct rx_bd *rxbd __diagused;
4588 unsigned int len;
4589 uint32_t status;
4590
4591 /* Convert the producer/consumer indices to an actual
4592 * rx_bd index.
4593 */
4594 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4595 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4596
4597 /* Get the used rx_bd. */
4598 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4599 sc->free_rx_bd++;
4600
4601 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4602 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4603
4604 /* The mbuf is stored with the last rx_bd entry of a packet. */
4605 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4606 #ifdef DIAGNOSTIC
4607 /* Validate that this is the last rx_bd. */
4608 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4609 printf("%s: Unexpected mbuf found in "
4610 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4611 sw_chain_cons);
4612 }
4613 #endif
4614
4615 /* DRC - ToDo: If the received packet is small, say
4616 * less than 128 bytes, allocate a new mbuf
4617 * here, copy the data to that mbuf, and
4618 * recycle the mapped jumbo frame.
4619 */
4620
4621 /* Unmap the mbuf from DMA space. */
4622 #ifdef DIAGNOSTIC
4623 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4624 printf("invalid map sw_cons 0x%x "
4625 "sw_prod 0x%x "
4626 "sw_chain_cons 0x%x "
4627 "sw_chain_prod 0x%x "
4628 "hw_cons 0x%x "
4629 "TOTAL_RX_BD_PER_PAGE 0x%x "
4630 "TOTAL_RX_BD 0x%x\n",
4631 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4632 hw_cons,
4633 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4634 }
4635 #endif
4636 bus_dmamap_sync(sc->bnx_dmatag,
4637 sc->rx_mbuf_map[sw_chain_cons], 0,
4638 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4639 BUS_DMASYNC_POSTREAD);
4640 bus_dmamap_unload(sc->bnx_dmatag,
4641 sc->rx_mbuf_map[sw_chain_cons]);
4642
4643 /* Remove the mbuf from the driver's chain. */
4644 m = sc->rx_mbuf_ptr[sw_chain_cons];
4645 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4646
4647 /*
4648 * Frames received on the NetXteme II are prepended
4649 * with the l2_fhdr structure which provides status
4650 * information about the received frame (including
4651 * VLAN tags and checksum info) and are also
4652 * automatically adjusted to align the IP header
4653 * (i.e. two null bytes are inserted before the
4654 * Ethernet header).
4655 */
4656 l2fhdr = mtod(m, struct l2_fhdr *);
4657
4658 len = l2fhdr->l2_fhdr_pkt_len;
4659 status = l2fhdr->l2_fhdr_status;
4660
4661 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4662 aprint_error("Simulating l2_fhdr status error.\n");
4663 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4664
4665 /* Watch for unusual sized frames. */
4666 DBRUNIF(((len < BNX_MIN_MTU) ||
4667 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4668 aprint_error_dev(sc->bnx_dev,
4669 "Unusual frame size found. "
4670 "Min(%d), Actual(%d), Max(%d)\n",
4671 (int)BNX_MIN_MTU, len,
4672 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4673
4674 bnx_dump_mbuf(sc, m);
4675 bnx_breakpoint(sc));
4676
4677 len -= ETHER_CRC_LEN;
4678
4679 /* Check the received frame for errors. */
4680 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4681 L2_FHDR_ERRORS_PHY_DECODE |
4682 L2_FHDR_ERRORS_ALIGNMENT |
4683 L2_FHDR_ERRORS_TOO_SHORT |
4684 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4685 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4686 len >
4687 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4688 if_statinc(ifp, if_ierrors);
4689 DBRUNIF(1, sc->l2fhdr_status_errors++);
4690
4691 /* Reuse the mbuf for a new frame. */
4692 if (bnx_add_buf(sc, m, &sw_prod,
4693 &sw_chain_prod, &sw_prod_bseq)) {
4694 DBRUNIF(1, bnx_breakpoint(sc));
4695 panic("%s: Can't reuse RX mbuf!\n",
4696 device_xname(sc->bnx_dev));
4697 }
4698 continue;
4699 }
4700
4701 /*
4702 * Get a new mbuf for the rx_bd. If no new
4703 * mbufs are available then reuse the current mbuf,
4704 * log an ierror on the interface, and generate
4705 * an error in the system log.
4706 */
4707 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4708 &sw_prod_bseq)) {
4709 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4710 "Failed to allocate "
4711 "new mbuf, incoming frame dropped!\n"));
4712
4713 if_statinc(ifp, if_ierrors);
4714
4715 /* Try and reuse the exisitng mbuf. */
4716 if (bnx_add_buf(sc, m, &sw_prod,
4717 &sw_chain_prod, &sw_prod_bseq)) {
4718 DBRUNIF(1, bnx_breakpoint(sc));
4719 panic("%s: Double mbuf allocation "
4720 "failure!",
4721 device_xname(sc->bnx_dev));
4722 }
4723 continue;
4724 }
4725
4726 /* Skip over the l2_fhdr when passing the data up
4727 * the stack.
4728 */
4729 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4730
4731 /* Adjust the pckt length to match the received data. */
4732 m->m_pkthdr.len = m->m_len = len;
4733
4734 /* Send the packet to the appropriate interface. */
4735 m_set_rcvif(m, ifp);
4736
4737 DBRUN(BNX_VERBOSE_RECV,
4738 struct ether_header *eh;
4739 eh = mtod(m, struct ether_header *);
4740 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4741 __func__, ether_sprintf(eh->ether_dhost),
4742 ether_sprintf(eh->ether_shost),
4743 htons(eh->ether_type)));
4744
4745 /* Validate the checksum. */
4746
4747 /* Check for an IP datagram. */
4748 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4749 /* Check if the IP checksum is valid. */
4750 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
4751 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4752 #ifdef BNX_DEBUG
4753 else
4754 DBPRINT(sc, BNX_WARN_SEND,
4755 "%s(): Invalid IP checksum "
4756 "= 0x%04X!\n",
4757 __func__,
4758 l2fhdr->l2_fhdr_ip_xsum
4759 );
4760 #endif
4761 }
4762
4763 /* Check for a valid TCP/UDP frame. */
4764 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4765 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4766 /* Check for a good TCP/UDP checksum. */
4767 if ((status &
4768 (L2_FHDR_ERRORS_TCP_XSUM |
4769 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4770 m->m_pkthdr.csum_flags |=
4771 M_CSUM_TCPv4 |
4772 M_CSUM_UDPv4;
4773 } else {
4774 DBPRINT(sc, BNX_WARN_SEND,
4775 "%s(): Invalid TCP/UDP "
4776 "checksum = 0x%04X!\n",
4777 __func__,
4778 l2fhdr->l2_fhdr_tcp_udp_xsum);
4779 }
4780 }
4781
4782 /*
4783 * If we received a packet with a vlan tag,
4784 * attach that information to the packet.
4785 */
4786 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4787 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4788 vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4789 }
4790
4791 /* Pass the mbuf off to the upper layers. */
4792
4793 DBPRINT(sc, BNX_VERBOSE_RECV,
4794 "%s(): Passing received frame up.\n", __func__);
4795 if_percpuq_enqueue(ifp->if_percpuq, m);
4796 DBRUNIF(1, sc->rx_mbuf_alloc--);
4797
4798 }
4799
4800 sw_cons = NEXT_RX_BD(sw_cons);
4801
4802 /* Refresh hw_cons to see if there's new work */
4803 if (sw_cons == hw_cons) {
4804 hw_cons = sc->hw_rx_cons =
4805 sblk->status_rx_quick_consumer_index0;
4806 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4807 USABLE_RX_BD_PER_PAGE)
4808 hw_cons++;
4809 }
4810
4811 /* Prevent speculative reads from getting ahead of
4812 * the status block.
4813 */
4814 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4815 BUS_SPACE_BARRIER_READ);
4816 }
4817
4818 for (i = 0; i < RX_PAGES; i++)
4819 bus_dmamap_sync(sc->bnx_dmatag,
4820 sc->rx_bd_chain_map[i], 0,
4821 sc->rx_bd_chain_map[i]->dm_mapsize,
4822 BUS_DMASYNC_PREWRITE);
4823
4824 sc->rx_cons = sw_cons;
4825 sc->rx_prod = sw_prod;
4826 sc->rx_prod_bseq = sw_prod_bseq;
4827
4828 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4829 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4830
4831 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4832 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4833 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4834 }
4835
4836 /****************************************************************************/
4837 /* Handles transmit completion interrupt events. */
4838 /* */
4839 /* Returns: */
4840 /* Nothing. */
4841 /****************************************************************************/
4842 void
4843 bnx_tx_intr(struct bnx_softc *sc)
4844 {
4845 struct status_block *sblk = sc->status_block;
4846 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4847 struct bnx_pkt *pkt;
4848 bus_dmamap_t map;
4849 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4850
4851 DBRUNIF(1, sc->tx_interrupts++);
4852 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4853 BUS_DMASYNC_POSTREAD);
4854
4855 /* Get the hardware's view of the TX consumer index. */
4856 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4857
4858 /* Skip to the next entry if this is a chain page pointer. */
4859 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4860 hw_tx_cons++;
4861
4862 sw_tx_cons = sc->tx_cons;
4863
4864 /* Prevent speculative reads from getting ahead of the status block. */
4865 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4866 BUS_SPACE_BARRIER_READ);
4867
4868 /* Cycle through any completed TX chain page entries. */
4869 while (sw_tx_cons != hw_tx_cons) {
4870 #ifdef BNX_DEBUG
4871 struct tx_bd *txbd = NULL;
4872 #endif
4873 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4874
4875 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4876 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4877 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4878
4879 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4880 aprint_error_dev(sc->bnx_dev,
4881 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4882 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4883
4884 DBRUNIF(1, txbd = &sc->tx_bd_chain
4885 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4886
4887 DBRUNIF((txbd == NULL),
4888 aprint_error_dev(sc->bnx_dev,
4889 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4890 bnx_breakpoint(sc));
4891
4892 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4893 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4894
4895
4896 mutex_enter(&sc->tx_pkt_mtx);
4897 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4898 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4899 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4900 mutex_exit(&sc->tx_pkt_mtx);
4901 /*
4902 * Free the associated mbuf. Remember
4903 * that only the last tx_bd of a packet
4904 * has an mbuf pointer and DMA map.
4905 */
4906 map = pkt->pkt_dmamap;
4907 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4908 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4909 bus_dmamap_unload(sc->bnx_dmatag, map);
4910
4911 m_freem(pkt->pkt_mbuf);
4912 DBRUNIF(1, sc->tx_mbuf_alloc--);
4913
4914 if_statinc(ifp, if_opackets);
4915
4916 mutex_enter(&sc->tx_pkt_mtx);
4917 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4918 }
4919 mutex_exit(&sc->tx_pkt_mtx);
4920
4921 sc->used_tx_bd--;
4922 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4923 __FILE__, __LINE__, sc->used_tx_bd);
4924
4925 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4926
4927 /* Refresh hw_cons to see if there's new work. */
4928 hw_tx_cons = sc->hw_tx_cons =
4929 sblk->status_tx_quick_consumer_index0;
4930 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4931 USABLE_TX_BD_PER_PAGE)
4932 hw_tx_cons++;
4933
4934 /* Prevent speculative reads from getting ahead of
4935 * the status block.
4936 */
4937 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4938 BUS_SPACE_BARRIER_READ);
4939 }
4940
4941 /* Clear the TX timeout timer. */
4942 ifp->if_timer = 0;
4943
4944 /* Clear the tx hardware queue full flag. */
4945 if (sc->used_tx_bd < sc->max_tx_bd) {
4946 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4947 aprint_debug_dev(sc->bnx_dev,
4948 "Open TX chain! %d/%d (used/total)\n",
4949 sc->used_tx_bd, sc->max_tx_bd));
4950 ifp->if_flags &= ~IFF_OACTIVE;
4951 }
4952
4953 sc->tx_cons = sw_tx_cons;
4954 }
4955
4956 /****************************************************************************/
4957 /* Disables interrupt generation. */
4958 /* */
4959 /* Returns: */
4960 /* Nothing. */
4961 /****************************************************************************/
4962 void
4963 bnx_disable_intr(struct bnx_softc *sc)
4964 {
4965 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4966 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4967 }
4968
4969 /****************************************************************************/
4970 /* Enables interrupt generation. */
4971 /* */
4972 /* Returns: */
4973 /* Nothing. */
4974 /****************************************************************************/
4975 void
4976 bnx_enable_intr(struct bnx_softc *sc)
4977 {
4978 uint32_t val;
4979
4980 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4981 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4982
4983 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4984 sc->last_status_idx);
4985
4986 val = REG_RD(sc, BNX_HC_COMMAND);
4987 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4988 }
4989
4990 /****************************************************************************/
4991 /* Handles controller initialization. */
4992 /* */
4993 /****************************************************************************/
4994 int
4995 bnx_init(struct ifnet *ifp)
4996 {
4997 struct bnx_softc *sc = ifp->if_softc;
4998 uint32_t ether_mtu;
4999 int s, error = 0;
5000
5001 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
5002
5003 s = splnet();
5004
5005 bnx_stop(ifp, 0);
5006
5007 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
5008 aprint_error_dev(sc->bnx_dev,
5009 "Controller reset failed!\n");
5010 goto bnx_init_exit;
5011 }
5012
5013 if ((error = bnx_chipinit(sc)) != 0) {
5014 aprint_error_dev(sc->bnx_dev,
5015 "Controller initialization failed!\n");
5016 goto bnx_init_exit;
5017 }
5018
5019 if ((error = bnx_blockinit(sc)) != 0) {
5020 aprint_error_dev(sc->bnx_dev,
5021 "Block initialization failed!\n");
5022 goto bnx_init_exit;
5023 }
5024
5025 /* Calculate and program the Ethernet MRU size. */
5026 if (ifp->if_mtu <= ETHERMTU) {
5027 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
5028 sc->mbuf_alloc_size = MCLBYTES;
5029 } else {
5030 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
5031 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
5032 }
5033
5034
5035 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
5036
5037 /*
5038 * Program the MRU and enable Jumbo frame
5039 * support.
5040 */
5041 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
5042 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
5043
5044 /* Calculate the RX Ethernet frame size for rx_bd's. */
5045 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
5046
5047 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
5048 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
5049 sc->mbuf_alloc_size, sc->max_frame_size);
5050
5051 /* Program appropriate promiscuous/multicast filtering. */
5052 bnx_iff(sc);
5053
5054 /* Init RX buffer descriptor chain. */
5055 bnx_init_rx_chain(sc);
5056
5057 /* Init TX buffer descriptor chain. */
5058 bnx_init_tx_chain(sc);
5059
5060 /* Enable host interrupts. */
5061 bnx_enable_intr(sc);
5062
5063 mii_ifmedia_change(&sc->bnx_mii);
5064
5065 SET(ifp->if_flags, IFF_RUNNING);
5066 CLR(ifp->if_flags, IFF_OACTIVE);
5067
5068 callout_schedule(&sc->bnx_timeout, hz);
5069
5070 bnx_init_exit:
5071 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5072
5073 splx(s);
5074
5075 return error;
5076 }
5077
5078 void
5079 bnx_mgmt_init(struct bnx_softc *sc)
5080 {
5081 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5082 uint32_t val;
5083
5084 /* Check if the driver is still running and bail out if it is. */
5085 if (ifp->if_flags & IFF_RUNNING)
5086 goto bnx_mgmt_init_exit;
5087
5088 /* Initialize the on-boards CPUs */
5089 bnx_init_cpus(sc);
5090
5091 val = (BCM_PAGE_BITS - 8) << 24;
5092 REG_WR(sc, BNX_RV2P_CONFIG, val);
5093
5094 /* Enable all critical blocks in the MAC. */
5095 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
5096 BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
5097 BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
5098 BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
5099 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
5100 DELAY(20);
5101
5102 mii_ifmedia_change(&sc->bnx_mii);
5103
5104 bnx_mgmt_init_exit:
5105 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5106 }
5107
5108 /****************************************************************************/
5109 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
5110 /* memory visible to the controller. */
5111 /* */
5112 /* Returns: */
5113 /* 0 for success, positive value for failure. */
5114 /****************************************************************************/
5115 int
5116 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
5117 {
5118 struct bnx_pkt *pkt;
5119 bus_dmamap_t map;
5120 struct tx_bd *txbd = NULL;
5121 uint16_t vlan_tag = 0, flags = 0;
5122 uint16_t chain_prod, prod;
5123 #ifdef BNX_DEBUG
5124 uint16_t debug_prod;
5125 #endif
5126 uint32_t addr, prod_bseq;
5127 int i, error;
5128 bool remap = true;
5129
5130 mutex_enter(&sc->tx_pkt_mtx);
5131 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
5132 if (pkt == NULL) {
5133 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
5134 mutex_exit(&sc->tx_pkt_mtx);
5135 return ENETDOWN;
5136 }
5137
5138 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
5139 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
5140 workqueue_enqueue(sc->bnx_wq, &sc->bnx_wk, NULL);
5141 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
5142 }
5143
5144 mutex_exit(&sc->tx_pkt_mtx);
5145 return ENOMEM;
5146 }
5147 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
5148 mutex_exit(&sc->tx_pkt_mtx);
5149
5150 /* Transfer any checksum offload flags to the bd. */
5151 if (m->m_pkthdr.csum_flags) {
5152 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
5153 flags |= TX_BD_FLAGS_IP_CKSUM;
5154 if (m->m_pkthdr.csum_flags &
5155 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
5156 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
5157 }
5158
5159 /* Transfer any VLAN tags to the bd. */
5160 if (vlan_has_tag(m)) {
5161 flags |= TX_BD_FLAGS_VLAN_TAG;
5162 vlan_tag = vlan_get_tag(m);
5163 }
5164
5165 /* Map the mbuf into DMAable memory. */
5166 prod = sc->tx_prod;
5167 chain_prod = TX_CHAIN_IDX(prod);
5168 map = pkt->pkt_dmamap;
5169
5170 /* Map the mbuf into our DMA address space. */
5171 retry:
5172 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5173 if (__predict_false(error)) {
5174 if (error == EFBIG) {
5175 if (remap == true) {
5176 struct mbuf *newm;
5177
5178 remap = false;
5179 newm = m_defrag(m, M_NOWAIT);
5180 if (newm != NULL) {
5181 m = newm;
5182 goto retry;
5183 }
5184 }
5185 }
5186 sc->tx_dma_map_failures++;
5187 goto maperr;
5188 }
5189 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5190 BUS_DMASYNC_PREWRITE);
5191 /* Make sure there's room in the chain */
5192 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5193 goto nospace;
5194
5195 /* prod points to an empty tx_bd at this point. */
5196 prod_bseq = sc->tx_prod_bseq;
5197 #ifdef BNX_DEBUG
5198 debug_prod = chain_prod;
5199 #endif
5200 DBPRINT(sc, BNX_INFO_SEND,
5201 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5202 "prod_bseq = 0x%08X\n",
5203 __func__, prod, chain_prod, prod_bseq);
5204
5205 /*
5206 * Cycle through each mbuf segment that makes up
5207 * the outgoing frame, gathering the mapping info
5208 * for that segment and creating a tx_bd for the
5209 * mbuf.
5210 */
5211 for (i = 0; i < map->dm_nsegs ; i++) {
5212 chain_prod = TX_CHAIN_IDX(prod);
5213 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5214
5215 addr = (uint32_t)map->dm_segs[i].ds_addr;
5216 txbd->tx_bd_haddr_lo = addr;
5217 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5218 txbd->tx_bd_haddr_hi = addr;
5219 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5220 txbd->tx_bd_vlan_tag = vlan_tag;
5221 txbd->tx_bd_flags = flags;
5222 prod_bseq += map->dm_segs[i].ds_len;
5223 if (i == 0)
5224 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5225 prod = NEXT_TX_BD(prod);
5226 }
5227
5228 /* Set the END flag on the last TX buffer descriptor. */
5229 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5230
5231 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5232
5233 DBPRINT(sc, BNX_INFO_SEND,
5234 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5235 "prod_bseq = 0x%08X\n",
5236 __func__, prod, chain_prod, prod_bseq);
5237
5238 pkt->pkt_mbuf = m;
5239 pkt->pkt_end_desc = chain_prod;
5240
5241 mutex_enter(&sc->tx_pkt_mtx);
5242 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5243 mutex_exit(&sc->tx_pkt_mtx);
5244
5245 sc->used_tx_bd += map->dm_nsegs;
5246 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5247 __FILE__, __LINE__, sc->used_tx_bd);
5248
5249 /* Update some debug statistics counters */
5250 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5251 sc->tx_hi_watermark = sc->used_tx_bd);
5252 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5253 DBRUNIF(1, sc->tx_mbuf_alloc++);
5254
5255 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5256 map->dm_nsegs));
5257
5258 /* prod points to the next free tx_bd at this point. */
5259 sc->tx_prod = prod;
5260 sc->tx_prod_bseq = prod_bseq;
5261
5262 return 0;
5263
5264
5265 nospace:
5266 bus_dmamap_unload(sc->bnx_dmatag, map);
5267 maperr:
5268 mutex_enter(&sc->tx_pkt_mtx);
5269 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5270 mutex_exit(&sc->tx_pkt_mtx);
5271
5272 return ENOMEM;
5273 }
5274
5275 /****************************************************************************/
5276 /* Main transmit routine. */
5277 /* */
5278 /* Returns: */
5279 /* Nothing. */
5280 /****************************************************************************/
5281 void
5282 bnx_start(struct ifnet *ifp)
5283 {
5284 struct bnx_softc *sc = ifp->if_softc;
5285 struct mbuf *m_head = NULL;
5286 int count = 0;
5287 #ifdef BNX_DEBUG
5288 uint16_t tx_chain_prod;
5289 #endif
5290
5291 /* If there's no link or the transmit queue is empty then just exit. */
5292 if (!sc->bnx_link
5293 ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
5294 DBPRINT(sc, BNX_INFO_SEND,
5295 "%s(): output active or device not running.\n", __func__);
5296 goto bnx_start_exit;
5297 }
5298
5299 /* prod points to the next free tx_bd. */
5300 #ifdef BNX_DEBUG
5301 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5302 #endif
5303
5304 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5305 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5306 "used_tx %d max_tx %d\n",
5307 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5308 sc->used_tx_bd, sc->max_tx_bd);
5309
5310 /*
5311 * Keep adding entries while there is space in the ring.
5312 */
5313 while (sc->used_tx_bd < sc->max_tx_bd) {
5314 /* Check for any frames to send. */
5315 IFQ_POLL(&ifp->if_snd, m_head);
5316 if (m_head == NULL)
5317 break;
5318
5319 /*
5320 * Pack the data into the transmit ring. If we
5321 * don't have room, set the OACTIVE flag to wait
5322 * for the NIC to drain the chain.
5323 */
5324 if (bnx_tx_encap(sc, m_head)) {
5325 ifp->if_flags |= IFF_OACTIVE;
5326 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5327 "business! Total tx_bd used = %d\n",
5328 sc->used_tx_bd);
5329 break;
5330 }
5331
5332 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5333 count++;
5334
5335 /* Send a copy of the frame to any BPF listeners. */
5336 bpf_mtap(ifp, m_head, BPF_D_OUT);
5337 }
5338
5339 if (count == 0) {
5340 /* no packets were dequeued */
5341 DBPRINT(sc, BNX_VERBOSE_SEND,
5342 "%s(): No packets were dequeued\n", __func__);
5343 goto bnx_start_exit;
5344 }
5345
5346 /* Update the driver's counters. */
5347 #ifdef BNX_DEBUG
5348 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5349 #endif
5350
5351 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
5352 "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
5353 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
5354
5355 /* Start the transmit. */
5356 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5357 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5358
5359 /* Set the tx timeout. */
5360 ifp->if_timer = BNX_TX_TIMEOUT;
5361
5362 bnx_start_exit:
5363 return;
5364 }
5365
5366 /****************************************************************************/
5367 /* Handles any IOCTL calls from the operating system. */
5368 /* */
5369 /* Returns: */
5370 /* 0 for success, positive value for failure. */
5371 /****************************************************************************/
5372 int
5373 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5374 {
5375 struct bnx_softc *sc = ifp->if_softc;
5376 struct ifreq *ifr = (struct ifreq *) data;
5377 struct mii_data *mii = &sc->bnx_mii;
5378 int s, error = 0;
5379
5380 s = splnet();
5381
5382 switch (command) {
5383 case SIOCSIFFLAGS:
5384 if ((error = ifioctl_common(ifp, command, data)) != 0)
5385 break;
5386 /* XXX set an ifflags callback and let ether_ioctl
5387 * handle all of this.
5388 */
5389 if (ISSET(ifp->if_flags, IFF_UP)) {
5390 if (ifp->if_flags & IFF_RUNNING)
5391 error = ENETRESET;
5392 else
5393 bnx_init(ifp);
5394 } else if (ifp->if_flags & IFF_RUNNING)
5395 bnx_stop(ifp, 1);
5396 break;
5397
5398 case SIOCSIFMEDIA:
5399 /* Flow control requires full-duplex mode. */
5400 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5401 (ifr->ifr_media & IFM_FDX) == 0)
5402 ifr->ifr_media &= ~IFM_ETH_FMASK;
5403
5404 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5405 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5406 /* We can do both TXPAUSE and RXPAUSE. */
5407 ifr->ifr_media |=
5408 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5409 }
5410 sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5411 }
5412 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5413 sc->bnx_phy_flags);
5414
5415 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5416 break;
5417
5418 default:
5419 error = ether_ioctl(ifp, command, data);
5420 }
5421
5422 if (error == ENETRESET) {
5423 if (ifp->if_flags & IFF_RUNNING)
5424 bnx_iff(sc);
5425 error = 0;
5426 }
5427
5428 splx(s);
5429 return error;
5430 }
5431
5432 /****************************************************************************/
5433 /* Transmit timeout handler. */
5434 /* */
5435 /* Returns: */
5436 /* Nothing. */
5437 /****************************************************************************/
5438 void
5439 bnx_watchdog(struct ifnet *ifp)
5440 {
5441 struct bnx_softc *sc = ifp->if_softc;
5442
5443 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5444 bnx_dump_status_block(sc));
5445 /*
5446 * If we are in this routine because of pause frames, then
5447 * don't reset the hardware.
5448 */
5449 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5450 return;
5451
5452 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5453
5454 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5455
5456 bnx_init(ifp);
5457
5458 if_statinc(ifp, if_oerrors);
5459 }
5460
5461 /*
5462 * Interrupt handler.
5463 */
5464 /****************************************************************************/
5465 /* Main interrupt entry point. Verifies that the controller generated the */
5466 /* interrupt and then calls a separate routine for handle the various */
5467 /* interrupt causes (PHY, TX, RX). */
5468 /* */
5469 /* Returns: */
5470 /* 0 for success, positive value for failure. */
5471 /****************************************************************************/
5472 int
5473 bnx_intr(void *xsc)
5474 {
5475 struct bnx_softc *sc = xsc;
5476 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5477 uint32_t status_attn_bits;
5478 uint16_t status_idx;
5479 const struct status_block *sblk;
5480 int rv = 0;
5481
5482 if (!device_is_active(sc->bnx_dev) ||
5483 (ifp->if_flags & IFF_RUNNING) == 0)
5484 return 0;
5485
5486 DBRUNIF(1, sc->interrupts_generated++);
5487
5488 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5489 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
5490
5491 sblk = sc->status_block;
5492 /*
5493 * If the hardware status block index
5494 * matches the last value read by the
5495 * driver and we haven't asserted our
5496 * interrupt then there's nothing to do.
5497 */
5498 status_idx = sblk->status_idx;
5499 if ((status_idx != sc->last_status_idx) ||
5500 !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
5501 BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
5502 rv = 1;
5503
5504 /* Ack the interrupt */
5505 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5506 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
5507
5508 status_attn_bits = sblk->status_attn_bits;
5509
5510 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5511 aprint_debug("Simulating unexpected status attention bit set.");
5512 status_attn_bits = status_attn_bits |
5513 STATUS_ATTN_BITS_PARITY_ERROR);
5514
5515 /* Was it a link change interrupt? */
5516 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5517 (sblk->status_attn_bits_ack &
5518 STATUS_ATTN_BITS_LINK_STATE))
5519 bnx_phy_intr(sc);
5520
5521 /* If any other attention is asserted then the chip is toast. */
5522 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5523 (sblk->status_attn_bits_ack &
5524 ~STATUS_ATTN_BITS_LINK_STATE))) {
5525 DBRUN(sc->unexpected_attentions++);
5526
5527 BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
5528 sblk->status_attn_bits);
5529
5530 DBRUNIF((bnx_debug_unexpected_attention == 0),
5531 bnx_breakpoint(sc));
5532
5533 bnx_init(ifp);
5534 goto out;
5535 }
5536
5537 /* Check for any completed RX frames. */
5538 if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
5539 bnx_rx_intr(sc);
5540
5541 /* Check for any completed TX frames. */
5542 if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
5543 bnx_tx_intr(sc);
5544
5545 /*
5546 * Save the status block index value for use during the
5547 * next interrupt.
5548 */
5549 sc->last_status_idx = status_idx;
5550
5551 /* Start moving packets again */
5552 if (ifp->if_flags & IFF_RUNNING)
5553 if_schedule_deferred_start(ifp);
5554 }
5555
5556 out:
5557 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5558 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
5559
5560 return rv;
5561 }
5562
5563 /****************************************************************************/
5564 /* Programs the various packet receive modes (broadcast and multicast). */
5565 /* */
5566 /* Returns: */
5567 /* Nothing. */
5568 /****************************************************************************/
5569 void
5570 bnx_iff(struct bnx_softc *sc)
5571 {
5572 struct ethercom *ec = &sc->bnx_ec;
5573 struct ifnet *ifp = &ec->ec_if;
5574 struct ether_multi *enm;
5575 struct ether_multistep step;
5576 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5577 uint32_t rx_mode, sort_mode;
5578 int h, i;
5579
5580 /* Initialize receive mode default settings. */
5581 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5582 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5583 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5584 ifp->if_flags &= ~IFF_ALLMULTI;
5585
5586 /*
5587 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5588 * be enbled.
5589 */
5590 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5591 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5592
5593 /*
5594 * Check for promiscuous, all multicast, or selected
5595 * multicast address filtering.
5596 */
5597 if (ifp->if_flags & IFF_PROMISC) {
5598 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5599
5600 ifp->if_flags |= IFF_ALLMULTI;
5601 /* Enable promiscuous mode. */
5602 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5603 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5604 } else if (ifp->if_flags & IFF_ALLMULTI) {
5605 allmulti:
5606 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5607
5608 ifp->if_flags |= IFF_ALLMULTI;
5609 /* Enable all multicast addresses. */
5610 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5611 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5612 0xffffffff);
5613 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5614 } else {
5615 /* Accept one or more multicast(s). */
5616 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5617
5618 ETHER_LOCK(ec);
5619 ETHER_FIRST_MULTI(step, ec, enm);
5620 while (enm != NULL) {
5621 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5622 ETHER_ADDR_LEN)) {
5623 ETHER_UNLOCK(ec);
5624 goto allmulti;
5625 }
5626 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5627 0xFF;
5628 hashes[(h & 0xE0) >> 5] |= __BIT(h & 0x1F);
5629 ETHER_NEXT_MULTI(step, enm);
5630 }
5631 ETHER_UNLOCK(ec);
5632
5633 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5634 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5635 hashes[i]);
5636
5637 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5638 }
5639
5640 /* Only make changes if the receive mode has actually changed. */
5641 if (rx_mode != sc->rx_mode) {
5642 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5643 rx_mode);
5644
5645 sc->rx_mode = rx_mode;
5646 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5647 }
5648
5649 /* Disable and clear the exisitng sort before enabling a new sort. */
5650 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5651 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5652 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5653 }
5654
5655 /****************************************************************************/
5656 /* Called periodically to updates statistics from the controllers */
5657 /* statistics block. */
5658 /* */
5659 /* Returns: */
5660 /* Nothing. */
5661 /****************************************************************************/
5662 void
5663 bnx_stats_update(struct bnx_softc *sc)
5664 {
5665 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5666 struct statistics_block *stats;
5667
5668 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5669 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5670 BUS_DMASYNC_POSTREAD);
5671
5672 stats = (struct statistics_block *)sc->stats_block;
5673
5674 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
5675 uint64_t value;
5676
5677 /*
5678 * Update the interface statistics from the
5679 * hardware statistics.
5680 */
5681 value = (u_long)stats->stat_EtherStatsCollisions;
5682 if_statadd_ref(nsr, if_collisions, value - sc->if_stat_collisions);
5683 sc->if_stat_collisions = value;
5684
5685 value = (u_long)stats->stat_EtherStatsUndersizePkts +
5686 (u_long)stats->stat_EtherStatsOverrsizePkts +
5687 (u_long)stats->stat_IfInMBUFDiscards +
5688 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5689 (u_long)stats->stat_Dot3StatsFCSErrors;
5690 if_statadd_ref(nsr, if_ierrors, value - sc->if_stat_ierrors);
5691 sc->if_stat_ierrors = value;
5692
5693 value = (u_long)
5694 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5695 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5696 (u_long)stats->stat_Dot3StatsLateCollisions;
5697 if_statadd_ref(nsr, if_oerrors, value - sc->if_stat_oerrors);
5698 sc->if_stat_oerrors = value;
5699
5700 /*
5701 * Certain controllers don't report
5702 * carrier sense errors correctly.
5703 * See errata E11_5708CA0_1165.
5704 */
5705 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5706 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) {
5707 if_statadd_ref(nsr, if_oerrors,
5708 (u_long) stats->stat_Dot3StatsCarrierSenseErrors);
5709 }
5710
5711 IF_STAT_PUTREF(ifp);
5712
5713 /*
5714 * Update the sysctl statistics from the
5715 * hardware statistics.
5716 */
5717 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5718 (uint64_t) stats->stat_IfHCInOctets_lo;
5719
5720 sc->stat_IfHCInBadOctets =
5721 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5722 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5723
5724 sc->stat_IfHCOutOctets =
5725 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5726 (uint64_t) stats->stat_IfHCOutOctets_lo;
5727
5728 sc->stat_IfHCOutBadOctets =
5729 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5730 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5731
5732 sc->stat_IfHCInUcastPkts =
5733 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5734 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5735
5736 sc->stat_IfHCInMulticastPkts =
5737 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5738 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5739
5740 sc->stat_IfHCInBroadcastPkts =
5741 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5742 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5743
5744 sc->stat_IfHCOutUcastPkts =
5745 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5746 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5747
5748 sc->stat_IfHCOutMulticastPkts =
5749 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5750 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5751
5752 sc->stat_IfHCOutBroadcastPkts =
5753 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5754 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5755
5756 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5757 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5758
5759 sc->stat_Dot3StatsCarrierSenseErrors =
5760 stats->stat_Dot3StatsCarrierSenseErrors;
5761
5762 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5763
5764 sc->stat_Dot3StatsAlignmentErrors =
5765 stats->stat_Dot3StatsAlignmentErrors;
5766
5767 sc->stat_Dot3StatsSingleCollisionFrames =
5768 stats->stat_Dot3StatsSingleCollisionFrames;
5769
5770 sc->stat_Dot3StatsMultipleCollisionFrames =
5771 stats->stat_Dot3StatsMultipleCollisionFrames;
5772
5773 sc->stat_Dot3StatsDeferredTransmissions =
5774 stats->stat_Dot3StatsDeferredTransmissions;
5775
5776 sc->stat_Dot3StatsExcessiveCollisions =
5777 stats->stat_Dot3StatsExcessiveCollisions;
5778
5779 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5780
5781 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5782
5783 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5784
5785 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5786
5787 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5788
5789 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5790
5791 sc->stat_EtherStatsPktsRx64Octets =
5792 stats->stat_EtherStatsPktsRx64Octets;
5793
5794 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5795 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5796
5797 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5798 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5799
5800 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5801 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5802
5803 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5804 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5805
5806 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5807 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5808
5809 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5810 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5811
5812 sc->stat_EtherStatsPktsTx64Octets =
5813 stats->stat_EtherStatsPktsTx64Octets;
5814
5815 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5816 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5817
5818 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5819 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5820
5821 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5822 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5823
5824 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5825 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5826
5827 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5828 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5829
5830 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5831 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5832
5833 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5834
5835 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5836
5837 sc->stat_OutXonSent = stats->stat_OutXonSent;
5838
5839 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5840
5841 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5842
5843 sc->stat_MacControlFramesReceived =
5844 stats->stat_MacControlFramesReceived;
5845
5846 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5847
5848 sc->stat_IfInFramesL2FilterDiscards =
5849 stats->stat_IfInFramesL2FilterDiscards;
5850
5851 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5852
5853 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5854
5855 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5856
5857 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5858
5859 sc->stat_CatchupInRuleCheckerDiscards =
5860 stats->stat_CatchupInRuleCheckerDiscards;
5861
5862 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5863
5864 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5865
5866 sc->stat_CatchupInRuleCheckerP4Hit =
5867 stats->stat_CatchupInRuleCheckerP4Hit;
5868
5869 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5870 }
5871
5872 void
5873 bnx_tick(void *xsc)
5874 {
5875 struct bnx_softc *sc = xsc;
5876 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5877 struct mii_data *mii;
5878 uint32_t msg;
5879 uint16_t prod, chain_prod;
5880 uint32_t prod_bseq;
5881 int s = splnet();
5882
5883 /* Tell the firmware that the driver is still running. */
5884 #ifdef BNX_DEBUG
5885 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5886 #else
5887 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5888 #endif
5889 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5890
5891 /* Update the statistics from the hardware statistics block. */
5892 bnx_stats_update(sc);
5893
5894 /* Schedule the next tick. */
5895 if (!sc->bnx_detaching)
5896 callout_schedule(&sc->bnx_timeout, hz);
5897
5898 if (sc->bnx_link)
5899 goto bnx_tick_exit;
5900
5901 mii = &sc->bnx_mii;
5902 mii_tick(mii);
5903
5904 /* Check if the link has come up. */
5905 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
5906 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5907 sc->bnx_link++;
5908 /* Now that link is up, handle any outstanding TX traffic. */
5909 if_schedule_deferred_start(ifp);
5910 }
5911
5912 bnx_tick_exit:
5913 /* try to get more RX buffers, just in case */
5914 prod = sc->rx_prod;
5915 prod_bseq = sc->rx_prod_bseq;
5916 chain_prod = RX_CHAIN_IDX(prod);
5917 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5918 sc->rx_prod = prod;
5919 sc->rx_prod_bseq = prod_bseq;
5920
5921 splx(s);
5922 return;
5923 }
5924
5925 /****************************************************************************/
5926 /* BNX Debug Routines */
5927 /****************************************************************************/
5928 #ifdef BNX_DEBUG
5929
5930 /****************************************************************************/
5931 /* Prints out information about an mbuf. */
5932 /* */
5933 /* Returns: */
5934 /* Nothing. */
5935 /****************************************************************************/
5936 void
5937 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5938 {
5939 struct mbuf *mp = m;
5940
5941 if (m == NULL) {
5942 /* Index out of range. */
5943 aprint_error("mbuf ptr is null!\n");
5944 return;
5945 }
5946
5947 while (mp) {
5948 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5949 mp, mp->m_len);
5950
5951 if (mp->m_flags & M_EXT)
5952 aprint_debug("M_EXT ");
5953 if (mp->m_flags & M_PKTHDR)
5954 aprint_debug("M_PKTHDR ");
5955 aprint_debug("\n");
5956
5957 if (mp->m_flags & M_EXT)
5958 aprint_debug("- m_ext: vaddr = %p, "
5959 "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
5960
5961 mp = mp->m_next;
5962 }
5963 }
5964
5965 /****************************************************************************/
5966 /* Prints out the mbufs in the TX mbuf chain. */
5967 /* */
5968 /* Returns: */
5969 /* Nothing. */
5970 /****************************************************************************/
5971 void
5972 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5973 {
5974 #if 0
5975 struct mbuf *m;
5976 int i;
5977
5978 aprint_debug_dev(sc->bnx_dev,
5979 "----------------------------"
5980 " tx mbuf data "
5981 "----------------------------\n");
5982
5983 for (i = 0; i < count; i++) {
5984 m = sc->tx_mbuf_ptr[chain_prod];
5985 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5986 bnx_dump_mbuf(sc, m);
5987 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5988 }
5989
5990 aprint_debug_dev(sc->bnx_dev,
5991 "--------------------------------------------"
5992 "----------------------------\n");
5993 #endif
5994 }
5995
5996 /*
5997 * This routine prints the RX mbuf chain.
5998 */
5999 void
6000 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
6001 {
6002 struct mbuf *m;
6003 int i;
6004
6005 aprint_debug_dev(sc->bnx_dev,
6006 "----------------------------"
6007 " rx mbuf data "
6008 "----------------------------\n");
6009
6010 for (i = 0; i < count; i++) {
6011 m = sc->rx_mbuf_ptr[chain_prod];
6012 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
6013 bnx_dump_mbuf(sc, m);
6014 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
6015 }
6016
6017
6018 aprint_debug_dev(sc->bnx_dev,
6019 "--------------------------------------------"
6020 "----------------------------\n");
6021 }
6022
6023 void
6024 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
6025 {
6026 if (idx > MAX_TX_BD)
6027 /* Index out of range. */
6028 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
6029 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6030 /* TX Chain page pointer. */
6031 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
6032 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
6033 txbd->tx_bd_haddr_lo);
6034 else
6035 /* Normal tx_bd entry. */
6036 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6037 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
6038 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
6039 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
6040 txbd->tx_bd_flags);
6041 }
6042
6043 void
6044 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
6045 {
6046 if (idx > MAX_RX_BD)
6047 /* Index out of range. */
6048 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
6049 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6050 /* TX Chain page pointer. */
6051 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
6052 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
6053 rxbd->rx_bd_haddr_lo);
6054 else
6055 /* Normal tx_bd entry. */
6056 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6057 "0x%08X, flags = 0x%08X\n", idx,
6058 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
6059 rxbd->rx_bd_len, rxbd->rx_bd_flags);
6060 }
6061
6062 void
6063 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
6064 {
6065 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
6066 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
6067 "tcp_udp_xsum = 0x%04X\n", idx,
6068 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
6069 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
6070 l2fhdr->l2_fhdr_tcp_udp_xsum);
6071 }
6072
6073 /*
6074 * This routine prints the TX chain.
6075 */
6076 void
6077 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
6078 {
6079 struct tx_bd *txbd;
6080 int i;
6081
6082 /* First some info about the tx_bd chain structure. */
6083 aprint_debug_dev(sc->bnx_dev,
6084 "----------------------------"
6085 " tx_bd chain "
6086 "----------------------------\n");
6087
6088 BNX_PRINTF(sc,
6089 "page size = 0x%08X, tx chain pages = 0x%08X\n",
6090 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
6091
6092 BNX_PRINTF(sc,
6093 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
6094 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
6095
6096 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
6097
6098 aprint_error_dev(sc->bnx_dev, ""
6099 "-----------------------------"
6100 " tx_bd data "
6101 "-----------------------------\n");
6102
6103 /* Now print out the tx_bd's themselves. */
6104 for (i = 0; i < count; i++) {
6105 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6106 bnx_dump_txbd(sc, tx_prod, txbd);
6107 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
6108 }
6109
6110 aprint_debug_dev(sc->bnx_dev,
6111 "-----------------------------"
6112 "--------------"
6113 "-----------------------------\n");
6114 }
6115
6116 /*
6117 * This routine prints the RX chain.
6118 */
6119 void
6120 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
6121 {
6122 struct rx_bd *rxbd;
6123 int i;
6124
6125 /* First some info about the tx_bd chain structure. */
6126 aprint_debug_dev(sc->bnx_dev,
6127 "----------------------------"
6128 " rx_bd chain "
6129 "----------------------------\n");
6130
6131 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
6132
6133 BNX_PRINTF(sc,
6134 "page size = 0x%08X, rx chain pages = 0x%08X\n",
6135 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
6136
6137 BNX_PRINTF(sc,
6138 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
6139 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
6140
6141 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
6142
6143 aprint_error_dev(sc->bnx_dev,
6144 "----------------------------"
6145 " rx_bd data "
6146 "----------------------------\n");
6147
6148 /* Now print out the rx_bd's themselves. */
6149 for (i = 0; i < count; i++) {
6150 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6151 bnx_dump_rxbd(sc, rx_prod, rxbd);
6152 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
6153 }
6154
6155 aprint_debug_dev(sc->bnx_dev,
6156 "----------------------------"
6157 "--------------"
6158 "----------------------------\n");
6159 }
6160
6161 /*
6162 * This routine prints the status block.
6163 */
6164 void
6165 bnx_dump_status_block(struct bnx_softc *sc)
6166 {
6167 struct status_block *sblk;
6168 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6169 BUS_DMASYNC_POSTREAD);
6170
6171 sblk = sc->status_block;
6172
6173 aprint_debug_dev(sc->bnx_dev, "----------------------------- "
6174 "Status Block -----------------------------\n");
6175
6176 BNX_PRINTF(sc,
6177 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
6178 sblk->status_attn_bits, sblk->status_attn_bits_ack,
6179 sblk->status_idx);
6180
6181 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
6182 sblk->status_rx_quick_consumer_index0,
6183 sblk->status_tx_quick_consumer_index0);
6184
6185 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
6186
6187 /* Theses indices are not used for normal L2 drivers. */
6188 if (sblk->status_rx_quick_consumer_index1 ||
6189 sblk->status_tx_quick_consumer_index1)
6190 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
6191 sblk->status_rx_quick_consumer_index1,
6192 sblk->status_tx_quick_consumer_index1);
6193
6194 if (sblk->status_rx_quick_consumer_index2 ||
6195 sblk->status_tx_quick_consumer_index2)
6196 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
6197 sblk->status_rx_quick_consumer_index2,
6198 sblk->status_tx_quick_consumer_index2);
6199
6200 if (sblk->status_rx_quick_consumer_index3 ||
6201 sblk->status_tx_quick_consumer_index3)
6202 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
6203 sblk->status_rx_quick_consumer_index3,
6204 sblk->status_tx_quick_consumer_index3);
6205
6206 if (sblk->status_rx_quick_consumer_index4 ||
6207 sblk->status_rx_quick_consumer_index5)
6208 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
6209 sblk->status_rx_quick_consumer_index4,
6210 sblk->status_rx_quick_consumer_index5);
6211
6212 if (sblk->status_rx_quick_consumer_index6 ||
6213 sblk->status_rx_quick_consumer_index7)
6214 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
6215 sblk->status_rx_quick_consumer_index6,
6216 sblk->status_rx_quick_consumer_index7);
6217
6218 if (sblk->status_rx_quick_consumer_index8 ||
6219 sblk->status_rx_quick_consumer_index9)
6220 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6221 sblk->status_rx_quick_consumer_index8,
6222 sblk->status_rx_quick_consumer_index9);
6223
6224 if (sblk->status_rx_quick_consumer_index10 ||
6225 sblk->status_rx_quick_consumer_index11)
6226 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6227 sblk->status_rx_quick_consumer_index10,
6228 sblk->status_rx_quick_consumer_index11);
6229
6230 if (sblk->status_rx_quick_consumer_index12 ||
6231 sblk->status_rx_quick_consumer_index13)
6232 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6233 sblk->status_rx_quick_consumer_index12,
6234 sblk->status_rx_quick_consumer_index13);
6235
6236 if (sblk->status_rx_quick_consumer_index14 ||
6237 sblk->status_rx_quick_consumer_index15)
6238 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6239 sblk->status_rx_quick_consumer_index14,
6240 sblk->status_rx_quick_consumer_index15);
6241
6242 if (sblk->status_completion_producer_index ||
6243 sblk->status_cmd_consumer_index)
6244 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6245 sblk->status_completion_producer_index,
6246 sblk->status_cmd_consumer_index);
6247
6248 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6249 "-----------------------------\n");
6250 }
6251
6252 /*
6253 * This routine prints the statistics block.
6254 */
6255 void
6256 bnx_dump_stats_block(struct bnx_softc *sc)
6257 {
6258 struct statistics_block *sblk;
6259 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6260 BUS_DMASYNC_POSTREAD);
6261
6262 sblk = sc->stats_block;
6263
6264 aprint_debug_dev(sc->bnx_dev, ""
6265 "-----------------------------"
6266 " Stats Block "
6267 "-----------------------------\n");
6268
6269 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6270 "IfHcInBadOctets = 0x%08X:%08X\n",
6271 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6272 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6273
6274 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6275 "IfHcOutBadOctets = 0x%08X:%08X\n",
6276 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6277 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6278
6279 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6280 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6281 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6282 sblk->stat_IfHCInMulticastPkts_hi,
6283 sblk->stat_IfHCInMulticastPkts_lo);
6284
6285 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6286 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6287 sblk->stat_IfHCInBroadcastPkts_hi,
6288 sblk->stat_IfHCInBroadcastPkts_lo,
6289 sblk->stat_IfHCOutUcastPkts_hi,
6290 sblk->stat_IfHCOutUcastPkts_lo);
6291
6292 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6293 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6294 sblk->stat_IfHCOutMulticastPkts_hi,
6295 sblk->stat_IfHCOutMulticastPkts_lo,
6296 sblk->stat_IfHCOutBroadcastPkts_hi,
6297 sblk->stat_IfHCOutBroadcastPkts_lo);
6298
6299 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6300 BNX_PRINTF(sc, "0x%08X : "
6301 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6302 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6303
6304 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6305 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6306 sblk->stat_Dot3StatsCarrierSenseErrors);
6307
6308 if (sblk->stat_Dot3StatsFCSErrors)
6309 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6310 sblk->stat_Dot3StatsFCSErrors);
6311
6312 if (sblk->stat_Dot3StatsAlignmentErrors)
6313 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6314 sblk->stat_Dot3StatsAlignmentErrors);
6315
6316 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6317 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6318 sblk->stat_Dot3StatsSingleCollisionFrames);
6319
6320 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6321 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6322 sblk->stat_Dot3StatsMultipleCollisionFrames);
6323
6324 if (sblk->stat_Dot3StatsDeferredTransmissions)
6325 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6326 sblk->stat_Dot3StatsDeferredTransmissions);
6327
6328 if (sblk->stat_Dot3StatsExcessiveCollisions)
6329 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6330 sblk->stat_Dot3StatsExcessiveCollisions);
6331
6332 if (sblk->stat_Dot3StatsLateCollisions)
6333 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6334 sblk->stat_Dot3StatsLateCollisions);
6335
6336 if (sblk->stat_EtherStatsCollisions)
6337 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6338 sblk->stat_EtherStatsCollisions);
6339
6340 if (sblk->stat_EtherStatsFragments)
6341 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6342 sblk->stat_EtherStatsFragments);
6343
6344 if (sblk->stat_EtherStatsJabbers)
6345 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6346 sblk->stat_EtherStatsJabbers);
6347
6348 if (sblk->stat_EtherStatsUndersizePkts)
6349 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6350 sblk->stat_EtherStatsUndersizePkts);
6351
6352 if (sblk->stat_EtherStatsOverrsizePkts)
6353 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6354 sblk->stat_EtherStatsOverrsizePkts);
6355
6356 if (sblk->stat_EtherStatsPktsRx64Octets)
6357 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6358 sblk->stat_EtherStatsPktsRx64Octets);
6359
6360 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6361 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6362 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6363
6364 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6365 BNX_PRINTF(sc, "0x%08X : "
6366 "EtherStatsPktsRx128Octetsto255Octets\n",
6367 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6368
6369 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6370 BNX_PRINTF(sc, "0x%08X : "
6371 "EtherStatsPktsRx256Octetsto511Octets\n",
6372 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6373
6374 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6375 BNX_PRINTF(sc, "0x%08X : "
6376 "EtherStatsPktsRx512Octetsto1023Octets\n",
6377 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6378
6379 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6380 BNX_PRINTF(sc, "0x%08X : "
6381 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6382 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6383
6384 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6385 BNX_PRINTF(sc, "0x%08X : "
6386 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6387 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6388
6389 if (sblk->stat_EtherStatsPktsTx64Octets)
6390 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6391 sblk->stat_EtherStatsPktsTx64Octets);
6392
6393 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6394 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6395 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6396
6397 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6398 BNX_PRINTF(sc, "0x%08X : "
6399 "EtherStatsPktsTx128Octetsto255Octets\n",
6400 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6401
6402 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6403 BNX_PRINTF(sc, "0x%08X : "
6404 "EtherStatsPktsTx256Octetsto511Octets\n",
6405 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6406
6407 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6408 BNX_PRINTF(sc, "0x%08X : "
6409 "EtherStatsPktsTx512Octetsto1023Octets\n",
6410 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6411
6412 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6413 BNX_PRINTF(sc, "0x%08X : "
6414 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6415 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6416
6417 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6418 BNX_PRINTF(sc, "0x%08X : "
6419 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6420 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6421
6422 if (sblk->stat_XonPauseFramesReceived)
6423 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6424 sblk->stat_XonPauseFramesReceived);
6425
6426 if (sblk->stat_XoffPauseFramesReceived)
6427 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6428 sblk->stat_XoffPauseFramesReceived);
6429
6430 if (sblk->stat_OutXonSent)
6431 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6432 sblk->stat_OutXonSent);
6433
6434 if (sblk->stat_OutXoffSent)
6435 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6436 sblk->stat_OutXoffSent);
6437
6438 if (sblk->stat_FlowControlDone)
6439 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6440 sblk->stat_FlowControlDone);
6441
6442 if (sblk->stat_MacControlFramesReceived)
6443 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6444 sblk->stat_MacControlFramesReceived);
6445
6446 if (sblk->stat_XoffStateEntered)
6447 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6448 sblk->stat_XoffStateEntered);
6449
6450 if (sblk->stat_IfInFramesL2FilterDiscards)
6451 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6452 sblk->stat_IfInFramesL2FilterDiscards);
6453
6454 if (sblk->stat_IfInRuleCheckerDiscards)
6455 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6456 sblk->stat_IfInRuleCheckerDiscards);
6457
6458 if (sblk->stat_IfInFTQDiscards)
6459 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6460 sblk->stat_IfInFTQDiscards);
6461
6462 if (sblk->stat_IfInMBUFDiscards)
6463 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6464 sblk->stat_IfInMBUFDiscards);
6465
6466 if (sblk->stat_IfInRuleCheckerP4Hit)
6467 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6468 sblk->stat_IfInRuleCheckerP4Hit);
6469
6470 if (sblk->stat_CatchupInRuleCheckerDiscards)
6471 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6472 sblk->stat_CatchupInRuleCheckerDiscards);
6473
6474 if (sblk->stat_CatchupInFTQDiscards)
6475 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6476 sblk->stat_CatchupInFTQDiscards);
6477
6478 if (sblk->stat_CatchupInMBUFDiscards)
6479 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6480 sblk->stat_CatchupInMBUFDiscards);
6481
6482 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6483 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6484 sblk->stat_CatchupInRuleCheckerP4Hit);
6485
6486 aprint_debug_dev(sc->bnx_dev,
6487 "-----------------------------"
6488 "--------------"
6489 "-----------------------------\n");
6490 }
6491
6492 void
6493 bnx_dump_driver_state(struct bnx_softc *sc)
6494 {
6495 aprint_debug_dev(sc->bnx_dev,
6496 "-----------------------------"
6497 " Driver State "
6498 "-----------------------------\n");
6499
6500 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6501 "address\n", sc);
6502
6503 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6504 sc->status_block);
6505
6506 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6507 "address\n", sc->stats_block);
6508
6509 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6510 "address\n", sc->tx_bd_chain);
6511
6512 #if 0
6513 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6514 sc->rx_bd_chain);
6515
6516 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6517 sc->tx_mbuf_ptr);
6518 #endif
6519
6520 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6521 sc->rx_mbuf_ptr);
6522
6523 BNX_PRINTF(sc,
6524 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6525 sc->interrupts_generated);
6526
6527 BNX_PRINTF(sc,
6528 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6529 sc->rx_interrupts);
6530
6531 BNX_PRINTF(sc,
6532 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6533 sc->tx_interrupts);
6534
6535 BNX_PRINTF(sc,
6536 " 0x%08X - (sc->last_status_idx) status block index\n",
6537 sc->last_status_idx);
6538
6539 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6540 sc->tx_prod);
6541
6542 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6543 sc->tx_cons);
6544
6545 BNX_PRINTF(sc,
6546 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6547 sc->tx_prod_bseq);
6548 BNX_PRINTF(sc,
6549 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6550 sc->tx_mbuf_alloc);
6551
6552 BNX_PRINTF(sc,
6553 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6554 sc->used_tx_bd);
6555
6556 BNX_PRINTF(sc,
6557 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6558 sc->tx_hi_watermark, sc->max_tx_bd);
6559
6560
6561 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6562 sc->rx_prod);
6563
6564 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6565 sc->rx_cons);
6566
6567 BNX_PRINTF(sc,
6568 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6569 sc->rx_prod_bseq);
6570
6571 BNX_PRINTF(sc,
6572 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6573 sc->rx_mbuf_alloc);
6574
6575 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6576 sc->free_rx_bd);
6577
6578 BNX_PRINTF(sc,
6579 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6580 sc->rx_low_watermark, sc->max_rx_bd);
6581
6582 BNX_PRINTF(sc,
6583 " 0x%08X - (sc->mbuf_alloc_failed) "
6584 "mbuf alloc failures\n",
6585 sc->mbuf_alloc_failed);
6586
6587 BNX_PRINTF(sc,
6588 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6589 "simulated mbuf alloc failures\n",
6590 sc->mbuf_sim_alloc_failed);
6591
6592 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6593 "-----------------------------\n");
6594 }
6595
6596 void
6597 bnx_dump_hw_state(struct bnx_softc *sc)
6598 {
6599 uint32_t val1;
6600 int i;
6601
6602 aprint_debug_dev(sc->bnx_dev,
6603 "----------------------------"
6604 " Hardware State "
6605 "----------------------------\n");
6606
6607 val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
6608 BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
6609
6610 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6611 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6612 val1, BNX_MISC_ENABLE_STATUS_BITS);
6613
6614 val1 = REG_RD(sc, BNX_DMA_STATUS);
6615 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6616
6617 val1 = REG_RD(sc, BNX_CTX_STATUS);
6618 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6619
6620 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6621 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6622 BNX_EMAC_STATUS);
6623
6624 val1 = REG_RD(sc, BNX_RPM_STATUS);
6625 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6626
6627 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6628 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6629 BNX_TBDR_STATUS);
6630
6631 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6632 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6633 BNX_TDMA_STATUS);
6634
6635 val1 = REG_RD(sc, BNX_HC_STATUS);
6636 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6637
6638 aprint_debug_dev(sc->bnx_dev,
6639 "----------------------------"
6640 "----------------"
6641 "----------------------------\n");
6642
6643 aprint_debug_dev(sc->bnx_dev,
6644 "----------------------------"
6645 " Register Dump "
6646 "----------------------------\n");
6647
6648 for (i = 0x400; i < 0x8000; i += 0x10)
6649 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6650 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6651 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6652
6653 aprint_debug_dev(sc->bnx_dev,
6654 "----------------------------"
6655 "----------------"
6656 "----------------------------\n");
6657 }
6658
6659 void
6660 bnx_breakpoint(struct bnx_softc *sc)
6661 {
6662 /* Unreachable code to shut the compiler up about unused functions. */
6663 if (0) {
6664 bnx_dump_txbd(sc, 0, NULL);
6665 bnx_dump_rxbd(sc, 0, NULL);
6666 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6667 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6668 bnx_dump_l2fhdr(sc, 0, NULL);
6669 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6670 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6671 bnx_dump_status_block(sc);
6672 bnx_dump_stats_block(sc);
6673 bnx_dump_driver_state(sc);
6674 bnx_dump_hw_state(sc);
6675 }
6676
6677 bnx_dump_driver_state(sc);
6678 /* Print the important status block fields. */
6679 bnx_dump_status_block(sc);
6680
6681 #if 0
6682 /* Call the debugger. */
6683 breakpoint();
6684 #endif
6685
6686 return;
6687 }
6688 #endif
6689