if_bnx.c revision 1.106 1 /* $NetBSD: if_bnx.c,v 1.106 2021/02/13 01:51:24 jakllsch Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.106 2021/02/13 01:51:24 jakllsch Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187
188 /* Slow EEPROM */
189 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
190 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
191 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
192 "EEPROM - slow"},
193 /* Expansion entry 0001 */
194 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
195 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
196 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
197 "Entry 0001"},
198 /* Saifun SA25F010 (non-buffered flash) */
199 /* strap, cfg1, & write1 need updates */
200 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
203 "Non-buffered flash (128kB)"},
204 /* Saifun SA25F020 (non-buffered flash) */
205 /* strap, cfg1, & write1 need updates */
206 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
209 "Non-buffered flash (256kB)"},
210 /* Expansion entry 0100 */
211 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
212 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
213 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
214 "Entry 0100"},
215 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
216 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
218 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
219 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
220 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
221 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
223 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
224 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
225 /* Saifun SA25F005 (non-buffered flash) */
226 /* strap, cfg1, & write1 need updates */
227 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
228 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
230 "Non-buffered flash (64kB)"},
231 /* Fast EEPROM */
232 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
233 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
234 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
235 "EEPROM - fast"},
236 /* Expansion entry 1001 */
237 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
238 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
239 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
240 "Entry 1001"},
241 /* Expansion entry 1010 */
242 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
243 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
244 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
245 "Entry 1010"},
246 /* ATMEL AT45DB011B (buffered flash) */
247 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
248 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
249 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
250 "Buffered flash (128kB)"},
251 /* Expansion entry 1100 */
252 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
253 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
255 "Entry 1100"},
256 /* Expansion entry 1101 */
257 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
258 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
259 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
260 "Entry 1101"},
261 /* Ateml Expansion entry 1110 */
262 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
263 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
264 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
265 "Entry 1110 (Atmel)"},
266 /* ATMEL AT45DB021B (buffered flash) */
267 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
268 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
269 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
270 "Buffered flash (256kB)"},
271 };
272
273 /*
274 * The BCM5709 controllers transparently handle the
275 * differences between Atmel 264 byte pages and all
276 * flash devices which use 256 byte pages, so no
277 * logical-to-physical mapping is required in the
278 * driver.
279 */
280 static struct flash_spec flash_5709 = {
281 .flags = BNX_NV_BUFFERED,
282 .page_bits = BCM5709_FLASH_PAGE_BITS,
283 .page_size = BCM5709_FLASH_PAGE_SIZE,
284 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
285 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
286 .name = "5709 buffered flash (256kB)",
287 };
288
289 /****************************************************************************/
290 /* OpenBSD device entry points. */
291 /****************************************************************************/
292 static int bnx_probe(device_t, cfdata_t, void *);
293 void bnx_attach(device_t, device_t, void *);
294 int bnx_detach(device_t, int);
295
296 /****************************************************************************/
297 /* BNX Debug Data Structure Dump Routines */
298 /****************************************************************************/
299 #ifdef BNX_DEBUG
300 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
301 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
303 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
304 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
305 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
306 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
308 void bnx_dump_status_block(struct bnx_softc *);
309 void bnx_dump_stats_block(struct bnx_softc *);
310 void bnx_dump_driver_state(struct bnx_softc *);
311 void bnx_dump_hw_state(struct bnx_softc *);
312 void bnx_breakpoint(struct bnx_softc *);
313 #endif
314
315 /****************************************************************************/
316 /* BNX Register/Memory Access Routines */
317 /****************************************************************************/
318 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
319 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
320 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
321 int bnx_miibus_read_reg(device_t, int, int, uint16_t *);
322 int bnx_miibus_write_reg(device_t, int, int, uint16_t);
323 void bnx_miibus_statchg(struct ifnet *);
324
325 /****************************************************************************/
326 /* BNX NVRAM Access Routines */
327 /****************************************************************************/
328 int bnx_acquire_nvram_lock(struct bnx_softc *);
329 int bnx_release_nvram_lock(struct bnx_softc *);
330 void bnx_enable_nvram_access(struct bnx_softc *);
331 void bnx_disable_nvram_access(struct bnx_softc *);
332 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
333 uint32_t);
334 int bnx_init_nvram(struct bnx_softc *);
335 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
336 int bnx_nvram_test(struct bnx_softc *);
337 #ifdef BNX_NVRAM_WRITE_SUPPORT
338 int bnx_enable_nvram_write(struct bnx_softc *);
339 void bnx_disable_nvram_write(struct bnx_softc *);
340 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
341 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
342 uint32_t);
343 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
344 #endif
345
346 /****************************************************************************/
347 /* */
348 /****************************************************************************/
349 void bnx_get_media(struct bnx_softc *);
350 void bnx_init_media(struct bnx_softc *);
351 int bnx_dma_alloc(struct bnx_softc *);
352 void bnx_dma_free(struct bnx_softc *);
353 void bnx_release_resources(struct bnx_softc *);
354
355 /****************************************************************************/
356 /* BNX Firmware Synchronization and Load */
357 /****************************************************************************/
358 int bnx_fw_sync(struct bnx_softc *, uint32_t);
359 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 static void bnx_print_adapter_info(struct bnx_softc *);
365 static void bnx_probe_pci_caps(struct bnx_softc *);
366 void bnx_stop(struct ifnet *, int);
367 int bnx_reset(struct bnx_softc *, uint32_t);
368 int bnx_chipinit(struct bnx_softc *);
369 int bnx_blockinit(struct bnx_softc *);
370 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
371 uint16_t *, uint32_t *);
372 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
373
374 int bnx_init_tx_chain(struct bnx_softc *);
375 void bnx_init_tx_context(struct bnx_softc *);
376 int bnx_init_rx_chain(struct bnx_softc *);
377 void bnx_init_rx_context(struct bnx_softc *);
378 void bnx_free_rx_chain(struct bnx_softc *);
379 void bnx_free_tx_chain(struct bnx_softc *);
380
381 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
382 void bnx_start(struct ifnet *);
383 int bnx_ioctl(struct ifnet *, u_long, void *);
384 void bnx_watchdog(struct ifnet *);
385 int bnx_ifmedia_upd(struct ifnet *);
386 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
387 int bnx_init(struct ifnet *);
388 static void bnx_mgmt_init(struct bnx_softc *);
389
390 void bnx_init_context(struct bnx_softc *);
391 void bnx_get_mac_addr(struct bnx_softc *);
392 void bnx_set_mac_addr(struct bnx_softc *);
393 void bnx_phy_intr(struct bnx_softc *);
394 void bnx_rx_intr(struct bnx_softc *);
395 void bnx_tx_intr(struct bnx_softc *);
396 void bnx_disable_intr(struct bnx_softc *);
397 void bnx_enable_intr(struct bnx_softc *);
398
399 int bnx_intr(void *);
400 void bnx_iff(struct bnx_softc *);
401 void bnx_stats_update(struct bnx_softc *);
402 void bnx_tick(void *);
403
404 struct pool *bnx_tx_pool = NULL;
405 void bnx_alloc_pkts(struct work *, void *);
406
407 /****************************************************************************/
408 /* OpenBSD device dispatch table. */
409 /****************************************************************************/
410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
411 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
412
413 /****************************************************************************/
414 /* Device probe function. */
415 /* */
416 /* Compares the device to the driver's list of supported devices and */
417 /* reports back to the OS whether this is the right driver for the device. */
418 /* */
419 /* Returns: */
420 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
421 /****************************************************************************/
422 static const struct bnx_product *
423 bnx_lookup(const struct pci_attach_args *pa)
424 {
425 int i;
426 pcireg_t subid;
427
428 for (i = 0; i < __arraycount(bnx_devices); i++) {
429 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
430 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
431 continue;
432 if (!bnx_devices[i].bp_subvendor)
433 return &bnx_devices[i];
434 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
435 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
436 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
437 return &bnx_devices[i];
438 }
439
440 return NULL;
441 }
442 static int
443 bnx_probe(device_t parent, cfdata_t match, void *aux)
444 {
445 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
446
447 if (bnx_lookup(pa) != NULL)
448 return 1;
449
450 return 0;
451 }
452
453 /****************************************************************************/
454 /* PCI Capabilities Probe Function. */
455 /* */
456 /* Walks the PCI capabiites list for the device to find what features are */
457 /* supported. */
458 /* */
459 /* Returns: */
460 /* None. */
461 /****************************************************************************/
462 static void
463 bnx_print_adapter_info(struct bnx_softc *sc)
464 {
465 device_t dev = sc->bnx_dev;
466 int i = 0;
467
468 aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
469 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
470 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
471 ? "Serdes " : "", sc->bnx_chipid);
472
473 /* Bus info. */
474 if (sc->bnx_flags & BNX_PCIE_FLAG) {
475 aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
476 switch (sc->link_speed) {
477 case 1: aprint_normal("2.5GT/s\n"); break;
478 case 2: aprint_normal("5GT/s\n"); break;
479 default: aprint_normal("Unknown link speed\n");
480 }
481 } else {
482 aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
483 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
484 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
485 sc->bus_speed_mhz);
486 }
487
488 /* Firmware version and device features. */
489 aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
490 sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
491
492 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
493 if (i > 0) aprint_normal("|");
494 aprint_normal("2.5G"); i++;
495 }
496
497 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
498 if (i > 0) aprint_normal("|");
499 aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
500 } else {
501 aprint_normal(")\n");
502 }
503
504 aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
505 sc->bnx_rx_quick_cons_trip_int,
506 sc->bnx_rx_quick_cons_trip,
507 sc->bnx_rx_ticks_int,
508 sc->bnx_rx_ticks,
509 sc->bnx_tx_quick_cons_trip_int,
510 sc->bnx_tx_quick_cons_trip,
511 sc->bnx_tx_ticks_int,
512 sc->bnx_tx_ticks);
513 }
514
515
516 /****************************************************************************/
517 /* PCI Capabilities Probe Function. */
518 /* */
519 /* Walks the PCI capabiites list for the device to find what features are */
520 /* supported. */
521 /* */
522 /* Returns: */
523 /* None. */
524 /****************************************************************************/
525 static void
526 bnx_probe_pci_caps(struct bnx_softc *sc)
527 {
528 struct pci_attach_args *pa = &(sc->bnx_pa);
529 pcireg_t reg;
530
531 /* Check if PCI-X capability is enabled. */
532 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
533 NULL) != 0) {
534 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
535 }
536
537 /* Check if PCIe capability is enabled. */
538 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
539 NULL) != 0) {
540 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
541 reg + PCIE_LCSR);
542 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
543 "0x%08X\n", link_status);
544 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
545 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
546 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
547 sc->bnx_flags |= BNX_PCIE_FLAG;
548 }
549
550 /* Check if MSI capability is enabled. */
551 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
552 NULL) != 0)
553 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
554
555 /* Check if MSI-X capability is enabled. */
556 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
557 NULL) != 0)
558 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
559 }
560
561
562 /****************************************************************************/
563 /* Device attach function. */
564 /* */
565 /* Allocates device resources, performs secondary chip identification, */
566 /* resets and initializes the hardware, and initializes driver instance */
567 /* variables. */
568 /* */
569 /* Returns: */
570 /* 0 on success, positive value on failure. */
571 /****************************************************************************/
572 void
573 bnx_attach(device_t parent, device_t self, void *aux)
574 {
575 const struct bnx_product *bp;
576 struct bnx_softc *sc = device_private(self);
577 prop_dictionary_t dict;
578 struct pci_attach_args *pa = aux;
579 pci_chipset_tag_t pc = pa->pa_pc;
580 const char *intrstr = NULL;
581 uint32_t command;
582 struct ifnet *ifp;
583 struct mii_data * const mii = &sc->bnx_mii;
584 uint32_t val;
585 int mii_flags = MIIF_FORCEANEG;
586 pcireg_t memtype;
587 char intrbuf[PCI_INTRSTR_LEN];
588 int i, j;
589
590 if (bnx_tx_pool == NULL) {
591 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_WAITOK);
592 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
593 0, 0, 0, "bnxpkts", NULL, IPL_NET);
594 }
595
596 bp = bnx_lookup(pa);
597 if (bp == NULL)
598 panic("unknown device");
599
600 sc->bnx_dev = self;
601
602 aprint_naive("\n");
603 aprint_normal(": %s\n", bp->bp_name);
604
605 sc->bnx_pa = *pa;
606
607 /*
608 * Map control/status registers.
609 */
610 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
611 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
612 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
613 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
614
615 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
616 aprint_error_dev(sc->bnx_dev,
617 "failed to enable memory mapping!\n");
618 return;
619 }
620
621 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
622 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
623 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
624 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
625 return;
626 }
627
628 /* XXX driver needs more work before MSI or MSI-X can be enabled */
629 int counts[PCI_INTR_TYPE_SIZE] = {
630 [PCI_INTR_TYPE_INTX] = 1,
631 [PCI_INTR_TYPE_MSI] = 0,
632 [PCI_INTR_TYPE_MSIX] = 0,
633 };
634 if (pci_intr_alloc(pa, &sc->bnx_ih, counts, PCI_INTR_TYPE_INTX)) {
635 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
636 goto bnx_attach_fail;
637 }
638 intrstr = pci_intr_string(pc, sc->bnx_ih[0], intrbuf, sizeof(intrbuf));
639
640 /*
641 * Configure byte swap and enable indirect register access.
642 * Rely on CPU to do target byte swapping on big endian systems.
643 * Access to registers outside of PCI configurtion space are not
644 * valid until this is done.
645 */
646 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
647 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
648 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
649
650 /* Save ASIC revision info. */
651 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
652
653 /*
654 * Find the base address for shared memory access.
655 * Newer versions of bootcode use a signature and offset
656 * while older versions use a fixed address.
657 */
658 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
659 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
660 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
661 (sc->bnx_pa.pa_function << 2));
662 else
663 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
664
665 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
666
667 /* Set initial device and PHY flags */
668 sc->bnx_flags = 0;
669 sc->bnx_phy_flags = 0;
670
671 /* Fetch the bootcode revision. */
672 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
673 for (i = 0, j = 0; i < 3; i++) {
674 uint8_t num;
675 int k, skip0;
676
677 num = (uint8_t)(val >> (24 - (i * 8)));
678 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
679 if (num >= k || !skip0 || k == 1) {
680 sc->bnx_bc_ver[j++] = (num / k) + '0';
681 skip0 = 0;
682 }
683 }
684 if (i != 2)
685 sc->bnx_bc_ver[j++] = '.';
686 }
687
688 /* Check if any management firmware is enabled. */
689 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
690 if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
691 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
692 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
693
694 /* Allow time for firmware to enter the running state. */
695 for (i = 0; i < 30; i++) {
696 val = REG_RD_IND(sc, sc->bnx_shmem_base +
697 BNX_BC_STATE_CONDITION);
698 if (val & BNX_CONDITION_MFW_RUN_MASK)
699 break;
700 DELAY(10000);
701 }
702
703 /* Check if management firmware is running. */
704 val = REG_RD_IND(sc, sc->bnx_shmem_base +
705 BNX_BC_STATE_CONDITION);
706 val &= BNX_CONDITION_MFW_RUN_MASK;
707 if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
708 (val != BNX_CONDITION_MFW_RUN_NONE)) {
709 uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
710 BNX_MFW_VER_PTR);
711
712 /* Read the management firmware version string. */
713 for (j = 0; j < 3; j++) {
714 val = bnx_reg_rd_ind(sc, addr + j * 4);
715 val = bswap32(val);
716 memcpy(&sc->bnx_mfw_ver[i], &val, 4);
717 i += 4;
718 }
719 } else {
720 /* May cause firmware synchronization timeouts. */
721 BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
722 "but not running!\n", __FILE__, __LINE__);
723 strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
724
725 /* ToDo: Any action the driver should take? */
726 }
727 }
728
729 bnx_probe_pci_caps(sc);
730
731 /* Get PCI bus information (speed and type). */
732 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
733 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
734 uint32_t clkreg;
735
736 sc->bnx_flags |= BNX_PCIX_FLAG;
737
738 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
739
740 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
741 switch (clkreg) {
742 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
743 sc->bus_speed_mhz = 133;
744 break;
745
746 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
747 sc->bus_speed_mhz = 100;
748 break;
749
750 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
751 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
752 sc->bus_speed_mhz = 66;
753 break;
754
755 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
756 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
757 sc->bus_speed_mhz = 50;
758 break;
759
760 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
761 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
762 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
763 sc->bus_speed_mhz = 33;
764 break;
765 }
766 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
767 sc->bus_speed_mhz = 66;
768 else
769 sc->bus_speed_mhz = 33;
770
771 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
772 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
773
774 /* Reset the controller. */
775 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
776 goto bnx_attach_fail;
777
778 /* Initialize the controller. */
779 if (bnx_chipinit(sc)) {
780 aprint_error_dev(sc->bnx_dev,
781 "Controller initialization failed!\n");
782 goto bnx_attach_fail;
783 }
784
785 /* Perform NVRAM test. */
786 if (bnx_nvram_test(sc)) {
787 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
788 goto bnx_attach_fail;
789 }
790
791 /* Fetch the permanent Ethernet MAC address. */
792 bnx_get_mac_addr(sc);
793 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
794 ether_sprintf(sc->eaddr));
795
796 /*
797 * Trip points control how many BDs
798 * should be ready before generating an
799 * interrupt while ticks control how long
800 * a BD can sit in the chain before
801 * generating an interrupt. Set the default
802 * values for the RX and TX rings.
803 */
804
805 #ifdef BNX_DEBUG
806 /* Force more frequent interrupts. */
807 sc->bnx_tx_quick_cons_trip_int = 1;
808 sc->bnx_tx_quick_cons_trip = 1;
809 sc->bnx_tx_ticks_int = 0;
810 sc->bnx_tx_ticks = 0;
811
812 sc->bnx_rx_quick_cons_trip_int = 1;
813 sc->bnx_rx_quick_cons_trip = 1;
814 sc->bnx_rx_ticks_int = 0;
815 sc->bnx_rx_ticks = 0;
816 #else
817 sc->bnx_tx_quick_cons_trip_int = 20;
818 sc->bnx_tx_quick_cons_trip = 20;
819 sc->bnx_tx_ticks_int = 80;
820 sc->bnx_tx_ticks = 80;
821
822 sc->bnx_rx_quick_cons_trip_int = 6;
823 sc->bnx_rx_quick_cons_trip = 6;
824 sc->bnx_rx_ticks_int = 18;
825 sc->bnx_rx_ticks = 18;
826 #endif
827
828 /* Update statistics once every second. */
829 sc->bnx_stats_ticks = 1000000 & 0xffff00;
830
831 /* Find the media type for the adapter. */
832 bnx_get_media(sc);
833
834 /*
835 * Store config data needed by the PHY driver for
836 * backplane applications
837 */
838 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
839 BNX_SHARED_HW_CFG_CONFIG);
840 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
841 BNX_PORT_HW_CFG_CONFIG);
842
843 /* Allocate DMA memory resources. */
844 sc->bnx_dmatag = pa->pa_dmat;
845 if (bnx_dma_alloc(sc)) {
846 aprint_error_dev(sc->bnx_dev,
847 "DMA resource allocation failed!\n");
848 goto bnx_attach_fail;
849 }
850
851 /* Initialize the ifnet interface. */
852 ifp = &sc->bnx_ec.ec_if;
853 ifp->if_softc = sc;
854 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
855 ifp->if_ioctl = bnx_ioctl;
856 ifp->if_stop = bnx_stop;
857 ifp->if_start = bnx_start;
858 ifp->if_init = bnx_init;
859 ifp->if_watchdog = bnx_watchdog;
860 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
861 IFQ_SET_READY(&ifp->if_snd);
862 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
863
864 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
865 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
866 sc->bnx_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
867
868 ifp->if_capabilities |=
869 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
870 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
871 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
872
873 /* create workqueue to handle packet allocations */
874 if (workqueue_create(&sc->bnx_wq, device_xname(self),
875 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
876 aprint_error_dev(self, "failed to create workqueue\n");
877 goto bnx_attach_fail;
878 }
879
880 mii->mii_ifp = ifp;
881 mii->mii_readreg = bnx_miibus_read_reg;
882 mii->mii_writereg = bnx_miibus_write_reg;
883 mii->mii_statchg = bnx_miibus_statchg;
884
885 /* Handle any special PHY initialization for SerDes PHYs. */
886 bnx_init_media(sc);
887
888 sc->bnx_ec.ec_mii = mii;
889 ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
890
891 /* set phyflags and chipid before mii_attach() */
892 dict = device_properties(self);
893 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
894 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
895 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
896 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
897
898 /* Print some useful adapter info */
899 bnx_print_adapter_info(sc);
900
901 mii_flags |= MIIF_DOPAUSE;
902 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
903 mii_flags |= MIIF_HAVEFIBER;
904 mii_attach(self, mii, 0xffffffff,
905 sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
906
907 if (LIST_EMPTY(&mii->mii_phys)) {
908 aprint_error_dev(self, "no PHY found!\n");
909 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
910 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
911 } else
912 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
913
914 /* Attach to the Ethernet interface list. */
915 if_attach(ifp);
916 if_deferred_start_init(ifp, NULL);
917 ether_ifattach(ifp, sc->eaddr);
918
919 callout_init(&sc->bnx_timeout, 0);
920 callout_setfunc(&sc->bnx_timeout, bnx_tick, sc);
921
922 /* Hookup IRQ last. */
923 sc->bnx_intrhand = pci_intr_establish_xname(pc, sc->bnx_ih[0], IPL_NET,
924 bnx_intr, sc, device_xname(self));
925 if (sc->bnx_intrhand == NULL) {
926 aprint_error_dev(self, "couldn't establish interrupt");
927 if (intrstr != NULL)
928 aprint_error(" at %s", intrstr);
929 aprint_error("\n");
930 goto bnx_attach_fail;
931 }
932 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
933
934 if (pmf_device_register(self, NULL, NULL))
935 pmf_class_network_register(self, ifp);
936 else
937 aprint_error_dev(self, "couldn't establish power handler\n");
938
939 /* Print some important debugging info. */
940 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
941
942 /* Get the firmware running so ASF still works. */
943 bnx_mgmt_init(sc);
944
945 goto bnx_attach_exit;
946
947 bnx_attach_fail:
948 bnx_release_resources(sc);
949
950 bnx_attach_exit:
951 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
952 }
953
954 /****************************************************************************/
955 /* Device detach function. */
956 /* */
957 /* Stops the controller, resets the controller, and releases resources. */
958 /* */
959 /* Returns: */
960 /* 0 on success, positive value on failure. */
961 /****************************************************************************/
962 int
963 bnx_detach(device_t dev, int flags)
964 {
965 int s;
966 struct bnx_softc *sc;
967 struct ifnet *ifp;
968
969 sc = device_private(dev);
970 ifp = &sc->bnx_ec.ec_if;
971
972 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
973
974 /* Stop and reset the controller. */
975 s = splnet();
976 bnx_stop(ifp, 1);
977 splx(s);
978
979 pmf_device_deregister(dev);
980 callout_destroy(&sc->bnx_timeout);
981 ether_ifdetach(ifp);
982 workqueue_destroy(sc->bnx_wq);
983
984 if_detach(ifp);
985 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
986
987 /* Delete all remaining media. */
988 ifmedia_fini(&sc->bnx_mii.mii_media);
989
990 /* Release all remaining resources. */
991 bnx_release_resources(sc);
992
993 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
994
995 return 0;
996 }
997
998 /****************************************************************************/
999 /* Indirect register read. */
1000 /* */
1001 /* Reads NetXtreme II registers using an index/data register pair in PCI */
1002 /* configuration space. Using this mechanism avoids issues with posted */
1003 /* reads but is much slower than memory-mapped I/O. */
1004 /* */
1005 /* Returns: */
1006 /* The value of the register. */
1007 /****************************************************************************/
1008 uint32_t
1009 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
1010 {
1011 struct pci_attach_args *pa = &(sc->bnx_pa);
1012
1013 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1014 offset);
1015 #ifdef BNX_DEBUG
1016 {
1017 uint32_t val;
1018 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
1019 BNX_PCICFG_REG_WINDOW);
1020 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
1021 "val = 0x%08X\n", __func__, offset, val);
1022 return val;
1023 }
1024 #else
1025 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
1026 #endif
1027 }
1028
1029 /****************************************************************************/
1030 /* Indirect register write. */
1031 /* */
1032 /* Writes NetXtreme II registers using an index/data register pair in PCI */
1033 /* configuration space. Using this mechanism avoids issues with posted */
1034 /* writes but is muchh slower than memory-mapped I/O. */
1035 /* */
1036 /* Returns: */
1037 /* Nothing. */
1038 /****************************************************************************/
1039 void
1040 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
1041 {
1042 struct pci_attach_args *pa = &(sc->bnx_pa);
1043
1044 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1045 __func__, offset, val);
1046
1047 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1048 offset);
1049 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
1050 }
1051
1052 /****************************************************************************/
1053 /* Context memory write. */
1054 /* */
1055 /* The NetXtreme II controller uses context memory to track connection */
1056 /* information for L2 and higher network protocols. */
1057 /* */
1058 /* Returns: */
1059 /* Nothing. */
1060 /****************************************************************************/
1061 void
1062 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1063 uint32_t ctx_val)
1064 {
1065 uint32_t idx, offset = ctx_offset + cid_addr;
1066 uint32_t val, retry_cnt = 5;
1067
1068 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1069 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
1070 REG_WR(sc, BNX_CTX_CTX_CTRL,
1071 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
1072
1073 for (idx = 0; idx < retry_cnt; idx++) {
1074 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1075 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1076 break;
1077 DELAY(5);
1078 }
1079
1080 #if 0
1081 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1082 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1083 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1084 __FILE__, __LINE__, cid_addr, ctx_offset);
1085 #endif
1086
1087 } else {
1088 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1089 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1090 }
1091 }
1092
1093 /****************************************************************************/
1094 /* PHY register read. */
1095 /* */
1096 /* Implements register reads on the MII bus. */
1097 /* */
1098 /* Returns: */
1099 /* The value of the register. */
1100 /****************************************************************************/
1101 int
1102 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
1103 {
1104 struct bnx_softc *sc = device_private(dev);
1105 uint32_t data;
1106 int i, rv = 0;
1107
1108 /*
1109 * The BCM5709S PHY is an IEEE Clause 45 PHY
1110 * with special mappings to work with IEEE
1111 * Clause 22 register accesses.
1112 */
1113 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1114 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1115 reg += 0x10;
1116 }
1117
1118 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1119 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1120 data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1121
1122 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1123 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1124
1125 DELAY(40);
1126 }
1127
1128 data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1129 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1130 BNX_EMAC_MDIO_COMM_START_BUSY;
1131 REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
1132
1133 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1134 DELAY(10);
1135
1136 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1137 if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1138 DELAY(5);
1139
1140 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1141 data &= BNX_EMAC_MDIO_COMM_DATA;
1142
1143 break;
1144 }
1145 }
1146
1147 if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
1148 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1149 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1150 rv = ETIMEDOUT;
1151 } else {
1152 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1153 *val = data & 0xffff;
1154
1155 DBPRINT(sc, BNX_EXCESSIVE,
1156 "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
1157 phy, (uint16_t) reg & 0xffff, *val);
1158 }
1159
1160 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1161 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1162 data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1163
1164 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1165 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1166
1167 DELAY(40);
1168 }
1169
1170 return rv;
1171 }
1172
1173 /****************************************************************************/
1174 /* PHY register write. */
1175 /* */
1176 /* Implements register writes on the MII bus. */
1177 /* */
1178 /* Returns: */
1179 /* The value of the register. */
1180 /****************************************************************************/
1181 int
1182 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
1183 {
1184 struct bnx_softc *sc = device_private(dev);
1185 uint32_t val1;
1186 int i, rv = 0;
1187
1188 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1189 "val = 0x%04hX\n", __func__,
1190 phy, (uint16_t) reg & 0xffff, val);
1191
1192 /*
1193 * The BCM5709S PHY is an IEEE Clause 45 PHY
1194 * with special mappings to work with IEEE
1195 * Clause 22 register accesses.
1196 */
1197 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1198 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1199 reg += 0x10;
1200 }
1201
1202 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1203 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1204 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1205
1206 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1207 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1208
1209 DELAY(40);
1210 }
1211
1212 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1213 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1214 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1215 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1216
1217 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1218 DELAY(10);
1219
1220 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1221 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1222 DELAY(5);
1223 break;
1224 }
1225 }
1226
1227 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1228 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1229 __LINE__);
1230 rv = ETIMEDOUT;
1231 }
1232
1233 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1234 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1235 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1236
1237 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1238 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1239
1240 DELAY(40);
1241 }
1242
1243 return rv;
1244 }
1245
1246 /****************************************************************************/
1247 /* MII bus status change. */
1248 /* */
1249 /* Called by the MII bus driver when the PHY establishes link to set the */
1250 /* MAC interface registers. */
1251 /* */
1252 /* Returns: */
1253 /* Nothing. */
1254 /****************************************************************************/
1255 void
1256 bnx_miibus_statchg(struct ifnet *ifp)
1257 {
1258 struct bnx_softc *sc = ifp->if_softc;
1259 struct mii_data *mii = &sc->bnx_mii;
1260 uint32_t rx_mode = sc->rx_mode;
1261 int val;
1262
1263 val = REG_RD(sc, BNX_EMAC_MODE);
1264 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1265 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1266 BNX_EMAC_MODE_25G);
1267
1268 /*
1269 * Get flow control negotiation result.
1270 */
1271 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1272 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
1273 sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1274 mii->mii_media_active &= ~IFM_ETH_FMASK;
1275 }
1276
1277 /* Set MII or GMII interface based on the speed
1278 * negotiated by the PHY.
1279 */
1280 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1281 case IFM_10_T:
1282 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1283 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1284 val |= BNX_EMAC_MODE_PORT_MII_10;
1285 break;
1286 }
1287 /* FALLTHROUGH */
1288 case IFM_100_TX:
1289 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1290 val |= BNX_EMAC_MODE_PORT_MII;
1291 break;
1292 case IFM_2500_SX:
1293 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1294 val |= BNX_EMAC_MODE_25G;
1295 /* FALLTHROUGH */
1296 case IFM_1000_T:
1297 case IFM_1000_SX:
1298 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1299 val |= BNX_EMAC_MODE_PORT_GMII;
1300 break;
1301 default:
1302 val |= BNX_EMAC_MODE_PORT_GMII;
1303 break;
1304 }
1305
1306 /* Set half or full duplex based on the duplicity
1307 * negotiated by the PHY.
1308 */
1309 if ((mii->mii_media_active & IFM_HDX) != 0) {
1310 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1311 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1312 } else
1313 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1314
1315 REG_WR(sc, BNX_EMAC_MODE, val);
1316
1317 /*
1318 * 802.3x flow control
1319 */
1320 if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
1321 DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
1322 rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
1323 } else {
1324 DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
1325 rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
1326 }
1327
1328 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
1329 DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
1330 BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1331 } else {
1332 DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
1333 BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1334 }
1335
1336 /* Only make changes if the receive mode has actually changed. */
1337 if (rx_mode != sc->rx_mode) {
1338 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
1339 rx_mode);
1340
1341 sc->rx_mode = rx_mode;
1342 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
1343
1344 bnx_init_rx_context(sc);
1345 }
1346 }
1347
1348 /****************************************************************************/
1349 /* Acquire NVRAM lock. */
1350 /* */
1351 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1352 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1353 /* for use by the driver. */
1354 /* */
1355 /* Returns: */
1356 /* 0 on success, positive value on failure. */
1357 /****************************************************************************/
1358 int
1359 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1360 {
1361 uint32_t val;
1362 int j;
1363
1364 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1365
1366 /* Request access to the flash interface. */
1367 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1368 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1369 val = REG_RD(sc, BNX_NVM_SW_ARB);
1370 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1371 break;
1372
1373 DELAY(5);
1374 }
1375
1376 if (j >= NVRAM_TIMEOUT_COUNT) {
1377 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1378 return EBUSY;
1379 }
1380
1381 return 0;
1382 }
1383
1384 /****************************************************************************/
1385 /* Release NVRAM lock. */
1386 /* */
1387 /* When the caller is finished accessing NVRAM the lock must be released. */
1388 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1389 /* for use by the driver. */
1390 /* */
1391 /* Returns: */
1392 /* 0 on success, positive value on failure. */
1393 /****************************************************************************/
1394 int
1395 bnx_release_nvram_lock(struct bnx_softc *sc)
1396 {
1397 int j;
1398 uint32_t val;
1399
1400 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1401
1402 /* Relinquish nvram interface. */
1403 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1404
1405 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1406 val = REG_RD(sc, BNX_NVM_SW_ARB);
1407 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1408 break;
1409
1410 DELAY(5);
1411 }
1412
1413 if (j >= NVRAM_TIMEOUT_COUNT) {
1414 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1415 return EBUSY;
1416 }
1417
1418 return 0;
1419 }
1420
1421 #ifdef BNX_NVRAM_WRITE_SUPPORT
1422 /****************************************************************************/
1423 /* Enable NVRAM write access. */
1424 /* */
1425 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1426 /* */
1427 /* Returns: */
1428 /* 0 on success, positive value on failure. */
1429 /****************************************************************************/
1430 int
1431 bnx_enable_nvram_write(struct bnx_softc *sc)
1432 {
1433 uint32_t val;
1434
1435 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1436
1437 val = REG_RD(sc, BNX_MISC_CFG);
1438 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1439
1440 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1441 int j;
1442
1443 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1444 REG_WR(sc, BNX_NVM_COMMAND,
1445 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1446
1447 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1448 DELAY(5);
1449
1450 val = REG_RD(sc, BNX_NVM_COMMAND);
1451 if (val & BNX_NVM_COMMAND_DONE)
1452 break;
1453 }
1454
1455 if (j >= NVRAM_TIMEOUT_COUNT) {
1456 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1457 return EBUSY;
1458 }
1459 }
1460
1461 return 0;
1462 }
1463
1464 /****************************************************************************/
1465 /* Disable NVRAM write access. */
1466 /* */
1467 /* When the caller is finished writing to NVRAM write access must be */
1468 /* disabled. */
1469 /* */
1470 /* Returns: */
1471 /* Nothing. */
1472 /****************************************************************************/
1473 void
1474 bnx_disable_nvram_write(struct bnx_softc *sc)
1475 {
1476 uint32_t val;
1477
1478 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1479
1480 val = REG_RD(sc, BNX_MISC_CFG);
1481 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1482 }
1483 #endif
1484
1485 /****************************************************************************/
1486 /* Enable NVRAM access. */
1487 /* */
1488 /* Before accessing NVRAM for read or write operations the caller must */
1489 /* enabled NVRAM access. */
1490 /* */
1491 /* Returns: */
1492 /* Nothing. */
1493 /****************************************************************************/
1494 void
1495 bnx_enable_nvram_access(struct bnx_softc *sc)
1496 {
1497 uint32_t val;
1498
1499 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1500
1501 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1502 /* Enable both bits, even on read. */
1503 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1504 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1505 }
1506
1507 /****************************************************************************/
1508 /* Disable NVRAM access. */
1509 /* */
1510 /* When the caller is finished accessing NVRAM access must be disabled. */
1511 /* */
1512 /* Returns: */
1513 /* Nothing. */
1514 /****************************************************************************/
1515 void
1516 bnx_disable_nvram_access(struct bnx_softc *sc)
1517 {
1518 uint32_t val;
1519
1520 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1521
1522 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1523
1524 /* Disable both bits, even after read. */
1525 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1526 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1527 }
1528
1529 #ifdef BNX_NVRAM_WRITE_SUPPORT
1530 /****************************************************************************/
1531 /* Erase NVRAM page before writing. */
1532 /* */
1533 /* Non-buffered flash parts require that a page be erased before it is */
1534 /* written. */
1535 /* */
1536 /* Returns: */
1537 /* 0 on success, positive value on failure. */
1538 /****************************************************************************/
1539 int
1540 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1541 {
1542 uint32_t cmd;
1543 int j;
1544
1545 /* Buffered flash doesn't require an erase. */
1546 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1547 return 0;
1548
1549 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1550
1551 /* Build an erase command. */
1552 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1553 BNX_NVM_COMMAND_DOIT;
1554
1555 /*
1556 * Clear the DONE bit separately, set the NVRAM address to erase,
1557 * and issue the erase command.
1558 */
1559 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1560 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1561 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1562
1563 /* Wait for completion. */
1564 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1565 uint32_t val;
1566
1567 DELAY(5);
1568
1569 val = REG_RD(sc, BNX_NVM_COMMAND);
1570 if (val & BNX_NVM_COMMAND_DONE)
1571 break;
1572 }
1573
1574 if (j >= NVRAM_TIMEOUT_COUNT) {
1575 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1576 return EBUSY;
1577 }
1578
1579 return 0;
1580 }
1581 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1582
1583 /****************************************************************************/
1584 /* Read a dword (32 bits) from NVRAM. */
1585 /* */
1586 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1587 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1588 /* */
1589 /* Returns: */
1590 /* 0 on success and the 32 bit value read, positive value on failure. */
1591 /****************************************************************************/
1592 int
1593 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1594 uint8_t *ret_val, uint32_t cmd_flags)
1595 {
1596 uint32_t cmd;
1597 int i, rc = 0;
1598
1599 /* Build the command word. */
1600 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1601
1602 /* Calculate the offset for buffered flash if translation is used. */
1603 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1604 offset = ((offset / sc->bnx_flash_info->page_size) <<
1605 sc->bnx_flash_info->page_bits) +
1606 (offset % sc->bnx_flash_info->page_size);
1607 }
1608
1609 /*
1610 * Clear the DONE bit separately, set the address to read,
1611 * and issue the read.
1612 */
1613 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1614 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1615 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1616
1617 /* Wait for completion. */
1618 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1619 uint32_t val;
1620
1621 DELAY(5);
1622
1623 val = REG_RD(sc, BNX_NVM_COMMAND);
1624 if (val & BNX_NVM_COMMAND_DONE) {
1625 val = REG_RD(sc, BNX_NVM_READ);
1626
1627 val = be32toh(val);
1628 memcpy(ret_val, &val, 4);
1629 break;
1630 }
1631 }
1632
1633 /* Check for errors. */
1634 if (i >= NVRAM_TIMEOUT_COUNT) {
1635 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1636 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1637 rc = EBUSY;
1638 }
1639
1640 return rc;
1641 }
1642
1643 #ifdef BNX_NVRAM_WRITE_SUPPORT
1644 /****************************************************************************/
1645 /* Write a dword (32 bits) to NVRAM. */
1646 /* */
1647 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1648 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1649 /* enabled NVRAM write access. */
1650 /* */
1651 /* Returns: */
1652 /* 0 on success, positive value on failure. */
1653 /****************************************************************************/
1654 int
1655 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1656 uint32_t cmd_flags)
1657 {
1658 uint32_t cmd, val32;
1659 int j;
1660
1661 /* Build the command word. */
1662 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1663
1664 /* Calculate the offset for buffered flash if translation is used. */
1665 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1666 offset = ((offset / sc->bnx_flash_info->page_size) <<
1667 sc->bnx_flash_info->page_bits) +
1668 (offset % sc->bnx_flash_info->page_size);
1669 }
1670
1671 /*
1672 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1673 * set the NVRAM address to write, and issue the write command
1674 */
1675 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1676 memcpy(&val32, val, 4);
1677 val32 = htobe32(val32);
1678 REG_WR(sc, BNX_NVM_WRITE, val32);
1679 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1680 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1681
1682 /* Wait for completion. */
1683 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1684 DELAY(5);
1685
1686 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1687 break;
1688 }
1689 if (j >= NVRAM_TIMEOUT_COUNT) {
1690 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1691 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1692 return EBUSY;
1693 }
1694
1695 return 0;
1696 }
1697 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1698
1699 /****************************************************************************/
1700 /* Initialize NVRAM access. */
1701 /* */
1702 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1703 /* access that device. */
1704 /* */
1705 /* Returns: */
1706 /* 0 on success, positive value on failure. */
1707 /****************************************************************************/
1708 int
1709 bnx_init_nvram(struct bnx_softc *sc)
1710 {
1711 uint32_t val;
1712 int j, entry_count, rc = 0;
1713 struct flash_spec *flash;
1714
1715 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1716
1717 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1718 sc->bnx_flash_info = &flash_5709;
1719 goto bnx_init_nvram_get_flash_size;
1720 }
1721
1722 /* Determine the selected interface. */
1723 val = REG_RD(sc, BNX_NVM_CFG1);
1724
1725 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1726
1727 /*
1728 * Flash reconfiguration is required to support additional
1729 * NVRAM devices not directly supported in hardware.
1730 * Check if the flash interface was reconfigured
1731 * by the bootcode.
1732 */
1733
1734 if (val & 0x40000000) {
1735 /* Flash interface reconfigured by bootcode. */
1736
1737 DBPRINT(sc, BNX_INFO_LOAD,
1738 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1739
1740 for (j = 0, flash = &flash_table[0]; j < entry_count;
1741 j++, flash++) {
1742 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1743 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1744 sc->bnx_flash_info = flash;
1745 break;
1746 }
1747 }
1748 } else {
1749 /* Flash interface not yet reconfigured. */
1750 uint32_t mask;
1751
1752 DBPRINT(sc, BNX_INFO_LOAD,
1753 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1754
1755 if (val & (1 << 23))
1756 mask = FLASH_BACKUP_STRAP_MASK;
1757 else
1758 mask = FLASH_STRAP_MASK;
1759
1760 /* Look for the matching NVRAM device configuration data. */
1761 for (j = 0, flash = &flash_table[0]; j < entry_count;
1762 j++, flash++) {
1763 /* Check if the dev matches any of the known devices. */
1764 if ((val & mask) == (flash->strapping & mask)) {
1765 /* Found a device match. */
1766 sc->bnx_flash_info = flash;
1767
1768 /* Request access to the flash interface. */
1769 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1770 return rc;
1771
1772 /* Reconfigure the flash interface. */
1773 bnx_enable_nvram_access(sc);
1774 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1775 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1776 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1777 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1778 bnx_disable_nvram_access(sc);
1779 bnx_release_nvram_lock(sc);
1780
1781 break;
1782 }
1783 }
1784 }
1785
1786 /* Check if a matching device was found. */
1787 if (j == entry_count) {
1788 sc->bnx_flash_info = NULL;
1789 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1790 __FILE__, __LINE__);
1791 rc = ENODEV;
1792 }
1793
1794 bnx_init_nvram_get_flash_size:
1795 /* Write the flash config data to the shared memory interface. */
1796 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1797 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1798 if (val)
1799 sc->bnx_flash_size = val;
1800 else
1801 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1802
1803 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1804 "0x%08X\n", sc->bnx_flash_info->total_size);
1805
1806 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1807
1808 return rc;
1809 }
1810
1811 /****************************************************************************/
1812 /* Read an arbitrary range of data from NVRAM. */
1813 /* */
1814 /* Prepares the NVRAM interface for access and reads the requested data */
1815 /* into the supplied buffer. */
1816 /* */
1817 /* Returns: */
1818 /* 0 on success and the data read, positive value on failure. */
1819 /****************************************************************************/
1820 int
1821 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1822 int buf_size)
1823 {
1824 int rc = 0;
1825 uint32_t cmd_flags, offset32, len32, extra;
1826
1827 if (buf_size == 0)
1828 return 0;
1829
1830 /* Request access to the flash interface. */
1831 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1832 return rc;
1833
1834 /* Enable access to flash interface */
1835 bnx_enable_nvram_access(sc);
1836
1837 len32 = buf_size;
1838 offset32 = offset;
1839 extra = 0;
1840
1841 cmd_flags = 0;
1842
1843 if (offset32 & 3) {
1844 uint8_t buf[4];
1845 uint32_t pre_len;
1846
1847 offset32 &= ~3;
1848 pre_len = 4 - (offset & 3);
1849
1850 if (pre_len >= len32) {
1851 pre_len = len32;
1852 cmd_flags =
1853 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1854 } else
1855 cmd_flags = BNX_NVM_COMMAND_FIRST;
1856
1857 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1858
1859 if (rc)
1860 return rc;
1861
1862 memcpy(ret_buf, buf + (offset & 3), pre_len);
1863
1864 offset32 += 4;
1865 ret_buf += pre_len;
1866 len32 -= pre_len;
1867 }
1868
1869 if (len32 & 3) {
1870 extra = 4 - (len32 & 3);
1871 len32 = (len32 + 4) & ~3;
1872 }
1873
1874 if (len32 == 4) {
1875 uint8_t buf[4];
1876
1877 if (cmd_flags)
1878 cmd_flags = BNX_NVM_COMMAND_LAST;
1879 else
1880 cmd_flags =
1881 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1882
1883 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1884
1885 memcpy(ret_buf, buf, 4 - extra);
1886 } else if (len32 > 0) {
1887 uint8_t buf[4];
1888
1889 /* Read the first word. */
1890 if (cmd_flags)
1891 cmd_flags = 0;
1892 else
1893 cmd_flags = BNX_NVM_COMMAND_FIRST;
1894
1895 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1896
1897 /* Advance to the next dword. */
1898 offset32 += 4;
1899 ret_buf += 4;
1900 len32 -= 4;
1901
1902 while (len32 > 4 && rc == 0) {
1903 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1904
1905 /* Advance to the next dword. */
1906 offset32 += 4;
1907 ret_buf += 4;
1908 len32 -= 4;
1909 }
1910
1911 if (rc)
1912 return rc;
1913
1914 cmd_flags = BNX_NVM_COMMAND_LAST;
1915 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1916
1917 memcpy(ret_buf, buf, 4 - extra);
1918 }
1919
1920 /* Disable access to flash interface and release the lock. */
1921 bnx_disable_nvram_access(sc);
1922 bnx_release_nvram_lock(sc);
1923
1924 return rc;
1925 }
1926
1927 #ifdef BNX_NVRAM_WRITE_SUPPORT
1928 /****************************************************************************/
1929 /* Write an arbitrary range of data from NVRAM. */
1930 /* */
1931 /* Prepares the NVRAM interface for write access and writes the requested */
1932 /* data from the supplied buffer. The caller is responsible for */
1933 /* calculating any appropriate CRCs. */
1934 /* */
1935 /* Returns: */
1936 /* 0 on success, positive value on failure. */
1937 /****************************************************************************/
1938 int
1939 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1940 int buf_size)
1941 {
1942 uint32_t written, offset32, len32;
1943 uint8_t *buf, start[4], end[4];
1944 int rc = 0;
1945 int align_start, align_end;
1946
1947 buf = data_buf;
1948 offset32 = offset;
1949 len32 = buf_size;
1950 align_start = align_end = 0;
1951
1952 if ((align_start = (offset32 & 3))) {
1953 offset32 &= ~3;
1954 len32 += align_start;
1955 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1956 return rc;
1957 }
1958
1959 if (len32 & 3) {
1960 if ((len32 > 4) || !align_start) {
1961 align_end = 4 - (len32 & 3);
1962 len32 += align_end;
1963 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1964 end, 4)))
1965 return rc;
1966 }
1967 }
1968
1969 if (align_start || align_end) {
1970 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1971 if (buf == NULL)
1972 return ENOMEM;
1973
1974 if (align_start)
1975 memcpy(buf, start, 4);
1976
1977 if (align_end)
1978 memcpy(buf + len32 - 4, end, 4);
1979
1980 memcpy(buf + align_start, data_buf, buf_size);
1981 }
1982
1983 written = 0;
1984 while ((written < len32) && (rc == 0)) {
1985 uint32_t page_start, page_end, data_start, data_end;
1986 uint32_t addr, cmd_flags;
1987 int i;
1988 uint8_t flash_buffer[264];
1989
1990 /* Find the page_start addr */
1991 page_start = offset32 + written;
1992 page_start -= (page_start % sc->bnx_flash_info->page_size);
1993 /* Find the page_end addr */
1994 page_end = page_start + sc->bnx_flash_info->page_size;
1995 /* Find the data_start addr */
1996 data_start = (written == 0) ? offset32 : page_start;
1997 /* Find the data_end addr */
1998 data_end = (page_end > offset32 + len32) ?
1999 (offset32 + len32) : page_end;
2000
2001 /* Request access to the flash interface. */
2002 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
2003 goto nvram_write_end;
2004
2005 /* Enable access to flash interface */
2006 bnx_enable_nvram_access(sc);
2007
2008 cmd_flags = BNX_NVM_COMMAND_FIRST;
2009 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2010 int j;
2011
2012 /* Read the whole page into the buffer
2013 * (non-buffer flash only) */
2014 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
2015 if (j == (sc->bnx_flash_info->page_size - 4))
2016 cmd_flags |= BNX_NVM_COMMAND_LAST;
2017
2018 rc = bnx_nvram_read_dword(sc,
2019 page_start + j,
2020 &flash_buffer[j],
2021 cmd_flags);
2022
2023 if (rc)
2024 goto nvram_write_end;
2025
2026 cmd_flags = 0;
2027 }
2028 }
2029
2030 /* Enable writes to flash interface (unlock write-protect) */
2031 if ((rc = bnx_enable_nvram_write(sc)) != 0)
2032 goto nvram_write_end;
2033
2034 /* Erase the page */
2035 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
2036 goto nvram_write_end;
2037
2038 /* Re-enable the write again for the actual write */
2039 bnx_enable_nvram_write(sc);
2040
2041 /* Loop to write back the buffer data from page_start to
2042 * data_start */
2043 i = 0;
2044 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2045 for (addr = page_start; addr < data_start;
2046 addr += 4, i += 4) {
2047
2048 rc = bnx_nvram_write_dword(sc, addr,
2049 &flash_buffer[i], cmd_flags);
2050
2051 if (rc != 0)
2052 goto nvram_write_end;
2053
2054 cmd_flags = 0;
2055 }
2056 }
2057
2058 /* Loop to write the new data from data_start to data_end */
2059 for (addr = data_start; addr < data_end; addr += 4, i++) {
2060 if ((addr == page_end - 4) ||
2061 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
2062 && (addr == data_end - 4))) {
2063
2064 cmd_flags |= BNX_NVM_COMMAND_LAST;
2065 }
2066
2067 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
2068
2069 if (rc != 0)
2070 goto nvram_write_end;
2071
2072 cmd_flags = 0;
2073 buf += 4;
2074 }
2075
2076 /* Loop to write back the buffer data from data_end
2077 * to page_end */
2078 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2079 for (addr = data_end; addr < page_end;
2080 addr += 4, i += 4) {
2081
2082 if (addr == page_end-4)
2083 cmd_flags = BNX_NVM_COMMAND_LAST;
2084
2085 rc = bnx_nvram_write_dword(sc, addr,
2086 &flash_buffer[i], cmd_flags);
2087
2088 if (rc != 0)
2089 goto nvram_write_end;
2090
2091 cmd_flags = 0;
2092 }
2093 }
2094
2095 /* Disable writes to flash interface (lock write-protect) */
2096 bnx_disable_nvram_write(sc);
2097
2098 /* Disable access to flash interface */
2099 bnx_disable_nvram_access(sc);
2100 bnx_release_nvram_lock(sc);
2101
2102 /* Increment written */
2103 written += data_end - data_start;
2104 }
2105
2106 nvram_write_end:
2107 if (align_start || align_end)
2108 free(buf, M_DEVBUF);
2109
2110 return rc;
2111 }
2112 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2113
2114 /****************************************************************************/
2115 /* Verifies that NVRAM is accessible and contains valid data. */
2116 /* */
2117 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2118 /* correct. */
2119 /* */
2120 /* Returns: */
2121 /* 0 on success, positive value on failure. */
2122 /****************************************************************************/
2123 int
2124 bnx_nvram_test(struct bnx_softc *sc)
2125 {
2126 uint32_t buf[BNX_NVRAM_SIZE / 4];
2127 uint8_t *data = (uint8_t *) buf;
2128 int rc = 0;
2129 uint32_t magic, csum;
2130
2131 /*
2132 * Check that the device NVRAM is valid by reading
2133 * the magic value at offset 0.
2134 */
2135 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2136 goto bnx_nvram_test_done;
2137
2138 magic = be32toh(buf[0]);
2139 if (magic != BNX_NVRAM_MAGIC) {
2140 rc = ENODEV;
2141 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2142 "Expected: 0x%08X, Found: 0x%08X\n",
2143 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2144 goto bnx_nvram_test_done;
2145 }
2146
2147 /*
2148 * Verify that the device NVRAM includes valid
2149 * configuration data.
2150 */
2151 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2152 goto bnx_nvram_test_done;
2153
2154 csum = ether_crc32_le(data, 0x100);
2155 if (csum != BNX_CRC32_RESIDUAL) {
2156 rc = ENODEV;
2157 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2158 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2159 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2160 goto bnx_nvram_test_done;
2161 }
2162
2163 csum = ether_crc32_le(data + 0x100, 0x100);
2164 if (csum != BNX_CRC32_RESIDUAL) {
2165 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2166 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2167 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2168 rc = ENODEV;
2169 }
2170
2171 bnx_nvram_test_done:
2172 return rc;
2173 }
2174
2175 /****************************************************************************/
2176 /* Identifies the current media type of the controller and sets the PHY */
2177 /* address. */
2178 /* */
2179 /* Returns: */
2180 /* Nothing. */
2181 /****************************************************************************/
2182 void
2183 bnx_get_media(struct bnx_softc *sc)
2184 {
2185 sc->bnx_phy_addr = 1;
2186
2187 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2188 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2189 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2190 uint32_t strap;
2191
2192 /*
2193 * The BCM5709S is software configurable
2194 * for Copper or SerDes operation.
2195 */
2196 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2197 DBPRINT(sc, BNX_INFO_LOAD,
2198 "5709 bonded for copper.\n");
2199 goto bnx_get_media_exit;
2200 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2201 DBPRINT(sc, BNX_INFO_LOAD,
2202 "5709 bonded for dual media.\n");
2203 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2204 goto bnx_get_media_exit;
2205 }
2206
2207 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2208 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2209 else {
2210 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2211 >> 8;
2212 }
2213
2214 if (sc->bnx_pa.pa_function == 0) {
2215 switch (strap) {
2216 case 0x4:
2217 case 0x5:
2218 case 0x6:
2219 DBPRINT(sc, BNX_INFO_LOAD,
2220 "BCM5709 s/w configured for SerDes.\n");
2221 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2222 break;
2223 default:
2224 DBPRINT(sc, BNX_INFO_LOAD,
2225 "BCM5709 s/w configured for Copper.\n");
2226 }
2227 } else {
2228 switch (strap) {
2229 case 0x1:
2230 case 0x2:
2231 case 0x4:
2232 DBPRINT(sc, BNX_INFO_LOAD,
2233 "BCM5709 s/w configured for SerDes.\n");
2234 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2235 break;
2236 default:
2237 DBPRINT(sc, BNX_INFO_LOAD,
2238 "BCM5709 s/w configured for Copper.\n");
2239 }
2240 }
2241
2242 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2243 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2244
2245 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2246 uint32_t val;
2247
2248 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2249
2250 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2251 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2252
2253 /*
2254 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2255 * separate PHY for SerDes.
2256 */
2257 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2258 sc->bnx_phy_addr = 2;
2259 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2260 BNX_SHARED_HW_CFG_CONFIG);
2261 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2262 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2263 DBPRINT(sc, BNX_INFO_LOAD,
2264 "Found 2.5Gb capable adapter\n");
2265 }
2266 }
2267 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2268 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2269 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2270
2271 bnx_get_media_exit:
2272 DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
2273 "Using PHY address %d.\n", sc->bnx_phy_addr);
2274 }
2275
2276 /****************************************************************************/
2277 /* Performs PHY initialization required before MII drivers access the */
2278 /* device. */
2279 /* */
2280 /* Returns: */
2281 /* Nothing. */
2282 /****************************************************************************/
2283 void
2284 bnx_init_media(struct bnx_softc *sc)
2285 {
2286 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2287 /*
2288 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2289 * IEEE Clause 22 method. Otherwise we have no way to attach
2290 * the PHY to the mii(4) layer. PHY specific configuration
2291 * is done by the mii(4) layer.
2292 */
2293
2294 /* Select auto-negotiation MMD of the PHY. */
2295 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2296 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2297
2298 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2299 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2300
2301 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2302 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2303 }
2304 }
2305
2306 /****************************************************************************/
2307 /* Free any DMA memory owned by the driver. */
2308 /* */
2309 /* Scans through each data structre that requires DMA memory and frees */
2310 /* the memory if allocated. */
2311 /* */
2312 /* Returns: */
2313 /* Nothing. */
2314 /****************************************************************************/
2315 void
2316 bnx_dma_free(struct bnx_softc *sc)
2317 {
2318 int i;
2319
2320 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2321
2322 /* Destroy the status block. */
2323 if (sc->status_block != NULL && sc->status_map != NULL) {
2324 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2325 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2326 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2327 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2328 BNX_STATUS_BLK_SZ);
2329 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2330 sc->status_rseg);
2331 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2332 sc->status_block = NULL;
2333 sc->status_map = NULL;
2334 }
2335
2336 /* Destroy the statistics block. */
2337 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2338 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2339 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2340 BNX_STATS_BLK_SZ);
2341 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2342 sc->stats_rseg);
2343 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2344 sc->stats_block = NULL;
2345 sc->stats_map = NULL;
2346 }
2347
2348 /* Free, unmap and destroy all context memory pages. */
2349 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2350 for (i = 0; i < sc->ctx_pages; i++) {
2351 if (sc->ctx_block[i] != NULL) {
2352 bus_dmamap_unload(sc->bnx_dmatag,
2353 sc->ctx_map[i]);
2354 bus_dmamem_unmap(sc->bnx_dmatag,
2355 (void *)sc->ctx_block[i],
2356 BCM_PAGE_SIZE);
2357 bus_dmamem_free(sc->bnx_dmatag,
2358 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2359 bus_dmamap_destroy(sc->bnx_dmatag,
2360 sc->ctx_map[i]);
2361 sc->ctx_block[i] = NULL;
2362 }
2363 }
2364 }
2365
2366 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2367 for (i = 0; i < TX_PAGES; i++ ) {
2368 if (sc->tx_bd_chain[i] != NULL &&
2369 sc->tx_bd_chain_map[i] != NULL) {
2370 bus_dmamap_unload(sc->bnx_dmatag,
2371 sc->tx_bd_chain_map[i]);
2372 bus_dmamem_unmap(sc->bnx_dmatag,
2373 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2374 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2375 sc->tx_bd_chain_rseg[i]);
2376 bus_dmamap_destroy(sc->bnx_dmatag,
2377 sc->tx_bd_chain_map[i]);
2378 sc->tx_bd_chain[i] = NULL;
2379 sc->tx_bd_chain_map[i] = NULL;
2380 }
2381 }
2382
2383 /* Destroy the TX dmamaps. */
2384 struct bnx_pkt *pkt;
2385 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
2386 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
2387 sc->tx_pkt_count--;
2388
2389 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
2390 pool_put(bnx_tx_pool, pkt);
2391 }
2392
2393 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2394 for (i = 0; i < RX_PAGES; i++ ) {
2395 if (sc->rx_bd_chain[i] != NULL &&
2396 sc->rx_bd_chain_map[i] != NULL) {
2397 bus_dmamap_unload(sc->bnx_dmatag,
2398 sc->rx_bd_chain_map[i]);
2399 bus_dmamem_unmap(sc->bnx_dmatag,
2400 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2401 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2402 sc->rx_bd_chain_rseg[i]);
2403
2404 bus_dmamap_destroy(sc->bnx_dmatag,
2405 sc->rx_bd_chain_map[i]);
2406 sc->rx_bd_chain[i] = NULL;
2407 sc->rx_bd_chain_map[i] = NULL;
2408 }
2409 }
2410
2411 /* Unload and destroy the RX mbuf maps. */
2412 for (i = 0; i < TOTAL_RX_BD; i++) {
2413 if (sc->rx_mbuf_map[i] != NULL) {
2414 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2415 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2416 }
2417 }
2418
2419 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2420 }
2421
2422 /****************************************************************************/
2423 /* Allocate any DMA memory needed by the driver. */
2424 /* */
2425 /* Allocates DMA memory needed for the various global structures needed by */
2426 /* hardware. */
2427 /* */
2428 /* Returns: */
2429 /* 0 for success, positive value for failure. */
2430 /****************************************************************************/
2431 int
2432 bnx_dma_alloc(struct bnx_softc *sc)
2433 {
2434 int i, rc = 0;
2435
2436 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2437
2438 /*
2439 * Allocate DMA memory for the status block, map the memory into DMA
2440 * space, and fetch the physical address of the block.
2441 */
2442 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2443 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2444 aprint_error_dev(sc->bnx_dev,
2445 "Could not create status block DMA map!\n");
2446 rc = ENOMEM;
2447 goto bnx_dma_alloc_exit;
2448 }
2449
2450 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2451 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2452 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2453 aprint_error_dev(sc->bnx_dev,
2454 "Could not allocate status block DMA memory!\n");
2455 rc = ENOMEM;
2456 goto bnx_dma_alloc_exit;
2457 }
2458
2459 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2460 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2461 aprint_error_dev(sc->bnx_dev,
2462 "Could not map status block DMA memory!\n");
2463 rc = ENOMEM;
2464 goto bnx_dma_alloc_exit;
2465 }
2466
2467 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2468 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2469 aprint_error_dev(sc->bnx_dev,
2470 "Could not load status block DMA memory!\n");
2471 rc = ENOMEM;
2472 goto bnx_dma_alloc_exit;
2473 }
2474
2475 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2476 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2477
2478 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2479 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2480
2481 /* DRC - Fix for 64 bit addresses. */
2482 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2483 (uint32_t) sc->status_block_paddr);
2484
2485 /* BCM5709 uses host memory as cache for context memory. */
2486 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2487 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2488 if (sc->ctx_pages == 0)
2489 sc->ctx_pages = 1;
2490 if (sc->ctx_pages > 4) /* XXX */
2491 sc->ctx_pages = 4;
2492
2493 DBRUNIF((sc->ctx_pages > 512),
2494 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2495 __FILE__, __LINE__, sc->ctx_pages));
2496
2497
2498 for (i = 0; i < sc->ctx_pages; i++) {
2499 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2500 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2501 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2502 &sc->ctx_map[i]) != 0) {
2503 rc = ENOMEM;
2504 goto bnx_dma_alloc_exit;
2505 }
2506
2507 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2508 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2509 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2510 rc = ENOMEM;
2511 goto bnx_dma_alloc_exit;
2512 }
2513
2514 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2515 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2516 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2517 rc = ENOMEM;
2518 goto bnx_dma_alloc_exit;
2519 }
2520
2521 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2522 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2523 BUS_DMA_NOWAIT) != 0) {
2524 rc = ENOMEM;
2525 goto bnx_dma_alloc_exit;
2526 }
2527
2528 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2529 }
2530 }
2531
2532 /*
2533 * Allocate DMA memory for the statistics block, map the memory into
2534 * DMA space, and fetch the physical address of the block.
2535 */
2536 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2537 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2538 aprint_error_dev(sc->bnx_dev,
2539 "Could not create stats block DMA map!\n");
2540 rc = ENOMEM;
2541 goto bnx_dma_alloc_exit;
2542 }
2543
2544 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2545 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2546 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2547 aprint_error_dev(sc->bnx_dev,
2548 "Could not allocate stats block DMA memory!\n");
2549 rc = ENOMEM;
2550 goto bnx_dma_alloc_exit;
2551 }
2552
2553 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2554 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2555 aprint_error_dev(sc->bnx_dev,
2556 "Could not map stats block DMA memory!\n");
2557 rc = ENOMEM;
2558 goto bnx_dma_alloc_exit;
2559 }
2560
2561 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2562 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2563 aprint_error_dev(sc->bnx_dev,
2564 "Could not load status block DMA memory!\n");
2565 rc = ENOMEM;
2566 goto bnx_dma_alloc_exit;
2567 }
2568
2569 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2570 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2571
2572 /* DRC - Fix for 64 bit address. */
2573 DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
2574 (uint32_t) sc->stats_block_paddr);
2575
2576 /*
2577 * Allocate DMA memory for the TX buffer descriptor chain,
2578 * and fetch the physical address of the block.
2579 */
2580 for (i = 0; i < TX_PAGES; i++) {
2581 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2582 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2583 &sc->tx_bd_chain_map[i])) {
2584 aprint_error_dev(sc->bnx_dev,
2585 "Could not create Tx desc %d DMA map!\n", i);
2586 rc = ENOMEM;
2587 goto bnx_dma_alloc_exit;
2588 }
2589
2590 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2591 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2592 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2593 aprint_error_dev(sc->bnx_dev,
2594 "Could not allocate TX desc %d DMA memory!\n",
2595 i);
2596 rc = ENOMEM;
2597 goto bnx_dma_alloc_exit;
2598 }
2599
2600 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2601 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2602 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2603 aprint_error_dev(sc->bnx_dev,
2604 "Could not map TX desc %d DMA memory!\n", i);
2605 rc = ENOMEM;
2606 goto bnx_dma_alloc_exit;
2607 }
2608
2609 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2610 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2611 BUS_DMA_NOWAIT)) {
2612 aprint_error_dev(sc->bnx_dev,
2613 "Could not load TX desc %d DMA memory!\n", i);
2614 rc = ENOMEM;
2615 goto bnx_dma_alloc_exit;
2616 }
2617
2618 sc->tx_bd_chain_paddr[i] =
2619 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2620
2621 /* DRC - Fix for 64 bit systems. */
2622 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2623 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2624 }
2625
2626 /*
2627 * Create lists to hold TX mbufs.
2628 */
2629 TAILQ_INIT(&sc->tx_free_pkts);
2630 TAILQ_INIT(&sc->tx_used_pkts);
2631 sc->tx_pkt_count = 0;
2632 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2633
2634 /*
2635 * Allocate DMA memory for the Rx buffer descriptor chain,
2636 * and fetch the physical address of the block.
2637 */
2638 for (i = 0; i < RX_PAGES; i++) {
2639 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2640 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2641 &sc->rx_bd_chain_map[i])) {
2642 aprint_error_dev(sc->bnx_dev,
2643 "Could not create Rx desc %d DMA map!\n", i);
2644 rc = ENOMEM;
2645 goto bnx_dma_alloc_exit;
2646 }
2647
2648 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2649 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2650 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2651 aprint_error_dev(sc->bnx_dev,
2652 "Could not allocate Rx desc %d DMA memory!\n", i);
2653 rc = ENOMEM;
2654 goto bnx_dma_alloc_exit;
2655 }
2656
2657 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2658 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2659 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2660 aprint_error_dev(sc->bnx_dev,
2661 "Could not map Rx desc %d DMA memory!\n", i);
2662 rc = ENOMEM;
2663 goto bnx_dma_alloc_exit;
2664 }
2665
2666 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2667 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2668 BUS_DMA_NOWAIT)) {
2669 aprint_error_dev(sc->bnx_dev,
2670 "Could not load Rx desc %d DMA memory!\n", i);
2671 rc = ENOMEM;
2672 goto bnx_dma_alloc_exit;
2673 }
2674
2675 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2676 sc->rx_bd_chain_paddr[i] =
2677 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2678
2679 /* DRC - Fix for 64 bit systems. */
2680 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2681 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2682 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2683 0, BNX_RX_CHAIN_PAGE_SZ,
2684 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2685 }
2686
2687 /*
2688 * Create DMA maps for the Rx buffer mbufs.
2689 */
2690 for (i = 0; i < TOTAL_RX_BD; i++) {
2691 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2692 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2693 &sc->rx_mbuf_map[i])) {
2694 aprint_error_dev(sc->bnx_dev,
2695 "Could not create Rx mbuf %d DMA map!\n", i);
2696 rc = ENOMEM;
2697 goto bnx_dma_alloc_exit;
2698 }
2699 }
2700
2701 bnx_dma_alloc_exit:
2702 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2703
2704 return rc;
2705 }
2706
2707 /****************************************************************************/
2708 /* Release all resources used by the driver. */
2709 /* */
2710 /* Releases all resources acquired by the driver including interrupts, */
2711 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2712 /* */
2713 /* Returns: */
2714 /* Nothing. */
2715 /****************************************************************************/
2716 void
2717 bnx_release_resources(struct bnx_softc *sc)
2718 {
2719 struct pci_attach_args *pa = &(sc->bnx_pa);
2720
2721 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2722
2723 bnx_dma_free(sc);
2724
2725 if (sc->bnx_intrhand != NULL)
2726 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2727
2728 if (sc->bnx_ih != NULL)
2729 pci_intr_release(pa->pa_pc, sc->bnx_ih, 1);
2730
2731 if (sc->bnx_size)
2732 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2733
2734 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2735 }
2736
2737 /****************************************************************************/
2738 /* Firmware synchronization. */
2739 /* */
2740 /* Before performing certain events such as a chip reset, synchronize with */
2741 /* the firmware first. */
2742 /* */
2743 /* Returns: */
2744 /* 0 for success, positive value for failure. */
2745 /****************************************************************************/
2746 int
2747 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2748 {
2749 int i, rc = 0;
2750 uint32_t val;
2751
2752 /* Don't waste any time if we've timed out before. */
2753 if (sc->bnx_fw_timed_out) {
2754 rc = EBUSY;
2755 goto bnx_fw_sync_exit;
2756 }
2757
2758 /* Increment the message sequence number. */
2759 sc->bnx_fw_wr_seq++;
2760 msg_data |= sc->bnx_fw_wr_seq;
2761
2762 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2763 msg_data);
2764
2765 /* Send the message to the bootcode driver mailbox. */
2766 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2767
2768 /* Wait for the bootcode to acknowledge the message. */
2769 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2770 /* Check for a response in the bootcode firmware mailbox. */
2771 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2772 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2773 break;
2774 DELAY(1000);
2775 }
2776
2777 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2778 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2779 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2780 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2781 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2782
2783 msg_data &= ~BNX_DRV_MSG_CODE;
2784 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2785
2786 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2787
2788 sc->bnx_fw_timed_out = 1;
2789 rc = EBUSY;
2790 }
2791
2792 bnx_fw_sync_exit:
2793 return rc;
2794 }
2795
2796 /****************************************************************************/
2797 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2798 /* */
2799 /* Returns: */
2800 /* Nothing. */
2801 /****************************************************************************/
2802 void
2803 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2804 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2805 {
2806 int i;
2807 uint32_t val;
2808
2809 /* Set the page size used by RV2P. */
2810 if (rv2p_proc == RV2P_PROC2) {
2811 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2812 USABLE_RX_BD_PER_PAGE);
2813 }
2814
2815 for (i = 0; i < rv2p_code_len; i += 8) {
2816 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2817 rv2p_code++;
2818 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2819 rv2p_code++;
2820
2821 if (rv2p_proc == RV2P_PROC1) {
2822 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2823 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2824 } else {
2825 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2826 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2827 }
2828 }
2829
2830 /* Reset the processor, un-stall is done later. */
2831 if (rv2p_proc == RV2P_PROC1)
2832 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2833 else
2834 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2835 }
2836
2837 /****************************************************************************/
2838 /* Load RISC processor firmware. */
2839 /* */
2840 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2841 /* associated with a particular processor. */
2842 /* */
2843 /* Returns: */
2844 /* Nothing. */
2845 /****************************************************************************/
2846 void
2847 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2848 struct fw_info *fw)
2849 {
2850 uint32_t offset;
2851 uint32_t val;
2852
2853 /* Halt the CPU. */
2854 val = REG_RD_IND(sc, cpu_reg->mode);
2855 val |= cpu_reg->mode_value_halt;
2856 REG_WR_IND(sc, cpu_reg->mode, val);
2857 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2858
2859 /* Load the Text area. */
2860 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2861 if (fw->text) {
2862 int j;
2863
2864 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2865 REG_WR_IND(sc, offset, fw->text[j]);
2866 }
2867
2868 /* Load the Data area. */
2869 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2870 if (fw->data) {
2871 int j;
2872
2873 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2874 REG_WR_IND(sc, offset, fw->data[j]);
2875 }
2876
2877 /* Load the SBSS area. */
2878 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2879 if (fw->sbss) {
2880 int j;
2881
2882 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2883 REG_WR_IND(sc, offset, fw->sbss[j]);
2884 }
2885
2886 /* Load the BSS area. */
2887 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2888 if (fw->bss) {
2889 int j;
2890
2891 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2892 REG_WR_IND(sc, offset, fw->bss[j]);
2893 }
2894
2895 /* Load the Read-Only area. */
2896 offset = cpu_reg->spad_base +
2897 (fw->rodata_addr - cpu_reg->mips_view_base);
2898 if (fw->rodata) {
2899 int j;
2900
2901 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2902 REG_WR_IND(sc, offset, fw->rodata[j]);
2903 }
2904
2905 /* Clear the pre-fetch instruction. */
2906 REG_WR_IND(sc, cpu_reg->inst, 0);
2907 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2908
2909 /* Start the CPU. */
2910 val = REG_RD_IND(sc, cpu_reg->mode);
2911 val &= ~cpu_reg->mode_value_halt;
2912 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2913 REG_WR_IND(sc, cpu_reg->mode, val);
2914 }
2915
2916 /****************************************************************************/
2917 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2918 /* */
2919 /* Loads the firmware for each CPU and starts the CPU. */
2920 /* */
2921 /* Returns: */
2922 /* Nothing. */
2923 /****************************************************************************/
2924 void
2925 bnx_init_cpus(struct bnx_softc *sc)
2926 {
2927 struct cpu_reg cpu_reg;
2928 struct fw_info fw;
2929
2930 switch (BNX_CHIP_NUM(sc)) {
2931 case BNX_CHIP_NUM_5709:
2932 /* Initialize the RV2P processor. */
2933 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2934 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2935 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2936 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2937 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2938 } else {
2939 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2940 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2941 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2942 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2943 }
2944
2945 /* Initialize the RX Processor. */
2946 cpu_reg.mode = BNX_RXP_CPU_MODE;
2947 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2948 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2949 cpu_reg.state = BNX_RXP_CPU_STATE;
2950 cpu_reg.state_value_clear = 0xffffff;
2951 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2952 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2953 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2954 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2955 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2956 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2957 cpu_reg.mips_view_base = 0x8000000;
2958
2959 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2960 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2961 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2962 fw.start_addr = bnx_RXP_b09FwStartAddr;
2963
2964 fw.text_addr = bnx_RXP_b09FwTextAddr;
2965 fw.text_len = bnx_RXP_b09FwTextLen;
2966 fw.text_index = 0;
2967 fw.text = bnx_RXP_b09FwText;
2968
2969 fw.data_addr = bnx_RXP_b09FwDataAddr;
2970 fw.data_len = bnx_RXP_b09FwDataLen;
2971 fw.data_index = 0;
2972 fw.data = bnx_RXP_b09FwData;
2973
2974 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2975 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2976 fw.sbss_index = 0;
2977 fw.sbss = bnx_RXP_b09FwSbss;
2978
2979 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2980 fw.bss_len = bnx_RXP_b09FwBssLen;
2981 fw.bss_index = 0;
2982 fw.bss = bnx_RXP_b09FwBss;
2983
2984 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2985 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2986 fw.rodata_index = 0;
2987 fw.rodata = bnx_RXP_b09FwRodata;
2988
2989 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2990 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2991
2992 /* Initialize the TX Processor. */
2993 cpu_reg.mode = BNX_TXP_CPU_MODE;
2994 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2995 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2996 cpu_reg.state = BNX_TXP_CPU_STATE;
2997 cpu_reg.state_value_clear = 0xffffff;
2998 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2999 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3000 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3001 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3002 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3003 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3004 cpu_reg.mips_view_base = 0x8000000;
3005
3006 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
3007 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
3008 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
3009 fw.start_addr = bnx_TXP_b09FwStartAddr;
3010
3011 fw.text_addr = bnx_TXP_b09FwTextAddr;
3012 fw.text_len = bnx_TXP_b09FwTextLen;
3013 fw.text_index = 0;
3014 fw.text = bnx_TXP_b09FwText;
3015
3016 fw.data_addr = bnx_TXP_b09FwDataAddr;
3017 fw.data_len = bnx_TXP_b09FwDataLen;
3018 fw.data_index = 0;
3019 fw.data = bnx_TXP_b09FwData;
3020
3021 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
3022 fw.sbss_len = bnx_TXP_b09FwSbssLen;
3023 fw.sbss_index = 0;
3024 fw.sbss = bnx_TXP_b09FwSbss;
3025
3026 fw.bss_addr = bnx_TXP_b09FwBssAddr;
3027 fw.bss_len = bnx_TXP_b09FwBssLen;
3028 fw.bss_index = 0;
3029 fw.bss = bnx_TXP_b09FwBss;
3030
3031 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
3032 fw.rodata_len = bnx_TXP_b09FwRodataLen;
3033 fw.rodata_index = 0;
3034 fw.rodata = bnx_TXP_b09FwRodata;
3035
3036 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3037 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3038
3039 /* Initialize the TX Patch-up Processor. */
3040 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3041 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3042 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3043 cpu_reg.state = BNX_TPAT_CPU_STATE;
3044 cpu_reg.state_value_clear = 0xffffff;
3045 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3046 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3047 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3048 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3049 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3050 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3051 cpu_reg.mips_view_base = 0x8000000;
3052
3053 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
3054 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
3055 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
3056 fw.start_addr = bnx_TPAT_b09FwStartAddr;
3057
3058 fw.text_addr = bnx_TPAT_b09FwTextAddr;
3059 fw.text_len = bnx_TPAT_b09FwTextLen;
3060 fw.text_index = 0;
3061 fw.text = bnx_TPAT_b09FwText;
3062
3063 fw.data_addr = bnx_TPAT_b09FwDataAddr;
3064 fw.data_len = bnx_TPAT_b09FwDataLen;
3065 fw.data_index = 0;
3066 fw.data = bnx_TPAT_b09FwData;
3067
3068 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
3069 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
3070 fw.sbss_index = 0;
3071 fw.sbss = bnx_TPAT_b09FwSbss;
3072
3073 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
3074 fw.bss_len = bnx_TPAT_b09FwBssLen;
3075 fw.bss_index = 0;
3076 fw.bss = bnx_TPAT_b09FwBss;
3077
3078 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
3079 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
3080 fw.rodata_index = 0;
3081 fw.rodata = bnx_TPAT_b09FwRodata;
3082
3083 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3084 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3085
3086 /* Initialize the Completion Processor. */
3087 cpu_reg.mode = BNX_COM_CPU_MODE;
3088 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3089 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3090 cpu_reg.state = BNX_COM_CPU_STATE;
3091 cpu_reg.state_value_clear = 0xffffff;
3092 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3093 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3094 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3095 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3096 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3097 cpu_reg.spad_base = BNX_COM_SCRATCH;
3098 cpu_reg.mips_view_base = 0x8000000;
3099
3100 fw.ver_major = bnx_COM_b09FwReleaseMajor;
3101 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
3102 fw.ver_fix = bnx_COM_b09FwReleaseFix;
3103 fw.start_addr = bnx_COM_b09FwStartAddr;
3104
3105 fw.text_addr = bnx_COM_b09FwTextAddr;
3106 fw.text_len = bnx_COM_b09FwTextLen;
3107 fw.text_index = 0;
3108 fw.text = bnx_COM_b09FwText;
3109
3110 fw.data_addr = bnx_COM_b09FwDataAddr;
3111 fw.data_len = bnx_COM_b09FwDataLen;
3112 fw.data_index = 0;
3113 fw.data = bnx_COM_b09FwData;
3114
3115 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
3116 fw.sbss_len = bnx_COM_b09FwSbssLen;
3117 fw.sbss_index = 0;
3118 fw.sbss = bnx_COM_b09FwSbss;
3119
3120 fw.bss_addr = bnx_COM_b09FwBssAddr;
3121 fw.bss_len = bnx_COM_b09FwBssLen;
3122 fw.bss_index = 0;
3123 fw.bss = bnx_COM_b09FwBss;
3124
3125 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3126 fw.rodata_len = bnx_COM_b09FwRodataLen;
3127 fw.rodata_index = 0;
3128 fw.rodata = bnx_COM_b09FwRodata;
3129 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3130 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3131 break;
3132 default:
3133 /* Initialize the RV2P processor. */
3134 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3135 RV2P_PROC1);
3136 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3137 RV2P_PROC2);
3138
3139 /* Initialize the RX Processor. */
3140 cpu_reg.mode = BNX_RXP_CPU_MODE;
3141 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3142 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3143 cpu_reg.state = BNX_RXP_CPU_STATE;
3144 cpu_reg.state_value_clear = 0xffffff;
3145 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3146 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3147 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3148 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3149 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3150 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3151 cpu_reg.mips_view_base = 0x8000000;
3152
3153 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3154 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3155 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3156 fw.start_addr = bnx_RXP_b06FwStartAddr;
3157
3158 fw.text_addr = bnx_RXP_b06FwTextAddr;
3159 fw.text_len = bnx_RXP_b06FwTextLen;
3160 fw.text_index = 0;
3161 fw.text = bnx_RXP_b06FwText;
3162
3163 fw.data_addr = bnx_RXP_b06FwDataAddr;
3164 fw.data_len = bnx_RXP_b06FwDataLen;
3165 fw.data_index = 0;
3166 fw.data = bnx_RXP_b06FwData;
3167
3168 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3169 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3170 fw.sbss_index = 0;
3171 fw.sbss = bnx_RXP_b06FwSbss;
3172
3173 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3174 fw.bss_len = bnx_RXP_b06FwBssLen;
3175 fw.bss_index = 0;
3176 fw.bss = bnx_RXP_b06FwBss;
3177
3178 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3179 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3180 fw.rodata_index = 0;
3181 fw.rodata = bnx_RXP_b06FwRodata;
3182
3183 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3184 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3185
3186 /* Initialize the TX Processor. */
3187 cpu_reg.mode = BNX_TXP_CPU_MODE;
3188 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3189 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3190 cpu_reg.state = BNX_TXP_CPU_STATE;
3191 cpu_reg.state_value_clear = 0xffffff;
3192 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3193 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3194 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3195 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3196 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3197 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3198 cpu_reg.mips_view_base = 0x8000000;
3199
3200 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3201 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3202 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3203 fw.start_addr = bnx_TXP_b06FwStartAddr;
3204
3205 fw.text_addr = bnx_TXP_b06FwTextAddr;
3206 fw.text_len = bnx_TXP_b06FwTextLen;
3207 fw.text_index = 0;
3208 fw.text = bnx_TXP_b06FwText;
3209
3210 fw.data_addr = bnx_TXP_b06FwDataAddr;
3211 fw.data_len = bnx_TXP_b06FwDataLen;
3212 fw.data_index = 0;
3213 fw.data = bnx_TXP_b06FwData;
3214
3215 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3216 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3217 fw.sbss_index = 0;
3218 fw.sbss = bnx_TXP_b06FwSbss;
3219
3220 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3221 fw.bss_len = bnx_TXP_b06FwBssLen;
3222 fw.bss_index = 0;
3223 fw.bss = bnx_TXP_b06FwBss;
3224
3225 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3226 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3227 fw.rodata_index = 0;
3228 fw.rodata = bnx_TXP_b06FwRodata;
3229
3230 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3231 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3232
3233 /* Initialize the TX Patch-up Processor. */
3234 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3235 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3236 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3237 cpu_reg.state = BNX_TPAT_CPU_STATE;
3238 cpu_reg.state_value_clear = 0xffffff;
3239 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3240 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3241 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3242 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3243 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3244 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3245 cpu_reg.mips_view_base = 0x8000000;
3246
3247 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3248 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3249 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3250 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3251
3252 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3253 fw.text_len = bnx_TPAT_b06FwTextLen;
3254 fw.text_index = 0;
3255 fw.text = bnx_TPAT_b06FwText;
3256
3257 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3258 fw.data_len = bnx_TPAT_b06FwDataLen;
3259 fw.data_index = 0;
3260 fw.data = bnx_TPAT_b06FwData;
3261
3262 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3263 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3264 fw.sbss_index = 0;
3265 fw.sbss = bnx_TPAT_b06FwSbss;
3266
3267 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3268 fw.bss_len = bnx_TPAT_b06FwBssLen;
3269 fw.bss_index = 0;
3270 fw.bss = bnx_TPAT_b06FwBss;
3271
3272 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3273 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3274 fw.rodata_index = 0;
3275 fw.rodata = bnx_TPAT_b06FwRodata;
3276
3277 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3278 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3279
3280 /* Initialize the Completion Processor. */
3281 cpu_reg.mode = BNX_COM_CPU_MODE;
3282 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3283 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3284 cpu_reg.state = BNX_COM_CPU_STATE;
3285 cpu_reg.state_value_clear = 0xffffff;
3286 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3287 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3288 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3289 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3290 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3291 cpu_reg.spad_base = BNX_COM_SCRATCH;
3292 cpu_reg.mips_view_base = 0x8000000;
3293
3294 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3295 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3296 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3297 fw.start_addr = bnx_COM_b06FwStartAddr;
3298
3299 fw.text_addr = bnx_COM_b06FwTextAddr;
3300 fw.text_len = bnx_COM_b06FwTextLen;
3301 fw.text_index = 0;
3302 fw.text = bnx_COM_b06FwText;
3303
3304 fw.data_addr = bnx_COM_b06FwDataAddr;
3305 fw.data_len = bnx_COM_b06FwDataLen;
3306 fw.data_index = 0;
3307 fw.data = bnx_COM_b06FwData;
3308
3309 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3310 fw.sbss_len = bnx_COM_b06FwSbssLen;
3311 fw.sbss_index = 0;
3312 fw.sbss = bnx_COM_b06FwSbss;
3313
3314 fw.bss_addr = bnx_COM_b06FwBssAddr;
3315 fw.bss_len = bnx_COM_b06FwBssLen;
3316 fw.bss_index = 0;
3317 fw.bss = bnx_COM_b06FwBss;
3318
3319 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3320 fw.rodata_len = bnx_COM_b06FwRodataLen;
3321 fw.rodata_index = 0;
3322 fw.rodata = bnx_COM_b06FwRodata;
3323 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3324 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3325 break;
3326 }
3327 }
3328
3329 /****************************************************************************/
3330 /* Initialize context memory. */
3331 /* */
3332 /* Clears the memory associated with each Context ID (CID). */
3333 /* */
3334 /* Returns: */
3335 /* Nothing. */
3336 /****************************************************************************/
3337 void
3338 bnx_init_context(struct bnx_softc *sc)
3339 {
3340 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3341 /* DRC: Replace this constant value with a #define. */
3342 int i, retry_cnt = 10;
3343 uint32_t val;
3344
3345 /*
3346 * BCM5709 context memory may be cached
3347 * in host memory so prepare the host memory
3348 * for access.
3349 */
3350 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3351 | (1 << 12);
3352 val |= (BCM_PAGE_BITS - 8) << 16;
3353 REG_WR(sc, BNX_CTX_COMMAND, val);
3354
3355 /* Wait for mem init command to complete. */
3356 for (i = 0; i < retry_cnt; i++) {
3357 val = REG_RD(sc, BNX_CTX_COMMAND);
3358 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3359 break;
3360 DELAY(2);
3361 }
3362
3363 /* ToDo: Consider returning an error here. */
3364
3365 for (i = 0; i < sc->ctx_pages; i++) {
3366 int j;
3367
3368 /* Set the physaddr of the context memory cache. */
3369 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3370 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3371 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3372 val = (uint32_t)
3373 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3374 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3375 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3376 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3377
3378 /* Verify that the context memory write was successful. */
3379 for (j = 0; j < retry_cnt; j++) {
3380 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3381 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3382 break;
3383 DELAY(5);
3384 }
3385
3386 /* ToDo: Consider returning an error here. */
3387 }
3388 } else {
3389 uint32_t vcid_addr, offset;
3390
3391 /*
3392 * For the 5706/5708, context memory is local to the
3393 * controller, so initialize the controller context memory.
3394 */
3395
3396 vcid_addr = GET_CID_ADDR(96);
3397 while (vcid_addr) {
3398
3399 vcid_addr -= BNX_PHY_CTX_SIZE;
3400
3401 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3402 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3403
3404 for (offset = 0; offset < BNX_PHY_CTX_SIZE;
3405 offset += 4)
3406 CTX_WR(sc, 0x00, offset, 0);
3407
3408 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3409 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3410 }
3411 }
3412 }
3413
3414 /****************************************************************************/
3415 /* Fetch the permanent MAC address of the controller. */
3416 /* */
3417 /* Returns: */
3418 /* Nothing. */
3419 /****************************************************************************/
3420 void
3421 bnx_get_mac_addr(struct bnx_softc *sc)
3422 {
3423 uint32_t mac_lo = 0, mac_hi = 0;
3424
3425 /*
3426 * The NetXtreme II bootcode populates various NIC
3427 * power-on and runtime configuration items in a
3428 * shared memory area. The factory configured MAC
3429 * address is available from both NVRAM and the
3430 * shared memory area so we'll read the value from
3431 * shared memory for speed.
3432 */
3433
3434 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3435 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3436
3437 if ((mac_lo == 0) && (mac_hi == 0)) {
3438 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3439 __FILE__, __LINE__);
3440 } else {
3441 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3442 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3443 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3444 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3445 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3446 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3447 }
3448
3449 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3450 "%s\n", ether_sprintf(sc->eaddr));
3451 }
3452
3453 /****************************************************************************/
3454 /* Program the MAC address. */
3455 /* */
3456 /* Returns: */
3457 /* Nothing. */
3458 /****************************************************************************/
3459 void
3460 bnx_set_mac_addr(struct bnx_softc *sc)
3461 {
3462 uint32_t val;
3463 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3464
3465 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3466 "%s\n", ether_sprintf(sc->eaddr));
3467
3468 val = (mac_addr[0] << 8) | mac_addr[1];
3469
3470 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3471
3472 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3473 (mac_addr[4] << 8) | mac_addr[5];
3474
3475 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3476 }
3477
3478 /****************************************************************************/
3479 /* Stop the controller. */
3480 /* */
3481 /* Returns: */
3482 /* Nothing. */
3483 /****************************************************************************/
3484 void
3485 bnx_stop(struct ifnet *ifp, int disable)
3486 {
3487 struct bnx_softc *sc = ifp->if_softc;
3488
3489 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3490
3491 if (disable) {
3492 sc->bnx_detaching = 1;
3493 callout_halt(&sc->bnx_timeout, NULL);
3494 } else
3495 callout_stop(&sc->bnx_timeout);
3496
3497 mii_down(&sc->bnx_mii);
3498
3499 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3500
3501 /* Disable the transmit/receive blocks. */
3502 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3503 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3504 DELAY(20);
3505
3506 bnx_disable_intr(sc);
3507
3508 /* Tell firmware that the driver is going away. */
3509 if (disable)
3510 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3511 else
3512 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3513
3514 /* Free RX buffers. */
3515 bnx_free_rx_chain(sc);
3516
3517 /* Free TX buffers. */
3518 bnx_free_tx_chain(sc);
3519
3520 ifp->if_timer = 0;
3521
3522 sc->bnx_link = 0;
3523
3524 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3525
3526 bnx_mgmt_init(sc);
3527 }
3528
3529 int
3530 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3531 {
3532 struct pci_attach_args *pa = &(sc->bnx_pa);
3533 uint32_t val;
3534 int i, rc = 0;
3535
3536 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3537
3538 /* Wait for pending PCI transactions to complete. */
3539 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
3540 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
3541 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3542 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3543 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3544 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3545 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3546 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3547 DELAY(5);
3548 } else {
3549 /* Disable DMA */
3550 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3551 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3552 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3553 REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
3554
3555 for (i = 0; i < 100; i++) {
3556 delay(1 * 1000);
3557 val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
3558 if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
3559 break;
3560 }
3561 }
3562
3563 /* Assume bootcode is running. */
3564 sc->bnx_fw_timed_out = 0;
3565
3566 /* Give the firmware a chance to prepare for the reset. */
3567 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3568 if (rc)
3569 goto bnx_reset_exit;
3570
3571 /* Set a firmware reminder that this is a soft reset. */
3572 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3573 BNX_DRV_RESET_SIGNATURE_MAGIC);
3574
3575 /* Dummy read to force the chip to complete all current transactions. */
3576 val = REG_RD(sc, BNX_MISC_ID);
3577
3578 /* Chip reset. */
3579 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3580 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3581 REG_RD(sc, BNX_MISC_COMMAND);
3582 DELAY(5);
3583
3584 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3585 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3586
3587 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3588 val);
3589 } else {
3590 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3591 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3592 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3593 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3594
3595 /* Allow up to 30us for reset to complete. */
3596 for (i = 0; i < 10; i++) {
3597 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3598 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3599 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3600 break;
3601 }
3602 DELAY(10);
3603 }
3604
3605 /* Check that reset completed successfully. */
3606 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3607 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3608 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3609 __FILE__, __LINE__);
3610 rc = EBUSY;
3611 goto bnx_reset_exit;
3612 }
3613 }
3614
3615 /* Make sure byte swapping is properly configured. */
3616 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3617 if (val != 0x01020304) {
3618 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3619 __FILE__, __LINE__);
3620 rc = ENODEV;
3621 goto bnx_reset_exit;
3622 }
3623
3624 /* Just completed a reset, assume that firmware is running again. */
3625 sc->bnx_fw_timed_out = 0;
3626
3627 /* Wait for the firmware to finish its initialization. */
3628 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3629 if (rc)
3630 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3631 "initialization!\n", __FILE__, __LINE__);
3632
3633 bnx_reset_exit:
3634 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3635
3636 return rc;
3637 }
3638
3639 int
3640 bnx_chipinit(struct bnx_softc *sc)
3641 {
3642 struct pci_attach_args *pa = &(sc->bnx_pa);
3643 uint32_t val;
3644 int rc = 0;
3645
3646 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3647
3648 /* Make sure the interrupt is not active. */
3649 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3650
3651 /* Initialize DMA byte/word swapping, configure the number of DMA */
3652 /* channels and PCI clock compensation delay. */
3653 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3654 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3655 #if BYTE_ORDER == BIG_ENDIAN
3656 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3657 #endif
3658 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3659 DMA_READ_CHANS << 12 |
3660 DMA_WRITE_CHANS << 16;
3661
3662 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3663
3664 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3665 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3666
3667 /*
3668 * This setting resolves a problem observed on certain Intel PCI
3669 * chipsets that cannot handle multiple outstanding DMA operations.
3670 * See errata E9_5706A1_65.
3671 */
3672 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3673 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3674 !(sc->bnx_flags & BNX_PCIX_FLAG))
3675 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3676
3677 REG_WR(sc, BNX_DMA_CONFIG, val);
3678
3679 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3680 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3681 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3682 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3683 val & ~0x20000);
3684 }
3685
3686 /* Enable the RX_V2P and Context state machines before access. */
3687 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3688 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3689 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3690 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3691
3692 /* Initialize context mapping and zero out the quick contexts. */
3693 bnx_init_context(sc);
3694
3695 /* Initialize the on-boards CPUs */
3696 bnx_init_cpus(sc);
3697
3698 /* Enable management frames (NC-SI) to flow to the MCP. */
3699 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3700 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
3701 BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3702 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3703 }
3704
3705 /* Prepare NVRAM for access. */
3706 if (bnx_init_nvram(sc)) {
3707 rc = ENODEV;
3708 goto bnx_chipinit_exit;
3709 }
3710
3711 /* Set the kernel bypass block size */
3712 val = REG_RD(sc, BNX_MQ_CONFIG);
3713 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3714 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3715
3716 /* Enable bins used on the 5709. */
3717 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3718 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3719 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3720 val |= BNX_MQ_CONFIG_HALT_DIS;
3721 }
3722
3723 REG_WR(sc, BNX_MQ_CONFIG, val);
3724
3725 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3726 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3727 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3728
3729 val = (BCM_PAGE_BITS - 8) << 24;
3730 REG_WR(sc, BNX_RV2P_CONFIG, val);
3731
3732 /* Configure page size. */
3733 val = REG_RD(sc, BNX_TBDR_CONFIG);
3734 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3735 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3736 REG_WR(sc, BNX_TBDR_CONFIG, val);
3737
3738 #if 0
3739 /* Set the perfect match control register to default. */
3740 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3741 #endif
3742
3743 bnx_chipinit_exit:
3744 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3745
3746 return rc;
3747 }
3748
3749 /****************************************************************************/
3750 /* Initialize the controller in preparation to send/receive traffic. */
3751 /* */
3752 /* Returns: */
3753 /* 0 for success, positive value for failure. */
3754 /****************************************************************************/
3755 int
3756 bnx_blockinit(struct bnx_softc *sc)
3757 {
3758 uint32_t reg, val;
3759 int rc = 0;
3760
3761 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3762
3763 /* Load the hardware default MAC address. */
3764 bnx_set_mac_addr(sc);
3765
3766 /* Set the Ethernet backoff seed value */
3767 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3768 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3769 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3770
3771 sc->last_status_idx = 0;
3772 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3773
3774 /* Set up link change interrupt generation. */
3775 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3776 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3777
3778 /* Program the physical address of the status block. */
3779 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3780 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3781 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3782
3783 /* Program the physical address of the statistics block. */
3784 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3785 (uint32_t)(sc->stats_block_paddr));
3786 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3787 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3788
3789 /* Program various host coalescing parameters. */
3790 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3791 << 16) | sc->bnx_tx_quick_cons_trip);
3792 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3793 << 16) | sc->bnx_rx_quick_cons_trip);
3794 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3795 sc->bnx_comp_prod_trip);
3796 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3797 sc->bnx_tx_ticks);
3798 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3799 sc->bnx_rx_ticks);
3800 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3801 sc->bnx_com_ticks);
3802 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3803 sc->bnx_cmd_ticks);
3804 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3805 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3806 REG_WR(sc, BNX_HC_CONFIG,
3807 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3808 BNX_HC_CONFIG_COLLECT_STATS));
3809
3810 /* Clear the internal statistics counters. */
3811 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3812
3813 /* Verify that bootcode is running. */
3814 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3815
3816 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3817 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3818 __FILE__, __LINE__); reg = 0);
3819
3820 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3821 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3822 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3823 "Expected: 08%08X\n", __FILE__, __LINE__,
3824 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3825 BNX_DEV_INFO_SIGNATURE_MAGIC);
3826 rc = ENODEV;
3827 goto bnx_blockinit_exit;
3828 }
3829
3830 /* Enable DMA */
3831 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3832 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3833 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3834 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3835 }
3836
3837 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3838 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3839
3840 /* Disable management frames (NC-SI) from flowing to the MCP. */
3841 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3842 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
3843 ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3844 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3845 }
3846
3847 /* Enable all remaining blocks in the MAC. */
3848 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3849 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3850 BNX_MISC_ENABLE_DEFAULT_XI);
3851 } else
3852 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3853
3854 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3855 DELAY(20);
3856
3857 bnx_blockinit_exit:
3858 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3859
3860 return rc;
3861 }
3862
3863 static int
3864 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3865 uint16_t *chain_prod, uint32_t *prod_bseq)
3866 {
3867 bus_dmamap_t map;
3868 struct rx_bd *rxbd;
3869 uint32_t addr;
3870 int i;
3871 #ifdef BNX_DEBUG
3872 uint16_t debug_chain_prod = *chain_prod;
3873 #endif
3874 uint16_t first_chain_prod;
3875
3876 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3877
3878 /* Map the mbuf cluster into device memory. */
3879 map = sc->rx_mbuf_map[*chain_prod];
3880 first_chain_prod = *chain_prod;
3881 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3882 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3883 __FILE__, __LINE__);
3884
3885 m_freem(m_new);
3886
3887 DBRUNIF(1, sc->rx_mbuf_alloc--);
3888
3889 return ENOBUFS;
3890 }
3891 /* Make sure there is room in the receive chain. */
3892 if (map->dm_nsegs > sc->free_rx_bd) {
3893 bus_dmamap_unload(sc->bnx_dmatag, map);
3894 m_freem(m_new);
3895 return EFBIG;
3896 }
3897 #ifdef BNX_DEBUG
3898 /* Track the distribution of buffer segments. */
3899 sc->rx_mbuf_segs[map->dm_nsegs]++;
3900 #endif
3901
3902 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3903 BUS_DMASYNC_PREREAD);
3904
3905 /* Update some debug statistics counters */
3906 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3907 sc->rx_low_watermark = sc->free_rx_bd);
3908 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3909
3910 /*
3911 * Setup the rx_bd for the first segment
3912 */
3913 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3914
3915 addr = (uint32_t)map->dm_segs[0].ds_addr;
3916 rxbd->rx_bd_haddr_lo = addr;
3917 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3918 rxbd->rx_bd_haddr_hi = addr;
3919 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3920 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3921 *prod_bseq += map->dm_segs[0].ds_len;
3922 bus_dmamap_sync(sc->bnx_dmatag,
3923 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3924 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3925 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3926
3927 for (i = 1; i < map->dm_nsegs; i++) {
3928 *prod = NEXT_RX_BD(*prod);
3929 *chain_prod = RX_CHAIN_IDX(*prod);
3930
3931 rxbd =
3932 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3933
3934 addr = (uint32_t)map->dm_segs[i].ds_addr;
3935 rxbd->rx_bd_haddr_lo = addr;
3936 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3937 rxbd->rx_bd_haddr_hi = addr;
3938 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3939 rxbd->rx_bd_flags = 0;
3940 *prod_bseq += map->dm_segs[i].ds_len;
3941 bus_dmamap_sync(sc->bnx_dmatag,
3942 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3943 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3944 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3945 }
3946
3947 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3948 bus_dmamap_sync(sc->bnx_dmatag,
3949 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3950 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3951 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3952
3953 /*
3954 * Save the mbuf, adjust the map pointer (swap map for first and
3955 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3956 * and update our counter.
3957 */
3958 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3959 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3960 sc->rx_mbuf_map[*chain_prod] = map;
3961 sc->free_rx_bd -= map->dm_nsegs;
3962
3963 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3964 map->dm_nsegs));
3965 *prod = NEXT_RX_BD(*prod);
3966 *chain_prod = RX_CHAIN_IDX(*prod);
3967
3968 return 0;
3969 }
3970
3971 /****************************************************************************/
3972 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3973 /* */
3974 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3975 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3976 /* necessary. */
3977 /* */
3978 /* Returns: */
3979 /* 0 for success, positive value for failure. */
3980 /****************************************************************************/
3981 int
3982 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3983 uint16_t *chain_prod, uint32_t *prod_bseq)
3984 {
3985 struct mbuf *m_new = NULL;
3986 int rc = 0;
3987 uint16_t min_free_bd;
3988
3989 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3990 __func__);
3991
3992 /* Make sure the inputs are valid. */
3993 DBRUNIF((*chain_prod > MAX_RX_BD),
3994 aprint_error_dev(sc->bnx_dev,
3995 "RX producer out of range: 0x%04X > 0x%04X\n",
3996 *chain_prod, (uint16_t)MAX_RX_BD));
3997
3998 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3999 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
4000 *prod_bseq);
4001
4002 /* try to get in as many mbufs as possible */
4003 if (sc->mbuf_alloc_size == MCLBYTES)
4004 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
4005 else
4006 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
4007 while (sc->free_rx_bd >= min_free_bd) {
4008 /* Simulate an mbuf allocation failure. */
4009 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
4010 aprint_error_dev(sc->bnx_dev,
4011 "Simulating mbuf allocation failure.\n");
4012 sc->mbuf_sim_alloc_failed++;
4013 rc = ENOBUFS;
4014 goto bnx_get_buf_exit);
4015
4016 /* This is a new mbuf allocation. */
4017 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
4018 if (m_new == NULL) {
4019 DBPRINT(sc, BNX_WARN,
4020 "%s(%d): RX mbuf header allocation failed!\n",
4021 __FILE__, __LINE__);
4022
4023 sc->mbuf_alloc_failed++;
4024
4025 rc = ENOBUFS;
4026 goto bnx_get_buf_exit;
4027 }
4028
4029 DBRUNIF(1, sc->rx_mbuf_alloc++);
4030
4031 /* Simulate an mbuf cluster allocation failure. */
4032 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
4033 m_freem(m_new);
4034 sc->rx_mbuf_alloc--;
4035 sc->mbuf_alloc_failed++;
4036 sc->mbuf_sim_alloc_failed++;
4037 rc = ENOBUFS;
4038 goto bnx_get_buf_exit);
4039
4040 if (sc->mbuf_alloc_size == MCLBYTES)
4041 MCLGET(m_new, M_DONTWAIT);
4042 else
4043 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
4044 M_DONTWAIT);
4045 if (!(m_new->m_flags & M_EXT)) {
4046 DBPRINT(sc, BNX_WARN,
4047 "%s(%d): RX mbuf chain allocation failed!\n",
4048 __FILE__, __LINE__);
4049
4050 m_freem(m_new);
4051
4052 DBRUNIF(1, sc->rx_mbuf_alloc--);
4053 sc->mbuf_alloc_failed++;
4054
4055 rc = ENOBUFS;
4056 goto bnx_get_buf_exit;
4057 }
4058
4059 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
4060 if (rc != 0)
4061 goto bnx_get_buf_exit;
4062 }
4063
4064 bnx_get_buf_exit:
4065 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
4066 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
4067 *chain_prod, *prod_bseq);
4068
4069 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
4070 __func__);
4071
4072 return rc;
4073 }
4074
4075 void
4076 bnx_alloc_pkts(struct work * unused, void * arg)
4077 {
4078 struct bnx_softc *sc = arg;
4079 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4080 struct bnx_pkt *pkt;
4081 int i, s;
4082
4083 for (i = 0; i < 4; i++) { /* magic! */
4084 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
4085 if (pkt == NULL)
4086 break;
4087
4088 if (bus_dmamap_create(sc->bnx_dmatag,
4089 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
4090 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
4091 &pkt->pkt_dmamap) != 0) {
4092 pool_put(bnx_tx_pool, pkt);
4093 break;
4094 }
4095
4096 mutex_enter(&sc->tx_pkt_mtx);
4097 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4098 sc->tx_pkt_count++;
4099 mutex_exit(&sc->tx_pkt_mtx);
4100 }
4101
4102 mutex_enter(&sc->tx_pkt_mtx);
4103 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4104 mutex_exit(&sc->tx_pkt_mtx);
4105
4106 /* fire-up TX now that allocations have been done */
4107 s = splnet();
4108 CLR(ifp->if_flags, IFF_OACTIVE);
4109 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4110 bnx_start(ifp);
4111 splx(s);
4112 }
4113
4114 /****************************************************************************/
4115 /* Initialize the TX context memory. */
4116 /* */
4117 /* Returns: */
4118 /* Nothing */
4119 /****************************************************************************/
4120 void
4121 bnx_init_tx_context(struct bnx_softc *sc)
4122 {
4123 uint32_t val;
4124
4125 /* Initialize the context ID for an L2 TX chain. */
4126 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4127 /* Set the CID type to support an L2 connection. */
4128 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4129 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4130 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4131 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4132
4133 /* Point the hardware to the first page in the chain. */
4134 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4135 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4136 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4137 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4138 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4139 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4140 } else {
4141 /* Set the CID type to support an L2 connection. */
4142 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4143 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4144 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4145 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4146
4147 /* Point the hardware to the first page in the chain. */
4148 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4149 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4150 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4151 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4152 }
4153 }
4154
4155
4156 /****************************************************************************/
4157 /* Allocate memory and initialize the TX data structures. */
4158 /* */
4159 /* Returns: */
4160 /* 0 for success, positive value for failure. */
4161 /****************************************************************************/
4162 int
4163 bnx_init_tx_chain(struct bnx_softc *sc)
4164 {
4165 struct tx_bd *txbd;
4166 uint32_t addr;
4167 int i, rc = 0;
4168
4169 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4170
4171 /* Set the initial TX producer/consumer indices. */
4172 sc->tx_prod = 0;
4173 sc->tx_cons = 0;
4174 sc->tx_prod_bseq = 0;
4175 sc->used_tx_bd = 0;
4176 sc->max_tx_bd = USABLE_TX_BD;
4177 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4178 DBRUNIF(1, sc->tx_full_count = 0);
4179
4180 /*
4181 * The NetXtreme II supports a linked-list structure called
4182 * a Buffer Descriptor Chain (or BD chain). A BD chain
4183 * consists of a series of 1 or more chain pages, each of which
4184 * consists of a fixed number of BD entries.
4185 * The last BD entry on each page is a pointer to the next page
4186 * in the chain, and the last pointer in the BD chain
4187 * points back to the beginning of the chain.
4188 */
4189
4190 /* Set the TX next pointer chain entries. */
4191 for (i = 0; i < TX_PAGES; i++) {
4192 int j;
4193
4194 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4195
4196 /* Check if we've reached the last page. */
4197 if (i == (TX_PAGES - 1))
4198 j = 0;
4199 else
4200 j = i + 1;
4201
4202 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4203 txbd->tx_bd_haddr_lo = addr;
4204 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4205 txbd->tx_bd_haddr_hi = addr;
4206 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4207 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4208 }
4209
4210 /*
4211 * Initialize the context ID for an L2 TX chain.
4212 */
4213 bnx_init_tx_context(sc);
4214
4215 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4216
4217 return rc;
4218 }
4219
4220 /****************************************************************************/
4221 /* Free memory and clear the TX data structures. */
4222 /* */
4223 /* Returns: */
4224 /* Nothing. */
4225 /****************************************************************************/
4226 void
4227 bnx_free_tx_chain(struct bnx_softc *sc)
4228 {
4229 struct bnx_pkt *pkt;
4230 int i;
4231
4232 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4233
4234 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4235 mutex_enter(&sc->tx_pkt_mtx);
4236 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4237 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4238 mutex_exit(&sc->tx_pkt_mtx);
4239
4240 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4241 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4242 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4243
4244 m_freem(pkt->pkt_mbuf);
4245 DBRUNIF(1, sc->tx_mbuf_alloc--);
4246
4247 mutex_enter(&sc->tx_pkt_mtx);
4248 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4249 }
4250 mutex_exit(&sc->tx_pkt_mtx);
4251
4252 /* Clear each TX chain page. */
4253 for (i = 0; i < TX_PAGES; i++) {
4254 memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4255 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4256 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4257 }
4258
4259 sc->used_tx_bd = 0;
4260
4261 /* Check if we lost any mbufs in the process. */
4262 DBRUNIF((sc->tx_mbuf_alloc),
4263 aprint_error_dev(sc->bnx_dev,
4264 "Memory leak! Lost %d mbufs from tx chain!\n",
4265 sc->tx_mbuf_alloc));
4266
4267 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4268 }
4269
4270 /****************************************************************************/
4271 /* Initialize the RX context memory. */
4272 /* */
4273 /* Returns: */
4274 /* Nothing */
4275 /****************************************************************************/
4276 void
4277 bnx_init_rx_context(struct bnx_softc *sc)
4278 {
4279 uint32_t val;
4280
4281 /* Initialize the context ID for an L2 RX chain. */
4282 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4283 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4284
4285 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
4286 val |= 0x000000ff;
4287
4288 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4289
4290 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4291 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4292 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4293 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4294 }
4295
4296 /* Point the hardware to the first page in the chain. */
4297 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4298 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4299 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4300 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4301 }
4302
4303 /****************************************************************************/
4304 /* Allocate memory and initialize the RX data structures. */
4305 /* */
4306 /* Returns: */
4307 /* 0 for success, positive value for failure. */
4308 /****************************************************************************/
4309 int
4310 bnx_init_rx_chain(struct bnx_softc *sc)
4311 {
4312 struct rx_bd *rxbd;
4313 int i, rc = 0;
4314 uint16_t prod, chain_prod;
4315 uint32_t prod_bseq, addr;
4316
4317 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4318
4319 /* Initialize the RX producer and consumer indices. */
4320 sc->rx_prod = 0;
4321 sc->rx_cons = 0;
4322 sc->rx_prod_bseq = 0;
4323 sc->free_rx_bd = USABLE_RX_BD;
4324 sc->max_rx_bd = USABLE_RX_BD;
4325 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4326 DBRUNIF(1, sc->rx_empty_count = 0);
4327
4328 /* Initialize the RX next pointer chain entries. */
4329 for (i = 0; i < RX_PAGES; i++) {
4330 int j;
4331
4332 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4333
4334 /* Check if we've reached the last page. */
4335 if (i == (RX_PAGES - 1))
4336 j = 0;
4337 else
4338 j = i + 1;
4339
4340 /* Setup the chain page pointers. */
4341 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4342 rxbd->rx_bd_haddr_hi = addr;
4343 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4344 rxbd->rx_bd_haddr_lo = addr;
4345 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4346 0, BNX_RX_CHAIN_PAGE_SZ,
4347 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4348 }
4349
4350 /* Allocate mbuf clusters for the rx_bd chain. */
4351 prod = prod_bseq = 0;
4352 chain_prod = RX_CHAIN_IDX(prod);
4353 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4354 BNX_PRINTF(sc,
4355 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4356 }
4357
4358 /* Save the RX chain producer index. */
4359 sc->rx_prod = prod;
4360 sc->rx_prod_bseq = prod_bseq;
4361
4362 for (i = 0; i < RX_PAGES; i++)
4363 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4364 sc->rx_bd_chain_map[i]->dm_mapsize,
4365 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4366
4367 /* Tell the chip about the waiting rx_bd's. */
4368 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4369 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4370
4371 bnx_init_rx_context(sc);
4372
4373 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4374
4375 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4376
4377 return rc;
4378 }
4379
4380 /****************************************************************************/
4381 /* Free memory and clear the RX data structures. */
4382 /* */
4383 /* Returns: */
4384 /* Nothing. */
4385 /****************************************************************************/
4386 void
4387 bnx_free_rx_chain(struct bnx_softc *sc)
4388 {
4389 int i;
4390
4391 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4392
4393 /* Free any mbufs still in the RX mbuf chain. */
4394 for (i = 0; i < TOTAL_RX_BD; i++) {
4395 if (sc->rx_mbuf_ptr[i] != NULL) {
4396 if (sc->rx_mbuf_map[i] != NULL) {
4397 bus_dmamap_sync(sc->bnx_dmatag,
4398 sc->rx_mbuf_map[i], 0,
4399 sc->rx_mbuf_map[i]->dm_mapsize,
4400 BUS_DMASYNC_POSTREAD);
4401 bus_dmamap_unload(sc->bnx_dmatag,
4402 sc->rx_mbuf_map[i]);
4403 }
4404 m_freem(sc->rx_mbuf_ptr[i]);
4405 sc->rx_mbuf_ptr[i] = NULL;
4406 DBRUNIF(1, sc->rx_mbuf_alloc--);
4407 }
4408 }
4409
4410 /* Clear each RX chain page. */
4411 for (i = 0; i < RX_PAGES; i++)
4412 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4413
4414 sc->free_rx_bd = sc->max_rx_bd;
4415
4416 /* Check if we lost any mbufs in the process. */
4417 DBRUNIF((sc->rx_mbuf_alloc),
4418 aprint_error_dev(sc->bnx_dev,
4419 "Memory leak! Lost %d mbufs from rx chain!\n",
4420 sc->rx_mbuf_alloc));
4421
4422 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4423 }
4424
4425 /****************************************************************************/
4426 /* Set media options. */
4427 /* */
4428 /* Returns: */
4429 /* 0 for success, positive value for failure. */
4430 /****************************************************************************/
4431 int
4432 bnx_ifmedia_upd(struct ifnet *ifp)
4433 {
4434 struct bnx_softc *sc;
4435 struct mii_data *mii;
4436 int rc = 0;
4437
4438 sc = ifp->if_softc;
4439
4440 mii = &sc->bnx_mii;
4441 sc->bnx_link = 0;
4442 if (mii->mii_instance) {
4443 struct mii_softc *miisc;
4444 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4445 mii_phy_reset(miisc);
4446 }
4447 mii_mediachg(mii);
4448
4449 return rc;
4450 }
4451
4452 /****************************************************************************/
4453 /* Reports current media status. */
4454 /* */
4455 /* Returns: */
4456 /* Nothing. */
4457 /****************************************************************************/
4458 void
4459 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4460 {
4461 struct bnx_softc *sc;
4462 struct mii_data *mii;
4463 int s;
4464
4465 sc = ifp->if_softc;
4466
4467 s = splnet();
4468
4469 mii = &sc->bnx_mii;
4470
4471 mii_pollstat(mii);
4472 ifmr->ifm_status = mii->mii_media_status;
4473 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4474 sc->bnx_flowflags;
4475
4476 splx(s);
4477 }
4478
4479 /****************************************************************************/
4480 /* Handles PHY generated interrupt events. */
4481 /* */
4482 /* Returns: */
4483 /* Nothing. */
4484 /****************************************************************************/
4485 void
4486 bnx_phy_intr(struct bnx_softc *sc)
4487 {
4488 uint32_t new_link_state, old_link_state;
4489
4490 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4491 BUS_DMASYNC_POSTREAD);
4492 new_link_state = sc->status_block->status_attn_bits &
4493 STATUS_ATTN_BITS_LINK_STATE;
4494 old_link_state = sc->status_block->status_attn_bits_ack &
4495 STATUS_ATTN_BITS_LINK_STATE;
4496
4497 /* Handle any changes if the link state has changed. */
4498 if (new_link_state != old_link_state) {
4499 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4500
4501 sc->bnx_link = 0;
4502 callout_stop(&sc->bnx_timeout);
4503 bnx_tick(sc);
4504
4505 /* Update the status_attn_bits_ack field in the status block. */
4506 if (new_link_state) {
4507 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4508 STATUS_ATTN_BITS_LINK_STATE);
4509 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4510 } else {
4511 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4512 STATUS_ATTN_BITS_LINK_STATE);
4513 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4514 }
4515 }
4516
4517 /* Acknowledge the link change interrupt. */
4518 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4519 }
4520
4521 /****************************************************************************/
4522 /* Handles received frame interrupt events. */
4523 /* */
4524 /* Returns: */
4525 /* Nothing. */
4526 /****************************************************************************/
4527 void
4528 bnx_rx_intr(struct bnx_softc *sc)
4529 {
4530 struct status_block *sblk = sc->status_block;
4531 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4532 uint16_t hw_cons, sw_cons, sw_chain_cons;
4533 uint16_t sw_prod, sw_chain_prod;
4534 uint32_t sw_prod_bseq;
4535 struct l2_fhdr *l2fhdr;
4536 int i;
4537
4538 DBRUNIF(1, sc->rx_interrupts++);
4539 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4540 BUS_DMASYNC_POSTREAD);
4541
4542 /* Prepare the RX chain pages to be accessed by the host CPU. */
4543 for (i = 0; i < RX_PAGES; i++)
4544 bus_dmamap_sync(sc->bnx_dmatag,
4545 sc->rx_bd_chain_map[i], 0,
4546 sc->rx_bd_chain_map[i]->dm_mapsize,
4547 BUS_DMASYNC_POSTWRITE);
4548
4549 /* Get the hardware's view of the RX consumer index. */
4550 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4551 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4552 hw_cons++;
4553
4554 /* Get working copies of the driver's view of the RX indices. */
4555 sw_cons = sc->rx_cons;
4556 sw_prod = sc->rx_prod;
4557 sw_prod_bseq = sc->rx_prod_bseq;
4558
4559 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4560 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4561 __func__, sw_prod, sw_cons, sw_prod_bseq);
4562
4563 /* Prevent speculative reads from getting ahead of the status block. */
4564 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4565 BUS_SPACE_BARRIER_READ);
4566
4567 /* Update some debug statistics counters */
4568 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4569 sc->rx_low_watermark = sc->free_rx_bd);
4570 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4571
4572 /*
4573 * Scan through the receive chain as long
4574 * as there is work to do.
4575 */
4576 while (sw_cons != hw_cons) {
4577 struct mbuf *m;
4578 struct rx_bd *rxbd __diagused;
4579 unsigned int len;
4580 uint32_t status;
4581
4582 /* Convert the producer/consumer indices to an actual
4583 * rx_bd index.
4584 */
4585 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4586 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4587
4588 /* Get the used rx_bd. */
4589 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4590 sc->free_rx_bd++;
4591
4592 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4593 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4594
4595 /* The mbuf is stored with the last rx_bd entry of a packet. */
4596 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4597 #ifdef DIAGNOSTIC
4598 /* Validate that this is the last rx_bd. */
4599 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4600 printf("%s: Unexpected mbuf found in "
4601 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4602 sw_chain_cons);
4603 }
4604 #endif
4605
4606 /* DRC - ToDo: If the received packet is small, say
4607 * less than 128 bytes, allocate a new mbuf
4608 * here, copy the data to that mbuf, and
4609 * recycle the mapped jumbo frame.
4610 */
4611
4612 /* Unmap the mbuf from DMA space. */
4613 #ifdef DIAGNOSTIC
4614 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4615 printf("invalid map sw_cons 0x%x "
4616 "sw_prod 0x%x "
4617 "sw_chain_cons 0x%x "
4618 "sw_chain_prod 0x%x "
4619 "hw_cons 0x%x "
4620 "TOTAL_RX_BD_PER_PAGE 0x%x "
4621 "TOTAL_RX_BD 0x%x\n",
4622 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4623 hw_cons,
4624 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4625 }
4626 #endif
4627 bus_dmamap_sync(sc->bnx_dmatag,
4628 sc->rx_mbuf_map[sw_chain_cons], 0,
4629 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4630 BUS_DMASYNC_POSTREAD);
4631 bus_dmamap_unload(sc->bnx_dmatag,
4632 sc->rx_mbuf_map[sw_chain_cons]);
4633
4634 /* Remove the mbuf from the driver's chain. */
4635 m = sc->rx_mbuf_ptr[sw_chain_cons];
4636 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4637
4638 /*
4639 * Frames received on the NetXteme II are prepended
4640 * with the l2_fhdr structure which provides status
4641 * information about the received frame (including
4642 * VLAN tags and checksum info) and are also
4643 * automatically adjusted to align the IP header
4644 * (i.e. two null bytes are inserted before the
4645 * Ethernet header).
4646 */
4647 l2fhdr = mtod(m, struct l2_fhdr *);
4648
4649 len = l2fhdr->l2_fhdr_pkt_len;
4650 status = l2fhdr->l2_fhdr_status;
4651
4652 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4653 aprint_error("Simulating l2_fhdr status error.\n");
4654 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4655
4656 /* Watch for unusual sized frames. */
4657 DBRUNIF(((len < BNX_MIN_MTU) ||
4658 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4659 aprint_error_dev(sc->bnx_dev,
4660 "Unusual frame size found. "
4661 "Min(%d), Actual(%d), Max(%d)\n",
4662 (int)BNX_MIN_MTU, len,
4663 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4664
4665 bnx_dump_mbuf(sc, m);
4666 bnx_breakpoint(sc));
4667
4668 len -= ETHER_CRC_LEN;
4669
4670 /* Check the received frame for errors. */
4671 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4672 L2_FHDR_ERRORS_PHY_DECODE |
4673 L2_FHDR_ERRORS_ALIGNMENT |
4674 L2_FHDR_ERRORS_TOO_SHORT |
4675 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4676 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4677 len >
4678 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4679 if_statinc(ifp, if_ierrors);
4680 DBRUNIF(1, sc->l2fhdr_status_errors++);
4681
4682 /* Reuse the mbuf for a new frame. */
4683 if (bnx_add_buf(sc, m, &sw_prod,
4684 &sw_chain_prod, &sw_prod_bseq)) {
4685 DBRUNIF(1, bnx_breakpoint(sc));
4686 panic("%s: Can't reuse RX mbuf!\n",
4687 device_xname(sc->bnx_dev));
4688 }
4689 continue;
4690 }
4691
4692 /*
4693 * Get a new mbuf for the rx_bd. If no new
4694 * mbufs are available then reuse the current mbuf,
4695 * log an ierror on the interface, and generate
4696 * an error in the system log.
4697 */
4698 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4699 &sw_prod_bseq)) {
4700 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4701 "Failed to allocate "
4702 "new mbuf, incoming frame dropped!\n"));
4703
4704 if_statinc(ifp, if_ierrors);
4705
4706 /* Try and reuse the exisitng mbuf. */
4707 if (bnx_add_buf(sc, m, &sw_prod,
4708 &sw_chain_prod, &sw_prod_bseq)) {
4709 DBRUNIF(1, bnx_breakpoint(sc));
4710 panic("%s: Double mbuf allocation "
4711 "failure!",
4712 device_xname(sc->bnx_dev));
4713 }
4714 continue;
4715 }
4716
4717 /* Skip over the l2_fhdr when passing the data up
4718 * the stack.
4719 */
4720 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4721
4722 /* Adjust the pckt length to match the received data. */
4723 m->m_pkthdr.len = m->m_len = len;
4724
4725 /* Send the packet to the appropriate interface. */
4726 m_set_rcvif(m, ifp);
4727
4728 DBRUN(BNX_VERBOSE_RECV,
4729 struct ether_header *eh;
4730 eh = mtod(m, struct ether_header *);
4731 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4732 __func__, ether_sprintf(eh->ether_dhost),
4733 ether_sprintf(eh->ether_shost),
4734 htons(eh->ether_type)));
4735
4736 /* Validate the checksum. */
4737
4738 /* Check for an IP datagram. */
4739 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4740 /* Check if the IP checksum is valid. */
4741 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
4742 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4743 #ifdef BNX_DEBUG
4744 else
4745 DBPRINT(sc, BNX_WARN_SEND,
4746 "%s(): Invalid IP checksum "
4747 "= 0x%04X!\n",
4748 __func__,
4749 l2fhdr->l2_fhdr_ip_xsum
4750 );
4751 #endif
4752 }
4753
4754 /* Check for a valid TCP/UDP frame. */
4755 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4756 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4757 /* Check for a good TCP/UDP checksum. */
4758 if ((status &
4759 (L2_FHDR_ERRORS_TCP_XSUM |
4760 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4761 m->m_pkthdr.csum_flags |=
4762 M_CSUM_TCPv4 |
4763 M_CSUM_UDPv4;
4764 } else {
4765 DBPRINT(sc, BNX_WARN_SEND,
4766 "%s(): Invalid TCP/UDP "
4767 "checksum = 0x%04X!\n",
4768 __func__,
4769 l2fhdr->l2_fhdr_tcp_udp_xsum);
4770 }
4771 }
4772
4773 /*
4774 * If we received a packet with a vlan tag,
4775 * attach that information to the packet.
4776 */
4777 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4778 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4779 vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4780 }
4781
4782 /* Pass the mbuf off to the upper layers. */
4783
4784 DBPRINT(sc, BNX_VERBOSE_RECV,
4785 "%s(): Passing received frame up.\n", __func__);
4786 if_percpuq_enqueue(ifp->if_percpuq, m);
4787 DBRUNIF(1, sc->rx_mbuf_alloc--);
4788
4789 }
4790
4791 sw_cons = NEXT_RX_BD(sw_cons);
4792
4793 /* Refresh hw_cons to see if there's new work */
4794 if (sw_cons == hw_cons) {
4795 hw_cons = sc->hw_rx_cons =
4796 sblk->status_rx_quick_consumer_index0;
4797 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4798 USABLE_RX_BD_PER_PAGE)
4799 hw_cons++;
4800 }
4801
4802 /* Prevent speculative reads from getting ahead of
4803 * the status block.
4804 */
4805 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4806 BUS_SPACE_BARRIER_READ);
4807 }
4808
4809 for (i = 0; i < RX_PAGES; i++)
4810 bus_dmamap_sync(sc->bnx_dmatag,
4811 sc->rx_bd_chain_map[i], 0,
4812 sc->rx_bd_chain_map[i]->dm_mapsize,
4813 BUS_DMASYNC_PREWRITE);
4814
4815 sc->rx_cons = sw_cons;
4816 sc->rx_prod = sw_prod;
4817 sc->rx_prod_bseq = sw_prod_bseq;
4818
4819 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4820 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4821
4822 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4823 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4824 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4825 }
4826
4827 /****************************************************************************/
4828 /* Handles transmit completion interrupt events. */
4829 /* */
4830 /* Returns: */
4831 /* Nothing. */
4832 /****************************************************************************/
4833 void
4834 bnx_tx_intr(struct bnx_softc *sc)
4835 {
4836 struct status_block *sblk = sc->status_block;
4837 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4838 struct bnx_pkt *pkt;
4839 bus_dmamap_t map;
4840 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4841
4842 DBRUNIF(1, sc->tx_interrupts++);
4843 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4844 BUS_DMASYNC_POSTREAD);
4845
4846 /* Get the hardware's view of the TX consumer index. */
4847 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4848
4849 /* Skip to the next entry if this is a chain page pointer. */
4850 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4851 hw_tx_cons++;
4852
4853 sw_tx_cons = sc->tx_cons;
4854
4855 /* Prevent speculative reads from getting ahead of the status block. */
4856 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4857 BUS_SPACE_BARRIER_READ);
4858
4859 /* Cycle through any completed TX chain page entries. */
4860 while (sw_tx_cons != hw_tx_cons) {
4861 #ifdef BNX_DEBUG
4862 struct tx_bd *txbd = NULL;
4863 #endif
4864 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4865
4866 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4867 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4868 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4869
4870 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4871 aprint_error_dev(sc->bnx_dev,
4872 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4873 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4874
4875 DBRUNIF(1, txbd = &sc->tx_bd_chain
4876 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4877
4878 DBRUNIF((txbd == NULL),
4879 aprint_error_dev(sc->bnx_dev,
4880 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4881 bnx_breakpoint(sc));
4882
4883 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4884 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4885
4886
4887 mutex_enter(&sc->tx_pkt_mtx);
4888 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4889 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4890 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4891 mutex_exit(&sc->tx_pkt_mtx);
4892 /*
4893 * Free the associated mbuf. Remember
4894 * that only the last tx_bd of a packet
4895 * has an mbuf pointer and DMA map.
4896 */
4897 map = pkt->pkt_dmamap;
4898 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4899 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4900 bus_dmamap_unload(sc->bnx_dmatag, map);
4901
4902 m_freem(pkt->pkt_mbuf);
4903 DBRUNIF(1, sc->tx_mbuf_alloc--);
4904
4905 if_statinc(ifp, if_opackets);
4906
4907 mutex_enter(&sc->tx_pkt_mtx);
4908 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4909 }
4910 mutex_exit(&sc->tx_pkt_mtx);
4911
4912 sc->used_tx_bd--;
4913 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4914 __FILE__, __LINE__, sc->used_tx_bd);
4915
4916 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4917
4918 /* Refresh hw_cons to see if there's new work. */
4919 hw_tx_cons = sc->hw_tx_cons =
4920 sblk->status_tx_quick_consumer_index0;
4921 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4922 USABLE_TX_BD_PER_PAGE)
4923 hw_tx_cons++;
4924
4925 /* Prevent speculative reads from getting ahead of
4926 * the status block.
4927 */
4928 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4929 BUS_SPACE_BARRIER_READ);
4930 }
4931
4932 /* Clear the TX timeout timer. */
4933 ifp->if_timer = 0;
4934
4935 /* Clear the tx hardware queue full flag. */
4936 if (sc->used_tx_bd < sc->max_tx_bd) {
4937 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4938 aprint_debug_dev(sc->bnx_dev,
4939 "Open TX chain! %d/%d (used/total)\n",
4940 sc->used_tx_bd, sc->max_tx_bd));
4941 ifp->if_flags &= ~IFF_OACTIVE;
4942 }
4943
4944 sc->tx_cons = sw_tx_cons;
4945 }
4946
4947 /****************************************************************************/
4948 /* Disables interrupt generation. */
4949 /* */
4950 /* Returns: */
4951 /* Nothing. */
4952 /****************************************************************************/
4953 void
4954 bnx_disable_intr(struct bnx_softc *sc)
4955 {
4956 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4957 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4958 }
4959
4960 /****************************************************************************/
4961 /* Enables interrupt generation. */
4962 /* */
4963 /* Returns: */
4964 /* Nothing. */
4965 /****************************************************************************/
4966 void
4967 bnx_enable_intr(struct bnx_softc *sc)
4968 {
4969 uint32_t val;
4970
4971 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4972 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4973
4974 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4975 sc->last_status_idx);
4976
4977 val = REG_RD(sc, BNX_HC_COMMAND);
4978 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4979 }
4980
4981 /****************************************************************************/
4982 /* Handles controller initialization. */
4983 /* */
4984 /****************************************************************************/
4985 int
4986 bnx_init(struct ifnet *ifp)
4987 {
4988 struct bnx_softc *sc = ifp->if_softc;
4989 uint32_t ether_mtu;
4990 int s, error = 0;
4991
4992 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4993
4994 s = splnet();
4995
4996 bnx_stop(ifp, 0);
4997
4998 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4999 aprint_error_dev(sc->bnx_dev,
5000 "Controller reset failed!\n");
5001 goto bnx_init_exit;
5002 }
5003
5004 if ((error = bnx_chipinit(sc)) != 0) {
5005 aprint_error_dev(sc->bnx_dev,
5006 "Controller initialization failed!\n");
5007 goto bnx_init_exit;
5008 }
5009
5010 if ((error = bnx_blockinit(sc)) != 0) {
5011 aprint_error_dev(sc->bnx_dev,
5012 "Block initialization failed!\n");
5013 goto bnx_init_exit;
5014 }
5015
5016 /* Calculate and program the Ethernet MRU size. */
5017 if (ifp->if_mtu <= ETHERMTU) {
5018 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
5019 sc->mbuf_alloc_size = MCLBYTES;
5020 } else {
5021 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
5022 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
5023 }
5024
5025
5026 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
5027
5028 /*
5029 * Program the MRU and enable Jumbo frame
5030 * support.
5031 */
5032 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
5033 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
5034
5035 /* Calculate the RX Ethernet frame size for rx_bd's. */
5036 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
5037
5038 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
5039 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
5040 sc->mbuf_alloc_size, sc->max_frame_size);
5041
5042 /* Program appropriate promiscuous/multicast filtering. */
5043 bnx_iff(sc);
5044
5045 /* Init RX buffer descriptor chain. */
5046 bnx_init_rx_chain(sc);
5047
5048 /* Init TX buffer descriptor chain. */
5049 bnx_init_tx_chain(sc);
5050
5051 /* Enable host interrupts. */
5052 bnx_enable_intr(sc);
5053
5054 mii_ifmedia_change(&sc->bnx_mii);
5055
5056 SET(ifp->if_flags, IFF_RUNNING);
5057 CLR(ifp->if_flags, IFF_OACTIVE);
5058
5059 callout_schedule(&sc->bnx_timeout, hz);
5060
5061 bnx_init_exit:
5062 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5063
5064 splx(s);
5065
5066 return error;
5067 }
5068
5069 void
5070 bnx_mgmt_init(struct bnx_softc *sc)
5071 {
5072 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5073 uint32_t val;
5074
5075 /* Check if the driver is still running and bail out if it is. */
5076 if (ifp->if_flags & IFF_RUNNING)
5077 goto bnx_mgmt_init_exit;
5078
5079 /* Initialize the on-boards CPUs */
5080 bnx_init_cpus(sc);
5081
5082 val = (BCM_PAGE_BITS - 8) << 24;
5083 REG_WR(sc, BNX_RV2P_CONFIG, val);
5084
5085 /* Enable all critical blocks in the MAC. */
5086 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
5087 BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
5088 BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
5089 BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
5090 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
5091 DELAY(20);
5092
5093 mii_ifmedia_change(&sc->bnx_mii);
5094
5095 bnx_mgmt_init_exit:
5096 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5097 }
5098
5099 /****************************************************************************/
5100 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
5101 /* memory visible to the controller. */
5102 /* */
5103 /* Returns: */
5104 /* 0 for success, positive value for failure. */
5105 /****************************************************************************/
5106 int
5107 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
5108 {
5109 struct bnx_pkt *pkt;
5110 bus_dmamap_t map;
5111 struct tx_bd *txbd = NULL;
5112 uint16_t vlan_tag = 0, flags = 0;
5113 uint16_t chain_prod, prod;
5114 #ifdef BNX_DEBUG
5115 uint16_t debug_prod;
5116 #endif
5117 uint32_t addr, prod_bseq;
5118 int i, error;
5119 bool remap = true;
5120
5121 mutex_enter(&sc->tx_pkt_mtx);
5122 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
5123 if (pkt == NULL) {
5124 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
5125 mutex_exit(&sc->tx_pkt_mtx);
5126 return ENETDOWN;
5127 }
5128
5129 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
5130 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
5131 workqueue_enqueue(sc->bnx_wq, &sc->bnx_wk, NULL);
5132 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
5133 }
5134
5135 mutex_exit(&sc->tx_pkt_mtx);
5136 return ENOMEM;
5137 }
5138 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
5139 mutex_exit(&sc->tx_pkt_mtx);
5140
5141 /* Transfer any checksum offload flags to the bd. */
5142 if (m->m_pkthdr.csum_flags) {
5143 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
5144 flags |= TX_BD_FLAGS_IP_CKSUM;
5145 if (m->m_pkthdr.csum_flags &
5146 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
5147 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
5148 }
5149
5150 /* Transfer any VLAN tags to the bd. */
5151 if (vlan_has_tag(m)) {
5152 flags |= TX_BD_FLAGS_VLAN_TAG;
5153 vlan_tag = vlan_get_tag(m);
5154 }
5155
5156 /* Map the mbuf into DMAable memory. */
5157 prod = sc->tx_prod;
5158 chain_prod = TX_CHAIN_IDX(prod);
5159 map = pkt->pkt_dmamap;
5160
5161 /* Map the mbuf into our DMA address space. */
5162 retry:
5163 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5164 if (__predict_false(error)) {
5165 if (error == EFBIG) {
5166 if (remap == true) {
5167 struct mbuf *newm;
5168
5169 remap = false;
5170 newm = m_defrag(m, M_NOWAIT);
5171 if (newm != NULL) {
5172 m = newm;
5173 goto retry;
5174 }
5175 }
5176 }
5177 sc->tx_dma_map_failures++;
5178 goto maperr;
5179 }
5180 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5181 BUS_DMASYNC_PREWRITE);
5182 /* Make sure there's room in the chain */
5183 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
5184 error = ENOMEM;
5185 goto nospace;
5186 }
5187
5188 /* prod points to an empty tx_bd at this point. */
5189 prod_bseq = sc->tx_prod_bseq;
5190 #ifdef BNX_DEBUG
5191 debug_prod = chain_prod;
5192 #endif
5193 DBPRINT(sc, BNX_INFO_SEND,
5194 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5195 "prod_bseq = 0x%08X\n",
5196 __func__, prod, chain_prod, prod_bseq);
5197
5198 /*
5199 * Cycle through each mbuf segment that makes up
5200 * the outgoing frame, gathering the mapping info
5201 * for that segment and creating a tx_bd for the
5202 * mbuf.
5203 */
5204 for (i = 0; i < map->dm_nsegs ; i++) {
5205 chain_prod = TX_CHAIN_IDX(prod);
5206 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5207
5208 addr = (uint32_t)map->dm_segs[i].ds_addr;
5209 txbd->tx_bd_haddr_lo = addr;
5210 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5211 txbd->tx_bd_haddr_hi = addr;
5212 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5213 txbd->tx_bd_vlan_tag = vlan_tag;
5214 txbd->tx_bd_flags = flags;
5215 prod_bseq += map->dm_segs[i].ds_len;
5216 if (i == 0)
5217 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5218 prod = NEXT_TX_BD(prod);
5219 }
5220
5221 /* Set the END flag on the last TX buffer descriptor. */
5222 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5223
5224 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5225
5226 DBPRINT(sc, BNX_INFO_SEND,
5227 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5228 "prod_bseq = 0x%08X\n",
5229 __func__, prod, chain_prod, prod_bseq);
5230
5231 pkt->pkt_mbuf = m;
5232 pkt->pkt_end_desc = chain_prod;
5233
5234 mutex_enter(&sc->tx_pkt_mtx);
5235 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5236 mutex_exit(&sc->tx_pkt_mtx);
5237
5238 sc->used_tx_bd += map->dm_nsegs;
5239 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5240 __FILE__, __LINE__, sc->used_tx_bd);
5241
5242 /* Update some debug statistics counters */
5243 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5244 sc->tx_hi_watermark = sc->used_tx_bd);
5245 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5246 DBRUNIF(1, sc->tx_mbuf_alloc++);
5247
5248 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5249 map->dm_nsegs));
5250
5251 /* prod points to the next free tx_bd at this point. */
5252 sc->tx_prod = prod;
5253 sc->tx_prod_bseq = prod_bseq;
5254
5255 return 0;
5256
5257
5258 nospace:
5259 bus_dmamap_unload(sc->bnx_dmatag, map);
5260 maperr:
5261 mutex_enter(&sc->tx_pkt_mtx);
5262 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5263 mutex_exit(&sc->tx_pkt_mtx);
5264
5265 return error;
5266 }
5267
5268 /****************************************************************************/
5269 /* Main transmit routine. */
5270 /* */
5271 /* Returns: */
5272 /* Nothing. */
5273 /****************************************************************************/
5274 void
5275 bnx_start(struct ifnet *ifp)
5276 {
5277 struct bnx_softc *sc = ifp->if_softc;
5278 struct mbuf *m_head = NULL;
5279 int count = 0, error;
5280 #ifdef BNX_DEBUG
5281 uint16_t tx_chain_prod;
5282 #endif
5283
5284 /* If there's no link or the transmit queue is empty then just exit. */
5285 if (!sc->bnx_link
5286 ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
5287 DBPRINT(sc, BNX_INFO_SEND,
5288 "%s(): output active or device not running.\n", __func__);
5289 goto bnx_start_exit;
5290 }
5291
5292 /* prod points to the next free tx_bd. */
5293 #ifdef BNX_DEBUG
5294 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5295 #endif
5296
5297 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5298 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5299 "used_tx %d max_tx %d\n",
5300 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5301 sc->used_tx_bd, sc->max_tx_bd);
5302
5303 /*
5304 * Keep adding entries while there is space in the ring.
5305 */
5306 while (sc->used_tx_bd < sc->max_tx_bd) {
5307 /* Check for any frames to send. */
5308 IFQ_POLL(&ifp->if_snd, m_head);
5309 if (m_head == NULL)
5310 break;
5311
5312 /*
5313 * Pack the data into the transmit ring. If we
5314 * don't have room, set the OACTIVE flag to wait
5315 * for the NIC to drain the chain.
5316 */
5317 if ((error = bnx_tx_encap(sc, m_head))) {
5318 if (error == ENOMEM) {
5319 ifp->if_flags |= IFF_OACTIVE;
5320 DBPRINT(sc, BNX_INFO_SEND,
5321 "TX chain is closed for "
5322 "business! Total tx_bd used = %d\n",
5323 sc->used_tx_bd);
5324 break;
5325 } else {
5326 /* Permanent error for the mbuf, drop it */
5327 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5328 m_freem(m_head);
5329 DBPRINT(sc, BNX_INFO_SEND,
5330 "mbuf load error %d, dropped\n", error);
5331 continue;
5332 }
5333 }
5334
5335 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5336 count++;
5337
5338 /* Send a copy of the frame to any BPF listeners. */
5339 bpf_mtap(ifp, m_head, BPF_D_OUT);
5340 }
5341
5342 if (count == 0) {
5343 /* no packets were dequeued */
5344 DBPRINT(sc, BNX_VERBOSE_SEND,
5345 "%s(): No packets were dequeued\n", __func__);
5346 goto bnx_start_exit;
5347 }
5348
5349 /* Update the driver's counters. */
5350 #ifdef BNX_DEBUG
5351 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5352 #endif
5353
5354 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
5355 "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
5356 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
5357
5358 /* Start the transmit. */
5359 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5360 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5361
5362 /* Set the tx timeout. */
5363 ifp->if_timer = BNX_TX_TIMEOUT;
5364
5365 bnx_start_exit:
5366 return;
5367 }
5368
5369 /****************************************************************************/
5370 /* Handles any IOCTL calls from the operating system. */
5371 /* */
5372 /* Returns: */
5373 /* 0 for success, positive value for failure. */
5374 /****************************************************************************/
5375 int
5376 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5377 {
5378 struct bnx_softc *sc = ifp->if_softc;
5379 struct ifreq *ifr = (struct ifreq *) data;
5380 struct mii_data *mii = &sc->bnx_mii;
5381 int s, error = 0;
5382
5383 s = splnet();
5384
5385 switch (command) {
5386 case SIOCSIFFLAGS:
5387 if ((error = ifioctl_common(ifp, command, data)) != 0)
5388 break;
5389 /* XXX set an ifflags callback and let ether_ioctl
5390 * handle all of this.
5391 */
5392 if (ISSET(ifp->if_flags, IFF_UP)) {
5393 if (ifp->if_flags & IFF_RUNNING)
5394 error = ENETRESET;
5395 else
5396 bnx_init(ifp);
5397 } else if (ifp->if_flags & IFF_RUNNING)
5398 bnx_stop(ifp, 1);
5399 break;
5400
5401 case SIOCSIFMEDIA:
5402 /* Flow control requires full-duplex mode. */
5403 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5404 (ifr->ifr_media & IFM_FDX) == 0)
5405 ifr->ifr_media &= ~IFM_ETH_FMASK;
5406
5407 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5408 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5409 /* We can do both TXPAUSE and RXPAUSE. */
5410 ifr->ifr_media |=
5411 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5412 }
5413 sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5414 }
5415 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5416 sc->bnx_phy_flags);
5417
5418 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5419 break;
5420
5421 default:
5422 error = ether_ioctl(ifp, command, data);
5423 }
5424
5425 if (error == ENETRESET) {
5426 if (ifp->if_flags & IFF_RUNNING)
5427 bnx_iff(sc);
5428 error = 0;
5429 }
5430
5431 splx(s);
5432 return error;
5433 }
5434
5435 /****************************************************************************/
5436 /* Transmit timeout handler. */
5437 /* */
5438 /* Returns: */
5439 /* Nothing. */
5440 /****************************************************************************/
5441 void
5442 bnx_watchdog(struct ifnet *ifp)
5443 {
5444 struct bnx_softc *sc = ifp->if_softc;
5445
5446 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5447 bnx_dump_status_block(sc));
5448 /*
5449 * If we are in this routine because of pause frames, then
5450 * don't reset the hardware.
5451 */
5452 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5453 return;
5454
5455 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5456
5457 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5458
5459 bnx_init(ifp);
5460
5461 if_statinc(ifp, if_oerrors);
5462 }
5463
5464 /*
5465 * Interrupt handler.
5466 */
5467 /****************************************************************************/
5468 /* Main interrupt entry point. Verifies that the controller generated the */
5469 /* interrupt and then calls a separate routine for handle the various */
5470 /* interrupt causes (PHY, TX, RX). */
5471 /* */
5472 /* Returns: */
5473 /* 0 for success, positive value for failure. */
5474 /****************************************************************************/
5475 int
5476 bnx_intr(void *xsc)
5477 {
5478 struct bnx_softc *sc = xsc;
5479 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5480 uint32_t status_attn_bits;
5481 uint16_t status_idx;
5482 const struct status_block *sblk;
5483 int rv = 0;
5484
5485 if (!device_is_active(sc->bnx_dev) ||
5486 (ifp->if_flags & IFF_RUNNING) == 0)
5487 return 0;
5488
5489 DBRUNIF(1, sc->interrupts_generated++);
5490
5491 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5492 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
5493
5494 sblk = sc->status_block;
5495 /*
5496 * If the hardware status block index
5497 * matches the last value read by the
5498 * driver and we haven't asserted our
5499 * interrupt then there's nothing to do.
5500 */
5501 status_idx = sblk->status_idx;
5502 if ((status_idx != sc->last_status_idx) ||
5503 !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
5504 BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
5505 rv = 1;
5506
5507 /* Ack the interrupt */
5508 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5509 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
5510
5511 status_attn_bits = sblk->status_attn_bits;
5512
5513 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5514 aprint_debug("Simulating unexpected status attention bit set.");
5515 status_attn_bits = status_attn_bits |
5516 STATUS_ATTN_BITS_PARITY_ERROR);
5517
5518 /* Was it a link change interrupt? */
5519 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5520 (sblk->status_attn_bits_ack &
5521 STATUS_ATTN_BITS_LINK_STATE))
5522 bnx_phy_intr(sc);
5523
5524 /* If any other attention is asserted then the chip is toast. */
5525 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5526 (sblk->status_attn_bits_ack &
5527 ~STATUS_ATTN_BITS_LINK_STATE))) {
5528 DBRUN(sc->unexpected_attentions++);
5529
5530 BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
5531 sblk->status_attn_bits);
5532
5533 DBRUNIF((bnx_debug_unexpected_attention == 0),
5534 bnx_breakpoint(sc));
5535
5536 bnx_init(ifp);
5537 goto out;
5538 }
5539
5540 /* Check for any completed RX frames. */
5541 if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
5542 bnx_rx_intr(sc);
5543
5544 /* Check for any completed TX frames. */
5545 if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
5546 bnx_tx_intr(sc);
5547
5548 /*
5549 * Save the status block index value for use during the
5550 * next interrupt.
5551 */
5552 sc->last_status_idx = status_idx;
5553
5554 /* Start moving packets again */
5555 if (ifp->if_flags & IFF_RUNNING)
5556 if_schedule_deferred_start(ifp);
5557 }
5558
5559 out:
5560 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5561 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
5562
5563 return rv;
5564 }
5565
5566 /****************************************************************************/
5567 /* Programs the various packet receive modes (broadcast and multicast). */
5568 /* */
5569 /* Returns: */
5570 /* Nothing. */
5571 /****************************************************************************/
5572 void
5573 bnx_iff(struct bnx_softc *sc)
5574 {
5575 struct ethercom *ec = &sc->bnx_ec;
5576 struct ifnet *ifp = &ec->ec_if;
5577 struct ether_multi *enm;
5578 struct ether_multistep step;
5579 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5580 uint32_t rx_mode, sort_mode;
5581 int h, i;
5582
5583 /* Initialize receive mode default settings. */
5584 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5585 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5586 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5587 ifp->if_flags &= ~IFF_ALLMULTI;
5588
5589 /*
5590 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5591 * be enbled.
5592 */
5593 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5594 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5595
5596 /*
5597 * Check for promiscuous, all multicast, or selected
5598 * multicast address filtering.
5599 */
5600 if (ifp->if_flags & IFF_PROMISC) {
5601 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5602
5603 ifp->if_flags |= IFF_ALLMULTI;
5604 /* Enable promiscuous mode. */
5605 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5606 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5607 } else if (ifp->if_flags & IFF_ALLMULTI) {
5608 allmulti:
5609 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5610
5611 ifp->if_flags |= IFF_ALLMULTI;
5612 /* Enable all multicast addresses. */
5613 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5614 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5615 0xffffffff);
5616 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5617 } else {
5618 /* Accept one or more multicast(s). */
5619 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5620
5621 ETHER_LOCK(ec);
5622 ETHER_FIRST_MULTI(step, ec, enm);
5623 while (enm != NULL) {
5624 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5625 ETHER_ADDR_LEN)) {
5626 ETHER_UNLOCK(ec);
5627 goto allmulti;
5628 }
5629 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5630 0xFF;
5631 hashes[(h & 0xE0) >> 5] |= __BIT(h & 0x1F);
5632 ETHER_NEXT_MULTI(step, enm);
5633 }
5634 ETHER_UNLOCK(ec);
5635
5636 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5637 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5638 hashes[i]);
5639
5640 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5641 }
5642
5643 /* Only make changes if the receive mode has actually changed. */
5644 if (rx_mode != sc->rx_mode) {
5645 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5646 rx_mode);
5647
5648 sc->rx_mode = rx_mode;
5649 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5650 }
5651
5652 /* Disable and clear the exisitng sort before enabling a new sort. */
5653 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5654 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5655 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5656 }
5657
5658 /****************************************************************************/
5659 /* Called periodically to updates statistics from the controllers */
5660 /* statistics block. */
5661 /* */
5662 /* Returns: */
5663 /* Nothing. */
5664 /****************************************************************************/
5665 void
5666 bnx_stats_update(struct bnx_softc *sc)
5667 {
5668 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5669 struct statistics_block *stats;
5670
5671 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5672 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5673 BUS_DMASYNC_POSTREAD);
5674
5675 stats = (struct statistics_block *)sc->stats_block;
5676
5677 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
5678 uint64_t value;
5679
5680 /*
5681 * Update the interface statistics from the
5682 * hardware statistics.
5683 */
5684 value = (u_long)stats->stat_EtherStatsCollisions;
5685 if_statadd_ref(nsr, if_collisions, value - sc->if_stat_collisions);
5686 sc->if_stat_collisions = value;
5687
5688 value = (u_long)stats->stat_EtherStatsUndersizePkts +
5689 (u_long)stats->stat_EtherStatsOverrsizePkts +
5690 (u_long)stats->stat_IfInMBUFDiscards +
5691 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5692 (u_long)stats->stat_Dot3StatsFCSErrors;
5693 if_statadd_ref(nsr, if_ierrors, value - sc->if_stat_ierrors);
5694 sc->if_stat_ierrors = value;
5695
5696 value = (u_long)
5697 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5698 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5699 (u_long)stats->stat_Dot3StatsLateCollisions;
5700 if_statadd_ref(nsr, if_oerrors, value - sc->if_stat_oerrors);
5701 sc->if_stat_oerrors = value;
5702
5703 /*
5704 * Certain controllers don't report
5705 * carrier sense errors correctly.
5706 * See errata E11_5708CA0_1165.
5707 */
5708 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5709 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) {
5710 if_statadd_ref(nsr, if_oerrors,
5711 (u_long) stats->stat_Dot3StatsCarrierSenseErrors);
5712 }
5713
5714 IF_STAT_PUTREF(ifp);
5715
5716 /*
5717 * Update the sysctl statistics from the
5718 * hardware statistics.
5719 */
5720 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5721 (uint64_t) stats->stat_IfHCInOctets_lo;
5722
5723 sc->stat_IfHCInBadOctets =
5724 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5725 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5726
5727 sc->stat_IfHCOutOctets =
5728 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5729 (uint64_t) stats->stat_IfHCOutOctets_lo;
5730
5731 sc->stat_IfHCOutBadOctets =
5732 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5733 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5734
5735 sc->stat_IfHCInUcastPkts =
5736 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5737 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5738
5739 sc->stat_IfHCInMulticastPkts =
5740 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5741 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5742
5743 sc->stat_IfHCInBroadcastPkts =
5744 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5745 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5746
5747 sc->stat_IfHCOutUcastPkts =
5748 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5749 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5750
5751 sc->stat_IfHCOutMulticastPkts =
5752 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5753 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5754
5755 sc->stat_IfHCOutBroadcastPkts =
5756 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5757 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5758
5759 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5760 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5761
5762 sc->stat_Dot3StatsCarrierSenseErrors =
5763 stats->stat_Dot3StatsCarrierSenseErrors;
5764
5765 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5766
5767 sc->stat_Dot3StatsAlignmentErrors =
5768 stats->stat_Dot3StatsAlignmentErrors;
5769
5770 sc->stat_Dot3StatsSingleCollisionFrames =
5771 stats->stat_Dot3StatsSingleCollisionFrames;
5772
5773 sc->stat_Dot3StatsMultipleCollisionFrames =
5774 stats->stat_Dot3StatsMultipleCollisionFrames;
5775
5776 sc->stat_Dot3StatsDeferredTransmissions =
5777 stats->stat_Dot3StatsDeferredTransmissions;
5778
5779 sc->stat_Dot3StatsExcessiveCollisions =
5780 stats->stat_Dot3StatsExcessiveCollisions;
5781
5782 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5783
5784 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5785
5786 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5787
5788 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5789
5790 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5791
5792 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5793
5794 sc->stat_EtherStatsPktsRx64Octets =
5795 stats->stat_EtherStatsPktsRx64Octets;
5796
5797 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5798 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5799
5800 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5801 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5802
5803 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5804 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5805
5806 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5807 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5808
5809 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5810 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5811
5812 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5813 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5814
5815 sc->stat_EtherStatsPktsTx64Octets =
5816 stats->stat_EtherStatsPktsTx64Octets;
5817
5818 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5819 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5820
5821 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5822 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5823
5824 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5825 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5826
5827 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5828 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5829
5830 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5831 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5832
5833 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5834 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5835
5836 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5837
5838 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5839
5840 sc->stat_OutXonSent = stats->stat_OutXonSent;
5841
5842 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5843
5844 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5845
5846 sc->stat_MacControlFramesReceived =
5847 stats->stat_MacControlFramesReceived;
5848
5849 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5850
5851 sc->stat_IfInFramesL2FilterDiscards =
5852 stats->stat_IfInFramesL2FilterDiscards;
5853
5854 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5855
5856 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5857
5858 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5859
5860 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5861
5862 sc->stat_CatchupInRuleCheckerDiscards =
5863 stats->stat_CatchupInRuleCheckerDiscards;
5864
5865 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5866
5867 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5868
5869 sc->stat_CatchupInRuleCheckerP4Hit =
5870 stats->stat_CatchupInRuleCheckerP4Hit;
5871
5872 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5873 }
5874
5875 void
5876 bnx_tick(void *xsc)
5877 {
5878 struct bnx_softc *sc = xsc;
5879 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5880 struct mii_data *mii;
5881 uint32_t msg;
5882 uint16_t prod, chain_prod;
5883 uint32_t prod_bseq;
5884 int s = splnet();
5885
5886 /* Tell the firmware that the driver is still running. */
5887 #ifdef BNX_DEBUG
5888 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5889 #else
5890 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5891 #endif
5892 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5893
5894 /* Update the statistics from the hardware statistics block. */
5895 bnx_stats_update(sc);
5896
5897 /* Schedule the next tick. */
5898 if (!sc->bnx_detaching)
5899 callout_schedule(&sc->bnx_timeout, hz);
5900
5901 if (sc->bnx_link)
5902 goto bnx_tick_exit;
5903
5904 mii = &sc->bnx_mii;
5905 mii_tick(mii);
5906
5907 /* Check if the link has come up. */
5908 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
5909 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5910 sc->bnx_link++;
5911 /* Now that link is up, handle any outstanding TX traffic. */
5912 if_schedule_deferred_start(ifp);
5913 }
5914
5915 bnx_tick_exit:
5916 /* try to get more RX buffers, just in case */
5917 prod = sc->rx_prod;
5918 prod_bseq = sc->rx_prod_bseq;
5919 chain_prod = RX_CHAIN_IDX(prod);
5920 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5921 sc->rx_prod = prod;
5922 sc->rx_prod_bseq = prod_bseq;
5923
5924 splx(s);
5925 return;
5926 }
5927
5928 /****************************************************************************/
5929 /* BNX Debug Routines */
5930 /****************************************************************************/
5931 #ifdef BNX_DEBUG
5932
5933 /****************************************************************************/
5934 /* Prints out information about an mbuf. */
5935 /* */
5936 /* Returns: */
5937 /* Nothing. */
5938 /****************************************************************************/
5939 void
5940 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5941 {
5942 struct mbuf *mp = m;
5943
5944 if (m == NULL) {
5945 /* Index out of range. */
5946 aprint_error("mbuf ptr is null!\n");
5947 return;
5948 }
5949
5950 while (mp) {
5951 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5952 mp, mp->m_len);
5953
5954 if (mp->m_flags & M_EXT)
5955 aprint_debug("M_EXT ");
5956 if (mp->m_flags & M_PKTHDR)
5957 aprint_debug("M_PKTHDR ");
5958 aprint_debug("\n");
5959
5960 if (mp->m_flags & M_EXT)
5961 aprint_debug("- m_ext: vaddr = %p, "
5962 "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
5963
5964 mp = mp->m_next;
5965 }
5966 }
5967
5968 /****************************************************************************/
5969 /* Prints out the mbufs in the TX mbuf chain. */
5970 /* */
5971 /* Returns: */
5972 /* Nothing. */
5973 /****************************************************************************/
5974 void
5975 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5976 {
5977 #if 0
5978 struct mbuf *m;
5979 int i;
5980
5981 aprint_debug_dev(sc->bnx_dev,
5982 "----------------------------"
5983 " tx mbuf data "
5984 "----------------------------\n");
5985
5986 for (i = 0; i < count; i++) {
5987 m = sc->tx_mbuf_ptr[chain_prod];
5988 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5989 bnx_dump_mbuf(sc, m);
5990 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5991 }
5992
5993 aprint_debug_dev(sc->bnx_dev,
5994 "--------------------------------------------"
5995 "----------------------------\n");
5996 #endif
5997 }
5998
5999 /*
6000 * This routine prints the RX mbuf chain.
6001 */
6002 void
6003 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
6004 {
6005 struct mbuf *m;
6006 int i;
6007
6008 aprint_debug_dev(sc->bnx_dev,
6009 "----------------------------"
6010 " rx mbuf data "
6011 "----------------------------\n");
6012
6013 for (i = 0; i < count; i++) {
6014 m = sc->rx_mbuf_ptr[chain_prod];
6015 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
6016 bnx_dump_mbuf(sc, m);
6017 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
6018 }
6019
6020
6021 aprint_debug_dev(sc->bnx_dev,
6022 "--------------------------------------------"
6023 "----------------------------\n");
6024 }
6025
6026 void
6027 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
6028 {
6029 if (idx > MAX_TX_BD)
6030 /* Index out of range. */
6031 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
6032 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6033 /* TX Chain page pointer. */
6034 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
6035 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
6036 txbd->tx_bd_haddr_lo);
6037 else
6038 /* Normal tx_bd entry. */
6039 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6040 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
6041 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
6042 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
6043 txbd->tx_bd_flags);
6044 }
6045
6046 void
6047 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
6048 {
6049 if (idx > MAX_RX_BD)
6050 /* Index out of range. */
6051 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
6052 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6053 /* TX Chain page pointer. */
6054 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
6055 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
6056 rxbd->rx_bd_haddr_lo);
6057 else
6058 /* Normal tx_bd entry. */
6059 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6060 "0x%08X, flags = 0x%08X\n", idx,
6061 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
6062 rxbd->rx_bd_len, rxbd->rx_bd_flags);
6063 }
6064
6065 void
6066 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
6067 {
6068 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
6069 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
6070 "tcp_udp_xsum = 0x%04X\n", idx,
6071 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
6072 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
6073 l2fhdr->l2_fhdr_tcp_udp_xsum);
6074 }
6075
6076 /*
6077 * This routine prints the TX chain.
6078 */
6079 void
6080 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
6081 {
6082 struct tx_bd *txbd;
6083 int i;
6084
6085 /* First some info about the tx_bd chain structure. */
6086 aprint_debug_dev(sc->bnx_dev,
6087 "----------------------------"
6088 " tx_bd chain "
6089 "----------------------------\n");
6090
6091 BNX_PRINTF(sc,
6092 "page size = 0x%08X, tx chain pages = 0x%08X\n",
6093 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
6094
6095 BNX_PRINTF(sc,
6096 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
6097 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
6098
6099 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
6100
6101 aprint_error_dev(sc->bnx_dev, ""
6102 "-----------------------------"
6103 " tx_bd data "
6104 "-----------------------------\n");
6105
6106 /* Now print out the tx_bd's themselves. */
6107 for (i = 0; i < count; i++) {
6108 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6109 bnx_dump_txbd(sc, tx_prod, txbd);
6110 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
6111 }
6112
6113 aprint_debug_dev(sc->bnx_dev,
6114 "-----------------------------"
6115 "--------------"
6116 "-----------------------------\n");
6117 }
6118
6119 /*
6120 * This routine prints the RX chain.
6121 */
6122 void
6123 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
6124 {
6125 struct rx_bd *rxbd;
6126 int i;
6127
6128 /* First some info about the tx_bd chain structure. */
6129 aprint_debug_dev(sc->bnx_dev,
6130 "----------------------------"
6131 " rx_bd chain "
6132 "----------------------------\n");
6133
6134 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
6135
6136 BNX_PRINTF(sc,
6137 "page size = 0x%08X, rx chain pages = 0x%08X\n",
6138 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
6139
6140 BNX_PRINTF(sc,
6141 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
6142 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
6143
6144 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
6145
6146 aprint_error_dev(sc->bnx_dev,
6147 "----------------------------"
6148 " rx_bd data "
6149 "----------------------------\n");
6150
6151 /* Now print out the rx_bd's themselves. */
6152 for (i = 0; i < count; i++) {
6153 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6154 bnx_dump_rxbd(sc, rx_prod, rxbd);
6155 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
6156 }
6157
6158 aprint_debug_dev(sc->bnx_dev,
6159 "----------------------------"
6160 "--------------"
6161 "----------------------------\n");
6162 }
6163
6164 /*
6165 * This routine prints the status block.
6166 */
6167 void
6168 bnx_dump_status_block(struct bnx_softc *sc)
6169 {
6170 struct status_block *sblk;
6171 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6172 BUS_DMASYNC_POSTREAD);
6173
6174 sblk = sc->status_block;
6175
6176 aprint_debug_dev(sc->bnx_dev, "----------------------------- "
6177 "Status Block -----------------------------\n");
6178
6179 BNX_PRINTF(sc,
6180 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
6181 sblk->status_attn_bits, sblk->status_attn_bits_ack,
6182 sblk->status_idx);
6183
6184 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
6185 sblk->status_rx_quick_consumer_index0,
6186 sblk->status_tx_quick_consumer_index0);
6187
6188 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
6189
6190 /* Theses indices are not used for normal L2 drivers. */
6191 if (sblk->status_rx_quick_consumer_index1 ||
6192 sblk->status_tx_quick_consumer_index1)
6193 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
6194 sblk->status_rx_quick_consumer_index1,
6195 sblk->status_tx_quick_consumer_index1);
6196
6197 if (sblk->status_rx_quick_consumer_index2 ||
6198 sblk->status_tx_quick_consumer_index2)
6199 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
6200 sblk->status_rx_quick_consumer_index2,
6201 sblk->status_tx_quick_consumer_index2);
6202
6203 if (sblk->status_rx_quick_consumer_index3 ||
6204 sblk->status_tx_quick_consumer_index3)
6205 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
6206 sblk->status_rx_quick_consumer_index3,
6207 sblk->status_tx_quick_consumer_index3);
6208
6209 if (sblk->status_rx_quick_consumer_index4 ||
6210 sblk->status_rx_quick_consumer_index5)
6211 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
6212 sblk->status_rx_quick_consumer_index4,
6213 sblk->status_rx_quick_consumer_index5);
6214
6215 if (sblk->status_rx_quick_consumer_index6 ||
6216 sblk->status_rx_quick_consumer_index7)
6217 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
6218 sblk->status_rx_quick_consumer_index6,
6219 sblk->status_rx_quick_consumer_index7);
6220
6221 if (sblk->status_rx_quick_consumer_index8 ||
6222 sblk->status_rx_quick_consumer_index9)
6223 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6224 sblk->status_rx_quick_consumer_index8,
6225 sblk->status_rx_quick_consumer_index9);
6226
6227 if (sblk->status_rx_quick_consumer_index10 ||
6228 sblk->status_rx_quick_consumer_index11)
6229 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6230 sblk->status_rx_quick_consumer_index10,
6231 sblk->status_rx_quick_consumer_index11);
6232
6233 if (sblk->status_rx_quick_consumer_index12 ||
6234 sblk->status_rx_quick_consumer_index13)
6235 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6236 sblk->status_rx_quick_consumer_index12,
6237 sblk->status_rx_quick_consumer_index13);
6238
6239 if (sblk->status_rx_quick_consumer_index14 ||
6240 sblk->status_rx_quick_consumer_index15)
6241 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6242 sblk->status_rx_quick_consumer_index14,
6243 sblk->status_rx_quick_consumer_index15);
6244
6245 if (sblk->status_completion_producer_index ||
6246 sblk->status_cmd_consumer_index)
6247 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6248 sblk->status_completion_producer_index,
6249 sblk->status_cmd_consumer_index);
6250
6251 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6252 "-----------------------------\n");
6253 }
6254
6255 /*
6256 * This routine prints the statistics block.
6257 */
6258 void
6259 bnx_dump_stats_block(struct bnx_softc *sc)
6260 {
6261 struct statistics_block *sblk;
6262 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6263 BUS_DMASYNC_POSTREAD);
6264
6265 sblk = sc->stats_block;
6266
6267 aprint_debug_dev(sc->bnx_dev, ""
6268 "-----------------------------"
6269 " Stats Block "
6270 "-----------------------------\n");
6271
6272 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6273 "IfHcInBadOctets = 0x%08X:%08X\n",
6274 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6275 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6276
6277 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6278 "IfHcOutBadOctets = 0x%08X:%08X\n",
6279 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6280 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6281
6282 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6283 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6284 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6285 sblk->stat_IfHCInMulticastPkts_hi,
6286 sblk->stat_IfHCInMulticastPkts_lo);
6287
6288 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6289 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6290 sblk->stat_IfHCInBroadcastPkts_hi,
6291 sblk->stat_IfHCInBroadcastPkts_lo,
6292 sblk->stat_IfHCOutUcastPkts_hi,
6293 sblk->stat_IfHCOutUcastPkts_lo);
6294
6295 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6296 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6297 sblk->stat_IfHCOutMulticastPkts_hi,
6298 sblk->stat_IfHCOutMulticastPkts_lo,
6299 sblk->stat_IfHCOutBroadcastPkts_hi,
6300 sblk->stat_IfHCOutBroadcastPkts_lo);
6301
6302 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6303 BNX_PRINTF(sc, "0x%08X : "
6304 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6305 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6306
6307 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6308 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6309 sblk->stat_Dot3StatsCarrierSenseErrors);
6310
6311 if (sblk->stat_Dot3StatsFCSErrors)
6312 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6313 sblk->stat_Dot3StatsFCSErrors);
6314
6315 if (sblk->stat_Dot3StatsAlignmentErrors)
6316 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6317 sblk->stat_Dot3StatsAlignmentErrors);
6318
6319 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6320 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6321 sblk->stat_Dot3StatsSingleCollisionFrames);
6322
6323 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6324 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6325 sblk->stat_Dot3StatsMultipleCollisionFrames);
6326
6327 if (sblk->stat_Dot3StatsDeferredTransmissions)
6328 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6329 sblk->stat_Dot3StatsDeferredTransmissions);
6330
6331 if (sblk->stat_Dot3StatsExcessiveCollisions)
6332 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6333 sblk->stat_Dot3StatsExcessiveCollisions);
6334
6335 if (sblk->stat_Dot3StatsLateCollisions)
6336 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6337 sblk->stat_Dot3StatsLateCollisions);
6338
6339 if (sblk->stat_EtherStatsCollisions)
6340 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6341 sblk->stat_EtherStatsCollisions);
6342
6343 if (sblk->stat_EtherStatsFragments)
6344 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6345 sblk->stat_EtherStatsFragments);
6346
6347 if (sblk->stat_EtherStatsJabbers)
6348 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6349 sblk->stat_EtherStatsJabbers);
6350
6351 if (sblk->stat_EtherStatsUndersizePkts)
6352 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6353 sblk->stat_EtherStatsUndersizePkts);
6354
6355 if (sblk->stat_EtherStatsOverrsizePkts)
6356 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6357 sblk->stat_EtherStatsOverrsizePkts);
6358
6359 if (sblk->stat_EtherStatsPktsRx64Octets)
6360 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6361 sblk->stat_EtherStatsPktsRx64Octets);
6362
6363 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6364 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6365 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6366
6367 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6368 BNX_PRINTF(sc, "0x%08X : "
6369 "EtherStatsPktsRx128Octetsto255Octets\n",
6370 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6371
6372 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6373 BNX_PRINTF(sc, "0x%08X : "
6374 "EtherStatsPktsRx256Octetsto511Octets\n",
6375 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6376
6377 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6378 BNX_PRINTF(sc, "0x%08X : "
6379 "EtherStatsPktsRx512Octetsto1023Octets\n",
6380 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6381
6382 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6383 BNX_PRINTF(sc, "0x%08X : "
6384 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6385 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6386
6387 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6388 BNX_PRINTF(sc, "0x%08X : "
6389 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6390 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6391
6392 if (sblk->stat_EtherStatsPktsTx64Octets)
6393 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6394 sblk->stat_EtherStatsPktsTx64Octets);
6395
6396 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6397 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6398 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6399
6400 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6401 BNX_PRINTF(sc, "0x%08X : "
6402 "EtherStatsPktsTx128Octetsto255Octets\n",
6403 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6404
6405 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6406 BNX_PRINTF(sc, "0x%08X : "
6407 "EtherStatsPktsTx256Octetsto511Octets\n",
6408 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6409
6410 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6411 BNX_PRINTF(sc, "0x%08X : "
6412 "EtherStatsPktsTx512Octetsto1023Octets\n",
6413 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6414
6415 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6416 BNX_PRINTF(sc, "0x%08X : "
6417 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6418 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6419
6420 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6421 BNX_PRINTF(sc, "0x%08X : "
6422 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6423 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6424
6425 if (sblk->stat_XonPauseFramesReceived)
6426 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6427 sblk->stat_XonPauseFramesReceived);
6428
6429 if (sblk->stat_XoffPauseFramesReceived)
6430 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6431 sblk->stat_XoffPauseFramesReceived);
6432
6433 if (sblk->stat_OutXonSent)
6434 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6435 sblk->stat_OutXonSent);
6436
6437 if (sblk->stat_OutXoffSent)
6438 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6439 sblk->stat_OutXoffSent);
6440
6441 if (sblk->stat_FlowControlDone)
6442 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6443 sblk->stat_FlowControlDone);
6444
6445 if (sblk->stat_MacControlFramesReceived)
6446 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6447 sblk->stat_MacControlFramesReceived);
6448
6449 if (sblk->stat_XoffStateEntered)
6450 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6451 sblk->stat_XoffStateEntered);
6452
6453 if (sblk->stat_IfInFramesL2FilterDiscards)
6454 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6455 sblk->stat_IfInFramesL2FilterDiscards);
6456
6457 if (sblk->stat_IfInRuleCheckerDiscards)
6458 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6459 sblk->stat_IfInRuleCheckerDiscards);
6460
6461 if (sblk->stat_IfInFTQDiscards)
6462 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6463 sblk->stat_IfInFTQDiscards);
6464
6465 if (sblk->stat_IfInMBUFDiscards)
6466 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6467 sblk->stat_IfInMBUFDiscards);
6468
6469 if (sblk->stat_IfInRuleCheckerP4Hit)
6470 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6471 sblk->stat_IfInRuleCheckerP4Hit);
6472
6473 if (sblk->stat_CatchupInRuleCheckerDiscards)
6474 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6475 sblk->stat_CatchupInRuleCheckerDiscards);
6476
6477 if (sblk->stat_CatchupInFTQDiscards)
6478 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6479 sblk->stat_CatchupInFTQDiscards);
6480
6481 if (sblk->stat_CatchupInMBUFDiscards)
6482 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6483 sblk->stat_CatchupInMBUFDiscards);
6484
6485 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6486 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6487 sblk->stat_CatchupInRuleCheckerP4Hit);
6488
6489 aprint_debug_dev(sc->bnx_dev,
6490 "-----------------------------"
6491 "--------------"
6492 "-----------------------------\n");
6493 }
6494
6495 void
6496 bnx_dump_driver_state(struct bnx_softc *sc)
6497 {
6498 aprint_debug_dev(sc->bnx_dev,
6499 "-----------------------------"
6500 " Driver State "
6501 "-----------------------------\n");
6502
6503 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6504 "address\n", sc);
6505
6506 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6507 sc->status_block);
6508
6509 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6510 "address\n", sc->stats_block);
6511
6512 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6513 "address\n", sc->tx_bd_chain);
6514
6515 #if 0
6516 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6517 sc->rx_bd_chain);
6518
6519 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6520 sc->tx_mbuf_ptr);
6521 #endif
6522
6523 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6524 sc->rx_mbuf_ptr);
6525
6526 BNX_PRINTF(sc,
6527 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6528 sc->interrupts_generated);
6529
6530 BNX_PRINTF(sc,
6531 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6532 sc->rx_interrupts);
6533
6534 BNX_PRINTF(sc,
6535 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6536 sc->tx_interrupts);
6537
6538 BNX_PRINTF(sc,
6539 " 0x%08X - (sc->last_status_idx) status block index\n",
6540 sc->last_status_idx);
6541
6542 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6543 sc->tx_prod);
6544
6545 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6546 sc->tx_cons);
6547
6548 BNX_PRINTF(sc,
6549 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6550 sc->tx_prod_bseq);
6551 BNX_PRINTF(sc,
6552 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6553 sc->tx_mbuf_alloc);
6554
6555 BNX_PRINTF(sc,
6556 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6557 sc->used_tx_bd);
6558
6559 BNX_PRINTF(sc,
6560 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6561 sc->tx_hi_watermark, sc->max_tx_bd);
6562
6563
6564 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6565 sc->rx_prod);
6566
6567 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6568 sc->rx_cons);
6569
6570 BNX_PRINTF(sc,
6571 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6572 sc->rx_prod_bseq);
6573
6574 BNX_PRINTF(sc,
6575 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6576 sc->rx_mbuf_alloc);
6577
6578 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6579 sc->free_rx_bd);
6580
6581 BNX_PRINTF(sc,
6582 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6583 sc->rx_low_watermark, sc->max_rx_bd);
6584
6585 BNX_PRINTF(sc,
6586 " 0x%08X - (sc->mbuf_alloc_failed) "
6587 "mbuf alloc failures\n",
6588 sc->mbuf_alloc_failed);
6589
6590 BNX_PRINTF(sc,
6591 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6592 "simulated mbuf alloc failures\n",
6593 sc->mbuf_sim_alloc_failed);
6594
6595 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6596 "-----------------------------\n");
6597 }
6598
6599 void
6600 bnx_dump_hw_state(struct bnx_softc *sc)
6601 {
6602 uint32_t val1;
6603 int i;
6604
6605 aprint_debug_dev(sc->bnx_dev,
6606 "----------------------------"
6607 " Hardware State "
6608 "----------------------------\n");
6609
6610 val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
6611 BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
6612
6613 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6614 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6615 val1, BNX_MISC_ENABLE_STATUS_BITS);
6616
6617 val1 = REG_RD(sc, BNX_DMA_STATUS);
6618 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6619
6620 val1 = REG_RD(sc, BNX_CTX_STATUS);
6621 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6622
6623 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6624 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6625 BNX_EMAC_STATUS);
6626
6627 val1 = REG_RD(sc, BNX_RPM_STATUS);
6628 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6629
6630 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6631 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6632 BNX_TBDR_STATUS);
6633
6634 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6635 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6636 BNX_TDMA_STATUS);
6637
6638 val1 = REG_RD(sc, BNX_HC_STATUS);
6639 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6640
6641 aprint_debug_dev(sc->bnx_dev,
6642 "----------------------------"
6643 "----------------"
6644 "----------------------------\n");
6645
6646 aprint_debug_dev(sc->bnx_dev,
6647 "----------------------------"
6648 " Register Dump "
6649 "----------------------------\n");
6650
6651 for (i = 0x400; i < 0x8000; i += 0x10)
6652 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6653 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6654 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6655
6656 aprint_debug_dev(sc->bnx_dev,
6657 "----------------------------"
6658 "----------------"
6659 "----------------------------\n");
6660 }
6661
6662 void
6663 bnx_breakpoint(struct bnx_softc *sc)
6664 {
6665 /* Unreachable code to shut the compiler up about unused functions. */
6666 if (0) {
6667 bnx_dump_txbd(sc, 0, NULL);
6668 bnx_dump_rxbd(sc, 0, NULL);
6669 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6670 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6671 bnx_dump_l2fhdr(sc, 0, NULL);
6672 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6673 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6674 bnx_dump_status_block(sc);
6675 bnx_dump_stats_block(sc);
6676 bnx_dump_driver_state(sc);
6677 bnx_dump_hw_state(sc);
6678 }
6679
6680 bnx_dump_driver_state(sc);
6681 /* Print the important status block fields. */
6682 bnx_dump_status_block(sc);
6683
6684 #if 0
6685 /* Call the debugger. */
6686 breakpoint();
6687 #endif
6688
6689 return;
6690 }
6691 #endif
6692