if_bnx.c revision 1.104 1 /* $NetBSD: if_bnx.c,v 1.104 2020/07/17 10:08:04 jdolecek Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.104 2020/07/17 10:08:04 jdolecek Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187
188 /* Slow EEPROM */
189 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
190 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
191 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
192 "EEPROM - slow"},
193 /* Expansion entry 0001 */
194 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
195 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
196 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
197 "Entry 0001"},
198 /* Saifun SA25F010 (non-buffered flash) */
199 /* strap, cfg1, & write1 need updates */
200 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
203 "Non-buffered flash (128kB)"},
204 /* Saifun SA25F020 (non-buffered flash) */
205 /* strap, cfg1, & write1 need updates */
206 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
209 "Non-buffered flash (256kB)"},
210 /* Expansion entry 0100 */
211 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
212 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
213 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
214 "Entry 0100"},
215 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
216 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
218 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
219 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
220 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
221 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
223 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
224 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
225 /* Saifun SA25F005 (non-buffered flash) */
226 /* strap, cfg1, & write1 need updates */
227 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
228 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
230 "Non-buffered flash (64kB)"},
231 /* Fast EEPROM */
232 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
233 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
234 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
235 "EEPROM - fast"},
236 /* Expansion entry 1001 */
237 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
238 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
239 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
240 "Entry 1001"},
241 /* Expansion entry 1010 */
242 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
243 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
244 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
245 "Entry 1010"},
246 /* ATMEL AT45DB011B (buffered flash) */
247 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
248 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
249 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
250 "Buffered flash (128kB)"},
251 /* Expansion entry 1100 */
252 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
253 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
255 "Entry 1100"},
256 /* Expansion entry 1101 */
257 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
258 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
259 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
260 "Entry 1101"},
261 /* Ateml Expansion entry 1110 */
262 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
263 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
264 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
265 "Entry 1110 (Atmel)"},
266 /* ATMEL AT45DB021B (buffered flash) */
267 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
268 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
269 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
270 "Buffered flash (256kB)"},
271 };
272
273 /*
274 * The BCM5709 controllers transparently handle the
275 * differences between Atmel 264 byte pages and all
276 * flash devices which use 256 byte pages, so no
277 * logical-to-physical mapping is required in the
278 * driver.
279 */
280 static struct flash_spec flash_5709 = {
281 .flags = BNX_NV_BUFFERED,
282 .page_bits = BCM5709_FLASH_PAGE_BITS,
283 .page_size = BCM5709_FLASH_PAGE_SIZE,
284 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
285 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
286 .name = "5709 buffered flash (256kB)",
287 };
288
289 /****************************************************************************/
290 /* OpenBSD device entry points. */
291 /****************************************************************************/
292 static int bnx_probe(device_t, cfdata_t, void *);
293 void bnx_attach(device_t, device_t, void *);
294 int bnx_detach(device_t, int);
295
296 /****************************************************************************/
297 /* BNX Debug Data Structure Dump Routines */
298 /****************************************************************************/
299 #ifdef BNX_DEBUG
300 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
301 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
303 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
304 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
305 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
306 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
308 void bnx_dump_status_block(struct bnx_softc *);
309 void bnx_dump_stats_block(struct bnx_softc *);
310 void bnx_dump_driver_state(struct bnx_softc *);
311 void bnx_dump_hw_state(struct bnx_softc *);
312 void bnx_breakpoint(struct bnx_softc *);
313 #endif
314
315 /****************************************************************************/
316 /* BNX Register/Memory Access Routines */
317 /****************************************************************************/
318 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
319 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
320 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
321 int bnx_miibus_read_reg(device_t, int, int, uint16_t *);
322 int bnx_miibus_write_reg(device_t, int, int, uint16_t);
323 void bnx_miibus_statchg(struct ifnet *);
324
325 /****************************************************************************/
326 /* BNX NVRAM Access Routines */
327 /****************************************************************************/
328 int bnx_acquire_nvram_lock(struct bnx_softc *);
329 int bnx_release_nvram_lock(struct bnx_softc *);
330 void bnx_enable_nvram_access(struct bnx_softc *);
331 void bnx_disable_nvram_access(struct bnx_softc *);
332 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
333 uint32_t);
334 int bnx_init_nvram(struct bnx_softc *);
335 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
336 int bnx_nvram_test(struct bnx_softc *);
337 #ifdef BNX_NVRAM_WRITE_SUPPORT
338 int bnx_enable_nvram_write(struct bnx_softc *);
339 void bnx_disable_nvram_write(struct bnx_softc *);
340 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
341 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
342 uint32_t);
343 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
344 #endif
345
346 /****************************************************************************/
347 /* */
348 /****************************************************************************/
349 void bnx_get_media(struct bnx_softc *);
350 void bnx_init_media(struct bnx_softc *);
351 int bnx_dma_alloc(struct bnx_softc *);
352 void bnx_dma_free(struct bnx_softc *);
353 void bnx_release_resources(struct bnx_softc *);
354
355 /****************************************************************************/
356 /* BNX Firmware Synchronization and Load */
357 /****************************************************************************/
358 int bnx_fw_sync(struct bnx_softc *, uint32_t);
359 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 static void bnx_print_adapter_info(struct bnx_softc *);
365 static void bnx_probe_pci_caps(struct bnx_softc *);
366 void bnx_stop(struct ifnet *, int);
367 int bnx_reset(struct bnx_softc *, uint32_t);
368 int bnx_chipinit(struct bnx_softc *);
369 int bnx_blockinit(struct bnx_softc *);
370 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
371 uint16_t *, uint32_t *);
372 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
373
374 int bnx_init_tx_chain(struct bnx_softc *);
375 void bnx_init_tx_context(struct bnx_softc *);
376 int bnx_init_rx_chain(struct bnx_softc *);
377 void bnx_init_rx_context(struct bnx_softc *);
378 void bnx_free_rx_chain(struct bnx_softc *);
379 void bnx_free_tx_chain(struct bnx_softc *);
380
381 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
382 void bnx_start(struct ifnet *);
383 int bnx_ioctl(struct ifnet *, u_long, void *);
384 void bnx_watchdog(struct ifnet *);
385 int bnx_ifmedia_upd(struct ifnet *);
386 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
387 int bnx_init(struct ifnet *);
388 static void bnx_mgmt_init(struct bnx_softc *);
389
390 void bnx_init_context(struct bnx_softc *);
391 void bnx_get_mac_addr(struct bnx_softc *);
392 void bnx_set_mac_addr(struct bnx_softc *);
393 void bnx_phy_intr(struct bnx_softc *);
394 void bnx_rx_intr(struct bnx_softc *);
395 void bnx_tx_intr(struct bnx_softc *);
396 void bnx_disable_intr(struct bnx_softc *);
397 void bnx_enable_intr(struct bnx_softc *);
398
399 int bnx_intr(void *);
400 void bnx_iff(struct bnx_softc *);
401 void bnx_stats_update(struct bnx_softc *);
402 void bnx_tick(void *);
403
404 struct pool *bnx_tx_pool = NULL;
405 void bnx_alloc_pkts(struct work *, void *);
406
407 /****************************************************************************/
408 /* OpenBSD device dispatch table. */
409 /****************************************************************************/
410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
411 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
412
413 /****************************************************************************/
414 /* Device probe function. */
415 /* */
416 /* Compares the device to the driver's list of supported devices and */
417 /* reports back to the OS whether this is the right driver for the device. */
418 /* */
419 /* Returns: */
420 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
421 /****************************************************************************/
422 static const struct bnx_product *
423 bnx_lookup(const struct pci_attach_args *pa)
424 {
425 int i;
426 pcireg_t subid;
427
428 for (i = 0; i < __arraycount(bnx_devices); i++) {
429 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
430 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
431 continue;
432 if (!bnx_devices[i].bp_subvendor)
433 return &bnx_devices[i];
434 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
435 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
436 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
437 return &bnx_devices[i];
438 }
439
440 return NULL;
441 }
442 static int
443 bnx_probe(device_t parent, cfdata_t match, void *aux)
444 {
445 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
446
447 if (bnx_lookup(pa) != NULL)
448 return 1;
449
450 return 0;
451 }
452
453 /****************************************************************************/
454 /* PCI Capabilities Probe Function. */
455 /* */
456 /* Walks the PCI capabiites list for the device to find what features are */
457 /* supported. */
458 /* */
459 /* Returns: */
460 /* None. */
461 /****************************************************************************/
462 static void
463 bnx_print_adapter_info(struct bnx_softc *sc)
464 {
465 device_t dev = sc->bnx_dev;
466 int i = 0;
467
468 aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
469 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
470 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
471 ? "Serdes " : "", sc->bnx_chipid);
472
473 /* Bus info. */
474 if (sc->bnx_flags & BNX_PCIE_FLAG) {
475 aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
476 switch (sc->link_speed) {
477 case 1: aprint_normal("2.5GT/s\n"); break;
478 case 2: aprint_normal("5GT/s\n"); break;
479 default: aprint_normal("Unknown link speed\n");
480 }
481 } else {
482 aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
483 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
484 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
485 sc->bus_speed_mhz);
486 }
487
488 /* Firmware version and device features. */
489 aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
490 sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
491
492 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
493 if (i > 0) aprint_normal("|");
494 aprint_normal("2.5G"); i++;
495 }
496
497 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
498 if (i > 0) aprint_normal("|");
499 aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
500 } else {
501 aprint_normal(")\n");
502 }
503
504 aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
505 sc->bnx_rx_quick_cons_trip_int,
506 sc->bnx_rx_quick_cons_trip,
507 sc->bnx_rx_ticks_int,
508 sc->bnx_rx_ticks,
509 sc->bnx_tx_quick_cons_trip_int,
510 sc->bnx_tx_quick_cons_trip,
511 sc->bnx_tx_ticks_int,
512 sc->bnx_tx_ticks);
513 }
514
515
516 /****************************************************************************/
517 /* PCI Capabilities Probe Function. */
518 /* */
519 /* Walks the PCI capabiites list for the device to find what features are */
520 /* supported. */
521 /* */
522 /* Returns: */
523 /* None. */
524 /****************************************************************************/
525 static void
526 bnx_probe_pci_caps(struct bnx_softc *sc)
527 {
528 struct pci_attach_args *pa = &(sc->bnx_pa);
529 pcireg_t reg;
530
531 /* Check if PCI-X capability is enabled. */
532 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
533 NULL) != 0) {
534 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
535 }
536
537 /* Check if PCIe capability is enabled. */
538 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
539 NULL) != 0) {
540 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
541 reg + PCIE_LCSR);
542 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
543 "0x%08X\n", link_status);
544 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
545 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
546 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
547 sc->bnx_flags |= BNX_PCIE_FLAG;
548 }
549
550 /* Check if MSI capability is enabled. */
551 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
552 NULL) != 0)
553 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
554
555 /* Check if MSI-X capability is enabled. */
556 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
557 NULL) != 0)
558 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
559 }
560
561
562 /****************************************************************************/
563 /* Device attach function. */
564 /* */
565 /* Allocates device resources, performs secondary chip identification, */
566 /* resets and initializes the hardware, and initializes driver instance */
567 /* variables. */
568 /* */
569 /* Returns: */
570 /* 0 on success, positive value on failure. */
571 /****************************************************************************/
572 void
573 bnx_attach(device_t parent, device_t self, void *aux)
574 {
575 const struct bnx_product *bp;
576 struct bnx_softc *sc = device_private(self);
577 prop_dictionary_t dict;
578 struct pci_attach_args *pa = aux;
579 pci_chipset_tag_t pc = pa->pa_pc;
580 const char *intrstr = NULL;
581 uint32_t command;
582 struct ifnet *ifp;
583 struct mii_data * const mii = &sc->bnx_mii;
584 uint32_t val;
585 int mii_flags = MIIF_FORCEANEG;
586 pcireg_t memtype;
587 char intrbuf[PCI_INTRSTR_LEN];
588 int i, j;
589
590 if (bnx_tx_pool == NULL) {
591 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_WAITOK);
592 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
593 0, 0, 0, "bnxpkts", NULL, IPL_NET);
594 }
595
596 bp = bnx_lookup(pa);
597 if (bp == NULL)
598 panic("unknown device");
599
600 sc->bnx_dev = self;
601
602 aprint_naive("\n");
603 aprint_normal(": %s\n", bp->bp_name);
604
605 sc->bnx_pa = *pa;
606
607 /*
608 * Map control/status registers.
609 */
610 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
611 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
612 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
613 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
614
615 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
616 aprint_error_dev(sc->bnx_dev,
617 "failed to enable memory mapping!\n");
618 return;
619 }
620
621 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
622 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
623 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
624 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
625 return;
626 }
627
628 if (pci_intr_alloc(pa, &sc->bnx_ih, NULL, 0)) {
629 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
630 goto bnx_attach_fail;
631 }
632 intrstr = pci_intr_string(pc, sc->bnx_ih[0], intrbuf, sizeof(intrbuf));
633
634 /*
635 * Configure byte swap and enable indirect register access.
636 * Rely on CPU to do target byte swapping on big endian systems.
637 * Access to registers outside of PCI configurtion space are not
638 * valid until this is done.
639 */
640 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
641 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
642 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
643
644 /* Save ASIC revision info. */
645 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
646
647 /*
648 * Find the base address for shared memory access.
649 * Newer versions of bootcode use a signature and offset
650 * while older versions use a fixed address.
651 */
652 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
653 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
654 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
655 (sc->bnx_pa.pa_function << 2));
656 else
657 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
658
659 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
660
661 /* Set initial device and PHY flags */
662 sc->bnx_flags = 0;
663 sc->bnx_phy_flags = 0;
664
665 /* Fetch the bootcode revision. */
666 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
667 for (i = 0, j = 0; i < 3; i++) {
668 uint8_t num;
669 int k, skip0;
670
671 num = (uint8_t)(val >> (24 - (i * 8)));
672 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
673 if (num >= k || !skip0 || k == 1) {
674 sc->bnx_bc_ver[j++] = (num / k) + '0';
675 skip0 = 0;
676 }
677 }
678 if (i != 2)
679 sc->bnx_bc_ver[j++] = '.';
680 }
681
682 /* Check if any management firmware is enabled. */
683 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
684 if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
685 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
686 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
687
688 /* Allow time for firmware to enter the running state. */
689 for (i = 0; i < 30; i++) {
690 val = REG_RD_IND(sc, sc->bnx_shmem_base +
691 BNX_BC_STATE_CONDITION);
692 if (val & BNX_CONDITION_MFW_RUN_MASK)
693 break;
694 DELAY(10000);
695 }
696
697 /* Check if management firmware is running. */
698 val = REG_RD_IND(sc, sc->bnx_shmem_base +
699 BNX_BC_STATE_CONDITION);
700 val &= BNX_CONDITION_MFW_RUN_MASK;
701 if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
702 (val != BNX_CONDITION_MFW_RUN_NONE)) {
703 uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
704 BNX_MFW_VER_PTR);
705
706 /* Read the management firmware version string. */
707 for (j = 0; j < 3; j++) {
708 val = bnx_reg_rd_ind(sc, addr + j * 4);
709 val = bswap32(val);
710 memcpy(&sc->bnx_mfw_ver[i], &val, 4);
711 i += 4;
712 }
713 } else {
714 /* May cause firmware synchronization timeouts. */
715 BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
716 "but not running!\n", __FILE__, __LINE__);
717 strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
718
719 /* ToDo: Any action the driver should take? */
720 }
721 }
722
723 bnx_probe_pci_caps(sc);
724
725 /* Get PCI bus information (speed and type). */
726 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
727 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
728 uint32_t clkreg;
729
730 sc->bnx_flags |= BNX_PCIX_FLAG;
731
732 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
733
734 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
735 switch (clkreg) {
736 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
737 sc->bus_speed_mhz = 133;
738 break;
739
740 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
741 sc->bus_speed_mhz = 100;
742 break;
743
744 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
745 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
746 sc->bus_speed_mhz = 66;
747 break;
748
749 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
750 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
751 sc->bus_speed_mhz = 50;
752 break;
753
754 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
755 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
756 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
757 sc->bus_speed_mhz = 33;
758 break;
759 }
760 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
761 sc->bus_speed_mhz = 66;
762 else
763 sc->bus_speed_mhz = 33;
764
765 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
766 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
767
768 /* Reset the controller. */
769 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
770 goto bnx_attach_fail;
771
772 /* Initialize the controller. */
773 if (bnx_chipinit(sc)) {
774 aprint_error_dev(sc->bnx_dev,
775 "Controller initialization failed!\n");
776 goto bnx_attach_fail;
777 }
778
779 /* Perform NVRAM test. */
780 if (bnx_nvram_test(sc)) {
781 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
782 goto bnx_attach_fail;
783 }
784
785 /* Fetch the permanent Ethernet MAC address. */
786 bnx_get_mac_addr(sc);
787 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
788 ether_sprintf(sc->eaddr));
789
790 /*
791 * Trip points control how many BDs
792 * should be ready before generating an
793 * interrupt while ticks control how long
794 * a BD can sit in the chain before
795 * generating an interrupt. Set the default
796 * values for the RX and TX rings.
797 */
798
799 #ifdef BNX_DEBUG
800 /* Force more frequent interrupts. */
801 sc->bnx_tx_quick_cons_trip_int = 1;
802 sc->bnx_tx_quick_cons_trip = 1;
803 sc->bnx_tx_ticks_int = 0;
804 sc->bnx_tx_ticks = 0;
805
806 sc->bnx_rx_quick_cons_trip_int = 1;
807 sc->bnx_rx_quick_cons_trip = 1;
808 sc->bnx_rx_ticks_int = 0;
809 sc->bnx_rx_ticks = 0;
810 #else
811 sc->bnx_tx_quick_cons_trip_int = 20;
812 sc->bnx_tx_quick_cons_trip = 20;
813 sc->bnx_tx_ticks_int = 80;
814 sc->bnx_tx_ticks = 80;
815
816 sc->bnx_rx_quick_cons_trip_int = 6;
817 sc->bnx_rx_quick_cons_trip = 6;
818 sc->bnx_rx_ticks_int = 18;
819 sc->bnx_rx_ticks = 18;
820 #endif
821
822 /* Update statistics once every second. */
823 sc->bnx_stats_ticks = 1000000 & 0xffff00;
824
825 /* Find the media type for the adapter. */
826 bnx_get_media(sc);
827
828 /*
829 * Store config data needed by the PHY driver for
830 * backplane applications
831 */
832 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
833 BNX_SHARED_HW_CFG_CONFIG);
834 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
835 BNX_PORT_HW_CFG_CONFIG);
836
837 /* Allocate DMA memory resources. */
838 sc->bnx_dmatag = pa->pa_dmat;
839 if (bnx_dma_alloc(sc)) {
840 aprint_error_dev(sc->bnx_dev,
841 "DMA resource allocation failed!\n");
842 goto bnx_attach_fail;
843 }
844
845 /* Initialize the ifnet interface. */
846 ifp = &sc->bnx_ec.ec_if;
847 ifp->if_softc = sc;
848 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
849 ifp->if_ioctl = bnx_ioctl;
850 ifp->if_stop = bnx_stop;
851 ifp->if_start = bnx_start;
852 ifp->if_init = bnx_init;
853 ifp->if_watchdog = bnx_watchdog;
854 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
855 IFQ_SET_READY(&ifp->if_snd);
856 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
857
858 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
859 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
860 sc->bnx_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
861
862 ifp->if_capabilities |=
863 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
864 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
865 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
866
867 /* create workqueue to handle packet allocations */
868 if (workqueue_create(&sc->bnx_wq, device_xname(self),
869 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
870 aprint_error_dev(self, "failed to create workqueue\n");
871 goto bnx_attach_fail;
872 }
873
874 mii->mii_ifp = ifp;
875 mii->mii_readreg = bnx_miibus_read_reg;
876 mii->mii_writereg = bnx_miibus_write_reg;
877 mii->mii_statchg = bnx_miibus_statchg;
878
879 /* Handle any special PHY initialization for SerDes PHYs. */
880 bnx_init_media(sc);
881
882 sc->bnx_ec.ec_mii = mii;
883 ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
884
885 /* set phyflags and chipid before mii_attach() */
886 dict = device_properties(self);
887 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
888 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
889 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
890 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
891
892 /* Print some useful adapter info */
893 bnx_print_adapter_info(sc);
894
895 mii_flags |= MIIF_DOPAUSE;
896 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
897 mii_flags |= MIIF_HAVEFIBER;
898 mii_attach(self, mii, 0xffffffff,
899 sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
900
901 if (LIST_EMPTY(&mii->mii_phys)) {
902 aprint_error_dev(self, "no PHY found!\n");
903 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
904 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
905 } else
906 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
907
908 /* Attach to the Ethernet interface list. */
909 if_attach(ifp);
910 if_deferred_start_init(ifp, NULL);
911 ether_ifattach(ifp, sc->eaddr);
912
913 callout_init(&sc->bnx_timeout, 0);
914 callout_setfunc(&sc->bnx_timeout, bnx_tick, sc);
915
916 /* Hookup IRQ last. */
917 sc->bnx_intrhand = pci_intr_establish_xname(pc, sc->bnx_ih[0], IPL_NET,
918 bnx_intr, sc, device_xname(self));
919 if (sc->bnx_intrhand == NULL) {
920 aprint_error_dev(self, "couldn't establish interrupt");
921 if (intrstr != NULL)
922 aprint_error(" at %s", intrstr);
923 aprint_error("\n");
924 goto bnx_attach_fail;
925 }
926 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
927
928 if (pmf_device_register(self, NULL, NULL))
929 pmf_class_network_register(self, ifp);
930 else
931 aprint_error_dev(self, "couldn't establish power handler\n");
932
933 /* Print some important debugging info. */
934 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
935
936 /* Get the firmware running so ASF still works. */
937 bnx_mgmt_init(sc);
938
939 goto bnx_attach_exit;
940
941 bnx_attach_fail:
942 bnx_release_resources(sc);
943
944 bnx_attach_exit:
945 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
946 }
947
948 /****************************************************************************/
949 /* Device detach function. */
950 /* */
951 /* Stops the controller, resets the controller, and releases resources. */
952 /* */
953 /* Returns: */
954 /* 0 on success, positive value on failure. */
955 /****************************************************************************/
956 int
957 bnx_detach(device_t dev, int flags)
958 {
959 int s;
960 struct bnx_softc *sc;
961 struct ifnet *ifp;
962
963 sc = device_private(dev);
964 ifp = &sc->bnx_ec.ec_if;
965
966 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
967
968 /* Stop and reset the controller. */
969 s = splnet();
970 bnx_stop(ifp, 1);
971 splx(s);
972
973 pmf_device_deregister(dev);
974 callout_destroy(&sc->bnx_timeout);
975 ether_ifdetach(ifp);
976 workqueue_destroy(sc->bnx_wq);
977
978 if_detach(ifp);
979 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
980
981 /* Delete all remaining media. */
982 ifmedia_fini(&sc->bnx_mii.mii_media);
983
984 /* Release all remaining resources. */
985 bnx_release_resources(sc);
986
987 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
988
989 return 0;
990 }
991
992 /****************************************************************************/
993 /* Indirect register read. */
994 /* */
995 /* Reads NetXtreme II registers using an index/data register pair in PCI */
996 /* configuration space. Using this mechanism avoids issues with posted */
997 /* reads but is much slower than memory-mapped I/O. */
998 /* */
999 /* Returns: */
1000 /* The value of the register. */
1001 /****************************************************************************/
1002 uint32_t
1003 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
1004 {
1005 struct pci_attach_args *pa = &(sc->bnx_pa);
1006
1007 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1008 offset);
1009 #ifdef BNX_DEBUG
1010 {
1011 uint32_t val;
1012 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
1013 BNX_PCICFG_REG_WINDOW);
1014 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
1015 "val = 0x%08X\n", __func__, offset, val);
1016 return val;
1017 }
1018 #else
1019 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
1020 #endif
1021 }
1022
1023 /****************************************************************************/
1024 /* Indirect register write. */
1025 /* */
1026 /* Writes NetXtreme II registers using an index/data register pair in PCI */
1027 /* configuration space. Using this mechanism avoids issues with posted */
1028 /* writes but is muchh slower than memory-mapped I/O. */
1029 /* */
1030 /* Returns: */
1031 /* Nothing. */
1032 /****************************************************************************/
1033 void
1034 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
1035 {
1036 struct pci_attach_args *pa = &(sc->bnx_pa);
1037
1038 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1039 __func__, offset, val);
1040
1041 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1042 offset);
1043 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
1044 }
1045
1046 /****************************************************************************/
1047 /* Context memory write. */
1048 /* */
1049 /* The NetXtreme II controller uses context memory to track connection */
1050 /* information for L2 and higher network protocols. */
1051 /* */
1052 /* Returns: */
1053 /* Nothing. */
1054 /****************************************************************************/
1055 void
1056 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1057 uint32_t ctx_val)
1058 {
1059 uint32_t idx, offset = ctx_offset + cid_addr;
1060 uint32_t val, retry_cnt = 5;
1061
1062 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1063 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
1064 REG_WR(sc, BNX_CTX_CTX_CTRL,
1065 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
1066
1067 for (idx = 0; idx < retry_cnt; idx++) {
1068 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1069 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1070 break;
1071 DELAY(5);
1072 }
1073
1074 #if 0
1075 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1076 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1077 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1078 __FILE__, __LINE__, cid_addr, ctx_offset);
1079 #endif
1080
1081 } else {
1082 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1083 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1084 }
1085 }
1086
1087 /****************************************************************************/
1088 /* PHY register read. */
1089 /* */
1090 /* Implements register reads on the MII bus. */
1091 /* */
1092 /* Returns: */
1093 /* The value of the register. */
1094 /****************************************************************************/
1095 int
1096 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
1097 {
1098 struct bnx_softc *sc = device_private(dev);
1099 uint32_t data;
1100 int i, rv = 0;
1101
1102 /*
1103 * The BCM5709S PHY is an IEEE Clause 45 PHY
1104 * with special mappings to work with IEEE
1105 * Clause 22 register accesses.
1106 */
1107 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1108 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1109 reg += 0x10;
1110 }
1111
1112 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1113 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1114 data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1115
1116 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1117 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1118
1119 DELAY(40);
1120 }
1121
1122 data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1123 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1124 BNX_EMAC_MDIO_COMM_START_BUSY;
1125 REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
1126
1127 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1128 DELAY(10);
1129
1130 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1131 if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1132 DELAY(5);
1133
1134 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1135 data &= BNX_EMAC_MDIO_COMM_DATA;
1136
1137 break;
1138 }
1139 }
1140
1141 if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
1142 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1143 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1144 rv = ETIMEDOUT;
1145 } else {
1146 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1147 *val = data & 0xffff;
1148
1149 DBPRINT(sc, BNX_EXCESSIVE,
1150 "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
1151 phy, (uint16_t) reg & 0xffff, *val);
1152 }
1153
1154 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1155 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1156 data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1157
1158 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1159 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1160
1161 DELAY(40);
1162 }
1163
1164 return rv;
1165 }
1166
1167 /****************************************************************************/
1168 /* PHY register write. */
1169 /* */
1170 /* Implements register writes on the MII bus. */
1171 /* */
1172 /* Returns: */
1173 /* The value of the register. */
1174 /****************************************************************************/
1175 int
1176 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
1177 {
1178 struct bnx_softc *sc = device_private(dev);
1179 uint32_t val1;
1180 int i, rv = 0;
1181
1182 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1183 "val = 0x%04hX\n", __func__,
1184 phy, (uint16_t) reg & 0xffff, val);
1185
1186 /*
1187 * The BCM5709S PHY is an IEEE Clause 45 PHY
1188 * with special mappings to work with IEEE
1189 * Clause 22 register accesses.
1190 */
1191 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1192 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1193 reg += 0x10;
1194 }
1195
1196 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1197 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1198 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1199
1200 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1201 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1202
1203 DELAY(40);
1204 }
1205
1206 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1207 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1208 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1209 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1210
1211 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1212 DELAY(10);
1213
1214 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1215 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1216 DELAY(5);
1217 break;
1218 }
1219 }
1220
1221 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1222 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1223 __LINE__);
1224 rv = ETIMEDOUT;
1225 }
1226
1227 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1228 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1229 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1230
1231 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1232 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1233
1234 DELAY(40);
1235 }
1236
1237 return rv;
1238 }
1239
1240 /****************************************************************************/
1241 /* MII bus status change. */
1242 /* */
1243 /* Called by the MII bus driver when the PHY establishes link to set the */
1244 /* MAC interface registers. */
1245 /* */
1246 /* Returns: */
1247 /* Nothing. */
1248 /****************************************************************************/
1249 void
1250 bnx_miibus_statchg(struct ifnet *ifp)
1251 {
1252 struct bnx_softc *sc = ifp->if_softc;
1253 struct mii_data *mii = &sc->bnx_mii;
1254 uint32_t rx_mode = sc->rx_mode;
1255 int val;
1256
1257 val = REG_RD(sc, BNX_EMAC_MODE);
1258 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1259 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1260 BNX_EMAC_MODE_25G);
1261
1262 /*
1263 * Get flow control negotiation result.
1264 */
1265 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1266 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
1267 sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1268 mii->mii_media_active &= ~IFM_ETH_FMASK;
1269 }
1270
1271 /* Set MII or GMII interface based on the speed
1272 * negotiated by the PHY.
1273 */
1274 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1275 case IFM_10_T:
1276 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1277 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1278 val |= BNX_EMAC_MODE_PORT_MII_10;
1279 break;
1280 }
1281 /* FALLTHROUGH */
1282 case IFM_100_TX:
1283 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1284 val |= BNX_EMAC_MODE_PORT_MII;
1285 break;
1286 case IFM_2500_SX:
1287 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1288 val |= BNX_EMAC_MODE_25G;
1289 /* FALLTHROUGH */
1290 case IFM_1000_T:
1291 case IFM_1000_SX:
1292 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1293 val |= BNX_EMAC_MODE_PORT_GMII;
1294 break;
1295 default:
1296 val |= BNX_EMAC_MODE_PORT_GMII;
1297 break;
1298 }
1299
1300 /* Set half or full duplex based on the duplicity
1301 * negotiated by the PHY.
1302 */
1303 if ((mii->mii_media_active & IFM_HDX) != 0) {
1304 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1305 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1306 } else
1307 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1308
1309 REG_WR(sc, BNX_EMAC_MODE, val);
1310
1311 /*
1312 * 802.3x flow control
1313 */
1314 if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
1315 DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
1316 rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
1317 } else {
1318 DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
1319 rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
1320 }
1321
1322 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
1323 DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
1324 BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1325 } else {
1326 DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
1327 BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1328 }
1329
1330 /* Only make changes if the receive mode has actually changed. */
1331 if (rx_mode != sc->rx_mode) {
1332 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
1333 rx_mode);
1334
1335 sc->rx_mode = rx_mode;
1336 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
1337
1338 bnx_init_rx_context(sc);
1339 }
1340 }
1341
1342 /****************************************************************************/
1343 /* Acquire NVRAM lock. */
1344 /* */
1345 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1346 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1347 /* for use by the driver. */
1348 /* */
1349 /* Returns: */
1350 /* 0 on success, positive value on failure. */
1351 /****************************************************************************/
1352 int
1353 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1354 {
1355 uint32_t val;
1356 int j;
1357
1358 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1359
1360 /* Request access to the flash interface. */
1361 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1362 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1363 val = REG_RD(sc, BNX_NVM_SW_ARB);
1364 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1365 break;
1366
1367 DELAY(5);
1368 }
1369
1370 if (j >= NVRAM_TIMEOUT_COUNT) {
1371 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1372 return EBUSY;
1373 }
1374
1375 return 0;
1376 }
1377
1378 /****************************************************************************/
1379 /* Release NVRAM lock. */
1380 /* */
1381 /* When the caller is finished accessing NVRAM the lock must be released. */
1382 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1383 /* for use by the driver. */
1384 /* */
1385 /* Returns: */
1386 /* 0 on success, positive value on failure. */
1387 /****************************************************************************/
1388 int
1389 bnx_release_nvram_lock(struct bnx_softc *sc)
1390 {
1391 int j;
1392 uint32_t val;
1393
1394 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1395
1396 /* Relinquish nvram interface. */
1397 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1398
1399 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1400 val = REG_RD(sc, BNX_NVM_SW_ARB);
1401 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1402 break;
1403
1404 DELAY(5);
1405 }
1406
1407 if (j >= NVRAM_TIMEOUT_COUNT) {
1408 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1409 return EBUSY;
1410 }
1411
1412 return 0;
1413 }
1414
1415 #ifdef BNX_NVRAM_WRITE_SUPPORT
1416 /****************************************************************************/
1417 /* Enable NVRAM write access. */
1418 /* */
1419 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1420 /* */
1421 /* Returns: */
1422 /* 0 on success, positive value on failure. */
1423 /****************************************************************************/
1424 int
1425 bnx_enable_nvram_write(struct bnx_softc *sc)
1426 {
1427 uint32_t val;
1428
1429 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1430
1431 val = REG_RD(sc, BNX_MISC_CFG);
1432 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1433
1434 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1435 int j;
1436
1437 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1438 REG_WR(sc, BNX_NVM_COMMAND,
1439 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1440
1441 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1442 DELAY(5);
1443
1444 val = REG_RD(sc, BNX_NVM_COMMAND);
1445 if (val & BNX_NVM_COMMAND_DONE)
1446 break;
1447 }
1448
1449 if (j >= NVRAM_TIMEOUT_COUNT) {
1450 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1451 return EBUSY;
1452 }
1453 }
1454
1455 return 0;
1456 }
1457
1458 /****************************************************************************/
1459 /* Disable NVRAM write access. */
1460 /* */
1461 /* When the caller is finished writing to NVRAM write access must be */
1462 /* disabled. */
1463 /* */
1464 /* Returns: */
1465 /* Nothing. */
1466 /****************************************************************************/
1467 void
1468 bnx_disable_nvram_write(struct bnx_softc *sc)
1469 {
1470 uint32_t val;
1471
1472 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1473
1474 val = REG_RD(sc, BNX_MISC_CFG);
1475 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1476 }
1477 #endif
1478
1479 /****************************************************************************/
1480 /* Enable NVRAM access. */
1481 /* */
1482 /* Before accessing NVRAM for read or write operations the caller must */
1483 /* enabled NVRAM access. */
1484 /* */
1485 /* Returns: */
1486 /* Nothing. */
1487 /****************************************************************************/
1488 void
1489 bnx_enable_nvram_access(struct bnx_softc *sc)
1490 {
1491 uint32_t val;
1492
1493 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1494
1495 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1496 /* Enable both bits, even on read. */
1497 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1498 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1499 }
1500
1501 /****************************************************************************/
1502 /* Disable NVRAM access. */
1503 /* */
1504 /* When the caller is finished accessing NVRAM access must be disabled. */
1505 /* */
1506 /* Returns: */
1507 /* Nothing. */
1508 /****************************************************************************/
1509 void
1510 bnx_disable_nvram_access(struct bnx_softc *sc)
1511 {
1512 uint32_t val;
1513
1514 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1515
1516 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1517
1518 /* Disable both bits, even after read. */
1519 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1520 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1521 }
1522
1523 #ifdef BNX_NVRAM_WRITE_SUPPORT
1524 /****************************************************************************/
1525 /* Erase NVRAM page before writing. */
1526 /* */
1527 /* Non-buffered flash parts require that a page be erased before it is */
1528 /* written. */
1529 /* */
1530 /* Returns: */
1531 /* 0 on success, positive value on failure. */
1532 /****************************************************************************/
1533 int
1534 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1535 {
1536 uint32_t cmd;
1537 int j;
1538
1539 /* Buffered flash doesn't require an erase. */
1540 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1541 return 0;
1542
1543 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1544
1545 /* Build an erase command. */
1546 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1547 BNX_NVM_COMMAND_DOIT;
1548
1549 /*
1550 * Clear the DONE bit separately, set the NVRAM address to erase,
1551 * and issue the erase command.
1552 */
1553 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1554 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1555 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1556
1557 /* Wait for completion. */
1558 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1559 uint32_t val;
1560
1561 DELAY(5);
1562
1563 val = REG_RD(sc, BNX_NVM_COMMAND);
1564 if (val & BNX_NVM_COMMAND_DONE)
1565 break;
1566 }
1567
1568 if (j >= NVRAM_TIMEOUT_COUNT) {
1569 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1570 return EBUSY;
1571 }
1572
1573 return 0;
1574 }
1575 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1576
1577 /****************************************************************************/
1578 /* Read a dword (32 bits) from NVRAM. */
1579 /* */
1580 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1581 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1582 /* */
1583 /* Returns: */
1584 /* 0 on success and the 32 bit value read, positive value on failure. */
1585 /****************************************************************************/
1586 int
1587 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1588 uint8_t *ret_val, uint32_t cmd_flags)
1589 {
1590 uint32_t cmd;
1591 int i, rc = 0;
1592
1593 /* Build the command word. */
1594 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1595
1596 /* Calculate the offset for buffered flash if translation is used. */
1597 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1598 offset = ((offset / sc->bnx_flash_info->page_size) <<
1599 sc->bnx_flash_info->page_bits) +
1600 (offset % sc->bnx_flash_info->page_size);
1601 }
1602
1603 /*
1604 * Clear the DONE bit separately, set the address to read,
1605 * and issue the read.
1606 */
1607 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1608 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1609 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1610
1611 /* Wait for completion. */
1612 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1613 uint32_t val;
1614
1615 DELAY(5);
1616
1617 val = REG_RD(sc, BNX_NVM_COMMAND);
1618 if (val & BNX_NVM_COMMAND_DONE) {
1619 val = REG_RD(sc, BNX_NVM_READ);
1620
1621 val = be32toh(val);
1622 memcpy(ret_val, &val, 4);
1623 break;
1624 }
1625 }
1626
1627 /* Check for errors. */
1628 if (i >= NVRAM_TIMEOUT_COUNT) {
1629 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1630 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1631 rc = EBUSY;
1632 }
1633
1634 return rc;
1635 }
1636
1637 #ifdef BNX_NVRAM_WRITE_SUPPORT
1638 /****************************************************************************/
1639 /* Write a dword (32 bits) to NVRAM. */
1640 /* */
1641 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1642 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1643 /* enabled NVRAM write access. */
1644 /* */
1645 /* Returns: */
1646 /* 0 on success, positive value on failure. */
1647 /****************************************************************************/
1648 int
1649 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1650 uint32_t cmd_flags)
1651 {
1652 uint32_t cmd, val32;
1653 int j;
1654
1655 /* Build the command word. */
1656 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1657
1658 /* Calculate the offset for buffered flash if translation is used. */
1659 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1660 offset = ((offset / sc->bnx_flash_info->page_size) <<
1661 sc->bnx_flash_info->page_bits) +
1662 (offset % sc->bnx_flash_info->page_size);
1663 }
1664
1665 /*
1666 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1667 * set the NVRAM address to write, and issue the write command
1668 */
1669 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1670 memcpy(&val32, val, 4);
1671 val32 = htobe32(val32);
1672 REG_WR(sc, BNX_NVM_WRITE, val32);
1673 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1674 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1675
1676 /* Wait for completion. */
1677 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1678 DELAY(5);
1679
1680 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1681 break;
1682 }
1683 if (j >= NVRAM_TIMEOUT_COUNT) {
1684 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1685 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1686 return EBUSY;
1687 }
1688
1689 return 0;
1690 }
1691 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1692
1693 /****************************************************************************/
1694 /* Initialize NVRAM access. */
1695 /* */
1696 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1697 /* access that device. */
1698 /* */
1699 /* Returns: */
1700 /* 0 on success, positive value on failure. */
1701 /****************************************************************************/
1702 int
1703 bnx_init_nvram(struct bnx_softc *sc)
1704 {
1705 uint32_t val;
1706 int j, entry_count, rc = 0;
1707 struct flash_spec *flash;
1708
1709 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1710
1711 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1712 sc->bnx_flash_info = &flash_5709;
1713 goto bnx_init_nvram_get_flash_size;
1714 }
1715
1716 /* Determine the selected interface. */
1717 val = REG_RD(sc, BNX_NVM_CFG1);
1718
1719 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1720
1721 /*
1722 * Flash reconfiguration is required to support additional
1723 * NVRAM devices not directly supported in hardware.
1724 * Check if the flash interface was reconfigured
1725 * by the bootcode.
1726 */
1727
1728 if (val & 0x40000000) {
1729 /* Flash interface reconfigured by bootcode. */
1730
1731 DBPRINT(sc, BNX_INFO_LOAD,
1732 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1733
1734 for (j = 0, flash = &flash_table[0]; j < entry_count;
1735 j++, flash++) {
1736 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1737 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1738 sc->bnx_flash_info = flash;
1739 break;
1740 }
1741 }
1742 } else {
1743 /* Flash interface not yet reconfigured. */
1744 uint32_t mask;
1745
1746 DBPRINT(sc, BNX_INFO_LOAD,
1747 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1748
1749 if (val & (1 << 23))
1750 mask = FLASH_BACKUP_STRAP_MASK;
1751 else
1752 mask = FLASH_STRAP_MASK;
1753
1754 /* Look for the matching NVRAM device configuration data. */
1755 for (j = 0, flash = &flash_table[0]; j < entry_count;
1756 j++, flash++) {
1757 /* Check if the dev matches any of the known devices. */
1758 if ((val & mask) == (flash->strapping & mask)) {
1759 /* Found a device match. */
1760 sc->bnx_flash_info = flash;
1761
1762 /* Request access to the flash interface. */
1763 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1764 return rc;
1765
1766 /* Reconfigure the flash interface. */
1767 bnx_enable_nvram_access(sc);
1768 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1769 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1770 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1771 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1772 bnx_disable_nvram_access(sc);
1773 bnx_release_nvram_lock(sc);
1774
1775 break;
1776 }
1777 }
1778 }
1779
1780 /* Check if a matching device was found. */
1781 if (j == entry_count) {
1782 sc->bnx_flash_info = NULL;
1783 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1784 __FILE__, __LINE__);
1785 rc = ENODEV;
1786 }
1787
1788 bnx_init_nvram_get_flash_size:
1789 /* Write the flash config data to the shared memory interface. */
1790 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1791 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1792 if (val)
1793 sc->bnx_flash_size = val;
1794 else
1795 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1796
1797 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1798 "0x%08X\n", sc->bnx_flash_info->total_size);
1799
1800 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1801
1802 return rc;
1803 }
1804
1805 /****************************************************************************/
1806 /* Read an arbitrary range of data from NVRAM. */
1807 /* */
1808 /* Prepares the NVRAM interface for access and reads the requested data */
1809 /* into the supplied buffer. */
1810 /* */
1811 /* Returns: */
1812 /* 0 on success and the data read, positive value on failure. */
1813 /****************************************************************************/
1814 int
1815 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1816 int buf_size)
1817 {
1818 int rc = 0;
1819 uint32_t cmd_flags, offset32, len32, extra;
1820
1821 if (buf_size == 0)
1822 return 0;
1823
1824 /* Request access to the flash interface. */
1825 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1826 return rc;
1827
1828 /* Enable access to flash interface */
1829 bnx_enable_nvram_access(sc);
1830
1831 len32 = buf_size;
1832 offset32 = offset;
1833 extra = 0;
1834
1835 cmd_flags = 0;
1836
1837 if (offset32 & 3) {
1838 uint8_t buf[4];
1839 uint32_t pre_len;
1840
1841 offset32 &= ~3;
1842 pre_len = 4 - (offset & 3);
1843
1844 if (pre_len >= len32) {
1845 pre_len = len32;
1846 cmd_flags =
1847 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1848 } else
1849 cmd_flags = BNX_NVM_COMMAND_FIRST;
1850
1851 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1852
1853 if (rc)
1854 return rc;
1855
1856 memcpy(ret_buf, buf + (offset & 3), pre_len);
1857
1858 offset32 += 4;
1859 ret_buf += pre_len;
1860 len32 -= pre_len;
1861 }
1862
1863 if (len32 & 3) {
1864 extra = 4 - (len32 & 3);
1865 len32 = (len32 + 4) & ~3;
1866 }
1867
1868 if (len32 == 4) {
1869 uint8_t buf[4];
1870
1871 if (cmd_flags)
1872 cmd_flags = BNX_NVM_COMMAND_LAST;
1873 else
1874 cmd_flags =
1875 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1876
1877 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1878
1879 memcpy(ret_buf, buf, 4 - extra);
1880 } else if (len32 > 0) {
1881 uint8_t buf[4];
1882
1883 /* Read the first word. */
1884 if (cmd_flags)
1885 cmd_flags = 0;
1886 else
1887 cmd_flags = BNX_NVM_COMMAND_FIRST;
1888
1889 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1890
1891 /* Advance to the next dword. */
1892 offset32 += 4;
1893 ret_buf += 4;
1894 len32 -= 4;
1895
1896 while (len32 > 4 && rc == 0) {
1897 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1898
1899 /* Advance to the next dword. */
1900 offset32 += 4;
1901 ret_buf += 4;
1902 len32 -= 4;
1903 }
1904
1905 if (rc)
1906 return rc;
1907
1908 cmd_flags = BNX_NVM_COMMAND_LAST;
1909 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1910
1911 memcpy(ret_buf, buf, 4 - extra);
1912 }
1913
1914 /* Disable access to flash interface and release the lock. */
1915 bnx_disable_nvram_access(sc);
1916 bnx_release_nvram_lock(sc);
1917
1918 return rc;
1919 }
1920
1921 #ifdef BNX_NVRAM_WRITE_SUPPORT
1922 /****************************************************************************/
1923 /* Write an arbitrary range of data from NVRAM. */
1924 /* */
1925 /* Prepares the NVRAM interface for write access and writes the requested */
1926 /* data from the supplied buffer. The caller is responsible for */
1927 /* calculating any appropriate CRCs. */
1928 /* */
1929 /* Returns: */
1930 /* 0 on success, positive value on failure. */
1931 /****************************************************************************/
1932 int
1933 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1934 int buf_size)
1935 {
1936 uint32_t written, offset32, len32;
1937 uint8_t *buf, start[4], end[4];
1938 int rc = 0;
1939 int align_start, align_end;
1940
1941 buf = data_buf;
1942 offset32 = offset;
1943 len32 = buf_size;
1944 align_start = align_end = 0;
1945
1946 if ((align_start = (offset32 & 3))) {
1947 offset32 &= ~3;
1948 len32 += align_start;
1949 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1950 return rc;
1951 }
1952
1953 if (len32 & 3) {
1954 if ((len32 > 4) || !align_start) {
1955 align_end = 4 - (len32 & 3);
1956 len32 += align_end;
1957 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1958 end, 4)))
1959 return rc;
1960 }
1961 }
1962
1963 if (align_start || align_end) {
1964 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1965 if (buf == NULL)
1966 return ENOMEM;
1967
1968 if (align_start)
1969 memcpy(buf, start, 4);
1970
1971 if (align_end)
1972 memcpy(buf + len32 - 4, end, 4);
1973
1974 memcpy(buf + align_start, data_buf, buf_size);
1975 }
1976
1977 written = 0;
1978 while ((written < len32) && (rc == 0)) {
1979 uint32_t page_start, page_end, data_start, data_end;
1980 uint32_t addr, cmd_flags;
1981 int i;
1982 uint8_t flash_buffer[264];
1983
1984 /* Find the page_start addr */
1985 page_start = offset32 + written;
1986 page_start -= (page_start % sc->bnx_flash_info->page_size);
1987 /* Find the page_end addr */
1988 page_end = page_start + sc->bnx_flash_info->page_size;
1989 /* Find the data_start addr */
1990 data_start = (written == 0) ? offset32 : page_start;
1991 /* Find the data_end addr */
1992 data_end = (page_end > offset32 + len32) ?
1993 (offset32 + len32) : page_end;
1994
1995 /* Request access to the flash interface. */
1996 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1997 goto nvram_write_end;
1998
1999 /* Enable access to flash interface */
2000 bnx_enable_nvram_access(sc);
2001
2002 cmd_flags = BNX_NVM_COMMAND_FIRST;
2003 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2004 int j;
2005
2006 /* Read the whole page into the buffer
2007 * (non-buffer flash only) */
2008 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
2009 if (j == (sc->bnx_flash_info->page_size - 4))
2010 cmd_flags |= BNX_NVM_COMMAND_LAST;
2011
2012 rc = bnx_nvram_read_dword(sc,
2013 page_start + j,
2014 &flash_buffer[j],
2015 cmd_flags);
2016
2017 if (rc)
2018 goto nvram_write_end;
2019
2020 cmd_flags = 0;
2021 }
2022 }
2023
2024 /* Enable writes to flash interface (unlock write-protect) */
2025 if ((rc = bnx_enable_nvram_write(sc)) != 0)
2026 goto nvram_write_end;
2027
2028 /* Erase the page */
2029 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
2030 goto nvram_write_end;
2031
2032 /* Re-enable the write again for the actual write */
2033 bnx_enable_nvram_write(sc);
2034
2035 /* Loop to write back the buffer data from page_start to
2036 * data_start */
2037 i = 0;
2038 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2039 for (addr = page_start; addr < data_start;
2040 addr += 4, i += 4) {
2041
2042 rc = bnx_nvram_write_dword(sc, addr,
2043 &flash_buffer[i], cmd_flags);
2044
2045 if (rc != 0)
2046 goto nvram_write_end;
2047
2048 cmd_flags = 0;
2049 }
2050 }
2051
2052 /* Loop to write the new data from data_start to data_end */
2053 for (addr = data_start; addr < data_end; addr += 4, i++) {
2054 if ((addr == page_end - 4) ||
2055 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
2056 && (addr == data_end - 4))) {
2057
2058 cmd_flags |= BNX_NVM_COMMAND_LAST;
2059 }
2060
2061 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
2062
2063 if (rc != 0)
2064 goto nvram_write_end;
2065
2066 cmd_flags = 0;
2067 buf += 4;
2068 }
2069
2070 /* Loop to write back the buffer data from data_end
2071 * to page_end */
2072 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2073 for (addr = data_end; addr < page_end;
2074 addr += 4, i += 4) {
2075
2076 if (addr == page_end-4)
2077 cmd_flags = BNX_NVM_COMMAND_LAST;
2078
2079 rc = bnx_nvram_write_dword(sc, addr,
2080 &flash_buffer[i], cmd_flags);
2081
2082 if (rc != 0)
2083 goto nvram_write_end;
2084
2085 cmd_flags = 0;
2086 }
2087 }
2088
2089 /* Disable writes to flash interface (lock write-protect) */
2090 bnx_disable_nvram_write(sc);
2091
2092 /* Disable access to flash interface */
2093 bnx_disable_nvram_access(sc);
2094 bnx_release_nvram_lock(sc);
2095
2096 /* Increment written */
2097 written += data_end - data_start;
2098 }
2099
2100 nvram_write_end:
2101 if (align_start || align_end)
2102 free(buf, M_DEVBUF);
2103
2104 return rc;
2105 }
2106 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2107
2108 /****************************************************************************/
2109 /* Verifies that NVRAM is accessible and contains valid data. */
2110 /* */
2111 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2112 /* correct. */
2113 /* */
2114 /* Returns: */
2115 /* 0 on success, positive value on failure. */
2116 /****************************************************************************/
2117 int
2118 bnx_nvram_test(struct bnx_softc *sc)
2119 {
2120 uint32_t buf[BNX_NVRAM_SIZE / 4];
2121 uint8_t *data = (uint8_t *) buf;
2122 int rc = 0;
2123 uint32_t magic, csum;
2124
2125 /*
2126 * Check that the device NVRAM is valid by reading
2127 * the magic value at offset 0.
2128 */
2129 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2130 goto bnx_nvram_test_done;
2131
2132 magic = be32toh(buf[0]);
2133 if (magic != BNX_NVRAM_MAGIC) {
2134 rc = ENODEV;
2135 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2136 "Expected: 0x%08X, Found: 0x%08X\n",
2137 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2138 goto bnx_nvram_test_done;
2139 }
2140
2141 /*
2142 * Verify that the device NVRAM includes valid
2143 * configuration data.
2144 */
2145 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2146 goto bnx_nvram_test_done;
2147
2148 csum = ether_crc32_le(data, 0x100);
2149 if (csum != BNX_CRC32_RESIDUAL) {
2150 rc = ENODEV;
2151 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2152 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2153 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2154 goto bnx_nvram_test_done;
2155 }
2156
2157 csum = ether_crc32_le(data + 0x100, 0x100);
2158 if (csum != BNX_CRC32_RESIDUAL) {
2159 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2160 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2161 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2162 rc = ENODEV;
2163 }
2164
2165 bnx_nvram_test_done:
2166 return rc;
2167 }
2168
2169 /****************************************************************************/
2170 /* Identifies the current media type of the controller and sets the PHY */
2171 /* address. */
2172 /* */
2173 /* Returns: */
2174 /* Nothing. */
2175 /****************************************************************************/
2176 void
2177 bnx_get_media(struct bnx_softc *sc)
2178 {
2179 sc->bnx_phy_addr = 1;
2180
2181 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2182 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2183 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2184 uint32_t strap;
2185
2186 /*
2187 * The BCM5709S is software configurable
2188 * for Copper or SerDes operation.
2189 */
2190 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2191 DBPRINT(sc, BNX_INFO_LOAD,
2192 "5709 bonded for copper.\n");
2193 goto bnx_get_media_exit;
2194 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2195 DBPRINT(sc, BNX_INFO_LOAD,
2196 "5709 bonded for dual media.\n");
2197 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2198 goto bnx_get_media_exit;
2199 }
2200
2201 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2202 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2203 else {
2204 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2205 >> 8;
2206 }
2207
2208 if (sc->bnx_pa.pa_function == 0) {
2209 switch (strap) {
2210 case 0x4:
2211 case 0x5:
2212 case 0x6:
2213 DBPRINT(sc, BNX_INFO_LOAD,
2214 "BCM5709 s/w configured for SerDes.\n");
2215 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2216 break;
2217 default:
2218 DBPRINT(sc, BNX_INFO_LOAD,
2219 "BCM5709 s/w configured for Copper.\n");
2220 }
2221 } else {
2222 switch (strap) {
2223 case 0x1:
2224 case 0x2:
2225 case 0x4:
2226 DBPRINT(sc, BNX_INFO_LOAD,
2227 "BCM5709 s/w configured for SerDes.\n");
2228 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2229 break;
2230 default:
2231 DBPRINT(sc, BNX_INFO_LOAD,
2232 "BCM5709 s/w configured for Copper.\n");
2233 }
2234 }
2235
2236 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2237 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2238
2239 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2240 uint32_t val;
2241
2242 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2243
2244 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2245 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2246
2247 /*
2248 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2249 * separate PHY for SerDes.
2250 */
2251 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2252 sc->bnx_phy_addr = 2;
2253 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2254 BNX_SHARED_HW_CFG_CONFIG);
2255 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2256 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2257 DBPRINT(sc, BNX_INFO_LOAD,
2258 "Found 2.5Gb capable adapter\n");
2259 }
2260 }
2261 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2262 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2263 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2264
2265 bnx_get_media_exit:
2266 DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
2267 "Using PHY address %d.\n", sc->bnx_phy_addr);
2268 }
2269
2270 /****************************************************************************/
2271 /* Performs PHY initialization required before MII drivers access the */
2272 /* device. */
2273 /* */
2274 /* Returns: */
2275 /* Nothing. */
2276 /****************************************************************************/
2277 void
2278 bnx_init_media(struct bnx_softc *sc)
2279 {
2280 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2281 /*
2282 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2283 * IEEE Clause 22 method. Otherwise we have no way to attach
2284 * the PHY to the mii(4) layer. PHY specific configuration
2285 * is done by the mii(4) layer.
2286 */
2287
2288 /* Select auto-negotiation MMD of the PHY. */
2289 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2290 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2291
2292 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2293 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2294
2295 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2296 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2297 }
2298 }
2299
2300 /****************************************************************************/
2301 /* Free any DMA memory owned by the driver. */
2302 /* */
2303 /* Scans through each data structre that requires DMA memory and frees */
2304 /* the memory if allocated. */
2305 /* */
2306 /* Returns: */
2307 /* Nothing. */
2308 /****************************************************************************/
2309 void
2310 bnx_dma_free(struct bnx_softc *sc)
2311 {
2312 int i;
2313
2314 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2315
2316 /* Destroy the status block. */
2317 if (sc->status_block != NULL && sc->status_map != NULL) {
2318 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2319 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2320 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2321 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2322 BNX_STATUS_BLK_SZ);
2323 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2324 sc->status_rseg);
2325 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2326 sc->status_block = NULL;
2327 sc->status_map = NULL;
2328 }
2329
2330 /* Destroy the statistics block. */
2331 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2332 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2333 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2334 BNX_STATS_BLK_SZ);
2335 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2336 sc->stats_rseg);
2337 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2338 sc->stats_block = NULL;
2339 sc->stats_map = NULL;
2340 }
2341
2342 /* Free, unmap and destroy all context memory pages. */
2343 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2344 for (i = 0; i < sc->ctx_pages; i++) {
2345 if (sc->ctx_block[i] != NULL) {
2346 bus_dmamap_unload(sc->bnx_dmatag,
2347 sc->ctx_map[i]);
2348 bus_dmamem_unmap(sc->bnx_dmatag,
2349 (void *)sc->ctx_block[i],
2350 BCM_PAGE_SIZE);
2351 bus_dmamem_free(sc->bnx_dmatag,
2352 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2353 bus_dmamap_destroy(sc->bnx_dmatag,
2354 sc->ctx_map[i]);
2355 sc->ctx_block[i] = NULL;
2356 }
2357 }
2358 }
2359
2360 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2361 for (i = 0; i < TX_PAGES; i++ ) {
2362 if (sc->tx_bd_chain[i] != NULL &&
2363 sc->tx_bd_chain_map[i] != NULL) {
2364 bus_dmamap_unload(sc->bnx_dmatag,
2365 sc->tx_bd_chain_map[i]);
2366 bus_dmamem_unmap(sc->bnx_dmatag,
2367 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2368 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2369 sc->tx_bd_chain_rseg[i]);
2370 bus_dmamap_destroy(sc->bnx_dmatag,
2371 sc->tx_bd_chain_map[i]);
2372 sc->tx_bd_chain[i] = NULL;
2373 sc->tx_bd_chain_map[i] = NULL;
2374 }
2375 }
2376
2377 /* Destroy the TX dmamaps. */
2378 struct bnx_pkt *pkt;
2379 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
2380 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
2381 sc->tx_pkt_count--;
2382
2383 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
2384 pool_put(bnx_tx_pool, pkt);
2385 }
2386
2387 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2388 for (i = 0; i < RX_PAGES; i++ ) {
2389 if (sc->rx_bd_chain[i] != NULL &&
2390 sc->rx_bd_chain_map[i] != NULL) {
2391 bus_dmamap_unload(sc->bnx_dmatag,
2392 sc->rx_bd_chain_map[i]);
2393 bus_dmamem_unmap(sc->bnx_dmatag,
2394 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2395 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2396 sc->rx_bd_chain_rseg[i]);
2397
2398 bus_dmamap_destroy(sc->bnx_dmatag,
2399 sc->rx_bd_chain_map[i]);
2400 sc->rx_bd_chain[i] = NULL;
2401 sc->rx_bd_chain_map[i] = NULL;
2402 }
2403 }
2404
2405 /* Unload and destroy the RX mbuf maps. */
2406 for (i = 0; i < TOTAL_RX_BD; i++) {
2407 if (sc->rx_mbuf_map[i] != NULL) {
2408 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2409 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2410 }
2411 }
2412
2413 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2414 }
2415
2416 /****************************************************************************/
2417 /* Allocate any DMA memory needed by the driver. */
2418 /* */
2419 /* Allocates DMA memory needed for the various global structures needed by */
2420 /* hardware. */
2421 /* */
2422 /* Returns: */
2423 /* 0 for success, positive value for failure. */
2424 /****************************************************************************/
2425 int
2426 bnx_dma_alloc(struct bnx_softc *sc)
2427 {
2428 int i, rc = 0;
2429
2430 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2431
2432 /*
2433 * Allocate DMA memory for the status block, map the memory into DMA
2434 * space, and fetch the physical address of the block.
2435 */
2436 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2437 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2438 aprint_error_dev(sc->bnx_dev,
2439 "Could not create status block DMA map!\n");
2440 rc = ENOMEM;
2441 goto bnx_dma_alloc_exit;
2442 }
2443
2444 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2445 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2446 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2447 aprint_error_dev(sc->bnx_dev,
2448 "Could not allocate status block DMA memory!\n");
2449 rc = ENOMEM;
2450 goto bnx_dma_alloc_exit;
2451 }
2452
2453 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2454 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2455 aprint_error_dev(sc->bnx_dev,
2456 "Could not map status block DMA memory!\n");
2457 rc = ENOMEM;
2458 goto bnx_dma_alloc_exit;
2459 }
2460
2461 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2462 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2463 aprint_error_dev(sc->bnx_dev,
2464 "Could not load status block DMA memory!\n");
2465 rc = ENOMEM;
2466 goto bnx_dma_alloc_exit;
2467 }
2468
2469 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2470 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2471
2472 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2473 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2474
2475 /* DRC - Fix for 64 bit addresses. */
2476 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2477 (uint32_t) sc->status_block_paddr);
2478
2479 /* BCM5709 uses host memory as cache for context memory. */
2480 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2481 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2482 if (sc->ctx_pages == 0)
2483 sc->ctx_pages = 1;
2484 if (sc->ctx_pages > 4) /* XXX */
2485 sc->ctx_pages = 4;
2486
2487 DBRUNIF((sc->ctx_pages > 512),
2488 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2489 __FILE__, __LINE__, sc->ctx_pages));
2490
2491
2492 for (i = 0; i < sc->ctx_pages; i++) {
2493 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2494 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2495 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2496 &sc->ctx_map[i]) != 0) {
2497 rc = ENOMEM;
2498 goto bnx_dma_alloc_exit;
2499 }
2500
2501 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2502 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2503 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2504 rc = ENOMEM;
2505 goto bnx_dma_alloc_exit;
2506 }
2507
2508 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2509 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2510 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2511 rc = ENOMEM;
2512 goto bnx_dma_alloc_exit;
2513 }
2514
2515 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2516 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2517 BUS_DMA_NOWAIT) != 0) {
2518 rc = ENOMEM;
2519 goto bnx_dma_alloc_exit;
2520 }
2521
2522 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2523 }
2524 }
2525
2526 /*
2527 * Allocate DMA memory for the statistics block, map the memory into
2528 * DMA space, and fetch the physical address of the block.
2529 */
2530 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2531 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2532 aprint_error_dev(sc->bnx_dev,
2533 "Could not create stats block DMA map!\n");
2534 rc = ENOMEM;
2535 goto bnx_dma_alloc_exit;
2536 }
2537
2538 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2539 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2540 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2541 aprint_error_dev(sc->bnx_dev,
2542 "Could not allocate stats block DMA memory!\n");
2543 rc = ENOMEM;
2544 goto bnx_dma_alloc_exit;
2545 }
2546
2547 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2548 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2549 aprint_error_dev(sc->bnx_dev,
2550 "Could not map stats block DMA memory!\n");
2551 rc = ENOMEM;
2552 goto bnx_dma_alloc_exit;
2553 }
2554
2555 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2556 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2557 aprint_error_dev(sc->bnx_dev,
2558 "Could not load status block DMA memory!\n");
2559 rc = ENOMEM;
2560 goto bnx_dma_alloc_exit;
2561 }
2562
2563 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2564 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2565
2566 /* DRC - Fix for 64 bit address. */
2567 DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
2568 (uint32_t) sc->stats_block_paddr);
2569
2570 /*
2571 * Allocate DMA memory for the TX buffer descriptor chain,
2572 * and fetch the physical address of the block.
2573 */
2574 for (i = 0; i < TX_PAGES; i++) {
2575 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2576 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2577 &sc->tx_bd_chain_map[i])) {
2578 aprint_error_dev(sc->bnx_dev,
2579 "Could not create Tx desc %d DMA map!\n", i);
2580 rc = ENOMEM;
2581 goto bnx_dma_alloc_exit;
2582 }
2583
2584 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2585 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2586 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2587 aprint_error_dev(sc->bnx_dev,
2588 "Could not allocate TX desc %d DMA memory!\n",
2589 i);
2590 rc = ENOMEM;
2591 goto bnx_dma_alloc_exit;
2592 }
2593
2594 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2595 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2596 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2597 aprint_error_dev(sc->bnx_dev,
2598 "Could not map TX desc %d DMA memory!\n", i);
2599 rc = ENOMEM;
2600 goto bnx_dma_alloc_exit;
2601 }
2602
2603 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2604 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2605 BUS_DMA_NOWAIT)) {
2606 aprint_error_dev(sc->bnx_dev,
2607 "Could not load TX desc %d DMA memory!\n", i);
2608 rc = ENOMEM;
2609 goto bnx_dma_alloc_exit;
2610 }
2611
2612 sc->tx_bd_chain_paddr[i] =
2613 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2614
2615 /* DRC - Fix for 64 bit systems. */
2616 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2617 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2618 }
2619
2620 /*
2621 * Create lists to hold TX mbufs.
2622 */
2623 TAILQ_INIT(&sc->tx_free_pkts);
2624 TAILQ_INIT(&sc->tx_used_pkts);
2625 sc->tx_pkt_count = 0;
2626 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2627
2628 /*
2629 * Allocate DMA memory for the Rx buffer descriptor chain,
2630 * and fetch the physical address of the block.
2631 */
2632 for (i = 0; i < RX_PAGES; i++) {
2633 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2634 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2635 &sc->rx_bd_chain_map[i])) {
2636 aprint_error_dev(sc->bnx_dev,
2637 "Could not create Rx desc %d DMA map!\n", i);
2638 rc = ENOMEM;
2639 goto bnx_dma_alloc_exit;
2640 }
2641
2642 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2643 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2644 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2645 aprint_error_dev(sc->bnx_dev,
2646 "Could not allocate Rx desc %d DMA memory!\n", i);
2647 rc = ENOMEM;
2648 goto bnx_dma_alloc_exit;
2649 }
2650
2651 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2652 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2653 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2654 aprint_error_dev(sc->bnx_dev,
2655 "Could not map Rx desc %d DMA memory!\n", i);
2656 rc = ENOMEM;
2657 goto bnx_dma_alloc_exit;
2658 }
2659
2660 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2661 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2662 BUS_DMA_NOWAIT)) {
2663 aprint_error_dev(sc->bnx_dev,
2664 "Could not load Rx desc %d DMA memory!\n", i);
2665 rc = ENOMEM;
2666 goto bnx_dma_alloc_exit;
2667 }
2668
2669 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2670 sc->rx_bd_chain_paddr[i] =
2671 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2672
2673 /* DRC - Fix for 64 bit systems. */
2674 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2675 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2676 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2677 0, BNX_RX_CHAIN_PAGE_SZ,
2678 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2679 }
2680
2681 /*
2682 * Create DMA maps for the Rx buffer mbufs.
2683 */
2684 for (i = 0; i < TOTAL_RX_BD; i++) {
2685 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2686 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2687 &sc->rx_mbuf_map[i])) {
2688 aprint_error_dev(sc->bnx_dev,
2689 "Could not create Rx mbuf %d DMA map!\n", i);
2690 rc = ENOMEM;
2691 goto bnx_dma_alloc_exit;
2692 }
2693 }
2694
2695 bnx_dma_alloc_exit:
2696 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2697
2698 return rc;
2699 }
2700
2701 /****************************************************************************/
2702 /* Release all resources used by the driver. */
2703 /* */
2704 /* Releases all resources acquired by the driver including interrupts, */
2705 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2706 /* */
2707 /* Returns: */
2708 /* Nothing. */
2709 /****************************************************************************/
2710 void
2711 bnx_release_resources(struct bnx_softc *sc)
2712 {
2713 struct pci_attach_args *pa = &(sc->bnx_pa);
2714
2715 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2716
2717 bnx_dma_free(sc);
2718
2719 if (sc->bnx_intrhand != NULL)
2720 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2721
2722 if (sc->bnx_ih != NULL)
2723 pci_intr_release(pa->pa_pc, sc->bnx_ih, 1);
2724
2725 if (sc->bnx_size)
2726 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2727
2728 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2729 }
2730
2731 /****************************************************************************/
2732 /* Firmware synchronization. */
2733 /* */
2734 /* Before performing certain events such as a chip reset, synchronize with */
2735 /* the firmware first. */
2736 /* */
2737 /* Returns: */
2738 /* 0 for success, positive value for failure. */
2739 /****************************************************************************/
2740 int
2741 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2742 {
2743 int i, rc = 0;
2744 uint32_t val;
2745
2746 /* Don't waste any time if we've timed out before. */
2747 if (sc->bnx_fw_timed_out) {
2748 rc = EBUSY;
2749 goto bnx_fw_sync_exit;
2750 }
2751
2752 /* Increment the message sequence number. */
2753 sc->bnx_fw_wr_seq++;
2754 msg_data |= sc->bnx_fw_wr_seq;
2755
2756 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2757 msg_data);
2758
2759 /* Send the message to the bootcode driver mailbox. */
2760 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2761
2762 /* Wait for the bootcode to acknowledge the message. */
2763 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2764 /* Check for a response in the bootcode firmware mailbox. */
2765 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2766 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2767 break;
2768 DELAY(1000);
2769 }
2770
2771 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2772 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2773 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2774 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2775 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2776
2777 msg_data &= ~BNX_DRV_MSG_CODE;
2778 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2779
2780 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2781
2782 sc->bnx_fw_timed_out = 1;
2783 rc = EBUSY;
2784 }
2785
2786 bnx_fw_sync_exit:
2787 return rc;
2788 }
2789
2790 /****************************************************************************/
2791 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2792 /* */
2793 /* Returns: */
2794 /* Nothing. */
2795 /****************************************************************************/
2796 void
2797 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2798 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2799 {
2800 int i;
2801 uint32_t val;
2802
2803 /* Set the page size used by RV2P. */
2804 if (rv2p_proc == RV2P_PROC2) {
2805 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2806 USABLE_RX_BD_PER_PAGE);
2807 }
2808
2809 for (i = 0; i < rv2p_code_len; i += 8) {
2810 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2811 rv2p_code++;
2812 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2813 rv2p_code++;
2814
2815 if (rv2p_proc == RV2P_PROC1) {
2816 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2817 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2818 } else {
2819 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2820 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2821 }
2822 }
2823
2824 /* Reset the processor, un-stall is done later. */
2825 if (rv2p_proc == RV2P_PROC1)
2826 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2827 else
2828 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2829 }
2830
2831 /****************************************************************************/
2832 /* Load RISC processor firmware. */
2833 /* */
2834 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2835 /* associated with a particular processor. */
2836 /* */
2837 /* Returns: */
2838 /* Nothing. */
2839 /****************************************************************************/
2840 void
2841 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2842 struct fw_info *fw)
2843 {
2844 uint32_t offset;
2845 uint32_t val;
2846
2847 /* Halt the CPU. */
2848 val = REG_RD_IND(sc, cpu_reg->mode);
2849 val |= cpu_reg->mode_value_halt;
2850 REG_WR_IND(sc, cpu_reg->mode, val);
2851 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2852
2853 /* Load the Text area. */
2854 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2855 if (fw->text) {
2856 int j;
2857
2858 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2859 REG_WR_IND(sc, offset, fw->text[j]);
2860 }
2861
2862 /* Load the Data area. */
2863 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2864 if (fw->data) {
2865 int j;
2866
2867 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2868 REG_WR_IND(sc, offset, fw->data[j]);
2869 }
2870
2871 /* Load the SBSS area. */
2872 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2873 if (fw->sbss) {
2874 int j;
2875
2876 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2877 REG_WR_IND(sc, offset, fw->sbss[j]);
2878 }
2879
2880 /* Load the BSS area. */
2881 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2882 if (fw->bss) {
2883 int j;
2884
2885 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2886 REG_WR_IND(sc, offset, fw->bss[j]);
2887 }
2888
2889 /* Load the Read-Only area. */
2890 offset = cpu_reg->spad_base +
2891 (fw->rodata_addr - cpu_reg->mips_view_base);
2892 if (fw->rodata) {
2893 int j;
2894
2895 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2896 REG_WR_IND(sc, offset, fw->rodata[j]);
2897 }
2898
2899 /* Clear the pre-fetch instruction. */
2900 REG_WR_IND(sc, cpu_reg->inst, 0);
2901 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2902
2903 /* Start the CPU. */
2904 val = REG_RD_IND(sc, cpu_reg->mode);
2905 val &= ~cpu_reg->mode_value_halt;
2906 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2907 REG_WR_IND(sc, cpu_reg->mode, val);
2908 }
2909
2910 /****************************************************************************/
2911 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2912 /* */
2913 /* Loads the firmware for each CPU and starts the CPU. */
2914 /* */
2915 /* Returns: */
2916 /* Nothing. */
2917 /****************************************************************************/
2918 void
2919 bnx_init_cpus(struct bnx_softc *sc)
2920 {
2921 struct cpu_reg cpu_reg;
2922 struct fw_info fw;
2923
2924 switch (BNX_CHIP_NUM(sc)) {
2925 case BNX_CHIP_NUM_5709:
2926 /* Initialize the RV2P processor. */
2927 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2928 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2929 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2930 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2931 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2932 } else {
2933 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2934 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2935 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2936 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2937 }
2938
2939 /* Initialize the RX Processor. */
2940 cpu_reg.mode = BNX_RXP_CPU_MODE;
2941 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2942 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2943 cpu_reg.state = BNX_RXP_CPU_STATE;
2944 cpu_reg.state_value_clear = 0xffffff;
2945 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2946 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2947 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2948 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2949 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2950 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2951 cpu_reg.mips_view_base = 0x8000000;
2952
2953 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2954 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2955 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2956 fw.start_addr = bnx_RXP_b09FwStartAddr;
2957
2958 fw.text_addr = bnx_RXP_b09FwTextAddr;
2959 fw.text_len = bnx_RXP_b09FwTextLen;
2960 fw.text_index = 0;
2961 fw.text = bnx_RXP_b09FwText;
2962
2963 fw.data_addr = bnx_RXP_b09FwDataAddr;
2964 fw.data_len = bnx_RXP_b09FwDataLen;
2965 fw.data_index = 0;
2966 fw.data = bnx_RXP_b09FwData;
2967
2968 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2969 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2970 fw.sbss_index = 0;
2971 fw.sbss = bnx_RXP_b09FwSbss;
2972
2973 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2974 fw.bss_len = bnx_RXP_b09FwBssLen;
2975 fw.bss_index = 0;
2976 fw.bss = bnx_RXP_b09FwBss;
2977
2978 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2979 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2980 fw.rodata_index = 0;
2981 fw.rodata = bnx_RXP_b09FwRodata;
2982
2983 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2984 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2985
2986 /* Initialize the TX Processor. */
2987 cpu_reg.mode = BNX_TXP_CPU_MODE;
2988 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2989 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2990 cpu_reg.state = BNX_TXP_CPU_STATE;
2991 cpu_reg.state_value_clear = 0xffffff;
2992 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2993 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2994 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2995 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2996 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2997 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2998 cpu_reg.mips_view_base = 0x8000000;
2999
3000 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
3001 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
3002 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
3003 fw.start_addr = bnx_TXP_b09FwStartAddr;
3004
3005 fw.text_addr = bnx_TXP_b09FwTextAddr;
3006 fw.text_len = bnx_TXP_b09FwTextLen;
3007 fw.text_index = 0;
3008 fw.text = bnx_TXP_b09FwText;
3009
3010 fw.data_addr = bnx_TXP_b09FwDataAddr;
3011 fw.data_len = bnx_TXP_b09FwDataLen;
3012 fw.data_index = 0;
3013 fw.data = bnx_TXP_b09FwData;
3014
3015 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
3016 fw.sbss_len = bnx_TXP_b09FwSbssLen;
3017 fw.sbss_index = 0;
3018 fw.sbss = bnx_TXP_b09FwSbss;
3019
3020 fw.bss_addr = bnx_TXP_b09FwBssAddr;
3021 fw.bss_len = bnx_TXP_b09FwBssLen;
3022 fw.bss_index = 0;
3023 fw.bss = bnx_TXP_b09FwBss;
3024
3025 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
3026 fw.rodata_len = bnx_TXP_b09FwRodataLen;
3027 fw.rodata_index = 0;
3028 fw.rodata = bnx_TXP_b09FwRodata;
3029
3030 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3031 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3032
3033 /* Initialize the TX Patch-up Processor. */
3034 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3035 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3036 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3037 cpu_reg.state = BNX_TPAT_CPU_STATE;
3038 cpu_reg.state_value_clear = 0xffffff;
3039 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3040 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3041 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3042 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3043 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3044 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3045 cpu_reg.mips_view_base = 0x8000000;
3046
3047 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
3048 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
3049 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
3050 fw.start_addr = bnx_TPAT_b09FwStartAddr;
3051
3052 fw.text_addr = bnx_TPAT_b09FwTextAddr;
3053 fw.text_len = bnx_TPAT_b09FwTextLen;
3054 fw.text_index = 0;
3055 fw.text = bnx_TPAT_b09FwText;
3056
3057 fw.data_addr = bnx_TPAT_b09FwDataAddr;
3058 fw.data_len = bnx_TPAT_b09FwDataLen;
3059 fw.data_index = 0;
3060 fw.data = bnx_TPAT_b09FwData;
3061
3062 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
3063 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
3064 fw.sbss_index = 0;
3065 fw.sbss = bnx_TPAT_b09FwSbss;
3066
3067 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
3068 fw.bss_len = bnx_TPAT_b09FwBssLen;
3069 fw.bss_index = 0;
3070 fw.bss = bnx_TPAT_b09FwBss;
3071
3072 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
3073 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
3074 fw.rodata_index = 0;
3075 fw.rodata = bnx_TPAT_b09FwRodata;
3076
3077 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3078 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3079
3080 /* Initialize the Completion Processor. */
3081 cpu_reg.mode = BNX_COM_CPU_MODE;
3082 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3083 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3084 cpu_reg.state = BNX_COM_CPU_STATE;
3085 cpu_reg.state_value_clear = 0xffffff;
3086 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3087 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3088 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3089 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3090 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3091 cpu_reg.spad_base = BNX_COM_SCRATCH;
3092 cpu_reg.mips_view_base = 0x8000000;
3093
3094 fw.ver_major = bnx_COM_b09FwReleaseMajor;
3095 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
3096 fw.ver_fix = bnx_COM_b09FwReleaseFix;
3097 fw.start_addr = bnx_COM_b09FwStartAddr;
3098
3099 fw.text_addr = bnx_COM_b09FwTextAddr;
3100 fw.text_len = bnx_COM_b09FwTextLen;
3101 fw.text_index = 0;
3102 fw.text = bnx_COM_b09FwText;
3103
3104 fw.data_addr = bnx_COM_b09FwDataAddr;
3105 fw.data_len = bnx_COM_b09FwDataLen;
3106 fw.data_index = 0;
3107 fw.data = bnx_COM_b09FwData;
3108
3109 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
3110 fw.sbss_len = bnx_COM_b09FwSbssLen;
3111 fw.sbss_index = 0;
3112 fw.sbss = bnx_COM_b09FwSbss;
3113
3114 fw.bss_addr = bnx_COM_b09FwBssAddr;
3115 fw.bss_len = bnx_COM_b09FwBssLen;
3116 fw.bss_index = 0;
3117 fw.bss = bnx_COM_b09FwBss;
3118
3119 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3120 fw.rodata_len = bnx_COM_b09FwRodataLen;
3121 fw.rodata_index = 0;
3122 fw.rodata = bnx_COM_b09FwRodata;
3123 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3124 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3125 break;
3126 default:
3127 /* Initialize the RV2P processor. */
3128 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3129 RV2P_PROC1);
3130 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3131 RV2P_PROC2);
3132
3133 /* Initialize the RX Processor. */
3134 cpu_reg.mode = BNX_RXP_CPU_MODE;
3135 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3136 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3137 cpu_reg.state = BNX_RXP_CPU_STATE;
3138 cpu_reg.state_value_clear = 0xffffff;
3139 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3140 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3141 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3142 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3143 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3144 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3145 cpu_reg.mips_view_base = 0x8000000;
3146
3147 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3148 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3149 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3150 fw.start_addr = bnx_RXP_b06FwStartAddr;
3151
3152 fw.text_addr = bnx_RXP_b06FwTextAddr;
3153 fw.text_len = bnx_RXP_b06FwTextLen;
3154 fw.text_index = 0;
3155 fw.text = bnx_RXP_b06FwText;
3156
3157 fw.data_addr = bnx_RXP_b06FwDataAddr;
3158 fw.data_len = bnx_RXP_b06FwDataLen;
3159 fw.data_index = 0;
3160 fw.data = bnx_RXP_b06FwData;
3161
3162 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3163 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3164 fw.sbss_index = 0;
3165 fw.sbss = bnx_RXP_b06FwSbss;
3166
3167 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3168 fw.bss_len = bnx_RXP_b06FwBssLen;
3169 fw.bss_index = 0;
3170 fw.bss = bnx_RXP_b06FwBss;
3171
3172 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3173 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3174 fw.rodata_index = 0;
3175 fw.rodata = bnx_RXP_b06FwRodata;
3176
3177 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3178 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3179
3180 /* Initialize the TX Processor. */
3181 cpu_reg.mode = BNX_TXP_CPU_MODE;
3182 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3183 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3184 cpu_reg.state = BNX_TXP_CPU_STATE;
3185 cpu_reg.state_value_clear = 0xffffff;
3186 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3187 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3188 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3189 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3190 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3191 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3192 cpu_reg.mips_view_base = 0x8000000;
3193
3194 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3195 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3196 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3197 fw.start_addr = bnx_TXP_b06FwStartAddr;
3198
3199 fw.text_addr = bnx_TXP_b06FwTextAddr;
3200 fw.text_len = bnx_TXP_b06FwTextLen;
3201 fw.text_index = 0;
3202 fw.text = bnx_TXP_b06FwText;
3203
3204 fw.data_addr = bnx_TXP_b06FwDataAddr;
3205 fw.data_len = bnx_TXP_b06FwDataLen;
3206 fw.data_index = 0;
3207 fw.data = bnx_TXP_b06FwData;
3208
3209 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3210 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3211 fw.sbss_index = 0;
3212 fw.sbss = bnx_TXP_b06FwSbss;
3213
3214 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3215 fw.bss_len = bnx_TXP_b06FwBssLen;
3216 fw.bss_index = 0;
3217 fw.bss = bnx_TXP_b06FwBss;
3218
3219 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3220 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3221 fw.rodata_index = 0;
3222 fw.rodata = bnx_TXP_b06FwRodata;
3223
3224 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3225 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3226
3227 /* Initialize the TX Patch-up Processor. */
3228 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3229 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3230 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3231 cpu_reg.state = BNX_TPAT_CPU_STATE;
3232 cpu_reg.state_value_clear = 0xffffff;
3233 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3234 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3235 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3236 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3237 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3238 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3239 cpu_reg.mips_view_base = 0x8000000;
3240
3241 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3242 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3243 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3244 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3245
3246 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3247 fw.text_len = bnx_TPAT_b06FwTextLen;
3248 fw.text_index = 0;
3249 fw.text = bnx_TPAT_b06FwText;
3250
3251 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3252 fw.data_len = bnx_TPAT_b06FwDataLen;
3253 fw.data_index = 0;
3254 fw.data = bnx_TPAT_b06FwData;
3255
3256 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3257 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3258 fw.sbss_index = 0;
3259 fw.sbss = bnx_TPAT_b06FwSbss;
3260
3261 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3262 fw.bss_len = bnx_TPAT_b06FwBssLen;
3263 fw.bss_index = 0;
3264 fw.bss = bnx_TPAT_b06FwBss;
3265
3266 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3267 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3268 fw.rodata_index = 0;
3269 fw.rodata = bnx_TPAT_b06FwRodata;
3270
3271 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3272 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3273
3274 /* Initialize the Completion Processor. */
3275 cpu_reg.mode = BNX_COM_CPU_MODE;
3276 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3277 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3278 cpu_reg.state = BNX_COM_CPU_STATE;
3279 cpu_reg.state_value_clear = 0xffffff;
3280 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3281 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3282 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3283 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3284 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3285 cpu_reg.spad_base = BNX_COM_SCRATCH;
3286 cpu_reg.mips_view_base = 0x8000000;
3287
3288 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3289 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3290 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3291 fw.start_addr = bnx_COM_b06FwStartAddr;
3292
3293 fw.text_addr = bnx_COM_b06FwTextAddr;
3294 fw.text_len = bnx_COM_b06FwTextLen;
3295 fw.text_index = 0;
3296 fw.text = bnx_COM_b06FwText;
3297
3298 fw.data_addr = bnx_COM_b06FwDataAddr;
3299 fw.data_len = bnx_COM_b06FwDataLen;
3300 fw.data_index = 0;
3301 fw.data = bnx_COM_b06FwData;
3302
3303 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3304 fw.sbss_len = bnx_COM_b06FwSbssLen;
3305 fw.sbss_index = 0;
3306 fw.sbss = bnx_COM_b06FwSbss;
3307
3308 fw.bss_addr = bnx_COM_b06FwBssAddr;
3309 fw.bss_len = bnx_COM_b06FwBssLen;
3310 fw.bss_index = 0;
3311 fw.bss = bnx_COM_b06FwBss;
3312
3313 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3314 fw.rodata_len = bnx_COM_b06FwRodataLen;
3315 fw.rodata_index = 0;
3316 fw.rodata = bnx_COM_b06FwRodata;
3317 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3318 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3319 break;
3320 }
3321 }
3322
3323 /****************************************************************************/
3324 /* Initialize context memory. */
3325 /* */
3326 /* Clears the memory associated with each Context ID (CID). */
3327 /* */
3328 /* Returns: */
3329 /* Nothing. */
3330 /****************************************************************************/
3331 void
3332 bnx_init_context(struct bnx_softc *sc)
3333 {
3334 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3335 /* DRC: Replace this constant value with a #define. */
3336 int i, retry_cnt = 10;
3337 uint32_t val;
3338
3339 /*
3340 * BCM5709 context memory may be cached
3341 * in host memory so prepare the host memory
3342 * for access.
3343 */
3344 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3345 | (1 << 12);
3346 val |= (BCM_PAGE_BITS - 8) << 16;
3347 REG_WR(sc, BNX_CTX_COMMAND, val);
3348
3349 /* Wait for mem init command to complete. */
3350 for (i = 0; i < retry_cnt; i++) {
3351 val = REG_RD(sc, BNX_CTX_COMMAND);
3352 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3353 break;
3354 DELAY(2);
3355 }
3356
3357 /* ToDo: Consider returning an error here. */
3358
3359 for (i = 0; i < sc->ctx_pages; i++) {
3360 int j;
3361
3362 /* Set the physaddr of the context memory cache. */
3363 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3364 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3365 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3366 val = (uint32_t)
3367 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3368 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3369 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3370 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3371
3372 /* Verify that the context memory write was successful. */
3373 for (j = 0; j < retry_cnt; j++) {
3374 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3375 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3376 break;
3377 DELAY(5);
3378 }
3379
3380 /* ToDo: Consider returning an error here. */
3381 }
3382 } else {
3383 uint32_t vcid_addr, offset;
3384
3385 /*
3386 * For the 5706/5708, context memory is local to the
3387 * controller, so initialize the controller context memory.
3388 */
3389
3390 vcid_addr = GET_CID_ADDR(96);
3391 while (vcid_addr) {
3392
3393 vcid_addr -= BNX_PHY_CTX_SIZE;
3394
3395 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3396 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3397
3398 for (offset = 0; offset < BNX_PHY_CTX_SIZE;
3399 offset += 4)
3400 CTX_WR(sc, 0x00, offset, 0);
3401
3402 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3403 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3404 }
3405 }
3406 }
3407
3408 /****************************************************************************/
3409 /* Fetch the permanent MAC address of the controller. */
3410 /* */
3411 /* Returns: */
3412 /* Nothing. */
3413 /****************************************************************************/
3414 void
3415 bnx_get_mac_addr(struct bnx_softc *sc)
3416 {
3417 uint32_t mac_lo = 0, mac_hi = 0;
3418
3419 /*
3420 * The NetXtreme II bootcode populates various NIC
3421 * power-on and runtime configuration items in a
3422 * shared memory area. The factory configured MAC
3423 * address is available from both NVRAM and the
3424 * shared memory area so we'll read the value from
3425 * shared memory for speed.
3426 */
3427
3428 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3429 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3430
3431 if ((mac_lo == 0) && (mac_hi == 0)) {
3432 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3433 __FILE__, __LINE__);
3434 } else {
3435 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3436 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3437 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3438 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3439 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3440 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3441 }
3442
3443 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3444 "%s\n", ether_sprintf(sc->eaddr));
3445 }
3446
3447 /****************************************************************************/
3448 /* Program the MAC address. */
3449 /* */
3450 /* Returns: */
3451 /* Nothing. */
3452 /****************************************************************************/
3453 void
3454 bnx_set_mac_addr(struct bnx_softc *sc)
3455 {
3456 uint32_t val;
3457 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3458
3459 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3460 "%s\n", ether_sprintf(sc->eaddr));
3461
3462 val = (mac_addr[0] << 8) | mac_addr[1];
3463
3464 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3465
3466 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3467 (mac_addr[4] << 8) | mac_addr[5];
3468
3469 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3470 }
3471
3472 /****************************************************************************/
3473 /* Stop the controller. */
3474 /* */
3475 /* Returns: */
3476 /* Nothing. */
3477 /****************************************************************************/
3478 void
3479 bnx_stop(struct ifnet *ifp, int disable)
3480 {
3481 struct bnx_softc *sc = ifp->if_softc;
3482
3483 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3484
3485 if (disable) {
3486 sc->bnx_detaching = 1;
3487 callout_halt(&sc->bnx_timeout, NULL);
3488 } else
3489 callout_stop(&sc->bnx_timeout);
3490
3491 mii_down(&sc->bnx_mii);
3492
3493 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3494
3495 /* Disable the transmit/receive blocks. */
3496 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3497 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3498 DELAY(20);
3499
3500 bnx_disable_intr(sc);
3501
3502 /* Tell firmware that the driver is going away. */
3503 if (disable)
3504 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3505 else
3506 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3507
3508 /* Free RX buffers. */
3509 bnx_free_rx_chain(sc);
3510
3511 /* Free TX buffers. */
3512 bnx_free_tx_chain(sc);
3513
3514 ifp->if_timer = 0;
3515
3516 sc->bnx_link = 0;
3517
3518 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3519
3520 bnx_mgmt_init(sc);
3521 }
3522
3523 int
3524 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3525 {
3526 struct pci_attach_args *pa = &(sc->bnx_pa);
3527 uint32_t val;
3528 int i, rc = 0;
3529
3530 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3531
3532 /* Wait for pending PCI transactions to complete. */
3533 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
3534 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
3535 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3536 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3537 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3538 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3539 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3540 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3541 DELAY(5);
3542 } else {
3543 /* Disable DMA */
3544 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3545 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3546 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3547 REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
3548
3549 for (i = 0; i < 100; i++) {
3550 delay(1 * 1000);
3551 val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
3552 if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
3553 break;
3554 }
3555 }
3556
3557 /* Assume bootcode is running. */
3558 sc->bnx_fw_timed_out = 0;
3559
3560 /* Give the firmware a chance to prepare for the reset. */
3561 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3562 if (rc)
3563 goto bnx_reset_exit;
3564
3565 /* Set a firmware reminder that this is a soft reset. */
3566 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3567 BNX_DRV_RESET_SIGNATURE_MAGIC);
3568
3569 /* Dummy read to force the chip to complete all current transactions. */
3570 val = REG_RD(sc, BNX_MISC_ID);
3571
3572 /* Chip reset. */
3573 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3574 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3575 REG_RD(sc, BNX_MISC_COMMAND);
3576 DELAY(5);
3577
3578 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3579 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3580
3581 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3582 val);
3583 } else {
3584 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3585 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3586 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3587 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3588
3589 /* Allow up to 30us for reset to complete. */
3590 for (i = 0; i < 10; i++) {
3591 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3592 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3593 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3594 break;
3595 }
3596 DELAY(10);
3597 }
3598
3599 /* Check that reset completed successfully. */
3600 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3601 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3602 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3603 __FILE__, __LINE__);
3604 rc = EBUSY;
3605 goto bnx_reset_exit;
3606 }
3607 }
3608
3609 /* Make sure byte swapping is properly configured. */
3610 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3611 if (val != 0x01020304) {
3612 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3613 __FILE__, __LINE__);
3614 rc = ENODEV;
3615 goto bnx_reset_exit;
3616 }
3617
3618 /* Just completed a reset, assume that firmware is running again. */
3619 sc->bnx_fw_timed_out = 0;
3620
3621 /* Wait for the firmware to finish its initialization. */
3622 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3623 if (rc)
3624 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3625 "initialization!\n", __FILE__, __LINE__);
3626
3627 bnx_reset_exit:
3628 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3629
3630 return rc;
3631 }
3632
3633 int
3634 bnx_chipinit(struct bnx_softc *sc)
3635 {
3636 struct pci_attach_args *pa = &(sc->bnx_pa);
3637 uint32_t val;
3638 int rc = 0;
3639
3640 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3641
3642 /* Make sure the interrupt is not active. */
3643 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3644
3645 /* Initialize DMA byte/word swapping, configure the number of DMA */
3646 /* channels and PCI clock compensation delay. */
3647 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3648 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3649 #if BYTE_ORDER == BIG_ENDIAN
3650 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3651 #endif
3652 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3653 DMA_READ_CHANS << 12 |
3654 DMA_WRITE_CHANS << 16;
3655
3656 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3657
3658 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3659 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3660
3661 /*
3662 * This setting resolves a problem observed on certain Intel PCI
3663 * chipsets that cannot handle multiple outstanding DMA operations.
3664 * See errata E9_5706A1_65.
3665 */
3666 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3667 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3668 !(sc->bnx_flags & BNX_PCIX_FLAG))
3669 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3670
3671 REG_WR(sc, BNX_DMA_CONFIG, val);
3672
3673 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3674 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3675 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3676 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3677 val & ~0x20000);
3678 }
3679
3680 /* Enable the RX_V2P and Context state machines before access. */
3681 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3682 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3683 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3684 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3685
3686 /* Initialize context mapping and zero out the quick contexts. */
3687 bnx_init_context(sc);
3688
3689 /* Initialize the on-boards CPUs */
3690 bnx_init_cpus(sc);
3691
3692 /* Enable management frames (NC-SI) to flow to the MCP. */
3693 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3694 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
3695 BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3696 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3697 }
3698
3699 /* Prepare NVRAM for access. */
3700 if (bnx_init_nvram(sc)) {
3701 rc = ENODEV;
3702 goto bnx_chipinit_exit;
3703 }
3704
3705 /* Set the kernel bypass block size */
3706 val = REG_RD(sc, BNX_MQ_CONFIG);
3707 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3708 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3709
3710 /* Enable bins used on the 5709. */
3711 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3712 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3713 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3714 val |= BNX_MQ_CONFIG_HALT_DIS;
3715 }
3716
3717 REG_WR(sc, BNX_MQ_CONFIG, val);
3718
3719 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3720 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3721 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3722
3723 val = (BCM_PAGE_BITS - 8) << 24;
3724 REG_WR(sc, BNX_RV2P_CONFIG, val);
3725
3726 /* Configure page size. */
3727 val = REG_RD(sc, BNX_TBDR_CONFIG);
3728 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3729 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3730 REG_WR(sc, BNX_TBDR_CONFIG, val);
3731
3732 #if 0
3733 /* Set the perfect match control register to default. */
3734 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3735 #endif
3736
3737 bnx_chipinit_exit:
3738 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3739
3740 return rc;
3741 }
3742
3743 /****************************************************************************/
3744 /* Initialize the controller in preparation to send/receive traffic. */
3745 /* */
3746 /* Returns: */
3747 /* 0 for success, positive value for failure. */
3748 /****************************************************************************/
3749 int
3750 bnx_blockinit(struct bnx_softc *sc)
3751 {
3752 uint32_t reg, val;
3753 int rc = 0;
3754
3755 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3756
3757 /* Load the hardware default MAC address. */
3758 bnx_set_mac_addr(sc);
3759
3760 /* Set the Ethernet backoff seed value */
3761 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3762 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3763 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3764
3765 sc->last_status_idx = 0;
3766 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3767
3768 /* Set up link change interrupt generation. */
3769 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3770 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3771
3772 /* Program the physical address of the status block. */
3773 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3774 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3775 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3776
3777 /* Program the physical address of the statistics block. */
3778 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3779 (uint32_t)(sc->stats_block_paddr));
3780 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3781 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3782
3783 /* Program various host coalescing parameters. */
3784 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3785 << 16) | sc->bnx_tx_quick_cons_trip);
3786 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3787 << 16) | sc->bnx_rx_quick_cons_trip);
3788 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3789 sc->bnx_comp_prod_trip);
3790 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3791 sc->bnx_tx_ticks);
3792 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3793 sc->bnx_rx_ticks);
3794 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3795 sc->bnx_com_ticks);
3796 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3797 sc->bnx_cmd_ticks);
3798 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3799 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3800 REG_WR(sc, BNX_HC_CONFIG,
3801 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3802 BNX_HC_CONFIG_COLLECT_STATS));
3803
3804 /* Clear the internal statistics counters. */
3805 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3806
3807 /* Verify that bootcode is running. */
3808 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3809
3810 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3811 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3812 __FILE__, __LINE__); reg = 0);
3813
3814 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3815 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3816 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3817 "Expected: 08%08X\n", __FILE__, __LINE__,
3818 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3819 BNX_DEV_INFO_SIGNATURE_MAGIC);
3820 rc = ENODEV;
3821 goto bnx_blockinit_exit;
3822 }
3823
3824 /* Enable DMA */
3825 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3826 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3827 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3828 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3829 }
3830
3831 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3832 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3833
3834 /* Disable management frames (NC-SI) from flowing to the MCP. */
3835 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3836 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
3837 ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3838 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3839 }
3840
3841 /* Enable all remaining blocks in the MAC. */
3842 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3843 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3844 BNX_MISC_ENABLE_DEFAULT_XI);
3845 } else
3846 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3847
3848 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3849 DELAY(20);
3850
3851 bnx_blockinit_exit:
3852 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3853
3854 return rc;
3855 }
3856
3857 static int
3858 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3859 uint16_t *chain_prod, uint32_t *prod_bseq)
3860 {
3861 bus_dmamap_t map;
3862 struct rx_bd *rxbd;
3863 uint32_t addr;
3864 int i;
3865 #ifdef BNX_DEBUG
3866 uint16_t debug_chain_prod = *chain_prod;
3867 #endif
3868 uint16_t first_chain_prod;
3869
3870 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3871
3872 /* Map the mbuf cluster into device memory. */
3873 map = sc->rx_mbuf_map[*chain_prod];
3874 first_chain_prod = *chain_prod;
3875 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3876 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3877 __FILE__, __LINE__);
3878
3879 m_freem(m_new);
3880
3881 DBRUNIF(1, sc->rx_mbuf_alloc--);
3882
3883 return ENOBUFS;
3884 }
3885 /* Make sure there is room in the receive chain. */
3886 if (map->dm_nsegs > sc->free_rx_bd) {
3887 bus_dmamap_unload(sc->bnx_dmatag, map);
3888 m_freem(m_new);
3889 return EFBIG;
3890 }
3891 #ifdef BNX_DEBUG
3892 /* Track the distribution of buffer segments. */
3893 sc->rx_mbuf_segs[map->dm_nsegs]++;
3894 #endif
3895
3896 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3897 BUS_DMASYNC_PREREAD);
3898
3899 /* Update some debug statistics counters */
3900 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3901 sc->rx_low_watermark = sc->free_rx_bd);
3902 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3903
3904 /*
3905 * Setup the rx_bd for the first segment
3906 */
3907 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3908
3909 addr = (uint32_t)map->dm_segs[0].ds_addr;
3910 rxbd->rx_bd_haddr_lo = addr;
3911 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3912 rxbd->rx_bd_haddr_hi = addr;
3913 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3914 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3915 *prod_bseq += map->dm_segs[0].ds_len;
3916 bus_dmamap_sync(sc->bnx_dmatag,
3917 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3918 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3919 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3920
3921 for (i = 1; i < map->dm_nsegs; i++) {
3922 *prod = NEXT_RX_BD(*prod);
3923 *chain_prod = RX_CHAIN_IDX(*prod);
3924
3925 rxbd =
3926 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3927
3928 addr = (uint32_t)map->dm_segs[i].ds_addr;
3929 rxbd->rx_bd_haddr_lo = addr;
3930 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3931 rxbd->rx_bd_haddr_hi = addr;
3932 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3933 rxbd->rx_bd_flags = 0;
3934 *prod_bseq += map->dm_segs[i].ds_len;
3935 bus_dmamap_sync(sc->bnx_dmatag,
3936 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3937 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3938 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3939 }
3940
3941 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3942 bus_dmamap_sync(sc->bnx_dmatag,
3943 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3944 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3945 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3946
3947 /*
3948 * Save the mbuf, adjust the map pointer (swap map for first and
3949 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3950 * and update our counter.
3951 */
3952 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3953 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3954 sc->rx_mbuf_map[*chain_prod] = map;
3955 sc->free_rx_bd -= map->dm_nsegs;
3956
3957 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3958 map->dm_nsegs));
3959 *prod = NEXT_RX_BD(*prod);
3960 *chain_prod = RX_CHAIN_IDX(*prod);
3961
3962 return 0;
3963 }
3964
3965 /****************************************************************************/
3966 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3967 /* */
3968 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3969 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3970 /* necessary. */
3971 /* */
3972 /* Returns: */
3973 /* 0 for success, positive value for failure. */
3974 /****************************************************************************/
3975 int
3976 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3977 uint16_t *chain_prod, uint32_t *prod_bseq)
3978 {
3979 struct mbuf *m_new = NULL;
3980 int rc = 0;
3981 uint16_t min_free_bd;
3982
3983 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3984 __func__);
3985
3986 /* Make sure the inputs are valid. */
3987 DBRUNIF((*chain_prod > MAX_RX_BD),
3988 aprint_error_dev(sc->bnx_dev,
3989 "RX producer out of range: 0x%04X > 0x%04X\n",
3990 *chain_prod, (uint16_t)MAX_RX_BD));
3991
3992 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3993 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3994 *prod_bseq);
3995
3996 /* try to get in as many mbufs as possible */
3997 if (sc->mbuf_alloc_size == MCLBYTES)
3998 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3999 else
4000 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
4001 while (sc->free_rx_bd >= min_free_bd) {
4002 /* Simulate an mbuf allocation failure. */
4003 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
4004 aprint_error_dev(sc->bnx_dev,
4005 "Simulating mbuf allocation failure.\n");
4006 sc->mbuf_sim_alloc_failed++;
4007 rc = ENOBUFS;
4008 goto bnx_get_buf_exit);
4009
4010 /* This is a new mbuf allocation. */
4011 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
4012 if (m_new == NULL) {
4013 DBPRINT(sc, BNX_WARN,
4014 "%s(%d): RX mbuf header allocation failed!\n",
4015 __FILE__, __LINE__);
4016
4017 sc->mbuf_alloc_failed++;
4018
4019 rc = ENOBUFS;
4020 goto bnx_get_buf_exit;
4021 }
4022
4023 DBRUNIF(1, sc->rx_mbuf_alloc++);
4024
4025 /* Simulate an mbuf cluster allocation failure. */
4026 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
4027 m_freem(m_new);
4028 sc->rx_mbuf_alloc--;
4029 sc->mbuf_alloc_failed++;
4030 sc->mbuf_sim_alloc_failed++;
4031 rc = ENOBUFS;
4032 goto bnx_get_buf_exit);
4033
4034 if (sc->mbuf_alloc_size == MCLBYTES)
4035 MCLGET(m_new, M_DONTWAIT);
4036 else
4037 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
4038 M_DONTWAIT);
4039 if (!(m_new->m_flags & M_EXT)) {
4040 DBPRINT(sc, BNX_WARN,
4041 "%s(%d): RX mbuf chain allocation failed!\n",
4042 __FILE__, __LINE__);
4043
4044 m_freem(m_new);
4045
4046 DBRUNIF(1, sc->rx_mbuf_alloc--);
4047 sc->mbuf_alloc_failed++;
4048
4049 rc = ENOBUFS;
4050 goto bnx_get_buf_exit;
4051 }
4052
4053 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
4054 if (rc != 0)
4055 goto bnx_get_buf_exit;
4056 }
4057
4058 bnx_get_buf_exit:
4059 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
4060 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
4061 *chain_prod, *prod_bseq);
4062
4063 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
4064 __func__);
4065
4066 return rc;
4067 }
4068
4069 void
4070 bnx_alloc_pkts(struct work * unused, void * arg)
4071 {
4072 struct bnx_softc *sc = arg;
4073 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4074 struct bnx_pkt *pkt;
4075 int i, s;
4076
4077 for (i = 0; i < 4; i++) { /* magic! */
4078 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
4079 if (pkt == NULL)
4080 break;
4081
4082 if (bus_dmamap_create(sc->bnx_dmatag,
4083 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
4084 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
4085 &pkt->pkt_dmamap) != 0) {
4086 pool_put(bnx_tx_pool, pkt);
4087 break;
4088 }
4089
4090 mutex_enter(&sc->tx_pkt_mtx);
4091 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4092 sc->tx_pkt_count++;
4093 mutex_exit(&sc->tx_pkt_mtx);
4094 }
4095
4096 mutex_enter(&sc->tx_pkt_mtx);
4097 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4098 mutex_exit(&sc->tx_pkt_mtx);
4099
4100 /* fire-up TX now that allocations have been done */
4101 s = splnet();
4102 CLR(ifp->if_flags, IFF_OACTIVE);
4103 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4104 bnx_start(ifp);
4105 splx(s);
4106 }
4107
4108 /****************************************************************************/
4109 /* Initialize the TX context memory. */
4110 /* */
4111 /* Returns: */
4112 /* Nothing */
4113 /****************************************************************************/
4114 void
4115 bnx_init_tx_context(struct bnx_softc *sc)
4116 {
4117 uint32_t val;
4118
4119 /* Initialize the context ID for an L2 TX chain. */
4120 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4121 /* Set the CID type to support an L2 connection. */
4122 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4123 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4124 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4125 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4126
4127 /* Point the hardware to the first page in the chain. */
4128 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4129 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4130 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4131 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4132 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4133 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4134 } else {
4135 /* Set the CID type to support an L2 connection. */
4136 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4137 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4138 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4139 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4140
4141 /* Point the hardware to the first page in the chain. */
4142 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4143 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4144 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4145 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4146 }
4147 }
4148
4149
4150 /****************************************************************************/
4151 /* Allocate memory and initialize the TX data structures. */
4152 /* */
4153 /* Returns: */
4154 /* 0 for success, positive value for failure. */
4155 /****************************************************************************/
4156 int
4157 bnx_init_tx_chain(struct bnx_softc *sc)
4158 {
4159 struct tx_bd *txbd;
4160 uint32_t addr;
4161 int i, rc = 0;
4162
4163 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4164
4165 /* Set the initial TX producer/consumer indices. */
4166 sc->tx_prod = 0;
4167 sc->tx_cons = 0;
4168 sc->tx_prod_bseq = 0;
4169 sc->used_tx_bd = 0;
4170 sc->max_tx_bd = USABLE_TX_BD;
4171 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4172 DBRUNIF(1, sc->tx_full_count = 0);
4173
4174 /*
4175 * The NetXtreme II supports a linked-list structure called
4176 * a Buffer Descriptor Chain (or BD chain). A BD chain
4177 * consists of a series of 1 or more chain pages, each of which
4178 * consists of a fixed number of BD entries.
4179 * The last BD entry on each page is a pointer to the next page
4180 * in the chain, and the last pointer in the BD chain
4181 * points back to the beginning of the chain.
4182 */
4183
4184 /* Set the TX next pointer chain entries. */
4185 for (i = 0; i < TX_PAGES; i++) {
4186 int j;
4187
4188 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4189
4190 /* Check if we've reached the last page. */
4191 if (i == (TX_PAGES - 1))
4192 j = 0;
4193 else
4194 j = i + 1;
4195
4196 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4197 txbd->tx_bd_haddr_lo = addr;
4198 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4199 txbd->tx_bd_haddr_hi = addr;
4200 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4201 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4202 }
4203
4204 /*
4205 * Initialize the context ID for an L2 TX chain.
4206 */
4207 bnx_init_tx_context(sc);
4208
4209 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4210
4211 return rc;
4212 }
4213
4214 /****************************************************************************/
4215 /* Free memory and clear the TX data structures. */
4216 /* */
4217 /* Returns: */
4218 /* Nothing. */
4219 /****************************************************************************/
4220 void
4221 bnx_free_tx_chain(struct bnx_softc *sc)
4222 {
4223 struct bnx_pkt *pkt;
4224 int i;
4225
4226 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4227
4228 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4229 mutex_enter(&sc->tx_pkt_mtx);
4230 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4231 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4232 mutex_exit(&sc->tx_pkt_mtx);
4233
4234 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4235 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4236 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4237
4238 m_freem(pkt->pkt_mbuf);
4239 DBRUNIF(1, sc->tx_mbuf_alloc--);
4240
4241 mutex_enter(&sc->tx_pkt_mtx);
4242 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4243 }
4244 mutex_exit(&sc->tx_pkt_mtx);
4245
4246 /* Clear each TX chain page. */
4247 for (i = 0; i < TX_PAGES; i++) {
4248 memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4249 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4250 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4251 }
4252
4253 sc->used_tx_bd = 0;
4254
4255 /* Check if we lost any mbufs in the process. */
4256 DBRUNIF((sc->tx_mbuf_alloc),
4257 aprint_error_dev(sc->bnx_dev,
4258 "Memory leak! Lost %d mbufs from tx chain!\n",
4259 sc->tx_mbuf_alloc));
4260
4261 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4262 }
4263
4264 /****************************************************************************/
4265 /* Initialize the RX context memory. */
4266 /* */
4267 /* Returns: */
4268 /* Nothing */
4269 /****************************************************************************/
4270 void
4271 bnx_init_rx_context(struct bnx_softc *sc)
4272 {
4273 uint32_t val;
4274
4275 /* Initialize the context ID for an L2 RX chain. */
4276 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4277 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4278
4279 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
4280 val |= 0x000000ff;
4281
4282 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4283
4284 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4285 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4286 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4287 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4288 }
4289
4290 /* Point the hardware to the first page in the chain. */
4291 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4292 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4293 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4294 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4295 }
4296
4297 /****************************************************************************/
4298 /* Allocate memory and initialize the RX data structures. */
4299 /* */
4300 /* Returns: */
4301 /* 0 for success, positive value for failure. */
4302 /****************************************************************************/
4303 int
4304 bnx_init_rx_chain(struct bnx_softc *sc)
4305 {
4306 struct rx_bd *rxbd;
4307 int i, rc = 0;
4308 uint16_t prod, chain_prod;
4309 uint32_t prod_bseq, addr;
4310
4311 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4312
4313 /* Initialize the RX producer and consumer indices. */
4314 sc->rx_prod = 0;
4315 sc->rx_cons = 0;
4316 sc->rx_prod_bseq = 0;
4317 sc->free_rx_bd = USABLE_RX_BD;
4318 sc->max_rx_bd = USABLE_RX_BD;
4319 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4320 DBRUNIF(1, sc->rx_empty_count = 0);
4321
4322 /* Initialize the RX next pointer chain entries. */
4323 for (i = 0; i < RX_PAGES; i++) {
4324 int j;
4325
4326 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4327
4328 /* Check if we've reached the last page. */
4329 if (i == (RX_PAGES - 1))
4330 j = 0;
4331 else
4332 j = i + 1;
4333
4334 /* Setup the chain page pointers. */
4335 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4336 rxbd->rx_bd_haddr_hi = addr;
4337 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4338 rxbd->rx_bd_haddr_lo = addr;
4339 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4340 0, BNX_RX_CHAIN_PAGE_SZ,
4341 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4342 }
4343
4344 /* Allocate mbuf clusters for the rx_bd chain. */
4345 prod = prod_bseq = 0;
4346 chain_prod = RX_CHAIN_IDX(prod);
4347 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4348 BNX_PRINTF(sc,
4349 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4350 }
4351
4352 /* Save the RX chain producer index. */
4353 sc->rx_prod = prod;
4354 sc->rx_prod_bseq = prod_bseq;
4355
4356 for (i = 0; i < RX_PAGES; i++)
4357 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4358 sc->rx_bd_chain_map[i]->dm_mapsize,
4359 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4360
4361 /* Tell the chip about the waiting rx_bd's. */
4362 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4363 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4364
4365 bnx_init_rx_context(sc);
4366
4367 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4368
4369 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4370
4371 return rc;
4372 }
4373
4374 /****************************************************************************/
4375 /* Free memory and clear the RX data structures. */
4376 /* */
4377 /* Returns: */
4378 /* Nothing. */
4379 /****************************************************************************/
4380 void
4381 bnx_free_rx_chain(struct bnx_softc *sc)
4382 {
4383 int i;
4384
4385 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4386
4387 /* Free any mbufs still in the RX mbuf chain. */
4388 for (i = 0; i < TOTAL_RX_BD; i++) {
4389 if (sc->rx_mbuf_ptr[i] != NULL) {
4390 if (sc->rx_mbuf_map[i] != NULL) {
4391 bus_dmamap_sync(sc->bnx_dmatag,
4392 sc->rx_mbuf_map[i], 0,
4393 sc->rx_mbuf_map[i]->dm_mapsize,
4394 BUS_DMASYNC_POSTREAD);
4395 bus_dmamap_unload(sc->bnx_dmatag,
4396 sc->rx_mbuf_map[i]);
4397 }
4398 m_freem(sc->rx_mbuf_ptr[i]);
4399 sc->rx_mbuf_ptr[i] = NULL;
4400 DBRUNIF(1, sc->rx_mbuf_alloc--);
4401 }
4402 }
4403
4404 /* Clear each RX chain page. */
4405 for (i = 0; i < RX_PAGES; i++)
4406 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4407
4408 sc->free_rx_bd = sc->max_rx_bd;
4409
4410 /* Check if we lost any mbufs in the process. */
4411 DBRUNIF((sc->rx_mbuf_alloc),
4412 aprint_error_dev(sc->bnx_dev,
4413 "Memory leak! Lost %d mbufs from rx chain!\n",
4414 sc->rx_mbuf_alloc));
4415
4416 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4417 }
4418
4419 /****************************************************************************/
4420 /* Set media options. */
4421 /* */
4422 /* Returns: */
4423 /* 0 for success, positive value for failure. */
4424 /****************************************************************************/
4425 int
4426 bnx_ifmedia_upd(struct ifnet *ifp)
4427 {
4428 struct bnx_softc *sc;
4429 struct mii_data *mii;
4430 int rc = 0;
4431
4432 sc = ifp->if_softc;
4433
4434 mii = &sc->bnx_mii;
4435 sc->bnx_link = 0;
4436 if (mii->mii_instance) {
4437 struct mii_softc *miisc;
4438 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4439 mii_phy_reset(miisc);
4440 }
4441 mii_mediachg(mii);
4442
4443 return rc;
4444 }
4445
4446 /****************************************************************************/
4447 /* Reports current media status. */
4448 /* */
4449 /* Returns: */
4450 /* Nothing. */
4451 /****************************************************************************/
4452 void
4453 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4454 {
4455 struct bnx_softc *sc;
4456 struct mii_data *mii;
4457 int s;
4458
4459 sc = ifp->if_softc;
4460
4461 s = splnet();
4462
4463 mii = &sc->bnx_mii;
4464
4465 mii_pollstat(mii);
4466 ifmr->ifm_status = mii->mii_media_status;
4467 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4468 sc->bnx_flowflags;
4469
4470 splx(s);
4471 }
4472
4473 /****************************************************************************/
4474 /* Handles PHY generated interrupt events. */
4475 /* */
4476 /* Returns: */
4477 /* Nothing. */
4478 /****************************************************************************/
4479 void
4480 bnx_phy_intr(struct bnx_softc *sc)
4481 {
4482 uint32_t new_link_state, old_link_state;
4483
4484 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4485 BUS_DMASYNC_POSTREAD);
4486 new_link_state = sc->status_block->status_attn_bits &
4487 STATUS_ATTN_BITS_LINK_STATE;
4488 old_link_state = sc->status_block->status_attn_bits_ack &
4489 STATUS_ATTN_BITS_LINK_STATE;
4490
4491 /* Handle any changes if the link state has changed. */
4492 if (new_link_state != old_link_state) {
4493 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4494
4495 sc->bnx_link = 0;
4496 callout_stop(&sc->bnx_timeout);
4497 bnx_tick(sc);
4498
4499 /* Update the status_attn_bits_ack field in the status block. */
4500 if (new_link_state) {
4501 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4502 STATUS_ATTN_BITS_LINK_STATE);
4503 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4504 } else {
4505 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4506 STATUS_ATTN_BITS_LINK_STATE);
4507 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4508 }
4509 }
4510
4511 /* Acknowledge the link change interrupt. */
4512 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4513 }
4514
4515 /****************************************************************************/
4516 /* Handles received frame interrupt events. */
4517 /* */
4518 /* Returns: */
4519 /* Nothing. */
4520 /****************************************************************************/
4521 void
4522 bnx_rx_intr(struct bnx_softc *sc)
4523 {
4524 struct status_block *sblk = sc->status_block;
4525 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4526 uint16_t hw_cons, sw_cons, sw_chain_cons;
4527 uint16_t sw_prod, sw_chain_prod;
4528 uint32_t sw_prod_bseq;
4529 struct l2_fhdr *l2fhdr;
4530 int i;
4531
4532 DBRUNIF(1, sc->rx_interrupts++);
4533 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4534 BUS_DMASYNC_POSTREAD);
4535
4536 /* Prepare the RX chain pages to be accessed by the host CPU. */
4537 for (i = 0; i < RX_PAGES; i++)
4538 bus_dmamap_sync(sc->bnx_dmatag,
4539 sc->rx_bd_chain_map[i], 0,
4540 sc->rx_bd_chain_map[i]->dm_mapsize,
4541 BUS_DMASYNC_POSTWRITE);
4542
4543 /* Get the hardware's view of the RX consumer index. */
4544 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4545 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4546 hw_cons++;
4547
4548 /* Get working copies of the driver's view of the RX indices. */
4549 sw_cons = sc->rx_cons;
4550 sw_prod = sc->rx_prod;
4551 sw_prod_bseq = sc->rx_prod_bseq;
4552
4553 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4554 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4555 __func__, sw_prod, sw_cons, sw_prod_bseq);
4556
4557 /* Prevent speculative reads from getting ahead of the status block. */
4558 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4559 BUS_SPACE_BARRIER_READ);
4560
4561 /* Update some debug statistics counters */
4562 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4563 sc->rx_low_watermark = sc->free_rx_bd);
4564 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4565
4566 /*
4567 * Scan through the receive chain as long
4568 * as there is work to do.
4569 */
4570 while (sw_cons != hw_cons) {
4571 struct mbuf *m;
4572 struct rx_bd *rxbd __diagused;
4573 unsigned int len;
4574 uint32_t status;
4575
4576 /* Convert the producer/consumer indices to an actual
4577 * rx_bd index.
4578 */
4579 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4580 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4581
4582 /* Get the used rx_bd. */
4583 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4584 sc->free_rx_bd++;
4585
4586 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4587 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4588
4589 /* The mbuf is stored with the last rx_bd entry of a packet. */
4590 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4591 #ifdef DIAGNOSTIC
4592 /* Validate that this is the last rx_bd. */
4593 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4594 printf("%s: Unexpected mbuf found in "
4595 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4596 sw_chain_cons);
4597 }
4598 #endif
4599
4600 /* DRC - ToDo: If the received packet is small, say
4601 * less than 128 bytes, allocate a new mbuf
4602 * here, copy the data to that mbuf, and
4603 * recycle the mapped jumbo frame.
4604 */
4605
4606 /* Unmap the mbuf from DMA space. */
4607 #ifdef DIAGNOSTIC
4608 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4609 printf("invalid map sw_cons 0x%x "
4610 "sw_prod 0x%x "
4611 "sw_chain_cons 0x%x "
4612 "sw_chain_prod 0x%x "
4613 "hw_cons 0x%x "
4614 "TOTAL_RX_BD_PER_PAGE 0x%x "
4615 "TOTAL_RX_BD 0x%x\n",
4616 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4617 hw_cons,
4618 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4619 }
4620 #endif
4621 bus_dmamap_sync(sc->bnx_dmatag,
4622 sc->rx_mbuf_map[sw_chain_cons], 0,
4623 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4624 BUS_DMASYNC_POSTREAD);
4625 bus_dmamap_unload(sc->bnx_dmatag,
4626 sc->rx_mbuf_map[sw_chain_cons]);
4627
4628 /* Remove the mbuf from the driver's chain. */
4629 m = sc->rx_mbuf_ptr[sw_chain_cons];
4630 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4631
4632 /*
4633 * Frames received on the NetXteme II are prepended
4634 * with the l2_fhdr structure which provides status
4635 * information about the received frame (including
4636 * VLAN tags and checksum info) and are also
4637 * automatically adjusted to align the IP header
4638 * (i.e. two null bytes are inserted before the
4639 * Ethernet header).
4640 */
4641 l2fhdr = mtod(m, struct l2_fhdr *);
4642
4643 len = l2fhdr->l2_fhdr_pkt_len;
4644 status = l2fhdr->l2_fhdr_status;
4645
4646 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4647 aprint_error("Simulating l2_fhdr status error.\n");
4648 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4649
4650 /* Watch for unusual sized frames. */
4651 DBRUNIF(((len < BNX_MIN_MTU) ||
4652 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4653 aprint_error_dev(sc->bnx_dev,
4654 "Unusual frame size found. "
4655 "Min(%d), Actual(%d), Max(%d)\n",
4656 (int)BNX_MIN_MTU, len,
4657 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4658
4659 bnx_dump_mbuf(sc, m);
4660 bnx_breakpoint(sc));
4661
4662 len -= ETHER_CRC_LEN;
4663
4664 /* Check the received frame for errors. */
4665 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4666 L2_FHDR_ERRORS_PHY_DECODE |
4667 L2_FHDR_ERRORS_ALIGNMENT |
4668 L2_FHDR_ERRORS_TOO_SHORT |
4669 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4670 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4671 len >
4672 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4673 if_statinc(ifp, if_ierrors);
4674 DBRUNIF(1, sc->l2fhdr_status_errors++);
4675
4676 /* Reuse the mbuf for a new frame. */
4677 if (bnx_add_buf(sc, m, &sw_prod,
4678 &sw_chain_prod, &sw_prod_bseq)) {
4679 DBRUNIF(1, bnx_breakpoint(sc));
4680 panic("%s: Can't reuse RX mbuf!\n",
4681 device_xname(sc->bnx_dev));
4682 }
4683 continue;
4684 }
4685
4686 /*
4687 * Get a new mbuf for the rx_bd. If no new
4688 * mbufs are available then reuse the current mbuf,
4689 * log an ierror on the interface, and generate
4690 * an error in the system log.
4691 */
4692 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4693 &sw_prod_bseq)) {
4694 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4695 "Failed to allocate "
4696 "new mbuf, incoming frame dropped!\n"));
4697
4698 if_statinc(ifp, if_ierrors);
4699
4700 /* Try and reuse the exisitng mbuf. */
4701 if (bnx_add_buf(sc, m, &sw_prod,
4702 &sw_chain_prod, &sw_prod_bseq)) {
4703 DBRUNIF(1, bnx_breakpoint(sc));
4704 panic("%s: Double mbuf allocation "
4705 "failure!",
4706 device_xname(sc->bnx_dev));
4707 }
4708 continue;
4709 }
4710
4711 /* Skip over the l2_fhdr when passing the data up
4712 * the stack.
4713 */
4714 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4715
4716 /* Adjust the pckt length to match the received data. */
4717 m->m_pkthdr.len = m->m_len = len;
4718
4719 /* Send the packet to the appropriate interface. */
4720 m_set_rcvif(m, ifp);
4721
4722 DBRUN(BNX_VERBOSE_RECV,
4723 struct ether_header *eh;
4724 eh = mtod(m, struct ether_header *);
4725 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4726 __func__, ether_sprintf(eh->ether_dhost),
4727 ether_sprintf(eh->ether_shost),
4728 htons(eh->ether_type)));
4729
4730 /* Validate the checksum. */
4731
4732 /* Check for an IP datagram. */
4733 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4734 /* Check if the IP checksum is valid. */
4735 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
4736 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4737 #ifdef BNX_DEBUG
4738 else
4739 DBPRINT(sc, BNX_WARN_SEND,
4740 "%s(): Invalid IP checksum "
4741 "= 0x%04X!\n",
4742 __func__,
4743 l2fhdr->l2_fhdr_ip_xsum
4744 );
4745 #endif
4746 }
4747
4748 /* Check for a valid TCP/UDP frame. */
4749 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4750 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4751 /* Check for a good TCP/UDP checksum. */
4752 if ((status &
4753 (L2_FHDR_ERRORS_TCP_XSUM |
4754 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4755 m->m_pkthdr.csum_flags |=
4756 M_CSUM_TCPv4 |
4757 M_CSUM_UDPv4;
4758 } else {
4759 DBPRINT(sc, BNX_WARN_SEND,
4760 "%s(): Invalid TCP/UDP "
4761 "checksum = 0x%04X!\n",
4762 __func__,
4763 l2fhdr->l2_fhdr_tcp_udp_xsum);
4764 }
4765 }
4766
4767 /*
4768 * If we received a packet with a vlan tag,
4769 * attach that information to the packet.
4770 */
4771 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4772 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4773 vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4774 }
4775
4776 /* Pass the mbuf off to the upper layers. */
4777
4778 DBPRINT(sc, BNX_VERBOSE_RECV,
4779 "%s(): Passing received frame up.\n", __func__);
4780 if_percpuq_enqueue(ifp->if_percpuq, m);
4781 DBRUNIF(1, sc->rx_mbuf_alloc--);
4782
4783 }
4784
4785 sw_cons = NEXT_RX_BD(sw_cons);
4786
4787 /* Refresh hw_cons to see if there's new work */
4788 if (sw_cons == hw_cons) {
4789 hw_cons = sc->hw_rx_cons =
4790 sblk->status_rx_quick_consumer_index0;
4791 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4792 USABLE_RX_BD_PER_PAGE)
4793 hw_cons++;
4794 }
4795
4796 /* Prevent speculative reads from getting ahead of
4797 * the status block.
4798 */
4799 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4800 BUS_SPACE_BARRIER_READ);
4801 }
4802
4803 for (i = 0; i < RX_PAGES; i++)
4804 bus_dmamap_sync(sc->bnx_dmatag,
4805 sc->rx_bd_chain_map[i], 0,
4806 sc->rx_bd_chain_map[i]->dm_mapsize,
4807 BUS_DMASYNC_PREWRITE);
4808
4809 sc->rx_cons = sw_cons;
4810 sc->rx_prod = sw_prod;
4811 sc->rx_prod_bseq = sw_prod_bseq;
4812
4813 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4814 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4815
4816 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4817 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4818 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4819 }
4820
4821 /****************************************************************************/
4822 /* Handles transmit completion interrupt events. */
4823 /* */
4824 /* Returns: */
4825 /* Nothing. */
4826 /****************************************************************************/
4827 void
4828 bnx_tx_intr(struct bnx_softc *sc)
4829 {
4830 struct status_block *sblk = sc->status_block;
4831 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4832 struct bnx_pkt *pkt;
4833 bus_dmamap_t map;
4834 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4835
4836 DBRUNIF(1, sc->tx_interrupts++);
4837 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4838 BUS_DMASYNC_POSTREAD);
4839
4840 /* Get the hardware's view of the TX consumer index. */
4841 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4842
4843 /* Skip to the next entry if this is a chain page pointer. */
4844 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4845 hw_tx_cons++;
4846
4847 sw_tx_cons = sc->tx_cons;
4848
4849 /* Prevent speculative reads from getting ahead of the status block. */
4850 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4851 BUS_SPACE_BARRIER_READ);
4852
4853 /* Cycle through any completed TX chain page entries. */
4854 while (sw_tx_cons != hw_tx_cons) {
4855 #ifdef BNX_DEBUG
4856 struct tx_bd *txbd = NULL;
4857 #endif
4858 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4859
4860 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4861 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4862 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4863
4864 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4865 aprint_error_dev(sc->bnx_dev,
4866 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4867 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4868
4869 DBRUNIF(1, txbd = &sc->tx_bd_chain
4870 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4871
4872 DBRUNIF((txbd == NULL),
4873 aprint_error_dev(sc->bnx_dev,
4874 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4875 bnx_breakpoint(sc));
4876
4877 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4878 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4879
4880
4881 mutex_enter(&sc->tx_pkt_mtx);
4882 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4883 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4884 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4885 mutex_exit(&sc->tx_pkt_mtx);
4886 /*
4887 * Free the associated mbuf. Remember
4888 * that only the last tx_bd of a packet
4889 * has an mbuf pointer and DMA map.
4890 */
4891 map = pkt->pkt_dmamap;
4892 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4893 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4894 bus_dmamap_unload(sc->bnx_dmatag, map);
4895
4896 m_freem(pkt->pkt_mbuf);
4897 DBRUNIF(1, sc->tx_mbuf_alloc--);
4898
4899 if_statinc(ifp, if_opackets);
4900
4901 mutex_enter(&sc->tx_pkt_mtx);
4902 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4903 }
4904 mutex_exit(&sc->tx_pkt_mtx);
4905
4906 sc->used_tx_bd--;
4907 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4908 __FILE__, __LINE__, sc->used_tx_bd);
4909
4910 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4911
4912 /* Refresh hw_cons to see if there's new work. */
4913 hw_tx_cons = sc->hw_tx_cons =
4914 sblk->status_tx_quick_consumer_index0;
4915 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4916 USABLE_TX_BD_PER_PAGE)
4917 hw_tx_cons++;
4918
4919 /* Prevent speculative reads from getting ahead of
4920 * the status block.
4921 */
4922 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4923 BUS_SPACE_BARRIER_READ);
4924 }
4925
4926 /* Clear the TX timeout timer. */
4927 ifp->if_timer = 0;
4928
4929 /* Clear the tx hardware queue full flag. */
4930 if (sc->used_tx_bd < sc->max_tx_bd) {
4931 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4932 aprint_debug_dev(sc->bnx_dev,
4933 "Open TX chain! %d/%d (used/total)\n",
4934 sc->used_tx_bd, sc->max_tx_bd));
4935 ifp->if_flags &= ~IFF_OACTIVE;
4936 }
4937
4938 sc->tx_cons = sw_tx_cons;
4939 }
4940
4941 /****************************************************************************/
4942 /* Disables interrupt generation. */
4943 /* */
4944 /* Returns: */
4945 /* Nothing. */
4946 /****************************************************************************/
4947 void
4948 bnx_disable_intr(struct bnx_softc *sc)
4949 {
4950 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4951 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4952 }
4953
4954 /****************************************************************************/
4955 /* Enables interrupt generation. */
4956 /* */
4957 /* Returns: */
4958 /* Nothing. */
4959 /****************************************************************************/
4960 void
4961 bnx_enable_intr(struct bnx_softc *sc)
4962 {
4963 uint32_t val;
4964
4965 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4966 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4967
4968 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4969 sc->last_status_idx);
4970
4971 val = REG_RD(sc, BNX_HC_COMMAND);
4972 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4973 }
4974
4975 /****************************************************************************/
4976 /* Handles controller initialization. */
4977 /* */
4978 /****************************************************************************/
4979 int
4980 bnx_init(struct ifnet *ifp)
4981 {
4982 struct bnx_softc *sc = ifp->if_softc;
4983 uint32_t ether_mtu;
4984 int s, error = 0;
4985
4986 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4987
4988 s = splnet();
4989
4990 bnx_stop(ifp, 0);
4991
4992 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4993 aprint_error_dev(sc->bnx_dev,
4994 "Controller reset failed!\n");
4995 goto bnx_init_exit;
4996 }
4997
4998 if ((error = bnx_chipinit(sc)) != 0) {
4999 aprint_error_dev(sc->bnx_dev,
5000 "Controller initialization failed!\n");
5001 goto bnx_init_exit;
5002 }
5003
5004 if ((error = bnx_blockinit(sc)) != 0) {
5005 aprint_error_dev(sc->bnx_dev,
5006 "Block initialization failed!\n");
5007 goto bnx_init_exit;
5008 }
5009
5010 /* Calculate and program the Ethernet MRU size. */
5011 if (ifp->if_mtu <= ETHERMTU) {
5012 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
5013 sc->mbuf_alloc_size = MCLBYTES;
5014 } else {
5015 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
5016 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
5017 }
5018
5019
5020 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
5021
5022 /*
5023 * Program the MRU and enable Jumbo frame
5024 * support.
5025 */
5026 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
5027 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
5028
5029 /* Calculate the RX Ethernet frame size for rx_bd's. */
5030 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
5031
5032 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
5033 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
5034 sc->mbuf_alloc_size, sc->max_frame_size);
5035
5036 /* Program appropriate promiscuous/multicast filtering. */
5037 bnx_iff(sc);
5038
5039 /* Init RX buffer descriptor chain. */
5040 bnx_init_rx_chain(sc);
5041
5042 /* Init TX buffer descriptor chain. */
5043 bnx_init_tx_chain(sc);
5044
5045 /* Enable host interrupts. */
5046 bnx_enable_intr(sc);
5047
5048 mii_ifmedia_change(&sc->bnx_mii);
5049
5050 SET(ifp->if_flags, IFF_RUNNING);
5051 CLR(ifp->if_flags, IFF_OACTIVE);
5052
5053 callout_schedule(&sc->bnx_timeout, hz);
5054
5055 bnx_init_exit:
5056 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5057
5058 splx(s);
5059
5060 return error;
5061 }
5062
5063 void
5064 bnx_mgmt_init(struct bnx_softc *sc)
5065 {
5066 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5067 uint32_t val;
5068
5069 /* Check if the driver is still running and bail out if it is. */
5070 if (ifp->if_flags & IFF_RUNNING)
5071 goto bnx_mgmt_init_exit;
5072
5073 /* Initialize the on-boards CPUs */
5074 bnx_init_cpus(sc);
5075
5076 val = (BCM_PAGE_BITS - 8) << 24;
5077 REG_WR(sc, BNX_RV2P_CONFIG, val);
5078
5079 /* Enable all critical blocks in the MAC. */
5080 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
5081 BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
5082 BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
5083 BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
5084 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
5085 DELAY(20);
5086
5087 mii_ifmedia_change(&sc->bnx_mii);
5088
5089 bnx_mgmt_init_exit:
5090 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5091 }
5092
5093 /****************************************************************************/
5094 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
5095 /* memory visible to the controller. */
5096 /* */
5097 /* Returns: */
5098 /* 0 for success, positive value for failure. */
5099 /****************************************************************************/
5100 int
5101 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
5102 {
5103 struct bnx_pkt *pkt;
5104 bus_dmamap_t map;
5105 struct tx_bd *txbd = NULL;
5106 uint16_t vlan_tag = 0, flags = 0;
5107 uint16_t chain_prod, prod;
5108 #ifdef BNX_DEBUG
5109 uint16_t debug_prod;
5110 #endif
5111 uint32_t addr, prod_bseq;
5112 int i, error;
5113 bool remap = true;
5114
5115 mutex_enter(&sc->tx_pkt_mtx);
5116 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
5117 if (pkt == NULL) {
5118 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
5119 mutex_exit(&sc->tx_pkt_mtx);
5120 return ENETDOWN;
5121 }
5122
5123 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
5124 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
5125 workqueue_enqueue(sc->bnx_wq, &sc->bnx_wk, NULL);
5126 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
5127 }
5128
5129 mutex_exit(&sc->tx_pkt_mtx);
5130 return ENOMEM;
5131 }
5132 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
5133 mutex_exit(&sc->tx_pkt_mtx);
5134
5135 /* Transfer any checksum offload flags to the bd. */
5136 if (m->m_pkthdr.csum_flags) {
5137 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
5138 flags |= TX_BD_FLAGS_IP_CKSUM;
5139 if (m->m_pkthdr.csum_flags &
5140 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
5141 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
5142 }
5143
5144 /* Transfer any VLAN tags to the bd. */
5145 if (vlan_has_tag(m)) {
5146 flags |= TX_BD_FLAGS_VLAN_TAG;
5147 vlan_tag = vlan_get_tag(m);
5148 }
5149
5150 /* Map the mbuf into DMAable memory. */
5151 prod = sc->tx_prod;
5152 chain_prod = TX_CHAIN_IDX(prod);
5153 map = pkt->pkt_dmamap;
5154
5155 /* Map the mbuf into our DMA address space. */
5156 retry:
5157 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5158 if (__predict_false(error)) {
5159 if (error == EFBIG) {
5160 if (remap == true) {
5161 struct mbuf *newm;
5162
5163 remap = false;
5164 newm = m_defrag(m, M_NOWAIT);
5165 if (newm != NULL) {
5166 m = newm;
5167 goto retry;
5168 }
5169 }
5170 }
5171 sc->tx_dma_map_failures++;
5172 goto maperr;
5173 }
5174 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5175 BUS_DMASYNC_PREWRITE);
5176 /* Make sure there's room in the chain */
5177 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5178 goto nospace;
5179
5180 /* prod points to an empty tx_bd at this point. */
5181 prod_bseq = sc->tx_prod_bseq;
5182 #ifdef BNX_DEBUG
5183 debug_prod = chain_prod;
5184 #endif
5185 DBPRINT(sc, BNX_INFO_SEND,
5186 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5187 "prod_bseq = 0x%08X\n",
5188 __func__, prod, chain_prod, prod_bseq);
5189
5190 /*
5191 * Cycle through each mbuf segment that makes up
5192 * the outgoing frame, gathering the mapping info
5193 * for that segment and creating a tx_bd for the
5194 * mbuf.
5195 */
5196 for (i = 0; i < map->dm_nsegs ; i++) {
5197 chain_prod = TX_CHAIN_IDX(prod);
5198 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5199
5200 addr = (uint32_t)map->dm_segs[i].ds_addr;
5201 txbd->tx_bd_haddr_lo = addr;
5202 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5203 txbd->tx_bd_haddr_hi = addr;
5204 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5205 txbd->tx_bd_vlan_tag = vlan_tag;
5206 txbd->tx_bd_flags = flags;
5207 prod_bseq += map->dm_segs[i].ds_len;
5208 if (i == 0)
5209 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5210 prod = NEXT_TX_BD(prod);
5211 }
5212
5213 /* Set the END flag on the last TX buffer descriptor. */
5214 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5215
5216 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5217
5218 DBPRINT(sc, BNX_INFO_SEND,
5219 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5220 "prod_bseq = 0x%08X\n",
5221 __func__, prod, chain_prod, prod_bseq);
5222
5223 pkt->pkt_mbuf = m;
5224 pkt->pkt_end_desc = chain_prod;
5225
5226 mutex_enter(&sc->tx_pkt_mtx);
5227 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5228 mutex_exit(&sc->tx_pkt_mtx);
5229
5230 sc->used_tx_bd += map->dm_nsegs;
5231 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5232 __FILE__, __LINE__, sc->used_tx_bd);
5233
5234 /* Update some debug statistics counters */
5235 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5236 sc->tx_hi_watermark = sc->used_tx_bd);
5237 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5238 DBRUNIF(1, sc->tx_mbuf_alloc++);
5239
5240 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5241 map->dm_nsegs));
5242
5243 /* prod points to the next free tx_bd at this point. */
5244 sc->tx_prod = prod;
5245 sc->tx_prod_bseq = prod_bseq;
5246
5247 return 0;
5248
5249
5250 nospace:
5251 bus_dmamap_unload(sc->bnx_dmatag, map);
5252 maperr:
5253 mutex_enter(&sc->tx_pkt_mtx);
5254 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5255 mutex_exit(&sc->tx_pkt_mtx);
5256
5257 return ENOMEM;
5258 }
5259
5260 /****************************************************************************/
5261 /* Main transmit routine. */
5262 /* */
5263 /* Returns: */
5264 /* Nothing. */
5265 /****************************************************************************/
5266 void
5267 bnx_start(struct ifnet *ifp)
5268 {
5269 struct bnx_softc *sc = ifp->if_softc;
5270 struct mbuf *m_head = NULL;
5271 int count = 0;
5272 #ifdef BNX_DEBUG
5273 uint16_t tx_chain_prod;
5274 #endif
5275
5276 /* If there's no link or the transmit queue is empty then just exit. */
5277 if (!sc->bnx_link
5278 ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
5279 DBPRINT(sc, BNX_INFO_SEND,
5280 "%s(): output active or device not running.\n", __func__);
5281 goto bnx_start_exit;
5282 }
5283
5284 /* prod points to the next free tx_bd. */
5285 #ifdef BNX_DEBUG
5286 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5287 #endif
5288
5289 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5290 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5291 "used_tx %d max_tx %d\n",
5292 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5293 sc->used_tx_bd, sc->max_tx_bd);
5294
5295 /*
5296 * Keep adding entries while there is space in the ring.
5297 */
5298 while (sc->used_tx_bd < sc->max_tx_bd) {
5299 /* Check for any frames to send. */
5300 IFQ_POLL(&ifp->if_snd, m_head);
5301 if (m_head == NULL)
5302 break;
5303
5304 /*
5305 * Pack the data into the transmit ring. If we
5306 * don't have room, set the OACTIVE flag to wait
5307 * for the NIC to drain the chain.
5308 */
5309 if (bnx_tx_encap(sc, m_head)) {
5310 ifp->if_flags |= IFF_OACTIVE;
5311 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5312 "business! Total tx_bd used = %d\n",
5313 sc->used_tx_bd);
5314 break;
5315 }
5316
5317 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5318 count++;
5319
5320 /* Send a copy of the frame to any BPF listeners. */
5321 bpf_mtap(ifp, m_head, BPF_D_OUT);
5322 }
5323
5324 if (count == 0) {
5325 /* no packets were dequeued */
5326 DBPRINT(sc, BNX_VERBOSE_SEND,
5327 "%s(): No packets were dequeued\n", __func__);
5328 goto bnx_start_exit;
5329 }
5330
5331 /* Update the driver's counters. */
5332 #ifdef BNX_DEBUG
5333 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5334 #endif
5335
5336 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
5337 "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
5338 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
5339
5340 /* Start the transmit. */
5341 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5342 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5343
5344 /* Set the tx timeout. */
5345 ifp->if_timer = BNX_TX_TIMEOUT;
5346
5347 bnx_start_exit:
5348 return;
5349 }
5350
5351 /****************************************************************************/
5352 /* Handles any IOCTL calls from the operating system. */
5353 /* */
5354 /* Returns: */
5355 /* 0 for success, positive value for failure. */
5356 /****************************************************************************/
5357 int
5358 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5359 {
5360 struct bnx_softc *sc = ifp->if_softc;
5361 struct ifreq *ifr = (struct ifreq *) data;
5362 struct mii_data *mii = &sc->bnx_mii;
5363 int s, error = 0;
5364
5365 s = splnet();
5366
5367 switch (command) {
5368 case SIOCSIFFLAGS:
5369 if ((error = ifioctl_common(ifp, command, data)) != 0)
5370 break;
5371 /* XXX set an ifflags callback and let ether_ioctl
5372 * handle all of this.
5373 */
5374 if (ISSET(ifp->if_flags, IFF_UP)) {
5375 if (ifp->if_flags & IFF_RUNNING)
5376 error = ENETRESET;
5377 else
5378 bnx_init(ifp);
5379 } else if (ifp->if_flags & IFF_RUNNING)
5380 bnx_stop(ifp, 1);
5381 break;
5382
5383 case SIOCSIFMEDIA:
5384 /* Flow control requires full-duplex mode. */
5385 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5386 (ifr->ifr_media & IFM_FDX) == 0)
5387 ifr->ifr_media &= ~IFM_ETH_FMASK;
5388
5389 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5390 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5391 /* We can do both TXPAUSE and RXPAUSE. */
5392 ifr->ifr_media |=
5393 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5394 }
5395 sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5396 }
5397 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5398 sc->bnx_phy_flags);
5399
5400 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5401 break;
5402
5403 default:
5404 error = ether_ioctl(ifp, command, data);
5405 }
5406
5407 if (error == ENETRESET) {
5408 if (ifp->if_flags & IFF_RUNNING)
5409 bnx_iff(sc);
5410 error = 0;
5411 }
5412
5413 splx(s);
5414 return error;
5415 }
5416
5417 /****************************************************************************/
5418 /* Transmit timeout handler. */
5419 /* */
5420 /* Returns: */
5421 /* Nothing. */
5422 /****************************************************************************/
5423 void
5424 bnx_watchdog(struct ifnet *ifp)
5425 {
5426 struct bnx_softc *sc = ifp->if_softc;
5427
5428 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5429 bnx_dump_status_block(sc));
5430 /*
5431 * If we are in this routine because of pause frames, then
5432 * don't reset the hardware.
5433 */
5434 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5435 return;
5436
5437 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5438
5439 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5440
5441 bnx_init(ifp);
5442
5443 if_statinc(ifp, if_oerrors);
5444 }
5445
5446 /*
5447 * Interrupt handler.
5448 */
5449 /****************************************************************************/
5450 /* Main interrupt entry point. Verifies that the controller generated the */
5451 /* interrupt and then calls a separate routine for handle the various */
5452 /* interrupt causes (PHY, TX, RX). */
5453 /* */
5454 /* Returns: */
5455 /* 0 for success, positive value for failure. */
5456 /****************************************************************************/
5457 int
5458 bnx_intr(void *xsc)
5459 {
5460 struct bnx_softc *sc = xsc;
5461 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5462 uint32_t status_attn_bits;
5463 uint16_t status_idx;
5464 const struct status_block *sblk;
5465 int rv = 0;
5466
5467 if (!device_is_active(sc->bnx_dev) ||
5468 (ifp->if_flags & IFF_RUNNING) == 0)
5469 return 0;
5470
5471 DBRUNIF(1, sc->interrupts_generated++);
5472
5473 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5474 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
5475
5476 sblk = sc->status_block;
5477 /*
5478 * If the hardware status block index
5479 * matches the last value read by the
5480 * driver and we haven't asserted our
5481 * interrupt then there's nothing to do.
5482 */
5483 status_idx = sblk->status_idx;
5484 if ((status_idx != sc->last_status_idx) ||
5485 !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
5486 BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
5487 rv = 1;
5488
5489 /* Ack the interrupt */
5490 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5491 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
5492
5493 status_attn_bits = sblk->status_attn_bits;
5494
5495 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5496 aprint_debug("Simulating unexpected status attention bit set.");
5497 status_attn_bits = status_attn_bits |
5498 STATUS_ATTN_BITS_PARITY_ERROR);
5499
5500 /* Was it a link change interrupt? */
5501 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5502 (sblk->status_attn_bits_ack &
5503 STATUS_ATTN_BITS_LINK_STATE))
5504 bnx_phy_intr(sc);
5505
5506 /* If any other attention is asserted then the chip is toast. */
5507 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5508 (sblk->status_attn_bits_ack &
5509 ~STATUS_ATTN_BITS_LINK_STATE))) {
5510 DBRUN(sc->unexpected_attentions++);
5511
5512 BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
5513 sblk->status_attn_bits);
5514
5515 DBRUNIF((bnx_debug_unexpected_attention == 0),
5516 bnx_breakpoint(sc));
5517
5518 bnx_init(ifp);
5519 goto out;
5520 }
5521
5522 /* Check for any completed RX frames. */
5523 if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
5524 bnx_rx_intr(sc);
5525
5526 /* Check for any completed TX frames. */
5527 if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
5528 bnx_tx_intr(sc);
5529
5530 /*
5531 * Save the status block index value for use during the
5532 * next interrupt.
5533 */
5534 sc->last_status_idx = status_idx;
5535
5536 /* Start moving packets again */
5537 if (ifp->if_flags & IFF_RUNNING)
5538 if_schedule_deferred_start(ifp);
5539 }
5540
5541 out:
5542 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5543 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
5544
5545 return rv;
5546 }
5547
5548 /****************************************************************************/
5549 /* Programs the various packet receive modes (broadcast and multicast). */
5550 /* */
5551 /* Returns: */
5552 /* Nothing. */
5553 /****************************************************************************/
5554 void
5555 bnx_iff(struct bnx_softc *sc)
5556 {
5557 struct ethercom *ec = &sc->bnx_ec;
5558 struct ifnet *ifp = &ec->ec_if;
5559 struct ether_multi *enm;
5560 struct ether_multistep step;
5561 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5562 uint32_t rx_mode, sort_mode;
5563 int h, i;
5564
5565 /* Initialize receive mode default settings. */
5566 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5567 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5568 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5569 ifp->if_flags &= ~IFF_ALLMULTI;
5570
5571 /*
5572 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5573 * be enbled.
5574 */
5575 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5576 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5577
5578 /*
5579 * Check for promiscuous, all multicast, or selected
5580 * multicast address filtering.
5581 */
5582 if (ifp->if_flags & IFF_PROMISC) {
5583 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5584
5585 ifp->if_flags |= IFF_ALLMULTI;
5586 /* Enable promiscuous mode. */
5587 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5588 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5589 } else if (ifp->if_flags & IFF_ALLMULTI) {
5590 allmulti:
5591 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5592
5593 ifp->if_flags |= IFF_ALLMULTI;
5594 /* Enable all multicast addresses. */
5595 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5596 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5597 0xffffffff);
5598 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5599 } else {
5600 /* Accept one or more multicast(s). */
5601 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5602
5603 ETHER_LOCK(ec);
5604 ETHER_FIRST_MULTI(step, ec, enm);
5605 while (enm != NULL) {
5606 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5607 ETHER_ADDR_LEN)) {
5608 ETHER_UNLOCK(ec);
5609 goto allmulti;
5610 }
5611 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5612 0xFF;
5613 hashes[(h & 0xE0) >> 5] |= __BIT(h & 0x1F);
5614 ETHER_NEXT_MULTI(step, enm);
5615 }
5616 ETHER_UNLOCK(ec);
5617
5618 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5619 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5620 hashes[i]);
5621
5622 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5623 }
5624
5625 /* Only make changes if the receive mode has actually changed. */
5626 if (rx_mode != sc->rx_mode) {
5627 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5628 rx_mode);
5629
5630 sc->rx_mode = rx_mode;
5631 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5632 }
5633
5634 /* Disable and clear the exisitng sort before enabling a new sort. */
5635 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5636 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5637 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5638 }
5639
5640 /****************************************************************************/
5641 /* Called periodically to updates statistics from the controllers */
5642 /* statistics block. */
5643 /* */
5644 /* Returns: */
5645 /* Nothing. */
5646 /****************************************************************************/
5647 void
5648 bnx_stats_update(struct bnx_softc *sc)
5649 {
5650 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5651 struct statistics_block *stats;
5652
5653 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5654 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5655 BUS_DMASYNC_POSTREAD);
5656
5657 stats = (struct statistics_block *)sc->stats_block;
5658
5659 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
5660 uint64_t value;
5661
5662 /*
5663 * Update the interface statistics from the
5664 * hardware statistics.
5665 */
5666 value = (u_long)stats->stat_EtherStatsCollisions;
5667 if_statadd_ref(nsr, if_collisions, value - sc->if_stat_collisions);
5668 sc->if_stat_collisions = value;
5669
5670 value = (u_long)stats->stat_EtherStatsUndersizePkts +
5671 (u_long)stats->stat_EtherStatsOverrsizePkts +
5672 (u_long)stats->stat_IfInMBUFDiscards +
5673 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5674 (u_long)stats->stat_Dot3StatsFCSErrors;
5675 if_statadd_ref(nsr, if_ierrors, value - sc->if_stat_ierrors);
5676 sc->if_stat_ierrors = value;
5677
5678 value = (u_long)
5679 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5680 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5681 (u_long)stats->stat_Dot3StatsLateCollisions;
5682 if_statadd_ref(nsr, if_oerrors, value - sc->if_stat_oerrors);
5683 sc->if_stat_oerrors = value;
5684
5685 /*
5686 * Certain controllers don't report
5687 * carrier sense errors correctly.
5688 * See errata E11_5708CA0_1165.
5689 */
5690 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5691 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) {
5692 if_statadd_ref(nsr, if_oerrors,
5693 (u_long) stats->stat_Dot3StatsCarrierSenseErrors);
5694 }
5695
5696 IF_STAT_PUTREF(ifp);
5697
5698 /*
5699 * Update the sysctl statistics from the
5700 * hardware statistics.
5701 */
5702 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5703 (uint64_t) stats->stat_IfHCInOctets_lo;
5704
5705 sc->stat_IfHCInBadOctets =
5706 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5707 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5708
5709 sc->stat_IfHCOutOctets =
5710 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5711 (uint64_t) stats->stat_IfHCOutOctets_lo;
5712
5713 sc->stat_IfHCOutBadOctets =
5714 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5715 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5716
5717 sc->stat_IfHCInUcastPkts =
5718 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5719 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5720
5721 sc->stat_IfHCInMulticastPkts =
5722 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5723 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5724
5725 sc->stat_IfHCInBroadcastPkts =
5726 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5727 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5728
5729 sc->stat_IfHCOutUcastPkts =
5730 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5731 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5732
5733 sc->stat_IfHCOutMulticastPkts =
5734 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5735 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5736
5737 sc->stat_IfHCOutBroadcastPkts =
5738 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5739 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5740
5741 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5742 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5743
5744 sc->stat_Dot3StatsCarrierSenseErrors =
5745 stats->stat_Dot3StatsCarrierSenseErrors;
5746
5747 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5748
5749 sc->stat_Dot3StatsAlignmentErrors =
5750 stats->stat_Dot3StatsAlignmentErrors;
5751
5752 sc->stat_Dot3StatsSingleCollisionFrames =
5753 stats->stat_Dot3StatsSingleCollisionFrames;
5754
5755 sc->stat_Dot3StatsMultipleCollisionFrames =
5756 stats->stat_Dot3StatsMultipleCollisionFrames;
5757
5758 sc->stat_Dot3StatsDeferredTransmissions =
5759 stats->stat_Dot3StatsDeferredTransmissions;
5760
5761 sc->stat_Dot3StatsExcessiveCollisions =
5762 stats->stat_Dot3StatsExcessiveCollisions;
5763
5764 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5765
5766 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5767
5768 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5769
5770 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5771
5772 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5773
5774 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5775
5776 sc->stat_EtherStatsPktsRx64Octets =
5777 stats->stat_EtherStatsPktsRx64Octets;
5778
5779 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5780 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5781
5782 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5783 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5784
5785 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5786 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5787
5788 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5789 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5790
5791 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5792 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5793
5794 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5795 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5796
5797 sc->stat_EtherStatsPktsTx64Octets =
5798 stats->stat_EtherStatsPktsTx64Octets;
5799
5800 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5801 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5802
5803 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5804 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5805
5806 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5807 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5808
5809 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5810 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5811
5812 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5813 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5814
5815 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5816 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5817
5818 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5819
5820 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5821
5822 sc->stat_OutXonSent = stats->stat_OutXonSent;
5823
5824 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5825
5826 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5827
5828 sc->stat_MacControlFramesReceived =
5829 stats->stat_MacControlFramesReceived;
5830
5831 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5832
5833 sc->stat_IfInFramesL2FilterDiscards =
5834 stats->stat_IfInFramesL2FilterDiscards;
5835
5836 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5837
5838 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5839
5840 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5841
5842 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5843
5844 sc->stat_CatchupInRuleCheckerDiscards =
5845 stats->stat_CatchupInRuleCheckerDiscards;
5846
5847 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5848
5849 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5850
5851 sc->stat_CatchupInRuleCheckerP4Hit =
5852 stats->stat_CatchupInRuleCheckerP4Hit;
5853
5854 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5855 }
5856
5857 void
5858 bnx_tick(void *xsc)
5859 {
5860 struct bnx_softc *sc = xsc;
5861 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5862 struct mii_data *mii;
5863 uint32_t msg;
5864 uint16_t prod, chain_prod;
5865 uint32_t prod_bseq;
5866 int s = splnet();
5867
5868 /* Tell the firmware that the driver is still running. */
5869 #ifdef BNX_DEBUG
5870 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5871 #else
5872 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5873 #endif
5874 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5875
5876 /* Update the statistics from the hardware statistics block. */
5877 bnx_stats_update(sc);
5878
5879 /* Schedule the next tick. */
5880 if (!sc->bnx_detaching)
5881 callout_schedule(&sc->bnx_timeout, hz);
5882
5883 if (sc->bnx_link)
5884 goto bnx_tick_exit;
5885
5886 mii = &sc->bnx_mii;
5887 mii_tick(mii);
5888
5889 /* Check if the link has come up. */
5890 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
5891 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5892 sc->bnx_link++;
5893 /* Now that link is up, handle any outstanding TX traffic. */
5894 if_schedule_deferred_start(ifp);
5895 }
5896
5897 bnx_tick_exit:
5898 /* try to get more RX buffers, just in case */
5899 prod = sc->rx_prod;
5900 prod_bseq = sc->rx_prod_bseq;
5901 chain_prod = RX_CHAIN_IDX(prod);
5902 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5903 sc->rx_prod = prod;
5904 sc->rx_prod_bseq = prod_bseq;
5905
5906 splx(s);
5907 return;
5908 }
5909
5910 /****************************************************************************/
5911 /* BNX Debug Routines */
5912 /****************************************************************************/
5913 #ifdef BNX_DEBUG
5914
5915 /****************************************************************************/
5916 /* Prints out information about an mbuf. */
5917 /* */
5918 /* Returns: */
5919 /* Nothing. */
5920 /****************************************************************************/
5921 void
5922 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5923 {
5924 struct mbuf *mp = m;
5925
5926 if (m == NULL) {
5927 /* Index out of range. */
5928 aprint_error("mbuf ptr is null!\n");
5929 return;
5930 }
5931
5932 while (mp) {
5933 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5934 mp, mp->m_len);
5935
5936 if (mp->m_flags & M_EXT)
5937 aprint_debug("M_EXT ");
5938 if (mp->m_flags & M_PKTHDR)
5939 aprint_debug("M_PKTHDR ");
5940 aprint_debug("\n");
5941
5942 if (mp->m_flags & M_EXT)
5943 aprint_debug("- m_ext: vaddr = %p, "
5944 "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
5945
5946 mp = mp->m_next;
5947 }
5948 }
5949
5950 /****************************************************************************/
5951 /* Prints out the mbufs in the TX mbuf chain. */
5952 /* */
5953 /* Returns: */
5954 /* Nothing. */
5955 /****************************************************************************/
5956 void
5957 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5958 {
5959 #if 0
5960 struct mbuf *m;
5961 int i;
5962
5963 aprint_debug_dev(sc->bnx_dev,
5964 "----------------------------"
5965 " tx mbuf data "
5966 "----------------------------\n");
5967
5968 for (i = 0; i < count; i++) {
5969 m = sc->tx_mbuf_ptr[chain_prod];
5970 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5971 bnx_dump_mbuf(sc, m);
5972 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5973 }
5974
5975 aprint_debug_dev(sc->bnx_dev,
5976 "--------------------------------------------"
5977 "----------------------------\n");
5978 #endif
5979 }
5980
5981 /*
5982 * This routine prints the RX mbuf chain.
5983 */
5984 void
5985 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5986 {
5987 struct mbuf *m;
5988 int i;
5989
5990 aprint_debug_dev(sc->bnx_dev,
5991 "----------------------------"
5992 " rx mbuf data "
5993 "----------------------------\n");
5994
5995 for (i = 0; i < count; i++) {
5996 m = sc->rx_mbuf_ptr[chain_prod];
5997 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5998 bnx_dump_mbuf(sc, m);
5999 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
6000 }
6001
6002
6003 aprint_debug_dev(sc->bnx_dev,
6004 "--------------------------------------------"
6005 "----------------------------\n");
6006 }
6007
6008 void
6009 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
6010 {
6011 if (idx > MAX_TX_BD)
6012 /* Index out of range. */
6013 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
6014 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6015 /* TX Chain page pointer. */
6016 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
6017 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
6018 txbd->tx_bd_haddr_lo);
6019 else
6020 /* Normal tx_bd entry. */
6021 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6022 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
6023 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
6024 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
6025 txbd->tx_bd_flags);
6026 }
6027
6028 void
6029 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
6030 {
6031 if (idx > MAX_RX_BD)
6032 /* Index out of range. */
6033 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
6034 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6035 /* TX Chain page pointer. */
6036 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
6037 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
6038 rxbd->rx_bd_haddr_lo);
6039 else
6040 /* Normal tx_bd entry. */
6041 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6042 "0x%08X, flags = 0x%08X\n", idx,
6043 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
6044 rxbd->rx_bd_len, rxbd->rx_bd_flags);
6045 }
6046
6047 void
6048 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
6049 {
6050 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
6051 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
6052 "tcp_udp_xsum = 0x%04X\n", idx,
6053 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
6054 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
6055 l2fhdr->l2_fhdr_tcp_udp_xsum);
6056 }
6057
6058 /*
6059 * This routine prints the TX chain.
6060 */
6061 void
6062 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
6063 {
6064 struct tx_bd *txbd;
6065 int i;
6066
6067 /* First some info about the tx_bd chain structure. */
6068 aprint_debug_dev(sc->bnx_dev,
6069 "----------------------------"
6070 " tx_bd chain "
6071 "----------------------------\n");
6072
6073 BNX_PRINTF(sc,
6074 "page size = 0x%08X, tx chain pages = 0x%08X\n",
6075 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
6076
6077 BNX_PRINTF(sc,
6078 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
6079 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
6080
6081 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
6082
6083 aprint_error_dev(sc->bnx_dev, ""
6084 "-----------------------------"
6085 " tx_bd data "
6086 "-----------------------------\n");
6087
6088 /* Now print out the tx_bd's themselves. */
6089 for (i = 0; i < count; i++) {
6090 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6091 bnx_dump_txbd(sc, tx_prod, txbd);
6092 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
6093 }
6094
6095 aprint_debug_dev(sc->bnx_dev,
6096 "-----------------------------"
6097 "--------------"
6098 "-----------------------------\n");
6099 }
6100
6101 /*
6102 * This routine prints the RX chain.
6103 */
6104 void
6105 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
6106 {
6107 struct rx_bd *rxbd;
6108 int i;
6109
6110 /* First some info about the tx_bd chain structure. */
6111 aprint_debug_dev(sc->bnx_dev,
6112 "----------------------------"
6113 " rx_bd chain "
6114 "----------------------------\n");
6115
6116 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
6117
6118 BNX_PRINTF(sc,
6119 "page size = 0x%08X, rx chain pages = 0x%08X\n",
6120 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
6121
6122 BNX_PRINTF(sc,
6123 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
6124 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
6125
6126 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
6127
6128 aprint_error_dev(sc->bnx_dev,
6129 "----------------------------"
6130 " rx_bd data "
6131 "----------------------------\n");
6132
6133 /* Now print out the rx_bd's themselves. */
6134 for (i = 0; i < count; i++) {
6135 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6136 bnx_dump_rxbd(sc, rx_prod, rxbd);
6137 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
6138 }
6139
6140 aprint_debug_dev(sc->bnx_dev,
6141 "----------------------------"
6142 "--------------"
6143 "----------------------------\n");
6144 }
6145
6146 /*
6147 * This routine prints the status block.
6148 */
6149 void
6150 bnx_dump_status_block(struct bnx_softc *sc)
6151 {
6152 struct status_block *sblk;
6153 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6154 BUS_DMASYNC_POSTREAD);
6155
6156 sblk = sc->status_block;
6157
6158 aprint_debug_dev(sc->bnx_dev, "----------------------------- "
6159 "Status Block -----------------------------\n");
6160
6161 BNX_PRINTF(sc,
6162 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
6163 sblk->status_attn_bits, sblk->status_attn_bits_ack,
6164 sblk->status_idx);
6165
6166 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
6167 sblk->status_rx_quick_consumer_index0,
6168 sblk->status_tx_quick_consumer_index0);
6169
6170 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
6171
6172 /* Theses indices are not used for normal L2 drivers. */
6173 if (sblk->status_rx_quick_consumer_index1 ||
6174 sblk->status_tx_quick_consumer_index1)
6175 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
6176 sblk->status_rx_quick_consumer_index1,
6177 sblk->status_tx_quick_consumer_index1);
6178
6179 if (sblk->status_rx_quick_consumer_index2 ||
6180 sblk->status_tx_quick_consumer_index2)
6181 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
6182 sblk->status_rx_quick_consumer_index2,
6183 sblk->status_tx_quick_consumer_index2);
6184
6185 if (sblk->status_rx_quick_consumer_index3 ||
6186 sblk->status_tx_quick_consumer_index3)
6187 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
6188 sblk->status_rx_quick_consumer_index3,
6189 sblk->status_tx_quick_consumer_index3);
6190
6191 if (sblk->status_rx_quick_consumer_index4 ||
6192 sblk->status_rx_quick_consumer_index5)
6193 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
6194 sblk->status_rx_quick_consumer_index4,
6195 sblk->status_rx_quick_consumer_index5);
6196
6197 if (sblk->status_rx_quick_consumer_index6 ||
6198 sblk->status_rx_quick_consumer_index7)
6199 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
6200 sblk->status_rx_quick_consumer_index6,
6201 sblk->status_rx_quick_consumer_index7);
6202
6203 if (sblk->status_rx_quick_consumer_index8 ||
6204 sblk->status_rx_quick_consumer_index9)
6205 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6206 sblk->status_rx_quick_consumer_index8,
6207 sblk->status_rx_quick_consumer_index9);
6208
6209 if (sblk->status_rx_quick_consumer_index10 ||
6210 sblk->status_rx_quick_consumer_index11)
6211 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6212 sblk->status_rx_quick_consumer_index10,
6213 sblk->status_rx_quick_consumer_index11);
6214
6215 if (sblk->status_rx_quick_consumer_index12 ||
6216 sblk->status_rx_quick_consumer_index13)
6217 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6218 sblk->status_rx_quick_consumer_index12,
6219 sblk->status_rx_quick_consumer_index13);
6220
6221 if (sblk->status_rx_quick_consumer_index14 ||
6222 sblk->status_rx_quick_consumer_index15)
6223 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6224 sblk->status_rx_quick_consumer_index14,
6225 sblk->status_rx_quick_consumer_index15);
6226
6227 if (sblk->status_completion_producer_index ||
6228 sblk->status_cmd_consumer_index)
6229 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6230 sblk->status_completion_producer_index,
6231 sblk->status_cmd_consumer_index);
6232
6233 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6234 "-----------------------------\n");
6235 }
6236
6237 /*
6238 * This routine prints the statistics block.
6239 */
6240 void
6241 bnx_dump_stats_block(struct bnx_softc *sc)
6242 {
6243 struct statistics_block *sblk;
6244 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6245 BUS_DMASYNC_POSTREAD);
6246
6247 sblk = sc->stats_block;
6248
6249 aprint_debug_dev(sc->bnx_dev, ""
6250 "-----------------------------"
6251 " Stats Block "
6252 "-----------------------------\n");
6253
6254 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6255 "IfHcInBadOctets = 0x%08X:%08X\n",
6256 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6257 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6258
6259 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6260 "IfHcOutBadOctets = 0x%08X:%08X\n",
6261 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6262 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6263
6264 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6265 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6266 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6267 sblk->stat_IfHCInMulticastPkts_hi,
6268 sblk->stat_IfHCInMulticastPkts_lo);
6269
6270 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6271 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6272 sblk->stat_IfHCInBroadcastPkts_hi,
6273 sblk->stat_IfHCInBroadcastPkts_lo,
6274 sblk->stat_IfHCOutUcastPkts_hi,
6275 sblk->stat_IfHCOutUcastPkts_lo);
6276
6277 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6278 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6279 sblk->stat_IfHCOutMulticastPkts_hi,
6280 sblk->stat_IfHCOutMulticastPkts_lo,
6281 sblk->stat_IfHCOutBroadcastPkts_hi,
6282 sblk->stat_IfHCOutBroadcastPkts_lo);
6283
6284 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6285 BNX_PRINTF(sc, "0x%08X : "
6286 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6287 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6288
6289 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6290 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6291 sblk->stat_Dot3StatsCarrierSenseErrors);
6292
6293 if (sblk->stat_Dot3StatsFCSErrors)
6294 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6295 sblk->stat_Dot3StatsFCSErrors);
6296
6297 if (sblk->stat_Dot3StatsAlignmentErrors)
6298 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6299 sblk->stat_Dot3StatsAlignmentErrors);
6300
6301 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6302 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6303 sblk->stat_Dot3StatsSingleCollisionFrames);
6304
6305 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6306 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6307 sblk->stat_Dot3StatsMultipleCollisionFrames);
6308
6309 if (sblk->stat_Dot3StatsDeferredTransmissions)
6310 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6311 sblk->stat_Dot3StatsDeferredTransmissions);
6312
6313 if (sblk->stat_Dot3StatsExcessiveCollisions)
6314 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6315 sblk->stat_Dot3StatsExcessiveCollisions);
6316
6317 if (sblk->stat_Dot3StatsLateCollisions)
6318 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6319 sblk->stat_Dot3StatsLateCollisions);
6320
6321 if (sblk->stat_EtherStatsCollisions)
6322 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6323 sblk->stat_EtherStatsCollisions);
6324
6325 if (sblk->stat_EtherStatsFragments)
6326 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6327 sblk->stat_EtherStatsFragments);
6328
6329 if (sblk->stat_EtherStatsJabbers)
6330 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6331 sblk->stat_EtherStatsJabbers);
6332
6333 if (sblk->stat_EtherStatsUndersizePkts)
6334 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6335 sblk->stat_EtherStatsUndersizePkts);
6336
6337 if (sblk->stat_EtherStatsOverrsizePkts)
6338 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6339 sblk->stat_EtherStatsOverrsizePkts);
6340
6341 if (sblk->stat_EtherStatsPktsRx64Octets)
6342 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6343 sblk->stat_EtherStatsPktsRx64Octets);
6344
6345 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6346 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6347 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6348
6349 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6350 BNX_PRINTF(sc, "0x%08X : "
6351 "EtherStatsPktsRx128Octetsto255Octets\n",
6352 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6353
6354 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6355 BNX_PRINTF(sc, "0x%08X : "
6356 "EtherStatsPktsRx256Octetsto511Octets\n",
6357 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6358
6359 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6360 BNX_PRINTF(sc, "0x%08X : "
6361 "EtherStatsPktsRx512Octetsto1023Octets\n",
6362 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6363
6364 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6365 BNX_PRINTF(sc, "0x%08X : "
6366 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6367 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6368
6369 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6370 BNX_PRINTF(sc, "0x%08X : "
6371 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6372 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6373
6374 if (sblk->stat_EtherStatsPktsTx64Octets)
6375 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6376 sblk->stat_EtherStatsPktsTx64Octets);
6377
6378 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6379 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6380 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6381
6382 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6383 BNX_PRINTF(sc, "0x%08X : "
6384 "EtherStatsPktsTx128Octetsto255Octets\n",
6385 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6386
6387 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6388 BNX_PRINTF(sc, "0x%08X : "
6389 "EtherStatsPktsTx256Octetsto511Octets\n",
6390 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6391
6392 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6393 BNX_PRINTF(sc, "0x%08X : "
6394 "EtherStatsPktsTx512Octetsto1023Octets\n",
6395 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6396
6397 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6398 BNX_PRINTF(sc, "0x%08X : "
6399 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6400 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6401
6402 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6403 BNX_PRINTF(sc, "0x%08X : "
6404 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6405 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6406
6407 if (sblk->stat_XonPauseFramesReceived)
6408 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6409 sblk->stat_XonPauseFramesReceived);
6410
6411 if (sblk->stat_XoffPauseFramesReceived)
6412 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6413 sblk->stat_XoffPauseFramesReceived);
6414
6415 if (sblk->stat_OutXonSent)
6416 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6417 sblk->stat_OutXonSent);
6418
6419 if (sblk->stat_OutXoffSent)
6420 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6421 sblk->stat_OutXoffSent);
6422
6423 if (sblk->stat_FlowControlDone)
6424 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6425 sblk->stat_FlowControlDone);
6426
6427 if (sblk->stat_MacControlFramesReceived)
6428 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6429 sblk->stat_MacControlFramesReceived);
6430
6431 if (sblk->stat_XoffStateEntered)
6432 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6433 sblk->stat_XoffStateEntered);
6434
6435 if (sblk->stat_IfInFramesL2FilterDiscards)
6436 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6437 sblk->stat_IfInFramesL2FilterDiscards);
6438
6439 if (sblk->stat_IfInRuleCheckerDiscards)
6440 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6441 sblk->stat_IfInRuleCheckerDiscards);
6442
6443 if (sblk->stat_IfInFTQDiscards)
6444 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6445 sblk->stat_IfInFTQDiscards);
6446
6447 if (sblk->stat_IfInMBUFDiscards)
6448 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6449 sblk->stat_IfInMBUFDiscards);
6450
6451 if (sblk->stat_IfInRuleCheckerP4Hit)
6452 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6453 sblk->stat_IfInRuleCheckerP4Hit);
6454
6455 if (sblk->stat_CatchupInRuleCheckerDiscards)
6456 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6457 sblk->stat_CatchupInRuleCheckerDiscards);
6458
6459 if (sblk->stat_CatchupInFTQDiscards)
6460 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6461 sblk->stat_CatchupInFTQDiscards);
6462
6463 if (sblk->stat_CatchupInMBUFDiscards)
6464 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6465 sblk->stat_CatchupInMBUFDiscards);
6466
6467 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6468 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6469 sblk->stat_CatchupInRuleCheckerP4Hit);
6470
6471 aprint_debug_dev(sc->bnx_dev,
6472 "-----------------------------"
6473 "--------------"
6474 "-----------------------------\n");
6475 }
6476
6477 void
6478 bnx_dump_driver_state(struct bnx_softc *sc)
6479 {
6480 aprint_debug_dev(sc->bnx_dev,
6481 "-----------------------------"
6482 " Driver State "
6483 "-----------------------------\n");
6484
6485 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6486 "address\n", sc);
6487
6488 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6489 sc->status_block);
6490
6491 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6492 "address\n", sc->stats_block);
6493
6494 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6495 "address\n", sc->tx_bd_chain);
6496
6497 #if 0
6498 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6499 sc->rx_bd_chain);
6500
6501 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6502 sc->tx_mbuf_ptr);
6503 #endif
6504
6505 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6506 sc->rx_mbuf_ptr);
6507
6508 BNX_PRINTF(sc,
6509 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6510 sc->interrupts_generated);
6511
6512 BNX_PRINTF(sc,
6513 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6514 sc->rx_interrupts);
6515
6516 BNX_PRINTF(sc,
6517 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6518 sc->tx_interrupts);
6519
6520 BNX_PRINTF(sc,
6521 " 0x%08X - (sc->last_status_idx) status block index\n",
6522 sc->last_status_idx);
6523
6524 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6525 sc->tx_prod);
6526
6527 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6528 sc->tx_cons);
6529
6530 BNX_PRINTF(sc,
6531 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6532 sc->tx_prod_bseq);
6533 BNX_PRINTF(sc,
6534 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6535 sc->tx_mbuf_alloc);
6536
6537 BNX_PRINTF(sc,
6538 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6539 sc->used_tx_bd);
6540
6541 BNX_PRINTF(sc,
6542 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6543 sc->tx_hi_watermark, sc->max_tx_bd);
6544
6545
6546 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6547 sc->rx_prod);
6548
6549 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6550 sc->rx_cons);
6551
6552 BNX_PRINTF(sc,
6553 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6554 sc->rx_prod_bseq);
6555
6556 BNX_PRINTF(sc,
6557 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6558 sc->rx_mbuf_alloc);
6559
6560 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6561 sc->free_rx_bd);
6562
6563 BNX_PRINTF(sc,
6564 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6565 sc->rx_low_watermark, sc->max_rx_bd);
6566
6567 BNX_PRINTF(sc,
6568 " 0x%08X - (sc->mbuf_alloc_failed) "
6569 "mbuf alloc failures\n",
6570 sc->mbuf_alloc_failed);
6571
6572 BNX_PRINTF(sc,
6573 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6574 "simulated mbuf alloc failures\n",
6575 sc->mbuf_sim_alloc_failed);
6576
6577 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6578 "-----------------------------\n");
6579 }
6580
6581 void
6582 bnx_dump_hw_state(struct bnx_softc *sc)
6583 {
6584 uint32_t val1;
6585 int i;
6586
6587 aprint_debug_dev(sc->bnx_dev,
6588 "----------------------------"
6589 " Hardware State "
6590 "----------------------------\n");
6591
6592 val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
6593 BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
6594
6595 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6596 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6597 val1, BNX_MISC_ENABLE_STATUS_BITS);
6598
6599 val1 = REG_RD(sc, BNX_DMA_STATUS);
6600 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6601
6602 val1 = REG_RD(sc, BNX_CTX_STATUS);
6603 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6604
6605 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6606 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6607 BNX_EMAC_STATUS);
6608
6609 val1 = REG_RD(sc, BNX_RPM_STATUS);
6610 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6611
6612 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6613 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6614 BNX_TBDR_STATUS);
6615
6616 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6617 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6618 BNX_TDMA_STATUS);
6619
6620 val1 = REG_RD(sc, BNX_HC_STATUS);
6621 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6622
6623 aprint_debug_dev(sc->bnx_dev,
6624 "----------------------------"
6625 "----------------"
6626 "----------------------------\n");
6627
6628 aprint_debug_dev(sc->bnx_dev,
6629 "----------------------------"
6630 " Register Dump "
6631 "----------------------------\n");
6632
6633 for (i = 0x400; i < 0x8000; i += 0x10)
6634 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6635 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6636 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6637
6638 aprint_debug_dev(sc->bnx_dev,
6639 "----------------------------"
6640 "----------------"
6641 "----------------------------\n");
6642 }
6643
6644 void
6645 bnx_breakpoint(struct bnx_softc *sc)
6646 {
6647 /* Unreachable code to shut the compiler up about unused functions. */
6648 if (0) {
6649 bnx_dump_txbd(sc, 0, NULL);
6650 bnx_dump_rxbd(sc, 0, NULL);
6651 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6652 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6653 bnx_dump_l2fhdr(sc, 0, NULL);
6654 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6655 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6656 bnx_dump_status_block(sc);
6657 bnx_dump_stats_block(sc);
6658 bnx_dump_driver_state(sc);
6659 bnx_dump_hw_state(sc);
6660 }
6661
6662 bnx_dump_driver_state(sc);
6663 /* Print the important status block fields. */
6664 bnx_dump_status_block(sc);
6665
6666 #if 0
6667 /* Call the debugger. */
6668 breakpoint();
6669 #endif
6670
6671 return;
6672 }
6673 #endif
6674