Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.100
      1 /*	$NetBSD: if_bnx.c,v 1.100 2020/07/16 14:44:43 jdolecek Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.100 2020/07/16 14:44:43 jdolecek Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 
    180 /****************************************************************************/
    181 /* Supported Flash NVRAM device data.                                       */
    182 /****************************************************************************/
    183 static struct flash_spec flash_table[] =
    184 {
    185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    187 
    188 	/* Slow EEPROM */
    189 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    190 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    191 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    192 	 "EEPROM - slow"},
    193 	/* Expansion entry 0001 */
    194 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    195 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    196 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    197 	 "Entry 0001"},
    198 	/* Saifun SA25F010 (non-buffered flash) */
    199 	/* strap, cfg1, & write1 need updates */
    200 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    201 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    202 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    203 	 "Non-buffered flash (128kB)"},
    204 	/* Saifun SA25F020 (non-buffered flash) */
    205 	/* strap, cfg1, & write1 need updates */
    206 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    207 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    208 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    209 	 "Non-buffered flash (256kB)"},
    210 	/* Expansion entry 0100 */
    211 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    212 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    213 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    214 	 "Entry 0100"},
    215 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    216 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    217 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    218 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    219 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    220 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    221 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    222 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    223 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    224 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    225 	/* Saifun SA25F005 (non-buffered flash) */
    226 	/* strap, cfg1, & write1 need updates */
    227 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    228 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    229 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    230 	 "Non-buffered flash (64kB)"},
    231 	/* Fast EEPROM */
    232 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    233 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    234 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    235 	 "EEPROM - fast"},
    236 	/* Expansion entry 1001 */
    237 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    238 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    239 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    240 	 "Entry 1001"},
    241 	/* Expansion entry 1010 */
    242 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    243 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    244 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    245 	 "Entry 1010"},
    246 	/* ATMEL AT45DB011B (buffered flash) */
    247 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    248 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    249 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    250 	 "Buffered flash (128kB)"},
    251 	/* Expansion entry 1100 */
    252 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    255 	 "Entry 1100"},
    256 	/* Expansion entry 1101 */
    257 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    258 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    259 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    260 	 "Entry 1101"},
    261 	/* Ateml Expansion entry 1110 */
    262 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    263 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    264 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    265 	 "Entry 1110 (Atmel)"},
    266 	/* ATMEL AT45DB021B (buffered flash) */
    267 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    268 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    269 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    270 	 "Buffered flash (256kB)"},
    271 };
    272 
    273 /*
    274  * The BCM5709 controllers transparently handle the
    275  * differences between Atmel 264 byte pages and all
    276  * flash devices which use 256 byte pages, so no
    277  * logical-to-physical mapping is required in the
    278  * driver.
    279  */
    280 static struct flash_spec flash_5709 = {
    281 	.flags		= BNX_NV_BUFFERED,
    282 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    283 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    284 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    285 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    286 	.name		= "5709 buffered flash (256kB)",
    287 };
    288 
    289 /****************************************************************************/
    290 /* OpenBSD device entry points.                                             */
    291 /****************************************************************************/
    292 static int	bnx_probe(device_t, cfdata_t, void *);
    293 void	bnx_attach(device_t, device_t, void *);
    294 int	bnx_detach(device_t, int);
    295 
    296 /****************************************************************************/
    297 /* BNX Debug Data Structure Dump Routines                                   */
    298 /****************************************************************************/
    299 #ifdef BNX_DEBUG
    300 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    301 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    302 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    303 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    304 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    305 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    306 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    307 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    308 void	bnx_dump_status_block(struct bnx_softc *);
    309 void	bnx_dump_stats_block(struct bnx_softc *);
    310 void	bnx_dump_driver_state(struct bnx_softc *);
    311 void	bnx_dump_hw_state(struct bnx_softc *);
    312 void	bnx_breakpoint(struct bnx_softc *);
    313 #endif
    314 
    315 /****************************************************************************/
    316 /* BNX Register/Memory Access Routines                                      */
    317 /****************************************************************************/
    318 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    319 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    320 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    321 int	bnx_miibus_read_reg(device_t, int, int, uint16_t *);
    322 int	bnx_miibus_write_reg(device_t, int, int, uint16_t);
    323 void	bnx_miibus_statchg(struct ifnet *);
    324 
    325 /****************************************************************************/
    326 /* BNX NVRAM Access Routines                                                */
    327 /****************************************************************************/
    328 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    329 int	bnx_release_nvram_lock(struct bnx_softc *);
    330 void	bnx_enable_nvram_access(struct bnx_softc *);
    331 void	bnx_disable_nvram_access(struct bnx_softc *);
    332 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    333 	    uint32_t);
    334 int	bnx_init_nvram(struct bnx_softc *);
    335 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    336 int	bnx_nvram_test(struct bnx_softc *);
    337 #ifdef BNX_NVRAM_WRITE_SUPPORT
    338 int	bnx_enable_nvram_write(struct bnx_softc *);
    339 void	bnx_disable_nvram_write(struct bnx_softc *);
    340 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    341 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    342 	    uint32_t);
    343 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    344 #endif
    345 
    346 /****************************************************************************/
    347 /*                                                                          */
    348 /****************************************************************************/
    349 void	bnx_get_media(struct bnx_softc *);
    350 void	bnx_init_media(struct bnx_softc *);
    351 int	bnx_dma_alloc(struct bnx_softc *);
    352 void	bnx_dma_free(struct bnx_softc *);
    353 void	bnx_release_resources(struct bnx_softc *);
    354 
    355 /****************************************************************************/
    356 /* BNX Firmware Synchronization and Load                                    */
    357 /****************************************************************************/
    358 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    359 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
    360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    361 	    struct fw_info *);
    362 void	bnx_init_cpus(struct bnx_softc *);
    363 
    364 static void bnx_print_adapter_info(struct bnx_softc *);
    365 static void bnx_probe_pci_caps(struct bnx_softc *);
    366 void	bnx_stop(struct ifnet *, int);
    367 int	bnx_reset(struct bnx_softc *, uint32_t);
    368 int	bnx_chipinit(struct bnx_softc *);
    369 int	bnx_blockinit(struct bnx_softc *);
    370 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    371 	    uint16_t *, uint32_t *);
    372 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    373 
    374 int	bnx_init_tx_chain(struct bnx_softc *);
    375 void	bnx_init_tx_context(struct bnx_softc *);
    376 int	bnx_init_rx_chain(struct bnx_softc *);
    377 void	bnx_init_rx_context(struct bnx_softc *);
    378 void	bnx_free_rx_chain(struct bnx_softc *);
    379 void	bnx_free_tx_chain(struct bnx_softc *);
    380 
    381 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    382 void	bnx_start(struct ifnet *);
    383 int	bnx_ioctl(struct ifnet *, u_long, void *);
    384 void	bnx_watchdog(struct ifnet *);
    385 int	bnx_ifmedia_upd(struct ifnet *);
    386 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    387 int	bnx_init(struct ifnet *);
    388 static void bnx_mgmt_init(struct bnx_softc *);
    389 
    390 void	bnx_init_context(struct bnx_softc *);
    391 void	bnx_get_mac_addr(struct bnx_softc *);
    392 void	bnx_set_mac_addr(struct bnx_softc *);
    393 void	bnx_phy_intr(struct bnx_softc *);
    394 void	bnx_rx_intr(struct bnx_softc *);
    395 void	bnx_tx_intr(struct bnx_softc *);
    396 void	bnx_disable_intr(struct bnx_softc *);
    397 void	bnx_enable_intr(struct bnx_softc *);
    398 
    399 int	bnx_intr(void *);
    400 void	bnx_iff(struct bnx_softc *);
    401 void	bnx_stats_update(struct bnx_softc *);
    402 void	bnx_tick(void *);
    403 
    404 struct pool *bnx_tx_pool = NULL;
    405 void	bnx_alloc_pkts(struct work *, void *);
    406 
    407 /****************************************************************************/
    408 /* OpenBSD device dispatch table.                                           */
    409 /****************************************************************************/
    410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    411     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    412 
    413 /****************************************************************************/
    414 /* Device probe function.                                                   */
    415 /*                                                                          */
    416 /* Compares the device to the driver's list of supported devices and        */
    417 /* reports back to the OS whether this is the right driver for the device.  */
    418 /*                                                                          */
    419 /* Returns:                                                                 */
    420 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    421 /****************************************************************************/
    422 static const struct bnx_product *
    423 bnx_lookup(const struct pci_attach_args *pa)
    424 {
    425 	int i;
    426 	pcireg_t subid;
    427 
    428 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    429 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    430 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    431 			continue;
    432 		if (!bnx_devices[i].bp_subvendor)
    433 			return &bnx_devices[i];
    434 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    435 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    436 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    437 			return &bnx_devices[i];
    438 	}
    439 
    440 	return NULL;
    441 }
    442 static int
    443 bnx_probe(device_t parent, cfdata_t match, void *aux)
    444 {
    445 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    446 
    447 	if (bnx_lookup(pa) != NULL)
    448 		return 1;
    449 
    450 	return 0;
    451 }
    452 
    453 /****************************************************************************/
    454 /* PCI Capabilities Probe Function.                                         */
    455 /*                                                                          */
    456 /* Walks the PCI capabiites list for the device to find what features are   */
    457 /* supported.                                                               */
    458 /*                                                                          */
    459 /* Returns:                                                                 */
    460 /*   None.                                                                  */
    461 /****************************************************************************/
    462 static void
    463 bnx_print_adapter_info(struct bnx_softc *sc)
    464 {
    465 	device_t dev = sc->bnx_dev;
    466 	int i = 0;
    467 
    468 	aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    469 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    470 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    471 	    ? "Serdes " : "", sc->bnx_chipid);
    472 
    473 	/* Bus info. */
    474 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    475 		aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
    476 		switch (sc->link_speed) {
    477 		case 1: aprint_normal("2.5GT/s\n"); break;
    478 		case 2:	aprint_normal("5GT/s\n"); break;
    479 		default: aprint_normal("Unknown link speed\n");
    480 		}
    481 	} else {
    482 		aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
    483 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    484 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    485 		    sc->bus_speed_mhz);
    486 	}
    487 
    488 	/* Firmware version and device features. */
    489 	aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
    490 	    sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
    491 
    492 	if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
    493 		if (i > 0) aprint_normal("|");
    494 		aprint_normal("2.5G"); i++;
    495 	}
    496 
    497 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
    498 		if (i > 0) aprint_normal("|");
    499 		aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
    500 	} else {
    501 		aprint_normal(")\n");
    502 	}
    503 
    504 	aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    505 	    sc->bnx_rx_quick_cons_trip_int,
    506 	    sc->bnx_rx_quick_cons_trip,
    507 	    sc->bnx_rx_ticks_int,
    508 	    sc->bnx_rx_ticks,
    509 	    sc->bnx_tx_quick_cons_trip_int,
    510 	    sc->bnx_tx_quick_cons_trip,
    511 	    sc->bnx_tx_ticks_int,
    512 	    sc->bnx_tx_ticks);
    513 }
    514 
    515 
    516 /****************************************************************************/
    517 /* PCI Capabilities Probe Function.                                         */
    518 /*                                                                          */
    519 /* Walks the PCI capabiites list for the device to find what features are   */
    520 /* supported.                                                               */
    521 /*                                                                          */
    522 /* Returns:                                                                 */
    523 /*   None.                                                                  */
    524 /****************************************************************************/
    525 static void
    526 bnx_probe_pci_caps(struct bnx_softc *sc)
    527 {
    528 	struct pci_attach_args *pa = &(sc->bnx_pa);
    529 	pcireg_t reg;
    530 
    531 	/* Check if PCI-X capability is enabled. */
    532 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    533 		NULL) != 0) {
    534 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    535 	}
    536 
    537 	/* Check if PCIe capability is enabled. */
    538 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    539 		NULL) != 0) {
    540 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    541 		    reg + PCIE_LCSR);
    542 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    543 		    "0x%08X\n",	link_status);
    544 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    545 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    546 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    547 		sc->bnx_flags |= BNX_PCIE_FLAG;
    548 	}
    549 
    550 	/* Check if MSI capability is enabled. */
    551 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    552 		NULL) != 0)
    553 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    554 
    555 	/* Check if MSI-X capability is enabled. */
    556 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    557 		NULL) != 0)
    558 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    559 }
    560 
    561 
    562 /****************************************************************************/
    563 /* Device attach function.                                                  */
    564 /*                                                                          */
    565 /* Allocates device resources, performs secondary chip identification,      */
    566 /* resets and initializes the hardware, and initializes driver instance     */
    567 /* variables.                                                               */
    568 /*                                                                          */
    569 /* Returns:                                                                 */
    570 /*   0 on success, positive value on failure.                               */
    571 /****************************************************************************/
    572 void
    573 bnx_attach(device_t parent, device_t self, void *aux)
    574 {
    575 	const struct bnx_product *bp;
    576 	struct bnx_softc	*sc = device_private(self);
    577 	prop_dictionary_t	dict;
    578 	struct pci_attach_args	*pa = aux;
    579 	pci_chipset_tag_t	pc = pa->pa_pc;
    580 	const char		*intrstr = NULL;
    581 	uint32_t		command;
    582 	struct ifnet		*ifp;
    583 	struct mii_data * const mii = &sc->bnx_mii;
    584 	uint32_t		val;
    585 	int			mii_flags = MIIF_FORCEANEG;
    586 	pcireg_t		memtype;
    587 	char intrbuf[PCI_INTRSTR_LEN];
    588 	int i, j;
    589 
    590 	if (bnx_tx_pool == NULL) {
    591 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_WAITOK);
    592 		pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    593 		    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    594 	}
    595 
    596 	bp = bnx_lookup(pa);
    597 	if (bp == NULL)
    598 		panic("unknown device");
    599 
    600 	sc->bnx_dev = self;
    601 
    602 	aprint_naive("\n");
    603 	aprint_normal(": %s\n", bp->bp_name);
    604 
    605 	sc->bnx_pa = *pa;
    606 
    607 	/*
    608 	 * Map control/status registers.
    609 	*/
    610 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    611 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    612 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    613 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    614 
    615 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    616 		aprint_error_dev(sc->bnx_dev,
    617 		    "failed to enable memory mapping!\n");
    618 		return;
    619 	}
    620 
    621 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    622 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    623 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    624 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    625 		return;
    626 	}
    627 
    628 	/* XXX using MSI-X causes TX timeouts, needs to be debugged */
    629 	int counts[PCI_INTR_TYPE_SIZE] = {
    630 		[PCI_INTR_TYPE_INTX] = 1,
    631 		[PCI_INTR_TYPE_MSI] = 0,
    632 		[PCI_INTR_TYPE_MSIX] = 0,
    633 	};
    634 
    635 	if (pci_intr_alloc(pa, &sc->bnx_ih, counts, PCI_INTR_TYPE_INTX)) {
    636 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    637 		goto bnx_attach_fail;
    638 	}
    639 	intrstr = pci_intr_string(pc, sc->bnx_ih[0], intrbuf, sizeof(intrbuf));
    640 
    641 	/*
    642 	 * Configure byte swap and enable indirect register access.
    643 	 * Rely on CPU to do target byte swapping on big endian systems.
    644 	 * Access to registers outside of PCI configurtion space are not
    645 	 * valid until this is done.
    646 	 */
    647 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    648 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    649 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    650 
    651 	/* Save ASIC revision info. */
    652 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    653 
    654 	/*
    655 	 * Find the base address for shared memory access.
    656 	 * Newer versions of bootcode use a signature and offset
    657 	 * while older versions use a fixed address.
    658 	 */
    659 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    660 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    661 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    662 		    (sc->bnx_pa.pa_function << 2));
    663 	else
    664 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    665 
    666 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    667 
    668 	/* Set initial device and PHY flags */
    669 	sc->bnx_flags = 0;
    670 	sc->bnx_phy_flags = 0;
    671 
    672 	/* Fetch the bootcode revision. */
    673 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
    674 	for (i = 0, j = 0; i < 3; i++) {
    675 		uint8_t num;
    676 		int k, skip0;
    677 
    678 		num = (uint8_t)(val >> (24 - (i * 8)));
    679 		for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
    680 			if (num >= k || !skip0 || k == 1) {
    681 				sc->bnx_bc_ver[j++] = (num / k) + '0';
    682 				skip0 = 0;
    683 			}
    684 		}
    685 		if (i != 2)
    686 			sc->bnx_bc_ver[j++] = '.';
    687 	}
    688 
    689 	/* Check if any management firmware is enabled. */
    690 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
    691 	if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
    692 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
    693 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
    694 
    695 		/* Allow time for firmware to enter the running state. */
    696 		for (i = 0; i < 30; i++) {
    697 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    698 			    BNX_BC_STATE_CONDITION);
    699 			if (val & BNX_CONDITION_MFW_RUN_MASK)
    700 				break;
    701 			DELAY(10000);
    702 		}
    703 
    704 		/* Check if management firmware is running. */
    705 		val = REG_RD_IND(sc, sc->bnx_shmem_base +
    706 		    BNX_BC_STATE_CONDITION);
    707 		val &= BNX_CONDITION_MFW_RUN_MASK;
    708 		if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
    709 		    (val != BNX_CONDITION_MFW_RUN_NONE)) {
    710 			uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
    711 			    BNX_MFW_VER_PTR);
    712 
    713 			/* Read the management firmware version string. */
    714 			for (j = 0; j < 3; j++) {
    715 				val = bnx_reg_rd_ind(sc, addr + j * 4);
    716 				val = bswap32(val);
    717 				memcpy(&sc->bnx_mfw_ver[i], &val, 4);
    718 				i += 4;
    719 			}
    720 		} else {
    721 			/* May cause firmware synchronization timeouts. */
    722 			BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
    723 			    "but not running!\n", __FILE__, __LINE__);
    724 			strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
    725 
    726 			/* ToDo: Any action the driver should take? */
    727 		}
    728 	}
    729 
    730 	bnx_probe_pci_caps(sc);
    731 
    732 	/* Get PCI bus information (speed and type). */
    733 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    734 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    735 		uint32_t clkreg;
    736 
    737 		sc->bnx_flags |= BNX_PCIX_FLAG;
    738 
    739 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    740 
    741 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    742 		switch (clkreg) {
    743 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    744 			sc->bus_speed_mhz = 133;
    745 			break;
    746 
    747 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    748 			sc->bus_speed_mhz = 100;
    749 			break;
    750 
    751 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    752 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    753 			sc->bus_speed_mhz = 66;
    754 			break;
    755 
    756 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    757 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    758 			sc->bus_speed_mhz = 50;
    759 			break;
    760 
    761 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    762 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    763 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    764 			sc->bus_speed_mhz = 33;
    765 			break;
    766 		}
    767 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    768 			sc->bus_speed_mhz = 66;
    769 		else
    770 			sc->bus_speed_mhz = 33;
    771 
    772 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    773 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    774 
    775 	/* Reset the controller. */
    776 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    777 		goto bnx_attach_fail;
    778 
    779 	/* Initialize the controller. */
    780 	if (bnx_chipinit(sc)) {
    781 		aprint_error_dev(sc->bnx_dev,
    782 		    "Controller initialization failed!\n");
    783 		goto bnx_attach_fail;
    784 	}
    785 
    786 	/* Perform NVRAM test. */
    787 	if (bnx_nvram_test(sc)) {
    788 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    789 		goto bnx_attach_fail;
    790 	}
    791 
    792 	/* Fetch the permanent Ethernet MAC address. */
    793 	bnx_get_mac_addr(sc);
    794 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    795 	    ether_sprintf(sc->eaddr));
    796 
    797 	/*
    798 	 * Trip points control how many BDs
    799 	 * should be ready before generating an
    800 	 * interrupt while ticks control how long
    801 	 * a BD can sit in the chain before
    802 	 * generating an interrupt.  Set the default
    803 	 * values for the RX and TX rings.
    804 	 */
    805 
    806 #ifdef BNX_DEBUG
    807 	/* Force more frequent interrupts. */
    808 	sc->bnx_tx_quick_cons_trip_int = 1;
    809 	sc->bnx_tx_quick_cons_trip     = 1;
    810 	sc->bnx_tx_ticks_int	       = 0;
    811 	sc->bnx_tx_ticks	       = 0;
    812 
    813 	sc->bnx_rx_quick_cons_trip_int = 1;
    814 	sc->bnx_rx_quick_cons_trip     = 1;
    815 	sc->bnx_rx_ticks_int	       = 0;
    816 	sc->bnx_rx_ticks	       = 0;
    817 #else
    818 	sc->bnx_tx_quick_cons_trip_int = 20;
    819 	sc->bnx_tx_quick_cons_trip     = 20;
    820 	sc->bnx_tx_ticks_int	       = 80;
    821 	sc->bnx_tx_ticks	       = 80;
    822 
    823 	sc->bnx_rx_quick_cons_trip_int = 6;
    824 	sc->bnx_rx_quick_cons_trip     = 6;
    825 	sc->bnx_rx_ticks_int	       = 18;
    826 	sc->bnx_rx_ticks	       = 18;
    827 #endif
    828 
    829 	/* Update statistics once every second. */
    830 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    831 
    832 	/* Find the media type for the adapter. */
    833 	bnx_get_media(sc);
    834 
    835 	/*
    836 	 * Store config data needed by the PHY driver for
    837 	 * backplane applications
    838 	 */
    839 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    840 	    BNX_SHARED_HW_CFG_CONFIG);
    841 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    842 	    BNX_PORT_HW_CFG_CONFIG);
    843 
    844 	/* Allocate DMA memory resources. */
    845 	sc->bnx_dmatag = pa->pa_dmat;
    846 	if (bnx_dma_alloc(sc)) {
    847 		aprint_error_dev(sc->bnx_dev,
    848 		    "DMA resource allocation failed!\n");
    849 		goto bnx_attach_fail;
    850 	}
    851 
    852 	/* Initialize the ifnet interface. */
    853 	ifp = &sc->bnx_ec.ec_if;
    854 	ifp->if_softc = sc;
    855 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    856 	ifp->if_ioctl = bnx_ioctl;
    857 	ifp->if_stop = bnx_stop;
    858 	ifp->if_start = bnx_start;
    859 	ifp->if_init = bnx_init;
    860 	ifp->if_watchdog = bnx_watchdog;
    861 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    862 	IFQ_SET_READY(&ifp->if_snd);
    863 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    864 
    865 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    866 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    867 	sc->bnx_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    868 
    869 	ifp->if_capabilities |=
    870 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    871 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    872 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    873 
    874 	/* create workqueue to handle packet allocations */
    875 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    876 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    877 		aprint_error_dev(self, "failed to create workqueue\n");
    878 		goto bnx_attach_fail;
    879 	}
    880 
    881 	mii->mii_ifp = ifp;
    882 	mii->mii_readreg = bnx_miibus_read_reg;
    883 	mii->mii_writereg = bnx_miibus_write_reg;
    884 	mii->mii_statchg = bnx_miibus_statchg;
    885 
    886 	/* Handle any special PHY initialization for SerDes PHYs. */
    887 	bnx_init_media(sc);
    888 
    889 	sc->bnx_ec.ec_mii = mii;
    890 	ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
    891 
    892 	/* set phyflags and chipid before mii_attach() */
    893 	dict = device_properties(self);
    894 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    895 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    896 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    897 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    898 
    899 	/* Print some useful adapter info */
    900 	bnx_print_adapter_info(sc);
    901 
    902 	mii_flags |= MIIF_DOPAUSE;
    903 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    904 		mii_flags |= MIIF_HAVEFIBER;
    905 	mii_attach(self, mii, 0xffffffff,
    906 	    sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
    907 
    908 	if (LIST_EMPTY(&mii->mii_phys)) {
    909 		aprint_error_dev(self, "no PHY found!\n");
    910 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
    911 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
    912 	} else
    913 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    914 
    915 	/* Attach to the Ethernet interface list. */
    916 	if_attach(ifp);
    917 	if_deferred_start_init(ifp, NULL);
    918 	ether_ifattach(ifp, sc->eaddr);
    919 
    920 	callout_init(&sc->bnx_timeout, 0);
    921 	callout_setfunc(&sc->bnx_timeout, bnx_tick, sc);
    922 
    923 	/* Hookup IRQ last. */
    924 	sc->bnx_intrhand = pci_intr_establish_xname(pc, sc->bnx_ih[0], IPL_NET,
    925 	    bnx_intr, sc, device_xname(self));
    926 	if (sc->bnx_intrhand == NULL) {
    927 		aprint_error_dev(self, "couldn't establish interrupt");
    928 		if (intrstr != NULL)
    929 			aprint_error(" at %s", intrstr);
    930 		aprint_error("\n");
    931 		goto bnx_attach_fail;
    932 	}
    933 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    934 
    935 	if (pmf_device_register(self, NULL, NULL))
    936 		pmf_class_network_register(self, ifp);
    937 	else
    938 		aprint_error_dev(self, "couldn't establish power handler\n");
    939 
    940 	/* Print some important debugging info. */
    941 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    942 
    943 	/* Get the firmware running so ASF still works. */
    944 	bnx_mgmt_init(sc);
    945 
    946 	goto bnx_attach_exit;
    947 
    948 bnx_attach_fail:
    949 	bnx_release_resources(sc);
    950 
    951 bnx_attach_exit:
    952 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    953 }
    954 
    955 /****************************************************************************/
    956 /* Device detach function.                                                  */
    957 /*                                                                          */
    958 /* Stops the controller, resets the controller, and releases resources.     */
    959 /*                                                                          */
    960 /* Returns:                                                                 */
    961 /*   0 on success, positive value on failure.                               */
    962 /****************************************************************************/
    963 int
    964 bnx_detach(device_t dev, int flags)
    965 {
    966 	int s;
    967 	struct bnx_softc *sc;
    968 	struct ifnet *ifp;
    969 
    970 	sc = device_private(dev);
    971 	ifp = &sc->bnx_ec.ec_if;
    972 
    973 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    974 
    975 	/* Stop and reset the controller. */
    976 	s = splnet();
    977 	bnx_stop(ifp, 1);
    978 	splx(s);
    979 
    980 	pmf_device_deregister(dev);
    981 	callout_destroy(&sc->bnx_timeout);
    982 	ether_ifdetach(ifp);
    983 	workqueue_destroy(sc->bnx_wq);
    984 
    985 	if_detach(ifp);
    986 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    987 
    988 	/* Delete all remaining media. */
    989 	ifmedia_fini(&sc->bnx_mii.mii_media);
    990 
    991 	/* Release all remaining resources. */
    992 	bnx_release_resources(sc);
    993 
    994 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    995 
    996 	return 0;
    997 }
    998 
    999 /****************************************************************************/
   1000 /* Indirect register read.                                                  */
   1001 /*                                                                          */
   1002 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
   1003 /* configuration space.  Using this mechanism avoids issues with posted     */
   1004 /* reads but is much slower than memory-mapped I/O.                         */
   1005 /*                                                                          */
   1006 /* Returns:                                                                 */
   1007 /*   The value of the register.                                             */
   1008 /****************************************************************************/
   1009 uint32_t
   1010 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
   1011 {
   1012 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   1013 
   1014 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1015 	    offset);
   1016 #ifdef BNX_DEBUG
   1017 	{
   1018 		uint32_t val;
   1019 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1020 		    BNX_PCICFG_REG_WINDOW);
   1021 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
   1022 		    "val = 0x%08X\n", __func__, offset, val);
   1023 		return val;
   1024 	}
   1025 #else
   1026 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
   1027 #endif
   1028 }
   1029 
   1030 /****************************************************************************/
   1031 /* Indirect register write.                                                 */
   1032 /*                                                                          */
   1033 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
   1034 /* configuration space.  Using this mechanism avoids issues with posted     */
   1035 /* writes but is muchh slower than memory-mapped I/O.                       */
   1036 /*                                                                          */
   1037 /* Returns:                                                                 */
   1038 /*   Nothing.                                                               */
   1039 /****************************************************************************/
   1040 void
   1041 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
   1042 {
   1043 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   1044 
   1045 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
   1046 		__func__, offset, val);
   1047 
   1048 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1049 	    offset);
   1050 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
   1051 }
   1052 
   1053 /****************************************************************************/
   1054 /* Context memory write.                                                    */
   1055 /*                                                                          */
   1056 /* The NetXtreme II controller uses context memory to track connection      */
   1057 /* information for L2 and higher network protocols.                         */
   1058 /*                                                                          */
   1059 /* Returns:                                                                 */
   1060 /*   Nothing.                                                               */
   1061 /****************************************************************************/
   1062 void
   1063 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
   1064     uint32_t ctx_val)
   1065 {
   1066 	uint32_t idx, offset = ctx_offset + cid_addr;
   1067 	uint32_t val, retry_cnt = 5;
   1068 
   1069 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1070 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
   1071 		REG_WR(sc, BNX_CTX_CTX_CTRL,
   1072 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
   1073 
   1074 		for (idx = 0; idx < retry_cnt; idx++) {
   1075 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
   1076 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
   1077 				break;
   1078 			DELAY(5);
   1079 		}
   1080 
   1081 #if 0
   1082 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
   1083 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1084 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1085 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1086 #endif
   1087 
   1088 	} else {
   1089 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1090 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1091 	}
   1092 }
   1093 
   1094 /****************************************************************************/
   1095 /* PHY register read.                                                       */
   1096 /*                                                                          */
   1097 /* Implements register reads on the MII bus.                                */
   1098 /*                                                                          */
   1099 /* Returns:                                                                 */
   1100 /*   The value of the register.                                             */
   1101 /****************************************************************************/
   1102 int
   1103 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
   1104 {
   1105 	struct bnx_softc	*sc = device_private(dev);
   1106 	uint32_t		data;
   1107 	int			i, rv = 0;
   1108 
   1109 	/*
   1110 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1111 	 * with special mappings to work with IEEE
   1112 	 * Clause 22 register accesses.
   1113 	 */
   1114 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1115 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1116 			reg += 0x10;
   1117 	}
   1118 
   1119 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1120 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1121 		data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1122 
   1123 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1124 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1125 
   1126 		DELAY(40);
   1127 	}
   1128 
   1129 	data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1130 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1131 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1132 	REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
   1133 
   1134 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1135 		DELAY(10);
   1136 
   1137 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1138 		if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1139 			DELAY(5);
   1140 
   1141 			data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1142 			data &= BNX_EMAC_MDIO_COMM_DATA;
   1143 
   1144 			break;
   1145 		}
   1146 	}
   1147 
   1148 	if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1149 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1150 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1151 		rv = ETIMEDOUT;
   1152 	} else {
   1153 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1154 		*val = data & 0xffff;
   1155 
   1156 		DBPRINT(sc, BNX_EXCESSIVE,
   1157 		    "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
   1158 		    phy, (uint16_t) reg & 0xffff, *val);
   1159 	}
   1160 
   1161 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1162 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1163 		data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1164 
   1165 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1166 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1167 
   1168 		DELAY(40);
   1169 	}
   1170 
   1171 	return rv;
   1172 }
   1173 
   1174 /****************************************************************************/
   1175 /* PHY register write.                                                      */
   1176 /*                                                                          */
   1177 /* Implements register writes on the MII bus.                               */
   1178 /*                                                                          */
   1179 /* Returns:                                                                 */
   1180 /*   The value of the register.                                             */
   1181 /****************************************************************************/
   1182 int
   1183 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
   1184 {
   1185 	struct bnx_softc	*sc = device_private(dev);
   1186 	uint32_t		val1;
   1187 	int			i, rv = 0;
   1188 
   1189 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1190 	    "val = 0x%04hX\n", __func__,
   1191 	    phy, (uint16_t) reg & 0xffff, val);
   1192 
   1193 	/*
   1194 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1195 	 * with special mappings to work with IEEE
   1196 	 * Clause 22 register accesses.
   1197 	 */
   1198 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1199 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1200 			reg += 0x10;
   1201 	}
   1202 
   1203 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1204 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1205 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1206 
   1207 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1208 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1209 
   1210 		DELAY(40);
   1211 	}
   1212 
   1213 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1214 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1215 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1216 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1217 
   1218 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1219 		DELAY(10);
   1220 
   1221 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1222 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1223 			DELAY(5);
   1224 			break;
   1225 		}
   1226 	}
   1227 
   1228 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1229 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1230 		    __LINE__);
   1231 		rv = ETIMEDOUT;
   1232 	}
   1233 
   1234 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1235 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1236 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1237 
   1238 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1239 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1240 
   1241 		DELAY(40);
   1242 	}
   1243 
   1244 	return rv;
   1245 }
   1246 
   1247 /****************************************************************************/
   1248 /* MII bus status change.                                                   */
   1249 /*                                                                          */
   1250 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1251 /* MAC interface registers.                                                 */
   1252 /*                                                                          */
   1253 /* Returns:                                                                 */
   1254 /*   Nothing.                                                               */
   1255 /****************************************************************************/
   1256 void
   1257 bnx_miibus_statchg(struct ifnet *ifp)
   1258 {
   1259 	struct bnx_softc	*sc = ifp->if_softc;
   1260 	struct mii_data		*mii = &sc->bnx_mii;
   1261 	uint32_t		rx_mode = sc->rx_mode;
   1262 	int			val;
   1263 
   1264 	val = REG_RD(sc, BNX_EMAC_MODE);
   1265 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1266 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1267 	    BNX_EMAC_MODE_25G);
   1268 
   1269 	/*
   1270 	 * Get flow control negotiation result.
   1271 	 */
   1272 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1273 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
   1274 		sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1275 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1276 	}
   1277 
   1278 	/* Set MII or GMII interface based on the speed
   1279 	 * negotiated by the PHY.
   1280 	 */
   1281 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1282 	case IFM_10_T:
   1283 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1284 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1285 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1286 			break;
   1287 		}
   1288 		/* FALLTHROUGH */
   1289 	case IFM_100_TX:
   1290 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1291 		val |= BNX_EMAC_MODE_PORT_MII;
   1292 		break;
   1293 	case IFM_2500_SX:
   1294 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1295 		val |= BNX_EMAC_MODE_25G;
   1296 		/* FALLTHROUGH */
   1297 	case IFM_1000_T:
   1298 	case IFM_1000_SX:
   1299 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1300 		val |= BNX_EMAC_MODE_PORT_GMII;
   1301 		break;
   1302 	default:
   1303 		val |= BNX_EMAC_MODE_PORT_GMII;
   1304 		break;
   1305 	}
   1306 
   1307 	/* Set half or full duplex based on the duplicity
   1308 	 * negotiated by the PHY.
   1309 	 */
   1310 	if ((mii->mii_media_active & IFM_HDX) != 0) {
   1311 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1312 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1313 	} else
   1314 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1315 
   1316 	REG_WR(sc, BNX_EMAC_MODE, val);
   1317 
   1318 	/*
   1319 	 * 802.3x flow control
   1320 	 */
   1321 	if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
   1322 		DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
   1323 		rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
   1324 	} else {
   1325 		DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
   1326 		rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
   1327 	}
   1328 
   1329 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
   1330 		DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
   1331 		BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1332 	} else {
   1333 		DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
   1334 		BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1335 	}
   1336 
   1337 	/* Only make changes if the receive mode has actually changed. */
   1338 	if (rx_mode != sc->rx_mode) {
   1339 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   1340 		    rx_mode);
   1341 
   1342 		sc->rx_mode = rx_mode;
   1343 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   1344 
   1345 		bnx_init_rx_context(sc);
   1346 	}
   1347 }
   1348 
   1349 /****************************************************************************/
   1350 /* Acquire NVRAM lock.                                                      */
   1351 /*                                                                          */
   1352 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1353 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1354 /* for use by the driver.                                                   */
   1355 /*                                                                          */
   1356 /* Returns:                                                                 */
   1357 /*   0 on success, positive value on failure.                               */
   1358 /****************************************************************************/
   1359 int
   1360 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1361 {
   1362 	uint32_t		val;
   1363 	int			j;
   1364 
   1365 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1366 
   1367 	/* Request access to the flash interface. */
   1368 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1369 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1370 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1371 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1372 			break;
   1373 
   1374 		DELAY(5);
   1375 	}
   1376 
   1377 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1378 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1379 		return EBUSY;
   1380 	}
   1381 
   1382 	return 0;
   1383 }
   1384 
   1385 /****************************************************************************/
   1386 /* Release NVRAM lock.                                                      */
   1387 /*                                                                          */
   1388 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1389 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1390 /* for use by the driver.                                                   */
   1391 /*                                                                          */
   1392 /* Returns:                                                                 */
   1393 /*   0 on success, positive value on failure.                               */
   1394 /****************************************************************************/
   1395 int
   1396 bnx_release_nvram_lock(struct bnx_softc *sc)
   1397 {
   1398 	int			j;
   1399 	uint32_t		val;
   1400 
   1401 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1402 
   1403 	/* Relinquish nvram interface. */
   1404 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1405 
   1406 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1407 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1408 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1409 			break;
   1410 
   1411 		DELAY(5);
   1412 	}
   1413 
   1414 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1415 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1416 		return EBUSY;
   1417 	}
   1418 
   1419 	return 0;
   1420 }
   1421 
   1422 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1423 /****************************************************************************/
   1424 /* Enable NVRAM write access.                                               */
   1425 /*                                                                          */
   1426 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1427 /*                                                                          */
   1428 /* Returns:                                                                 */
   1429 /*   0 on success, positive value on failure.                               */
   1430 /****************************************************************************/
   1431 int
   1432 bnx_enable_nvram_write(struct bnx_softc *sc)
   1433 {
   1434 	uint32_t		val;
   1435 
   1436 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1437 
   1438 	val = REG_RD(sc, BNX_MISC_CFG);
   1439 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1440 
   1441 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1442 		int j;
   1443 
   1444 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1445 		REG_WR(sc, BNX_NVM_COMMAND,
   1446 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1447 
   1448 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1449 			DELAY(5);
   1450 
   1451 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1452 			if (val & BNX_NVM_COMMAND_DONE)
   1453 				break;
   1454 		}
   1455 
   1456 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1457 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1458 			return EBUSY;
   1459 		}
   1460 	}
   1461 
   1462 	return 0;
   1463 }
   1464 
   1465 /****************************************************************************/
   1466 /* Disable NVRAM write access.                                              */
   1467 /*                                                                          */
   1468 /* When the caller is finished writing to NVRAM write access must be        */
   1469 /* disabled.                                                                */
   1470 /*                                                                          */
   1471 /* Returns:                                                                 */
   1472 /*   Nothing.                                                               */
   1473 /****************************************************************************/
   1474 void
   1475 bnx_disable_nvram_write(struct bnx_softc *sc)
   1476 {
   1477 	uint32_t		val;
   1478 
   1479 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1480 
   1481 	val = REG_RD(sc, BNX_MISC_CFG);
   1482 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1483 }
   1484 #endif
   1485 
   1486 /****************************************************************************/
   1487 /* Enable NVRAM access.                                                     */
   1488 /*                                                                          */
   1489 /* Before accessing NVRAM for read or write operations the caller must      */
   1490 /* enabled NVRAM access.                                                    */
   1491 /*                                                                          */
   1492 /* Returns:                                                                 */
   1493 /*   Nothing.                                                               */
   1494 /****************************************************************************/
   1495 void
   1496 bnx_enable_nvram_access(struct bnx_softc *sc)
   1497 {
   1498 	uint32_t		val;
   1499 
   1500 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1501 
   1502 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1503 	/* Enable both bits, even on read. */
   1504 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1505 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1506 }
   1507 
   1508 /****************************************************************************/
   1509 /* Disable NVRAM access.                                                    */
   1510 /*                                                                          */
   1511 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1512 /*                                                                          */
   1513 /* Returns:                                                                 */
   1514 /*   Nothing.                                                               */
   1515 /****************************************************************************/
   1516 void
   1517 bnx_disable_nvram_access(struct bnx_softc *sc)
   1518 {
   1519 	uint32_t		val;
   1520 
   1521 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1522 
   1523 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1524 
   1525 	/* Disable both bits, even after read. */
   1526 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1527 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1528 }
   1529 
   1530 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1531 /****************************************************************************/
   1532 /* Erase NVRAM page before writing.                                         */
   1533 /*                                                                          */
   1534 /* Non-buffered flash parts require that a page be erased before it is      */
   1535 /* written.                                                                 */
   1536 /*                                                                          */
   1537 /* Returns:                                                                 */
   1538 /*   0 on success, positive value on failure.                               */
   1539 /****************************************************************************/
   1540 int
   1541 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1542 {
   1543 	uint32_t		cmd;
   1544 	int			j;
   1545 
   1546 	/* Buffered flash doesn't require an erase. */
   1547 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1548 		return 0;
   1549 
   1550 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1551 
   1552 	/* Build an erase command. */
   1553 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1554 	    BNX_NVM_COMMAND_DOIT;
   1555 
   1556 	/*
   1557 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1558 	 * and issue the erase command.
   1559 	 */
   1560 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1561 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1562 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1563 
   1564 	/* Wait for completion. */
   1565 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1566 		uint32_t val;
   1567 
   1568 		DELAY(5);
   1569 
   1570 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1571 		if (val & BNX_NVM_COMMAND_DONE)
   1572 			break;
   1573 	}
   1574 
   1575 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1576 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1577 		return EBUSY;
   1578 	}
   1579 
   1580 	return 0;
   1581 }
   1582 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1583 
   1584 /****************************************************************************/
   1585 /* Read a dword (32 bits) from NVRAM.                                       */
   1586 /*                                                                          */
   1587 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1588 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1589 /*                                                                          */
   1590 /* Returns:                                                                 */
   1591 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1592 /****************************************************************************/
   1593 int
   1594 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1595     uint8_t *ret_val, uint32_t cmd_flags)
   1596 {
   1597 	uint32_t		cmd;
   1598 	int			i, rc = 0;
   1599 
   1600 	/* Build the command word. */
   1601 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1602 
   1603 	/* Calculate the offset for buffered flash if translation is used. */
   1604 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1605 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1606 		    sc->bnx_flash_info->page_bits) +
   1607 		    (offset % sc->bnx_flash_info->page_size);
   1608 	}
   1609 
   1610 	/*
   1611 	 * Clear the DONE bit separately, set the address to read,
   1612 	 * and issue the read.
   1613 	 */
   1614 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1615 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1616 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1617 
   1618 	/* Wait for completion. */
   1619 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1620 		uint32_t val;
   1621 
   1622 		DELAY(5);
   1623 
   1624 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1625 		if (val & BNX_NVM_COMMAND_DONE) {
   1626 			val = REG_RD(sc, BNX_NVM_READ);
   1627 
   1628 			val = be32toh(val);
   1629 			memcpy(ret_val, &val, 4);
   1630 			break;
   1631 		}
   1632 	}
   1633 
   1634 	/* Check for errors. */
   1635 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1636 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1637 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1638 		rc = EBUSY;
   1639 	}
   1640 
   1641 	return rc;
   1642 }
   1643 
   1644 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1645 /****************************************************************************/
   1646 /* Write a dword (32 bits) to NVRAM.                                        */
   1647 /*                                                                          */
   1648 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1649 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1650 /* enabled NVRAM write access.                                              */
   1651 /*                                                                          */
   1652 /* Returns:                                                                 */
   1653 /*   0 on success, positive value on failure.                               */
   1654 /****************************************************************************/
   1655 int
   1656 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1657     uint32_t cmd_flags)
   1658 {
   1659 	uint32_t		cmd, val32;
   1660 	int			j;
   1661 
   1662 	/* Build the command word. */
   1663 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1664 
   1665 	/* Calculate the offset for buffered flash if translation is used. */
   1666 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1667 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1668 		    sc->bnx_flash_info->page_bits) +
   1669 		    (offset % sc->bnx_flash_info->page_size);
   1670 	}
   1671 
   1672 	/*
   1673 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1674 	 * set the NVRAM address to write, and issue the write command
   1675 	 */
   1676 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1677 	memcpy(&val32, val, 4);
   1678 	val32 = htobe32(val32);
   1679 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1680 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1681 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1682 
   1683 	/* Wait for completion. */
   1684 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1685 		DELAY(5);
   1686 
   1687 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1688 			break;
   1689 	}
   1690 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1691 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1692 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1693 		return EBUSY;
   1694 	}
   1695 
   1696 	return 0;
   1697 }
   1698 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1699 
   1700 /****************************************************************************/
   1701 /* Initialize NVRAM access.                                                 */
   1702 /*                                                                          */
   1703 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1704 /* access that device.                                                      */
   1705 /*                                                                          */
   1706 /* Returns:                                                                 */
   1707 /*   0 on success, positive value on failure.                               */
   1708 /****************************************************************************/
   1709 int
   1710 bnx_init_nvram(struct bnx_softc *sc)
   1711 {
   1712 	uint32_t		val;
   1713 	int			j, entry_count, rc = 0;
   1714 	struct flash_spec	*flash;
   1715 
   1716 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1717 
   1718 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1719 		sc->bnx_flash_info = &flash_5709;
   1720 		goto bnx_init_nvram_get_flash_size;
   1721 	}
   1722 
   1723 	/* Determine the selected interface. */
   1724 	val = REG_RD(sc, BNX_NVM_CFG1);
   1725 
   1726 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1727 
   1728 	/*
   1729 	 * Flash reconfiguration is required to support additional
   1730 	 * NVRAM devices not directly supported in hardware.
   1731 	 * Check if the flash interface was reconfigured
   1732 	 * by the bootcode.
   1733 	 */
   1734 
   1735 	if (val & 0x40000000) {
   1736 		/* Flash interface reconfigured by bootcode. */
   1737 
   1738 		DBPRINT(sc, BNX_INFO_LOAD,
   1739 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1740 
   1741 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1742 		     j++, flash++) {
   1743 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1744 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1745 				sc->bnx_flash_info = flash;
   1746 				break;
   1747 			}
   1748 		}
   1749 	} else {
   1750 		/* Flash interface not yet reconfigured. */
   1751 		uint32_t mask;
   1752 
   1753 		DBPRINT(sc, BNX_INFO_LOAD,
   1754 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1755 
   1756 		if (val & (1 << 23))
   1757 			mask = FLASH_BACKUP_STRAP_MASK;
   1758 		else
   1759 			mask = FLASH_STRAP_MASK;
   1760 
   1761 		/* Look for the matching NVRAM device configuration data. */
   1762 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1763 		    j++, flash++) {
   1764 			/* Check if the dev matches any of the known devices. */
   1765 			if ((val & mask) == (flash->strapping & mask)) {
   1766 				/* Found a device match. */
   1767 				sc->bnx_flash_info = flash;
   1768 
   1769 				/* Request access to the flash interface. */
   1770 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1771 					return rc;
   1772 
   1773 				/* Reconfigure the flash interface. */
   1774 				bnx_enable_nvram_access(sc);
   1775 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1776 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1777 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1778 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1779 				bnx_disable_nvram_access(sc);
   1780 				bnx_release_nvram_lock(sc);
   1781 
   1782 				break;
   1783 			}
   1784 		}
   1785 	}
   1786 
   1787 	/* Check if a matching device was found. */
   1788 	if (j == entry_count) {
   1789 		sc->bnx_flash_info = NULL;
   1790 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1791 			__FILE__, __LINE__);
   1792 		rc = ENODEV;
   1793 	}
   1794 
   1795 bnx_init_nvram_get_flash_size:
   1796 	/* Write the flash config data to the shared memory interface. */
   1797 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1798 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1799 	if (val)
   1800 		sc->bnx_flash_size = val;
   1801 	else
   1802 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1803 
   1804 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1805 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1806 
   1807 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1808 
   1809 	return rc;
   1810 }
   1811 
   1812 /****************************************************************************/
   1813 /* Read an arbitrary range of data from NVRAM.                              */
   1814 /*                                                                          */
   1815 /* Prepares the NVRAM interface for access and reads the requested data     */
   1816 /* into the supplied buffer.                                                */
   1817 /*                                                                          */
   1818 /* Returns:                                                                 */
   1819 /*   0 on success and the data read, positive value on failure.             */
   1820 /****************************************************************************/
   1821 int
   1822 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1823     int buf_size)
   1824 {
   1825 	int			rc = 0;
   1826 	uint32_t		cmd_flags, offset32, len32, extra;
   1827 
   1828 	if (buf_size == 0)
   1829 		return 0;
   1830 
   1831 	/* Request access to the flash interface. */
   1832 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1833 		return rc;
   1834 
   1835 	/* Enable access to flash interface */
   1836 	bnx_enable_nvram_access(sc);
   1837 
   1838 	len32 = buf_size;
   1839 	offset32 = offset;
   1840 	extra = 0;
   1841 
   1842 	cmd_flags = 0;
   1843 
   1844 	if (offset32 & 3) {
   1845 		uint8_t buf[4];
   1846 		uint32_t pre_len;
   1847 
   1848 		offset32 &= ~3;
   1849 		pre_len = 4 - (offset & 3);
   1850 
   1851 		if (pre_len >= len32) {
   1852 			pre_len = len32;
   1853 			cmd_flags =
   1854 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1855 		} else
   1856 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1857 
   1858 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1859 
   1860 		if (rc)
   1861 			return rc;
   1862 
   1863 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1864 
   1865 		offset32 += 4;
   1866 		ret_buf += pre_len;
   1867 		len32 -= pre_len;
   1868 	}
   1869 
   1870 	if (len32 & 3) {
   1871 		extra = 4 - (len32 & 3);
   1872 		len32 = (len32 + 4) & ~3;
   1873 	}
   1874 
   1875 	if (len32 == 4) {
   1876 		uint8_t buf[4];
   1877 
   1878 		if (cmd_flags)
   1879 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1880 		else
   1881 			cmd_flags =
   1882 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1883 
   1884 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1885 
   1886 		memcpy(ret_buf, buf, 4 - extra);
   1887 	} else if (len32 > 0) {
   1888 		uint8_t buf[4];
   1889 
   1890 		/* Read the first word. */
   1891 		if (cmd_flags)
   1892 			cmd_flags = 0;
   1893 		else
   1894 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1895 
   1896 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1897 
   1898 		/* Advance to the next dword. */
   1899 		offset32 += 4;
   1900 		ret_buf += 4;
   1901 		len32 -= 4;
   1902 
   1903 		while (len32 > 4 && rc == 0) {
   1904 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1905 
   1906 			/* Advance to the next dword. */
   1907 			offset32 += 4;
   1908 			ret_buf += 4;
   1909 			len32 -= 4;
   1910 		}
   1911 
   1912 		if (rc)
   1913 			return rc;
   1914 
   1915 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1916 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1917 
   1918 		memcpy(ret_buf, buf, 4 - extra);
   1919 	}
   1920 
   1921 	/* Disable access to flash interface and release the lock. */
   1922 	bnx_disable_nvram_access(sc);
   1923 	bnx_release_nvram_lock(sc);
   1924 
   1925 	return rc;
   1926 }
   1927 
   1928 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1929 /****************************************************************************/
   1930 /* Write an arbitrary range of data from NVRAM.                             */
   1931 /*                                                                          */
   1932 /* Prepares the NVRAM interface for write access and writes the requested   */
   1933 /* data from the supplied buffer.  The caller is responsible for            */
   1934 /* calculating any appropriate CRCs.                                        */
   1935 /*                                                                          */
   1936 /* Returns:                                                                 */
   1937 /*   0 on success, positive value on failure.                               */
   1938 /****************************************************************************/
   1939 int
   1940 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1941     int buf_size)
   1942 {
   1943 	uint32_t		written, offset32, len32;
   1944 	uint8_t		*buf, start[4], end[4];
   1945 	int			rc = 0;
   1946 	int			align_start, align_end;
   1947 
   1948 	buf = data_buf;
   1949 	offset32 = offset;
   1950 	len32 = buf_size;
   1951 	align_start = align_end = 0;
   1952 
   1953 	if ((align_start = (offset32 & 3))) {
   1954 		offset32 &= ~3;
   1955 		len32 += align_start;
   1956 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1957 			return rc;
   1958 	}
   1959 
   1960 	if (len32 & 3) {
   1961 		if ((len32 > 4) || !align_start) {
   1962 			align_end = 4 - (len32 & 3);
   1963 			len32 += align_end;
   1964 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1965 			    end, 4)))
   1966 				return rc;
   1967 		}
   1968 	}
   1969 
   1970 	if (align_start || align_end) {
   1971 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1972 		if (buf == NULL)
   1973 			return ENOMEM;
   1974 
   1975 		if (align_start)
   1976 			memcpy(buf, start, 4);
   1977 
   1978 		if (align_end)
   1979 			memcpy(buf + len32 - 4, end, 4);
   1980 
   1981 		memcpy(buf + align_start, data_buf, buf_size);
   1982 	}
   1983 
   1984 	written = 0;
   1985 	while ((written < len32) && (rc == 0)) {
   1986 		uint32_t page_start, page_end, data_start, data_end;
   1987 		uint32_t addr, cmd_flags;
   1988 		int i;
   1989 		uint8_t flash_buffer[264];
   1990 
   1991 	    /* Find the page_start addr */
   1992 		page_start = offset32 + written;
   1993 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1994 		/* Find the page_end addr */
   1995 		page_end = page_start + sc->bnx_flash_info->page_size;
   1996 		/* Find the data_start addr */
   1997 		data_start = (written == 0) ? offset32 : page_start;
   1998 		/* Find the data_end addr */
   1999 		data_end = (page_end > offset32 + len32) ?
   2000 		    (offset32 + len32) : page_end;
   2001 
   2002 		/* Request access to the flash interface. */
   2003 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   2004 			goto nvram_write_end;
   2005 
   2006 		/* Enable access to flash interface */
   2007 		bnx_enable_nvram_access(sc);
   2008 
   2009 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   2010 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2011 			int j;
   2012 
   2013 			/* Read the whole page into the buffer
   2014 			 * (non-buffer flash only) */
   2015 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   2016 				if (j == (sc->bnx_flash_info->page_size - 4))
   2017 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   2018 
   2019 				rc = bnx_nvram_read_dword(sc,
   2020 					page_start + j,
   2021 					&flash_buffer[j],
   2022 					cmd_flags);
   2023 
   2024 				if (rc)
   2025 					goto nvram_write_end;
   2026 
   2027 				cmd_flags = 0;
   2028 			}
   2029 		}
   2030 
   2031 		/* Enable writes to flash interface (unlock write-protect) */
   2032 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   2033 			goto nvram_write_end;
   2034 
   2035 		/* Erase the page */
   2036 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   2037 			goto nvram_write_end;
   2038 
   2039 		/* Re-enable the write again for the actual write */
   2040 		bnx_enable_nvram_write(sc);
   2041 
   2042 		/* Loop to write back the buffer data from page_start to
   2043 		 * data_start */
   2044 		i = 0;
   2045 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2046 			for (addr = page_start; addr < data_start;
   2047 				addr += 4, i += 4) {
   2048 
   2049 				rc = bnx_nvram_write_dword(sc, addr,
   2050 				    &flash_buffer[i], cmd_flags);
   2051 
   2052 				if (rc != 0)
   2053 					goto nvram_write_end;
   2054 
   2055 				cmd_flags = 0;
   2056 			}
   2057 		}
   2058 
   2059 		/* Loop to write the new data from data_start to data_end */
   2060 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   2061 			if ((addr == page_end - 4) ||
   2062 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   2063 			    && (addr == data_end - 4))) {
   2064 
   2065 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   2066 			}
   2067 
   2068 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   2069 
   2070 			if (rc != 0)
   2071 				goto nvram_write_end;
   2072 
   2073 			cmd_flags = 0;
   2074 			buf += 4;
   2075 		}
   2076 
   2077 		/* Loop to write back the buffer data from data_end
   2078 		 * to page_end */
   2079 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2080 			for (addr = data_end; addr < page_end;
   2081 			    addr += 4, i += 4) {
   2082 
   2083 				if (addr == page_end-4)
   2084 					cmd_flags = BNX_NVM_COMMAND_LAST;
   2085 
   2086 				rc = bnx_nvram_write_dword(sc, addr,
   2087 				    &flash_buffer[i], cmd_flags);
   2088 
   2089 				if (rc != 0)
   2090 					goto nvram_write_end;
   2091 
   2092 				cmd_flags = 0;
   2093 			}
   2094 		}
   2095 
   2096 		/* Disable writes to flash interface (lock write-protect) */
   2097 		bnx_disable_nvram_write(sc);
   2098 
   2099 		/* Disable access to flash interface */
   2100 		bnx_disable_nvram_access(sc);
   2101 		bnx_release_nvram_lock(sc);
   2102 
   2103 		/* Increment written */
   2104 		written += data_end - data_start;
   2105 	}
   2106 
   2107 nvram_write_end:
   2108 	if (align_start || align_end)
   2109 		free(buf, M_DEVBUF);
   2110 
   2111 	return rc;
   2112 }
   2113 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2114 
   2115 /****************************************************************************/
   2116 /* Verifies that NVRAM is accessible and contains valid data.               */
   2117 /*                                                                          */
   2118 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2119 /* correct.                                                                 */
   2120 /*                                                                          */
   2121 /* Returns:                                                                 */
   2122 /*   0 on success, positive value on failure.                               */
   2123 /****************************************************************************/
   2124 int
   2125 bnx_nvram_test(struct bnx_softc *sc)
   2126 {
   2127 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2128 	uint8_t		*data = (uint8_t *) buf;
   2129 	int			rc = 0;
   2130 	uint32_t		magic, csum;
   2131 
   2132 	/*
   2133 	 * Check that the device NVRAM is valid by reading
   2134 	 * the magic value at offset 0.
   2135 	 */
   2136 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2137 		goto bnx_nvram_test_done;
   2138 
   2139 	magic = be32toh(buf[0]);
   2140 	if (magic != BNX_NVRAM_MAGIC) {
   2141 		rc = ENODEV;
   2142 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2143 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2144 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2145 		goto bnx_nvram_test_done;
   2146 	}
   2147 
   2148 	/*
   2149 	 * Verify that the device NVRAM includes valid
   2150 	 * configuration data.
   2151 	 */
   2152 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2153 		goto bnx_nvram_test_done;
   2154 
   2155 	csum = ether_crc32_le(data, 0x100);
   2156 	if (csum != BNX_CRC32_RESIDUAL) {
   2157 		rc = ENODEV;
   2158 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2159 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2160 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2161 		goto bnx_nvram_test_done;
   2162 	}
   2163 
   2164 	csum = ether_crc32_le(data + 0x100, 0x100);
   2165 	if (csum != BNX_CRC32_RESIDUAL) {
   2166 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2167 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2168 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2169 		rc = ENODEV;
   2170 	}
   2171 
   2172 bnx_nvram_test_done:
   2173 	return rc;
   2174 }
   2175 
   2176 /****************************************************************************/
   2177 /* Identifies the current media type of the controller and sets the PHY     */
   2178 /* address.                                                                 */
   2179 /*                                                                          */
   2180 /* Returns:                                                                 */
   2181 /*   Nothing.                                                               */
   2182 /****************************************************************************/
   2183 void
   2184 bnx_get_media(struct bnx_softc *sc)
   2185 {
   2186 	sc->bnx_phy_addr = 1;
   2187 
   2188 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2189 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2190 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2191 		uint32_t strap;
   2192 
   2193 		/*
   2194 		 * The BCM5709S is software configurable
   2195 		 * for Copper or SerDes operation.
   2196 		 */
   2197 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2198 			DBPRINT(sc, BNX_INFO_LOAD,
   2199 			    "5709 bonded for copper.\n");
   2200 			goto bnx_get_media_exit;
   2201 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2202 			DBPRINT(sc, BNX_INFO_LOAD,
   2203 			    "5709 bonded for dual media.\n");
   2204 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2205 			goto bnx_get_media_exit;
   2206 		}
   2207 
   2208 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2209 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2210 		else {
   2211 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2212 			    >> 8;
   2213 		}
   2214 
   2215 		if (sc->bnx_pa.pa_function == 0) {
   2216 			switch (strap) {
   2217 			case 0x4:
   2218 			case 0x5:
   2219 			case 0x6:
   2220 				DBPRINT(sc, BNX_INFO_LOAD,
   2221 					"BCM5709 s/w configured for SerDes.\n");
   2222 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2223 				break;
   2224 			default:
   2225 				DBPRINT(sc, BNX_INFO_LOAD,
   2226 					"BCM5709 s/w configured for Copper.\n");
   2227 			}
   2228 		} else {
   2229 			switch (strap) {
   2230 			case 0x1:
   2231 			case 0x2:
   2232 			case 0x4:
   2233 				DBPRINT(sc, BNX_INFO_LOAD,
   2234 					"BCM5709 s/w configured for SerDes.\n");
   2235 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2236 				break;
   2237 			default:
   2238 				DBPRINT(sc, BNX_INFO_LOAD,
   2239 					"BCM5709 s/w configured for Copper.\n");
   2240 			}
   2241 		}
   2242 
   2243 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2244 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2245 
   2246 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2247 		uint32_t val;
   2248 
   2249 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2250 
   2251 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2252 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2253 
   2254 		/*
   2255 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2256 		 * separate PHY for SerDes.
   2257 		 */
   2258 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2259 			sc->bnx_phy_addr = 2;
   2260 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2261 				 BNX_SHARED_HW_CFG_CONFIG);
   2262 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2263 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2264 				DBPRINT(sc, BNX_INFO_LOAD,
   2265 				    "Found 2.5Gb capable adapter\n");
   2266 			}
   2267 		}
   2268 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2269 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2270 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2271 
   2272 bnx_get_media_exit:
   2273 	DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
   2274 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2275 }
   2276 
   2277 /****************************************************************************/
   2278 /* Performs PHY initialization required before MII drivers access the       */
   2279 /* device.                                                                  */
   2280 /*                                                                          */
   2281 /* Returns:                                                                 */
   2282 /*   Nothing.                                                               */
   2283 /****************************************************************************/
   2284 void
   2285 bnx_init_media(struct bnx_softc *sc)
   2286 {
   2287 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2288 		/*
   2289 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2290 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2291 		 * the PHY to the mii(4) layer. PHY specific configuration
   2292 		 * is done by the mii(4) layer.
   2293 		 */
   2294 
   2295 		/* Select auto-negotiation MMD of the PHY. */
   2296 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2297 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2298 
   2299 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2300 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2301 
   2302 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2303 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2304 	}
   2305 }
   2306 
   2307 /****************************************************************************/
   2308 /* Free any DMA memory owned by the driver.                                 */
   2309 /*                                                                          */
   2310 /* Scans through each data structre that requires DMA memory and frees      */
   2311 /* the memory if allocated.                                                 */
   2312 /*                                                                          */
   2313 /* Returns:                                                                 */
   2314 /*   Nothing.                                                               */
   2315 /****************************************************************************/
   2316 void
   2317 bnx_dma_free(struct bnx_softc *sc)
   2318 {
   2319 	int			i;
   2320 
   2321 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2322 
   2323 	/* Destroy the status block. */
   2324 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2325 		bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2326 		    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2327 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2328 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2329 		    BNX_STATUS_BLK_SZ);
   2330 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2331 		    sc->status_rseg);
   2332 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2333 		sc->status_block = NULL;
   2334 		sc->status_map = NULL;
   2335 	}
   2336 
   2337 	/* Destroy the statistics block. */
   2338 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2339 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2340 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2341 		    BNX_STATS_BLK_SZ);
   2342 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2343 		    sc->stats_rseg);
   2344 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2345 		sc->stats_block = NULL;
   2346 		sc->stats_map = NULL;
   2347 	}
   2348 
   2349 	/* Free, unmap and destroy all context memory pages. */
   2350 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2351 		for (i = 0; i < sc->ctx_pages; i++) {
   2352 			if (sc->ctx_block[i] != NULL) {
   2353 				bus_dmamap_unload(sc->bnx_dmatag,
   2354 				    sc->ctx_map[i]);
   2355 				bus_dmamem_unmap(sc->bnx_dmatag,
   2356 				    (void *)sc->ctx_block[i],
   2357 				    BCM_PAGE_SIZE);
   2358 				bus_dmamem_free(sc->bnx_dmatag,
   2359 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2360 				bus_dmamap_destroy(sc->bnx_dmatag,
   2361 				    sc->ctx_map[i]);
   2362 				sc->ctx_block[i] = NULL;
   2363 			}
   2364 		}
   2365 	}
   2366 
   2367 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2368 	for (i = 0; i < TX_PAGES; i++ ) {
   2369 		if (sc->tx_bd_chain[i] != NULL &&
   2370 		    sc->tx_bd_chain_map[i] != NULL) {
   2371 			bus_dmamap_unload(sc->bnx_dmatag,
   2372 			    sc->tx_bd_chain_map[i]);
   2373 			bus_dmamem_unmap(sc->bnx_dmatag,
   2374 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2375 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2376 			    sc->tx_bd_chain_rseg[i]);
   2377 			bus_dmamap_destroy(sc->bnx_dmatag,
   2378 			    sc->tx_bd_chain_map[i]);
   2379 			sc->tx_bd_chain[i] = NULL;
   2380 			sc->tx_bd_chain_map[i] = NULL;
   2381 		}
   2382 	}
   2383 
   2384 	/* Destroy the TX dmamaps. */
   2385 	struct bnx_pkt *pkt;
   2386 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   2387 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   2388 		sc->tx_pkt_count--;
   2389 
   2390 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   2391 		pool_put(bnx_tx_pool, pkt);
   2392 	}
   2393 
   2394 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2395 	for (i = 0; i < RX_PAGES; i++ ) {
   2396 		if (sc->rx_bd_chain[i] != NULL &&
   2397 		    sc->rx_bd_chain_map[i] != NULL) {
   2398 			bus_dmamap_unload(sc->bnx_dmatag,
   2399 			    sc->rx_bd_chain_map[i]);
   2400 			bus_dmamem_unmap(sc->bnx_dmatag,
   2401 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2402 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2403 			    sc->rx_bd_chain_rseg[i]);
   2404 
   2405 			bus_dmamap_destroy(sc->bnx_dmatag,
   2406 			    sc->rx_bd_chain_map[i]);
   2407 			sc->rx_bd_chain[i] = NULL;
   2408 			sc->rx_bd_chain_map[i] = NULL;
   2409 		}
   2410 	}
   2411 
   2412 	/* Unload and destroy the RX mbuf maps. */
   2413 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2414 		if (sc->rx_mbuf_map[i] != NULL) {
   2415 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2416 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2417 		}
   2418 	}
   2419 
   2420 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2421 }
   2422 
   2423 /****************************************************************************/
   2424 /* Allocate any DMA memory needed by the driver.                            */
   2425 /*                                                                          */
   2426 /* Allocates DMA memory needed for the various global structures needed by  */
   2427 /* hardware.                                                                */
   2428 /*                                                                          */
   2429 /* Returns:                                                                 */
   2430 /*   0 for success, positive value for failure.                             */
   2431 /****************************************************************************/
   2432 int
   2433 bnx_dma_alloc(struct bnx_softc *sc)
   2434 {
   2435 	int			i, rc = 0;
   2436 
   2437 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2438 
   2439 	/*
   2440 	 * Allocate DMA memory for the status block, map the memory into DMA
   2441 	 * space, and fetch the physical address of the block.
   2442 	 */
   2443 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2444 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2445 		aprint_error_dev(sc->bnx_dev,
   2446 		    "Could not create status block DMA map!\n");
   2447 		rc = ENOMEM;
   2448 		goto bnx_dma_alloc_exit;
   2449 	}
   2450 
   2451 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2452 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2453 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2454 		aprint_error_dev(sc->bnx_dev,
   2455 		    "Could not allocate status block DMA memory!\n");
   2456 		rc = ENOMEM;
   2457 		goto bnx_dma_alloc_exit;
   2458 	}
   2459 
   2460 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2461 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2462 		aprint_error_dev(sc->bnx_dev,
   2463 		    "Could not map status block DMA memory!\n");
   2464 		rc = ENOMEM;
   2465 		goto bnx_dma_alloc_exit;
   2466 	}
   2467 
   2468 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2469 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2470 		aprint_error_dev(sc->bnx_dev,
   2471 		    "Could not load status block DMA memory!\n");
   2472 		rc = ENOMEM;
   2473 		goto bnx_dma_alloc_exit;
   2474 	}
   2475 
   2476 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2477 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2478 
   2479 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2480 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2481 
   2482 	/* DRC - Fix for 64 bit addresses. */
   2483 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2484 		(uint32_t) sc->status_block_paddr);
   2485 
   2486 	/* BCM5709 uses host memory as cache for context memory. */
   2487 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2488 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2489 		if (sc->ctx_pages == 0)
   2490 			sc->ctx_pages = 1;
   2491 		if (sc->ctx_pages > 4) /* XXX */
   2492 			sc->ctx_pages = 4;
   2493 
   2494 		DBRUNIF((sc->ctx_pages > 512),
   2495 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2496 				__FILE__, __LINE__, sc->ctx_pages));
   2497 
   2498 
   2499 		for (i = 0; i < sc->ctx_pages; i++) {
   2500 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2501 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2502 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2503 			    &sc->ctx_map[i]) != 0) {
   2504 				rc = ENOMEM;
   2505 				goto bnx_dma_alloc_exit;
   2506 			}
   2507 
   2508 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2509 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2510 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2511 				rc = ENOMEM;
   2512 				goto bnx_dma_alloc_exit;
   2513 			}
   2514 
   2515 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2516 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2517 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2518 				rc = ENOMEM;
   2519 				goto bnx_dma_alloc_exit;
   2520 			}
   2521 
   2522 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2523 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2524 			    BUS_DMA_NOWAIT) != 0) {
   2525 				rc = ENOMEM;
   2526 				goto bnx_dma_alloc_exit;
   2527 			}
   2528 
   2529 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2530 		}
   2531 	}
   2532 
   2533 	/*
   2534 	 * Allocate DMA memory for the statistics block, map the memory into
   2535 	 * DMA space, and fetch the physical address of the block.
   2536 	 */
   2537 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2538 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2539 		aprint_error_dev(sc->bnx_dev,
   2540 		    "Could not create stats block DMA map!\n");
   2541 		rc = ENOMEM;
   2542 		goto bnx_dma_alloc_exit;
   2543 	}
   2544 
   2545 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2546 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2547 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2548 		aprint_error_dev(sc->bnx_dev,
   2549 		    "Could not allocate stats block DMA memory!\n");
   2550 		rc = ENOMEM;
   2551 		goto bnx_dma_alloc_exit;
   2552 	}
   2553 
   2554 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2555 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2556 		aprint_error_dev(sc->bnx_dev,
   2557 		    "Could not map stats block DMA memory!\n");
   2558 		rc = ENOMEM;
   2559 		goto bnx_dma_alloc_exit;
   2560 	}
   2561 
   2562 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2563 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2564 		aprint_error_dev(sc->bnx_dev,
   2565 		    "Could not load status block DMA memory!\n");
   2566 		rc = ENOMEM;
   2567 		goto bnx_dma_alloc_exit;
   2568 	}
   2569 
   2570 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2571 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2572 
   2573 	/* DRC - Fix for 64 bit address. */
   2574 	DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2575 	    (uint32_t) sc->stats_block_paddr);
   2576 
   2577 	/*
   2578 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2579 	 * and fetch the physical address of the block.
   2580 	 */
   2581 	for (i = 0; i < TX_PAGES; i++) {
   2582 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2583 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2584 		    &sc->tx_bd_chain_map[i])) {
   2585 			aprint_error_dev(sc->bnx_dev,
   2586 			    "Could not create Tx desc %d DMA map!\n", i);
   2587 			rc = ENOMEM;
   2588 			goto bnx_dma_alloc_exit;
   2589 		}
   2590 
   2591 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2592 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2593 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2594 			aprint_error_dev(sc->bnx_dev,
   2595 			    "Could not allocate TX desc %d DMA memory!\n",
   2596 			    i);
   2597 			rc = ENOMEM;
   2598 			goto bnx_dma_alloc_exit;
   2599 		}
   2600 
   2601 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2602 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2603 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2604 			aprint_error_dev(sc->bnx_dev,
   2605 			    "Could not map TX desc %d DMA memory!\n", i);
   2606 			rc = ENOMEM;
   2607 			goto bnx_dma_alloc_exit;
   2608 		}
   2609 
   2610 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2611 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2612 		    BUS_DMA_NOWAIT)) {
   2613 			aprint_error_dev(sc->bnx_dev,
   2614 			    "Could not load TX desc %d DMA memory!\n", i);
   2615 			rc = ENOMEM;
   2616 			goto bnx_dma_alloc_exit;
   2617 		}
   2618 
   2619 		sc->tx_bd_chain_paddr[i] =
   2620 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2621 
   2622 		/* DRC - Fix for 64 bit systems. */
   2623 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2624 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2625 	}
   2626 
   2627 	/*
   2628 	 * Create lists to hold TX mbufs.
   2629 	 */
   2630 	TAILQ_INIT(&sc->tx_free_pkts);
   2631 	TAILQ_INIT(&sc->tx_used_pkts);
   2632 	sc->tx_pkt_count = 0;
   2633 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2634 
   2635 	/*
   2636 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2637 	 * and fetch the physical address of the block.
   2638 	 */
   2639 	for (i = 0; i < RX_PAGES; i++) {
   2640 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2641 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2642 		    &sc->rx_bd_chain_map[i])) {
   2643 			aprint_error_dev(sc->bnx_dev,
   2644 			    "Could not create Rx desc %d DMA map!\n", i);
   2645 			rc = ENOMEM;
   2646 			goto bnx_dma_alloc_exit;
   2647 		}
   2648 
   2649 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2650 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2651 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2652 			aprint_error_dev(sc->bnx_dev,
   2653 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2654 			rc = ENOMEM;
   2655 			goto bnx_dma_alloc_exit;
   2656 		}
   2657 
   2658 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2659 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2660 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2661 			aprint_error_dev(sc->bnx_dev,
   2662 			    "Could not map Rx desc %d DMA memory!\n", i);
   2663 			rc = ENOMEM;
   2664 			goto bnx_dma_alloc_exit;
   2665 		}
   2666 
   2667 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2668 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2669 		    BUS_DMA_NOWAIT)) {
   2670 			aprint_error_dev(sc->bnx_dev,
   2671 			    "Could not load Rx desc %d DMA memory!\n", i);
   2672 			rc = ENOMEM;
   2673 			goto bnx_dma_alloc_exit;
   2674 		}
   2675 
   2676 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2677 		sc->rx_bd_chain_paddr[i] =
   2678 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2679 
   2680 		/* DRC - Fix for 64 bit systems. */
   2681 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2682 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2683 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2684 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2685 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2686 	}
   2687 
   2688 	/*
   2689 	 * Create DMA maps for the Rx buffer mbufs.
   2690 	 */
   2691 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2692 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2693 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2694 		    &sc->rx_mbuf_map[i])) {
   2695 			aprint_error_dev(sc->bnx_dev,
   2696 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2697 			rc = ENOMEM;
   2698 			goto bnx_dma_alloc_exit;
   2699 		}
   2700 	}
   2701 
   2702  bnx_dma_alloc_exit:
   2703 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2704 
   2705 	return rc;
   2706 }
   2707 
   2708 /****************************************************************************/
   2709 /* Release all resources used by the driver.                                */
   2710 /*                                                                          */
   2711 /* Releases all resources acquired by the driver including interrupts,      */
   2712 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2713 /*                                                                          */
   2714 /* Returns:                                                                 */
   2715 /*   Nothing.                                                               */
   2716 /****************************************************************************/
   2717 void
   2718 bnx_release_resources(struct bnx_softc *sc)
   2719 {
   2720 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2721 
   2722 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2723 
   2724 	bnx_dma_free(sc);
   2725 
   2726 	if (sc->bnx_intrhand != NULL)
   2727 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2728 
   2729 	if (sc->bnx_ih != NULL)
   2730 		pci_intr_release(pa->pa_pc, sc->bnx_ih, 1);
   2731 
   2732 	if (sc->bnx_size)
   2733 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2734 
   2735 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2736 }
   2737 
   2738 /****************************************************************************/
   2739 /* Firmware synchronization.                                                */
   2740 /*                                                                          */
   2741 /* Before performing certain events such as a chip reset, synchronize with  */
   2742 /* the firmware first.                                                      */
   2743 /*                                                                          */
   2744 /* Returns:                                                                 */
   2745 /*   0 for success, positive value for failure.                             */
   2746 /****************************************************************************/
   2747 int
   2748 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2749 {
   2750 	int			i, rc = 0;
   2751 	uint32_t		val;
   2752 
   2753 	/* Don't waste any time if we've timed out before. */
   2754 	if (sc->bnx_fw_timed_out) {
   2755 		rc = EBUSY;
   2756 		goto bnx_fw_sync_exit;
   2757 	}
   2758 
   2759 	/* Increment the message sequence number. */
   2760 	sc->bnx_fw_wr_seq++;
   2761 	msg_data |= sc->bnx_fw_wr_seq;
   2762 
   2763 	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2764 	    msg_data);
   2765 
   2766 	/* Send the message to the bootcode driver mailbox. */
   2767 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2768 
   2769 	/* Wait for the bootcode to acknowledge the message. */
   2770 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2771 		/* Check for a response in the bootcode firmware mailbox. */
   2772 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2773 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2774 			break;
   2775 		DELAY(1000);
   2776 	}
   2777 
   2778 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2779 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2780 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2781 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2782 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2783 
   2784 		msg_data &= ~BNX_DRV_MSG_CODE;
   2785 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2786 
   2787 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2788 
   2789 		sc->bnx_fw_timed_out = 1;
   2790 		rc = EBUSY;
   2791 	}
   2792 
   2793 bnx_fw_sync_exit:
   2794 	return rc;
   2795 }
   2796 
   2797 /****************************************************************************/
   2798 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2799 /*                                                                          */
   2800 /* Returns:                                                                 */
   2801 /*   Nothing.                                                               */
   2802 /****************************************************************************/
   2803 void
   2804 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2805     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2806 {
   2807 	int			i;
   2808 	uint32_t		val;
   2809 
   2810 	/* Set the page size used by RV2P. */
   2811 	if (rv2p_proc == RV2P_PROC2) {
   2812 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2813 		    USABLE_RX_BD_PER_PAGE);
   2814 	}
   2815 
   2816 	for (i = 0; i < rv2p_code_len; i += 8) {
   2817 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2818 		rv2p_code++;
   2819 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2820 		rv2p_code++;
   2821 
   2822 		if (rv2p_proc == RV2P_PROC1) {
   2823 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2824 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2825 		} else {
   2826 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2827 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2828 		}
   2829 	}
   2830 
   2831 	/* Reset the processor, un-stall is done later. */
   2832 	if (rv2p_proc == RV2P_PROC1)
   2833 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2834 	else
   2835 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2836 }
   2837 
   2838 /****************************************************************************/
   2839 /* Load RISC processor firmware.                                            */
   2840 /*                                                                          */
   2841 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2842 /* associated with a particular processor.                                  */
   2843 /*                                                                          */
   2844 /* Returns:                                                                 */
   2845 /*   Nothing.                                                               */
   2846 /****************************************************************************/
   2847 void
   2848 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2849     struct fw_info *fw)
   2850 {
   2851 	uint32_t		offset;
   2852 	uint32_t		val;
   2853 
   2854 	/* Halt the CPU. */
   2855 	val = REG_RD_IND(sc, cpu_reg->mode);
   2856 	val |= cpu_reg->mode_value_halt;
   2857 	REG_WR_IND(sc, cpu_reg->mode, val);
   2858 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2859 
   2860 	/* Load the Text area. */
   2861 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2862 	if (fw->text) {
   2863 		int j;
   2864 
   2865 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2866 			REG_WR_IND(sc, offset, fw->text[j]);
   2867 	}
   2868 
   2869 	/* Load the Data area. */
   2870 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2871 	if (fw->data) {
   2872 		int j;
   2873 
   2874 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2875 			REG_WR_IND(sc, offset, fw->data[j]);
   2876 	}
   2877 
   2878 	/* Load the SBSS area. */
   2879 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2880 	if (fw->sbss) {
   2881 		int j;
   2882 
   2883 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2884 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2885 	}
   2886 
   2887 	/* Load the BSS area. */
   2888 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2889 	if (fw->bss) {
   2890 		int j;
   2891 
   2892 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2893 			REG_WR_IND(sc, offset, fw->bss[j]);
   2894 	}
   2895 
   2896 	/* Load the Read-Only area. */
   2897 	offset = cpu_reg->spad_base +
   2898 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2899 	if (fw->rodata) {
   2900 		int j;
   2901 
   2902 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2903 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2904 	}
   2905 
   2906 	/* Clear the pre-fetch instruction. */
   2907 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2908 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2909 
   2910 	/* Start the CPU. */
   2911 	val = REG_RD_IND(sc, cpu_reg->mode);
   2912 	val &= ~cpu_reg->mode_value_halt;
   2913 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2914 	REG_WR_IND(sc, cpu_reg->mode, val);
   2915 }
   2916 
   2917 /****************************************************************************/
   2918 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2919 /*                                                                          */
   2920 /* Loads the firmware for each CPU and starts the CPU.                      */
   2921 /*                                                                          */
   2922 /* Returns:                                                                 */
   2923 /*   Nothing.                                                               */
   2924 /****************************************************************************/
   2925 void
   2926 bnx_init_cpus(struct bnx_softc *sc)
   2927 {
   2928 	struct cpu_reg cpu_reg;
   2929 	struct fw_info fw;
   2930 
   2931 	switch (BNX_CHIP_NUM(sc)) {
   2932 	case BNX_CHIP_NUM_5709:
   2933 		/* Initialize the RV2P processor. */
   2934 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2935 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2936 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2937 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2938 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2939 		} else {
   2940 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2941 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2942 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2943 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2944 		}
   2945 
   2946 		/* Initialize the RX Processor. */
   2947 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2948 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2949 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2950 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2951 		cpu_reg.state_value_clear = 0xffffff;
   2952 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2953 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2954 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2955 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2956 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2957 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2958 		cpu_reg.mips_view_base = 0x8000000;
   2959 
   2960 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2961 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2962 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2963 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2964 
   2965 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2966 		fw.text_len = bnx_RXP_b09FwTextLen;
   2967 		fw.text_index = 0;
   2968 		fw.text = bnx_RXP_b09FwText;
   2969 
   2970 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2971 		fw.data_len = bnx_RXP_b09FwDataLen;
   2972 		fw.data_index = 0;
   2973 		fw.data = bnx_RXP_b09FwData;
   2974 
   2975 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2976 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2977 		fw.sbss_index = 0;
   2978 		fw.sbss = bnx_RXP_b09FwSbss;
   2979 
   2980 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2981 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2982 		fw.bss_index = 0;
   2983 		fw.bss = bnx_RXP_b09FwBss;
   2984 
   2985 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2986 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2987 		fw.rodata_index = 0;
   2988 		fw.rodata = bnx_RXP_b09FwRodata;
   2989 
   2990 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2991 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2992 
   2993 		/* Initialize the TX Processor. */
   2994 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2995 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2996 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2997 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2998 		cpu_reg.state_value_clear = 0xffffff;
   2999 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3000 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3001 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3002 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3003 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3004 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3005 		cpu_reg.mips_view_base = 0x8000000;
   3006 
   3007 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   3008 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   3009 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   3010 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   3011 
   3012 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   3013 		fw.text_len = bnx_TXP_b09FwTextLen;
   3014 		fw.text_index = 0;
   3015 		fw.text = bnx_TXP_b09FwText;
   3016 
   3017 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   3018 		fw.data_len = bnx_TXP_b09FwDataLen;
   3019 		fw.data_index = 0;
   3020 		fw.data = bnx_TXP_b09FwData;
   3021 
   3022 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   3023 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   3024 		fw.sbss_index = 0;
   3025 		fw.sbss = bnx_TXP_b09FwSbss;
   3026 
   3027 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   3028 		fw.bss_len = bnx_TXP_b09FwBssLen;
   3029 		fw.bss_index = 0;
   3030 		fw.bss = bnx_TXP_b09FwBss;
   3031 
   3032 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   3033 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   3034 		fw.rodata_index = 0;
   3035 		fw.rodata = bnx_TXP_b09FwRodata;
   3036 
   3037 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3038 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3039 
   3040 		/* Initialize the TX Patch-up Processor. */
   3041 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3042 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3043 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3044 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3045 		cpu_reg.state_value_clear = 0xffffff;
   3046 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3047 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3048 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3049 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3050 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3051 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3052 		cpu_reg.mips_view_base = 0x8000000;
   3053 
   3054 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   3055 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   3056 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   3057 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   3058 
   3059 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   3060 		fw.text_len = bnx_TPAT_b09FwTextLen;
   3061 		fw.text_index = 0;
   3062 		fw.text = bnx_TPAT_b09FwText;
   3063 
   3064 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   3065 		fw.data_len = bnx_TPAT_b09FwDataLen;
   3066 		fw.data_index = 0;
   3067 		fw.data = bnx_TPAT_b09FwData;
   3068 
   3069 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   3070 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   3071 		fw.sbss_index = 0;
   3072 		fw.sbss = bnx_TPAT_b09FwSbss;
   3073 
   3074 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   3075 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   3076 		fw.bss_index = 0;
   3077 		fw.bss = bnx_TPAT_b09FwBss;
   3078 
   3079 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   3080 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   3081 		fw.rodata_index = 0;
   3082 		fw.rodata = bnx_TPAT_b09FwRodata;
   3083 
   3084 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3085 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3086 
   3087 		/* Initialize the Completion Processor. */
   3088 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3089 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3090 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3091 		cpu_reg.state = BNX_COM_CPU_STATE;
   3092 		cpu_reg.state_value_clear = 0xffffff;
   3093 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3094 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3095 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3096 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3097 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3098 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3099 		cpu_reg.mips_view_base = 0x8000000;
   3100 
   3101 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   3102 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   3103 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   3104 		fw.start_addr = bnx_COM_b09FwStartAddr;
   3105 
   3106 		fw.text_addr = bnx_COM_b09FwTextAddr;
   3107 		fw.text_len = bnx_COM_b09FwTextLen;
   3108 		fw.text_index = 0;
   3109 		fw.text = bnx_COM_b09FwText;
   3110 
   3111 		fw.data_addr = bnx_COM_b09FwDataAddr;
   3112 		fw.data_len = bnx_COM_b09FwDataLen;
   3113 		fw.data_index = 0;
   3114 		fw.data = bnx_COM_b09FwData;
   3115 
   3116 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   3117 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   3118 		fw.sbss_index = 0;
   3119 		fw.sbss = bnx_COM_b09FwSbss;
   3120 
   3121 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   3122 		fw.bss_len = bnx_COM_b09FwBssLen;
   3123 		fw.bss_index = 0;
   3124 		fw.bss = bnx_COM_b09FwBss;
   3125 
   3126 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   3127 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3128 		fw.rodata_index = 0;
   3129 		fw.rodata = bnx_COM_b09FwRodata;
   3130 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3131 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3132 		break;
   3133 	default:
   3134 		/* Initialize the RV2P processor. */
   3135 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3136 		    RV2P_PROC1);
   3137 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3138 		    RV2P_PROC2);
   3139 
   3140 		/* Initialize the RX Processor. */
   3141 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3142 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3143 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3144 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3145 		cpu_reg.state_value_clear = 0xffffff;
   3146 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3147 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3148 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3149 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3150 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3151 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3152 		cpu_reg.mips_view_base = 0x8000000;
   3153 
   3154 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3155 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3156 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3157 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3158 
   3159 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3160 		fw.text_len = bnx_RXP_b06FwTextLen;
   3161 		fw.text_index = 0;
   3162 		fw.text = bnx_RXP_b06FwText;
   3163 
   3164 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3165 		fw.data_len = bnx_RXP_b06FwDataLen;
   3166 		fw.data_index = 0;
   3167 		fw.data = bnx_RXP_b06FwData;
   3168 
   3169 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3170 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3171 		fw.sbss_index = 0;
   3172 		fw.sbss = bnx_RXP_b06FwSbss;
   3173 
   3174 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3175 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3176 		fw.bss_index = 0;
   3177 		fw.bss = bnx_RXP_b06FwBss;
   3178 
   3179 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3180 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3181 		fw.rodata_index = 0;
   3182 		fw.rodata = bnx_RXP_b06FwRodata;
   3183 
   3184 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3185 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3186 
   3187 		/* Initialize the TX Processor. */
   3188 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3189 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3190 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3191 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3192 		cpu_reg.state_value_clear = 0xffffff;
   3193 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3194 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3195 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3196 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3197 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3198 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3199 		cpu_reg.mips_view_base = 0x8000000;
   3200 
   3201 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3202 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3203 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3204 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3205 
   3206 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3207 		fw.text_len = bnx_TXP_b06FwTextLen;
   3208 		fw.text_index = 0;
   3209 		fw.text = bnx_TXP_b06FwText;
   3210 
   3211 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3212 		fw.data_len = bnx_TXP_b06FwDataLen;
   3213 		fw.data_index = 0;
   3214 		fw.data = bnx_TXP_b06FwData;
   3215 
   3216 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3217 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3218 		fw.sbss_index = 0;
   3219 		fw.sbss = bnx_TXP_b06FwSbss;
   3220 
   3221 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3222 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3223 		fw.bss_index = 0;
   3224 		fw.bss = bnx_TXP_b06FwBss;
   3225 
   3226 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3227 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3228 		fw.rodata_index = 0;
   3229 		fw.rodata = bnx_TXP_b06FwRodata;
   3230 
   3231 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3232 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3233 
   3234 		/* Initialize the TX Patch-up Processor. */
   3235 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3236 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3237 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3238 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3239 		cpu_reg.state_value_clear = 0xffffff;
   3240 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3241 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3242 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3243 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3244 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3245 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3246 		cpu_reg.mips_view_base = 0x8000000;
   3247 
   3248 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3249 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3250 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3251 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3252 
   3253 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3254 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3255 		fw.text_index = 0;
   3256 		fw.text = bnx_TPAT_b06FwText;
   3257 
   3258 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3259 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3260 		fw.data_index = 0;
   3261 		fw.data = bnx_TPAT_b06FwData;
   3262 
   3263 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3264 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3265 		fw.sbss_index = 0;
   3266 		fw.sbss = bnx_TPAT_b06FwSbss;
   3267 
   3268 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3269 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3270 		fw.bss_index = 0;
   3271 		fw.bss = bnx_TPAT_b06FwBss;
   3272 
   3273 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3274 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3275 		fw.rodata_index = 0;
   3276 		fw.rodata = bnx_TPAT_b06FwRodata;
   3277 
   3278 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3279 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3280 
   3281 		/* Initialize the Completion Processor. */
   3282 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3283 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3284 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3285 		cpu_reg.state = BNX_COM_CPU_STATE;
   3286 		cpu_reg.state_value_clear = 0xffffff;
   3287 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3288 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3289 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3290 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3291 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3292 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3293 		cpu_reg.mips_view_base = 0x8000000;
   3294 
   3295 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3296 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3297 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3298 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3299 
   3300 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3301 		fw.text_len = bnx_COM_b06FwTextLen;
   3302 		fw.text_index = 0;
   3303 		fw.text = bnx_COM_b06FwText;
   3304 
   3305 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3306 		fw.data_len = bnx_COM_b06FwDataLen;
   3307 		fw.data_index = 0;
   3308 		fw.data = bnx_COM_b06FwData;
   3309 
   3310 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3311 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3312 		fw.sbss_index = 0;
   3313 		fw.sbss = bnx_COM_b06FwSbss;
   3314 
   3315 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3316 		fw.bss_len = bnx_COM_b06FwBssLen;
   3317 		fw.bss_index = 0;
   3318 		fw.bss = bnx_COM_b06FwBss;
   3319 
   3320 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3321 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3322 		fw.rodata_index = 0;
   3323 		fw.rodata = bnx_COM_b06FwRodata;
   3324 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3325 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3326 		break;
   3327 	}
   3328 }
   3329 
   3330 /****************************************************************************/
   3331 /* Initialize context memory.                                               */
   3332 /*                                                                          */
   3333 /* Clears the memory associated with each Context ID (CID).                 */
   3334 /*                                                                          */
   3335 /* Returns:                                                                 */
   3336 /*   Nothing.                                                               */
   3337 /****************************************************************************/
   3338 void
   3339 bnx_init_context(struct bnx_softc *sc)
   3340 {
   3341 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3342 		/* DRC: Replace this constant value with a #define. */
   3343 		int i, retry_cnt = 10;
   3344 		uint32_t val;
   3345 
   3346 		/*
   3347 		 * BCM5709 context memory may be cached
   3348 		 * in host memory so prepare the host memory
   3349 		 * for access.
   3350 		 */
   3351 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3352 		    | (1 << 12);
   3353 		val |= (BCM_PAGE_BITS - 8) << 16;
   3354 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3355 
   3356 		/* Wait for mem init command to complete. */
   3357 		for (i = 0; i < retry_cnt; i++) {
   3358 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3359 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3360 				break;
   3361 			DELAY(2);
   3362 		}
   3363 
   3364 		/* ToDo: Consider returning an error here. */
   3365 
   3366 		for (i = 0; i < sc->ctx_pages; i++) {
   3367 			int j;
   3368 
   3369 			/* Set the physaddr of the context memory cache. */
   3370 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3371 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3372 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3373 			val = (uint32_t)
   3374 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3375 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3376 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3377 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3378 
   3379 			/* Verify that the context memory write was successful. */
   3380 			for (j = 0; j < retry_cnt; j++) {
   3381 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3382 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3383 					break;
   3384 				DELAY(5);
   3385 			}
   3386 
   3387 			/* ToDo: Consider returning an error here. */
   3388 		}
   3389 	} else {
   3390 		uint32_t vcid_addr, offset;
   3391 
   3392 		/*
   3393 		 * For the 5706/5708, context memory is local to the
   3394 		 * controller, so initialize the controller context memory.
   3395 		 */
   3396 
   3397 		vcid_addr = GET_CID_ADDR(96);
   3398 		while (vcid_addr) {
   3399 
   3400 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3401 
   3402 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3403 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3404 
   3405 			for (offset = 0; offset < BNX_PHY_CTX_SIZE;
   3406 			     offset += 4)
   3407 				CTX_WR(sc, 0x00, offset, 0);
   3408 
   3409 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3410 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3411 		}
   3412 	}
   3413 }
   3414 
   3415 /****************************************************************************/
   3416 /* Fetch the permanent MAC address of the controller.                       */
   3417 /*                                                                          */
   3418 /* Returns:                                                                 */
   3419 /*   Nothing.                                                               */
   3420 /****************************************************************************/
   3421 void
   3422 bnx_get_mac_addr(struct bnx_softc *sc)
   3423 {
   3424 	uint32_t		mac_lo = 0, mac_hi = 0;
   3425 
   3426 	/*
   3427 	 * The NetXtreme II bootcode populates various NIC
   3428 	 * power-on and runtime configuration items in a
   3429 	 * shared memory area.  The factory configured MAC
   3430 	 * address is available from both NVRAM and the
   3431 	 * shared memory area so we'll read the value from
   3432 	 * shared memory for speed.
   3433 	 */
   3434 
   3435 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3436 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3437 
   3438 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3439 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3440 		    __FILE__, __LINE__);
   3441 	} else {
   3442 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3443 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3444 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3445 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3446 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3447 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3448 	}
   3449 
   3450 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3451 	    "%s\n", ether_sprintf(sc->eaddr));
   3452 }
   3453 
   3454 /****************************************************************************/
   3455 /* Program the MAC address.                                                 */
   3456 /*                                                                          */
   3457 /* Returns:                                                                 */
   3458 /*   Nothing.                                                               */
   3459 /****************************************************************************/
   3460 void
   3461 bnx_set_mac_addr(struct bnx_softc *sc)
   3462 {
   3463 	uint32_t		val;
   3464 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3465 
   3466 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3467 	    "%s\n", ether_sprintf(sc->eaddr));
   3468 
   3469 	val = (mac_addr[0] << 8) | mac_addr[1];
   3470 
   3471 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3472 
   3473 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3474 		(mac_addr[4] << 8) | mac_addr[5];
   3475 
   3476 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3477 }
   3478 
   3479 /****************************************************************************/
   3480 /* Stop the controller.                                                     */
   3481 /*                                                                          */
   3482 /* Returns:                                                                 */
   3483 /*   Nothing.                                                               */
   3484 /****************************************************************************/
   3485 void
   3486 bnx_stop(struct ifnet *ifp, int disable)
   3487 {
   3488 	struct bnx_softc *sc = ifp->if_softc;
   3489 
   3490 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3491 
   3492 	if (disable) {
   3493 		sc->bnx_detaching = 1;
   3494 		callout_halt(&sc->bnx_timeout, NULL);
   3495 	} else
   3496 		callout_stop(&sc->bnx_timeout);
   3497 
   3498 	mii_down(&sc->bnx_mii);
   3499 
   3500 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3501 
   3502 	/* Disable the transmit/receive blocks. */
   3503 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3504 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3505 	DELAY(20);
   3506 
   3507 	bnx_disable_intr(sc);
   3508 
   3509 	/* Tell firmware that the driver is going away. */
   3510 	if (disable)
   3511 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3512 	else
   3513 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3514 
   3515 	/* Free RX buffers. */
   3516 	bnx_free_rx_chain(sc);
   3517 
   3518 	/* Free TX buffers. */
   3519 	bnx_free_tx_chain(sc);
   3520 
   3521 	ifp->if_timer = 0;
   3522 
   3523 	sc->bnx_link = 0;
   3524 
   3525 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3526 
   3527 	bnx_mgmt_init(sc);
   3528 }
   3529 
   3530 int
   3531 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3532 {
   3533 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3534 	uint32_t		val;
   3535 	int			i, rc = 0;
   3536 
   3537 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3538 
   3539 	/* Wait for pending PCI transactions to complete. */
   3540 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   3541 	    (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
   3542 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3543 		    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3544 		    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3545 		    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3546 		    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3547 		val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3548 		DELAY(5);
   3549 	} else {
   3550 		/* Disable DMA */
   3551 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3552 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3553 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3554 		REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
   3555 
   3556 		for (i = 0; i < 100; i++) {
   3557 			delay(1 * 1000);
   3558 			val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
   3559 			if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
   3560 				break;
   3561 		}
   3562 	}
   3563 
   3564 	/* Assume bootcode is running. */
   3565 	sc->bnx_fw_timed_out = 0;
   3566 
   3567 	/* Give the firmware a chance to prepare for the reset. */
   3568 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3569 	if (rc)
   3570 		goto bnx_reset_exit;
   3571 
   3572 	/* Set a firmware reminder that this is a soft reset. */
   3573 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3574 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3575 
   3576 	/* Dummy read to force the chip to complete all current transactions. */
   3577 	val = REG_RD(sc, BNX_MISC_ID);
   3578 
   3579 	/* Chip reset. */
   3580 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3581 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3582 		REG_RD(sc, BNX_MISC_COMMAND);
   3583 		DELAY(5);
   3584 
   3585 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3586 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3587 
   3588 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3589 		    val);
   3590 	} else {
   3591 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3592 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3593 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3594 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3595 
   3596 		/* Allow up to 30us for reset to complete. */
   3597 		for (i = 0; i < 10; i++) {
   3598 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3599 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3600 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3601 				break;
   3602 			}
   3603 			DELAY(10);
   3604 		}
   3605 
   3606 		/* Check that reset completed successfully. */
   3607 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3608 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3609 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3610 			    __FILE__, __LINE__);
   3611 			rc = EBUSY;
   3612 			goto bnx_reset_exit;
   3613 		}
   3614 	}
   3615 
   3616 	/* Make sure byte swapping is properly configured. */
   3617 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3618 	if (val != 0x01020304) {
   3619 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3620 		    __FILE__, __LINE__);
   3621 		rc = ENODEV;
   3622 		goto bnx_reset_exit;
   3623 	}
   3624 
   3625 	/* Just completed a reset, assume that firmware is running again. */
   3626 	sc->bnx_fw_timed_out = 0;
   3627 
   3628 	/* Wait for the firmware to finish its initialization. */
   3629 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3630 	if (rc)
   3631 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3632 		    "initialization!\n", __FILE__, __LINE__);
   3633 
   3634 bnx_reset_exit:
   3635 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3636 
   3637 	return rc;
   3638 }
   3639 
   3640 int
   3641 bnx_chipinit(struct bnx_softc *sc)
   3642 {
   3643 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3644 	uint32_t		val;
   3645 	int			rc = 0;
   3646 
   3647 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3648 
   3649 	/* Make sure the interrupt is not active. */
   3650 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3651 
   3652 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3653 	/* channels and PCI clock compensation delay.                      */
   3654 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3655 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3656 #if BYTE_ORDER == BIG_ENDIAN
   3657 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3658 #endif
   3659 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3660 	    DMA_READ_CHANS << 12 |
   3661 	    DMA_WRITE_CHANS << 16;
   3662 
   3663 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3664 
   3665 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3666 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3667 
   3668 	/*
   3669 	 * This setting resolves a problem observed on certain Intel PCI
   3670 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3671 	 * See errata E9_5706A1_65.
   3672 	 */
   3673 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3674 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3675 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3676 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3677 
   3678 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3679 
   3680 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3681 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3682 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3683 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3684 		    val & ~0x20000);
   3685 	}
   3686 
   3687 	/* Enable the RX_V2P and Context state machines before access. */
   3688 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3689 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3690 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3691 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3692 
   3693 	/* Initialize context mapping and zero out the quick contexts. */
   3694 	bnx_init_context(sc);
   3695 
   3696 	/* Initialize the on-boards CPUs */
   3697 	bnx_init_cpus(sc);
   3698 
   3699 	/* Enable management frames (NC-SI) to flow to the MCP. */
   3700 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3701 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
   3702 		    BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3703 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3704 	}
   3705 
   3706 	/* Prepare NVRAM for access. */
   3707 	if (bnx_init_nvram(sc)) {
   3708 		rc = ENODEV;
   3709 		goto bnx_chipinit_exit;
   3710 	}
   3711 
   3712 	/* Set the kernel bypass block size */
   3713 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3714 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3715 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3716 
   3717 	/* Enable bins used on the 5709. */
   3718 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3719 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3720 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3721 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3722 	}
   3723 
   3724 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3725 
   3726 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3727 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3728 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3729 
   3730 	val = (BCM_PAGE_BITS - 8) << 24;
   3731 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3732 
   3733 	/* Configure page size. */
   3734 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3735 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3736 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3737 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3738 
   3739 #if 0
   3740 	/* Set the perfect match control register to default. */
   3741 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3742 #endif
   3743 
   3744 bnx_chipinit_exit:
   3745 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3746 
   3747 	return rc;
   3748 }
   3749 
   3750 /****************************************************************************/
   3751 /* Initialize the controller in preparation to send/receive traffic.        */
   3752 /*                                                                          */
   3753 /* Returns:                                                                 */
   3754 /*   0 for success, positive value for failure.                             */
   3755 /****************************************************************************/
   3756 int
   3757 bnx_blockinit(struct bnx_softc *sc)
   3758 {
   3759 	uint32_t		reg, val;
   3760 	int			rc = 0;
   3761 
   3762 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3763 
   3764 	/* Load the hardware default MAC address. */
   3765 	bnx_set_mac_addr(sc);
   3766 
   3767 	/* Set the Ethernet backoff seed value */
   3768 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3769 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3770 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3771 
   3772 	sc->last_status_idx = 0;
   3773 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3774 
   3775 	/* Set up link change interrupt generation. */
   3776 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3777 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3778 
   3779 	/* Program the physical address of the status block. */
   3780 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3781 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3782 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3783 
   3784 	/* Program the physical address of the statistics block. */
   3785 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3786 	    (uint32_t)(sc->stats_block_paddr));
   3787 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3788 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3789 
   3790 	/* Program various host coalescing parameters. */
   3791 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3792 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3793 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3794 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3795 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3796 	    sc->bnx_comp_prod_trip);
   3797 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3798 	    sc->bnx_tx_ticks);
   3799 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3800 	    sc->bnx_rx_ticks);
   3801 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3802 	    sc->bnx_com_ticks);
   3803 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3804 	    sc->bnx_cmd_ticks);
   3805 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3806 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3807 	REG_WR(sc, BNX_HC_CONFIG,
   3808 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3809 	    BNX_HC_CONFIG_COLLECT_STATS));
   3810 
   3811 	/* Clear the internal statistics counters. */
   3812 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3813 
   3814 	/* Verify that bootcode is running. */
   3815 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3816 
   3817 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3818 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3819 	    __FILE__, __LINE__); reg = 0);
   3820 
   3821 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3822 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3823 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3824 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3825 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3826 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3827 		rc = ENODEV;
   3828 		goto bnx_blockinit_exit;
   3829 	}
   3830 
   3831 	/* Enable DMA */
   3832 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3833 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3834 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3835 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3836 	}
   3837 
   3838 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3839 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3840 
   3841 	/* Disable management frames (NC-SI) from flowing to the MCP. */
   3842 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3843 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
   3844 		    ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3845 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3846 	}
   3847 
   3848 	/* Enable all remaining blocks in the MAC. */
   3849 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3850 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3851 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3852 	} else
   3853 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3854 
   3855 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3856 	DELAY(20);
   3857 
   3858 bnx_blockinit_exit:
   3859 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3860 
   3861 	return rc;
   3862 }
   3863 
   3864 static int
   3865 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3866     uint16_t *chain_prod, uint32_t *prod_bseq)
   3867 {
   3868 	bus_dmamap_t		map;
   3869 	struct rx_bd		*rxbd;
   3870 	uint32_t		addr;
   3871 	int i;
   3872 #ifdef BNX_DEBUG
   3873 	uint16_t debug_chain_prod =	*chain_prod;
   3874 #endif
   3875 	uint16_t first_chain_prod;
   3876 
   3877 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3878 
   3879 	/* Map the mbuf cluster into device memory. */
   3880 	map = sc->rx_mbuf_map[*chain_prod];
   3881 	first_chain_prod = *chain_prod;
   3882 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3883 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3884 		    __FILE__, __LINE__);
   3885 
   3886 		m_freem(m_new);
   3887 
   3888 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3889 
   3890 		return ENOBUFS;
   3891 	}
   3892 	/* Make sure there is room in the receive chain. */
   3893 	if (map->dm_nsegs > sc->free_rx_bd) {
   3894 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3895 		m_freem(m_new);
   3896 		return EFBIG;
   3897 	}
   3898 #ifdef BNX_DEBUG
   3899 	/* Track the distribution of buffer segments. */
   3900 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3901 #endif
   3902 
   3903 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3904 	    BUS_DMASYNC_PREREAD);
   3905 
   3906 	/* Update some debug statistics counters */
   3907 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3908 	    sc->rx_low_watermark = sc->free_rx_bd);
   3909 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3910 
   3911 	/*
   3912 	 * Setup the rx_bd for the first segment
   3913 	 */
   3914 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3915 
   3916 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3917 	rxbd->rx_bd_haddr_lo = addr;
   3918 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3919 	rxbd->rx_bd_haddr_hi = addr;
   3920 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3921 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3922 	*prod_bseq += map->dm_segs[0].ds_len;
   3923 	bus_dmamap_sync(sc->bnx_dmatag,
   3924 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3925 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3926 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3927 
   3928 	for (i = 1; i < map->dm_nsegs; i++) {
   3929 		*prod = NEXT_RX_BD(*prod);
   3930 		*chain_prod = RX_CHAIN_IDX(*prod);
   3931 
   3932 		rxbd =
   3933 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3934 
   3935 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3936 		rxbd->rx_bd_haddr_lo = addr;
   3937 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3938 		rxbd->rx_bd_haddr_hi = addr;
   3939 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3940 		rxbd->rx_bd_flags = 0;
   3941 		*prod_bseq += map->dm_segs[i].ds_len;
   3942 		bus_dmamap_sync(sc->bnx_dmatag,
   3943 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3944 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3945 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3946 	}
   3947 
   3948 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3949 	bus_dmamap_sync(sc->bnx_dmatag,
   3950 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3951 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3952 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3953 
   3954 	/*
   3955 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3956 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3957 	 * and update our counter.
   3958 	 */
   3959 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3960 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3961 	sc->rx_mbuf_map[*chain_prod] = map;
   3962 	sc->free_rx_bd -= map->dm_nsegs;
   3963 
   3964 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3965 	    map->dm_nsegs));
   3966 	*prod = NEXT_RX_BD(*prod);
   3967 	*chain_prod = RX_CHAIN_IDX(*prod);
   3968 
   3969 	return 0;
   3970 }
   3971 
   3972 /****************************************************************************/
   3973 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3974 /*                                                                          */
   3975 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3976 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3977 /* necessary.                                                               */
   3978 /*                                                                          */
   3979 /* Returns:                                                                 */
   3980 /*   0 for success, positive value for failure.                             */
   3981 /****************************************************************************/
   3982 int
   3983 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3984     uint16_t *chain_prod, uint32_t *prod_bseq)
   3985 {
   3986 	struct mbuf		*m_new = NULL;
   3987 	int			rc = 0;
   3988 	uint16_t min_free_bd;
   3989 
   3990 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3991 	    __func__);
   3992 
   3993 	/* Make sure the inputs are valid. */
   3994 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3995 	    aprint_error_dev(sc->bnx_dev,
   3996 		"RX producer out of range: 0x%04X > 0x%04X\n",
   3997 		*chain_prod, (uint16_t)MAX_RX_BD));
   3998 
   3999 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   4000 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   4001 	    *prod_bseq);
   4002 
   4003 	/* try to get in as many mbufs as possible */
   4004 	if (sc->mbuf_alloc_size == MCLBYTES)
   4005 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   4006 	else
   4007 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   4008 	while (sc->free_rx_bd >= min_free_bd) {
   4009 		/* Simulate an mbuf allocation failure. */
   4010 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   4011 		    aprint_error_dev(sc->bnx_dev,
   4012 		    "Simulating mbuf allocation failure.\n");
   4013 			sc->mbuf_sim_alloc_failed++;
   4014 			rc = ENOBUFS;
   4015 			goto bnx_get_buf_exit);
   4016 
   4017 		/* This is a new mbuf allocation. */
   4018 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   4019 		if (m_new == NULL) {
   4020 			DBPRINT(sc, BNX_WARN,
   4021 			    "%s(%d): RX mbuf header allocation failed!\n",
   4022 			    __FILE__, __LINE__);
   4023 
   4024 			sc->mbuf_alloc_failed++;
   4025 
   4026 			rc = ENOBUFS;
   4027 			goto bnx_get_buf_exit;
   4028 		}
   4029 
   4030 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   4031 
   4032 		/* Simulate an mbuf cluster allocation failure. */
   4033 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   4034 			m_freem(m_new);
   4035 			sc->rx_mbuf_alloc--;
   4036 			sc->mbuf_alloc_failed++;
   4037 			sc->mbuf_sim_alloc_failed++;
   4038 			rc = ENOBUFS;
   4039 			goto bnx_get_buf_exit);
   4040 
   4041 		if (sc->mbuf_alloc_size == MCLBYTES)
   4042 			MCLGET(m_new, M_DONTWAIT);
   4043 		else
   4044 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   4045 			    M_DONTWAIT);
   4046 		if (!(m_new->m_flags & M_EXT)) {
   4047 			DBPRINT(sc, BNX_WARN,
   4048 			    "%s(%d): RX mbuf chain allocation failed!\n",
   4049 			    __FILE__, __LINE__);
   4050 
   4051 			m_freem(m_new);
   4052 
   4053 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4054 			sc->mbuf_alloc_failed++;
   4055 
   4056 			rc = ENOBUFS;
   4057 			goto bnx_get_buf_exit;
   4058 		}
   4059 
   4060 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   4061 		if (rc != 0)
   4062 			goto bnx_get_buf_exit;
   4063 	}
   4064 
   4065 bnx_get_buf_exit:
   4066 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   4067 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   4068 	    *chain_prod, *prod_bseq);
   4069 
   4070 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   4071 	    __func__);
   4072 
   4073 	return rc;
   4074 }
   4075 
   4076 void
   4077 bnx_alloc_pkts(struct work * unused, void * arg)
   4078 {
   4079 	struct bnx_softc *sc = arg;
   4080 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   4081 	struct bnx_pkt *pkt;
   4082 	int i, s;
   4083 
   4084 	for (i = 0; i < 4; i++) { /* magic! */
   4085 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   4086 		if (pkt == NULL)
   4087 			break;
   4088 
   4089 		if (bus_dmamap_create(sc->bnx_dmatag,
   4090 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   4091 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   4092 		    &pkt->pkt_dmamap) != 0)
   4093 			goto put;
   4094 
   4095 		if (!ISSET(ifp->if_flags, IFF_UP))
   4096 			goto stopping;
   4097 
   4098 		mutex_enter(&sc->tx_pkt_mtx);
   4099 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4100 		sc->tx_pkt_count++;
   4101 		mutex_exit(&sc->tx_pkt_mtx);
   4102 	}
   4103 
   4104 	mutex_enter(&sc->tx_pkt_mtx);
   4105 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4106 	mutex_exit(&sc->tx_pkt_mtx);
   4107 
   4108 	/* fire-up TX now that allocations have been done */
   4109 	s = splnet();
   4110 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4111 		bnx_start(ifp);
   4112 	splx(s);
   4113 
   4114 	return;
   4115 
   4116 stopping:
   4117 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4118 put:
   4119 	pool_put(bnx_tx_pool, pkt);
   4120 	return;
   4121 }
   4122 
   4123 /****************************************************************************/
   4124 /* Initialize the TX context memory.                                        */
   4125 /*                                                                          */
   4126 /* Returns:                                                                 */
   4127 /*   Nothing                                                                */
   4128 /****************************************************************************/
   4129 void
   4130 bnx_init_tx_context(struct bnx_softc *sc)
   4131 {
   4132 	uint32_t val;
   4133 
   4134 	/* Initialize the context ID for an L2 TX chain. */
   4135 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4136 		/* Set the CID type to support an L2 connection. */
   4137 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4138 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4139 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4140 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4141 
   4142 		/* Point the hardware to the first page in the chain. */
   4143 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4144 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4145 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4146 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4147 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4148 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4149 	} else {
   4150 		/* Set the CID type to support an L2 connection. */
   4151 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4152 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4153 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4154 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4155 
   4156 		/* Point the hardware to the first page in the chain. */
   4157 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4158 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4159 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4160 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4161 	}
   4162 }
   4163 
   4164 
   4165 /****************************************************************************/
   4166 /* Allocate memory and initialize the TX data structures.                   */
   4167 /*                                                                          */
   4168 /* Returns:                                                                 */
   4169 /*   0 for success, positive value for failure.                             */
   4170 /****************************************************************************/
   4171 int
   4172 bnx_init_tx_chain(struct bnx_softc *sc)
   4173 {
   4174 	struct tx_bd		*txbd;
   4175 	uint32_t		addr;
   4176 	int			i, rc = 0;
   4177 
   4178 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4179 
   4180 	/* Set the initial TX producer/consumer indices. */
   4181 	sc->tx_prod = 0;
   4182 	sc->tx_cons = 0;
   4183 	sc->tx_prod_bseq = 0;
   4184 	sc->used_tx_bd = 0;
   4185 	sc->max_tx_bd = USABLE_TX_BD;
   4186 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4187 	DBRUNIF(1, sc->tx_full_count = 0);
   4188 
   4189 	/*
   4190 	 * The NetXtreme II supports a linked-list structure called
   4191 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4192 	 * consists of a series of 1 or more chain pages, each of which
   4193 	 * consists of a fixed number of BD entries.
   4194 	 * The last BD entry on each page is a pointer to the next page
   4195 	 * in the chain, and the last pointer in the BD chain
   4196 	 * points back to the beginning of the chain.
   4197 	 */
   4198 
   4199 	/* Set the TX next pointer chain entries. */
   4200 	for (i = 0; i < TX_PAGES; i++) {
   4201 		int j;
   4202 
   4203 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4204 
   4205 		/* Check if we've reached the last page. */
   4206 		if (i == (TX_PAGES - 1))
   4207 			j = 0;
   4208 		else
   4209 			j = i + 1;
   4210 
   4211 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4212 		txbd->tx_bd_haddr_lo = addr;
   4213 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4214 		txbd->tx_bd_haddr_hi = addr;
   4215 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4216 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4217 	}
   4218 
   4219 	/*
   4220 	 * Initialize the context ID for an L2 TX chain.
   4221 	 */
   4222 	bnx_init_tx_context(sc);
   4223 
   4224 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4225 
   4226 	return rc;
   4227 }
   4228 
   4229 /****************************************************************************/
   4230 /* Free memory and clear the TX data structures.                            */
   4231 /*                                                                          */
   4232 /* Returns:                                                                 */
   4233 /*   Nothing.                                                               */
   4234 /****************************************************************************/
   4235 void
   4236 bnx_free_tx_chain(struct bnx_softc *sc)
   4237 {
   4238 	struct bnx_pkt		*pkt;
   4239 	int			i;
   4240 
   4241 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4242 
   4243 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4244 	mutex_enter(&sc->tx_pkt_mtx);
   4245 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4246 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4247 		mutex_exit(&sc->tx_pkt_mtx);
   4248 
   4249 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4250 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4251 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4252 
   4253 		m_freem(pkt->pkt_mbuf);
   4254 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4255 
   4256 		mutex_enter(&sc->tx_pkt_mtx);
   4257 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4258 	}
   4259 	mutex_exit(&sc->tx_pkt_mtx);
   4260 
   4261 	/* Clear each TX chain page. */
   4262 	for (i = 0; i < TX_PAGES; i++) {
   4263 		memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4264 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4265 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4266 	}
   4267 
   4268 	sc->used_tx_bd = 0;
   4269 
   4270 	/* Check if we lost any mbufs in the process. */
   4271 	DBRUNIF((sc->tx_mbuf_alloc),
   4272 	    aprint_error_dev(sc->bnx_dev,
   4273 		"Memory leak! Lost %d mbufs from tx chain!\n",
   4274 		sc->tx_mbuf_alloc));
   4275 
   4276 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4277 }
   4278 
   4279 /****************************************************************************/
   4280 /* Initialize the RX context memory.                                        */
   4281 /*                                                                          */
   4282 /* Returns:                                                                 */
   4283 /*   Nothing                                                                */
   4284 /****************************************************************************/
   4285 void
   4286 bnx_init_rx_context(struct bnx_softc *sc)
   4287 {
   4288 	uint32_t val;
   4289 
   4290 	/* Initialize the context ID for an L2 RX chain. */
   4291 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4292 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4293 
   4294 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
   4295 		val |= 0x000000ff;
   4296 
   4297 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4298 
   4299 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4300 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4301 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4302 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4303 	}
   4304 
   4305 	/* Point the hardware to the first page in the chain. */
   4306 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4307 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4308 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4309 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4310 }
   4311 
   4312 /****************************************************************************/
   4313 /* Allocate memory and initialize the RX data structures.                   */
   4314 /*                                                                          */
   4315 /* Returns:                                                                 */
   4316 /*   0 for success, positive value for failure.                             */
   4317 /****************************************************************************/
   4318 int
   4319 bnx_init_rx_chain(struct bnx_softc *sc)
   4320 {
   4321 	struct rx_bd		*rxbd;
   4322 	int			i, rc = 0;
   4323 	uint16_t		prod, chain_prod;
   4324 	uint32_t		prod_bseq, addr;
   4325 
   4326 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4327 
   4328 	/* Initialize the RX producer and consumer indices. */
   4329 	sc->rx_prod = 0;
   4330 	sc->rx_cons = 0;
   4331 	sc->rx_prod_bseq = 0;
   4332 	sc->free_rx_bd = USABLE_RX_BD;
   4333 	sc->max_rx_bd = USABLE_RX_BD;
   4334 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4335 	DBRUNIF(1, sc->rx_empty_count = 0);
   4336 
   4337 	/* Initialize the RX next pointer chain entries. */
   4338 	for (i = 0; i < RX_PAGES; i++) {
   4339 		int j;
   4340 
   4341 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4342 
   4343 		/* Check if we've reached the last page. */
   4344 		if (i == (RX_PAGES - 1))
   4345 			j = 0;
   4346 		else
   4347 			j = i + 1;
   4348 
   4349 		/* Setup the chain page pointers. */
   4350 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4351 		rxbd->rx_bd_haddr_hi = addr;
   4352 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4353 		rxbd->rx_bd_haddr_lo = addr;
   4354 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4355 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4356 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4357 	}
   4358 
   4359 	/* Allocate mbuf clusters for the rx_bd chain. */
   4360 	prod = prod_bseq = 0;
   4361 	chain_prod = RX_CHAIN_IDX(prod);
   4362 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4363 		BNX_PRINTF(sc,
   4364 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4365 	}
   4366 
   4367 	/* Save the RX chain producer index. */
   4368 	sc->rx_prod = prod;
   4369 	sc->rx_prod_bseq = prod_bseq;
   4370 
   4371 	for (i = 0; i < RX_PAGES; i++)
   4372 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4373 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4374 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4375 
   4376 	/* Tell the chip about the waiting rx_bd's. */
   4377 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4378 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4379 
   4380 	bnx_init_rx_context(sc);
   4381 
   4382 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4383 
   4384 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4385 
   4386 	return rc;
   4387 }
   4388 
   4389 /****************************************************************************/
   4390 /* Free memory and clear the RX data structures.                            */
   4391 /*                                                                          */
   4392 /* Returns:                                                                 */
   4393 /*   Nothing.                                                               */
   4394 /****************************************************************************/
   4395 void
   4396 bnx_free_rx_chain(struct bnx_softc *sc)
   4397 {
   4398 	int			i;
   4399 
   4400 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4401 
   4402 	/* Free any mbufs still in the RX mbuf chain. */
   4403 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4404 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4405 			if (sc->rx_mbuf_map[i] != NULL) {
   4406 				bus_dmamap_sync(sc->bnx_dmatag,
   4407 				    sc->rx_mbuf_map[i],	0,
   4408 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4409 				    BUS_DMASYNC_POSTREAD);
   4410 				bus_dmamap_unload(sc->bnx_dmatag,
   4411 				    sc->rx_mbuf_map[i]);
   4412 			}
   4413 			m_freem(sc->rx_mbuf_ptr[i]);
   4414 			sc->rx_mbuf_ptr[i] = NULL;
   4415 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4416 		}
   4417 	}
   4418 
   4419 	/* Clear each RX chain page. */
   4420 	for (i = 0; i < RX_PAGES; i++)
   4421 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4422 
   4423 	sc->free_rx_bd = sc->max_rx_bd;
   4424 
   4425 	/* Check if we lost any mbufs in the process. */
   4426 	DBRUNIF((sc->rx_mbuf_alloc),
   4427 	    aprint_error_dev(sc->bnx_dev,
   4428 		"Memory leak! Lost %d mbufs from rx chain!\n",
   4429 		sc->rx_mbuf_alloc));
   4430 
   4431 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4432 }
   4433 
   4434 /****************************************************************************/
   4435 /* Set media options.                                                       */
   4436 /*                                                                          */
   4437 /* Returns:                                                                 */
   4438 /*   0 for success, positive value for failure.                             */
   4439 /****************************************************************************/
   4440 int
   4441 bnx_ifmedia_upd(struct ifnet *ifp)
   4442 {
   4443 	struct bnx_softc	*sc;
   4444 	struct mii_data		*mii;
   4445 	int			rc = 0;
   4446 
   4447 	sc = ifp->if_softc;
   4448 
   4449 	mii = &sc->bnx_mii;
   4450 	sc->bnx_link = 0;
   4451 	if (mii->mii_instance) {
   4452 		struct mii_softc *miisc;
   4453 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
   4454 			mii_phy_reset(miisc);
   4455 	}
   4456 	mii_mediachg(mii);
   4457 
   4458 	return rc;
   4459 }
   4460 
   4461 /****************************************************************************/
   4462 /* Reports current media status.                                            */
   4463 /*                                                                          */
   4464 /* Returns:                                                                 */
   4465 /*   Nothing.                                                               */
   4466 /****************************************************************************/
   4467 void
   4468 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4469 {
   4470 	struct bnx_softc	*sc;
   4471 	struct mii_data		*mii;
   4472 	int			s;
   4473 
   4474 	sc = ifp->if_softc;
   4475 
   4476 	s = splnet();
   4477 
   4478 	mii = &sc->bnx_mii;
   4479 
   4480 	mii_pollstat(mii);
   4481 	ifmr->ifm_status = mii->mii_media_status;
   4482 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4483 	    sc->bnx_flowflags;
   4484 
   4485 	splx(s);
   4486 }
   4487 
   4488 /****************************************************************************/
   4489 /* Handles PHY generated interrupt events.                                  */
   4490 /*                                                                          */
   4491 /* Returns:                                                                 */
   4492 /*   Nothing.                                                               */
   4493 /****************************************************************************/
   4494 void
   4495 bnx_phy_intr(struct bnx_softc *sc)
   4496 {
   4497 	uint32_t		new_link_state, old_link_state;
   4498 
   4499 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4500 	    BUS_DMASYNC_POSTREAD);
   4501 	new_link_state = sc->status_block->status_attn_bits &
   4502 	    STATUS_ATTN_BITS_LINK_STATE;
   4503 	old_link_state = sc->status_block->status_attn_bits_ack &
   4504 	    STATUS_ATTN_BITS_LINK_STATE;
   4505 
   4506 	/* Handle any changes if the link state has changed. */
   4507 	if (new_link_state != old_link_state) {
   4508 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4509 
   4510 		sc->bnx_link = 0;
   4511 		callout_stop(&sc->bnx_timeout);
   4512 		bnx_tick(sc);
   4513 
   4514 		/* Update the status_attn_bits_ack field in the status block. */
   4515 		if (new_link_state) {
   4516 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4517 			    STATUS_ATTN_BITS_LINK_STATE);
   4518 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4519 		} else {
   4520 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4521 			    STATUS_ATTN_BITS_LINK_STATE);
   4522 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4523 		}
   4524 	}
   4525 
   4526 	/* Acknowledge the link change interrupt. */
   4527 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4528 }
   4529 
   4530 /****************************************************************************/
   4531 /* Handles received frame interrupt events.                                 */
   4532 /*                                                                          */
   4533 /* Returns:                                                                 */
   4534 /*   Nothing.                                                               */
   4535 /****************************************************************************/
   4536 void
   4537 bnx_rx_intr(struct bnx_softc *sc)
   4538 {
   4539 	struct status_block	*sblk = sc->status_block;
   4540 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4541 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4542 	uint16_t		sw_prod, sw_chain_prod;
   4543 	uint32_t		sw_prod_bseq;
   4544 	struct l2_fhdr		*l2fhdr;
   4545 	int			i;
   4546 
   4547 	DBRUNIF(1, sc->rx_interrupts++);
   4548 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4549 	    BUS_DMASYNC_POSTREAD);
   4550 
   4551 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4552 	for (i = 0; i < RX_PAGES; i++)
   4553 		bus_dmamap_sync(sc->bnx_dmatag,
   4554 		    sc->rx_bd_chain_map[i], 0,
   4555 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4556 		    BUS_DMASYNC_POSTWRITE);
   4557 
   4558 	/* Get the hardware's view of the RX consumer index. */
   4559 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4560 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4561 		hw_cons++;
   4562 
   4563 	/* Get working copies of the driver's view of the RX indices. */
   4564 	sw_cons = sc->rx_cons;
   4565 	sw_prod = sc->rx_prod;
   4566 	sw_prod_bseq = sc->rx_prod_bseq;
   4567 
   4568 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4569 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4570 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4571 
   4572 	/* Prevent speculative reads from getting ahead of the status block. */
   4573 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4574 	    BUS_SPACE_BARRIER_READ);
   4575 
   4576 	/* Update some debug statistics counters */
   4577 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4578 	    sc->rx_low_watermark = sc->free_rx_bd);
   4579 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4580 
   4581 	/*
   4582 	 * Scan through the receive chain as long
   4583 	 * as there is work to do.
   4584 	 */
   4585 	while (sw_cons != hw_cons) {
   4586 		struct mbuf *m;
   4587 		struct rx_bd *rxbd __diagused;
   4588 		unsigned int len;
   4589 		uint32_t status;
   4590 
   4591 		/* Convert the producer/consumer indices to an actual
   4592 		 * rx_bd index.
   4593 		 */
   4594 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4595 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4596 
   4597 		/* Get the used rx_bd. */
   4598 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4599 		sc->free_rx_bd++;
   4600 
   4601 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4602 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4603 
   4604 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4605 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4606 #ifdef DIAGNOSTIC
   4607 			/* Validate that this is the last rx_bd. */
   4608 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4609 			    printf("%s: Unexpected mbuf found in "
   4610 				"rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4611 				sw_chain_cons);
   4612 			}
   4613 #endif
   4614 
   4615 			/* DRC - ToDo: If the received packet is small, say
   4616 			 *             less than 128 bytes, allocate a new mbuf
   4617 			 *             here, copy the data to that mbuf, and
   4618 			 *             recycle the mapped jumbo frame.
   4619 			 */
   4620 
   4621 			/* Unmap the mbuf from DMA space. */
   4622 #ifdef DIAGNOSTIC
   4623 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4624 				printf("invalid map sw_cons 0x%x "
   4625 				"sw_prod 0x%x "
   4626 				"sw_chain_cons 0x%x "
   4627 				"sw_chain_prod 0x%x "
   4628 				"hw_cons 0x%x "
   4629 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4630 				"TOTAL_RX_BD 0x%x\n",
   4631 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4632 				hw_cons,
   4633 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4634 			}
   4635 #endif
   4636 			bus_dmamap_sync(sc->bnx_dmatag,
   4637 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4638 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4639 			    BUS_DMASYNC_POSTREAD);
   4640 			bus_dmamap_unload(sc->bnx_dmatag,
   4641 			    sc->rx_mbuf_map[sw_chain_cons]);
   4642 
   4643 			/* Remove the mbuf from the driver's chain. */
   4644 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4645 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4646 
   4647 			/*
   4648 			 * Frames received on the NetXteme II are prepended
   4649 			 * with the l2_fhdr structure which provides status
   4650 			 * information about the received frame (including
   4651 			 * VLAN tags and checksum info) and are also
   4652 			 * automatically adjusted to align the IP header
   4653 			 * (i.e. two null bytes are inserted before the
   4654 			 * Ethernet header).
   4655 			 */
   4656 			l2fhdr = mtod(m, struct l2_fhdr *);
   4657 
   4658 			len    = l2fhdr->l2_fhdr_pkt_len;
   4659 			status = l2fhdr->l2_fhdr_status;
   4660 
   4661 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4662 			    aprint_error("Simulating l2_fhdr status error.\n");
   4663 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4664 
   4665 			/* Watch for unusual sized frames. */
   4666 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4667 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4668 			    aprint_error_dev(sc->bnx_dev,
   4669 				"Unusual frame size found. "
   4670 				"Min(%d), Actual(%d), Max(%d)\n",
   4671 				(int)BNX_MIN_MTU, len,
   4672 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4673 
   4674 			bnx_dump_mbuf(sc, m);
   4675 			bnx_breakpoint(sc));
   4676 
   4677 			len -= ETHER_CRC_LEN;
   4678 
   4679 			/* Check the received frame for errors. */
   4680 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4681 			    L2_FHDR_ERRORS_PHY_DECODE |
   4682 			    L2_FHDR_ERRORS_ALIGNMENT |
   4683 			    L2_FHDR_ERRORS_TOO_SHORT |
   4684 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4685 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4686 			    len >
   4687 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4688 				if_statinc(ifp, if_ierrors);
   4689 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4690 
   4691 				/* Reuse the mbuf for a new frame. */
   4692 				if (bnx_add_buf(sc, m, &sw_prod,
   4693 				    &sw_chain_prod, &sw_prod_bseq)) {
   4694 					DBRUNIF(1, bnx_breakpoint(sc));
   4695 					panic("%s: Can't reuse RX mbuf!\n",
   4696 					    device_xname(sc->bnx_dev));
   4697 				}
   4698 				continue;
   4699 			}
   4700 
   4701 			/*
   4702 			 * Get a new mbuf for the rx_bd.   If no new
   4703 			 * mbufs are available then reuse the current mbuf,
   4704 			 * log an ierror on the interface, and generate
   4705 			 * an error in the system log.
   4706 			 */
   4707 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4708 			    &sw_prod_bseq)) {
   4709 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4710 				    "Failed to allocate "
   4711 				    "new mbuf, incoming frame dropped!\n"));
   4712 
   4713 				if_statinc(ifp, if_ierrors);
   4714 
   4715 				/* Try and reuse the exisitng mbuf. */
   4716 				if (bnx_add_buf(sc, m, &sw_prod,
   4717 				    &sw_chain_prod, &sw_prod_bseq)) {
   4718 					DBRUNIF(1, bnx_breakpoint(sc));
   4719 					panic("%s: Double mbuf allocation "
   4720 					    "failure!",
   4721 					    device_xname(sc->bnx_dev));
   4722 				}
   4723 				continue;
   4724 			}
   4725 
   4726 			/* Skip over the l2_fhdr when passing the data up
   4727 			 * the stack.
   4728 			 */
   4729 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4730 
   4731 			/* Adjust the pckt length to match the received data. */
   4732 			m->m_pkthdr.len = m->m_len = len;
   4733 
   4734 			/* Send the packet to the appropriate interface. */
   4735 			m_set_rcvif(m, ifp);
   4736 
   4737 			DBRUN(BNX_VERBOSE_RECV,
   4738 			    struct ether_header *eh;
   4739 			    eh = mtod(m, struct ether_header *);
   4740 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4741 			    __func__, ether_sprintf(eh->ether_dhost),
   4742 			    ether_sprintf(eh->ether_shost),
   4743 			    htons(eh->ether_type)));
   4744 
   4745 			/* Validate the checksum. */
   4746 
   4747 			/* Check for an IP datagram. */
   4748 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4749 				/* Check if the IP checksum is valid. */
   4750 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
   4751 					m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4752 #ifdef BNX_DEBUG
   4753 				else
   4754 					DBPRINT(sc, BNX_WARN_SEND,
   4755 					    "%s(): Invalid IP checksum "
   4756 						"= 0x%04X!\n",
   4757 						__func__,
   4758 						l2fhdr->l2_fhdr_ip_xsum
   4759 						);
   4760 #endif
   4761 			}
   4762 
   4763 			/* Check for a valid TCP/UDP frame. */
   4764 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4765 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4766 				/* Check for a good TCP/UDP checksum. */
   4767 				if ((status &
   4768 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4769 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4770 					m->m_pkthdr.csum_flags |=
   4771 					    M_CSUM_TCPv4 |
   4772 					    M_CSUM_UDPv4;
   4773 				} else {
   4774 					DBPRINT(sc, BNX_WARN_SEND,
   4775 					    "%s(): Invalid TCP/UDP "
   4776 					    "checksum = 0x%04X!\n",
   4777 					    __func__,
   4778 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4779 				}
   4780 			}
   4781 
   4782 			/*
   4783 			 * If we received a packet with a vlan tag,
   4784 			 * attach that information to the packet.
   4785 			 */
   4786 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4787 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4788 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
   4789 			}
   4790 
   4791 			/* Pass the mbuf off to the upper layers. */
   4792 
   4793 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4794 			    "%s(): Passing received frame up.\n", __func__);
   4795 			if_percpuq_enqueue(ifp->if_percpuq, m);
   4796 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4797 
   4798 		}
   4799 
   4800 		sw_cons = NEXT_RX_BD(sw_cons);
   4801 
   4802 		/* Refresh hw_cons to see if there's new work */
   4803 		if (sw_cons == hw_cons) {
   4804 			hw_cons = sc->hw_rx_cons =
   4805 			    sblk->status_rx_quick_consumer_index0;
   4806 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4807 			    USABLE_RX_BD_PER_PAGE)
   4808 				hw_cons++;
   4809 		}
   4810 
   4811 		/* Prevent speculative reads from getting ahead of
   4812 		 * the status block.
   4813 		 */
   4814 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4815 		    BUS_SPACE_BARRIER_READ);
   4816 	}
   4817 
   4818 	for (i = 0; i < RX_PAGES; i++)
   4819 		bus_dmamap_sync(sc->bnx_dmatag,
   4820 		    sc->rx_bd_chain_map[i], 0,
   4821 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4822 		    BUS_DMASYNC_PREWRITE);
   4823 
   4824 	sc->rx_cons = sw_cons;
   4825 	sc->rx_prod = sw_prod;
   4826 	sc->rx_prod_bseq = sw_prod_bseq;
   4827 
   4828 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4829 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4830 
   4831 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4832 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4833 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4834 }
   4835 
   4836 /****************************************************************************/
   4837 /* Handles transmit completion interrupt events.                            */
   4838 /*                                                                          */
   4839 /* Returns:                                                                 */
   4840 /*   Nothing.                                                               */
   4841 /****************************************************************************/
   4842 void
   4843 bnx_tx_intr(struct bnx_softc *sc)
   4844 {
   4845 	struct status_block	*sblk = sc->status_block;
   4846 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4847 	struct bnx_pkt		*pkt;
   4848 	bus_dmamap_t		map;
   4849 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4850 
   4851 	DBRUNIF(1, sc->tx_interrupts++);
   4852 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4853 	    BUS_DMASYNC_POSTREAD);
   4854 
   4855 	/* Get the hardware's view of the TX consumer index. */
   4856 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4857 
   4858 	/* Skip to the next entry if this is a chain page pointer. */
   4859 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4860 		hw_tx_cons++;
   4861 
   4862 	sw_tx_cons = sc->tx_cons;
   4863 
   4864 	/* Prevent speculative reads from getting ahead of the status block. */
   4865 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4866 	    BUS_SPACE_BARRIER_READ);
   4867 
   4868 	/* Cycle through any completed TX chain page entries. */
   4869 	while (sw_tx_cons != hw_tx_cons) {
   4870 #ifdef BNX_DEBUG
   4871 		struct tx_bd *txbd = NULL;
   4872 #endif
   4873 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4874 
   4875 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4876 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4877 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4878 
   4879 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4880 		    aprint_error_dev(sc->bnx_dev,
   4881 			"TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4882 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4883 
   4884 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4885 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4886 
   4887 		DBRUNIF((txbd == NULL),
   4888 		    aprint_error_dev(sc->bnx_dev,
   4889 			"Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4890 		    bnx_breakpoint(sc));
   4891 
   4892 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4893 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4894 
   4895 
   4896 		mutex_enter(&sc->tx_pkt_mtx);
   4897 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4898 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4899 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4900 			mutex_exit(&sc->tx_pkt_mtx);
   4901 			/*
   4902 			 * Free the associated mbuf. Remember
   4903 			 * that only the last tx_bd of a packet
   4904 			 * has an mbuf pointer and DMA map.
   4905 			 */
   4906 			map = pkt->pkt_dmamap;
   4907 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4908 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4909 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4910 
   4911 			m_freem(pkt->pkt_mbuf);
   4912 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4913 
   4914 			if_statinc(ifp, if_opackets);
   4915 
   4916 			mutex_enter(&sc->tx_pkt_mtx);
   4917 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4918 		}
   4919 		mutex_exit(&sc->tx_pkt_mtx);
   4920 
   4921 		sc->used_tx_bd--;
   4922 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4923 			__FILE__, __LINE__, sc->used_tx_bd);
   4924 
   4925 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4926 
   4927 		/* Refresh hw_cons to see if there's new work. */
   4928 		hw_tx_cons = sc->hw_tx_cons =
   4929 		    sblk->status_tx_quick_consumer_index0;
   4930 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4931 		    USABLE_TX_BD_PER_PAGE)
   4932 			hw_tx_cons++;
   4933 
   4934 		/* Prevent speculative reads from getting ahead of
   4935 		 * the status block.
   4936 		 */
   4937 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4938 		    BUS_SPACE_BARRIER_READ);
   4939 	}
   4940 
   4941 	/* Clear the TX timeout timer. */
   4942 	ifp->if_timer = 0;
   4943 
   4944 	/* Clear the tx hardware queue full flag. */
   4945 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4946 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4947 		    aprint_debug_dev(sc->bnx_dev,
   4948 			"Open TX chain! %d/%d (used/total)\n",
   4949 			sc->used_tx_bd, sc->max_tx_bd));
   4950 		ifp->if_flags &= ~IFF_OACTIVE;
   4951 	}
   4952 
   4953 	sc->tx_cons = sw_tx_cons;
   4954 }
   4955 
   4956 /****************************************************************************/
   4957 /* Disables interrupt generation.                                           */
   4958 /*                                                                          */
   4959 /* Returns:                                                                 */
   4960 /*   Nothing.                                                               */
   4961 /****************************************************************************/
   4962 void
   4963 bnx_disable_intr(struct bnx_softc *sc)
   4964 {
   4965 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4966 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4967 }
   4968 
   4969 /****************************************************************************/
   4970 /* Enables interrupt generation.                                            */
   4971 /*                                                                          */
   4972 /* Returns:                                                                 */
   4973 /*   Nothing.                                                               */
   4974 /****************************************************************************/
   4975 void
   4976 bnx_enable_intr(struct bnx_softc *sc)
   4977 {
   4978 	uint32_t		val;
   4979 
   4980 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4981 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4982 
   4983 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4984 	    sc->last_status_idx);
   4985 
   4986 	val = REG_RD(sc, BNX_HC_COMMAND);
   4987 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4988 }
   4989 
   4990 /****************************************************************************/
   4991 /* Handles controller initialization.                                       */
   4992 /*                                                                          */
   4993 /****************************************************************************/
   4994 int
   4995 bnx_init(struct ifnet *ifp)
   4996 {
   4997 	struct bnx_softc	*sc = ifp->if_softc;
   4998 	uint32_t		ether_mtu;
   4999 	int			s, error = 0;
   5000 
   5001 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   5002 
   5003 	s = splnet();
   5004 
   5005 	bnx_stop(ifp, 0);
   5006 
   5007 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   5008 		aprint_error_dev(sc->bnx_dev,
   5009 		    "Controller reset failed!\n");
   5010 		goto bnx_init_exit;
   5011 	}
   5012 
   5013 	if ((error = bnx_chipinit(sc)) != 0) {
   5014 		aprint_error_dev(sc->bnx_dev,
   5015 		    "Controller initialization failed!\n");
   5016 		goto bnx_init_exit;
   5017 	}
   5018 
   5019 	if ((error = bnx_blockinit(sc)) != 0) {
   5020 		aprint_error_dev(sc->bnx_dev,
   5021 		    "Block initialization failed!\n");
   5022 		goto bnx_init_exit;
   5023 	}
   5024 
   5025 	/* Calculate and program the Ethernet MRU size. */
   5026 	if (ifp->if_mtu <= ETHERMTU) {
   5027 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   5028 		sc->mbuf_alloc_size = MCLBYTES;
   5029 	} else {
   5030 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   5031 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   5032 	}
   5033 
   5034 
   5035 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
   5036 
   5037 	/*
   5038 	 * Program the MRU and enable Jumbo frame
   5039 	 * support.
   5040 	 */
   5041 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   5042 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   5043 
   5044 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   5045 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   5046 
   5047 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   5048 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   5049 	    sc->mbuf_alloc_size, sc->max_frame_size);
   5050 
   5051 	/* Program appropriate promiscuous/multicast filtering. */
   5052 	bnx_iff(sc);
   5053 
   5054 	/* Init RX buffer descriptor chain. */
   5055 	bnx_init_rx_chain(sc);
   5056 
   5057 	/* Init TX buffer descriptor chain. */
   5058 	bnx_init_tx_chain(sc);
   5059 
   5060 	/* Enable host interrupts. */
   5061 	bnx_enable_intr(sc);
   5062 
   5063 	mii_ifmedia_change(&sc->bnx_mii);
   5064 
   5065 	SET(ifp->if_flags, IFF_RUNNING);
   5066 	CLR(ifp->if_flags, IFF_OACTIVE);
   5067 
   5068 	callout_schedule(&sc->bnx_timeout, hz);
   5069 
   5070 bnx_init_exit:
   5071 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5072 
   5073 	splx(s);
   5074 
   5075 	return error;
   5076 }
   5077 
   5078 void
   5079 bnx_mgmt_init(struct bnx_softc *sc)
   5080 {
   5081 	struct ifnet	*ifp = &sc->bnx_ec.ec_if;
   5082 	uint32_t	val;
   5083 
   5084 	/* Check if the driver is still running and bail out if it is. */
   5085 	if (ifp->if_flags & IFF_RUNNING)
   5086 		goto bnx_mgmt_init_exit;
   5087 
   5088 	/* Initialize the on-boards CPUs */
   5089 	bnx_init_cpus(sc);
   5090 
   5091 	val = (BCM_PAGE_BITS - 8) << 24;
   5092 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   5093 
   5094 	/* Enable all critical blocks in the MAC. */
   5095 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   5096 	    BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
   5097 	    BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
   5098 	    BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
   5099 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   5100 	DELAY(20);
   5101 
   5102 	mii_ifmedia_change(&sc->bnx_mii);
   5103 
   5104 bnx_mgmt_init_exit:
   5105 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5106 }
   5107 
   5108 /****************************************************************************/
   5109 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   5110 /* memory visible to the controller.                                        */
   5111 /*                                                                          */
   5112 /* Returns:                                                                 */
   5113 /*   0 for success, positive value for failure.                             */
   5114 /****************************************************************************/
   5115 int
   5116 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   5117 {
   5118 	struct bnx_pkt		*pkt;
   5119 	bus_dmamap_t		map;
   5120 	struct tx_bd		*txbd = NULL;
   5121 	uint16_t		vlan_tag = 0, flags = 0;
   5122 	uint16_t		chain_prod, prod;
   5123 #ifdef BNX_DEBUG
   5124 	uint16_t		debug_prod;
   5125 #endif
   5126 	uint32_t		addr, prod_bseq;
   5127 	int			i, error;
   5128 	bool			remap = true;
   5129 
   5130 	mutex_enter(&sc->tx_pkt_mtx);
   5131 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   5132 	if (pkt == NULL) {
   5133 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   5134 			mutex_exit(&sc->tx_pkt_mtx);
   5135 			return ENETDOWN;
   5136 		}
   5137 
   5138 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   5139 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   5140 			workqueue_enqueue(sc->bnx_wq, &sc->bnx_wk, NULL);
   5141 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   5142 		}
   5143 
   5144 		mutex_exit(&sc->tx_pkt_mtx);
   5145 		return ENOMEM;
   5146 	}
   5147 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   5148 	mutex_exit(&sc->tx_pkt_mtx);
   5149 
   5150 	/* Transfer any checksum offload flags to the bd. */
   5151 	if (m->m_pkthdr.csum_flags) {
   5152 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5153 			flags |= TX_BD_FLAGS_IP_CKSUM;
   5154 		if (m->m_pkthdr.csum_flags &
   5155 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   5156 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   5157 	}
   5158 
   5159 	/* Transfer any VLAN tags to the bd. */
   5160 	if (vlan_has_tag(m)) {
   5161 		flags |= TX_BD_FLAGS_VLAN_TAG;
   5162 		vlan_tag = vlan_get_tag(m);
   5163 	}
   5164 
   5165 	/* Map the mbuf into DMAable memory. */
   5166 	prod = sc->tx_prod;
   5167 	chain_prod = TX_CHAIN_IDX(prod);
   5168 	map = pkt->pkt_dmamap;
   5169 
   5170 	/* Map the mbuf into our DMA address space. */
   5171 retry:
   5172 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   5173 	if (__predict_false(error)) {
   5174 		if (error == EFBIG) {
   5175 			if (remap == true) {
   5176 				struct mbuf *newm;
   5177 
   5178 				remap = false;
   5179 				newm = m_defrag(m, M_NOWAIT);
   5180 				if (newm != NULL) {
   5181 					m = newm;
   5182 					goto retry;
   5183 				}
   5184 			}
   5185 		}
   5186 		sc->tx_dma_map_failures++;
   5187 		goto maperr;
   5188 	}
   5189 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   5190 	    BUS_DMASYNC_PREWRITE);
   5191 	/* Make sure there's room in the chain */
   5192 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   5193 		goto nospace;
   5194 
   5195 	/* prod points to an empty tx_bd at this point. */
   5196 	prod_bseq = sc->tx_prod_bseq;
   5197 #ifdef BNX_DEBUG
   5198 	debug_prod = chain_prod;
   5199 #endif
   5200 	DBPRINT(sc, BNX_INFO_SEND,
   5201 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5202 		"prod_bseq = 0x%08X\n",
   5203 		__func__, prod, chain_prod, prod_bseq);
   5204 
   5205 	/*
   5206 	 * Cycle through each mbuf segment that makes up
   5207 	 * the outgoing frame, gathering the mapping info
   5208 	 * for that segment and creating a tx_bd for the
   5209 	 * mbuf.
   5210 	 */
   5211 	for (i = 0; i < map->dm_nsegs ; i++) {
   5212 		chain_prod = TX_CHAIN_IDX(prod);
   5213 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5214 
   5215 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5216 		txbd->tx_bd_haddr_lo = addr;
   5217 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5218 		txbd->tx_bd_haddr_hi = addr;
   5219 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5220 		txbd->tx_bd_vlan_tag = vlan_tag;
   5221 		txbd->tx_bd_flags = flags;
   5222 		prod_bseq += map->dm_segs[i].ds_len;
   5223 		if (i == 0)
   5224 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5225 		prod = NEXT_TX_BD(prod);
   5226 	}
   5227 
   5228 	/* Set the END flag on the last TX buffer descriptor. */
   5229 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5230 
   5231 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5232 
   5233 	DBPRINT(sc, BNX_INFO_SEND,
   5234 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5235 		"prod_bseq = 0x%08X\n",
   5236 		__func__, prod, chain_prod, prod_bseq);
   5237 
   5238 	pkt->pkt_mbuf = m;
   5239 	pkt->pkt_end_desc = chain_prod;
   5240 
   5241 	mutex_enter(&sc->tx_pkt_mtx);
   5242 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5243 	mutex_exit(&sc->tx_pkt_mtx);
   5244 
   5245 	sc->used_tx_bd += map->dm_nsegs;
   5246 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5247 		__FILE__, __LINE__, sc->used_tx_bd);
   5248 
   5249 	/* Update some debug statistics counters */
   5250 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5251 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5252 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5253 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5254 
   5255 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5256 	    map->dm_nsegs));
   5257 
   5258 	/* prod points to the next free tx_bd at this point. */
   5259 	sc->tx_prod = prod;
   5260 	sc->tx_prod_bseq = prod_bseq;
   5261 
   5262 	return 0;
   5263 
   5264 
   5265 nospace:
   5266 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5267 maperr:
   5268 	mutex_enter(&sc->tx_pkt_mtx);
   5269 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5270 	mutex_exit(&sc->tx_pkt_mtx);
   5271 
   5272 	return ENOMEM;
   5273 }
   5274 
   5275 /****************************************************************************/
   5276 /* Main transmit routine.                                                   */
   5277 /*                                                                          */
   5278 /* Returns:                                                                 */
   5279 /*   Nothing.                                                               */
   5280 /****************************************************************************/
   5281 void
   5282 bnx_start(struct ifnet *ifp)
   5283 {
   5284 	struct bnx_softc	*sc = ifp->if_softc;
   5285 	struct mbuf		*m_head = NULL;
   5286 	int			count = 0;
   5287 #ifdef BNX_DEBUG
   5288 	uint16_t		tx_chain_prod;
   5289 #endif
   5290 
   5291 	/* If there's no link or the transmit queue is empty then just exit. */
   5292 	if (!sc->bnx_link
   5293 	    ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
   5294 		DBPRINT(sc, BNX_INFO_SEND,
   5295 		    "%s(): output active or device not running.\n", __func__);
   5296 		goto bnx_start_exit;
   5297 	}
   5298 
   5299 	/* prod points to the next free tx_bd. */
   5300 #ifdef BNX_DEBUG
   5301 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5302 #endif
   5303 
   5304 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5305 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5306 	    "used_tx %d max_tx %d\n",
   5307 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5308 	    sc->used_tx_bd, sc->max_tx_bd);
   5309 
   5310 	/*
   5311 	 * Keep adding entries while there is space in the ring.
   5312 	 */
   5313 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5314 		/* Check for any frames to send. */
   5315 		IFQ_POLL(&ifp->if_snd, m_head);
   5316 		if (m_head == NULL)
   5317 			break;
   5318 
   5319 		/*
   5320 		 * Pack the data into the transmit ring. If we
   5321 		 * don't have room, set the OACTIVE flag to wait
   5322 		 * for the NIC to drain the chain.
   5323 		 */
   5324 		if (bnx_tx_encap(sc, m_head)) {
   5325 			ifp->if_flags |= IFF_OACTIVE;
   5326 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5327 			    "business! Total tx_bd used = %d\n",
   5328 			    sc->used_tx_bd);
   5329 			break;
   5330 		}
   5331 
   5332 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5333 		count++;
   5334 
   5335 		/* Send a copy of the frame to any BPF listeners. */
   5336 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5337 	}
   5338 
   5339 	if (count == 0) {
   5340 		/* no packets were dequeued */
   5341 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5342 		    "%s(): No packets were dequeued\n", __func__);
   5343 		goto bnx_start_exit;
   5344 	}
   5345 
   5346 	/* Update the driver's counters. */
   5347 #ifdef BNX_DEBUG
   5348 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5349 #endif
   5350 
   5351 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
   5352 	    "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
   5353 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   5354 
   5355 	/* Start the transmit. */
   5356 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5357 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5358 
   5359 	/* Set the tx timeout. */
   5360 	ifp->if_timer = BNX_TX_TIMEOUT;
   5361 
   5362 bnx_start_exit:
   5363 	return;
   5364 }
   5365 
   5366 /****************************************************************************/
   5367 /* Handles any IOCTL calls from the operating system.                       */
   5368 /*                                                                          */
   5369 /* Returns:                                                                 */
   5370 /*   0 for success, positive value for failure.                             */
   5371 /****************************************************************************/
   5372 int
   5373 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5374 {
   5375 	struct bnx_softc	*sc = ifp->if_softc;
   5376 	struct ifreq		*ifr = (struct ifreq *) data;
   5377 	struct mii_data		*mii = &sc->bnx_mii;
   5378 	int			s, error = 0;
   5379 
   5380 	s = splnet();
   5381 
   5382 	switch (command) {
   5383 	case SIOCSIFFLAGS:
   5384 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5385 			break;
   5386 		/* XXX set an ifflags callback and let ether_ioctl
   5387 		 * handle all of this.
   5388 		 */
   5389 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5390 			if (ifp->if_flags & IFF_RUNNING)
   5391 				error = ENETRESET;
   5392 			else
   5393 				bnx_init(ifp);
   5394 		} else if (ifp->if_flags & IFF_RUNNING)
   5395 			bnx_stop(ifp, 1);
   5396 		break;
   5397 
   5398 	case SIOCSIFMEDIA:
   5399 		/* Flow control requires full-duplex mode. */
   5400 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5401 		    (ifr->ifr_media & IFM_FDX) == 0)
   5402 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5403 
   5404 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5405 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5406 				/* We can do both TXPAUSE and RXPAUSE. */
   5407 				ifr->ifr_media |=
   5408 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5409 			}
   5410 			sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5411 		}
   5412 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5413 		    sc->bnx_phy_flags);
   5414 
   5415 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5416 		break;
   5417 
   5418 	default:
   5419 		error = ether_ioctl(ifp, command, data);
   5420 	}
   5421 
   5422 	if (error == ENETRESET) {
   5423 		if (ifp->if_flags & IFF_RUNNING)
   5424 			bnx_iff(sc);
   5425 		error = 0;
   5426 	}
   5427 
   5428 	splx(s);
   5429 	return error;
   5430 }
   5431 
   5432 /****************************************************************************/
   5433 /* Transmit timeout handler.                                                */
   5434 /*                                                                          */
   5435 /* Returns:                                                                 */
   5436 /*   Nothing.                                                               */
   5437 /****************************************************************************/
   5438 void
   5439 bnx_watchdog(struct ifnet *ifp)
   5440 {
   5441 	struct bnx_softc	*sc = ifp->if_softc;
   5442 
   5443 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5444 	    bnx_dump_status_block(sc));
   5445 	/*
   5446 	 * If we are in this routine because of pause frames, then
   5447 	 * don't reset the hardware.
   5448 	 */
   5449 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5450 		return;
   5451 
   5452 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5453 
   5454 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5455 
   5456 	bnx_init(ifp);
   5457 
   5458 	if_statinc(ifp, if_oerrors);
   5459 }
   5460 
   5461 /*
   5462  * Interrupt handler.
   5463  */
   5464 /****************************************************************************/
   5465 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5466 /* interrupt and then calls a separate routine for handle the various       */
   5467 /* interrupt causes (PHY, TX, RX).                                          */
   5468 /*                                                                          */
   5469 /* Returns:                                                                 */
   5470 /*   0 for success, positive value for failure.                             */
   5471 /****************************************************************************/
   5472 int
   5473 bnx_intr(void *xsc)
   5474 {
   5475 	struct bnx_softc	*sc = xsc;
   5476 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5477 	uint32_t		status_attn_bits;
   5478 	uint16_t		status_idx;
   5479 	const struct status_block *sblk;
   5480 	int			rv = 0;
   5481 
   5482 	if (!device_is_active(sc->bnx_dev) ||
   5483 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5484 		return 0;
   5485 
   5486 	DBRUNIF(1, sc->interrupts_generated++);
   5487 
   5488 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5489 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   5490 
   5491 	sblk = sc->status_block;
   5492 	/*
   5493 	 * If the hardware status block index
   5494 	 * matches the last value read by the
   5495 	 * driver and we haven't asserted our
   5496 	 * interrupt then there's nothing to do.
   5497 	 */
   5498 	status_idx = sblk->status_idx;
   5499 	if ((status_idx != sc->last_status_idx) ||
   5500 	    !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
   5501 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
   5502 		rv = 1;
   5503 
   5504 		/* Ack the interrupt */
   5505 		REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5506 		    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
   5507 
   5508 		status_attn_bits = sblk->status_attn_bits;
   5509 
   5510 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5511 		    aprint_debug("Simulating unexpected status attention bit set.");
   5512 		    status_attn_bits = status_attn_bits |
   5513 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5514 
   5515 		/* Was it a link change interrupt? */
   5516 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5517 		    (sblk->status_attn_bits_ack &
   5518 		    STATUS_ATTN_BITS_LINK_STATE))
   5519 			bnx_phy_intr(sc);
   5520 
   5521 		/* If any other attention is asserted then the chip is toast. */
   5522 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5523 		    (sblk->status_attn_bits_ack &
   5524 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5525 			DBRUN(sc->unexpected_attentions++);
   5526 
   5527 			BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
   5528 			    sblk->status_attn_bits);
   5529 
   5530 			DBRUNIF((bnx_debug_unexpected_attention == 0),
   5531 				    bnx_breakpoint(sc));
   5532 
   5533 			bnx_init(ifp);
   5534 			goto out;
   5535 		}
   5536 
   5537 		/* Check for any completed RX frames. */
   5538 		if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
   5539 			bnx_rx_intr(sc);
   5540 
   5541 		/* Check for any completed TX frames. */
   5542 		if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
   5543 			bnx_tx_intr(sc);
   5544 
   5545 		/*
   5546 		 * Save the status block index value for use during the
   5547 		 * next interrupt.
   5548 		 */
   5549 		sc->last_status_idx = status_idx;
   5550 
   5551 		/* Start moving packets again */
   5552 		if (ifp->if_flags & IFF_RUNNING)
   5553 			if_schedule_deferred_start(ifp);
   5554 	}
   5555 
   5556 out:
   5557 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5558 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   5559 
   5560 	return rv;
   5561 }
   5562 
   5563 /****************************************************************************/
   5564 /* Programs the various packet receive modes (broadcast and multicast).     */
   5565 /*                                                                          */
   5566 /* Returns:                                                                 */
   5567 /*   Nothing.                                                               */
   5568 /****************************************************************************/
   5569 void
   5570 bnx_iff(struct bnx_softc *sc)
   5571 {
   5572 	struct ethercom		*ec = &sc->bnx_ec;
   5573 	struct ifnet		*ifp = &ec->ec_if;
   5574 	struct ether_multi	*enm;
   5575 	struct ether_multistep	step;
   5576 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5577 	uint32_t		rx_mode, sort_mode;
   5578 	int			h, i;
   5579 
   5580 	/* Initialize receive mode default settings. */
   5581 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5582 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5583 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5584 	ifp->if_flags &= ~IFF_ALLMULTI;
   5585 
   5586 	/*
   5587 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5588 	 * be enbled.
   5589 	 */
   5590 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5591 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5592 
   5593 	/*
   5594 	 * Check for promiscuous, all multicast, or selected
   5595 	 * multicast address filtering.
   5596 	 */
   5597 	if (ifp->if_flags & IFF_PROMISC) {
   5598 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5599 
   5600 		ifp->if_flags |= IFF_ALLMULTI;
   5601 		/* Enable promiscuous mode. */
   5602 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5603 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5604 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5605 allmulti:
   5606 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5607 
   5608 		ifp->if_flags |= IFF_ALLMULTI;
   5609 		/* Enable all multicast addresses. */
   5610 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5611 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5612 			    0xffffffff);
   5613 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5614 	} else {
   5615 		/* Accept one or more multicast(s). */
   5616 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5617 
   5618 		ETHER_LOCK(ec);
   5619 		ETHER_FIRST_MULTI(step, ec, enm);
   5620 		while (enm != NULL) {
   5621 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5622 			    ETHER_ADDR_LEN)) {
   5623 				ETHER_UNLOCK(ec);
   5624 				goto allmulti;
   5625 			}
   5626 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5627 			    0xFF;
   5628 			hashes[(h & 0xE0) >> 5] |= __BIT(h & 0x1F);
   5629 			ETHER_NEXT_MULTI(step, enm);
   5630 		}
   5631 		ETHER_UNLOCK(ec);
   5632 
   5633 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5634 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5635 			    hashes[i]);
   5636 
   5637 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5638 	}
   5639 
   5640 	/* Only make changes if the receive mode has actually changed. */
   5641 	if (rx_mode != sc->rx_mode) {
   5642 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5643 		    rx_mode);
   5644 
   5645 		sc->rx_mode = rx_mode;
   5646 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5647 	}
   5648 
   5649 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5650 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5651 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5652 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5653 }
   5654 
   5655 /****************************************************************************/
   5656 /* Called periodically to updates statistics from the controllers           */
   5657 /* statistics block.                                                        */
   5658 /*                                                                          */
   5659 /* Returns:                                                                 */
   5660 /*   Nothing.                                                               */
   5661 /****************************************************************************/
   5662 void
   5663 bnx_stats_update(struct bnx_softc *sc)
   5664 {
   5665 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5666 	struct statistics_block	*stats;
   5667 
   5668 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5669 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5670 	    BUS_DMASYNC_POSTREAD);
   5671 
   5672 	stats = (struct statistics_block *)sc->stats_block;
   5673 
   5674 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   5675 	uint64_t value;
   5676 
   5677 	/*
   5678 	 * Update the interface statistics from the
   5679 	 * hardware statistics.
   5680 	 */
   5681 	value = (u_long)stats->stat_EtherStatsCollisions;
   5682 	if_statadd_ref(nsr, if_collisions, value - sc->if_stat_collisions);
   5683 	sc->if_stat_collisions = value;
   5684 
   5685 	value = (u_long)stats->stat_EtherStatsUndersizePkts +
   5686 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5687 	    (u_long)stats->stat_IfInMBUFDiscards +
   5688 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5689 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5690 	if_statadd_ref(nsr, if_ierrors, value - sc->if_stat_ierrors);
   5691 	sc->if_stat_ierrors = value;
   5692 
   5693 	value = (u_long)
   5694 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5695 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5696 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5697 	if_statadd_ref(nsr, if_oerrors, value - sc->if_stat_oerrors);
   5698 	sc->if_stat_oerrors = value;
   5699 
   5700 	/*
   5701 	 * Certain controllers don't report
   5702 	 * carrier sense errors correctly.
   5703 	 * See errata E11_5708CA0_1165.
   5704 	 */
   5705 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5706 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) {
   5707 		if_statadd_ref(nsr, if_oerrors,
   5708 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors);
   5709 	}
   5710 
   5711 	IF_STAT_PUTREF(ifp);
   5712 
   5713 	/*
   5714 	 * Update the sysctl statistics from the
   5715 	 * hardware statistics.
   5716 	 */
   5717 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5718 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5719 
   5720 	sc->stat_IfHCInBadOctets =
   5721 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5722 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5723 
   5724 	sc->stat_IfHCOutOctets =
   5725 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5726 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5727 
   5728 	sc->stat_IfHCOutBadOctets =
   5729 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5730 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5731 
   5732 	sc->stat_IfHCInUcastPkts =
   5733 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5734 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5735 
   5736 	sc->stat_IfHCInMulticastPkts =
   5737 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5738 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5739 
   5740 	sc->stat_IfHCInBroadcastPkts =
   5741 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5742 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5743 
   5744 	sc->stat_IfHCOutUcastPkts =
   5745 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5746 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5747 
   5748 	sc->stat_IfHCOutMulticastPkts =
   5749 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5750 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5751 
   5752 	sc->stat_IfHCOutBroadcastPkts =
   5753 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5754 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5755 
   5756 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5757 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5758 
   5759 	sc->stat_Dot3StatsCarrierSenseErrors =
   5760 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5761 
   5762 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5763 
   5764 	sc->stat_Dot3StatsAlignmentErrors =
   5765 	    stats->stat_Dot3StatsAlignmentErrors;
   5766 
   5767 	sc->stat_Dot3StatsSingleCollisionFrames =
   5768 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5769 
   5770 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5771 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5772 
   5773 	sc->stat_Dot3StatsDeferredTransmissions =
   5774 	    stats->stat_Dot3StatsDeferredTransmissions;
   5775 
   5776 	sc->stat_Dot3StatsExcessiveCollisions =
   5777 	    stats->stat_Dot3StatsExcessiveCollisions;
   5778 
   5779 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5780 
   5781 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5782 
   5783 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5784 
   5785 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5786 
   5787 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5788 
   5789 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5790 
   5791 	sc->stat_EtherStatsPktsRx64Octets =
   5792 	    stats->stat_EtherStatsPktsRx64Octets;
   5793 
   5794 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5795 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5796 
   5797 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5798 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5799 
   5800 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5801 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5802 
   5803 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5804 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5805 
   5806 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5807 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5808 
   5809 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5810 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5811 
   5812 	sc->stat_EtherStatsPktsTx64Octets =
   5813 	    stats->stat_EtherStatsPktsTx64Octets;
   5814 
   5815 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5816 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5817 
   5818 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5819 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5820 
   5821 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5822 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5823 
   5824 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5825 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5826 
   5827 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5828 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5829 
   5830 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5831 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5832 
   5833 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5834 
   5835 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5836 
   5837 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5838 
   5839 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5840 
   5841 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5842 
   5843 	sc->stat_MacControlFramesReceived =
   5844 	    stats->stat_MacControlFramesReceived;
   5845 
   5846 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5847 
   5848 	sc->stat_IfInFramesL2FilterDiscards =
   5849 	    stats->stat_IfInFramesL2FilterDiscards;
   5850 
   5851 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5852 
   5853 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5854 
   5855 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5856 
   5857 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5858 
   5859 	sc->stat_CatchupInRuleCheckerDiscards =
   5860 	    stats->stat_CatchupInRuleCheckerDiscards;
   5861 
   5862 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5863 
   5864 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5865 
   5866 	sc->stat_CatchupInRuleCheckerP4Hit =
   5867 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5868 
   5869 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5870 }
   5871 
   5872 void
   5873 bnx_tick(void *xsc)
   5874 {
   5875 	struct bnx_softc	*sc = xsc;
   5876 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5877 	struct mii_data		*mii;
   5878 	uint32_t		msg;
   5879 	uint16_t		prod, chain_prod;
   5880 	uint32_t		prod_bseq;
   5881 	int s = splnet();
   5882 
   5883 	/* Tell the firmware that the driver is still running. */
   5884 #ifdef BNX_DEBUG
   5885 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5886 #else
   5887 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5888 #endif
   5889 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5890 
   5891 	/* Update the statistics from the hardware statistics block. */
   5892 	bnx_stats_update(sc);
   5893 
   5894 	/* Schedule the next tick. */
   5895 	if (!sc->bnx_detaching)
   5896 		callout_schedule(&sc->bnx_timeout, hz);
   5897 
   5898 	if (sc->bnx_link)
   5899 		goto bnx_tick_exit;
   5900 
   5901 	mii = &sc->bnx_mii;
   5902 	mii_tick(mii);
   5903 
   5904 	/* Check if the link has come up. */
   5905 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
   5906 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   5907 		sc->bnx_link++;
   5908 		/* Now that link is up, handle any outstanding TX traffic. */
   5909 		if_schedule_deferred_start(ifp);
   5910 	}
   5911 
   5912 bnx_tick_exit:
   5913 	/* try to get more RX buffers, just in case */
   5914 	prod = sc->rx_prod;
   5915 	prod_bseq = sc->rx_prod_bseq;
   5916 	chain_prod = RX_CHAIN_IDX(prod);
   5917 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5918 	sc->rx_prod = prod;
   5919 	sc->rx_prod_bseq = prod_bseq;
   5920 
   5921 	splx(s);
   5922 	return;
   5923 }
   5924 
   5925 /****************************************************************************/
   5926 /* BNX Debug Routines                                                       */
   5927 /****************************************************************************/
   5928 #ifdef BNX_DEBUG
   5929 
   5930 /****************************************************************************/
   5931 /* Prints out information about an mbuf.                                    */
   5932 /*                                                                          */
   5933 /* Returns:                                                                 */
   5934 /*   Nothing.                                                               */
   5935 /****************************************************************************/
   5936 void
   5937 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5938 {
   5939 	struct mbuf		*mp = m;
   5940 
   5941 	if (m == NULL) {
   5942 		/* Index out of range. */
   5943 		aprint_error("mbuf ptr is null!\n");
   5944 		return;
   5945 	}
   5946 
   5947 	while (mp) {
   5948 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5949 		    mp, mp->m_len);
   5950 
   5951 		if (mp->m_flags & M_EXT)
   5952 			aprint_debug("M_EXT ");
   5953 		if (mp->m_flags & M_PKTHDR)
   5954 			aprint_debug("M_PKTHDR ");
   5955 		aprint_debug("\n");
   5956 
   5957 		if (mp->m_flags & M_EXT)
   5958 			aprint_debug("- m_ext: vaddr = %p, "
   5959 			    "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
   5960 
   5961 		mp = mp->m_next;
   5962 	}
   5963 }
   5964 
   5965 /****************************************************************************/
   5966 /* Prints out the mbufs in the TX mbuf chain.                               */
   5967 /*                                                                          */
   5968 /* Returns:                                                                 */
   5969 /*   Nothing.                                                               */
   5970 /****************************************************************************/
   5971 void
   5972 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5973 {
   5974 #if 0
   5975 	struct mbuf		*m;
   5976 	int			i;
   5977 
   5978 	aprint_debug_dev(sc->bnx_dev,
   5979 	    "----------------------------"
   5980 	    "  tx mbuf data  "
   5981 	    "----------------------------\n");
   5982 
   5983 	for (i = 0; i < count; i++) {
   5984 		m = sc->tx_mbuf_ptr[chain_prod];
   5985 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5986 		bnx_dump_mbuf(sc, m);
   5987 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5988 	}
   5989 
   5990 	aprint_debug_dev(sc->bnx_dev,
   5991 	    "--------------------------------------------"
   5992 	    "----------------------------\n");
   5993 #endif
   5994 }
   5995 
   5996 /*
   5997  * This routine prints the RX mbuf chain.
   5998  */
   5999 void
   6000 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   6001 {
   6002 	struct mbuf		*m;
   6003 	int			i;
   6004 
   6005 	aprint_debug_dev(sc->bnx_dev,
   6006 	    "----------------------------"
   6007 	    "  rx mbuf data  "
   6008 	    "----------------------------\n");
   6009 
   6010 	for (i = 0; i < count; i++) {
   6011 		m = sc->rx_mbuf_ptr[chain_prod];
   6012 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   6013 		bnx_dump_mbuf(sc, m);
   6014 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   6015 	}
   6016 
   6017 
   6018 	aprint_debug_dev(sc->bnx_dev,
   6019 	    "--------------------------------------------"
   6020 	    "----------------------------\n");
   6021 }
   6022 
   6023 void
   6024 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   6025 {
   6026 	if (idx > MAX_TX_BD)
   6027 		/* Index out of range. */
   6028 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   6029 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   6030 		/* TX Chain page pointer. */
   6031 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   6032 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   6033 		    txbd->tx_bd_haddr_lo);
   6034 	else
   6035 		/* Normal tx_bd entry. */
   6036 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6037 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   6038 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   6039 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   6040 		    txbd->tx_bd_flags);
   6041 }
   6042 
   6043 void
   6044 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   6045 {
   6046 	if (idx > MAX_RX_BD)
   6047 		/* Index out of range. */
   6048 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   6049 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   6050 		/* TX Chain page pointer. */
   6051 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   6052 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   6053 		    rxbd->rx_bd_haddr_lo);
   6054 	else
   6055 		/* Normal tx_bd entry. */
   6056 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6057 		    "0x%08X, flags = 0x%08X\n", idx,
   6058 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   6059 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   6060 }
   6061 
   6062 void
   6063 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   6064 {
   6065 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   6066 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   6067 	    "tcp_udp_xsum = 0x%04X\n", idx,
   6068 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   6069 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   6070 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   6071 }
   6072 
   6073 /*
   6074  * This routine prints the TX chain.
   6075  */
   6076 void
   6077 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   6078 {
   6079 	struct tx_bd		*txbd;
   6080 	int			i;
   6081 
   6082 	/* First some info about the tx_bd chain structure. */
   6083 	aprint_debug_dev(sc->bnx_dev,
   6084 	    "----------------------------"
   6085 	    "  tx_bd  chain  "
   6086 	    "----------------------------\n");
   6087 
   6088 	BNX_PRINTF(sc,
   6089 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   6090 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   6091 
   6092 	BNX_PRINTF(sc,
   6093 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   6094 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   6095 
   6096 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
   6097 
   6098 	aprint_error_dev(sc->bnx_dev, ""
   6099 	    "-----------------------------"
   6100 	    "   tx_bd data   "
   6101 	    "-----------------------------\n");
   6102 
   6103 	/* Now print out the tx_bd's themselves. */
   6104 	for (i = 0; i < count; i++) {
   6105 		txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   6106 		bnx_dump_txbd(sc, tx_prod, txbd);
   6107 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   6108 	}
   6109 
   6110 	aprint_debug_dev(sc->bnx_dev,
   6111 	    "-----------------------------"
   6112 	    "--------------"
   6113 	    "-----------------------------\n");
   6114 }
   6115 
   6116 /*
   6117  * This routine prints the RX chain.
   6118  */
   6119 void
   6120 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   6121 {
   6122 	struct rx_bd		*rxbd;
   6123 	int			i;
   6124 
   6125 	/* First some info about the tx_bd chain structure. */
   6126 	aprint_debug_dev(sc->bnx_dev,
   6127 	    "----------------------------"
   6128 	    "  rx_bd  chain  "
   6129 	    "----------------------------\n");
   6130 
   6131 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   6132 
   6133 	BNX_PRINTF(sc,
   6134 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   6135 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   6136 
   6137 	BNX_PRINTF(sc,
   6138 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   6139 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   6140 
   6141 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
   6142 
   6143 	aprint_error_dev(sc->bnx_dev,
   6144 	    "----------------------------"
   6145 	    "   rx_bd data   "
   6146 	    "----------------------------\n");
   6147 
   6148 	/* Now print out the rx_bd's themselves. */
   6149 	for (i = 0; i < count; i++) {
   6150 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   6151 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   6152 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   6153 	}
   6154 
   6155 	aprint_debug_dev(sc->bnx_dev,
   6156 	    "----------------------------"
   6157 	    "--------------"
   6158 	    "----------------------------\n");
   6159 }
   6160 
   6161 /*
   6162  * This routine prints the status block.
   6163  */
   6164 void
   6165 bnx_dump_status_block(struct bnx_softc *sc)
   6166 {
   6167 	struct status_block	*sblk;
   6168 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6169 	    BUS_DMASYNC_POSTREAD);
   6170 
   6171 	sblk = sc->status_block;
   6172 
   6173 	aprint_debug_dev(sc->bnx_dev, "----------------------------- "
   6174 	    "Status Block -----------------------------\n");
   6175 
   6176 	BNX_PRINTF(sc,
   6177 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   6178 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   6179 	    sblk->status_idx);
   6180 
   6181 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   6182 	    sblk->status_rx_quick_consumer_index0,
   6183 	    sblk->status_tx_quick_consumer_index0);
   6184 
   6185 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   6186 
   6187 	/* Theses indices are not used for normal L2 drivers. */
   6188 	if (sblk->status_rx_quick_consumer_index1 ||
   6189 		sblk->status_tx_quick_consumer_index1)
   6190 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   6191 		    sblk->status_rx_quick_consumer_index1,
   6192 		    sblk->status_tx_quick_consumer_index1);
   6193 
   6194 	if (sblk->status_rx_quick_consumer_index2 ||
   6195 		sblk->status_tx_quick_consumer_index2)
   6196 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   6197 		    sblk->status_rx_quick_consumer_index2,
   6198 		    sblk->status_tx_quick_consumer_index2);
   6199 
   6200 	if (sblk->status_rx_quick_consumer_index3 ||
   6201 		sblk->status_tx_quick_consumer_index3)
   6202 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   6203 		    sblk->status_rx_quick_consumer_index3,
   6204 		    sblk->status_tx_quick_consumer_index3);
   6205 
   6206 	if (sblk->status_rx_quick_consumer_index4 ||
   6207 		sblk->status_rx_quick_consumer_index5)
   6208 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   6209 		    sblk->status_rx_quick_consumer_index4,
   6210 		    sblk->status_rx_quick_consumer_index5);
   6211 
   6212 	if (sblk->status_rx_quick_consumer_index6 ||
   6213 		sblk->status_rx_quick_consumer_index7)
   6214 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   6215 		    sblk->status_rx_quick_consumer_index6,
   6216 		    sblk->status_rx_quick_consumer_index7);
   6217 
   6218 	if (sblk->status_rx_quick_consumer_index8 ||
   6219 		sblk->status_rx_quick_consumer_index9)
   6220 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6221 		    sblk->status_rx_quick_consumer_index8,
   6222 		    sblk->status_rx_quick_consumer_index9);
   6223 
   6224 	if (sblk->status_rx_quick_consumer_index10 ||
   6225 		sblk->status_rx_quick_consumer_index11)
   6226 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6227 		    sblk->status_rx_quick_consumer_index10,
   6228 		    sblk->status_rx_quick_consumer_index11);
   6229 
   6230 	if (sblk->status_rx_quick_consumer_index12 ||
   6231 		sblk->status_rx_quick_consumer_index13)
   6232 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6233 		    sblk->status_rx_quick_consumer_index12,
   6234 		    sblk->status_rx_quick_consumer_index13);
   6235 
   6236 	if (sblk->status_rx_quick_consumer_index14 ||
   6237 		sblk->status_rx_quick_consumer_index15)
   6238 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6239 		    sblk->status_rx_quick_consumer_index14,
   6240 		    sblk->status_rx_quick_consumer_index15);
   6241 
   6242 	if (sblk->status_completion_producer_index ||
   6243 		sblk->status_cmd_consumer_index)
   6244 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6245 		    sblk->status_completion_producer_index,
   6246 		    sblk->status_cmd_consumer_index);
   6247 
   6248 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6249 	    "-----------------------------\n");
   6250 }
   6251 
   6252 /*
   6253  * This routine prints the statistics block.
   6254  */
   6255 void
   6256 bnx_dump_stats_block(struct bnx_softc *sc)
   6257 {
   6258 	struct statistics_block	*sblk;
   6259 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6260 	    BUS_DMASYNC_POSTREAD);
   6261 
   6262 	sblk = sc->stats_block;
   6263 
   6264 	aprint_debug_dev(sc->bnx_dev, ""
   6265 	    "-----------------------------"
   6266 	    " Stats  Block "
   6267 	    "-----------------------------\n");
   6268 
   6269 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6270 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6271 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6272 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6273 
   6274 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6275 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6276 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6277 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6278 
   6279 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6280 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6281 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6282 	    sblk->stat_IfHCInMulticastPkts_hi,
   6283 	    sblk->stat_IfHCInMulticastPkts_lo);
   6284 
   6285 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6286 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6287 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6288 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6289 	    sblk->stat_IfHCOutUcastPkts_hi,
   6290 	    sblk->stat_IfHCOutUcastPkts_lo);
   6291 
   6292 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6293 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6294 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6295 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6296 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6297 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6298 
   6299 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6300 		BNX_PRINTF(sc, "0x%08X : "
   6301 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6302 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6303 
   6304 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6305 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6306 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6307 
   6308 	if (sblk->stat_Dot3StatsFCSErrors)
   6309 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6310 		    sblk->stat_Dot3StatsFCSErrors);
   6311 
   6312 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6313 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6314 		    sblk->stat_Dot3StatsAlignmentErrors);
   6315 
   6316 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6317 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6318 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6319 
   6320 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6321 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6322 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6323 
   6324 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6325 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6326 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6327 
   6328 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6329 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6330 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6331 
   6332 	if (sblk->stat_Dot3StatsLateCollisions)
   6333 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6334 		    sblk->stat_Dot3StatsLateCollisions);
   6335 
   6336 	if (sblk->stat_EtherStatsCollisions)
   6337 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6338 		    sblk->stat_EtherStatsCollisions);
   6339 
   6340 	if (sblk->stat_EtherStatsFragments)
   6341 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6342 		    sblk->stat_EtherStatsFragments);
   6343 
   6344 	if (sblk->stat_EtherStatsJabbers)
   6345 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6346 		    sblk->stat_EtherStatsJabbers);
   6347 
   6348 	if (sblk->stat_EtherStatsUndersizePkts)
   6349 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6350 		    sblk->stat_EtherStatsUndersizePkts);
   6351 
   6352 	if (sblk->stat_EtherStatsOverrsizePkts)
   6353 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6354 		    sblk->stat_EtherStatsOverrsizePkts);
   6355 
   6356 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6357 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6358 		    sblk->stat_EtherStatsPktsRx64Octets);
   6359 
   6360 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6361 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6362 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6363 
   6364 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6365 		BNX_PRINTF(sc, "0x%08X : "
   6366 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6367 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6368 
   6369 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6370 		BNX_PRINTF(sc, "0x%08X : "
   6371 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6372 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6373 
   6374 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6375 		BNX_PRINTF(sc, "0x%08X : "
   6376 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6377 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6378 
   6379 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6380 		BNX_PRINTF(sc, "0x%08X : "
   6381 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6382 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6383 
   6384 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6385 		BNX_PRINTF(sc, "0x%08X : "
   6386 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6387 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6388 
   6389 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6390 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6391 		    sblk->stat_EtherStatsPktsTx64Octets);
   6392 
   6393 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6394 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6395 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6396 
   6397 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6398 		BNX_PRINTF(sc, "0x%08X : "
   6399 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6400 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6401 
   6402 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6403 		BNX_PRINTF(sc, "0x%08X : "
   6404 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6405 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6406 
   6407 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6408 		BNX_PRINTF(sc, "0x%08X : "
   6409 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6410 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6411 
   6412 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6413 		BNX_PRINTF(sc, "0x%08X : "
   6414 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6415 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6416 
   6417 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6418 		BNX_PRINTF(sc, "0x%08X : "
   6419 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6420 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6421 
   6422 	if (sblk->stat_XonPauseFramesReceived)
   6423 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6424 		    sblk->stat_XonPauseFramesReceived);
   6425 
   6426 	if (sblk->stat_XoffPauseFramesReceived)
   6427 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6428 		    sblk->stat_XoffPauseFramesReceived);
   6429 
   6430 	if (sblk->stat_OutXonSent)
   6431 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6432 		    sblk->stat_OutXonSent);
   6433 
   6434 	if (sblk->stat_OutXoffSent)
   6435 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6436 		    sblk->stat_OutXoffSent);
   6437 
   6438 	if (sblk->stat_FlowControlDone)
   6439 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6440 		    sblk->stat_FlowControlDone);
   6441 
   6442 	if (sblk->stat_MacControlFramesReceived)
   6443 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6444 		    sblk->stat_MacControlFramesReceived);
   6445 
   6446 	if (sblk->stat_XoffStateEntered)
   6447 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6448 		    sblk->stat_XoffStateEntered);
   6449 
   6450 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6451 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6452 		    sblk->stat_IfInFramesL2FilterDiscards);
   6453 
   6454 	if (sblk->stat_IfInRuleCheckerDiscards)
   6455 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6456 		    sblk->stat_IfInRuleCheckerDiscards);
   6457 
   6458 	if (sblk->stat_IfInFTQDiscards)
   6459 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6460 		    sblk->stat_IfInFTQDiscards);
   6461 
   6462 	if (sblk->stat_IfInMBUFDiscards)
   6463 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6464 		    sblk->stat_IfInMBUFDiscards);
   6465 
   6466 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6467 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6468 		    sblk->stat_IfInRuleCheckerP4Hit);
   6469 
   6470 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6471 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6472 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6473 
   6474 	if (sblk->stat_CatchupInFTQDiscards)
   6475 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6476 		    sblk->stat_CatchupInFTQDiscards);
   6477 
   6478 	if (sblk->stat_CatchupInMBUFDiscards)
   6479 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6480 		    sblk->stat_CatchupInMBUFDiscards);
   6481 
   6482 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6483 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6484 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6485 
   6486 	aprint_debug_dev(sc->bnx_dev,
   6487 	    "-----------------------------"
   6488 	    "--------------"
   6489 	    "-----------------------------\n");
   6490 }
   6491 
   6492 void
   6493 bnx_dump_driver_state(struct bnx_softc *sc)
   6494 {
   6495 	aprint_debug_dev(sc->bnx_dev,
   6496 	    "-----------------------------"
   6497 	    " Driver State "
   6498 	    "-----------------------------\n");
   6499 
   6500 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6501 	    "address\n", sc);
   6502 
   6503 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6504 	    sc->status_block);
   6505 
   6506 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6507 	    "address\n", sc->stats_block);
   6508 
   6509 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6510 	    "address\n", sc->tx_bd_chain);
   6511 
   6512 #if 0
   6513 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6514 	    sc->rx_bd_chain);
   6515 
   6516 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6517 	    sc->tx_mbuf_ptr);
   6518 #endif
   6519 
   6520 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6521 	    sc->rx_mbuf_ptr);
   6522 
   6523 	BNX_PRINTF(sc,
   6524 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6525 	    sc->interrupts_generated);
   6526 
   6527 	BNX_PRINTF(sc,
   6528 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6529 	    sc->rx_interrupts);
   6530 
   6531 	BNX_PRINTF(sc,
   6532 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6533 	    sc->tx_interrupts);
   6534 
   6535 	BNX_PRINTF(sc,
   6536 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6537 	    sc->last_status_idx);
   6538 
   6539 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6540 	    sc->tx_prod);
   6541 
   6542 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6543 	    sc->tx_cons);
   6544 
   6545 	BNX_PRINTF(sc,
   6546 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6547 	    sc->tx_prod_bseq);
   6548 	BNX_PRINTF(sc,
   6549 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6550 	    sc->tx_mbuf_alloc);
   6551 
   6552 	BNX_PRINTF(sc,
   6553 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6554 	    sc->used_tx_bd);
   6555 
   6556 	BNX_PRINTF(sc,
   6557 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6558 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6559 
   6560 
   6561 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6562 	    sc->rx_prod);
   6563 
   6564 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6565 	    sc->rx_cons);
   6566 
   6567 	BNX_PRINTF(sc,
   6568 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6569 	    sc->rx_prod_bseq);
   6570 
   6571 	BNX_PRINTF(sc,
   6572 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6573 	    sc->rx_mbuf_alloc);
   6574 
   6575 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6576 	    sc->free_rx_bd);
   6577 
   6578 	BNX_PRINTF(sc,
   6579 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6580 	    sc->rx_low_watermark, sc->max_rx_bd);
   6581 
   6582 	BNX_PRINTF(sc,
   6583 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6584 	    "mbuf alloc failures\n",
   6585 	    sc->mbuf_alloc_failed);
   6586 
   6587 	BNX_PRINTF(sc,
   6588 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6589 	    "simulated mbuf alloc failures\n",
   6590 	    sc->mbuf_sim_alloc_failed);
   6591 
   6592 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6593 	    "-----------------------------\n");
   6594 }
   6595 
   6596 void
   6597 bnx_dump_hw_state(struct bnx_softc *sc)
   6598 {
   6599 	uint32_t		val1;
   6600 	int			i;
   6601 
   6602 	aprint_debug_dev(sc->bnx_dev,
   6603 	    "----------------------------"
   6604 	    " Hardware State "
   6605 	    "----------------------------\n");
   6606 
   6607 	val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
   6608 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
   6609 
   6610 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6611 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6612 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6613 
   6614 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6615 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6616 
   6617 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6618 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6619 
   6620 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6621 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6622 	    BNX_EMAC_STATUS);
   6623 
   6624 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6625 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6626 
   6627 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6628 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6629 	    BNX_TBDR_STATUS);
   6630 
   6631 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6632 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6633 	    BNX_TDMA_STATUS);
   6634 
   6635 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6636 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6637 
   6638 	aprint_debug_dev(sc->bnx_dev,
   6639 	    "----------------------------"
   6640 	    "----------------"
   6641 	    "----------------------------\n");
   6642 
   6643 	aprint_debug_dev(sc->bnx_dev,
   6644 	    "----------------------------"
   6645 	    " Register  Dump "
   6646 	    "----------------------------\n");
   6647 
   6648 	for (i = 0x400; i < 0x8000; i += 0x10)
   6649 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6650 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6651 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6652 
   6653 	aprint_debug_dev(sc->bnx_dev,
   6654 	    "----------------------------"
   6655 	    "----------------"
   6656 	    "----------------------------\n");
   6657 }
   6658 
   6659 void
   6660 bnx_breakpoint(struct bnx_softc *sc)
   6661 {
   6662 	/* Unreachable code to shut the compiler up about unused functions. */
   6663 	if (0) {
   6664 		bnx_dump_txbd(sc, 0, NULL);
   6665 		bnx_dump_rxbd(sc, 0, NULL);
   6666 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6667 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6668 		bnx_dump_l2fhdr(sc, 0, NULL);
   6669 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6670 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6671 		bnx_dump_status_block(sc);
   6672 		bnx_dump_stats_block(sc);
   6673 		bnx_dump_driver_state(sc);
   6674 		bnx_dump_hw_state(sc);
   6675 	}
   6676 
   6677 	bnx_dump_driver_state(sc);
   6678 	/* Print the important status block fields. */
   6679 	bnx_dump_status_block(sc);
   6680 
   6681 #if 0
   6682 	/* Call the debugger. */
   6683 	breakpoint();
   6684 #endif
   6685 
   6686 	return;
   6687 }
   6688 #endif
   6689